Groundwater Sample Results,
Level 2 Laboratory Report, Level 4 Laboratory Report, Electronic Data Deliverable, Data Validation Report, Sample Location Report, SDG 2000314
MCAS
Tustin, CA
April 2021

February 29, 2020

Vista Work Order No. 2000314

Ms. Kimberly Shiroodi
KMEA
2423 Hoover Avenue
National City, CA 91950
Dear Ms. Shiroodi,
Enclosed are the results for the sample set received at Vista Analytical Laboratory on February 13, 2020 under your Project Name 'MCAS El Toro and Tustin, PFAS'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier
Laboratory Director

Vista Work Order No. 2000314

Case Narrative

Sample Condition on Receipt:

Thirteen groundwater samples and two blank water samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

PFAS Isotope Dilution Method

The samples were extracted and analyzed for a selected list of PFAS using the PFAS Isotope Dilution Method (Modified EPA Method 537). The results for PFHxS, PFOA, PFOS, MeFOSAA, and EtFOSAA include both linear and branched isomers. Results for all other analytes include the linear isomers only.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above $1 / 2$ the LOQ concentrations. The OPR recoveries were within the method acceptance criteria.

As requested, an MS/MSD was performed on sample "I006MW03SR-20200212". The MS recovery of PFHxS was greater than 131%. The MSD recoveries and/or RPDs were out of the acceptance criteria for PFHxA, PFHpA, and PFHxS.

The labeled standard recoveries outside the acceptance criteria are listed in the table below.

QC Anomalies

LabNumber	SampleName	Analysis	Analyte	Flag
$2000314-11$	IS72MW15S-20200212	PFAS Isotope Dilution Method	13C2-PFTeDA	H

$\mathrm{H}=$ Recovery was outside laboratory acceptance criteria.

TABLE OF CONTENTS

Case Narrative 1
Table of Contents 3
Sample Inventory 4
Analytical Results 5
Qualifiers 25
Certifications 26
Sample Receipt 29

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
2000314-01	SB01-20200212	12-Feb-20 07:00	13-Feb-20 09:15	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2000314-02	EB01-20200212	12-Feb-20 07:10	13-Feb-20 09:15	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2000314-03	I006MW03SR-20200212	MS/MSD12-Feb-20 07:40	13-Feb-20 09:15	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2000314-04	I006MW05SR-20200212	12-Feb-20 08:40	13-Feb-20 09:15	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2000314-05	DUP01-20200212	12-Feb-20 08:45	13-Feb-20 09:15	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2000314-06	I006MW01S-20200212	12-Feb-20 09:20	13-Feb-20 09:15	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2000314-07	I006MW08S-20200212	12-Feb-20 10:00	13-Feb-20 09:15	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2000314-08	BMW07S-20200212	12-Feb-20 11:00	13-Feb-20 09:15	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2000314-09	I005MW01SR-20200212	12-Feb-20 11:50	13-Feb-20 09:15	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2000314-10	DUP05-20200212	12-Feb-20 11:55	13-Feb-20 09:15	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2000314-11	IS72MW15S-20200212	12-Feb-20 13:15	13-Feb-20 09:15	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2000314-12	IS72MW18SR-20200212	12-Feb-20 14:10	13-Feb-20 09:15	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2000314-13	222MW02S-20200212	12-Feb-20 15:00	13-Feb-20 09:15	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2000314-14	DUP03-20200212	12-Feb-20 15:05	13-Feb-20 09:15	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2000314-15	A000MW42S-20200212	12-Feb-20 16:00	13-Feb-20 09:15	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL

Vista Project: 2000314

ANALYTICAL RESULTS

Sample ID: Method Blank									PFAS Isotope Dilution Method		
Client Data Name: Project:	KMEA MCAS El Toro and Tustin, PFAS	Matrix:				tory Data mple:	B0B0118-		Column:	BEH C18	
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	ND	0.00137	0.00200	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
PFHxA	307-24-4	ND	0.00137	0.00200	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
HFPO-DA	13252-13-6	ND	0.00241	0.00300	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
PFHpA	375-85-9	ND	0.00137	0.00200	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
ADONA	919005-14-4	ND	0.00137	0.00200	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
PFHxS	355-46-4	ND	0.00137	0.00200	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
PFOA	335-67-1	ND	0.00137	0.00200	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
PFNA	375-95-1	ND	0.00137	0.00200	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
PFOS	1763-23-1	ND	0.00137	0.00200	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
9Cl-PF3ONS	756426-58-1	ND	0.00137	0.00200	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
PFDA	335-76-2	ND	0.00137	0.00200	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
MeFOSAA	2355-31-9	ND	0.00137	0.00200	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
EtFOSAA	2991-50-6	ND	0.00137	0.00200	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
PFUnA	2058-94-8	ND	0.00137	0.00200	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
11Cl-PF3OUdS	763051-92-9	ND	0.00137	0.00200	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
PFDoA	307-55-1	ND	0.00137	0.00200	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
PFTrDA	72629-94-8	ND	0.00137	0.00200	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
PFTeDA	376-06-7	ND	0.00137	0.00200	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	93.9		50-150			B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
13C3-HFPO-DA	IS	87.6		50-150			B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
13C2-PFHxA	IS	83.5		50-150			B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
13C4-PFHpA	IS	84.5		50-150			B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
13C3-PFHxS	IS	89.6		50-150			B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
13C5-PFNA	IS	78.0		50-150			B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
13C2-PFOA	IS	89.5		50-150			B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
13C8-PFOS	IS	91.6		50-150			B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
13C2-PFDA	IS	95.9		50-150			B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
d3-MeFOSAA	IS	84.2		50-150			B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
13C2-PFUnA	IS	100		50-150			B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
d5-EtFOSAA	IS	78.2		50-150			B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
13C2-PFDoA	IS	73.3		50-150			B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
13C2-PFTeDA	IS	79.9		50-150			B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results re	ed to the DL			When r linear an analytes	orted, PFHxS, branched ison	FOA, PFOS, M rs. Only the li	eFOSAA and EtF ear isomer is repo	OSAA include both orted for all other	

Sample ID: OPR									PFAS Isotope Dilution Method					
Client Data Name: KMEA Project: MCAS El Toro and Tustin, PFAS		Matrix: Aqueous			Laboratory Data Lab Sample:		B0B0118-BS1		Column:	BEH C18				
Analyte	CAS Number				Amt Found (ug/L)	Spike Amt	\% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	0.0400	0.0400	100	72-130		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
PFHxA	307-24-4	0.0388	0.0400	97.1	72-129		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
HFPO-DA	13252-13-6	0.0379	0.0400	94.8	70-130		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
PFHpA	375-85-9	0.0365	0.0400	91.3	72-130		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
ADONA	919005-14-4	0.0359	0.0400	89.7	70-130		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
PFHxS	355-46-4	0.0393	0.0400	98.2	68-131		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
PFOA	335-67-1	0.0355	0.0400	88.7	71-133		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
PFNA	375-95-1	0.0372	0.0400	93.1	69-130		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
PFOS	1763-23-1	0.0369	0.0400	92.2	65-140		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
9Cl-PF3ONS	756426-58-1	0.0344	0.0400	86.1	70-130		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
PFDA	335-76-2	0.0405	0.0400	101	71-129		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
MeFOSAA	2355-31-9	0.0346	0.0400	86.5	65-136		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
EtFOSAA	2991-50-6	0.0385	0.0400	96.2	61-135		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
PFUnA	2058-94-8	0.0350	0.0400	87.5	69-133		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
11Cl-PF3OUdS	763051-92-9	0.0459	0.0400	115	70-130		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
PFDoA	307-55-1	0.0421	0.0400	105	72-134		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
PFTrDA	72629-94-8	0.0381	0.0400	95.2	65-144		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
PFTeDA	376-06-7	0.0389	0.0400	97.3	71-132		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
Labeled Standar		Type		\% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution			
13C3-PFBS		IS		88.9	50-150		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
13C3-HFPO-DA		IS		81.0	50-150		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
13C2-PFHxA		IS		84.6	50-150		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
13C4-PFHpA		IS		83.7	50-150		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
13C3-PFHxS		IS		75.7	50-150		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
13C5-PFNA		IS		82.9	50-150		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
13C2-PFOA		IS		86.1	50-150		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
13C8-PFOS		IS		89.1	50-150		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
13C2-PFDA		IS		86.2	50-150		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
d3-MeFOSAA		IS		84.0	50-150		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
13C2-PFUnA		IS		90.9	50-150		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
d5-EtFOSAA		IS		76.7	50-150		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
13C2-PFDoA		IS		71.1	50-150		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
13C2-PFTeDA		IS		78.1	50-150		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			

Sample ID: EB01-20200212									PFAS Isotope Dilution Method		
Client Data Name: KMEA Project: MCAS E1 Toro and Tustin, PFAS		Matrix: Blank Water Date Collected: 12-Feb-20 07:10			Laboratory Data Lab Sample: Date Received:		$\begin{aligned} & \text { 2000314-02 } \\ & \text { 13-Feb-20 09:15 } \end{aligned}$		Column: Samp Size	BEH C18	
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted		Analyzed	Dilution
PFBS	375-73-5	ND	0.00139	0.00203	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
PFHxA	307-24-4	ND	0.00139	0.00203	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
HFPO-DA	13252-13-6	ND	0.00245	0.00305	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
PFHpA	375-85-9	ND	0.00139	0.00203	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
ADONA	919005-14-4	ND	0.00139	0.00203	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
PFHxS	355-46-4	ND	0.00139	0.00203	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
PFOA	335-67-1	ND	0.00139	0.00203	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
PFNA	375-95-1	ND	0.00139	0.00203	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
PFOS	1763-23-1	ND	0.00139	0.00203	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
9Cl-PF3ONS	756426-58-1	ND	0.00139	0.00203	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
PFDA	335-76-2	ND	0.00139	0.00203	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
MeFOSAA	2355-31-9	ND	0.00139	0.00203	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
EtFOSAA	2991-50-6	ND	0.00139	0.00203	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
PFUnA	2058-94-8	ND	0.00139	0.00203	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
11Cl-PF3OUdS	763051-92-9	ND	0.00139	0.00203	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
PFDoA	307-55-1	ND	0.00139	0.00203	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
PFTrDA	72629-94-8	ND	0.00139	0.00203	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
PFTeDA	376-06-7	ND	0.00139	0.00203	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	92.1		50-150			B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
13C3-HFPO-DA	IS	93.4		50-150			B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
13C2-PFHxA	IS	93.7		50-150			B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
13C4-PFHpA	IS	86.7		50-150			B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
13C3-PFHxS	IS	88.3		50-150			B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
13C5-PFNA	IS	86.0		50-150			B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
13C2-PFOA	IS	85.8		50-150			B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
13C8-PFOS	IS	92.5		50-150			B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
13C2-PFDA	IS	104		50-150			B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
d3-MeFOSAA	IS	96.1		50-150			B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
13C2-PFUnA	IS	94.3		50-150			B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
d5-EtFOSAA	IS	83.7		50-150			B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
13C2-PFDoA	IS	79.5		50-150			B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
13C2-PFTeDA	IS	88.6		50-150			B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results reported to the DL.			When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.						

Sample ID: I006MW03SR-20200212									PFAS Isotope Dilution Method		
Client Data Name: KMEA Project: MCAS El Toro and Tustin, PFAS		Matrix: Groundwater Date Collected: 12-Feb-20 07			Laboratory Data Lab Sample: 2000314-03 Date Received: 13-Feb-20 09:15				Column:	BEH C18	
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	0.0513	0.00135	0.00197	0.00394		B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
PFHxA	307-24-4	0.628	0.00135	0.00197	0.00394		B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
HFPO-DA	13252-13-6	ND	0.00237	0.00295	0.00394		B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
PFHpA	375-85-9	0.226	0.00135	0.00197	0.00394		B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
ADONA	919005-14-4	ND	0.00135	0.00197	0.00394		B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
PFHxS	355-46-4	0.333	0.00135	0.00197	0.00394		B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
PFOA	335-67-1	0.303	0.00135	0.00197	0.00394		B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
PFNA	375-95-1	0.00140	0.00135	0.00197	0.00394	J	B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
PFOS	1763-23-1	0.00993	0.00135	0.00197	0.00394		B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
9Cl-PF3ONS	756426-58-1	ND	0.00135	0.00197	0.00394		B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
PFDA	335-76-2	ND	0.00135	0.00197	0.00394		B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
MeFOSAA	2355-31-9	ND	0.00135	0.00197	0.00394		B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
EtFOSAA	2991-50-6	ND	0.00135	0.00197	0.00394		B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
PFUnA	2058-94-8	ND	0.00135	0.00197	0.00394		B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
11Cl-PF3OUdS	763051-92-9	ND	0.00135	0.00197	0.00394		B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
PFDoA	307-55-1	ND	0.00135	0.00197	0.00394		B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
PFTrDA	72629-94-8	ND	0.00135	0.00197	0.00394		B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
PFTeDA	376-06-7	ND	0.00135	0.00197	0.00394		B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	104		50-150			B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
13C3-HFPO-DA	IS	108		50-150			B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
13C2-PFHxA	IS	99.6		50-150			B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
13C4-PFHpA	IS	96.6		50-150			B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
13C3-PFHxS	IS	104		50-150			B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
13C5-PFNA	IS	91.8		50-150			B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
13C2-PFOA	IS	99.4		50-150			B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
13C8-PFOS	IS	93.8		50-150			B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
13C2-PFDA	IS	93.7		50-150			B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
d3-MeFOSAA	IS	99.2		50-150			B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
13C2-PFUnA	IS	97.2		50-150			B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
d5-EtFOSAA	IS	93.0		50-150			B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
13C2-PFDoA	IS	81.5		50-150			B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
13C2-PFTeDA	IS	85.2		50-150			B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results	ed to the DL.			When re linear an analytes.	rted, PFHxS, branched ison	FOA, PFOS, M rs. Only the lin	FOSAA and EtF ear isomer is rep	OSAA include both rted for all other	

Sample ID: I006MW03SR-20200212														PFAS Isotope Dilution Method			
Name: Project: Matrix:	KMEA MCAS El Toro a Aqueous	Tustin,			Lab Sa QC Ba Samp		$\begin{aligned} & \text { B0B011 } \\ & \text { B0B011 } \\ & 0.258 / 0 \end{aligned}$	-MS1/BC $53 \mathrm{~L}$	B0118-M					Source Lab Samp Date Extracted: Column:		$\begin{aligned} & 2000314-03 \\ & \text { 19-Feb-20 } \\ & \text { BEH C18 } \end{aligned}$	
Analyte	CAS Number	Sample (ug/L)	$\begin{gathered} \hline \text { MS } \\ (\mathrm{ug} / \mathrm{L}) \\ \hline \end{gathered}$	MS Spike	MS \% Rec	MS Quals	$\begin{gathered} \text { MSD } \\ (\mathrm{ug} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \hline \text { MSD } \\ \text { Spike } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { MSD } \\ \text { \% Rec } \\ \hline \end{gathered}$	RPD	$\begin{aligned} & \text { MSD } \\ & \text { Ouals } \end{aligned}$	\%Rec Limits	$\begin{gathered} \hline \text { RPD } \\ \text { Limits } \end{gathered}$	MS Analyzed	$\begin{gathered} \hline \text { MS } \\ \text { Dil } \\ \hline \end{gathered}$	MSD Analyzed	$\begin{gathered} \hline \text { MSD } \\ \text { Dil } \\ \hline \end{gathered}$
PFBS	375-73-5	0.0513	0.100	0.0387	126		0.0986	0.0395	120	4.88		72-130	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
PFHxA	307-24-4	0.628	0.670	0.0387	111		0.655	0.0395	69.2	46.4	H	72-129	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
HFPO-DA	13252-13-6	ND	0.0386	0.0387	99.8		0.0378	0.0395	95.7	4.19		70-130	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
PFHpA	375-85-9	0.226	0.273	0.0387	119		0.257	0.0395	77.9	41.7	H	72-130	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
ADONA	919005-14-4	ND	0.0381	0.0387	98.4		0.0356	0.0395	90.1	8.81		70-130	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
PFHxS	355-46-4	0.333	0.401	0.0387	174	H	0.385	0.0395	132	27.5	H	68-131	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
PFOA	335-67-1	0.303	0.350	0.0387	123		0.349	0.0395	116	5.86		71-133	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
PFNA	375-95-1	0.00140	0.0402	0.0387	100		0.0379	0.0395	92.5	7.79		69-130	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
PFOS	1763-23-1	0.00993	0.0498	0.0387	103		0.0447	0.0395	88.1	15.6		65-140	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
9Cl-PF3ONS	756426-58-1	ND	0.0357	0.0387	92.2		0.0349	0.0395	88.3	4.32		70-130	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
PFDA	335-76-2	ND	0.0399	0.0387	103		0.0394	0.0395	99.7	3.26		71-129	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
MeFOSAA	2355-31-9	ND	0.0357	0.0387	92.2		0.0349	0.0395	88.4	4.21		65-136	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
EtFOSAA	2991-50-6	ND	0.0379	0.0387	98.0		0.0366	0.0395	92.7	5.56		61-135	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
PFUnA	2058-94-8	ND	0.0350	0.0387	90.4		0.0352	0.0395	89.1	1.45		69-133	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
11Cl-PF3OUdS	763051-92-9	ND	0.0443	0.0387	114		0.0416	0.0395	105	8.22		70-130	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
PFDoA	307-55-1	ND	0.0429	0.0387	111		0.0410	0.0395	104	6.51		72-134	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
PFTrDA	72629-94-8	ND	0.0380	0.0387	98.2		0.0392	0.0395	99.2	1.01		65-144	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
PFTeDA	376-06-7	ND	0.0338	0.0387	87.2		0.0389	0.0395	98.5	12.2		71-132	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
Labeled Standar			Type		$\begin{gathered} \text { MS } \\ \text { \% Rec } \\ \hline \end{gathered}$	MS Quals			$\begin{gathered} \text { MSD } \\ \text { \% Rec } \end{gathered}$		$\begin{aligned} & \text { MSD } \\ & \text { Ouals } \\ & \hline \end{aligned}$	Limits		MS Analyzed	$\begin{gathered} \hline \text { MS } \\ \text { Dil } \\ \hline \end{gathered}$	$\begin{gathered} \text { MSD } \\ \text { Analyzed } \end{gathered}$	$\begin{gathered} \text { MSD } \\ \text { Dil } \end{gathered}$
13C3-PFBS			IS		88.6				94.3			50-150		20-Feb-20 22:49	1	20-Feb-20 23:00	1
13C3-HFPO-DA			IS		97.0				107			50-150		20-Feb-20 22:49	1	20-Feb-20 23:00	1
13C2-PFHxA			IS		93.0				104			50-150		20-Feb-20 22:49	1	20-Feb-20 23:00	1
13C4-PFHpA			IS		82.2				97.6			50-150		20-Feb-20 22:49	1	20-Feb-20 23:00	1
13C3-PFHxS			IS		84.1				93.8			50-150		20-Feb-20 22:49	1	20-Feb-20 23:00	1
13C5-PFNA			IS		83.2				90.5			50-150		20-Feb-20 22:49	1	20-Feb-20 23:00	1
13C2-PFOA			IS		86.1				97.5			50-150		20-Feb-20 22:49	1	20-Feb-20 23:00	1
13C8-PFOS			IS		80.7				90.2			50-150		20-Feb-20 22:49	1	20-Feb-20 23:00	1
13C2-PFDA			IS		85.5				92.8			50-150		20-Feb-20 22:49	1	20-Feb-20 23:00	1
d3-MeFOSAA			IS		83.9				95.7			50-150		20-Feb-20 22:49	1	20-Feb-20 23:00	1
13C2-PFUnA			IS		83.2				92.3			50-150		20-Feb-20 22:49	1	20-Feb-20 23:00	1
d5-EtFOSAA			IS		76.4				90.3			50-150		20-Feb-20 22:49	1	20-Feb-20 23:00	1
13C2-PFDoA			IS		65.3				71.3			50-150		20-Feb-20 22:49	1	20-Feb-20 23:00	1

Work Order 2000314 Analytical Laboratory

Sample ID: I006MW03SR-20200212							PFAS Isotope Dilution Method			
Name: Project: Matrix:	KMEA MCAS El Toro and Tustin, PFAS Aqueous	Lab Sample: QC Batch: Samp Size:		B0B0118-MS1/B0B0118-MSD1 B0B0118 $0.258 / 0.253 \mathrm{~L}$	$\begin{gathered} \text { MSD } \\ \text { Ouals } \end{gathered}$	Limits	Source Lab Sample: Date Extracted: Column:		$\begin{aligned} & 2000314-03 \\ & \text { 19-Feb-20 } \\ & \text { BEH C18 } \end{aligned}$	
Labeled Standards		$\begin{gathered} \text { MS } \\ \% \text { Rec } \end{gathered}$	$\begin{gathered} \text { MS } \\ \text { Quals } \end{gathered}$	$\begin{gathered} \hline \text { MSD } \\ \text { \% Rec } \end{gathered}$			$\begin{gathered} \text { MS } \\ \text { Analyzed } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { MS } \\ \text { Dil } \\ \hline \end{gathered}$	MSD Analyzed	$\begin{gathered} \hline \text { MSD } \\ \text { Dil } \\ \hline \end{gathered}$
13C2-PFTeDA		68.4		81.6		50-150	20-Feb-20 22:49	1	20-Feb-20 23:00	1

Sample ID: I006MW05SR-20200212									PFAS Isotope Dilution Method		
Client Data Name: KMEA Project: MCAS E1 Toro and Tustin, PFAS		Matrix: Groundwate Date Collected: 12-Feb-20 0			Laboratory Data Lab Sample: 2000314-04 Date Received: 13-Feb-20 09:15				Column: Samp Size	BEH C18	
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted		Analyzed	Dilution
PFBS	375-73-5	0.0509	0.00136	0.00198	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
PFHxA	307-24-4	0.129	0.00136	0.00198	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
HFPO-DA	13252-13-6	ND	0.00240	0.00298	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
PFHpA	375-85-9	0.0436	0.00136	0.00198	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
ADONA	919005-14-4	ND	0.00136	0.00198	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
PFHxS	355-46-4	0.215	0.00136	0.00198	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
PFOA	335-67-1	0.0464	0.00136	0.00198	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
PFNA	375-95-1	ND	0.00136	0.00198	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
PFOS	1763-23-1	0.0182	0.00136	0.00198	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
9Cl-PF3ONS	756426-58-1	ND	0.00136	0.00198	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
PFDA	335-76-2	ND	0.00136	0.00198	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
MeFOSAA	2355-31-9	ND	0.00136	0.00198	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
EtFOSAA	2991-50-6	ND	0.00136	0.00198	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
PFUnA	2058-94-8	ND	0.00136	0.00198	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
11Cl-PF3OUdS	763051-92-9	ND	0.00136	0.00198	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
PFDoA	307-55-1	ND	0.00136	0.00198	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
PFTrDA	72629-94-8	ND	0.00136	0.00198	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
PFTeDA	376-06-7	ND	0.00136	0.00198	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	99.6		50-150			B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
13C3-HFPO-DA	IS	94.4		50-150			B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
13C2-PFHxA	IS	97.2		50-150			B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
13C4-PFHpA	IS	91.2		50-150			B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
13C3-PFHxS	IS	93.5		50-150			B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
13C5-PFNA	IS	84.3		50-150			B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
13C2-PFOA	IS	89.7		50-150			B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
13C8-PFOS	IS	89.4		50-150			B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
13C2-PFDA	IS	94.0		50-150			B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
d3-MeFOSAA	IS	79.2		50-150			B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
13C2-PFUnA	IS	86.1		50-150			B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
d5-EtFOSAA	IS	88.0		50-150			B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
13C2-PFDoA	IS	73.3		50-150			B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
13C2-PFTeDA	IS	92.6		50-150			B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results reported to the DL.			When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.						

Sample ID: DUP01-20200212									PFAS Isotope Dilution Method		
Client Data Name: KMEA Project: MCAS El Toro and Tustin, PFAS		Matrix: Groundwater Date Collected: 12-Feb-20 08			Laboratory Data Lab Sample: Date Received:		$\begin{aligned} & \text { 2000314-05 } \\ & \text { 13-Feb-20 09:15 } \end{aligned}$		Column:	BEH C18	Dilution
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	
PFBS	375-73-5	0.0556	0.00140	0.00204	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
PFHxA	307-24-4	0.130	0.00140	0.00204	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
HFPO-DA	13252-13-6	ND	0.00246	0.00306	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
PFHpA	375-85-9	0.0468	0.00140	0.00204	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
ADONA	919005-14-4	ND	0.00140	0.00204	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
PFHxS	355-46-4	0.205	0.00140	0.00204	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
PFOA	335-67-1	0.0441	0.00140	0.00204	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
PFNA	375-95-1	ND	0.00140	0.00204	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
PFOS	1763-23-1	0.0226	0.00140	0.00204	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
9Cl-PF3ONS	756426-58-1	ND	0.00140	0.00204	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
PFDA	335-76-2	ND	0.00140	0.00204	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
MeFOSAA	2355-31-9	ND	0.00140	0.00204	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
EtFOSAA	2991-50-6	ND	0.00140	0.00204	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
PFUnA	2058-94-8	ND	0.00140	0.00204	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
11Cl-PF3OUdS	763051-92-9	ND	0.00140	0.00204	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
PFDoA	307-55-1	ND	0.00140	0.00204	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
PFTrDA	72629-94-8	ND	0.00140	0.00204	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
PFTeDA	376-06-7	ND	0.00140	0.00204	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	99.2		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
13C3-HFPO-DA	IS	103		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
13C2-PFHxA	IS	100		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
13C4-PFHpA	IS	89.2		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
13C3-PFHxS	IS	95.8		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
13C5-PFNA	IS	89.8		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
13C2-PFOA	IS	96.4		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
13C8-PFOS	IS	90.1		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
13C2-PFDA	IS	101		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
d3-MeFOSAA	IS	92.7		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
13C2-PFUnA	IS	96.0		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
d5-EtFOSAA	IS	78.8		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
13C2-PFDoA	IS	68.5		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
13C2-PFTeDA	IS	96.5		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results	ed to the DL			When re linear and analytes.	orted, PFHxS, branched isom	FOA, PFOS, M rs. Only the lin	eFOSAA and EtF ear isomer is repo	OSAA include both rted for all other	

Sample ID: I005MW01SR-20200212									PFAS Isotope Dilution Method		
Client Data Name: KMEA Project: MCAS El Toro and Tustin, PFAS		Matrix: Groundwater Date Collected: 12-Feb-20 11			Laboratory Data Lab Sample: 2000314-09 Date Received: 13-Feb-20 09:15				Column:	BEH C18	
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	0.501	0.00134	0.00196	0.00392		B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
PFHxA	307-24-4	1.52	0.00134	0.00196	0.00392		B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
HFPO-DA	13252-13-6	ND	0.00236	0.00294	0.00392		B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
PFHpA	375-85-9	0.395	0.00134	0.00196	0.00392		B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
ADONA	919005-14-4	ND	0.00134	0.00196	0.00392		B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
PFHxS	355-46-4	2.62	0.00672	0.00980	0.0196	D	B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:39	5
PFOA	335-67-1	3.76	0.00672	0.00980	0.0196	D	B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:39	5
PFNA	375-95-1	0.0245	0.00134	0.00196	0.00392		B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
PFOS	1763-23-1	1.08	0.00134	0.00196	0.00392		B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
9Cl-PF3ONS	756426-58-1	ND	0.00134	0.00196	0.00392		B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
PFDA	335-76-2	ND	0.00134	0.00196	0.00392		B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
MeFOSAA	2355-31-9	ND	0.00134	0.00196	0.00392		B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
EtFOSAA	2991-50-6	ND	0.00134	0.00196	0.00392		B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
PFUnA	2058-94-8	ND	0.00134	0.00196	0.00392		B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
11Cl-PF3OUdS	763051-92-9	ND	0.00134	0.00196	0.00392		B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
PFDoA	307-55-1	ND	0.00134	0.00196	0.00392		B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
PFTrDA	72629-94-8	ND	0.00134	0.00196	0.00392		B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
PFTeDA	376-06-7	ND	0.00134	0.00196	0.00392		B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	103		50-150			B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
13C3-HFPO-DA	IS	94.4		50-150			B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
13C2-PFHxA	IS	93.7		50-150			B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
13C4-PFHpA	IS	97.5		50-150			B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
13C3-PFHxS	IS	122		50-150		D	B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:39	5
13C5-PFNA	IS	101		50-150			B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
13C2-PFOA	IS	134		50-150		D	B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:39	5
13C8-PFOS	IS	96.5		50-150			B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
13C2-PFDA	IS	98.0		50-150			B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
d3-MeFOSAA	IS	101		50-150			B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
13C2-PFUnA	IS	97.4		50-150			B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
d5-EtFOSAA	IS	105		50-150			B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
13C2-PFDoA	IS	70.8		50-150			B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
13C2-PFTeDA	IS	78.6		50-150			B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results	ed to the DL.			When re linear an analytes	rted, PFHxS, branched ison	FOA, PFOS, M rs. Only the lin	FOSAA and EtF ear isomer is rep	OSAA include both rted for all other	

Sample ID: DUP05-20200212									PFAS Isotope Dilution Method		
Client Data Name: KMEA Project: MCAS El Toro and Tustin, PFAS		Matrix: Groundwater Date Collected: 12-Feb-20 11:55			Laboratory Data Lab Sample: 2000314-10 Date Received: 13-Feb-20 09:15				Column:	BEH C18	
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	0.525	0.00135	0.00198	0.00396		B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
PFHxA	307-24-4	1.51	0.00135	0.00198	0.00396		B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
HFPO-DA	13252-13-6	ND	0.00238	0.00296	0.00396		B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
PFHpA	375-85-9	0.411	0.00135	0.00198	0.00396		B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
ADONA	919005-14-4	ND	0.00135	0.00198	0.00396		B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
PFHxS	355-46-4	2.84	0.00677	0.00988	0.0198	D	B0B0118	19-Feb-20	0.253 L	26-Feb-20 05:11	5
PFOA	335-67-1	4.15	0.00677	0.00988	0.0198	D	B0B0118	19-Feb-20	0.253 L	26-Feb-20 05:11	5
PFNA	375-95-1	0.0267	0.00135	0.00198	0.00396		B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
PFOS	1763-23-1	1.11	0.00135	0.00198	0.00396		B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
9Cl-PF3ONS	756426-58-1	ND	0.00135	0.00198	0.00396		B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
PFDA	335-76-2	0.00176	0.00135	0.00198	0.00396	J, Q	B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
MeFOSAA	2355-31-9	ND	0.00135	0.00198	0.00396		B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
EtFOSAA	2991-50-6	ND	0.00135	0.00198	0.00396		B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
PFUnA	2058-94-8	ND	0.00135	0.00198	0.00396		B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
11Cl-PF3OUdS	763051-92-9	ND	0.00135	0.00198	0.00396		B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
PFDoA	307-55-1	ND	0.00135	0.00198	0.00396		B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
PFTrDA	72629-94-8	ND	0.00135	0.00198	0.00396		B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
PFTeDA	376-06-7	ND	0.00135	0.00198	0.00396		B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	87.2		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
13C3-HFPO-DA	IS	92.2		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
13C2-PFHxA	IS	86.8		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
13C4-PFHpA	IS	84.8		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
13C3-PFHxS	IS	105		50-150		D	B0B0118	19-Feb-20	0.253 L	26-Feb-20 05:11	5
13C5-PFNA	IS	85.9		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
13C2-PFOA	IS	112		50-150		D	B0B0118	19-Feb-20	0.253 L	26-Feb-20 05:11	5
13C8-PFOS	IS	80.6		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
13C2-PFDA	IS	88.2		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
d3-MeFOSAA	IS	96.9		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
13C2-PFUnA	IS	93.8		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
d5-EtFOSAA	IS	79.6		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
13C2-PFDoA	IS	73.7		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
13C2-PFTeDA	IS	83.0		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results	ed to the DL			When re linear and analytes	orted, PFHxS, branched ison	FOA, PFOS, M rs. Only the lin	eFOSAA and EtF ear isomer is repo	OSAA include both orted for all other	

Sample ID: IS72MW15S-20200212									PFAS Isotope Dilution Method		
Client Data Name: KMEA Project: MCAS El Toro and Tustin, PFAS		Matrix: Groundwater Date Collected: 12-Feb-20 13:15			Laboratory Data Lab Sample: 2000314-11 Date Received: 13-Feb-20 09:15				Column:	BEH C18	
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	0.0993	0.00135	0.00197	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
PFHxA	307-24-4	0.258	0.00135	0.00197	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
HFPO-DA	13252-13-6	ND	0.00237	0.00295	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
PFHpA	375-85-9	0.0730	0.00135	0.00197	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
ADONA	919005-14-4	ND	0.00135	0.00197	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
PFHxS	355-46-4	0.829	0.00135	0.00197	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
PFOA	335-67-1	0.420	0.00135	0.00197	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
PFNA	375-95-1	0.0216	0.00135	0.00197	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
PFOS	1763-23-1	1.71	0.00135	0.00197	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
9Cl-PF3ONS	756426-58-1	ND	0.00135	0.00197	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
PFDA	335-76-2	ND	0.00135	0.00197	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
MeFOSAA	2355-31-9	ND	0.00135	0.00197	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
EtFOSAA	2991-50-6	ND	0.00135	0.00197	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
PFUnA	2058-94-8	ND	0.00135	0.00197	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
11Cl-PF3OUdS	763051-92-9	ND	0.00135	0.00197	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
PFDoA	307-55-1	ND	0.00135	0.00197	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
PFTrDA	72629-94-8	ND	0.00135	0.00197	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
PFTeDA	376-06-7	ND	0.00135	0.00197	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	92.3		50-150			B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
13C3-HFPO-DA	IS	88.0		50-150			B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
13C2-PFHxA	IS	85.6		50-150			B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
13C4-PFHpA	IS	85.0		50-150			B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
13C3-PFHxS	IS	79.9		50-150			B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
13C5-PFNA	IS	79.7		50-150			B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
13C2-PFOA	IS	90.0		50-150			B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
13C8-PFOS	IS	82.7		50-150			B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
13C2-PFDA	IS	81.4		50-150			B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
d3-MeFOSAA	IS	70.6		50-150			B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
13C2-PFUnA	IS	75.9		50-150			B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
d5-EtFOSAA	IS	79.6		50-150			B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
13C2-PFDoA	IS	53.2		50-150			B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
13C2-PFTeDA	IS	34.4		50-150		H	B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results	ed to the DL			When re linear and analytes.	orted, PFHxS, branched ison	FOA, PFOS, M rs. Only the lin	FOSAA and EtF ear isomer is repo	OSAA include both orted for all other	

Sample ID: IS72MW18SR-20200212									PFAS Isotope Dilution Method		
Client Data Name: KMEA Project: MCAS El Toro and Tustin, PFAS		$\begin{array}{ll}\text { Matrix: } & \text { Groundwater } \\ \text { Date Collected: } & \text { 12-Feb-20 14:10 }\end{array}$			Laboratory Data Lab Sample: 2000314-12 Date Received: 13-Feb-20 09:15				Column:	BEH C18	
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	0.0451	0.00140	0.00204	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
PFHxA	307-24-4	0.0998	0.00140	0.00204	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
HFPO-DA	13252-13-6	ND	0.00246	0.00306	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
PFHpA	375-85-9	0.0378	0.00140	0.00204	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
ADONA	919005-14-4	ND	0.00140	0.00204	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
PFHxS	355-46-4	0.323	0.00140	0.00204	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
PFOA	335-67-1	0.325	0.00140	0.00204	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
PFNA	375-95-1	0.00422	0.00140	0.00204	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
PFOS	1763-23-1	0.252	0.00140	0.00204	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
9Cl-PF3ONS	756426-58-1	ND	0.00140	0.00204	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
PFDA	335-76-2	ND	0.00140	0.00204	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
MeFOSAA	2355-31-9	ND	0.00140	0.00204	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
EtFOSAA	2991-50-6	ND	0.00140	0.00204	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
PFUnA	2058-94-8	ND	0.00140	0.00204	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
11Cl-PF3OUdS	763051-92-9	ND	0.00140	0.00204	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
PFDoA	307-55-1	ND	0.00140	0.00204	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
PFTrDA	72629-94-8	ND	0.00140	0.00204	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
PFTeDA	376-06-7	ND	0.00140	0.00204	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	99.2		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
13C3-HFPO-DA	IS	92.6		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
13C2-PFHxA	IS	89.6		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
13C4-PFHpA	IS	85.3		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
13C3-PFHxS	IS	90.6		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
13C5-PFNA	IS	90.2		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
13C2-PFOA	IS	91.4		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
13C8-PFOS	IS	84.5		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
13C2-PFDA	IS	94.8		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
d3-MeFOSAA	IS	74.2		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
13C2-PFUnA	IS	96.0		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
d5-EtFOSAA	IS	80.5		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
13C2-PFDoA	IS	67.3		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
13C2-PFTeDA	IS	86.1		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results	ed to the DL			When re linear an analytes	orted, PFHxS, branched ison	FOA, PFOS, M rs. Only the lin	eFOSAA and EtF ear isomer is repo	OSAA include both orted for all other	

Sample ID: DUP03-20200212									PFAS Isotope Dilution Method		
Client Data Name: KMEA Project: MCAS E1 Toro and Tustin, PFAS		Matrix: Groundwater Date Collected: 12-Feb-20 15:05			Laboratory Data Lab Sample: 2000314-14 Date Received: 13-Feb-20 09:15				Column:	BEH C18	
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	0.00587	0.00140	0.00205	0.00409		B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
PFHxA	307-24-4	ND	0.00140	0.00205	0.00409		B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
HFPO-DA	13252-13-6	ND	0.00246	0.00307	0.00409		B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
PFHpA	375-85-9	ND	0.00140	0.00205	0.00409		B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
ADONA	919005-14-4	ND	0.00140	0.00205	0.00409		B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
PFHxS	355-46-4	0.0166	0.00140	0.00205	0.00409		B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
PFOA	335-67-1	ND	0.00140	0.00205	0.00409		B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
PFNA	375-95-1	ND	0.00140	0.00205	0.00409		B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
PFOS	1763-23-1	0.00544	0.00140	0.00205	0.00409	Q	B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
9Cl-PF3ONS	756426-58-1	ND	0.00140	0.00205	0.00409		B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
PFDA	335-76-2	ND	0.00140	0.00205	0.00409		B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
MeFOSAA	2355-31-9	ND	0.00140	0.00205	0.00409		B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
EtFOSAA	2991-50-6	ND	0.00140	0.00205	0.00409		B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
PFUnA	2058-94-8	ND	0.00140	0.00205	0.00409		B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
11Cl-PF3OUdS	763051-92-9	ND	0.00140	0.00205	0.00409		B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
PFDoA	307-55-1	ND	0.00140	0.00205	0.00409		B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
PFTrDA	72629-94-8	ND	0.00140	0.00205	0.00409		B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
PFTeDA	376-06-7	ND	0.00140	0.00205	0.00409		B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	95.7		50-150			B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
13C3-HFPO-DA	IS	93.6		50-150			B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
13C2-PFHxA	IS	94.4		50-150			B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
13C4-PFHpA	IS	90.6		50-150			B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
13C3-PFHxS	IS	91.1		50-150			B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
13C5-PFNA	IS	82.7		50-150			B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
13C2-PFOA	IS	91.0		50-150			B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
13C8-PFOS	IS	92.6		50-150			B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
13C2-PFDA	IS	92.4		50-150			B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
d3-MeFOSAA	IS	89.8		50-150			B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
13C2-PFUnA	IS	91.8		50-150			B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
d5-EtFOSAA	IS	79.8		50-150			B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
13C2-PFDoA	IS	80.3		50-150			B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
13C2-PFTeDA	IS	79.5		50-150			B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results	ed to the DL			When r linear an analytes.	orted, PFHxS, branched isom	FOA, PFOS, M rs. Only the lin	eFOSAA and EtF ear isomer is rep	OSAA include both rted for all other	

Sample ID: A000MW42S-20200212									PFAS Isotope Dilution Method		
Client Data Name: KMEA Project: MCAS El Toro and Tustin, PFAS		Matrix: Groundwater Date Collected: 12-Feb-20 16			Laboratory Data Lab Sample: 2000314-15 Date Received: 13-Feb-20 09:15				Column:	BEH C18	
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	0.0134	0.00135	0.00198	0.00395		B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
PFHxA	307-24-4	ND	0.00135	0.00198	0.00395		B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
HFPO-DA	13252-13-6	ND	0.00238	0.00296	0.00395		B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
PFHpA	375-85-9	ND	0.00135	0.00198	0.00395		B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
ADONA	919005-14-4	ND	0.00135	0.00198	0.00395		B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
PFHxS	355-46-4	0.0302	0.00135	0.00198	0.00395		B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
PFOA	335-67-1	0.00366	0.00135	0.00198	0.00395	J	B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
PFNA	375-95-1	ND	0.00135	0.00198	0.00395		B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
PFOS	1763-23-1	0.00333	0.00135	0.00198	0.00395	J, Q	B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
9Cl-PF3ONS	756426-58-1	ND	0.00135	0.00198	0.00395		B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
PFDA	335-76-2	ND	0.00135	0.00198	0.00395		B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
MeFOSAA	2355-31-9	ND	0.00135	0.00198	0.00395		B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
EtFOSAA	2991-50-6	ND	0.00135	0.00198	0.00395		B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
PFUnA	2058-94-8	ND	0.00135	0.00198	0.00395		B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
11Cl-PF3OUdS	763051-92-9	ND	0.00135	0.00198	0.00395		B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
PFDoA	307-55-1	ND	0.00135	0.00198	0.00395		B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
PFTrDA	72629-94-8	ND	0.00135	0.00198	0.00395		B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
PFTeDA	376-06-7	ND	0.00135	0.00198	0.00395		B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	103		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
13C3-HFPO-DA	IS	105		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
13C2-PFHxA	IS	106		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
13C4-PFHpA	IS	95.5		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
13C3-PFHxS	IS	104		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
13C5-PFNA	IS	90.1		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
13C2-PFOA	IS	99.3		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
13C8-PFOS	IS	98.5		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
13C2-PFDA	IS	107		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
d3-MeFOSAA	IS	96.3		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
13C2-PFUnA	IS	102		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
d5-EtFOSAA	IS	89.5		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
13C2-PFDoA	IS	72.8		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
13C2-PFTeDA	IS	90.0		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results	ted to the DL.			When r linear a analyte	rted, PFHxS, branched ison	FOA, PFOS, M rs. Only the lin	FOSAA and EtF ear isomer is rep	OSAA include both rted for all other	

DATA QUALIFIERS \& ABBREVIATIONS

B	This compound was also detected in the method blank
Conc.	Concentration
CRS	Cleanup Recovery Standard
D	Dilution
DL	Detection limit
E	The associated compound concentration exceeded the calibration range of the instrument
H	Recovery and/or RPD was outside laboratory acceptance limits
I	Chemical Interference
IS	Internal Standard
J	The amount detected is below the Reporting Limit/LOQ
LOD	Limit of Detection
LOQ	Limit of Quantitation
M	Estimated Maximum Possible Concentration (CA Region 2 projects only)
NA	Not applicable
ND	Not Detected
OPR	Ongoing Precision and Recovery sample
P	The reported concentration may include contribution from chlorinated diphenyl ether(s).
Q	The ion transition ratio is outside of the acceptance criteria.
RL	Reporting Limit
TEQ	Toxic Equivalency
U	Not Detected (specific projects only)
*	See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Vista Analytical Laboratory Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	$17-013$
Arkansas Department of Environmental Quality	$19-013-0$
California Department of Health - ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-23
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2018017
Massachusetts Department of Environmental Protection	N/A
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1521520
New Hampshire Environmental Accreditation Program	$207718-$ B
New Jersey Department of Environmental Protection	190001
New York Department of Health	11411
Oregon Laboratory Accreditation Program	$4042-010$
Pennsylvania Department of Environmental Protection	016
Texas Commission on Environmental Quality	T104704189-19-10
Vermont Department of Health	VT-4042
Virginia Department of General Services	10272
Washington Department of Ecology	C584-19
Wisconsin Department of Natural Resources	998036160

NELAP Accredited Test Methods

MATRIX: Air	Method
Description of Test	EPA 23
Determination of Polychlorinated p-Dioxins \& Polychlorinated Dibenzofurans	EPA TO-9A
Determination of Polychlorinated p-Dioxins \& Polychlorinated Dibenzofurans	

MATRIX: Biological Tissue	Method
Description of Test	EPA 1613B
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1614A
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1668A/C
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1699
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 8280A/B
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8290/8290A
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	$\begin{aligned} & \text { EPA } \\ & 1613 / 1613 B \end{aligned}$
1,4-Dioxane (1,4-Diethyleneoxide) analysis by GC/HRMS	EPA 522
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	$\begin{aligned} & \text { ISO } 25101 \\ & 2009 \\ & \hline \end{aligned}$

MATRIX: Non-Potable Water	Method
Description of Test	EPA 1613B
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1614A
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1668A/C
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 537
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 613
Dioxin by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8290/8290A
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	

MATRIX: Solids	Method
Description of Test	EPA 1613B
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1614A
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1668A/C
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1699
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 8280A/B
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8290/8290A
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	

TEL: 916-673-1520
$2003141.2^{\circ} \mathrm{C}$
Vista PM: Jade White-Dobbs

CHAIN OF CUSTODY RECORD
date: $2 / 1212020$
PAGE: \qquad OF \qquad 2

CHAIN OF CUSTODY RECORD
DATE: $2 / 12 / 2020$
PAGE: \qquad OF 2 2

Sample Log-In Checklist

Page \# \qquad of \qquad
Vista Work Order \#: \qquad TAT

Comments:

CoC/Label Reconciliation Report WO\# 2000314

LabNumber	CoC Sample ID		SampleAlias	Sample Datc/Time		Container	BaseMatrix	Sample Comments	
2000314-01	A SB01-20200212	-		12-Feb-20 07:00	(1)	HDPE Bottle, 250 mL	Aqueous		
2000314-01	B SB01-20200212	[12-Fcb-20 07:00	\square	HDPE Botte, 250 mL	Aqueous		
2000314-02	A EB01-20200212	中		12-Feb-20 07:10	\square	HDPE Botle, 250 mL	Aqueous		
2000314-02	B EBO1-20200212	-		12-Feb-20 07:10	-	HDPE Bonlc, 250 mL	Aqueous		
2000314-03	A 1006MW03SR-20200212	(d)		12-Feb-20 07;40	[-7	HDPE Bottle, 250 mL	Aqueous	MS/MSD	
2000314-03	B 1006MW03SR-20200212	\square		12-Fcb-20 07:40	-	HDPE Botic, 250 mL	Aqueous	MS/MSD	
2000314-03	C 1006MW03SR-20200212	[]		12-Feb-20 07:40	[1]	HDPE Botte, 250 mL	Aqueous	MS/MSD	
2000314-03	D 1006MW03SR-20200212	(v)		12-Fcb-20 07:40	(1)	HDPE Boule, 250 mL	Aqucous	MS/MSD	
2000314-03	E 1006MW03SR-20200212	\square		12-Fcb-20 07:40	-1	HDPE Botle, 250 mL	Aqueous	MS/MSD	
2000314-03	F 1006MW03SR-20200212	[v)		12-Fcb-20 07:40	-	HDPE Botlc, 250 mL	Aqucous	MS/MSD	
2000314 -04	A 1006MW0SSR-20200212	-		12-Feb-20 08:40	(f)	HDPE Botte, 250 mL	Aqueous		
2000314-04	B 1006MW0SSR-20200212	\square		12-Fcb-20 08:40	-	HDPE Bottc, 250 mL	Aqucous		
2000314-05	A DUP01-20200212	4]		12-Feb-20 08:45		HDPE Bottle, 250 mL	Aqueous		
2000314-05	B DUP01-20200212	-		12-Fcb-20 08:45	\square	HDPE Botte, 250 mL	Aqueous		
2000314-06	A 1006MW01S-20200212	[d]		12-Feb-20 09:20	-	HDPE Bottle, 250 mL	Aqueous		
2000314-06	B 1006MW01S-20200212	[1]		12-Feb-20 09:20	-	HDPE Borle, 250 mL	Aqueous		
2000314-07	A 1006MW08S-20200212	N1		12-Feb-20 10:00	[\|]	HDPE Botle, 250 mL	Aqueous		
2000314-07	B 1006MW08S-20200212	[]		12-Feb-20 10:00	[d]	HDPE Botle, 250 mL	Aqueous		
2000314-08	A BMW07S-20200212	[]		12-Feb-20 11:00	[d]	HDPE Botle. 250 mL	Aqucous		
2000314-08	B BMW07S-20200212	[12-Feb-20 11:00	[7]	HDPE Boule. 250 mL	Aqucous		
2000314-09	A 1005MW01SR-20200212	\square		12-Feb-20 11:50	[]]	HDPE Bottle, 250 mL	Aqueous		
2000314-09	B I005MW0ISR-20200212	[1]		12-Fcb-20 \\| : 50	[d	HDPE Bottle, 250 mL	Aqueous		
2000314-10	A DUP05-20200212	[v)		12-Feb-2011:55	[HDPE Bottle, 250 mL	Aqueous		
2000314-10	B DUP05-20200212	-		12-Feb-20 11:55	[9,	HDPE Bortle, 250 mL	Aqueous		
2000314-11	A IS72MW15S-20200212	[4]		12-Fcb-20 13:15	Cd	HDPE Bottle, 250 mL	Aqueous		
2000314-11	B IS72MW15S-20200212	(v)		12-Fcb-20 13:15	-	HDPE Botle, 250 mL	Aqueous		
2000314-12	A 1S72MW18SR-20200212	[]		12-Feb-20 14:10	-	HDPE Bottle, 250 mL	Aqueous		
2000314-12	B IS72MWI8SR-20200212	(V)		12-Feb-20 14:10	(v)	HDPE Bottle, 250 mL	Aqueous		
2000314-13	A 222MW02S-20200212	[1]		12-Feb-20 15:00	V	HDPE Bottle, 250 mL	Aqucous		
Printed: 2	13/2020 4:37:52PM		20003					Page 1 of 2	

$2000314-13$	B 222MW02S-20200212
$2000314-14$	A DUP03-20200212
$2000314-14$	B DUP03-20200212
$2000314-15$	A A000MW42S-20200212
$2000314-15$	B A000MW42S-20200212

12-Fcb-20 15:00	HDPE Boulc, 250 mL	Aqueous	
12-Feb-20 15:05	HDPE Bottle, 250 mL	Aqueous	
12-Fcb-20 15:05	HDPE Bottc, 250 mL	Aqucous	
12-Feb-20 16:00	HDPE Bottle, 250 mL	Aqueous	
12-Fcb-20 16:00	\square	HDPE Botllc, 250 mL	Aqueous

Checkmarks indicate that information on the COC reconciled with the sample label.
Any discrepancies are noted in the following columns.

	Yes	No	NA
Sample Container Intact?	\checkmark		
Sample Custody Seals Intact?			\checkmark
Adequate Sample Volume?	$\sqrt{\prime}$		
Container Type Appropriate for Analysis(es)	\checkmark		
Preservation Documented: Na2S2O3 Trizma Nong Other			\checkmark
If Chlorinated or Drinking Water Samples, Acceptable Preservation?			\checkmark

Verifed by/Date: M1S 02/18/20

February 29, 2020

Vista Work Order No. 2000314

Ms. Kimberly Shiroodi
KMEA
2423 Hoover Avenue
National City, CA 91950
Dear Ms. Shiroodi,
Enclosed are the results for the sample set received at Vista Analytical Laboratory on February 13, 2020 under your Project Name 'MCAS El Toro and Tustin, PFAS'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier
Laboratory Director

Vista Work Order No. 2000314

Case Narrative

Sample Condition on Receipt:

Thirteen groundwater samples and two blank water samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

PFAS Isotope Dilution Method

The samples were extracted and analyzed for a selected list of PFAS using the PFAS Isotope Dilution Method (Modified EPA Method 537). The results for PFHxS, PFOA, PFOS, MeFOSAA, and EtFOSAA include both linear and branched isomers. Results for all other analytes include the linear isomers only.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above $1 / 2$ the LOQ concentrations. The OPR recoveries were within the method acceptance criteria.

As requested, an MS/MSD was performed on sample "I006MW03SR-20200212". The MS recovery of PFHxS was greater than 131%. The MSD recoveries and/or RPDs were out of the acceptance criteria for PFHxA, PFHpA, and PFHxS.

The labeled standard recoveries outside the acceptance criteria are listed in the table below.

QC Anomalies

LabNumber	SampleName	Analysis	Analyte	Flag
$2000314-11$	IS72MW15S-20200212	PFAS Isotope Dilution Method	13C2-PFTeDA	H

$\mathrm{H}=$ Recovery was outside laboratory acceptance criteria.

TABLE OF CONTENTS

Case Narrative 1
Table of Contents 3
Sample Inventory 4
Analytical Results. 5
Qualifiers 25
Certifications 26
Sample Receipt 29
Extraction Information 34
Sample Data - PFAS Isotope Dilution Method. 40
IBs and CCVs 205
ICAL with ICV and IB 349
Tune Checks. 968
Standards 987

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
2000314-01	SB01-20200212	12-Feb-20 07:00	13-Feb-20 09:15	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2000314-02	EB01-20200212	12-Feb-20 07:10	13-Feb-20 09:15	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2000314-03	I006MW03SR-20200212	MS/MSD12-Feb-20 07:40	13-Feb-20 09:15	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2000314-04	I006MW05SR-20200212	12-Feb-20 08:40	13-Feb-20 09:15	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2000314-05	DUP01-20200212	12-Feb-20 08:45	13-Feb-20 09:15	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2000314-06	I006MW01S-20200212	12-Feb-20 09:20	13-Feb-20 09:15	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2000314-07	I006MW08S-20200212	12-Feb-20 10:00	13-Feb-20 09:15	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2000314-08	BMW07S-20200212	12-Feb-20 11:00	13-Feb-20 09:15	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2000314-09	I005MW01SR-20200212	12-Feb-20 11:50	13-Feb-20 09:15	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2000314-10	DUP05-20200212	12-Feb-20 11:55	13-Feb-20 09:15	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2000314-11	IS72MW15S-20200212	12-Feb-20 13:15	13-Feb-20 09:15	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2000314-12	IS72MW18SR-20200212	12-Feb-20 14:10	13-Feb-20 09:15	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2000314-13	222MW02S-20200212	12-Feb-20 15:00	13-Feb-20 09:15	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2000314-14	DUP03-20200212	12-Feb-20 15:05	13-Feb-20 09:15	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2000314-15	A000MW42S-20200212	12-Feb-20 16:00	13-Feb-20 09:15	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL

Vista Project: 2000314

ANALYTICAL RESULTS

Sample ID: Method Blank									PFAS Isotope Dilution Method		
Client Data Name: Project:	KMEA MCAS El Toro and Tustin, PFAS	Matrix:				tory Data mple:	B0B0118-		Column:	BEH C18	
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	ND	0.00137	0.00200	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
PFHxA	307-24-4	ND	0.00137	0.00200	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
HFPO-DA	13252-13-6	ND	0.00241	0.00300	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
PFHpA	375-85-9	ND	0.00137	0.00200	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
ADONA	919005-14-4	ND	0.00137	0.00200	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
PFHxS	355-46-4	ND	0.00137	0.00200	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
PFOA	335-67-1	ND	0.00137	0.00200	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
PFNA	375-95-1	ND	0.00137	0.00200	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
PFOS	1763-23-1	ND	0.00137	0.00200	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
9Cl-PF3ONS	756426-58-1	ND	0.00137	0.00200	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
PFDA	335-76-2	ND	0.00137	0.00200	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
MeFOSAA	2355-31-9	ND	0.00137	0.00200	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
EtFOSAA	2991-50-6	ND	0.00137	0.00200	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
PFUnA	2058-94-8	ND	0.00137	0.00200	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
11Cl-PF3OUdS	763051-92-9	ND	0.00137	0.00200	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
PFDoA	307-55-1	ND	0.00137	0.00200	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
PFTrDA	72629-94-8	ND	0.00137	0.00200	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
PFTeDA	376-06-7	ND	0.00137	0.00200	0.00400		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	93.9		50-150			B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
13C3-HFPO-DA	IS	87.6		50-150			B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
13C2-PFHxA	IS	83.5		50-150			B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
13C4-PFHpA	IS	84.5		50-150			B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
13C3-PFHxS	IS	89.6		50-150			B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
13C5-PFNA	IS	78.0		50-150			B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
13C2-PFOA	IS	89.5		50-150			B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
13C8-PFOS	IS	91.6		50-150			B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
13C2-PFDA	IS	95.9		50-150			B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
d3-MeFOSAA	IS	84.2		50-150			B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
13C2-PFUnA	IS	100		50-150			B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
d5-EtFOSAA	IS	78.2		50-150			B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
13C2-PFDoA	IS	73.3		50-150			B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
13C2-PFTeDA	IS	79.9		50-150			B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:28	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results rep	ted to the DL			When re linear and analytes.	orted, PFHxS, branched ison	PFOA, PFOS, M rrs. Only the lin	eFOSAA and EtF ear isomer is rep	OSAA include both orted for all other	

Sample ID: OPR									PFAS Isotope Dilution Method					
Client Data Name: KMEA Project: MCAS El Toro and Tustin, PFAS		Matrix: Aqueous			Laboratory Data Lab Sample:		B0B0118-BS1		Column:	BEH C18				
Analyte	CAS Number				Amt Found (ug/L)	Spike Amt	\% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	0.0400	0.0400	100	72-130		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
PFHxA	307-24-4	0.0388	0.0400	97.1	72-129		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
HFPO-DA	13252-13-6	0.0379	0.0400	94.8	70-130		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
PFHpA	375-85-9	0.0365	0.0400	91.3	72-130		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
ADONA	919005-14-4	0.0359	0.0400	89.7	70-130		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
PFHxS	355-46-4	0.0393	0.0400	98.2	68-131		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
PFOA	335-67-1	0.0355	0.0400	88.7	71-133		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
PFNA	375-95-1	0.0372	0.0400	93.1	69-130		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
PFOS	1763-23-1	0.0369	0.0400	92.2	65-140		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
9Cl-PF3ONS	756426-58-1	0.0344	0.0400	86.1	70-130		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
PFDA	335-76-2	0.0405	0.0400	101	71-129		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
MeFOSAA	2355-31-9	0.0346	0.0400	86.5	65-136		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
EtFOSAA	2991-50-6	0.0385	0.0400	96.2	61-135		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
PFUnA	2058-94-8	0.0350	0.0400	87.5	69-133		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
11Cl-PF3OUdS	763051-92-9	0.0459	0.0400	115	70-130		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
PFDoA	307-55-1	0.0421	0.0400	105	72-134		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
PFTrDA	72629-94-8	0.0381	0.0400	95.2	65-144		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
PFTeDA	376-06-7	0.0389	0.0400	97.3	71-132		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
Labeled Standar		Type		\% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution			
13C3-PFBS		IS		88.9	50-150		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
13C3-HFPO-DA		IS		81.0	50-150		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
13C2-PFHxA		IS		84.6	50-150		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
13C4-PFHpA		IS		83.7	50-150		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
13C3-PFHxS		IS		75.7	50-150		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
13C5-PFNA		IS		82.9	50-150		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
13C2-PFOA		IS		86.1	50-150		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
13C8-PFOS		IS		89.1	50-150		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
13C2-PFDA		IS		86.2	50-150		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
d3-MeFOSAA		IS		84.0	50-150		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
13C2-PFUnA		IS		90.9	50-150		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
d5-EtFOSAA		IS		76.7	50-150		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
13C2-PFDoA		IS		71.1	50-150		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			
13C2-PFTeDA		IS		78.1	50-150		B0B0118	19-Feb-20	0.250 L	20-Feb-20 22:39	1			

Sample ID: EB01-20200212									PFAS Isotope Dilution Method		
Client Data Name: KMEA Project: MCAS E1 Toro and Tustin, PFAS		Matrix: Blank Water Date Collected: 12-Feb-20 07:10			Laboratory Data Lab Sample: Date Received:		$\begin{aligned} & \text { 2000314-02 } \\ & \text { 13-Feb-20 09:15 } \end{aligned}$		Column: Samp Size	BEH C18	
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted		Analyzed	Dilution
PFBS	375-73-5	ND	0.00139	0.00203	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
PFHxA	307-24-4	ND	0.00139	0.00203	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
HFPO-DA	13252-13-6	ND	0.00245	0.00305	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
PFHpA	375-85-9	ND	0.00139	0.00203	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
ADONA	919005-14-4	ND	0.00139	0.00203	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
PFHxS	355-46-4	ND	0.00139	0.00203	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
PFOA	335-67-1	ND	0.00139	0.00203	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
PFNA	375-95-1	ND	0.00139	0.00203	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
PFOS	1763-23-1	ND	0.00139	0.00203	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
9Cl-PF3ONS	756426-58-1	ND	0.00139	0.00203	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
PFDA	335-76-2	ND	0.00139	0.00203	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
MeFOSAA	2355-31-9	ND	0.00139	0.00203	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
EtFOSAA	2991-50-6	ND	0.00139	0.00203	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
PFUnA	2058-94-8	ND	0.00139	0.00203	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
11Cl-PF3OUdS	763051-92-9	ND	0.00139	0.00203	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
PFDoA	307-55-1	ND	0.00139	0.00203	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
PFTrDA	72629-94-8	ND	0.00139	0.00203	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
PFTeDA	376-06-7	ND	0.00139	0.00203	0.00406		B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	92.1		50-150			B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
13C3-HFPO-DA	IS	93.4		50-150			B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
13C2-PFHxA	IS	93.7		50-150			B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
13C4-PFHpA	IS	86.7		50-150			B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
13C3-PFHxS	IS	88.3		50-150			B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
13C5-PFNA	IS	86.0		50-150			B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
13C2-PFOA	IS	85.8		50-150			B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
13C8-PFOS	IS	92.5		50-150			B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
13C2-PFDA	IS	104		50-150			B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
d3-MeFOSAA	IS	96.1		50-150			B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
13C2-PFUnA	IS	94.3		50-150			B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
d5-EtFOSAA	IS	83.7		50-150			B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
13C2-PFDoA	IS	79.5		50-150			B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
13C2-PFTeDA	IS	88.6		50-150			B0B0118	19-Feb-20	0.246 L	20-Feb-20 23:21	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results reported to the DL.			When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.						

Sample ID: I006MW03SR-20200212									PFAS Isotope Dilution Method		
Client Data Name: KMEA Project: MCAS El Toro and Tustin, PFAS		Matrix: Groundwater Date Collected: 12-Feb-20 07			Laboratory Data Lab Sample: 2000314-03 Date Received: 13-Feb-20 09:15				Column:	BEH C18	
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	0.0513	0.00135	0.00197	0.00394		B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
PFHxA	307-24-4	0.628	0.00135	0.00197	0.00394		B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
HFPO-DA	13252-13-6	ND	0.00237	0.00295	0.00394		B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
PFHpA	375-85-9	0.226	0.00135	0.00197	0.00394		B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
ADONA	919005-14-4	ND	0.00135	0.00197	0.00394		B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
PFHxS	355-46-4	0.333	0.00135	0.00197	0.00394		B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
PFOA	335-67-1	0.303	0.00135	0.00197	0.00394		B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
PFNA	375-95-1	0.00140	0.00135	0.00197	0.00394	J	B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
PFOS	1763-23-1	0.00993	0.00135	0.00197	0.00394		B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
9Cl-PF3ONS	756426-58-1	ND	0.00135	0.00197	0.00394		B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
PFDA	335-76-2	ND	0.00135	0.00197	0.00394		B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
MeFOSAA	2355-31-9	ND	0.00135	0.00197	0.00394		B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
EtFOSAA	2991-50-6	ND	0.00135	0.00197	0.00394		B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
PFUnA	2058-94-8	ND	0.00135	0.00197	0.00394		B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
11Cl-PF3OUdS	763051-92-9	ND	0.00135	0.00197	0.00394		B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
PFDoA	307-55-1	ND	0.00135	0.00197	0.00394		B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
PFTrDA	72629-94-8	ND	0.00135	0.00197	0.00394		B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
PFTeDA	376-06-7	ND	0.00135	0.00197	0.00394		B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	104		50-150			B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
13C3-HFPO-DA	IS	108		50-150			B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
13C2-PFHxA	IS	99.6		50-150			B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
13C4-PFHpA	IS	96.6		50-150			B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
13C3-PFHxS	IS	104		50-150			B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
13C5-PFNA	IS	91.8		50-150			B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
13C2-PFOA	IS	99.4		50-150			B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
13C8-PFOS	IS	93.8		50-150			B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
13C2-PFDA	IS	93.7		50-150			B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
d3-MeFOSAA	IS	99.2		50-150			B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
13C2-PFUnA	IS	97.2		50-150			B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
d5-EtFOSAA	IS	93.0		50-150			B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
13C2-PFDoA	IS	81.5		50-150			B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
13C2-PFTeDA	IS	85.2		50-150			B0B0118	19-Feb-20	0.254 L	21-Feb-20 00:03	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results	ed to the DL.			When re linear an analytes.	rted, PFHxS, branched ison	FOA, PFOS, M rs. Only the lin	FOSAA and EtF ear isomer is rep	OSAA include both rted for all other	

Sample ID: I006MW03SR-20200212														PFAS Isotope Dilution Method			
Name: Project: Matrix:	KMEA MCAS El Toro a Aqueous	Tustin,			Lab Sa QC Ba Samp		$\begin{aligned} & \text { B0B011 } \\ & \text { B0B011 } \\ & 0.258 / 0 \end{aligned}$	-MS1/BC $53 \mathrm{~L}$	B0118-M					Source Lab Samp Date Extracted: Column:		$\begin{aligned} & 2000314-03 \\ & \text { 19-Feb-20 } \\ & \text { BEH C18 } \end{aligned}$	
Analyte	CAS Number	Sample (ug/L)	$\begin{gathered} \hline \text { MS } \\ (\mathrm{ug} / \mathrm{L}) \\ \hline \end{gathered}$	MS Spike	MS \% Rec	MS Quals	$\begin{gathered} \text { MSD } \\ (\mathrm{ug} / \mathrm{L}) \end{gathered}$	$\begin{gathered} \hline \text { MSD } \\ \text { Spike } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { MSD } \\ \text { \% Rec } \\ \hline \end{gathered}$	RPD	$\begin{aligned} & \text { MSD } \\ & \text { Ouals } \end{aligned}$	\%Rec Limits	$\begin{gathered} \hline \text { RPD } \\ \text { Limits } \end{gathered}$	MS Analyzed	$\begin{gathered} \hline \text { MS } \\ \text { Dil } \\ \hline \end{gathered}$	MSD Analyzed	$\begin{gathered} \hline \text { MSD } \\ \text { Dil } \\ \hline \end{gathered}$
PFBS	375-73-5	0.0513	0.100	0.0387	126		0.0986	0.0395	120	4.88		72-130	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
PFHxA	307-24-4	0.628	0.670	0.0387	111		0.655	0.0395	69.2	46.4	H	72-129	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
HFPO-DA	13252-13-6	ND	0.0386	0.0387	99.8		0.0378	0.0395	95.7	4.19		70-130	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
PFHpA	375-85-9	0.226	0.273	0.0387	119		0.257	0.0395	77.9	41.7	H	72-130	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
ADONA	919005-14-4	ND	0.0381	0.0387	98.4		0.0356	0.0395	90.1	8.81		70-130	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
PFHxS	355-46-4	0.333	0.401	0.0387	174	H	0.385	0.0395	132	27.5	H	68-131	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
PFOA	335-67-1	0.303	0.350	0.0387	123		0.349	0.0395	116	5.86		71-133	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
PFNA	375-95-1	0.00140	0.0402	0.0387	100		0.0379	0.0395	92.5	7.79		69-130	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
PFOS	1763-23-1	0.00993	0.0498	0.0387	103		0.0447	0.0395	88.1	15.6		65-140	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
9Cl-PF3ONS	756426-58-1	ND	0.0357	0.0387	92.2		0.0349	0.0395	88.3	4.32		70-130	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
PFDA	335-76-2	ND	0.0399	0.0387	103		0.0394	0.0395	99.7	3.26		71-129	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
MeFOSAA	2355-31-9	ND	0.0357	0.0387	92.2		0.0349	0.0395	88.4	4.21		65-136	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
EtFOSAA	2991-50-6	ND	0.0379	0.0387	98.0		0.0366	0.0395	92.7	5.56		61-135	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
PFUnA	2058-94-8	ND	0.0350	0.0387	90.4		0.0352	0.0395	89.1	1.45		69-133	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
11Cl-PF3OUdS	763051-92-9	ND	0.0443	0.0387	114		0.0416	0.0395	105	8.22		70-130	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
PFDoA	307-55-1	ND	0.0429	0.0387	111		0.0410	0.0395	104	6.51		72-134	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
PFTrDA	72629-94-8	ND	0.0380	0.0387	98.2		0.0392	0.0395	99.2	1.01		65-144	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
PFTeDA	376-06-7	ND	0.0338	0.0387	87.2		0.0389	0.0395	98.5	12.2		71-132	30	20-Feb-20 22:49	1	20-Feb-20 23:00	1
Labeled Standar			Type		$\begin{gathered} \text { MS } \\ \text { \% Rec } \\ \hline \end{gathered}$	MS Quals			$\begin{gathered} \text { MSD } \\ \text { \% Rec } \end{gathered}$		$\begin{aligned} & \text { MSD } \\ & \text { Ouals } \\ & \hline \end{aligned}$	Limits		MS Analyzed	$\begin{gathered} \hline \text { MS } \\ \text { Dil } \\ \hline \end{gathered}$	$\begin{gathered} \text { MSD } \\ \text { Analyzed } \end{gathered}$	$\begin{gathered} \text { MSD } \\ \text { Dil } \end{gathered}$
13C3-PFBS			IS		88.6				94.3			50-150		20-Feb-20 22:49	1	20-Feb-20 23:00	1
13C3-HFPO-DA			IS		97.0				107			50-150		20-Feb-20 22:49	1	20-Feb-20 23:00	1
13C2-PFHxA			IS		93.0				104			50-150		20-Feb-20 22:49	1	20-Feb-20 23:00	1
13C4-PFHpA			IS		82.2				97.6			50-150		20-Feb-20 22:49	1	20-Feb-20 23:00	1
13C3-PFHxS			IS		84.1				93.8			50-150		20-Feb-20 22:49	1	20-Feb-20 23:00	1
13C5-PFNA			IS		83.2				90.5			50-150		20-Feb-20 22:49	1	20-Feb-20 23:00	1
13C2-PFOA			IS		86.1				97.5			50-150		20-Feb-20 22:49	1	20-Feb-20 23:00	1
13C8-PFOS			IS		80.7				90.2			50-150		20-Feb-20 22:49	1	20-Feb-20 23:00	1
13C2-PFDA			IS		85.5				92.8			50-150		20-Feb-20 22:49	1	20-Feb-20 23:00	1
d3-MeFOSAA			IS		83.9				95.7			50-150		20-Feb-20 22:49	1	20-Feb-20 23:00	1
13C2-PFUnA			IS		83.2				92.3			50-150		20-Feb-20 22:49	1	20-Feb-20 23:00	1
d5-EtFOSAA			IS		76.4				90.3			50-150		20-Feb-20 22:49	1	20-Feb-20 23:00	1
13C2-PFDoA			IS		65.3				71.3			50-150		20-Feb-20 22:49	1	20-Feb-20 23:00	1

Work Order 2000314 Analytical Laboratory

Sample ID: I006MW03SR-20200212							PFAS Isotope Dilution Method			
Name: Project: Matrix:	KMEA MCAS El Toro and Tustin, PFAS Aqueous	Lab Sample: QC Batch: Samp Size:		$\begin{aligned} & \text { B0B0118-MS1/B0B0118-MSD1 } \\ & \text { B0B0118 } \\ & 0.258 / 0.253 \text { L } \end{aligned}$	MSD Ouals	Limits	Source Lab Sample: Date Extracted: Column:		$\begin{aligned} & 2000314-03 \\ & \text { 19-Feb-20 } \\ & \text { BEH C18 } \end{aligned}$	
Labeled Standards		$\begin{gathered} \hline \text { MS } \\ \text { \% Rec } \end{gathered}$	$\begin{gathered} \text { MS } \\ \text { Quals } \end{gathered}$	$\begin{gathered} \hline \text { MSD } \\ \text { \% Rec } \end{gathered}$			$\begin{gathered} \text { MS } \\ \text { Analyzed } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { MS } \\ \text { Dil } \end{gathered}$	$\begin{gathered} \text { MSD } \\ \text { Analyzed } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { MSD } \\ \text { Dil } \end{gathered}$
13C2-PFTeDA		68.4		81.6		50-150	20-Feb-20 22:49	1	20-Feb-20 23:00	1

Sample ID: I006MW05SR-20200212									PFAS Isotope Dilution Method		
Client Data Name: KMEA Project: MCAS E1 Toro and Tustin, PFAS		Matrix: Groundwate Date Collected: 12-Feb-20 0			Laboratory Data Lab Sample: 2000314-04 Date Received: 13-Feb-20 09:15				Column: Samp Size	BEH C18	
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted		Analyzed	Dilution
PFBS	375-73-5	0.0509	0.00136	0.00198	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
PFHxA	307-24-4	0.129	0.00136	0.00198	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
HFPO-DA	13252-13-6	ND	0.00240	0.00298	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
PFHpA	375-85-9	0.0436	0.00136	0.00198	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
ADONA	919005-14-4	ND	0.00136	0.00198	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
PFHxS	355-46-4	0.215	0.00136	0.00198	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
PFOA	335-67-1	0.0464	0.00136	0.00198	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
PFNA	375-95-1	ND	0.00136	0.00198	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
PFOS	1763-23-1	0.0182	0.00136	0.00198	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
9Cl-PF3ONS	756426-58-1	ND	0.00136	0.00198	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
PFDA	335-76-2	ND	0.00136	0.00198	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
MeFOSAA	2355-31-9	ND	0.00136	0.00198	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
EtFOSAA	2991-50-6	ND	0.00136	0.00198	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
PFUnA	2058-94-8	ND	0.00136	0.00198	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
11Cl-PF3OUdS	763051-92-9	ND	0.00136	0.00198	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
PFDoA	307-55-1	ND	0.00136	0.00198	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
PFTrDA	72629-94-8	ND	0.00136	0.00198	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
PFTeDA	376-06-7	ND	0.00136	0.00198	0.00398		B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	99.6		50-150			B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
13C3-HFPO-DA	IS	94.4		50-150			B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
13C2-PFHxA	IS	97.2		50-150			B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
13C4-PFHpA	IS	91.2		50-150			B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
13C3-PFHxS	IS	93.5		50-150			B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
13C5-PFNA	IS	84.3		50-150			B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
13C2-PFOA	IS	89.7		50-150			B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
13C8-PFOS	IS	89.4		50-150			B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
13C2-PFDA	IS	94.0		50-150			B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
d3-MeFOSAA	IS	79.2		50-150			B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
13C2-PFUnA	IS	86.1		50-150			B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
d5-EtFOSAA	IS	88.0		50-150			B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
13C2-PFDoA	IS	73.3		50-150			B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
13C2-PFTeDA	IS	92.6		50-150			B0B0118	19-Feb-20	0.252 L	21-Feb-20 00:13	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results reported to the DL.			When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.						

Sample ID: DUP01-20200212									PFAS Isotope Dilution Method		
Client Data Name: KMEA Project: MCAS El Toro and Tustin, PFAS		Matrix: Groundwater Date Collected: 12-Feb-20 08			Laboratory Data Lab Sample: Date Received:		$\begin{aligned} & \text { 2000314-05 } \\ & \text { 13-Feb-20 09:15 } \end{aligned}$		Column:	BEH C18	Dilution
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	
PFBS	375-73-5	0.0556	0.00140	0.00204	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
PFHxA	307-24-4	0.130	0.00140	0.00204	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
HFPO-DA	13252-13-6	ND	0.00246	0.00306	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
PFHpA	375-85-9	0.0468	0.00140	0.00204	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
ADONA	919005-14-4	ND	0.00140	0.00204	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
PFHxS	355-46-4	0.205	0.00140	0.00204	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
PFOA	335-67-1	0.0441	0.00140	0.00204	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
PFNA	375-95-1	ND	0.00140	0.00204	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
PFOS	1763-23-1	0.0226	0.00140	0.00204	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
9Cl-PF3ONS	756426-58-1	ND	0.00140	0.00204	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
PFDA	335-76-2	ND	0.00140	0.00204	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
MeFOSAA	2355-31-9	ND	0.00140	0.00204	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
EtFOSAA	2991-50-6	ND	0.00140	0.00204	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
PFUnA	2058-94-8	ND	0.00140	0.00204	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
11Cl-PF3OUdS	763051-92-9	ND	0.00140	0.00204	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
PFDoA	307-55-1	ND	0.00140	0.00204	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
PFTrDA	72629-94-8	ND	0.00140	0.00204	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
PFTeDA	376-06-7	ND	0.00140	0.00204	0.00408		B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	99.2		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
13C3-HFPO-DA	IS	103		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
13C2-PFHxA	IS	100		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
13C4-PFHpA	IS	89.2		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
13C3-PFHxS	IS	95.8		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
13C5-PFNA	IS	89.8		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
13C2-PFOA	IS	96.4		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
13C8-PFOS	IS	90.1		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
13C2-PFDA	IS	101		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
d3-MeFOSAA	IS	92.7		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
13C2-PFUnA	IS	96.0		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
d5-EtFOSAA	IS	78.8		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
13C2-PFDoA	IS	68.5		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
13C2-PFTeDA	IS	96.5		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 00:24	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results	ed to the DL			When re linear and analytes.	orted, PFHxS, branched isom	FOA, PFOS, M rs. Only the lin	eFOSAA and EtF ear isomer is repo	OSAA include both rted for all other	

Sample ID: I005MW01SR-20200212									PFAS Isotope Dilution Method		
Client Data Name: KMEA Project: MCAS El Toro and Tustin, PFAS		Matrix: Groundwater Date Collected: 12-Feb-20 11			Laboratory Data Lab Sample: 2000314-09 Date Received: 13-Feb-20 09:15				Column:	BEH C18	
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	0.501	0.00134	0.00196	0.00392		B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
PFHxA	307-24-4	1.52	0.00134	0.00196	0.00392		B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
HFPO-DA	13252-13-6	ND	0.00236	0.00294	0.00392		B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
PFHpA	375-85-9	0.395	0.00134	0.00196	0.00392		B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
ADONA	919005-14-4	ND	0.00134	0.00196	0.00392		B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
PFHxS	355-46-4	2.62	0.00672	0.00980	0.0196	D	B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:39	5
PFOA	335-67-1	3.76	0.00672	0.00980	0.0196	D	B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:39	5
PFNA	375-95-1	0.0245	0.00134	0.00196	0.00392		B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
PFOS	1763-23-1	1.08	0.00134	0.00196	0.00392		B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
9Cl-PF3ONS	756426-58-1	ND	0.00134	0.00196	0.00392		B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
PFDA	335-76-2	ND	0.00134	0.00196	0.00392		B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
MeFOSAA	2355-31-9	ND	0.00134	0.00196	0.00392		B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
EtFOSAA	2991-50-6	ND	0.00134	0.00196	0.00392		B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
PFUnA	2058-94-8	ND	0.00134	0.00196	0.00392		B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
11Cl-PF3OUdS	763051-92-9	ND	0.00134	0.00196	0.00392		B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
PFDoA	307-55-1	ND	0.00134	0.00196	0.00392		B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
PFTrDA	72629-94-8	ND	0.00134	0.00196	0.00392		B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
PFTeDA	376-06-7	ND	0.00134	0.00196	0.00392		B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	103		50-150			B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
13C3-HFPO-DA	IS	94.4		50-150			B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
13C2-PFHxA	IS	93.7		50-150			B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
13C4-PFHpA	IS	97.5		50-150			B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
13C3-PFHxS	IS	122		50-150		D	B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:39	5
13C5-PFNA	IS	101		50-150			B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
13C2-PFOA	IS	134		50-150		D	B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:39	5
13C8-PFOS	IS	96.5		50-150			B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
13C2-PFDA	IS	98.0		50-150			B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
d3-MeFOSAA	IS	101		50-150			B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
13C2-PFUnA	IS	97.4		50-150			B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
d5-EtFOSAA	IS	105		50-150			B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
13C2-PFDoA	IS	70.8		50-150			B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
13C2-PFTeDA	IS	78.6		50-150			B0B0118	19-Feb-20	0.255 L	26-Feb-20 04:50	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results	ed to the DL.			When re linear an analytes	rted, PFHxS, branched ison	FOA, PFOS, M rs. Only the lin	FOSAA and EtF ear isomer is rep	OSAA include both rted for all other	

Sample ID: DUP05-20200212									PFAS Isotope Dilution Method		
Client Data Name: KMEA Project: MCAS El Toro and Tustin, PFAS		Matrix: Groundwate Date Collected: 12 -Feb-20			Laboratory Data Lab Sample: 2000314-10 Date Received: 13-Feb-20 09:15				Column:	BEH C18	
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	0.525	0.00135	0.00198	0.00396		B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
PFHxA	307-24-4	1.51	0.00135	0.00198	0.00396		B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
HFPO-DA	13252-13-6	ND	0.00238	0.00296	0.00396		B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
PFHpA	375-85-9	0.411	0.00135	0.00198	0.00396		B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
ADONA	919005-14-4	ND	0.00135	0.00198	0.00396		B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
PFHxS	355-46-4	2.84	0.00677	0.00988	0.0198	D	B0B0118	19-Feb-20	0.253 L	26-Feb-20 05:11	5
PFOA	335-67-1	4.15	0.00677	0.00988	0.0198	D	B0B0118	19-Feb-20	0.253 L	26-Feb-20 05:11	5
PFNA	375-95-1	0.0267	0.00135	0.00198	0.00396		B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
PFOS	1763-23-1	1.11	0.00135	0.00198	0.00396		B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
9Cl-PF3ONS	756426-58-1	ND	0.00135	0.00198	0.00396		B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
PFDA	335-76-2	0.00176	0.00135	0.00198	0.00396	J, Q	B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
MeFOSAA	2355-31-9	ND	0.00135	0.00198	0.00396		B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
EtFOSAA	2991-50-6	ND	0.00135	0.00198	0.00396		B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
PFUnA	2058-94-8	ND	0.00135	0.00198	0.00396		B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
11Cl-PF3OUdS	763051-92-9	ND	0.00135	0.00198	0.00396		B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
PFDoA	307-55-1	ND	0.00135	0.00198	0.00396		B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
PFTrDA	72629-94-8	ND	0.00135	0.00198	0.00396		B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
PFTeDA	376-06-7	ND	0.00135	0.00198	0.00396		B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	87.2		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
13C3-HFPO-DA	IS	92.2		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
13C2-PFHxA	IS	86.8		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
13C4-PFHpA	IS	84.8		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
13C3-PFHxS	IS	105		50-150		D	B0B0118	19-Feb-20	0.253 L	26-Feb-20 05:11	5
13C5-PFNA	IS	85.9		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
13C2-PFOA	IS	112		50-150		D	B0B0118	19-Feb-20	0.253 L	26-Feb-20 05:11	5
13C8-PFOS	IS	80.6		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
13C2-PFDA	IS	88.2		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
d3-MeFOSAA	IS	96.9		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
13C2-PFUnA	IS	93.8		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
d5-EtFOSAA	IS	79.6		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
13C2-PFDoA	IS	73.7		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
13C2-PFTeDA	IS	83.0		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 01:16	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results	ed to the DL			When re linear and analytes.	orted, PFHxS, branched isom	FOA, PFOS, M rs. Only the lin	eFOSAA and EtF ear isomer is repo	OSAA include both rted for all other	

Sample ID: IS72MW15S-20200212									PFAS Isotope Dilution Method		
Client Data Name: KMEA Project: MCAS El Toro and Tustin, PFAS		Matrix: Groundwater Date Collected: 12-Feb-20 13:15			Laboratory Data Lab Sample: 2000314-11 Date Received: 13-Feb-20 09:15				Column:	BEH C18	
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	0.0993	0.00135	0.00197	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
PFHxA	307-24-4	0.258	0.00135	0.00197	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
HFPO-DA	13252-13-6	ND	0.00237	0.00295	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
PFHpA	375-85-9	0.0730	0.00135	0.00197	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
ADONA	919005-14-4	ND	0.00135	0.00197	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
PFHxS	355-46-4	0.829	0.00135	0.00197	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
PFOA	335-67-1	0.420	0.00135	0.00197	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
PFNA	375-95-1	0.0216	0.00135	0.00197	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
PFOS	1763-23-1	1.71	0.00135	0.00197	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
9Cl-PF3ONS	756426-58-1	ND	0.00135	0.00197	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
PFDA	335-76-2	ND	0.00135	0.00197	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
MeFOSAA	2355-31-9	ND	0.00135	0.00197	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
EtFOSAA	2991-50-6	ND	0.00135	0.00197	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
PFUnA	2058-94-8	ND	0.00135	0.00197	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
11Cl-PF3OUdS	763051-92-9	ND	0.00135	0.00197	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
PFDoA	307-55-1	ND	0.00135	0.00197	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
PFTrDA	72629-94-8	ND	0.00135	0.00197	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
PFTeDA	376-06-7	ND	0.00135	0.00197	0.00393		B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	92.3		50-150			B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
13C3-HFPO-DA	IS	88.0		50-150			B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
13C2-PFHxA	IS	85.6		50-150			B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
13C4-PFHpA	IS	85.0		50-150			B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
13C3-PFHxS	IS	79.9		50-150			B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
13C5-PFNA	IS	79.7		50-150			B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
13C2-PFOA	IS	90.0		50-150			B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
13C8-PFOS	IS	82.7		50-150			B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
13C2-PFDA	IS	81.4		50-150			B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
d3-MeFOSAA	IS	70.6		50-150			B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
13C2-PFUnA	IS	75.9		50-150			B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
d5-EtFOSAA	IS	79.6		50-150			B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
13C2-PFDoA	IS	53.2		50-150			B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
13C2-PFTeDA	IS	34.4		50-150		H	B0B0118	19-Feb-20	0.254 L	26-Feb-20 05:21	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results	ed to the DL			When re linear and analytes.	orted, PFHxS, branched ison	FOA, PFOS, M rs. Only the lin	FOSAA and EtF ear isomer is repo	OSAA include both orted for all other	

Sample ID: IS72MW18SR-20200212									PFAS Isotope Dilution Method		
Client Data Name: KMEA Project: MCAS El Toro and Tustin, PFAS		$\begin{array}{ll}\text { Matrix: } & \text { Groundwater } \\ \text { Date Collected: } & \text { 12-Feb-20 14:10 }\end{array}$			Laboratory Data Lab Sample: 2000314-12 Date Received: 13-Feb-20 09:15				Column:	BEH C18	
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	0.0451	0.00140	0.00204	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
PFHxA	307-24-4	0.0998	0.00140	0.00204	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
HFPO-DA	13252-13-6	ND	0.00246	0.00306	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
PFHpA	375-85-9	0.0378	0.00140	0.00204	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
ADONA	919005-14-4	ND	0.00140	0.00204	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
PFHxS	355-46-4	0.323	0.00140	0.00204	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
PFOA	335-67-1	0.325	0.00140	0.00204	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
PFNA	375-95-1	0.00422	0.00140	0.00204	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
PFOS	1763-23-1	0.252	0.00140	0.00204	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
9Cl-PF3ONS	756426-58-1	ND	0.00140	0.00204	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
PFDA	335-76-2	ND	0.00140	0.00204	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
MeFOSAA	2355-31-9	ND	0.00140	0.00204	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
EtFOSAA	2991-50-6	ND	0.00140	0.00204	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
PFUnA	2058-94-8	ND	0.00140	0.00204	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
11Cl-PF3OUdS	763051-92-9	ND	0.00140	0.00204	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
PFDoA	307-55-1	ND	0.00140	0.00204	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
PFTrDA	72629-94-8	ND	0.00140	0.00204	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
PFTeDA	376-06-7	ND	0.00140	0.00204	0.00409		B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	99.2		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
13C3-HFPO-DA	IS	92.6		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
13C2-PFHxA	IS	89.6		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
13C4-PFHpA	IS	85.3		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
13C3-PFHxS	IS	90.6		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
13C5-PFNA	IS	90.2		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
13C2-PFOA	IS	91.4		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
13C8-PFOS	IS	84.5		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
13C2-PFDA	IS	94.8		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
d3-MeFOSAA	IS	74.2		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
13C2-PFUnA	IS	96.0		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
d5-EtFOSAA	IS	80.5		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
13C2-PFDoA	IS	67.3		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
13C2-PFTeDA	IS	86.1		50-150			B0B0118	19-Feb-20	0.245 L	21-Feb-20 01:37	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results	ed to the DL			When re linear an analytes	orted, PFHxS, branched ison	FOA, PFOS, M rs. Only the lin	eFOSAA and EtF ear isomer is repo	OSAA include both orted for all other	

Sample ID: DUP03-20200212									PFAS Isotope Dilution Method		
Client Data Name: KMEA Project: MCAS E1 Toro and Tustin, PFAS		Matrix: Groundwater Date Collected: 12-Feb-20 15:05			Laboratory Data Lab Sample: 2000314-14 Date Received: 13-Feb-20 09:15				Column:	BEH C18	
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	0.00587	0.00140	0.00205	0.00409		B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
PFHxA	307-24-4	ND	0.00140	0.00205	0.00409		B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
HFPO-DA	13252-13-6	ND	0.00246	0.00307	0.00409		B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
PFHpA	375-85-9	ND	0.00140	0.00205	0.00409		B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
ADONA	919005-14-4	ND	0.00140	0.00205	0.00409		B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
PFHxS	355-46-4	0.0166	0.00140	0.00205	0.00409		B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
PFOA	335-67-1	ND	0.00140	0.00205	0.00409		B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
PFNA	375-95-1	ND	0.00140	0.00205	0.00409		B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
PFOS	1763-23-1	0.00544	0.00140	0.00205	0.00409	Q	B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
9Cl-PF3ONS	756426-58-1	ND	0.00140	0.00205	0.00409		B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
PFDA	335-76-2	ND	0.00140	0.00205	0.00409		B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
MeFOSAA	2355-31-9	ND	0.00140	0.00205	0.00409		B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
EtFOSAA	2991-50-6	ND	0.00140	0.00205	0.00409		B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
PFUnA	2058-94-8	ND	0.00140	0.00205	0.00409		B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
11Cl-PF3OUdS	763051-92-9	ND	0.00140	0.00205	0.00409		B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
PFDoA	307-55-1	ND	0.00140	0.00205	0.00409		B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
PFTrDA	72629-94-8	ND	0.00140	0.00205	0.00409		B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
PFTeDA	376-06-7	ND	0.00140	0.00205	0.00409		B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	95.7		50-150			B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
13C3-HFPO-DA	IS	93.6		50-150			B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
13C2-PFHxA	IS	94.4		50-150			B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
13C4-PFHpA	IS	90.6		50-150			B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
13C3-PFHxS	IS	91.1		50-150			B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
13C5-PFNA	IS	82.7		50-150			B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
13C2-PFOA	IS	91.0		50-150			B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
13C8-PFOS	IS	92.6		50-150			B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
13C2-PFDA	IS	92.4		50-150			B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
d3-MeFOSAA	IS	89.8		50-150			B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
13C2-PFUnA	IS	91.8		50-150			B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
d5-EtFOSAA	IS	79.8		50-150			B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
13C2-PFDoA	IS	80.3		50-150			B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
13C2-PFTeDA	IS	79.5		50-150			B0B0118	19-Feb-20	0.244 L	21-Feb-20 02:30	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results	ed to the DL			When r linear an analytes.	orted, PFHxS, branched isom	FOA, PFOS, M rs. Only the lin	eFOSAA and EtF ear isomer is rep	OSAA include both rted for all other	

Sample ID: A000MW42S-20200212									PFAS Isotope Dilution Method		
Client Data Name: KMEA Project: MCAS El Toro and Tustin, PFAS		Matrix: Groundwater Date Collected: 12-Feb-20 16			Laboratory Data Lab Sample: 2000314-15 Date Received: 13-Feb-20 09:15				Column:	BEH C18	
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	0.0134	0.00135	0.00198	0.00395		B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
PFHxA	307-24-4	ND	0.00135	0.00198	0.00395		B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
HFPO-DA	13252-13-6	ND	0.00238	0.00296	0.00395		B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
PFHpA	375-85-9	ND	0.00135	0.00198	0.00395		B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
ADONA	919005-14-4	ND	0.00135	0.00198	0.00395		B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
PFHxS	355-46-4	0.0302	0.00135	0.00198	0.00395		B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
PFOA	335-67-1	0.00366	0.00135	0.00198	0.00395	J	B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
PFNA	375-95-1	ND	0.00135	0.00198	0.00395		B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
PFOS	1763-23-1	0.00333	0.00135	0.00198	0.00395	J, Q	B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
9Cl-PF3ONS	756426-58-1	ND	0.00135	0.00198	0.00395		B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
PFDA	335-76-2	ND	0.00135	0.00198	0.00395		B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
MeFOSAA	2355-31-9	ND	0.00135	0.00198	0.00395		B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
EtFOSAA	2991-50-6	ND	0.00135	0.00198	0.00395		B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
PFUnA	2058-94-8	ND	0.00135	0.00198	0.00395		B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
11Cl-PF3OUdS	763051-92-9	ND	0.00135	0.00198	0.00395		B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
PFDoA	307-55-1	ND	0.00135	0.00198	0.00395		B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
PFTrDA	72629-94-8	ND	0.00135	0.00198	0.00395		B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
PFTeDA	376-06-7	ND	0.00135	0.00198	0.00395		B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	103		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
13C3-HFPO-DA	IS	105		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
13C2-PFHxA	IS	106		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
13C4-PFHpA	IS	95.5		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
13C3-PFHxS	IS	104		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
13C5-PFNA	IS	90.1		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
13C2-PFOA	IS	99.3		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
13C8-PFOS	IS	98.5		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
13C2-PFDA	IS	107		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
d3-MeFOSAA	IS	96.3		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
13C2-PFUnA	IS	102		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
d5-EtFOSAA	IS	89.5		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
13C2-PFDoA	IS	72.8		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
13C2-PFTeDA	IS	90.0		50-150			B0B0118	19-Feb-20	0.253 L	21-Feb-20 02:40	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results	ted to the DL.			When r linear a analyte	rted, PFHxS, branched ison	FOA, PFOS, M rs. Only the lin	FOSAA and EtF ear isomer is rep	OSAA include both rted for all other	

DATA QUALIFIERS \& ABBREVIATIONS

B	This compound was also detected in the method blank
Conc.	Concentration
CRS	Cleanup Recovery Standard
D	Dilution
DL	Detection limit
E	The associated compound concentration exceeded the calibration range of the instrument
H	Recovery and/or RPD was outside laboratory acceptance limits
I	Chemical Interference
IS	Internal Standard
J	The amount detected is below the Reporting Limit/LOQ
LOD	Limit of Detection
LOQ	Limit of Quantitation
M	Estimated Maximum Possible Concentration (CA Region 2 projects only)
NA	Not applicable
ND	Not Detected
OPR	Ongoing Precision and Recovery sample
P	The reported concentration may include contribution from chlorinated diphenyl ether(s).
Q	The ion transition ratio is outside of the acceptance criteria.
RL	Reporting Limit
TEQ	Toxic Equivalency
U	Not Detected (specific projects only)
*	See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Vista Analytical Laboratory Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	$17-013$
Arkansas Department of Environmental Quality	$19-013-0$
California Department of Health - ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-23
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2018017
Massachusetts Department of Environmental Protection	N/A
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1521520
New Hampshire Environmental Accreditation Program	$207718-$ B
New Jersey Department of Environmental Protection	190001
New York Department of Health	11411
Oregon Laboratory Accreditation Program	$4042-010$
Pennsylvania Department of Environmental Protection	016
Texas Commission on Environmental Quality	T104704189-19-10
Vermont Department of Health	VT-4042
Virginia Department of General Services	10272
Washington Department of Ecology	C584-19
Wisconsin Department of Natural Resources	998036160

NELAP Accredited Test Methods

MATRIX: Air	Method
Description of Test	EPA 23
Determination of Polychlorinated p-Dioxins \& Polychlorinated Dibenzofurans	EPA TO-9A
Determination of Polychlorinated p-Dioxins \& Polychlorinated Dibenzofurans	

MATRIX: Biological Tissue	Method
Description of Test	EPA 1613B
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1614A
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1668A/C
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1699
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 8280A/B
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8290/8290A
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	$\begin{aligned} & \text { EPA } \\ & \text { 1613/1613B } \end{aligned}$
1,4-Dioxane (1,4-Diethyleneoxide) analysis by GC/HRMS	EPA 522
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	$\begin{array}{\|l\|} \hline \text { ISO } 25101 \\ 2009 \\ \hline \end{array}$

MATRIX: Non-Potable Water	Method
Description of Test	EPA 1613B
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1614A
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1668A/C
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 537
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 613
Dioxin by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8290/8290A
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	

MATRIX: Solids	Method
Description of Test	EPA 1613B
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1614A
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1668A/C
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1699
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 8280A/B
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA $8290 / 8290 \mathrm{~A}$
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	

TEL: 916-673-1520
$2003141.2^{\circ} \mathrm{C}$
Vista PM: Jade White-Dobbs

CHAIN OF CUSTODY RECORD
date: $2 / 1212020$
PAGE: \qquad OF \qquad 2

CHAIN OF CUSTODY RECORD
DATE: $2 / 12 / 2020$
PAGE: \qquad OF 2 2

Sample Log-In Checklist

Page \# \qquad of \qquad
Vista Work Order \#: \qquad TAT

Comments:

CoC/Label Reconciliation Report WO\# 2000314

LabNumber	CoC Sample ID		SampleAlias	Sample Datc/Time		Container	BaseMarrix	Sample Comments
2000314-01	A SB01-20200212	-		12-Feb-20 07:00	\#	HDPE Bottle, 250 mL	Aqueous	
2000314-01	B SB01-20200212	-		12-Fcb-20 07:00	\square	HDPE Botte, 250 mL	Aqueous	
2000314-02	A EB01-20200212	W]		12-Feb-20 07:10	\square	HDPE Botle, 250 mL	Aqueous	
2000314-02	B EBOI-20200212	(-)		12-Feb-20 07:10	0	HDPE Borlc, 250 mL	Aqueous	
2000314-03	A 1006MW03SR-20200212	(d)		12-Feb-20 07:40	[χ^{\prime}]	HDPE Botte. 250 mL	Aqueous	MS/MSD
2000314-03	B 1006MW03SR-20200212	-		12-Fcb-20 07:40	\square	HDPE Botile, 250 mL	Aqucous	MS/MSD
2000314-03	C 1006MW03SR-20200212	(1)		12-Feb-20 07:40	-	HDPE Botte, 250 mL	Aqueous	MS/MSD
2000314-03	D 1006MW03SR-20200212	\square		12-Fcb-20 07:40	(1)	HDPE Boule, 250 mL	Aqucous	MS/MSD
2000314-03	E 1006MW03SR-20200212	-		12-Fcb-20 07:40	-	HDPE Botle, 250 mL	Aqueous	MS/MSD
2000314-03	F 1006MW03SR-20200212	(t)		12-Fcb-20 07:40	(1)	HDPE Bortc, 250 mL	Aqucous	MS/MSD
2000314-04	A 1006MW0SSR-20200212	-		12-Feb-20 08:40	(J)	HDPE Botte, 250 mL	Aqueous	
2000314-04	B 1006MW0SSR-20200212	-		12-Fcb-20 08:40	V)	HDPE Bottc, 250 mL	Aqucous	
2000314-05	A DUP01-20200212	¢		12-Feb-20 08:45	-	HDPE Bottle, 250 mL	Aqueous	
2000314-05	B DUP01-20200212	-		12-Fcb-20 08:45	\square	HDPE Botte, 250 mL	Aqueous	
2000314-06	A 1006MW01S-20200212	-		12-Feb-20 09:20	\square	HDPE Bottle, 250 mL	Aqueous	
2000314-06	B 1006MW01S-20200212	[1]		12-Feb-20 09:20	(v)	HDPE Borle, 250 mL	Aqueous	
2000314-07	A 1006MW08S-20200212	N1		12-Feb-20 10:00	[1]	HDPE Botle, 250 mL	Aqueous	
2000314-07	B 1006MW08S-20200212	[12-Feb-20 10:00	[d]	HDPE Botle, 250 mL	Aqueous	
2000314-08	A BMW07S-20200212	-		12-Feb-20 11:00	[d]	HDPE Botle. 250 mL	Aqucous	
2000314-08	B BMW07S-20200212	[1]		12-Feb-20 11:00	07	HDPE Botle. 250 mL	Aqucous	
2000314-09	A 1005MWOISR-20200212	\pm		12-Feb-20 11:50	[]	HDPE Bottle, 250 mL	Aqueous	
2000314-09	B 1005MWOISR-20200212	[1]		12-Fcb-20 11:50	(d)	HDPE Botle, 250 mL	Aqueous	
2000314-10	A DUP05-20200212	- 4		12-Feb-20 11:55	[1]	HDPE Bottle, 250 mL	Aqueous	
2000314-10	B DUP05-20200212	-		12-Feb-20 11:55	[㫛	HDPE Bottle, 250 mL	Aqueous	
2000314-11	A IS72MW15S-20200212	[4]		12-Fcb-20 13:15	C	HDPE Bottle, 250 mL	Aqucous	
2000314-11	B IS72MW15S-20200212	-		12-Fcb-20 13:15	\square	HDPE Bortle, 250 mL	Aqueous	
2000314-12	A 1S72MW18SR-20200212	-		12-Feb-20 14:10	-	HDPE Bottle, 250 mL	Aqueous	
2000314-12	B IS72MWI8SR-20200212	(V)		12-Feb-20 14:10	-17	HDPE Bottle, 250 mL	Aqueous	
2000314-13	A 222MW02S-20200212	[1]		12-Feb-20 15:00	(v)	HDPE Bottle, 250 mL	Aqucous	
Printed: 2	13/2020 4:37:52PM		2000					Page 1 of 2

$2000314-13$	B 222MW02S-20200212
$2000314-14$	A DUP03-20200212
$2000314-14$	B DUP03-20200212
$2000314-15$	A A000MW42S-20200212
$2000314-15$	B A000MW42S-20200212

12-Fcb-20 15:00	HDPE Boulc, 250 mL	Aqueous	
12-Feb-20 15:05	HDPE Bottle, 250 mL	Aqueous	
12-Fcb-20 15:05	HDPE Bottc, 250 mL	Aqucous	
12-Feb-20 16:00	HDPE Bottle, 250 mL	Aqueous	
12-Fcb-20 16:00	\square	HDPE Botllc, 250 mL	Aqueous

Checkmarks indicate that information on the COC reconciled with the sample label.
Any discrepancies are noted in the following columns.

	Yes	No	NA
Sample Container Intact?	\checkmark		
Sample Custody Seals Intact?			\checkmark
Adequate Sample Volume?	$\sqrt{\prime}$		
Container Type Appropriate for Analysis(es)	\checkmark		
Preservation Documented: Na2S2O3 Trizma Nong Other			\checkmark
If Chlorinated or Drinking Water Samples, Acceptable Preservation?			\checkmark

Verifed by/Date: M1S 02/18/20

EXTRACTION INFORMATION

Process Sheet
Workorder: 2000314

Prep Expiration: 2020-02-26 Client: KMEA

Workorder Due:28-Feb-20 00:00
TAT: 15
Prep Batch: $\operatorname{BOBO} 118$

Method: 537M PFAS DOD QSM 5.3 (LOQ as mRL) Matrix: Aqueous

Version: 537.1 List of 18 DoD: DoD QSM 5.3

LabSampID ABB \begin{tabular}{c}
Prep

Rec

Spike
\end{tabular}

2000314-01 A

2000314-03 ABC
2000314-04
2000314-05
2000314-06
2000314-07
2000314-08
2000314-09
2000314-10
2000314-11
2000314-12
2000314-13
2000314-14
2000314-15

Prep	Spik
Rec	Rec
J	\square

SB01-20200211
EB01-20200212
I006MW03SR-20200212
I006MW05SR-20200212
DUP01-20200212
T006MW01S-20200212
1006MW08S-20200212
BMW07S-20200212
I005MW01SR-20200212
DUP05-20200212
IS72MW15S-20200212
IS72MW18SR-20200212
222MW02S-20200212
DUP03-20200212
A000MW42S-20200212

Prep Data Entered: $\frac{\pi 02120120}{\text { Date and Initials }}$
Initial Sequence: \qquad

Comment

MS/MSD

Location
R-13 A-3
R-13 A-3
R-13 A-3 HDPE Bottle, 250 mL

Isolate samples - instr: begin w/ dils.
 $$
\text { (b) } 02 / 14 / 20
$$

WO Comments: Ceter

Pro-Prep Check Out: CHT OZ/14120
Pre-Prep Check in: CHT OZ/14/70

Prep Check Out: wo $02 / 19 / 20$
Prep Check in: NA

Prep Reconciled Initals/Date: Cff 02/14/20
Spike Reconciled Initais/Date: $02 / 19 / 20$ LW
VialBoxid: Tots

Method: 537M PFAS DOD QSM 5.3 (LOQ as mRL)
Vista Internal Chain-of-Custody
B0B0118

Chemist: (w)
Prep Date: $02 / 19 / 20$
Prep Time: 0726
Hood\#: \qquad
6

ENVI-Carb and Reconciliation	RS CHEM/WIT DATE
Cu 0219120	w 20 02/19/20
	T
	-
$\sqrt{ }$	\downarrow

Comments: Assume $1 \mathrm{~g}=1 \mathrm{~mL}$ Cen $=$ Centrifuged
Rec $=$ Reconcile final vial transfer

I = Sample centrifuged twice
$2=$ Sample deeply colored after centrifuge
$3=$ Carridge sorbent discolored after SPE
4 = Sample clogged cartridge, additional cartridge(s) used
$5=$ Sample recombined at final volume

6 = Sample took longer to SPE, required stronger vacuum
$7=$ Required Nitrogen line to finish SPE
$8=$ Required Nitrogen line to finish elution
$9=$ Sample arrived with low volume
$10=$ Trizma added to $\mathrm{QC}(5 \mathrm{~g} / \mathrm{L})$

Chemist: \qquad w

Prep Date: $02 / 19 / 20$
Prep Time: 0726

Prepared using: \square Sonication Shaker				SPE Extrac Date/Initals 0214120 CHT		Centrifuge ID:					Prep Time: 0726 Hood\#: 6	
	Rec Date/Initals:	120				BalancelD:	2MS-9					
Cen	$\begin{gathered} \text { VISTA } \\ \text { Sample ID } \end{gathered}$	$\begin{gathered} \text { Rec } \\ \text { Viall } \end{gathered}$	$\begin{array}{\|c} \text { Rec } \\ \text { Vial2 } \end{array}$	pH	Chlorine (Cl)	Bottle + Sample (g)	Bottle Only (g)	Sample Amt. (L)	IS/NS CHEM/WIT DATE	$\begin{gathered} \hline \text { SPE } \\ \text { and } \\ \text { Reconciliation } \end{gathered}$	ENVI-Carb and Reconciliation	RS CHEM/WIT DATE
\square	2000314-11	\square	\square	6	0	280.36	25.90	0.25446	(w) HP 02/9120	(w) 02/19/20	ile 02/19/20	w He 021,910
\square	2000314-12	\square	\square	6	0	270.64	26.06	0.24458		T		
\square	2000314-13	\square	\square	6	0	277.72	25.38	0,2523*4				
\square	2000314-14	\square	\square	6	0	270.60	26.14	0.24446				
\square	2000314-15	\square	回	6	0	279.22	25.98	2. 25324	\checkmark	\checkmark	\checkmark	\checkmark

* U02la20

$\text { IS: } 2040801,10 \mathrm{~mL}(1 / 20$	SPE Chem: Strata \times LAW 100 MM 200 \qquad ag / $/$ one	Notes:	
IS SUP: \qquad	SPE Loth: $519-000746$		
$\text { NS: } 20 A 0803 \text {, } 10 \mathrm{~N}$	ENVI-Carb Lot\#: 303074 \qquad		
$\text { NS SUP: } \quad \text { NA }$	Ele SOLV: $\mathrm{MeOH} / 0.5 \% \mathrm{NH} 4 \mathrm{OH}$ in MeOH		
$\mathrm{RS}: 20 \mathrm{AO8051}, 10 \mathrm{~mL}, 20$	Final Volume(s) \qquad mL		
Comments: Assume $1 \mathrm{~g}=1 \mathrm{~mL}$	$1=$ Sample centrifuged twice		$6=$ Sample took longer to SPE, required stronger vacuum
Cen = Centrifuged	$2=$ Sample deeply colored after centrifuge		$7=$ Required Nitrogen line to finish SPE
$\mathrm{Rec}=$ Reconcile final vial transfer	$3=$ Cartridge sorbent discolored after SPE		$8=$ Required Nitrogen line to finish elution
Rec $=$ Reconcile final vial transfer	$4=$ Sample clogged cartridge, additional cartridge(s) used		$9=$ Sample arrived with low volume
	5 = Sample recombined at final volume		$10=$ Trizma added to QC ($5 \mathrm{~g} / \mathrm{L}$)

Batch: B0B0118

LabNumber	WetWeight (Initial)	$\begin{gathered} \text { \% Solids } \\ \text { (Extraction Solids) } \end{gathered}$	DryWeight	Final	Extracted	Ext By	Spike	SpikeAmount	ClientMatrix	Analysis
2000314-01	$0.24382 \sim$	NA	NA	1000	19-Feb-20 07:26	LW			Blank Water	537M PFAS DOD QSM 5.3
2000314-02	0.24618 ,			1000	19-Feb-20 07:26	LW			Blank Water	537M PFAS DOD QSM 5.3
2000314-03	0.25406			1000	19-Feb-20 07:26	LW			Groundwater	537M PFAS DOD QSM 5.3
2000314-04	0.2515			1000	19-Feb-20 07:26	LW			Groundwater	537M PFAS DOD QSM 5.3
2000314-05	0.24538			1000	19-Feb-20 07:26	LW			Groundwater	537M PFAS DOD QSM 5.3
2000314-06	$0.2551 \checkmark$			1000	19-Feb-20 07:26	LW			Groundwater	537M PFAS DOD QSM 5.3
2000314-07	$0.25052 \checkmark$			1000	19-Feb-20 07:26	LW			Groundwater	537M PFAS DOD QSM 5.3
2000314-08	$0.2539 \checkmark$			1000	19-Feb-20 07:26	LW			Groundwater	537M PFAS DOD QSM 5.3
2000314-09	0.25498 V			1000	19-Feb-20 07:26	LW			Groundwater	537M PFAS DOD QSM 5.3
2000314-10	$0.25284 \checkmark$			1000	19-Feb-20 07:26	LW			Groundwater	537M PFAS DOD QSM 5.3
2000314-11	0.25446			1000	19-Feb-20 07:26	LW			Groundwater	537M PFAS DOD QSM 5.3
2000314-12	0.24458			1000	19-Feb-20 07:26	LW			Groundwater	537M PFAS DOD QSM 5.3
2000314-13	0.25234			1000	19-Feb-20 07:26	LW			Groundwater	537M PFAS DOD QSM 5.3
2000314-14	$0.24446 \checkmark$			1000	19-Feb-20 07:26	LW			Groundwater	537M PFAS DOD QSM 5.3
2000314-15	0.25324 V			1000	19-Feb-20 07:26	LW			Groundwater	537M PFAS DOD QSM 5.3
B0B0118-BLK1	0.25			1000	19-Feb-20 07:26	LW				QC
B0B0118-BS1	0.25			1000	19-Feb-20 07:26	LW	20 A 0803	10		QC
B0B0118-MS1	0.25822			1000	19-Feb-20 07:26	LW	20A0803	10^{\prime}		QC
B0B0118-MSD1	0.2531	\downarrow	\downarrow	1000	19-Feb-20 07:26	LW	20A0803	10^{\prime}		QC

\qquad M 02120120

Sample Data - PFAS Isotope Dilution Method

Dataset:	P:IPFAS5.PRO\RESULTSI200220P1\200220P1-30.qld
Last Altered:	Monday, February 24, 2020 08:21:27 Pacific Standard Time
Printed:	Friday, February 28, 2020 14:38:44 Pacific Standard Time

Name: 200220P1-30, Date: 20-Feb-2020, Time: 22:28:40, ID: B0B0118-BLK1 Method Blank 0.25, Description: Method Blank

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	$299.0>79.7$		1.34 e 3	0.250		2.68						NO
2	7 PFHxA	$313.0>269.0$		1.71 e 4	0.250		3.19						NO
3	9 HFPO-DA	$285.1>168.9$		3.21 e 3	0.250		3.40						NO
4	11 PFHpA	$363.0>318.9$		1.17 e 4	0.250		3.78						NO
5	12 ADONA	$376.8>250.9$		1.17 e 4	0.250		3.88						NO
6	51 13C3-PFBS-EIS	$302.0>98.8$	1.34 e 3		0.250	114.516	2.70	2.68	1340	46.9352	93.9		
7	57 13C2-PFHxA-EIS	$315.0>270.0$	1.71 e 4		0.250	1636.234	3.19	3.19	17100	41.7263	83.5		
8	53 13C3-HFPO-DA-EIS	$287.0>168.9$	3.21 e 3		0.250	293.118	3.43	3.40	3210	43.8116	87.6		
9	59 13C4-PFHpA-EIS	$367.2>321.8$	1.17 e 4		0.250	1106.802	3.79	3.78	11700	42.2513	84.5		
10	59 13C4-PFHpA-EIS	$367.2>321.8$	1.17 e 4		0.250	1106.802	3.79	3.78	11700	42.2513	84.5		
11	-1												
12	13 L-PFHxS	$398.9>79.7$		2.83 e 3	0.250		3.92						NO
13	1... Total PFHxS	$398.9>79.7$	0.00 e 0	2.83 e 3	0.250		3.93		0.000				
14	16 L-PFOA	$412.8>368.9$		1.71 e 4	0.250		4.29						NO
15	1... Total PFOA	$412.8>368.9$	0.00 e 0	1.71 e 4	0.250		4.60		0.000				
16	21 PFNA	$463.0>418.8$		1.34 e 4	0.250		4.72						NO
17	61 13C3-PFHxS-EIS	$401.8>79.7$	2.83 e 3		0.250	252.668	3.92	3.92	2830	44.8068	89.6		
18	61 13C3-PFHxS-EIS	$401.8>79.7$	2.83 e 3		0.250	252.668	3.92	3.92	2830	44.8068	89.6		
19	69 13C2-PFOA-EIS	$414.9>369.7$	1.71 e 4		0.250	1527.160	4.29	4.29	17100	44.7414	89.5		
20	69 13C2-PFOA-EIS	$414.9>369.7$	1.71 e 4		0.250	1527.160	4.29	4.29	17100	44.7414	89.5		
21	65 13C5-PFNA-EIS	$468.2>422.9$	1.34 e 4		0.250	1373.362	4.72	4.72	13400	38.9851	78.0		
22	-1												
23	23 L-PFOS	$498.9>79.7$		3.39 e 3	0.250		4.80						NO
24	1... Total PFOS	$498.9>79.7$	0.00 e 0	3.39 e 3	0.250		5.13		0.000				
25	25 9CI-PF30NS	$530.7>350.8$		3.39 e 3	0.250		5.01						NO
26	26 PFDA	$513>468.8$		1.63 e 4	0.250		5.08						NO
27	33 PFUdA	$563.0>518.9$		1.78 e 4	0.250		5.40						NO
28	71 13C8-PFOS-EIS	$507.0>79.7$	3.39 e 3		0.250	295.805	4.80	4.80	3390	45.8048	91.6		
29	71 13C8-PFOS-EIS	$507.0>79.7$	3.39 e 3		0.250	295.805	4.80	4.80	3390	45.8048	91.6		
30	71 13C8-PFOS-EIS	$507.0>79.7$	3.39 e 3		0.250	295.805	4.80	4.80	3390	45.8048	91.6		
31	73 13C2-PFDA-EIS	$515.1>469.9$	1.63 e 4		0.250	1356.410	5.08	5.08	16300	47.9263	95.9		
32	79 13C2-PFUdA-EIS	$565>519.8$	1.78 e 4		0.250	1416.449	5.40	5.40	17800	50.1540	100.3		
33	-1												
34	29 L-MeFOSAA	$570>419$		2.77 e 3	0.250		5.23						NO
35	1... Total N-MeFOSAA	570. >419	0.00 e 0	2.77 e 3	0.250		5.19		0.000				
36	31 L-EtFOSAA	$584.1>419$		3.53 e 3	0.250		5.38						NO

Work Order 2000314

Dataset:	P:\PFAS5.PRO\RESULTSI200220P1\200220P1-30.qld
Last Altered:	Monday, February 24, 2020 08:21:27 Pacific Standard Time
Printed:	Friday, February 28, 2020 14:38:44 Pacific Standard Time

Name: 200220P1-30, Date: 20-Feb-2020, Time: 22:28:40, ID: B0B0118-BLK1 Method Blank 0.25, Description: Method Blank

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	1... Total N-EtFOSAA	$584.1>419$	0.00e0	3.53e3	0.250		5.37		0.000				
38	35 11CI-PF30UdS	$630.9>450.9$		1.44e4	0.250		5.60						NO
39	77 d3-N-MeFOSAA-EIS	$573.3>419$	2.77 e 3		0.250	262.877	5.22	5.23	2770	42.0795	84.2		
40	77 d3-N-MeFOSAA-EIS	$573.3>419$	2.77 e 3		0.250	262.877	5.22	5.23	2770	42.0795	84.2		
41	81 d5-N-EtFOSAA-EIS	$589.3>419$	3.53 e 3		0.250	360.983	5.37	5.38	3530	39.0887	78.2		
42	$81 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}-\mathrm{EIS}$	$589.3>419$	3.53 e 3		0.250	360.983	5.37	5.38	3530	39.0887	78.2		
43	83 13C2-PFDoA-EIS	$614.7>569.7$	1.44 e 4		0.250	1573.093	5.67	5.67	14400	36.6278	73.3		
44	-1												
45	37 PFDoA	$612.9>569.0$		1.44e4	0.250		5.67						NO
46	39 PFTrDA	$662.9>618.9$		1.44e4	0.250		5.93						NO
47	41 PFTeDA	713.0 > 669.0		1.44e4	0.250		6.12						NO
48	1... TDCA	$498.3>106.9$			0.250		4.59						NO
49	99 13C4-PFBA	217.0 > 172.0	1.04 e 4	1.04 e 4	0.250		1.48	1.48					
50	83 13C2-PFDoA-EIS	$614.7>569.7$	1.44 e 4		0.250	1573.093	5.67	5.67	14400	36.6278	73.3		
51	83 13C2-PFDoA-EIS	$614.7>569.7$	1.44 e 4		0.250	1573.093	5.67	5.67	14400	36.6278	73.3		
52	89 13C2-PFTeDA-EIS	$715.1>669.7$	1.44 e 4		0.250	1440.513	6.11	6.12	14400	39.9300	79.9		
53	71 13C8-PFOS-EIS	507.0 > 79.7	3.39 e 3		0.250	295.805	4.80	4.80	3390	45.8048	91.6		
54	1... 13C5-PFHxA	318.0 > 272.9	1.74 e 4	1.74 e 4	0.250		3.18	3.19					
55	-1												
56	1... 1802-PFHxS	403.0 > 102.6	1.20 e 3	1.20e3	0.250		3.92	3.92					
57	1... 13C6-PFDA	$519.1>473.7$	1.77 e 4	1.77 e 4	0.250		5.08	5.08					
58	1... 13C7-PFUdA	$570.1>524.8$	1.90 e 4	1.90e4	0.250		5.40	5.40					
59	1... 13C4-PFOS	$503>79.7$	3.41 e 3	3.41 e 3	0.250		4.79	4.80					
60	1... 13C9-PFNA	472.2 > 426.9	1.53 e 4	1.53 e 4	0.250		4.72	4.72					

Dataset:	P:\PFAS5.PRO\RESULTS\200220P1\200220P1-30.qld
Last Altered:	Monday, February 24, 2020 08:21:27 Pacific Standard Time
Printed:	Friday, February 28, 2020 14:38:44 Pacific Standard Time

Method: P:|PFAS5.PRO\MethDB\NEW_PFAS_80C_022020.mdb 21 Feb 2020 08:56:55

Calibration: P:\PFAS5.PRO\CurveDB\C18_VAL-PFAS_Q5_02-20-20.cdb 21 Feb 2020 15:57:11

Name: 200220P1-30, Date: 20-Feb-2020, Time: 22:28:40, ID: B0B0118-BLK1 Method Blank 0.25, Description: Method Blank

13C3-PFBS-EIS

F12:MRM of 1 channel,ES-

13C2-PFHxA-EIS

HFPO-DA

13C3-HFPO-DA-EIS

PFHpA

13C4-PFHpA-EIS

ADONA

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES$367.2>321.8$

Dataset:	P:\PFAS5.PRO\RESULTSI200220P1\200220P1-30.qld
Last Altered:	Monday, February 24, 2020 08:21:27 Pacific Standard Time
Printed:	Friday, February 28, 2020 14:38:44 Pacific Standard Time

Name: 200220P1-30, Date: 20-Feb-2020, Time: 22:28:40, ID: B0B0118-BLK1 Method Blank 0.25, Description: Method Blank

L-PFHxS

F23:MRM of 2 channels,ES$398.9>79.7$

F23:MRM of 2 channels,ES-

 F24:MRM of 1 channel,ES-
$401.8>79.7$
$6.912 \mathrm{e}+004$

Total PFHxS

F23:MRM of 2 channels,ES$398.9>79.7$

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES $401.8>79.7$ $6.912 e+004$

L-PFOA

F26:MRM of 2 channels,ES-

F26:MRM of 2 channels,ES-

13C2-PFOA-EIS
F27:MRM of 1 channel,ES414.9 > 369.7

Total PFOA

F26:MRM of 2 channels,ES-

13C2-PFOA-EIS
F27:MRM of 1 channel,ES$414.9>369.7$ $4.351 e+005$

PFNA
F34:MRM of 2 channels,ES-

13C5-PFNA-EIS
F35:MRM of 1 channel,ES $468.2>422.9$

Dataset:	P:\PFAS5.PRO\RESULTSI200220P1\200220P1-30.qld
Last Altered:	Monday, February 24, 2020 08:21:27 Pacific Standard Time
Printed:	Friday, February 28, 2020 14:38:44 Pacific Standard Time

Name: 200220P1-30, Date: 20-Feb-2020, Time: 22:28:40, ID: B0B0118-BLK1 Method Blank 0.25, Description: Method Blank

L-PFOS

13C8-PFOS-EIS

13C8-PFOS-EIS

13C8-PFOS-EIS

13C2-PFDA-EIS
F45:MRM of 1 channel,ES$515.1>469.9$

PFUdA

F54:MRM of 2 channels,ES-

F54:MRM of 2 channels,ES $563.0>269$

13C2-PFUdA-EIS
F55:MRM of 1 channel,ES$565>519.8$

Dataset:	P:\PFAS5.PRO\RESULTS\200220P1\200220P1-30.qld
Last Altered:	Monday, February 24, 2020 08:21:27 Pacific Standard Time
Printed:	Friday, February 28, 2020 14:38:44 Pacific Standard Time

Name: 200220P1-30, Date: 20-Feb-2020, Time: 22:28:40, ID: B0B0118-BLK1 Method Blank 0.25, Description: Method Blank

F56:MRM of 2 channels, ES

d3-N-MeFOSAA-EIS
F58:MRM of 1 channel,ES-
$573.3>419$ $7.019 e+004$

d3-N-MeFOSAA-EIS
F58:MRM of 1 channel,ES$573.3>419$ $7.019 e+004$

L-EtFOSAA

F59:MRM of 2 channels,ES-

d5-N-EtFOSAA-EIS
F60:MRM of 1 channel,ES589.3 > 419

Total N-EtFOSAA

F59:MRM of 2 channels,ES-

F59:MRM of 2 channels,ES-

d5-N-EtFOSAA-EIS
F60:MRM of 1 channel,ES-
$589.3>419$ $9.433 \mathrm{e}+004$

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES $614.7>569.7$

Dataset:	P:\PFAS5.PRO\RESULTSI200220P1\200220P1-30.qld
Last Altered:	Monday, February 24, 2020 08:21:27 Pacific Standard Time
Printed:	Friday, February 28, 2020 14:38:44 Pacific Standard Time

Name: 200220P1-30, Date: 20-Feb-2020, Time: 22:28:40, ID: B0B0118-BLK1 Method Blank 0.25, Description: Method Blank

PFDoA

F62:MRM of 4 channels,ES-
$612.9>569.0$
$8.198 e+002$

13C2-PFDoA-EIS

PFTrDA

F71:MRM of 2 channels,ES-

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES $614.7>569.7$ $3.546 \mathrm{e}+005$

PFTeDA

13C2-PFTeDA-EIS

TDCA

13C8-PFOS-EIS
F42:MRM of 1 channel,ES$507.0>79.7$

13C4-PFBA
F4:MRM of 1 channel,ES-

| F4:MRM of1 channel,ES-
 $217.0>172.0$ |
| :---: | :---: |
| $2.325 \mathrm{e}+005$ |
| $13 \mathrm{C} 4-\mathrm{PFBA}$ |
| 1.48 |
| 1.04 e 4 |
| 231543 |
| bb |
| 10905.24 |

13C5-PFHxA

F15:MRM of 1 channel,ES $318.0>272.9$

Dataset: P:\PFAS5.PRO\RESULTSI200220P1\200220P1-30.qld

Last Altered: Monday, February 24, 2020 08:21:27 Pacific Standard Time
Printed: Friday, February 28, 2020 14:38:44 Pacific Standard Time

Name: 200220P1-30, Date: 20-Feb-2020, Time: 22:28:40, ID: B0B0118-BLK1 Method Blank 0.25, Description: Method Blank

1802-PFHxS
F25:MRM of 1 channel,ES-

13C9-PFNA

MassLynx V4.2 SCN982

Dataset: P:IPFAS5.PRO\RESULTSI200220P1\200220P1-31.qld
 Last Altered: Monday, February 24, 2020 08:29:29 Pacific Standard Time
 Printed: Friday, February 28, 2020 14:39:21 Pacific Standard Time

Name: 200220P1-31, Date: 20-Feb-2020, Time: 22:39:11, ID: B0B0118-BS1 OPR 0.25, Description: OPR

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	$299.0>79.7$	2.35 e 3	1.27e3	0.250		2.68	2.68	23.1	40.0351	100.1	2.990	NO
2	7 PFHxA	$313.0>269.0$	1.20 e 4	1.73 e 4	0.250		3.19	3.19	8.67	38.8202	97.1	20.319	NO
3	9 HFPO-DA	$285.1>168.9$	2.34 e 3	2.97e3	0.250		3.40	3.40	9.85	37.9360	94.8	2.614	NO
4	11 PFHpA	$363.0>318.9$	1.06 e 4	1.16 e 4	0.250		3.78	3.79	11.4	36.5283	91.3	25.509	NO
5	12 ADONA	$376.8>250.9$	2.58 e 4	1.16 e 4	0.250		3.88	3.89	27.9	35.8820	89.7	3.924	NO
6	51 13C3-PFBS-EIS	$302.0>98.8$	1.27 e 3		0.250	114.516	2.70	2.68	1270	44.4693	88.9		
7	57 13C2-PFHxA-EIS	$315.0>270.0$	1.73 e 4		0.250	1636.234	3.19	3.19	17300	42.2897	84.6		
8	53 13C3-HFPO-DA-EIS	$287.0>168.9$	2.97 e 3		0.250	293.118	3.43	3.40	2970	40.4939	81.0		
9	59 13C4-PFHpA-EIS	$367.2>321.8$	1.16 e 4		0.250	1106.802	3.79	3.78	11600	41.8724	83.7		
10	59 13C4-PFHpA-EIS	$367.2>321.8$	1.16 e 4		0.250	1106.802	3.79	3.78	11600	41.8724	83.7		
11	-1												
12	13 L-PFHxS	$398.9>79.7$	2.09e3	2.39 e 3	0.250		3.92	3.92	10.9	39.2757	98.2	2.449	NO
13	1... Total PFHxS	$398.9>79.7$	2.09e3	2.39 e 3	0.250		3.93		10.9	39.2757			
14	16 L-PFOA	$412.8>368.9$	1.41 e 4	1.64 e 4	0.250		4.29	4.29	10.7	35.4927	88.7	3.084	NO
15	1... Total PFOA	$412.8>368.9$	1.41 e 4	1.64 e 4	0.250		4.60		10.7	35.4927			
16	21 PFNA	$463.0>418.8$	1.31 e 4	1.42 e 4	0.250		4.72	4.72	11.5	37.2262	93.1	7.206	NO
17	61 13C3-PFHxS-EIS	$401.8>79.7$	2.39 e 3		0.250	252.668	3.92	3.92	2390	37.8517	75.7		
18	61 13C3-PFHxS-EIS	$401.8>79.7$	2.39 e 3		0.250	252.668	3.92	3.92	2390	37.8517	75.7		
19	69 13C2-PFOA-EIS	$414.9>369.7$	1.64 e 4		0.250	1527.160	4.29	4.29	16400	43.0376	86.1		
20	69 13C2-PFOA-EIS	$414.9>369.7$	1.64 e 4		0.250	1527.160	4.29	4.29	16400	43.0376	86.1		
21	65 13C5-PFNA-EIS	$468.2>422.9$	1.42 e 4		0.250	1373.362	4.72	4.72	14200	41.4545	82.9		
22	-1												
23	23 L-PFOS	$498.9>79.7$	2.25 e 3	3.29 e 3	0.250		4.80	4.80	8.53	36.8644	92.2	2.202	NO
24	1... Total PFOS	$498.9>79.7$	2.25 e 3	3.29 e 3	0.250		5.13		8.53	36.8644			
25	25 9CI-PF30NS	$530.7>350.8$	2.63 e 3	3.29e3	0.250		5.01	5.01	9.99	34.4403	86.1	14.373	NO
26	26 PFDA	$513>468.8$	1.46 e 4	1.46 e 4	0.250		5.08	5.08	12.5	40.5334	101.3	9.193	NO
27	33 PFUdA	$563.0>518.9$	1.18 e 4	1.61 e 4	0.250		5.40	5.40	9.18	34.9982	87.5	22.552	NO
28	71 13C8-PFOS-EIS	$507.0>79.7$	3.29 e 3		0.250	295.805	4.80	4.80	3290	44.5511	89.1		
29	71 13C8-PFOS-EIS	$507.0>79.7$	3.29 e 3		0.250	295.805	4.80	4.80	3290	44.5511	89.1		
30	71 13C8-PFOS-EIS	$507.0>79.7$	3.29 e 3		0.250	295.805	4.80	4.80	3290	44.5511	89.1		
31	73 13C2-PFDA-EIS	$515.1>469.9$	1.46 e 4		0.250	1356.410	5.08	5.08	14600	43.0797	86.2		
32	79 13C2-PFUdA-EIS	$565>519.8$	1.61 e 4		0.250	1416.449	5.40	5.40	16100	45.4621	90.9		
33	-1												
34	29 L-MeFOSAA	$570>419$	3.63 e 3	2.76 e 3	0.250		5.23	5.23	16.4	34.5947	86.5	1.773	NO
35	1... Total N-MeFOSAA	570. >419	3.63 e 3	2.76 e 3	0.250		5.19		16.4	34.5947			
36	31 L-EtFOSAA	$584.1>419$	3.36 e 3	3.46 e 3	0.250		5.38	5.39	12.1	38.4963	96.2	1.218	NO

Work Order 2000314

Dataset:	P:\PFAS5.PRO\RESULTSI200220P1\200220P1-31.qld
Last Altered:	Monday, February 24, 2020 08:29:29 Pacific Standard Time
Printed:	Friday, February 28, 2020 14:39:21 Pacific Standard Time

Name: 200220P1-31, Date: 20-Feb-2020, Time: 22:39:11, ID: B0B0118-BS1 OPR 0.25, Description: OPR

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	1... Total N-EtFOSAA	$584.1>419$	3.36 e 3	3.46e3	0.250		5.37		12.1	38.4963			
38	35 11CI-PF30UdS	$630.9>450.9$	5.83 e 3	1.40 e 4	0.250		5.60	5.60	5.21	45.8745	114.7	22.279	NO
39	77 d3-N-MeFOSAA-EIS	$573.3>419$	2.76 e 3		0.250	262.877	5.22	5.23	2760	41.9999	84.0		
40	77 d3-N-MeFOSAA-EIS	$573.3>419$	2.76 e 3		0.250	262.877	5.22	5.23	2760	41.9999	84.0		
41	$81 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}-E I S$	$589.3>419$	3.46 e 3		0.250	360.983	5.37	5.38	3460	38.3598	76.7		
42	$81 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}-\mathrm{EIS}$	$589.3>419$	3.46 e 3		0.250	360.983	5.37	5.38	3460	38.3598	76.7		
43	83 13C2-PFDoA-EIS	$614.7>569.7$	1.40 e 4		0.250	1573.093	5.67	5.67	14000	35.5304	71.1		
44	-1												
45	37 PFDoA	$612.9>569.0$	1.13 e 4	1.40e4	0.250		5.67	5.67	10.1	42.0520	105.1	11.545	NO
46	39 PFTrDA	$662.9>618.9$	1.06 e 4	1.40 e 4	0.250		5.93	5.91	9.45	38.0880	95.2	55.338	NO
47	41 PFTeDA	$713.0>669.0$	1.15 e 4	1.41 e 4	0.250		6.12	6.12	10.2	38.9021	97.3	15.108	NO
48	1... TDCA	$498.3>106.9$			0.250		4.59						NO
49	99 13C4-PFBA	$217.0>172.0$	1.01 e 4	1.01 e 4	0.250	1.000	1.48	1.48	12.5	50.0000	100.0		
50	83 13C2-PFDoA-EIS	$614.7>569.7$	1.40 e 4		0.250	1573.093	5.67	5.67	14000	35.5304	71.1		
51	83 13C2-PFDoA-EIS	$614.7>569.7$	1.40e4		0.250	1573.093	5.67	5.67	14000	35.5304	71.1		
52	89 13C2-PFTeDA-EIS	$715.1>669.7$	1.41 e 4		0.250	1440.513	6.11	6.12	14100	39.0567	78.1		
53	71 13C8-PFOS-EIS	$507.0>79.7$	3.29 e 3		0.250	295.805	4.80	4.80	3290	44.5511	89.1		
54	1... 13C5-PFHxA	318.0 > 272.9	1.78 e 4	1.78 e 4	0.250	1.000	3.18	3.19	12.5	50.0000	100.0		
55	-1												
56	1... 18O2-PFHxS	403.0 > 102.6	1.05 e 3	1.05 e 3	0.250	1.000	3.92	3.92	12.5	50.0000	100.0		
57	1... 13C6-PFDA	$519.1>473.7$	1.66 e 4	1.66 e 4	0.250	1.000	5.08	5.08	12.5	50.0000	100.0		
58	1... 13C7-PFUdA	$570.1>524.8$	1.69 e 4	1.69 e 4	0.250	1.000	5.40	5.40	12.5	50.0000	100.0		
59	1... 13C4-PFOS	$503>79.7$	3.06 e 3	3.06 e 3	0.250	1.000	4.79	4.80	12.5	50.0000	100.0		
60	1... 13C9-PFNA	$472.2>426.9$	1.46 e 4	1.46 e 4	0.250	1.000	4.72	4.72	12.5	50.0000	100.0		

Dataset:	P:\PFAS5.PRO\RESULTSI200220P1\200220P1-31.qld
Last Altered:	Monday, February 24, 2020 08:29:29 Pacific Standard Time
Printed:	Friday, February 28, 2020 14:39:21 Pacific Standard Time

Method: P:|PFAS5.PRO\MethDB\NEW_PFAS_80C_022020.mdb 21 Feb 2020 08:56:55 Calibration: P:\PFAS5.PRO\CurveDB\C̄18_VAL-PFAS_Q5_02-20-20.cdb 21 Feb 2020 15:57:11

Name: 200220P1-31, Date: 20-Feb-2020, Time: 22:39:11, ID: B0B0118-BS1 OPR 0.25, Description: OPR

PFBS		
F11:MRM of 2 channels,ES-		
		$299.0>79.7$
100	PFBS	$6.318 \mathrm{e}+004$
	2.68	
	2.35 e 3	
\%-	62995	
	bb	
	31433.30	

13C3-PFBS-EIS
F12:MRM of 1 channel,ES-

PFHxA	
F13:MRM of 2 channels,ES-	
	313.0 > 269.0
100 PFHxA	$3.332 \mathrm{e}+005$
10073.19	
- 1.20 e 4	
\% 331241	
- bb	
-2545.88	
тדтד1ד	गTTT min

HFPO-DA

13C3-HFPO-DA-EIS

'

HFPO-DA
F9:MRM of 3 channels,ES-
$285.1>168.9$
$6.129 e^{2}+004$

F10:MRM of 2 channels,ES-
$287.0>168.9$
$7.7420+004$

ADONA		
	F22:MRM of 2 channels,ES-	
		376.8 > 250.9
	ADONA	$6.721 \mathrm{e}+005$
00	3.89	
-	2.58 e 4	
\%-	670685	
	bb	
	8808.93	
		T1T min

13C4-PFHpA-EIS
F21:MRM of 1 channel,ES-
$367.2>321.8$

F21:MRM of 1 channel,ES-
$367.2>321.8$
$2.942 \mathrm{e}+005$

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES367.2 > 321.8

Dataset:	P:\PFAS5.PRO\RESULTSI200220P1\200220P1-31.qld
Last Altered:	Monday, February 24, 2020 08:29:29 Pacific Standard Time
Printed:	Friday, February 28, 2020 14:39:21 Pacific Standard Time

Name: 200220P1-31, Date: 20-Feb-2020, Time: 22:39:11, ID: B0B0118-BS1 OPR 0.25, Description: OPR

L-PFHxS

	F23:MRM	channels,ES-
	L-PFHxS	398.9 > 79.7
	3.92	$3.934 \mathrm{e}+004$
100	2.09 e 3	
	39340	
\%-	MM	
	39340.00	

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES
F24:MRM of 1 channel,ES-
$401.8>79.7$
$5.647 \mathrm{e}+004$

Total PFHxS

F23:MRM of 2 channels,ES

	L-PFHxS	398.9 > 79.7
${ }^{100}$	3.92	$3.934 \mathrm{e}+004$
	2.09e3	
	39340	
\%-	MM	
	39340.00	

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES $401.8>79.7$ $5.647 e+004$

L-PFOA

F26:MRM of 2 channels,ES-

	26.M	$412.8>368.9$
100	L-PFOA	$3.504 \mathrm{e}+005$
	4.29	
	1.41 e 4	
\%	350425	
	MM	
	2249.15	

13C2-PFOA-EIS
F27:MRM of 1 channel,ES-
$414.9>369.7$

Total PFOA

F26:MRM of 2 channels,ES-

	F26:M	$2 \text { channels,ES- }$
100	L-PFOA	$3.504 \mathrm{e}+005$
	4.29	
	1.41 e 4	
\%-	350425	
	MM	
	2249.15	

13C2-PFOA-EIS

F27:MRM of 1 channel,ES$414.9>369.7$ $4.155 \mathrm{e}+005$

PFNA

F34:MRM of 2 channels,ES$463.0>219.0$

13C5-PFNA-EIS
F35:MRM of 1 channel,ES $468.2>422.9$

Dataset:	P:\PFAS5.PRO\RESULTSI200220P1\200220P1-31.qld
Last Altered:	Monday, February 24, 2020 08:29:29 Pacific Standard Time
Printed:	Friday, February 28, 2020 14:39:21 Pacific Standard Time

Name: 200220P1-31, Date: 20-Feb-2020, Time: 22:39:11, ID: B0B0118-BS1 OPR 0.25, Description: OPR

Total PFOS		
F39:MRM of 2 channels,ES-		
		498.9 > 79.7
	L-PFOS	$4.870 \mathrm{e}+004$
1007	4.80	
	2.25 e 3	
\%-	48701	
	MM	
	48701.00	
	तार	TएT min

| | F39:MRM of 2 channels,ES- |
| ---: | ---: | ---: |
| $498.9>98.7$ | |

F51:MRM of 2 channels,ES$530.7>82.8$ $4.746 e+003$

13C8-PFOS-EIS

13C2-PFDA-EIS
F45:MRM of 1 channel,ES515.1 > 469.9 $4.027 e+005$

PFUdA

13C2-PFUdA-EIS
F55:MRM of 1 channel,ES $565>519.8$

Dataset:	P:\PFAS5.PRO\RESULTSI200220P1\200220P1-31.qld
Last Altered:	Monday, February 24, 2020 08:29:29 Pacific Standard Time
Printed:	Friday, February 28, 2020 14:39:21 Pacific Standard Time

Name: 200220P1-31, Date: 20-Feb-2020, Time: 22:39:11, ID: B0B0118-BS1 OPR 0.25, Description: OPR

L-MeFOSAA

F56:MRM of 2 channels,ES-
$570>419$
$7.579 \mathrm{e}+004$

d3-N-MeFOSAA-EIS
F58:MRM of 1 channel,ES-
$573.3>419$ $6.853 \mathrm{e}+004$

d3-N-MeFOSAA-EIS
F58:MRM of 1 channel,ES$573.3>419$ $6.853 \mathrm{e}+004$

d5-N-EtFOSAA-EIS
F60:MRM of 1 channel,ES$589.3>419$ $9.631 \mathrm{e}+004$

Total N-EtFOSAA
F59:MRM of 2 channels,ES-
$584.1>419$
100

F59:MRM of 2 channels,ES-
$584.1>526$

F68:MRM of 2 channels,ES$630.9>83$ $6.355 e+003$

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES $614.7>569.7$

Dataset:	P:\PFAS5.PRO\RESULTSI200220P1\200220P1-31.qld
Last Altered:	Monday, February 24, 2020 08:29:29 Pacific Standard Time
Printed:	Friday, February 28, 2020 14:39:21 Pacific Standard Time

Name: 200220P1-31, Date: 20-Feb-2020, Time: 22:39:11, ID: B0B0118-BS1 OPR 0.25, Description: OPR

PFDoA

F62:MRM of 4 channels,ES-		
		$612.9>569.0$
100	PFDoA	$2.860 \mathrm{e}+005$
	5.67	
	1.13 e 4	
\%	285045	
	bb	
	285045.00	

	F62:MRM of 4 channels,ES-$612.9>318.8$	
100	PFDoA	$2.302 \mathrm{e}+004$
	5.67	
	9.80 e 2	
\%	23020	
	bb	
	23020.00	

PFTrDA

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES 614.7 > 569.7 $3.441 \mathrm{e}+005$

PFTeDA

F73:MRM of 2 channels,ES-

	F73:MR	$\begin{aligned} & \text { channels,ES } \\ & 713.0 \text { > } 669.0 \end{aligned}$
00	PFTeDA	$2.905 \mathrm{e}+005$
0	6.12	
	1.15 e 4	
\%-	289051	
\%	bb	
	4740.03	

13C2-PFTeDA-EIS

TDCA

13C8-PFOS-EIS
F42:MRM of 1 channel,ES$507.0>79.7$ $8.795 e+004$

13C4-PFBA

F4:MRM of 1 channel,ES-

13C5-PFHxA

F15:MRM of 1 channel,ES $318.0>272.9$

Dataset:	P:\PFAS5.PRO\RESULTS\200220P1\200220P1-31.qld
Last Altered:	Monday, February 24, 2020 08:29:29 Pacific Standard Time
Printed:	Friday, February 28, 2020 14:39:21 Pacific Standard Time

Name: 200220P1-31, Date: 20-Feb-2020, Time: 22:39:11, ID: B0B0118-BS1 OPR 0.25, Description: OPR

13C7-PFUdA

F57:MRM of 1 channel,ES-
$570.1>524.8$

Dataset:	P:\PFAS5.PRO\RESULTS\200220P1\200220P1-34.qld
Last Altered:	Monday, February 24, 2020 09:05:55 Pacific Standard Time
Printed:	Monday, February 24, 2020 12:26:49 Pacific Standard Time

Name: 200220P1-34, Date: 20-Feb-2020, Time: 23:10:42, ID: 2000314-01 SB01-20200212 0.24382, Description: SB01-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	$299.0>79.7$		1.37 e 3	0.244		2.68						
2	7 PFHxA	$313.0>269.0$		1.89 e 4	0.244		3.19						
3	9 HFPO-DA	$285.1>168.9$		3.39 e 3	0.244		3.40						
4	11 PFHpA	363.0 > 318.9		1.21 e 4	0.244		3.78						
5	12 ADONA	$376.8>250.9$		1.21 e 4	0.244		3.88						
6	51 13C3-PFBS-EIS	$302.0>98.8$	1.37 e 3		0.244	114.516	2.70	2.68	1370	49.0995	95.8		
7	57 13C2-PFHxA-EIS	$315.0>270.0$	1.89 e 4		0.244	1636.234	3.19	3.19	18900	47.2845	92.2		
8	53 13C3-HFPO-DA-EIS	$287.0>168.9$	3.39e3		0.244	293.118	3.43	3.40	3390	47.4896	92.6		
9	59 13C4-PFHpA-EIS	$367.2>321.8$	1.21 e 4		0.244	1106.802	3.79	3.78	12100	44.8717	87.5		
10	59 13C4-PFHpA-EIS	367.2 > 321.8	1.21 e 4		0.244	1106.802	3.79	3.78	12100	44.8717	87.5		
11	-1												
12	13 L-PFHxS	$398.9>79.7$	1.72 e 0	2.76 e 3	0.244		3.92	3.94	0.00777			0.211	YES
13	1... Total PFHxS	$398.9>79.7$	1.72 e 0	2.76 e 3	0.244		3.93		0.000				
14	16 L-PFOA	$412.8>368.9$		1.75 e 4	0.244		4.29						
15	1... Total PFOA	412.8 > 368.9	0.00e0	1.75 e 4	0.244		4.60		0.000				
16	21 PFNA	$463.0>418.8$		1.43 e 4	0.244		4.72						
17	61 13C3-PFHxS-EIS	$401.8>79.7$	2.76 e 3		0.244	252.668	3.92	3.92	2760	44.8098	87.4		
18	61 13C3-PFHxS-EIS	$401.8>79.7$	2.76 e 3		0.244	252.668	3.92	3.92	2760	44.8098	87.4		
19	69 13C2-PFOA-EIS	$414.9>369.7$	1.75 e 4		0.244	1527.160	4.29	4.29	17500	46.8845	91.5		
20	69 13C2-PFOA-EIS	$414.9>369.7$	1.75 e 4		0.244	1527.160	4.29	4.29	17500	46.8845	91.5		
21	65 13C5-PFNA-EIS	468.2 > 422.9	1.43 e 4		0.244	1373.362	4.72	4.72	14300	42.8420	83.6		
22	-1												
23	23 L-PFOS	498.9 > 79.7		3.07 e 3	0.244		4.80						
24	1... Total PFOS	$498.9>79.7$	0.00e0	3.07 e 3	0.244		5.13		0.000				
25	259 CI -PF30NS	$530.7>350.8$		3.07 e 3	0.244		5.01						
26	26 PFDA	$513>468.8$		1.62 e 4	0.244		5.08						
27	33 PFUdA	$563.0>518.9$	4.42e1	1.80 e 4	0.244		5.40	5.39	0.0306	0.1678		121.442	YES
28	71 13C8-PFOS-EIS	$507.0>79.7$	3.07e3		0.244	295.805	4.80	4.80	3070	42.5187	82.9		
29	71 13C8-PFOS-EIS	$507.0>79.7$	3.07e3		0.244	295.805	4.80	4.80	3070	42.5187	82.9		
30	71 13C8-PFOS-EIS	$507.0>79.7$	3.07e3		0.244	295.805	4.80	4.80	3070	42.5187	82.9		
31	73 13C2-PFDA-EIS	$515.1>469.9$	1.62 e 4		0.244	1356.410	5.08	5.08	16200	49.1068	95.8		
32	79 13C2-PFUdA-EIS	$565>519.8$	1.80 e 4		0.244	1416.449	5.40	5.40	18000	52.2168	101.9		
33	-1												
34	$29 \mathrm{~L}-\mathrm{MeFOSAA}$	$570>419$		2.90 e3	0.244		5.23						
35	1... Total N-MeFOSAA	570. >419	0.00e0	2.90 e 3	0.244		5.19		0.000				
36	31 L-EtFOSAA	$584.1>419$		3.86e3	0.244		5.38						

Work Order 2000314

Dataset:	P:\PFAS5.PRO\RESULTS\200220P1\200220P1-34.qld
Last Altered:	Monday, February 24, 2020 09:05:55 Pacific Standard Time
Printed:	Monday, February 24, 2020 12:26:49 Pacific Standard Time

Name: 200220P1-34, Date: 20-Feb-2020, Time: 23:10:42, ID: 2000314-01 SB01-20200212 0.24382, Description: SB01-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	1... Total N-EtFOSAA	$584.1>419$	0.00 e 0	3.86 e 3	0.244		5.37		0.000				
38	3511 Cl -PF30UdS	$630.9>450.9$		1.49 e 4	0.244		5.60						
39	77 d3-N-MeFOSAA-EIS	$573.3>419$	2.90 e3		0.244	262.877	5.22	5.23	2900	45.2219	88.2		
40	77 d3-N-MeFOSAA-EIS	$573.3>419$	2.90 e3		0.244	262.877	5.22	5.23	2900	45.2219	88.2		
41	81 d5-N-EtFOSAA-EIS	$589.3>419$	3.86e3		0.244	360.983	5.37	5.38	3860	43.8940	85.6		
42	81 d5-N-EtFOSAA-EIS	$589.3>419$	3.86 e 3		0.244	360.983	5.37	5.38	3860	43.8940	85.6		
43	83 13C2-PFDoA-EIS	$614.7>569.7$	1.49 e 4		0.244	1573.093	5.67	5.67	14900	38.8202	75.7		
44	-1												
45	37 PFDoA	$612.9>569.0$		1.49 e 4	0.244		5.67						
46	39 PFTrDA	$662.9>618.9$		1.49 e 4	0.244		5.93						
47	41 PFTeDA	713.0 > 669.0		1.46 e 4	0.244		6.12						
48	1... TDCA	$498.3>106.9$			0.244		4.59						
49	99 13C4-PFBA	$217.0>172.0$	1.11e4	1.11 e 4	0.244	1.000	1.48	1.48	12.5	51.2673	100.0		
50	83 13C2-PFDoA-EIS	$614.7>569.7$	1.49 e 4		0.244	1573.093	5.67	5.67	14900	38.8202	75.7		
51	83 13C2-PFDoA-EIS	$614.7>569.7$	1.49 e 4		0.244	1573.093	5.67	5.67	14900	38.8202	75.7		
52	89 13C2-PFTeDA-EIS	$715.1>669.7$	1.46 e 4		0.244	1440.513	6.10	6.12	14600	41.4738	80.9		
53	71 13C8-PFOS-EIS	$507.0>79.7$	3.07e3		0.244	295.805	4.80	4.80	3070	42.5187	82.9		
54	1... 13C5-PFHxA	318.0 > 272.9	1.99 e 4	1.99 e 4	0.244	1.000	3.18	3.19	12.5	51.2673	100.0		
55	-1												
56	1... 18O2-PFHxS	403.0 > 102.6	1.32 e 3	1.32 e 3	0.244	1.000	3.92	3.92	12.5	51.2673	100.0		
57	1... 13C6-PFDA	$519.1>473.7$	1.68 e 4	1.68 e 4	0.244	1.000	5.08	5.08	12.5	51.2673	100.0		
58	1... 13C7-PFUdA	$570.1>524.8$	1.94 e 4	1.94 e 4	0.244	1.000	5.40	5.40	12.5	51.2673	100.0		
59	1... 13C4-PFOS	$503>79.7$	3.09 e 3	3.09 e 3	0.244	1.000	4.79	4.80	12.5	51.2673	100.0		
60	1... 13C9-PFNA	472.2 > 426.9	1.58 e 4	1.58 e 4	0.244	1.000	4.72	4.72	12.5	51.2673	100.0		

Dataset: P:IPFAS5.PRO\RESULTSI200220P1\200220P1-34.qld
Last Altered: Monday, February 24, 2020 09:05:55 Pacific Standard Time
Printed: Monday, February 24, 2020 12:26:49 Pacific Standard Time

Method: P:\PFAS5.PRO\MethDB\NEW_PFAS_80C_022020.mdb 21 Feb 2020 08:56:55

Calibration: P:\PFAS5.PRO\CurveDB\C18_VAL-PFAS_Q5_02-20-20.cdb 21 Feb 2020 15:57:11

Name: 200220P1-34, Date: 20-Feb-2020, Time: 23:10:42, ID: 2000314-01 SB01-20200212 0.24382, Description: SB01-20200212

13C3-PFBS-EIS
F12:MRM of 1 channel,ES$302.0>98.8$ $3.770 \mathrm{e}+004$

PFHxA

13C2-PFHxA-EIS

F14:MRM of 1 channel,ES $315.0>270.0$ $5.0>270.0$
$5.308 \mathrm{e}+005$

F9:MRM of 3 channels,ES

13C3-HFPO-DA-EIS
F10:MRM of 2 channels,ES$287.0>168.9$

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES367.2 > 321.8 $3.119 \mathrm{e}+005$

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES $367.2>321.8$ $3.119 \mathrm{e}+005$

Dataset: P:\PFAS5.PRO\RESULTS\200220P1\200220P1-34.qld

Last Altered: Monday, February 24, 2020 09:05:55 Pacific Standard Time
Printed: Monday, February 24, 2020 12:26:49 Pacific Standard Time

Name: 200220P1-34, Date: 20-Feb-2020, Time: 23:10:42, ID: 2000314-01 SB01-20200212 0.24382, Description: SB01-20200212

L-PFHxS

F23:MRM of 2 channels,ES-

F23:MRM of 2 channels,ES- | $398.9>79.7$ |
| ---: |
| $5.903 \mathrm{e}+001$ |

13C3-PFHxS-EIS

F24:MRM of 1 channel,ES$401.8>79.7$ 6.810e+004

Total PFHxS

F23:MRM of 2 channels, ES-
$398.9>79.7$

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES $401.8>79.7$ $6.810 \mathrm{e}+004$

L-PFOA

F26:MRM of 2 channels,ES$412.8>169$

13C2-PFOA-EIS
F27:MRM of 1 channel,ES414.9 > 369.7 $4.416 \mathrm{e}+005$

Total PFOA

F26:MRM of 2 channels,ES-
F26:MRM of 2 channels,ES-
$412.8>368.9$

F26:MRM of 2 channels,ES-

PFNA

F34:MRM of 2 channels,ES 463.0 > 219.0 $1.890 \mathrm{e}+001$

13C5-PFNA-EIS
F35:MRM of 1 channel,ES $468.2>422.9$

Dataset: P:IPFAS5.PRO\RESULTSI200220P1\200220P1-34.qld

Last Altered: Monday, February 24, 2020 09:05:55 Pacific Standard Time
Printed: Monday, February 24, 2020 12:26:49 Pacific Standard Time

Name: 200220P1-34, Date: 20-Feb-2020, Time: 23:10:42, ID: 2000314-01 SB01-20200212 0.24382, Description: SB01-20200212

\section*{L-PFOS
 F39:MRM of 2 channels,ES- | 498.9 79.7 |
| ---: |
| $1.250 \mathrm{e}+002$ |}

13C8-PFOS-EIS

F42:MRM of 1 channel,ES-

F39:MRM of 2 channels,ES
$498.9>98.7$

F42:MRM of 1 channel,ES $507.0>79.7$ $7.550 \mathrm{e}+004$

9Cl-PF30NS

F51:MRM of 2 channels,ES $530.7>350.8$
(1007

13C8-PFOS-EIS

PFDA

F44:MRM of 2 channels,ES-

13C2-PFDA-EIS
F45:MRM of 1 channel,ES$515.1>469.9$ $4.430 \mathrm{e}+005$

PFUdA

F54:MRM of 2 channels,ES $563.0>269$

13C2-PFUdA-EIS
F55:MRM of 1 channel,ES $565>519.8$

Dataset: P:IPFAS5.PRO\RESULTSI200220P1\200220P1-34.qld

Last Altered: Monday, February 24, 2020 09:05:55 Pacific Standard Time
Printed: Monday, February 24, 2020 12:26:49 Pacific Standard Time

Name: 200220P1-34, Date: 20-Feb-2020, Time: 23:10:42, ID: 2000314-01 SB01-20200212 0.24382, Description: SB01-20200212

L-MeFOSAA

F56:MRM of 2 channels,ES-
(

F56:MRM of 2 channels,ES-

d3-N-MeFOSAA-EIS
F58:MRM of 1 channel,ES-

d5-N-EtFOSAA-EIS

F59:MRM of 2 channels,ES-

11 $\mathrm{Cl}-\mathrm{PF} 30 \mathrm{UdS}$
F68:MRM of 2 channels, ES-
$630.9>450.9$

F68:MRM of 2 channels,ES
$630.9>83$

Dataset: P:\PFAS5.PRO\RESULTS\200220P1\200220P1-34.qld

Last Altered: Monday, February 24, 2020 09:05:55 Pacific Standard Time
Printed: Monday, February 24, 2020 12:26:49 Pacific Standard Time

Name: 200220P1-34, Date: 20-Feb-2020, Time: 23:10:42, ID: 2000314-01 SB01-20200212 0.24382, Description: SB01-20200212

PFDoA

F62:MRM of 4 channels,ES-

13C2-PFDoA-EIS

F63:MRM of 1 channel,ES614.7 > 569.7 $3.638 \mathrm{e}+005$

PFTrDA

F71:MRM of 2 channels,ES

13C2-PFDoA-EIS

F63:MRM of 1 channel,ES $614.7>569.7$ $3.638 \mathrm{e}+005$

PFTeDA

F73:MRM of 2 channels,ES
TDCA

F38:MRM of 3 channels,ES$498.3>123.9$

13C2-PFTeDA-EIS
F74:MRM of 2 channels,ES-
$715.1>669.7$ $3.549 e+005$

13C4-PFBA

Dataset:	P:\PFAS5.PRO\RESULTS\200220P1\200220P1-34.qld
Last Altered:	Monday, February 24, 2020 09:05:55 Pacific Standard Time
Printed:	Monday, February 24, 2020 12:26:49 Pacific Standard Time

Name: 200220P1-34, Date: 20-Feb-2020, Time: 23:10:42, ID: 2000314-01 SB01-20200212 0.24382, Description: SB01-20200212

13C9-PFNA
F36:MRM of 1 channel,ES 472.2 > 426.9 $4.250 \mathrm{e}+005$

Dataset: P:IPFAS5.PRO\RESULTSI200220P1\200220P1-35.qld
 Last Altered: Tuesday, February 25, 2020 11:40:14 Pacific Standard Time
 Printed: \quad Tuesday, February 25, 2020 11:41:30 Pacific Standard Time

Name: 200220P1-35, Date: 20-Feb-2020, Time: 23:21:13, ID: 2000314-02 EB01-20200212 0.24618, Description: EB01-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	$299.0>79.7$		1.32 e 3	0.246		2.68						
2	7 PFHxA	$313.0>269.0$		1.92 e 4	0.246		3.19						
3	9 HFPO-DA	$285.1>168.9$		3.42 e 3	0.246		3.40						
4	11 PFHpA	$363.0>318.9$		1.20 e 4	0.246		3.78						
5	12 ADONA	$376.8>250.9$		1.20 e 4	0.246		3.88						
6	51 13C3-PFBS-EIS	$302.0>98.8$	1.32 e 3		0.246	114.516	2.70	2.68	1320	46.7471	92.1		
7	57 13C2-PFHxA-EIS	$315.0>270.0$	1.92 e 4		0.246	1636.234	3.19	3.19	19200	47.5729	93.7		
8	53 13C3-HFPO-DA-EIS	$287.0>168.9$	3.42 e 3		0.246	293.118	3.43	3.40	3420	47.4193	93.4		
9	59 13C4-PFHpA-EIS	367.2 > 321.8	1.20 e 4		0.246	1106.802	3.79	3.78	12000	44.0255	86.7		
10	59 13C4-PFHpA-EIS	$367.2>321.8$	1.20 e 4		0.246	1106.802	3.79	3.78	12000	44.0255	86.7		
11	-1												
12	13 L-PFHxS	$398.9>79.7$		2.79 e 3	0.246		3.92						
13	1... Total PFHxS	$398.9>79.7$	0.00e0	2.79 e 3	0.246		3.93		0.000				
14	16 L-PFOA	$412.8>368.9$		1.64 e 4	0.246		4.29						
15	1... Total PFOA	$412.8>368.9$	0.00e0	1.64 e 4	0.246		4.60		0.000				
16	21 PFNA	$463.0>418.8$		1.48 e 4	0.246		4.72						
17	61 13C3-PFHxS-EIS	$401.8>79.7$	2.79 e 3		0.246	252.668	3.92	3.92	2790	44.8287	88.3		
18	61 13C3-PFHxS-EIS	$401.8>79.7$	2.79 e 3		0.246	252.668	3.92	3.92	2790	44.8287	88.3		
19	69 13C2-PFOA-EIS	$414.9>369.7$	1.64 e 4		0.246	1527.160	4.29	4.29	16400	43.5870	85.8		
20	69 13C2-PFOA-EIS	$414.9>369.7$	1.64 e 4		0.246	1527.160	4.29	4.29	16400	43.5870	85.8		
21	65 13C5-PFNA-EIS	$468.2>422.9$	1.48 e 4		0.246	1373.362	4.72	4.72	14800	43.6560	86.0		
22	-1												
23	23 L-PFOS	$498.9>79.7$		3.42 e 3	0.246		4.80						
24	1... Total PFOS	$498.9>79.7$	0.00e0	3.42 e 3	0.246		5.13		0.000				
25	25 9CI-PF30NS	$530.7>350.8$		3.42 e 3	0.246		5.01						
26	26 PFDA	$513>468.8$		1.76 e 4	0.246		5.08						
27	33 PFUdA	$563.0>518.9$	7.05 e 1	1.67 e 4	0.246		5.39	5.41	0.0528	0.2517		87.194	YES
28	71 13C8-PFOS-EIS	$507.0>79.7$	3.42 e 3		0.246	295.805	4.80	4.80	3420	46.9524	92.5		
29	71 13C8-PFOS-EIS	$507.0>79.7$	3.42 e 3		0.246	295.805	4.80	4.80	3420	46.9524	92.5		
30	71 13C8-PFOS-EIS	$507.0>79.7$	3.42e3		0.246	295.805	4.80	4.80	3420	46.9524	92.5		
31	73 13C2-PFDA-EIS	$515.1>469.9$	1.76 e 4		0.246	1356.410	5.08	5.08	17600	52.6873	103.8		
32	79 13C2-PFUdA-EIS	$565>519.8$	1.67 e 4		0.246	1416.449	5.40	5.39	16700	47.8741	94.3		
33	-1												
34	29 L-MeFOSAA	$570>419$		3.16 e 3	0.246		5.23						
35	1... Total N-MeFOSAA	570. >419	0.00e0	3.16 e 3	0.246		5.19		0.000				
36	$31 \mathrm{~L}-\mathrm{EtFOSAA}$	$584.1>419$		3.77 e 3	0.246		5.38						

Dataset:	P:\PFAS5.PRO\RESULTS\200220P1\200220P1-35.qld
Last Altered:	Tuesday, February 25, 2020 11:40:14 Pacific Standard Time
Printed:	Tuesday, February 25, 2020 11:41:30 Pacific Standard Time

Name: 200220P1-35, Date: 20-Feb-2020, Time: 23:21:13, ID: 2000314-02 EB01-20200212 0.24618, Description: EB01-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	1... Total N-EtFOSAA	$584.1>419$	0.00e0	3.77e3	0.246		5.37		0.000				
38	35 11CI-PF30UdS	$630.9>450.9$		1.56 e 4	0.246		5.60						
39	77 d3-N-MeFOSAA-EIS	$573.3>419$	3.16 e 3		0.246	262.877	5.22	5.23	3160	48.8154	96.1		
40	77 d3-N-MeFOSAA-EIS	$573.3>419$	3.16 e 3		0.246	262.877	5.22	5.23	3160	48.8154	96.1		
41	81 d5-N-EtFOSAA-EIS	$589.3>419$	3.77e3		0.246	360.983	5.37	5.38	3770	42.4747	83.7		
42	$81 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}-\mathrm{EIS}$	$589.3>419$	3.77 e 3		0.246	360.983	5.37	5.38	3770	42.4747	83.7		
43	83 13C2-PFDoA-EIS	$614.7>569.7$	1.56 e 4		0.246	1573.093	5.67	5.67	15600	40.3529	79.5		
44	-1												
45	37 PFDoA	612.9 > 569.0		1.56 e 4	0.246		5.67						
46	39 PFTrDA	$662.9>618.9$		1.56 e 4	0.246		5.93						
47	41 PFTeDA	$713.0>669.0$		1.60e4	0.246		6.12						
48	1... TDCA	$498.3>106.9$			0.246		4.59						
49	99 13C4-PFBA	$217.0>172.0$	1.15 e 4	1.15 e 4	0.246	1.000	1.48	1.48	12.5	50.7759	100.0		
50	83 13C2-PFDoA-EIS	$614.7>569.7$	1.56 e 4		0.246	1573.093	5.67	5.67	15600	40.3529	79.5		
51	83 13C2-PFDoA-EIS	$614.7>569.7$	1.56 e 4		0.246	1573.093	5.67	5.67	15600	40.3529	79.5		
52	89 13C2-PFTeDA-EIS	$715.1>669.7$	1.60 e 4		0.246	1440.513	6.10	6.12	16000	44.9926	88.6		
53	71 13C8-PFOS-EIS	$507.0>79.7$	3.42 e 3		0.246	295.805	4.80	4.80	3420	46.9524	92.5		
54	1... 13C5-PFHxA	$318.0>272.9$	1.91 e 4	1.91 e 4	0.246	1.000	3.18	3.19	12.5	50.7759	100.0		
55	-1												
56	1... 1802-PFHxS	$403.0>102.6$	1.12 e 3	1.12 e 3	0.246	1.000	3.92	3.92	12.5	50.7759	100.0		
57	1... 13C6-PFDA	$519.1>473.7$	1.80 e 4	1.80 e 4	0.246	1.000	5.08	5.08	12.5	50.7759	100.0		
58	1... 13C7-PFUdA	$570.1>524.8$	1.79 e 4	1.79 e 4	0.246	1.000	5.40	5.40	12.5	50.7759	100.0		
59	1... 13C4-PFOS	$503>79.7$	3.53 e3	3.53e3	0.246	1.000	4.79	4.80	12.5	50.7759	100.0		
60	1... 13C9-PFNA	472.2 > 426.9	1.64 e 4	1.64 e 4	0.246	1.000	4.72	4.72	12.5	50.7759	100.0		

Dataset:	P:IPFAS5.PRO\RESULTS\200220P1\200220P1-35.qld
Last Altered:	Tuesday, February 25, 2020 11:40:14 Pacific Standard Time
Printed:	Tuesday, February 25, 2020 11:41:30 Pacific Standard Time

Method: P:\PFAS5.PRO\MethDB\NEW_PFAS_80C_022020.mdb 21 Feb 2020 08:56:55

Calibration: P:\PFAS5.PRO\CurveDB\C̄18_VAL-PFAS_Q5_02-20-20.cdb 21 Feb 2020 15:57:11

Name: 200220P1-35, Date: 20-Feb-2020, Time: 23:21:13, ID: 2000314-02 EB01-20200212 0.24618, Description: EB01-20200212

13C3-PFBS-EIS

F12:MRM of 1 channel,ES-

13C2-PFHxA-EIS

13C3-HFPO-DA-EIS
F10:MRM of 2 channels,ES$287.0>168.9$ $8.674 \mathrm{e}+004$

13C4-PFHpA-EIS

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES367.2 > 321.8 $3.051 \mathrm{e}+005$

Dataset: P:\PFAS5.PRO\RESULTSI200220P1\200220P1-35.qld

Last Altered: Tuesday, February 25, 2020 11:40:14 Pacific Standard Time
Printed: Tuesday, February 25, 2020 11:41:30 Pacific Standard Time

Name: 200220P1-35, Date: 20-Feb-2020, Time: 23:21:13, ID: 2000314-02 EB01-20200212 0.24618, Description: EB01-20200212

L-PFHxS
 F23:MRM of 2 channels,ES
 100 (

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES $401.8>79.7$ $6.768 \mathrm{e}+004$

Total PFHxS

F23:MRM of 2 channels,ES

13C3-PFHxS-EIS
F24:MRM of 1 channel, ES $401.8>79.7$ $6.768 \mathrm{e}+004$

L-PFOA

F26:MRM of 2 channels,ES-

13C2-PFOA-EIS
F27:MRM of 1 channel,ES-
$414.9>369.7$

Total PFOA

F26:MRM of 2 channels,ES$412.8>368.9$

13C2-PFOA-EIS
F27:MRM of 1 channel,ES 414.9 > 369.7 $4.037 \mathrm{e}+005$

PFNA

34:MRM of 2 channels,ES 463.0 > 219.0

13C5-PFNA-EIS
F35:MRM of 1 channel,ES $468.2>422.9$

Dataset: P:\PFAS5.PRO\RESULTSI200220P1\200220P1-35.qld

Last Altered: Tuesday, February 25, 2020 11:40:14 Pacific Standard Time
Printed: Tuesday, February 25, 2020 11:41:30 Pacific Standard Time

Name: 200220P1-35, Date: 20-Feb-2020, Time: 23:21:13, ID: 2000314-02 EB01-20200212 0.24618, Description: EB01-20200212

L-PFOS

F39:MRM of 2 channels,ES-

13C8-PFOS-EIS

Total PFOS
 F39:MRM of 2 channels,ES

13C8-PFOS-EIS
F42:MRM of 1 channel,ES $507.0>79.7$ $8.969 e+004$

9CI-PF30NS

F51:MRM of 2 channels,ES-

13C8-PFOS-EIS

PFUdA

F54:MRM of 2 channels,ES$563.0>269$

13C2-PFUdA-EIS
F55:MRM of 1 channel,ES $565>519.8$

Dataset: P:\PFAS5.PRO\RESULTSI200220P1\200220P1-35.qld

Last Altered: Tuesday, February 25, 2020 11:40:14 Pacific Standard Time
Printed: \quad Tuesday, February 25, 2020 11:41:30 Pacific Standard Time

Name: 200220P1-35, Date: 20-Feb-2020, Time: 23:21:13, ID: 2000314-02 EB01-20200212 0.24618, Description: EB01-20200212

L-MeFOSAA

F56:MRM of 2 channels, ES

(200 | $570>419$ |
| ---: |
| $1.132 \mathrm{e}+002$ |

$$
\begin{array}{r}
\text { F56:MRM of } 2 \text { channels,ES- } \\
570 .>512
\end{array}
$$

d3-N-MeFOSAA-EIS
F58:MRM of 1 channel,ES
$573.3>419$ $7.854 e+004$

Total N-MeFOSAA

F56:MRM of 2 channels,ES $570>419$

F56:MRM of 2 channels,ES

d3-N-MeFOSAA-EIS
F58:MRM of 1 channel,ES $573.3>419$ $7.854 \mathrm{e}+004$

L-EtFOSAA

F59:MRM of 2 channels,ES$584.1>419$

d5-N-EtFOSAA-EIS
F60:MRM of 1 channel,ES$589.3>419$

Total N-EtFOSAA

F59:MRM of 2 channels,ES-
$584.1>419$
$2.803 \mathrm{e}+001$

d5-N-EtFOSAA-EIS
F60:MRM of 1 channel,ES-
589.3 > 419 $1.054 \mathrm{e}+005$

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES $614.7>569.7$

Dataset: P:\PFAS5.PRO\RESULTSI200220P1\200220P1-35.qld

Last Altered: Tuesday, February 25, 2020 11:40:14 Pacific Standard Time
Printed: \quad Tuesday, February 25, 2020 11:41:30 Pacific Standard Time

Name: 200220P1-35, Date: 20-Feb-2020, Time: 23:21:13, ID: 2000314-02 EB01-20200212 0.24618, Description: EB01-20200212

PFDoA

F62:MRM of 4 channels,ES-
$612.9>569.0$
$5.917 \mathrm{e}+002$

13C2-PFDoA-EIS

F63:MRM of 1 channel,ES

PFTrDA

F63:MRM of 1 channel,ES $614.7>569.7$ $3.941 e+005$

PFTeDA

13C2-PFTeDA-EIS

TDCA

F38:MRM of 3 channels,ES- | $498.3>106.9$ |
| ---: |
| $1.864 \mathrm{e}+001$ |
| 100 |

13C8-PFOS-EIS
F42:MRM of 1 channel,ES$507.0>79.7$ $8.969 e+004$

13C4-PFBA
F4:MRM of 1 channel,ES-
$217.0>172.0$
100
$13 \mathrm{C} 4-\mathrm{PFBA}$
1.48
1.15 e 4
239891
bb
13208.76

13C5-PFHxA
F15:MRM of 1 channel,ES $318.0>272.9$


```
Dataset: P:\PFAS5.PRO\RESULTS\200220P1\200220P1-35.qld
```

Last Altered: Tuesday, February 25, 2020 11:40:14 Pacific Standard Time
Printed: Tuesday, February 25, 2020 11:41:30 Pacific Standard Time

Name: 200220P1-35, Date: 20-Feb-2020, Time: 23:21:13, ID: 2000314-02 EB01-20200212 0.24618, Description: EB01-20200212

13C9-PFNA

Dataset: P:IPFAS5.PRO\RESULTSI200220P1\200220P1-39.qld
 Last Altered: Tuesday, February 25, 2020 11:44:06 Pacific Standard Time
 Printed: Tuesday, February 25, 2020 11:44:48 Pacific Standard Time

Name: 200220P1-39, Date: 21-Feb-2020, Time: 00:03:13, ID: 2000314-03 I006MW03SR-20200212 0.25406, Description: IO06MW03SR-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	$299.0>79.7$	3.57 e 3	1.49e3	0.254		2.68	2.68	30.0	51.2948		3.039	NO
2	7 PFHxA	$313.0>269.0$	2.30 e 5	2.04 e 4	0.254		3.19	3.19	141	627.7104		16.423	NO
3	9 HFPO-DA	$285.1>168.9$		3.97 e 3	0.254		3.39						
4	11 PFHpA	$363.0>318.9$	7.58 e 4	1.34 e 4	0.254		3.78	3.78	70.9	226.4521		21.922	NO
5	12 ADONA	$376.8>250.9$		1.34 e 4	0.254		3.88						
6	51 13C3-PFBS-EIS	$302.0>98.8$	1.49 e 3		0.254	114.516	2.70	2.68	1490	51.1405	103.9		
7	57 13C2-PFHxA-EIS	$315.0>270.0$	2.04 e 4		0.254	1636.234	3.19	3.19	20400	48.9814	99.6		
8	53 13C3-HFPO-DA-EIS	$287.0>168.9$	3.97 e 3		0.254	293.118	3.43	3.39	3970	53.2488	108.2		
9	59 13C4-PFHpA-EIS	$367.2>321.8$	1.34 e 4		0.254	1106.802	3.79	3.78	13400	47.5519	96.6		
10	59 13C4-PFHpA-EIS	367.2 > 321.8	1.34 e 4		0.254	1106.802	3.79	3.78	13400	47.5519	96.6		
11	-1												
12	13 L-PFHxS	$398.9>79.7$	2.39 e 4	3.29 e 3	0.254		3.92	3.92	90.7	333.0631		2.371	NO
13	1... Total PFHxS	$398.9>79.7$	2.39 e 4	3.29 e 3	0.254		3.93		90.7	333.0631			
14	16 L-PFOA	$412.8>368.9$	1.39 e 5	1.90 e 4	0.254		4.29	4.29	91.2	303.0653		2.944	NO
15	1... Total PFOA	$412.8>368.9$	1.39 e 5	1.90 e 4	0.254		4.60		91.2	303.0653			
16	21 PFNA	$463.0>418.8$	6.27 e 2	1.58 e 4	0.254		4.72	4.72	0.497	1.3971		7.080	NO
17	61 13C3-PFHxS-EIS	$401.8>79.7$	3.29 e 3		0.254	252.668	3.92	3.92	3290	51.2077	104.1		
18	61 13C3-PFHxS-EIS	$401.8>79.7$	3.29 e 3		0.254	252.668	3.92	3.92	3290	51.2077	104.1		
19	69 13C2-PFOA-EIS	$414.9>369.7$	1.90 e 4		0.254	1527.160	4.29	4.29	19000	48.9202	99.4		
20	69 13C2-PFOA-EIS	$414.9>369.7$	1.90 e 4		0.254	1527.160	4.29	4.29	19000	48.9202	99.4		
21	65 13C5-PFNA-EIS	$468.2>422.9$	1.58 e 4		0.254	1373.362	4.72	4.72	15800	45.1824	91.8		
22	-1												
23	23 L-PFOS	$498.9>79.7$	6.46 e 2	3.47 e 3	0.254		4.80	4.65	2.33	9.9255		3.153	NO
24	1... Total PFOS	$498.9>79.7$	6.46 e 2	3.47 e 3	0.254		5.13		2.33	9.9255			
25	25 9CI-PF30NS	$530.7>350.8$		3.47 e 3	0.254		5.01						
26	26 PFDA	$513>468.8$		1.59 e 4	0.254		5.08						
27	33 PFUdA	$563.0>518.9$		1.72 e 4	0.254		5.40						
28	71 13C8-PFOS-EIS	$507.0>79.7$	3.47 e 3		0.254	295.805	4.80	4.80	3470	46.1347	93.8		
29	71 13C8-PFOS-EIS	$507.0>79.7$	3.47 e 3		0.254	295.805	4.80	4.80	3470	46.1347	93.8		
30	71 13C8-PFOS-EIS	$507.0>79.7$	3.47 e 3		0.254	295.805	4.80	4.80	3470	46.1347	93.8		
31	73 13C2-PFDA-EIS	$515.1>469.9$	1.59 e 4		0.254	1356.410	5.08	5.08	15900	46.0921	93.7		
32	79 13C2-PFUdA-EIS	$565>519.8$	1.72 e 4		0.254	1416.449	5.40	5.40	17200	47.8234	97.2		
33	-1												
34	29 L-MeFOSAA	$570>419$		3.26 e 3	0.254		5.23						
35	1... Total N-MeFOSAA	570. >419	0.00e0	3.26 e 3	0.254		5.19		0.000				
36	31 L-EtFOSAA	$584.1>419$		4.20 e 3	0.254		5.38						

Dataset:	P:\PFAS5.PRO\RESULTS\200220P1\200220P1-39.qld
Last Altered:	Tuesday, February 25, 2020 11:44:06 Pacific Standard Time
Printed:	Tuesday, February 25, 2020 11:44:48 Pacific Standard Time

Name: 200220P1-39, Date: 21-Feb-2020, Time: 00:03:13, ID: 2000314-03 I006MW03SR-20200212 0.25406, Description: I006MW03SR-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	1... Total N-EtFOSAA	$584.1>419$	0.00e0	4.20 e 3	0.254		5.37		0.000				
38	35 11CI-PF30UdS	$630.9>450.9$		1.60 e 4	0.254		5.60						
39	77 d3-N-MeFOSAA-EIS	$573.3>419$	3.26 e 3		0.254	262.877	5.22	5.23	3260	48.7869	99.2		
40	77 d3-N-MeFOSAA-EIS	$573.3>419$	3.26 e 3		0.254	262.877	5.22	5.23	3260	48.7869	99.2		
41	81 d5-N-EtFOSAA-EIS	$589.3>419$	4.20 e 3		0.254	360.983	5.37	5.38	4200	45.7601	93.0		
42	$81 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}-\mathrm{EIS}$	$589.3>419$	4.20 e 3		0.254	360.983	5.37	5.38	4200	45.7601	93.0		
43	83 13C2-PFDoA-EIS	$614.7>569.7$	1.60 e 4		0.254	1573.093	5.67	5.67	16000	40.0954	81.5		
44	-1												
45	37 PFDoA	$612.9>569.0$		1.60 e 4	0.254		5.67						
46	39 PFTrDA	$662.9>618.9$		1.60 e 4	0.254		5.93						
47	41 PFTeDA	$713.0>669.0$		1.53 e 4	0.254		6.12						
48	1... TDCA	$498.3>106.9$			0.254		4.59						
49	99 13C4-PFBA	$217.0>172.0$	1.22 e 4	1.22 e 4	0.254	1.000	1.48	1.48	12.5	49.2010	100.0		
50	83 13C2-PFDoA-EIS	$614.7>569.7$	1.60 e 4		0.254	1573.093	5.67	5.67	16000	40.0954	81.5		
51	83 13C2-PFDoA-EIS	$614.7>569.7$	1.60 e 4		0.254	1573.093	5.67	5.67	16000	40.0954	81.5		
52	89 13C2-PFTeDA-EIS	$715.1>669.7$	1.53 e 4		0.254	1440.513	6.10	6.12	15300	41.8978	85.2		
53	71 13C8-PFOS-EIS	$507.0>79.7$	3.47 e 3		0.254	295.805	4.80	4.80	3470	46.1347	93.8		
54	1... 13C5-PFHxA	$318.0>272.9$	2.05 e 4	2.05 e 4	0.254	1.000	3.18	3.19	12.5	49.2010	100.0		
55	-1												
56	1... 1802-PFHxS	$403.0>102.6$	1.28 e 3	1.28 e 3	0.254	1.000	3.92	3.92	12.5	49.2010	100.0		
57	1... 13C6-PFDA	$519.1>473.7$	2.00 e 4	2.00 e 4	0.254	1.000	5.08	5.08	12.5	49.2010	100.0		
58	1... 13C7-PFUdA	$570.1>524.8$	1.97 e 4	1.97 e 4	0.254	1.000	5.40	5.40	12.5	49.2010	100.0		
59	1... 13C4-PFOS	$503>79.7$	3.97 e 3	3.97 e 3	0.254	1.000	4.79	4.80	12.5	49.2010	100.0		
60	1... 13C9-PFNA	$472.2>426.9$	1.74 e 4	1.74 e 4	0.254	1.000	4.72	4.72	12.5	49.2010	100.0		

Dataset: P:\PFAS5.PRO\RESULTS\200220P1\200220P1-39.qld
Last Altered: Tuesday, February 25, 2020 11:44:06 Pacific Standard Time
Printed: \quad Tuesday, February 25, 2020 11:44:48 Pacific Standard Time

Method: P:|PFAS5.PRO\MethDB\NEW_PFAS_80C_022020.mdb 21 Feb 2020 08:56:55

Calibration: P:\PFAS5.PRO\CurveDB\C̄18_VAL-PFAS_Q5_02-20-20.cdb 21 Feb 2020 15:57:11

Name: 200220P1-39, Date: 21-Feb-2020, Time: 00:03:13, ID: 2000314-03 I006MW03SR-20200212 0.25406, Description: I006MW03SR-20200212

13C3-PFBS-EIS

HFPO-DA		
F9:MRM of 3 channels,ES-		
		285.1 > 168.9
0 HFPO-DA $1.600 \mathrm{e}+003$		
	3.47	
-		
\%-	1567	
	MM-I	
-	168.99	
		пाтTMTTM min

13C3-HFPO-DA-EIS
F10:MRM of 2 channels,ES$287.0>168.9$ $1.012 \mathrm{e}+005$

PFHpA

13C4-PFHpA-EIS
F21:MRM of 1 channel,ES-
$367.2>321.8$ $3.484 \mathrm{e}+005$

ADONA

13C4-PFHpA-EIS
F21:MRM of 1 channel,ES-

$$
367.2>321.8
$$

Dataset: P:\PFAS5.PRO\RESULTS\200220P1\200220P1-39.qld

Last Altered: Tuesday, February 25, 2020 11:44:06 Pacific Standard Time
Printed: \quad Tuesday, February 25, 2020 11:44:48 Pacific Standard Time

Name: 200220P1-39, Date: 21-Feb-2020, Time: 00:03:13, ID: 2000314-03 I006MW03SR-20200212 0.25406, Description: I006MW03SR-20200212

L-PFHxS

	F23:MRM	channels,ES-
	L-PFHxS	$398.9>79.7$
	3.92	$4.812 \mathrm{e}+005$
100	2.39 e 4	
	481162	
\%-	MM	
	6924.00	

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES

13C3-PFHxS-EIS
F24:MRM of 1 channel, ES $401.8>79.7$ $8.064 \mathrm{e}+004$

L-PFOA

F26:MRM of 2 channels,ES-	
	$412.8>368.9$
L-PFOA	$3.070 \mathrm{e}+006$
4.29	
100	
\% 1.39 e 5	
3069682	
MM	
14219.71	

13C2-PFOA-EIS
F27:MRM of 1 channel,ES-
414.9 > 369.7

Total PFOA

F26:MRM of 2 channels,ES-	
$412.8>368.9$	
100	$3.070 \mathrm{e}+006$
L-PFOA	
4.29	
1.39 e 5	
3069682	
MM	
14219.71	

13C2-PFOA-EIS
F27:MRM of 1 channel,ES 414.9 > 369.7 $4.754 \mathrm{e}+005$

PFNA

13C5-PFNA-EIS
F35:MRM of 1 channel,ES $468.2>422.9$

Dataset: P:\PFAS5.PRO\RESULTS\200220P1\200220P1-39.qld

Last Altered: Tuesday, February 25, 2020 11:44:06 Pacific Standard Time
Printed: Tuesday, February 25, 2020 11:44:48 Pacific Standard Time

Name: 200220P1-39, Date: 21-Feb-2020, Time: 00:03:13, ID: 2000314-03 I006MW03SR-20200212 0.25406, Description: I006MW03SR-20200212

L-PFOS	
F39:MRM of 2 channels,ES-	
L-PFOS	498.9 > 79.7
$100-4.65$ 9.564e+003	
$]^{6.46 e 2}$	
- 9564	
\%- ${ }_{\text {- }}^{\text {M }}$ M ${ }^{\text {a }}$	

F39:MRM of 2 channels,ES

13C8-PFOS-EIS

9Cl-PF30NS

F51:MRM of 2 channels,ES-

F51:MRM of 2 channels,ES- | $530.7>350.8$ |
| ---: |
| $1.546 \mathrm{e}+002$ |

F51:MRM of 2 channels,ES-

13C8-PFOS-EIS

13C2-PFDA-EIS
F45:MRM of 1 channel,ES$515.1>469.9$ $4.146 \mathrm{e}+005$

PFUdA

F54:MRM of 2 channels,ES$563.0>269$

13C2-PFUdA-EIS
F55:MRM of 1 channel,ES $565>519.8$

Dataset: P:\PFAS5.PRO\RESULTS\200220P1\200220P1-39.qld

Last Altered: Tuesday, February 25, 2020 11:44:06 Pacific Standard Time Printed: Tuesday, February 25, 2020 11:44:48 Pacific Standard Time

Name: 200220P1-39, Date: 21-Feb-2020, Time: 00:03:13, ID: 2000314-03 I006MW03SR-20200212 0.25406, Description: I006MW03SR-20200212

L-MeFOSAA

F56:MRM of 2 channels,ES$570>419$

F56:MRM of 2 channels,ES-

d3-N-MeFOSAA-EIS
F58:MRM of 1 channel,ES
$573.3>419$ $7.675 \mathrm{e}+004$

Total N-MeFOSAA

F56:MRM of 2 channels,ES $570>419$

F56:MRM of 2 channels,ES

d3-N-MeFOSAA-EIS
F58:MRM of 1 channel,ES $573.3>419$ $7.675 \mathrm{e}+004$

L-EtFOSAA

F59:MRM of 2 channels,ES-

d5-N-EtFOSAA-EIS
F60:MRM of 1 channel,ES$589.3>419$

Total N-EtFOSAA

F59:MRM of 2 channels,ES-
F59:MRM of 2 channels,ES-
$584.1>419$
$5.132 \mathrm{e}+001$

d5-N-EtFOSAA-EIS
F60:MRM of 1 channel,ES-
$589.3>419$ $1.153 e+005$

F68:MRM of 2 channels,ES-
$630.9>83$

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES $614.7>569.7$

Dataset: P:\PFAS5.PRO\RESULTSI200220P1\200220P1-39.qld

Last Altered: Tuesday, February 25, 2020 11:44:06 Pacific Standard Time
Printed: \quad Tuesday, February 25, 2020 11:44:48 Pacific Standard Time

Name: 200220P1-39, Date: 21-Feb-2020, Time: 00:03:13, ID: 2000314-03 I006MW03SR-20200212 0.25406, Description: I006MW03SR-20200212

PFDoA

F62:MRM of 4 channels,ES-

13C2-PFDoA-EIS

F63:MRM of 1 channel,ES $614.7>569.7$

PFTrDA

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES 614.7 > 569.7 $3.926 \mathrm{e}+005$

PFTeDA

F73:MRM of 2 channels,ES-

13C2-PFTeDA-EIS
F74:MRM of 2 channels,ES$715.1>669.7$ $3.796 e+005$

TDCA

13C8-PFOS-EIS
F42:MRM of 1 channel,ES $507.0>79.7$ $9.417 e+004$

13C4-PFBA
F4:MRM of 1 channel,ES

13C5-PFHxA
F15:MRM of 1 channel,ES $318.0>272.9$


```
Dataset: P:\PFAS5.PRO\RESULTS\200220P1\200220P1-39.qld
```

Last Altered: Tuesday, February 25, 2020 11:44:06 Pacific Standard Time
Printed: Tuesday, February 25, 2020 11:44:48 Pacific Standard Time

Name: 200220P1-39, Date: 21-Feb-2020, Time: 00:03:13, ID: 2000314-03 I006MW03SR-20200212 0.25406, Description: I006MW03SR-20200212

13C6-PFDA

F47:MRM of 1 channel,ES
1 channel,ES-
$519.1>473.7$ $5.267 \mathrm{e}+005$

13C9-PFNA

Dataset:	P:IPFAS5.PRO\RESULTSI200220P1\200220P1-32.qld
Last Altered:	Monday, February 24, 2020 08:39:17 Pacific Standard Time
Printed:	Friday, February 28, 2020 14:37:30 Pacific Standard Time

Name: 200220P1-32, Date: 20-Feb-2020, Time: 22:49:40, ID: B0B0118-MS1 Matrix Spike 0.25822, Description: Matrix Spike

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	$299.0>79.7$	6.01 e 3	1.27e3	0.258		2.68	2.68	59.2	100.0062		3.276	NO
2	7 PFHxA	$313.0>269.0$	2.34 e 5	1.90 e 4	0.258		3.19	3.19	154	670.4940		17.481	NO
3	9 HFPO-DA	$285.1>168.9$	2.94 e 3	3.55 e 3	0.258		3.40	3.40	10.4	38.6254		2.757	NO
4	11 PFHpA	$363.0>318.9$	7.88 e 4	1.14 e 4	0.258		3.78	3.78	86.6	272.6295		23.723	NO
5	12 ADONA	$376.8>250.9$	2.78 e 4	1.14 e 4	0.258		3.88	3.89	30.5	38.0822		3.911	NO
6	51 13C3-PFBS-EIS	$302.0>98.8$	1.27 e 3		0.258	114.516	2.70	2.68	1270	42.9077	88.6		
7	57 13C2-PFHxA-EIS	$315.0>270.0$	1.90 e 4		0.258	1636.234	3.19	3.19	19000	45.0016	93.0		
8	53 13C3-HFPO-DA-EIS	$287.0>168.9$	3.55 e 3		0.258	293.118	3.43	3.40	3550	46.9554	97.0		
9	59 13C4-PFHpA-EIS	$367.2>321.8$	1.14 e 4		0.258	1106.802	3.79	3.78	11400	39.8086	82.2		
10	59 13C4-PFHpA-EIS	$367.2>321.8$	1.14 e 4		0.258	1106.802	3.79	3.78	11400	39.8086	82.2		
11	-1												
12	13 L-PFHxS	$398.9>79.7$	2.35 e 4	2.66 e 3	0.258		3.92	3.92	111	400.5775		2.303	NO
13	1... Total PFHxS	$398.9>79.7$	2.35 e 4	2.66 e 3	0.258		3.93		111	400.5775			
14	16 L-PFOA	$412.8>368.9$	1.41e5	1.64 e 4	0.258		4.29	4.29	107	350.4983		2.983	NO
15	1... Total PFOA	$412.8>368.9$	1.41 e 5	1.64 e 4	0.258		4.60		107	350.4983			
16	21 PFNA	$463.0>418.8$	1.47 e 4	1.43 e 4	0.258		4.72	4.72	12.8	40.1665		7.422	NO
17	61 13C3-PFHxS-EIS	$401.8>79.7$	2.66 e 3		0.258	252.668	3.92	3.92	2660	40.6982	84.1		
18	61 13C3-PFHxS-EIS	$401.8>79.7$	2.66 e 3		0.258	252.668	3.92	3.92	2660	40.6982	84.1		
19	69 13C2-PFOA-EIS	$414.9>369.7$	1.64 e 4		0.258	1527.160	4.29	4.29	16400	41.6816	86.1		
20	69 13C2-PFOA-EIS	$414.9>369.7$	1.64 e 4		0.258	1527.160	4.29	4.29	16400	41.6816	86.1		
21	65 13C5-PFNA-EIS	$468.2>422.9$	1.43 e 4		0.258	1373.362	4.72	4.72	14300	40.2633	83.2		
22	-1												
23	23 L-PFOS	$498.9>79.7$	2.84 e 3	2.98 e 3	0.258		4.80	4.80	11.9	49.7995		2.505	NO
24	1... Total PFOS	$498.9>79.7$	2.84 e 3	2.98 e 3	0.258		5.13		11.9	49.7995			
25	25 9CI-PF30NS	$530.7>350.8$	2.55 e 3	2.98 e 3	0.258		5.01	5.01	10.7	35.6785		16.263	NO
26	26 PFDA	$513>468.8$	1.47 e 4	1.45 e 4	0.258		5.08	5.08	12.7	39.8796		10.190	NO
27	33 PFUdA	$563.0>518.9$	1.12 e 4	1.47 e 4	0.258		5.40	5.40	9.48	34.9904		20.235	NO
28	71 13C8-PFOS-EIS	$507.0>79.7$	2.98 e 3		0.258	295.805	4.80	4.80	2980	39.0611	80.7		
29	71 13C8-PFOS-EIS	$507.0>79.7$	2.98 e 3		0.258	295.805	4.80	4.80	2980	39.0611	80.7		
30	71 13C8-PFOS-EIS	$507.0>79.7$	2.98 e 3		0.258	295.805	4.80	4.80	2980	39.0611	80.7		
31	73 13C2-PFDA-EIS	$515.1>469.9$	1.45 e 4		0.258	1356.410	5.08	5.08	14500	41.4116	85.5		
32	79 13C2-PFUdA-EIS	$565>519.8$	1.47 e 4		0.258	1416.449	5.40	5.40	14700	40.2601	83.2		
33	-1												
34	29 L-MeFOSAA	$570>419$	3.87 e 3	2.76 e 3	0.258		5.23	5.23	17.5	35.6919		1.815	NO
35	1... Total N-MeFOSAA	570. >419	3.87e3	2.76 e 3	0.258		5.19		17.5	35.6919			
36	31 L-EtFOSAA	$584.1>419$	3.40 e 3	3.45 e 3	0.258		5.38	5.38	12.3	37.9162		1.152	NO

Work Order 2000314

Dataset:	P:\PFAS5.PRO\RESULTSI200220P1\200220P1-32.qld
Last Altered:	Monday, February 24, 2020 08:39:17 Pacific Standard Time
Printed:	Friday, February 28, 2020 14:37:30 Pacific Standard Time

Name: 200220P1-32, Date: 20-Feb-2020, Time: 22:49:40, ID: B0B0118-MS1 Matrix Spike 0.25822, Description: Matrix Spike

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	1... Total N-EtFOSAA	$584.1>419$	3.40e3	3.45 e 3	0.258		5.37		12.3	37.9162			
38	35 11CI-PF30UdS	$630.9>450.9$	5.34 e 3	1.28 e 4	0.258		5.60	5.60	5.20	44.2974		23.998	NO
39	77 d3-N-MeFOSAA-EIS	$573.3>419$	2.76 e 3		0.258	262.877	5.22	5.23	2760	40.6198	83.9		
40	77 d3-N-MeFOSAA-EIS	$573.3>419$	2.76 e 3		0.258	262.877	5.22	5.23	2760	40.6198	83.9		
41	$81 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}-E I S$	$589.3>419$	3.45 e 3		0.258	360.983	5.37	5.38	3450	36.9607	76.4		
42	$81 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}-\mathrm{EIS}$	$589.3>419$	3.45 e 3		0.258	360.983	5.37	5.38	3450	36.9607	76.4		
43	83 13C2-PFDoA-EIS	$614.7>569.7$	1.28 e 4		0.258	1573.093	5.67	5.67	12800	31.5899	65.3		
44	-1												
45	37 PFDoA	$612.9>569.0$	1.09 e 4	1.28 e 4	0.258		5.67	5.67	10.7	42.8556		10.759	NO
46	39 PFTrDA	$662.9>618.9$	9.99 e 3	1.28 e 4	0.258		5.93	5.91	9.73	38.0024		54.023	NO
47	41 PFTeDA	$713.0>669.0$	9.01 e 3	1.23 e 4	0.258		6.12	6.12	9.15	33.7515		15.079	NO
48	1... TDCA	$498.3>106.9$			0.258		4.59						NO
49	99 13C4-PFBA	217.0 > 172.0	1.13 e 4	1.13 e 4	0.258	1.000	1.48	1.48	12.5	48.4083	100.0		
50	83 13C2-PFDoA-EIS	$614.7>569.7$	1.28 e 4		0.258	1573.093	5.67	5.67	12800	31.5899	65.3		
51	83 13C2-PFDoA-EIS	$614.7>569.7$	1.28 e 4		0.258	1573.093	5.67	5.67	12800	31.5899	65.3		
52	89 13C2-PFTeDA-EIS	$715.1>669.7$	1.23 e 4		0.258	1440.513	6.11	6.12	12300	33.0917	68.4		
53	71 13C8-PFOS-EIS	$507.0>79.7$	2.98 e 3		0.258	295.805	4.80	4.80	2980	39.0611	80.7		
54	1... 13C5-PFHxA	318.0 > 272.9	1.91 e 4	1.91 e 4	0.258	1.000	3.18	3.19	12.5	48.4083	100.0		
55	-1												
56	1... 18O2-PFHxS	403.0 > 102.6	1.23 e 3	1.23 e 3	0.258	1.000	3.92	3.92	12.5	48.4083	100.0		
57	1... 13C6-PFDA	$519.1>473.7$	1.78 e 4	1.78 e 4	0.258	1.000	5.08	5.08	12.5	48.4083	100.0		
58	1... 13C7-PFUdA	$570.1>524.8$	1.90 e 4	1.90 e 4	0.258	1.000	5.40	5.40	12.5	48.4083	100.0		
59	1... 13C4-PFOS	$503>79.7$	3.53 e 3	3.53 e 3	0.258	1.000	4.79	4.80	12.5	48.4083	100.0		
60	1... 13C9-PFNA	$472.2>426.9$	1.60 e 4	1.60 e 4	0.258	1.000	4.72	4.72	12.5	48.4083	100.0		

Dataset:	P:\PFAS5.PRO\RESULTSI200220P1\200220P1-32.qld
Last Altered:	Monday, February 24, 2020 08:39:17 Pacific Standard Time
Printed:	Friday, February 28, 2020 14:37:30 Pacific Standard Time

Method: P:|PFAS5.PRO\MethDB\NEW PFAS 80C 022020.mdb 21 Feb 2020 08:56:55

Calibration: P:|PFAS5.PRO\CurveDBIC̄18_VĀL-PFAS_Q5_02-20-20.cdb 21 Feb 2020 15:57:11

Name: 200220P1-32, Date: 20-Feb-2020, Time: 22:49:40, ID: B0B0118-MS1 Matrix Spike 0.25822, Description: Matrix Spike

13C3-PFBS-EIS

F12:MRM of 1 channel,ES-

13C3-HFPO-DA-EIS

13C4-PFHpA-EIS
F21:MRM of 1 channel,ES-
$367.2>321.8$ $2.869 \mathrm{e}+005$

ADONA

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES$367.2>321.8$

Dataset:	P:\PFAS5.PRO\RESULTSI200220P1\200220P1-32.qld
Last Altered:	Monday, February 24, 2020 08:39:17 Pacific Standard Time
Printed:	Friday, February 28, 2020 14:37:30 Pacific Standard Time

Name: 200220P1-32, Date: 20-Feb-2020, Time: 22:49:40, ID: B0B0118-MS1 Matrix Spike 0.25822, Description: Matrix Spike

L-PFHxS

L-PFAxS
F23:MRM of 2 channels,ES-
$398.9>79.7$
$4.668 \mathrm{e}+005$

F23:MRM of 2 channels,ES$398.9>98.7$ $2.086 \mathrm{e}+005$

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES $401.8>79.7$ $6.397 e+004$

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES $401.8>79.7$ $6.397 e+004$

L-PFOA

13C2-PFOA-EIS
F27:MRM of 1 channel,ES$414.9>369.7$

Total PFOA

F26:MRM of 2 channels,ES-	
$412.8>368.9$	
100	$3.061 \mathrm{e}+006$
L-PFOA	
4.29	
1.41 e 5	
306117	
MM	
22833.44	

13C2-PFOA-EIS
F27:MRM of 1 channel,ES 414.9 > 369.7 $4.123 \mathrm{e}+005$

PFNA

F34:MRM of 2 channels,ES463.0 > 219.0

13C5-PFNA-EIS
F35:MRM of 1 channel,ES $468.2>422.9$

Dataset:	P:\PFAS5.PRO\RESULTSI200220P1\200220P1-32.qld
Last Altered:	Monday, February 24, 2020 08:39:17 Pacific Standard Time
Printed:	Friday, February 28, 2020 14:37:30 Pacific Standard Time

Name: 200220P1-32, Date: 20-Feb-2020, Time: 22:49:40, ID: B0B0118-MS1 Matrix Spike 0.25822, Description: Matrix Spike

L-PFOS

F39:MRM of 2 channels,ES-
$498.9>79.7$
$5.125 \mathrm{e}+004$

${ }^{100} 7$	$\begin{aligned} & \text { F39:MRM of } 2 \text { channels, ES- } \\ & 498.9 \text { 98.7 }\end{aligned}$	
	L-PFOS	$2.392 \mathrm{e}+004$
	1.13e3	
\%	23918	
	MM	
	782.81	
	4.500	5.000

13C8-PFOS-EIS
F42:MRM of 1 channel,ES-

F39:MRM of 2 channels,ES

| | F39:MRM of 2 channels,ES- |
| ---: | ---: | ---: |
| $498.9>98.7$ | |

9CI-PF30NS

F51:MRM of 2 channels,ES$530.7>350.8$ $6.749 \mathrm{e}+004$

13C8-PFOS-EIS

13C2-PFDA-EIS
F45:MRM of 1 channel,ES$515.1>469.9$

PFUdA

F54:MRM of 2 channels,ES-		
		563.0 > 518.9
100	PFUdA	$2.929 \mathrm{e}+005$
	5.40	
	1.12 e 4	
\%	292082	
	bb	
	292082.00	

F54:MRM of 2 channels,ES$563.0>269$

		9
100	PFUdA	$1.345 \mathrm{e}+004$
	5.40	
	5.52 e 2	
\%	13433	
	bb	
	13433.00	
	5.250	

13C2-PFUdA-EIS
F55:MRM of 1 channel,ES$565>519.8$

Dataset:	P:\PFAS5.PRO\RESULTSI200220P1\200220P1-32.qld
Last Altered:	Monday, February 24, 2020 08:39:17 Pacific Standard Time
Printed:	Friday, February 28, 2020 14:37:30 Pacific Standard Time

Name: 200220P1-32, Date: 20-Feb-2020, Time: 22:49:40, ID: B0B0118-MS1 Matrix Spike 0.25822, Description: Matrix Spike

L-MeFOSAA

F56:MRM of 2 channels,ES-
$570>419$
$8.448 \mathrm{e}+004$

d3-N-MeFOSAA-EIS
F58:MRM of 1 channel,ES-
$573.3>419$ $6.737 e+004$

F56:MRM of 2 channels,ES-
570. > 512

d3-N-MeFOSAA-EIS
F58:MRM of 1 channel,ES$573.3>419$ $6.737 e+004$

F68:MRM of 2 channels,ES$630.9>83$
$5339 e+003$

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES $614.7>569.7$

Dataset:	P:\PFAS5.PRO\RESULTSI200220P1\200220P1-32.qld
Last Altered:	Monday, February 24, 2020 08:39:17 Pacific Standard Time
Printed:	Friday, February 28, 2020 14:37:30 Pacific Standard Time

Name: 200220P1-32, Date: 20-Feb-2020, Time: 22:49:40, ID: B0B0118-MS1 Matrix Spike 0.25822, Description: Matrix Spike

PFDoA

F62:MRM of 4 channels,E		
		$612.9>569.0$
100	PFDoA	$2.758 \mathrm{e}+005$
	5.67	
	1.09e4	
\%-	274852	
	bb	
	274852.00	
0		TTr min

	F62:MRM of 4 channels,ES$612.9>318.8$	
${ }^{100} 7$	PFDoA	$2.385 \mathrm{e}+004$
	5.67	
	1.02e3	
\%	23823	
	bb	
	23823.00	
	5.500	6.000

13C2-PFDoA-EIS

F63:MRM of 1 channel,ES$614.7>569.7$ $3.149 \mathrm{e}+005$

PFTrDA

F71:MRM of 2 channels,ES

PFTeDA

13C2-PFTeDA-EIS

TDCA

F38:MRM of 3 channels,ES-
$498.3>106.9$

13C8-PFOS-EIS
F42:MRM of 1 channel,ES$507.0>79.7$ $7.938 \mathrm{e}+004$

13C4-PFBA
F4:MRM of 1 channel,ES-

13C5-PFHxA
F15:MRM of 1 channel,ES
$318.0>272.9$

Dataset:	P:\PFAS5.PRO\RESULTSI200220P1\200220P1-32.qld
Last Altered:	Monday, February 24, 2020 08:39:17 Pacific Standard Time
Printed:	Friday, February 28, 2020 14:37:30 Pacific Standard Time

Name: 200220P1-32, Date: 20-Feb-2020, Time: 22:49:40, ID: B0B0118-MS1 Matrix Spike 0.25822, Description: Matrix Spike

1802-PFHxS

F25:MRM of 1 channel,ES-

13C6-PFDA
F47:MRM of 1 channel,ESchannel, ES
$519.1>473.7$ $4.734 \mathrm{e}+005$

13C7-PFUdA

F57:MRM of 1 channel,ES-
$570.1>524.8$ $5.067 \mathrm{e}+005$

13C9-PFNA
F36:MRM of 1 channel,ES$472.2>426.9$ $4.053 \mathrm{e}+005$

Dataset:	P:IPFAS5.PRO\RESULTSI200220P1\200220P1-33.qld
Last Altered:	Monday, February 24, 2020 08:46:13 Pacific Standard Time
Printed:	Friday, February 28, 2020 14:38:07 Pacific Standard Time

Name: 200220P1-33, Date: 20-Feb-2020, Time: 23:00:11, ID: B0B0118-MSD1 Matrix Spike Dup 0.2531, Description: Matrix Spike Dup

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	$299.0>79.7$	6.18 e3	1.35 e 3	0.253		2.68	2.68	57.2	98.5704		3.034	NO
2	7 PFHxA	313.0 > 269.0	2.50 e 5	2.13 e 4	0.253		3.19	3.19	147	655.0627		16.998	NO
3	9 HFPO-DA	$285.1>168.9$	3.13 e3	3.94 e 3	0.253		3.39	3.39	9.94	37.8184		2.667	NO
4	11 PFHpA	363.0 > 318.9	8.66 e 4	1.35 e 4	0.253		3.78	3.78	80.1	257.2207		23.412	NO
5	12 ADONA	$376.8>250.9$	3.02 e 4	1.35 e 4	0.253		3.88	3.89	28.0	35.5828		4.052	NO
6	51 13C3-PFBS-EIS	$302.0>98.8$	1.35 e 3		0.253	114.516	2.70	2.68	1350	46.5808	94.3		
7	57 13C2-PFHxA-EIS	$315.0>270.0$	2.13 e 4		0.253	1636.234	3.19	3.19	21300	51.3948	104.1		
8	53 13C3-HFPO-DA-EIS	$287.0>168.9$	3.94 e 3		0.253	293.118	3.43	3.39	3940	53.0457	107.4		
9	59 13C4-PFHpA-EIS	$367.2>321.8$	1.35 e 4		0.253	1106.802	3.79	3.78	13500	48.2074	97.6		
10	59 13C4-PFHPA-EIS	367.2 > 321.8	1.35 e 4		0.253	1106.802	3.79	3.78	13500	48.2074	97.6		
11	-1												
12	13 L-PFHxS	$398.9>79.7$	2.47 e 4	2.96 e 3	0.253		3.92	3.92	104	385.3907		2.404	NO
13	1... Total PFHxS	$398.9>79.7$	2.47 e 4	2.96 e 3	0.253		3.93		104	385.3907			
14	16 L-PFOA	412.8 > 368.9	1.55 e 5	1.86 e 4	0.253		4.29	4.29	104	348.7207		3.026	NO
15	1... Total PFOA	412.8 > 368.9	1.55 e 5	1.86 e 4	0.253		4.60		104	348.7207			
16	21 PFNA	$463.0>418.8$	1.48 e 4	1.55 e 4	0.253		4.72	4.72	11.9	37.9319		8.463	NO
17	61 13C3-PFHxS-EIS	$401.8>79.7$	2.96 e3		0.253	252.668	3.92	3.92	2960	46.3221	93.8		
18	61 13C3-PFHxS-EIS	$401.8>79.7$	2.96 e3		0.253	252.668	3.92	3.92	2960	46.3221	93.8		
19	69 13C2-PFOA-EIS	414.9 > 369.7	1.86 e 4		0.253	1527.160	4.29	4.29	18600	48.1509	97.5		
20	69 13C2-PFOA-EIS	414.9 > 369.7	1.86 e 4		0.253	1527.160	4.29	4.29	18600	48.1509	97.5		
21	65 13C5-PFNA-EIS	468.2 > 422.9	1.55 e 4		0.253	1373.362	4.72	4.72	15500	44.7167	90.5		
22	-1												
23	23 L-PFOS	$498.9>79.7$	2.80e3	3.34 e 3	0.253		4.80	4.80	10.5	44.7438		2.330	NO
24	1... Total PFOS	$498.9>79.7$	2.80e3	3.34 e 3	0.253		5.13		10.5	44.7438			
25	259 Cl -PF30NS	$530.7>350.8$	2.73 e3	3.34 e 3	0.253		5.01	5.01	10.2	34.8827		13.899	NO
26	26 PFDA	$513>468.8$	1.55 e 4	1.57 e 4	0.253		5.08	5.08	12.3	39.3865		9.791	NO
27	33 PFUdA	$563.0>518.9$	1.22 e 4	1.63 e 4	0.253		5.40	5.40	9.34	35.1961		21.849	NO
28	71 13C8-PFOS-EIS	$507.0>79.7$	3.34 e 3		0.253	295.805	4.80	4.80	3340	44.5698	90.2		
29	71 13C8-PFOS-EIS	$507.0>79.7$	3.34 e 3		0.253	295.805	4.80	4.80	3340	44.5698	90.2		
30	71 13C8-PFOS-EIS	$507.0>79.7$	3.34 e 3		0.253	295.805	4.80	4.80	3340	44.5698	90.2		
31	73 13C2-PFDA-EIS	$515.1>469.9$	1.57 e 4		0.253	1356.410	5.08	5.08	15700	45.8130	92.8		
32	79 13C2-PFUdA-EIS	$565>519.8$	1.63 e 4		0.253	1416.449	5.40	5.40	16300	45.5654	92.3		
33	-1												
34	29 L-MeFOSAA	$570>419$	4.23 e3	3.15 e 3	0.253		5.23	5.23	16.8	34.9123		1.975	NO
35	1... Total N-MeFOSAA	570. >419	4.23 e 3	3.15 e 3	0.253		5.19		16.8	34.9123			
36	$31 \mathrm{~L}-\mathrm{EtFOSAA}$	$584.1>419$	3.81e3	4.08 e 3	0.253		5.38	5.38	11.7	36.6299		1.207	NO

Work Order 2000314

Dataset:	P:\PFAS5.PRO\RESULTSI200220P1\200220P1-33.qld
Last Altered:	Monday, February 24, 2020 08:46:13 Pacific Standard Time
Printed:	Friday, February 28, 2020 14:38:07 Pacific Standard Time

Name: 200220P1-33, Date: 20-Feb-2020, Time: 23:00:11, ID: B0B0118-MSD1 Matrix Spike Dup 0.2531, Description: Matrix Spike Dup

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	1... Total N-EtFOSAA	$584.1>419$	3.81 e 3	4.08e3	0.253		5.37		11.7	36.6299			
38	35 11CI-PF30UdS	$630.9>450.9$	5.37 e 3	1.40e4	0.253		5.60	5.60	4.79	41.6005		20.701	NO
39	77 d3-N-MeFOSAA-EIS	$573.3>419$	3.15 e 3		0.253	262.877	5.22	5.23	3150	47.2814	95.7		
40	77 d3-N-MeFOSAA-EIS	$573.3>419$	3.15 e 3		0.253	262.877	5.22	5.23	3150	47.2814	95.7		
41	81 d5-N-EtFOSAA-EIS	$589.3>419$	4.08 e 3		0.253	360.983	5.37	5.38	4080	44.6083	90.3		
42	$81 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}-\mathrm{EIS}$	$589.3>419$	4.08 e 3		0.253	360.983	5.37	5.38	4080	44.6083	90.3		
43	83 13C2-PFDoA-EIS	$614.7>569.7$	1.40 e 4		0.253	1573.093	5.67	5.67	14000	35.1927	71.3		
44	-1												
45	37 PFDoA	$612.9>569.0$	1.12e4	1.40e4	0.253		5.67	5.67	10.0	41.0088		10.071	NO
46	39 PFTrDA	$662.9>618.9$	1.10e4	1.40e4	0.253		5.93	5.91	9.83	39.1811		70.460	NO
47	41 PFTeDA	713.0 > 669.0	1.21 e 4	1.47e4	0.253		6.12	6.12	10.3	38.9227		15.986	NO
48	1... TDCA	$498.3>106.9$			0.253		4.59						NO
49	99 13C4-PFBA	217.0 > 172.0	1.22 e 4	1.22 e 4	0.253	1.000	1.48	1.48	12.5	49.3876	100.0		
50	83 13C2-PFDoA-EIS	$614.7>569.7$	1.40 e 4		0.253	1573.093	5.67	5.67	14000	35.1927	71.3		
51	83 13C2-PFDoA-EIS	$614.7>569.7$	1.40 e 4		0.253	1573.093	5.67	5.67	14000	35.1927	71.3		
52	89 13C2-PFTeDA-EIS	$715.1>669.7$	1.47 e 4		0.253	1440.513	6.11	6.12	14700	40.2974	81.6		
53	71 13C8-PFOS-EIS	507.0 > 79.7	3.34 e 3		0.253	295.805	4.80	4.80	3340	44.5698	90.2		
54	1... 13C5-PFHxA	318.0 > 272.9	2.03 e 4	2.03 e 4	0.253	1.000	3.18	3.19	12.5	49.3876	100.0		
55	-1												
56	1... 1802-PFHxS	403.0 > 102.6	1.32 e 3	1.32 e 3	0.253	1.000	3.92	3.92	12.5	49.3876	100.0		
57	1... 13C6-PFDA	$519.1>473.7$	1.91 e 4	1.91 e 4	0.253	1.000	5.08	5.08	12.5	49.3876	100.0		
58	1... 13C7-PFUdA	$570.1>524.8$	1.84 e 4	1.84e4	0.253	1.000	5.40	5.40	12.5	49.3876	100.0		
59	1... 13C4-PFOS	$503>79.7$	3.57 e 3	3.57e3	0.253	1.000	4.79	4.80	12.5	49.3876	100.0		
60	1... 13C9-PFNA	472.2 > 426.9	1.68 e 4	1.68 e 4	0.253	1.000	4.72	4.72	12.5	49.3876	100.0		

Dataset:	P:\PFAS5.PRO\RESULTSI200220P1\200220P1-33.qld
Last Altered:	Monday, February 24, 2020 08:46:13 Pacific Standard Time
Printed:	Friday, February 28, 2020 14:38:07 Pacific Standard Time

Method: P:\PFAS5.PRO\MethDB\NEW_PFAS_80C_022020.mdb 21 Feb 2020 08:56:55 Calibration: P:|PFAS5.PRO\CurveDB\C18_VAL-PFAS_Q5_02-20-20.cdb 21 Feb 2020 15:57:11

Name: 200220P1-33, Date: 20-Feb-2020, Time: 23:00:11, ID: B0B0118-MSD1 Matrix Spike Dup 0.2531, Description: Matrix Spike Dup

PFBS		
	F11:MRM of 2 channels,ES-	
	PFBS	$1.730 \mathrm{e}+005$
1007	2.68	
	6.18 e 3	
\%-	170907	
	bb	
	1164.32	

13C3-PFBS-EIS

PFHxA

F13:MRM of 2 channels,ES-	
	313 > 118.9
100 PFHxA	$4.096 \mathrm{e}+005$
1003.19	
1.47 e 4	
\%-408169	
- bb	
-4727.43	
T	T min
3.000	00

13C3-HFPO-DA-EIS
F10:MRM of 2 channels,ES$287.0>168.9$

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES-
$367.2>321.8$ $3.447 \mathrm{e}+005$

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES-

$$
367.2>321.8
$$

Dataset:	P:\PFAS5.PRO\RESULTSI200220P1\200220P1-33.qld
Last Altered:	Monday, February 24, 2020 08:46:13 Pacific Standard Time
Printed:	Friday, February 28, 2020 14:38:07 Pacific Standard Time

Name: 200220P1-33, Date: 20-Feb-2020, Time: 23:00:11, ID: B0B0118-MSD1 Matrix Spike Dup 0.2531, Description: Matrix Spike Dup

L-PFHxS

F23:MRM of 2 channels,ES-

	L-PFHxS	398.9 > 79.7
$\left.{ }^{100}{ }_{7} \begin{array}{c}3.92 \\ 2.47 \mathrm{e} 4\end{array}\right) \quad 4.993 \mathrm{e}+005$		
	499313	
\%- MM		
	10865.40	

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES-

Total PFHxS

F23:MRM of 2 channels,ES-

	L-PFHxS	398.9 > 79.7
100	3.92	$4.993 \mathrm{e}+005$
	2.47 e 4	
	499313	
\%-	MM	
	10865.40	

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES $401.8>79.7$ $7.321 \mathrm{e}+004$

L-PFOA

F26:MRM of 2 channels,ES-

13C2-PFOA-EIS
F27:MRM of 1 channel,ES$414.9>369.7$

Total PFOA

F26:MRM of 2 channels,ES-

13C2-PFOA-EIS

F27:MRM of 1 channel,ES$414.9>369.7$ $4.776 e+005$

PFNA

F34:MRM of 2 channels,ES-

13C5-PFNA-EIS
F35:MRM of 1 channel,ES $468.2>422.9$

Dataset:	P:\PFAS5.PRO\RESULTSI200220P1\200220P1-33.qld
Last Altered:	Monday, February 24, 2020 08:46:13 Pacific Standard Time
Printed:	Friday, February 28, 2020 14:38:07 Pacific Standard Time

Name: 200220P1-33, Date: 20-Feb-2020, Time: 23:00:11, ID: B0B0118-MSD1 Matrix Spike Dup 0.2531, Description: Matrix Spike Dup

L-PFOS

F39:MRM of 2 channels,ES-
$498.9>79.7$
$4.858 \mathrm{e}+004$

13C8-PFOS-EIS

13C8-PFOS-EIS

9Cl-PF30NS

F51:MRM of 2 channels,ES$530.7>350.8$ $7.244 \mathrm{e}+004$

13C8-PFOS-EIS

13C2-PFDA-EIS
F45:MRM of 1 channel,ES$515.1>469.9$ $4.077 \mathrm{e}+005$

PFUdA

F54:MRM of 2 channels,ES$563.0>269$

		$1.529 \mathrm{e}+004$
100	PFUdA	
	5.40	
	5.59 e 2	
\%-	15281	
	bb	
	15281.00	
		min
	5.250	

13C2-PFUdA-EIS
F55:MRM of 1 channel,ES $565>519.8$

Dataset:	P:\PFAS5.PRO\RESULTSI200220P1\200220P1-33.qld
Last Altered:	Monday, February 24, 2020 08:46:13 Pacific Standard Time
Printed:	Friday, February 28, 2020 14:38:07 Pacific Standard Time

Name: 200220P1-33, Date: 20-Feb-2020, Time: 23:00:11, ID: B0B0118-MSD1 Matrix Spike Dup 0.2531, Description: Matrix Spike Dup

L-MeFOSAA

F56:MRM of 2 channels,ES-
$570>419$
$9.169 e+004$

d3-N-MeFOSAA-EIS
F58:MRM of 1 channel,ES-
$573.3>419$ $7.613 e+004$

d3-N-MeFOSAA-EIS

d5-N-EtFOSAA-EIS
F60:MRM of 1 channel,ES589.3 > 419

F68:MRM of 2 channels,ES$630.9>83$
$6368 e+003$

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES$614.7>569.7$

Dataset:	P:\PFAS5.PRO\RESULTSI200220P1\200220P1-33.qld
Last Altered:	Monday, February 24, 2020 08:46:13 Pacific Standard Time
Printed:	Friday, February 28, 2020 14:38:07 Pacific Standard Time

Name: 200220P1-33, Date: 20-Feb-2020, Time: 23:00:11, ID: B0B0118-MSD1 Matrix Spike Dup 0.2531, Description: Matrix Spike Dup

PFDoA

PFDOA		
F62:MRM of 4 channels,ES-		
		612.9 > 569.0
	PFDoA	$2.727 \mathrm{e}+005$
100 5.67 $]$ - ${ }^{\text {a }}$	5.67	
	1.12 e 4	
\%-271794		
$\begin{gathered} b b \\ -271794.00 \end{gathered}$		
0	¢!ाए!	

13C2-PFDoA-EIS

F63:MRM of 1 channel,ES$614.7>569.7$

PFTrDA

F71:MRM of 2 channels,ES-

F71:MRM of 2 channels,ES-

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES $614.7>569.7$ $3.587 e+005$

PFTeDA

F73:MRM of 2 channels,ES713. > 369.0

13C2-PFTeDA-EIS

TDCA

13C8-PFOS-EIS
F42:MRM of 1 channel,ES$507.0>79.7$ $8.370 \mathrm{e}+004$

13C4-PFBA
F4:MRM of 1 channel,ES-
$217.0>172.0$
$2.843 e+005$

13C5-PFHxA
F15:MRM of 1 channel,ES $318.0>272.9$

Dataset: P:\PFAS5.PRO\RESULTSI200220P1\200220P1-33.qld

Last Altered: Monday, February 24, 2020 08:46:13 Pacific Standard Time
Printed: Friday, February 28, 2020 14:38:07 Pacific Standard Time

Name: 200220P1-33, Date: 20-Feb-2020, Time: 23:00:11, ID: B0B0118-MSD1 Matrix Spike Dup 0.2531, Description: Matrix Spike Dup

1802-PFHxS

F25:MRM of 1 channel,ES-

13C6-PFDA
F47:MRM of 1 channel,ESchannel, ES
$519.1>473.7$ $5.018 \mathrm{e}+005$

13C9-PFNA

Dataset:	P:IPFAS5.PROIRESULTSI200220P11200220P1-40.qld
Last Altered:	Monday, February 24, 2020 09:24:21 Pacific Standard Time
Printed:	Monday, February 24, 2020 12:29:53 Pacific Standard Time

Name: 200220P1-40, Date: 21-Feb-2020, Time: 00:13:44, ID: 2000314-04 I006MW05SR-20200212 0.2515, Description: I006MW05SR-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	$299.0>79.7$	3.36 e 3	1.43 e 3	0.252		2.68	2.68	29.5	50.9421		3.135	NO
2	7 PFHxA	$313.0>269.0$	4.60 e 4	1.99 e 4	0.252		3.19	3.19	28.9	129.2376		17.674	NO
3	9 HFPO-DA	$285.1>168.9$		3.46e3	0.252		3.40						
4	11 PFHpA	$363.0>318.9$	1.38 e 4	1.26 e 4	0.252		3.78	3.79	13.7	43.6408		29.388	NO
5	12 ADONA	$376.8>250.9$		1.26 e 4	0.252		3.88						
6	51 13C3-PFBS-EIS	$302.0>98.8$	1.43 e 3		0.252	114.516	2.70	2.68	1430	49.4978	99.6		
7	57 13C2-PFHxA-EIS	$315.0>270.0$	1.99 e 4		0.252	1636.234	3.19	3.19	19900	48.3323	97.2		
8	53 13C3-HFPO-DA-EIS	$287.0>168.9$	3.46 e 3		0.252	293.118	3.43	3.40	3460	46.9314	94.4		
9	59 13C4-PFHpA-EIS	$367.2>321.8$	1.26 e 4		0.252	1106.802	3.79	3.78	12600	45.3336	91.2		
10	59 13C4-PFHpA-EIS	367.2 > 321.8	1.26 e 4		0.252	1106.802	3.79	3.78	12600	45.3336	91.2		
11	-1												
12	13 L-PFHxS	$398.9>79.7$	1.38 e 4	2.95 e3	0.252		3.92	3.92	58.5	215.3898		2.507	NO
13	1... Total PFHxS	$398.9>79.7$	1.38 e 4	2.95 e3	0.252		3.93		58.5	215.3898			
14	16 L-PFOA	412.8 > 368.9	1.93 e 4	1.71 e 4	0.252		4.29	4.29	14.1	46.4272		2.859	NO
15	1... Total PFOA	412.8 > 368.9	1.93 e 4	1.71 e 4	0.252		4.60		14.1	46.4272			
16	21 PFNA	$463.0>418.8$	8.84 e 1	1.45 e 4	0.252		4.72	4.72	0.0764	0.0529		16.867	YES
17	61 13C3-PFHxS-EIS	$401.8>79.7$	2.95 e 3		0.252	252.668	3.92	3.92	2950	46.4595	93.5		
18	61 13C3-PFHxS-EIS	$401.8>79.7$	2.95 e3		0.252	252.668	3.92	3.92	2950	46.4595	93.5		
19	69 13C2-PFOA-EIS	$414.9>369.7$	1.71 e 4		0.252	1527.160	4.29	4.29	17100	44.6006	89.7		
20	69 13C2-PFOA-EIS	$414.9>369.7$	1.71 e 4		0.252	1527.160	4.29	4.29	17100	44.6006	89.7		
21	65 13C5-PFNA-EIS	468.2 > 422.9	1.45 e 4		0.252	1373.362	4.72	4.72	14500	41.9092	84.3		
22	-1												
23	23 L-PFOS	498.9 > 79.7	1.12 e 3	3.30 e 3	0.252		4.80	4.65	4.22	18.1532		2.873	NO
24	1... Total PFOS	$498.9>79.7$	1.12 e 3	3.30 e 3	0.252		5.13		4.22	18.1532			
25	259 CI -PF30NS	$530.7>350.8$		3.30 e 3	0.252		5.01						
26	26 PFDA	$513>468.8$		1.59 e 4	0.252		5.08						
27	33 PFUdA	$563.0>518.9$		1.53 e 4	0.252		5.40						
28	71 13C8-PFOS-EIS	$507.0>79.7$	3.30 e 3		0.252	295.805	4.80	4.80	3300	44.4112	89.4		
29	71 13C8-PFOS-EIS	$507.0>79.7$	3.30 e 3		0.252	295.805	4.80	4.80	3300	44.4112	89.4		
30	71 13C8-PFOS-EIS	$507.0>79.7$	3.30 e 3		0.252	295.805	4.80	4.80	3300	44.4112	89.4		
31	73 13C2-PFDA-EIS	$515.1>469.9$	1.59 e 4		0.252	1356.410	5.08	5.08	15900	46.7195	94.0		
32	79 13C2-PFUdA-EIS	$565>519.8$	1.53 e 4		0.252	1416.449	5.40	5.40	15300	42.8096	86.1		
33	-1												
34	29 L-MeFOSAA	$570>419$		2.60 e 3	0.252		5.23						
35	1... Total N-MeFOSAA	570. >419	0.00e0	2.60 e 3	0.252		5.19		0.000				
36	31 L-EtFOSAA	$584.1>419$		3.97e3	0.252		5.38						

Work Order 2000314

Dataset:	P:\PFAS5.PRO\RESULTS\200220P1\200220P1-40.qld
Last Altered:	Monday, February 24, 2020 09:24:21 Pacific Standard Time
Printed:	Monday, February 24, 2020 12:29:53 Pacific Standard Time

Name: 200220P1-40, Date: 21-Feb-2020, Time: 00:13:44, ID: 2000314-04 I006MW05SR-20200212 0.2515, Description: I006MW05SR-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	1... Total N-EtFOSAA	$584.1>419$	0.00 e 0	3.97 e 3	0.252		5.37		0.000				
38	3511 Cl -PF30UdS	$630.9>450.9$		1.44 e 4	0.252		5.60						
39	77 d3-N-MeFOSAA-EIS	$573.3>419$	2.60 e3		0.252	262.877	5.22	5.23	2600	39.3391	79.2		
40	77 d3-N-MeFOSAA-EIS	$573.3>419$	2.60 e3		0.252	262.877	5.22	5.23	2600	39.3391	79.2		
41	81 d5-N-EtFOSAA-EIS	$589.3>419$	3.97e3		0.252	360.983	5.37	5.38	3970	43.7265	88.0		
42	81 d5-N-EtFOSAA-EIS	$589.3>419$	3.97e3		0.252	360.983	5.37	5.38	3970	43.7265	88.0		
43	83 13C2-PFDoA-EIS	$614.7>569.7$	1.44 e 4		0.252	1573.093	5.67	5.67	14400	36.4248	73.3		
44	-1												
45	37 PFDoA	$612.9>569.0$		1.44 e 4	0.252		5.67						
46	39 PFTrDA	$662.9>618.9$		1.44 e 4	0.252		5.93						
47	41 PFTeDA	713.0 > 669.0		1.67 e 4	0.252		6.12						
48	1... TDCA	$498.3>106.9$			0.252		4.59						
49	99 13C4-PFBA	$217.0>172.0$	1.20 e 4	1.20 e 4	0.252	1.000	1.48	1.48	12.5	49.7018	100.0		
50	83 13C2-PFDoA-EIS	$614.7>569.7$	1.44 e 4		0.252	1573.093	5.67	5.67	14400	36.4248	73.3		
51	83 13C2-PFDoA-EIS	$614.7>569.7$	1.44 e 4		0.252	1573.093	5.67	5.67	14400	36.4248	73.3		
52	89 13C2-PFTeDA-EIS	$715.1>669.7$	1.67 e 4		0.252	1440.513	6.10	6.12	16700	46.0200	92.6		
53	71 13C8-PFOS-EIS	$507.0>79.7$	3.30 e 3		0.252	295.805	4.80	4.80	3300	44.4112	89.4		
54	1... 13C5-PFHxA	318.0 > 272.9	2.02 e 4	2.02 e 4	0.252	1.000	3.18	3.19	12.5	49.7018	100.0		
55	-1												
56	1... 18O2-PFHxS	403.0 > 102.6	1.24 e 3	1.24 e 3	0.252	1.000	3.92	3.92	12.5	49.7018	100.0		
57	1... 13C6-PFDA	$519.1>473.7$	1.89 e 4	1.89 e 4	0.252	1.000	5.08	5.08	12.5	49.7018	100.0		
58	1... 13C7-PFUdA	$570.1>524.8$	1.96 e 4	1.96 e 4	0.252	1.000	5.40	5.40	12.5	49.7018	100.0		
59	1... 13C4-PFOS	$503>79.7$	3.81 e 3	3.81 e 3	0.252	1.000	4.79	4.80	12.5	49.7018	100.0		
60	1... 13C9-PFNA	472.2 > 426.9	1.62 e 4	1.62 e 4	0.252	1.000	4.72	4.72	12.5	49.7018	100.0		

Dataset:	P:\PFAS5.PRO\RESULTS\200220P1\200220P1-40.qld
Last Altered:	Monday, February 24, 2020 09:24:21 Pacific Standard Time
Printed:	Monday, February 24, 2020 12:29:53 Pacific Standard Time

Method: P:\PFAS5.PRO\MethDB\NEW_PFAS_80C_022020.mdb 21 Feb 2020 08:56:55

Calibration: P:\PFAS5.PRO\CurveDB\C18_VAL-PFAS_Q5_02-20-20.cdb 21 Feb 2020 15:57:11

Name: 200220P1-40, Date: 21-Feb-2020, Time: 00:13:44, ID: 2000314-04 I006MW05SR-20200212 0.2515, Description: I006MW05SR-20200212

13C3-HFPO-DA-EIS
F10:MRM of 2 channels,ES-
 $287.0>168.9$

13C4-PFHPA-EIS

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES $367.2>321.8$

Dataset:	P:\PFAS5.PRO\RESULTS\200220P1\200220P1-40.qld
Last Altered:	Monday, February 24, 2020 09:24:21 Pacific Standard Time
Printed:	Monday, February 24, 2020 12:29:53 Pacific Standard Time

Name: 200220P1-40, Date: 21-Feb-2020, Time: 00:13:44, ID: 2000314-04 I006MW05SR-20200212 0.2515, Description: I006MW05SR-20200212

L-PFHxS

F23:MRM of 2 channels,ES		
	L-PFHxS	398.9 > 79.7
100-3.92 $2.680 \mathrm{e}+005$		
100. 1.38 e 4		
\%- $\begin{gathered}\text { 26830 } \\ \text { M }\end{gathered}$		
-268038.00		

13C3-PFHxS-EIS

F24:MRM of 1 channel,ES$401.8>79.7$ $7.018 \mathrm{e}+004$

Total PFHxS

F23:MRM of 2 channels,ES

F23:MRM of 2 channels,ES-		
	L-PFHxS	398.9 > 79.7
$100 \quad 3.92$ 2.680e+005		
100	1.38 e 4	
	268038	
\%- MM		
	268038.00	

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES $401.8>79.7$

L-PFOA

13C2-PFOA-EIS
F27:MRM of 1 channel,ES$414.9>369.7$ $4.312 \mathrm{e}+005$

Total PFOA

13C2-PFOA-EIS

PFNA

13C5-PFNA-EIS
F35:MRM of 1 channel,ES-
$468.2>422.9$

Dataset:	P:\PFAS5.PRO\RESULTS\200220P1\200220P1-40.qld
Last Altered:	Monday, February 24, 2020 09:24:21 Pacific Standard Time
Printed:	Monday, February 24, 2020 12:29:53 Pacific Standard Time

Name: 200220P1-40, Date: 21-Feb-2020, Time: 00:13:44, ID: 2000314-04 I006MW05SR-20200212 0.2515, Description: I006MW05SR-20200212

L-PFOS

L-PFOS F39:MRM of 2 channels,ES- | $498.9>79.7$ |
| ---: |
| $1.582 \mathrm{e}+004$ |

13C8-PFOS-EIS

13C8-PFOS-EIS

F42:MRM of 1 channel,ES $507.0>79.7$ $8.758 \mathrm{e}+004$

9CI-PF30NS

F51:MRM of 2 channels,ES
$530.7>350.8$ $5.37 \quad 3.800 \mathrm{e}+001$

F51:MRM of 2 channels,ES-

13C8-PFOS-EIS

PFDA

F44:MRM of 2 channels,ES$513>468.8$ $1.394 \mathrm{e}+003$

F44:MRM of 2 channels,ES-
$513>219$
1703 - 001

13C2-PFDA-EIS
F45:MRM of 1 channel,ES $515.1>469.9$ $4.392 \mathrm{e}+005$

PFUdA
F54:MRM of 2 channels,ES- $\begin{array}{r}563.0>518.9 \\ 1.125 \mathrm{e}+003\end{array}$

13C2-PFUdA-EIS
F55:MRM of 1 channel,ES $565>519.8$

Dataset:	P:\PFAS5.PRO\RESULTS\200220P1\200220P1-40.qld
Last Altered:	Monday, February 24, 2020 09:24:21 Pacific Standard Time
Printed:	Monday, February 24, 2020 12:29:53 Pacific Standard Time

Name: 200220P1-40, Date: 21-Feb-2020, Time: 00:13:44, ID: 2000314-04 I006MW05SR-20200212 0.2515, Description: IO06MW05SR-20200212

L-MeFOSAA

F56:MRM of 2 channels,ES-

F56:MRM of 2 channels,ES-

d3-N-MeFOSAA-EIS
F58:MRM of 1 channel,ES-

F56:MRM of 2 channels,ES

d3-N-MeFOSAA-EIS

59:MRM of 2 channels,ES-
$584.1>526$

d5-N-EtFOSAA-EIS

F68:MRM of 2 channels,ES

Dataset:	P:\PFAS5.PRO\RESULTS\200220P1\200220P1-40.qld
Last Altered:	Monday, February 24, 2020 09:24:21 Pacific Standard Time
Printed:	Monday, February 24, 2020 12:29:53 Pacific Standard Time

Name: 200220P1-40, Date: 21-Feb-2020, Time: 00:13:44, ID: 2000314-04 I006MW05SR-20200212 0.2515, Description: I006MW05SR-20200212

PFDoA

13C2-PFDoA-EIS

F63:MRM of 1 channel,ES$614.7>569.7$ $3.571 \mathrm{e}+005$

PFTrDA

F71:MRM of 2 channels,ES

13C2-PFDoA-EIS

F63:MRM of 1 channel,ES $614.7>569.7$ $3.571 e+005$

PFTeDA
F73:MRM of 2 channels,ES

F73:MRM of 2 channels,ES

13C2-PFTeDA-EIS

TDCA

F38:MRM of 3 channels,ES-

13C8-PFOS-EIS
F42:MRM of 1 channel,ES $507.0>79.7$ $8.758 \mathrm{e}+004$

13C4-PFBA
F4:MRM of 1 channel,ES-
$217.0>172.0$
$2.664 \mathrm{e}+005$
$13 \mathrm{C} 4-\mathrm{PFBA}$
1.48
1.20 e 4
265279
bb
53866.86

Dataset:	P:\PFAS5.PRO\RESULTS\200220P1\200220P1-40.qld
Last Altered:	Monday, February 24, 2020 09:24:21 Pacific Standard Time
Printed:	Monday, February 24, 2020 12:29:53 Pacific Standard Time

Name: 200220P1-40, Date: 21-Feb-2020, Time: 00:13:44, ID: 2000314-04 I006MW05SR-20200212 0.2515, Description: I006MW05SR-20200212
1802-PFHxS

13C9-PFNA
F36:MRM of 1 channel,ES 472.2 > 426.9 $4.144 \mathrm{e}+005$

Dataset: P:IPFAS5.PRO\RESULTSI200220P1\200220P1-41.qld
 Last Altered: Tuesday, February 25, 2020 11:46:15 Pacific Standard Time
 Printed: \quad Tuesday, February 25, 2020 11:46:42 Pacific Standard Time

Name: 200220P1-41, Date: 21-Feb-2020, Time: 00:24:12, ID: 2000314-05 DUP01-20200212 0.24538, Description: DUP01-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	$299.0>79.7$	3.57 e 3	1.42 e 3	0.245		2.68	2.68	31.4	55.6364		3.297	NO
2	7 PFHxA	$313.0>269.0$	4.65 e 4	2.05 e 4	0.245		3.19	3.19	28.3	129.8674		17.630	NO
3	9 HFPO-DA	$285.1>168.9$		3.77 e 3	0.245		3.40						
4	11 PFHpA	$363.0>318.9$	1.41 e 4	1.23 e 4	0.245		3.79	3.79	14.3	46.7516		26.571	NO
5	12 ADONA	$376.8>250.9$		1.23 e 4	0.245		3.88						
6	51 13C3-PFBS-EIS	$302.0>98.8$	1.42 e 3		0.245	114.516	2.70	2.68	1420	50.5423	99.2		
7	57 13C2-PFHxA-EIS	$315.0>270.0$	2.05 e 4		0.245	1636.234	3.19	3.19	20500	51.0653	100.2		
8	53 13C3-HFPO-DA-EIS	$287.0>168.9$	3.77 e 3		0.245	293.118	3.43	3.40	3770	52.4302	102.9		
9	59 13C4-PFHpA-EIS	$367.2>321.8$	1.23 e 4		0.245	1106.802	3.79	3.79	12300	45.4589	89.2		
10	59 13C4-PFHpA-EIS	367.2 > 321.8	1.23 e 4		0.245	1106.802	3.79	3.79	12300	45.4589	89.2		
11	-1												
12	13 L-PFHxS	$398.9>79.7$	1.31 e 4	3.03 e 3	0.245		3.92	3.92	54.3	204.8229		2.471	NO
13	1... Total PFHxS	$398.9>79.7$	1.31 e 4	3.03 e 3	0.245		3.93		54.3	204.8229			
14	16 L-PFOA	$412.8>368.9$	1.93 e 4	1.84 e 4	0.245		4.30	4.30	13.1	44.1383		2.714	NO
15	1... Total PFOA	$412.8>368.9$	1.93 e 4	1.84 e 4	0.245		4.60		13.1	44.1383			
16	21 PFNA	$463.0>418.8$	1.39 e 2	1.54 e 4	0.245		4.72	4.72	0.113	0.1744		193.440	YES
17	61 13C3-PFHxS-EIS	$401.8>79.7$	3.03 e 3		0.245	252.668	3.93	3.92	3030	48.8041	95.8		
18	61 13C3-PFHxS-EIS	$401.8>79.7$	3.03e3		0.245	252.668	3.93	3.92	3030	48.8041	95.8		
19	69 13C2-PFOA-EIS	$414.9>369.7$	1.84 e 4		0.245	1527.160	4.29	4.30	18400	49.0953	96.4		
20	69 13C2-PFOA-EIS	$414.9>369.7$	1.84 e 4		0.245	1527.160	4.29	4.30	18400	49.0953	96.4		
21	65 13C5-PFNA-EIS	$468.2>422.9$	1.54 e 4		0.245	1373.362	4.72	4.72	15400	45.7215	89.8		
22	-1												
23	23 L-PFOS	$498.9>79.7$	1.37 e 3	3.33 e 3	0.245		4.80	4.66	5.14	22.6358		2.912	NO
24	1... Total PFOS	$498.9>79.7$	1.37 e 3	3.33 e 3	0.245		5.13		5.14	22.6358			
25	25 9CI-PF30NS	$530.7>350.8$		3.33 e 3	0.245		5.01						
26	26 PFDA	$513>468.8$		1.72 e 4	0.245		5.08						
27	33 PFUdA	$563.0>518.9$		1.70 e 4	0.245		5.39						
28	71 13C8-PFOS-EIS	$507.0>79.7$	3.33 e 3		0.245	295.805	4.80	4.80	3330	45.8804	90.1		
29	71 13C8-PFOS-EIS	$507.0>79.7$	3.33 e 3		0.245	295.805	4.80	4.80	3330	45.8804	90.1		
30	71 13C8-PFOS-EIS	$507.0>79.7$	3.33 e 3		0.245	295.805	4.80	4.80	3330	45.8804	90.1		
31	73 13C2-PFDA-EIS	$515.1>469.9$	1.72 e 4		0.245	1356.410	5.08	5.08	17200	51.5442	101.2		
32	79 13C2-PFUdA-EIS	$565>519.8$	1.70 e 4		0.245	1416.449	5.40	5.39	17000	48.9161	96.0		
33	-1												
34	29 L-MeFOSAA	$570>419$		3.05 e 3	0.245		5.23						
35	1... Total N-MeFOSAA	570. >419	0.00e0	3.05 e 3	0.245		5.19		0.000				
36	31 L-EtFOSAA	$584.1>419$		3.56 e 3	0.245		5.38						

Name: 200220P1-41, Date: 21-Feb-2020, Time: 00:24:12, ID: 2000314-05 DUP01-20200212 0.24538, Description: DUP01-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	1... Total N-EtFOSAA	$584.1>419$	0.00 e 0	3.56 e 3	0.245		5.37		0.000				
38	35 11CI-PF30UdS	$630.9>450.9$		1.35 e 4	0.245		5.60						
39	77 d3-N-MeFOSAA-EIS	$573.3>419$	3.05 e 3		0.245	262.877	5.22	5.23	3050	47.2168	92.7		
40	77 d3-N-MeFOSAA-EIS	$573.3>419$	3.05 e 3		0.245	262.877	5.22	5.23	3050	47.2168	92.7		
41	$81 \mathrm{~d} 5-\mathrm{N}$-EtFOSAA-EIS	$589.3>419$	3.56 e 3		0.245	360.983	5.37	5.38	3560	40.1354	78.8		
42	$81 \mathrm{~d} 5-\mathrm{N}$-EtFOSAA-EIS	$589.3>419$	3.56 e 3		0.245	360.983	5.37	5.38	3560	40.1354	78.8		
43	83 13C2-PFDoA-EIS	614.7 > 569.7	1.35 e 4		0.245	1573.093	5.67	5.67	13500	34.8874	68.5		
44	-1												
45	37 PFDoA	612.9 > 569.0		1.35 e 4	0.245		5.67						
46	39 PFTrDA	$662.9>618.9$		1.35 e 4	0.245		5.93						
47	41 PFTeDA	713.0 > 669.0		1.74 e 4	0.245		6.12						
48	1... TDCA	$498.3>106.9$			0.245		4.59						
49	99 13C4-PFBA	$217.0>172.0$	1.20e4	1.20 e 4	0.245	1.000	1.48	1.48	12.5	50.9414	100.0		
50	83 13C2-PFDoA-EIS	$614.7>569.7$	1.35 e 4		0.245	1573.093	5.67	5.67	13500	34.8874	68.5		
51	83 13C2-PFDoA-EIS	$614.7>569.7$	1.35 e 4		0.245	1573.093	5.67	5.67	13500	34.8874	68.5		
52	89 13C2-PFTeDA-EIS	$715.1>669.7$	1.74 e 4		0.245	1440.513	6.10	6.12	17400	49.1643	96.5		
53	71 13C8-PFOS-EIS	$507.0>79.7$	3.33 e 3		0.245	295.805	4.80	4.80	3330	45.8804	90.1		
54	1... 13C5-PFHxA	318.0 > 272.9	2.17 e 4	2.17 e 4	0.245	1.000	3.18	3.19	12.5	50.9414	100.0		
55	-1												
56	1... 18O2-PFHxS	403.0 > 102.6	1.25 e 3	1.25 e 3	0.245	1.000	3.92	3.93	12.5	50.9414	100.0		
57	1... 13C6-PFDA	$519.1>473.7$	1.90 e 4	1.90 e 4	0.245	1.000	5.08	5.08	12.5	50.9414	100.0		
58	1... 13C7-PFUdA	$570.1>524.8$	1.98 e 4	1.98 e 4	0.245	1.000	5.40	5.40	12.5	50.9414	100.0		
59	1... 13C4-PFOS	$503>79.7$	3.60 e 3	3.60e3	0.245	1.000	4.79	4.80	12.5	50.9414	100.0		
60	1... 13C9-PFNA	$472.2>426.9$	1.67 e 4	1.67 e 4	0.245	1.000	4.72	4.72	12.5	50.9414	100.0		

Dataset: P:\PFAS5.PRO\RESULTS\200220P1\200220P1-41.qld
Last Altered: Tuesday, February 25, 2020 11:46:15 Pacific Standard Time
Printed: Tuesday, February 25, 2020 11:46:42 Pacific Standard Time

Method: P:\PFAS5.PRO\MethDB\NEW_PFAS_80C_022020.mdb 21 Feb 2020 08:56:55

Calibration: P:\PFAS5.PRO\CurveDB\C̄18_VAL-PFAS_Q5_02-20-20.cdb 21 Feb 2020 15:57:11

Name: 200220P1-41, Date: 21-Feb-2020, Time: 00:24:12, ID: 2000314-05 DUP01-20200212 0.24538, Description: DUP01-20200212

PFBS		
	F11:MRM of 2 channels,ES-	
		$299.0>79.7$
1007	PFBS	$9.962 \mathrm{e}+004$
	2.68	
	3.57 e 3	
\%-	98794	
	bb	
	3347.65	
	T1	गाता min

13C3-PFBS-EIS
F12:MRM of 1 channel,ES-

PFHxA
F13:MRM of 2 channels,ES-
$313.0>269.0$
$1.300 \mathrm{e}+006$

13C2-PFHxA-EIS

13C3-HFPO-DA-EIS

13C4-PFHpA-EIS

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES367.2 > 321.8

Printed: Tuesday, February 25, 2020 11:46:42 Pacific Standard Time

Name: 200220P1-41, Date: 21-Feb-2020, Time: 00:24:12, ID: 2000314-05 DUP01-20200212 0.24538, Description: DUP01-20200212

L-PFHxS		
F23:MRM of 2 channels,ES-		
	L-PFHxS	398.9 > 79.7
100	3.92	$2.506 \mathrm{e}+005$
	1.31 e 4	
	250625	
\%-	MM	
	8798.18	

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES

Total PFHxS

F23:MRM of 2 channels,ES-

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES $401.8>79.7$ $6.970 \mathrm{e}+004$

L-PFOA

F26:MRM of 2 channels,ES-	
$412.8>368.9$	
100	$4.355 e+005$

F26:MRM of 2 channels,ES412.8 > 169 $1.472 \mathrm{e}+005$

13C2-PFOA-EIS
F27:MRM of 1 channel,ES$414.9>369.7$

Total PFOA

	F26:MRM of 2 channels,ES-	
	F26.M	$412.8>368.9$
	L-PFOA	$4.355 \mathrm{e}+005$
1007	4.30	
	1.93 e 4	
\%-	435224	
	MM	
	6281.30	
	-	min

13C2-PFOA-EIS
F27:MRM of 1 channel,ES $414.9>369.7$ $4.615 \mathrm{e}+005$

PFNA

F34:MRM of 2 channels,ES463.0 > 219.0

13C5-PFNA-EIS
F35:MRM of 1 channel,ES $468.2>422.9$

Dataset: P:\PFAS5.PRO\RESULTSI200220P1\200220P1-41.qld

Last Altered: Tuesday, February 25, 2020 11:46:15 Pacific Standard Time
Printed: \quad Tuesday, February 25, 2020 11:46:42 Pacific Standard Time

Name: 200220P1-41, Date: 21-Feb-2020, Time: 00:24:12, ID: 2000314-05 DUP01-20200212 0.24538, Description: DUP01-20200212

L-PFOS

F39:MRM of 2 channels,ES $498.9>79.7$ $1.758 \mathrm{e}+004$
(100

F39:MRM of 2 channels,ES 498.9 > 98.

F42:MRM of 1 channel,ES

F39:MRM of 2 channels,ES 498.9 > 98.7 $3.936 e+003$

13C8-PFOS-EIS
F42:MRM of 1 channel, ES $507.0>79.7$ $8.850 \mathrm{e}+004$

9CI-PF30NS

F51:MRM of 2 channels,ES530.7 > 350.8 $3.564 \mathrm{e}+002$

13C8-PFOS-EIS

13C2-PFDA-EIS
F45:MRM of 1 channel,ES 515.1 > 469.9

PFUdA

F54:MRM of 2 channels,ES

13C2-PFUdA-EIS
F55:MRM of 1 channel,ES$565>519.8$

Dataset: P:\PFAS5.PRO\RESULTSI200220P1\200220P1-41.qld

Last Altered: Tuesday, February 25, 2020 11:46:15 Pacific Standard Time
Printed: \quad Tuesday, February 25, 2020 11:46:42 Pacific Standard Time

Name: 200220P1-41, Date: 21-Feb-2020, Time: 00:24:12, ID: 2000314-05 DUP01-20200212 0.24538, Description: DUP01-20200212

L-MeFOSAA

F56:MRM of 2 channels, ES

F56:MRM of 2 channels,ES

d3-N-MeFOSAA-EIS
F58:MRM of 1 channel,ES $573.3>419$ $7.541 \mathrm{e}+004$

F56:MRM of 2 channels,ES

d3-N-MeFOSAA-EIS
F58:MRM of 1 channel,ES $573.3>419$ $7.541 e+004$

L-EtFOSAA

F59:MRM of 2 channels,ES-

d5-N-EtFOSAA-EIS
F60:MRM of 1 channel,ES589.3 > 419 $9.633 \mathrm{e}+004$

Total N-EtFOSAA

F59:MRM of 2 channels,ES-
$584.1>419$

F59:MRM of 2 channels,ES584.1 > 526

d5-N-EtFOSAA-EIS
F60:MRM of 1 channel,ES
$589.3>419$ $9.633 \mathrm{e}+004$

11Cl-PF30UdS
F68:MRM of 2 channels,ES
(100

68:MRM of 2 channels,ES-
$630.9>83$

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES $614.7>569.7$

Dataset: P:\PFAS5.PRO\RESULTSI200220P1\200220P1-41.qld

Last Altered: Tuesday, February 25, 2020 11:46:15 Pacific Standard Time
Printed: Tuesday, February 25, 2020 11:46:42 Pacific Standard Time

Name: 200220P1-41, Date: 21-Feb-2020, Time: 00:24:12, ID: 2000314-05 DUP01-20200212 0.24538, Description: DUP01-20200212

PFDoA

F62:MRM of 4 channels,ES
F62:MRM of 4 channels,ES-
$612.9>569.0$
$5.490 \mathrm{e}+002$

13C2-PFDoA-EIS

F63:MRM of 1 channel,ES$614.7>569.7$

PFTrDA

F71:MRM of 2 channels,ES

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES 614.7 > 569.7 $3.277 e+005$

PFTeDA

13C2-PFTeDA-EIS

TDCA

F38:MRM of 3 channels,ES$498.3>123.9$

13C8-PFOS-EIS
F42:MRM of 1 channel,ES $507.0>79.7$ $8.850 \mathrm{e}+004$

13C4-PFBA
F4:MRM of 1 channel,ES

13C5-PFHxA
F15:MRM of 1 channel,ES $318.0>272.9$


```
Dataset: P:\PFAS5.PRO\RESULTS\200220P1\200220P1-41.qld
```

Last Altered: Tuesday, February 25, 2020 11:46:15 Pacific Standard Time
Printed: Tuesday, February 25, 2020 11:46:42 Pacific Standard Time

Name: 200220P1-41, Date: 21-Feb-2020, Time: 00:24:12, ID: 2000314-05 DUP01-20200212 0.24538, Description: DUP01-20200212

13C9-PFNA

Dataset: P:IPFAS5.PRO\RESULTSI200220P11200220P1-42.qld
 Last Altered: Tuesday, February 25, 2020 11:48:33 Pacific Standard Time Printed: Tuesday, February 25, 2020 11:49:01 Pacific Standard Time

Name: 200220P1-42, Date: 21-Feb-2020, Time: 00:34:45, ID: 2000314-06 I006MW01S-20200212 0.2551, Description: I006MW01S-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	$299.0>79.7$	1.47 e 4	1.45 e 3	0.255		2.68	2.68	127	216.6131		3.129	NO
2	7 PFHxA	$313.0>269.0$	1.02 e 6	1.82 e 4	0.255		3.19	3.19	700	3092.7677 E*		17.041	NO
3	9 HFPO-DA	$285.1>168.9$		3.66 e 3	0.255		3.39						
4	11 PFHpA	$363.0>318.9$	7.90 e 5	1.13 e 4	0.255		3.78	3.78	873	$3108.2978{ }^{\text {E* }}$		24.318	NO
5	12 ADONA	$376.8>250.9$		1.13 e 4	0.255		3.88						
6	51 13C3-PFBS-EIS	$302.0>98.8$	1.45 e 3		0.255	114.516	2.70	2.68	1450	49.6882	101.4		
7	57 13C2-PFHxA-EIS	$315.0>270.0$	1.82 e 4		0.255	1636.234	3.19	3.19	18200	43.5722	88.9		
8	53 13C3-HFPO-DA-EIS	$287.0>168.9$	3.66 e 3		0.255	293.118	3.43	3.39	3660	48.8961	99.8		
9	59 13C4-PFHpA-EIS	$367.2>321.8$	1.13 e 4		0.255	1106.802	3.79	3.78	11300	40.0593	81.8		
10	59 13C4-PFHpA-EIS	$367.2>321.8$	1.13 e 4		0.255	1106.802	3.79	3.78	11300	40.0593	81.8		
11	-1												
12	13 L-PFHxS	$398.9>79.7$	6.49 e 4	2.88 e 3	0.255		3.92	3.92	282	1062.6979		2.337	NO
13	1... Total PFHxS	$398.9>79.7$	6.49 e 4	2.88 e 3	0.255		3.93		282	1062.6979			
14	16 L-PFOA	$412.8>368.9$	6.55 e 5	1.72 e 4	0.255		4.29	4.29	475	1696.0408		3.001	NO
15	1... Total PFOA	$412.8>368.9$	6.55 e 5	1.72 e 4	0.255		4.60		475	1696.0408			
16	21 PFNA	$463.0>418.8$	1.64 e 4	1.58 e 4	0.255		4.72	4.72	13.0	41.2340		8.248	NO
17	61 13C3-PFHxS-EIS	$401.8>79.7$	2.88 e 3		0.255	252.668	3.92	3.92	2880	44.6258	91.1		
18	61 13C3-PFHxS-EIS	$401.8>79.7$	2.88 e 3		0.255	252.668	3.92	3.92	2880	44.6258	91.1		
19	69 13C2-PFOA-EIS	$414.9>369.7$	1.72 e 4		0.255	1527.160	4.29	4.29	17200	44.1932	90.2		
20	69 13C2-PFOA-EIS	$414.9>369.7$	1.72 e 4		0.255	1527.160	4.29	4.29	17200	44.1932	90.2		
21	65 13C5-PFNA-EIS	$468.2>422.9$	1.58 e 4		0.255	1373.362	4.72	4.72	15800	44.9636	91.8		
22	-1												
23	23 L-PFOS	$498.9>79.7$	1.32 e 4	3.50 e 3	0.255		4.80	4.80	47.2	199.3191		2.503	NO
24	1... Total PFOS	$498.9>79.7$	1.32 e 4	3.50 e 3	0.255		5.13		47.2	199.3191			
25	25 9CI-PF30NS	$530.7>350.8$		3.50 e 3	0.255		5.01						
26	26 PFDA	$513>468.8$	8.01 e 2	1.49 e 4	0.255		5.08	5.08	0.672	1.9148		12.178	NO
27	33 PFUdA	$563.0>518.9$		1.57 e 4	0.255		5.40						
28	71 13C8-PFOS-EIS	$507.0>79.7$	3.50 e 3		0.255	295.805	4.80	4.80	3500	46.3335	94.6		
29	71 13C8-PFOS-EIS	$507.0>79.7$	3.50 e 3		0.255	295.805	4.80	4.80	3500	46.3335	94.6		
30	71 13C8-PFOS-EIS	$507.0>79.7$	3.50 e 3		0.255	295.805	4.80	4.80	3500	46.3335	94.6		
31	73 13C2-PFDA-EIS	$515.1>469.9$	1.49 e 4		0.255	1356.410	5.08	5.08	14900	43.0257	87.8		
32	79 13C2-PFUdA-EIS	$565>519.8$	1.57 e 4		0.255	1416.449	5.40	5.40	15700	43.4996	88.8		
33	-1												
34	29 L-MeFOSAA	$570>419$		3.07 e 3	0.255		5.23						
35	1... Total N-MeFOSAA	570. >419	0.00 e 0	3.07e3	0.255		5.19		0.000				
36	31 L-EtFOSAA	$584.1>419$		3.57 e 3	0.255		5.38						

Dataset:	P:\PFAS5.PRO\RESULTS\200220P1\200220P1-42.qld
Last Altered:	Tuesday, February 25, 2020 11:48:33 Pacific Standard Time
Printed:	Tuesday, February 25, 2020 11:49:01 Pacific Standard Time

Name: 200220P1-42, Date: 21-Feb-2020, Time: 00:34:45, ID: 2000314-06 1006MW01S-20200212 0.2551, Description: 1006MW01S-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	1... Total N-EtFOSAA	$584.1>419$	0.00e0	3.57e3	0.255		5.37		0.000				
38	35 11CI-PF30UdS	$630.9>450.9$		1.28 e 4	0.255		5.60						
39	77 d3-N-MeFOSAA-EIS	$573.3>419$	3.07 e 3		0.255	262.877	5.22	5.23	3070	45.7307	93.3		
40	77 d3-N-MeFOSAA-EIS	$573.3>419$	3.07 e 3		0.255	262.877	5.22	5.23	3070	45.7307	93.3		
41	$81 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}-E I S$	$589.3>419$	3.57 e 3		0.255	360.983	5.37	5.38	3570	38.7565	79.1		
42	$81 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}-\mathrm{EIS}$	$589.3>419$	3.57 e 3		0.255	360.983	5.37	5.38	3570	38.7565	79.1		
43	83 13C2-PFDoA-EIS	$614.7>569.7$	1.28 e 4		0.255	1573.093	5.67	5.67	12800	31.9679	65.2		
44	-1												
45	37 PFDoA	$612.9>569.0$	3.77 e 1	1.28 e 4	0.255		5.67	5.67	0.0367			13.701	NO
46	39 PFTrDA	$662.9>618.9$		1.28 e 4	0.255		5.93						
47	41 PFTeDA	$713.0>669.0$		1.43 e 4	0.255		6.12						
48	1... TDCA	$498.3>106.9$			0.255		4.59						
49	99 13C4-PFBA	$217.0>172.0$	1.10e4	1.10 e 4	0.255	1.000	1.48	1.47	12.5	49.0004	100.0		
50	83 13C2-PFDoA-EIS	614.7 > 569.7	1.28 e 4		0.255	1573.093	5.67	5.67	12800	31.9679	65.2		
51	83 13C2-PFDoA-EIS	$614.7>569.7$	1.28 e 4		0.255	1573.093	5.67	5.67	12800	31.9679	65.2		
52	89 13C2-PFTeDA-EIS	$715.1>669.7$	1.43 e 4		0.255	1440.513	6.11	6.12	14300	38.9990	79.6		
53	71 13C8-PFOS-EIS	$507.0>79.7$	3.50e3		0.255	295.805	4.80	4.80	3500	46.3335	94.6		
54	1... 13C5-PFHxA	318.0 > 272.9	1.70e4	1.70e4	0.255	1.000	3.18	3.19	12.5	49.0004	100.0		
55	-1												
56	1... 18O2-PFHxS	403.0 > 102.6	1.22 e 3	1.22 e 3	0.255	1.000	3.92	3.92	12.5	49.0004	100.0		
57	1... 13C6-PFDA	$519.1>473.7$	1.85 e 4	1.85 e 4	0.255	1.000	5.08	5.08	12.5	49.0004	100.0		
58	1... 13C7-PFUdA	$570.1>524.8$	1.91 e 4	1.91 e 4	0.255	1.000	5.40	5.40	12.5	49.0004	100.0		
59	1... 13C4-PFOS	$503>79.7$	3.78 e 3	3.78 e 3	0.255	1.000	4.79	4.80	12.5	49.0004	100.0		
60	1... 13C9-PFNA	$472.2>426.9$	1.65 e 4	1.65 e 4	0.255	1.000	4.72	4.72	12.5	49.0004	100.0		

Dataset:	P:IPFAS5.PRO\RESULTS\200220P1\200220P1-42.qld
Last Altered:	Tuesday, February 25, 2020 11:48:33 Pacific Standard Time
Printed:	Tuesday, February 25, 2020 11:49:01 Pacific Standard Time

Method: P:\PFAS5.PRO\MethDB\NEW_PFAS_80C_022020.mdb 21 Feb 2020 08:56:55

Calibration: P:\PFAS5.PRO\CurveDB\C18_VAL-PFAS_Q5_02-20-20.cdb 21 Feb 2020 15:57:11

Name: 200220P1-42, Date: 21-Feb-2020, Time: 00:34:45, ID: 2000314-06 I006MW01S-20200212 0.2551, Description: I006MW01S-20200212

13C3-PFBS-EIS
F12:MRM of 1 channel,ES-

13C2-PFHxA-EIS

13C3-HFPO-DA-EIS

13C4-PFHpA-EIS
F21:MRM of 1 channel,ES-
$367.2>321.8$

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES367.2 > 321.8

Dataset: P:\PFAS5.PRO\RESULTS\200220P1\200220P1-42.qld

Last Altered: Tuesday, February 25, 2020 11:48:33 Pacific Standard Time
Printed: \quad Tuesday, February 25, 2020 11:49:01 Pacific Standard Time

Name: 200220P1-42, Date: 21-Feb-2020, Time: 00:34:45, ID: 2000314-06 I006MW01S-20200212 0.2551, Description: I006MW01S-20200212

L-PFHxS		
F23:MRM of 2 channels,ES-		
	L-PFHxS	398.9 > 79.7
100	3.92	$1.273 \mathrm{e}+006$
	6.49e4	
	1272895	
\%-	MM	
	9148.95	

13C3-PFHxS-EIS

F24:MRM of 1 channel,ES

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES $401.8>79.7$ $7.029 e+004$

L-PFOA

F26:MRM of 2 channels,ES-

13C2-PFOA-EIS
F27:MRM of 1 channel,ES-
$414.9>369.7$

Total PFOA

13C2-PFOA-EIS
F27:MRM of 1 channel,ES $414.9>369.7$ $4.234 \mathrm{e}+005$

PFNA

1007	F34:MRM of 2 channels,ES-$463.0>418.8$	
	PFNA	$4.310 \mathrm{e}+005$
	4.72	
	1.64 e 4	
\% -	429453	
,	bb	
	6585.92	

F34:MRM of 2 channels,ES463.0 > 219.0

13C5-PFNA-EIS
F35:MRM of 1 channel,ES $468.2>422.9$

Dataset: P:|PFAS5.PRO\RESULTSI200220P1\200220P1-42.qld

Last Altered:	Tuesday, February 25, 2020 11:48:33 Pacific Standard Time
Printed:	Tuesday, February 25, 2020 11:49:01 Pacific Standard Time

Name: 200220P1-42, Date: 21-Feb-2020, Time: 00:34:45, ID: 2000314-06 I006MW01S-20200212 0.2551, Description: I006MW01S-20200212

L-PFOS

13C8-PFOS-EIS

F39:MRM of 2 channels,ES

13C8-PFOS-EIS

9CI-PF30NS

F51:MRM of 2 channels,ES-

13C8-PFOS-EIS

13C2-PFDA-EIS
F45:MRM of 1 channel,ES$515.1>469.9$

PFUdA

	F54:MRM of 2 channels,ES	
		563
100	PFUdA	
	5.40	
	1.14 e 2	
\%-	3480	
	MM-	
	3480.00	5.49

13C2-PFUdA-EIS
F55:MRM of 1 channel,ES $565>519.8$

Dataset: P:\PFAS5.PRO\RESULTSI200220P1\200220P1-42.qld

Last Altered: Tuesday, February 25, 2020 11:48:33 Pacific Standard Time
Printed: Tuesday, February 25, 2020 11:49:01 Pacific Standard Time

Name: 200220P1-42, Date: 21-Feb-2020, Time: 00:34:45, ID: 2000314-06 I006MW01S-20200212 0.2551, Description: I006MW01S-20200212

L-MeFOSAA

F56:MRM of 2 channels,ES-

d3-N-MeFOSAA-EIS
F58:MRM of 1 channel,ES $573.3>419$ $7.184 \mathrm{e}+004$

d5-N-EtFOSAA-EIS
F60:MRM of 1 channel,ES$589.3>419$

d5-N-EtFOSAA-EIS
F60:MRM of 1 channel,ES
$589.3>419$ $9.214 \mathrm{e}+004$

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES $614.7>569.7$

Dataset: P:\PFAS5.PRO\RESULTSI200220P1\200220P1-42.qld

Last Altered: Tuesday, February 25, 2020 11:48:33 Pacific Standard Time
Printed: \quad Tuesday, February 25, 2020 11:49:01 Pacific Standard Time

Name: 200220P1-42, Date: 21-Feb-2020, Time: 00:34:45, ID: 2000314-06 I006MW01S-20200212 0.2551, Description: I006MW01S-20200212

PFDoA

F62:MRM of 4 channels,ES-

13C2-PFDoA-EIS

F63:MRM of 1 channel,ES $614.7>569.7$ $3.160 \mathrm{e}+005$

PFTrDA

F71:MRM of 2 channels,ES channels,ES

F71:MRM of 2 channels,ES $662.9>319$

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES 614.7 > 569.7 $3.160 \mathrm{e}+005$

PFTeDA
F73:MRM of 2 channels,ES-
$713.0>669.0$

13C2-PFTeDA-EIS
F74:MRM of 2 channels,ES$715.1>669.7$

TDCA

13C8-PFOS-EIS
F42:MRM of 1 channel,ES $507.0>79.7$ $9.111 \mathrm{e}+004$

13C4-PFBA
F4:MRM of 1 channel,ES

13C5-PFHxA
F15:MRM of 1 channel,ES $318.0>272.9$


```
Dataset: P:\PFAS5.PRO\RESULTS\200220P1\200220P1-42.qld
```

Last Altered: Tuesday, February 25, 2020 11:48:33 Pacific Standard Time
Printed: Tuesday, February 25, 2020 11:49:01 Pacific Standard Time

Name: 200220P1-42, Date: 21-Feb-2020, Time: 00:34:45, ID: 2000314-06 I006MW01S-20200212 0.2551, Description: I006MW01S-20200212

13C9-PFNA

Quantify Sample Report

Dataset: P:IPFAS5.PROIRESULTSI200225P1\200225P1-57-59.qld

Last Altered: Friday, February 28, 2020 12:07:19 Pacific Standard Time

Printed:

 Friday, February 28, 2020 12:13:21 Pacific Standard TimeName: 200225P1-57, Date: 26-Feb-2020, Time: 03:46:59, ID: 2000314-06@5X I006MW01S-20200212 0.2551, Description: I006MW01S-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	RT	Response	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
1	7 PFHxA	313.0 > 269.0	231848.984	4121.923	0.255		3.13	703.097	3085.6		NO	16.310	NO
2	11 PFHpA	$363.0>318.9$	185539.094	2617.150	0.255		3.72	886.170	3276.1		NO	31.171	NO
3	1... 13C5-PFHxA	$318.0>272.9$	4063.925	4063.925	0.255	1.000	3.13	12.500	49.0	100.0	NO		
4	57 13C2-PFHxA-EIS	$315.0>270.0$	4121.923		0.255	1794.782	3.13	4121.923	9.0	18.4	YES		
5	59 13C4-PFHPA-EIS	$367.2>321.8$	2617.150		0.255	1233.447	3.72	2617.150	8.3	17.0	YES		
6	-1												

Quantify Sample Report

Dataset: P:\PFAS5.PRO\RESULTS\200225P1\200225P1-57-59.qld

Last Altered: Friday, February 28, 2020 12:07:19 Pacific Standard Time Printed: Friday, February 28, 2020 12:13:21 Pacific Standard Time

Method: P:\PFAS5.PRO\MethDB\NEW_PFAS_80C_022520.mdb 26 Feb 2020 11:36:08 Calibration: P:\PFAS5.PRO\CurveDB\C̄18_VAL-PFAS_Q5_02-25-20.cdb 26 Feb 2020 11:25:03

Name: 200225P1-57, Date: 26-Feb-2020, Time: 03:46:59, ID: 2000314-06@5X I006MW01S-20200212 0.2551, Description: I006MW01S-20200212

PFHxA

200225P1-57 Smooth(Mn,1x2)		F13:MRM of 2 channels,ES
		$\begin{array}{r} 313.0>269.0 \\ 6.083 e+006 \end{array}$
100 $\begin{array}{r}\text { I } \\ \text { \% }\end{array}$	3.13	
	2.32 e 5	
\%-	6056293	
	bb	
	11204.87	

200225P1-57 Smooth(Mn,1x2) F13:MRM of 2 channels, ES

PFHxA	
3.13	
100	
1.42 e 4	
381231	
bb	
381231.00	

13C2-PFHxA-EIS

200225P1-57 Smooth(Mn,1x2) F14:MRM of 1 channel,ES-

PFHpA

13C4-PFHpA-EIS

13C5-PFHxA

Dataset: P:IPFAS5.PROTRESULTS|200225P1\200225P1-57-59.qld
 Last Altered: Friday, February 28, 2020 12:17:10 Pacific Standard Time
 Printed: Friday, February 28, 2020 12:18:53 Pacific Standard Time

Name: 200225P1-59, Date: 26-Feb-2020, Time: 04:07:59, ID: 2000314-07 I006MW08S-20200212 0.25052, Description: 1006MW08S-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	$299.0>79.7$	3.56 e 4	1.38 e 3	0.251		2.62	2.62	322	556.7756		3.242	NO
2	7 PFHxA	$313.0>269.0$	2.30 e 5	2.04 e 4	0.251		3.13	3.13	141	629.7592		16.383	NO
3	9 HFPO-DA	$285.1>168.9$		3.61 e 3	0.251		3.34						YES
4	11 PFHpA	$363.0>318.9$	4.21 e 4	1.52 e 4	0.251		3.73	3.73	34.5	111.6694		32.650	NO
5	12 ADONA	$376.8>250.9$		1.52 e 4	0.251		3.82						YES
6	51 13C3-PFBS-EIS	$302.0>98.8$	1.38 e 3		0.251	120.043	2.66	2.62	1380	45.9898	92.2		
7	57 13C2-PFHxA-EIS	$315.0>270.0$	2.04 e 4		0.251	1794.782	3.13	3.13	20400	45.2783	90.7		
8	53 13C3-HFPO-DA-EIS	$287.0>168.9$	3.61 e 3		0.251	314.205	3.39	3.34	3610	45.8247	91.8		
9	59 13C4-PFHpA-EIS	$367.2>321.8$	1.52 e 4		0.251	1233.447	3.74	3.73	15200	49.3491	98.9		
10	59 13C4-PFHpA-EIS	367.2 > 321.8	1.52 e 4		0.251	1233.447	3.74	3.73	15200	49.3491	98.9		
11	-1												
12	13 L-PFHxS	$398.9>79.7$	1.03 e 5	2.63 e 3	0.251		3.86	3.86	490	1920.0323		2.189	NO
13	1... Total PFHxS	$398.9>79.7$	1.03 e 5	2.63 e 3	0.251		3.93		490	1920.0323			
14	16 L-PFOA	$412.8>368.9$	8.58 e 4	1.96 e 4	0.251		4.23	4.23	54.7	194.0455		2.746	NO
15	1... Total PFOA	$412.8>368.9$	8.58 e 4	1.96 e 4	0.251		4.60		54.7	194.0455			
16	21 PFNA	$463.0>418.8$	9.82 e 2	1.82 e 4	0.251		4.67	4.67	0.673	1.7521		8.686	NO
17	61 13C3-PFHxS-EIS	$401.8>79.7$	2.63 e 3		0.251	273.316	3.86	3.86	2630	38.3773	76.9		
18	61 13C3-PFHxS-EIS	$401.8>79.7$	2.63 e 3		0.251	273.316	3.86	3.86	2630	38.3773	76.9		
19	69 13C2-PFOA-EIS	$414.9>369.7$	1.96 e 4		0.251	1593.567	4.23	4.23	19600	49.1029	98.4		
20	69 13C2-PFOA-EIS	$414.9>369.7$	1.96 e 4		0.251	1593.567	4.23	4.23	19600	49.1029	98.4		
21	65 13C5-PFNA-EIS	$468.2>422.9$	1.82 e 4		0.251	1492.001	4.67	4.67	18200	48.7914	97.8		
22	-1												
23	23 L-PFOS	$498.9>79.7$	4.83 e 4	3.31 e 3	0.251		4.75	4.61	182	778.5254		2.575	NO
24	1... Total PFOS	$498.9>79.7$	4.83 e 4	3.31 e 3	0.251		5.13		182	778.5254			
25	25 9CI-PF30NS	$530.7>350.8$		3.31 e 3	0.251		4.96						YES
26	26 PFDA	$513>468.8$		1.95 e 4	0.251		5.04						YES
27	33 PFUdA	$563.0>518.9$		1.76 e 4	0.251		5.35						YES
28	71 13C8-PFOS-EIS	$507.0>79.7$	3.31 e 3		0.251	291.759	4.75	4.75	3310	45.3235	90.8		
29	71 13C8-PFOS-EIS	$507.0>79.7$	3.31 e 3		0.251	291.759	4.75	4.75	3310	45.3235	90.8		
30	71 13C8-PFOS-EIS	$507.0>79.7$	3.31 e 3		0.251	291.759	4.75	4.75	3310	45.3235	90.8		
31	73 13C2-PFDA-EIS	$515.1>469.9$	1.95 e 4		0.251	1635.176	5.04	5.04	19500	47.5577	95.3		
32	79 13C2-PFUdA-EIS	$565>519.8$	1.76 e 4		0.251	1617.090	5.35	5.35	17600	43.3562	86.9		
33	-1												
34	29 L-MeFOSAA	$570>419$		3.70 e 3	0.251		5.18						YES
35	1... Total N-MeFOSAA	570. >419	0.00e0	3.70 e 3	0.251		5.19		0.000				
36	31 L-EtFOSAA	$584.1>419$		4.41 e 3	0.251		5.33						YES

Work Order 2000314

Dataset:	P:\PFAS5.PRO\RESULTS\200225P1\200225P1-57-59.qld
Last Altered:	Friday, February 28, 2020 12:17:10 Pacific Standard Time
Printed:	Friday, February 28, 2020 12:18:53 Pacific Standard Time

Name: 200225P1-59, Date: 26-Feb-2020, Time: 04:07:59, ID: 2000314-07 1006MW08S-20200212 0.25052, Description: 1006MW08S-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	1... Total N-EtFOSAA	$584.1>419$	0.00e0	4.41e3	0.251		5.37		0.000				
38	35 11CI-PF30UdS	$630.9>450.9$		1.44e4	0.251		5.56						YES
39	77 d3-N-MeFOSAA-EIS	$573.3>419$	3.70 e 3		0.251	330.310	5.18	5.18	3700	44.7527	89.7		
40	77 d3-N-MeFOSAA-EIS	$573.3>419$	3.70 e 3		0.251	330.310	5.18	5.18	3700	44.7527	89.7		
41	$81 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$-EIS	$589.3>419$	4.41 e 3		0.251	395.337	5.32	5.33	4410	44.5383	89.3		
42	81 d5-N-EtFOSAA-EIS	$589.3>419$	4.41 e 3		0.251	395.337	5.32	5.33	4410	44.5383	89.3		
43	83 13C2-PFDoA-EIS	$614.7>569.7$	1.44 e 4		0.251	1686.253	5.62	5.62	14400	34.0878	68.3		
44	-1												
45	37 PFDoA	$612.9>569.0$		1.44e4	0.251		5.62						YES
46	39 PFTrDA	$662.9>618.9$		1.44e4	0.251		5.88						YES
47	41 PFTeDA	$713.0>669.0$		1.55 e 4	0.251		6.07						YES
48	1... TDCA	$498.3>106.9$			0.251		4.59						YES
49	99 13C4-PFBA	$217.0>172.0$	1.30 e 4	1.30 e 4	0.251	1.000	1.42	1.41	12.5	49.8962	100.0		
50	83 13C2-PFDoA-EIS	$614.7>569.7$	1.44 e 4		0.251	1686.253	5.62	5.62	14400	34.0878	68.3		
51	83 13C2-PFDoA-EIS	$614.7>569.7$	1.44 e 4		0.251	1686.253	5.62	5.62	14400	34.0878	68.3		
52	89 13C2-PFTeDA-EIS	$715.1>669.7$	1.55 e 4		0.251	1896.410	6.05	6.07	15500	32.6295	65.4		
53	71 13C8-PFOS-EIS	$507.0>79.7$	3.31 e 3		0.251	291.759	4.75	4.75	3310	45.3235	90.8		
54	1... 13C5-PFHxA	$318.0>272.9$	2.12 e 4	2.12 e 4	0.251	1.000	3.13	3.13	12.5	49.8962	100.0		
55	-1												
56	1... 18O2-PFHxS	$403.0>102.6$	1.27 e 3	1.27 e 3	0.251	1.000	3.86	3.86	12.5	49.8962	100.0		
57	1... 13C6-PFDA	$519.1>473.7$	2.14 e 4	2.14 e 4	0.251	1.000	5.04	5.04	12.5	49.8962	100.0		
58	1... 13C7-PFUdA	$570.1>524.8$	1.91 e 4	1.91e4	0.251	1.000	5.35	5.35	12.5	49.8962	100.0		
59	1... 13C4-PFOS	$503>79.7$	4.04 e 3	4.04 e 3	0.251	1.000	4.75	4.75	12.5	49.8962	100.0		
60	1... 13C9-PFNA	$472.2>426.9$	1.95 e 4	1.95 e 4	0.251	1.000	4.67	4.67	12.5	49.8962	100.0		

Dataset:	P:\PFAS5.PRO\RESULTS\200225P1\200225P1-57-59.qld
Last Altered:	Friday, February 28, 2020 12:17:10 Pacific Standard Time
Printed:	Friday, February 28, 2020 12:18:53 Pacific Standard Time

Method: P:|PFAS5.PRO\MethDB\NEW_PFAS_80C_022520.mdb 26 Feb 2020 11:36:08

Calibration: P:\PFAS5.PRO\CurveDB\C18_VAL-PFAS_Q5_02-25-20.cdb 26 Feb 2020 11:25:03

Name: 200225P1-59, Date: 26-Feb-2020, Time: 04:07:59, ID: 2000314-07 I006MW08S-20200212 0.25052, Description: I006MW08S-20200212

PFBS		
F11:MRM of 2 channels,ES-		
	PFBS	$9.144 \mathrm{e}+005$
100	2.62	
	3.56 e 4	
\%	910428	
	bb	
-	8747.78	
	\|1T11	Tापा丁 min

13C3-PFBS-EIS

PFHxA
F13:MRM of 2 channels,ES-
$313.0>269.0$
$6.008 \mathrm{e}+006$

13C3-HFPO-DA-EIS

P20:MRM of 2 channels,ES-
$363.0>318.9$
$1.041 \mathrm{e}+006$

13C4-PFHpA-EIS
F21:MRM of 1 channel,ES-
$367.2>321.8$
$3.773 \mathrm{e}+005$

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES-

Dataset:	P:\PFAS5.PRO\RESULTS\200225P1\200225P1-57-59.qld
Last Altered:	Friday, February 28, 2020 12:17:10 Pacific Standard Time
Printed:	Friday, February 28, 2020 12:18:53 Pacific Standard Time

Name: 200225P1-59, Date: 26-Feb-2020, Time: 04:07:59, ID: 2000314-07 I006MW08S-20200212 0.25052, Description: I006MW08S-20200212

L-PFHxS

F23:MRM of 2 channels,ES$398.9>79.7$ $1.988 \mathrm{e}+006$

F23:MRM of 2 channels,ES$398.9>98.7$ $9.453 e+005$

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES $401.8>79.7$ $6.530 \mathrm{e}+004$

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES $401.8>79.7$ $6.530 \mathrm{e}+004$

L-PFOA

13C2-PFOA-EIS
F27:MRM of 1 channel,ES-
$414.9>369.7$

Total PFOA

13C2-PFOA-EIS
F27:MRM of 1 channel,ES414.9 > 369.7 $4.686 \mathrm{e}+005$

PFNA

F34:MRM of 2 channels,ES$463.0>219.0$

13C5-PFNA-EIS
F35:MRM of 1 channel,ES $468.2>422.9$

Dataset:
 P:\PFAS5.PRO\RESULTS\200225P1\200225P1-57-59.qld
 Last Altered: Friday, February 28, 2020 12:17:10 Pacific Standard Time Printed: Friday, February 28, 2020 12:18:53 Pacific Standard Time

Name: 200225P1-59, Date: 26-Feb-2020, Time: 04:07:59, ID: 2000314-07 I006MW08S-20200212 0.25052, Description: I006MW08S-20200212

L-PFOS

F39:MRM of 2 channels,ES$498.9>98.7$ $2.031 e+005$

F42:MRM of 1 channel,ES

F39:MRM of 2 channels,ES $498.9>98.7$ $2.031 e+005$

13C8-PFOS-EIS

9Cl-PF30NS

F51:MRM of 2 channels,ES-
$530.7>350.8$
4.99

13C8-PFOS-EIS

F44:MRM of 2 channels,ES-
$513>219$

13C2-PFDA-EIS
F45:MRM of 1 channel,ES $515.1>469.9$ $5.082 e+005$

PFUdA

13C2-PFUdA-EIS
F55:MRM of 1 channel,ES$565>519.8$

Dataset:	P:\PFAS5.PRO\RESULTS\200225P1\200225P1-57-59.qld
Last Altered:	Friday, February 28, 2020 12:17:10 Pacific Standard Time
Printed:	Friday, February 28, 2020 12:18:53 Pacific Standard Time

Name: 200225P1-59, Date: 26-Feb-2020, Time: 04:07:59, ID: 2000314-07 I006MW08S-20200212 0.25052, Description: I006MW08S-20200212

L-MeFOSAA

F56:MRM of 2 channels,ES-

F56:MRM of 2 channels,ES-
570. > 512

d3-N-MeFOSAA-EIS
F58:MRM of 1 channel,ES-
$573.3>419$ $8.985 \mathrm{e}+004$

Total N-MeFOSAA

F56:MRM of 2 channels,ES
$570>419$
(

F56:MRM of 2 channels,ES 570. > 512

d3-N-MeFOSAA-EIS

L-EtFOSAA

F59:MRM of 2 channels,ES$584.1>419$

d5-N-EtFOSAA-EIS
F60:MRM of 1 channel,ES-
$589.3>419$

Total N-EtFOSAA

F59:MRM of 2 channels,ES-

F59:MRM of 2 channels,ES- | $584.1>419$ |
| ---: |
| $1.023 \mathrm{e}+002$ |

d5-N-EtFOSAA-EIS
F60:MRM of 1 channel,ES-
$589.3>419$ $1.209 e+005$

11CI-PF30UdS

F68:MRM of 2 channels,ES

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES $614.7>569.7$

Dataset:	P:IPFAS5.PRO\RESULTS\200225P1\200225P1-57-59.qld
Last Altered:	Friday, February 28, 2020 12:17:10 Pacific Standard Time
Printed:	Friday, February 28, 2020 12:18:53 Pacific Standard Time

Name: 200225P1-59, Date: 26-Feb-2020, Time: 04:07:59, ID: 2000314-07 I006MW08S-20200212 0.25052, Description: I006MW08S-20200212

PFDoA

F62:MRM of 4 channels,ES-

F62:MRM of 4 channels,ES- | $612.9>569.0$ |
| ---: |
| $6.893 \mathrm{e}+002$ |

13C2-PFDoA-EIS

PFTrDA

F71:MRM of 2 channels,ES-

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES$614.7>569.7$ $3.437 e+005$

PFTeDA

F73:MRM of 2 channels,ES-

13C2-PFTeDA-EIS

TDCA

13C8-PFOS-EIS
F42:MRM of 1 channel,ES$507.0>79.7$ $8.570 \mathrm{e}+004$

13C4-PFBA
F4:MRM of 1 channel,ES$217.0>172.0$ $2.823 \mathrm{e}+005$

13C5-PFHxA
F15:MRM of 1 channel,ES$318.0>272.9$

Dataset: P:IPFAS5.PRO\RESULTS\200225P1\200225P1-57-59.qld

Last Altered: Friday, February 28, 2020 12:17:10 Pacific Standard Time Printed: Friday, February 28, 2020 12:18:53 Pacific Standard Time

Name: 200225P1-59, Date: 26-Feb-2020, Time: 04:07:59, ID: 2000314-07 I006MW08S-20200212 0.25052, Description: I006MW08S-20200212

1802-PFHxS

F25:MRM of 1 channel,ES-

13C6-PFDA
F47:MRM of 1 channel,ES
$519.1>473.7$ $5.570 \mathrm{e}+005$

13C4-PFOS
F40:MRM of 1 channel,ES-
channel,
503
$>$
79.7
$503>79.7$
$1.015 e+005$

13C9-PFNA

Dataset: P:|PFAS5.PRO\RESULTSI200220P1\200220P1-44.qld

Last Altered: Friday, February 28, 2020 15:13:53 Pacific Standard Time
*See Dilution
Printed:
Friday, February 28, 2020 15:15:37 Pacific Standard Time

Name: 200220P1-44, Date: 21-Feb-2020, Time: 00:55:45, ID: 2000314-08 BMW07S-20200212 0.2539, Description: BMW07S-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	$299.0>79.7$	3.32 e 4	1.39 e 3	0.254		2.68	2.68	300	515.4625		3.180	NO
2	7 PFHxA	$313.0>269.0$	7.64 e 5	2.06 e 4	0.254		3.19	3.19	463	2056.8462		16.809	NO
3	9 HFPO-DA	$285.1>168.9$		4.03 e 3	0.254		3.40						
4	11 PFHpA	$363.0>318.9$	1.96 e 5	1.27 e 4	0.254		3.78	3.79	192	624.6137		22.792	NO
5	12 ADONA	$376.8>250.9$		1.27 e 4	0.254		3.88						
6	51 13C3-PFBS-EIS	$302.0>98.8$	1.39 e 3		0.254	114.516	2.70	2.68	1390	47.6526	96.8		
7	57 13C2-PFHxA-EIS	$315.0>270.0$	2.06 e 4		0.254	1636.234	3.19	3.19	20600	49.6330	100.8		
8	53 13C3-HFPO-DA-EIS	$287.0>168.9$	4.03 e 3		0.254	293.118	3.43	3.40	4030	54.0967	109.9		
9	59 13C4-PFHpA-EIS	$367.2>321.8$	1.27 e 4		0.254	1106.802	3.79	3.78	12700	45.2842	92.0		
10	59 13C4-PFHpA-EIS	367.2 > 321.8	1.27 e 4		0.254	1106.802	3.79	3.78	12700	45.2842	92.0		
11	-1												
12	13 L-PFHxS	$398.9>79.7$	1.90 e 5	2.88 e 3	0.254		3.92	3.92	823	3435.9057		2.381	NO
13	1... Total PFHxS	$398.9>79.7$	1.90 e 5	2.88 e 3	0.254		3.93		823	3435.9057			
14	16 L-PFOA	$412.8>368.9$	2.68 e 6	1.61 e 4	0.254		4.29	4.29	2080			2.773	NO
15	1... Total PFOA	412.8 > 368.9	2.68 e 6	1.61 e 4	0.254		4.60		0.000				
16	21 PFNA	$463.0>418.8$	9.80 e 3	1.56 e 4	0.254		4.72	4.72	7.87	24.9685		7.816	NO
17	61 13C3-PFHxS-EIS	$401.8>79.7$	2.88 e 3		0.254	252.668	3.92	3.92	2880	44.9660	91.3		
18	61 13C3-PFHxS-EIS	$401.8>79.7$	2.88 e 3		0.254	252.668	3.92	3.92	2880	44.9660	91.3		
19	69 13C2-PFOA-EIS	$414.9>369.7$	1.61 e 4		0.254	1527.160	4.29	4.29	16100	41.6047	84.5		
20	69 13C2-PFOA-EIS	$414.9>369.7$	1.61 e 4		0.254	1527.160	4.29	4.29	16100	41.6047	84.5		
21	65 13C5-PFNA-EIS	468.2 > 422.9	1.56 e 4		0.254	1373.362	4.72	4.72	15600	44.6684	90.7		
22	-1												
23	23 L-PFOS	498.9 > 79.7	7.65 e 4	3.64 e3	0.254		4.80	4.80	263	1099.4192		2.389	NO
24	1... Total PFOS	$498.9>79.7$	7.65 e 4	3.64 e3	0.254		5.13		263	1099.4192			
25	259 CI -PF30NS	$530.7>350.8$		3.64 e 3	0.254		5.01						
26	26 PFDA	$513>468.8$	8.34 e 2	1.93 e 4	0.254		5.08	5.08	0.540	1.5002		50.946	YES
27	33 PFUdA	$563.0>518.9$		1.90 e 4	0.254		5.40						
28	71 13C8-PFOS-EIS	$507.0>79.7$	3.64 e 3		0.254	295.805	4.80	4.80	3640	48.4524	98.4		
29	71 13C8-PFOS-EIS	$507.0>79.7$	3.64 e 3		0.254	295.805	4.80	4.80	3640	48.4524	98.4		
30	71 13C8-PFOS-EIS	$507.0>79.7$	3.64 e 3		0.254	295.805	4.80	4.80	3640	48.4524	98.4		
31	73 13C2-PFDA-EIS	$515.1>469.9$	1.93 e 4		0.254	1356.410	5.08	5.08	19300	56.0325	113.8		
32	79 13C2-PFUdA-EIS	$565>519.8$	1.90 e 4		0.254	1416.449	5.40	5.40	19000	52.7180	107.1		
33	-1												
34	$29 \mathrm{~L}-\mathrm{MeFOSAA}$	$570>419$		3.50 e 3	0.254		5.23						
35	1... Total N-MeFOSAA	570. >419	0.00e0	3.50 e 3	0.254		5.19		0.000				
36	31 L-EtFOSAA	$584.1>419$		4.29 e 3	0.254		5.38						

Work Order 2000314

Dataset:	P:\PFAS5.PRO\RESULTS\200220P1\200220P1-44.qld
Last Altered:	Friday, February 28, 2020 15:13:53 Pacific Standard Time
Printed:	Friday, February 28, 2020 15:15:37 Pacific Standard Time

Name: 200220P1-44, Date: 21-Feb-2020, Time: 00:55:45, ID: 2000314-08 BMW07S-20200212 0.2539, Description: BMW07S-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	1... Total N-EtFOSAA	$584.1>419$	0.00 e 0	4.29e3	0.254		5.37		0.000				
38	3511 Cl -PF30UdS	$630.9>450.9$		1.70 e 4	0.254		5.60						
39	77 d3-N-MeFOSAA-EIS	$573.3>419$	3.50 e3		0.254	262.877	5.22	5.23	3500	52.3970	106.4		
40	77 d3-N-MeFOSAA-EIS	$573.3>419$	3.50 e 3		0.254	262.877	5.22	5.23	3500	52.3970	106.4		
41	81 d5-N-EtFOSAA-EIS	$589.3>419$	4.29 e 3		0.254	360.983	5.37	5.38	4290	46.8418	95.1		
42	$81 \mathrm{~d} 5-\mathrm{N}$-EtFOSAA-EIS	$589.3>419$	4.29 e 3		0.254	360.983	5.37	5.38	4290	46.8418	95.1		
43	83 13C2-PFDoA-EIS	$614.7>569.7$	1.70 e 4		0.254	1573.093	5.67	5.67	17000	42.5650	86.5		
44	-1												
45	37 PFDoA	$612.9>569.0$		1.70 e 4	0.254		5.67						
46	39 PFTrDA	$662.9>618.9$		1.70 e 4	0.254		5.93						
47	41 PFTeDA	713.0 > 669.0		1.84 e 4	0.254		6.12						
48	1... TDCA	$498.3>106.9$			0.254		4.59						
49	99 13C4-PFBA	217.0 > 172.0	1.31 e 4	1.31 e 4	0.254	1.000	1.48	1.48	12.5	49.2320	100.0		
50	83 13C2-PFDoA-EIS	$614.7>569.7$	1.70 e 4		0.254	1573.093	5.67	5.67	17000	42.5650	86.5		
51	83 13C2-PFDoA-EIS	$614.7>569.7$	1.70 e 4		0.254	1573.093	5.67	5.67	17000	42.5650	86.5		
52	89 13C2-PFTeDA-EIS	$715.1>669.7$	1.84 e 4		0.254	1440.513	6.11	6.12	18400	50.3480	102.3		
53	71 13C8-PFOS-EIS	507.0 > 79.7	3.64 e 3		0.254	295.805	4.80	4.80	3640	48.4524	98.4		
54	1... 13C5-PFHxA	$318.0>272.9$	1.99 e 4	1.99 e 4	0.254	1.000	3.18	3.19	12.5	49.2320	100.0		
55	-1												
56	1... 1802-PFHxS	$403.0>102.6$	1.20 e 3	1.20e3	0.254	1.000	3.92	3.92	12.5	49.2320	100.0		
57	1... 13C6-PFDA	$519.1>473.7$	2.03 e 4	2.03 e 4	0.254	1.000	5.08	5.08	12.5	49.2320	100.0		
58	1... 13C7-PFUdA	$570.1>524.8$	1.97 e 4	1.97 e 4	0.254	1.000	5.40	5.40	12.5	49.2320	100.0		
59	1... 13C4-PFOS	$503>79.7$	3.69 e3	3.69 e3	0.254	1.000	4.79	4.80	12.5	49.2320	100.0		
60	1... 13C9-PFNA	472.2 > 426.9	1.78 e 4	1.78 e 4	0.254	1.000	4.72	4.72	12.5	49.2320	100.0		

Dataset: P:IPFAS5.PRO\RESULTSI200220P1\200220P1-44.qld
Last Altered: Friday, February 28, 2020 15:13:53 Pacific Standard Time
Printed: \quad Friday, February 28, 2020 15:15:37 Pacific Standard Time

Method: P:|PFAS5.PRO\MethDB\NEW_PFAS_80C_022020.mdb 21 Feb 2020 08:56:55

Calibration: P:\PFAS5.PRO\CurveDB\C18_VAL-PFAS_Q5_02-20-20.cdb 21 Feb 2020 15:57:11

Name: 200220P1-44, Date: 21-Feb-2020, Time: 00:55:45, ID: 2000314-08 BMW07S-20200212 0.2539, Description: BMW07S-20200212

13C3-HFPO-DA-EIS
F10:MRM of 2 channels,ES-
 $287.0>168.9$

13C4-PFHpA-EIS

ADONA

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES$367.2>321.8$

Dataset: P:\PFAS5.PRO\RESULTS\200220P1\200220P1-44.qld

Last Altered: Friday, February 28, 2020 15:13:53 Pacific Standard Time
Printed: \quad Friday, February 28, 2020 15:15:37 Pacific Standard Time

Name: 200220P1-44, Date: 21-Feb-2020, Time: 00:55:45, ID: 2000314-08 BMW07S-20200212 0.2539, Description: BMW07S-20200212

L-PFHxS

F23:MRM of 2 channels,ES-

13C3-PFHxS-EIS

F24:MRM of 1 channel,ES$401.8>79.7$ $6.793 \mathrm{e}+004$

Total PFHxS

F23:MRM of 2 channels,ES

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES $401.8>79.7$ $6.793 \mathrm{e}+004$

L-PFOA

F26:MRM of 2 channels,ES $412.8>169$

13C2-PFOA-EIS
F27:MRM of 1 channel,ES$414.9>369.7$ $3.772 \mathrm{e}+005$

Total PFOA

F26:MRM of 2 channels,ES$412.8>368.9$ $5.118 e+007$

13C2-PFOA-EIS

F27:MRM of 1 channel,ES-
414.9 > 369.7 $3.772 \mathrm{e}+005$

PFNA

13C5-PFNA-EIS
F35:MRM of 1 channel,ES $468.2>422.9$

Dataset:	P:\PFAS5.PRO\RESULTS\200220P1\200220P1-44.qld	
Last Altered:	Friday, February 28, 2020 15:13:53 Pacific Standard Time	*Peak Confirmed
Printed:	Friday, February 28, 2020 15:15:37 Pacific Standard Time	

Name: 200220P1-44, Date: 21-Feb-2020, Time: 00:55:45, ID: 2000314-08 BMW07S-20200212 0.2539, Description: BMW07S-20200212

L-PFOS

13C8-PFOS-EIS

13C8-PFOS-EIS

F42:MRM of 1 channel,ES $507.0>79.7$ $9.292 \mathrm{e}+004$

F51:MRM of 2 channels,ES-

13C8-PFOS-EIS

13C2-PFDA-EIS
F45:MRM of 1 channel,ES-
$515.1>469.9$ $5.166 e+005$

PFUdA

F54:MRM of 2 channels,ES $563.0>269$
1.030 e +001

13C2-PFUdA-EIS
F55:MRM of 1 channel,ES

Dataset: P:\PFAS5.PRO\RESULTS\200220P1\200220P1-44.qld

Last Altered: Friday, February 28, 2020 15:13:53 Pacific Standard Time
Printed: Friday, February 28, 2020 15:15:37 Pacific Standard Time

Name: 200220P1-44, Date: 21-Feb-2020, Time: 00:55:45, ID: 2000314-08 BMW07S-20200212 0.2539, Description: BMW07S-20200212

L-MeFOSAA

F56:MRM of 2 channels,ES-

F56:MRM of 2 channels,ES-

d3-N-MeFOSAA-EIS

F56:MRM of 2 channels,ES

d3-N-MeFOSAA-EIS

F59:MRM of 2 channels,ES-
$584.1>526$

d5-N-EtFOSAA-EIS

11Cl-PF30UdS

F68:MRM of 2 channels,ES-
$630.9>450.9$
$9.092 e+001$

F68:MRM of 2 channels,ES-
$630.9>83$

Dataset: P:\PFAS5.PRO\RESULTS\200220P1\200220P1-44.qld

Last Altered: Friday, February 28, 2020 15:13:53 Pacific Standard Time
Printed: Friday, February 28, 2020 15:15:37 Pacific Standard Time

Name: 200220P1-44, Date: 21-Feb-2020, Time: 00:55:45, ID: 2000314-08 BMW07S-20200212 0.2539, Description: BMW07S-20200212

PFDoA
 F62:MRM of 4 channels,ES-

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES614.7 > 569.7 $4.222 \mathrm{e}+005$

PFTrDA

F71:MRM of 2 channels,ES

13C2-PFDoA-EIS

F63:MRM of 1 channel,ES $614.7>569.7$ $4.222 \mathrm{e}+005$

PFTeDA

F73:MRM of 2 channels,ES
$713.0>669.0$
$6.456 .583 \mathrm{e}+002$

13C2-PFTeDA-EIS

TDCA
F38:MRM of 3 channels,ES-
$498.3>106.9$
$1.485 \mathrm{e}+002$

13C8-PFOS-EIS
F42:MRM of 1 channel,ES$507.0>79.7$ $9.292 \mathrm{e}+004$

13C4-PFBA
F4:MRM of 1 channel,ES-
$217.0>172.0$
$2.641 \mathrm{e}+005$

Dataset: P:\PFAS5.PRO\RESULTSI200220P1\200220P1-44.qld

Last Altered: Friday, February 28, 2020 15:13:53 Pacific Standard Time
Printed: Friday, February 28, 2020 15:15:37 Pacific Standard Time

Name: 200220P1-44, Date: 21-Feb-2020, Time: 00:55:45, ID: 2000314-08 BMW07S-20200212 0.2539, Description: BMW07S-20200212

Quantify Sample Report

Dataset: P:IPFAS5.PROIRESULTSI200225P1\200225P1-61-63.qld

Last Altered: Friday, February 28, 2020 12:21:53 Pacific Standard Time Printed: Friday, February 28, 2020 12:25:05 Pacific Standard Time

Name: 200225P1-61, Date: 26-Feb-2020, Time: 04:28:59, ID: 2000314-08@5X BMW07S-20200212 0.2539, Description: BMW07S-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	RT	Response	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
1	7 PFHxA	$313.0>269.0$	187282.922	4961.587	0.254		3.13	471.832	2080.3		NO	17.081	NO
2	13 L-PFHxS	$398.9>79.7$	47261.031	741.137	0.254		3.86	797.103	3081.2		NO	2.376	NO
3	1... Total PFHxS	$398.9>79.7$	47261.031	741.137	0.254			797.103	3081.2		NO		
4	1... 13C5-PFHxA	$318.0>272.9$	5007.460	5007.460	0.254	1.000	3.13	12.500	49.2	100.0	NO		
5	1... 18O2-PFHxS	$403.0>102.6$	279.106	279.106	0.254	1.000	3.86	12.500	49.2	100.0	NO		
6	57 13C2-PFHxA-EIS	$315.0>270.0$	4961.587		0.254	1794.782	3.13	4961.587	10.9	22.1	YES		
7	61 13C3-PFHxS-EIS	$401.8>79.7$	741.137		0.254	273.316	3.86	741.137	10.7	21.7	YES		
8	61 13C3-PFHxS-EIS	$401.8>79.7$	741.137		0.254	273.316	3.86	741.137	10.7	21.7	YES		
9	-1												

Quantify Sample Report
Vista Analytical Laborator

Dataset: P:IPFAS5.PROIRESULTSI200225P1\200225P1-61-63.qld

Last Altered: Friday, February 28, 2020 12:21:53 Pacific Standard Time Printed: Friday, February 28, 2020 12:25:05 Pacific Standard Time

Method: P:|PFAS5.PRO\MethDB\NEW_PFAS_80C_022520.mdb 26 Feb 2020 11:36:08

Calibration: P:|PFAS5.PRO|CurveDBIC18_VAL-PFAS_Q5_02-25-20.cdb 26 Feb 2020 11:25:03

Name: 200225P1-61, Date: 26-Feb-2020, Time: 04:28:59, ID: 2000314-08@5X BMW07S-20200212 0.2539, Description: BMW07S-20200212
PFHxA
F13:MRM of 2 channels,ES-
$313.0>269.0$
$5.055 e+006$

13C2-PFHxA-EIS
F14:MRM of 1 channel,ES-
$315.0>270.0$ $1.345 \mathrm{e}+005$

Total PFHxS

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES-
401.8 > 79.7
$1.965 \mathrm{e}+004$

Name: 200227P1-89, Date: 28-Feb-2020, Time: 06:55:34, ID: 2000314-08@10X BMW07S-20200212 0.2539, Description: BMW07S-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	RT	Response	Conc. *	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
1	16 L-PFOA	412.8 > 368.9	330244.469	2052.650	0.254		4.18	2.011	6.29		NO	2.929	NO
2	1... Total PFOA	412.8 > 368.9	330244.469	2052.650	0.254			2.011	6.29		NO		
3	1... 13C8-PFOA	420.9 > 376.0	1954.885	1954.885	0.254	1.000	4.18	0.013	0.0492	100.0	NO		
4	69 13C2-PFOA-EIS	414.9 > 369.7	2052.650		0.254	1782.464	4.18	2052.650	4.54	9212.6	YES		
5	69 13C2-PFOA-EIS	414.9 > 369.7	2052.650		0.254	1782.464	4.18	2052.650	4.54	9212.6	YES		

Dataset:
P:IPFAS5.PRO\RESULTS\200227P1\200227P1-89.qld
Last Altered: Friday, February 28, 2020 12:50:40 Pacific Standard Time
Printed:
Friday, February 28, 2020 12:51:59 Pacific Standard Time

Method: P:|PFAS5.PRO\MethDB\NEW_PFAS_80C_022720.mdb 28 Feb 2020 10:51:32

Calibration: P:\PFAS5.PRO\CurveDB\C̄18_VAL-PFAS_Q5_02-27-20.cdb 28 Feb 2020 09:57:55

Name: 200227P1-89, Date: 28-Feb-2020, Time: 06:55:34, ID: 2000314-08@10X BMW07S-20200212 0.2539, Description: BMW07S-20200212

L-PFOA

200227P1-89 Smooth(Mn, 1x2) F26:MRM of 2 channels, ES-

		412.8 > 368.9
	L-PFOA	$7.005 \mathrm{e}+006$
1007	4.18	
	3.30 e 5	
\%	7004519	
\%	MM	
	24210.25	

200227P1-89 Smooth(Mn, 1x2) F26:MRM of 2 channels,ES-

13C2-PFOA-EIS

200227P1-89 Smooth(Mn,1x2) F27:MRM of 1 channel,ES-

Total PFOA

13C2-PFOA-EIS
200227P1-89 Smooth(Mn,1x2) F27:MRM of 1 channel,ES-

13C8-PFOA
200227P1-89 Smooth(Mn,1x2) F28:MRM of 1 channel,ES-

Dataset:	P:IPFAS5.PRO\RESULTSI200225P11200225P1-61-63.qld
Last Altered:	Friday, February 28, 2020 12:29:02 Pacific Standard Time
Printed:	Friday, February 28, 2020 12:31:25 Pacific Standard Time

Name: 200225P1-63, Date: 26-Feb-2020, Time: 04:50:01, ID: 2000314-09 1005MW01SR-20200212 0.25498, Description: I005MW01SR-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	299.0 > 79.7	3.65e4	1.55 e 3	0.255		2.62	2.62	295	501.3893		3.211	NO
2	7 PFHxA	313.0 > 269.0	5.81e5	2.10 e 4	0.255		3.13	3.13	345	1516.0696		17.085	NO
3	9 HFPO-DA	$285.1>168.9$		3.71 e 3	0.255		3.34						YES
4	11 PFHpA	363.0 > 318.9	1.48 e 5	1.50e4	0.255		3.73	3.73	123	395.1474		30.976	NO
5	12 ADONA	376.8 > 250.9		1.50e4	0.255		3.82						YES
6	51 13C3-PFBS-EIS	$302.0>98.8$	1.55 e 3		0.255	120.043	2.66	2.62	1550	50.5275	103.1		
7	57 13C2-PFHxA-EIS	315.0 > 270.0	2.10 e 4		0.255	1794.782	3.13	3.13	21000	45.9532	93.7		
8	53 13C3-HFPO-DA-EIS	$287.0>168.9$	3.71 e 3		0.255	314.205	3.39	3.34	3710	46.2958	94.4		
9	59 13C4-PFHpA-EIS	367.2 > 321.8	1.50 e 4		0.255	1233.447	3.74	3.73	15000	47.8140	97.5		
10	59 13C4-PFHpA-EIS	367.2 > 321.8	1.50 e 4		0.255	1233.447	3.74	3.73	15000	47.8140	97.5		
11	-1												
12	13 L-PFHxS	$398.9>79.7$	1.56 e 5	3.06 e 3	0.255		3.86	3.86	639	2457.8202 *E		2.288	NO
13	1... Total PFHxS	$398.9>79.7$	1.56 e 5	3.06 e 3	0.255		3.93		639	2457.8202			
14	16 L-PFOA	412.8 > 368.9	1.46 e 6	1.95 e4	0.255		4.23	4.23	933	3727.4133 *E		2.850	NO
15	1... Total PFOA	412.8 > 368.9	1.46 e 6	1.95 e 4	0.255		4.60		933	3727.4133			
16	21 PFNA	$463.0>418.8$	1.14 e 4	1.88 e 4	0.255		4.67	4.67	7.54	24.5348		7.492	NO
17	61 13C3-PFHxS-EIS	$401.8>79.7$	3.06 e 3		0.255	273.316	3.86	3.86	3060	43.9445	89.6		
18	61 13C3-PFHxS-EIS	$401.8>79.7$	3.06 e 3		0.255	273.316	3.86	3.86	3060	43.9445	89.6		
19	69 13C2-PFOA-EIS	414.9 > 369.7	1.95 e 4		0.255	1593.567	4.23	4.23	19500	47.9907	97.9		
20	69 13C2-PFOA-EIS	414.9 > 369.7	1.95 e 4		0.255	1593.567	4.23	4.23	19500	47.9907	97.9		
21	65 13C5-PFNA-EIS	468.2 > 422.9	1.88 e 4		0.255	1492.001	4.67	4.67	18800	49.5106	101.0		
22	-1												
23	23 L-PFOS	498.9 > 79.7	7.20 e 4	3.52e3	0.255		4.75	4.75	256	1075.8743		2.392	NO
24	1... Total PFOS	$498.9>79.7$	7.20 e 4	3.52e3	0.255		5.13		256	1075.8743			
25	25 9CI-PF30NS	$530.7>350.8$		3.52e3	0.255		4.96						YES
26	26 PFDA	$513>468.8$	6.72 e 2	2.00 e 4	0.255		5.04	5.04	0.419	1.1793		13.612	NO
27	33 PFUdA	$563.0>518.9$		1.97e4	0.255		5.35						YES
28	71 13C8-PFOS-EIS	$507.0>79.7$	3.52e3		0.255	291.759	4.75	4.75	3520	47.3011	96.5		
29	71 13C8-PFOS-EIS	$507.0>79.7$	3.52e3		0.255	291.759	4.75	4.75	3520	47.3011	96.5		
30	71 13C8-PFOS-EIS	$507.0>79.7$	3.52e3		0.255	291.759	4.75	4.75	3520	47.3011	96.5		
31	73 13C2-PFDA-EIS	$515.1>469.9$	2.00 e 4		0.255	1635.176	5.04	5.04	20000	48.0293	98.0		
32	79 13C2-PFUdA-EIS	$565>519.8$	1.97e4		0.255	1617.090	5.35	5.35	19700	47.7312	97.4		
33	-1												
34	$29 \mathrm{~L}-\mathrm{MeFOSAA}$	$570>419$		4.17e3	0.255		5.18						YES
35	1... Total N-MeFOSAA	570. > 419	0.00 e 0	4.17 e 3	0.255		5.19		0.000				
36	$31 \mathrm{~L}-\mathrm{EtFOSAA}$	$584.1>419$		5.16 e 3	0.255		5.33						YES

Dataset:	P:\PFAS5.PRO\RESULTS\200225P1\200225P1-61-63.qld
Last Altered:	Friday, February 28, 2020 12:29:02 Pacific Standard Time
Printed:	Friday, February 28, 2020 12:31:25 Pacific Standard Time

Name: 200225P1-63, Date: 26-Feb-2020, Time: 04:50:01, ID: 2000314-09 I005MW01SR-20200212 0.25498, Description: I005MW01SR-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	1... Total N-EtFOSAA	$584.1>419$	0.00e0	5.16 e 3	0.255		5.37		0.000				
38	35 11CI-PF30UdS	$630.9>450.9$		1.49e4	0.255		5.56						YES
39	77 d3-N-MeFOSAA-EIS	$573.3>419$	4.17 e 3		0.255	330.310	5.18	5.18	4170	49.5283	101.0		
40	77 d3-N-MeFOSAA-EIS	$573.3>419$	4.17 e 3		0.255	330.310	5.18	5.18	4170	49.5283	101.0		
41	81 d5-N-EtFOSAA-EIS	$589.3>419$	5.16 e 3		0.255	395.337	5.32	5.33	5160	51.2094	104.5		
42	81 d5-N-EtFOSAA-EIS	$589.3>419$	5.16 e 3		0.255	395.337	5.32	5.33	5160	51.2094	104.5		
43	83 13C2-PFDoA-EIS	$614.7>569.7$	1.49 e 4		0.255	1686.253	5.62	5.62	14900	34.6942	70.8		
44	-1												
45	37 PFDoA	$612.9>569.0$		1.49e4	0.255		5.62						YES
46	39 PFTrDA	$662.9>618.9$		1.49e4	0.255		5.88						YES
47	41 PFTeDA	$713.0>669.0$		1.86 e 4	0.255		6.07						YES
48	1... TDCA	$498.3>106.9$			0.255		4.59						YES
49	99 13C4-PFBA	$217.0>172.0$	1.27 e 4	1.27e4	0.255	1.000	1.42	1.40	12.5	49.0235	100.0		
50	83 13C2-PFDoA-EIS	$614.7>569.7$	1.49 e 4		0.255	1686.253	5.62	5.62	14900	34.6942	70.8		
51	83 13C2-PFDoA-EIS	$614.7>569.7$	1.49 e 4		0.255	1686.253	5.62	5.62	14900	34.6942	70.8		
52	89 13C2-PFTeDA-EIS	$715.1>669.7$	1.86 e 4		0.255	1896.410	6.05	6.07	18600	38.5194	78.6		
53	71 13C8-PFOS-EIS	$507.0>79.7$	3.52e3		0.255	291.759	4.75	4.75	3520	47.3011	96.5		
54	1... 13C5-PFHxA	$318.0>272.9$	2.09 e 4	2.09 e 4	0.255	1.000	3.13	3.13	12.5	49.0235	100.0		
55	-1												
56	1... 18O2-PFHxS	403.0 > 102.6	1.30 e 3	1.30 e 3	0.255	1.000	3.86	3.86	12.5	49.0235	100.0		
57	1... 13C6-PFDA	$519.1>473.7$	2.03 e 4	2.03 e 4	0.255	1.000	5.04	5.04	12.5	49.0235	100.0		
58	1... 13C7-PFUdA	$570.1>524.8$	2.09 e 4	2.09 e 4	0.255	1.000	5.35	5.35	12.5	49.0235	100.0		
59	1... 13C4-PFOS	$503>79.7$	3.72 e 3	3.72 e 3	0.255	1.000	4.75	4.75	12.5	49.0235	100.0		
60	1... 13C9-PFNA	$472.2>426.9$	1.89 e 4	1.89 e 4	0.255	1.000	4.67	4.67	12.5	49.0235	100.0		

Dataset:	P:\PFAS5.PRO\RESULTS\200225P1\200225P1-61-63.qld
Last Altered:	Friday, February 28, 2020 12:29:02 Pacific Standard Time
Printed:	Friday, February 28, 2020 12:31:25 Pacific Standard Time

Method: P:\PFAS5.PRO\MethDB\NEW_PFAS_80C_022520.mdb 26 Feb 2020 11:36:08 Calibration: P:|PFAS5.PRO\CurveDB\C18_VAL-PFAS_Q5_02-25-20.cdb 26 Feb 2020 11:25:03

Name: 200225P1-63, Date: 26-Feb-2020, Time: 04:50:01, ID: 2000314-09 I005MW01SR-20200212 0.25498, Description: I005MW01SR-20200212

PFHxA

13C3-PFBS-EIS

F12:MRM of 1 channel,ES-

13C2-PFHxA-EIS
F14:MRM of 1 channel,ES-
$315.0>270.0$
100

13C3-HFPO-DA-EIS
F10:MRM of 2 channels,ES-
$287.0>168.9$
100

13C4-PFHpA-EIS

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES367.2 > 321.8

Dataset:	P:IPFAS5.PRO\RESULTS\200225P1\200225P1-61-63.qld
Last Altered:	Friday, February 28, 2020 12:29:02 Pacific Standard Time
Printed:	Friday, February 28, 2020 12:31:25 Pacific Standard Time

Name: 200225P1-63, Date: 26-Feb-2020, Time: 04:50:01, ID: 2000314-09 I005MW01SR-20200212 0.25498, Description: I005MW01SR-20200212

L-PFHxS

F23:MRM of 2 channels,ES-
$398.9>79.7$
$00-9.984 \mathrm{e}+006$

F23:MRM of 2 channels,ES$398.9>98.7$ $1.428 \mathrm{e}+006$

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES $401.8>79.7$ $7.496 \mathrm{e}+004$

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES $401.8>79.7$ $7.496 e+004$

L-PFOA

13C2-PFOA-EIS
F27:MRM of 1 channel,ES$414.9>369.7$

Total PFOA

F26:MRM of 2 channels,ES$412.8>368.9$ $2.881 \mathrm{e}+007$

13C2-PFOA-EIS
F27:MRM of 1 channel,ES$414.9>369.7$ $4.615 \mathrm{e}+005$

PFNA

F34:MRM of 2 channels,ES$463.0>219.0$ PFNA $4.058 \mathrm{e}+004$

13C5-PFNA-EIS
F35:MRM of 1 channel,ES $468.2>422.9$

Dataset:	P:\PFAS5.PRO\RESULTS\200225P1\200225P1-61-63.qld	
Last Altered:	Friday, February 28, 2020 12:29:02 Pacific Standard Time	*Peak confirmed
Printed:	Friday, February 28, 2020 12:31:25 Pacific Standard Time	

Name: 200225P1-63, Date: 26-Feb-2020, Time: 04:50:01, ID: 2000314-09 I005MW01SR-20200212 0.25498, Description: I005MW01SR-20200212

L-PFOS

F39:MRM of 2 channels,ES-
$498.9>79.7$
$1.025 \mathrm{e}+006$

F39:MRM of 2 channels,ES$498.9>98.7$

 F42:MRM of 1 channel,ES-
$507.0>79.7$
$8.470 \mathrm{e}+004$

9Cl-PF30NS

F51:MRM of 2 channels,ES-

F51:MRM of 2 channels,ES- | $530.7>350.8$ |
| ---: |
| $2.738 \mathrm{e}+001$ |

F51:MRM of 2 channels,ES-

13C8-PFOS-EIS

13C2-PFDA-EIS
F45:MRM of 1 channel,ES$515.1>469.9$ $5.067 e+005$

PFUdA

F54:MRM of 2 channels,ES$563.0>269$

13C2-PFUdA-EIS
F55:MRM of 1 channel,ES$565>519.8$

Dataset:	P:\PFAS5.PRO\RESULTS\200225P1\200225P1-61-63.qld
Last Altered:	Friday, February 28, 2020 12:29:02 Pacific Standard Time
Printed:	Friday, February 28, 2020 12:31:25 Pacific Standard Time

Name: 200225P1-63, Date: 26-Feb-2020, Time: 04:50:01, ID: 2000314-09 I005MW01SR-20200212 0.25498, Description: I005MW01SR-20200212

L-MeFOSAA

F56:MRM of 2 channels,ES
100

$$
\begin{array}{r}
\text { F56:MRM of } 2 \text { channels,ES- } \\
570 .>512 \\
3.872 \mathrm{e}+002
\end{array}
$$

d3-N-MeFOSAA-EIS
F58:MRM of 1 channel,ES$573.3>419$ $9.813 \mathrm{e}+004$

d3-N-MeFOSAA-EIS

d5-N-EtFOSAA-EIS
F60:MRM of 1 channel,ES-
$589.3>419$

d5-N-EtFOSAA-EIS

F60:MRM of 1 channel,ES-
$589.3>419$ $1.385 e+005$

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES $614.7>569.7$

Dataset:	P:IPFAS5.PRO\RESULTS\200225P1\200225P1-61-63.qld
Last Altered:	Friday, February 28, 2020 12:29:02 Pacific Standard Time
Printed:	Friday, February 28, 2020 12:31:25 Pacific Standard Time

Name: 200225P1-63, Date: 26-Feb-2020, Time: 04:50:01, ID: 2000314-09 I005MW01SR-20200212 0.25498, Description: I005MW01SR-20200212

PFDoA

F62:MRM of 4 channels,ES$612.9>569.0$
100

13C2-PFDoA-EIS

F63:MRM of 1 channel,ES$614.7>569.7$ $3.594 e+005$

PFTrDA

F71:MRM of 2 channels,ES-

F71:MRM of 2 channels,ES

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES
$614.7>569.7$ $3.594 \mathrm{e}+005$

PFTeDA

13C2-PFTeDA-EIS
F74:MRM of 2 channels,ES$715.1>669.7$

TDCA

13C8-PFOS-EIS
F42:MRM of 1 channel,ES$507.0>79.7$ $8.470 \mathrm{e}+004$

13C4-PFBA
F4:MRM of 1 channel,ES $217.0>172.0$ $2.261 e+005$

13C5-PFHxA
F15:MRM of 1 channel,ES
$318.0>272.9$

Dataset: P:IPFAS5.PRO\RESULTS\200225P1\200225P1-61-63.qld

Last Altered: Friday, February 28, 2020 12:29:02 Pacific Standard Time Printed: Friday, February 28, 2020 12:31:25 Pacific Standard Time

Name: 200225P1-63, Date: 26-Feb-2020, Time: 04:50:01, ID: 2000314-09 I005MW01SR-20200212 0.25498, Description: I005MW01SR-20200212

1802-PFHxS

13C6-PFDA
F47:MRM of 1 channel,ES $519.1>473.7$ $5.232 e+005$

13C9-PFNA

Dataset:	P:\PFAS5.PRO\RESULTS\200225P1\200225P1-61-63.qld
Last Altered:	Friday, February 28, 2020 12:33:31 Pacific Standard Time
Printed:	Friday, February 28, 2020 15:33:09 Pacific Standard Time

Name: 200225P1-62, Date: 26-Feb-2020, Time: 04:39:30, ID: 2000314-09@5X I005MW01SR-20200212 0.25498, Description: I005MW01SR-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	RT	Response	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
1	13 L-PFHxS	$398.9>79.7$	45188.215	830.057	0.255		3.86	680.499	2619.3		NO	2.309	NO
2	1... Total PFHxS	$398.9>79.7$	45188.215	830.057	0.255			680.499	2619.3		NO		
3	16 L-PFOA	$412.8>368.9$	400517.031	5321.654	0.255		4.23	940.772	3764.6		NO	2.793	NO
4	1... Total PFOA	$412.8>368.9$	400517.031	5321.654	0.255			940.772	3764.6		NO		
5	61 13C3-PFHxS-EIS	$401.8>79.7$	830.057		0.255	273.316	3.86	830.057	11.9	24.3	YES		
6	61 13C3-PFHxS-EIS	$401.8>79.7$	830.057		0.255	273.316	3.86	830.057	11.9	24.3	YES		
7	69 13C2-PFOA-EIS	$414.9>369.7$	5321.654		0.255	1593.567	4.23	5321.654	13.1	26.7	YES		
8	69 13C2-PFOA-EIS	$414.9>369.7$	5321.654		0.255	1593.567	4.23	5321.654	13.1	26.7	YES		
9	-1												
10	99 13C4-PFBA	$217.0>172.0$	3314.165	3314.165	0.255	1.000	1.41	12.500	49.0	100.0	NO		
11	1... 18O2-PFHxS	$403.0>102.6$	274.499	274.499	0.255	1.000	3.87	12.500	49.0	100.0	NO		
12	1... 13C8-PFOA	$420.9>376.0$	5463.105	5463.105	0.255	1.000	4.23	12.500	49.0	100.0	NO		
13	-1												

Dataset: P:\PFAS5.PRO\RESULTS\200225P1\200225P1-61-63.qld
Last Altered: Friday, February 28, 2020 12:33:31 Pacific Standard Time Printed: \quad Friday, February 28, 2020 15:33:09 Pacific Standard Time

Method: P:\PFAS5.PRO\MethDB\NEW_PFAS_80C_022520.mdb 26 Feb 2020 11:36:08

Calibration: P:\PFAS5.PRO\CurveDB\C18_VAL-PFAS_Q5_02-25-20.cdb 26 Feb 2020 11:25:03

Name: 200225P1-62, Date: 26-Feb-2020, Time: 04:39:30, ID: 2000314-09@5X I005MW01SR-20200212 0.25498, Description: I005MW01SR-20200212

L-PFHxS

13C3-PFHxS-EIS

Total PFHxS

13C3-PFHxS-EIS

L-PFOA

13C2-PFOA-EIS

Total PFOA

13C2-PFOA-EIS

Dataset:	P:\PFAS5.PRO\RESULTS\200225P1\200225P1-61-63.qld
Last Altered:	Friday, February 28, 2020 12:33:31 Pacific Standard Time
Printed:	Friday, February 28, 2020 15:33:09 Pacific Standard Time

Name: 200225P1-62, Date: 26-Feb-2020, Time: 04:39:30, ID: 2000314-09@5X I005MW01SR-20200212 0.25498, Description: I005MW01SR-20200212

13C4-PFBA

1802-PFHxS

Dataset: P:IPFAS5.PRO\RESULTSI200220P1\200220P1-46.qld
 Last Altered: Tuesday, February 25, 2020 11:55:02 Pacific Standard Time
 Printed: Tuesday, February 25, 2020 11:56:21 Pacific Standard Time

Name: 200220P1-46, Date: 21-Feb-2020, Time: 01:16:46, ID: 2000314-10 DUP05-20200212 0.25284, Description: DUP05-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.		\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	$299.0>79.7$	3.03e4	1.25 e 3	0.253		2.68	2.68	304	524.7640			3.113	NO
2	7 PFHxA	$313.0>269.0$	4.80 e 5	1.77 e 4	0.253		3.19	3.19	338	1506.8598			16.557	NO
3	9 HFPO-DA	$285.1>168.9$		3.38 e 3	0.253		3.40							
4	11 PFHpA	$363.0>318.9$	1.19 e 5	1.17 e 4	0.253		3.78	3.79	127	411.4527			24.131	NO
5	12 ADONA	$376.8>250.9$		1.17 e 4	0.253		3.88							
6	51 13C3-PFBS-EIS	$302.0>98.8$	1.25 e 3		0.253	114.516	2.70	2.68	1250	43.1076		87.2		
7	57 13C2-PFHxA-EIS	$315.0>270.0$	1.77 e 4		0.253	1636.234	3.19	3.19	17700	42.8908		86.8		
8	53 13C3-HFPO-DA-EIS	$287.0>168.9$	3.38 e 3		0.253	293.118	3.43	3.40	3380	45.5790		92.2		
9	59 13C4-PFHpA-EIS	$367.2>321.8$	1.17 e 4		0.253	1106.802	3.79	3.78	11700	41.9270		84.8		
10	59 13C4-PFHpA-EIS	$367.2>321.8$	1.17 e 4		0.253	1106.802	3.79	3.78	11700	41.9270		84.8		
11	-1													
12	13 L-PFHxS	$398.9>79.7$	1.37 e 5	2.38 e 3	0.253		3.92	3.92	720	2957.4769	E*		2.383	NO
13	1... Total PFHxS	$398.9>79.7$	1.37 e 5	2.38 e 3	0.253		3.93		720	2957.4769				
14	16 L-PFOA	$412.8>368.9$	1.23 e 6	1.46 e 4	0.253		4.29	4.29	1060	4499.3415	E*		2.821	NO
15	1... Total PFOA	$412.8>368.9$	1.23 e 6	1.46 e 4	0.253		4.60		1060	4499.3415				
16	21 PFNA	$463.0>418.8$	9.87 e 3	1.47 e 4	0.253		4.72	4.72	8.36	26.6634			7.568	NO
17	61 13C3-PFHxS-EIS	$401.8>79.7$	2.38 e 3		0.253	252.668	3.92	3.92	2380	37.2924		75.4		
18	61 13C3-PFHxS-EIS	$401.8>79.7$	2.38 e 3		0.253	252.668	3.92	3.92	2380	37.2924		75.4		
19	69 13C2-PFOA-EIS	$414.9>369.7$	1.46 e 4		0.253	1527.160	4.29	4.29	14600	37.7530		76.4		
20	69 13C2-PFOA-EIS	$414.9>369.7$	1.46 e 4		0.253	1527.160	4.29	4.29	14600	37.7530		76.4		
21	65 13C5-PFNA-EIS	$468.2>422.9$	1.47 e 4		0.253	1373.362	4.72	4.72	14700	42.4742		85.9		
22	-1													
23	23 L-PFOS	$498.9>79.7$	6.30 e 4	2.98 e 3	0.253		4.80	4.80	264	1110.5456			2.342	NO
24	1... Total PFOS	$498.9>79.7$	6.30 e 4	2.98 e 3	0.253		5.13		264	1110.5456				
25	25 9CI-PF30NS	$530.7>350.8$		2.98 e 3	0.253		5.01							
26	26 PFDA	$513>468.8$	7.40 e 2	1.49 e 4	0.253		5.08	5.08	0.619	1.7593			14.922	YES
27	33 PFUdA	$563.0>518.9$	1.02 e 2	1.66 e 4	0.253		5.39	5.39	0.0765	0.3340			409.919	YES
28	71 13C8-PFOS-EIS	$507.0>79.7$	2.98 e 3		0.253	295.805	4.80	4.80	2980	39.8370		80.6		
29	71 13C8-PFOS-EIS	$507.0>79.7$	2.98 e 3		0.253	295.805	4.80	4.80	2980	39.8370		80.6		
30	71 13C8-PFOS-EIS	$507.0>79.7$	2.98 e 3		0.253	295.805	4.80	4.80	2980	39.8370		80.6		
31	73 13C2-PFDA-EIS	$515.1>469.9$	1.49 e 4		0.253	1356.410	5.08	5.08	14900	43.5879		88.2		
32	79 13C2-PFUdA-EIS	$565>519.8$	1.66 e 4		0.253	1416.449	5.40	5.39	16600	46.3934		93.8		
33	-1													
34	29 L-MeFOSAA	$570>419$		3.19 e 3	0.253		5.23							
35	1... Total N-MeFOSAA	570. >419	0.00 e 0	3.19 e 3	0.253		5.19		0.000					
36	31 L-EtFOSAA	$584.1>419$		3.59 e 3	0.253		5.38							

Dataset:	P:\PFAS5.PRO\RESULTS\200220P1\200220P1-46.qld
Last Altered:	Tuesday, February 25, 2020 11:55:02 Pacific Standard Time
Printed:	Tuesday, February 25, 2020 11:56:21 Pacific Standard Time

Name: 200220P1-46, Date: 21-Feb-2020, Time: 01:16:46, ID: 2000314-10 DUP05-20200212 0.25284, Description: DUP05-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	1... Total N-EtFOSAA	$584.1>419$	0.00e0	3.59e3	0.253		5.37		0.000				
38	3511 Cl -PF30UdS	$630.9>450.9$		1.45 e 4	0.253		5.60						
39	77 d3-N-MeFOSAA-EIS	$573.3>419$	3.19 e 3		0.253	262.877	5.22	5.23	3190	47.9236	96.9		
40	77 d3-N-MeFOSAA-EIS	$573.3>419$	3.19 e 3		0.253	262.877	5.22	5.23	3190	47.9236	96.9		
41	81 d5-N-EtFOSAA-EIS	$589.3>419$	3.59 e 3		0.253	360.983	5.37	5.38	3590	39.3332	79.6		
42	$81 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$-EIS	$589.3>419$	3.59 e 3		0.253	360.983	5.37	5.38	3590	39.3332	79.6		
43	83 13C2-PFDoA-EIS	$614.7>569.7$	1.45 e 4		0.253	1573.093	5.67	5.67	14500	36.4159	73.7		
44	-1												
45	37 PFDoA	612.9 > 569.0		1.45 e 4	0.253		5.67						
46	39 PFTrDA	$662.9>618.9$		1.45 e 4	0.253		5.93						
47	41 PFTeDA	$713.0>669.0$		1.49e4	0.253		6.12						
48	1... TDCA	$498.3>106.9$			0.253		4.59						
49	99 13C4-PFBA	$217.0>172.0$	1.14 e 4	1.14 e 4	0.253	1.000	1.48	1.48	12.5	49.4384	100.0		
50	83 13C2-PFDoA-EIS	$614.7>569.7$	1.45 e 4		0.253	1573.093	5.67	5.67	14500	36.4159	73.7		
51	83 13C2-PFDoA-EIS	$614.7>569.7$	1.45 e 4		0.253	1573.093	5.67	5.67	14500	36.4159	73.7		
52	89 13C2-PFTeDA-EIS	$715.1>669.7$	1.49 e 4		0.253	1440.513	6.10	6.12	14900	41.0115	83.0		
53	71 13C8-PFOS-EIS	$507.0>79.7$	2.98 e 3		0.253	295.805	4.80	4.80	2980	39.8370	80.6		
54	1... 13C5-PFHxA	318.0 > 272.9	1.77e4	1.77 e 4	0.253	1.000	3.18	3.19	12.5	49.4384	100.0		
55	-1												
56	1... 1802-PFHxS	$403.0>102.6$	1.12 e 3	1.12 e 3	0.253	1.000	3.92	3.92	12.5	49.4384	100.0		
57	1... 13C6-PFDA	$519.1>473.7$	$1.76 e 4$	1.76 e 4	0.253	1.000	5.08	5.08	12.5	49.4384	100.0		
58	1... 13C7-PFUdA	$570.1>524.8$	1.83 e 4	1.83 e 4	0.253	1.000	5.40	5.40	12.5	49.4384	100.0		
59	1... 13C4-PFOS	$503>79.7$	3.31 e 3	3.31 e 3	0.253	1.000	4.79	4.80	12.5	49.4384	100.0		
60	1... 13C9-PFNA	$472.2>426.9$	1.67 e 4	1.67 e 4	0.253	1.000	4.72	4.72	12.5	49.4384	100.0		

Dataset:	P:IPFAS5.PRO\RESULTS\200220P1\200220P1-46.qld
Last Altered:	Tuesday, February 25, 2020 11:55:02 Pacific Standard Time
Printed:	Tuesday, February 25, 2020 11:56:21 Pacific Standard Time

Method: P:\PFAS5.PRO\MethDB\NEW_PFAS_80C_022020.mdb 21 Feb 2020 08:56:55

Calibration: P:\PFAS5.PRO\CurveDB\C̄18_VAL-PFAS_Q5_02-20-20.cdb 21 Feb 2020 15:57:11

Name: 200220P1-46, Date: 21-Feb-2020, Time: 01:16:46, ID: 2000314-10 DUP05-20200212 0.25284, Description: DUP05-20200212

13C3-HFPO-DA-EIS
F10:MRM of 2 channels,ES-

Dataset: P:\PFAS5.PRO\RESULTS\200220P1\200220P1-46.qld

Last Altered: Tuesday, February 25, 2020 11:55:02 Pacific Standard Time
Printed: \quad Tuesday, February 25, 2020 11:56:21 Pacific Standard Time

Name: 200220P1-46, Date: 21-Feb-2020, Time: 01:16:46, ID: 2000314-10 DUP05-20200212 0.25284, Description: DUP05-20200212

L-PFHxS

F23:MRM of 2 channels,ES-

L-PFHxS	398.9 > 79.7
3.92	$2.510 \mathrm{e}+006$
1.37 e 5	
2510485	
MM	
61571.04	

13C3-PFHxS-EIS

L-PFOA

F26:MRM of 2 channels,ES-
F26:MRM of 2 channels,ES-
$412.8>368.9$

F26:MRM of 2 channels,ES$412.8>169$ $8.136 e+006$

13C3-PFHxS-EIS

13C2-PFOA-EIS
F27:MRM of 1 channel,ES 414.9 > 369.7 $3.537 e+005$

PFNA

F34:MRM of 2 channels,ES 463.0 > 219.0

13C5-PFNA-EIS
F35:MRM of 1 channel,ES $468.2>422.9$

Dataset: P:|PFAS5.PRO\RESULTS\200220P1\200220P1-46.qld

Last Altered: Tuesday, February 25, 2020 11:55:02 Pacific Standard Time
*Peak Confirmed
Printed: Tuesday, February 25, 2020 11:56:21 Pacific Standard Time

Name: 200220P1-46, Date: 21-Feb-2020, Time: 01:16:46, ID: 2000314-10 DUP05-20200212 0.25284, Description: DUP05-20200212

L-PFOS

F39:MRM of 2 channels,ES-
$498.9>79.7$
$9.123 \mathrm{e}+005$

F39:MRM of 2 channels,ES$498.9>98$.

F42:MRM of 1 channel,ES

F39:MRM of 2 channels,ES $498.9>98.7$

9Cl-PF30NS

F51:MRM of 2 channels,ES-channels,ES-
$530.7>350.8$
5.412 .7 > 350.8

13C8-PFOS-EIS

13C2-PFDA-EIS
F45:MRM of 1 channel,ES 515.1 > 469.9

PFUdA

F54:MRM of 2 channels,ES $563.0>518.9$

F54:MRM of 2 channels,ES $563.0>269$

13C2-PFUdA-EIS
F55:MRM of 1 channel,ES $565>519.8$

Dataset: P:\PFAS5.PRO\RESULTSI200220P1\200220P1-46.qld

Last Altered: Tuesday, February 25, 2020 11:55:02 Pacific Standard Time
Printed: Tuesday, February 25, 2020 11:56:21 Pacific Standard Time

Name: 200220P1-46, Date: 21-Feb-2020, Time: 01:16:46, ID: 2000314-10 DUP05-20200212 0.25284, Description: DUP05-20200212

L-MeFOSAA

F56:MRM of 2 channels, ES
100

d3-N-MeFOSAA-EIS
F58:MRM of 1 channel,ES
$573.3>419$ $7.929 e+004$

Total N-MeFOSAA

F56:MRM of 2 channels,ES $570>419$

56:MRM of 2 channels,ES-

d3-N-MeFOSAA-EIS
F58:MRM of 1 channel,ES $573.3>419$ $7.929 \mathrm{e}+004$

L-EtFOSAA

F59:MRM of 2 channels,ES-

d5-N-EtFOSAA-EIS
F60:MRM of 1 channel,ES589.3 > 419 $9.727 e+004$

Total N-EtFOSAA

F59:MRM of 2 channels,ES $584.1>419$

d5-N-EtFOSAA-EIS
F60:MRM of 1 channel,ES-
$589.3>419$ $9.727 e+004$

11CI-PF30UdS

F68:MRM of 2 channels,ES

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES $614.7>569.7$

Dataset: P:\PFAS5.PRO\RESULTSI200220P1\200220P1-46.qld

Last Altered: Tuesday, February 25, 2020 11:55:02 Pacific Standard Time
Printed: Tuesday, February 25, 2020 11:56:21 Pacific Standard Time

Name: 200220P1-46, Date: 21-Feb-2020, Time: 01:16:46, ID: 2000314-10 DUP05-20200212 0.25284, Description: DUP05-20200212

PFDoA

F62:MRM of 4 channels,ES

F62:MRM of 4 channels,ES- | $612.9>569.0$ |
| ---: |
| $8.145 \mathrm{e}+002$ |

PFTrDA

F71:MRM of 2 channels,ES$662.9>319$

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES 614.7 > 569.7 $3.611 e+005$

PFTeDA

F73:MRM of 2 channels,ES-

F73:MRM of 2 channels,ES-

13C2-PFTeDA-EIS

F74:MRM of 2 channels,ES$715.1>669.7$ $3.751 e+005$

TDCA
F38:MRM of 3 channels,ES-
$498.3>106.9$
$8.375 \mathrm{e}+001$

13C8-PFOS-EIS
F42:MRM of 1 channel,ES$507.0>79.7$ $7.381 e+004$

13C4-PFBA
F4:MRM of 1 channel,ES

13C5-PFHxA
F15:MRM of 1 channel,ES $318.0>272.9$

Dataset: P:\PFAS5.PRO\RESULTSI200220P1\200220P1-46.qld

Last Altered: Tuesday, February 25, 2020 11:55:02 Pacific Standard Time
Printed: Tuesday, February 25, 2020 11:56:21 Pacific Standard Time

Name: 200220P1-46, Date: 21-Feb-2020, Time: 01:16:46, ID: 2000314-10 DUP05-20200212 0.25284, Description: DUP05-20200212

13C9-PFNA

Dataset:	P:\PFAS5.PRO\RESULTS\200225P1\200225P1-65-66.qld
Last Altered:	Friday, February 28, 2020 12:43:33 Pacific Standard Time
Printed:	Friday, February 28, 2020 15:35:02 Pacific Standard Time

Name: 200225P1-65, Date: 26-Feb-2020, Time: 05:11:00, ID: 2000314-10@5X DUP05-20200212 0.25284, Description: DUP05-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	RT	Response	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
1	13 L-PFHxS	$398.9>79.7$	42002.715	717.976	0.253		3.86	731.269	2838.5		NO	2.474	NO
2	1... Total PFHxS	$398.9>79.7$	42002.715	717.976	0.253			731.269	2838.5		NO		
3	16 L-PFOA	412.8 > 368.9	362507.469	4469.997	0.253		4.23	1013.724	4150.7		NO	2.875	NO
4	1... Total PFOA	$412.8>368.9$	362507.469	4469.997	0.253			1013.724	4150.7		NO		
5	61 13C3-PFHxS-EIS	$401.8>79.7$	717.976		0.253	273.316	3.86	717.976	10.4	21.0	YES		
6	61 13C3-PFHxS-EIS	$401.8>79.7$	717.976		0.253	273.316	3.86	717.976	10.4	21.0	YES		
7	69 13C2-PFOA-EIS	$414.9>369.7$	4469.997		0.253	1593.567	4.23	4469.997	11.1	22.4	YES		
8	69 13C2-PFOA-EIS	414.9 > 369.7	4469.997		0.253	1593.567	4.23	4469.997	11.1	22.4	YES		
9	-1												
10	99 13C4-PFBA	$217.0>172.0$	2982.276	2982.276	0.253	1.000	1.41	12.500	49.4	100.0	NO		
11	1... 1802-PFHxS	$403.0>102.6$	332.566	332.566	0.253	1.000	3.86	12.500	49.4	100.0	NO		
12	1... 13C8-PFOA	$420.9>376.0$	4991.945	4991.945	0.253	1.000	4.23	12.500	49.4	100.0	NO		
13	-1												

Dataset: P:\PFAS5.PRO\RESULTS\200225P1\200225P1-65-66.qld
Last Altered: Friday, February 28, 2020 12:43:33 Pacific Standard Time Printed: \quad Friday, February 28, 2020 15:35:02 Pacific Standard Time

Method: P:|PFAS5.PRO\MethDB\NEW_PFAS_80C_022520.mdb 26 Feb 2020 11:36:08

Calibration: P:\PFAS5.PRO\CurveDB\C18_VAL-PFAS_Q5_02-25-20.cdb 26 Feb 2020 11:25:03

Name: 200225P1-65, Date: 26-Feb-2020, Time: 05:11:00, ID: 2000314-10@5X DUP05-20200212 0.25284, Description: DUP05-20200212

L-PFHxS

F23:MRM of 2 channels,ES-
$398.9>79.7$
$8.656 \mathrm{e}+005$
100

13C3-PFHxS-EIS

Total PFHxS

13C3-PFHxS-EIS

L-PFOA

F26:MRM of 2 channels,ES-	
$412.8>368.9$	
L-PFOA	$7.381 \mathrm{e}+006$
4.23	
3.63 e 5	
7381249	
MM	
7381249.00	

Dataset:	P:\PFAS5.PRO\RESULTS\200225P1\200225P1-65-66.qld
Last Altered:	Friday, February 28, 2020 12:43:33 Pacific Standard Time
Printed:	Friday, February 28, 2020 15:35:02 Pacific Standard Time

Name: 200225P1-65, Date: 26-Feb-2020, Time: 05:11:00, ID: 2000314-10@5X DUP05-20200212 0.25284, Description: DUP05-20200212

13C4-PFBA

13C8-PFOA

Dataset: P:IPFAS5.PRO\RESULTSI200225P11200225P1-65-66.qld
 Last Altered: Friday, February 28, 2020 12:43:33 Pacific Standard Time
 Printed: Friday, February 28, 2020 12:43:55 Pacific Standard Time

Name: 200225P1-66, Date: 26-Feb-2020, Time: 05:21:31, ID: 2000314-11 IS72MW15S-20200212 0.25446, Description: IS72MW15S-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	$299.0>79.7$	6.48 e 3	1.39e3	0.254		2.62	2.62	58.4	99.3462		3.190	NO
2	7 PFHxA	$313.0>269.0$	9.00 e 4	1.92 e 4	0.254		3.13	3.13	58.6	257.5105		17.123	NO
3	9 HFPO-DA	$285.1>168.9$		3.46 e 3	0.254		3.34						YES
4	11 PFHpA	$363.0>318.9$	2.41 e 4	1.31 e 4	0.254		3.72	3.72	23.0	72.9998		33.056	NO
5	12 ADONA	$376.8>250.9$		1.31 e 4	0.254		3.81						YES
6	51 13C3-PFBS-EIS	$302.0>98.8$	1.39 e 3		0.254	120.043	2.66	2.62	1390	45.3500	92.3		
7	57 13C2-PFHxA-EIS	$315.0>270.0$	1.92 e 4		0.254	1794.782	3.13	3.13	19200	42.0274	85.6		
8	53 13C3-HFPO-DA-EIS	$287.0>168.9$	3.46 e 3		0.254	314.205	3.39	3.34	3460	43.2424	88.0		
9	59 13C4-PFHpA-EIS	$367.2>321.8$	1.31 e 4		0.254	1233.447	3.74	3.72	13100	41.7380	85.0		
10	59 13C4-PFHpA-EIS	$367.2>321.8$	1.31 e 4		0.254	1233.447	3.74	3.72	13100	41.7380	85.0		
11	-1												
12	13 L-PFHxS	$398.9>79.7$	4.69 e 4	2.73 e 3	0.254		3.86	3.86	215	828.8234		2.483	NO
13	1... Total PFHxS	$398.9>79.7$	4.69 e 4	2.73 e 3	0.254		3.93		215	828.8234			
14	16 L-PFOA	$412.8>368.9$	1.71 e 5	1.79 e 4	0.254		4.23	4.23	119	419.5015		2.795	NO
15	1... Total PFOA	$412.8>368.9$	1.71 e 5	1.79 e 4	0.254		4.60		119	419.5015			
16	21 PFNA	$463.0>418.8$	7.91e3	1.49 e 4	0.254		4.67	4.67	6.65	21.6204		7.279	NO
17	61 13C3-PFHxS-EIS	$401.8>79.7$	2.73 e 3		0.254	273.316	3.86	3.86	2730	39.2573	79.9		
18	61 13C3-PFHxS-EIS	$401.8>79.7$	2.73 e 3		0.254	273.316	3.86	3.86	2730	39.2573	79.9		
19	69 13C2-PFOA-EIS	$414.9>369.7$	1.79 e 4		0.254	1593.567	4.23	4.23	17900	44.2279	90.0		
20	69 13C2-PFOA-EIS	$414.9>369.7$	1.79 e 4		0.254	1593.567	4.23	4.23	17900	44.2279	90.0		
21	65 13C5-PFNA-EIS	$468.2>422.9$	1.49 e 4		0.254	1492.001	4.67	4.67	14900	39.1706	79.7		
22	-1												
23	23 L-PFOS	$498.9>79.7$	9.77 e 4	3.01 e 3	0.254		4.75	4.75	405	1710.9113		2.353	NO
24	1... Total PFOS	$498.9>79.7$	9.77 e 4	3.01 e 3	0.254		5.13		405	1710.9113			
25	25 9CI-PF30NS	$530.7>350.8$		3.01 e 3	0.254		4.96						YES
26	26 PFDA	$513>468.8$	3.37 e 2	1.66 e 4	0.254		5.03	5.03	0.253	0.6249		36.862	YES
27	33 PFUdA	$563.0>518.9$		1.53 e 4	0.254		5.35						YES
28	71 13C8-PFOS-EIS	$507.0>79.7$	3.01 e 3		0.254	291.759	4.75	4.75	3010	40.6044	82.7		
29	71 13C8-PFOS-EIS	$507.0>79.7$	3.01 e 3		0.254	291.759	4.75	4.75	3010	40.6044	82.7		
30	71 13C8-PFOS-EIS	$507.0>79.7$	3.01 e 3		0.254	291.759	4.75	4.75	3010	40.6044	82.7		
31	73 13C2-PFDA-EIS	$515.1>469.9$	1.66 e 4		0.254	1635.176	5.04	5.03	16600	39.9700	81.4		
32	79 13C2-PFUdA-EIS	$565>519.8$	1.53 e 4		0.254	1617.090	5.35	5.35	15300	37.2648	75.9		
33	-1												
34	29 L-MeFOSAA	$570>419$		2.92e3	0.254		5.18						YES
35	1... Total N-MeFOSAA	570. >419	0.00 e 0	2.92e3	0.254		5.19		0.000				
36	31 L-EtFOSAA	$584.1>419$		3.93 e 3	0.254		5.33						YES

Work Order 2000314

Dataset:	P:\PFAS5.PRO\RESULTS\200225P1\200225P1-65-66.qld
Last Altered:	Friday, February 28, 2020 12:43:33 Pacific Standard Time
Printed:	Friday, February 28, 2020 12:43:55 Pacific Standard Time

Name: 200225P1-66, Date: 26-Feb-2020, Time: 05:21:31, ID: 2000314-11 IS72MW15S-20200212 0.25446, Description: IS72MW15S-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	1... Total N-EtFOSAA	$584.1>419$	0.00e0	3.93e3	0.254		5.37		0.000				
38	35 11CI-PF30UdS	$630.9>450.9$		1.12e4	0.254		5.56						YES
39	77 d3-N-MeFOSAA-EIS	$573.3>419$	2.92 e 3		0.254	330.310	5.18	5.18	2920	34.7032	70.6		
40	77 d3-N-MeFOSAA-EIS	$573.3>419$	2.92 e 3		0.254	330.310	5.18	5.18	2920	34.7032	70.6		
41	81 d5-N-EtFOSAA-EIS	$589.3>419$	3.93 e 3		0.254	395.337	5.32	5.33	3930	39.0899	79.6		
42	81 d5-N-EtFOSAA-EIS	$589.3>419$	3.93 e 3		0.254	395.337	5.32	5.33	3930	39.0899	79.6		
43	83 13C2-PFDoA-EIS	$614.7>569.7$	1.12 e 4		0.254	1686.253	5.62	5.62	11200	26.1193	53.2		
44	-1												
45	37 PFDoA	$612.9>569.0$		1.12e4	0.254		5.62						YES
46	39 PFTrDA	$662.9>618.9$		1.12e4	0.254		5.88						YES
47	41 PFTeDA	$713.0>669.0$		8.16 e 3	0.254		6.07						YES
48	1... TDCA	$498.3>106.9$			0.254		4.59						YES
49	99 13C4-PFBA	$217.0>172.0$	1.17e4	1.17e4	0.254	1.000	1.42	1.41	12.5	49.1236	100.0		
50	83 13C2-PFDoA-EIS	$614.7>569.7$	1.12e4		0.254	1686.253	5.62	5.62	11200	26.1193	53.2		
51	83 13C2-PFDoA-EIS	$614.7>569.7$	1.12e4		0.254	1686.253	5.62	5.62	11200	26.1193	53.2		
52	89 13C2-PFTeDA-EIS	$715.1>669.7$	8.16 e 3		0.254	1896.410	6.05	6.07	8160	16.9054	34.4		
53	71 13C8-PFOS-EIS	$507.0>79.7$	3.01 e 3		0.254	291.759	4.75	4.75	3010	40.6044	82.7		
54	1... 13C5-PFHxA	$318.0>272.9$	1.95 e 4	1.95 e 4	0.254	1.000	3.13	3.13	12.5	49.1236	100.0		
55	-1												
56	1... 18O2-PFHxS	403.0 > 102.6	1.22 e 3	1.22 e 3	0.254	1.000	3.86	3.86	12.5	49.1236	100.0		
57	1... 13C6-PFDA	$519.1>473.7$	1.73 e 4	1.73 e 4	0.254	1.000	5.04	5.04	12.5	49.1236	100.0		
58	1... 13C7-PFUdA	$570.1>524.8$	1.63 e 4	1.63 e4	0.254	1.000	5.35	5.35	12.5	49.1236	100.0		
59	1... 13C4-PFOS	$503>79.7$	2.97 e 3	2.97 e 3	0.254	1.000	4.75	4.75	12.5	49.1236	100.0		
60	1... 13C9-PFNA	$472.2>426.9$	1.67 e 4	1.67e4	0.254	1.000	4.67	4.67	12.5	49.1236	100.0		

Dataset:	P:\PFAS5.PRO\RESULTS\200225P1\200225P1-65-66.qld
Last Altered:	Friday, February 28, 2020 12:43:33 Pacific Standard Time
Printed:	Friday, February 28, 2020 12:43:55 Pacific Standard Time

Method: P:\PFAS5.PRO\MethDB\NEW_PFAS_80C_022520.mdb 26 Feb 2020 11:36:08 Calibration: P:|PFAS5.PRO\CurveDB\C18_VAL-PFAS_Q5_02-25-20.cdb 26 Feb 2020 11:25:03

Name: 200225P1-66, Date: 26-Feb-2020, Time: 05:21:31, ID: 2000314-11 IS72MW15S-20200212 0.25446, Description: IS72MW15S-20200212

PFBS		
F11:MRM of 2 channels, ES-		
		299.0 > 79.7
100	PFBS	$1.787 \mathrm{e}+005$
	2.62	
	6.48 e 3	
	178081	
	bb	
-	6182.02	
	TT1T	TTTT min

13C3-PFBS-EIS

F12:MRM of 1 channel,ES-

PFHxA
F13:MRM of 2 channels,ES-
$313.0>269.0$
$2.458 \mathrm{e}+006$

13C3-HFPO-DA-EIS

13C4-PFHpA-EIS

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES-

Dataset:	P:\PFAS5.PRO\RESULTS\200225P1\200225P1-65-66.qld
Last Altered:	Friday, February 28, 2020 12:43:33 Pacific Standard Time
Printed:	Friday, February 28, 2020 12:43:55 Pacific Standard Time

Name: 200225P1-66, Date: 26-Feb-2020, Time: 05:21:31, ID: 2000314-11 IS72MW15S-20200212 0.25446, Description: IS72MW15S-20200212

L-PFHxS

F23:MRM of 2 channels,ES-

13C3-PFHxS-EIS

F24:MRM of 1 channel,ES $401.8>79.7$ $7.017 e+004$

F23:MRM of 2 channels,ES398.9 > 98.7 $4.278 \mathrm{e}+005$

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES $401.8>79.7$ $7.017 e+004$

L-PFOA

F26:MRM of 2 channels,ES-
$412.8>368.9$ $3.575 \mathrm{e}+006$

F26:MRM of 2 channels,ES$412.8>169$
$1.199 e+006$

13C2-PFOA-EIS
F27:MRM of 1 channel,ES-
$414.9>369.7$

Total PFOA

F26:MRM of 2 channels,ES$412.8>368.9$ $3.575 \mathrm{e}+006$

13C2-PFOA-EIS
F27:MRM of 1 channel,ES414.9 > 369.7 $4.374 \mathrm{e}+005$

PFNA
F34:MRM of 2 channels,ES-
$463.0>418.8$
PFNA $2.016 e+005$
4.67
7.91 e 3
200643
bb
200643.00

13C5-PFNA-EIS
F35:MRM of 1 channel,ES $468.2>422.9$ $3.625 \mathrm{e}+005$

Dataset:	P:\PFAS5.PRO\RESULTS\200225P1\200225P1-65-66.qld
	Fast Altered:
Friday, February 28, 2020 12:43:33 Pacific Standard Time	
Printed:	Friday, February 28, 2020 12:43:55 Pacific Standard Time

Name: 200225P1-66, Date: 26-Feb-2020, Time: 05:21:31, ID: 2000314-11 IS72MW15S-20200212 0.25446, Description: IS72MW15S-20200212

L-PFOS

F39:MRM of 2 channels, ES-
$498.9>79.7$
$1.638 \mathrm{e}+006$

13C8-PFOS-EIS
F42:MRM of 1 channel,ES-

Total PFOS
 F39:MRM of 2 channels,ESchannels, ES $498.9>79.7$

13C8-PFOS-EIS

9CI-PF30NS

13C8-PFOS-EIS

13C2-PFDA-EIS
F45:MRM of 1 channel,ES$515.1>469.9$ $4.446 \mathrm{e}+005$

PFUdA

13C2-PFUdA-EIS
F55:MRM of 1 channel,ES$565>519.8$

Dataset:	P:\PFAS5.PRO\RESULTS\200225P1\200225P1-65-66.qld
Last Altered:	Friday, February 28, 2020 12:43:33 Pacific Standard Time
Printed:	Friday, February 28, 2020 12:43:55 Pacific Standard Time

Name: 200225P1-66, Date: 26-Feb-2020, Time: 05:21:31, ID: 2000314-11 IS72MW15S-20200212 0.25446, Description: IS72MW15S-20200212

L-MeFOSAA

F56:MRM of 2 channels,ES

d3-N-MeFOSAA-EIS
F58:MRM of 1 channel,ES-
$573.3>419$ $6.287 e+004$

Total N-MeFOSAA

F56:MRM of 2 channels,ES

d3-N-MeFOSAA-EIS
F58:MRM of 1 channel,ES$573.3>419$

L-EtFOSAA

F59:MRM of 2 channels,ES-

d5-N-EtFOSAA-EIS
F60:MRM of 1 channel,ES-
$589.3>419$

Total N-EtFOSAA

F59:MRM of 2 channels,ES-

F59:MRM of 2 channels,ES- | $584.1>419$ |
| ---: |
| $2.924 \mathrm{e}+001$ |

d5-N-EtFOSAA-EIS
F60:MRM of 1 channel,ES-
589.3 > 419 $1.039 \mathrm{e}+005$

11CI-PF30UdS

F68:MRM of 2 channels,ES- | $630.9>450.9$ |
| ---: |
| $2.684 \mathrm{e}+001$ |

F68:MRM of 2 channels,ES
$630.9>83$

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES$614.7>569.7$

Dataset:	P:IPFAS5.PRO\RESULTS\200225P1\200225P1-65-66.qld
Last Altered:	Friday, February 28, 2020 12:43:33 Pacific Standard Time
Printed:	Friday, February 28, 2020 12:43:55 Pacific Standard Time

Name: 200225P1-66, Date: 26-Feb-2020, Time: 05:21:31, ID: 2000314-11 IS72MW15S-20200212 0.25446, Description: IS72MW15S-20200212

PFDoA

F62:MRM of 4 channels,ES
F62:MRM of 4 channels,ES-
$612.9>569.0$
100

F62:MRM of 4 channels,ES$612.9>318.8$

13C2-PFDoA-EIS

F63:MRM of 1 channel,ES$614.7>569.7$ $2.728 \mathrm{e}+005$

PFTrDA

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES $614.7>569.7$ $2.728 \mathrm{e}+005$

PFTeDA

13C2-PFTeDA-EIS
F74:MRM of 2 channels,ES$715.1>669.7$

TDCA

13C8-PFOS-EIS
F42:MRM of 1 channel,ES$507.0>79.7$ $7.248 e+004$

13C4-PFBA
F4:MRM of 1 channel,ES$217.0>172.0$ $2.831 \mathrm{e}+005$

13C5-PFHxA
F15:MRM of 1 channel,ES $318.0>272.9$

Dataset:	P:\PFAS5.PRO\RESULTS\200225P1\200225P1-65-66.qld
Last Altered:	Friday, February 28, 2020 12:43:33 Pacific Standard Time
Printed:	Friday, February 28, 2020 12:43:55 Pacific Standard Time

Name: 200225P1-66, Date: 26-Feb-2020, Time: 05:21:31, ID: 2000314-11 IS72MW15S-20200212 0.25446, Description: IS72MW15S-20200212

1802-PFHxS

F25:MRM of 1 channel,ES-

13C6-PFDA

F47:MRM of 1 channel,ES
$519.1>473.7$ $4.347 \mathrm{e}+005$

13C4-PFOS
F40:MRM of 1 channel,ES-

13C9-PFNA

Dataset:	P:IPFAS5.PRO\RESULTSI200220P11200220P1-48.qld
Last Altered:	Monday, February 24, 2020 10:58:49 Pacific Standard Time
Printed:	Monday, February 24, 2020 12:37:30 Pacific Standard Time

Name: 200220P1-48, Date: 21-Feb-2020, Time: 01:37:46, ID: 2000314-12 IS72MW18SR-20200212 0.24458, Description: IS72MW18SR-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	$299.0>79.7$	2.89 e 3	1.42 e 3	0.245		2.68	2.68	25.4	45.1325		3.273	NO
2	7 PFHxA	$313.0>269.0$	3.18 e 4	1.83 e 4	0.245		3.19	3.19	21.7	99.8016		16.414	NO
3	9 HFPO-DA	$285.1>168.9$		3.39 e 3	0.245		3.40						
4	11 PFHpA	$363.0>318.9$	1.09 e 4	1.18 e 4	0.245		3.79	3.79	11.5	37.8393		19.950	NO
5	12 ADONA	$376.8>250.9$		1.18 e 4	0.245		3.88						
6	51 13C3-PFBS-EIS	$302.0>98.8$	1.42 e 3		0.245	114.516	2.70	2.68	1420	50.7214	99.2		
7	57 13C2-PFHxA-EIS	$315.0>270.0$	1.83 e 4		0.245	1636.234	3.19	3.19	18300	45.8130	89.6		
8	53 13C3-HFPO-DA-EIS	$287.0>168.9$	3.39 e 3		0.245	293.118	3.43	3.40	3390	47.3490	92.6		
9	59 13C4-PFHpA-EIS	$367.2>321.8$	1.18 e 4		0.245	1106.802	3.79	3.79	11800	43.5759	85.3		
10	59 13C4-PFHpA-EIS	367.2 > 321.8	1.18 e 4		0.245	1106.802	3.79	3.79	11800	43.5759	85.3		
11	-1												
12	13 L-PFHxS	$398.9>79.7$	1.94 e 4	2.86 e3	0.245		3.92	3.93	84.7	322.6226		2.415	NO
13	1... Total PFHxS	$398.9>79.7$	1.94 e 4	2.86 e3	0.245		3.93		84.7	322.6226			
14	16 L-PFOA	412.8 > 368.9	1.31 e 5	1.75 e 4	0.245		4.30	4.30	94.1	324.7809		2.963	NO
15	1... Total PFOA	412.8 > 368.9	1.31 e 5	1.75 e 4	0.245		4.60		94.1	324.7809			
16	21 PFNA	$463.0>418.8$	1.65 e 3	1.55 e 4	0.245		4.72	4.72	1.33	4.2172		10.549	NO
17	61 13C3-PFHxS-EIS	$401.8>79.7$	2.86 e 3		0.245	252.668	3.93	3.92	2860	46.3069	90.6		
18	61 13C3-PFHxS-EIS	$401.8>79.7$	2.86 e 3		0.245	252.668	3.93	3.92	2860	46.3069	90.6		
19	69 13C2-PFOA-EIS	$414.9>369.7$	$1.75{ }^{4}$		0.245	1527.160	4.29	4.30	17500	46.7209	91.4		
20	69 13C2-PFOA-EIS	$414.9>369.7$	1.75 e 4		0.245	1527.160	4.29	4.30	17500	46.7209	91.4		
21	65 13C5-PFNA-EIS	468.2 > 422.9	1.55 e 4		0.245	1373.362	4.72	4.72	15500	46.0842	90.2		
22	-1												
23	23 L-PFOS	498.9 > 79.7	1.43 e 4	$3.12 e 3$	0.245		4.80	4.80	57.2	251.8325		2.175	NO
24	1... Total PFOS	$498.9>79.7$	1.43 e 4	3.12 e 3	0.245		5.13		57.2	251.8325			
25	259 CI -PF30NS	$530.7>350.8$		3.12 e 3	0.245		5.01						
26	26 PFDA	$513>468.8$		1.61 e 4	0.245		5.08						
27	33 PFUdA	$563.0>518.9$		1.70 e 4	0.245		5.39						
28	71 13C8-PFOS-EIS	$507.0>79.7$	3.12 e 3		0.245	295.805	4.80	4.80	3120	43.1884	84.5		
29	71 13C8-PFOS-EIS	$507.0>79.7$	3.12 e 3		0.245	295.805	4.80	4.80	3120	43.1884	84.5		
30	71 13C8-PFOS-EIS	$507.0>79.7$	3.12 e 3		0.245	295.805	4.80	4.80	3120	43.1884	84.5		
31	73 13C2-PFDA-EIS	$515.1>469.9$	1.61 e 4		0.245	1356.410	5.08	5.08	16100	48.4706	94.8		
32	79 13C2-PFUdA-EIS	$565>519.8$	1.70 e 4		0.245	1416.449	5.40	5.39	17000	49.0700	96.0		
33	-1												
34	$29 \mathrm{~L}-\mathrm{MeFOSAA}$	$570>419$		2.44 e 3	0.245		5.23						
35	1... Total N-MeFOSAA	570. >419	0.00e0	2.44 e 3	0.245		5.19		0.000				
36	31 L-EtFOSAA	$584.1>419$		3.63e3	0.245		5.38						

Dataset:	P:\PFAS5.PRO\RESULTS\200220P1\200220P1-48.qld
Last Altered:	Monday, February 24, 2020 10:58:49 Pacific Standard Time
Printed:	Monday, February 24, 2020 12:37:30 Pacific Standard Time

Name: 200220P1-48, Date: 21-Feb-2020, Time: 01:37:46, ID: 2000314-12 IS72MW18SR-20200212 0.24458, Description: IS72MW18SR-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	1... Total N-EtFOSAA	$584.1>419$	0.00 e 0	3.63e3	0.245		5.37		0.000				
38	3511 Cl -PF30UdS	$630.9>450.9$		1.32 e 4	0.245		5.60						
39	77 d3-N-MeFOSAA-EIS	$573.3>419$	2.44 e 3		0.245	262.877	5.22	5.23	2440	37.9391	74.2		
40	77 d3-N-MeFOSAA-EIS	$573.3>419$	2.44 e 3		0.245	262.877	5.22	5.23	2440	37.9391	74.2		
41	81 d5-N-EtFOSAA-EIS	$589.3>419$	3.63 e3		0.245	360.983	5.37	5.38	3630	41.1245	80.5		
42	$81 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$-EIS	$589.3>419$	3.63 е3		0.245	360.983	5.37	5.38	3630	41.1245	80.5		
43	83 13C2-PFDoA-EIS	$614.7>569.7$	1.32 e 4		0.245	1573.093	5.67	5.67	13200	34.3878	67.3		
44	-1												
45	37 PFDoA	$612.9>569.0$	1.89 e 1	1.32 e 4	0.245		5.67	5.68	0.0178			53.940	YES
46	39 PFTrDA	$662.9>618.9$		1.32 e 4	0.245		5.93						
47	41 PFTeDA	713.0 > 669.0		1.55 e 4	0.245		6.12						
48	1... TDCA	$498.3>106.9$			0.245		4.59						
49	99 13C4-PFBA	$217.0>172.0$	1.17 e 4	1.17e4	0.245	1.000	1.48	1.48	12.5	51.1080	100.0		
50	83 13C2-PFDoA-EIS	$614.7>569.7$	1.32 e 4		0.245	1573.093	5.67	5.67	13200	34.3878	67.3		
51	83 13C2-PFDoA-EIS	$614.7>569.7$	1.32 e 4		0.245	1573.093	5.67	5.67	13200	34.3878	67.3		
52	89 13C2-PFTeDA-EIS	$715.1>669.7$	1.55 e 4		0.245	1440.513	6.10	6.12	15500	43.9844	86.1		
53	71 13C8-PFOS-EIS	$507.0>79.7$	3.12 e 3		0.245	295.805	4.80	4.80	3120	43.1884	84.5		
54	1... 13C5-PFHxA	318.0 > 272.9	1.83 e 4	1.83 e 4	0.245	1.000	3.18	3.19	12.5	51.1080	100.0		
55	-1												
56	1... 18O2-PFHxS	403.0 > 102.6	1.11e3	1.11 e 3	0.245	1.000	3.92	3.93	12.5	51.1080	100.0		
57	1... 13C6-PFDA	$519.1>473.7$	1.77 e 4	1.77 e 4	0.245	1.000	5.08	5.08	12.5	51.1080	100.0		
58	1... 13C7-PFUdA	$570.1>524.8$	1.98 e 4	1.98 e 4	0.245	1.000	5.40	5.40	12.5	51.1080	100.0		
59	1... 13C4-PFOS	$503>79.7$	3.57e3	3.57e3	0.245	1.000	4.79	4.80	12.5	51.1080	100.0		
60	1... 13C9-PFNA	472.2 > 426.9	1.62 e 4	1.62 e 4	0.245	1.000	4.72	4.72	12.5	51.1080	100.0		

Dataset:	P:\PFAS5.PRO\RESULTS\200220P1\200220P1-48.qld
Last Altered:	Monday, February 24, 2020 10:58:49 Pacific Standard Time
Printed:	Monday, February 24, 2020 12:37:30 Pacific Standard Time

Method: P:\PFAS5.PRO\MethDB\NEW_PFAS_80C_022020.mdb 21 Feb 2020 08:56:55

Calibration: P:\PFAS5.PRO\CurveDB\C18_VAL-PFAS_Q5_02-20-20.cdb 21 Feb 2020 15:57:11

Name: 200220P1-48, Date: 21-Feb-2020, Time: 01:37:46, ID: 2000314-12 IS72MW18SR-20200212 0.24458, Description: IS72MW18SR-20200212

13C2-PFHxA-EIS
F14:MRM of 1 channel,ES-
$315.0>270.0$

13C3-HFPO-DA-EIS

13C4-PFHpA-EIS
F21:MRM of 1 channel,ES-
$367.2>321.8$

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES $367.2>321.8$

Dataset:	P:\PFAS5.PRO\RESULTSI200220P1\200220P1-48.qld
Last Altered:	Monday, February 24, 2020 10:58:49 Pacific Standard Time
Printed:	Monday, February 24, 2020 12:37:30 Pacific Standard Time

Name: 200220P1-48, Date: 21-Feb-2020, Time: 01:37:46, ID: 2000314-12 IS72MW18SR-20200212 0.24458, Description: IS72MW18SR-20200212

```
L-PFHxS
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{F23:MRM of 2 channels,ES-} \\
\hline & L-PFHxS & 398.9 > 79.7 \\
\hline \multirow[t]{2}{*}{1007} & 3.93 & \(3.812 \mathrm{e}+005\) \\
\hline & 1.94 e 4 & \\
\hline & 381158 & \\
\hline \% & MM & \\
\hline & 381158.00 & \\
\hline
\end{tabular}
```


13C3-PFHxS-EIS

F24:MRM of 1 channel,ES401.8 > 79.7 $7.042 \mathrm{e}+004$

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES $401.8>79.7$ $7.042 \mathrm{e}+004$

L-PFOA

13C2-PFOA-EIS

Total PFOA

F26:MRM of 2 channels,ES-

F26:MRM of 2 channels,ES$412.8>169$

13C2-PFOA-EIS

PFNA

F34:MRM of 2 channels,ES

13C5-PFNA-EIS
F35:MRM of 1 channel,ES
$468.2>422.9$

Dataset:	P:\PFAS5.PRO\RESULTS\200220P1\200220P1-48.qld
Last Altered:	Monday, February 24, 2020 10:58:49 Pacific Standard Time
Printed:	Monday, February 24, 2020 12:37:30 Pacific Standard Time

Name: 200220P1-48, Date: 21-Feb-2020, Time: 01:37:46, ID: 2000314-12 IS72MW18SR-20200212 0.24458, Description: IS72MW18SR-20200212

\section*{L-PFOS
 F39:MRM of 2 channels,ES- | L-PFOS |
| ---: |
| $498.9>79.7$ |
| $2.332 e+005$ |}

13C8-PFOS-EIS

13C8-PFOS-EIS

F42:MRM of 1 channel,ES $507.0>79.7$ $8.356 \mathrm{e}+004$

9CI-PF30NS

13C8-PFOS-EIS

F44:MRM of 2 channels,ES-
$513>219$

13C2-PFDA-EIS
F45:MRM of 1 channel,ES-
$515.1>469.9$ $4.367 e+005$

PFUdA

13C2-PFUdA-EIS
F55:MRM of 1 channel,ES

Dataset: P:\PFAS5.PRO\RESULTS\200220P1\200220P1-48.qld

Last Altered: Monday, February 24, 2020 10:58:49 Pacific Standard Time
Printed: Monday, February 24, 2020 12:37:30 Pacific Standard Time

Name: 200220P1-48, Date: 21-Feb-2020, Time: 01:37:46, ID: 2000314-12 IS72MW18SR-20200212 0.24458, Description: IS72MW18SR-20200212

L-MeFOSAA

F56:MRM of 2 channels,ES-

F56:MRM of 2 channels,Es-

d3-N-MeFOSAA-EIS

d3-N-MeFOSAA-EIS

L-EtFOSAA

F59:MRM of 2 channels,ES

11Cl-PF30UdS

Dataset: P:\PFAS5.PRO\RESULTS\200220P1\200220P1-48.qld

Last Altered: Monday, February 24, 2020 10:58:49 Pacific Standard Time
Printed: \quad Monday, February 24, 2020 12:37:30 Pacific Standard Time

Name: 200220P1-48, Date: 21-Feb-2020, Time: 01:37:46, ID: 2000314-12 IS72MW18SR-20200212 0.24458, Description: IS72MW18SR-20200212

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES$614.7>569.7$ $3.251 e+005$

PFTrDA

F71:MRM of 2 channels,ES

13C2-PFDoA-EIS

F63:MRM of 1 channel,ES $614.7>569.7$ $3.251 e+005$

PFTEDA

F73:MRM of 2 channels,ES

F73:MRM of 2 channels,ES

13C2-PFTeDA-EIS

TDCA

F38:MRM of 3 channels,ES$498.3>123.9$

13C8-PFOS-EIS
F42:MRM of 1 channel,ES $507.0>79.7$ $8.356 e+004$

13C4-PFBA
F4:MRM of 1 channel,ES-
$217.0>172.0$
$2.286 e+005$

Dataset:	P:\PFAS5.PRO\RESULTS\200220P1\200220P1-48.qld
Last Altered:	Monday, February 24, 2020 10:58:49 Pacific Standard Time
Printed:	Monday, February 24, 2020 12:37:30 Pacific Standard Time

Name: 200220P1-48, Date: 21-Feb-2020, Time: 01:37:46, ID: 2000314-12 IS72MW18SR-20200212 0.24458, Description: IS72MW18SR-20200212

Dataset: P:|PFAS5.PROIRESULTSI200220P11200220P1-52.qld
Last Altered: Monday, February 24, 2020 11:12:59 Pacific Standard Time
Printed: Monday, February 24, 2020 12:38:41 Pacific Standard Time

Name: 200220P1-52, Date: 21-Feb-2020, Time: 02:19:47, ID: 2000314-13 222MW02S-20200212 0.25234, Description: 222MW02S-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	$299.0>79.7$	3.02 e 2	1.35 e 3	0.252		2.68	2.68	2.79	4.5584		2.739	NO
2	7 PFHxA	$313.0>269.0$		1.78 e 4	0.252		3.19						
3	9 HFPO-DA	$285.1>168.9$		3.54 e 3	0.252		3.40						
4	11 PFHpA	$363.0>318.9$		1.15 e 4	0.252		3.79						
5	12 ADONA	$376.8>250.9$		1.15 e 4	0.252		3.88						
6	51 13C3-PFBS-EIS	$302.0>98.8$	1.35 e 3		0.252	114.516	2.70	2.68	1350	46.7052	94.3		
7	57 13C2-PFHxA-EIS	$315.0>270.0$	1.78 e 4		0.252	1636.234	3.19	3.19	17800	43.2273	87.3		
8	53 13C3-HFPO-DA-EIS	$287.0>168.9$	3.54 e 3		0.252	293.118	3.43	3.40	3540	47.8685	96.6		
9	59 13C4-PFHpA-EIS	$367.2>321.8$	1.15 e 4		0.252	1106.802	3.79	3.79	11500	41.2788	83.3		
10	59 13C4-PFHpA-EIS	$367.2>321.8$	1.15 e 4		0.252	1106.802	3.79	3.79	11500	41.2788	83.3		
11	-1												
12	13 L-PFHxS	$398.9>79.7$	9.54 e 2	2.79 e 3	0.252		3.92	3.92	4.28	14.5230		2.740	NO
13	1... Total PFHxS	$398.9>79.7$	9.54 e 2	2.79 e 3	0.252		3.93		4.28	14.5230			
14	16 L-PFOA	$412.8>368.9$	2.61 e 2	1.73 e 4	0.252		4.29	4.30	0.189	0.3167		5.566	YES
15	1... Total PFOA	$412.8>368.9$	2.61 e 2	1.73 e 4	0.252		4.60		0.189	0.3167			
16	21 PFNA	$463.0>418.8$		1.45 e 4	0.252		4.72						
17	61 13C3-PFHxS-EIS	$401.8>79.7$	2.79 e 3		0.252	252.668	3.92	3.92	2790	43.7137	88.2		
18	61 13C3-PFHxS-EIS	$401.8>79.7$	2.79 e 3		0.252	252.668	3.92	3.92	2790	43.7137	88.2		
19	69 13C2-PFOA-EIS	$414.9>369.7$	1.73 e 4		0.252	1527.160	4.29	4.29	17300	44.7750	90.4		
20	69 13C2-PFOA-EIS	$414.9>369.7$	1.73 e 4		0.252	1527.160	4.29	4.29	17300	44.7750	90.4		
21	65 13C5-PFNA-EIS	$468.2>422.9$	1.45 e 4		0.252	1373.362	4.72	4.72	14500	41.9565	84.7		
22	-1												
23	23 L-PFOS	$498.9>79.7$	3.85 e 2	3.31 e 3	0.252		4.80	4.66	1.45	6.2375		2.796	NO
24	1... Total PFOS	$498.9>79.7$	3.85 e 2	3.31 e 3	0.252		5.13		1.45	6.2375			
25	25 9CI-PF30NS	$530.7>350.8$		3.31 e 3	0.252		5.01						
26	26 PFDA	$513>468.8$	3.50 e 1	1.49 e 4	0.252		5.08	5.12	0.0293			43.160	YES
27	33 PFUdA	$563.0>518.9$	6.22 e 1	1.63 e 4	0.252		5.40	5.40	0.0477	0.2263		95.213	YES
28	71 13C8-PFOS-EIS	$507.0>79.7$	3.31 e 3		0.252	295.805	4.80	4.80	3310	44.3970	89.6		
29	71 13C8-PFOS-EIS	$507.0>79.7$	3.31 e 3		0.252	295.805	4.80	4.80	3310	44.3970	89.6		
30	71 13C8-PFOS-EIS	$507.0>79.7$	3.31 e 3		0.252	295.805	4.80	4.80	3310	44.3970	89.6		
31	73 13C2-PFDA-EIS	$515.1>469.9$	1.49 e 4		0.252	1356.410	5.08	5.08	14900	43.6193	88.1		
32	79 13C2-PFUdA-EIS	$565>519.8$	1.63 e 4		0.252	1416.449	5.40	5.40	16300	45.5961	92.0		
33	-1												
34	29 L-MeFOSAA	$570>419$		2.92 e 3	0.252		5.23						
35	1... Total N-MeFOSAA	570. >419	0.00e0	2.92 e 3	0.252		5.19		0.000				
36	31 L-EtFOSAA	$584.1>419$		3.74 e 3	0.252		5.38						

Work Order 2000314

Dataset:	P:\PFAS5.PRO\RESULTS\200220P1\200220P1-52.qld
Last Altered:	Monday, February 24, 2020 11:12:59 Pacific Standard Time
Printed:	Monday, February 24, 2020 12:38:41 Pacific Standard Time

Name: 200220P1-52, Date: 21-Feb-2020, Time: 02:19:47, ID: 2000314-13 222MW02S-20200212 0.25234, Description: 222MW02S-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	1... Total N-EtFOSAA	$584.1>419$	0.00 e 0	3.74 e 3	0.252		5.37		0.000				
38	3511 Cl -PF30UdS	$630.9>450.9$		1.33 e 4	0.252		5.60						
39	77 d3-N-MeFOSAA-EIS	$573.3>419$	2.92 e3		0.252	262.877	5.22	5.23	2920	43.9568	88.7		
40	77 d3-N-MeFOSAA-EIS	$573.3>419$	2.92 e3		0.252	262.877	5.22	5.23	2920	43.9568	88.7		
41	81 d5-N-EtFOSAA-EIS	$589.3>419$	3.74 e 3		0.252	360.983	5.37	5.38	3740	41.1125	83.0		
42	81 d5-N-EtFOSAA-EIS	$589.3>419$	3.74 e 3		0.252	360.983	5.37	5.38	3740	41.1125	83.0		
43	83 13C2-PFDoA-EIS	$614.7>569.7$	1.33 e 4		0.252	1573.093	5.67	5.67	13300	33.4410	67.5		
44	-1												
45	37 PFDoA	$612.9>569.0$		1.33 e 4	0.252		5.67						
46	39 PFTrDA	$662.9>618.9$		1.33 e 4	0.252		5.93						
47	41 PFTeDA	713.0 > 669.0		1.58 e 4	0.252		6.12						
48	1... TDCA	$498.3>106.9$			0.252		4.59						
49	99 13C4-PFBA	$217.0>172.0$	1.15 e 4	1.15 e 4	0.252	1.000	1.48	1.48	12.5	49.5363	100.0		
50	83 13C2-PFDoA-EIS	$614.7>569.7$	1.33 e 4		0.252	1573.093	5.67	5.67	13300	33.4410	67.5		
51	83 13C2-PFDoA-EIS	$614.7>569.7$	1.33 e 4		0.252	1573.093	5.67	5.67	13300	33.4410	67.5		
52	89 13C2-PFTeDA-EIS	$715.1>669.7$	1.58 e 4		0.252	1440.513	6.11	6.12	15800	43.3518	87.5		
53	71 13C8-PFOS-EIS	$507.0>79.7$	3.31 e 3		0.252	295.805	4.80	4.80	3310	44.3970	89.6		
54	1... 13C5-PFHxA	318.0 > 272.9	1.88 e 4	1.88 e 4	0.252	1.000	3.18	3.19	12.5	49.5363	100.0		
55	-1												
56	1... 18O2-PFHxS	403.0 > 102.6	1.16 e 3	1.16 e 3	0.252	1.000	3.92	3.92	12.5	49.5363	100.0		
57	1... 13C6-PFDA	$519.1>473.7$	1.76 e 4	1.76 e 4	0.252	1.000	5.08	5.08	12.5	49.5363	100.0		
58	1... 13C7-PFUdA	$570.1>524.8$	1.94 e 4	1.94 e 4	0.252	1.000	5.40	5.40	12.5	49.5363	100.0		
59	1... 13C4-PFOS	$503>79.7$	3.44 e 3	3.44 e 3	0.252	1.000	4.79	4.80	12.5	49.5363	100.0		
60	1... 13C9-PFNA	472.2 > 426.9	1.58 e 4	1.58 e 4	0.252	1.000	4.72	4.72	12.5	49.5363	100.0		

Dataset: P:\PFAS5.PRO\RESULTS\200220P1\200220P1-52.qld

Last Altered: Monday, February 24, 2020 11:12:59 Pacific Standard Time
Printed: Monday, February 24, 2020 12:38:41 Pacific Standard Time

Method: P:\PFAS5.PRO\MethDB\NEW_PFAS_80C_022020.mdb 21 Feb 2020 08:56:55

Calibration: P:\PFAS5.PRO\CurveDB\C18_VAL-PFAS_Q5_02-20-20.cdb 21 Feb 2020 15:57:11

Name: 200220P1-52, Date: 21-Feb-2020, Time: 02:19:47, ID: 2000314-13 222MW02S-20200212 0.25234, Description: 222MW02S-20200212

13C3-PFBS-EIS
F12:MRM of 1 channel,ES302.0 > 98.8

PFHxA

HFPO-DA

13C3-HFPO-DA-EIS

PFHpA

F20:MRM of 2 channels,ES$363.0>169.0$

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES $367.2>321.8$

Dataset: P:\PFAS5.PRO\RESULTS\200220P1\200220P1-52.qld
 Last Altered: Monday, February 24, 2020 11:12:59 Pacific Standard Time
 Printed: Monday, February 24, 2020 12:38:41 Pacific Standard Time

Name: 200220P1-52, Date: 21-Feb-2020, Time: 02:19:47, ID: 2000314-13 222MW02S-20200212 0.25234, Description: 222MW02S-20200212

```
L-PFHxS
F23:MRM of 2 channels,ES-
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|r|}{F23:MRM of 2 channels,ES-} \\
\hline & L-PFHxS & 398.9 > 79.7 \\
\hline \multirow[t]{2}{*}{100} & 3.92 & \(1.905 \mathrm{e}+004\) \\
\hline & 9.54 e 2 & \\
\hline & 19050 & \\
\hline \% & MM & \\
\hline & 19050.00 & \\
\hline
\end{tabular}
```


13C3-PFHxS-EIS

F24:MRM of 1 channel,ES$401.8>79.7$ $6.685 \mathrm{e}+004$

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES $401.8>79.7$ $6.685 \mathrm{e}+004$

L-PFOA

13C2-PFOA-EIS
F27:MRM of 1 channel,ES$414.9>369.7$ $4.318 \mathrm{e}+005$

Total PFOA

F26:MRM of 2 channels,ES-

13C2-PFOA-EIS
F27:MRM of 1 channel,ES-
414.9 > 369.7 $4.318 \mathrm{e}+005$

PFNA

13C5-PFNA-EIS
F35:MRM of 1 channel,ES-
$468.2>422.9$
$3.728 e+005$

Dataset: P:IPFAS5.PRO\RESULTSI200220P1\200220P1-52.qld

Last Altered: Monday, February 24, 2020 11:12:59 Pacific Standard Time
Printed: Monday, February 24, 2020 12:38:41 Pacific Standard Time

Name: 200220P1-52, Date: 21-Feb-2020, Time: 02:19:47, ID: 2000314-13 222MW02S-20200212 0.25234, Description: 222MW02S-20200212

L-PFOS

F39:MRM of 2 channels, ES-
100

13C8-PFOS-EIS

Total PFOS

13C8-PFOS-EIS

F42:MRM of 1 channel,ES $507.0>79.7$ $8.381 \mathrm{e}+004$

9CI-PF30NS

F51:MRM of 2 channels,ES

F51:MRM of 2 channels,ES- | $530.7>350.8$ |
| ---: |
| $9.439 \mathrm{e}+001$ |

13C8-PFOS-EIS

PFDA

13C2-PFDA-EIS
F45:MRM of 1 channel,ES-
$515.1>469.9$ $3.865 \mathrm{e}+005$

PFUdA
F54:MRM of 2 channels,ES- $\begin{array}{r}563.0>518.9 \\ 1.174 \mathrm{e}+003\end{array}$
F54:MRM of 2 channels,ES

13C2-PFUdA-EIS
F55:MRM of 1 channel,ES $565>519.8$

Dataset: P:\PFAS5.PRO\RESULTS\200220P1\200220P1-52.qld

Last Altered: Monday, February 24, 2020 11:12:59 Pacific Standard Time
Printed: Monday, February 24, 2020 12:38:41 Pacific Standard Time

Name: 200220P1-52, Date: 21-Feb-2020, Time: 02:19:47, ID: 2000314-13 222MW02S-20200212 0.25234, Description: 222MW02S-20200212

L-MeFOSAA

F56:MRM of 2 channels,ES-

d3-N-MeFOSAA-EIS

d3-N-MeFOSAA-EIS

d5-N-EtFOSAA-EIS

F59:MRM of 2 channels,ES-

F68:MRM of 2 channels,ES $630.9>83$

Dataset: P:|PFAS5.PRO\RESULTSI200220P1\200220P1-52.qld
Last Altered: Monday, February 24, 2020 11:12:59 Pacific Standard Time
Printed: Monday, February 24, 2020 12:38:41 Pacific Standard Time

Name: 200220P1-52, Date: 21-Feb-2020, Time: 02:19:47, ID: 2000314-13 222MW02S-20200212 0.25234, Description: 222MW02S-20200212

PFDoA
 F62:MRM of 4 channels,ES- $612.9>569.0$ $8.644 \mathrm{e}+002$

13C2-PFDoA-EIS

F63:MRM of 1 channel,ES$614.7>569.7$ $3.245 \mathrm{e}+005$

PFTrDA

F71:MRM of 2 channels,ES

13C2-PFDoA-EIS

F63:MRM of 1 channel,ES $614.7>569.7$ $3.245 \mathrm{e}+005$

PFTEDA

F73:MRM of 2 channels,ES

F73:MRM of 2 channels,ES713. > 369.0

13C2-PFTeDA-EIS

TDCA

F38:MRM of 3 channels,ES-

13C8-PFOS-EIS
F42:MRM of 1 channel,ES$507.0>79.7$ $8.381 e+004$

13C4-PFBA
F4:MRM of 1 channel,ES-
$217.0>172.0$
$2.392 e+005$

Dataset:	P:\PFAS5.PRO\RESULTS\200220P1\200220P1-52.qld
Last Altered:	Monday, February 24, 2020 11:12:59 Pacific Standard Time
Printed:	Monday, February 24, 2020 12:38:41 Pacific Standard Time

Name: 200220P1-52, Date: 21-Feb-2020, Time: 02:19:47, ID: 2000314-13 222MW02S-20200212 0.25234, Description: 222MW02S-20200212

1802-PFHxS
F25:MRM of1 channel,Es- $403.0>102.6$ $2.877 e+004$
100

13C9-PFNA
F36:MRM of 1 channel,ES

Dataset: P:IPFAS5.PRO\RESULTSI200220P11200220P1-53.qld
 Last Altered: Tuesday, February 25, 2020 11:58:17 Pacific Standard Time
 Printed: Tuesday, February 25, 2020 11:58:51 Pacific Standard Time

Name: 200220P1-53, Date: 21-Feb-2020, Time: 02:30:18, ID: 2000314-14 DUP03-20200212 0.24446, Description: DUP03-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	$299.0>79.7$	3.78 e 2	1.37e3	0.244		2.68	2.68	3.45	5.8726		3.184	NO
2	7 PFHxA	$313.0>269.0$	1.27 e 2	1.93 e 4	0.244		3.19	3.19	0.0820	0.0693		30.515	YES
3	9 HFPO-DA	$285.1>168.9$		3.43 e 3	0.244		3.40						
4	11 PFHpA	$363.0>318.9$		1.25 e 4	0.244		3.79						
5	12 ADONA	$376.8>250.9$		1.25 e 4	0.244		3.88						
6	51 13C3-PFBS-EIS	$302.0>98.8$	1.37 e 3		0.244	114.516	2.70	2.68	1370	48.9281	95.7		
7	57 13C2-PFHxA-EIS	$315.0>270.0$	1.93 e 4		0.244	1636.234	3.19	3.19	19300	48.2455	94.4		
8	53 13C3-HFPO-DA-EIS	$287.0>168.9$	3.43 e 3		0.244	293.118	3.44	3.40	3430	47.8833	93.6		
9	59 13C4-PFHpA-EIS	$367.2>321.8$	1.25 e 4		0.244	1106.802	3.79	3.79	12500	46.3490	90.6		
10	59 13C4-PFHpA-EIS	$367.2>321.8$	1.25 e 4		0.244	1106.802	3.79	3.79	12500	46.3490	90.6		
11	-1												
12	13 L-PFHxS	$398.9>79.7$	1.08 e 3	2.88 e 3	0.244		3.92	3.92	4.71	16.6243		2.619	NO
13	1... Total PFHxS	$398.9>79.7$	1.08 e 3	2.88 e 3	0.244		3.93		4.71	16.6243			
14	16 L-PFOA	$412.8>368.9$	3.58 e 2	1.74 e 4	0.244		4.30	4.30	0.258	0.5608		3.024	NO
15	1... Total PFOA	$412.8>368.9$	3.58 e 2	1.74 e 4	0.244		4.60		0.258	0.5608			
16	21 PFNA	$463.0>418.8$		1.42 e 4	0.244		4.72						
17	61 13C3-PFHxS-EIS	$401.8>79.7$	2.88 e 3		0.244	252.668	3.93	3.92	2880	46.6013	91.1		
18	61 13C3-PFHxS-EIS	$401.8>79.7$	2.88 e 3		0.244	252.668	3.93	3.92	2880	46.6013	91.1		
19	69 13C2-PFOA-EIS	$414.9>369.7$	1.74 e 4		0.244	1527.160	4.30	4.30	17400	46.5266	91.0		
20	69 13C2-PFOA-EIS	$414.9>369.7$	1.74 e 4		0.244	1527.160	4.30	4.30	17400	46.5266	91.0		
21	65 13C5-PFNA-EIS	$468.2>422.9$	1.42 e 4		0.244	1373.362	4.72	4.72	14200	42.3040	82.7		
22	-1												
23	23 L-PFOS	$498.9>79.7$	3.36 e 2	3.42 e 3	0.244		4.80	4.66	1.23	5.4420		3.412	YES
24	1... Total PFOS	$498.9>79.7$	3.36 e 2	3.42 e 3	0.244		5.13		1.23	5.4420			
25	25 9CI-PF30NS	$530.7>350.8$		3.42 e 3	0.244		5.01						
26	26 PFDA	$513>468.8$		1.57 e 4	0.244		5.08						
27	33 PFUdA	$563.0>518.9$		1.63 e 4	0.244		5.40						
28	71 13C8-PFOS-EIS	$507.0>79.7$	3.42 e 3		0.244	295.805	4.80	4.80	3420	47.3274	92.6		
29	71 13C8-PFOS-EIS	$507.0>79.7$	3.42 e 3		0.244	295.805	4.80	4.80	3420	47.3274	92.6		
30	71 13C8-PFOS-EIS	$507.0>79.7$	3.42 e 3		0.244	295.805	4.80	4.80	3420	47.3274	92.6		
31	73 13C2-PFDA-EIS	$515.1>469.9$	1.57 e 4		0.244	1356.410	5.08	5.08	15700	47.2409	92.4		
32	79 13C2-PFUdA-EIS	$565>519.8$	1.63 e 4		0.244	1416.449	5.40	5.40	16300	46.9311	91.8		
33	-1												
34	29 L-MeFOSAA	$570>419$		2.95 e 3	0.244		5.23						
35	1... Total N-MeFOSAA	570. >419	0.00 e 0	2.95 e 3	0.244		5.19		0.000				
36	31 L-EtFOSAA	$584.1>419$		3.60 e 3	0.244		5.38						

Dataset:	P:\PFAS5.PRO\RESULTS\200220P1\200220P1-53.qld
Last Altered:	Tuesday, February 25, 2020 11:58:17 Pacific Standard Time
Printed:	Tuesday, February 25, 2020 11:58:51 Pacific Standard Time

Name: 200220P1-53, Date: 21-Feb-2020, Time: 02:30:18, ID: 2000314-14 DUP03-20200212 0.24446, Description: DUP03-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	1... Total N-EtFOSAA	$584.1>419$	0.00e0	3.60e3	0.244		5.37		0.000				
38	3511 Cl -PF30UdS	$630.9>450.9$		1.58 e 4	0.244		5.60						
39	77 d3-N-MeFOSAA-EIS	$573.3>419$	2.95 e 3		0.244	262.877	5.22	5.23	2950	45.9114	89.8		
40	77 d3-N-MeFOSAA-EIS	$573.3>419$	2.95 e3		0.244	262.877	5.22	5.23	2950	45.9114	89.8		
41	81 d5-N-EtFOSAA-EIS	$589.3>419$	3.60 e 3		0.244	360.983	5.37	5.38	3600	40.7828	79.8		
42	$81 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$-EIS	$589.3>419$	3.60 e 3		0.244	360.983	5.37	5.38	3600	40.7828	79.8		
43	83 13C2-PFDoA-EIS	$614.7>569.7$	1.58 e 4		0.244	1573.093	5.67	5.67	15800	41.0547	80.3		
44	-1												
45	37 PFDoA	612.9 > 569.0		1.58 e 4	0.244		5.67						
46	39 PFTrDA	$662.9>618.9$		1.58 e 4	0.244		5.93						
47	41 PFTeDA	$713.0>669.0$		1.43 e 4	0.244		6.12						
48	1... TDCA	$498.3>106.9$			0.244		4.59						
49	99 13C4-PFBA	$217.0>172.0$	1.12 e 4	1.12e4	0.244	1.000	1.48	1.48	12.5	51.1331	100.0		
50	83 13C2-PFDoA-EIS	$614.7>569.7$	1.58 e 4		0.244	1573.093	5.67	5.67	15800	41.0547	80.3		
51	83 13C2-PFDoA-EIS	$614.7>569.7$	1.58 e 4		0.244	1573.093	5.67	5.67	15800	41.0547	80.3		
52	89 13C2-PFTeDA-EIS	$715.1>669.7$	1.43 e 4		0.244	1440.513	6.11	6.12	14300	40.6479	79.5		
53	71 13C8-PFOS-EIS	$507.0>79.7$	3.42 e 3		0.244	295.805	4.80	4.80	3420	47.3274	92.6		
54	1... 13C5-PFHxA	318.0 > 272.9	1.95 e 4	1.95 e 4	0.244	1.000	3.18	3.19	12.5	51.1331	100.0		
55	-1												
56	1... 18O2-PFHxS	$403.0>102.6$	1.25 e 3	1.25 e 3	0.244	1.000	3.92	3.93	12.5	51.1331	100.0		
57	1... 13C6-PFDA	$519.1>473.7$	1.83 e 4	1.83 e 4	0.244	1.000	5.08	5.08	12.5	51.1331	100.0		
58	1... 13C7-PFUdA	$570.1>524.8$	1.81 e 4	1.81 e 4	0.244	1.000	5.40	5.40	12.5	51.1331	100.0		
59	1... 13C4-PFOS	$503>79.7$	3.52e3	3.52e3	0.244	1.000	4.79	4.80	12.5	51.1331	100.0		
60	1... 13C9-PFNA	$472.2>426.9$	1.48 e 4	1.48 e 4	0.244	1.000	4.72	4.72	12.5	51.1331	100.0		

Dataset:	P:\PFAS5.PRO\RESULTS\200220P1\200220P1-53.qld
Last Altered:	Tuesday, February 25, 2020 11:58:17 Pacific Standard Time
Printed:	Tuesday, February 25, 2020 11:58:51 Pacific Standard Time

Method: P:\PFAS5.PRO\MethDB\NEW_PFAS_80C_022020.mdb 21 Feb 2020 08:56:55

Calibration: P:\PFAS5.PRO\CurveDB\C̄18_VAL-PFAS_Q5_02-20-20.cdb 21 Feb 2020 15:57:11

Name: 200220P1-53, Date: 21-Feb-2020, Time: 02:30:18, ID: 2000314-14 DUP03-20200212 0.24446, Description: DUP03-20200212

PFBS		
	F11:MRM of 2 channels,ES-	
		$299.0>79.7$
100	PFBS	$1.043 \mathrm{e}+004$
1007	2.68	
	3.78 e 2	
\%	10349	
	bb	
	951.04	

13C3-PFBS-EIS
F12:MRM of 1 channel,ES-

13C2-PFHxA-EIS

13C3-HFPO-DA-EIS

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES-
$367.2>321.8$
$3.195 \mathrm{e}+005$

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES367.2 > 321.8

Dataset: P:\PFAS5.PRO\RESULTSI200220P1\200220P1-53.qld

Last Altered: Tuesday, February 25, 2020 11:58:17 Pacific Standard Time
Printed: \quad Tuesday, February 25, 2020 11:58:51 Pacific Standard Time

Name: 200220P1-53, Date: 21-Feb-2020, Time: 02:30:18, ID: 2000314-14 DUP03-20200212 0.24446, Description: DUP03-20200212

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES $401.8>79.7$ $7.064 e+004$

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES $401.8>79.7$ $7.064 \mathrm{e}+004$

L-PFOA

F26:MRM of 2 channels,ES- $\begin{array}{r}412.8>368.9 \\ 7.470 \mathrm{e}+003\end{array}$

13C2-PFOA-EIS
F27:MRM of 1 channel,ES-
414.9 > 369.7

Total PFOA

F26:MRM of 2 channels,ES$412.8>368.9$ $7.470 \mathrm{e}+003$

13C2-PFOA-EIS
F27:MRM of 1 channel,ES 414.9 > 369.7 $4.391 e+005$

PFNA

F34:MRM of 2 channels,ES 463.0 > 219.0

F35:MRM of 1 channel,ES $468.2>422.9$

Dataset: P:\PFAS5.PRO\RESULTSI200220P1\200220P1-53.qld

Last Altered: Tuesday, February 25, 2020 11:58:17 Pacific Standard Time
Printed: \quad Tuesday, February 25, 2020 11:58:51 Pacific Standard Time

Name: 200220P1-53, Date: 21-Feb-2020, Time: 02:30:18, ID: 2000314-14 DUP03-20200212 0.24446, Description: DUP03-20200212

F39:MRM of 2 channels,ES498.9 > 98. $1.433 e+003$

F42:MRM of 1 channel,ES

F39:MRM of 2 channels,ES 498.9 > 98.7 $1.433 e+003$

13C8-PFOS-EIS
F42:MRM of 1 channel,ES $507.0>79.7$ $8.830 \mathrm{e}+004$

9CI-PF30NS

13C8-PFOS-EIS

13C2-PFDA-EIS
F45:MRM of 1 channel,ES$515.1>469.9$

PFUdA

F55:MRM of 1 channel,ES$565>519.8$

Dataset: P:\PFAS5.PRO\RESULTSI200220P1\200220P1-53.qld

Last Altered: Tuesday, February 25, 2020 11:58:17 Pacific Standard Time
Printed: Tuesday, February 25, 2020 11:58:51 Pacific Standard Time

Name: 200220P1-53, Date: 21-Feb-2020, Time: 02:30:18, ID: 2000314-14 DUP03-20200212 0.24446, Description: DUP03-20200212

L-MeFOSAA

F56:MRM of 2 channels, ES

| 100 |
| :--- | :--- | :--- |

d3-N-MeFOSAA-EIS
F58:MRM of 1 channel,ES
$573.3>419$ $7.301 \mathrm{e}+004$

Total N-MeFOSAA

F56:MRM of 2 channels,ES $570>419$

F56:MRM of 2 channels,ES-

d3-N-MeFOSAA-EIS
F58:MRM of 1 channel,ES $573.3>419$ $7.301 \mathrm{e}+004$

L-EtFOSAA

F59:MRM of 2 channels,ES-

d5-N-EtFOSAA-EIS
F60:MRM of 1 channel,ES589.3 > 419

Total N-EtFOSAA

F59:MRM of 2 channels,ES$584.1>419$

d5-N-EtFOSAA-EIS
F60:MRM of 1 channel,ES-
$589.3>419$ $9.620 \mathrm{e}+004$

F68:MRM of 2 channels,ES
$630.9>83$

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES $614.7>569.7$

Dataset: P:\PFAS5.PRO\RESULTSI200220P1\200220P1-53.qld

Last Altered: Tuesday, February 25, 2020 11:58:17 Pacific Standard Time
Printed: Tuesday, February 25, 2020 11:58:51 Pacific Standard Time

Name: 200220P1-53, Date: 21-Feb-2020, Time: 02:30:18, ID: 2000314-14 DUP03-20200212 0.24446, Description: DUP03-20200212

PFDoA

F62:MRM of 4 channels,ES-
$612.9>318.8$
$2.509 e+001$

PFTrDA

F71:MRM of 2 channels,ES-

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES $614.7>569.7$ $3.903 \mathrm{e}+005$

PFTeDA

13C2-PFTeDA-EIS

TDCA

F38:MRM of 3 channels,ES- | $498.3>106.9$ |
| ---: |
| $2.185 \mathrm{e}+001$ |

13C8-PFOS-EIS
F42:MRM of 1 channel,ES$507.0>79.7$ $8.830 \mathrm{e}+004$

13C4-PFBA
F4:MRM of 1 channel,ES

13C5-PFHxA
F15:MRM of 1 channel,ES $318.0>272.9$


```
Dataset: P:\PFAS5.PRO\RESULTS\200220P1\200220P1-53.qld
```

Last Altered: Tuesday, February 25, 2020 11:58:17 Pacific Standard Time
Printed: Tuesday, February 25, 2020 11:58:51 Pacific Standard Time

Name: 200220P1-53, Date: 21-Feb-2020, Time: 02:30:18, ID: 2000314-14 DUP03-20200212 0.24446, Description: DUP03-20200212

13C9-PFNA

Dataset: P:IPFAS5.PRO\RESULTSI200220P1\200220P1-54.qld
 Last Altered: Tuesday, February 25, 2020 12:05:07 Pacific Standard Time
 Printed: Tuesday, February 25, 2020 12:05:31 Pacific Standard Time

Name: 200220P1-54, Date: 21-Feb-2020, Time: 02:40:47, ID: 2000314-15 A000MW42S-20200212 0.25324, Description: A000MW42S-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	$299.0>79.7$	9.30 e 2	1.47 e 3	0.253		2.68	2.68	7.90	13.3525		3.429	NO
2	7 PFHxA	$313.0>269.0$	2.57 e 2	2.16 e 4	0.253		3.19	3.20	0.148	0.3621		50.318	YES
3	9 HFPO-DA	$285.1>168.9$		3.85 e 3	0.253		3.40						
4	11 PFHpA	$363.0>318.9$		1.32 e 4	0.253		3.79						
5	12 ADONA	$376.8>250.9$		1.32 e 4	0.253		3.88						
6	51 13C3-PFBS-EIS	$302.0>98.8$	1.47 e 3		0.253	114.516	2.70	2.68	1470	50.7680	102.9		
7	57 13C2-PFHxA-EIS	$315.0>270.0$	2.16 e 4		0.253	1636.234	3.19	3.19	21600	52.2079	105.8		
8	53 13C3-HFPO-DA-EIS	$287.0>168.9$	3.85 e 3		0.253	293.118	3.44	3.40	3850	51.8824	105.1		
9	59 13C4-PFHpA-EIS	$367.2>321.8$	1.32 e 4		0.253	1106.802	3.79	3.79	13200	47.1377	95.5		
10	59 13C4-PFHpA-EIS	367.2 > 321.8	1.32 e 4		0.253	1106.802	3.79	3.79	13200	47.1377	95.5		
11	-1												
12	13 L-PFHxS	$398.9>79.7$	2.25 e 3	3.29 e 3	0.253		3.92	3.93	8.57	30.1667		2.323	NO
13	1... Total PFHxS	$398.9>79.7$	2.25 e 3	3.29 e 3	0.253		3.93		8.57	30.1667			
14	16 L-PFOA	$412.8>368.9$	1.83 e 3	1.90 e 4	0.253		4.30	4.30	1.21	3.6593		2.855	NO
15	1... Total PFOA	$412.8>368.9$	1.83 e 3	1.90 e 4	0.253		4.60		1.21	3.6593			
16	21 PFNA	$463.0>418.8$		1.55 e 4	0.253		4.73						
17	61 13C3-PFHxS-EIS	$401.8>79.7$	3.29 e 3		0.253	252.668	3.93	3.92	3290	51.3615	104.1		
18	61 13C3-PFHxS-EIS	$401.8>79.7$	3.29 e 3		0.253	252.668	3.93	3.92	3290	51.3615	104.1		
19	69 13C2-PFOA-EIS	$414.9>369.7$	1.90 e 4		0.253	1527.160	4.30	4.30	19000	49.0053	99.3		
20	69 13C2-PFOA-EIS	$414.9>369.7$	1.90 e 4		0.253	1527.160	4.30	4.30	19000	49.0053	99.3		
21	65 13C5-PFNA-EIS	$468.2>422.9$	1.55 e 4		0.253	1373.362	4.72	4.73	15500	44.4726	90.1		
22	-1												
23	23 L-PFOS	$498.9>79.7$	2.27 e 2	3.64 e 3	0.253		4.80	4.65	0.778	3.3349		9.108	YES
24	1... Total PFOS	$498.9>79.7$	2.27 e 2	3.64 e 3	0.253		5.13		0.778	3.3349			
25	$259 \mathrm{Cl}-\mathrm{PF} 30 \mathrm{NS}$	$530.7>350.8$		3.64 e 3	0.253		5.01						
26	26 PFDA	$513>468.8$		1.81 e 4	0.253		5.08						
27	33 PFUdA	$563.0>518.9$	2.55 e 1	1.81 e 4	0.253		5.40	5.39	0.0176	0.1126		83.314	YES
28	71 13C8-PFOS-EIS	$507.0>79.7$	3.64 e 3		0.253	295.805	4.80	4.80	3640	48.6095	98.5		
29	71 13C8-PFOS-EIS	$507.0>79.7$	3.64 e 3		0.253	295.805	4.80	4.80	3640	48.6095	98.5		
30	71 13C8-PFOS-EIS	$507.0>79.7$	3.64 e 3		0.253	295.805	4.80	4.80	3640	48.6095	98.5		
31	73 13C2-PFDA-EIS	$515.1>469.9$	1.81 e 4		0.253	1356.410	5.08	5.08	18100	52.8043	107.0		
32	79 13C2-PFUdA-EIS	$565>519.8$	1.81 e 4		0.253	1416.449	5.40	5.40	18100	50.5066	102.3		
33	-1												
34	29 L-MeFOSAA	$570>419$		3.17 e 3	0.253		5.23						
35	1... Total N-MeFOSAA	570. >419	0.00e0	3.17 e 3	0.253		5.19		0.000				
36	31 L-EtFOSAA	$584.1>419$		4.04 e 3	0.253		5.38						

Dataset:	P:\PFAS5.PRO\RESULTS\200220P1\200220P1-54.qld
Last Altered:	Tuesday, February 25, 2020 12:05:07 Pacific Standard Time
Printed:	Tuesday, February 25, 2020 12:05:31 Pacific Standard Time

Name: 200220P1-54, Date: 21-Feb-2020, Time: 02:40:47, ID: 2000314-15 A000MW42S-20200212 0.25324, Description: A000MW42S-20200212

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	1... Total N-EtFOSAA	$584.1>419$	0.00 e 0	4.04e3	0.253		5.37		0.000				
38	35 11CI-PF30UdS	$630.9>450.9$		1.43 e 4	0.253		5.60						
39	77 d3-N-MeFOSAA-EIS	$573.3>419$	3.17 e 3		0.253	262.877	5.22	5.23	3170	47.5522	96.3		
40	77 d3-N-MeFOSAA-EIS	$573.3>419$	3.17 e 3		0.253	262.877	5.22	5.23	3170	47.5522	96.3		
41	81 d5-N-EtFOSAA-EIS	$589.3>419$	4.04 e 3		0.253	360.983	5.37	5.38	4040	44.1616	89.5		
42	$81 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}-\mathrm{EIS}$	$589.3>419$	4.04 e 3		0.253	360.983	5.37	5.38	4040	44.1616	89.5		
43	83 13C2-PFDoA-EIS	$614.7>569.7$	1.43 e 4		0.253	1573.093	5.67	5.67	14300	35.9443	72.8		
44	-1												
45	37 PFDoA	$612.9>569.0$		1.43 e 4	0.253		5.67						
46	39 PFTrDA	$662.9>618.9$		1.43 e 4	0.253		5.93						
47	41 PFTeDA	$713.0>669.0$		1.62 e 4	0.253		6.12						
48	1... TDCA	$498.3>106.9$			0.253		4.59						
49	99 13C4-PFBA	$217.0>172.0$	1.19 e 4	1.19 e 4	0.253	1.000	1.48	1.48	12.5	49.3603	100.0		
50	83 13C2-PFDoA-EIS	$614.7>569.7$	1.43 e 4		0.253	1573.093	5.67	5.67	14300	35.9443	72.8		
51	83 13C2-PFDoA-EIS	$614.7>569.7$	1.43 e 4		0.253	1573.093	5.67	5.67	14300	35.9443	72.8		
52	89 13C2-PFTeDA-EIS	$715.1>669.7$	1.62 e 4		0.253	1440.513	6.11	6.12	16200	44.4466	90.0		
53	71 13C8-PFOS-EIS	$507.0>79.7$	3.64 e 3		0.253	295.805	4.80	4.80	3640	48.6095	98.5		
54	1... 13C5-PFHxA	$318.0>272.9$	2.06 e 4	2.06 e 4	0.253	1.000	3.18	3.19	12.5	49.3603	100.0		
55	-1												
56	1... 1802-PFHxS	$403.0>102.6$	1.07e3	1.07 e 3	0.253	1.000	3.92	3.93	12.5	49.3603	100.0		
57	1... 13C6-PFDA	$519.1>473.7$	1.93 e 4	1.93 e 4	0.253	1.000	5.08	5.08	12.5	49.3603	100.0		
58	1... 13C7-PFUdA	$570.1>524.8$	1.87 e 4	1.87 e 4	0.253	1.000	5.40	5.40	12.5	49.3603	100.0		
59	1... 13C4-PFOS	$503>79.7$	3.78 e 3	3.78 e 3	0.253	1.000	4.79	4.80	12.5	49.3603	100.0		
60	1... 13C9-PFNA	472.2 > 426.9	1.62 e 4	1.62 e 4	0.253	1.000	4.72	4.72	12.5	49.3603	100.0		

Dataset:	P:IPFAS5.PRO\RESULTS\200220P1\200220P1-54.qld
Last Altered:	Tuesday, February 25, 2020 12:05:07 Pacific Standard Time
Printed:	Tuesday, February 25, 2020 12:05:31 Pacific Standard Time

Method: P:\PFAS5.PRO\MethDB\NEW_PFAS_80C_022020.mdb 21 Feb 2020 08:56:55

Calibration: P:\PFAS5.PRO\CurveDB\C̄18_VAL-PFAS_Q5_02-20-20.cdb 21 Feb 2020 15:57:11

Name: 200220P1-54, Date: 21-Feb-2020, Time: 02:40:47, ID: 2000314-15 A000MW42S-20200212 0.25324, Description: A000MW42S-20200212

13C3-HFPO-DA-EIS
F10:MRM of 2 channels,ES-
$287.0>168.9$

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES$367.2>321.8$


```
Dataset: P:\PFAS5.PRO\RESULTS\200220P1\200220P1-54.qld
```

Last Altered: Tuesday, February 25, 2020 12:05:07 Pacific Standard Time
Printed: Tuesday, February 25, 2020 12:05:31 Pacific Standard Time

Name: 200220P1-54, Date: 21-Feb-2020, Time: 02:40:47, ID: 2000314-15 A000MW42S-20200212 0.25324, Description: A000MW42S-20200212

L-PFHxS

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES $401.8>79.7$ $7.888 \mathrm{e}+004$

L-PFOA

13C2-PFOA-EIS
F27:MRM of 1 channel,ES-
414.9 > 369.7

Total PFOA

13C2-PFOA-EIS
F27:MRM of 1 channel,ES 414.9 > 369.7 $4.724 \mathrm{e}+005$

PFNA

F34:MRM of 2 channels,ES463.0 > 219.0

13C5-PFNA-EIS
F35:MRM of 1 channel,ES $468.2>422.9$

Dataset: P:\PFAS5.PRO\RESULTS\200220P1\200220P1-54.qld

Last Altered: Tuesday, February 25, 2020 12:05:07 Pacific Standard Time
Printed: Tuesday, February 25, 2020 12:05:31 Pacific Standard Time

Name: 200220P1-54, Date: 21-Feb-2020, Time: 02:40:47, ID: 2000314-15 A000MW42S-20200212 0.25324, Description: A000MW42S-20200212

L-PFOS

F39:MRM of 2 channels,ES-

13C8-PFOS-EIS

13C8-PFOS-EIS
F42:MRM of 1 channel,ES $507.0>79.7$ $9.256 e+004$

9CI-PF30NS

F51:MRM of 2 channels,ES-
100-4.81

13C8-PFOS-EIS

F44:MRM of 2 channels,ES-

13C2-PFDA-EIS
F45:MRM of 1 channel,ES$515.1>469.9$

PFUdA

13C2-PFUdA-EIS
F55:MRM of 1 channel,ES $565>519.8$

Dataset: P:\PFAS5.PRO\RESULTS\200220P1\200220P1-54.qld

Last Altered: Tuesday, February 25, 2020 12:05:07 Pacific Standard Time Printed: \quad Tuesday, February 25, 2020 12:05:31 Pacific Standard Time

Name: 200220P1-54, Date: 21-Feb-2020, Time: 02:40:47, ID: 2000314-15 A000MW42S-20200212 0.25324, Description: A000MW42S-20200212

L-MeFOSAA

F56:MRM of 2 channels,ES-

		$570>419$
100	-MeFOSAA	$1.665 \mathrm{e}+002$
	5.40	
	5.74 e 0	
\%	167	
	MM-	
	167.00	5.74

$$
\text { F56:MRM of } 2 \text { channels,ES- } \begin{array}{r}
570 .>512 \\
500 \\
1.389 \mathrm{e}+003
\end{array}
$$

d3-N-MeFOSAA-EIS

d3-N-MeFOSAA-EIS

L-EtFOSAA

F59:MRM of 2 channels,ES-
F59:MRM of 2 channels,ES-
$584.1>419$

d5-N-EtFOSAA-EIS
F60:MRM of 1 channel,ES$589.3>419$ $1.119 e+005$

Total N-EtFOSAA

F59:MRM of 2 channels,ES$584.1>419$
100

d5-N-EtFOSAA-EIS
F60:MRM of 1 channel,ES-
$589.3>419$ $1.119 e+005$

11CI-PF30UdS

F68:MRM of 2 channels,ES

F68:MRM of 2 channels,ES$630.9>83$

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES $614.7>569.7$

Dataset: P:\PFAS5.PRO\RESULTSI200220P1\200220P1-54.qld

Last Altered: Tuesday, February 25, 2020 12:05:07 Pacific Standard Time
Printed: Tuesday, February 25, 2020 12:05:31 Pacific Standard Time

Name: 200220P1-54, Date: 21-Feb-2020, Time: 02:40:47, ID: 2000314-15 A000MW42S-20200212 0.25324, Description: A000MW42S-20200212

PFDoA

F62:MRM of 4 channels,ES-
$612.9>569.0$
$7.087 e+002$

PFTrDA

71:MRM of 2 channels,ES

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES 614.7 > 569.7 $3.576 \mathrm{e}+005$

PFTeDA

13C2-PFTeDA-EIS

TDCA

F38:MRM of 3 channels,ES- $498.3>106.9$

13C8-PFOS-EIS
F42:MRM of 1 channel,ES$507.0>79.7$ $9.256 \mathrm{e}+004$

13C4-PFBA
F4:MRM of 1 channel,ES-
$217.0>172.0$
$2.707 e+005$

13C5-PFHxA
F15:MRM of 1 channel,ES $318.0>272.9$


```
Dataset: P:\PFAS5.PRO\RESULTS\200220P1\200220P1-54.qld
```

Last Altered: Tuesday, February 25, 2020 12:05:07 Pacific Standard Time
Printed: \quad Tuesday, February 25, 2020 12:05:31 Pacific Standard Time

Name: 200220P1-54, Date: 21-Feb-2020, Time: 02:40:47, ID: 2000314-15 A000MW42S-20200212 0.25324, Description: A000MW42S-20200212

INSTRUMENT BLANKS (IB)
AND
CONTINUTING CALIBRATION VERIFICATIONS (CCV)

Friday, February 21, 2020 11:45:42 Pacific Standard Time Printed: Friday, February 21, 2020 11:47:45 Pacific Standard Time

Method: D:|PFAS5.PRO\MethDBINEW_PFAS_80C_022020.mdb 21 Feb 2020 08:56:55

Calibration: D:|PFAS5.PRO\CurveDBIC18_VAL-PFAS_Q5_02-20-20.cdb 21 Feb 2020 11:03:18

Name: 200220P1-13, Date: 20-Feb-2020, Time: 19:30:05, ID: IB, Description: IB

PFBA

IB IBF2:MRM of 1 channel,ES-

13C3-PFBA-EIS

IB IBF3:MRM of 1 channel,ES-

13C3-PFBS-EIS
F12:MRM of 1 channel,ES-

13C3-PFPeA-EIS
IB IBF8:MRM of 1 channel,ES-
266.0 > 221.8 $1.214 \mathrm{e}+005$

PFPeA

IB IBF7:MRM of 1 channel,ES-

13C3-PFPeA-EIS

IB IBF8:MRM of 1 channel,ES-

F11:MRM of 2 channels,ES-

13C3-PFBS-EIS
F12:MRM of 1 channel,ES302.0 > 98.8

13C2-4:2 FTS-EIS
F17:MRM of 2 channels,ES-
$329.0>79.7$
$2.305 \mathrm{e}+004$

Friday, February 21, 2020 11:45:42 Pacific Standard Time Printed: Friday, February 21, 2020 11:47:45 Pacific Standard Time

Name: 200220P1-13, Date: 20-Feb-2020, Time: 19:30:05, ID: IB, Description: IB

13C2-PFHxA-EIS

PFPeS

F19:MRM of 2 channels,ES-

F19:MRM of 2 channels,ES-

13C3-PFBS-EIS

13C4-PFHpA-EIS

F20:MRM of 2 channels,ES-

13C4-PFHpA-EIS

Last Altered: Friday, February 21, 2020 11:45:42 Pacific Standard Time Printed: Friday, February 21, 2020 11:47:45 Pacific Standard Time

Name: 200220P1-13, Date: 20-Feb-2020, Time: 19:30:05, ID: IB, Description: IB

L-PFHxS

F23:MRM of 2 channels,ES- $\begin{array}{r}398.9>79.7 \\ 2.053 \mathrm{e}+002 \\ \hline\end{array}$
F23:MRM of 2 channels,ES-

6:2 FTS

F29:MRM of 3 channels,ES-
$427.0>407$

F29:MRM of 3 channels,ES-

13C2-6:2 FTS-EIS
F30:MRM of 1 channel,ES-
$429.0>79.7$

F33:MRM of 2 channels,ES

13C2-PFOA-EIS
F27:MRM of 1 channel,ES-

F32:MRM of 2 channels,ESF32:MRM of 2 channels,ES-
$449>98.7$

13C8-PFOS-EIS

F31:MRM of 2 channels,ES-

13C5-PFNA-EIS

Last Altered: Friday, February 21, 2020 11:45:42 Pacific Standard Time Printed: Friday, February 21, 2020 11:47:45 Pacific Standard Time

Name: 200220P1-13, Date: 20-Feb-2020, Time: 19:30:05, ID: IB, Description: IB

PFNA

F34:MRM of 2 channels,ESF34:MRM of 2 channels,ES-

13C5-PFNA-EIS

PFOSA

13C8-PFOSA-EIS

F39:MRM of 2 channels,ES- F51:MRM of 2 channels,ES-

13C8-PFOS-EIS

F42:MRM of 1 channel,ES-
F42:MRM of 1 channel,ES-
$507.0>79.7$
$8.751 \mathrm{e}+004$

F44:MRM of 2 channels,ES-

13C2-PFDA-EIS

Last Altered: Friday, February 21, 2020 11:45:42 Pacific Standard Time Printed: Friday, February 21, 2020 11:47:45 Pacific Standard Time

Name: 200220P1-13, Date: 20-Feb-2020, Time: 19:30:05, ID: IB, Description: IB

PFNS

13C8-PFOS-EIS
13C8-PFOS-EIS

F42:MRM of 1 | channel,ES- |
| :---: |
| $507.0>79.7$ |

8

d3-N-MeFOSAA-EIS

d5-N-EtFOSAA-EIS

11CI-PF30UdS

F68:MRM of 2 channels,ES-
630.9 > 450.9

F68:MRM of 2 channels,ES-

13C2-PFDoA-EIS

13C8-PFOS-EIS

Last Altered: Friday, February 21, 2020 11:45:42 Pacific Standard Time Printed: Friday, February 21, 2020 11:47:45 Pacific Standard Time

Name: 200220P1-13, Date: 20-Feb-2020, Time: 19:30:05, ID: IB, Description: IB

10:2 FTS

F66:MRM of 2 channels,ES-

d3-N-MeFOSA-EIS

F46:MRM of 1 channel,ES-

F71:MRM of 2 channels,ES662.9 > 319

Last Altered: Friday, February 21, 2020 11:45:42 Pacific Standard Time Printed: Friday, February 21, 2020 11:47:45 Pacific Standard Time

Name: 200220P1-13, Date: 20-Feb-2020, Time: 19:30:05, ID: IB, Description: IB

N-EtFOSA
F48:MRM of 2 channels,ES-
$526.1>168.9$
$1.294 \mathrm{e}+003$

13C2-PFHxDA-EIS

13C2-PFHxDA-EIS
F76:MRM of 1 channel,ES-
$815>769.7$

d7-N-MeFOSE-EIS
F65:MRM of 1 channel,ES-

d9-N-EtFOSE-EIS

N-EtFOSE

d5-N-ETFOSA-EIS

F52:MRM of 1 channel,ES-
$531.1>168.9$ $5.640 \mathrm{e}+005$

13C8-PFOS-EIS

Last Altered: Friday, February 21, 2020 11:45:42 Pacific Standard Time Printed: Friday, February 21, 2020 11:47:45 Pacific Standard Time

Name: 200220P1-13, Date: 20-Feb-2020, Time: 19:30:05, ID: IB, Description: IB

13C4-PFHpA-RSD
F21:MRM of 1 channel ES
F21:MRM of 1 channel,ES-
$367.2>321.8$
$2.586 \mathrm{e}+005$

13C2-6:2 FTS-RSD
F30:MRM of 1 channel,ES-

13C3-HFPO-DA-RSD
F10:MRM of 2 channels,ES-

13C5-PFNA-RSD

F35:MRM of 1 channel,ES-

3C2-4:2 FTS-RSD

F17:MRM of 2 channels,ES-

13C8-PFOSA-RSD

13C2-PFOA-RSD

Last Altered: Friday, February 21, 2020 11:45:42 Pacific Standard Time Printed: Friday, February 21, 2020 11:47:45 Pacific Standard Time

Name: 200220P1-13, Date: 20-Feb-2020, Time: 19:30:05, ID: IB, Description: IB

13C2-PFDoA-RSD

F63:MRM of 1 channel,ES-

13C2-10:2 FTS-RSD

13C2-PFUdA-RSD
F55:MRM of 1 channel,ES-
channel,ES-
$565>519.8$ $4.932 \mathrm{e}+005$

d5-N-ETFOSA-RSD
F52:MRM of 1 channel ES

d5-N-EtFOSAA-RSD
F60:MRM of 1 channel,ES-
589.3 > 419
$1.111 e+005$

Last Altered: Friday, February 21, 2020 11:45:42 Pacific Standard Time Printed: Friday, February 21, 2020 11:47:45 Pacific Standard Time

Name: 200220P1-13, Date: 20-Feb-2020, Time: 19:30:05, ID: IB, Description: IB

d7-N-MeFOSE-RSD

13C9-PFNA

F36:MRM of 1 channel,ES-

13C4-PFOS
F40:MRM of 1 channel,ES-
$503>79.7$

13C6-PFDA

F47:MRM of 1 channel,ES-

13C5-PFHxA

F15:MRM of 1 channel,ES-
$318.0>272.9$ $3.347 e+005$

13C7-PFUdA

13C8-PFOA

F28:MRM of 1 channel,ES$420.9>376.0$

Last Altered:

 Printed:Friday, February 21, 2020 11:45:42 Pacific Standard Time

Name: 200220P1-13, Date: 20-Feb-2020, Time: 19:30:05, ID: IB, Description: IB

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
1	1 PFBA	$213.0>168.8$	31.824	2834.986	1.00	1.51	0.140		0.248		NO		
2	2 PFPrS	$248.9>79.7$		864.655	1.00						NO		YES
3	3 3:3 FTCA	$240.9>176.9$		7024.297	1.00						NO		YES
4	4 PFPeA	$263.1>218.9$	5.847	7024.297	1.00	2.43	0.010				NO		
5	5 PFBS	$299.0>79.7$		864.655	1.00						NO		YES
6	6 4:2 FTS	$327.0>307$		1025.108	1.00						NO		YES
7	47 13C3-PFBA-EIS	$216.1>171.8$	2834.986		1.00	1.49	2834.986	12.500	3.44	27.5	YES		
8	51 13C3-PFBS-EIS	$302.0>98.8$	864.655		1.00	2.68	864.655	12.500	7.55	60.4	NO		
9	49 13C3-PFPeA-EIS	$266.0>221.8$	7024.297		1.00	2.41	7024.297	12.500	7.45	59.6	NO		
10	49 13C3-PFPeA-EIS	$266.0>221.8$	7024.297		1.00	2.41	7024.297	12.500	7.45	59.6	NO		
11	51 13C3-PFBS-EIS	$302.0>98.8$	864.655		1.00	2.68	864.655	12.500	7.55	60.4	NO		
12	55 13C2-4:2 FTS-EIS	$329.0>79.7$	1025.108		1.00	3.10	1025.108	12.500	9.43	75.4	NO		
13	-1												
14	7 PFHxA	$313.0>269.0$	77.982	14203.249	1.00	3.10	0.069		0.00188		NO		YES
15	8 PFPeS	$349 .>79.7$		864.655	1.00						NO		YES
16	9 HFPO-DA	$285.1>168.9$	7.289	2636.307	1.00	3.30	0.035				NO		YES
17	10 5:3 FTCA	$340.9>236.9$	8.709	13500.765	1.00	3.68	0.008		0.0752		NO		YES
18	11 PFHpA	$363.0>318.9$	112.199	13500.765	1.00	3.75	0.104		0.0217		NO		YES
19	12 ADONA	$376.8>250.9$	135.600	13500.765	1.00	3.85	0.126				NO	4.593	NO
20	57 13C2-PFHxA-EIS	$315.0>270.0$	14203.249		1.00	3.18	14203.249	12.500	8.68	69.4	NO		
21	51 13C3-PFBS-EIS	$302.0>98.8$	864.655		1.00	2.68	864.655	12.500	7.55	60.4	NO		
22	53 13C3-HFPO-DA-EIS	$287.0>168.9$	2636.307		1.00	3.39	2636.307	12.500	8.99	72.0	NO		
23	59 13C4-PFHpA-EIS	$367.2>321.8$	13500.765		1.00	3.78	13500.765	12.500	12.2	97.6	NO		
24	59 13C4-PFHpA-EIS	$367.2>321.8$	13500.765		1.00	3.78	13500.765	12.500	12.2	97.6	NO		
25	59 13C4-PFHpA-EIS	$367.2>321.8$	13500.765		1.00	3.78	13500.765	12.500	12.2	97.6	NO		
26	-1												
27	13 L-PFHxS	$398.9>79.7$	6.979	2838.588	1.00	3.91	0.031				NO		YES
28	15 6:2 FTS	$427.0>407$		1102.104	1.00						NO		YES
29	16 L-PFOA	$412.8>368.9$	138.428	18027.979	1.00	4.30	0.096		0.00266		NO	4.310	NO
30	18 PFecHS	$460.8>381.0$		18027.979	1.00						NO		YES
31	19 PFHpS	$449.0>79.7$	9.055	3475.157	1.00	4.36	0.033		0.0837		NO		YES
32	20 7:3 FTCA	$440.9>336.9$		15570.243	1.00						NO		YES
33	61 13C3-PFHxS-EIS	$401.8>79.7$	2838.588		1.00	3.92	2838.588	12.500	11.2	89.9	NO		
34	63 13C2-6:2 FTS-EIS	$429.0>79.7$	1102.104		1.00	4.23	1102.104	12.500	9.07	72.6	NO		
35	69 13C2-PFOA-EIS	$414.9>369.7$	18027.979		1.00	4.29	18027.979	12.500	11.8	94.4	NO		
36	69 13C2-PFOA-EIS	$414.9>369.7$	18027.979		1.00	4.29	18027.979	12.500	11.8	94.4	NO		
	Work Order 2000314											Page 21	6 of 1277

Last Altered:

 Printed:Friday, February 21, 2020 11:45:42 Pacific Standard Time

Name: 200220P1-13, Date: 20-Feb-2020, Time: 19:30:05, ID: IB, Description: IB

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
37	71 13C8-PFOS-EIS	$507.0>79.7$	3475.157		1.00	4.79	3475.157	12.500	11.7	94.0	NO		
38	65 13C5-PFNA-EIS	$468.2>422.9$	15570.243		1.00	4.72	15570.243	12.500	11.3	90.7	NO		
39	-1												
40	21 PFNA	$463.0>418.8$	75.063	15570.243	1.00	4.72	0.060		0.0002...		NO	12.521	YES
41	22 PFOSA	$497.9>77.9$	11.899	3678.810	1.00	4.80	0.040		0.0637		NO		YES
42	23 L -PFOS	$498.9>79.7$	17.999	3475.157	1.00	4.79	0.065		0.0730		NO	3.563	YES
43	259 Cl -PF30NS	$530.7>350.8$	6.496	3475.157	1.00	5.01	0.023		0.0254		NO		YES
44	26 PFDA	$513>468.8$	110.693	17857.156	1.00	5.08	0.077		0.00362		NO		YES
45	27 8:2 FTS	$526.9>507$	26.669	1054.832	1.00	5.06	0.316		0.360		NO		YES
46	65 13C5-PFNA-EIS	$468.2>422.9$	15570.243		1.00	4.72	15570.243	12.500	11.3	90.7	NO		
47	67 13C8-PFOSA-EIS	$506>78$	3678.810		1.00	4.78	3678.810	12.500	11.4	91.1	NO		
48	71 13C8-PFOS-EIS	$507.0>79.7$	3475.157		1.00	4.79	3475.157	12.500	11.7	94.0	NO		
49	71 13C8-PFOS-EIS	$507.0>79.7$	3475.157		1.00	4.79	3475.157	12.500	11.7	94.0	NO		
50	73 13C2-PFDA-EIS	$515.1>469.9$	17857.156		1.00	5.08	17857.156	12.500	13.2	105.3	NO		
51	75 13C2-8:2 FTS-EIS	$529>79.7$	1054.832		1.00	5.05	1054.832	12.500	12.3	98.2	NO		
52	-1												
53	28 PFNS	$549.1>79.7$		3475.157	1.00						NO		YES
54	29 L-MeFOSAA	$570>419$	16.108	3690.109	1.00	5.23	0.055		0.0317		NO	0.414	YES
55	31 L-EtFOSAA	$584.1>419$	39.562	4190.298	1.00	5.37	0.118		0.0345		NO	2.011	YES
56	33 PFUdA	$563.0>518.9$	103.046	18565.443	1.00	5.40	0.069		0.0777		NO	15.848	NO
57	34 PFDS	$598.8>79.7$	35.439	3475.157	1.00	5.44	0.127		0.118		NO	2.848	NO
58	3511 Cl -PF30UdS	$630.9>450.9$	61.168	18517.162	1.00	5.60	0.041				NO		YES
59	71 13C8-PFOS-EIS	$507.0>79.7$	3475.157		1.00	4.79	3475.157	12.500	11.7	94.0	NO		
60	77 d3-N-MeFOSAA-EIS	$573.3>419$	3690.109		1.00	5.22	3690.109	12.500	14.0	112.3	NO		
61	$81 \mathrm{~d} 5-\mathrm{N}-$ EtFOSAA-EIS	$589.3>419$	4190.298		1.00	5.38	4190.298	12.500	11.6	92.9	NO		
62	79 13C2-PFUdA-EIS	$565>519.8$	18565.443		1.00	5.39	18565.443	12.500	13.1	104.9	NO		
63	71 13C8-PFOS-EIS	$507.0>79.7$	3475.157		1.00	4.79	3475.157	12.500	11.7	94.0	NO		
64	83 13C2-PFDoA-EIS	$614.7>569.7$	18517.162		1.00	5.67	18517.162	12.500	11.8	94.2	NO		
65	-1												
66	36 10:2 FTS	$626.9>607$		688.921	1.00						NO		YES
67	37 PFDoA	$612.9>569.0$	182.969	18517.162	1.00	5.68	0.124				NO	6.911	NO
68	38 N-MeFOSA	$512.1>168.9$	28.521	16860.805	1.00	5.83	0.252		0.0998		NO	0.842	NO
69	39 PFTrDA	$662.9>618.9$	210.955	18517.162	1.00	5.91	0.142		0.0333		NO		YES
70	40 PFDoS	$698.8>79.7$	25.677	18754.758	1.00	5.92	0.017		0.0889		NO	3.039	NO
71	41 PFTeDA	$713.0>669.0$	287.497	18754.758	1.00	6.11	0.192		0.127		NO		YES
72	85 13C2-10:2 FTS-EIS	$632.9>80.0$	688.921		1.00	5.66	688.921	12.500	10.3	82.6	NO		

Last Altered: Friday, February 21, 2020 11:45:42 Pacific Standard Time
Printed:
Friday, February 21, 2020 11:47:45 Pacific Standard Time

Name: 200220P1-13, Date: 20-Feb-2020, Time: 19:30:05, ID: IB, Description: IB

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
73	83 13C2-PFDoA-EIS	$614.7>569.7$	18517.162		1.00	5.67	18517.162	12.500	11.8	94.2	NO		
74	87 d3-N-MeFOSA-EIS	$515.2>168.9$	16860.805		1.00	5.83	16860.805	149.200	139	93.3	NO		
75	83 13C2-PFDoA-EIS	$614.7>569.7$	18517.162		1.00	5.67	18517.162	12.500	11.8	94.2	NO		
76	89 13C2-PFTeDA-EIS	$715.1>669.7$	18754.758		1.00	6.12	18754.758	12.500	13.0	104.2	NO		
77	89 13C2-PFTeDA-EIS	$715.1>669.7$	18754.758		1.00	6.12	18754.758	12.500	13.0	104.2	NO		
78	-1												
79	$42 \mathrm{~N}-\mathrm{EtFOSA}$	$526.1>168.9$	58.120	22512.211	1.00	6.19	0.385		0.350		NO	1.427	NO
80	43 PFHxDA	$813.1>768.6$	417.085	25505.473	1.00	6.44	0.204		0.125		NO		YES
81	44 PFODA	$913.1>868.8$	366.883	25505.473	1.00	6.66	0.180		0.200		NO		
82	45 N -MeFOSE	$616.1>58.9$	83.540	15521.402	1.00	6.31	0.803		0.329		NO		
83	46 N -EtFOSE	$630.1>58.9$	119.845	19186.887	1.00	6.46	0.932		0.958		NO		
84	91 d5-N-ETFOSA-EIS	$531.1>168.9$	22512.211		1.00	6.20	22512.211	149.200	143	96.1	NO		
85	93 13C2-PFHxDA-EIS	$815>769.7$	25505.473		1.00	6.43	25505.473	12.500	10.9	86.9	NO		
86	93 13C2-PFHxDA-EIS	$815>769.7$	25505.473		1.00	6.43	25505.473	12.500	10.9	86.9	NO		
87	95 d7-N-MeFOSE-EIS	$623.1>58.9$	15521.402		1.00	6.30	15521.402	149.200	138	92.8	NO		
88	97 d9-N-EtFOSE-EIS	$639.2>58.8$	19186.887		1.00	6.45	19186.887	149.200	137	91.8	NO		
89	71 13C8-PFOS-EIS	$507.0>79.7$	3475.157		1.00	4.79	3475.157	12.500	11.7	94.0	NO		
90	-1												
91	48 13C3-PFBA-RSD	$216.1>171.8$	2834.986	4003.940	1.00	1.49	8.851	12.500	11.2	89.6	NO		
92	50 13C3-PFPeA-RSD	$266.0>221.8$	7024.297	15103.579	1.00	2.41	5.813	12.500	10.3	82.3	NO		
93	52 13C3-PFBS-RSD	$302.0>98.8$	864.655	1389.390	1.00	2.68	7.779	12.500	6.93	55.4	NO		
94	54 13C3-HFPO-DA-RSD	$287.0>168.9$	2636.307	15103.579	1.00	3.39	2.182	12.500	12.2	97.6	NO		
95	56 13C2-4:2 FTS-RSD	$329.0>79.7$	1025.108	1389.390	1.00	3.10	9.223	12.500	7.75	62.0	NO		
96	58 13C2-PFHxA-RSD	$315.0>270.0$	14203.249	15103.579	1.00	3.18	11.755	12.500	12.0	96.1	NO		
97	60 13C4-PFHpA-RSD	$367.2>321.8$	13500.765	15103.579	1.00	3.78	11.173	12.500	18.3	146.3	NO		
98	62 13C3-PFHxS-RSD	$401.8>79.7$	2838.588	1389.390	1.00	3.92	25.538	12.500	10.7	85.9	NO		
99	64 13C2-6:2 FTS-RSD	$429.0>79.7$	1102.104	3518.320	1.00	4.23	3.916	12.500	10.4	83.0	NO		
100	66 13C5-PFNA-RSD	$468.2>422.9$	15570.243	16952.029	1.00	4.72	11.481	12.500	12.3	98.1	NO		
101	68 13C8-PFOSA-RSD	$506>78$	3678.810	19943.203	1.00	4.78	2.306	12.500	12.1	96.6	NO		
102	70 13C2-PFOA-RSD	$414.9>369.7$	18027.979	22134.828	1.00	4.29	10.181	12.500	11.1	88.8	NO		
103	-1												
104	72 13C8-PFOS-RSD	$507.0>79.7$	3475.157	3518.320	1.00	4.79	12.347	12.500	13.2	105.6	NO		
105	74 13C2-PFDA-RSD	$515.1>469.9$	17857.156	19077.539	1.00	5.08	11.700	12.500	12.4	98.9	NO		
106	76 13C2-8:2 FTS-RSD	$529>79.7$	1054.832	3518.320	1.00	5.05	3.748	12.500	12.9	103.0	NO		
107	78 d3-N-MeFOSAA-RSD	$573.3>419$	3690.109	19943.203	1.00	5.22	2.313	12.500	13.4	107.5	NO		
108	80 13C2-PFUdA-RSD	$565>519.8$	18565.443	19943.203	1.00	5.39	11.636	12.500	11.5	92.4	NO		
	Work Order 2000314											Page 218 of 1277	

Analytical Laboratory

Dataset:

Untitled

Last Altered:

Friday, February 21, 2020 11:45:42 Pacific Standard Time Printed: Friday, February 21, 2020 11:47:45 Pacific Standard Time

Name: 200220P1-13, Date: 20-Feb-2020, Time: 19:30:05, ID: IB, Description: IB

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
109	$82 \mathrm{~d} 5-\mathrm{N}-E t F O S A A-R S D$	$589.3>419$	4190.298	19943.203	1.00	5.38	2.626	12.500	11.6	93.1	NO		
110	84 13C2-PFDoA-RSD	$614.7>569.7$	18517.162	19077.539	1.00	5.67	12.133	12.500	12.1	97.1	NO		
111	86 13C2-10:2 FTS-RSD	$632.9>80.0$	688.921	3518.320	1.00	5.66	2.448	12.500	10.4	83.2	NO		
112	$88 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSA}$-RSD	$515.2>168.9$	16860.805	19943.203	1.00	5.83	10.568	149.200	139	93.2	NO		
113	90 13C2-PFTeDA-RSD	$715.1>669.7$	18754.758	19943.203	1.00	6.12	11.755	12.500	12.1	97.1	NO		
114	92 d5-N-ETFOSA-RSD	$531.1>168.9$	22512.211	19943.203	1.00	6.20	14.110	149.200	139	93.4	NO		
115	94 13C2-PFHxDA-RSD	$815>769.7$	25505.473	19943.203	1.00	6.43	15.986	12.500	10.6	85.0	NO		
116	-1												
117	$96 \mathrm{d7}-\mathrm{N}-\mathrm{MeFOSE-RSD}$	$623.1>58.9$	15521.402	19943.203	1.00	6.30	9.729	149.200	131	87.8	NO		
118	98 d9-N-EtFOSE-RSD	$639.2>58.8$	19186.887	19943.203	1.00	6.45	12.026	149.200	139	93.0	NO		
119	99 13C4-PFBA	$217.0>172.0$	4003.940	4003.940	1.00	1.48	12.500	12.500	12.5	100.0	NO		
120	1... 13C5-PFHxA	$318.0>272.9$	15103.579	15103.579	1.00	3.18	12.500	12.500	12.5	100.0	NO		
121	1... 13C8-PFOA	$420.9>376.0$	22134.828	22134.828	1.00	4.29	12.500	12.500	12.5	100.0	NO		
122	1... 1802-PFHxS	$403.0>102.6$	1389.390	1389.390	1.00	3.91	12.500	12.500	12.5	100.0	NO		
123	1... 13C9-PFNA	$472.2>426.9$	16952.029	16952.029	1.00	4.72	12.500	12.500	12.5	100.0	NO		
124	1... 13C4-PFOS	$503>79.7$	3518.320	3518.320	1.00	4.80	12.500	12.500	12.5	100.0	NO		
125	1... 13C6-PFDA	$519.1>473.7$	19077.539	19077.539	1.00	5.08	12.500	12.500	12.5	100.0	NO		
126	1... 13C7-PFUdA	$570.1>524.8$	19943.203	19943.203	1.00	5.40	12.500	12.500	12.5	100.0	NO		

LC Calibration Standards Review Checklist $Q 5$

Full Mass Cal. Date: _ 20200207

Last Altered:	Friday, February 21, 2020 16:33:53 Pacific Standard Time
Printed:	Friday, February 21, 2020 16:34:01 Pacific Standard Time

Name: 200220P1-37, Date: 20-Feb-2020, Time: 23:42:13, ID: ST200220P1-11 PFC CS3 20B1107, Description: PFC CS3 20B1107

Work Order 2000314

Last Altered: Friday, February 21, 2020 16:33:53 Pacific Standard Time
Printed: Friday, February 21, 2020 16:34:01 Pacific Standard Time

Name: 200220P1-37, Date: 20-Feb-2020, Tịme: 23:42:13, ID: ST200220P1-11 PFC CS3 20B1107, Description: PFC CS3 20B1107

	\# Name	Trace	Area	IS Area	wtivol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
37	71 13C8-PFOS-EIS	$507.0>79.7$	3746.171		1.00	4.80	3746.171	12.500	12.7	101.3	NO		
38	65 13C5-PFNA-EIS	$468.2>422.9$	16656.598		1.00	4.72	16656.598	12.500	12.1	97.0	NO		
39	-1												
40	21 PFNA	$463.0>418.8$	16897.064	16656.598	1.00	4.72	12.680	10.000	10.2	102.5	NO	7.126	NO
41	22 PFOSA	$497.9>77.9$	2806.631	3911.888	1.00	4.79	8.968	10.000	10.0	100.3	NO	27.647	NO
42	23 L-PFOS	$498.9>79.7$	2849.469	3746.171	1.00	4.80	9.508	10.000	10.3	102.7	NO	2.249	NO
43	$259 \mathrm{Cl}-\mathrm{PF} 30 \mathrm{NS}$	$530.7>350.8$	3756.407	3746.171	1.00	5.01	12.534	10.000	10.8	108.0	NO	18.413	NO
44	26 PFDA	$513>468.8$	18487.467	17550.414	1.00	5.08	13.167	10.000	10.7	106.9	NO	9.472	NO
45	27 8:2 FTS	$526.9>507$	1344.439	1009.051	1.00	5.06	16.655	10.000	11.4	114.4	NO	2.476	NO
46	65 13C5-PFNA-EIS	$468.2>422.9$	16656.598		1.00	4.72	16656.598	12.500	12.1	97.0	NO		
47	67 13C8-PFOSA-EIS	$506>78$	3911.888		1.00	4.79	3911.888	12.500	12.1	96.9	NO		
48	71 13C8-PFOS-EIS	$507.0>79.7$	3746.171		1.00	4.80	3746.171	12.500	12.7	101.3	NO		
49	71 13C8-PFOS-EIS	$507.0>79.7$	3746.171		1.00	4.80	3746.171	12.500	12.7	101.3	NO		
50	73 13C2-PFDA-EIS	$515.1>469.9$	17550.414		1.00	5.08	17550.414	12.500	12.9	103.5	NO		
51	75 13C2-8:2 FTS-EIS	$529>79.7$	1009.051		1.00	5.05	1009.051	12.500	11.7	93.9	NO		
52	-1												
53	28 PFNS	$549.1>79.7$	2737.792	3746.171	1.00	5.14	9.135	10.000	9.95	99.5	NO	2.042	NO
54	29 L-MeFOSAA	$570>419$	5398.471	3870.303	1.00	5.23	17.436	10.000	9.17	91.7	NO	2.017	NO
55	31 L-EtFOSAA	$584.1>419$	5231.848	5069.472	1.00	5.38	12.900	10.000	10.2	102.4	NO	1.223	NO
56	33 PFUdA	$563.0>518.9$	17646.209	21240.578	1.00	5.40	10.385	10.000	9.90	99.0	NO	22.977	NO
57	34 PFDS	$598.8>79.7$	2577.123	3746.171	1.00	5.44	8.599	10.000	10.6	106.4	NO	2.169	NO
58	3511 Cl -PF30UdS	$630.9>450.9$	7415.998	19152.654	1.00	5.60	4.840	10.000	10.6	106.4	NO	19.353	NO
59	71 13C8-PFOS-EIS	$507.0>79.7$	3746.171		1.00	4.80	3746.171	12.500	12.7	101.3	NO		
60	77 d3-N-MeFOSAA-EIS	$573.3>419$	3870.303		1.00	5.23	3870.303	12.500	14.7	117.8	NO		
61	$81 \mathrm{~d} 5-\mathrm{N}$-EtFOSAA-EIS	$589.3>419$	5069.472		1.00	5.38	5069.472	12.500	14.0	112.3	NO		
62	79 13C2-PFUdA-EIS	$565>519.8$	21240.578		1.00	5.39	21240.578	12.500	15.0	120.0	NO		
63	71 13C8-PFOS-EIS	$507.0>79.7$	3746.171		1.00	4.80	3746.171	12.500	12.7	101.3	NO		
64	83 13C2-PFDoA-EIS	$614.7>569.7$	19152.654		1.00	5.67	19152.654	12.500	12.2	97.4	NO		
65	-1												
66	36 10:2 FTS	$626.9>607$	1227.422	914.993	1.00	5.66	16.768	10.000	7.28	72.8	NO	0.807	NO
67	37 PFDoA	$612.9>569.0$	16643.438	19152.654	1.00	5.67	10.862	10.000	11.3	112.9	NO	11.567	NO
68	38 N-MeFOSA	$512.1>168.9$	6704.824	17754.521	1.00	5.81	56.344	50.000	53.7	107.5	NO	1.700	NO
69	39 PFTrDA	$662.9>618.9$	16379.649	19152.654	1.00	5.91	10.690	10.000	10.8	107.9	NO	56.529	NO
70	40 PFDos	$698.8>79.7$	2916.199	18753.453	1.00	5.93	1.944	10.000	10.7	106.5	NO	3.217	NO
71	41 PFTeDA	$713.0>669.0$	17967.195	18753.453	1.00	6.12	11.976	10.000	11.4	114.3	NO	19.378	NO
72	85 13C2-10:2 FTS-EIS	$632.9>80.0$	914.993		1.00	5.66	914.993	12.500	13.7	109.6	NO		

Last Altered:
Friday, February 21, 2020 16:33:53 Pacific Standard Time
Printed: Friday, February 21, 2020 16:34:01 Pacific Standard Time

Name: 200220P1-37, Date: 20-Feb-2020, Time: 23:42:13, ID: ST200220P1-11 PFC CS3 20B1107, Description: PFC CS3 20B1107

	\# Name	Trace	Area	IS Area	witivol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
73	83 13C2-PFDOA-EIS	$614.7>569.7$	19152.654		1.00	5.67	19152.654	12.500	12.2	97.4	NO		
74	87 d3-N-MeFOSA-EIS	$515.2>168.9$	17754.521		1.00	5.84	17754.521	149.200	147	98.3	NO		
75	83 13C2-PFDoA-EIS	$614.7>569.7$	19152.654		1.00	5.67	19152.654	12.500	12.2	97.4	NO		
76	89 13C2-PFTeDA-EIS	$715.1>669.7$	18753.453		1.00	6.12	18753.453	12.500	13.0	104.1	NO		
77	89 13C2-PFTeDA-EIS	$715.1>669.7$	18753.453		1.00	6.12	18753.453	12.500	13.0	104.1	NO		
78	-1												
79	42 N -EtFOSA	$526.1>168.9$	8151.655	24884.416	1.00	6.19	48.875	50.000	51.5	103.1	NO	1.781	NO
80	43 PFHxDA	$813.1>768.6$	18523.391	29366.568	1.00	6.44	7.885	10.000	10.5	105.3	NO	142.268	NO
81	44 PFODA	$913.1>868.8$	21969.898	29366.568	1.00	6.66	9.352	10.000	10.6	106.0	NO		
82	$45 \mathrm{~N}-\mathrm{MeFOSE}$	$616.1>58.9$	5989.093	16966.760	1.00	6.31	52.666	50.000	50.5	101.0	NO		
83	46 N -EtFOSE	$630.1>58.9$	7252.045	19842.234	1.00	6.46	54.530	50.000	51.8	103.6	NO		
84	91 d5-N-ETFOSA-EIS	$531.1>168.9$	24884.416		1.00	6.20	24884.416	149.200	159	106.3	NO		
85	93 13C2-PFHxDA-EIS	$815>769.7$	29366.568		1.00	6.44	29366.568	12.500	12.5	100.0	NO		
86	93 13C2-PFHxDA-EIS	$815>769.7$	29366.568		1.00	6.44	29366.568	12.500	12.5	100.0	NO		
87	95 d7-N-MeFOSE-EIS	$623.1>58.9$	16966.760		1.00	6.30	16966.760	149.200	151	101.5	NO		
88	97 d9-N-EtFOSE-EIS	$639.2>58.8$	19842.234		1.00	6.45	19842.234	149.200	142	94.9	NO		
89	71 13C8-PFOS-EIS	$507.0>79.7$	3746.171		1.00	4.80	3746.171	12.500	12.7	101.3	NO		
90	-1												
91	48 13C3-PFBA-RSD	$216.1>171.8$	10087.523	13094.625	1.00	1.49	9.629	12.500	12.2	97.5	NO		
92	50 13C3-PFPeA-RSD	$266.0>221.8$	12349.781	21767.605	1.00	2.41	7.092	12.500	12.5	100.4	NO		
93	52 13C3-PFBS-RSD	$302.0>98.8$	1411.687	1296.031	1.00	2.68	13.615	12.500	12.1	97.0	NO		
94	54 13C3-HFPO-DA-RSD	$287.0>168.9$	3760.070	21767.605	1.00	3.39	2.159	12.500	12.1	96.6	NO		
95	56 13C2-4:2 FTS-RSD	$329.0>79.7$	1671.062	1296.031	1.00	3.10	16.117	12.500	13.5	108.3	NO		
96	58 13C2-PFHxA-RSD	$315.0>270.0$	20994.389	21767.605	1.00	3.19	12.056	12.500	12.3	98.6	NO		
97	60 13C4-PFHpA-RSD	$367.2>321.8$	13848.530	21767.605	1.00	3.78	7.952	12.500	13.0	104.1	NO		
98	62 13C3-PFHxS-RSD	$401.8>79.7$	2998.633	1296.031	1.00	3.92	28.921	12.500	12.2	97.3	NO		
99	64 13C2-6:2 FTS-RSD	$429.0>79.7$	1299.329	4084.057	1.00	4.24	3.977	12.500	10.5	84.3	NO		
100	66 13C5-PFNA-RSD	$468.2>422.9$	16656.598	17554.193	1.00	4.72	11.861	12.500	12.7	101.3	NO		
101	68 13C8-PFOSA-RSD	$506>78$	3911.888	20480.266	1.00	4.79	2.388	12.500	12.5	100.0	NO		
102	70 13C2-PFOA-RSD	$414.9>369.7$	18459.891	21347.900	1.00	4.29	10.809	12.500	11.8	94.3	NO		
103	-1												
104	72 13C8-PFOS-RSD	$507.0>79.7$	3746.171	4084.057	1.00	4.80	11.466	12.500	12.3	98.1	NO		
105	74 13C2-PFDA-RSD	$515.1>469.9$	17550.414	19702.424	1.00	5.08	11.135	12.500	11.8	94.1	NO		
106	76 13C2-8:2 FTS-RSD	$529>79.7$	1009.051	4084.057	1.00	5.05	3.088	12.500	10.6	84.8	NO		
107	$78 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}-\mathrm{RSD}$	$573.3>419$	3870.303	20480.266	1.00	5.23	2.362	12.500	13.7	109.8	NO		
108	80 13C2-PFUdA-RSD	$565>519.8$	21240.578	20480.266	1.00	5.39	12.964	12.500	12.9	102.9	NO		

Dataset:
D:IPFAS5.PROIRESULTSI200220P1\200220P1-37.qld
Last Altered: Friday, February 21, 2020 16:33:53 Pacific Standard Time
Printed:
Friday, February 21, 2020 16:34:01 Pacific Standard Time

Name: 200220P1-37, Date: 20-Feb-2020, Time: 23:42:13, ID: ST200220P1-11 PFC CS3 20B1107, Description: PFC CS3 20B1107

	\# Name	Trace	Area	IS Area	witvol	RT	Resporise	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
109	$82 \mathrm{~d} 5-\mathrm{N}-$ EtFOSAA-RSD	$589.3>419$	5069.472	20480.266	1.00	5.38	3.094	12.500	13.7	109.7	NO		
110	84 13C2-PFDOA-RSD	$614.7>569.7$	19152.654	19702.424	1.00	5.67	12.151	12.500	12.2	97.3	No		
111	86 13C2-10:2 FTS-RSD	$632.9>80.0$	914.993	4084.057	1.00	5.66	2.801	12.500	11.9	95.2	NO		
112	88 d3-N-MeFOSA-RSD	$515.2>168.9$	17754.521	20480.266	1.00	5.84	10.836	149.200	143	95.5	NO		
113	90 13C2-PFTeDA-RSD	$715.1>669.7$	18753.453	20480.266	1.00	6.12	11.446	12.500	11.8	94.6	NO		
114	92 d 5 -N-ETFOSA-RSD	$531.1>168.9$	24884.416	20480.266	1.00	6.20	15.188	149.200	150	100.6	NO		
115	94 13C2-PFHxDA-RSD	$815>769.7$	29366.568	20480.266	1.00	6.44	17.924	12.500	11.9	95.3	NO		
116	-1												
117	$96 \mathrm{d7}$-N-MeFOSE-RSD	$623.1>58.9$	16966.760	20480.266	1.00	6.30	10.356	149.200	139	93.4	NO		
118	98 d9-N-EtFOSE-RSD	$639.2>58.8$	19842.234	20480.266	1.00	6.45	12.111	149.200	140	93.7	NO		
119	99 13C4-PFBA	$217.0>172.0$	13094.625	13094.625	1.00	1.49	12.500	12.500	12.5	100.0	NO		
120	1... 13C5-PFHXA	$318.0>272.9$	21767.605	21767.605	1.00	3.18	12.500	12.500	12.5	100.0	No		
121	1... 13C8-PFOA	$420.9>376.0$	21347.900	21347.900	1.00	4.29	12.500	12.500	12.5	100.0	NO		
122	1... 1802-PFHxS	$403.0>102.6$	1296.031	1296.031	1.00	3.92	12.500	12.500	12.5	100.0	NO		
123	1... 13C9-PFNA	$472.2>426.9$	17554.193	17554.193	1.00	4.72	12.500	12.500	12.5	100.0	NO		
124	1... 13C4-PFOS	$503>79.7$	4084.057	4084.057	1.00	4.80	12.500	12.500	12.5	100.0	NO		
125	1... 13C6-PFDA	$519.1>473.7$	19702.424	19702.424	1.00	5.08	12.500	12.500	12.5	100.0	NO		
126	1... 13C7-PFUdA	$570.1>524.8$	20480.266	20480.266	1.00	5.40	12.500	12.500	12.5	100.0	NO		

Dataset:	Untitled
Last Altered:	Friday, February 21, 2020 16:52:11 Pacific Standard Time
Printed:	Friday, February 21, 2020 16:52:40 Pacific Standard Time

Method: D:IPFAS5.PROMMethDBINEW_PFAS_80C_022020.mdb 21 Feb 2020 08:56:55 Calibration: D:IPFAS5.PROICurveDBIC18_VAL-PFAS_Q5_02-20-20.cdb 21 Feb 2020 15:57:11

Compound name: PFBA

	\# Name	ID	Acq. Date	Acq. Time
1	1 200220P1-1	IPA	20-Feb-20	17:23:58
2	2 200220P1-2	IPA	20-Feb-20	17:34:30
3	3 200220P1-3	ST200220P1-1 PFC CS-2 20B1102	20-Feb-20	17:45:02
4	4 200220P1-4	ST200220P1-2 PFC CS-1 20B1103	20-Feb-20	17:55:31
5	5 200220P1-5	ST200220P1-3 PFC CS0 20B1104	20-Feb-20	18:06:03
6	6 200220P1-6	ST200220P1-4 PFC CS1 20B1105	20-Feb-20	18:16:31
7	7 200220P1-7	ST200220P1-5 PFC CS2 20B1106	20-Feb-20	18:27:04
8	8 200220P1-8	ST200220P1-6 PFC CS3 20B1107	20-Feb-20	18:37:32
9	9 200220P1-9	ST200220P1-7 PFC CS4 20B1108	20-Feb-20	18:48:04
10	10 200220P1-10	ST200220P1-8 PFC CS5 20B1109	20-Feb-20	18:58:35
11	11 200220P1-11	ST200220P1-9 PFC CS6 20B1110	20-Feb-20	19:09:05
12	12 200220P1-12	ST200220P1-10 PFC CS7 20 B 1111	20-Feb-20	19:19:35
13	13 200220P1-13	1 B	20-Feb-20	19:30:05
14	14 200220P1-14	ICV200220P1-1 PFC ICV 20B1112	20-Feb-20	19:40:36
15	15 200220P1-15	IB	20-Feb-20	19:51:06
16	$16200220 \mathrm{P} 1-16$	B0B0088-BLK1 Method Blank 0.25	20-Feb-20	20:01:35
17	17 200220P1-17	B0B0088-BS1 OPR 0.25	20-Feb-20	20:12:06
18	18 200220P1-18	B0B0088-BSD1 LCSD 0.25	20-Feb-20	20:22:35
19	19 200220P1-19	2000292-01 11535BFR POE Influent-1 0.25741	20-Feb-20	20:33:08
20	20 200220P1-20	2000292-02 11535BFR POE Midpoint-1 0.25829	20-Feb-20	20:43:36
21	21 200220P1-21	2000292-03 11535BFR POE Effluent-1 0.25426	20-Feb-20	20:54:07
22	22 200220P1-22	2000292-04 11535BFR Field Blank 0.24726	20-Feb-20	21:04:38
23	23 200220P1-23	B0B0117-BLK1 Method Blank 0.125	20-Feb-20	21:15:06
24.	24 200220P1-24	B0B0117-BS1 OPR 0.125	20-Feb-20	21:25:39
25	25 200220P1-25	B0B0117-BSD1 LCSD 0.125	20-Feb-20	21:36:08
26	26 200220P1-26	2000305-01 8 Chestnut Dr 0.11658	20-Feb-20	21:46:39
27	27 200220P1-27	2000305-02 10 Chestnut Dr 0.11788	20-Feb-20	21:57:10
28	28 200220P1-28	2000307-01 Map 243 Lot 260.11726	20-Feb-20	22:07:39
29	29 200220P1-29	2000307-02 Map 246 Lot 50.11738	20-Feb-20	22:18:08
30	30 200220P1-30	B0B0118-BLK1 Method Blank 0.25	20-Feb-20	22:28:40
31	31 200220P1-31	B0B0118-BS1 OPR 0.25	20-Feb-20	22:39:11
32.	32 200220P1-32	B0B0118-MS1 Matrix Spike 0.25822	20-Feb-20	22:49:40

Last Altered: Friday, February 21, 2020 16:52:11 Pacific Standard Time Printed: Friday, February 21, 2020 16:52:40 Pacific Standard Time

Compound name: PFBA

	\# Name	ID	Acq. Date	Acq. Tirne
33	33 200220P1-33	B0B0118-MSD1 Matrix Spike Dup 0.2531	20-Feb-20	23:00:11
34	34 200220P1-34	2000314-01 SB01-202002120.24382	20-Feb-20	23:10:42
35	35 200220P1-35	2000314-02 EB01-202002120.24618	20-Feb-20	23:21:13
36	36 200220P1-36	IB	20-Feb-20	23:31:42
37	37 200220P1-37	ST200220P1-11 PFC CS3 $20 \mathrm{B1107}$	20-Feb-20	23:42:13
38	$38200220 \mathrm{P} 1-38$	IB	20-Feb-20	23:52:41
39	39 200220P1-39	2000314-03 1006MW03SR-202002120.25406	21-Feb-20	00:03:13
40	40 200220P1-40	2000314-04 1006MW05SR-20200212 0.2515	21-Feb-20	00:13:44
41	41 200220P1-41	2000314-05 DUP01-20200212 0.24538	21-Feb-20	00:24:12
42	42 200220P1-42	2000314-06 l006MW01S-20200212 0.2551	21-Feb-20	00:34:45
43	43 200220P1-43	2000314-07 1006MW08S-202002120.25052	21-Feb-20	00:45:14
44	44 200220P1-44	2000314-08 8MW07S-20200212 0.2539	21-Feb-20	00:55:45
45	45 200220P1-45	2000314-09 l005MW01SR-20200212 0.25498	21-Feb-20	01:06:16
46	46 200220P1-46	2000314-10 DUP05-202002120.25284	21-Feb-20	01:16:46
47	47 200220P1-47	2000314-11 IS72MW 15S-202002120.25446	21-Feb-20	01:27:15
48	48 200220P1-48	2000314-12 IS72MW 18SR-202002120.24458	21-Feb-20	01:37:46
49	49 200220P1-49	18	21-Feb-20	01:48:15
50	50 200220P1-50	ST200220P1-12 PFC CS3 2081107	21-Feb-20	01:58:46
51	51 200220P1-51	1B	21-Feb-20	02:09:16
52	52 200220P1-52	2000314-13 222MW02S-202002120.25234	21-Feb-20	02:19:47
53	$53200220 \mathrm{P} 1-53$	2000314-14 DUP03-202002120.24446	21-Feb-20	02:30:18
54	54 200220P1-54	2000314-15 A000MW42S-202002120.25324	21-Feb-20	02:40:47
55	55 200220P1-55	B0B0139-BLK1 Method Blank 1	21-Feb-20	02:51:17
56	56 200220P1-56	B0B0139-BS 1 OPR 1	21-Feb-20	03:01:49
57	57 200220P1-57	B0B0139-ESD1 LCSD 1	21-Feb-20	03:12:17
58	58 200220P1-58	2000306-01 KRMS Compost Pile 5.62	21-Feb-20	03:22:49
59	59 200220P1-59	2000306-02 KRMS N. Soccer Field 2.2	21-Feb-20	03:33:18
60	60 200220P1-60	B0B0053-BS1 OPR 0.125	21-Feb-20	03:43:49
61	61 200220P1-61	IB	21-Feb-20	03:54:19
62	62 200220P 1-62	ST200220P1-13 PFC CS3 2081107	21-Feb-20	04:04:50
63	63 200220P1-63	IB	21-Feb-20	04:15:21

Dataset:

Last Altered: Friday, February 21, 2020 16:33:53 Pacific Standard Time
Printed: Friday, February 21, 2020 16:34:01 Pacific Standard Time

Method: D:\PFAS5.PRO\MethDB\NEW_PFAS_80C_022020.mdb 21 Feb 2020 08:56:55

Calibration: D:|PFAS5.PROICurveDB\C̄18_VAL-PFAS_Q5_02-20-20.cdb 21 Feb 2020 15:57:11
Name: 200220P1-37, Date: 20-Feb-2020, Time: 23:42:13, ID: ST200220P1-11 PFC CS3 20B1107, Description: PFC CS3 20B1107

F6:MRM of 2 channels,ES-

13C3-PFBS-EIS

F12:MRM of 1 channel,ES-

F11:MRM of 2 channels,ES$299.0>98.7$

13C2-4:2 FTS-EIS
F17:MRM of 2 channels,ES$329.0>79.7$

Printed: Friday, February 21, 2020 16:34:01 Pacific Standard Time

Name: 200220P1-37, Date: 20-Feb-2020, Time: 23:42:13, ID: ST200220P1-11 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

F13:MRM of 2 channels,ES-
$313>118.9$

13C3-PFBS-EIS

13C3-HFPO-DA-EIS
F10:MRM of 2 channels, ES-

ADONA

Last Altered:
Friday, February 21, 2020 16:33:53 Pacific Standard Time
Printed: Friday, February 21, 2020 16:34:01 Pacific Standard Time

Name: 200220P1-37, Date: 20-Feb-2020, Time: 23:42:13, ID: ST200220P1-11 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

L-PFHxS

 F23:MRM of 2 channels, ES-

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES-

 F29:MRM of 3 channels, ES-
$427 .>80.7$

13C2-6:2 FTS-EIS
F30:MRM of 1 channel,ES$429.0>79.7$ $3.047 e+004$

F26:MRM of 2 channels,ES

F27:MRM of 1 channel, ES-
$414.9>369.7$
$4.603 \mathrm{e}+005$

F33:MRM of 2 channels,ES-
F33:MRM of 2 channels,ES-
$460.8>98.9$

13C2-PFOA-EIS
F27:MRM of 1 channel,ES-

F32:MRM of 2 channels,ES-

$$
\begin{array}{r}
449>98.7 \\
4.094 e+004
\end{array}
$$

13C8-PFOS-EIS
F42:MRM of 1 channel,ES-

F31:MRM of 2 channels,ES$440.9>316.9$

13C5-PFNA-EIS
F35:MRM of 1 channel,ES$468.2>422.9$
$4.448 \theta+005$

Dataset:
D:IPFAS5.PROTRESULTSL200220P1\200220P1-37.qld
$\begin{array}{ll}\text { Last Altered: } & \text { Friday, February 21, } 2020 \text { 16:33:53 Pacific Standard Time } \\ \text { Printed: } & \text { Friday, February 21, } 2020 \text { 16:34:01 Pacific Standard Time }\end{array}$

Name: 200220P1-37, Date: 20-Feb-2020, Time: 23:42:13, ID: ST200220P1-11 PFC CS3 20B1107, Description: PFC CS3 20B1107

13C8-PFOSA-EIS

13C8-PFOS-EIS

F42:MRM of 1 channel,ES-
$507.0>79.7$

13C2-PFDA-EIS

13C2-8:2 FTS-EIS
F50:MRM of 1 channel,ES-
$529>79.7$

Name: 200220P1-37, Date: 20-Feb-2020, Time: 23:42:13, ID: ST200220P1-11 PFC CS3 20B1107, Description: PFC CS3 20 B1107

F53:MRM of 2 channels,ES-
$549.1>98.7$ $3.707 \mathrm{e}+004$

13C8-PFOS-EIS

F42:MRM of 1 channel,ES$507.0>79.7$

d3-N-MeFOSAA-EIS

F58:MRM of 1 channel,ES-

$$
\begin{array}{r}
\text { F58:MRM of } 1 \text { channel, ES- } \\
573.3>419
\end{array}
$$

d5-N-EtFOSAA-EIS

F60:MRM of 1 channel,ES. $589.3>419$

F54:MRM of 2 channels, ES-

13C2-PFUdA-EIS

F55:MRM of 1 channel, ES-

13C8-PFOS-EIS

F42:MRM of 1 channel,ES-
F42.MRM of
$507.0>79.7$

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES-
13C2-PFDoA-EIS
F63:MRM of 1 channel,ES$614.7>569.7$ F
$100-\quad 4.740 \mathrm{e}+005$

Name: 200220P1-37, Date: 20-Feb-2020, Time: 23:42:13, ID: ST200220P1-11 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

Abstract

10:2 FTS F66:MRM of 2 channels,ES

F66:MRM of 2 channels,ES

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES-

$$
\begin{array}{r}
614.7>569.7 \\
4.740 \mathrm{e}+005
\end{array}
$$

d3-N-MeFOSA-EIS F46:MRM of 1 channel,ES$515.2>168.9$

F71:MRM of 2 channels,ES-
$662.9>319$

13C2-PFDoA-EIS

13C2-PFTeDA-EIS
F74:MRM of 2 channels,ES-

13C2-PFTeDA-EIS
F74:MRM of 2 channels, ES

Last Altered: Friday, February 21, 2020 16:33:53 Pacific Standard Time
Printed: Friday, February 21, 2020 16:34:01 Pacific Standard Time

Name: 200220P1-37, Date: 20-Feb-2020, Time: 23:42:13, ID: ST200220P1-11 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

Name: 200220P1-37, Date: 20-Feb-2020, Time: 23:42:13, ID: ST200220P1-11 PFC CS3 20B1107, Description: PFC CS3 20B1107

13C4-PFHpA-RSD

13C3-PFHxS-RSD

F24:MRM of 1 channel,ES-

13C5-PFNA-RSD
F35:MRM of 1 channel,ES-
$468.2>422.9$

13C8-PFOSA-RSD
F41:MRM of 1 channel, ES-
$506>78$

13C2-PFOA-RSD F27:MRM of 1 channel,ES$414.9>369.7$

Dataset: D:\PFAS5.PRO\RESULTSL200220P1\200220P1-37.qld
Last Altered: Friday, February 21, 2020 16:33:53 Pacific Standard Time
Printed: Friday, February 21, 2020 16:34:01 Pacific Standard Time

Name: 200220P1-37, Date: 20-Feb-2020, Time: 23:42:13, ID: ST200220P1-11 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

d3-N-MeFOSA-RSD
F46:MRM of 1 channel,ES-
F46:MRM of 1 channel, ES-
$515.2>168.9$

13C2-PFTeDA-RSD

F74:MRM of 2 channels,ES-
$715.1>669.7$

13C2-PFUdA-RSD
 F55:MRM of 1 channel,ES
 $565>519.8$ $5.754 e+005$

d5-N-ETFOSA-RSD
F52:MRM of 1 channel,ES

$$
\begin{gathered}
\text { F52:MRM of } 1 \text { channel, ES- } \\
531.1>168.9 \\
6.291 \mathrm{e}+005 \\
\hline 100 \\
\hline
\end{gathered}
$$

13C2-PFHxDA-RSD

$$
\begin{array}{r}
\text { F76:MRM of } 1 \text { channel,ES- } \\
815>769.7
\end{array}
$$

Name: 200220P1-37, Date: 20-Feb-2020, Time: 23:42:13, ID: ST200220P1-11 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

13C9-PFNA

F36:MRM of 1 channel,ES-
$472.2>426.9$ $472.2>426.9$
$4.607 \mathrm{e}+005$

13C4-PFOS

F40:MRM of 1 channel, ES$503>79.7$ $503>79.7$
$1.059 e+005$

13C6-PFDA
F47:MRM of 1 channel,ES$519.1>473.7$

13C7-PFUdA
F57:MRM of 1 channel,ES$570.1>524.8$

Last Altered: Friday, February 21, 2020 16:38:52 Pacific Standard Time
Printed: \qquad Friday, February 21, 2020 16:40:05 Pacific Standard Time

Name: 200220P1-50, Date: 21-Feb-2020, Time: 01:58:46, ID: ST200220P1-12 PFC CS3 20B1107, Description: PFC CS3 20B1107

	\# Name	Trace	Area	IS Area	wtivol	RT	Response	Std, Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
1	1 PFBA	$213.0>168.8$	9727.995	10147.118	1.00	1.49	11.984	10.000	10.7	107.0	NO		
2	2 PFPrS	$248.9>79.7$	1959.194	1427.072	1.00	1.82	17.161	10.000	11.0	109.9	NO	2.604	NO
3	3 3:3 FTCA	$240.9>176.9$	726.357	12790.130	1.00	2.27	0.710	10.000	9.73	97.3	NO	3.654	NO
4	4 PFPeA	$263.1>218.9$	10183.837	12790.130	1.00	2.41	9.953	10.000	10.2	102.1	NO		
5	5 PFBS	$299.0>79.7$	2857.228	1427.072	1.00	2.68	25.027	10.000	10.9	108.7	NO	3.166	NO
6	6 4:2 FTS	$327.0>307$	1715.384	1608.434	1.00	3.10	13.331	10.000	8.18	81.8	NO	0.881	NO
7	47 13C3-PFBA-EIS	$216.1>171.8$	10147.118		1.00	1.49	10147.118	12.500	12.3	98.5	NO		
8	51 13C3-PFBS-EIS	$302.0>98.8$	1427.072		1.00	2.68	1427.072	12.500	12.5	99.7	NO		
9	49 13C3-PFPeA-EIS	$266.0>221.8$	12790.130		1.00	2.41	12790.130	12.500	13.6	108.5	NO		
10	49 13C3-PFPeA-EIS	$266.0>221.8$	12790.130		1.00	2.41	12790.130	12.500	13.6	108.5	NO		
11	51 13C3-PFBS-EIS	$302.0>98.8$	1427.072		1.00	2.68	1427.072	12.500	12.5	99.7	NO		
12	55 13C2-4:2 FTS-EIS	$329.0>79.7$	1608.434		1.00	3.10	1608.434	12.500	14.8	118.3	NO		
13	-1												
14	7 PFHxA	$313.0>269.0$	16057.769	21075.299	1.00	3.19	9.524	10.000	10.7	106.6	NO	16.937	NO
15	8 PFPeS	$349 .>79.7$	2740.049	1427.072	1.00	3.38	24.001	10.000	11.6	115.6	NO	2.481	NO
16	9 HFPO-DA	$285.1>168.9$	3391.939	3911.447	1.00	3.40	10.840	10.000	10.4	104.5	NO	2.688	NO
17	105:3 FTCA	$340.9>236.9$	1947.099	14138.462	1.00	3.73	1.721	10.000	9.59	95.9	NO	1.806	NO
18	11 PFHpA	$363.0>318.9$	14038.628	14138.462	1.00	3.79	12.412	10.000	9.95	99.5	NO	22.455	NO
19	12 ADONA	$376.8>250.9$	33951.195	14138.462	1.00	3.89	30.017	10.000	9.67	96.7	NO	4.036	NO
20	57 13C2-PFHxA-EIS	$315.0>270.0$	21075.299		1.00	3.19	21075.299	12.500	12.9	103.0	NO		
21	51 13C3-PFBS-EIS	$302.0>98.8$	1427.072		1.00	2.68	1427.072	12.500	12.5	99.7	NO		
22	53 13C3-HFPO-DA-EIS	$287.0>168.9$	3911.447		1.00	3.40	3911.447	12.500	13.3	106.8	NO		
23	59 13C4-PFHPA-EIS	$367.2>321.8$	14138.462		1.00	3.79	14138.462	12.500	12.8	102.2	NO		
24	59 13C4-PFHpA-EIS	$367.2>321.8$	14138.462		1.00	3.79	14138.462	12.500	12.8	102.2	NO		
25	59 13C4-PFHPA-EIS	$367.2>321.8$	14138.462		1.00	3.79	14138.462	12.500	12.8	102.2	NO		
26	-1												
27	13 L-PFHxS	$398.9>79.7$	2788.791	3236.457	1.00	3.92	10.771	10.000	9.68	96.8	NO	2.446	NO
28	15 6:2 FTS	$427.0>407$	1792.629	1322.217	1.00	4.24	16.947	10.000	10.7	107.0	NO	1.132	NO
29	16 L-PFOA	$412.8>368.9$	17425.188	18812.414	1.00	4.30	11.578	10.000	9.57	95.7	NO	2.950	NO
30	18 PFechS	$460.8>381.0$	2627.419	18812.414	1.00	4.31	1.746	10.000	9.65	96.5	NO	0.517	NO
31	19 PFHpS	$449.0>79.7$	2957.960	3387.072	1.00	4.40	10.916	10.000	10.1	101.5	NO	1.962	NO
32	$207: 3$ FTCA	$440.9>336.9$	2002.817	16649.150	1.00	4.71	1.504	10.000	9.72	97.2	NO	1.354	NO
33	61 13C3-PFHxS-EIS	$401.8>79.7$	3236.457		1.00	3.92	3236.457	12.500	12.8	102.5	NO		
34	63 13C2-6:2 FTS-EIS	$429.0>79.7$	1322.217		1.00	4.24	1322.217	12.500	10.9	87.1	NO		
35	69 13C2-PFOA-EIS	$414.9>369.7$	18812.414		1.00	4.30	18812.414	12.500	12.3	98.5	NO		
36	69 13C2-PFOA-EIS	$\underline{414.9>369.7}$	18812.414		1.00	4.30	18812.414	12.500	12.3	98.5	NO		

Last Altered:
Friday, February 21, 2020 16:38:52 Pacific Standard Time
Printed: Friday, February 21, 2020 16:40:05 Pacific Standard Time

Name: 200220P1-50, Date: 21-Feb-2020, Time: 01:58:46, ID: ST200220P1-12 PFC CS3 20B1107, Description: PFC CS3 20B1107

	\# Name	Trace	Area	IS Area	witivol	AT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
37	71 13C8-PFOS-EIS	507.0 > 79.7	3387.072		1.00	4.80	3387.072	12.500	11.5	91.6	NO		
38	65 13C5-PFNA-EIS	$468.2>422.9$	16649.150		1.00	4.73	16649.150	12.500	12.1	97.0	NO		
39	-1												
40	21 PFNA	$463.0>418.8$	17241.369	16649.150	1.00	4.72	12.945	10.000	10.5	104.6	NO	7.686	NO
41	22 PFOSA	497.9 > 77.9	2618.013	3746.492	1.00	4.79	8.735	10.000	9.77	97.7	NO	26.235	NO
42	23 L -PFOS	498.9 > 79.7	2646.520	3387.072	1.00	4.80	9.767	10.000	10.6	105.5	NO	2.299	NO
43	259 Cl -PF30NS	$530.7>350.8$	3362.293	3387.072	1.00	5.01	12.409	10.000	10.7	107.0	NO	14.232	NO
44	26 PFDA	$513>468.8$	19757.063	19717.582	1.00	5.08	12.525	10.000	10.2	101.6	NO	9.808	NO
45	27 8:2 FTS	$526.9>507$	1255.322	895.290	1.00	5.06	17.527	10.000	12.0	120.4	NO	2.697	NO
46	65 13C5-PFNA-EIS	$468.2>422.9$	16649.150		1.00	4.73	16649.150	12.500	12.1	97.0	No		
47	67 13C8-PFOSA-EIS	$506>78$	3746.492		1.00	4.79	3746.492	12.500	11.6	92.8	NO		
48	71 13C8-PFOS-EIS	$507.0>79.7$	3387.072		1.00	4.80	3387.072	12.500	11.5	91.6	NO		
49	71 13C8-PFOS-EIS	507.0 > 79.7	3387.072		1.00	4.80	3387.072	12.500	11.5	91.6	NO		
50	73 13C2-PFDA-EIS	$515.1>469.9$	19717.582		1.00	5.08	19717.582	12.500	14.5	116.3	NO		
51	75 13C2-8:2 FTS-EIS	$529>79.7$	895.290		1.00	5.06	895.290	12.500	10.4	83.3	NO		
52	-1												
53	28 PFNS	$549.1>79.7$	2692.498	3387.072	1.00	5.14	9.937	10.000	10.8	108.4	NO	2.651	NO
54	29 L-MeFOSAA	$570>419$	5871.856	3399.817	1.00	5.24	21.589	10.000	11.4	113.6	No	2.098	NO
55	31 L-EtFOSAA	$584.1>419$	4819.979	4559.035	1.00	5.39	13.215	10.000	10.5	104.9	NO	1.183	NO
56	33 PFUdA	$563.0>518.9$	16530.029	19899.576	1.00	5.40	10.383	10.000	9.90	99.0	NO	18.139	NO
57	34 PFDS	$598.8>79.7$	2587.117	3387.072	1.00	5.44	9.548	10.000	11.8	118.2	No	2.097	NO
58	3511 Cl -PF30UdS	$630.9>450.9$	7554.816	19843.791	1.00	5.60	4.759	10.000	10.5	104.6	NO	21.784	NO
59	71 13C8-PFOS-EIS	$507.0>79.7$	3387.072		1.00	4.80	3387.072	12.500	11.5	91.6	NO		
60	77 d3-N-MeFOSAA-EIS	$573.3>419$	3399.817		1.00	5.23	3399.817	12.500	12.9	103.5	No		
61.	81 d5-N-EtFOSAA-EIS	$589.3>419$	4559.035		1.00	5.38	4559.035	12.500	12.6	101.0	NO		
62	79 13C2-PFUdA-EIS	$565>519.8$	19899.576		1.00	5.40	19899.576	12.500	14.0	112.4	NO		
63	71 13C8-PFOS-EIS	$507.0>79.7$	3387.072		1.00	4.80	3387.072	12.500	11.5	91.6	NO		
64	83 13C2-PFDoA-EIS	$614.7>569.7$	19843.791		1.00	5.68	19843.791	12.500	12.6	100.9	NO		
65	-1												
66	36 10:2 FTS	$626.9>607$	1346.414	838.845	1.00	5.66	20.064	10.000	8.71	87.1	No	0.923	NO
67	37 PFDoA	$612.9>569.0$	15300.497	19843.791	1.00	5.67	9.638	10.000	10.0	100.0	NO	10.067	NO
68	38 N-MeFOSA	$512.1>168.9$	6135.443	17677.318	1.00	5.82	51.784	50.000	49.4	98.7	NO	1.507	NO
69	39 PFTrDA	$662.9>618.9$	16617.980	19843.791	1.00	5.91	10.468	10.000	10.6	105.7	NO	46.015	NO
70	40 PFDos	$698.8>79.7$	2738.608	19442.336	1.00	5.93	1.761	10.000	9.64	96.4	NO	2.739	NO
71	41 PFTeDA	$713.0>669.0$	16370.376	19442.336	1.00	6.12	10.525	10.000	10.0	100.4	NO	16.313	NO
72	85 13C2-10:2 FTS-EIS	632.9>80.0	838.845		1.00	5.66	838.845	12.500	12.6	100.5	NO		

Dataset:
Last Altered:
D:IPFAS5.PRO\RESULTSL200220P1\200220P1-50.qld

Printed:
Friday, February 21, 2020 16:38:52 Pacific Standard Time
Friday, February 21, 2020 16:40:05 Pacific Standard Time

Name: 200220P1-50, Date: 21-Feb-2020, Time: 01:58:46, ID: ST200220P1-12 PFC CS3 20B1107, Description: PFC CS3 20B1107

	\# Name	Trace	Area	is Area	wivol	RT	Response	Sid. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
73	83 13C2-PFDoA-EIS	$614.7>569.7$	19843.791		1.00	5.68	19843.791	12.500	12.6	100.9	NO		
74	87 d3-N-MeFOSA-EIS	$515.2>168.9$	17677.318		1.00	5.84	17677.318	149.200	146	97.9	NO		
75	83 13C2-PFDoA-EIS	$614.7>569.7$	19843.791		1.00	5.68	19843.791	12.500	12.6	100.9	NO		
76	89 13C2-PFTeDA-EIS	$715.1>669.7$	19442.336		1.00	6.12	19442.336	12.500	13.5	108.0	NO		
77	89 13C2-PFTeDA-EIS	$715.1>669.7$	19442.336		1.00	6.12	19442.336	12.500	13.5	108.0	NO		
78	-1												
79	$42 \mathrm{~N}-\mathrm{EtFOSA}$	$526.1>168.9$	7903.352	24223.270	1.00	6.19	48.680	50.000	51.3	102.7	NO	1.688	NO
80	43 PFHxDA	$813.1>768.6$	17420.590	27600.309	1.00	6.44	7.890	10.000	10.5	105.3	NO	136.807	NO
81	44 PFODA	$913.1>868.8$	21422.164	27600.309	1.00	6.66	9.702	10.000	11.0	110.0	NO		
82	$45 \mathrm{~N}-\mathrm{MeFOSE}$	$616.1>58.9$	5942.729	16322.339	1.00	6.31	54.322	50.000	52.1	104.2	NO		
83	46 N -EtFOSE	$630.1>58.9$	6695.831	20422.422	1.00	6.46	48.918	50.000	46.4	92.9	NO		
84	91 d5-N-ETFOSA-EIS	$531.1>168.9$	24223.270		1.00	6.20	24223.270	149.200	154	103.5	NO		
85	93 13C2-PFHxDA-EIS	$815>769.7$	27600.309		1.00	6.44	27600.309	12.500	11.7	94.0	NO		
86	93 13C2-PFHxDA-EIS	$815>769.7$	27600.309		1.00	6.44	27600.309	12.500	11.7	94.0	NO		
87	95 d7-N-MeFOSE-EIS	$623.1>58.9$	16322.339		1.00	6.30	16322.339	149.200	146	97.6	NO		
88	97 d9-N-EtFOSE-EIS	$639.2>58.8$	20422.422		1.00	6.45	20422.422	149.200	146	97.7	NO		
89	71 13C8-PFOS-EIS	$507.0>79.7$	3387.072		1.00	4.80	3387.072	12.500	11.5	91.6	NO		
90	-1												
91	48 13C3-PFBA-RSD	$216.1>171.8$	10147.118	12887.850	1.00	1.49	9.842	12.500	12.5	99.7	NO		
92	50 13C3-PFPeA-RSD	$266.0>221.8$	12790.130	21712.922	1.00	2.41	7.363	12.500	13.0	104.2	NO		
93	52 13C3-PFBS-RSD	$302.0>98.8$	1427.072	1357.960	1.00	2.68	13.136	12.500	11.7	93.6	NO		
94	54 13C3-HFPO-DA-RSD	$287.0>168.9$	3911.447	21712.922	1.00	3.40	2.252	12.500	12.6	100.7	NO		
95	56 13C2-4:2 FTS-RSD	$329.0>79.7$	1608.434	1357.960	1.00	3.10	14.806	12.500	12.4	99.5	NO		
96	58 13C2-PFHxA-RSD	$315.0>270.0$	21075.299	21712.922	1.00	3.19	12.133	12.500	12.4	99.2	NO		
97	60 13C4-PFHpA-RSD	$367.2>321.8$	14138.462	21712.922	1.00	3.79	8.139	12.500	13.3	106.6	NO		
98	62 13C3-PFHxS-RSD	$401.8>79.7$	3236.457	1357.960	1.00	3.92	29.792	12.500	12.5	100.2	NO		
99	64 13C2-6:2 FTS-RSD	$429.0>79.7$	1322.217	4077.044	1.00	4.24	4.054	12.500	10.7	85.9	NO		
100	66 13C5-PFNA-RSD	$468.2>422.9$	16649.150	17858.607	1.00	4.73	11.653	12.500	12.4	99.5	NO		
101	68 13C8-PFOSA-RSD	$506>78$	3746.492	20761.875	1.00	4.79	2.256	12.500	11.8	94.5	NO		
102	70 13C2-PFOA-RSD	$414.9>369.7$	18812.414	20823.484	1.00	4.30	11.293	12.500	12.3	98.5	NO		
103	-1												
104	72 13C8-PFOS-RSD	$507.0>79.7$	3387.072	4077.044	1.00	4.80	10.385	12.500	11.1	88.8	NO		
105	74 13C2-PFDA-RSD	$515.1>469.9$	19717.582	20478.861	1.00	5.08	12.035	12.500	12.7	101.7	NO		
106	76 13C2-8:2 FTS-RSD	$529>79.7$	895.290	4077.044	1.00	5.06	2.745	12.500	9.43	75.4	NO		
107	78 d3-N-MeFOSAA-RSD	$573.3>419$	3399.817	20761.875	1.00	5.23	2.047	12.500	11.9	95.1	NO		
108	80 13C2-PFUdA-RSD	565>519.8	19899.576	20761.875	1.00	5.40	11.981	12.500	11.9	95.1	NO		

Last Altered: Friday, February 21, 2020 16:38:52 Pacific Standard Time
Printed: Friday, February 21, 2020 16:40:05 Pacific Standard Time

Name: 200220P1-50, Date: 21-Feb-2020, Time: 01:58:46, ID: ST200220P1-12 PFC CS3 20B1107, Description: PFC CS3 20B1107

	\# Name	Trace	Area	IS Area	witvoi	RT	Response	Stá. Cone	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
109	82 d5-N-EtFOSAA-RSD	$589.3>419$	4559.035	20761.875	1.00	5.38	2.745	12.500	12.2	97.3	NO		
110	84 13C2-PFDoA-RSD	$614.7>569.7$	19843.791	20478.861	1.00	5.68	12.112	12.500	12.1	96.9	NO		
111	86 13C2-10:2 FTS-RSD	$632.9>80.0$	838.845	4077.044	1.00	5.66	2.572	12.500	10.9	87.4	NO		
112	88 d3-N-MeFOSA-RSD	$515.2>168.9$	17677.318	20761.875	1.00	5.84	10.643	149.200	140	93.8	NO		
113	90 13C2-PFTeDA-RSD	$715.1>669.7$	19442.336	20761.875	1.00	6.12	11.706	12.500	12.1	96.7	NO		
114	92 d5-N-ETFOSA-RSD	$531.1>168.9$	24223.270	20761.875	1.00	6.20	14.584	149.200	144	96.6	NO		
115	94 13C2-PFHxDA-RSD	$815>769.7$	27600.309	20761.875	1.00	6.44	16.617	12.500	11.0	88.4	NO		
116	-1												
117	96 d7-N-MeFOSE-RSD	$623.1>58.9$	16322.339	20761.875	1.00	6.30	9.827	149.200	132	88.7	No		
118	98 d9-N-EtFOSE-RSD	$639.2>58.8$	20422.422	20761.875	1.00	6.45	12.296	149.200	142	95.1	NO		
119	99 13C4-PFBA	$217.0>172.0$	12887.850	12887.850	1.00	1.49	12.500	12.500	12.5	100.0	NO		
120	1... 13C5-PFHXA	$318.0>272.9$	21712.922	21712.922	1.00	3.19	12.500	12.500	12.5	100.0	NO		
121	1... 13C8-PFOA	$420.9>376.0$	20823.484	20823.484	1.00	4.29	12.500	12.500	12.5	100.0	NO		
122	1... 1802-PFHxS	$403.0>102.6$	1357.960	1357.960	1.00	3.93	12.500	12.500	12.5	100.0	NO		
123	1... 13C9-PFNA	$472.2>426.9$	17858.607	17858.607	1.00	4.72	12.500	12.500	12.5	100.0	NO		
124	1... 13C4-PFOS	$503>79.7$	4077.044	4077.044	1.00	4.80	12.500	12.500	12.5	100.0	NO		
125	1... 13C6-PFDA	$519.1>473.7$	20478.861	20478.861	1.00	5.08	12.500	12.500	12.5	100.0	NO		
126	1... 13C7-PFUdA	$570.1>524.8$	20761.875	20761.875	1.00	5.40	12.500	12.500	12.5	100.0	NO		

Dataset:	Untitled
Last Altered:	Friday, February 21, 2020 16:52:11 Pacific Standard Time
Printed:	Friday, February 21, 2020 16:52:40 Pacific Standard Time

Method: D:\PFAS5.PRO\MethDB\NEW_PFAS_80C_022020.mdb 21 Feb 2020 08:56:55 Calibration: D:\PFAS5.PRO\CurveDB\C18_VAL-PFAS_Q5_02-20-20.cdb 21 Feb 2020 15:57:11

Compound name: PFBA

	\# Name	ID	Acq.Date	Acq. Time
1	1 200220P1-1	IPA	20-Feb-20	17:23:58
2	2 200220P1-2	IPA	20-Feb-20	17:34:30
3	3 200220P1-3	ST200220P1-1 PFC CS-2 20B1102	20-Feb-20	17:45:02
4	4 200220P1-4	ST200220P1-2 PFC CS-1 20B1103	20-Feb-20	17:55:31
5	5 200220P1-5	ST200220P1-3 PFC CS0 20B1104	20-Feb-20	18:06:03
6	6 200220P1-6	ST200220P1-4 PFC CS1 20B1105	20-Feb-20	18:16:31
7	7 200220P1-7	ST200220P1-5 PFC CS2 20B1106	20-Feb-20	18:27:04
8	8 200220P1-8	ST200220P1-6 PFC CS3 20B1107	20-Feb-20	18:37:32
9	$9200220 \mathrm{P} 1-9$	ST200220P1-7 PFC CS4 20B1108	20-Feb-20	18:48:04
10	10 200220P1-10	ST200220P1-8 PFC CS5 20B1109	20-Feb-20	18:58:35
11	11 200220P1-11	ST200220P1-9 PFC CS6 20B1110	20-Feb-20	19:09:05
12	12 200220P1-12	ST200220P1-10 PFC CS7 20B1111	20-Feb-20	19:19:35
13	13 200220P1-13	IB	20-Feb-20	19:30:05
14	14 200220P1-14	ICV200220P1-1 PFC ICV 2081112	20-Feb-20	19:40:36
15	15 200220P1-15	IB	20-Feb-20	19:51:06
15	16 200220P1-16	B0B0088-BLK1 Method Blank 0.25	20-Feb-20	20:01:35
17	17 200220P1-17	B0B0088-BS1 OPR 0.25	20-Feb-20	20:12:06
13	18 200220P1-18	B0B0088-BSD1 LCSD 0.25	20-Feb-20	20:22:35
19	19 200220P1-19	2000292-01 11535BFR POE Influent-1 0.25741	20-Feb-20	20:33:08
20	20 200220P1-20	2000292-02 11535BFR POE Midpoint-1 0.25829	20-Feb-20	20:43:36
21	21 200220P1-21	2000292-03 11535BFR POE Effluent-1 0.25426	20-Feb-20	20:54:07
22	22 200220P1-22	2000292-04 11535BFR Field Blank 0.24726	20-Feb-20	21:04:38
23	23 200220P1-23	B0B0117-BLK1 Method Blank 0.125	20-Feb-20	21:15:06
24	24 200220P1-24	B0B0117-BS1 OPR 0.125	20-Feb-20	21:25:39
25	25 200220P1-25	B080117-BSD1 LCSD 0.125	20-Feb-20	21:36:08
26	26 200220P1-26	2000305-018 Chestnut Dr 0.11658	20-Feb-20	21:46:39
27	27 200220P1-27	2000305-02 10 Chestnut Dr 0.11788	20-Feb-20	21:57:10
28	28 200220P1-28	2000307-01 Map 243 Lot 260.11726	20-Feb-20	22:07:39
29	29 200220P1-29	2000307-02 Map 246 Lot 50.11738	20-Feb-20	22:18:08
30	$30200220 \mathrm{P} 1-30$	B0B0118-BLK1 Method Blank 0.25	20-Feb-20	22:28:40
3.1	31 200220P1-31	B0B0118-8S1 OPR 0.25	20-Feb-20	22:39:11
32	32 200220P1-32	B0B0118-MS1 Matrix Spike 0.25822	20-Feb-20	22:49:40

Vista Analytical Laboratory

Dataset:	Untitled
Last Altered:	Friday, February 21, 2020 16:52:11 Pacific Standard Time
Printed:	Friday, February 21, 2020 16:52:40 Pacific Standard Time

Compound name: PFBA

	\# Name	ID	Acq. Date	Acq.Time
33	33 200220P1-33	B0B0118-MSD1 Matrix Spike Dup 0.2531	20-Feb-20	23:00:11
34	34 200220P1-34	2000314-01 SB01-202002120.24382	20-Feb-20	23:10:42
35	35 200220P1-35	2000314-02 EB01-202002120.24618	20-Feb-20	23:21:13
36	$36200220 \mathrm{P} 1-36$	IB	20-Feb-20	23:31:42
37	37 200220P1-37	ST200220P1-11 PFC CS3 20B1107	20-Feb-20	23:42:13
38	$38200220 \mathrm{P} 1-38$	IB	20-Feb-20	23:52:41
39	39 200220P1-39	2000314-03 1006MW03SR-202002120.25406	21-Feb-20	00:03:13
40	40 200220P1-40	2000314-04 I006MWO5SR-202002120.2515	21-Feb-20	00:13:44
41	41 200220P1-41	2000314-05 DUP01-202002120.24538	21-Feb-20	00:24:12
42	42 200220P1-42	2000314-06 1006MW01S-202002120.2551	21-Feb-20	00:34:45
43	43 200220P1-43	2000314-07 l006MW08S-202002120.25052	21-Feb-20	00:45:14
44	44 200220P1-44	2000314-08 BMW07S-202002120.2539	21-Feb-20	00:55:45
45	45 200220P1-45	2000314-09 1005MW01SR-202002120.25498	21-Feb-20	01:06:16
46	46 200220P1-46	2000314-10 DUP05-202002120.25284	21-Feb-20	01:16:46
47	47 200220P1-47	2000314-11 IS72MW 15S-202002120.25446	21-Feb-20	01:27:15
48	48 200220P1-48	2000314-12 IS72MW18SR-202002120.24458	21-Feb-20	01:37:46
49	49 200220P1-49	IB	21-Feb-20	01:48:15
50	50 200220P1-50	ST200220P1-12 PFC CS3 20 B 1107	21-Feb-20	01:58:46
51	51 200220P1-51	IB	21-Feb-20	02:09:16
52.	52 200220P1-52	2000314-13 222MW02S-202002120.25234	21-Feb-20	02:19:47
53	53 200220P1-53	2000314-14 DUP03-202002120.24446	21-Feb-20	02:30:18
54.	54 200220P1-54	2000314-15 A000MW42S-202002120.25324	21-Feb-20	02:40:47
55	55 200220P1-55	B0B0139-BLK1 Method Blank 1	21-Feb-20	02:51:17
56	56 200220P1-56	B0B0139-BS1 OPR 1	21-Feb-20	03:01:49
57	57 200220P1-57	B0B0139-BSD1 LCSD 1	21-Feb-20	03:12:17
58	58 200220P1-58	2000306-01 KRMS Compost Pile 5.62	21-Feb-20	03:22:49
59.	59 200220P1-59	2000306-02 KRMS N. Soccer Field 2.2	21-Feb-20	03:33:18
60	60 200220P1-60	B0B0053-BS1 OPR 0.125	21-Feb-20	03:43:49
61	61 200220P1-61	IB	21-Feb-20	03:54:19
62	62 200220P1-62	ST200220P1-13 PFC CS3 20B1107	21-Feb-20	04:04:50
63	63 200220P1-63	IB	21-Feb-20	04:15:21

Dataset:	D:IPFAS5.PRO\RESULTS\200220P1\200220P1-50.qld
Last Altered:	Friday, February 21, 2020 16:38:52 Pacific Standard Time
Printed:	Friday, February 21, 2020 16:40:05 Pacific Standard Time

Method: D:\PFAS5.PRO\MethDBINEW PFAS 80C 022020.mdb 21 Feb 2020 08:56:55

Calibration: D:|PFAS5.PRO\CurveDB\C118_VAL-PFAS_Q5_02-20-20.cdb 21 Feb 2020 15:57:11
Name: 200220P1-50, Date: 21-Feb-2020, Time: 01:58:46, ID: ST200220P1-12 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

F6:MRM of 2 channels,ES$248.9>98.7$

13C3-PFBS-EIS

F12:MRM of 1 channel,ES-
$302.0>98.8$

F11:MRM of 2 channels,ES

13C2-4:2 FTS-EIS
F17:MRM of 2 channels,ES-
$329.0>79.7$ $3.862 \mathrm{e}+004$

Dataset:	D:IPFAS5.PROIRESULTSL200220P1 200220 P1-50.qld
Last Altered:	Friday, February 21, 2020 16:38:52 Pacific Standard Time
Printed:	Friday, February 21, 2020 16:40:05 Pacific Standard Time

Name: 200220P1-50, Date: 21-Feb-2020, Time: 01:58:46, ID: ST200220P1-12 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

13C2-PFHxA-EIS

F14:MRM of 1 channel,ES-

13C3-PFBS-EIS

F12:MRM of 1 channel,ES-
$302.0>98.8$
$100-\quad 3.162 \mathrm{e}+004$

13C3-HFPO-DA-EIS

$$
\begin{array}{r}
\text { F10:MRM of } 2 \text { channels,ES. } \\
287.0>168.9
\end{array}
$$

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES-

13C4-PFHpA-EIS
F21:MRM of 1 channel,ES-
$367.2>321.8$
$367.2>321.8$
$3.486 e+005$

ADONA

13C4-PFHPA-EIS
F21:MRM of 1 channel,ES$367.2>321.8$

Dataset:
 D:\PFAS5.PROIRESULTSI200220P1\200220P1-50.qld

Last Altered:	Friday, February 21, 2020 16:38:52 Pacific Standard Time
Printed:	Friday, February 21, 2020 16:40:05 Pacific Standard Time

Printed: \quad Friday, February 21, 2020 16:40:05 Pacific Standard Time

Name: 200220P1-50, Date: 21-Feb-2020, Time: 01:58:46, ID: ST200220P1-12 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

13C3-PFHxS-EIS

F24:MRM of 1 channel,ESF24.MRM of 1 channel,ES
$401.8>79.7$

13C2-6:2 FTS-EIS

F30:MRM of 1 channel,ES$429.0>79.7$

13C2-PFOA-EIS

F27:MRM of 1 channel,ES 414.9 > 369.7 $4.735 e+005$

13C2-PFOA-EIS

F27:MRM of 1 channel,ES-

F32:MRM of 2 channels,ES
$449>98.7$

13C8-PFOS-EIS

F42:MRM of 1 channel,ES-

F31:MRM of 2 channels,ES$440.9>316.9$ $440.9>316.9$
$3.886 e+004$

13C5-PFNA-EIS
F35:MRM of 1 channel,ES$468.2>422.9$

Last Altered: Friday, February 21, 2020 16:38:52 Pacific Standard Time
Printed: \quad Friday, February 21, 2020 16:40:05 Pacific Standard Time

Name: 200220P1-50, Date: 21-Feb-2020, Time: $01: 58: 46$, ID: ST200220P1-12 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

Last Altered: Friday, February 21, 2020 16:38:52 Pacific Standard Time
Printed: Friday, February 21, 2020 16:40:05 Pacific Standard Time

Name: 200220P1-50, Date: 21-Feb-2020, Time: 01:58:46, ID: ST200220P1-12 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

13C8-PFOS-EIS

F42:MRM of 1 channel, ES-

F59:MRM of 2 channels, ESF59:MRM of 2 channels, ES-
$584.1>526$
$9.346 \mathrm{e}+004$

F54:MRM of 2 channels,ES-

13C2-PFUdA-EIS
F55:MRM of 1 channel,ES-
$565>519.8$
5.3740 .005

PFDS

F61:MRM of 2 channels,ES-
F61:MRM of 2 channels,ES-
$598.8>79.7$ 100 PFDS $7.009 \mathrm{e}+004$
$\left.\begin{array}{rc}100 \\ \% & 5.44 \\ 2.59 \mathrm{e} 3 \\ 69978 \\ \mathrm{bb} \\ 69978.00\end{array}\right]$
$0-$
F61:MRM of 2 channels,ES

13C8-PFOS-EIS
F42:MRM of 1 channel,ES-
$507.0>79.7$

13C2-PFDOA-EIS
F63:MRM of 1 channel,ES

Dataset:	D:IPFAS5.PRO\RESULTS\200220P1\200220P1-50.qld
Last Altered:	Friday, February 21, 2020 16:38:52 Pacific Standard Time
Printed:	Friday, February 21, 2020 16:40:05 Pacific Standard Time

Name: 200220P1-50, Date: 21-Feb-2020, Time: 01:58:46, ID: ST200220P1-12 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

F66:MRM of 2 channels, ES$26.9>80.7$ 2.470e+004

13C2-PFDo A-EIS
F63:MRM of 1 channel,ES-
$614.7>569.7$

F43:MRM of 2 channels,ES-

$$
\begin{aligned}
\text { F43:MRM of } 2 \text { channels,ES- } \\
512.1>219 \\
1.007 \mathrm{e}+005
\end{aligned}
$$

F71:MRM of 2 channels,ES-

$$
662.9>319
$$

$$
8.745 e+003
$$

F72:MRM of 2 channels,ES $698.8>98.7$

13C2-PFTeDA-EIS
F74:MRM of 2 channels,ES$715.1>669.7$

Printed: Friday, February 21, 2020 16:40:05 Pacific Standard Time

Name: 200220P1-50, Date: 21-Feb-2020, Time: 01:58:46, ID: ST200220P1-12 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

N-EtFOSA
 F48:MRM of 2 channels, ES- $526.1>168.9$ 1007
 F48:MRM of 2 channels, ES$526.1>219$ 100 $1.135 e+005$

13C2-PFHxDA-EIS
F76:MRM of 1 channel, ES-
$\begin{array}{ll} & 815>769.7 \\ 100- & 8.119 \mathrm{e}+005\end{array}$

PFODA

d7-N-MeFOSE-EIS F65:MRM of 1 channel,ES-

100

13C8-PFOS-EIS

$$
\begin{array}{r}
\text { F42:MRM or } 1 \text { cnannel, ES- } \\
507.0>79.7 \\
8.502 \mathrm{e}+004
\end{array}
$$

Name: 200220P1-50, Date: 21-Feb-2020, Time: 01:58:46, ID: ST200220P1-12 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

F21:MRM of 1 channel,ES
$367.2>321.8$ $3.486 e+005$

13C3-PFHxS-RSD

F24:MRM of 1 channel,ES7.69 > 79.7 $7.696 e+004$

F41:MRM of 1 channel,ES-
$506>78$

Name: 200220P1-50, Date: 21-Feb-2020, Time: $01: 58: 46$, ID: ST200220P1-12 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

13C2-10:2 FTS-RSD
F69:MRM of 1 channel,ES$632.9>80.0$ $062 e+004$

13C2-PFTeDA-RSD
F74:MRM of 2 channels,ES$715.1>669.7$ $4.807 \mathrm{e}+005$

13C2-PFUdA-RSD
F55:MRM of 1 channel,ES
$565>519.8$

d5-N-EtFOSAA-RSD
F60:MRM of 1 channel, ES-
$589.3>419$
$1.250 \mathrm{e}+005$

13C2-PFHxDA-RSD
F76:MRM of 1 channel,ES$815>769.7$ $8.119 \mathrm{e}+005$

Last Altered:	Friday, February 21, 2020 16:38:52 Pacific Standard Time
Printed:	Friday, February 21, 2020 16:40:05 Pacific Standard Time

Name: 200220P1-50, Date: 21-Feb-2020, Time: $01: 58: 46$, ID: ST200220P1-12 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

F36:MRM of 1 channel,ES-
$472.2>426.9$
$4.603 \mathrm{e}+005$

13C4-PFOS

F40:MRM of 1 channel,ES$503>79.7$ $.035 e+005$

F47:MRM of 1 channel,ES$519.1>473.7$

13C7-PFUdA
F57:MRM of 1 channel,ES$570.1>524.8$

Method: P:|PFAS5.PRO\MethDB\NEW_PFAS_80C_022520.mdb 26 Feb 2020 11:36:08

 Calibration: P:|PFAS5.PRO\CurveDBIC18_VAL-PFAS_Q5_02-25-20.cdb 26 Feb 2020 11:25:03
Name: 200225P1-13, Date: 25-Feb-2020, Time: 20:04:45, ID: IB, Description: IB

13C3-PFBA-EIS

IB IBF3:MRM of 1 channel,ES-
$216.1>171.8$ $4.789 \mathrm{e}+004$

13C3-PFBS-EIS
F12:MRM of 1 channel,ES-

13C3-PFPeA-EIS

IB IBF8:MRM of 1 channel,ES-
$266.0>221.8$
$1.447 e+005$

PFPeA

13C3-PFPeA-EIS

IB IBF8:MRM of 1 channel,ES-

F11:MRM of 2 channels,ES-

13C3-PFBS-EIS
F12:MRM of 1 channel,ES$302.0>98.8$ $2.014 e+004$

4:2 FTS

13C2-4:2 FTS-EIS
F17:MRM of 2 channels,ES-
$329.0>79.7$ $2.667 e+004$

Name: 200225P1-13, Date: 25-Feb-2020, Time: 20:04:45, ID: IB, Description: IB

13C3-PFBS-EIS

F20:MRM of 2 channels,ES-

13C4-PFHpA-EIS

Quantify Sample Report Vista Analytical Laboratory

Name: 200225P1-13, Date: 25-Feb-2020, Time: 20:04:45, ID: IB, Description: IB

L-PFHxS

F23:MRM of 2 channels,ES-

13C3-PFHxS-EIS

F29:MRM of 3 channels,ES-

13C2-6:2 FTS-EIS

13C2-PFOA-EIS
F27:MRM of 1 channel,ES-

13C2-PFOA-EIS

F32:MRM of 2 channels,ES-

13C8-PFOS-EIS

Name: 200225P1-13, Date: 25-Feb-2020, Time: 20:04:45, ID: IB, Description: IB

PFNA

F34:MRM of 2 channels,ES-

13C5-PFNA-EIS

F35:MRM of 1 channel,ES-
$468.2>422.9$
$3.965 \mathrm{e}+005$
13C8-PFOSA-EIS
F41:MRM of 1 channel,ES-
$506>78$

F37:MRM of 2 channels,ES-

13C8-PFOS-EIS

F42:MRM of 1 channel,ES-

9CI-PF30NS F51:MRM of 2 channels,ES- $530.7>350.8$ $7.557 \mathrm{e}+001$

13C8-PFOS-EIS

13C2-PFDA-EIS

Name: 200225P1-13, Date: 25-Feb-2020, Time: 20:04:45, ID: IB, Description: IB

PFNS

F53:MRM of 2 channels,ES-
$549.1>98.7$
$8.227 \mathrm{e}+001$

13C8-PFOS-EIS

F56:MRM of 2 channels,ES-

d3-N-MeFOSAA-EIS

F59:MRM of 2 channels,ES-

13C2-PFUdA-EIS

PFDS

F61:MRM of 2 channels,ES-

F61:MRM of 2 channels,ES-

13C8-PFOS-EIS

Name: 200225P1-13, Date: 25-Feb-2020, Time: 20:04:45, ID: IB, Description: IB

d3-N-MeFOSA-EIS

F46:MRM of 1 channel,ES-

F62:MRM of 4 channels,ES-

F71:MRM of 2 channels,ES-

$$
\begin{array}{r}
\text { F/1:MRIM of } 2 \text { channels,ES- } \\
662.9>319
\end{array}
$$

PFTEDA
F73:MRM of 2 channels,ES-
$713.0>669.0$
$2.028 \mathrm{e}+003$
F73:MRM of 2 channels,ES-

Name: 200225P1-13, Date: 25-Feb-2020, Time: 20:04:45, ID: IB, Description: IB
N-EtFOSA
F48:MRM of 2 channels,ES-

$526.1>168.9$
$2.848 \mathrm{e}+002$

13C2-PFHxDA-EIS
F76:MRM of 1 channel,ES-
$815>769.7$
$9.148 \mathrm{e}+005$
d7-N-MeFOSE-EIS F65:MRM of 1 channel,ES-

d9-N-EtFOSE-EIS

N-EtFOSE

13C8-PFOS-EIS

Name: 200225P1-13, Date: 25-Feb-2020, Time: 20:04:45, ID: IB, Description: IB

13C4-PFHpA-RSD

13C3-PFHxS-RSD

13C2-6:2 FTS-RSD

13C3-HFPO-DA-RSD

F10:MRM of 2 channels,ES-

13C8-PFOSA-RSD

13C2-PFOA-RSD

Name: 200225P1-13, Date: 25-Feb-2020, Time: 20:04:45, ID: IB, Description: IB

13C2-PFDoA-RSD

F63:MRM of 1 channel,ES-

13C2-10:2 FTS-RSD

d3-N-MeFOSA-RSD
F46:MRM of 1 channel,ES-
F46:MRM of 1 channel,ES-
$515.2>168.9$
$4.729 \mathrm{e}+005$

13C2-PFTeDA-RSD
F74:MRM of 2 channels,ES$715.1>669.7$ $5.403 \mathrm{e}+005$

13C2-PFUdA-RSD
F55:MRM of 1 channel,ES-
channel, ES-
$565>519.8$ $5.945 \mathrm{e}+005$

d5-N-ETFOSA-RSD
F52:MRM of 1 channel ES

d5-N-EtFOSAA-RSD
F60:MRM of 1 channel,ES-
589.3 > 419
$1.154 \mathrm{e}+005$

Name: 200225P1-13, Date: 25-Feb-2020, Time: 20:04:45, ID: IB, Description: IB

d7-N-MeFOSE-RSD

13C9-PFNA

F36:MRM of 1 channel,ES-
 $4.662 \mathrm{e}+005$

13C5-PFHxA
F15:MRM of 1 channel,ES-
$318.0>272.9$
$3.574 \mathrm{e}+005$ $3.574 \mathrm{e}+005$

Name: 200225P1-13, Date: 25-Feb-2020, Time: 20:04:45, ID: IB, Description: IB

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
1	1 PFBA	$213.0>168.8$	6.087	3374.603	1.00	1.47	0.023				NO		
2	2 PFPrS	$248.9>79.7$		1117.574	1.00						NO		
3	3 3:3 FTCA	$240.9>176.9$		8162.300	1.00						NO		
4	4 PFPeA	$263.1>218.9$	5.105	8162.300	1.00	2.31	0.008				NO		
5	5 PFBS	$299.0>79.7$		1117.574	1.00						NO		
6	6 4:2 FTS	$327.0>307$		1218.698	1.00						NO		
7	47 13C3-PFBA-EIS	$216.1>171.8$	3374.603		1.00	1.42	3374.603	12.500	3.77	30.2	YES		
8	51 13C3-PFBS-EIS	$302.0>98.8$	1117.574		1.00	2.62	1117.574	12.500	9.31	74.5	NO		
9	49 13C3-PFPeA-EIS	$266.0>221.8$	8162.300		1.00	2.35	8162.300	12.500	7.21	57.7	NO		
10	49 13C3-PFPeA-EIS	$266.0>221.8$	8162.300		1.00	2.35	8162.300	12.500	7.21	57.7	NO		
11	51 13C3-PFBS-EIS	$302.0>98.8$	1117.574		1.00	2.62	1117.574	12.500	9.31	74.5	NO		
12	55 13C2-4:2 FTS-EIS	$329.0>79.7$	1218.698		1.00	3.04	1218.698	12.500	8.18	65.4	NO		
13	-1												
14	7 PFHxA	$313.0>269.0$	59.331	20717.152	1.00	3.02	0.036				NO		
15	8 PFPeS	$349 .>79.7$		1117.574	1.00						NO		
16	9 HFPO-DA	$285.1>168.9$		3623.440	1.00						NO		
17	10 5:3 FTCA	$340.9>236.9$	5.697	14782.707	1.00	3.83	0.005		0.0705		NO		
18	11 PFHpA	$363.0>318.9$		14782.707	1.00						NO		
19	12 ADONA	$376.8>250.9$	41.141	14782.707	1.00	3.75	0.035				NO	4.883	NO
20	57 13C2-PFHxA-EIS	$315.0>270.0$	20717.152		1.00	3.12	20717.152	12.500	11.5	92.3	NO		
21	51 13C3-PFBS-EIS	$302.0>98.8$	1117.574		1.00	2.62	1117.574	12.500	9.31	74.5	NO		
22	53 13C3-HFPO-DA-EIS	$287.0>168.9$	3623.440		1.00	3.34	3623.440	12.500	11.5	92.3	NO		
23	59 13C4-PFHpA-EIS	$367.2>321.8$	14782.707		1.00	3.72	14782.707	12.500	12.0	95.9	NO		
24	59 13C4-PFHpA-EIS	$367.2>321.8$	14782.707		1.00	3.72	14782.707	12.500	12.0	95.9	NO		
25	59 13C4-PFHpA-EIS	$367.2>321.8$	14782.707		1.00	3.72	14782.707	12.500	12.0	95.9	NO		
26	-1												
27	13 L-PFHxS	$398.9>79.7$		3320.766	1.00						NO		
28	15 6:2 FTS	$427.0>407$	13.202	1390.905	1.00	4.13	0.119				NO		
29	16 L-PFOA	$412.8>368.9$	110.780	19666.736	1.00	4.22	0.070				NO	4.336	YES
30	18 PFechS	$460.8>381.0$		19666.736	1.00						NO		
31	19 PFHpS	$449.0>79.7$		3852.213	1.00						NO		
32	20 7:3 FTCA	$440.9>336.9$		16544.805	1.00						NO		
33	61 13C3-PFHxS-EIS	$401.8>79.7$	3320.766		1.00	3.86	3320.766	12.500	12.1	97.2	NO		
34	63 13C2-6:2 FTS-EIS	$429.0>79.7$	1390.905		1.00	4.17	1390.905	12.500	11.3	90.6	NO		
35	69 13C2-PFOA-EIS	$414.9>369.7$	19666.736		1.00	4.23	19666.736	12.500	12.3	98.7	NO		
36	69 13C2-PFOA-EIS	$414.9>369.7$	19666.736		1.00	4.23	19666.736	12.500	12.3	98.7	NO		
	Work Order 2000314											Page 263 of 1277	

Name: 200225P1-13, Date: 25-Feb-2020, Time: 20:04:45, ID: IB, Description: IB

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
37	71 13C8-PFOS-EIS	$507.0>79.7$	3852.213		1.00	4.75	3852.213	12.500	13.2	105.6	NO		
38	65 13C5-PFNA-EIS	468.2 > 422.9	16544.805		1.00	4.67	16544.805	12.500	11.1	88.7	NO		
39	-1												
40	21 PFNA	$463.0>418.8$	21.350	16544.805	1.00	4.66	0.016				NO		
41	22 PFOSA	$497.9>77.9$	5.084	4592.565	1.00	4.65	0.014		0.0480		NO		
42	23 L-PFOS	$498.9>79.7$		3852.213	1.00						NO		
43	259 Cl -PF30NS	$530.7>350.8$		3852.213	1.00						NO		
44	26 PFDA	$513>468.8$	52.535	20059.008	1.00	4.99	0.033				NO		
45	27 8:2 FTS	$526.9>507$		1123.938	1.00						NO		
46	65 13C5-PFNA-EIS	$468.2>422.9$	16544.805		1.00	4.67	16544.805	12.500	11.1	88.7	NO		
47	67 13C8-PFOSA-EIS	$506>78$	4592.565		1.00	4.73	4592.565	12.500	12.2	97.8	NO		
48	71 13C8-PFOS-EIS	$507.0>79.7$	3852.213		1.00	4.75	3852.213	12.500	13.2	105.6	NO		
49	71 13C8-PFOS-EIS	$507.0>79.7$	3852.213		1.00	4.75	3852.213	12.500	13.2	105.6	NO		
50	73 13C2-PFDA-EIS	$515.1>469.9$	20059.008		1.00	5.03	20059.008	12.500	12.3	98.1	NO		
51	75 13C2-8:2 FTS-EIS	$529>79.7$	1123.938		1.00	5.01	1123.938	12.500	11.0	88.0	NO		
52	-1												
53	28 PFNS	$549.1>79.7$		3852.213	1.00						NO		
54	$29 \mathrm{~L}-\mathrm{MeFOSAA}$	$570>419$		3885.093	1.00						NO		
55	31 L-EtFOSAA	$584.1>419$	19.145	4576.282	1.00	5.32	0.052		0.0133		NO		
56	33 PFUdA	$563.0>518.9$	141.371	21489.662	1.00	5.33	0.082				NO		
57	34 PFDS	$598.8>79.7$	6.220	3852.213	1.00	5.35	0.020		0.0111		NO		
58	3511 Cl -PF30UdS	$630.9>450.9$	24.052	19587.941	1.00	5.52	0.015				NO		
59	71 13C8-PFOS-EIS	$507.0>79.7$	3852.213		1.00	4.75	3852.213	12.500	13.2	105.6	NO		
60	77 d3-N-MeFOSAA-EIS	$573.3>419$	3885.093		1.00	5.18	3885.093	12.500	11.8	94.1	NO		
61	$81 \mathrm{d5}$-N-EtFOSAA-EIS	$589.3>419$	4576.282		1.00	5.33	4576.282	12.500	11.6	92.6	NO		
62	79 13C2-PFUdA-EIS	$565>519.8$	21489.662		1.00	5.35	21489.662	12.500	13.3	106.3	NO		
63	71 13C8-PFOS-EIS	$507.0>79.7$	3852.213		1.00	4.75	3852.213	12.500	13.2	105.6	NO		
64	83 13C2-PFDoA-EIS	$614.7>569.7$	19587.941		1.00	5.62	19587.941	12.500	11.6	92.9	NO		
65	-1												
66	36 10:2 FTS	$626.9>607$	5.157	873.436	1.00	5.61	0.074				NO		
67	37 PFDoA	$612.9>569.0$	139.302	19587.941	1.00	5.76	0.089		0.0106		NO		
68	38 N-MeFOSA	$512.1>168.9$	8.689	19895.789	1.00	5.81	0.065		0.0855		NO		
69	39 PFTrDA	$662.9>618.9$	48.682	19587.941	1.00	5.84	0.031				NO		
70	40 PFDoS	$698.8>79.7$	7.948	22213.631	1.00	5.85	0.004				NO		
71	41 PFTeDA	$713.0>669.0$	80.025	22213.631	1.00	6.04	0.045				NO		
72	85 13C2-10:2 FTS-EIS	$632.9>80.0$	873.436		1.00	5.61	873.436	12.500	12.1	97.1	NO		

Work Order 2000314

Name: 200225P1-13, Date: 25-Feb-2020, Time: 20:04:45, ID: IB, Description: IB

Quantify Sample Report
Vista Analytical Laboratory
Dataset:
Untitled
Last Altered: Wednesday, February 26, 2020 11:58:03 Pacific Standard Time Printed: Wednesday, February 26, 2020 11:58:20 Pacific Standard Time

Name: 200225P1-13, Date: 25-Feb-2020, Time: 20:04:45, ID: IB, Description: IB

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
109	82 d5-N-EtFOSAA-RSD	$589.3>419$	4576.282	21475.115	1.00	5.33	2.664	12.500	11.5	92.0	NO		
110	84 13C2-PFDoA-RSD	$614.7>569.7$	19587.941	21429.576	1.00	5.62	11.426	12.500	11.8	94.4	NO		
111	86 13C2-10:2 FTS-RSD	$632.9>80.0$	873.436	4144.186	1.00	5.61	2.635	12.500	11.1	88.4	NO		
112	88 d3-N-MeFOSA-RSD	$515.2>168.9$	19895.789	21475.115	1.00	5.76	11.581	149.200	144	96.7	NO		
113	90 13C2-PFTeDA-RSD	$715.1>669.7$	22213.631	21475.115	1.00	6.08	12.930	12.500	12.3	98.8	NO		
114	92 d5-N-ETFOSA-RSD	$531.1>168.9$	25288.002	21475.115	1.00	6.15	14.719	149.200	148	99.5	NO		
115	94 13C2-PFHxDA-RSD	$815>769.7$	29914.744	21475.115	1.00	6.40	17.412	12.500	11.6	93.2	NO		
116	-1												
117	$96 \mathrm{~d} 7-\mathrm{N}-\mathrm{MeFOSE-RSD}$	$623.1>58.9$	18268.793	21475.115	1.00	6.28	10.634	149.200	146	97.8	NO		
118	98 d9-N-EtFOSE-RSD	$639.2>58.8$	20460.025	21475.115	1.00	6.43	11.909	149.200	139	93.0	NO		
119	99 13C4-PFBA	$217.0>172.0$	5063.513	5063.513	1.00	1.42	12.500	12.500	12.5	100.0	NO		
120	1... 13C5-PFHxA	$318.0>272.9$	22758.422	22758.422	1.00	3.13	12.500	12.500	12.5	100.0	NO		
121	1... 13C8-PFOA	$420.9>376.0$	21630.061	21630.061	1.00	4.23	12.500	12.500	12.5	100.0	NO		
122	1... 18O2-PFHxS	$403.0>102.6$	1564.224	1564.224	1.00	3.86	12.500	12.500	12.5	100.0	NO		
123	1... 13C9-PFNA	$472.2>426.9$	19038.262	19038.262	1.00	4.67	12.500	12.500	12.5	100.0	NO		
124	1... 13C4-PFOS	$503>79.7$	4144.186	4144.186	1.00	4.75	12.500	12.500	12.5	100.0	NO		
125	1... 13C6-PFDA	$519.1>473.7$	21429.576	21429.576	1.00	5.04	12.500	12.500	12.5	100.0	NO		
126	1... 13C7-PFUdA	$570.1>524.8$	21475.115	21475.115	1.00	5.35	12.500	12.500	12.5	100.0	NO		

Last Altered: Wednesday, February 26, 2020 13:43:08 Pacific Standard Time
Printed: Wednesday, February 26, 2020 13:46:21 Pacific Standard Time
PFNS not Vulld

Name: 200225P1-53, Date: 26-Feb-2020, Time: 03:04:57, ID: ST200225P1-12 PFC CS3 20B1107, Description: PFC CS3 20B1107

	\# Name	Trace	Area	IS Area	whtuol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
1.	1 PFBA	213.0 > 168.8	10138.624	11104.702	1.00	1.42	11.413	10.000	10.2	102.3	NO		
2	2 PFPrS	$248.9>79.7$	2142.382	1538.521	1.00	1.75	17.406	10.000	10.5	105.3.	NO	2.382	NO
3	3 3:3 FTCA	$240.9>176.9$	912.257	14167.407	1.00	2.20	0.805	10.000	10.4	104.2	NO	4.004	NO
4	4 PFPPA	$263.1>218.9$	11858.240	14167.407	1.00	2.34	10.463	10.000	10.7	106.9	NO		
5	5 PFBS	$299.0>79.7$	2993.937	1538.521	1.00	2.62	24.325	10.000	10.5	105.0	NO	3.006	NO
6	6 4:2 FTS	327.0 > 307	1871.148	1718.875	1.00	3.04	13.607	10.000	9.96	99.6	NO	0.896	NO
7	47 13C3-PFBA-EIS	$216.1>171.8$	11104.702		1.00	1.42	11104.70z	12.500	12.4	99.3	NO		
8	51 13C3-PFBS-EIS	$302.0>98.8$	1538.521		1.00	2.62	1538.521	12.500	12.8	102.5	NO		
9	49 13C3-PFPeA-EIS	$266.0>221.8$	14167.407		1.00	2.34	14167.407	12.500	12.5	100.1	NO		
10	49 13C3-PFPeA-EIS	$266.0>221.8$	14167.407		1.00	2.34	14167.407	12.500	12.5	100.1	NO		
11	51 13C3-PFBS-EIS	$302.0>98.8$	1538.521		1.00	2.62	1538.521	12.500	12.8	102.5	NO		
12	55 13C2-4:2 FTS-EIS	$329.0>79.7$	1718.875		1.00	3.04	1718.875	12.500	11.5	92.3	NO		
13	-1												
14	7 PFHxA	$313.0>269.0$	18673.750	23428.365	1.00	3.13	9.963	10.000	11.1	110.6	NO	16.219	NO
15	8 PFPeS	$349 .>79.7$	3168.291	1538.521	1.00	3.32	25.741	10.000	10.9	108.7	NO	2.648	NO
16	9 HFPO-DA	$285.1>168.9$	3659.602	4034.481	1.00	3.34	11.339	10.000	11.4	113.9	NO	2.769	NO
17	10 5:3 FTCA	$340.9>236.9$	2236.564	15984.586	1.00	3.67	1.749	10.000	9.44	94.4	NO	1.734	NO
18	11 PFHpA	$363.0>318.9$	15986.570	15984.586	1.00	3.73	12.502	10.000	10.1	100.7	NO	29.422	NO
19	12 ADONA	$376.8>250.9$	34532.645	15984.586	1.00	3.83	27.005	10.000	9.46	94.6	NO	3.785	NO
20	57 13C2-PFHxA-EIS	$315.0>270.0$	23428.365		1.00	3.13	23428.365	12.500	13.1	104.4	NO		
21	51 13C3-PFBS-EIS	$302.0>98.8$	1538.521		1.00	2.62	1538.521	12.500	12.8	102.5	NO		
22	53 13C3-HFPO-DA-EIS	$287.0>168.9$	4034.481		1.00	3.34	4034.481	12.500	12.8	102.7	NO		
23	59 13C4-PFHPA-EIS	$367.2>321.8$	15984.586		1.00	3.72	15984.586	12.500	13.0	103.7	NO		
24	59 13C4-PFHPA-EIS	$367.2>321.8$	15984.586		1.00	3.72	15984.586	12.500	13.0	103.7	NO		
25	59 13C4-PFHpA-EIS	367.2 > 321.8	15984.586		1.00	3.72	15984.586	12.500	13.0	103.7	NO		
26	-1												
27	13 L-PFHxS	$398.9>79.7$	2773.517	3211.341	1.00	3.86	10.796	10.000	10.6	105.5	NO	2.027	NO
28	15 6:2 FTS	427.0 > 407	2036.926	1442.435	1.00	4.17	17.652	10.000	11.2	112.0	NO	1.132	NO
29	16 L-PFOA	412.8 > 368.9	19583.383	21224.543	1.00	4.23	11.533	10.000	10.1	101.1	NO	2.920	NO
30	18 PFechS	$460.8>381.0$	2760.345	21224.543	1.00	4.25	1.626	10.000	10.9	109.0	NO	0.465	NO
31	19 PFHpS	$449.0>79.7$	3159.228	3684.929	1.00	4.34	10.717	10.000	11.5	115.3	NO	2.039	NO
32	20 7:3 FTCA	$440.9>336.9$	2414.791	20823.170	1.00	4.66	1.450	10.000	9.39	93.9	NO	1.481	NO
33	61 13C3-PFHxS-EIS	$401.8>79.7$	3211.341		1.00	3.86	3211.341	12.500	11.7	94.0	NO		
34	63 13C2-6:2 FTS-EIS	$429.0>79.7$	1442.435		1.00	4.18	1442.435	12.500	11.7	94.0	NO		
35	69 13C2-PFOA-EIS	$414.9>369.7$	21224.543		1.00	4.23	21224.543	12.500	13.3	106.6	NO		
36	69 13C2-PFOA-EIS	$414.9>369.7$	21224.543		1.00	4.23	21224.543	12.500	13.3	106.6	NO.		

Last Altered: Wednesday, February 26, 2020 13:43:08 Pacific Standard Time

Name: 200225P1-53, Date: 26-Feb-2020, Time: 03:04:57, ID: ST200225P1-12 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

	\# Name	Trace	Area	IS Area	wivol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratic) Out?
37	71 13C8-PFOS-EIS	$507.0>79.7$	3684.929		1.00	4.75	3684.929	12.500	12.6	101.0	NO		
38	65 13C5-PFNA-EIS	468.2 > 422.9	20823.170		1.00	4.67	20823.170	12.500	14.0	111.7	NO		
39	-1												
40	21 PFNA	$463.0>418.8$	18180.563	20823.170	1.00	4.67	10.914	10.000	9.12	91.2	NO	7.293	NO
41	22 PFOSA	$497.9>77.9$	3185.529	4923.242	1.00	4.73	8.088	10.000	9.88	98.8	NO	24.084	NO
42	23 L-PFOS	$498.9>79.7$	3090.084	3684.929	1.00	4.75	10.482	10.000	11.2	112.0	NO	2.151	NO
43	259 Cl -PF30NS	$530.7>350.8$	3008.673	3684.929	1.00	4.96	10.206	10.000	10.1	101.3	NO	14.117	NO
44	26 PFDA	$513>468.8$	19288.559	20819.160	1.00	5.04	11.581	10.000	9.84	98.4	No	10.368	NO
45	27 8:2 FTS	$526.9>507$	1454.139	1323.310	1.00	5.01	13.736	10.000	10.9	109.4	No	3.437	NO
46	65 13C5-PFNA-EIS	$468.2>422.9$	20823.170		1.00	4.67	20823.170	12.500	14.0	111.7	NO		
47	67 13C8-PFOSA-EIS	$506>78$	4923.242		1.00	4.73	4923.242	12.500	13.1	104.8	NO		
48	71 13C8-PFOS-EIS	$507.0>79.7$	3684.929		1.00	4.75	3684.929	12.500	12.6	101.0	NO		
49	71 13C8-PFOS-EIS	$507.0>79.7$	3684.929		1.00	4.75	3684.929	12.500 .	12.6	101.0	NO		
50	73 13C2-PFDA-EIS	$515.1>469.9$	20819.160		1.00	5.04	20819.160	12.500	12.7	101.9	No		
51	75 13C2-8:2 FTS-EIS	$529>79.7$	1323.310		1.00	5.00	1323.310	12.500	13.0	103.6	NO		
52	-1												
53	28 PFNS	$549.1>79.7$	3165.731	3684.929	1.00	5.10	10.739	10.000	12.0	120.4	NO	2.383	NO
54	29 L-MeFOSAA	$570>419$	5643.036	4484.013	1.00	5.19	15.731	10.000	8.14	81.4	NO	2.163	NO
55	$31 \mathrm{~L}-\mathrm{EtFOSAA}$	$584.1>419$	5483.549	5729.217	1.00	5.34	11.964	10.000	10.0	100.0	NO	1.161	NO
56	33 PFUdA	$563.0>518.9$	16407.303	21343.498	1.00	5.35	9.609	10.000	10.3	102.7	NO	25.691	NO
57	34 PFDS	$598.8>79.7$	2722.575	3684.929	1.00	5.40 :	9.236.	10.000	12.0.	120.3	No	1.899	NO
58	3511 Cl -PF30UdS	$630.9>450.9$	7506.242	19140.156	1.00	5.56	4.902	10.000	10.7	107.2	NO	18.381	NO
59	71 13C8-PFOS-EIS	$507.0>79.7$	3684.929		1.00	4.75	3684.929	12.500	12.6	101.0	No		
60	77 d3-N-MeFOSAA-EIS	$573.3>419$	4484.013		1.00	5.18	4484.013	12.500	13.6	108.6	No		
61	81 d5-N-EtFOSAA-EIS	$589.3>419$	5729.217		1.00	5.34	5729.217	12.500	14.5	115.9	NO		
62	79 13C2-PFUdA-EIS	$565>519.8$	21343.498		1.00	5.35	21343.498	12.500	13.2	105.6	NO		
63	71 13C8-PFOS-EIS	$507.0>79.7$	3684.929		1.00	4.75	3684.929	12.500	12.6	101.0	NO		
64	83 13C2-PFDoA-EIS	$614.7>569.7$	19140.156		1.00	5.63	19140.156	12.500	11.4	90.8	NO		
65	-1												
66	36 10:2 FTS	$626.9>607$	1629.179	936.011	1.00	5.61	21.757	10.000	9.71	97.1	NO	1.015	NO
67	37 PFDoA	$612.9>569.0$	18397.139	19140.156	1.00	5.63	12.015	10.000	11.1	111.C	NO	10.636	NO
68	38 N-MeFOSA	$512.1>168.9$	7852.328	21849.549	1.00	5.74	53.620	50.000	51.0	101.9	NO	1.675	NO
69	39 PFTrDA	$662.9>618.9$	18880.117	19140.156	1.00	5.87	12.330	10.000	11.0	110.1	NO	64.676	NO
70	40 PFDoS	$698.8>79.7$	3169.839	20588.139	1.00	5.89	1.925	10.000	11.9	118.9	NO	2.855	NO
71	41 PFTeDA	$713.0>669.0$	15924.633	20588.139	1.00	6.08	9.669	10.000	10.2	101.5	No	21.045	NO
72.	85 13C2-10:2 FTS-EIS	$632.9>80.0$	936.011		1.00	5.61	936.011	12.500	13.0	104.1	NO.		

Dataset:	P:IPFAS5.PRO\RESULTSL200225P11200225P1-53.qId
	Last Altered:
Wednesday, February 26, 2020 13:43:08 Pacific Standard Time	
Printed:	Wednesday, February 26, 2020 13:46:21 Pacific Standard Time

Name: 200225P1-53, Date: 26-Feb-2020, Time: 03:04:57, ID: ST200225P1-12 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

	\# Name	Trace	Area	IS Area	wituol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
73	83 13C2-PFDoA-EIS	$614.7>569.7$	19140.156		1.00	5.63	19140.156	12.500	11.4	90.8	NO		
74	87 d3-N-MeFOSA-EIS	$515.2>168.9$	21849.549		1.00	5.76	21849.549	149.200	154	103.5	NO		
75	83 13C2-PFDOA-EIS	$614.7>569.7$	19140.156		1.00	5.63	19140.156	12.500	11.4	90.8	NO		
76	89 13C2-PFTeDA-EIS	$715.1>669.7$	20588.139		1.00	6.07	20588.139	12.500	10.9	86.9	NO		
77	89 13C2-PFTeDA-EIS	$715.1>669.7$	20588.139		1.00	6.07	20588.139	12.500	10.9	86.9	NO		
78	-1												
79	$42 \mathrm{~N}-\mathrm{EtFOSA}$	$526.1>168.9$	9626.319	27826.098	1.00	6.14	51.615	50.000	49.9	99.8	NO	1.651	NO
80	43 PFHxDA	$813.1>768.6$	18972.604	28575.182	1.00	6.40	8.299	10.000	11.1	110.6	NO	194.487	NO
81	44 PFODA	$913.1>868.8$	25324.531	28575.182	1.00	6.63	11.078	10.000	12.5	125.3	NO		
82.	45 N-MeFOSE	$616.1>58.9$	7010.353	19512.000	1.00	6.29	53.605	50.000	49.9	99.9	NO		
83	46 N -EtFOSE	$630.1>58.9$	8291.110	23608.133	1.00	6.44	52.399	50.000	53.0	106.1	NO		
84	91 d5-N-ETFOSA-EIS	$531.1>168.9$	27826.098		1.00	6.15	27826.098	149.200	154	103.2	NO		
85	93 13C2-PFHxDA-EIS	$815>769.7$	28575.182		1.00	6.40	28575.182	12.500	11.0	88.2	NO		
86	93 13C2-PFHxDA-EIS	$815>769.7$	28575.182		1.00	6.40	28575.182	12.500	11.0	88.2	NO		
87	$95 \mathrm{d7}-\mathrm{N}-\mathrm{MeFOSE}$-EIS	$623.1>58.9$	19512.000		1.00	6.28	19512.000	149.200	162	108.3	NO		
88	97 d9-N-EtFOSE-EIS	$639.2>58.8$	23608.133		1.00	6.43	23608.133	149.200	158	106.0	NO		
89	71 13C8-PFOS-EIS	$507.0>79.7$	3684.929		1.00	4.75	3684.929	12.500	12.6	101.0	NO		
90	-1												
91	48 13C3-PFBA-RSD	$216.1>171.8$	11104.702	13524.131	1.00	1.42	10.264	12.500	12.8	102.7	NO		
92	50 13C3-PFPeA-RSD	$266.0>221.8$	14167.407	23890.418	1.00	2.34	7.413	12.500	12.6	100.6	NO		
93	52 13C3-PFBS-RSD	$302.0>98.8$	1538.521	1469.114	1.00	2.62	13.091	12.500	11.6	92.9	NO		
94	54 13C3-HFPO-DA-RSD	$287.0>168.9$	4034.481	23890.418	1.00	3.34	2.111	12.500	12.1	96.8	NO		
95	56 13C2-4:2 FTS-RSD	$329.0>79.7$	1718.875	1469.114	1.00	3.04	14.625	12.500	11.1	89.1	NO		
96	58 13C2-PFHxA-RSD	$315.0>270.0$	23428.365	23890.418	1.00	3.13	12.258	12.500	12.6	100.7	NO		
97	60 13C4-PFHpA-RSD	$367.2>321.8$	15984.586	23890.418	1.00	3.72	8.363	12.500	12.7	101.6	NO		
98	62 13C3-PFHxS-RSD	$401.8>79.7$	3211.341	1469.114	1.00	3.86	27.324	12.500	10.8	86.8	NO		
99	64 13C2-6:2 FTS-RSD	$429.0>79.7$	1442.435	4090.575	1.00	4.18	4.408	12.500	11.5	91.7	NO		
100	66 13C5-PFNA-RSD	$468.2>422.9$	20823.170	22192.109	1.00	4.67	11.729	12.500	12.5	100.0	NO		
101	68 13C8-PFOSA-RSD	$506>78$	4923.242	22470.008	1.00	4.73	2.739	12.500	13.0	104.3	NO		
102	70 13C2-PFOA-RSD	$414.9>369.7$	21224.543	23414.926	1.00	4.23	11.331	12.500	12.3	98.3	NO		
103	-1												
104	72 13C8-PFOS-PSD	$507.0>79.7$	3684.929	4090.575	1.00	4.75	11.260	12.500	11.9	94.9	NO		
105	74 13C2-PFDA-RSD	$515.1>469.9$	20819.160	21244.740	1.00	5.04	12.250	12.500	12.7	101.5	NO		
106	76 13C2-8:2 FTS-RSD	$529>79.7$	1323.310	4090.575	1.00	5.00	4.044	12.500	12.3	98.1	NO		
107	78 d3-N-MeFOSAA-RSD	$573.3>419$	4484.013	22470.008	1.00	5.18	2.494	12.500	14.3	114.6	NO		
108	80 13C2-PFUdA-RSD	$565>519.8$	21343.498	22470.008	1.00	5.35	11.873	12.500	11.8	94.2	NO		

Dataset:	P:IPFAS5.PROIRESULTSL200225P11200225P1-53.qId
Last Altered:	Wednesday, February 26, 2020 13:43:08 Pacific Standard Time
Printed:	Wednesday, February 26, 2020 13:46:21 Pacific Standard Time

Name: 200225P1-53, Date: 26-Feb-2020, Time: 03:04:57, ID: ST200225P1-12 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

	\# Name	Trace	Area	IS Area	wtivol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
109	$82 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$-RSD	$589.3>419$	5729.217	22470.008	1.00	5.34	3.187	12.500	13.8	110.1	NO		
110	84 13C2-PFDOA-RSD	$614.7>569.7$	19140.156	21244.740	1.00	5.63	11.262	12.500	11.6	93.0	NO		
111	86 13C2-10:2 FTS-RSD	$632.9>80.0$	936.011	4090.575	1.00	5.61	2.860	12.500	12.0	96.0	NO		
112	88 d3-N-MeFOSA-RSD	$515.2>168.9$	21849.549	22470.008	1.00	5.76	12.155	149.200	151	101.5	NO		
113	90 13C2-PFTeDA-RSD	$715.1>669.7$	20588.139	22470.008	1.00	6.07	11.453	12.500	10.9	87.5	NO		
114	$92 \mathrm{~d} 5-\mathrm{N}-E T F O S A-R S D$	$531.1>168.9$	27826.098	22470.008	1.00	6.15	15.480	149.200	156	104.6	NO		
115	94 13C2-PFHxDA-RSD	$815>769.7$	28575.182	22470.008	1.00	6.40	15.896	12.500	10.6	85.1	NO		
116	-1												
117	$96 \mathrm{~d} 7-\mathrm{N}-\mathrm{MeFOSE-RSD}$	$623.1>58.9$	19512.000	22470.008	1.00	6.28	10.854	149.200	149	99.8	NO		
118	98 d9-N-EtFOSE-RSD	$639.2>58.8$	23608.133	22470.008	1.00	6.43	13.133	149.200	153	102.6	NO		
119	99 13C4-PFBA	$217.0>172.0$	13524.131	13524.131	1.00	1.42	12.500	12.500	12.5	100.0	NO		
120	1... 13C5-PFHxA	$318.0>272.9$	23890.418	23890.418	1.00	3.13	12.500	12.500	12.5	100.0	NO		
121	1... 13C8-PFOA	$420.9>376.0$	23414.926	23414.926	1.00	4.23	12.500	12.500	12.5	100.0	NO		
122	1... 18O2-PFHxS	$403.0>102.6$	1469.114	1469.114	1.00	3.86	12.500	12.500	12.5	100.0	NO		
123	1... 13C9-PFNA	$472.2>426.9$	22192.109	22192.109	1.00	4.67	12.500	12.500	12.5	100.0	NO		
124	1... 13C4-PFOS	$503>79.7$	4090.575	4090.575	1.00	4.75	12.500	12.500	12.5	100.0	NO		
125	1... 13C6-PFDA	$519.1>473.7$	21244.740	21244.740	1.00	5.04	12.500	12.500	12.5	100.0	NO		
126	1... 13C7-PFUdA	$570.1>524.8$	22470.008	22470.008	1.00	5.35	12.500	12.500	12.5	100.0	NO		

Dataset:	Untitled
Last Altered:	Wednesday, February 26, 2020 14:31:44 Pacific Standard Time
Printed:	Wednesday, February 26, 2020 14:31:55 Pacific Standard Time

Method: P:IPFAS5.proMMethDBINEW_PFAS_80C_022520.mdb 26 Feb 2020 11:36:08 Calibration: P:|PFAS5.prolCurveDBIC̄18_VAL-PFAS_Q5_02-25-20.cdb 26 Feb 2020 11:25:03

Compound name: PFBA

	\# Name	ID	Acq. Date	Acg. Time
1	1 200225P1-1	IPA	25-Feb-20	17:58:29
2	2 200225P1-2	IPA	25-Feb-20	18:09:11
3	3 200225P1-3	ST200225P1-1 PFC CS-2 20B1102	25-Feb-20	18:19:42
4	4 200225P1-4	ST200225P1-2 PFC CS-1 $20 \mathrm{B1103}$	25-Feb-20	18:30:13
5	5 200225P1-5	ST200225P1-3 PFC CSO 20B1104	25-Feb-20	18:40:42
6	6 200225P1-6	ST200225P1-4 PFC CS1 20B1105	25-Feb-20	18:51:13
7	7 200225P1-7	ST200225P1-5 PFC CS2 20B1 106	25-Feb-20	19:01:42
8	8 200225P1-8	ST200225P1-6 PFC CS3 20B1 107	25-Feb-20	19:12:14
9	9 200225P1-9	ST200225P1-7 PFC CS4 20B1 108	25-Feb-20	19:22:44
10	10 200225P1-10	ST200225P1-8 PFC CS5 20B1 109	25-Feb-20	19:33:15
11	11 200225P1-11	ST200225P1-9 PFC CS6 20B1110	25-Feb-20	19:43:44
12	12 200225P1-12	ST200225P1-10 PFC CS7 20B1111	25-Feb-20	19:54:16
13	13 200225P1-13	IB	25-Feb-20	20:04:45
14	14 200225P1-14	ICV200225P1-1 PFC ICV 20B1112	25-Feb-20	20:15:16
15	15 200225P1-15	IB	25-Feb-20	20:25:46
16	16 200225P1-16	2000305-01 8 Chestnut Dr 0.11658	25-Feb-20	20:36:14
17	17 200225P1-17	2000305-02 10 Chestrut Dr 0.11788	25-Feb-20	20:46:46
18	18 200225P1-18	B0B0146-BLK1 Method Blank 0.25	25-Feb-20	20:57:15
19	19 200225P1-19	B0B0146-BS 1 OPR 0.25	25-Feb-20	21:07:48
20	20 200225P1-20	B0B0146-BSD1 LCSD 0.25	25-Feb-20	21:18:16
21	21 200225P1-21	2000322-10 3EFF 0.25804	25-Feb-20	21:28:47
22	22 200225P1-22	2000322-11 3INF FRB 0.24918	25-Feb-20	21:39:19
23	23 200225P1-23	2000322-12 3INF 0.24453	25-Feb-20	21:49:47
24	24 200225P1-24	2000322-13 2EFF 0.25549	25-Feb-20	22:00:18
25	25 200225P1-25	2000322-14 2INF FRB 0.24928	25-Feb-20	22:10:49
26	26 200225P1-26	2000322-15 2INF 0.24263	25-Feb-20	22:21:18
27	27 200225P1-27	2000322-16 Post CCB 1BEFF 0.25545	25-Feb-20	22:31:50
28	28 200225P1-28	2000322-17 1INF FRB 0.18612	25-Feb-20	22:42:20
29	29 200225P1-29	2000322-18 1INF 0.25095	25-Feb-20	22:52:49
30	30 200225P1-30	2000322-19 1EFF 0.24912	25-Feb-20	23:03:20
31	31 200225P1-31	B0B0123-BLK1 Method Blank 0.25	25-Feb-20	23:13:50
32	32 200225P1-32	B0B0123-BS1 OPR 0.25	25-Feb-20	23:24:19

Dataset:	Untitled
Last Altered:	Wednesday, February 26, 2020 14:31:44 Pacific Standard Time
Printed:	Wednesday, February 26, 2020 14:31:55 Pacific Standard Time

Compound name: PFBA

	\# Name	ID	Aca.Date	Acc. Time
33	33 200225P1-33	B0B0123-BSD1 LCSD 0.25	25-Feb-20	23:34:51
34	34 200225P1-34	2000318-01 RW-9 0.2508	25-Feb-20	23:45:22
35	35 200225P1-35	ST200225P1-11 PFC CS3 20B1107	25-Feb-20	23:55:50
36	36 200225P1-36	IB	26-Feb-20	00:06:22
37	37 200225P1-37	2000318-02 RW-10 0.25656	26-Feb-20	00:16:53
38	$38200225 \mathrm{P} 1-38$	2000318-03 RW-11 0.25855	26-Feb-20	00:27:22
39	39 200225P1-39	2000318-04 FRB-5 0.2568	26-Feb-20	00:37:53
40	40 200225P1-40	B0B0127-BLK1 Method Blank 0.25	26-Feb-20	00:48:24
41	41 200225P1-41	B0B0127-BS1 OPR 0.25	26-Feb-20	00:58:53
42	42 200225P1-42	B0B0127-MS1@5X Matrix Spike 0.25239	26-Feb-20	01:09:24
43	43 200225P1-43	B0B0127-MSD1@5X Matrix Spike Dup 0.24499	26-Feb-20	01:19:53
44	44 200225P1-44	2000321-01 EB02-20200213 0.25641	26-Feb-20	01:30:25
45	45 200225P1-45	2000321-02@5X 1013WMW02SR-202002130.24488	26-Feb-20	01:40:55
46	46 200225P1-46	2000321-03@5X IS72MW17S-20200213 0.24942	26-Feb-20	01:51:24
47	47 200225P1-47	2000321-04@5X 1012MW01SR-202002130.24804	26-Feb-20	02:01:56
48	48 200225P1-48	2000321-05@5X 1012MW 10S-20200213 0.24821	26-Feb-20	02:12:26
49	49 200225P1-49	2000321-06@5X 1012MW11S-20200213 0.25358	26-Feb-20	02:22:55
50	50 200225P1-50	2000321-07@5X 1012MW15S-202002130.25036	26-Feb-20	02:33:27
51	51 200225P1-51	2000321-08@5X DUP02-20200213 0.2466	26-Feb-20	02:43:55
52	52 200225P1-52	2000321-09@5X 1003MW01S-20200213 0.25107	26-Feb-20	02:54:28
53	53 200225P1-53	ST200225P1-12 PFC CS3 20B1107	26-Feb-20	03:04:57
54	54 200225P1-54	IB	26-Feb-20	03:15:28
55	55 200225P1-55	2000321-10@5X 1003MW 15S-202002130.24522	26-Feb-20	03:25:58
56	56 200225P1-56	2000321-11@5X 1003MW02S-202002130.24704	26-Feb-20	03:36:27
57	57 200225P1-57	2000314-06@5X 1006MW01S-202002120.2551	26-Feb-20	03:46:59
58	58 200225P1-58	2000314-07@5X 1006MW08S-202002120.25052	26-Feb-20	03:57:28
59	59 200225P1-59	2000314-07 l006MW08S-202002120.25052	26-Feb-20	04:07:59
60	60 200225P1-60	IB	26-Feb-20	04:18:30
61	61 200225P1-61	2000314-08@5X BMW07S-202002120.2539	26-Feb-20	04:28:59
62	62 200225P1-62	2000314-09@5X 1005MW01SR-202002120.25498	26-Feb-20	04:39:30
63	63 200225P1-63	2000314-09 l005MW01SR-20200212 0.25498	26-Feb-20	04:50:01
64	64 200225P1-64	IB	26-Feb-20	05:00:30
65	65 200225P1-65	2000314-10@5X DUP05-202002120.25284	26-Feb-20	05:11:00
66	66 200225P1-66	2000314-11 IS72MW15S-202002120.25446	26-Feb-20	05:21:31
67	67 200225P1-67	ST200225P1-13 PFC CS3 20B1107	26-Feb-20	05:32:00
68	68 200225P1-68	IB	26-Feb-20	05:42:31

Last Altered: Wednesday, February 26, 2020 14:31:44 Pacific Standard Time
Printed: Wednesday, February 26, 2020 14:31:55 Pacific Standard Time

Compound name: PFBA

	\# Name	ID	Acq. Date	Acq. Time
69	69 200225P1-69	2000292-02 11535BFR POE Midpoint-1 0.25829	26-Feb-20	05:53:02
70	70 200225P1-70	2000292-03 11535BFR POE Effluent-1 0.25426	26-Feb-20	06:03:31
71	71 200225P1-71	B0B0102-BS2 OPR 0.125	26-Feb-20	06:14:03
72	72 200225P1-72	ST200225P1-14 PFC CS3 20B1107	26-Feb-20	06:24:33
73	73 200225P1-73	IB	26-Feb-20	06:35:02

Dataset: P:IPFAS5.PROIRESULTSL200225P11200225P1-53.qld

Last Altered: Wednesday, February 26, 2020 13:43:08 Pacific Standard Time
Printed: Wednesday, February 26, 2020 13:46:21 Pacific Standard Time

Method: P:\PFAS5.PRO\MethDB\NEW_PFAS_80C_022520.mdb 26 Feb 2020 11:36:08
Calibration: P:IPFAS5.PRO\CurveDBIC18_VAL-PFAS_Q5_02-25-20.cdb 26 Feb 2020 11:25:03
Name: 200225P1-53, Date: 26-Feb-2020, Time: 03:04:57, ID: ST200225P1-12 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

F5:MRM of 2 channels,ES-

13C3-PFPeA-EIS

F11:MRM of 2 channels,ES-
$299.0>98.7$

13C3-PFBS-EIS

Dataset:	P:IPFAS5.PROIRESULTSL200225P11200225P1-53.qld
Last Altered:	Wednesday, February 26, 2020 13:43:08 Pacific Standard Time
Printed:	Wednesday, February 26, 2020 13:46:21 Pacific Standard Time

Name: 200225P1-53, Date: 26-Feb-2020, Time: 03:04:57, ID: ST200225P1-12 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

13C2-PFHxA-EIS

F14:MRM of 1 channel,ES$315.0>270.0$ $5.982 \mathrm{e}+005$

PFPeS

F19:MRM of 2 channels,ES349. > 98.

F9:MRM of 3 channels, ES-
$285.1>184.9$

13C4-PFHpA-EIS

F22:MRM of 2 channels,ES$376.8>85.0$

13C4-PFHpA-EIS

Dataset:	P:IPFAS5.PROIRESULTSL200225P11200225P1-53.qld
Last Altered:	Wednesday, February 26, 2020 13:43:08 Pacific Standard Time
Printed:	Wednesday, February 26, 2020 13:46:21 Pacific Standard Time

Name: 200225P1-53, Date: 26-Feb-2020, Time: 03:04:57, ID: ST200225P1-12 PFC CS3 20B1107, Description: PFC CS3 20 B1107

Dataset:	P:IPFAS5.PROIRESULTSL200225P1L200225P1-53.qld
Last Altered:	Wednesday, February 26, 2020 13:43:08 Pacific Standard Time
Printed:	Wednesday, February 26, 2020 13:46:21 Pacific Standard Time

Name: 200225P1-53, Date: 26-Feb-2020, Time: 03:04:57, ID: ST200225P1-12 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

F51:MRM of 2 channels, ES-

F44:MRM of 2 channels, ES-

13C2-PFDA-EIS

F45:MRM of 1 channel,ES.
F45:MRM of 1 channel,ES-
$515.1>469.9$

Last Altered:	Wednesday, February 26, 2020 13:43:08 Pacific Standard Time Printed:

Name: 200225P1-53, Date: 26-Feb-2020, Time: 03:04:57, ID: ST200225P1-12 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

d5-N-EtFOSAA-EIS

F54:MRM of 2 channels, ES-
$563.0>269$ $1.639 \mathrm{e}+004$

13C2-PFUdA-EIS

PFDS

F61:MRM of 2 channels,ES $598.8>98.7$

11CI-PF30UdS
F68:MRM of 2 channels,ES$630.9>450.9$ $1.755 \mathrm{e}+005$

F68:MRM of 2 channels,ES-
$630.9>83$
$9.697 e+003$

13C2-PFDoA-EIS

F63:MRM of 1 channel,ES$614.7>569.7$ $4.611 \mathrm{e}+005$

Dataset:	P:IPFAS5.PROIRESULTSL200225P11200225P1-53.qld
Last Altered:	Wednesday, February 26, 2020 13:43:08 Pacific Standard Time
Printed:	Wednesday, February 26, 2020 13:46:21 Pacific Standard Time

Name: 200225P1-53, Date: 26-Feb-2020, Time: 03:04:57, ID: ST200225P1-12 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

F71:MRM of 2 channels,ES-

13C2-PFDOA-EIS

Dataset:	P:IPFAS5.PRO\RESULTSL200225P11200225P1-53.qld
Last Altered:	Wednesday, February 26, 2020 13:43:08 Pacific Standard Time
Printed:	Wednesday, February 26, 2020 13:46:21 Pacific Standard Time

Name: 200225P1-53, Date: 26-Feb-2020, Time: 03:04:57, ID: ST200225P1-12 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

Last Altered: Wednesday, February 26, 2020 13:43:08 Pacific Standard Time

Name: 200225P1-53, Date: 26-Feb-2020, Time: 03:04:57, ID: ST200225P1-12 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

Dataset:	P:IPFAS5.PROIRESULTSL200225P11200225P1-53.qld
Last Altered:	Wednesday, February 26, 2020 13:43:08 Pacific Standard Time
Printed:	Wednesday, February 26, 2020 13:46:21 Pacific Standard Time

Name: 200225P1-53, Date: 26-Feb-2020, Time: 03:04:57, ID: ST200225P1-12 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

Dataset: P:IPFAS5.PROTRESULTSL200225P11200225P1-53.qld
Last Altered: Wednesday, February 26, 2020 13:43:08 Pacific Standard Time
Printed: Wednesday, February 26, 2020 13:46:21 Pacific Standard Time

Name: 200225P1-53, Date: 26-Feb-2020, Time: 03:04:57, ID: ST200225P1-12 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

d9-N-EtFOSE-RSD
F70:MRM of 1 channel,ES 639.2 > 58.8 $6.843 e+005$

13C4-PFOS
F40:MRM of 1 channel,ES-

13C6-PFDA
F47:MRM of 1 channel,ES-
$519.1>473.7$

13C7-PFUdA

$$
\begin{array}{r}
\text { F57:MRM of } 1 \text { channel,ES- } \\
570.1>524.8
\end{array}
$$

1802-PFHxS
F25:MRM of 1 channel,ES$403.0>102.6$ $3.891 \mathrm{e}+004$

Wednesday, February 26, 2020 13:54:11 Pacific Standard Time
Printed:
Wednesday, February 26, 2020 13:59:06 Pacific Standard Time

Name: 200225P1-67, Date: 26-Feb-2020, Time: 05:32:00, ID: ST200225P1-13 PFC CS3 20B1107, Description: PFC CS3 20B1107

Dataset:

P:IPFAS5.PRO\RESULTSL200225P11200225P1-67.qld
Last Altered:
Wednesday, February 26, 2020 13:54:11 Pacific Standard Time
Printed:
Wednesday, February 26, 2020 13:59:06 Pacific Standard Time

Name: 200225P1-67, Date: 26-Feb-2020, Time: 05:32:00, ID: ST200225P1-13 PFC CS3 20B1107, Description: PFC CS3 20B1107

	\# Name	Trace	Area	15 Area	wi/vor	RT	Response	Std. Conc	Conc.	\%Pec	Recovery ...	Ion Ratio	Ratio Out?
37	71 13C8-PFOS-EIS	$507.0>79.7$	3870.242		1.00	4.75	3870.242	12.500	13.3	106.1	NO		
38	65 13C5-PFNA-EIS	$468.2>422.9$	20112.873		1.00	4.67	20112.873	12.500	13.5	107.8	NO		
39	-1												
40	21 PFNA	$463.0>418.8$	18801.826	20112.873	1.00	4.67	11.685	10.000	9.77	97.7	NO	7.962	NO
41	22 PFOSA	$497.9>77.9$	3141.098	4119.056	1.00	4.73	9.532	10.000	11.6	116.4	No	27.223	NO
42	23 L-PFOS	$498.9>79.7$	3415.367	3870.242	1.00	4.75	11.031	10.000	11.8	117.9	NO	2.531	NO
43	25 9CI-PF3ONS	$530.7>350.8$	3441.140	3870.242	1.00	4.96	11.114	10.000	11.1	110.5	No	13.479	NO
44	26 PFDA	$513>468.8$	19625.305	21405.105	1.00	5.04	11.461	10.000	9.73	97.3	NO	9.266	NO
45	27 8:2 FTS	$526.9>507$	1332.760	1162.328	1.00	5.01	14.333	10.000	11.4	113.9	NO	2.207	NO
46	65 13C5-PFNA-EIS	$468.2>422.9$	20112.873		1.00	4.67	20112.873	12.500	13.5	107.8	NO		
47	67 13C8-PFOSA-EIS	$506>78$	4119.056		1.00	4.73	4119.056	12.500	11.0	87.7	NO		
48	71 13C8-PFOS-EIS	$507.0>79.7$	3870.242		1.00	4.75	3870.242	12.500	13.3	106.1	NO		
49	71 13C8-PFOS-EIS	$507.0>79.7$	3870.242		1.00	4.75	3870.242	12.500	13.3	106.1	NO		
50	73 13C2-PFDA-EIS	$515.1>469.9$	21405.105		1.00	5.04	21405.105	12.500	13.1	104.7	NO		
51	75 13C2-8:2 FTS-EIS	$529>79.7$	1162.328		1.00	5.01	1162.328	12.500	11.4	91.0	NO		
52	-1												
53	28 PFNS	$549.1>79.7$	3098.123	3870.242	1.00	5.10	10.006	10.000	11.2	112.0	NO	2.253	NO
54	29 L-MeFOSAA	$570>419$	5565.233	4855.387	1.00	5.19	14.327	10.000	7.41	74.1	NO	2.000	NO
55	31 L-EtFOSAA	$584.1>419$	5491.423	6071.760	1.00	5.34	11.305	10.000	9.45	94.5	NO	1.259	NO
56	33 PFUdA	$563.0>518.9$	17000.434	20265.061	1.00	5.35	10.486	10.000	11.2	112.2	NO	24.407	NO
57	34 PFDS	$598.8>79.7$	2704.333	3870.242	1.00	5.40	8.734	10.000	11.4	113.7	No	1.860	NO
58	3511 Cl PF30UdS	$630.9>450.9$	8104.744	19837.098	1.00	5.56	5.107	10.000	11.2	111.7	NO	18.377	NO
59	71 13C8-PFOS-EIS	$507.0>79.7$	3870.242		1.00	4.75	3870.242	12.500	13.3	106.1	NO		
60	77 d3-N-MeFOSAA-EIS	$573.3>419$	4855.387		1.00	5.18	4855.387	12.500	14.7	117.6	NO		
61	81 d5-N-EtFOSAA-EIS	$589.3>419$	6071.760		1.00	5.33	6071.760	12.500	15.4	122.9	NO		
62	79 13C2-PFUdA-EIS	$565>519.8$	20265.061		1.00	5.35	20265.061	12.500	12.5	100.3	NO		
63	71 13C8-PFOS-EIS	$507.0>79.7$	3870.242		1.00	4.75	3870.242	12.500	13.3	106.1	NO		
64	83 13C2-PFDOA-EIS	$614.7>569.7$	19837.098		1.00	5.63	19837.098	12.500	11.8	94.1	NO		
65	-1												
66	36 10:2 FTS	$626.9>607$	1577.949	947.298	1.00	5.61	20.822	10.000	9.28	92.8	NO	1.059	NO
67	37 PFDoA	$612.9>569.0$	17861.154	19837.098	1.00	5.63	11.255	10.000	10.4	103.9	NO	10.626	NO
68	38 N -MeFOSA	$512.1>168.9$	7666.929	22071.490	1.00	5.74	51.827	50.000	49.3	98.5	NO	1.657	NO
69	39 PFTrDA	$662.9>618.9$	18722.510	19837.098	1.00	5.87	11.798	10.000	10.5	105.2	No	60.432	NO
70	40 PFDoS	$698.8>79.7$	3181.187	22948,188	1.00	5.89	1.733	10.000	10.7	106.9	NO	2.881	NO
71	41 PFTeDA	$713.0>669.0$	18749.666	22948.188	1.00	6.08	10.213	10.000	10.7	107.3	No	15.706	NO
72	85-13C2-10:2 FTS-EIS	$632.9>80.0$	947.298		1.00	5.61	947.298	12.500	13.2	105.3	No.		

Name: 200225P1-67, Date: 26-Feb-2020, Time: 05:32:00, ID: ST200225P1-13 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
73	83 13C2-PFDoA-EIS	$614.7>569.7$	19837.098		1.00	5.63	19837.098	12.500	11.8	94.1	NO		
74	87 d3-N-MeFOSA-EIS	$515.2>168.9$	22071.490		1.00	5.76	22071.490	149.200	156	104.5	NO		
75	83 13C2-PFDDA-EIS	$614.7>569.7$	19837.098		1.00	5.63	19837.098	12.500	11.8	94.1	NO		
76	89 13C2-PFTeDA-EIS	$715.1>669.7$	22948.188		1.00	6.08	22948.188	12.500	12.1	96.8	NO		
77	89 13C2-PFTeDA-EIS	$715.1>669.7$	22948.188		1.00	6.08	22948.188	12.500	12.1	96.8	NO		
78	-1												
79	42 N -EtFOSA	$526.1>168.9$	9791.660	27339.668	1.00	6.14	53.436	50.000	51.7	103.3	NO	1.725	NO
80	43 PFHxDA	$813.1>768.6$	18242.189	30138.533	1.00	6.40	7.566	10.000	10.1	100.6	NO	139.737	NO
81	44 PFODA	$913.1>868.8$	24749.172	30138.533	1.00	6.63	10.265	10.000	11.6	116.1	NO		
82	$45 \mathrm{~N}-\mathrm{MeFOSE}$	$616.1>58.9$	7186.412	19243.689	1.00	6.29	55.718	50.000	51.9	103.8	NO		
83	46 N -EtFOSE	$630.1>58.9$	7910.896	23162.246	1.00	6.44	50.958	50.000	51.6	103.2	NO		
84	91 d5-N-ETFOSA-EIS	$531.1>168.9$	27339.668		1.00	6.15	27339.668	149.200	151	101.4	NO		
85	93 13C2-PFHxDA-EIS	$815>769.7$	30138.533		1.00	6.40	30138.533	12.500	11.6	93.0	NO		
86	93 13C2-PFHxDA-EIS	$815>769.7$	30138.533		1.00	6.40	30138.533	12.500	11.6	93.0	NO		
87	$95 \mathrm{d7}$-N-MeFOSE-EIS	$623.1>58.9$	19243.689		1.00	6.28	19243.689	149.200	159	106.8	NO		
88	97 d9-N-EtFOSE-EIS	$639.2>58.8$	23162.246		1.00	6.43	23162.246	149.200	155	104.0	NO		
89	71 13C8-PFOS-EIS	$507.0>79.7$	3870.242		1.00	4.75	3870.242	12.500	13.3	106.1	NO		
90	-1												
91	48 13C3-PFBA-RSD	$216.1>171.8$	11192.481	13845.522	1.00	1.42	10.105	12.500	12.6	101.1	NO		
92	50 13C3-PFPeA-RSD	$266.0>221.8$	14650.454	25495.596	1.00	2.34	7.183	12.500	12.2	97.5	NO		
93	52 13C3-PFBS-RSD	$302.0>98.8$	1631.545	1561.886	1.00	2.62	13.057	12.500	11.6	92.7	NO		
94	54 13C3-HFPO-DA-RSD	$287.0>168.9$	4032.421	25495.596	1.00	3.34	1.977	12.500	11.3	90.7	NO		
95	56 13C2-4:2 FTS-RSD	$329.0>79.7$	1783.152	1561.886	1.00	3.04	14.271	12.500	10.9	86.9	NO		
96	58 13C2-PFHxA-RSD	$315.0>270.0$	23603.199	25495.596	1.00	3.13	11.572	12.500	11.9	95.1	NO		
97	60 13C4-PFHpA-RSD	$367.2>321.8$	15621.605	25495.596	1.00	3.72	7.659	12.500	11.6	93.0	NO		
98	62 13C3-PFHxS-RSD	$401.8>79.7$	3463.990	1561.886	1.00	3.86	27.723	12.500	11.0	88.1	NO		
99	64 13C2-6:2 FTS-RSD	$429.0>79.7$	1347.166	4128.350	1.00	4.18	4.079	12.500	10.6	84.9	NO		
100	66 13C5-PFNA-RSD	$468.2>422.9$	20112.873	21707.621	1.00	4.67	11.582	12.500	12.3	98.8	NO		
101	68 13C8-PFOSA-RSD	$506>78$	4157.723	20498.439	1.00	4.73	2.535	12.500	12.1	96.6	NO		
102	70 13C2-PFOA-RSD	$414.9>369.7$	20881.248	23645.109	1.00	4.23	11.039	12.500	12.0	95.8	NO		
103	-1												
104	72 13C8-PFOS-RSD	$507.0>79.7$	3870.242	4128.350	1.00	4.75	11.718	12.500	12.3	98.7	NO		
105	74 13C2-PFDA-RSD	$515.1>469.9$	21405.105	22146.008	1.00	5.04	12.082	12.500	12.5	100.1	NO		
106	76 13C2-8:2 FTS-RSD	$529>79.7$	1162.328	4128.350	1.00	5.01	3.519	12.500	10.7	85.4	NO		
107	78 d3-N-MeFOSAA-RSD	$573.3>419$	4855.387	20498.439	1.00	5.18	2.961	12.500	17.0	136.1	NO		
108	80_13C2-PFUdA-RSD	565>519.8	20265.061	20498.439 $=$	1.00	5.35	12.358	12.500	12.3	98.0	NO.		

Dataset:	P:IPFAS5.PROIRESULTSL200225P11200225P1-67.qld
Last Altered:	Wednesday, February 26, 2020 13:54:11 Pacific Standard Time
Printed:	Wednesday, February 26, 2020 13:59:06 Pacific Standard Time

Name: 200225P1-67, Date: 26-Feb-2020, Time: 05:32:00, ID: ST200225P1-13 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

	\# Name	Trace	Area	IS Area	witvol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
109	$82 \mathrm{d5}-\mathrm{N}-E t F O S A A-R S D$	$589.3>419$	6071.760	20498.439	1.00	5.33	3.703	12.500	16.0	127.9	NO		
110	84 13C2-PFDoA-RSD	$614.7>569.7$	19837.098	22146.008	1.00	5.63	11.197	12.500	11.6	92.5	NO		
111	86 13C2-10:2 FTS-RSD	$632.9>80.0$	947.298	4128.350	1.00	5.61	2.868	12.500	12.0	96.3	NO		
112	$88 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSA}$-RSD	$515.2>168.9$	22071.490	20498.439	1.00	5.76	13.459	149.200	168	112.3	NO		
113	90 13C2-PFTeDA-RSD	$715.1>669.7$	22948.188	20498.439	1.00	6.08	13.994	12.500	13.4	106.9:	NO		
114	$92 \mathrm{~d} 5-\mathrm{N}$-ETFOSA-RSD	$531.1>168.9$	27339.668	20498.439	1.00	6.15	16.672	149.200	168	112.7	NO		
115	94 13C2-PFHxDA-RSD	$815>769.7$	30138.533	20498.439	1.00	6.40	18.379	12.500	12.3	98.4	NO		
116	-1												
117	$96 \mathrm{d7}-\mathrm{N}-\mathrm{MeFOSE-RSD}$	$623.1>58.9$	19243.689	20498.439	1.00	6.28	11.735	149.200	161	107.9	NO		
118	$98 \mathrm{d9}-\mathrm{N}-\mathrm{EtFOSE}-\mathrm{RSD}$	$639.2>58.8$	23162.246	20498.439	1.00	6.43	14.124	149.200	165	110.3	NO		
119	99 13C4-PFBA	$217.0>172.0$	13845.522	13845.522	1.00	1.42	12.500	12.500	12.5	100.0	NO		
120	1... 13C5-PFHxA	$318.0>272.9$	25495.596	25495.596	1.00	3.13	12.500	12.500	12.5	100.0	NO		
121	1... 13C8-PFOA	$420.9>376.0$	23645.109	23645.109	1.00	4.23	12.500	12.500	12.5	100.0	NO		
122	1... 1802-PFHxS	$403.0>102.6$	1561.886	1561.886	1.00	3.86	12.500	12.500	12.5	100.0	NO		
123	1... 13C9-PFNA	$472.2>426.9$	21707.621	21707.621	1.00	4.67	12.500	12.500	12.5	100.0	NO		
124	1... 13C4-PFOS	$503>79.7$	4128.350	4128.350	1.00	4.75	12.500	12.500	12.5	$100.0{ }^{\text {b }}$	NO		
125	1... 13C6-PFDA	$519.1>473.7$	22146.008	22146.008	1.00	5.04	12.500	12.500	12.5	100.0	NO		
126	1... 13C7-PFUdA	$570.1>524.8$	20498.439	20498.439	1.00	5.35	12.500	12.500	12.5	100.0	NO		

Dataset:	Untitled
Last Altered:	Wednesday, February 26, 2020 14:31:44 Pacific Standard Time
Printed:	Wednesday, February 26, 2020 14:31:55 Pacific Standard Time

Method: P:IPFAS5.pro\MethDBINEW_PFAS_80C_022520.mdb 26 Feb 2020 11:36:08 Calibration: P:IPFAS5.prolCurveDBIC̄18_VAL-PFAS_Q5_02-25-20.cdb 26 Feb 2020 11:25:03

Compound name: PFBA

	\# Name	ID	Acq.Date	Acq.Time
1	1 200225P1-1	IPA	25-Feb-20	17:58:29
2	2 200225P1-2	IPA	25-Feb-20	18:09:11
3	3 200225P1-3	ST200225P1-1 PFC CS-2 20B1102	25-Feb-20	18:19:42
4	4 200225P1-4	ST200225P1-2 PFC CS-1 20B1103	25-Feb-20	18:30:13
5	5 200225P1-5	ST200225P1-3 PFC CSO 20B1104	25-Feb-20	18:40:42
6	6 200225P1-6	ST200225P1-4 PFC CS1 20B1105	25-Feb-20	18:51:13
7	7 200225P1-7	ST200225P1-5 PFC CS2 20B1106	25-Feb-20	19:01:42
8	8 200225P1-8	ST200225P1-6 PFC CS3 20B1107	25-Feb-20	19:12:14
9	9 200225P1-9	ST200225P1-7 PFC CS4 20B1 108	25-Feb-20	19:22:44
10	10 200225P1-10	ST200225P1-8 PFC CS5 20B1 109	25-Feb-20	19:33:15
11	11 200225P1-11	ST200225P1-9 PFC CS6 20B1110	25-Feb-20	19:43:44
12	12 200225P1-12	ST200225P1-10 PFC CS7 $20 \mathrm{B1111}$	25-Feb-20	19:54:16
13	13 200225P1-13	IB	25-Feb-20	20:04:45
14	14 200225P1-14	ICV200225P1-1 PFC ICV 2081112	25-Feb-20	20:15:16
15	15 200225P1-15	IB	25-Feb-20	20:25:46
16	16 200225P1-16	2000305-018 Chestnut Dr 0.11658	25-Feb-20	20:36:14
17	17 200225P1-17	2000305-02 10 Chestnut Dr 0.11788	25-Feb-20	20:46:46
18	18 200225P1-18	B0B0146-BLK1 Method Blank 0.25	25-Feb-20	20:57:15
19	19 200225P1-19	B0B0146-BS1 OPR 0.25	25-Feb-20	21:07:48
20	20 200225P1-20	B0B0146-BSD1 LCSD 0.25	25-Feb-20	21:18:16
21	21 200225P1-21	2000322-10 3EFF 0.25804	25-Feb-20	21:28:47
22	22 200225P1-22	2000322-11 3INF FRB 0.24918	25-Feb-20	21:39:19
23	23 200225P1-23	2000322-12 3INF 0.24453	25-Feb-20	21:49:47
24	24 200225P1-24	2000322-13 2EFF 0.25549	25-Feb-20	22:00:18
25	25 200225P1-25	2000322-14 2INF FRB 0.24928	25-Feb-20	22:10:49
26	26 200225P1-26	2000322-15 2INF 0.24263	25-Feb-20	22:21:18
27	27 200225P1-27	2000322-16 Post CCB 1BEFF 0.25545	25-Feb-20	22:31:50
28	28 200225P1-28	2000322-17 1INF FRB 0.18612	25-Feb-20	22:42:20
29	29 200225P1-29	2000322-18 1INF 0.25095	25-Feb-20	22:52:49
30	$30200225 \mathrm{P} 1-30$	2000322-19 1EFF 0.24912	25-Feb-20	23:03:20
31	31 200225P1-31	B0B0123-BLK1 Method Blank 0.25	25-Feb-20	23:13:50
32	32 200225P1-32	B0B0123-BS1 OPR 0.25	25-Feb-20	23:24:19

Quantify Compound Summary Report \quad MassLynx MassLynx V4.1 SCN 945		
Vista Analytical Laboratory		
Dataset:	Untitled	
Last Altered:	Wednesday, February 26, 2020 14:31:44 Pacific Standard Time 3	
Printed:	Wednesday, February 26, 2020 14:31:55 Pacific Standard Time	

Compound name: PFBA

	\# Name	ID	Acq.Date	Acg.Time
33	33 200225P1-33	B0B0123-BSD1 LCSD 0.25	25-Feb-20	23:34:51
34	34 200225P1-34	2000318-01 RW-9 0.2508	25-Feb-20	23:45:22
35	35 200225P1-35	ST200225P1-11 PFC CS3 2081107	25-Feb-20	23:55:50
36	36 200225P1-36	IB	26-Feb-20	00:06:22
37	37 200225P1-37	2000318-02 RW-10 0.25656	26-Feb-20	00:16:53
38	$38200225 \mathrm{P} 1-38$	2000318-03 RW-11 0.25855	26-Feb-20	00:27:22
39	39 200225P1-39	2000318-04 FRB-5 0.2568	26-Feb-20	00:37:53
40	40 200225P1-40	B0B0127-BLK1 Method Blank 0.25	26-Feb-20	00:48:24
41	41 200225P1-41	B0B0127-BS 1 OPR 0.25	26-Feb-20	00:58:53
42	42 200225P1-42	B0B0127-MS1@5X Marrix Spike 0.25239	26-Feb-20	01:09:24
43	43 200225P1-43	B0B0127-MSD1@5X Matrix Spike Dup 0.24499	26-Feb-20	01:19:53
44	44 200225P1-44	2000321-01 EB02-20200213 0.25641	26-Feb-20	01:30:25
45	45 200225P1-45	2000321-02@5X 1013WMW02SR-202002130.24488	26-Feb-20	01:40:55
46	46 200225P1-46	2000321-03@5X IS72MW17S-20200213 0.24942	26-Feb-20	01:51:24
47	47 200225P1-47	2000321-04@5X 1012MW01SR-202002130.24804	26-Feb-20	02:01:56
48	48 200225P1-48	2000321-05@5X 1012MW 10S-20200213 0.24821	26-Feb-20	02:12:26
49	49 200225P1-49	2000321-06@5X 1012MW11S-20200213 0.25358	26-Feb-20	02:22:55
50	50 200225P1-50	2000321-07@5X 1012MW 15S-202002130.25036	26-Feb-20	02:33:27
51	51 200225P1-51	2000321-08@5X DUP02-202002130.2466	26-Feb-20	02:43:55
52	52 200225P1-52	2000321-09@5X 1003MW01S-20200213 0.25107	26-Feb-20	02:54:28
53	53 200225P1-53	ST200225P1-12 PFC CS3 20B1107	26-Feb-20	03:04:57
54	54 200225P1-54	IB	26-Feb-20	03:15:28
55	55 200225P1-55	2000321-10@5X 1003MW 15S-202002130.24522	26-Feb-20	03:25:58
56	56 200225P1-56	2000321-11@5X 1003MW02S-20200213 0.24704	26-Feb-20	03:36:27
57	57 200225P1-57	2000314-06@5X 1006MW01S-202002120.2551	26-Feb-20	03:46:59
58	58 200225P1-58	2000314-07@5X 1006MW08S-202002120.25052	26-Feb-20	03:57:28
59	59 200225P1-59	2000314-07 1006MW08S-202002120.25052	26-Feb-20	04:07:59
60	60 200225P1-60	18	26-Feb-20	04:18:30
61	61 200225P1-61	2000314-08@5X BMW07S-202002120.2539	26-Feb-20	04:28:59
62	62 200225P1-62	2000314-09@5X 1005MW01SR-202002120.25498	26-Feb-20	04:39:30
63	63 200225P1-63	2000314-09 1005MW01SR-202002120.25498	26-Feb-20	04:50:01
64	64 200225P1-64	18	26-Feb-20	05:00:30
65	65 200225P1-65	2000314-10@5X DUP05-202002120.25284	26-Feb-20	05:11:00
66	66 200225P1-66	2000314-11 IS72MW15S-202002120.25446	26-Feb-20	05:21:31
67	67 200225P1-67	ST200225P1-13 PFC CS3 2081107	26-Feb-20	05:32:00
68	68 200225P1-68	18	26-Feb-20	05:42:31

Dataset: Untitled

Last Altered: Wednesday, February 26, 2020 14:31:44 Pacific Standard Time Printed: Wednesday, February 26, 2020 14:31:55 Pacific Standard Time

Compound name: PFBA

	\# Name	ID	Acq-Date	Acq-Time
69	69 200225P1-69	2000292-02 11535BFR POE Midpoint-1 0.25829	26-Feb-20	$05: 53: 02$
70	70200225 P1-70	2000292-03 11535BFR POE Effluent-1 0.25426	26-Feb-20	$06: 03: 31$
71	71200225 P1-71	B0B0102-BS2 OPR 0.125	26-Feb-20	$06: 14: 03$
72	$72200225 P 1-72$	ST200225P1-14 PFC CS3 20B1107	26-Feb-20	$06: 24: 33$
73	$73200225 P 1-73$	IB	26-Feb-20	$06: 35: 02$

Last Altered: Wednesday, February 26, 2020 13:54:11 Pacific Standard Time

Method: P:\PFAS5.PRO\MethDB\NEW_PFAS_80C_022520.mdb 26 Feb 2020 11:36:08 Calibration: P:IPFAS5.PROICurveDBIC18_VAL-PFAS_Q5_02-25-20.cdb 26 Feb 2020 11:25:03

Name: 200225P1-67, Date: 26-Feb-2020, Time: 05:32:00, ID: ST200225P1-13 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

PFPrS

F6:MRM of 2 channels,ES $248.9>98.7$ $1.503 \mathrm{e}+004$

13C3-PFBS-EIS
F12:MRM of 1 channel,ES$302.0>98.8$ $3.929 e+004$

3:3 FTCA

F5:MRM of 2 channels,ES240.9 > 176.9 $1.884 \mathrm{e}+004$

F5:MRM of 2 channels, ES-

13C3-PFPeA-EIS

PFPeA
F7:MRM of 1 channel, ES-

F8:MRM of 1 channel,ES-
$3.298 \mathrm{e}+005$

PFBS

F11:MRM of 2 channels, ES
299.0 > 98.7 $2.457 e+004$

13C3-PFBS-EIS

F12:MRM of 1 channel,ES 302.0 > 98.8 $302.0>98.8$
$3.929 \mathrm{e}+004$

Dataset:

P:IPFAS5.PRO\RESULTSL200225P1L200225P1-67.qld
Last Altered: Wednesday, February 26, 2020 13:54:11 Pacific Standard Time
Printed:
Wednesday, February 26, 2020 13:59:06 Pacific Standard Time

Name: 200225P1-67, Date: 26-Feb-2020, Time: 05:32:00, ID: ST200225P1-13 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

PFPeS

13C3-PFBS-EIS

F12:MRM of 1 channel,ES-
$302.0>98.8$

13C3-HFPO-DA-EIS

$$
\begin{gathered}
\text { F10:MRM of } 2 \text { channels, ES- } \\
2870>168,
\end{gathered}
$$

$$
\begin{array}{r}
287.0>168.9 \\
1.033 \mathrm{e}+005
\end{array}
$$

13C4-PFHpA-EIS

F20:MRM of 2 channels,ES-

13C4-PFHpA-EIS

$$
\begin{aligned}
& \text { 13C4-PFHpA-EIS } \\
& \text { F21:MRM of } 1 \text { channel,ES- } \\
& 367.2>321.8
\end{aligned}
$$

Last Altered:	Wednesday, February 26, 2020 13:54:11 Pacific Standard Time
Printed:	Wednesday, February 26, 2020 13:59:06 Pacific Standard Time

Name: 200225P1-67, Date: 26-Feb-2020, Time: 05:32:00, ID: ST200225P1-13 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

Dataset:	P:IPFAS5.PROTRESULTSL200225P1L200225P1-67.qld
Last Altered:	Wednesday, February 26, 2020 13:54:11 Pacific Standard Time
Printed:	Wednesday, February 26, 2020 13:59:06 Pacific Standard Time

Name: 200225P1-67, Date: 26-Feb-2020, Time: 05:32:00, ID: ST200225P1-13 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

Dataset:	P:IPFAS5.PROIRESULTSL200225P11200225P1-67.qld
Last Altered:	Wednesday, February 26, 2020 13:54:11 Pacific Standard Time
Printed:	Wednesday, February 26, 2020 13:59:06 Pacific Standard Time

Name: 200225P1-67, Date: 26-Feb-2020, Time: 05:32:00, ID: ST200225P1-13 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

13C8-PFOS-EIS

F56:MRM of 2 channels, ES-
570. > 512

d3-N-MeFOSAA-EIS

F59:MRM of 2 channels,ES$584.1>526$

d5-N-EtFOSAA-EIS
F60:MRM of 1 channel,ES-
$589.3>419$
$589.3>419$
$1.651 \mathrm{e}+005$

F54:MRM of 2 channels, ES-
$563.0>269$

13C2-PFUdA-EIS
F55:MRM of 1 channel,ES-
$565>519.8$
$565>519.8$

F61:MRM of 2 channels,ES. $598.8>98.7$

5.2005 .4005 .600

13C8-PFOS-EIS

F42:MRM of 1 channel,ES

11CI-PF30UdS

F68:MRM of 2 channels,ES-
$630.9>450.9$
$1.960 \mathrm{e}+005$

13C2-PFDOA-EIS
F63:MRM of 1 channel,ES-

Dataset: P:IPFAS5.PROIRESULTSL200225P11200225P1-67.qld
Last Altered: Wednesday, February 26, 2020 13:54:11 Pacific Standard Time
Printed: Wednesday, February 26, 2020 13:59:06 Pacific Standard Time

Name: 200225P1-67, Date: 26-Feb-2020, Time: 05:32:00, ID: ST200225P1-13 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

Dataset:	P:IPFAS5.PROIRESULTSL200225P1L200225P1-67.qld
Last Altered:	Wednesday, February 26, 2020 13:54:11 Pacific Standard Time
Printed:	Wednesday, February 26, 2020 13:59:06 Pacific Standard Time

Name: 200225P1-67, Date: 26-Feb-2020, Time: 05:32:00, ID: ST200225P1-13 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

Dataset: P:IPFAS5.PROIRESULTSL200225P11200225P1-67.qld

Last Altered: Wednesday, February 26, 2020 13:54:11 Pacific Standard Time
Printed: Wednesday, February 26, 2020 13:59:06 Pacific Standard Time

Name: 200225P1-67, Date: 26-Feb-2020, Time: 05:32:00, ID: ST200225P1-13 PFC CS3 20B1107, Description: PFC CS3 20B1107

13C3-PFBA-RSD
 F3:MRM of 1 channel,ES-

13C3-PFPeA-RSD
F8:MRM of 1 channel,ES-

F24:MRM of 1 channel,ES-
$401.8>79.7$

$5.409 \mathrm{e}+005$

13C8-PFOSA-RSD
F41:MRM of 1 channel,ES-
$506>78$
$9.5068+004$

13C2-PFOA-RSD
F27:MRM of 1 channel,ES$4.959 \mathrm{e}+005$

Dataset: P:IPFAS5.PROXRESULTSL200225P11200225P1-67.qld

Last Altered: Wednesday, February 26, 2020 13:54:11 Pacific Standard Time
Printed: Wednesday, February 26, 2020 13:59:06 Pacific Standard Time

Name: 200225P1-67, Date: 26-Feb-2020, Time: 05:32:00, ID: ST200225P1-13 PFC CS3 20B1107, Description: PFC CS3 20 B1107

F69:MRM of 1 channel,ES-
$632.9>80.0$

13C2-PFUdA-RSD
F55:MRM of 1 channel,ES$565>519.8$ $5.217 \mathrm{e}+005$

$$
\text { F52:MRM of } 1 \text { channel,ES- }
$$

(1007

13C2-PFHxDA-RSD
F76:MRM of 1 channel,ES$815>769.7$

Dataset:	P:IPFAS5.PROIRESULTSL200225P1L200225P1-67.qld
Last Altered:	Wednesday, February 26, 2020 13:54:11 Pacific Standard Time
Printed:	Wednesday, February 26, 2020 13:59:06 Pacific Standard Time

Name: 200225P1-67, Date: 26-Feb-2020, Time: 05:32:00, ID: ST200225P1-13 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

Method: D:|PFAS5.PRO\MethDBINEW_PFAS_80C_022720.mdb 28 Feb 2020 08:07:56

Calibration: D:|PFAS5.PRO\CurveDBIC̄18_VAL-PFAS_Q5_02-27-20.cdb 28 Feb 2020 09:57:55

Name: 200227P1-15, Date: 27-Feb-2020, Time: 17:58:10, ID: IB, Description: IB

13C3-PFBA-EIS
IB IBF3:MRM of 1 channel,ES$216.1>171.8$
$2.943 e+004$ (100

13C3-PFBS-EIS
F12:MRM of 1 channel,ES-

13C3-PFPeA-EIS
IB IBF8:MRM of 1 channel,ES-
266.0 > 221.8

PFPeA

IB IBF7:MRM of 1 channel,ES-

13C3-PFPeA-EIS

IB IBF8:MRM of 1 channel,ES-

PFBS

13C3-PFBS-EIS
F12:MRM of 1 channel,ES$302.0>98.8$ $1.710 \mathrm{e}+004$

4:2 FTS

13C2-4:2 FTS-EIS
F17:MRM of 2 channels,ES-
$329.0>79.7$ $2.942 \mathrm{e}+004$

Name: 200227P1-15, Date: 27-Feb-2020, Time: 17:58:10, ID: IB, Description: IB
PFHxA
F13:MRM of 2 channels,ES-
$313.0>269.0$
100 1.752e+003

13C2-PFHxA-EIS

13C3-HFPO-DA-EIS
F10:MRM of 2 channels,ES-
$287.0>168.9$
$6.977 \mathrm{e}+004$

Name: 200227P1-15, Date: 27-Feb-2020, Time: 17:58:10, ID: IB, Description: IB

L-PFHxS

F23:MRM of 2 channels,ES-

| |
| ---: | ---: |
| 100 |

F23:MRM of 2 channels,ESF23:MRM of 2 channels,ES-

13C3-PFHxS-EIS

F29:MRM of 3 channels,ES-

13C2-6:2 FTS-EIS

13C2-PFOA-EIS

13C8-PFOS-EIS

Name: 200227P1-15, Date: 27-Feb-2020, Time: 17:58:10, ID: IB, Description: IB

F34:MRM of 2 channels,ES-
$463.0>418.8$
100

13C5-PFNA-EIS

PFOSA

F37:MRM of 2 channels,ES-

13C8-PFOSA-EIS

L-PFOS

$\begin{array}{r}\text { F39:MRM of } 2 \text { channels,ES- } \\ 498.9>79.7 \\ 1.920 \mathrm{e}+002 \\ \hline\end{array}$
F39:MRM of 2 channels,ES-

13C8-PFOS-EIS

F42:MRM of 1 channel,ES-

13C8-PFOS-EIS

F42:MRM of 1 channel, ES

Name: 200227P1-15, Date: 27-Feb-2020, Time: 17:58:10, ID: IB, Description: IB

F53:MRM of 2 channels,ES-
$549.1>79.7$

F53:MRM of 2 channels,ES-

F56:MRM of 2 channels,ES-

F59:MRM of 2 channels,ES-

d5-N-EtFOSAA-EIS

F54:MRM of 2 channels,ESF54.MRMM.0 > 269

13C2-PFUdA-EIS

13C8-PFOS-EIS

13C2-PFDoA-EIS

Last Altered: Friday, February 28, 2020 10:18:53 Pacific Standard Time Printed: Friday, February 28, 2020 10:19:02 Pacific Standard Time

Name: 200227P1-15, Date: 27-Feb-2020, Time: 17:58:10, ID: IB, Description: IB

10:2 FTS

F66:MRM of 2 channels,ES-
$626.9>607$
$4.495 \mathrm{e}+001$

13C2-10:2 FTS-EIS

13C2-PFDoA-EIS

d3-N-MeFOSA-EIS

d3-N-MeFOSA-EIS
F46:MRM of 1 channel,ES-

F71:MRM of 2 channels,ES-

$$
\begin{array}{r}
\text { F/1:MRIM of } 2 \text { channels,ES- } \\
662.9>319
\end{array}
$$

13C2-PFDoA-EIS

F72:MRM of 2 channels,ES-
$698.8>98.7$

13C2-PFTeDA-EIS

PFTeDA

F73:MRM of 2 channels,ES713. > 369.0

13C2-PFTeDA-EIS

Last Altered: Friday, February 28, 2020 10:18:53 Pacific Standard Time Printed: Friday, February 28, 2020 10:19:02 Pacific Standard Time

Name: 200227P1-15, Date: 27-Feb-2020, Time: 17:58:10, ID: IB, Description: IB

13C2-PFHxDA-EIS

F76:MRM of 1 channel,ES-
$815>769.7$
100

13C2-PFHxDA-EIS

d7-N-MeFOSE-EIS

N-EtFOSE

d5-N-ETFOSA-EIS
F52:MRM of 1 channel,ES-
$531.1>168.9$

13C8-PFOS-EIS

Last Altered: Friday, February 28, 2020 10:18:53 Pacific Standard Time Printed: Friday, February 28, 2020 10:19:02 Pacific Standard Time

Name: 200227P1-15, Date: 27-Feb-2020, Time: 17:58:10, ID: IB, Description: IB

13C3-PFBA-RSD

13C4-PFHpA-RSD

F21:MRM of 1 channel,ES-
$367.2>321.8$
$2.973 \mathrm{e}+005$

13C2-6:2 FTS-RSD
F30:MRM of 1 channel,ES-

13C3-HFPO-DA-RSD
F10:MRM of 2 channels,ES-

13C8-PFOSA-RSD

13C2-PFOA-RSD

Last Altered: Friday, February 28, 2020 10:18:53 Pacific Standard Time Printed: Friday, February 28, 2020 10:19:02 Pacific Standard Time

Name: 200227P1-15, Date: 27-Feb-2020, Time: 17:58:10, ID: IB, Description: IB

13C2-PFDoA-RSD

13C2-PFTeDA-RSD

F74:MRM of 2 channels,ES-
$715.1>669.7$
$5.928 \mathrm{e}+005$
d5-N-ETFOSA-RSD
F52 MRM of 1 chann

d5-N-EtFOSAA-RSD
F60:MRM of 1 channel,ES-
$589.3>419$
$1.515 \mathrm{e}+005$

Last Altered: Friday, February 28, 2020 10:18:53 Pacific Standard Time Printed: Friday, February 28, 2020 10:19:02 Pacific Standard Time

Name: 200227P1-15, Date: 27-Feb-2020, Time: 17:58:10, ID: IB, Description: IB

d7-N-MeFOSE-RSD

13C9-PFNA

F36:MRM of 1 channel,ES-
 $472.2>426.9$
$5.804 \mathrm{e}+005$

13C4-PFOS
F40:MRM of 1 channel,ES-

13C6-PFDA

13C8-PFOA

F28:MRM of 1 channel,ES-
$420.9>376.0$ $420.9>376.0$
$5.479 e+005$ $5.479 \mathrm{e}+005$

Dataset:

Untitled

Last Altered:

Friday, February 28, 2020 10:18:53 Pacific Standard Time
Friday, February 28, 2020 10:19:02 Pacific Standard Time

Name: 200227P1-15, Date: 27-Feb-2020, Time: 17:58:10, ID: IB, Description: IB

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
1	1 PFBA	$213.0>168.8$	5.979	2056.498	1.00	1.12	0.036				NO		
2	2 PFPrS	$248.9>79.7$		941.691	1.00						NO		YES
3	3 3:3 FTCA	$240.9>176.9$		7211.878	1.00						NO		YES
4	4 PFPeA	$263.1>218.9$		7211.878	1.00						NO		
5	5 PFBS	$299.0>79.7$		941.691	1.00						NO		YES
6	6 4:2 FTS	$327.0>307$		1347.511	1.00						NO		YES
7	47 13C3-PFBA-EIS	$216.1>171.8$	2056.498		1.00	1.33	2056.498	12.500	3.20	25.6	YES		
8	51 13C3-PFBS-EIS	$302.0>98.8$	941.691		1.00	2.54	941.691	12.500	7.67	61.4	NO		
9	49 13C3-PFPeA-EIS	$266.0>221.8$	7211.878		1.00	2.26	7211.878	12.500	6.22	49.7	YES		
10	49 13C3-PFPeA-EIS	$266.0>221.8$	7211.878		1.00	2.26	7211.878	12.500	6.22	49.7	YES		
11	51 13C3-PFBS-EIS	$302.0>98.8$	941.691		1.00	2.54	941.691	12.500	7.67	61.4	NO		
12	55 13C2-4:2 FTS-EIS	$329.0>79.7$	1347.511		1.00	2.97	1347.511	12.500	8.13	65.0	NO		
13	-1												
14	7 PFHxA	$313.0>269.0$	30.188	16627.254	1.00	3.34	0.023				NO		YES
15	8 PFPeS	$349 .>79.7$		941.691	1.00						NO		YES
16	9 HFPO-DA	$285.1>168.9$		3047.664	1.00						NO		YES
17	10 5:3 FTCA	$340.9>236.9$		16200.894	1.00						NO		YES
18	11 PFHpA	$363.0>318.9$	22.115	16200.894	1.00	3.72	0.017				NO		YES
19	12 ADONA	$376.8>250.9$	7.452	16200.894	1.00	3.80	0.006				NO		YES
20	57 13C2-PFHxA-EIS	$315.0>270.0$	16627.254		1.00	3.05	16627.254	12.500	9.44	75.5	NO		
21	51 13C3-PFBS-EIS	$302.0>98.8$	941.691		1.00	2.54	941.691	12.500	7.67	61.4	NO		
22	53 13C3-HFPO-DA-EIS	$287.0>168.9$	3047.664		1.00	3.27	3047.664	12.500	9.29	74.3	NO		
23	59 13C4-PFHpA-EIS	$367.2>321.8$	16200.894		1.00	3.66	16200.894	12.500	12.5	100.4	NO		
24	59 13C4-PFHpA-EIS	$367.2>321.8$	16200.894		1.00	3.66	16200.894	12.500	12.5	100.4	NO		
25	59 13C4-PFHpA-EIS	$367.2>321.8$	16200.894		1.00	3.66	16200.894	12.500	12.5	100.4	NO		
26	-1												
27	13 L-PFHxS	$398.9>79.7$	8.346	3327.413	1.00	3.81	0.031				NO		YES
28	15 6:2 FTS	$427.0>407$		1771.795	1.00						NO		YES
29	16 L-PFOA	$412.8>368.9$	90.800	21312.219	1.00	4.17	0.053				NO	12.907	YES
30	18 PFecHS	$460.8>381.0$		21312.219	1.00						NO		YES
31	19 PFHpS	$449.0>79.7$		3967.881	1.00						NO		YES
32	20 7:3 FTCA	$440.9>336.9$		22886.457	1.00						NO		YES
33	61 13C3-PFHxS-EIS	$401.8>79.7$	3327.413		1.00	3.80	3327.413	12.500	10.8	86.1	NO		
34	63 13C2-6:2 FTS-EIS	$429.0>79.7$	1771.795		1.00	4.11	1771.795	12.500	11.9	95.2	NO		
35	69 13C2-PFOA-EIS	$414.9>369.7$	21312.219		1.00	4.17	21312.219	12.500	12.0	95.7	NO		
36	69 13C2-PFOA-EIS	$414.9>369.7$	21312.219		1.00	4.17	21312.219	12.500	12.0	95.7	NO		
	Work Order 2000314											Page 3	1 of 1277

Last Altered:

 Printed:Friday, February 28, 2020 10:18:53 Pacific Standard Time

Name: 200227P1-15, Date: 27-Feb-2020, Time: 17:58:10, ID: IB, Description: IB

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
37	71 13C8-PFOS-EIS	$507.0>79.7$	3967.881		1.00	4.70	3967.881	12.500	11.5	91.6	NO		
38	65 13C5-PFNA-EIS	$468.2>422.9$	22886.457		1.00	4.62	22886.457	12.500	13.1	104.6	NO		
39	-1												
40	21 PFNA	$463.0>418.8$	9.171	22886.457	1.00	4.52	0.005				NO		YES
41	22 PFOSA	$497.9>77.9$	5.847	5021.423	1.00	4.61	0.015				NO		YES
42	23 L-PFOS	$498.9>79.7$	6.075	3967.881	1.00	4.70	0.019		0.0491		NO	1.168	YES
43	259 Cl -PF30NS	$530.7>350.8$		3967.881	1.00						NO		YES
44	26 PFDA	$513>468.8$	23.281	23565.637	1.00	5.11	0.012				NO		YES
45	27 8:2 FTS	$526.9>507$		1579.977	1.00						NO		YES
46	65 13C5-PFNA-EIS	$468.2>422.9$	22886.457		1.00	4.62	22886.457	12.500	13.1	104.6	NO		
47	67 13C8-PFOSA-EIS	$506>78$	5021.423		1.00	4.67	5021.423	12.500	11.2	89.4	NO		
48	71 13C8-PFOS-EIS	$507.0>79.7$	3967.881		1.00	4.70	3967.881	12.500	11.5	91.6	NO		
49	71 13C8-PFOS-EIS	$507.0>79.7$	3967.881		1.00	4.70	3967.881	12.500	11.5	91.6	NO		
50	73 13C2-PFDA-EIS	$515.1>469.9$	23565.637		1.00	4.99	23565.637	12.500	12.3	98.4	NO		
51	75 13C2-8:2 FTS-EIS	$529>79.7$	1579.977		1.00	4.96	1579.977	12.500	11.9	95.2	NO		
52	-1												
53	28 PFNS	$549.1>79.7$		3967.881	1.00						NO		YES
54	29 L-MeFOSAA	$570>419$	6.307	5008.103	1.00	5.32	0.016		0.0311		NO		YES
55	31 L-EtFOSAA	$584.1>419$		6147.624	1.00						NO		YES
56	33 PFUdA	$563.0>518.9$	52.471	26762.389	1.00	5.31	0.025				NO		YES
57	34 PFDS	$598.8>79.7$		3967.881	1.00						NO		YES
58	3511 Cl -PF30UdS	$630.9>450.9$		23202.117	1.00						NO		YES
59	71 13C8-PFOS-EIS	$507.0>79.7$	3967.881		1.00	4.70	3967.881	12.500	11.5	91.6	NO		
60	77 d3-N-MeFOSAA-EIS	$573.3>419$	5008.103		1.00	5.14	5008.103	12.500	10.4	83.0	NO		
61	81 d5-N-EtFOSAA-EIS	$589.3>419$	6147.624		1.00	5.30	6147.624	12.500	11.1	88.9	NO		
62	79 13C2-PFUdA-EIS	$565>519.8$	26762.389		1.00	5.32	26762.389	12.500	12.2	97.6	NO		
63	71 13C8-PFOS-EIS	$507.0>79.7$	3967.881		1.00	4.70	3967.881	12.500	11.5	91.6	NO		
64	83 13C2-PFDoA-EIS	$614.7>569.7$	23202.117		1.00	5.60	23202.117	12.500	11.9	95.4	NO		
65	-1												
66	36 10:2 FTS	$626.9>607$		1208.054	1.00						NO		YES
67	37 PFDoA	$612.9>569.0$	182.153	23202.117	1.00	5.70	0.098		0.0513		NO		YES
68	38 N-MeFOSA	$512.1>168.9$		21771.527	1.00						NO		YES
69	39 PFTrDA	$662.9>618.9$	17.942	23202.117	1.00	5.89	0.010				NO		YES
70	40 PFDoS	$698.8>79.7$		24353.959	1.00						NO		YES
71	41 PFTeDA	$713.0>669.0$	97.627	24353.959	1.00	6.05	0.050				NO		YES
72	85 13C2-10:2 FTS-EIS	$632.9>80.0$	1208.054		1.00	5.58	1208.054	12.500	11.6	92.8	NO		

Work Order 2000314
Page 312 of 1277

Name: 200227P1-15, Date: 27-Feb-2020, Time: 17:58:10, ID: IB, Description: IB

Quantify Sample Report Vista Analytical Laborator

```
Dataset:
    Untitled
```

Last Altered: Friday, February 28, 2020 10:18:53 Pacific Standard Time
Printed:
Friday, February 28, 2020 10:19:02 Pacific Standard Time

Name: 200227P1-15, Date: 27-Feb-2020, Time: 17:58:10, ID: IB, Description: IB

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
109	$82 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}-\mathrm{RSD}$	$589.3>419$	6147.624	27172.432	1.00	5.30	2.828	12.500	11.7	93.6	NO		
110	84 13C2-PFDoA-RSD	$614.7>569.7$	23202.117	24918.301	1.00	5.60	11.639	12.500	12.0	95.9	NO		
111	86 13C2-10:2 FTS-RSD	$632.9>80.0$	1208.054	4646.858	1.00	5.58	3.250	12.500	11.4	91.0	NO		
112	88 d3-N-MeFOSA-RSD	$515.2>168.9$	21771.527	27172.432	1.00	5.70	10.015	149.200	134	89.8	NO		
113	90 13C2-PFTeDA-RSD	$715.1>669.7$	24353.959	27172.432	1.00	6.06	11.203	12.500	10.7	85.5	NO		
114	92 d5-N-ETFOSA-RSD	$531.1>168.9$	32100.252	27172.432	1.00	6.12	14.767	149.200	142	95.2	NO		
115	94 13C2-PFHxDA-RSD	$815>769.7$	36299.520	27172.432	1.00	6.39	16.699	12.500	11.4	91.2	NO		
116	-1												
117	$96 \mathrm{d7}$-N-MeFOSE-RSD	$623.1>58.9$	23417.418	27172.432	1.00	6.29	10.773	149.200	132	88.4	NO		
118	98 d9-N-EtFOSE-RSD	$639.2>58.8$	26461.822	27172.432	1.00	6.44	12.173	149.200	130	87.0	NO		
119	99 13C4-PFBA	$217.0>172.0$	3104.933	3104.933	1.00	1.33	12.500	12.500	12.5	100.0	NO		
120	1... 13C5-PFHxA	$318.0>272.9$	17555.361	17555.361	1.00	3.05	12.500	12.500	12.5	100.0	NO		
121	1... 13C8-PFOA	$420.9>376.0$	24551.977	24551.977	1.00	4.17	12.500	12.500	12.5	100.0	NO		
122	1... 1802-PFHxS	$403.0>102.6$	1388.647	1388.647	1.00	3.80	12.500	12.500	12.5	100.0	NO		
123	1... 13C9-PFNA	$472.2>426.9$	23611.387	23611.387	1.00	4.61	12.500	12.500	12.5	100.0	NO		
124	1... 13C4-PFOS	$503>79.7$	4646.858	4646.858	1.00	4.70	12.500	12.500	12.5	100.0	NO		
125	1... 13C6-PFDA	$519.1>473.7$	24918.301	24918.301	1.00	4.99	12.500	12.500	12.5	100.0	NO		
126	1... 13C7-PFUdA	$570.1>524.8$	27172.432	27172.432	1.00	5.32	12.500	12.500	12.5	100.0	NO		

Last Altered: Friday, February 28, 2020 11:02:35 Pacific Standard Time
Printed:
Friday, February 28, 2020 11:32:27 Pacific Standard Time

Name: 200227P1-86, Date: 28-Feb-2020, Time: 06:24:04, ID: ST200227P1-14 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

Dataset:

P:IPFAS5.PROIRESULTSL200227P11200227P1-86.qld
Last Altered:
Friday, February 28, 2020 11:02:35 Pacific Standard Time
Printed:
Friday, February 28, 2020 11:32:27 Pacific Standard Time

Name: 200227P1-86, Date: 28-Feb-2020, Time: 06:24:04, ID: ST200227P1-14 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

	\# Name	Trace	Area	IS Area	witivol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
37	71 13C8-PFOS-EIS	$507.0>79.7$	3604.161		1.00	4.70	3604.161	12.500	10.4	83.2	NO		
38	$65.13 C 5-P F N A-E I S$	468.2 > 422.9	18327.887		1.00	4.62	18327.887	12.500	10.5	83.7	NO		
39	-1												
40	21 PFNA	$463.0>418.8$	16446.133	18327.887	1.00	4.62	11.217	10.000	10.4	103.6	No	7.780	NO
41	22 PFOSA	$497.9>77.9$	2877.597	4421.611	1.00	4.68	8.135	10.000	10.3.	103.4	NO	25.574	NO
42	23 L-PFOS	$498.9>79.7$	2761.234	3604.161	1.00	4.70	9.577	10.000	10.2	102.4	NO	2.295	NO
43	25 9CI-PF3ONS	$530.7>350.8$	2796.223	3604.161	1.00	4.93	9.698	10.000	9.64	96.4	NO	24.824	NO
44	26 PFDA	$513>468.8$	16690.482	18286.580	1.00	5.00	11.409	10.000	9.86	98.6	No	9.382	NO
45	27 8:2 FTS	$526.9>507$	1293.762	1169.052	1.00	4.97	13.833	10.000	9.90	99.0	No	2.459	NO
46	65 13C5-PFNA-EIS	468.2 > 422.9	18327.887		1.00	4.62	18327.887	12.500	10.5	83.7	No		
47	$67.13 C 8-\mathrm{PFOSA}$-EIS	$506>78$	4421.611		1.00	4.68	4421.611	12.500	9.84	78.8	NO		
48	$7113 C 8$-PFOS-EIS	$507.0>79.7$	3604.161		1.00	4.70	3604.161	$12.500{ }^{\prime}$	10.4	83.2	No		
49	71 13C8-PFOS-EIS	$507.0>79.7$	3604.161		1.00	4.70	3604.161	12.500 ,	10.4	83.2	NO		
50	73 13C2-PFDA-EIS	. $515.1>469.9$	18286.580		1.00	5.00	18286.580	12.500	9.55	76.4	NO		
51	75 13C2-8:2 FTS-EIS	$529>79.7$	1169.052		1.00	4.97	1169.052	12.500	8.80	70.4	No		
52	-1												
53	28 PFNS	$549.1>79.7$	2808.030	3604.161	1.00	5.06	9.739	10.000	10.1	100.5	NO	2.446	NO
54	29 L-MeFOSAA	. $570>419$	5136.797	4667.450	1.00	5.15	13.757	10.000	10.5	105.4	No	1.862	NO
55	$31 . \mathrm{LEETFOSAA}$	$584.1>419$	4635.962	5478.275	1.00	5.31	10.578	10.000	10.1	100.6	No	1.243	NO
56	33 PFUdA	$563.0>518.9$	17314.449	20693.059	1.00	5.32	10.459	10.000	11.1	111.2	NO	28.575	NO
57	34 PFDS	$598.8>79.7$	2432.438	3604.161	1.00	5.37	8.436	10.000	10.1	100.8.	NO	1.944	NO
58	35.11Cl-PF30UdS	$630.9>450.9$	7045.523	16265.160	1.00	5.53	5.415	10.000	12.1	121.0	NO	21.298	NO
59	71 13C8-PFOS-EIS	$507.0>79.7$	3604.161		1.00	4.70	3604.161	12.500	10.4	83.2	NO		
60	77 d3-N-MeFOSAA-EIS	$573.3>419$	4667.450		1.00	5.14	4667.450	12.500	9.67	77.4.	NO		
61	81 d5-N-EtFOSAA-EIS	$589.3>419$	5478.275		1.00	5.31	5478.275	12.500	9.90	79.2	NO		
62	79 13C2-PFUdA-EIS	$565>519.8$	20693.059		1.00	5.32	20693.059	12.500	9.43	75.4	No		
63	71 13C8-PFOS-EIS	$507.0>79.7$	3604.161		1.00	4.70	3604.161	12.500	10.4	83.2	No		
64	83 13C2-PFDoA-EIS	$614.7>569.7$	16265.160		1.00	5.60	16265.160 .	12.500	8.36	66.8	No		
65	-1												
66	36.10:2 FTS	$626.9>607$	1645.117	914.118	1.00	5.59	22.496	10.000	10.3.	103.2	No	1.050	NO
67	37 PFDoA	$612.9>569.0$	16225.868	16265.160	1.00	5.60	12.470	10.000	10.7	106.7	No	9.645	NO
68	38 N -MeFOSA	$512.1>168.9$	7404.800	21010.420	1.00	5.68	52.583	50.000	47.9	95.7	NO	1.621	NO
69	39 PFTrDA	$662.9>618.9$	18139.684	16265.160	1.00	5.84	13.941	10.000	11.4	113.7	NO	50.594	NO
70	40 PFDoS	$698.8>79.7$	2699.427	20179.574	1.00	5.87	1.672	10.000	11.5	115.1	NO	2.884	NO
71	41 PFTeDA	713.0 > 669.0	17261.342	20179.574	1.00	6.06	10.692	10.000	11.8	118.0	NO	15.500	NO
72	85 13C2-10:2 FTS-EIS	- $632.9>80.0$	914.118		1.00	5.59	914.118	12.500	8.78	70.2	NO		

Dataset:
P:IPFAS5.PRO\RESULTSI200227P1200227P1-86.qld
Last Altered:
Friday, February 28, 2020 11:02:35 Pacific Standard Time
Printed:
Friday, February 28, 2020 11:32:27 Pacific Standard Time

Name: 200227P1-86, Date: 28-Feb-2020, Time: 06:24:04, ID: ST200227P1-14 PFC CS3 20B1107, Description: PFC CS3 2081107

	\# Narne	Trace	Area	IS Area	wtivol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratic Out?
73	83 13C2-PF-DoA-EIS	$614.7>569.7$	16265.160		1.00	5.60	16265.160	12.500	8.36	66.8	NO		
74	87 d3-N-MeFOSA-EIS	$515.2>168.9$	21010.420		1.00	5.71	21010.420	149.200	143.	95.6	NO		
75	83 13C2-PFDoA-EIS	$614.7>569.7$	16265.160		1.00	5.60	16265.160	12.500	8.36	66.8	NO		
76	89 13C2-PFTeDA-EIS	$715.1>669.7$	20179.574		1.00	6.06	20179.574	12.500	9.68	77.4	NO		
77	89 13C2-PFTeDA-EIS	$715.1>669.7$	20179.574		1.00	6.06	20179.574	12.500	9.68	77.4	NO		
78	-1												
79	$42 \mathrm{~N}-\mathrm{EtFOSA}$	$526.1>168.9$	10752.991	29723.264	1.00	6.11	53.976	50.000	52.7	105.4	NO	1.858	NO
80	43 PFHxDA	$813.1>768.6$	16653.098	29272.350	1.00	6.39	7.111	10.000	9.92	99.2	NO	162.906	NO
81	44 PFODA	$913.1>868.8$	24159.703	29272.350	1.00	6.62	10.317	10.000	11.4	113.6	NO		
82	$45 \mathrm{~N}-\mathrm{MeFOSE}$	$616.1>58.9$	9226.355	23774,150	1.00	6.30	57.902	50.000	54.6	109.3	NO		
83	46 N -EtFOSE	$630.1>58.9$	9442.630	27266.418	1.00	6.44	51.669	50.000	52.9	105.8	NO		
84	91 d5-N-ETFOSA-EIS	$531.1>168.9$	29723.264		1.00	6.13	29723.264	149.200	138	92.3	NO		
85	93 13C2-PFHxDA-EIS	$815>769.7$	29272.350		1.00	6.39	29272.350	12.500	9.52	76.2	NO		
86	93 13C2-PFHxDA-EIS	$815>769.7$	29272.350		1.00	6.39	29272.350.	12.500	9.52	76.2	NO		
87	95 d7-N-MeFOSE-EIS	$623.1>58.9$	23774.150		1.00	6.29	23774.150	149.200	143	95.6	NO		
88	$97 \mathrm{~d} 9-\mathrm{N}-\mathrm{EtFOSE}$-EIS	$639.2>58.8$	27266.418		1.00	6.43	27266.418	149.200	141	94.5	NO		
89	71 13C8-PFOS-EIS	$507.0>79.7$	3604.161		1.00	4.70	3604.161	$12.500{ }^{\circ}$	10.4	83.2	NO		
90	-1												
91	48 13C3-PFBA-RSD	$216.1>171.8$	7006.892	8647.939	1.00	1.34	10.128	12.500	12.5	99.7	NO		
92	$50 \cdot 13 \mathrm{C} 3-\mathrm{PFPeA}-\mathrm{RSD}$	$266.0>221.8$	12395.237	20396.617	1.00	2.27	7.596	12.500	12.9	102.9	NO		
93	52 13C3-PFBS-RSD	$302.0>98.8$	1299.117	1333.692	1.00	2.54	12.176	12.500	11.2	89.4	NO		
94	54 13C3-HFPO-DA-RSD	$287.0>168.9$	4308.341	20396.617	1.00	3.28	2.640	12.500	15.1	120.9	NO		
95	$5613 \mathrm{C} 2-4: 2 \mathrm{FTS}$-RSD	$329.0>79.7$	1696.351	1333.692	1.00	2.98	15.899	12.500	11.3	90.2	NO		
96	58 13C2-PFHXA-RSD	$315.0>270.0$	20088.135	20396.617	1.00	3.06	12.311	12.500	12.6	100.6	NO		
97	60 13C4-PFHpA-RSD	$367.2>321.8$	13705.561	20396.617	1.00	3.67	8.399	12.500	12.4	99.5.	NO		
98	62 13C3-PFHxS-RSD	$401.8>79.7$	3124.990	1333.692	1.00	3.81	29.289	12.500	12.1	96.6	NO		
99	64 13C2-6:2 FTS-RSD	$429.0>79.7$	1570.268	3836.663	1.00	4.12	5.116	12.500	11.7	93.9	NO		
100	66 13C5-PFNA-RSD	$468.2>422.9$	18236.232	19652.035	1.00	4.62	11.599	12.500	12.2	97.7	NO		
101	68 13C8-PFOSA-RSD	$506>78$	4421.611	21166.332	1.00	4.68	2.611	12.500	12.1	96.7	NO		
102	70 13C2-PFOA-RSD	$414.9>369.7$	18341.801	20844.459	1.00 .	4.18	10.999	12.500	12.0 .	96.0	NO		
103	-1												
104	72 13C8-PFOS-RSD	$507.0>79.7$	3604.161	3836.663	1.00	4.70	11.742	12.500	12.7	101.3	NO		
105	74 13C2-PFDA-RSD	$515.1>469.9$	18286.580	19069.596	1.00	5.00	11.987	12.500	12.2	97.6	NO		
106	76 13C2-8:2 FTS-RSD	$529>79.7$	1169.052	3836.663	1.00	4.97	3.809	12.500	10.4	82.9	NO		
107	78 d3-N-MeFOSAA-RSD	$573.3>419$	4667.450	21166.332	1.00	5.14	2.756	12.500	12.1	97.2	NO		
108	80 13C2-PFUdA-RSD	565>519.8	20693.059	21166.332	1.00	5.32	12.221	12.500	11.6	92.9	NO		

Dataset: P:\PFAS5.PROIRESULTSL200227P11200227P1-86.qld
Last Altered: Friday, February 28, 2020 11:02:35 Pacific Standard Time
Printed:
Friday, February 28, 2020 11:32:27 Pacific Standard Time

Name: 200227P1-86, Date: 28-Feb-2020, Time: 06:24:04, ID: ST200227P1-14 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

	\# Name	Trace	Area	IS Area	Wivol	AT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio Ratic) Out?
109	$82 \mathrm{d5}-\mathrm{N}-\mathrm{EtFOSAA}$-R:SD	$589.3>419$	5478.275	21166.332	1.00	5.31	3.235	12.500	13.4	107.1	NO	
110	84 13C2-PFDoA-RSD	$614.7>569.7$	16265.160	19069.596	1.00	5.60	10.662	12.500	11.0	87.8	NO	
111	86 13C2-10:2 FTS-RSD	$632.9>80.0$	914.118	3836.663	1.00	5.59	2.978	12.500	10.4	83.4	NO	
112	88 d3-N-MeFOSA-RSD	$515.2>168.9$	21010.420	21166.332	1.00	5.71	12.408	149.200	166	111.3	NO	
113	90 13C2-PFTeDA-RSD	$715.1>669.7$	20179.574	21166.332	1.00	6.06	11.917	12.500	11.4	90.9	NO	
114	$92 \mathrm{~d} 5-\mathrm{N}-\mathrm{ETFOSA}$-RSD	$531.1>168.9$	29723.264	21166.332	1.00	6.13	17.553	149.200	169	113.1	NO	
115	94 13C2-PFHxDA-RSD	$815>769.7$	29272.350	21166.332	1.00	6.39	17.287	12.500	11.8	94.4	NO	
116	-1											
117	$96 \mathrm{d7}-\mathrm{N}-\mathrm{MeFOSE}-\mathrm{RSD}$	$623.1>58.9$	23774.150	21166.332	1.00	6.29	14.040	149.200	172	115.3	NO	
118	$98 \mathrm{~d} 9-\mathrm{N}$-EtFOSE-RSD	$639.2>58.8$	27266.418	21166.332	1.00	6.43	16.102	149.200	172	115.1	NO	
119	99 13C4-PFBA	$217.0>172.0$	8647.939	8647.939	1.00	1.34	12.500	12.500	12.5	100.0	NO	
120	1... 13C5-PFHxA	$318.0>272.9$	20396.617	20396.617	1.00	3.06	12.500	12.500	12.5	100.0	NO	
121	1... 13C8-PFOA	$420.9>376.0$	20844.459	20844.459	1.00	4.18	12.500	12.500	12.5	100.0	NO	
122	1... 1802-PFHxS	$403.0>102.6$	1333.692	1333.692	1.00	3.81	12.500	12.500 .	12.5	100.0	NO	
123	1... 13C9-PFNA	$472.2>426.9$	19652.035	19652.035	1.00	4.62	12.500	12.500	12.5	100.0	NO	
124	1... 13C4-PFOS	$503>79.7$	3836.663	3836.663	1.00	4.70	12.500	12.500	12.5	100.0:	NO	
125	1... 13C6-PFDA	$519.1>473.7$	19069.596	19069.596	1.00	5.00	12.500	12.500	12.5	100.0	NO	
126	1... 13C7-PFUdA	$570.1>524.8$	21166.332	21166.332	1.00	5.32	12.500	12.500	12.5	100.0	NO	

Dataset:	Untitled
Last Altered:	Friday, February 28, 2020 11:57:34 Pacific Standard Time
Printed:	Friday, February 28, 2020 11:59:19 Pacific Standard Time

Method: P:\PFAS5.PRO\MethDB\NEW_PFAS_80C_022720.mdb 28 Feb 2020 10:51:32 Calibration: P:\PFAS5.PROICurveDBIC18_VAL-PFAS_Q5_02-27-20.cdb 28 Feb 2020 09:57:55

Compound name: PFBA

	\# Name	ID	Acq. Date	Acq. Time
1	1 200227P1-1	IPA	27-Feb-20	15:20:53
2	2 200227P1-2	IPA	27-Feb-20	15:31:38
3	3 200227P1-3	ST200227P1-1 PFC CS-2 20B1102	27-Feb-20	15:42:07
4	4 200227P1-4	ST200227P1-2 PFC CS-1 20B1103	27-Feb-20	15:52:39
5	5 200227P1-5	ST200227P1-3 PFC CSO 20B1104	27-Feb-20	16:03:08
6	$6200227 \mathrm{P} 1-6$	ST200227P1-4 PFC CS1 20B1105	27-Feb-20	16:13:39
7	7 200227P1-7	ST200227P1-5 PFC CS2 20B1106	27-Feb-20	16:26:17
8	8 200227P1-8	ST200227P1-6 PFC CS3 20B1107	27-Feb-20	16:36:51
9	9 200227P1-9	ST200227P1-7 PFC CS4 20B1108	27-Feb-20	16:47:20
10	10 200227P1-10	ST200227P1-8 PFC CS5 20B1109	27-Feb-20	16:58:53
11	11 200227P1-11	ST200227P1-9 PFC CS6 2081110	27-Feb-20	17:16:12
12.	12 200227P1-12	ST200227P1-10 PFC CS7 2081111	27-Feb-20	17:26:40
13	13 200227P1-13	IB	27-Feb-20	17:37:10
14	$14.200227 \mathrm{P} 1-14$	ICV200227P1-1 PFC ICV 2081112	27-Feb-20	17:47:42
15	15 200227P1-15	IB	27-Feb-20	17:58:10
16	16 200227P1-16	B0B0123-BS1 OPR 0.25	27-Feb-20	18:08:42
17	17 200227P1-17	2000330-03 1003MW12S-202002140.25031	27-Feb-20	18:19:12
18	18 200227P1-18	2000330-02@5X 1003MW05S-202002140.25637	27-Feb-20	18:29:43
19	19 200227P1-19	2000330-05@5X 1003MW14S-202002140.25171	27-Feb-20	18:40:11
20	20 200227P1-20	IB	27-Feb-20	18:50:43
21	21 200227P1-21	B0B0221-BLK1 Method Blank 0.125	27-Feb-20	19:01:12
22	22 200227P1-22	BOB0221-BS1 OPR 0.125	27-Feb-20	19:11:44
23	23 200227P1-23	B0B0221-BSD 1 LCSD 0.125	27-Feb-20	19:22:14
24	24 200227P1-24	2000386-09 Field Blank 0.11512	27-Feb-20	19:32:43
25	25 200227P1-25	2000386-10 Equipment Blank 0.11758	27-Feb-20	19:43:15
26	26 200227P1-26	2000391-10 Field Blank 0.11887	27-Feb-20	19:53:46
27	27 200227P1-27	2000391-11 Equipment Blank 0.08216	27-Feb-20	20:04:15
28	28 200227P1-28	Bob0180-BLK1 Method Blank 2	27-Feb-20	20:14:45
29	29 200227P1-29	B0B0180-BS1 OPR 2	27-Feb-20	20:25:16
30	30 200227P1-30	B0B0180-MS1 Matrix Spike 2.14	27-Feb-20	20:35:46
31	31 200227P1-31	B0B0180-MSD1 Matrix Spike Dup 2.15	27-Feb-20	20:46:15
32	32 200227P1-32	2000315-01 S-SB06-00-20200210 2.29	27-Feb-20	20:56:47

Compound name: PFBA

	\# Name	ID	Acq. Date	Acq. Time
33	33 200227P1-33	2000315-02 S-SB05-00-20200210 2.33	27-Feb-20	21:07:18
34	34 200227P1-34	2000315-03 S-SB05-4.5-20200210 2.26	27-Feb-20	21:17:46
35	35 200227P1-35	2000315-04 S-SB07-00-20200210 2.39	27-Feb-20	21:28:18
36	$36200227 \mathrm{P} 1-36$	2000315-05 S-SB07-05-20200210 2.31	27-Feb-20	21:38:49
37	37 200227P1-37	2000315-06 S-SB04-00-20200210 2.27	27-Feb-20	21:49:17
38	$38200227 \mathrm{P} 1-38$	2000315-07 S-SB04-4.5-20200210 2.25	27-Feb-20	21:59:48
39	39 200227P1-39	ST200227P1-11 PFC CS3 20B1107	27-Feb-20	22:10:19
40	40 200227P1-40	IB	27-Feb-20	22:20:48
41	41 200227P1-41	2000315-08 S-SB03-00-20200210 2.1	27-Feb-20	22:31:19
42	42 200227P1-42	2000315-09 S-SB12-02-20200210 2.27	27-Feb-20	22:41:50
43	43 200227P1-43	2000315-10 S-SB12-4.5-20200210 2.19	27-Feb-20	22:52:21
44	44 200227P1-44	2000315-11 S-SB09-00-20200210 2.32	27-Feb-20	23:02:49
45	45 200227P1-45	2000315-12 S-SB09-4.5-20200210 2.24	27-Feb-20	23:13:21
46	$46200227 \mathrm{P} 1-46$	2000315-13 S-SB08-00-20200210 2.13	27-Feb-20	23:23:49
47	47 200227P1-47	2000315-14 S-SB08-4.5-20200210 2.28	27-Feb-20	23:34:21
48	$48200227 \mathrm{P1-48}$	B0B0184-BLK1 Method Blank 0.25	27-Feb-20	23:44:50
49	49 200227P1-49	B0B0184-BS1 OPR 0.25	27-Feb-20	23:55:22
50	50 200227P1-50	B0B0184-BSDI LCSD 0.25	28-Feb-20	00:05:51
51	51 200227P1-51	2000354-01 S9MW55-20Q1 0.2499	28-Feb-20	00:16:22
52	52 200227P1-52	2000354-02 S9MW56-20Q1 0.24983	28-Feb-20	00:26:54
53	53 200227P1-53	2000354-03 S9MW59-20Q1 0.25123	28-Feb-20	00:37:23
54	54 200227P1-54	ST200227P1-12 PFC CS3 20B1107	28-Feb-20	00:47:54
55	55 200227P1-55	IB	28-Feb-20	00:58:24
56	56 200227P1-56	2000354-04 S9MW61L9-20Q1 0.25204	28 -Feb-20	01:08:55
57	57.200227 P1-57	2000354-05 91MW04-20Q1 0.24449	28-Feb-20	01:19:23
58	58 200227P1-58	2000354-06 S9SMW2A-20Q1 0.23864	28-Feb-20	01:29:55
59	59 200227P1-59	2000354-07 S9SMW10-20Q1 0.24862	28-Feb-20	01:40:24
60	60 200227P1-60	2000354-09@5X S9MW61L1-20Q1 0.25585	28-Feb-20	01:50:55
61	61 200227P1-61	2000354-10@10X 91MW10-20Q1 0.24621	28-Feb-20	02:01:26
62	62 200227P1-62	B0B0183-BLK1 Method Blank 0.25	28-Feb-20	02:11:55
63	63. 200227P1-63	B0B0183-BS1 OPR 0.25	28-Feb-20	02:22:26
64	$64.200227 \mathrm{P} 1-64$	B0B0183-BSD1 LCSD 0.25	28-Feb-20	02:32:57
65	65 200227P1-65	2000353-01@5X S9MW30-20Q10.25885	28-Feb-20	02:43:26
66	66 200227P1-66	IB	28-Feb-20	.02:53:57
67	67 200227P1-67	2000353-02 S9MW29-20Q1 0.2606	28-Feb-20	03:04:28
68	68 200227P1-68	2000353-03 S9MW28-20Q1 0.24763	28-Feb-20	03:14:58

Last Altered: Friday, February 28, 2020 11:57:34 Pacific Standard Time
Printed:
Friday, February 28, 2020 11:53:19 Pacific Standard Time

Compound name: PFBA

	\# Name	1D	Acq. Date	Acq. Time
69	69 200227P1-69	2000353-04 S9MW27-20Q1 0.24573	28-Feb-20	03:25:27
70	70 200227P1-70	ST200227P1-13 PFC CSO 20B1104	28-Feb-20	03:35:59
71	71 200227P1.71	IB	28-Feb-20	03:46:27
72	72 200227P1-72	2000353-05 S9SMW3-20Q1 0.24	28-Feb-20	03:57:00
73	73 200227P1-73	2000353-06 S9MW21-20Q1 0.24253	28-Feb-20	04:07:28
74	74 200227P1-74	2000353-07@5X S9MW22-20Q1 0.251	28-Feb-20	04:18:00
75	75 200227P1-75	2000353-08@5X S9MW23-20Q1 0.25701	28-Feb-20	04:28:30
76	76 200227P1-76	IB	28-Feb-20	04:38:59
77	77 200227P1-77	2000353-09 S9MW26-20Q1 0.25354	28-Feb-20	.04:49:31
78	78 200227P1-78	2000353-10 S9MW68L1-20Q1 0.25186	28-Feb-20	.04:59:59
79	79 200227P1-79	2000353-11 S9MW71L9-20Q1 0.252	28-Feb-20	05:10:29
80	80 200227P1-80	B0B0218-BLK1 Method Blank 0.01	28-Feb-20	05:21:02
81	81 200227P1-81	B0B0218-BLK2 Method Blank 0.01	28-Feb-20	.05:31:32
82	82 200227P1-82	B0B0218-BS1 OPR 0.01	28-Feb-20	05:42:01
83	83 200227P1-83	B0B0218-BS2 OPR 0.01	28-Feb-20	05:52:32
84	84 200227P1-84	2000319-17@10X W-SB03-202002110.25482	28-Feb-20	06:03:03
85	85 200227P1-85	2000319-18@10X DUP01-202002110.25556	28-Feb-20	06:13:33
86	86 200227P1-86	ST200227P1-14 PFC CS3 20B1107	28-Feb-20	.06:24:04
87	87 200227P1-87	18	28-Feb-20	06:34:35
88	88 200227P1-88	2000354-08 S9MW15-20Q1 0.25813	28-Feb-20	-06:45:03
89	89 200227P1-89	2000314-08@10X BMW07S-202002120.2539	28-Feb-20	06:55:34
90	90 200227P1-90	PACKERS QC	28-Feb-20	07:06:05
91	91 200227P1-91	FLIPPER QC	28-Feb-20	07:16:35
92	92 200227P1-92	ST200227P1-15 PFC CS3 20B1107	28-Feb-20	07:27:04
93	93 200227P1-93	IB	28-Feb-20	07:37:35

Dataset:	P:IPFAS5.PROXRESULTSL200227P11200227P1-86.qld
Last Altered:	Friday, February 28, 2020 11:02:35 Pacific Standard Time
Printed:	Friday, February 28, 2020 11:32:27 Pacific Standard Time

Method: P:\PFAS5.PRO\MethDBINEW_PFAS_80C_022720.mdb 28 Feb 2020 10:51:32

Calibration: P:\PFAS5.PRO\CurveDB\C18_VAL-PFAS_Q5_02-27-20.cdb 28 Feb 2020 09:57:55

Name: 200227P1-86, Date: 28-Feb-2020, Time: 06:24:04, ID: ST200227P1-14 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

13C3-PFBA-EIS
F3:MRM of 1 channel,ES$216.1>171.8$ $1.115 \mathrm{e}+005$

F6:MRM of 2 channels,ES-
$248.9>98.7$ $8.948 \mathrm{e}+003$

13C3-PFBS-EIS

F5:MRM of 2 channels,ES$240.9>116.9$

3C3-PFPeA-EIS

F11:MRM of 2 channels,ES-
$299.0>98.7$

13C3-PFBS-EIS

F12:MRM of 1 channel,ESF12:MRM of 1 channel,ES-
$302.0>98.8$
$2.693 e+004$

F16:MRM of 2 channels,ES-
$327.0>80.7$
$4.880 \mathrm{e}+004$

13C2-4:2 FTS-EIS
F17:MRM of 2 channels,ES-
$329.0>79.7$

Dataset:	P:IPFAS5.PRO\RESULTSL200227P11200227P1-86.qld
	Last Altered:
Friday, February 28, 2020 11:02:35 Pacific Standard Time	
Printed:	Friday, February 28, 2020 11:32:27 Pacific Standard Time

Name: 200227P1-86, Date: 28-Feb-2020, Time: 06:24:04, ID: ST200227P1-14 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

13C2-PFHxA-EIS
F14:MRM of 1 channel,ES-
$315.0>270.0$

13C3-PFBS-EIS

13C3-HFPO-DA-EIS

13C4-PFHpA-EIS
F21:MRM of 1 channel,ES-

F18:MRM of 2 channels,ES-$100-3.080 e+004$

$-3.500-.000$

13C4-PFHpA-EIS
F21:MRM of $\begin{array}{r}1 \text { channel,ES- } \\ 367.2>321.8\end{array}$

F22:MRM of 2 channels, ES-
$376.8>85.0$

13C4-PFHPA-EIS
F21:MRM of 1 channel,ES367.2 > 321.8

Dataset:	P:IPFAS5.PROIRESULTSL200227P11200227P1-86.qld
Last Altered:	Friday, February 28, 2020 11:02:35 Pacific Standard Time
Printed:	Friday, February 28, 2020 11:32:27 Pacific Standard Time

Name: 200227P1-86, Date: 28-Feb-2020, Time: 06:24:04, ID: ST200227P1-14 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

Dataset:

P:IPFAS5.PRO\RESULTSL200227P1【200227P1-86.qld
Last Altered: Friday, February 28, 2020 11:02:35 Pacific Standard Time
Printed: Friday, February 28, 2020 11:32:27 Pacific Standard Time

Name: 200227P1-86, Date: 28-Feb-2020, Time: 06:24:04, ID: ST200227P1-14 PFC CS3 20B1107, Description: PFC CS3 20 B1107

F34:MRM of 2 channels,ES$463.0>219.0$

13C5-PFNA-EIS

F35:MRM of 1 channel,ESF35.MRM of channel,ES-
$468.2>422.9$

PFOSA

13C8-PFOSA-EIS
F41:MRM of 1 channel,ES-
$506>78$

F39:MRM of 2 channels,ES$498.9>98.7$

13C8-PFOS-EIS
F42:MRM of 1 channel,ES-
$507.0>79.7$

F51:MRM of 2 channels,ES$530.7>82.8$
$3.221 \mathrm{e}+003$

13C8-PFOS-EIS

13C2-PFDA-EIS
F45:MRM of 1 channel,ES.
$515.1>469.9$

Dataset: P:IPFAS5.PROXRESULTSL200227P11200227P1-86.qld
Last Altered: Friday, February 28, 2020 11:02:35 Pacific Standard Time
Printed: Friday, February 28, 2020 11:32:27 Pacific Standard Time

Name: 200227P1-86, Date: 28-Feb-2020, Time: 06:24:04, ID: ST200227P1-14 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

PFNS

13C8-PFOS-EIS

F56:MRM of 2 channels,ES F56:MRM of 2 channels, ES-
$570 .>512$
$5.191 \mathrm{e}+004$

d3-N-MeFOSAA-EIS
F58:MRM of 1 Chan

F59:MRM of 2 channels,ES

$$
\begin{array}{r}
584.1>526 \\
7.852 e+004
\end{array}
$$

(
d5-N-EtFOSAA-EIS

13C2-PFUdA-EIS 13C8-PFOS-EIS
F55:MRM of 1 channel, ES-
$565>519.8$

F61:MRM of 2 channels,ES-

5.2005 .4005 .600

F68:MRM of 2 channels, ES
$630.9>83$

[^0]| Dataset: | P:IPFAS5.PROIRESULTSL200227P11200227P1-86.qld |
| :--- | :--- |
| Last Altered: | Friday, February 28, 2020 11:02:35 Pacific Standard Time |
| Printed: | Friday, February 28, 2020 11:32:27 Pacific Standard Time |

Name: 200227P1-86, Date: 28-Feb-2020, Time: 06:24:04, ID: ST200227P1-14 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

Dataset:	P:IPFAS5.PROIRESULTSL200227P11200227P1-86.qId
	Last Altered:
Friday, February 28, 2020 11:02:35 Pacific Standard Time	
Printed:	Friday, February 28, 2020 11:32:27 Pacific Standard Time

Name: 200227P1-86, Date: 28-Feb-2020, Time: 06:24:04, ID: ST200227P1-14 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

Dataset:	P:IPFAS5.PRO\RESULTSL200227P11200227P1-86.qld
	Last Altered:
Friday, February 28, 2020 11:02:35 Pacific Standard Time	
Printed:	Friday, February 28, 2020 11:32:27 Pacific Standard Time

Name: 200227P1-86, Date: 28-Feb-2020, Time: 06:24:04, ID: ST200227P1-14 PFC CS3 20B1107, Description: PFC CS3 20 B1107

Dataset: P:IPFAS5.PROIRESULTSL200227P11200227P1-86.qld

Last Altered: Friday, February 28, 2020 11:02:35 Pacific Standard Time
Printed: Friday, February 28, 2020 11:32:27 Pacific Standard Time

Name: 200227P1-86, Date: 28-Feb-2020, Time: 06:24:04, ID: ST200227P1-14 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

13C2-PFDoA-RSD
F63:MRM of 1 channel,ES-
$614.7>569.7$ $3.722 e+005$

13C2-10:2 FTS-RSD F69:MRM of 1 channel,ES-
$632.9>80.0$
$2.053 e+004$

d3-N-MeFOSA-RSD
F46:MRM of 1 channel,ES-

13C2-PFTeDA-RSD
F74:MRM of 2 channels,ES-
$715.1>669.7$
$4.928 \mathrm{e}+005$

d5-N-ETFOSA-RSD
F52:MRM of 1 channel, ES-

13C2-PFHxDA-RSD
F76:MRM of 1 channel,ES-
$815>769.7$ $8.880 e+005$

Dataset:	P:IPFAS5.PROIRESULTSI200227P11200227P1-86.qld
Last Altered:	Friday, February 28, 2020 11:02:35 Pacific Standard Time
Printed:	Friday, February 28, 2020 11:32:27 Pacific Standard Time

Name: 200227P1-86, Date: 28-Feb-2020, Time: 06:24:04, ID: ST200227P1-14 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

13C9-PFNA

d9-N-EtFOSE-RSD
F70:MRM of 1 channel,ES-
$639.2>58.8$

13C4-PFOS

F40:MRM of 1 channel,ES-

13C6-PFDA
F47:MRM of 1 channel,ES-
13C7-PFUdA
F57:MRM of 1 channel,ES-
$570.1>524.8$

Last Altered: Friday, February 28, 2020 11:21:57 Pacific Standard Time Printed: Friday, February 28, 2020 11:26:34 Pacific Standard Time Sop . $2 / 20 / 20$

Name: 200227P1-92, Date: 28-Feb-2020, Time: 07:27:04, ID: ST200227P1-15 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

Dataset: P:IPFAS5.PROIRESULTSL200227P11200227P1-92.qld
Last Altered: Friday, February 28, 2020 11:21:57 Pacific Standard Time
Printed: Friday, February 28, 2020 11:26:34 Pacific Standard Time

Name: 200227P1-92, Date: 28-Feb-2020, Time: 07:27:04, ID: ST200227P1-15 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

	\# Name	Trace	Area	IS Area	witivor	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
37	71 13C8-PFOS-EIS	$507.0>79.7$	3435.391		1.00	4.70	3435.391	12.500	9.92	79.3	NO		
38	$65.13 C 5-P F N A-E I S$	468.2 > 422.9	17678.064		1.00	4.62	17678.064	12.500	10.1	80.8 .	NO		
39	-1												
40	21 PFNA	$463.0>418.8$	16218.910	17678.064	1.00	4.62	11.468	10.000	10.6	105.9	NO	8.059	NO
41	22 PFOSA	$497.9>77.9$	3007.582	4110.451	1.00	4.68	9.146	10.000	11.6	116.3	NO	26.534	NO
42	23 L-PFOS	$498.9>79.7$	2678.027	3435.391	1.00	4.71	9.744	10.000	10.4	104.2	NO	2.340	NO
43	25.9CI-PF30NS	$530.7>350.8$	2768.817	3435.391	1.00	4.93	10.075	10.000	10.0	100.1	NO	16.709	NO
44	26 PFDA	$513>468.8$	17578.252	17596.283	1.00	5.00	12.487	10.000	10.8	108.0	NO	9.672	NO
45	27 8:2 FTS	$526.9>507$	1295.067	1117.64 C	1.00	4.97	14.484	10.000	10.4	103.6	NO	2.490	NO
46	65 13C5-PFNA-EIS	$468.2>422.9$	17678.064		1.00	4.62	17678.064	12.500	10.1	80.8	NO		
47	67 13C8-PFOSA-EIS	$506>78$	4110.451		1.00	4.68	4110.451	12.500	9.15	73.2	NO		
48	71 13C8-PFOS-EIS	$507.0>79.7$	3435.391		1.00	4.70	3435.391	12.500	9.92	79.3	NO		
49	71 13C8-PFOS-EIS	$507.0>79.7$	3435.391		1.00	4.70	3435.391	12.500	9.92	79.3	NO		
50	73 13C2-PFDA-EIS	$515.1>469.9$	17596.283		1.00	5.00	17596.283.	12.500	9.19	73.5	NO		
51	75 13C2-8:2 FTS-EIS	$529>79.7$	1117.64C		1.00	4.97	1117.64 C	12.500	8.42	67.3	NO		
52	-1												
53	28 PFNS	$549.1>79.7$	2676.308	3435.391	1.00	5.06	9.738	10.000	10.1	100.5	NO	2.211	NO
54	29 L-MeFOSAA	. $570>419$	5439.040	4605.454	1.00	5.15	14.762	10.000	11.3	113.1	NO	2.059	NO
55	31 L-EtFOSAA	$584.1>419$	4933.557	5691.753	1.00	5.31	10.835	10.000	10.3	103.1	NO	1.239	NO
56	33 PFUdA	$563.0>518.9$	17709.803	20687.168	1.00	5.32	10.701	10.000	11.4	113.9	NO	25.059	NO
57	34 PFDS	$598.8>79.7$	2110.687	3435.391	1.00	5.37	7.680	10.000	9.18	91.8.	NO	1.847	NO
58	35.11 Cl -PF30UdS	$630.9>450.9$	7286.939	16877.414	1.00	5.53	5.397	10.000	12.1	120.6	NO	22.154	NO
59	71 13C8-PFOS-EIS	$507.0>79.7$	3435.391		1.00	4.70	3435.391	12.500	9.92	79.3	NO		
60	77 d3-N-MeFOSAA-EIS	$573.3>419$	4605.454		1.00	5.14	4605.454	12.500	9.54	76.4	NO		
61	$81 \mathrm{d5}-\mathrm{N}-\mathrm{EtFOSAA}-\mathrm{EIS}$	$589.3>419$	5691.753		1.00	5.30	5691.753	12.500	10.3	82.3	NO		
62	79 13C2-PFUdA-EIS	$565>519.8$	20687.168		1.00	5.32	20687.168	12.500	9.43	75.4	NO		
63	71 13C8-PFOS-EIS	$507.0>79.7$	3435.391		1.00	4.70	3435.391	12.500	9.92 .	79.3	NO		
64	83 13C2-PFDOA-EIS	$614.7>569.7$	16877.414		1.00	5.60	16877.414	12.500	8.67	69.4	NO		
65	-1												
66	36 10:2 FTS	$626.9>607$	1706.653	894.698	1.00	5.59	23.844	10.000	10.9.	109.4	NO	0.992	NO
67	37 PFDoA	$612.9>569.0$	16426.822	16877.414	1.00	5.60	12.166	10.000	10.4	104.1	NO	10.530	NO
68	38 N -MeFOSA	$512.1>168.9$	7626.147	20337.387	1.00	5.68	55.947	50.000	50.9	101.9	NO	1.617	NO
69	39 PFTrDA	$662.9>618.9$	17619.367	16877.414	1.00	5.84	13.050	10.000	10.6.	106.3	NO	58.264	NO
70	40 PFDos	$698.8>79.7$	2773.971	18463.229	1.00	5.87	1.878	10.000	13.0	129.5	NO	2.868	NO
71	41 PFTeDA	$713.0>669.0$	16867.162	18463.229	1.00	6.06	11.419	10.000	12.6	126.1	NO	17.906	NO
72	85-13C2-10:2 FTS-EIS	632.9>80.0	894.698		1.00	5.58	894.698	12.500	8.59	68.7	NO.		

Friday, February 28, 2020 11:21:57 Pacific Standard Time
Printed:
Friday, February 28, 2020 11:26:34 Pacific Standard Time

Name: 200227P1-92, Date: 28-Feb-2020, Time: 07:27:04, ID: ST200227P1-15 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

	\# Name	Trace	Area	IS Area	wi/vol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratic Out?
73	83 13C2-PFDoA-EIS	$614.7>569.7$	16877.414		1.00	5.60	16877.414	12.500	8.67	69.4	NO		
74	87 d3-N-MeFOSA-EIS	$515.2>168.9$	20337.387		1.00	5.71	20337.387	149.200	138.	92.6	NO		
75	83 13C2-PFDOA-EIS	$614.7>569.7$	16877.414		1.00	5.60	16877.414	12.500	8.67	69.4	NO		
76	89 13C2-PFTeDA-EIS	$715.1>669.7$	18463.229		1.00	6.06	18463.229	12.500	8.85	70.8	NO		
77	89 13C2-PFTeDA-EIS	$715.1>669.7$	18463.229		1.00	6.06	18463.229	12.500	8.85	70.8	NO		
78	-1												
79	42 N -EtFOSA	$526.1>168.9$	10575.044	29541.346	1.00	6.10	53.410	50.000	52.2	104.3	NO	1.638	NO
80	43 PFHxDA	$813.1>768.6$	16979.654	28717.688	1.00	6.39	7.391	10.000	10.3	103.2	NO	173.260	NO
81	44 PFODA	$913.1>868.8$	23575.922	28717.688	1.00	6.62	10.262	10.000	11.3	112.9	NO		
82	$45 \mathrm{~N}-\mathrm{MeFOSE}$	$616.1>58.9$	8898.884	22216.963	1.00	6.30	59.761	50.000	56.4	112.8	NO		
83	46 N -EtFOSE	$630.1>58.9$	9338.439	28348.422	1.00	6.44	49.149	50.000	50.3.	100.6	NO		
84	91 d5-N-ETFOSA-EIS	$531.1>168.9$	29541.346		1.00	6.13	29541.346	149.200	137	91.7	NO		
85	93 13C2-PFHxDA-EIS	$815>769.7$	28717.688		1.00	6.39	28717.688	12.500	9.34	74.7	NO		
86	93 13C2-PFHxDA-EIS	$815>769.7$	28717.688		1.00	6.39	28717.688	12.500	9.34	74.7	NO		
87	$95 \mathrm{d7}$-N-MeFOSE-EIS	$623.1>58.9$	22216.963		1.00	6.29	22216.963	149.200	133	89.4	NO		
88	97 d9-N-EtFOSE-EIS	$639.2>58.8$	28348.422		1.00	6.43	28348.422	149.200	147	98.3	NO		
89	71 13C8-PFOS-EIS	$507.0>79.7$	3435.391		1.00	4.70	3435.391	12.500	9.92	79.3	NO		
90	-1												
91	48 13C3-PFBA-RSD	$216.1>171.8$	7159.070	8862.683	1.00	1.34	10.097	12.500	12.4	99.4	NO		
92	50 13C3-PFPeA-RSD	$266.0>221.8$	12047.114	20546.072	1.00	2.27	7.329	12.500	12.4	99.3	NO		
93	52 13C3-PFBS-RSD	$302.0>98.8$	1321.517	1043.126	1.00	2.54	15.836	12.500	14.5 :	116.2	NO		
94	54 13C3-HFPO-DA-RSD	$287.0>168.9$	4280.516	20546.072	1.00	3.28	2.604	12.500	14.9	119.3	NO		
95	56 13C2-4:2 FTS-RSD	$329.0>79.7$	1589.871	1043.126	1.00	2.98	19.052	12.500	13.5	108.0	NO		
96	58 13C2-PFHxA-RSD	$315.0>270.0$	19908.826	20546.072	1.00	3.06	12.112	12.500	12.4	99.0	NO		
97	60 13C4-PFHpA-RSD	$367.2>321.8$	13790.391	20546.072	1.00	3.67	8.390	12.500	12.4	99.4	NO		
98	62 13C3-PFHxS-RSD	$401.8>79.7$	2979.787	1043.126	1.00	3.81	35.707	12.500	14.7	117.7	NO		
99	64 13C2-6:2 FTS-RSD	$429.0>79.7$	1439.672	3704.790	1.00	4.13	4.857	12.500	11.1	89.1	NO		
100	66 13C5-PFNA-RSD	$468.2>422.9$	17678.064	18463.406	1.00	4.62	11.968	12.500	12.6	100.8	NO		
101	68 13C8-PFOSA-RSD	$506>78$	4110.451	19210.402	1.00	4.68	2.675	12.500	12.4	99.0	NO		
102	70 13C2-PFOA-RSD	$414.9>369.7$	19143.139	20978.334	1.00	4.18	11.406	12.500	12.4	99.5	NO		
103	-1												
104	72 13C8-PḞOS-RSD	$507.0>79.7$	3435.391	3704.790	1.00	4.70	11.591	12.500	12.5	100.0	NO		
105	74 13C2-PFDA-RSD	$515.1>469.9$	17596.283	18507.713	1.00	5.00	11.884	12.500	12.1	96.7	NO		
106	76 13C2-8:2 FTS-RSD	$529>79.7$	1117.64C	3704.790	1.00	4.97	3.771	12.500	10.3	82.1	NO		
107	78 d3-N-MeFOSAA-RSD	$573.3>419$	4605.454	19210.402	1.00	5.14	2.997	12.500	13.2	105.6	NO		
108	80 13C2-PFUdA-RSD	$565>519.8$	20687.168	19210.402	1.00	5.32	13.461	12.500	12.8	102.3	NO_		

Dataset:
P:IPFAS5.PROIRESULTSL200227P11200227P1-92.qld
Last Altered:
Friday, February 28, 2020 11:21:57 Pacific Standard Time
Printed:
Friday, February 28, 2020 11:26:34 Pacific Standard Time

Name: 200227P1-92, Date: 28-Feb-2020, Time: 07:27:04, ID: ST200227P1-15 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

	\#	Trace	Area	IS Area	wt/vol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ... Ion Ratio	Ratio Out?
109	$82 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$-RSD	$589.3>419$	5691.753	19210.402	1.00	5.30	3.704	12.500	15.3	122.5	NO	
110	84 13C2-PFDoA-RSD	$614.7>569.7$	16877.414	18507.713	1.00	5.60	11.399	12.500	11.7	93.9	NO	
111	86 13C2-10:2 FTS-RISD	$632.9>80.0$	894.698	3704.790	1.00	5.58	3.019	12.500	10.6	84.5	NO	
112	88 d3-N-MeFOSA-RSD	$515.2>168.9$	20337.387	19210.402	1.00	5.71	13.233	149.200	177.	118.7	NO	
113	90 13C2-PFTeDA-RSD	$715.1>669.7$	18463.229	19210.402	1.00	6.06	12.014	12.500	11.5	91.7	NO	
114	$92 \mathrm{~d} 5-\mathrm{N}-E T F O S A-R S D$	$531.1>168.9$	29541.346	19210.402	1.00	6.13	19.222	149.200.	185	123.9.	NO	
115	94 13C2-PFHxDA-RSD	$815>769.7$	28717.688	19210.402	1.00	6.39	18.686	12.500	12.8	102.0	NO	
116	-1											
117	96 d7-N-MeFOSE-RSD	$623.1>58.9$	22216.963	19210.402	1.00	6.29	14.456	149.200	177	118.7	NO	
118	98 d9-N-EtFOSE-RSD	$639.2>58.8$	28348.422	19210.402	1.00	6.43	18.446	149.200	197	131.8	NO	
119	99 13C4-PFBA	$217.0>172.0$	8862.683	8862.683	1.00	1.34	12.500	12.500	12.5	100.0	NO	
120	1... 13C5-PFHxA	$318.0>272.9$	20546.072	20546.072	1.00	3.06	12.500	12.500	12.5	100.0	NO	
121	1... 13C8-PFOA	$420.9>376.0$	20978.334	20978.334	1.00	4.18	12.500.	12.500	12.5	100.0	NO	
122	1... 1802-PFHxS	$403.0>102.6$	1043.126	1043.126	1.00	3.81	12.500	12.500	12.5	100.0	NO	
123	1... 13C9-PFNA	$472.2>426.9$	18463.406	18463.406	1.00	4.62	12.500	12.500	12.5	100.0	NO	
124	1... 13C4-PFOS	$503>79.7$	3704.790	3704.790	1.00	4.71	12.500	12.500	12.5	100.0	NO	
125	1... 13C6-PFDA	$519.1>473.7$	18507.713	18507.713	1.00	5.00	12.500	12.500	12.5	100.0	NO	
126	1... 13C7-PFUdA	$570.1>524.8$	19210.402	19210.402	1.00	5.32	12.500	12.500	12.5	100.0	NO	

Dataset:	Untitled
Last Altered:	Friday, February 28, 2020 11:57:34 Pacific Standard Time
Printed:	Friday, February 28, 2020 11:59:19 Pacific Standard Time

Method: P:\PFAS5.PRO\MethDB\NEW_PFAS_80C_022720.mdb 28 Feb 2020 10:51:32
Calibration: P:\PFAS5.PROICurveDBIC18_VAL-PFAS_Q5_02-27-20.cdb 28 Feb 2020 09:57:55
Compound name: PFBA

	\# Name	10	Acq. Dater	Acq. Time
1	$1200227 \mathrm{P}_{1-1}$	IPA	27-Feb-20	15:20:53
2	2 200227P1-2	IPA	27-Feb-20	15:31:38
3	3 200227P1-3	ST200227P1-1 PFC CS-2 20B1102	27-Feb-20	15:42:07
4	4 200227P1-4	ST200227P1-2 PFC CS-1 20B1 103	27-Feb-20	15:52:39
5	5 200227P1-5	ST200227P1-3 PFC CSO 20B1104	27-Feb-20	16:03:08
6	6 200227P1-6	ST200227P1-4 PFC CS1 20B1105	27-Feb-20	16:13:39
7	7 200227P1-7	ST200227P1-5 PFC CS2 20B1106	27-Feb-20	16:26:17
8	8 200227P1-8	ST200227P1-6 PFC CS3 20B1107	27-Feb-20	16:36:5i
9	9 200227P1-9	ST200227P1-7 PFC CS4 20B1 108	27-Feb-20	16:47:20
10	10 200227P1-10	ST200227P1-8 PFC CS5 20B1109	27-Feb-20	16:58:53
11	11 200227P1-11	ST200227P1-9 PFC CS6 20B1110	27-Feb-20	17:16:12
12	12 200227P1-12	ST200227P1-10 PFC CS7 20B1111	27-Feb-20	17:26:40
13	13 200227P1-13	IB	27-Feb-20	17:37:10
14	14 200227P1-14	ICV200227P1-1 PFC ICV 20B1112	27-Feb-20	17:47:42
15	15 200227P1-15	18	27-Feb-20	17:58:10
16	16 200227P1-16	B0B0123-BS1 OPR 0.25	27-Feb-20	18:08:42
17	17 200227P1-17	2000330-03 1003MW12S-202002140.25031	27-Feb-20	18:19:12
18	18 200227P1-18	2000330-02@5X 1003MW05S-202002140.25637	27-Feb-20	18:29:43
19	19 200227P1-19	2000330-05@5X 1003MW14S-202002140.25171	27-Feb-20	18:40:11
20	20 200227P1-20	1 B	27-Feb-20	18:50:43
21	21 200227P1-21	B0B0221-BLK1 Melhod Blank 0.125	27-Feb-20	19:01:12
22	22 200227P1-22	B0B0221-BS1 OPR 0.125	27-Feb-20	19:11:44
23	23 200227P1-23	B0B0221-BSD1 LCSD 0.125	27-Feb-20	19:22:14
24	24 200227P1-24	2000386-09 Field Blank 0.11512	27-Feb-20	19:32:43
25	25 200227P1-25	2000386-10 Equipment Blank 0.11758	27-Feb-20	19:43:15
26	26 200227P1-26	2000391-10 Field Blank 0.11887	27-Feb-20	19:53:46
27	27 200227P1-27	2000391-11 Equipment Blank 0.08216	27-Feb-20	20:04:15
28	28 200227P1-28	B0B0180-BLK1 Method Blank 2	27-Feb-20	20:14:45
29	29 200227P1-29	B0B0180-BS1 OPR 2	27-Feb-20	20:25:16
30	30 200227P1-30	B0B0180-MS1 Matrix Spike 2.14	27-Feb-20	20:35:46
31	31 200227P1-31	B0B0180-MSD1 Matrix Spike Dup 2.15	27-Feb-20	20:46:15
32	32 200227P1-32	2000315-01 S-SB06-00-20200210 2.29	27-Feb-20	20:56:47

Dataset:	Untitled
Last Altered:	Friday, February 28, 2020 11:57:34 Pacific Standard Time
Printed:	Friday, February 28, 2020 11:59:19 Pacific Standard Time

Compound name: PFBA

	去 Name	ID	Acq. Date	Acq.Time
33	33 200227P1-33	2000315-02 S-SB05-00-20200210 2.33	27-Feb-20	21:07:18
34	34 200227P1-34	2000315-03 S-SB05-4.5-20200210 2.26	27-Feb-20	21:17:46
35	35 200227P1-35	2000315-04 S-SB07-00-20200210 2.39	27-Feb-20	21:28:18
36	36 200227P1-36	2000315-05 S-SB07-05-20200210 2.31	27-Feb-20	21:38:49
37	37 200227P1-37	2000315-06 S-SB04-00-20200210 2.27	27-Feb-20	21:49:17
38	$38200227 \mathrm{P} 1-38$	2000315-07 S-SB04-4.5-20200210 2.25	27-Feb-20	21:59:48
39	39 200227P1-39	ST200227P1-11 PFC CS3 20B1107	27-Feb-20	22:10:19
40	40 200227P1-40	IB	27-Feb-20	22:20:48
41	41 200227P1-41	2000315-08 S-SB03-00-20200210 2.1	27-Feb-20	22:31:19
42	42 200227P1-42	2000315-09 S-SB12-02-20200210 2.27	27-Feb-20	22:41:50
43	43 200227P1-43	2000315-10 S-SB12-4.5-20200210 2.19	27-Feb-20	22:52:21
44	44 200227P1-44	2000315-11 S-SB09-00-20200210 2.32	27-Feb-20	23:02:49
45	45 200227P1-45	2000315-12 S-SB09-4.5-20200210 2.24	27-Feb-20	23:13:21
46	46 200227P1-46	2000315-13 S-SB08-00-20200210 2.13	27-Feb-20	23:23:49
47	47 200227P1-47	2000315-14 S-SB08-4.5-20200210 2.28	27-Feb-20	23:34:21
48	48 200227P1-48	B0B0184-BLK1 Method Blank 0.25	27-Feb-20	23:44:50
49	49 200227P1-49	B0B0184-BS1 OPR 0.25	27-Feb-20	23:55:22
50	50 200227P1-50	B0B0184-BSD1 LCSD 0.25	28-Feb-20	00:05:51
51	51 200227P1-51	2000354-01 S9MW55-20Q1 0.2499	28-Feb-20	00:16:22
52	52 200227P1-52	2000354-02 S9MW56-20Q1 0.24983	28-Feb-20	00:26:54
53	53 200227P1-53	2000354-03 S9MW59-20Q1 0.25123	28-Feb-20	00:37:23
54	54.200227P1-54	ST200227P1-12 PFC CS3 20B1107	28-Feb-20	00:47:54
55	55 200227P1-55	IB	28-Feb-20	00:58:24
56	56 200227P1-56	2000354-04 S9MW61L9-20Q1 0.25204	28-Feb-20	01:08:55
57	57.200227P1-57	2000354-05 91MW04-20Q1 0.24449	28-Feb-20	01:19:23
58	58 200227P1-58	2000354-06 S9SMW2A-20Q1 0.23864	28-Feb-20	01:29:55
59	59 200227P1-59	2000354-07 S9SMW 10-20Q1 0.24862	28-Feb-20	, 01:40:24
60	60 200227P1-60	2000354-09@5X S9MW61L1-20Q1 0.25585	28-Feb-20	01:50:55
61	61 200227P1-61	2000354-10@10X 91MW10-20Q1 0.24621	28-Feb-20	02:01:26
62	62 200227P1-62	B0B0183-BLK1 Method Blank 0.25	28-Feb-20	02:11:55
63	63 200227P1-63	B0B0183-BS1 OPR 0.25	28-Feb-20	.02:22:26
64	64 200227P1-64	B0B0183-BSD1 LCSD 0.25	28-Feb-20	02:32:57
65	65 200227P1-65	2000353-01@5X S9MW30-20Q1 0.25885	28-Feb-20	02:43:26
66	66 200227P1-66	IB	28-Feb-20	.02:53:57
67	67 200227P1-67	2000353-02 S9MW29-20Q1 0.2606	28-Feb-20	03:04:28
68	68 200227P1-68	2000353-03 S9MW28-20Q1 0.24763	28-Feb-20	03:14:58

Dataset:	Untitled
Last Altered:	Friday, February 28, 2020 11:57:34 Pacific Standard Time
Printed:	Friday, February 28, 2020 11:59:19 Pacific Standard Time

Compound name: PFBA

	\# Name	10	Acq. Date	Acq. Time
69	69 200227P1-69	2000353-04 S9MW27-20Q1 0.24573	28-Feb-20	03:25:27
70	70 200227P1-70	ST200227P1-13 PFC CSO 20B1104	28-Feb-20	03:35:59
71	71 200227P1-71	1 B	28-Feb-20	03:46:27
72	72 200227P1-72	2000353-05 S9SMW3-20Q1 0.24	28-Feb-20	03:57:00
73	73 200227P1-73	2000353-06 S9MW21-2001 0.24253	28-Feb-20	04:07:28
74	74 200227P1-74	2000353-07@5X S9MW22-20Q1 0.251	28-Feb-20	.04:18:00
75	75 200227P1-75	2000353-08@5X S9MW23-20Q1 0.25701	28-Feb-20	04:28:30
76	$76200227 \mathrm{P} 1-76$	IB	28-Feb-20	04:38:59
77	77 200227P1-77	2000353-09 S9MW26-2001 0.25354	28-Feb-20	04:49:31
78	78 200227P1-78	2000353-10 S9MW68L1-20Q1 0.25186	28-Feb-20	.04:59:59
79	79 200227P1-79	2000353-11 S9MW71L9-20Q1 0.252	28-Feb-20	05:10:29
80	80 200227P1-80	B0B0218-BLK1 Method Blank 0.01	28-Feb-20	05:21:02
81	81 200227P1-81	B0B0218-BLK2 Method Blank 0.01	28-Feb-20	05:31:32
82	82 200227P1-82	B0B0218-BS1 OPR 0.01	28-Feb-20	05:42:01
$8: 3$	83 200227P1-83	B0B0218-BS2 OPR 0.01	28-Feb-20	05:52:32
184	84 200227P1-84	2000319-17@10X W-SB03-20200211 0.25482	28-Feb-20	06:03:03
85	85 200227P1-85	2000319-18@10X DUP01-202002110.25556	28-Feb-20	06:13:33
86	86 200227P1-86	ST200227P1-14 PFC CS3 20B1107	28-Feb-20	06:24:04
87	87 200227P1-87	IB	28-Feb-20	06:34:35
88	88 200227P1-88	2000354-08 S9MW 15-2001 0.25813	28-Feb-20	06:45:03
89	89 200227P1-89	2000314-08@10X BMW07S-202002120.2539	28-Feb-20	06:55:34
90	90 200227P1-90	PACKERS QC	28-Feb-20	.07:06:05
91	91 200227P1-91	FLIPPER QC	28-Feb-20	07:16:35
92	92 200227P1-92	ST200227P1-15 PFC CS3 20B1107	28-Feb-20	07:27:04
93	93 200227P1-93	IB	28-Feb-20	07:37:35

Dataset: P:IPFAS5.PROIRESULTSL200227P1\200227P1-92.qld

Last Altered: Friday, February 28, 2020 11:21:57 Pacific Standard Time
Printed: Friday, February 28, 2020 11:26:34 Pacific Standard Time

Method: P:\PFAS5.PRO\MethDBINEW_PFAS_80C_022720.mdb 28 Feb 2020 10:51:32
Calibration: P:\PFAS5.PRO\CurveDB\C18_VAL-PFAS_Q5_02-27-20.cdb 28 Feb 2020 09:57:55
Name: 200227P1-92, Date: 28-Feb-2020, Time: 07:27:04, ID: ST200227P1-15 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

Dataset:	P:IPFAS5.PRO\RESULTSL200227P11200227P1-92.qld
Last Altered:	Friday, February 28, 2020 11:21:57 Pacific Standard Time
Printed:	Friday, February 28, 2020 11:26:34 Pacific Standard Time

Name: 200227P1-92, Date: 28-Feb-2020, Time: 07:27:04, ID: ST200227P1-15 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

Name: 200227P1-92, Date: 28-Feb-2020, Time: 07:27:04, ID: ST200227P1-15 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

Dataset: P:IPFAS5.PROIRESULTSL200227P1L200227P1-92.qld
Last Altered: Friday, February 28, 2020 11:21:57 Pacific Standard Time
Printed: Friday, February 28, 2020 11:26:34 Pacific Standard Time

Name: 200227P1-92, Date: 28-Feb-2020, Time: 07:27:04, ID: ST200227P1-15 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

Dataset:	P:IPFAS5.PROURESULTSL200227P1L200227P1-92.qId
Last Altered:	Friday, February 28, 2020 11:21:57 Pacific Standard Time
Printed:	Friday, February 28, 2020 11:26:34 Pacific Standard Time

Name: 200227P1-92, Date: 28-Feb-2020, Time: 07:27:04, ID: ST200227P1-15 PFC CS3 20B1107, Description: PFC CS3 20 B 1107

Dataset:	P:IPFAS5.PROURESULTSL200227P1\200227P1-92.qld
Last Altered:	Friday, February 28, 2020 11:21:57 Pacific Standard Time
Printed:	Friday, February 28, 2020 11:26:34 Pacific Standard Time

Name: 200227P1-92, Date: 28-Feb-2020, Time: 07:27:04, ID: ST200227P1-15 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

Dataset: P:IPFAS5.PRO\RESULTSL200227P11200227P1-92.qld

Last Altered: Friday, February 28, 2020 11:21:57 Pacific Standard Time
Printed: Friday, February 28, 2020 11:26:34 Pacific Standard Time

Name: 200227P1-92, Date: 28-Feb-2020, Time: 07:27:04, ID: ST200227P1-15 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

Dataset:	P:IPFAS5.PRO\RESULTSL200227P1\200227P1-92.qld
Last Altered:	Friday, February 28, 2020 11:21:57 Pacific Standard Time
Printed:	Friday, February 28, 2020 11:26:34 Pacific Standard Time

Name: 200227P1-92, Date: 28-Feb-2020, Time: 07:27:04, ID: ST200227P1-15 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

Dataset:	P:IPFAS5.PRO\RESULTSL200227P1\200227P1-92.qld
Last Altered:	Friday, February 28, 2020 11:21:57 Pacific Standard Time
Printed:	Friday, February 28, 2020 11:26:34 Pacific Standard Time

Name: 200227P1-92, Date: 28-Feb-2020, Time: 07:27:04, ID: ST200227P1-15 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

Dataset: P:IPFAS5.PRO\RESULTSL200227P1\200227P1-92.qld
Last Altered: Friday, February 28, 2020 11:21:57 Pacific Standard Time
Printed: Friday, February 28, 2020 11:26:34 Pacific Standard Time

Name: 200227P1-92, Date: 28-Feb-2020, Time: 07:27:04, ID: ST200227P1-15 PFC CS3 20B1107, Description: PFC CS3 20B1107

d7-N-MeFOSE-RSD
 F65:MRM of 1 channel,ES$623.1>58.9$ $6.133 e+005$

13C9-PFNA
F36:MRM of 1 channel ES

d9-N-EtFOSE-RSD

F70:MRM of 1 channel,ES $639.2>58.8$ $8.569 e+005$

13C6-PFDA

13C7-PFUdA

INITIAL CALIBRATION (ICAL)
 INCLUDING ASSOCIATED

INITIAL CALIBRATION VERIFICATION (ICV) AND INSTRUMENT BLANK (IB)

Quantify Compound Summary Report MassLynx V4.2 SCN977Vista Analytical Laboratory		Low point	high point:	
		4: 2 FTS: 0.5	3:3 FTCA: 100	Page 1 of 13
Dataset:	D:IPFAS5.PROIRESULTSL200220P11200220P1-CRV.qld	$\begin{aligned} \angle-P F H \times S: & 1.0 \\ 6: 2 \text { FTS: } & 1.0 \end{aligned}$	$\begin{aligned} & 4: 2 \text { FTS: } 100 \\ & 5: 3 \text { FTCA: } 100 \end{aligned}$	
Last Altered: Printed:	Friday, February 21, 2020 15:57:11 Pacific Standard Time Friday, February 21, 2020 16:01:04 Pacific Standard Time	$7: 3$ FTCA: 0.5	PFHp S : 250	
			$\begin{aligned} & 7: 3 \text { FTCA: } 10 \\ & \text { EHFOSE: } 125 \end{aligned}$	

Method: D:IPFAS5.PROMMethDBINEW PFAS 80C 022020.mdb 21 Feb 2020 08:56:55

Calibration: D:IPFAS5.PROICurveDBIC18_VAL-PFAS_Q5_02-20-20.cdb 21 Feb 2020 15:57:11

Compound name: PFBA

Correlation coefficient: $\mathrm{r}=0.999717, \mathrm{r} 2=0.999434$
Calibration curve: 1.13327 * $x+-0.14129$
Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	COD Flag	x=excluded
1	$1200220 \mathrm{P} 1-3$	Standard	0.250	1.48	114.344	9487.311	0.151	0.3	3.0	NO	0.999	NO	MM
2	2 200220P1-4	Standard	0.500	1.48	338.405	10062.216	0.420	0.5	-0.9	NO	0.999	NO	MM
3	3 200220P1-5	Standard	1.000	1.48	764.124	9933.468	0.962	1.0	-2.7	NO	0.999	NO	MM
4	4 200220P1-6	Standard	2.000	1.48	1378.009	9932.887	1.734	1.7	-17.3	NO	0.999	NO	MM
5	5 200220P1-7	Standard	5.000	1.48	4600.956	9930.719	5.791	5.2	4.7	NO	0.999	NO	MM
6	$6200220 \mathrm{P} 1-8$	Standard	10.000	1.48	9853.644	10304.131	11.954	10.7	6.7	NO	0.999	NO	MM
7	7 200220P1-9	Standard	50.000	1.48	46610.254	9874.855	59.001	52.2	4.4	NO	0.999	NO	bb
8	$8200220 \mathrm{P} 1-10$	Standard	100.000	1.48	94108.695	9955.766	118.159	104.4	4.4	NO	0.999	NO	bb
9	9 200220P1-11	Standard	250.000	1.48	236935.703	10671.288	277.539	245.0	-2.0	NO	0.999	NO	MM
10	$10200220 \mathrm{P} 1-12$	Standard	500.000	1.48	456029.406	10105.821	564.068	497.9	-0.4	NO	0.999	NO	bb

Compound name: PFPrS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999844$
Calibration curve: $3.06967 \mathrm{e}-005{ }^{*} x^{\wedge} 2+1.5689$ * $x+-0.0816588$
Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$\mathrm{x}=$ excluded
1	1 200220P1-3	Standard	0.250	1.79	22.296	1365.844	0.204	0.2	-27.2	NO	1.000	NO	MM
2	2 200220P1-4	Standard	0.500	1.81	88.434	1376.906	0.803	0.6	12.8	NO	1.000	NO	MM
3	$3200220 \mathrm{P} 1-5$	Standard	1.000	1.81	183.886	1404.860	1.636	1.1	9.5	NO	1.000	NO	MM
4	4 200220P1-6	Standard	2.000	1.82	327.924	1379.710	2.971	1.9	-2.7	NO	1.000	NO	MM
5	$5200220 \mathrm{P} 1-7$	Standard	5.000	1.81	894.358	1372.543	8.145	5.2	4.9	NO	1.000	NO	MM
6	$6200220 \mathrm{P} 1-8$	Standard	10.000	1.81	1841.685	1431.448	16.082	10.3	3.0	NO	1.000	NO	bb
7	7 200220P1-9	Standard	50.000	1.81	9064.380	1460.737	77.567	49.4	-1.1	NO	1.000	NO	bb
8	$8200220 \mathrm{P} 1-10$	Standard	100.000	1.81	18035.078	1408.211	160.089	101.9	1.9	NO	1.000	NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	250.000	1.81	43405.125	1394.472	389.082	246.9	-1.3	NO	1.000	NO	MM
10	$10200220 \mathrm{P} 1-12$	Standard	500.000	1.81	82543.383	1299.467	794.012	501.2	0.2	NO	1.000	NO	MM

Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed: Friday, February 21, 2020 11:08:04 Pacific Standard Time

Compound name: 3:3 FTCA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999097$
Calibration curve: $1.57358 \mathrm{e}-005^{*} x^{\wedge} 2+0.072826$ * $x+-0.000475915$
Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Sta. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 200220P1-3	Standard	0.250	2.26	13.025	11699.041	0.014	0.2	-21.0	NO	0.999	NO	MM
2	2 200220P1-4	Standard	0.500	2.27	38.197	12014.812	0.040	0.6	10.4	NO	0.999	NO	bb
3	3 200220P1-5	Standard	1.000	2.26	71.823	12028.183	0.075	1.0	3.1	NO	0.999	NO	bb
4	4 200220P1-6	Standard	2.000	2.26	135.686	12187.951	0.139	1.9	-4.2	NO	0.999	NO	bb
5	5 200220P1-7	Standard	5.000	2.26	360.385	11945.819	0.377	5.2	3.6	NO	0.999	NO	bb
6	6 200220P1-8	Standard	10.000	2.26	742.811	11792.354	0.787	10.8	7.9	NO	0.999	NO	bb
7	7 200220P1-9	Standard	50.000	2.26	3537.180	12425.581	3.558	48.4	-3.3	NO	0.999	NO	bb
8	8 200220P1-10	Standard	100.000	2.26	7146.531	11920.406	7.494	100.7	0.7	NO	0.999	NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	250.000	2.26	3676.616	12522.962	3.670	49.9	-80.1	YES	0.999	NO	bbX
10	10 200220P1-12	Standard	500.000	2.26	7165.609	11549.170	7.756	104.2	-79.2	YES	0.999	NO	bbX

Compound name: PFPeA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999471$
Calibration curve: $-6.39644 \mathrm{e}-006^{*} x^{\wedge} 2+0.970478$ * $x+0.0497364$
Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Sid. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	COD Flag	$x=$ excluded
1	1 200220P1-3	Standard	0.250	2.41	260.699	11699.041	0.279	0.2	-5.7	NO	0.999	NO	bb
2	2 200220P1-4	Standard	0.500	2.40	519.399	12014.812	0.540	0.5	1.1	NO	0.999	NO	bb
3	3 200220P1-5	Standard	1.000	2.40	1076.600	12028.183	1.119	1.1	10.2	NO	0.999	NO	bb
4	4 200220P1-6	Standard	2.000	2.40	1983.295	12187.951	2.034	2.0	2.2	NO	0.999	NO	bb
5	5 200220P1-7	Standard	5.000	2.40	4904.038	11945.819	5.132	5.2	4.7	NO	0.999	NO	bb
6	6 200220P1-8	Standard	10.000	2.40	9800.875	11792.354	10.389	10.7	6.5	NO	0.999	NO	bb
7	7 200220P1-9	Standard	50.000	2.41	48495.246	12425.581	48.786	50.2	0.5	NO	0.999	NO	bb
8	$8200220 \mathrm{P} 1-10$	Standard	100.000	2.40	95766.477	11920.406	100.423	103.5	3.5	NO	0.999	NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	250.000	2.41	234900.938	12522.962	234.470	241.9	-3.2	NO	0.999	NO	bb
10	10 200220P1-12	Standard	500.000	2.41	449838.531	11549.170	486.873	503.3	0.7	NO	0.999	NO	bb

Dataset:	D:IPFAS5.PROIRESULTSL200220P1 1200220 P1-CRV.qld
Last Altered:	Friday, February 21, 2020 12:12:49 Pacific Standard Time
Printed:	Friday, February 21, 2020 12:14:23 Pacific Standard Time

Compound name: PFB

Correlation coefficient: $r=0.999743, r^{\wedge} 2=0.999487$
Calibration curve: 2.28739 * $x+0.162081$
Response type: Internal Std (Ref 51), Area * IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Narne	Typet	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	$1200220 \mathrm{P} 1-3$	Standard	0.250	2.67	85.058	1365.844	0.778	0.3	7.8	NO	0.999	NO	bb
2	2 200220P1-4	Standard	0.500	2.67	120.053	1376.906	1.090	0.4	-18.9	NO	0.999	NO	bb
3	3 200220P1-5	Standard	1.000	2.67	301.505	1404.860	2.683	1.1	10.2	NO	0.999	NO	bb
4	4 200220P1-6	Standard	2.000	2.67	547.269	1379.710	4.958	2.1	4.8	NO	0.999	NO	bb
5	5 200220P1-7	Standard	5.000	2.67	1388.816	1372.543	12.648	5.5	9.2	NO	0.999	NO	bb
6	$6200220 \mathrm{P} 1-8$	Standard	10.000	2.67	2914.079	1431.448	25.447	11.1	10.5	NO	0.999	NO	bb
7	7 200220P1-9	Standard	50.000	2.67	13728.507	1460.737	117.479	51.3	2.6	NO	0.999	NO	bb
8	8 200220P1-10	Standard	100.000	2.67	26823.348	1408.211	238.098	104.0	4.0	NO	0.999	NO	bb
9	9 200220P1-11	Standard	250.000	2.67	63150.883	1394.472	566.082	247.4	-1.0	NO	0.999	NO	bb
10	10 200220P1-12	Standard	500.000	2.67	117877.250	1299.467	1133.900	495.6	-0.9	NO	0.999	NO	bb

Compound name: 4:2 FTS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997734$
Calibration curve: -0.00410682 * $x^{\wedge} 2+1.6845{ }^{*} x+-0.166626$
Response type: Internal Std (Ref 55), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COL	CoD Flag	$x=$ excluded
1	$1200220 \mathrm{P} 1-3$	Standard	0.250	3.10	23.492	1393.605	0.211	0.2	-10.3	NO	0.998	NO	bbX
2	2 200220P1-4	Standard	0.500	3.10	106.473	1509.668	0.882	0.6	24.6	NO	0.998	NO	bb
3	3 200220P1-5	Standard	1.000	3.10	134.131	1646.149	1.019	0.7	-29.5	NO	0.998	NO	bb
4	4 200220P1-6	Standard	2.000	3.10	346.055	1525.886	2.835	1.8	-10.5	NO	0.998	NO	bb
5	5 200220P1-7	Standard	5.000	3.10	842.602	1435.392	7.338	4.5	-9.9	NO	0.998	NO	bb
6	$6200220 \mathrm{P} 1-8$	Standard	10.000	3.10	1835.215	1359.106	16.879	10.4	3.8	NO	0.998	NO	bb
7	7 200220P1-9	Standard	50.000	3.10	8668.705	1435.273	75.497	51.3	2.7	NO	0.998	NO	bb
8	8 200220P1-10	Standard	100.000	3.10	15839.246	1566.971	126.352	99.0	-1.0	NO	0.998	NO	bb
9	9 200220P1-11	Standard	250.000	3.10	38464.855	1533.484	313.541			NO	0.998	YES	bbXI
10	10 200220P1-12	Standard	500.000	3.10	71865.234	1302.366	689.757			NO	0.998	YES	bbXI

Dataset:
D:IPFAS5.PROIRESULTSL200220P1【200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed:
Friday, February 21, 2020 11:08:04 Pacific Standard Time

Compound name: PFHxA

Correlation coefficient: $r=0.999392, r^{\wedge} 2=0.998785$
Calibration curve: 0.886822 * $x+0.0669668$
Response type: Internal Std (Ref 57), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$\mathrm{x}=$ excluded
1	$1200220 \mathrm{Pl} 1-3$	Standard	0.250	3.18	456.113	20012.639	0.285	0.2	-1.7	NO	0.999	NO	bd
2	2 200220P1-4	Standard	0.500	3.18	714.165	20000.619	0.446	0.4	-14.4	NO	0.999	NO	bb
3	3 200220P1-5	Standard	1.000	3.18	1607.009	20397.721	0.985	1.0	3.5	NO	0.999	NO	bb
4	4 200220P1-6	Standard	2.000	3.18	3378.583	20893.373	2.021	2.2	10.2	NO	0.999	NO	bb
5	5 200220P1-7	Standard	5.000	3.18	8269.901	20659.924	5.004	5.6	11.3	NO	0.999	NO	bb
6	$6200220 \mathrm{P} 1-8$	Standard	10.000	3.18	16325.025	20452.928	9.977	11.2	11.7	NO	0.999	NO	bb
7	7 200220P1-9	Standard	50.000	3.18	77819.195	20628.305	47.156	53.1	6.2	NO	0.999	NO	bb
8	8 200220P1-10	Standard	100.000	3.18	163157.344	22022.600	92.608	104.4	4.4	NO	0.999	NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	250.000	3.18	391642.469	21680.693	225.801	254.5	1.8	NO	0.999	NO	bb
10	10 200220P1-12	Standard	500.000	3.18	729646.875	21153.855	431.155	486.1	-2.8	NO	0.999	NO	bb

Compound name: PFPeS

Correlation coefficient: $r=0.998339, r^{\wedge} 2=0.996680$
Calibration curve: 2.05532 * $x+0.247448$
Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Sta. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	$1200220 \mathrm{P} 1-3$	Standard	0.250	3.37	69.269	1365.844	0.634	0.2	-24.8	NO	0.997	NO	bb
2	2 200220P1-4	Standard	0.500	3.37	157.285	1376.906	1.428	0.6	14.9	NO	0.997	NO	bb
3	3 200220P1-5	Standard	1.000	3.37	231.103	1404.860	2.056	0.9	-12.0	NO	0.997	NO	bb
4	4 200220P1-6	Standard	2.000	3.38	583.101	1379.710	5.283	2.4	22.5	NO	0.997	NO	bb
5	5 200220P1-7	Standard	5.000	3.37	1316.739	1372.543	11.992	5.7	14.3	NO	0.997	NO	bb
6	6 200220P1-8	Standard	10.000	3.37	2779.698	1431.448	24.273	11.7	16.9	NO	0.997	NO	bb
7	7 200220P1-9	Standard	50.000	3.38	13105.560	1460.737	112.149	54.4	8.9	NO	0.997	NO	bb
8	$8200220 \mathrm{Pl} 1-10$	Standard	100.000	3.37	26037.061	1408.211	231.118	112.3	12.3	NO	0.997	NO	bb
9	$9200220 \mathrm{P}_{1-11}$	Standard	250.000	3.38	56289.430	1394.472	504.577	245.4	-1.8	NO	0.997	NO	bb
10	10 200220P1-12	Standard	500.000	3.37	103675.352	1299.467	997.287	485.1	-3.0	NO	0.997	NO	bb

Dataset:

D:IPFAS5.PRO\RESULTSI200220P1\200220P1-CRV.qld
Last Altered:
Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed:
Friday, February 21, 2020 11:08:04 Pacific Standard Time

Compound name: HFPO-DA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999574$
Calibration curve: -0.000236652 * $x^{\wedge} 2+1.03625$ * $x+0.0401894$
Response type: Internal Std (Ref 53), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	AT	Area	IS Área	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 200220P1-3	Standard	0.250	3.39	81.286	3617.354	0.281	0.2	-7.1	NO	1.000	NO	bb
2	2 200220P1-4	Standard	0.500	3.39	166.843	3805.080	0.548	0.5	-2.0	NO	1.000	NO	bb
3	3 200220P1-5	Standard	1.000	3.39	347.017	3645.414	1.190	1.1	11.0	NO	1.000	NO	bb
4	4 200220P1-6	Standard	2.000	3.39	619.700	3855.269	2.009	1.9	-4.9	NO	1.000	NO	bb
5	5 200220P1-7	Standard	5.000	3.39	1657.558	3620.540	5.723	5.5	9.8	NO	1.000	NO	bb
6	6 200220P1-8	Standard	10.000	3.39	3247.886	3663.977	11.080	10.7	6.8	NO	1.000	NO	bb
7	7 200220P1-9	Standard	50.000	3.39	16100.552	3789.079	53.115	51.8	3.7	NO	1.000	NO	bb
8	8 200220P1-10	Standard	100.000	3.39	32044.715	3947.845	101.463	100.2	0.2	NO	1.000	NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	250.000	3.39	78015.531	4091.144	238.367	243.5	-2.6	NO	1.000	NO	bb
10	10 200220P1-12	Standard	500.000	3.39	146596.672	3968.618	461.737	503.4	0.7	NO	1.000	NO	bb

Compound name: 5:3 FTCA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999659$
Calibration curve: $0.000117104{ }^{*} x^{\wedge} 2+0.178925 * x+-0.00538648$
Response type: Internal Std (Ref 59), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 200220P1-3	Standard	0.250	3.72	35.358	12482.621	0.035	0.2	-8.8	NO	1.000	NO	bb
2	2 200220P1-4	Standard	0.500	3.73	80.726	13031.973	0.077	0.5	-7.5	NO	1.000	NO	bb
3	3 200220P1-5	Standard	1.000	3.72	214.466	12972.090	0.207	1.2	18.4	NO	1.000	NO	bb
4	4 200220P1-6	Standard	2.000	3.72	352.873	13052.814	0.338	1.9	-4.2	NO	1.000	NO	bb
5	5 200220P1-7	Standard	5.000	3.72	967.489	12941.929	0.934	5.2	4.7	NO	1.000	NO	bb
6	6 200220P1-8	Standard	10.000	3.73	1935.316	13835.021	1.749	9.7	-2.6	NO	1.000	NO	bb
7	7 200220P1-9	Standard	50.000	3.73	9707.428	13156.412	9.223	49.9	-0.1	NO	1.000	NO	bb
8	$8200220 \mathrm{P} 1-10$	Standard	100.000	3.73	19054.666	12492.564	19.066	100.0	0.0	NO	1.000	NO	bb
9	9 200220P1-11	Standard	250.000	3.73	9894.734	13479.294	9.176	49.7	-80.1	YES	1.000	NO	bbX
10	10 200220P1-12	Standard	500.000	3.73	19486.533	12425.425	19.603	102.7	-79.5	YES	1.000	NO	bbX

Dataset:	D:IPFAS5.PRO\RESULTSI200220P1L200220P1-CRV.qld
Last Altered:	Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed:	Friday, February 21, 2020 11:08:04 Pacific Standard Time

Compound name: PFHpA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999188$
Calibration curve: $-0.000176223^{*} x^{\wedge} 2+1.2409$ * $x+0.0769235$
Response type: Internal Std (Ref 59), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Sto. Conc	RT	Area	is Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 200220P1-3	Standard	0.250	3.78	341.760	12482.621	0.342	0.2	-14.5	NO	0.999	NO	bb
2	2 200220P1-4	Standard	0.500	3.78	657.364	13031.973	0.631	0.4	-10.8	NO	0.999	NO	bb
3	3 200220P1-5	Standard	1.000	3.78	1407.119	12972.090	1.356	1.0	3.1	NO	0.999	NO	bb
4	4 200220P1-6	Standard	2.000	3.78	2897.300	13052.814	2.775	2.2	8.7	NO	0.999	NO	db
5	5 200220P1-7	Standard	5.000	3.78	7136.113	12941.929	6.892	5.5	9.9	NO	0.999	NO	bd
6	$6200220 \mathrm{P} 1-8$	Standard	10.000	3.78	13770.062	13835.021	12.441	10.0	-0.2	NO	0.999	NO	bb
7	7 200220P1-9	Standard	50.000	3.78	67110.016	13156.412	63.762	51.7	3.4	NO	0.999	NO	bb
8	8 200220P1-10	Standard	100.000	3.78	126632.930	12492.564	126.708	103.6	3.6	NO	0.999	NO	bb
9	9200220 P1-11	Standard	250.000	3.78	309706.594	13479.294	287.206	239.5	-4.2	NO	0.999	NO	bb
10	10 200220P1-12	Standard	500.000	3.78	577966.313	12425.425	581.435	504.7	0.9	NO	0.999	NO	bb

Compound name: ADONA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998312$
Calibration curve: $-0.000366708^{*} x^{\wedge} 2+3.09045$ * $x+0.169928$
Response type: Internal Std (Ref 59), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flagi	$x=$ excluded
1	1 200220P1-3	Standard	0.250	3.88	865.550	12482.621	0.867	0.2	-9.8	NO	0.998	NO	bb
2	2 200220P1-4	Standard	0.500	3.88	1726.728	13031.973	1.656	0.5	-3.8	NO	0.998	NO	bb
3	3 200220P1-5	Standard	1.000	3.88	3461.124	12972.090	3.335	1.0	2.4	NO	0.998	NO	bb
4	4 200220P1-6	Standard	2.000	3.88	6781.827	13052.814	6.495	2.0	2.4	NO	0.998	NO	bb
5	5 200220P1-7	Standard	5.000	3.88	17523.332	12941.929	16.925	5.4	8.5	NO	0.998	NO	bb
6	$6200220 \mathrm{P} 1-8$	Standard	10.000	3.89	34074.398	13835.021	30.786	9.9	-0.8	NO	0.998	NO	bb
7	7 200220P1-9	Standard	50.000	3.88	155520.281	13156.412	147.761	48.0	-3.9	NO	0.998	NO	bb
8	$8200220 \mathrm{P} 1-10$	Standard	100.000	3.88	332244.719	12492.564	332.442	108.9	8.9	NO	0.998	NO	bb
9	9 200220P1-11	Standard	250.000	3.88	771426.625	13479.294	715.381	238.2	-4.7	NO	0.998	NO	bb
10	10 200220P1-12	Standard	500.000	3.89	1457423.375	12425.425	1466.171	504.6	0.9	NO	0.998	NO	bb

Dataset:	D:IPFAS5.PRO\RESULTSL200220P11200220P1-CRV.qld
Last Altered:	Friday, February 21, 2020 15:57:11 Pacific Standard Time
Printed:	Friday, February 21, 2020 16:01:04 Pacific Standard Time

Compound name: L-PFHxS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998709$
Calibration curve: $-0.000159606^{*} x^{\wedge} 2+1.08217^{*} x+0.312795$
Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	is Area	Response	Conc.	\%Dev	Conc. Flag	CoD	COD Flag	x=excluded
1	$1200220 \mathrm{P} 1-3$	Standard	0.250	3.90	29.072	3082.791	0.118			NO	0.999	NO	MMXI
2	2 200220P1-4	Standard	0.500	3.92	123.214	2944.146	0.523	0.2	-61.1	YES	0.999	NO	MMX
3	$3200220 \mathrm{P} 1-5$	Standard	1.000	3.92	335.544	2706.117	1.550	1.1	14.3	NO	0.999	NO	MM
4	4 200220P1-6	Standard	2.000	3.92	558.294	2868.805	2.433	2.0	-2.0	NO	0.999	NO	MM
5	$5200220 \mathrm{P} 1-7$	Standard	5.000	3.92	1349.810	3001.214	5.622	4.9	-1.8	NO	0.999	NO	MM
6	$6200220 \mathrm{P} 1-8$	Standard	10.000	3.92	2450.807	3158.346	9.700	8.7	-13.1	NO	0.999	NO	MM
7	7 200220P1-9	Standard	50.000	3.92	13034.770	3093.076	52.677	48.7	-2.5	NO	0.999	NO	MM
8	8 200220P1-10	Standard	100.000	3.92	26240.422	2849.217	115.121	107.8	7.8	NO	0.999	NO	MM
9	$9200220 \mathrm{P} 1-11$	Standard	250.000	3.92	60673.395	2998.248	252.954	242.1	-3.2	NO	0.999	NO	MM
10	10 200220P1-12	Standard	500.000	3.92	110952.781	2751.881	503.986	502.7	0.5	NO	0.999	NO	MM

Compound name: 6:2 FTS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998365$
Calibration curve: $-0.00033273^{*} x^{\wedge} 2+1.66674$ * $x+-0.842375$
Response type: Internal Std (Ref 63), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	1 200220P1-3	Standard	0.250	4.22	45.613	1369.139	0.416	0.8	202.1	YES	0.998	NO	bbX
2	2 200220P1-4	Standard	0.500	4.23	66.722	1283.517	0.650	0.9	79.1	YES	0.998	NO	$b b x$
3	3 200220P1-5	Standard	1.000	4.22	80.819	1230.354	0.821	1.0	-0.2	NO	0.998	NO	bb
4	4 200220P1-6	Standard	2.000	4.23	272.227	1431.884	2.376	1.9	-3.4	NO	0.998	NO	bb
5	5 200220P1-7	Standard	5.000	4.23	740.849	1408.519	6.575	4.5	-10.9	NO	0.998	NO	bb
6	6 200220P1-8	Standard	10.000	4.23	2199.027	1518.842	18.098	11.4	13.9	NO	0.998	NO	bb
7	7 200220P1-9	Standard	50.000	4.23	9342.231	1479.055	78.954	48.3	-3.3	NO	0.998	NO	bb
8	$8200220 \mathrm{P}_{1-10}$	Standard	100.000	4.23	18173.836	1302.443	174.421	107.5	7.5	NO	0.998	NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	250.000	4.23	43310.102	1430.818	378.368	238.9	-4.4	NO	0.998	NO	bb
10	10 200220P1-12	Standard	500.000	4.23	76247.234	1261.472	755.538	504.6	0.9	NO	0.998	NO	bb

Compound name: L-PFOA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999639$
Calibration curve: $-0.000239807^{*} x^{\wedge} 2+1.20196$ * $x+0.0927861$
Response type: Internal Std (Ref 69), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	St. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	$1200220 \mathrm{P} 1-3$	Standard	0.250	4.29	451.677	18027.223	0.313	0.2	-26.6	NO	1.000	NO	MM
2	2 200220P1-4	Standard	0.500	4.29	1207.397	19048.508	0.792	0.6	16.4	NO	1.000	NO	bb
3	3 200220P1-5	Standard	1.000	4.29	2008.972	17893.020	1.403	1.1	9.1	NO	1.000	NO	bb
4	4 200220P1-6	Standard	2.000	4.29	3576.485	18471.129	2.420	1.9	-3.1	NO	1.000	NO	bb
5	5 200220P1-7	Standard	5.000	4.29	9384.403	18048.473	6.499	5.3	6.7	NO	1.000	NO	bb
6	6 200220P1-8	Standard	10.000	4.29	18400.063	19089.504	12.049	10.0	-0.3	NO	1.000	NO	bb
7	7 200220P1-9	Standard	50.000	4.29	89483.125	18834.941	59.386	49.8	-0.3	NO	1.000	NO	bb
8	8 200220P1-10	Standard	100.000	4.29	162341.453	17822.139	113.862	96.5	-3.5	NO	1.000	NO	bb
9	9 200220P1-11	Standard	250.000	4.29	403461.906	17296.020	291.586	255.5	2.2	NO	1.000	NO	bb
10	10 200220P1-12	Standard	500.000	4.29	715704.875	16599.553	538.949	497.7	-0.5	NO	1.000	NO	bb

Compound name: PFecHS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999604$
Calibration curve: $-4.3388 \mathrm{e}-005$ * $x^{\wedge} 2+0.182512$ * $x+-0.0109277$
Response type: Internal Std (Ref 69), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1200220 P1-3	Standard	0.250	4.30	33.094	18027.223	0.023	0.2	-25.8	NO	1.000	NO	bb
2	2 200220P1-4	Standard	0.500	4.30	114.457	19048.508	0.075	0.5	-5.7	NO	1.000	NO	bb
3	3 200220P1-5	Standard	1.000	4.30	287.442	17893.020	0.201	1.2	16.0	NO	1.000	NO	bb
4	4 200220P1-6	Standard	2.000	4.31	484.476	18471.129	0.328	1.9	-7.1	NO	1.000	NO	bd
5	5 200220P1-7	Standard	5.000	4.30	1381.767	18048.473	0.957	5.3	6.2	NO	1.000	NO	bb
6	$6200220 \mathrm{P} 1-8$	Standard	10.000	4.30	2634.252	19089.504	1.725	9.5	-4.7	NO	1.000	NO	dd
7	7 200220P1-9	Standard	50.000	4.30	12852.290	18834.941	8.530	47.3	-5.3	NO	1.000	NO	bb
8	8 200220P1-10	Standard	100.000	4.30	25771.445	17822.139	18.075	101.5	1.5	NO	1.000	NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	250.000	4.30	60072.121	17296.020	43.415	253.2	1.3	NO	1.000	NO	bb
10	10 200220P1-12	Standard	500.000	4.30	106420.625	16599.553	80.138	498.1	-0.4	NO	1.000	NO	bb

Vista Analytical Laboratory
Dataset:
D:\PFAS5.PROIRESULTSI200220P11200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 12:12:49 Pacific Standard Time
Printed:
Friday, February 21, 2020 12:14:23 Pacific Standard Time

Compound name: PFHpS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999329$
Calibration curve: $-0.00121734^{*} x^{\wedge} 2+1.09408^{*} x+-0.0589565$
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Narne	Type	Sta. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1200220 P1-3	Standard	0.250	4.39	47.365	3134.899	0.189	0.2	-9.4	NO	0.999	NO	bb
2	2 200220P1-4	Standard	0.500	4.40	149.548	3339.188	0.560	0.6	13.2	NO	0.999	NO	bb
3	3 200220P1-5	Standard	1.000	4.40	294.343	3403.621	1.081	1.0	4.3	NO	0.999	NO	bb
4	4 200220P1-6	Standard	2.000	4.39	572.504	3671.517	1.949	1.8	-8.0	NO	0.999	NO	bb
5	$5200220 \mathrm{P} 1-7$	Standard	5.000	4.40	1655.088	3582.422	5.775	5.4	7.3	NO	0.999	NO	bb
6	$6200220 \mathrm{P} 1-8$	Standard	10.000	4.40	2959.309	3697.559	10.004	9.3	-7.1	NO	0.999	NO	bb
7	7 200220P1-9	Standard	50.000	4.40	12675.344	3148.619	50.321	48.7	-2.6	NO	0.999	NO	bb
8	8 200220P1-10	Standard	100.000	4.40	27197.340	3413.870	99.584	102.8	2.8	NO	0.999	NO	bb
9	9 200220P1-11	Standard	250.000	4.40	56635.297	3599.188	196.695	248.6	-0.6	NO	0.999	NO	bb
10	10 200220P1-12	Standard	500.000	4.40	113878.570	2993.555	475.516			NO	0.999	NO	bbXI

Compound name: 7:3 FTCA

Coefficient of Determination: $R^{\wedge} 2=0.998839$
Calibration curve: $2.04383 \mathrm{e}-005^{*} x^{\wedge} 2+0.154102{ }^{*} x+0.00331171$
Response type: Internal Std (Ref 65), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name3	Type	Std. Conc	RT	Área	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	$1200220 \mathrm{P} 1-3$	Standard	0.250	4.73	19.334	15680.749	0.015	0.1	-68.6	YES	0.999	NO	MMX
2	2 200220P1-4	Standard	0.500	4.71	107.822	14942.147	0.090	0.6	12.8	NO	0.999	NO	bb
3	3 200220P1-5	Standard	1.000	4.71	156.600	15070.675	0.130	0.8	-17.9	NO	0.999	NO	bb
4	4 200220P1-6	Standard	2.000	4.71	404.833	15569.793	0.325	2.1	4.4	NO	0.999	NO	bb
5	5 200220P1-7	Standard	5.000	4.71	1035.669	15400.750	0.841	5.4	8.6	NO	0.999	NO	bb
6	$6200220 \mathrm{P} 1-8$	Standard	10.000	4.71	1927.544	17167.027	1.404	9.1	-9.2	NO	0.999	NO	bb
7	7 200220P1-9	Standard	50.000	4.71	10266.347	16245.348	7.899	50.9	1.8	NO	0.999	NO	bb
8	$8200220 \mathrm{P} 1-10$	Standard	100.000	4.71	19643.170	15781.290	15.559	99.6	-0.4	NO	0.999	NO	$b b$
9	$9200220 \mathrm{P} 1-11$	Standard	250.000	4.71	10376.027	15613.387	8.307	53.5	-78.6	YES	0.999	NO	bbX
10	10 200220P1-12	Standard	500.000	4.71	20856.080	15415.518	16.912	108.2	-78.4	YES	0.999	NO	bbX

Last Altered:
Printed:
Friday, February 21, 2020 11:03:18 Pacific Standard Time Friday, February 21, 2020 11:03:18 Pacific Standard Time
Friday, February 21, 2020 11:08:04 Pacific Standard Time

Compound name: PFNA

Correlation coefficient: $\mathrm{r}=0.999754, \mathrm{r}^{\wedge} 2=0.999507$
Calibration curve: $1.23155^{*} x+0.0599721$
Response type: Internal Std (Ref 65), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	St. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	1 200220P1-3	Standard	0.250	4.72	420.049	15680.749	0.335	0.2	-10.7	NO	1.000	NO	bd
2	2 200220P1-4	Standard	0.500	4.72	795.287	14942.147	0.665	0.5	-1.7	NO	1.000	NO	bb
3	$3200220 \mathrm{P}_{1-5}$	Standard	1.000	4.72	1637.216	15070.675	1.358	1.1	5.4	NO	1.000	NO	bb
4	4 200220P1-6	Standard	2.000	4.72	3396.572	15569.793	2.727	2.2	8.3	NO	1.000	NO	bb
5	$5200220 \mathrm{P} 1-7$	Standard	5.000	4.72	8472.093	15400.750	6.876	5.5	10.7	NO	1.000	NO	bb
6	$6200220 \mathrm{P} 1-8$	Standard	10.000	4.72	17291.221	17167.027	12.590	10.2	1.7	NO	1.000	NO	bb
7	7 200220P1-9	Standard	50.000	4.72	83451.813	16245.348	64.212	52.1	4.2	NO	1.000	NO	bb
8	8 200220P1-10	Standard	100.000	4.72	158103.250	15781.290	125.230	101.6	1.6	NO	1.000	NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	250.000	4.72	391520.344	15613.387	313.449	254.5	1.8	NO	1.000	NO	bb
10	10 200220P1-12	Standard	500.000	4.72	745670.188	15415.518	604.643	490.9	-1.8	NO	1.000	NO	bb

Compound name: PFOSA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999278$
Calibration curve: $-0.00017731^{*} x^{\wedge} 2+0.897342^{*} x+-0.0167461$
Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	1 Name	Type	Std. Conc	FRT	Area	IS Area	Pesponse	Conc.	\%Dev	Conc. Fiag	COD	CoDFlag	$x=$ excludeci
1	1 200220P1-3	Standard	0.250	4.78	49.164	3620.464	0.170	0.2	-16.9	NO	0.999	NO	MM
2	2 200220P1-4	Standard	0.500	4.78	143.797	3533.092	0.509	0.6	17.1	NO	0.999	NO	db
3	3 200220P1-5	Standard	1.000	4.78	306.640	3557.113	1.078	1.2	22.0	NO	0.999	NO	bb
4	4 200220P1-6	Standard	2.000	4.78	521.589	3785.300	1.722	1.9	-3.1	NO	0.999	NO	bb
5	5 200220P1-7	Standard	5.000	4.79	1231.471	3672.073	4.192	4.7	-6.1	NO	0.999	NO	bb
6	$6200220 \mathrm{P} 1-8$	Standard	10.000	4.78	2468.005	4038.352	7.639	8.5	-14.5	NO	0.999	NO	bb
7	7 200220P1-9	Standard	50.000	4.78	12938.181	3733.793	43.314	48.8	-2.5	NO	0.999	NO	bb
8	8 200220P1-10	Standard	100.000	4.78	25321.006	3435.960	92.118	104.8	4.8	NO	0.999	NO	bb
9	9 200220P1-11	Standard	250.000	4.78	60799.211	3597.537	211.253	247.5	-1.0	NO	0.999	NO	bb
10	10 200220P1-12	Standard	500.000	4.78	105554.539	3260.902	404.622	500.4	0.1	NO	0.999	NO	bb

Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed
Friday, February 21, 2020 11:08:04 Pacific Standard Time

Compound name: L-PFOS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997752$
Calibration curve: $5.77565 \mathrm{e}-005$ * $x^{\wedge} 2+0.92504$ * $x+-0.00276322$
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Cone	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ exciuded
1	1 200220P1-3	Standard	0.250	4.80	59.105	3134.899	0.236	0.3	3.1	NO	0.998	NO	MM
2	2 200220P1-4	Standard	0.500	4.80	86.735	3339.188	0.325	0.4	-29.2	NO	0.998	NO	bb
3	$3200220 \mathrm{P} 1-5$	Standard	1.000	4.80	266.393	3403.621	0.978	1.1	6.1	NO	0.998	NO	MM
4.	4 200220P1-6	Standard	2.000	4.80	570.293	3671.517	1.942	2.1	5.1	NO	0.998	NO	MM
5	5 200220P1-7	Standard	5.000	4.80	1349.398	3582.422	4.708	5.1	1.8	NO	0.998	NO	MM
6	$6200220 \mathrm{P} 1-8$	Standard	10.000	4.80	2803.025	3697.559	9.476	10.2	2.4	NO	0.998	NO	MM
7	7 200220P1-9	Standard	50.000	4.80	13588.747	3148.619	53.947	58.1	16.2	NO	0.998	NO	MM
8	8 200220P1-10	Standard	100.000	4.80	24991.939	3413.870	91.509	98.3	-1.7	NO	0.998	NO	MM
9	9200220 P 1.11	Standard	250.000	4.80	64248.555	3599.188	223.136	237.7	-4.9	NO	0.998	NO	MM
10	10 200220P1-12	Standard	500.000	4.80	115521.367	2993.555	482.375	505.5	1.1	NO	0.998	NO	MM

Compound name: 9CI-PF30NS

Correlation coefficient: $\mathrm{r}=0.996874, \mathrm{r}^{\wedge} 2=0.993759$
Calibration curve: 1.16071 * $x+-0.00606279$
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RTT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Fiag	$x=$ exciuded
1	1 200220P1-3	Standard	0.250	5.01	56.820	3134.899	0.227	0.2	-19.8	NO	0.994	NO	bb
2	2 200220P1-4	Standard	0.500	5.00	198.285	3339.188	0.742	0.6	28.9	NO	0.994	NO	bb
3	3 200220P1-5	Standard	1.000	5.00	290.165	3403.621	1.066	0.9	-7.7	NO	0.994	NO	bb
4	4 200220P1-6	Standard	2.000	5.01	687.997	3671.517	2.342	2.0	1.2	NO	0.994	NO	bb
5	$5200220 \mathrm{P} 1-7$	Standard	5.000	5.01	1720.100	3582.422	6.002	5.2	3.5	NO	0.994	NO	bb
6	$6200220 \mathrm{P} 1-8$	Standard	10.000	5.01	3011.038	3697.559	10.179	8.8	-12.3	NO	0.994	NO	bb
7	7 200220P1-9	Standard	50.000	5.01	16363.643	3148.619	64.964	56.0	11.9	NO	0.994	NO	bb
8	$8200220 \mathrm{P1} 10$	Standard	100.000	5.01	32168.771	3413.870	117.787	101.5	1.5	NO	0.994	NO	bb
9	9 200220P1-11	Standard	250.000	5.01	73493.258	3599.188	255.242	219.9	-12.0	NO	0.994	NO	bb
10	10 200220P1-12	Standard	500.000	5.01	145556.156	2993.555	607.790	523.6	4.7	NO	0.994	NO	bb

Last Altered:
Printed:
Friday, February 21, 2020 11:03:18 Pacific Standard Time Friday, February 21, 2020 11:08:04 Pacific Standard Time

Compound name: PFDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999172$
Calibration curve: $-0.000175497^{*} x^{\wedge} 2+1.22701^{*} x+0.0730403$
Response type: Internal Std (Ref 73), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoDFlag	$x=e x c l u d e d$
1	1 200220P1-3	Standard	0.250	5.08	491.337	18001.354	0.341	0.2	-12.6	NO	0.999	NO	bd
2	2 200220P1-4	Standard	0.500	5.08	830.331	17188.822	0.604	0.4	-13.5	NO	0.999	NO	bb
3	$3200220 \mathrm{P} 1-5$	Standard	1.000	5.08	1987.973	16655.424	1.492	1.2	15.7	NO	0.999	NO	bb
4	4 200220P1-6	Standard	2.000	5.08	3861.330	17626.307	2.738	2.2	8.6	NO	0.999	NO	bd
5	$5200220 \mathrm{P} 1-7$	Standard	5.000	5.08	9444.176	16828.695	7.015	5.7	13.2	NO	0.999	NO	bb
6	6 200220P1-8	Standard	10.000	5.08	18443.859	16955.131	13.598	11.0	10.4	NO	0.999	NO	bb
7	7 200220P1-9	Standard	50.000	5.08	90896.469	17972.971	63.217	51.8	3.7	NO	0.999	NO	bb
8	8 200220P1-10	Standard	100.000	5.08	174706.563	17851.639	122.332	101.1	1.1	NO	0.999	NO	bb
9	9 200220P1-11	Standard	250.000	5.08	391553.313	17168.783	285.076	240.6	-3.8	NO	0.999	NO	bb
10	10 200220P1-12	Standard	500.000	5.08	789157.438	17168.256	574.576	504.6	0.9	NO	0.999	NO	bb

Compound name: 8:2 FTS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.995942$
Calibration curve: $-0.000521597^{*} x^{\wedge} 2+1.48034^{*} x+-0.217508$
Response type: Internal Std (Ref 75), Area * (IS Conc./ IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 200220P1-3	Standard	0.250	5.05	6.398	1034.617	0.077	0.2	-20.3	NO	0.996	NO	MM
2	2 200220P1-4	Standard	0.500	5.06	48.797	1048.430	0.582	0.5	8.0	NO	0.996	NO	bb
3	3 200220P1-5	Standard	1.000	5.05	75.681	1045.108	0.905	0.8	-24.1	NO	0.996	NO	bb
4	4 200220P1-6	Standard	2.000	5.05	258.879	903.218	3.583	2.6	28.5	NO	0.996	NO	bb
5	5 200220P1-7	Standard	5.000	5.05	742.248	1193.213	7.776	5.4	8.2	NO	0.996	NO	bb
6	6 200220P1-8	Standard	10.000	5.05	1231.226	1074.338	14.325	9.9	-1.4	NO	0.996	NO	bb
7	7 200220P1-9	Standard	50.000	5.05	6148.262	1125.896	68.260	47.0	-5.9	NO	0.996	NO	bb
8	8 200220P1-10	Standard	100.000	5.05	12571.593	980.440	160.280	112.9	12.9	NO	0.996	NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	250.000	5.05	26488.963	1051.534	314.885	231.8	-7.3	NO	0.996	NO	bb
10	10 200220P1-12	Standard	500.000	5.05	53916.660	1091.204	617.628	508.5	1.7	NO	0.996	NO	bb

Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed Friday, February 21, 2020 11:08:04 Pacific Standard Time

Compound name: PFNS

Correlation coefficient: $\mathrm{r}=0.998736, \mathrm{r}^{\wedge} 2=0.997473$
Calibration curve: 0.91038 * $x+0.0726293$
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type:	Std. Conc	RT	Area.	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoDFlag	$x=$ excluded
1	1200220 P 1 -3	Standard	0.250	5.14	72.428	3134.899	0.289	0.2	-5.0	NO	0.997	NO	bb
2	2 200220P1-4	Standard	0.500	5.14	173.266	3339.188	0.649	0.6	26.5	NO	0.997	NO	bb
3	$3200220 \mathrm{P} 1-5$	Standard	1.000	5.13	235.689	3403.621	0.866	0.9	-12.9	NO	0.997	NO	bb
4	4 200220P1-6	Standard	2.000	5.14	519.356	3671.517	1.768	1.9	-6.9	NO	0.997	NO	bb
5	$5200220 \mathrm{P} 1-7$	Standard	5.000	5.14	1451.487	3582.422	5.065	5.5	9.7	NO	0.997	NO	bb
6	6 200220P1-8	Standard	10.000	5.14	2918.950	3697.559	9.868	10.8	7.6	NO	0.997	NO	bb
7	7 200220P1-9	Standard	50.000	5.14	13583.276	3148.619	53.926	59.2	18.3	NO	0.997	NO	bb
8	$8200220 \mathrm{P} 1-10$	Standard	100.000	5.14	24468.268	3413.870	89.591	98.3	-1.7	NO	0.997	NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	250.000	5.14	62912.348	3599.188	218.495	239.9	-4.0	NO	0.997	NO	bb
10	10 200220P1-12	Standard	500.000	5.14	109353.906	2993.555	456.622	501.5	0.3	NO	0.997	NO	bb

Compound name: L-MeFOSAA

Coefficient of Determination: $R^{\wedge} 2=0.999717$
Calibration curve: $-0.000683729^{*} x^{\wedge} 2+1.90832$ * $x+-0.0059177$
Response type: Internal Std (Ref 77), Area * IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	$1200220 \mathrm{P} 1-3$	Standard	0.250	5.24	87.482	3016.410	0.363	0.2	-22.8	NO	1.000	NO	bb
2	2 200220P1-4	Standard	0.500	5.23	218.245	2667.508	1.023	0.5	7.8	NO	1.000	NO	MM
3	3 200220P1-5	Standard	1.000	5.23	446.866	3036.359	1.840	1.0	-3.3	NO	1.000	NO	MM
4	4 200220P1-6	Standard	2.000	5.23	1104.209	3065.277	4.503	2.4	18.2	NO	1.000	NO	MM
5	5 200220P1-7	Standard	5.000	5.23	2525.145	3468.438	9.100	4.8	-4.4	NO	1.000	NO	MM
6	$6200220 \mathrm{P} 1-8$	Standard	10.000	5.23	5072.507	3285.958	19.296	10.2	1.5	NO	1.000	NO	MM
7	7 200220P1-9	Standard	50.000	5.23	25849.479	3394.840	95.179	50.8	1.6	NO	1.000	NO	MM
8	8 200220P1-10	Standard	100.000	5.23	54590.094	3657.222	186.583	101.5	1.5	NO	1.000	NO	MM
9	$9200220 \mathrm{P} 1-11$	Standard	250.000	5.23	117425.641	3440.745	426.600	245.1	-2.0	NO	1.000	NO	MM
10	10 200220P1-12	Standard	500.000	5.23	228530.531	3632.452	786.420	502.6	0.5	NO	1.000	NO	MM

Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed: Friday, February 21, 2020 11:11:55 Pacific Standard Time

Method: D:IPFAS5.PROMMethDBINEW_PFAS_80C_022020.mdb 21 Feb 2020 08:56:55

Calibration: D:IPFAS5.PRO\CurveDB\C̄18_VAL-PFAS_Q5_02-20-20.cdb 21 Feb 2020 11:03:18

Compound name: L-EtFOSAA

Correlation coefficient: $r=0.999675, r^{\wedge} 2=0.99935$
Calibration curve: 1.25302 * $x+0.0748$
Response type: Internal Std (Ref 81), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	$1200220 \mathrm{P} 1-3$	Standard	0.250	5.37	96.353	3697.274	0.326	0.2	-19.9	NO	0.999	NO	bb
2	2 200220P1-4	Standard	0.500	5.38	194.397	4301.055	0.565	0.4	-21.8	NO	0.999	NO	MM
3	$3200220 \mathrm{P} 1-5$	Standard	1.000	5.38	536.731	4278.258	1.568	1.2	19.2	NO	0.999	NO	MM
4	4 200220P1-6	Standard	2.000	5.38	1103.11 ¢	4324.604	3.188	2.5	24.2	NO	0.999	NO	MM
5	5 200220P1-7	Standard	5.000	5.38	2507.056	4530.818	6.917	5.5	9.2	NO	0.999	NO	MM
6	$6200220 \mathrm{P} 1-8$	Standard	10.000	5.38	4854.611	4512.287	13.448	10.7	6.7	NO	0.999	NO	MM
7	7 200220P1-9	Standard	50.000	5.38	25039.492	4695.998	66.651	53.1	6.3	NO	0.999	NO	MM
8	8 200220P1-10	Standard	100.000	5.38	43312.441	4286.607	126.302	100.7	0.7	NO	0.999	NO	MM
9	9 200220P1-11	Standard	250.000	5.38	106409.055	4223.098	314.961	251.3	0.5	NO	0.999	NO	MM
10	10 200220P1-12	Standard	500.000	5.38	199014.297	4025.157	618.033	493.2	-1.4	NO	0.999	NO	MM

Compound name: PFUdA

Coefficient of Determination: $R^{\wedge} 2=0.999590$
Calibration curve: -0.000296059 * $x^{\wedge} 2+1.05298$ * $x+-0.0124351$
Response type: Internal Std (Ref 79), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Stc. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 200220P1-3	Standard	0.250	5.39	333.694	18732.203	0.223	0.2	-10.7	NO	1.000	NO	$b \mathrm{~b}$
2	2 200220P1-4	Standard	0.500	5.39	817.862	19303.398	0.530	0.5	3.0	NO	1.000	NO	bb
3	3 200220P1-5	Standard	1.000	5.39	1635.374	19806.705	1.032	1.0	-0.8	NO	1.000	NO	db
4	4 200220P1-6	Standard	2.000	5.39	3414.357	19724.176	2.164	2.1	3.4	NO	1.000	NO	bb
5	5 200220P1-7	Standard	5.000	5.39	8570.759	19634.039	5.457	5.2	4.0	NO	1.000	NO	bb
6	$6200220 \mathrm{P} 1-8$	Standard	10.000	5.39	15745.968	17705.611	11.117	10.6	6.0	NO	1.000	NO	bb
7	7 200220P1-9	Standard	50.000	5.39	76652.430	19707.631	48.618	46.8	-6.4	NO	1.000	NO	bb
8	8 200220P1-10	Standard	100.000	5.39	153130.891	18670.961	102.519	100.2	0.2	NO	1.000	NO	bb
9	9 200220P1-11	Standard	250.000	5.39	370672.188	18640.654	248.564	254.2	1.7	NO	1.000	NO	bb
10	10 200220P1-12	Standard	500.000	5.39	702445.938	19477.016	450.817	497.8	-0.4	NO	1.000	NO	bb

Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: PFDS

Coefficient of Determination: $R^{\wedge} 2=0.998274$
Calibration curve: $7.33697 \mathrm{e}-005^{*} x^{\wedge} 2+0.804163^{*} x+0.0329009$
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Sta. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	$1200220 \mathrm{P} 1-3$	Standard	0.250	5.44	65.485	3134.899	0.261	0.3	13.5	NO	0.998	NO	bb
2	2 200220P1-4	Standard	0.500	5.44	108.139	3339.188	0.405	0.5	-7.5	NO	0.998	NO	bb
3	3 200220P1-5	Standard	1.000	5.44	234.335	3403.621	0.861	1.0	2.9	NO	0.998	NO	bb
4	4 200220P1-6	Standard	2.000	5.44	463.935	3671.517	1.580	1.9	-3.9	NO	0.998	NO	bb
5	5 200220P1-7	Standard	5.000	5.44	1095.447	3582.422	3.822	4.7	-5.8	NO	0.998	NO	bb
6	6 200220P1-8	Standard	10.000	5.44	2577.820	3697.559	8.715	10.8	7.9	NO	0.998	NO	bb
7	7 200220P1-9	Standard	50.000	5.44	11518.183	3148.619	45.727	56.5	13.1	NO	0.998	NO	bb
8	$8200220 \mathrm{P} 1-10$	Standard	100.000	5.44	22170.482	3413.870	81.178	100.0	-0.0	NO	0.998	NO	bb
9	9 200220P1-11	Standard	250.000	5.44	56270.168	3599.188	195.427	237.8	-4.9	NO	0.998	NO	bb
10	10 200220P1-12	Standard	500.000	5.44	101788.914	2993.555	425.034	505.2	1.0	NO	0.998	NO	bb

Compound name: 11CI-PF30UdS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.996838$
Calibration curve: $-1.89567 e-005{ }^{*} x^{\wedge} 2+0.451153$ * $x+0.0424061$
Response type: Internal Std (Ref 83), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Área	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
i	$1200220 \mathrm{P} 1-3$	Standard	0.250	5.60	201.524	18226.420	0.138	0.2	-15.1	NO	0.997	NO	bb
2	2 200220P1-4	Standard	0.500	5.60	357.416	17947.455	0.249	0.5	-8.4	NO	0.997	NO	bb
3	3 200220P1-5	Standard	1.000	5.59	745.129	18181.920	0.512	1.0	4.2	NO	0.997	NO	bb
4	4 200220P1-6	Standard	2.000	5.60	1495.838	16880.262	1.108	2.4	18.1	NO	0.997	NO	bb
5	$5200220 \mathrm{P} 1-7$	Standard	5.000	5.60	3931.463	16872.459	2.913	6.4	27.3	NO	0.997	NO	bb
6	$6200220 \mathrm{P} 1-8$	Standard	10.000	5.60	7456.716	19663.664	4.740	10.4	4.2	NO	0.997	NO	bb
7	7 200220P1-9	Standard	50.000	5.60	36979.438	18800.338	24.587	54.5	9.1	NO	0.997	NO	bb
8	8 200220P1-10	Standard	100.000	5.60	70548.320	18745.896	47.043	104.6	4.6	NO	0.997	NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	250.000	5.60	163845.641	19925.018	102.789	230.0	-8.0	NO	0.997	NO	bb
10	10 200220P1-12	Standard	500.000	5.60	318876.063	17740.600	224.680	508.8	1.8	NO	0.997	NO	bb

Dataset: D:IPFAS5.PROIRESULTSL200220P1200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed:
Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: 10:2 FTS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997215$
Calibration curve: $-0.000324143^{*} x^{\wedge} 2+2.31829^{*} x+-0.102541$
Response type: Internal Std (Ref 85), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	Is Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	$1200220 \mathrm{P} 1-3$	Standard	0.250	5.66	40.281	971.295	0.518	0.3	7.1	NO	0.997	NO	bb
2	2 200220P1-4	Standard	0.500	5.65	61.523	960.004	0.801	0.4	-22.0	NO	0.997	NO	bb
3	$3200220 \mathrm{P} 1-5$	Standard	1.000	5.66	186.248	888.197	2.621	1.2	17.5	NO	0.997	NO	bb
4	4 200220P1-6	Standard	2.000	5.65	332.763	816.162	5.096	2.2	12.2	NO	0.997	NO	bb
5	5 200220P1-7	Standard	5.000	5.66	755.148	897.362	10.519	4.6	-8.3	NO	0.997	NO	bb
6	6 200220P1-8	Standard	10.000	5.65	1618.303	834.543	24.239	10.5	5.2	NO	0.997	NO	bb
7	7 200220P1-9	Standard	50.000	5.66	7467.416	987.961	94.480	41.0	-17.9	NO	0.997	NO	bb
8	8 200220P1-10	Standard	100.000	5.65	14596.856	775.816	235.186	103.0	3.0	NO	0.997	NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	250.000	5.65	33370.984	714.900	583.490	261.3	4.5	NO	0.997	NO	bb
10	10 200220P1-12	Standard	500.000	5.65	58724.836	688.251	1066.559	494.3	-1.1	NO	0.997	NO	bb

Compound name: PFDoA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999142$
Calibration curve: $-1.0619 e-005^{*} x^{\wedge} 2+0.950464$ * $x+0.134975$
Response type: Internal Std (Ref 83), Area * (IS Conc. I IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	Cob Flag	$x=$ excluded
1	1 200220P1-3	Standard	0.250	5.67	524.774	18226.420	0.360	0.2	-5.3	NO	0.999	NO	bb
2	2 200220P1-4	Standard	0.500	5.66	880.457	17947.455	0.613	0.5	0.6	NO	0.999	NO	bb
3	3 200220P1-5	Standard	1.000	5.67	1906.312	18181.920	1.311	1.2	23.7	NO	0.999	NO	bb
4.	4 200220P1-6	Standard	2.000	5.66	2970.571	16880.262	2.200	2.2	8.6	NO	0.999	NO	bb
5	5 200220P1-7	Standard	5.000	5.67	7863.702	16872.459	5.826	6.0	19.8	NO	0.999	NO	bb
6	6 200220P1-8	Standard	10.000	5.67	16289.114	19663.664	10.355	10.8	7.5	NO	0.999	NO	bb
7	7 200220P1-9	Standard	50.000	5.67	75466.211	18800.338	50.176	52.7	5.4	NO	0.999	NO	bb
8	8 200220P1-10	Standard	100.000	5.67	140588.203	18745.896	93.746	98.6	-1.4	NO	0.999	NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	250.000	5.67	367600.063	19925.018	230.615	243.2	-2.7	NO	0.999	NO	bb
10	10 200220P1-12	Standard	500.000	5.67	675469.875	17740.600	475.935	503.4	0.7	NO	0.999	NO	bb

Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed
Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: N-MeFOSA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999763$
Calibration curve: $-5.62949 e-005^{*} x^{\wedge} 2+1.04899{ }^{*} x+0.147684$
Response type: Internal Std (Ref 87), Area * (IS Conc. / IS Area
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Sta. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	$1200220 \mathrm{P} 1-3$	Standard	1.250	5.81	122.479	15962.999	1.145	1.0	-24.0	NO	1.000	NO	bb
2	2 200220P1-4	Standard	2.500	5.81	366.607	16667.066	3.282	3.0	19.5	NO	1.000	NO	bb
3	$3200220 \mathrm{P} 1-5$	Standard	5.000	5.81	690.168	17139.836	6.008	5.6	11.8	NO	1.000	NO	bb
4	4 200220P1-6	Standard	10.000	5.81	1251.323	16798.215	11.114	10.5	4.6	NO	1.000	NO	bb
5	5 200220P1-7	Standard	25.000	5.81	3188.476	17027.213	27.939	26.5	6.1	NO	1.000	NO	bb
6	$6200220 \mathrm{P} 1-8$	Standard	50.000	5.81	5914.591	18064.303	48.851	46.5	-6.9	NO	1.000	NO	bb
7	7 200220P1-9	Standard	250.000	5.81	30269.350	17667.113	255.627	246.8	-1.3	NO	1.000	NO	bb
8	8 200220P1-10	Standard	500.000	5.81	60378.145	17302.824	520.633	510.1	2.0	NO	1.000	NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	1250.000	5.81	146324.641	17976.174	1214.476	1240.2	-0.8	NO	1.000	NO	bb
10	10 200220P1-12	Standard	2500.000	5.81	267228.031	17536.160	2273.612	2503.7	0.1	NO	1.000	NO	bb

Compound name: PFTrDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998208$
Calibration curve: $-0.000115356{ }^{*} x^{\wedge} 2+0.981525^{*} x+0.109726$
Response type: Internal Std (Ref 83), Area * (IS Conc. / IS Area
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	F3T	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	$1200220 \mathrm{P} 1-3$	Standard	0.250	5.90	432.934	18226.420	0.297	0.2	-23.7	NO	0.998	NO	bd
2	2 200220P1-4	Standard	0.500	5.91	937.554	17947.455	0.653	0.6	10.7	NO	0.998	NO	bb
3	3 200220P1-5	Standard	1.000	5.90	1791.902	18181.920	1.232	1.1	14.3	NO	0.998	NO	db
4	4 200220P1-6	Standard	2.000	5.91	3050.945	16880.262	2.259	2.2	9.5	NO	0.998	NO	db
5	5 200220P1-7	Standard	5.000	5.90	8485.636	16872.459	6.287	6.3	26.0	NO	0.998	NO	bb
6	$6200220 \mathrm{P} 1-8$	Standard	10.000	5.91	16618.668	19663.664	10.564	10.7	6.6	NO	0.998	NO	bb
7	7 200220P1-9	Standard	50.000	5.91	73718.094	18800.338	49.014	50.1	0.2	NO	0.998	NO	bb
18	$8200220 \mathrm{P} 1-10$	Standard	100.000	5.91	153291.688	18745.896	102.217	105.3	5.3	NO	0.998	NO	bb
9	9 200220P1-11	Standard	250.000	5.91	359387.656	19925.018	225.463	236.1	-5.5	NO	0.998	NO	bb
10	10 200220P1-12	Standard	500.000	5.91	663332.000	17740.600	467.383	506.2	1.2	NO	0.998	NO	bb

Last Altered:
Printed:
Friday, February 21, 2020 11:03:18 Pacific Standard Time Friday, February 21, 2020 11:03:18 Pacific Standard Time
Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: PFDoS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999656$
Calibration curve: $-6.64808 e-005^{*} x^{\wedge} 2+0.183129{ }^{*} x+0.000839227$
Response type: Internal Std (Ref 89), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	1 200220P1-3	Standard	0.250	5.93	61.509	19053.490	0.040	0.2	-13.7	NO	1.000	NO	bb
2	2 200220P1-4	Standard	0.500	5.93	172.499	19828.295	0.109	0.6	17.9	NO	1.000	NO	bb
3	$3200220 \mathrm{P} 1-5$	Standard	1.000	5.93	202.992	18055.973	0.141	0.8	-23.7	NO	1.000	NO	bb
4	4 200220P1-6	Standard	2.000	5.93	572.944	18189.154	0.394	2.1	7.4	NO	1.000	NO	bb
5	5 200220P1-7	Standard	5.000	5.93	1435.021	17643.662	1.017	5.6	11.2	NO	1.000	NO	bb
6	6 200220P1-8	Standard	10.000	5.93	2711.645	18006.408	1.882	10.3	3.1	NO	1.000	NO	bb
7	7 200220P1-9	Standard	50.000	5.93	13345.153	18692.244	8.924	49.6	-0.8	NO	1.000	NO	bb
8	8 200220P1-10	Standard	100.000	5.93	25840.854	18729.498	17.246	97.6	-2.4	NO	1.000	NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	250.000	5.93	61198.797	18173.855	42.093	253.1	1.2	NO	1.000	NO	bb
10	10 200220P1-12	Standard	500.000	5.93	102189.984	17077.631	74.798	498.7	-0.3	NO	1.000	NO	bb

Compound name: PFTeDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998923$
Calibration curve: $-2.14494 e-006$ * $x^{\wedge} 2+1.04256$ * $x+0.0589962$
Response type: Internal Std (Ref 89), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 200220P1-3	Standard	0.250	6.11	423.941	19053.490	0.278	0.2	-15.9	NO	0.999	NO	bb
2	2 200220P1-4	Standard	0.500	6.11	956.573	19828.295	0.603	0.5	4.4	NO	0.999	NO	bd
3	3 200220P1-5	Standard	1.000	6.11	1686.658	18055.973	1.168	1.1	6.3	NO	0.999	NO	bb
4	4 200220P1-6	Standard	2.000	6.11	2923.239	18189.154	2.009	1.9	-6.5	NO	0.999	NO	bb
5	5 200220P1-7	Standard	5.000	6.11	9374.382	17643.662	6.641	6.3	26.3	NO	0.999	NO	bb
6.	6 200220P1-8	Standard	10.000	6.11	16328.489	18006.408	11.335	10.8	8.2	NO	0.999	NO	bb
7	7 200220P1-9	Standard	50.000	6.11	77218.359	18692.244	51.638	49.5	-1.0	NO	0.999	NO	bb
8	8 200220P1-10	Standard	100.000	6.11	162351.875	18729.498	108.353	103.9	3.9	NO	0.999	NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	250.000	6.11	364704.625	18173.855	250.844	240.7	-3.7	NO	0.999	NO	bb
10	10 200220P1-12	Standard	500.000	6.12	717091.313	17077.631	524.876	503.9	0.8	NO	0.999	NO	bb

Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed
Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: N-EtFOSA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999544$
Calibration curve: $-1.70702 \mathrm{e}-005^{*} x^{\wedge} 2+0.94824^{*} x+0.0530371$
Response type: Internal Std (Ref 91), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Sta. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	1 200220P1-3	Standard	1.250	6.18	181.956	22126.004	1.227	1.2	-1.0	NO	1.000	NO	bb
2	2 200220P1-4	Standard	2.500	6.18	315.446	23242.711	2.025	2.1	-16.8	NO	1.000	NO	bb
3	3 200220P1-5	Standard	5.000	6.18	795.556	22928.920	5.177	5.4	8.1	NO	1.000	NO	bb
4	4 200220P1-6	Standard	10.000	6.19	1330.474	23587.563	8.416	8.8	-11.8	NO	1.000	NO	bb
5	5 200220P1-7	Standard	25.000	6.18	4131.594	22851.221	26.976	28.4	13.6	NO	1.000	NO	bb
6	6 200220P1-8	Standard	50.000	6.19	7907.536	23414.010	50.389	53.1	6.3	NO	1.000	NO	bb
7	7 200220P1-9	Standard	250.000	6.19	38583.492	23838.369	241.487	255.8	2.3	NO	1.000	NO	bb
8	8 200220P1-10	Standard	500.000	6.19	74277.719	23293.736	475.760	506.3	1.3	NO	1.000	NO	bb
9	9 200220P1-11	Standard	1250.000	6.19	175286.469	23152.299	1129.596	1217.9	-2.6	NO	1.000	NO	bb
10	10 200220P1-12	Standard	2500.000	6.19	317868.438	20830.982	2276.704	2514.8	0.6	NO	1.000	NO	bb

Compound name: PFHxDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999886$
Calibration curve: $-0.00014477^{*} x^{\wedge} 2+0.739976$ * $x+0.111894$
Response type: Internal Std (Ref 93), Area * (IS Conc. / IS Area
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Namg	Type	Sta. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=e x c l u d e d ~$
1	$1200220 \mathrm{P} 1-3$	Standard	0.250	6.43	641.914	28473.104	0.282	0.2	-8.1	NO	1.000	NO	bb
2	2 200220P1-4	Standard	0.500	6.43	1103.625	28618.551	0.482	0.5	0.1	NO	1.000	NO	bb
3	$3200220 \mathrm{P} 1-5$	Standard	1.000	6.43	1976.971	28820.514	0.857	1.0	0.8	NO	1.000	NO	bb
4.	4 200220P1-6	Standard	2.000	6.43	3898.909	30083.389	1.620	2.0	1.9	NO	1.000	NO	bb
5	5 200220P1-7	Standard	5.000	6.43	8851.772	28369.861	3.900	5.1	2.5	NO	1.000	NO	bb
6	6 200220P1-8	Standard	10.000	6.43	18103.461	29365.074	7.706	10.3	2.8	NO	1.000	NO	bb
7	7 200220P1-9	Standard	50.000	6.43	84616.008	28221.439	37.479	51.0	2.0	NO	1.000	NO	bb
8	8 200220P1-10	Standard	100.000	6.43	167162.297	29442.813	70.969	97.6	-2.4	NO	1.000	NO	bb
9	9 200220P1-11	Standard	250.000	6.43	393369.500	27808.342	176.822	251.1	0.5	NO	1.000	NO	bb
10	10 200220P1-12	Standard	500.000	6.43	703220.625	26335.016	333.786	499.8	-0.0	NO	1.000	NO	bb

Last Altered:
Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed: Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: PFODA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999676$
Calibration curve: $-2.12208 e-005^{*} x^{\wedge} 2+0.882141^{*} x+0.00318847$
Response type: Internal Std (Ref 93), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	$1200220 \mathrm{P} 1-3$	Standard	0.250	6.66	483.117	28473.104	0.212	0.2	-5.3	NO	1.000	NO	bb
2	2 200220P1-4	Standard	0.500	6.66	1108.282	28618.551	0.484	0.5	9.0	NO	1.000	NO	bb
3	3 200220P1-5	Standard	1.000	6.66	2016.365	28820.514	0.875	1.0	-1.2	NO	1.000	NO	MM
4	4 200220P1-6	Standard	2.000	6.66	4156.995	30083.389	1.727	2.0	-2.3	NO	1.000	NO	bb
5	5 200220P1-7	Standard	5.000	6.66	10073.089	28369.861	4.438	5.0	0.6	NO	1.000	NO	MM
6	$6200220 \mathrm{P} 1-8$	Standard	10.000	6.66	21179.301	29365.074	9.016	10.2	2.2	NO	1.000	NO	MM
7	7 200220P1-9	Standard	50.000	6.66	100105.680	28221.439	44.339	50.3	0.6	NO	1.000	NO	bb
8	8 200220P1-10	Standard	100.000	6.66	199073.641	29442.813	84.517	96.0	-4.0	NO	1.000	NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	250.000	6.66	498108.656	27808.342	223.903	255.4	2.2	NO	1.000	NO	MM
10	10 200220P1-12	Standard	500.000	6.66	914539.063	26335.016	434.089	498.0	-0.4	NO	1.000	NO	MM

Compound name: N-MeFOSE

Correlation coefficient: $\mathrm{r}=0.999853, \mathrm{r}^{\wedge} 2=0.999705$
Calibration curve: $1.03364{ }^{*} x+0.462802$
Response type: Internal Std (Ref 95), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Names	Type	Std. Cone	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	$1200220 \mathrm{P} 1-3$	Standard	1.250	6.31	171.950	16267.880	1.577	1.1	-13.8	NO	1.000	NO	MM
2	2 200220P1-4	Standard	2.500	6.30	316.623	16739.979	2.822	2.3	-8.7	NO	1.000	NO	bb
3	3 200220P1-5	Standard	5.000	6.31	665.056	16821.021	5.899	5.3	5.2	NO	1.000	NO	bb
4	4 200220P1-6	Standard	10.000	6.31	1184.135	16312.518	10.831	10.0	0.3	NO	1.000	NO	MM
5	5 200220P1-7	Standard	25.000	6.31	3264.377	16086.234	30.277	28.8	15.4	NO	1.000	NO	bb
6	6 200220P1-8	Standard	50.000	6.31	6198.597	16721.471	55.308	53.1	6.1	NO	1.000	NO	bb
7	7 200220P1-9	Standard	250.000	6.31	29290.641	17403.430	251.109	242.5	-3.0	NO	1.000	NO	bb
8	8 200220P1-10	Standard	500.000	6.31	60235.102	17760.828	506.006	489.1	-2.2	NO	1.000	NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	1250.000	6.31	150593.297	17313.752	1297.727	1255.0	0.4	NO	1.000	NO	bb
10	10 200220P1-12	Standard	2500.000	6.31	290377.000	16718.832	2591.344	2506.6	0.3	NO	1.000	NO	bb

Dataset: D:IPFAS5.PROIRESULTSI200220P11200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed
Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: N-EtFOSE

Coefficient of Determination: $R^{\wedge} 2=0.999646$
Calibration curve: -0.000104993 * $x^{\wedge} 2+1.06013$ * $x+-0.0832109$
Response type: Internal Std (Ref 97), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Sid. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CODFlag	$x=$ excluded
1	$1200220 \mathrm{P} 1-3$	Standard	1.250	6.46	123.006	18504.477	0.992	1.0	-18.9	NO	1.000	NO	MM
2	2 200220P1-4	Standard	2.500	6.46	403.603	18839.174	3.196	3.1	23.8	NO	1.000	NO	bb
3	$3200220 \mathrm{P} 1-5$	Standard	5.000	6.46	660.635	19707.281	5.002	4.8	-4.0	NO	1.000	NO	bb
4	4 200220P1-6	Standard	10.000	6.46	1268.138	20126.805	9.401	9.0	-10.5	NO	1.000	NO	bb
5	5 200220P1-7	Standard	25.000	6.46	3546.306	18655.471	28.362	26.9	7.6	NO	1.000	NO	bb
6	6 200220P1-8	Standard	50.000	6.46	7062.951	20903.463	50.412	47.9	-4.3	NO	1.000	NO	bb
7	7 200220P1-9	Standard	250.000	6.46	34918.207	20346.061	256.059	247.7	-0.9	NO	1.000	NO	bb
8	$8200220 \mathrm{P} 1-10$	Standard	500.000	6.46	66757.945	19579.516	508.709	505.2	1.0	NO	1.000	NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	1250.000	6.46	156449.016	20130.154	1159.564	1248.2	-0.1	NO	1.000	NO	bb
10	10 200220P1-12	Standard	2500.000	6.46	317153.406	19454.162	2432.348	3525.2	41.0	YES	1.000	NO	bbX

Compound name: 13C3-PFBA-EIS

Response Factor: 824.33
RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Resporise	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	$1200220 \mathrm{P} 1-3$	Standard	12.500	1.48	9487.311		9487.311	11.5	-7.9	NO		NO	MMX
2	2 200220P1-4	Standard	12.500	1.48	10062.216		10062.216	12.2	-2.3	NO		NO	MMX
3	3 200220P1-5	Standard	12.500	1.48	9933.468		9933.468	12.1	-3.6	NO		NO	MMX
4	4 200220P1-6	Standard	12.500	1.48	9932.887		9932.887	12.0	-3.6	NO		NO	MMX
5	5 200220P1-7	Standard	12.500	1.49	9930.719		9930.719	12.0	-3.6	NO		NO	MMX
6	$6200220 \mathrm{P} 1-8$	Standard	12.500	1.48	10304.131		10304.131	12.5	0.0	NO		NO	MM
7	7 200220P1-9	Standard	12.500	1.49	9874.855		9874.855	12.0	-4.2	NO		NO	$b b X$
8	$8200220 \mathrm{P} 1-10$	Standard	12.500	1.48	9955.766		9955.766	12.1	-3.4	NO		NO	bbX
9	$9200220 \mathrm{P} 1-11$	Standard	12.500	1.48	10671.288		10671.288	12.9	3.6	NO		NO	MMX
10	10 200220P1-12	Standard	12.500	1.48	10105.821		10105.821	12.3	-1.9	NO		NO	bbX

Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed: Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: 13C3-PFBA-RSD

Response Factor: 0.78989
RRF SD: 0.00952812 , Relative SD: 1.20626
Response type: Internal Std (Ref 99), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name:	Type	Sta. Conc	RT	Area	IS Areá	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	$1200220 \mathrm{P} 1-3$	Standard	12.500	1.48	9480.395	11888.075	9.968	12.6	1.0	NO		NO	MM
2	2 200220P1-4	Standard	12.500	1.48	10055.494	12593.931	9.980	12.6	1.1	NO		NO	MM
3	3 200220P1-5	Standard	12.500	1.48	9640.499	12542.025	9.608	12.2	-2.7	NO		NO	MM
4	4 200220P1-6	Standard	12.500	1.48	9936.805	12501.699	9.935	12.6	0.6	NO		NO	MM
5	5 200220P1-7	Standard	12.500	1.49	9760.691	12443.393	9.805	12.4	-0.7	NO		NO	MM
6	6 200220P1-8	Standard	12.500	1.48	10299.654	12920.699	9.964	12.6	0.9	NO		NO	MM
7	7 200220P1-9	Standard	12.500	1.49	9874.855	12496.652	9.878	12.5	0.0	NO		NO	bb
8	8 200220P1-10	Standard	12.500	1.48	9955.766	12758.912	9.754	12.3	-1.2	NO		NO	bb
9	9 200220P1-11	Standard	12.500	1.48	10667.808	13408.672	9.945	12.6	0.7	NO		NO	MM
10	10 200220P1-12	Standard	12.500	1.48	10105.821	12762.113	9.898	12.5	0.2	NO		NO	bb

Compound name: 13C3-PFPeA-EIS

Response Factor: 943.388
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Cons	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$\bar{x}=$ excluded
1	1 200220P1-3	Standard	12.500	2.40	11699.041		11699.041	12.4	-0.8	NO		NO	bbX
2	2 200220P1-4	Standard	12.500	2.40	12014.812		12014.812	12.7	1.9	NO		NO	$b \mathrm{bX}$
3	3 200220P1-5	Standard	12.500	2.40	12028.183		12028.183	12.7	2.0	NO		NO	bbX
4	4 200220P1-6	Standard	12.500	2.40	12187.951		12187.951	12.9	3.4	NO		NO	$b b x$
5	5 200220P1-7	Standard	12.500	2.40	11945.819		11945.819	12.7	1.3	NO		NO	bbX
6	$6200220 \mathrm{P} 1-8$	Standard	12.500	2.40	11792.354		11792.354	12.5	0.0	NO		NO	bb
7	7 200220P1-9	Standard	12.500	2.41	12425.581		12425.581	13.2	5.4	NO		NO	bbX
8	8 200220P1-10	Standard	12.500	2.40	11920.406		11920.406	12.6	1.1	NO		NO	$b b x$
9	$9200220 \mathrm{P} 1-11$	Standard	12.500	2.40	12522.962		12522.962	13.3	6.2	NO		NO	$b b x$
10	10 200220P1-12	Standard	12.500	2.40	11549.170		11549.170	12.2	-2.1	NO		NO	bbX

Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed
Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: 13C3-PFPeA-RSD

Response Factor: 0.565212
RRF SD: 0.0177561, Relative SD: 3.14149
Response type: Internal Std (Ref 100), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=e x c l u d e d$
1	$1200220 \mathrm{P} 1-3$	Standard	12.500	2.40	11699.041	20142.271	7.260	12.8	2.8	NO		NO	bb
2	2 200220P1-4	Standard	12.500	2.40	12014.812	21634.467	6.942	12.3	-1.7	NO		NO	bb
3	3 200220P1-5	Standard	12.500	2.40	12028.183	22079.555	6.810	12.0	-3.6	NO		NO	bb
4	4 200220P1-6	Standard	12.500	2.40	12187.951	20880.449	7.296	12.9	3.3	NO		NO	bb
5	5 200220P1-7	Standard	12.500	2.40	11945.819	20643.729	7.233	12.8	2.4	NO		NO	bb
6	6 200220P1-8	Standard	12.500	2.40	11792.354	21969.059	6.710	11.9	-5.0	NO		NO	bb
7	7 200220P1-9	Standard	12.500	2.41	12442.894	21719.918	7.161	12.7	1.4	NO		NO	bb
8	$8200220 \mathrm{P} 1-10$	Standard	12.500	2.40	11920.406	21611.453	6.895	12.2	-2.4	NO		NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	12.500	2.40	12522.962	21329.654	7.339	13.0	3.9	NO		NO	bb
10	10 200220P1-12	Standard	12.500	2.40	11549.170	20606.281	7.006	12.4	-0.8	NO		NO	bo

Compound name: 13C3-PFBS-EIS

Response Factor: 114.516
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$\mathrm{x}=$ excluded
1	1 200220P1-3	Standard	12.500	2.67	1365.844		1365.844	11.9	-4.6	NO		NO	bbX
2	2 200220P1-4	Standard	12.500	2.67	1376.906		1376.906	12.0	-3.8	NO		NO	bbX
3	$3200220 \mathrm{P} 1-5$	Standard	12.500	2.67	1404.860		1404.860	12.3	-1.9	NO		NO	bbX
4	4 200220P1-6	Standard	12.500	2.67	1379.710		1379.710	12.0	-3.6	NO		NO	MMX
5	5 200220P1-7	Standard	12.500	2.67	1372.543		1372.543	12.0	-4.1	NO		NO	$b b x$
6	6 200220P1-8	Standard	12.500	2.67	1431.448		1431.448	12.5	0.0	NO		NO	bb
7	7 200220P1-9	Standard	12.500	2.67	1460.737		1460.737	12.8	2.0	NO		NO	bbX
8	8 200220P1-10	Standard	12.500	2.67	1408.211		1408.211	12.3	-1.6	NO		NO	$b b X$
9	9 200220P1-11	Standard	12.500	2.67	1394.472		1394.472	12.2	-2.6	NO		NO	MMX
10	10 200220P1-12	Standard	12.500	2.67	1299.467		1299.467	11.3	-9.2	NO		NO	bbX

Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: 13C3-PFBS-RSD

Response Factor: 1.12281
RRF SD: 0.0728534 , Relative SD: 6.48849
Response type: Internal Std (Ref 101), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Stc. Conc	FT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoDFlag	$x=$ excluded
1	$1200220 \mathrm{P} 1-3$	Standard	12.500	2.67	1365.844	1223.123	13.959	12.4	-0.5	NO		NO	bb
2	2 200220P1-4	Standard	12.500	2.67	1376.906	1180.191	14.584	13.0	3.9	NO		NO	bb
3	3 200220P1-5	Standard	12.500	2.67	1404.860	1209.105	14.524	12.9	3.5	NO		NO	bb
4	4 200220P1-6	Standard	12.500	2.67	1377.568	1192.063	14.445	12.9	2.9	NO		NO	MM
5	5 200220P1-7	Standard	12.500	2.67	1372.543	1317.888	13.018	11.6	-7.2	NO		NO	bb
6	$6200220 \mathrm{P} 1-8$	Standard	12.500	2.67	1431.448	1450.318	12.337	11.0	-12.1	NO		NO	bb
7	7 200220P1-9	Standard	12.500	2.67	1460.737	1224.051	14.917	13.3	6.3	NO		NO	bb
8	8 200220P1-10	Standard	12.500	2.67	1408.211	1293.469	13.609	12.1	-3.0	NO		NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	12.500	2.67	1394.434	1279.869	13.619	12.1	-3.0	NO		NO	MM
10	10 200220P1-12	Standard	12.500	2.67	1299.467	1058.920	15.340	13.7	9.3	NO		NO	bb

Compound name: 13C3-HFPO-DA-EIS

Response Factor: 293.118
RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Cone. Flag	Con	CoDFlag	$x=$ excluded
1	1 200220P1-3	Standard	12.500	3.39	3617.354		3617.354	12.3	-1.3	NO		NO	bbX
2	2 200220P1-4	Standard	12.500	3.39	3805.080		3805.080	13.0	3.9	NO		NO	bbX
3	3 200220P1-5	Standard	12.500	3.39	3645.414		3645.414	12.4	-0.5	NO		NO	bbX
4	4 200220P1-6	Standard	12.500	3.39	3855.269		3855.269	13.2	5.2	NO		NO	bbX
5	5 200220P1-7	Standard	12.500	3.39	3620.540		3620.540	12.4	-1.2	NO		NO	bbX
6	$6200220 \mathrm{P} 1-8$	Standard	12.500	3.39	3663.977		3663.977	12.5	0.0	NO		NO	bb
7	7 200220P1-9	Standard	12.500	3.39	3789.079		3789.079	12.9	3.4	NO		NO	bbX
8	8 200220P1-10	Standard	12.500	3.39	3947.845		3947.845	13.5	7.7	NO		NO	$b b x$
9	$9200220 \mathrm{P} 1-11$	Standard	12.500	3.39	4091.144		4091.144	14.0	11.7	NO		NO	bbX
10	$10200220 \mathrm{P}_{1-12}$	Standard	12.500	3.39	3968.618		3968.618	13.5	8.3	NO		NO	bbX

Dataset:
D:IPFAS5.PRO\RESULTS\200220P1\200220P1-CRV.qld
Last Altered:
Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed:
Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: 13C3-HFPO-DA-RSD

Response Factor: 0.178889
RRF SD: 0.00931062, Relative SD: 5.20468
Response type: Internal Std (Ref 100), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Stal. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CaD Flag	x=excluded
1	1 200220P1-3	Standard	12.500	3.39	3617.354	20142.271	2.245	12.5	0.4	NO		NO	bb
2	2 200220P1-4	Standard	12.500	3.39	3805.080	21634.467	2.199	12.3	-1.7	NO		NO	bb
3	3 200220P1-5	Standard	12.500	3.39	3645.414	22079.555	2.064	11.5	-7.7	NO		NO	bb
4	4 200220P1-6	Standard	12.500	3.39	3855.269	20880.449	2.308	12.9	3.2	NO		NO	bb
5	5 200220P1-7	Standard	12.500	3.39	3620.540	20643.729	2.192	12.3	-2.0	NO		NO	bb
6	6 200220P1-8	Standard	12.500	3.39	3663.977	21969.059	2.085	11.7	-6.8	NO		NO	bb
7	7 200220P1-9	Standard	12.500	3.39	3789.079	21719.918	2.181	12.2	-2.5	NO		NO	bb
8	8 200220P1-10	Standard	12.500	3.39	3947.845	21611.453	2.283	12.8	2.1	NO		NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	12.500	3.39	4091.144	21329.654	2.398	13.4	7.2	NO		NO	bb
10	10 200220P1-12	Standard	12.500	3.39	3968.618	20606.281	2.407	13.5	7.7	NO		NO	bb

Compound name: 13C2-4:2 FTS-EIS

Response Factor: 108.728
RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 200220P1-3	Standard	12.500	3.09	1393.605		1393.605	12.8	2.5	NO		NO	bbX
2	2 200220P1-4	Standard	12.500	3.09	1509.668		1509.668	13.9	11.1	NO		NO	MMX
3	3 200220P1-5	Standard	12.500	3.09	1646.149		1646.149	15.1	21.1	NO		NO	MMX
4	4 200220P1-6	Standard	12.500	3.10	1525.886		1525.886	14.0	12.3	NO		NO	$b b X$
5	5 200220P1-7	Standard	12.500	3.10	1435.392		1435.392	13.2	5.6	NO		NO	$b \mathrm{bx}$
6	$6200220 \mathrm{P} 1-8$	Standard	12.500	3.09	1359.106		1359.106	12.5	0.0	NO		NO	MM
7	7 200220P1-9	Standard	12.500	3.10	1435.273		1435.273	13.2	5.6	NO		NO	$b b x$
8	$8200220 \mathrm{P} 1-10$	Standard	12.500	3.10	1566.971		1566.971	14.4	15.3	NO		NO	$b b x$
9	$9200220 \mathrm{P} 1-11$	Standard	12.500	3.09	1533.484		1533.484	14.1	12.8	NO		NO	$b b x$
10	10 200220P1-12	Standard	12.500	3.10	1302.366		1302.366	12.0	-4.2	NO		NO	$b b X$

Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed
Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: 13C2-4:2 FTS-RSD
Response Factor: 1.19072
RRF SD: 0.119455, Relative SD: 10.0322
Response type: Internal Std (Ref 101), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	Covi Flag	$x=$ excluded
1	$1200220 \mathrm{P} 1-3$	Standard	12.500	3.09	1393.605	1223.123	14.242	12.0	-4.3	NO		NO	bb
2	2 200220P1-4	Standard	12.500	3.09	1524.874	1180.191	16.151	13.6	8.5	NO		NO	MM
3	3 200220P1-5	Standard	12.500	3.09	1645.203	1209.105	17.008	14.3	14.3	NO		NO	MM
4	4 200220P1-6	Standard	12.500	3.10	1525.886	1192.063	16.000	13.4	7.5	NO		NO	bb
5	5 200220P1-7	Standard	12.500	3.10	1435.392	1317.888	13.615	11.4	-8.5	NO		NO	bb
6	$6200220 \mathrm{P} 1-8$	Standard	12.500	3.09	1354.348	1450.318	11.673	9.8	-21.6	NO		NO	bb
7	7 200220P1-9	Standard	12.500	3.10	1435.273	1224.051	14.657	12.3	-1.5	NO		NO	bb
8	8 200220P1-10	Standard	12.500	3.10	1566.971	1293.469	15.143	12.7	1.7	NO		NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	12.500	3.09	1533.484	1279.869	14.977	12.6	0.6	NO		NO	bb
10	10 200220P1-12	Standard	12.500	3.10	1302.366	1058.920	15.374	12.9	3.3	NO		NO	bb

Compound name: 13C2-PFHxA-EIS

Response Factor: 1636.23
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	COD Flag	$x=$ excluded
1	$1200220 \mathrm{P} 1-3$	Standard	12.500	3.18	20012.639		20012.639	12.2	-2.2	NO		NO	bbX
2	2 200220P1-4	Standard	12.500	3.18	20000.619		20000.619	12.2	-2.2	NO		NO	$b b X$
3	$3200220 \mathrm{P} 1-5$	Standard	12.500	3.18	20397.721		20397.721	12.5	-0.3	NO		NO	$b b X$
4	4 200220P1-6	Standard	12.500	3.18	20893.373		20893.373	12.8	2.2	NO		NO	bbX
5	5 200220P1-7	Standard	12.500	3.18	20659.924		20659.924	12.6	1.0	NO		NO	bbX
6	6 200220P1-8	Standard	12.500	3.18	20452.928		20452.928	12.5	0.0	NO		NO	bb
7	7 200220P1-9	Standard	12.500	3.18	20628.305		20628.305	12.6	0.9	NO		NO	bbX
8	8 200220P1-10	Standard	12.500	3.18	22022.600		22022.600	13.5	7.7	NO		NO	$b b X$
9	9 200220P1-11	Standard	12.500	3.18	21680.693		21680.693	13.3	6.0	NO		NO	bbX
10	10 200220P1-12	Standard	12.500	3.18	21153.855		21153.855	12.9	3.4	NO		NO	bbX

Dataset: D:IPFAS5.PRO\RESULTSI200220P11200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed: \quad Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: 13C2-PFHxA-RSD

Response Factor: 0.978606
RRF SD: 0.0416312 , Relative SD: 4.25413
Response type: Internal Std (Ref 100), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Sta. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	$1200220 \mathrm{P} 1-3$	Standard	12.500	3.18	20012.639	20142.271	12.420	12.7	1.5	NO		NO	bb
2	$2200220 \mathrm{P} 1-4$	Standard	12.500	3.18	20000.619	21634.467	11.556	11.8	-5.5	NO		NO	bb
3	3 200220P1-5	Standard	12.500	3.18	20397.721	22079.555	11.548	11.8	-5.6	NO		NO	bo
4	4 200220P1-6	Standard	12.500	3.18	20893.373	20880.449	12.508	12.8	2.2	NO		NO	bb
5	5 200220P1-7	Standard	12.500	3.18	20659.924	20643.729	12.510	12.8	2.3	NO		NO	bb
6	$6200220 \mathrm{P} 1-8$	Standard	12.500	3.18	20452.928	21969.059	11.637	11.9	-4.9	NO		NO	bb
7	7 200220Р1-9	Standard	12.500	3.18	20628.305	21719.918	11.872	12.1	-2.9	NO		NO	bb
8	8 200220P1-10	Standard	12.500	3.18	22022.600	21611.453	12.738	13.0	4.1	NO		NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	12.500	3.18	21680.693	21329.654	12.706	13.0	3.9	NO		NO	bb
10	10 200220P1-12	Standard	12.500	3.18	21153.855	20606.281	12.832	13.1	4.9	NO		NO	bb

Compound name: 13C4-PFHpA-EIS

Response Factor: 1106.8
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=e x c l u d e d$
1	1 200220P1-3	Standard	12.500	3.78	12482.621		12482.621	11.3	-9.8	NO		NO	bbX
2	2 200220P1-4	Standard	12.500	3.78	13031.973		13031.973	11.8	-5.8	NO		NO	bbX
3	3 200220P1-5	Standard	12.500	3.78	12972.090		12972.090	11.7	-6.2	NO		NO	$b b X$
4	4 200220P1-6	Standard	12.500	3.78	13052.814		13052.814	11.8	-5.7	NO		NO	$b b X$
5	5 200220P1-7	Standard	12.500	3.78	12941.929		12941.929	11.7	-6.5	NO		NO	$b b X$
6	6 200220P1-8	Standard	12.500	3.78	13835.021		13835.021	12.5	0.0	NO		NO	bb
7	7 200220P1-9	Standard	12.500	3.78	13156.412		13156.412	11.9	-4.9	NO		NO	bbX
8	8 200220P1-10	Standard	12.500	3.78	12492.564		12492.564	11.3	-9.7	NO		NO	$b \mathrm{bX}$
9	$9200220 \mathrm{P} 1-11$	Standard	12.500	3.78	13479.294		13479.294	12.2	-2.6	NO		NO	$b b X$
10	$10200220 \mathrm{P} 1-12$	Standard	12.500	3.78	12425.425		12425.425	11.2	-10.2	NO		NO	$b \mathrm{bX}$

Last Altered:
Printed: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: 13C4-PFHpA-RSD
Response Factor: 0.611013
RRF SD: 0.0186272 , Relative SD: 3.04858
Response type: Internal Std (Ref 100), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Stci. Conc	RT ${ }^{-}$	Area	15 Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Fiag	x=exciuded
1	1 200220P1-3	Standard	12.500	3.78	12482.621	20142.271	7.747	12.7	1.4	NO		NO	bb
2	2 200220P1-4	Standard	12.500	3.78	13031.973	21634.467	7.530	12.3	-1.4	NO		NO	bb
3	$3200220 \mathrm{P} 1-5$	Standard	12.500	3.78	12972.090	22079.555	7.344	12.0	-3.8	NO		NO	bb
4	4 200220P1-6	Standard	12.500	3.78	13052.814	20880.449	7.814	12.8	2.3	NO		NO	bb
5	5 200220P1-7	Standard	12.500	3.78	12941.929	20643.729	7.836	12.8	2.6	NO		NO	bb
6	6 200220P1-8	Standard	12.500	3.78	13835.021	21969.059	7.872	12.9	3.1	NO		NO	bb
7	7 200220P1-9	Standard	12.500	3.78	13156.412	21719.918	7.572	12.4	-0.9	NO		NO	bb
8	8 200220P1-10	Standard	12.500	3.78	12492.564	21611.453	7.226	11.8	-5.4	NO		NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	12.500	3.78	13479.294	21329.654	7.899	12.9	3.4	NO		NO	bb
10	10 200220P1-12	Standard	12.500	3.78	12425.425	20606.281	7.537	12.3	-1.3	NO		NO	bb

Compound name: 13C3-PFHxS-EIS

Response Factor: 252.668
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	COD Flag	$x=$ excluded
1	$1200220 \mathrm{P} 1-3$	Standard	12.500	3.92	3082.791		3082.791	12.2	-2.4	NO		NO	bbX
2	2 200220P1-4	Standard	12.500	3.92	2944.146		2944.146	11.7	-6.8	NO		NO	$b b X$
3	$3200220 \mathrm{P1-5}$	Standard	12.500	3.92	2706.117		2706.117	10.7	-14.3	NO		NO	$b b X$
4	4 200220P1-6	Standard	12.500	3.92	2868.805		2868.805	11.4	-9.2	NO		NO	$b b X$
5	$5200220 \mathrm{P} 1-7$	Standard	12.500	3.92	3001.214		3001.214	11.9	-5.0	NO		NO	bbX
6	6 200220P1-8	Standard	12.500	3.92	3158.346		3158.346	12.5	0.0	NO		NO	bb
7	7 200220P1-9	Standard	12.500	3.92	3093.076		3093.076	12.2	-2.1	NO		NO	$b b X$
8	8 200220P1-10	Standard	12.500	3.92	2849.217		2849.217	11.3	-9.8	NO		NO	$b b X$
9	$9200220 \mathrm{P} 1-11$	Standard	12.500	3.92	2998.248		2998.248	11.9	-5.1	NO		NO	bbX
10	10 200220P1-12	Standard	12.500	3.92	2751.881		2751.881	10.9	-12.9	NO		NO	$b b X$

Dataset:
D:IPFAS5.PRO\RESULTSI200220P11200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed: Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: 13C3-PFHxS-RSD

Response Factor: 2.37858
RRF SD: 0.151806, Relative SD: 6.3822
Response type: Internal Std (Ref 101), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Stcl. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoDFlag	$x=$ excluded
1	1200220 Pl 1 -3	Standard	12.500	3.92	3082.791	1223.123	31.505	13.2	6.0	NO		NO	bb
2	2 200220P1-4	Standard	12.500	3.92	2944.146	1180.191	31.183	13.1	4.9	NO		NO	bb
3	3 200220P1-5	Standard	12.500	3.92	2706.117	1209.105	27.976	11.8	-5.9	NO		NO	bb
4	$4200220 \mathrm{P} 1-6$	Standard	12.500	3.92	2868.805	1192.063	30.082	12.6	1.2	NO		NO	bb
5	5 200220P1-7	Standard	12.500	3.92	3001.214	1317.888	28.466	12.0	-4.3	NO		NO	bb
6	$6200220 \mathrm{P} 1-8$	Standard	12.500	3.92	3158.346	1450.318	27.221	11.4	-8.4	NO		NO	bb
7	7 200220P1-9	Standard	12.500	3.92	3093.076	1224.051	31.586	13.3	6.2	NO		NO	bb
8	$8200220 \mathrm{P} 1-10$	Standard	12.500	3.92	2849.217	1293.469	27.535	11.6	-7.4	NO		NO	bb
9	9 200220P1-11	Standard	12.500	3.92	2998.248	1279.869	29.283	12.3	-1.5	NO		NO	bb
10	10 200220P1-12	Standard	12.500	3.92	2751.881	1058.920	32.485	13.7	9.3	NO		NO	bb

Compound name: 13C2-6:2 FTS-EIS

Response Factor: 121.507
RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	FiT	Area	IS Area	Response	Cone.	\%Dev	Conc. Flag	COD	CoD Fiag	$x=$ excludeg
1	1 200220P1-3	Standard	12.500	4.23	1369.139		1369.139	11.3	-9.9	NO		NO	bbX
2	2 200220P1-4	Standard	12.500	4.23	1283.517		1283.517	10.6	-15.5	NO		NO	bbX
3	$3200220 \mathrm{P} 1-5$	Standard	12.500	4.23	1230.354		1230.354	10.1	-19.0	NO		NO	bbX
4	4 200220P1-6	Standard	12.500	4.23	1431.884		1431.884	11.8	-5.7	NO		NO	bbX
5	5 200220P1-7	Standard	12.500	4.23	1408.519		1408.519	11.6	-7.3	NO		NO	bbX
6	6 200220P1-8	Standard	12.500	4.23	1518.842		1518.842	12.5	0.0	NO		NO	bb
7	7 200220P1-9	Standard	12.500	4.23	1479.055		1479.055	12.2	-2.6	NO		NO	bbX
8	8 200220P1-10	Standard	12.500	4.23	1302.443		1302.443	10.7	-14.2	NO		NO	$b b x$
9	9 200220P1-11	Standard	12.500	4.23	1430.818		1430.818	11.8	-5.8	NO		NO	$b b x$
10	10 200220P1-12	Standard	12.500	4.23	1261.472		1261.472	10.4	-16.9	NO		NO	$b b x$

Dataset:
D:IPFAS5.PRO\RESULTSI200220P11200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed: Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: 13C2-6:2 FTS-RSD

Response Factor: 0.377568
RRF SD: 0.0244257, Relative SD: 6.46921
Response type: Internal Std (Ref 104), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Sta. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoDFlag	$x=$ excluded
1	$1200220 \mathrm{P1-3}$	Standard	12.500	4.23	1369.139	3375.218	5.071	13.4	7.4	NO		NO	bb
2	2 200220P1-4	Standard	12.500	4.23	1283.517	3591.504	4.467	11.8	-5.3	NO		NO	bb
3	$3200220 \mathrm{P} 1-5$	Standard	12.500	4.23	1230.354	3737.936	4.114	10.9	-12.8	NO		NO	bb
4	4 200220P1-6	Standard	12.500	4.23	1431.884	3826.934	4.677	12.4	-0.9	NO		NO	bb
5	5 200220P1-7	Standard	12.500	4.23	1408.519	3421.741	5.145	13.6	9.0	NO		NO	bb
6	$6200220 \mathrm{P} 1-8$	Standard	12.500	4.23	1518.842	3872.213	4.903	13.0	3.9	NO		NO	bb
7	7 200220P1-9	Standard	12.500	4.23	1479.055	3807.600	4.856	12.9	2.9	NO		NO	bb
8	8 200220P1-10	Standard	12.500	4.23	1302.443	3614.641	4.504	11.9	-4.6	NO		NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	12.500	4.23	1430.818	3746.795	4.773	12.6	1.1	NO		NO	bb
10	10 200220P1-12	Standard	12.500	4.23	1261.472	3365.532	4.685	12.4	-0.7	NO		NO	bb

Compound name: 13C5-PFNA-EIS

Response Factor: 1373.36
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	FiT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	$1200220 \mathrm{P} 1-3$	Standard	12.500	4.72	15680.749		15680.749	11.4	-8.7	NO		NO	bbX
2	2 200220P1-4	Standard	12.500	4.72	14942.147		14942.147	10.9	-13.0	NO		NO	$b b X$
3	3 200220P1-5	Standard	12.500	4.72	15070.675		15070.675	11.0	-12.2	NO		NO	bbX
4	4 200220P1-6	Standard	12.500	4.72	15569.793		15569.793	11.3	-9.3	NO		NO	bbX
5	5 200220P1-7	Standard	12.500	4.72	15400.750		15400.750	11.2	-10.3	NO		NO	bbX
6	$6200220 \mathrm{P} 1-8$	Standard	12.500	4.72	17167.027		17167.027	12.5	0.0	NO		NO	bb
7	7 200220P1-9	Standard	12.500	4.72	16245.348		16245.348	11.8	-5.4	NO		NO	$b \mathrm{~b} X$
8	8 200220P1-10	Standard	12.500	4.72	15781.290		15781.290	11.5	-8.1	NO		NO	$b b x$
9	$9200220 \mathrm{P} 1-11$	Standard	12.500	4.72	15613.387		15613.387	11.4	-9.1	NO		NO	bbX
10	$10200220 \mathrm{P} 1-12$	Standard	12.500	4.72	15415.518		15415.518	11.2	-10.2	NO		NO	$b b X$

Dataset:
D:IPFAS5.PROXRESULTSL200220P11200220P1-CRV.qld
Last Altered:
Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed:
Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: 13C5-PFNA-RSD

Response Factor: 0.936635
RRF SD: 0.033364, Relative SD: 3.56211
Response type: Internal Std (Ref 103), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Stc. Conc:	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CuD	CoD Flag	$x=$ excluded
1	1200220 P1-3	Standard	12.500	4.72	15680.749	16032.552	12.226	13.1	4.4	NO		NO	bb
2	2 200220P1-4	Standard	12.500	4.72	14942.147	15482.925	12.063	12.9	3.0	NO		NO	bb
3	$3200220 \mathrm{P} 1-5$	Standard	12.500	4.72	15070.675	16296.199	11.560	12.3	-1.3	NO		NO	bb
4	4 200220P1-6	Standard	12.500	4.72	15569.793	17785.301	10.943	11.7	-6.5	NO		NO	bb
5	5 200220P1-7	Standard	12.500	4.72	15400.750	16090.972	11.964	12.8	2.2	NO		NO	bb
6	6 200220P1-8	Standard	12.500	4.72	17167.027	18174.621	11.807	12.6	0.8	NO		NO	bb
7	7 200220P1-9	Standard	12.500	4.72	16245.348	17629.514	11.519	12.3	-1.6	NO		NO	bb
8	$8200220 \mathrm{P} 1-10$	Standard	12.500	4.72	15781.290	16484.016	11.967	12.8	2.2	NO		NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	12.500	4.72	15613.387	17549.574	11.121	11.9	-5.0	NO		NO	bb
10	10 200220P1-12	Standard	12.500	4.72	15415.518	16179.260	11.910	12.7	1.7	NO		NO	bb

Compound name: 13C8-PFOSA-EIS

Response Factor: 323.068
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RTT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoDF Flag	$x=$ excluded
1	1 200220P1-3	Standard	12.500	4.78	3620.464		3620.464	11.2	-10.3	NO		NO	bbX
2	2 200220P1-4	Standard	12.500	4.78	3533.092		3533.092	10.9	-12.5	NO		NO	bdX
3	3 200220P1-5	Standard	12.500	4.78	3557.113		3557.113	11.0	-11.9	NO		NO	$b b x$
4	4 200220P1-6	Standard	12.500	4.78	3785.300		3785.300	11.7	-6.3	NO		NO	$b b x$
5	5 200220P1-7	Standard	12.500	4.78	3672.073		3672.073	11.4	-9.1	NO		NO	$b b x$
6	6 200220P1-8	Standard	12.500	4.78	4038.352		4038.352	12.5	0.0	NO		NO	bb
7	7 200220P1-9	Standard	12.500	4.78	3733.793		3733.793	11.6	-7.5	NO		NO	bbX
8	8 200220P1-10	Standard	12.500	4.78	3435.960		3435.960	10.6	-14.9	NO		NO	bdX
9	$9200220 \mathrm{P} 1-11$	Standard	12.500	4.78	3597.537		3597.537	11.1	-10.9	NO		NO	bbX
10	10 200220P1-12	Standard	12.500	4.78	3260.902		3260.902	10.1	-19.3	NO		NO	bbX

Dataset:
D:IPFAS5.PRO\RESULTSI200220P1\200220P1-CRV.qld
Last Altered:
Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed:
Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: 13C8-PFOSA-RSD

Response Factor: 0.190936
RRF SD: 0.0145666, Relative SD: 7.62903
Response type: Internal Std (Ref 106), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Narne	Type:	Stci. Cone	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 200220P1-3	Standard	12.500	4.78	3620.464	18234.537	2.482	13.0	4.0	NO		NO	bb
2	2 200220P1-4	Standard	12.500	4.78	3533.092	17612.855	2.507	13.1	5.1	NO		NO	bd
3	3 200220P1-5	Standard	12.500	4.78	3557.113	20648.279	2.153	11.3	-9.8	NO		NO	bb
4	4 200220P1-6	Standard	12.500	4.78	3785.300	19841.098	2.385	12.5	-0.1	NO		NO	bb
5	5 200220P1-7	Standard	12.500	4.78	3672.073	19689.107	2.331	12.2	-2.3	NO		NO	bb
6	6 200220P1-8	Standard	12.500	4.78	4038.352	18168.391	2.778	14.6	16.4	NO		NO	bb
7	7 200220P1-9	Standard	12.500	4.78	3733.793	20740.715	2.250	11.8	-5.7	NO		NO	bb
8	$8200220 \mathrm{P} 1-10$	Standard	12.500	4.78	3435.960	17887.111	2.401	12.6	0.6	NO		NO	bd
9	$9200220 \mathrm{P} 1-11$	Standard	12.500	4.78	3597.537	18712.764	2.403	12.6	0.7	NO		NO	bb
10	10 200220P1-12	Standard	12.500	4.78	3260.902	18738.523	2.175	11.4	-8.9	NO		NO	bb

Compound name: 13C2-PFOA-EIS

Response Factor: 1527.16
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Cone	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 200220P1-3	Standard	12.500	4.29	18027.223		18027.223	11.8	-5.6	NO		NO	bbX
2	2 200220P1-4	Standard	12.500	4.29	19048.508		19048.508	12.5	-0.2	NO		NO	$b b X$
3	3 200220P1-5	Standard	12.500	4.29	17893.020		17893.020	11.7	-6.3	NO		NO	$b b X$
4	4 200220P1-6	Standard	12.500	4.29	18471.129		18471.129	12.1	-3.2	NO		NO	$b b x$
5.	5 200220P1-7	Standard	12.500	4.29	18048.473		18048.473	11.8	-5.5	NO		NO	$b b X$
6	6 200220P1-8	Standard	12.500	4.29	19089.504		19089.504	12.5	0.0	NO		NO	bb
7	7 200220P1-9	Standard	12.500	4.29	18834.941		18834.941	12.3	-1.3	NO		NO	bbX
8	8 200220P1-10	Standard	12.500	4.29	17822.139		17822.139	11.7	-6.6	NO		NO	bbX
9	$9200220 \mathrm{P} 1-11$	Standard	12.500	4.29	17296.020		17296.020	11.3	-9.4	NO		NO	$b b X$
10	$10200220 \mathrm{P} 1-12$	Standard	12.500	4.29	16599.553		16599.553	10.9	-13.0	NO		NO	$b b X$

Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed
Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: 13C2-PFOA-RSD

Response Factor: 0.916957
RRF SD: 0.0482449, Relative SD: 5.26141
Response type: Internal Std (Ref 102), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 200220P1-3	Standard	12.500	4.29	18027.223	19241.080	11.711	12.8	2.2	NO		NO	bb
2	2 200220P1-4	Standard	12.500	4.29	19048.508	20977.639	11.350	12.4	-1.0	NO		NO	bb
3	$3200220 \mathrm{P} 1-5$	Standard	12.500	4.29	17893.020	20418.293	10.954	11.9	-4.4	NO		NO	bb
4	4 200220P1-6	Standard	12.500	4.29	18471.129	20255.918	11.399	12.4	-0.6	NO		NO	bb
5	5 200220P9-7	Standard	12.500	4.29	18048.473	20356.574	11.083	12.1	-3.3	NO		NO	bb
6	$6200220 \mathrm{P} 1-8$	Standard	12.500	4.29	19089.504	22121.662	10.787	11.8	-5.9	NO		NO	bb
7	7 200220P1-9	Standard	12.500	4.29	18834.941	18484.418	12.737	13.9	11.1	NO		NO	bb
8	8 200220P1-10	Standard	12.500	4.29	17822.139	19098.527	11.665	12.7	1.8	NO		NO	bb
9	9 200220P1-11	Standard	12.500	4.29	17296.020	19856.025	10.888	11.9	-5.0	NO		NO	bb
10	10 200220P1-12	Standard	12.500	4.29	16599.553	17225.596	12.046	13.1	5.1	NO		NO	bb

Compound name: 13C8-PFOS-EIS

Response Factor: 295.805
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	1 200220P1-3	Standard	12.500	4.79	3134.899		3134.899	10.6	-15.2	NO		NO	bbX
2	2 200220P1-4	Standard	12.500	4.79	3339.188		3339.188	11.3	-9.7	NO		NO	$b b X$
3	3 200220P1-5	Standard	12.500	4.79	3403.621		3403.621	11.5	-7.9	NO		NO	$b b X$
4	4 200220P1-6	Standard	12.500	4.79	3671.517		3671.517	12.4	-0.7	NO		NO	$b b X$
5	5 200220P1-7	Standard	12.500	4.79	3582.422		3582.422	12.1	-3.1	NO		NO	$b b x$
6	6 200220P1-8	Standard	12.500	4.80	3697.559		3697.559	12.5	0.0	NO		NO	bb
7	7 200220P1-9	Standard	12.500	4.79	3148.619		3148.619	10.6	-14.8	NO		NO	$b b X$
8	8 200220P1-10	Standard	12.500	4.79	3413.870		3413.870	11.5	-7.7	NO		NO	$b b X$
9	9 200220P1-11	Standard	12.500	4.80	3599.188		3599.188	12.2	-2.7	NO		NO	$b b X$
10	10 200220P1-12	Standard	12.500	4.80	2993.555		2993.555	10.1	-19.0	NO		NO	bbX

Last Altered:
Printed:
Friday, February 21, 2020 11:03:18 Pacific Standard Time Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: 13C8-PFOS-RSD

Response Factor: 0.935182
RRF SD: 0.0564556 , Relative SD: 6.03685
Response type: Internal Std (Ref 104), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	COD Flag	$x=$ excluded
1	$1200220 \mathrm{P} 1-3$	Standard	12.500	4.79	3134.899	3375.218	11.610	12.4	-0.7	NO		NO	bb
2	2 200220P1-4	Standard	12.500	4.79	3339.188	3591.504	11.622	12.4	-0.6	NO		NO	bb
3	$3200220 \mathrm{P} 1-5$	Standard	12.500	4.79	3403.621	3737.936	11.382	12.2	-2.6	NO		NO	bb
4	4 200220P1-6	Standard	12.500	4.79	3671.517	3826.934	11.992	12.8	2.6	NO		NO	bb
5	5 200220P1-7	Standard	12.500	4.79	3582.422	3421.741	13.087	14.0	12.0	NO		NO	tb
6	6 200220P1-8	Standard	12.500	4.80	3697.559	3872.213	11.936	12.8	2.1	NO		NO	bb
7	7 200220P1-9	Standard	12.500	4.79	3148.619	3807.600	10.337	11.1	-11.6	NO		NO	bb
8	$8200220 \mathrm{P} 1-10$	Standard	12.500	4.79	3413.870	3614.641	11.806	12.6	1.0	NO		NO	bb
9	9 200220P1-11	Standard	12.500	4.80	3599.188	3746.795	12.008	12.8	2.7	NO		NO	bb
10	10 200220P1-12	Standard	12.500	4.80	2993.555	3365.532	11.118	11.9	-4.9	NO		NO	bb

Compound name: 13C2-PFDA-EIS

Response Factor: 1356.41
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Área	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	1 200220P1-3	Standard	12.500	5.08	18001.354		18001.354	13.3	6.2	NO		NO	bbX
2	2 200220P1-4	Standard	12.500	5.08	17188.822		17188.822	12.7	1.4	NO		NO	$b b x$
3	$3200220 \mathrm{P} 1-5$	Standard	12.500	5.08	16655.424		16655.424	12.3	-1.8	NO		NO	$b b x$
4	4 200220P1-6	Standard	12.500	5.08	17626.307		17626.307	13.0	4.0	NO		NO	$b b x$
5	5 200220P1-7	Standard	12.500	5.08	16828.695		16828.695	12.4	-0.7	NO		NO	$b b x$
6	$6200220 \mathrm{P} 1-8$	Standard	12.500	5.08	16955.131		16955.131	12.5	0.0	NO		NO	bb
7	7 200220P1-9	Standard	12.500	5.08	17972.971		17972.971	13.3	8.0	NO		NO	$b b x$
8	8 200220P1-10	Standard	12.500	5.08	17851.639		17851.639	13.2	5.3	NO		NO	$b b x$
9	$9200220 \mathrm{P} 1-11$	Standard	12.500	5.08	17168.783		17168.783	12.7	1.3	NO		NO	bbX
10	10 200220P1-12	Standard	12.500	5.08	17168.256		17168.256	12.7	1.3	NO		NO	bbX

Dataset:
D:IPFAS5.PRO\RESULTSL200220P11200220P1-CRV.ald
Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed
Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: 13C2-PFDA-RSD

Response Factor: 0.946734
RRF SD: 0.0354396 , Relative SD: 3.74335
Response type: Internal Std (Ref 105), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Sta. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	1 200220P1-3	Standard	12.500	5.08	18001.354	18654.029	12.063	12.7	1.9	NO		NO	bb
2	2 200220P1-4	Standard	12.500	5.08	17188.822	17390.426	12.355	13.1	4.4	NO		NO	bb
3	3 200220P1-5	Standard	12.500	5.08	16655.424	17848.303	11.665	12.3	-1.4	NO		NO	bb
4	4 200220P1-6	Standard	12.500	5.08	17626.307	19309.916	11.410	12.1	-3.6	NO		NO	bb
5	5 200220P1-7	Standard	12.500	5.08	16828.695	18816.568	11.179	11.8	-5.5	NO		NO	bb
6	$6200220 \mathrm{P} 1-8$	Standard	12.500 .	5.08	16955.131	18749.072	11.304	11.9	-4.5	NO		NO	bb
7	7 200220P1-9	Standard	12.500	5.08	17972.971	19109.350	11.757	12.4	-0.7	NO		NO	bb
8	8 200220P1-10	Standard	12.500	5.08	17851.639	18063.303	12.354	13.0	4.4	NO		NO	bb
9	9 200220P1-11	Standard	12.500	5.08	17168.783	17984.857	11.933	12.6	0.8	NO		NO	bb
10	$10200220 \mathrm{P} 1-12$	Standard	12.500	5.08	17168.256	17415.027	12.323	13.0	4.1	NO		NO	bb

Compound name: 13C2-8:2 FTS-EIS

Response Factor: 85.947
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	$1200220 \mathrm{P} 1-3$	Standard	12.500	5.05	1034.617		1034.617	12.0	-3.7	NO		NO	bbX
2	2 200220P1-4	Standard	12.500	5.05	1048.430		1048.430	12.2	-2.4	NO		NO	$b b x$
3	$3200220 \mathrm{P} 1-5$	Standard	12.500	5.05	1045.108		1045.108	12.2	-2.7	NO		NO	$b b x$
4	4 200220P1-6	Standard	12.500	5.05	903.218		903.218	10.5	-15.9	NO		NO	$b b x$
5	5 200220P1-7	Standard	12.500	5.05	1193.213		1193.213	13.9	11.1	NO		NO	$b \mathrm{bx}$
6	6 200220P1-8	Standard	12.500	5.05	1074.338		1074.338	12.5	0.0	NO		NO	bb
7	7 200220P1-9	Standard	12.500	5.05	1125.896		1125.896	13.1	4.8	NO		NO	bbX
8	8 200220P1-10	Standard	12.500	5.05	980.440		980.440	11.4	-8.7	NO		NO	bbX
9	9 200220P1-11	Standard	12.500	5.05	1051.534		1051.534	12.2	-2.1	NO		NO	bbX
10	10 200220P1-12	Standard	12.500	5.05	1091.204		1091.204	12.7	1.6	NO		NO	bbX

Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: 13C2-8:2 FTS-RSD
Response Factor: 0.291204
RRF SD: 0.0307923 , Relative SD: 10.5741
Response type: Internal Std (Ref 104), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	AT	Area	IS Area.	Response	Conc.	\%Dev	Conc. Flag	CoD	COD Flag	$x=$ excluded
1	$1200220 \mathrm{P} 1-3$	Standard	12.500	5.05	1034.617	3375.218	3.832	13.2	5.3	NO		NO	bb
2	2 200220P1-4	Standard	12.500	5.05	1048.430	3591.504	3.649	12.5	0.2	NO		NO	bb
3	3 200220P1-5	Standard	12.500	5.05	1045.108	3737.936	3.495	12.0	-4.0	NO		NO	bb
4	4 200220P1-6	Standard	12.500	5.05	903.218	3826.934	2.950	10.1	-19.0	NO		NO	bb
5	5 200220P1-7	Standard	12.500	5.05	1193.213	3421.741	4.359	15.0	19.7	NO		NO	bb
6	$6200220 \mathrm{P} 1-8$	Standard	12.500	5.05	1074.338	3872.213	3.468	11.9	-4.7	NO		NO	bb
7	7 200220P1-9	Standard	12.500	5.05	1125.896	3807.600	3.696	12.7	1.5	NO		NO	bb
8	8 200220P1-10	Standard	12.500	5.05	980.440	3614.641	3.391	11.6	-6.9	NO		NO	bb
9	9 200220P1-11	Standard	12.500	5.05	1051.534	3746.795	3.508	12.0	-3.6	NO		NO	bb
10	10 200220P1-12	Standard	12.500	5.05	1091.204	3365.532	4.053	13.9	11.3	NO		NO	bb

Compound name: d3-N-MeFOSAA-EIS

Response Factor: 262.877
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	1 200220P1-3	Standard	12.500	5.22	3016.410		3016.410	11.5	-8.2	NO		NO	bbX
2	2 200220P1-4	Standard	12.500	5.22	2667.508		2667.508	10.1	-18.8	NO		NO	bbX
3	3 200220P1-5	Standard	12.500	5.23	3036.359		3036.359	11.6	-7.6	NO		NO	$b b X$
4	4 200220P1-6	Standard	12.500	5.23	3065.277		3065.277	11.7	-6.7	NO		NO	$b b x$
5	5 200220P1-7	Standard	12.500	5.22	3468.438		3468.438	13.2	5.6	NO		NO	$b b X$
6	6 200220P1-8	Standard	12.500	5.23	3285.958		3285.958	12.5	0.0	NO		NO	bb
7	7 200220P1-9	Standard	12.500	5.23	3394.840		3394.840	12.9	3.3	NO		NO	$b \mathrm{bx}$
8	$8200220 \mathrm{P}_{1-10}$	Standard	12.500	5.23	3657.222		3657.222	13.9	11.3	NO		NO	$b b x$
9	9 200220P1-11	Standard	12.500	5.23	3440.745		3440.745	13.1	4.7	NO		NO	$b b x$
10	10 200220P1-12	Standard	12.500	5.23	3632.452		3632.452	13.8	10.5	NO		NO	bbX

Dataset: D:IPFAS5.PROTRESULTSL200220P11200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed: Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: d3-N-MeFOSAA-RSD

Response Factor: 0.17213

RRF SD: 0.0189485 , Relative SD: 11.0082
Response type: Internal Std (Ref 106), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name:	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1200220 P1-3	Standard	12.500	5.22	3016.410	18234.537	2.068	12.0	-3.9	NO		NO	bb
2	2200220 P1-4	Standard	12.500	5.22	2667.508	17612.855	1.893	11.0	-12.0	NO		NO	bb
3	3 200220P1-5	Standard	12.500	5.23	3036.359	20648.279	1.838	10.7	-14.6	NO		NO	bb
4	4 200220P1-6	Standard	12.500	5.23	3065.277	19841.098	1.931	11.2	-10.2	NO		NO	bb
5	5 200220P1-7	Standard	12.500	5.22	3468.438	19689.107	2.202	12.8	2.3	NO		NO	bb
6	6 200220P1-8	Standard	12.500	5.23	3285.958	18168.391	2.261	13.1	5.1	NO		NO	bb
7	7 200220P1-9	Standard	12.500	5.23	3394.840	20740.715	2.046	11.9	-4.9	NO		NO	bb
8	8 200220P1-10	Standard	12.500	5.23	3657.222	17887.111	2.556	14.8	18.8	NO		NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	12.500	5.23	3440.745	18712.764	2.298	13.4	6.8	NO		NO	bb
10	10 200220P1-12	Standard	12.500	5.23	3632.452	18738.523	2.423	14.1	12.6	NO		NO	bb

Compound name: 13C2-PFUdA-EIS

Response Factor: 1416.45
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc,	\%Dev	Conc. Flag	COD	CoDi Flag	$x=$ excluded
1	1 200220P1-3	Standard	12.500	5.39	18732.203		18732.203	13.2	5.8	NO		NO	bbX
2	2 200220P1-4	Standard	12.500	5.39	19303.398		19303.398	13.6	9.0	NO		NO	$b b x$
3	$3200220 \mathrm{P}_{1-5}$	Standard	12.500	5.39	19806.705		19806.705	14.0	11.9	NO		NO	$b \mathrm{bx}$
4.	4 200220P1-6	Standard	12.500	5.39	19724.176		19724.176	13.9	11.4	NO		NO	$b b x$
5	$5200220 \mathrm{P} 1-7$	Standard	12.500	5.39	19634.039		19634.039	13.9	10.9	NO		NO	bbX
6	6 200220P1-8	Standard	12.500	5.39	17705.611		17705.611	12.5	0.0	NO		NO	bb
7	7 200220P1-9	Standard	12.500	5.39	19707.631		19707.631	13.9	11.3	NO		NO	$b b X$
8	8 200220P1-10	Standard	12.500	5.39	18670.961		18670.961	13.2	5.5	NO		NO	$b b X$
9	9 200220P1-11	Standard	12.500	5.39	18640.654		18640.654	13.2	5.3	NO		NO	$b b x$
10	10 200220P1-12	Standard	12.500	5.39	19477.016		19477.016	13.8	10.0	NO		NO	bbX

Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed: Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: 13C2-PFUdA-RSD

Response Factor: 1.00779
RRF SD: 0.0443125, Relative SD: 4.39699
Response type: Internal Std (Ref 106), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	COD Flag	$\mathrm{x}=$ excluded
1	$1200220 \mathrm{P} 1-3$	Standard	12.500	5.39	18732.203	18234.537	12.841	12.7	1.9	NO		NO	bb
2	2 200220P1-4	Standard	12.500	5.39	19303.398	17612.855	13.700	13.6	8.8	NO		NO	bb
3	$3200220 \mathrm{P} 1-5$	Standard	12.500	5.39	19806.705	20648.279	11.991	11.9	-4.8	NO		NO	bb
4	4 200220P1-6	Standard	12.500	5.39	19724.176	19841.098	12.426	12.3	-1.4	NO		NO	bb
5	5 200220P1-7	Standard	12.500	5.39	19634.039	19689.107	12.465	12.4	-1.1	NO		NO	bb
6	6 200220P1-8	Standard	12.500	5.39	17705.611	18168.391	12.182	12.1	-3.3	NO		NO	bb
7	7 200220P1-9	Standard	12.500	5.39	19707.631	20740.715	11.877	11.8	-5.7	NO		NO	bb
8	8 200220P1-10	Standard	12.500	5.39	18670.961	17887.111	13.048	12.9	3.6	NO		NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	12.500	5.39	18640.654	18712.764	12.452	12.4	-1.2	NO		NO	bb
10	$10200220 \mathrm{P} 1-12$	Standard	12.500	5.39	19477.016	18738.523	12.993	12.9	3.1	NO		NO	bb

Compound name: $\mathbf{d 5}-\mathrm{N}-E t F O S A A-E I S$

Response Factor: 360.983
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 200220P1-3	Standard	12.500	5.38	3697.274		3697.274	10.2	-18.1	NO		NO	bbX
2	2 200220P1-4	Standard	12.500	5.38	4301.055		4301.055	11.9	-4.7	NO		NO	$b b X$
3	$3200220 \mathrm{P} 1-5$	Standard	12.500	5.38	4278.258		4278.258	11.9	-5.2	NO		NO	$b b X$
4	$4200220 \mathrm{P} 1-6$	Standard	12.500	5.38	4324.604		4324.604	12.0	-4.2	NO		NO	
5	5 200220P1-7	Standard	12.500	5.38	4530.818		4530.818	12.6	0.4	NO		NO	$b b X$
6	6 200220P1-8	Standard	12.500	5.38	4512.287		4512.287	12.5	0.0	NO		NO	bb
7	7 200220P1-9	Standard	12.500	5.38	4695.998		4695.998	13.0	4.1	NO		NO	$b b x$
8	8 200220P1-10	Standard	12.500	5.38	4286.607		4286.607	11.9	-5.0	NO		NO	$b b x$
9	9 200220P1-11	Standard	12.500	5.38	4223.098		4223.098	11.7	-6.4	NO		NO	$b b x$
10	10 200220P1-12	Standard	12.500	5.38	4025.157		4025.157	11.2	-10.8	NO		NO	bbX

Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed:
Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: d5-N-EtFOSAA-RSD

Response Factor: 0.225715
RRF SD: 0.0153381, Relative SD: 6.79533
Response type: Internal Std (Ref 106), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Sti. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 200220P1-3	Standard	12.500	5.38	3697.274	18234.537	2.535	11.2	-10.2	NO		NO	bb
2	2 200220P1-4	Standard	12.500	5.38	4301.055	17612.855	3.052	13.5	8.2	NO		NO	bb
3	$3200220 \mathrm{P} 1-5$	Standard	12.500	5.38	4278.258	20648.279	2.590	11.5	-8.2	NO		NO	bb
4	4 200220P1-6	Standard	12.500	5.38	4324.604	19841.098	2.725	12.1	-3.4	NO		NO	bb
5	5 200220P1-7	Standard	12.500	5.38	4530.818	19689.107	2.876	12.7	2.0	NO		NO	bb
6	$6200220 \mathrm{P} 1-8$	Standard	12.500	5.38	4512.287	18168.391	3.104	13.8	10.0	NO		NO	bb
7	7 200220P1-9	Standard	12.500	5.38	4695.998	20740.715	2.830	12.5	0.3	NO		NO	bb
8	8 200220P1-10	Standard	12.500	5.38	4286.607	17887.111	2.996	13.3	6.2	NO		NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	12.500	5.38	4223.098	18712.764	2.821	12.5	-0.0	NO		NO	bb
10	10 200220P1-12	Standard	12.500	5.38	4025.157	18738.523	2.685	11.9	-4.8	NO		NO	bb

Compound name: 13C2-PFDoA-EIS

Response Factor: 1573.09
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	15 Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	$1200220 \mathrm{P} 1-3$	Standard	12.500	5.67	18226.420		18226.420	11.6	-7.3	NO		NO	bbX
2	2 200220P1-4	Standard	12.500	5.66	17947.455		17947.455	11.4	-8.7	NO		NO	$b b x$
3	3 200220P1-5	Standard	12.500	5.67	18181.920		18181.920	11.6	-7.5	NO		NO	$b b X$
4	4 200220P1-6	Standard	12.500	5.67	16880.262		16880.262	10.7	-14.2	NO		NO	$b \mathrm{~b} X$
5	5 200220P1-7	Standard	12.500	5.67	16872.459		16872.459	10.7	-14.2	NO		NO	$b \mathrm{bX}$
6	6 200220P1-8	Standard	12.500	5.67	19663.664		19663.664	12.5	0.0	NO		NO	bb
7	7 200220P1-9	Standard	12.500	5.67	18800.338		18800.338	12.0	-4.4	NO		NO	bbX
8	8 200220P1-10	Standard	12.500	5.67	18745.896		18745.896	11.9	-4.7	NO		NO	bbX
9	9 200220P1-11	Standard	12.500	5.67	19925.018		19925.018	12.7	1.3	NO		NO	$b b X$
10	10 200220P1-12	Standard	12.500	5.67	17740.600		17740.600	11.3	-9.8	NO		NO	bbX

Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed
Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: 13C2-PFDoA-RSD

Response Factor: 0.999563
RRF SD: 0.0702864 , Relative SD: 7.03171
Response type: Internal Std (Ref 105), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response:	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	1 200220P1-3	Standard	12.500	5.67	18226.420	18654.029	12.213	12.2	-2.2	NO		NO	bb
2	2 200220P1-4	Standard	12.500	5.66	17947.455	17390.426	12.900	12.9	3.2	NO		NO	bb
3	3 200220P1-5	Standard	12.500	5.67	18181.920	17848.303	12.734	12.7	1.9	NO		NO	bb
4	4 200220P1-6	Standard	12.500	5.67	16880.262	19309.916	10.927	10.9	-12.5	NO		NO	bb
5	5 200220P1-7	Standard	12.500	5.67	16872.459	18816.568	11.209	11.2	-10.3	NO		NO	bb
6	$6200220 \mathrm{P} 1-8$	Standard	12.500	5.67	19663.664	18749.072	13.110	13.1	4.9	NO		NO	bb
7	7 200220P1-9	Standard	12.500	5.67	18800.338	19109.350	12.298	12.3	-1.6	NO		NO	bb
8	8 200220P1-10	Standard	12.500	5.67	18745.896	18063.303	12.972	13.0	3.8	NO		NO	bb
9	9 200220P1-11	Standard	12.500	5.67	19925.018	17984.857	13.848	13.9	10.8	NO		NO	bb
10	10 200220P1-12	Standard	12.500	5.67	17740.600	17415.027	12.734	12.7	1.9	NO		NO	bb

Compound name: 13C2-10:2 FTS-EIS

Response Factor: 66.7634
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	$1200220 \mathrm{P} 1-3$	Standard	12.500	5.65	971.295		971.295	14.5	16.4	NO		NO	bibx
2	2 200220P1-4	Standard	12.500	5.65	960.004		960.004	14.4	15.0	NO		NO	$b b X$
3	3 200220P1-5	Standard	12.500	5.66	888.197		888.197	13.3	6.4	NO		NO	bbX
4	4 200220P1-6	Standard	12.500	5.66	816.162		816.162	12.2	-2.2	NO		NO	bbX
5	5 200220P1-7	Standard	12.500	5.66	897.362		897.362	13.4	7.5	NO		NO	bbX
6	6 200220P1-8	Standard	12.500	5.65	834.543		834.543	12.5	0.0	NO		NO	bb
7	7 200220P1-9	Standard	12.500	5.66	987.961		987.961	14.8	18.4	NO		NO	$\mathrm{db} \times$
8	8 200220P1-10	Standard	12.500	5.66	775.816		775.816	11.6	-7.0	NO		NO	$b b X$
9	9 200220P1-11	Standard	12.500	5.66	714.900		714.900	10.7	-14.3	NO		NO	dbX
10	10 200220P1-12	Standard	12.500	5.65	688.251		688.251	10.3	-17.5	NO		NO	dbX

Dataset:
D:IPFAS5.PROXRESULTSL200220P11200220P1-CRV.qId
Last Altered:
Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed:
Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: 13C2-10:2 FTS-RSD
Response Factor: 0.235314
RRF SD: 0.03219, Relative SD: 13.6796
Response type: Internal Std (Ref 104), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	Coí Flag	$x=$ excluded
1	1 200220P1-3	Standard	12.500	5.65	971.295	3375.218	3.597	15.3	22.3	NO		NO	bb
2	2 200220P1-4	Standard	12.500	5.65	960.004	3591.504	3.341	14.2	13.6	NO		NO	bb
3	$3200220 \mathrm{P} 1-5$	Standard	12.500	5.66	888.197	3737.936	2.970	12.6	1.0	NO		NO	bb
4	4 200220P1-6	Standard	12.500	5.66	816.162	3826.934	2.666	11.3	-9.4	NO		NO	bb
5	5 200220P1-7	Standard	12.500	5.66	897.362	3421.741	3.278	13.9	11.4	NO		NO	bb
6	6200220 P 1 -8	Standard	12.500	5.65	834.543	3872.213	2.694	11.4	-8.4	NO		NO	bb
7	7 200220P1-9	Standard	12.500	5.66	987.961	3807.600	3.243	13.8	10.3	NO		NO	db
8	8 200220P1-10	Standard	12.500	5.66	775.816	3614.641	2.683	11.4	-8.8	NO		NO	bb
9	9 200220P1-11	Standard	12.500	5.66	714.900	3746.795	2.385	10.1	-18.9	NO		NO	db
10	10 200220P1-12	Standard	12.500	5.65	688.251	3365.532	2.556	10.9	-13.1	NO		NO	db

Compound name: d3-N-MeFOSA-EIS

Response Factor: 121.074
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	ColD Flag	$\mathrm{x}=$ excluded
1	1 200220P1-3	Standard	149.200	5.83	15962.999		15962.999	131.8	-11.6	NO		NO	bbX
2	2 200220P1-4	Standard	149.200	5.83	16667.066		16687.066	137.7	-7.7	NO		NO	bbX
3	3 200220P1-5	Standard	149.200	5.83	17139.836		17139.836	141.6	-5.1	NO		NO	bbX
4	4200220 P 1 -6	Standard	149.200	5.83	16798.215		16798.215	138.7	-7.0	NO		NO	bbX
5.	5 200220P1-7	Standard	149.200	5.83	17027.213		17027.213	140.6	-5.7	NO		NO	bbX
6	6 200220P1-8	Standard	149.200	5.83	18064.303		18064.303	149.2	0.0	NO		NO	bb
7	7 200220P1-9	Standard	149.200	5.83	17667.113		17667.113	145.9	-2.2	NO		NO	bbX
8	8 200220P1-10	Standard	149.200	5.84	17302.824		17302.824	142.9	-4.2	NO		NO	$b b x$
9	$9200220 \mathrm{P} 1-11$	Standard	149.200	5.83	17976.174		17976.174	148.5	-0.5	NO		NO	bbX
10	10 200220P1-12	Standard	149.200	5.84	17536.160		17536.160	144.8	-2.9	NO		NO	bbX

Dataset:
D:IPFAS5.PROIRESULTSL200220P11200220P1-CRV.qld
Last Altered:
Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed: Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: d3-N-MeFOSA-RSD

Response Factor: 0.0760149
RRF SD: 0.00498721 , Relative SD: 6.56083
Response type: Internal Std (Ref 106), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	$\overline{C O D}$	CoD Flag	$x=$ excluded
1	1 200220P1-3	Standard	149.200	5.83	15962.999	18234.537	10.943	144.0	-3.5	NO		NO	bb
2	2 200220P1-4	Standard	149.200	5.83	16667.066	17612.855	11.829	155.6	4.3	NO		NO	bb
3	3 200220P1-5	Standard	149.200	5.83	17139.836	20648.279	10.376	136.5	-8.5	NO		NO	bb
4	4 200220P1-6	Standard	149.200	5.83	16798.215	19841.098	10.583	139.2	-6.7	NO		NO	bb
5	5 200220P1-7	Standard	149.200	5.83	17027.213	19689.107	10.810	142.2	-4.7	NO		NO	bb
6	$6200220 \mathrm{P} 1-8$	Standard	149.200	5.83	18064.303	18168.391	12.428	163.5	9.6	NO		NO	bb
7	7 200220P1-9	Standard	149.200	5.83	17667.113	20740.715	10.648	140.1	-6.1	NO		NO	bb
8	8 200220P1-10	Standard	149.200	5.84	17302.824	17887.111	12.092	159.1	6.6	NO		NO	bb
9	9 200220P1-11	Standard	149.200	5.83	17976.174	18712.764	12.008	158.0	5.9	NO		NO	bb
10	10 200220P1-12	Standard	149.200	5.84	17536.160	18738.523	11.698	153.9	3.1	NO		NO	bb

Compound name: 13G2-PFTeDA-EIS

Response Factor: 1440.51
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conic	RT	Área	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Fiag	$x=$ excluded
1	$1200220 \mathrm{P} 1-3$	Standard	12.500	6.11	19053.490		19053.490	13.2	5.8	NO		NO	bbX
2	2 200220P1-4	Standard	12.500	6.11	19828.295		19828.295	13.8	10.1	NO		NO	bbX
3	$3200220 \mathrm{P} 1-5$	Standard	12.500	6.11	18055.973		18055.973	12.5	0.3	NO		NO	$b b X$
4	$4200220 \mathrm{P} 1-6$	Standard	12.500	6.11	18189.154		18189.154	12.6	1.0	NO		NO	$b b X$
5	$5200220 \mathrm{P} 1-7$	Standard	12.500	6.11	17643.662		17643.662	12.2	-2.0	NO		NO	bbX
6	$6200220 \mathrm{P} 1-8$	Standard	12.500	6.11	18006.408		18006.408	12.5	0.0	NO		NO	bb
7	7 200220P1-9	Standard	12.500	6.11	18692.244		18692.244	13.0	3.8	NO		NO	bbX
8	$8200220 \mathrm{P} 1-10$	Standard	12.500	6.12	18729.498		18729.498	13.0	4.0	NO		NO	$b b x$
9	$9200220 \mathrm{P} 1-11$	Standard	12.500	6.11	18173.855		18173.855	12.6	0.9	NO		NO	$b b X$
10	$10200220 \mathrm{P} 1-12$	Standard	12.500	6.12	17077.631		17077.631	11.9	-5.2	NO		NO	bbX

Dataset: D:IPFAS5.PRO\RESULTS\200220P11200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: 13C2-PFTeDA-RSD

Response Factor: 0.967999
RRF SD: 0.0828801, Relative SD: 8.56201
Response type: Internal Std (Ref 106), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Sta. Conc	RT	Area	15 Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 200220P1-3	Standard	12.500	6.11	19053.490	18234.537	13.061	13.5	7.9	NO		NO	bb
2	2 200220P1-4	Standard	12.500	6.11	19828.295	17612.855	14.072	14.5	16.3	NO		NO	bb
3	3 200220P1-5	Standard	12.500	6.11	18055.973	20648.279	10.931	11.3	-9.7	NO		NO	bb
4	4 200220P1-6	Standard	12.500	6.11	18189.154	19841.098	11.459	11.8	-5.3	NO		NO	bb
5	5 200220P1-7	Standard	12.500	6.11	17643.662	19689.107	11.201	11.6	-7.4	NO		NO	bb
6	$6200220 \mathrm{P} 1-8$	Standard	12.500	6.11	18006.408	18168.391	12.389	12.8	2.4	NO		NO	bb
7	7 200220P1-9	Standard	12.500	6.11	18692.244	20740.715	11.265	11.6	-6.9	NO		NO	bb
8	$8200220 \mathrm{P} 1-10$	Standard	12.500	6.12	18729.498	17887.111	13.089	13.5	8.2	NO		NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	12.500	6.11	18173.855	18712.764	12.140	12.5	0.3	NO		NO	bb
10	$10200220 \mathrm{P} 1-12$	Standard	12.500	6.12	17077.631	18738.523	11.392	11.8	-5.9	NO		NO	bb

Compound name: d5-N-ETFOSA-EIS

Response Factor: 156.93
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	$1200220 \mathrm{P} 1-3$	Standard	149.200	6.20	22126.004		22126.004	141.0	-5.5	NO		NO	bbX
2	2 200220P1-4	Standard	149.200	6.20	23242.711		23242.711	148.1	-0.7	NO		NO	$b b X$
3	3 200220P1-5	Standard	149.200	6.20	22928.920		22928.920	146.1	-2.1	NO		NO	$b b X$
4	4 200220P1-6	Standard	149.200	6.20	23587.563		23587.563	150.3	0.7	NO		NO	bbX
5.	$5200220 \mathrm{P1-7}$	Standard	149.200	6.20	22851.221		22851.221	145.6	-2.4	NO		NO	$b b x$
6	6 200220P1-8	Standard	149.200	6.20	23414.010		23414.010	149.2	0.0	NO		NO	$b b$
7	7 200220P1-9	Standard	149.200	6.20	23838.369		23838.369	151.9	1.8	NO		NO	bbX
8	8 200220P1-10	Standard	149.200	6.20	23293.736		23293.736	148.4	-0.5	NO		NO	$b b X$
9	9 200220P1-11	Standard	149.200	6.20	23152.299		23152.299	147.5	-1.1	NO		NO	bbX
10	10 200220P1-12	Standard	149.200	6.20	20830.982		20830.982	132.7	-11.0	NO		NO	$b d X$

Dataset: D:IPFAS5.PROXRESULTSI200220P11200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: d5-N-ETFOSA-RSD

Response Factor: 0.101225
RRF SD: 0.00646552 , Relative SD: 6.38729
Response type: Internal Std (Ref 106), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area.	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoDFlag	$x=$ excluded
1	1 200220P1-3	Standard	149.200	6.20	22126.004	18234.537	15.168	149.8	0.4	NO		NO	bb
2	2 200220P1-4	Standard	149.200	6.20	23242.711	17612.855	16.496	163.0	9.2	NO		NO	bb
3	3 200220P1-5	Standard	149.200	6.20	22928.920	20648.279	13.881	137.1	-8.1	NO		NO	bb
4	4 200220P1-6	Standard	149.200	6.20	23587.563	19841.098	14.860	146.8	-1.6	NO		NO	bb
5	5 200220P1-7	Standard	149.200	6.20	22851.221	19689.107	14.508	143.3	-3.9	NO		NO	bb
6	6 200220P1-8	Standard	149.200	6.20	23414.010	18168.391	16.109	159.1	6.7	NO		NO	bb
7	7 200220P1-9	Standard	149.200	6.20	23838.369	20740.715	14.367	141.9	-4.9	NO		NO	bb
8	8 200220P1-10	Standard	149.200	6.20	23293.736	17887.111	16.278	160.8	7.8	NO		NO	bb
9	9 200220P1-11	Standard	149.200	6.20	23152.299	18712.764	15.466	152.8	2.4	NO		NO	bb
10	10 200220Р1-12	Standard	149.200	6.20	20830.982	18738.523	13.896	137.3	-8.0	NO		NO	bd

Compound name: 13C2-PFHxDA-EIS

Response Factor: 2349.21
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Fiag	CoD)	CoD Flag	$x=$ excluded
1	$1200220 \mathrm{P} 1-3$	Standard	12.500	6.44	28473.104		28473.104	12.1	-3.0	NO		NO	bbX
2	2 200220P1-4	Standard	12.500	6.43	28618.551		28618.551	12.2	-2.5	NO		NO	$b b X$
3	$3200220 \mathrm{P} 1-5$	Standard	12.500	6.44	28820.514		28820.514	12.3	-1.9	NO		NO	$b b x$
4	4 200220P1-6	Standard	12.500	6.43	30083.389		30083.389	12.8	2.4	NO		NO	$b b X$
5	5 200220P1-7	Standard	12.500	6.44	28369.861		28369.861	12.1	-3.4	NO		NO	bbX
6	$6200220 \mathrm{P} 1-8$	Standard	12.500	6.43	29365.074		29365.074	12.5	0.0	NO		NO	MM
7	7 200220P1-9	Standard	12.500	6.44	28221.439		28221.439	12.0	-3.9	NO		NO	bbX
8	$8200220 \mathrm{P} 1-10$	Standard	12.500	6.43	29442.813		29442.813	12.5	0.3	NO		NO	bbX
9	9 200220P1-11	Standard	12.500	6.43	27808.342		27808.342	11.8	-5.3	NO		NO	$b b X$
10	10 200220P1-12	Standard	12.500	6.43	26335.016		26335.016	11.2	-10.3	NO		NO	bbX

Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: 13C2-PFHxDA-RSD

Response Factor: 1.5043
RRF SD: 0.102652, Relative SD: 6.82388
Response type: Internal Sid (Ref 106), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=e x c l u d e d$
1	$1200220 \mathrm{P} 1-3$	Standard	12.500	6.44	28473.104	18234.537	19.519	13.0	3.8	NO		NO	bb
2	2 200220P1-4	Standard	12.500	6.43	28618.551	17612.855	20.311	13.5	8.0	NO		NO	bb
3	$3200220 \mathrm{P} 1-5$	Standard	12.500	6.44	28820.514	20648.279	17.447	11.6	-7.2	NO		NO	bb
4	4 200220P1-6	Standard	12.500	6.43	30083.389	19841.098	18.953	12.6	0.8	NO		NO	bb
5	5 200220P1-7	Standard	12.500	6.44	28369.861	19689.107	18.011	12.0	-4.2	NO		NO	bb
6	$6200220 \mathrm{P} 1-8$	Standard	12.500	6.43	29170.943	18168.391	20.070	13.3	6.7	NO		NO	bb
7	7 200220P1-9	Standard	12.500	6.44	28221.439	20740.715	17.008	11.3	-9.5	NO		NO	bb
8	8 200220P1-10	Standard	12.500	6.43	29442.813	17887.111	20.575	13.7	9.4	NO		NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	12.500	6.43	27808.342	18712.764	18.576	12.3	-1.2	NO		NO	bb
10	10 200220P1-12	Standard	12.500	6.43	26335.016	18738.523	17.567	11.7	-6.6	NO		NO	bb

Compound name: d7-N-MeFOSE-EIS

Response Factor: 112.074
RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc.	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD flag	$x=$ excluded
1	1 200220P1-3	Standard	149.200	6.30	16267.880		16267.880	145.2	-2.7	NO		NO	bbX
2	2 200220P1-4	Standard	149.200	6.30	16739.979		16739.979	149.4	0.1	NO		NO	bbX
3	$3200220 \mathrm{P} 1-5$	Standard	149.200	6.30	16821.021		16821.021	150.1	0.6	NO		NO	$b b X$
4	4 200220P1-6	Standard	149.200	6.30	16312.518		16312.518	145.6	-2.4	NO		NO	bbX
5	5 200220P1-7	Standard	149.200	6.30	16086.234		16086.234	143.5	-3.8	NO		NO	bbX
6	6 200220P1-8	Standard	149.200	6.30	16721.471		16721.471	149.2	0.0	NO		NO	bb
7	7 200220P1-9	Standard	149.200	6.30	17403.430		17403.430	155.3	4.1	NO		NO	bbX
13	8 200220P1-10	Standard	149.200	6.30	17760.828		17760.828	158.5	6.2	NO		NO	$b b X$
9	$9200220 \mathrm{P} 1-11$	Standard	149.200	6.30	17313.752		17313.752	154.5	3.5	NO		NO	$b \mathrm{bx}$
110	10 200220P1-12	Standard	149.200	6.30	16718.832		16718.832	149.2	-0.0	NO		NO	bbX

Dataset: D:IPFAS5.PRO\RESULTSL200220P11200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed: Friday, February 21, 2020 11:03:18 Pacific Standard Ime
Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: d7-N-MeFOSE-RSD

Response Factor: 0.0742816
RRF SD: 0.00518778 , Relative SD: 6.98394
Response type: Internal Std (Ref 106), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Narne	Type:	Sid. Conc	RT	Area	is Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	$1200220 \mathrm{P} 1-3$	Standard	149.200	6.30	16267.880	18234.537	11.152	150.1	0.6	NO		NO	bb
2	$2200220 \mathrm{P} 1-4$	Standard	149.200	6.30	16739.979	17612.855	11.881	159.9	7.2	NO		NO	bb
3	3 200220P1-5	Standard	149.200	6.30	16821.021	20648.279	10.183	137.1	-8.1	NO		NO	bb
4	4 200220P1-6	Standard	149.200	6.30	16312.518	19841.098	10.277	138.4	-7.3	NO		NO	bb
5	5 200220P1-7	Standard	149.200	6.30	16086.234	19689.107	10.213	137.5	-7.9	NO		NO	bb
6	6 200220P1-8	Standard	149.200	6.30	16721.471	18168.391	11.505	154.9	3.8	NO		NO	bb
7	7 200220P1-9	Standard	149.200	6.30	17403.430	20740.715	10.489	141.2	-5.4	NO		NO	bb
8	8 200220P1-10	Standard	149.200	6.30	17760.828	17887.111	12.412	167.1	12.0	NO		NO	bb
9	9 200220P1-11	Standard	149.200	6.30	17313.752	18712.764	11.565	155.7	4.4	NO		NO	bb
10	10 200220P1-12	Standard	149.200	6.30	16718.832	18738.523	11.153	150.1	0.6	NO		NO	bb

Compound name: d9-N-EtFOSE-EIS

Response Factor: 140.104
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc:	RT	Area	IS Ȧrea	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	1 200220P1-3	Standard	149.200	6.45	18504.477		18504.477	132.1	-11.5	NO		NO	bbX
2	2 200220P1-4	Standard	149.200	6.45	18839.174		18839.174	134.5	-9.9	NO		NO	$b b X$
3	3 200220P1-5	Standard	149.200	6.45	19707.281		19707.281	140.7	-5.7	NO		NO	$b b X$
4	4 200220P1-6	Standard	149.200	6.45	20126.805		20126.805	143.7	-3.7	NO		NO	$b b X$
5	5 200220P1-7	Standard	149.200	6.45	18655.471		18655.471	133.2	-10.8	NO		NO	$b b x$
6	$6200220 \mathrm{P} 1-8$	Standard	149.200	6.45	20903.463		20903.463	149.2	0.0	NO		NO	bb
7	7 200220P1-9	Standard	149.200	6.45	20346.061		20346.061	145.2	-2.7	NO		NO	bbX
8	8 200220P1-10	Standard	149.200	6.45	19579.516		19579.516	139.8	-6.3	NO		NO	$b b X$
9	$9200220 \mathrm{P} 1-11$	Standard	149.200	6.45	20130.154		20130.154	143.7	-3.7	NO		NO	$b \mathrm{bx}$
10	10 200220P1-12	Standard	149.200	6.45	19454.162		19454.162	138.9	-6.9	NO		NO	$b b \times$

Last Altered:	Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed:	Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: d9-N-EtFOSE-RSD

Response Factor: 0.0866356
RRF SD: 0.00541977, Relative SD: 6.25582
Response type: Internal Std (Ref 106), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Sta. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoLi Flag	$x=$ excluded
1	1 200220P1-3	Standard	149.200	6.45	18504.477	18234.537	12.685	146.4	-1.9	NO		NO	bb
2	2 200220P1-4	Standard	149.200	6.45	18839.174	17612.855	13.370	154.3	3.4	NO		NO	bb
3	3 200220P1-5	Standard	149.200	6.45	19707.281	20648.279	11.930	137.7	-7.7	NO		NO	bb
4	4 200220P1-6	Standard	149.200	6.45	20126.805	19841.098	12.680	146.4	-1.9	NO		NO	bb
5	5 200220P1-7	Standard	149.200	6.45	18655.471	19689.107	11.844	136.7	-8.4	NO		NO	bb
6	$6200220 \mathrm{P} 1-8$	Standard	149.200	6.45	20903.463	18168.391	14.382	166.0	11.3	NO		NO	bb
7	7 200220P1-9	Standard	149.200	6.45	20346.061	20740.715	12.262	141.5	-5.1	NO		NO	bb
8	8 200220P1-10	Standard	149.200	6.45	19579.516	17887.111	13.683	157.9	5.9	NO		NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	149.200	6.45	20130.154	18712.764	13.447	155.2	4.0	NO		NO	bb
10	10 200220P1-12	Standard	149.200	6.45	19454.162	18738.523	12.977	149.8	0.4	NO		NO	bb

Compound name: 13C4-PFBA

Response Factor: 1
RRF SD: 3.70074e-017, Relative SD: 3.70074e-015
Response type: Internal Std (Ref 99), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$\mathrm{x}=$ excluded
1	1200220 P1-3	Standard	12.500	1.48	11888.075	11888.075	12.500	12.5	0.0	NO		NO	MM
2	2 200220P1-4	Standard	12.500	1.48	12593.931	12593.931	12.500	12.5	0.0	NO		NO	MM
3	3 200220P1-5	Standard	12.500	1.48	12542.025	12542.025	12.500	12.5	0.0	NO		NO	MM
4	4 200220P1-6	Standard	12.500	1.48	12501.699	12501.699	12.500	12.5	0.0	NO		NO	MM
5	$5200220 \mathrm{P1} 1-7$	Standard	12.500	1.49	12443.393	12443.393	12.500	12.5	0.0	NO		NO	MM
6	$6200220 \mathrm{P} 1-8$	Standard	12.500	1.48	12920.699	12920.699	12.500	12.5	0.0	NO		NO	MM
7	7 200220P1-9	Standard	12.500	1.49	12496.652	12496.652	12.500	12.5	0.0	NO		NO	bb
8	8 200220P1-10	Standard	12.500	1.48	12758.912	12758.912	12.500	12.5	0.0	NO		NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	12.500	1.48	13408.672	13408.672	12.500	12.5	0.0	NO		NO	MM
10	10 200220P1-12	Standard	12.500	1.48	12762.113	12762.113	12.500	12.5	0.0	NO		NO	MM

Dataset:
D:IPFAS5.PRO\RESULTSI200220P1L200220P1-CRV.qId
Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed: Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: 13C5-PFHxA

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 100), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	AT	Area	IS Area.	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	$1200220 \mathrm{P} 1-3$	Standard	12.500	3.18	20142.271	20142.271	12.500	12.5	0.0	NO		NO	bb
2	2 200220P1-4	Standard	12.500	3.18	21634.467	21634.467	12.500	12.5	0.0	NO		NO	bb
3	3 200220P1-5	Standard	12.500	3.18	22079.555	22079.555	12.500	12.5	0.0	NO		NO	bb
4	4 200220P1-6	Standard	12.500	3.18	20880.449	20880.449	12.500	12.5	0.0	NO		NO	bb
5	5 200220P1-7	Standard	12.500	3.18	20643.729	20643.729	12.500	12.5	0.0	NO		NO	bb
6	6 200220P1-8	Standard	12.500	3.18	21969.059	21969.059	12.500	12.5	0.0	NO		NO	bb
7	7 200220P1-9	Standard	12.500	3.18	21719.918	21719.918	12.500	12.5	0.0	NO		NO	bb
8	8 200220P1-10	Standard	12.500	3.18	21611.453	21611.453	12.500	12.5	0.0	NO		NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	12.500	3.18	21329.654	21329.654	12.500	12.5	0.0	NO		NO	bb
10	10 200220P1-12	Standard	12.500	3.18	20606.281	20606.281	12.500	12.5	0.0	NO		NO	bb

Compound name: 1802-PFHxS

Response Factor: 1
RRF SD: 1.04673e-016, Relative SD: $1.04673 \mathrm{e}-014$
Response type: Internal Std (Ref 101), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conic	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	$1200220 \mathrm{P} 1-3$	Standard	12.500	3.92	1223.123	1223.123	12.500	12.5	0.0	NO		NO	bb
2	2 200220P1-4	Standard	12.500	3.92	1180.191	1180.191	12.500	12.5	0.0	NO		NO	bb
3	3 200220P1-5	Standard	12.500	3.92	1209.105	1209.105	12.500	12.5	0.0	NO		NO	bb
4	4 200220P1-6	Standard	12.500	3.92	1192.063	1192.063	12.500	12.5	0.0	NO		NO	MM
5	$5200220 \mathrm{P} 1-7$	Standard	12.500	3.92	1317.888	1317.888	12.500	12.5	0.0	NO		NO	bb
6	$6200220 \mathrm{P} 1-8$	Standard	12.500	3.92	1450.318	1450.318	12.500	12.5	0.0	NO		NO	bb
7	7 200220P1-9	Standard	12.500	3.92	1224.051	1224.051	12.500	12.5	0.0	NO		NO	bb
8	$8200220 \mathrm{P}_{1-10}$	Standard	12.500	3.92	1293.469	1293.469	12.500	12.5	0.0	NO		NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	12.500	3.92	1279.869	1279.869	12.500	12.5	0.0	NO		NO	bb
10	10 200220P1-12	Standard	12.500	3.92	1058.920	1058.920	12.500	12.5	0.0	NO		NO	bb

Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: 13C8-PFOA

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 102), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type:	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	COD Flag	$x=e x$ cluded
1	1 200220P1-3	Standard	12.500	4.29	19241.080	19241.080	12.500	12.5	0.0	NO		NO	bb
2	2 200220P1-4	Standard	12.500	4.29	20977.639	20977.639	12.500	12.5	0.0	NO		NO	bb
3	$3200220 \mathrm{P} 1-5$	Standard	12.500	4.29	20418.293	20418.293	12.500	12.5	0.0	NO		NO	bb
4	4 200220P1-6	Standard	12.500	4.29	20255.918	20255.918	12.500	12.5	0.0	NO		NO	bb
5	5 200220P1-7	Standard	12.500	4.29	20356.574	20356.574	12.500	12.5	0.0	NO		NO	bb
6	6 200220P1-8	Standard	12.500	4.29	22121.662	22121.662	12.500	12.5	0.0	NO		NO	bb
7	7 200220P1-9	Standard	12.500	4.29	18484.418	18484.418	12.500	12.5	0.0	NO		NO	bb
8	$8200220 \mathrm{P} 1-10$	Standard	12.500	4.29	19098.527	19098.527	12.500	12.5	0.0	NO		NO	bb
9	9 200220P1-11	Standard	12.500	4.29	19856.025	19856.025	12.500	12.5	0.0	NO		NO	bb
10	10 200220P1-12	Standard	12.500	4.29	17225.596	17225.596	12.500	12.5	0.0	NO		NO	bb

Compound name: 13C9-PFNA

Response Factor: 1
RRF SD: 7.40149e-017, Relative SD: 7.40149e-015
Response type: Internal Std (Ref 103), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc,	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	COD Flag	$x=$ excluded
1	1 200220P1-3	Standard	12.500	4.72	16032.552	16032.552	12.500	12.5	0.0	NO		NO	bb
2	2 200220P1-4	Standard	12.500	4.72	15482.925	15482.925	12.500	12.5	0.0	NO		NO	bb
3	3 200220P1-5	Standard	12.500	4.72	16296.199	16296.199	12.500	12.5	0.0	NO		NO	bb
4	4 200220P1-6	Standard	12.500	4.72	17785.301	17785.301	12.500	12.5	0.0	NO		NO	bb
5	5 200220P1-7	Standard	12.500	4.72	16090.972	16090.972	12.500	12.5	0.0	NO		NO	bb
6	$6200220 \mathrm{P} 1-8$	Standard	12.500	4.72	18174.621	18174.621	12.500	12.5	0.0	NO		NO	bb
7	7 200220P1-9	Standard	12.500	4.72	17629.514	17629.514	12.500	12.5	0.0	NO		NO	bb
8	8200220 P1-10	Standard	12.500	4.72	16484.016	16484.016	12.500	12.5	0.0	NO		NO	bb
9	$9200220 \mathrm{P} 1-11$	Standard	12.500	4.72	17549.574	17549.574	12.500	12.5	0.0	NO		NO	bb
10	$10200220 \mathrm{P} 1-12$	Standard	12.500	4.72	16179.260	16179.260	12.500	12.5	0.0	NO		NO	bb

Vista Analytical Laboratory

Dataset: D:IPFAS5.PROIRESULTSI200220P11200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed: Friday, February 21, 2020 11:11:55 Pacific Standard Time

Compound name: 13C4-PFOS

Response Factor: 1
RRF SD: 1.04673e-016, Relative SD: 1.04673e-014
Response type: Internal Std (Ref 104), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	isi Area	Response	Conc.	\%Dev	Conc. Flag	COD	COD Flag	$x=$ excluded
1	1 200220P1-3	Standard	12.500	4.79	3375.218	3375.218	12.500	12.5	0.0	NO		NO	bb
2	2 200220P1-4	Standard	12.500	4.80	3591.504	3591.504	12.500	12.5	0.0	NO		NO	bb
3	3 200220P1-5	Standard	12.500	4.80	3737.936	3737.936	12.500	12.5	0.0	NO		NO	bb
4	4 200220P1-6	Standard	12.500	4.79	3826.934	3826.934	12.500	12.5	0.0	NO		NO	bb
5	5 200220P1-7	Standard	12.500	4.80	3421.741	3421.741	12.500	12.5	0.0	NO		NO	bb
6	$6200220 \mathrm{P} 1-8$	Standard	12.500	4.79	3872.213	3872.213	12.500	12.5	0.0	NO		NO	bb
7	7 200220P1-9	Standard	12.500	4.80	3807.600	3807.600	12.500	12.5	0.0	NO		NO	bb
8	8 200220P1-10	Standard	12.500	4.80	3614.641	3614.641	12.500	12.5	0.0	NO		NO	bb
9	9 200220P1-11	Standard	12.500	4.79	3746.795	3746.795	12.500	12.5	0.0	NO		NO	bb
10	10 200220P1-12	Standard	12.500	4.80	3365.532	3365.532	12.500	12.5	0.0	NO		NO	bb

Dataset: D:IPFAS5.PRO\RESULTSL200220P1\200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 15:57:11 Pacific Standard Time
Printed: Friday, February 21, 2020 16:03:11 Pacific Standard Time

Method: D:IPFAS5.PRO\MethDBMNEW_PFAS_80C_022020.mdb 21 Feb 2020 08:56:55

Calibration: D:IPFAS5.PRO\CurveDBIC̄18_VAL-PFAS_Q5_02-20-20.cdb 21 Feb 2020 15:57:11

Name: 200220P1-8, Date: 20-Feb-2020, Time: 18:37:32, ID: ST200220P1-6 PFC CS3 20B1107, Description: PFC CS3 20B1107

	\# Name	IS\#	COD	CoD Flag	\%RSD
1	1 PFBA	47	0.9994	NO	
2	2 PFPrS	51	0.9998	NO	
3	3 3:3 FTCA	49	0.9991	NO	
4	4 PFPeA	49	0.9995	NO	
5	5 PFBS	51	0.9995	NO	
6	6 4:2 FTS	55	0.9977	NO	
7	7 PFHxA	57	0.9988	NO	
8	8 PFPeS	51	0.9967	NO	
9	9 HFPO-DA	53	0.9996	NO	
10	10 5:3 FTCA	59	0.9997	NO	
11	11 PFHpA	59	0.9992	NO	
12	12 ADONA	59	0.9983	NO	
13	13 L-PFHxS	61	0.9987	NO	
14	15 6:2 FTS	63	0.9984	NO	
15	16 L-PFOA	69	0.9996	NO	
16	18 PFechS	69	0.9996	NO	
17	19 PFHpS	71	0.9993	NO	
18	20 7:3 FTCA	65	0.9988	NO	
19	21 PFNA	65	0.9995	NO	
20	22 PFOSA	67	0.9993	NO	
21	23 L-PFOS	71	0.9978	NO	
22	$259 \mathrm{Cl}-\mathrm{PF} 30 \mathrm{NS}$	71	0.9938	NO	
23	26 PFDA	73	0.9992	NO	
24	27 8:2 FTS	75	0.9959	NO	
25	28 PFNS	71	0.9975	NO	
26	29 L-MeFOSAA	77	0.9997	NO	

Dataset: D:IPFAS5.PRO\RESULTSI200220P11200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 12:12:49 Pacific Standard Time
Printed Friday, February 21, 2020 12:21:02 Pacific Standard Time

Method: D:\PFAS5.PRO\MethDBINEW PFAS 80C 022020.mdb 21 Feb 2020 08:56:55
Calibration: D:\PFAS5.PROICurveDBIC̄18_VAL-PFAS_Q5_02-20-20.cdb 21 Feb 2020 12:12:49
Name: 200220P1-8, Date: 20-Feb-2020, Time: 18:37:32, ID: ST200220P1-6 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

	\# Name	IS\#	COD	CoD Flag	\%RSD
1	31 L-EtFOSAA	81	0.9994	NO	
2	33 PFUdA	79	0.9996	No	
3	34 PFDS	71	0.9983	NO	
4	3511 Cl -PF30UdS	83	0.9968	No	
5	36 10:2 FTS	85	0.9972	NO	
6	37 PFDoA	83	0.9991	NO	
7	38 N-MeFOSA	87	0.9998	NO	
8	39 PFTrDA	83	0.9982	NO	
9	40 PFDos	89	0.9997	NO	
10	41 PFTeDA	89	0.9989	NO	
11	$42 \mathrm{~N}-\mathrm{EtFOSA}$	91	0.9995	NO	
12	43 PFHxDA	93	0.9999	NO	
13	44 PFODA	93	0.9997	NO	
14	45 N -MeFOSE	95	0.9997	No	
15	$46 \mathrm{~N}-\mathrm{EtFOSE}$	97	0.9996	NO	
16	47 13C3-PFBA-EIS			NO	0.000
17	48 13C3-PFBA-RSD	99		NO	1.206
18	49 13C3-PFPeA-EIS			NO	0.000
19	50 13C3-PFPeA-RSD	100		NO	3.141
20	51 13C3-PFBS-EIS			NO	0.000
21	52 13C3-PFBS-RSD	101		NO	6.488
22	53 13C3-HFPO-DA-EIS			NO	0.000
23	54 13C3-HFPO-DA-RSD	100		NO	5.205
24	55 13C2-4:2 FTS-EIS			No	0.000
25	56 13C2-4:2 FTS-RSD	101		NO	10.032
28	57 13C2-PFHxA-EIS			NO	0.000
27	58 13C2-PFHxA-RSD	100		No	4.254
28	59 13C4-PFHPA-EIS			NO	0.000
29	60 13C4-PFHpA-RSD	100		NO	3.049
30	61 13C3-PFHxS-EIS			NO	0.000
31	62 13C3-PFHxS-RSD	101		NO	6.382
32	63 13C2-6:2 FTS-EIS			NO	0.000

Dataset:
D:IPFAS5.PROIRESULTS\200220P11200220P1 -CRV.qld
Last Altered: Friday, February 21, 2020 12:12:49 Pacific Standard Time
Printed: Friday, February 21, 2020 12:21:02 Pacific Standard Time

Name: 200220P1-8, Date: 20-Feb-2020, Time: 18:37:32, ID: ST200220P1-6 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

	\# Name	1S\#	CoD CoD Flag	\%RSD
33	64 13C2-6:2 FTS-RSD	104	NO	6.469
34	65 13C5-PFNA-EIS		NO	0.000
35	66 13C5-PFNA-RSD	103	NO	3.562
36	67 13C8-PFOSA-EIS		NO	0.000
37	68 13C8-PFOSA-RSD	106	NO	7.629
38	69 13C2-PFOA-EIS		NO	0.000
39	70 13C2-PFOA-RSD	102	NO	5.261
40	71 13C8-PFOS-EIS		NO	0.000
41	72 13C8-PFOS-RSD	104	NO	6.037
42	73 13C2-PFDA-EIS		NO	0.000
43	74 13C2-PFDA-RSD	105	NO	3.743
44	75 13C2-8:2 FTS-EIS		NO	0.000
45	76 13C2-8:2 FTS-RSD	104	NO	10.574
46	$77 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$-EIS		NO	0.000
47	$78 \mathrm{d3}-\mathrm{N}-\mathrm{MeFOSAA}-\mathrm{RSD}$	106	NO	11.008
48	79 13C2-PFUdA-EIS		NO	0.000
49	80 13C2-PFUdA-RSD	106	NO	4.397
50	$81 \mathrm{d5}-\mathrm{N}-\mathrm{EtFOSAA}-E I S$		NO	0.000
51	$82 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$-RSD	106	NO	6.795
52	83 13C2-PFDoA-EIS		NO	0.000
53	84 13C2-PFDoA-RSD	105	NO	7.032
54	85 13C2-10:2 FTS-EIS		NO	0.000
55	86 13C2-10:2 FTS-RSD	104	NO	13.680
56	87 d3-N-MeFOSA-EIS		NO	0.000
57	$88 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSA}$-RSD	106	NO	6.561
58	89 13C2-PFTeDA-EIS		NO	0.000
59	90 13C2-PFTeDA-RSD	106	NO	8.562
60	91 d5-N-ETFOSA-EIS		NO	0.000
61	92 d5-N-ETFOSA-RSD	106	NO	6.387
62	93 13C2-PFHxDA-EIS		NO	0.000
63	94 13C2-PFHxDA-RSD	106	NO	6.824
64	95 d7-N-MeFOSE-EIS		NO	0.000
65	$96 \mathrm{d7}$-N-MeFOSE-RSD	106	NO	6.984
66	97 d9-N-EtFOSE-EIS		NO	0.000
67	$98 \mathrm{d9}-\mathrm{N}-\mathrm{EtFOSE}-\mathrm{RSD}$	106	NO	6.256
68	99 13C4-PFBA	99	NO	0.000

Dataset: D:IPFAS5.PROIRESULTSI200220P1\200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 12:12:49 Pacific Standard Time
Printed: Friday, February 21, 2020 12:21:02 Pacific Standard Time

Name: 200220P1-8, Date: 20-Feb-2020, Time: 18:37:32, ID: ST200220P1-6 PFC CS3 20B1107, Description: PFC CS3 2081107

	\# Name	is\#	COD COD Flag	\%RSD
69	1... 13C5-PFHxA	100	NO	0.000
70	1... 1802-PFHxS	101	NO	0.000
71	1... 13C8-PFOA	102	NO	0.000
72	1... 13C9-PFNA	103	NO	0.000
73	1... 13C4-PFOS	104	NO	0.000

Dataset:	D:IPFAS5.PROIRESULTSI200220P11200220P1-CRV.qld
Last Altered:	Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed:	Friday, February 21, 2020 11:19:12 Pacific Standard Time

Method: D:IPFAS5.PRO\MethDBINEW PFAS 80C 022020.mdb 21 Feb 2020 08:56:55

Calibration: D:IPFAS5.PRO\CurveDBIC18_VAL-PFAS_Q5_02-20-20.cdb 21 Feb 2020 11:03:18

Name: 200220P1-8, Date: 20-Feb-2020, Time: 18:37:32, ID: ST200220P1-6 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

	Name	Pred.RT	RT	Pred. Ratio	lon Ratio	Ratio out?
1	PFBA	1.48	1.48			
2	PFPrS	1.79	1.81	2.661	2.661	NO
3	$3: 3$ FTCA	2.26	2.26	3.754	3.754	NO
4	PFPeA	2.40	2.40			
5	PFBS	2.67	2.67	3.164	3.164	NO
6	$4: 2$ FTS	3.09	3.10	0.941	0.941	NO
7	PFHxA	3.18	3.18	16.088	16.088	NO
13	PFPeS	3.38	3.37	2.144	2.144	NO
9	HFPO-DA	3.39	3.39	2.636	2.636	NO
10	5:3 FTCA	3.72	3.73	1.758	1.758	NO
11	PFHpA	3.78	3.78	20.395	20.395	NO
12	ADONA	3.87	3.89	3.766	3.766	NO
13	L-PFHxS	3.92	3.92	2.082	2.082	NO
14	6:2 FTS	4.23	4.23	1.427	1.427	NO
15	L-PFOA	4.29	4.29	3.028	3.028	NO
16	PFecHS	4.30	4.30	0.488	0.488	NO
17	PFHpS	4.40	4.40	1.948	1.948	NO
18	$7: 3 F T C A$	4.71	4.71	1.503	1.503	NO
19	PFNA	4.72	4.72	7.476	7.476	NO
20	PFOSA	4.78	4.78	21.946	21.946	NO
21	L-PFOS	4.80	4.80	2.240	2.240	NO
22	9CI-PF3ONS	5.01	5.01	16.133	16.133	NO
23	PFDA	5.08	5.08	9.635	9.635	NO
24	$8: 2$ FTS	5.05	5.05	2.540	2.540	NO
25	PFNS	5.15	5.14	2.143	2.143	NO
26	L-MeFOSAA	5.23	5.23	2.013	2.013	NO

Last Altered:	Friday, February 21, 2020 11:03:18 Pacific Standard Time Printed:

Method: D:IPFAS5.PRO\MethDBINEW_PFAS_80C_022020.mdb 21 Feb 2020 08:56:55
Calibration: D:IPFAS5.PROICurveDBIC18_VAL-PFAS_Q5_02-20-20.cdb 21 Feb 2020 11:03:18
Name: 200220P1-8, Date: 20-Feb-2020, Time: 18:37:32, ID: ST200220P1-6 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

	Name	Pred.RT	RT	Pred. Ratio	Ion Ratio	Ratio out?
1	L-EtFOSAA	5.38	5.38	1.184	1.184	NO
2	PFUdA	5.39	5.39	25.568	25.568	NO
3	PFDS	5.44	5.44	1.983	1.983	NO
4	11CI-PF30UdS	5.60	5.60	20.498	20.498	NO
5	$10: 2$ FTS	5.65	5.65	0.991	0.991	NO
6	PFDoA	5.67	5.67	10.584	10.584	NO
7	N-MeFOSA	5.82	5.81	1.530	1.530	NO
8	PFTrDA	5.93	5.91	63.965	63.965	NO
9	PFDoS	5.92	5.93	3.164	3.164	NO
10	PFTeDA	6.11	6.11	18.948	18.948	NO
11	N-EtFOSA	6.18	6.19	1.666	1.666	NO
12	PFHxDA	6.43	6.43	134.098	134.098	NO
13	PFODA	6.65	6.66			
14	N-MeFOSE	6.30	6.31			
15	N-EtFOSE	6.45	6.46			

Last Altered: Friday, February 21, 2020 11:22:07 Pacific Standard Time
Printed: Friday, February 21, 2020 11:22:45 Pacific Standard Time

Method: D:IPFAS5.PRO\MethDBINEW_PFAS_80C_022020.mdb 21 Feb 2020 08:56:55

Calibration: D:IPFAS5.PROICurveDBIC 18_VAL-PFAS_Q5_02-20-20.cdb 21 Feb 2020 11:03:18

Compound name: PFBA

	\# Name	ID	Aca. Date	Acq.Time
1	$1200220 \mathrm{P} 1-1$	IPA	20-Feb-20	17:23:58
2	2 200220P1-2	IPA	20-Feb-20	17:34:30
3	3 200220P1-3	ST200220P1-1 PFC CS-2 2081102	20-Feb-20	17:45:02
4	4 200220P1-4	ST200220P1-2 PFC CS-1 20B1103	20-Feb-20	17:55:31
5	5 200220P1-5	ST200220P1-3 PFC CSO 20B1104	20-Feb-20	18:06:03
6	6 200220P1-6	ST200220P1-4 PFC CS1 2081105	20-Feb-20	18:16:31
7	7 200220P1-7	ST200220P1-5 PFC CS2 2081106	20-Feb-20	18:27:04
8	8 200220P1-8	ST200220P1-6 PFC CS3 2081107	20-Feb-20	18:37:32
9	9 200220P1-9	ST200220P1-7 PFC CS4 2081108	20-Feb-20	18:48:04
10	10 200220P1-10	ST200220P1-8 PFC CS5 20B1109	20-Feb-20	18:58:35
11	11 200220P1-11	ST200220P1-9 PFC CS6 20B1110	20-Feb-20	19:09:05
12	12 200220P1-12	ST200220P1-10 PFC CS7 20B1111	20-Feb-20	19:19:35
13	13 200220P1-13	IB	20-Feb-20	19:30:05
14	14 200220P1-14	ICV200220P1-1 PFC ICV 2081112	20-Feb-20	19:40:36
15	15 200220P1-15	18	20-Feb-20	19:51:06

Dataset: D:IPFAS5.PROTRESULTSL200220P1\200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 15:57:11 Pacific Standard Time
Printed: Friday, February 21, 2020 16:03:54 Pacific Standard Time

Method: D:IPFAS5.PRO\MethDBINEW_PFAS_80C_022020.mdb 21 Feb 2020 08:56:55

Calibration: D:IPFAS5.PRO\CurveDBIC18_VAL-PFAS_Q5_02-20-20.cdb 21 Feb 2020 15:57:11

Compound name: PFBA
Correlation coefficient: $\mathrm{r}=0.999717, \mathrm{r}^{\wedge} 2=0.999434$
Calibration curve: $1.13327^{*} x+-0.14129$
Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFPrS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999844$
Calibration curve: $3.06967 e-005^{*} x^{\wedge} 2+1.5689$ * $x+-0.0816588$
Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: D:IPFAS5.PROIRESULTSL200220P11200220P1-CRV.qld

Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed:
Friday, February 21, 2020 11:17:00 Pacific Standard Time

Compound name: 3:3 FTCA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999097$
Calibration curve: $1.57358 \mathrm{e}-005^{*} x^{\wedge} 2+0.072826$ * $x+-0.000475915$
Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: PFPeA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999471$
Calibration curve: $-6.39644 e-006$ * $x^{\wedge} 2+0.970478$ * $x+0.0497364$
Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: D:IPFAS5.PROTRESULTSI200220P11200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 12:12:49 Pacific Standard Time
Printed: Friday, February 21, 2020 12:17:25 Pacific Standard Time

Compound name: PFBS
Correlation coefficient: $\mathrm{r}=0.999743, \mathrm{r}^{\wedge} 2=0.999487$
Calibration curve: 2.28739 * $x+0.162081$
Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: $1 / x$, Axis trans: None

Compound name: 4:2 FTS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997734$
Calibration curve: -0.00410682 * x^2 +1.6845 * $x+-0.166626$
Response type: Internal Std (Ref 55), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Dataset: D:IPFAS5.PROTRESULTSL200220P11200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed: Friday, February 21, 2020 11:17:00 Pacific Standard Time

Compound name: PFHxA
Correlation coefficient: $r=0.999392, r^{\wedge} 2=0.998785$
Calibration curve: 0.886822 * $x+0.0669668$
Response type: Internal Std (Ref 57), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: PFPeS
Correlation coefficient: $\mathrm{r}=0.998339, \mathrm{r}^{\wedge} 2=0.996680$
Calibration curve: 2.05532 * $x+0.247448$
Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: $1 / x$, Axis trans: None

Dataset: D:IPFAS5.PROIRESULTS\200220P11200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed: Friday, February 21, 2020 11:17:00 Pacific Standard Time

Compound name: HFPO-DA
Coefficient of Determination: $R^{\wedge} 2=0.999574$
Calibration curve: $-0.000236652^{*} x^{\wedge} 2+1.03625^{*} x+0.0401894$
Response type: Internal Std (Ref 53), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: 5:3 FTCA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999659$
Calibration curve: $0.000117104^{*} x^{\wedge} 2+0.178925$ * $x+-0.00538648$
Response type: Internal Std (Ref 59), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: D:IPFAS5.PROXRESULTSI200220P1\200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed: Friday, February 21, 2020 11:17:00 Pacific Standard Time

Compound name: PFHpA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999188$
Calibration curve: $-0.000176223^{*} x^{\wedge} 2+1.2409$ * $x+0.0769235$
Response type: Internal Sid (Ref 59), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: ADONA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998312$
Calibration curve: $-0.000366708^{*} x^{\wedge} 2+3.09045$ * $x+0.169928$
Response type: Internal Std (Ref 59), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset:
D:IPFAS5.PRO\RESULTSI200220P11200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 15:57:11 Pacific Standard Time
Printed: Friday, February 21, 2020 16:03:54 Pacific Standard Time

Compound name: L-PFHxS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998709$
Calibration curve: $-0.000159606^{*} x^{\wedge} 2+1.08217^{*} x+0.312795$
Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: 6:2 FTS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998365$
Calibration curve: $-0.00033273^{*} x^{\wedge} 2+1.66674^{*} x+-0.842375$
Response type: Internal Std (Ref 63), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Quantify Calibration Report

Vista Analytical Laboratory Q1

Dataset: D:IPFAS5.PRO\RESULTSL200220P11200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed:
Friday, February 21, 2020 11:17:00 Pacific Standard Time

Compound name: L-PFOA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999639$
Calibration curve: $-0.000239807^{*} x^{\wedge} 2+1.20196$ * $x+0.0927861$
Response type: Internal Std (Ret 69), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFecHS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999604$
Calibration curve: $-4.3388 e-005$ * $x^{\wedge} 2+0.182512$ * $x+-0.0109277$
Response type: Internal Std (Ref 69), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Last Altered: Friday, February 21, 2020 12:00:58 Pacific Standard Time

Printed
Friday, February 21, 2020 12:04:35 Pacific Standard Time

Compound name: PFHpS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999329$
Calibration curve: $-0.00121734{ }^{*} x^{\wedge} 2+1.09408^{*} x+-0.0589565$
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: 7:3 FTCA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998839$
Calibration curve: $2.04383 e-005{ }^{*} x^{\wedge} 2+0.154102$ * $x+0.00331171$
Response type: Internal Std (Ref 65), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time

Compound name: PFNA
Correlation coefficient: $r=0.999754, r^{\wedge} 2=0.999507$
Calibration curve: $1.23155^{*} \times+0.0599721$
Response type: Internal Std (Ref 65), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: $1 / x$, Axis trans: None

Compound name: PFOSA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999278$
Calibration curve: -0.00017731 * $x^{\wedge} 2+0.897342$ * $x+-0.0167461$
Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: D:IPFAS5.PROTRESULTSL200220P11200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed:
Friday, February 21, 2020 11:17:00 Pacific Standard Time

Compound name: L-PFOS
Coefficient of Determination: $R^{\wedge} 2=0.997752$
Calibration curve: $5.77565 \mathrm{e}-005$ * $x^{\wedge} 2+0.92504^{*} x+-0.00276322$
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: 9CI-PF30NS
Correlation coefficient: $\mathrm{r}=0.996874, \mathrm{r}^{\wedge} 2=0.993759$
Calibration curve: 1.16071 * $x+-0.00606279$
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

Dataset: D:IPFAS5.PRO\RESULTSL200220P11200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed: Friday, February 21, 2020 11:17:00 Pacific Standard Time

Compound name: PFDA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999172$
Calibration curve: -0.000175497 * $x^{\wedge} 2+1.22701^{*} x+0.0730403$
Response type: Internal Std (Ref 73), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Compound name: 8:2 FTS
Coefficient of Determination: $R^{\wedge} 2=0.995942$
Calibration curve: $-0.000521597^{*} x^{\wedge} 2+1.48034$ * $x+-0.217508$
Response type: Internal Std (Ref 75), Area * IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset: D:IPFAS5.PRO\RESULTSI200220P1\200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed:
Friday, February 21, 2020 11:17:00 Pacific Standard Time

Compound name: PFNS
Correlation coefficient: $r=0.998736, r^{\wedge} 2=0.997473$
Calibration curve: 0.91038 * $x+0.0726293$
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: $1 / x$, Axis trans: None

Compound name: L-MeFOSAA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999717$
Calibration curve: -0.000683729 * $x^{\wedge} 2+1.90832$ * $x+-0.0059177$
Response type: Internal Std (Ref 77), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Dataset: D:IPFAS5.PROIRESULTSI200220P11200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed Friday, February 21, 2020 11:18:00 Pacific Standard Time

Method: D:IPFAS5.PRO\MethDBINEW_PFAS_80C_022020.mdb 21 Feb 2020 08:56:55

Calibration: D:IPFAS5.PROICurveDB\C18 VAL-PFAS Q5 02-20-20.cdb 21 Feb 2020 11:03:18

Compound name: L-EtFOSAA
Correlation coefficient: $r=0.999675, r^{\wedge} 2=0.999351$
Calibration curve: 1.25302 * $x+0.0748$
Response type: Internal Std (Ref 81), Area * (IS Conc./ IS Area)
Curve type: Linear, Origin: Include, Weighting: $1 / x$, Axis trans: None

Compound name: PFUdA
Coefficient of Determination: $R^{\wedge} 2=0.999590$
Calibration curve: -0.000296059 * $x^{\wedge} 2+1.05298$ * $x+-0.0124351$
Response type: Internal Std (Ref 79), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed: Friday, February 21, 2020 11:18:00 Pacific Standard Time

Compound name: PFDS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998274$
Calibration curve: $7.33697 e-005$ * $x^{\wedge} 2+0.804163^{*} x+0.0329009$
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: include, Weighting: $1 / x$, Axis trans: None

Compound name: 11 CI -PF30UdS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.996838$
Calibration curve: $-1.89567 e-005^{*} x^{\wedge} 2+0.451153^{*} x+0.0424061$
Response type: Internal Std (Ref 83), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Dataset: D:IPFAS5.PROIRESULTSL200220P11200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed:
Friday, February 21, 2020 11:18:00 Pacific Standard Time

Compound name: 10:2 FTS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997215$
Calibration curve: -0.000324143 * $x^{\wedge} 2+2.31829$ * $x+-0.102541$
Response type: Internal Std (Ref 85), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFDoA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999142$
Calibration curve: $-1.0619 \mathrm{e}-005$ * $\mathrm{x}^{\wedge} 2+0.950464$ * $x+0.134975$
Response type: Internal Std (Ref 83), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: D:IPFAS5.PRO\RESULTSL200220P11200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed: Friday, February 21, 2020 11:18:00 Pacific Standard Time

Compound name: N-MeFOSA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999763$
Calibration curve: $-5.62949 e-005$ * $x^{\wedge} 2+1.04899$ * $x+0.147684$
Response type: Internal Std (Ref 87), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: PFTrDA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998208$
Calibration curve: -0.000115356 * $x^{\wedge} 2+0.981525$ * $x+0.109726$
Response type: Internal Std (Ref 83), Area * (IS Conc. I IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Dataset: D:IPFAS5.PROIRESULTSL200220P11200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed: Friday, February 21, 2020 11:18:00 Pacific Standard Time

Compound name: PFDoS
Coefficient of Determination: $R^{\wedge} 2=0.999656$
Calibration curve: $-6.64808 \mathrm{e}-005^{*} x^{\wedge} 2+0.183129^{*} x+0.000839227$
Response type: Internal Std (Ref 89), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFTeDA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998923$
Catibration curve: $-2.14494 e-006$ * $x^{\wedge} 2+1.04256$ * $x+0.0589962$
Response type: Internal Std (Ref 89), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Dataset: D:IPFAS5.PRO\RESULTS\200220P1【200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed: Friday, February 21, 2020 11:18:00 Pacific Standard Time

Compound name: N-EtFOSA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999544$
Calibration curve: $-1.70702 \mathrm{e}-005^{*} x^{\wedge} 2+0.94824^{*} x+0.0530371$
Response type: Internal Std (Ref 91), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFHxDA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999886$
Calibration curve: $-0.000144777^{*} x^{\wedge} 2+0.739976$ * $x+0.111894$
Response type: Internal Std (Ref 93), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: D:IPFAS5.PROIRESULTSI200220P1L200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 11:03:18 Pacitic Standard Time
Printed: Friday, February 21, 2020 11:18:00 Pacific Standard Time

Compound name: PFODA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999676$
Calibration curve: $-2.12208 e-005^{*} x^{\wedge} 2+0.882141^{*} x+0.00318847$
Response type: Internal Std (Ref 93), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: N-MeFOSE
Correlation coefficient: $\mathrm{r}=0.999853, \mathrm{r}^{\wedge} 2=0.999705$
Calibration curve: 1.03364 * $x+0.462802$
Response type: Internal Std (Ref 95), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

Dataset: D:\PFAS5.PRO\RESULTSL200220P1L200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 11:03:18 Pacific Standard Time
Printed: Friday, February 21, 2020 11:18:00 Pacific Standard Time

Compound name: N-EtFOSE
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999646$
Calibration curve: -0.000104993 * $x^{\wedge} 2+1.06013$ * $x+-0.0832109$
Response type: Internal Std (Ref 97), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Dataset:
D:IPFAS5.PROIRESULTSI200220P11200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 10:14:20 Pacific Standard Time
Printed: Friday, February 21, 2020 10:14:25 Pacific Standard Time

Method: D:\PFAS5.PRO\MethDB\NEW_PFAS_80C_022020.mdb 21 Feb 2020 08:56:55

Calibration: 21 Feb 2020 10:14:20
Name: 200220P1-3, Date: 20-Feb-2020, Time: 17:45:02, ID: ST200220P1-1 PFC CS-2 20B1102, Description: PFC CS-2 $20 B 1102$

PFBA
 F2:MRM of 1 channel,ES- $213.0>168.8$ $\left.100-\begin{array}{c}\text { PFBA } \\ 1.48 \\ 1.14 e^{2} \\ 2584 \\ \mathrm{MM} \\ 41.57\end{array}\right]$
 $1.000 \quad 1.500$

F6:MRM of 2 channels,ES-
$248.9>98.7$

13C3-PFBS-EIS
F12:MRM of 1 channel,ES-

13C3-PFPeA-EIS
F8:MRM of 1 channel,ES-
$266.0>221.8$

13C3-PFPeA-EIS
F8:MRM of 1 channel,ES-
$266.0>221.8$

F11:MRM of 2 channels,ES-

13C3-PFBS-EIS
F12:MRM of 1 channel,ES $302.0>98.8$

F16:MRM of 2 channels, ES$327.0>80.7$

13C2-4:2 FTS-EIS
F17:MRM of 2 channels,ES$329.0>79.7$

Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-3, Date: 20-Feb-2020, Time: 17:45:02, ID: ST200220P1-1 PFC CS-2 20B1102, Description: PFC CS-2 $20 B 1102$
PFHXA
F13:MRM of 2 channels,ES-
$313.0>269.0$
100

13C3-PFBS-EIS

13C3-HFPO-DA-EIS

F10:MRM of 2 channels, ES

F18:MRM of 2 channels,ES-

13C4-PFHpA-EIS

13C4-PFHpA-EIS

F21.MRM of 1 channel, ES-

Dataset:
 D:IPFAS5.PRO\RESULTS\200220P1\200220P1-CRV.qld

Last Altered: Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed: Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-3, Date: 20-Feb-2020, Time: 17:45:02, ID: ST200220P1-1 PFC CS-2 20B1102, Description: PFC CS-2 20B1102

13C3-PFHxS-EIS

F24:MRM of 1 channel,ES-

F29:MRM of 3 channels,ES $427 .>80.7$

13C2-6:2 FTS-EIS
13C2-6:2 FTS-EIS
F30:MRM of 1 channel,ES-

13C2-PFOA-EIS

13C2-PFOA-EIS

F27:MRM of 1 channel,ES-

13C8-PFOS-EIS
F42:MRM of 1 channel,ES-

Last Altered:
Printed:
Friday, February 21, 2020 08:56:58 Pacific Standard Time
Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-3, Date: 20-Feb-2020, Time: 17:45:02, ID: ST200220P1-1 PFC CS-2 20B1102, Description: PFC CS-2 $20 B 1102$

F51:MRM of 2 channels,ES-

13C8-PFOS-EIS

F42:MRM of 1 channel,ES$507.0>79.7$ $8.127 \mathrm{e}+004$

F44:MRM of 2 channeis,ES
$513>219$

F49:MRM of 2 channels,ES$526.9>80.9$

13C2-8:2 FTS-EIS

Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-3, Date: 20-Feb-2020, Time: 17:45:02, ID: ST200220P1-1 PFC CS-2 20B1102, Description: PFC CS-2 $20 B 1102$

F59:MRM of 2 channels,ES

d5-N-EtFOSAA-EIS

13C2-PFUdA-EIS

F61:MRM of 2 channels,ES

11Cl-PF30UdS
F68:MRM of 2 channels, ES$630.9>450.9$

F68:MRM of 2 channels, ES
$630.9>83$

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES$614.7>569.7$

Last Altered: Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed: Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-3, Date: 20-Feb-2020, Time: 17:45:02, ID: ST200220P1-1 PFC CS-2 20B1102, Description: PFC CS-2 $20 B 1102$

F66:MRM of 2 channels,ESF66:MRM of 2 channels, ES-
$626.9>80.7$ $62.9>80.7$
$9.438 e+002$

F62:MRM of 4 channels,ES-

	$612.9>318.8$
$100 \mathrm{PFDoA} \quad 5.597 \mathrm{e}+002$	
10075.68	
2.04 e 1	
\%- 559	
- 559.00	
,	+
5.500	6.000

13C2-PFDoA-EIS F63:MRM of 1 channel,ES-

F43:MRM of 2 channels,ES

d3-N-MeFOSA-EIS
F46:MRM of 1 channel,ES-

13C2-PFDoA-EIS
F63:MRM of 1 channel, ES-

13C2-PFTeDA-EIS

F74:MRM of 2 channels,ES-
$715.1>669.7$

Dataset:

D:IPFAS5.PROIRESULTSI200220P1\200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 10:14:20 Pacific Standard Time
Printed: Friday, February 21, 2020 10:14:25 Pacific Standard Time

Name: 200220P1-3, Date: 20-Feb-2020, Time: 17:45:02, ID: ST200220P1-1 PFC CS-2 20B1102, Description: PFC CS-2 $20 B 1102$

13C2-PFHxDA-EIS

13C2-PFHxDA-EIS

F76:MRM of 1 channel,ES-

13C3-PFBA-RSD

F3:MRM of 1 channel,ES$216.1>171.8$

13C3-PFPeA-RSD

F8:MRM of 1 channel,ES-
$266.0>221.8$

Last Altered:
Printed:

Friday, February 21,2020 08:56:58 Pacific Standard Time Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-3, Date: 20-Feb-2020, Time: 17:45:02, ID: ST200220P1-1 PFC CS-2 20B1102, Description: PFC CS-2 $20 B 1102$

Dataset:	D:IPFAS5.PROURESULTSI200220P1\200220P1-CRV.qld
Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-3, Date: 20-Feb-2020, Time: 17:45:02, ID: ST200220P1-1 PFC CS-2 20B1102, Description: PFC CS-2 $20 B 1102$

13C2-PFTeDA-RSD
F74:MRM of 2 channels,ES-
$715.1>669.7$ $4.668 \mathrm{e}+005$

d9-N-EtFOSE-RSD

Last Altered:	Friday, February 21, 2020 10:14:20 Pacific Standard Time
Printed:	Friday, February 21, 2020 10:14:25 Pacific Standard Time

Name: 200220P1-3, Date: 20-Feb-2020, Time: 17:45:02, ID: ST200220P1-1 PFC CS-2 20B1102, Description: PFC CS-2 $20 B 1102$

13C7-PFUdA
F57:MRM of 1 channel,ES $570.1>524.8$ $4.948 \mathrm{e}+005$

Dataset:	D:IPFAS5.PRO\RESULTS\200220P1\200220P1-CRV.qld
Last Altered:	Friday, February 21, 2020 10:14:20 Pacific Standard Time
Printed:	Friday, February 21, 2020 10:14:25 Pacific Standard Time

Name: 200220P1-4, Date: 20-Feb-2020, Time: 17:55:31, ID: ST200220P1-2 PFC CS-1 20B1103, Description: PFC CS-1 $20 B 1103$

13C3-PFPeA-EIS

13C3-PFPeA-EIS

PFBS

F11:MRM of 2 channels,ES-

13C3-PFBS-EIS
F12:MRM of 1 channel,ES-

F16:MRM of 2 channels,ES$327.0>80.7$

13C2-4:2 FTS-EIS
F17:MRM of 2 channels,ES-

Dataset:	D.IPFAS5.PROIRESULTSI200220P11200220P1-CRV.qld
Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-4, Date: 20-Feb-2020, Time: 17:55:31, ID: ST200220P1-2 PFC CS-1 20B1103, Description: PFC CS-1 $20 B 1103$

13C2-PFHxA-EIS
F14:MRM of 1 channel,ES-

PFPeS

13C3-PFBS-EIS
F12:MRM of 1 channel, ES-

13C3-HFPO-DA-EIS
F10:MRM of 2 channels, ES

$$
\begin{array}{r}
340.9>216.9 \\
1.226 \mathrm{e}+003
\end{array}
$$

13C4-PFHpA-EIS

F20:MRM of 2 channels, ES-

13C4-PFHpA-EIS F21:MRM of 1 channel,ES-
$367.2>321.8$

Last Altered:
Printed:

Name: 200220P1-4, Date: 20-Feb-2020, Time: 17:55:31, ID: ST200220P1-2 PFC CS-1 20B1103, Description: PFC CS-1 $20 B 1103$

Dataset:	D:IPFAS5.PROIRESULTSI200220P1 200220 P1-CRV.qld
Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-4, Date: 20-Feb-2020, Time: 17:55:31, ID: ST200220P1-2 PFC CS-1 20B1103, Description: PFC CS-1 20 B1103

F37:MRM of 2 channels,ES-

13C8-PFOSA-EIS

F39:MRM of 2 channels,ES-

F51:MRM of 2 channels,ES-

13C8-PFOS-EIS

F42:MRM of 1 channel,ES-
$507.0>79.7$

F44:MRM of 2 channels,ES
$513>219$

13C2-PFDA-EIS

F45:MRM of 1 channel ES

Last Altered:
Printed:

Friday, February 21, 2020 08:56:58 Pacific Standard Time Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-4, Date: 20-Feb-2020, Time: 17:55:31, ID: ST200220P1-2 PFC CS-1 20B1103, Description: PFC CS-1 $20 B 1103$

PFNS

F53:MRM of 2 channels,ES549.1 > 98.7

13C8-PFOS-EIS
F42:MRM of 1 channel,ES$507.0>79.7$

F56:MRM of 2 channels,ES 570. > 512
d3-N-MeFOSAA-EIS
F58:MRM of 1 channel,ES$573.3>419$ $6.558 \mathrm{e}+004$

F59:MRM of 2 channels,ES
$584.1>526$

d5-N-EtFOSAA-EIS
F60:MRM of 1 channel,ES $589.3>419$

PFUdA
F54:MRM of 2 channels,ES-
$563.0>518.9$
$2.375 \mathrm{e}+004$

3C2-PFUIA-EIS
F55:MRM of 1 channel,ES-
$565>519.8$

PFDS

	MRM of 2	channels,ES- $598.8>79.7$
	PFDS	$3.111 \mathrm{e}+003$
1007	$5.44]$	
	1.08 e 2	
-	3106	
	bb	
	3106.00	
		Tiproperr min

F61:MRM of 2 channels,ES $598.8>98.7$

13C8-PFOS-EIS

F42:MRM of 1 channel,ES$507.0>79.7$

11CI-PF30UdS
F68:MRM of 2 channels,ES $630.9>450.9$

F68:MRM of 2 channels,ES
$630.9>83$ $5.966 \mathrm{e}+002$

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES$614.7>569.7$

Last Altered: Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed: Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-4, Date: 20-Feb-2020, Time: 17:55:31, ID: ST200220P1-2 PFC CS-1 20B1103, Description: PFC CS-1 $20 B 1103$

Last Altered:	Friday, February 21, 2020 10:14:20 Pacific Standard Time
Printed:	Friday, February 21, 2020 10:14:25 Pacific Standard Time

Name: 200220P1-4, Date: 20-Feb-2020, Time: 17:55:31, ID: ST200220P1-2 PFC CS-1 20B1103, Description: PFC CS-1 $20 B 1103$

N-EtFOSA
F48:MRM of 2 channels,ES-
$526.1>168.9$
100

F48:MRM of 2 channels,ES-

13C2-PFHxDA-EIS
F76:MRM of 1 channel,ES-

13C2-PFHxDA-EIS

Dataset:	D:IPFAS5.PRO\RESULTS\200220P1\200220P1-CRV.qld
Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-4, Date: 20-Feb-2020, Time: 17:55:31, ID: ST200220P1-2 PFC CS-1 20B1103, Description: PFC CS-1 20 B1103

Dataset:	D:IPFAS5.PROURESULTS\200220P1\200220P1-CRV.qld
Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-4, Date: 20-Feb-2020, Time: 17:55:31, ID: ST200220P1-2 PFC CS-1 20B1103, Description: PFC CS-1 $20 B 1103$

13C2-8:2 FTS-RSD

13C2-PFHxDA-RSD
F76:MRM of 1 channel,ES-
$815>769.7$
F76:MRM of 1 channel, ES-
$815>769.7$
$8.671 \mathrm{e}+005$

d9-N-EtFOSE-RSD
F70:MRM of 1 channel,ES-

Dataset: D:IPFAS5.PROXRESULTS\200220P1\200220P1-CRV.qld

Last Altered: Friday, February 21, 2020 10:14:20 Pacific Standard Time
Printed: Friday, February 21, 2020 10:14:25 Pacific Standard Time

Name: 200220P1-4, Date: 20-Feb-2020, Time: 17:55:31, ID: ST200220P1-2 PFC CS-1 20B1103, Description: PFC CS-1 $20 B 1103$

13C7-PFUdA
F57:MRM of 1 channel,ES$570.1>524.8$ $4.799 \mathrm{e}+005$

Dataset: D:IPFAS5.PROXRESUL_TS\200220P1\200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 10:22:55 Pacific Standard Time
Printed:
Friday, February 21, 2020 10:23:02 Pacific Standard Time

Name: 200220P1-5, Date: 20-Feb-2020, Time: 18:06:03, ID: ST200220P1-3 PFC CS0 20B1104, Description: PFC CS0 20 B1104

F6:MRM of 2 channels,ES. $248.9>98.7$ $1.073 \mathrm{e}+003$

13C3-PFBS-EIS
F12:MRM of 1 channel,ES-

13C3-PFBS-EIS

F12:MRM of 1 channel,ES-

13C2-4:2 FTS-EIS
F17:MRM of 2 channels,ES$329.0>79.7$

Dataset:	D:IPFAS5.PRO\RESULTS\200220P1\200220P1-CRV.qld
Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-5, Date: 20-Feb-2020, Time: 18:06:03, ID: ST200220P1-3 PFC CS0 20B1104, Description: PFC CS0 $20 B 1104$

F10.MRM of 2 ch

13C4-PFHpA-EIS

F20:MRM of 2 channels, ES-
$363.0>169.0$

ADONA

F22:MRM of 2 channels,ES-

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES-
$367.2>321.8$

Dataset:	D:IPFAS5.PRO\RESULTSI200220P1\200220P1-CRV.qld
Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-5, Date: 20-Feb-2020, Time: 18:06:03, ID: ST200220P1-3 PFC CS0 20B1104, Description: PFC CS0 20B1104

F23:MRM of 2 channels,ES$398.9>98.7$ $2.163 e+003$

13C3-PFHxS-EIS

F24:MRM of 1 channel,ES$401.8>79.7$ $6.760 \mathrm{e}+004$

F29:MRM of 3 channels, ES

13C2-6:2 FTS-EIS
F30:MRM of 1 channel,ES$429.0>79.7$ $2.980 \mathrm{e}+004$

L-PFOA
F26:MRM of 2 channels,ES-
$412.8>368.9$
$5.375 \mathrm{e}+004$
100

13C2-PFOA-EIS
F27:MRM of 1 channel,ES -
$414.9>369.7$

13C2-PFOA-EIS

F27:MRM of 1 channel, ES-
$414.9>369.7$

PFHpS
F32:MRM of 2 channels,ES-

F32:MRM of 2 channels,ES
$449>98.7$

13C8-PFOS-EIS
F42:MRM of 1 channel,ES-
F42:MRM of 1 channel,ES-
$507.0>79.7$
$8.517 \mathrm{e}+004$

7:3 FTCA
F31:MRM of 2 channels,ES.
$440.9>336.9$
$3.878 \mathrm{e}+003$
F31:MRM of 2 channels,ES-

13C5-PFNA-EIS

F35:MRM of 1 channel,ES$468.2>422.9$

Last Altered:
Printed:

Friday, February 21, 2020 08:56:58 Pacific Standard Time Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-5, Date: 20-Feb-2020, Time: 18:06:03, ID: ST200220P1-3 PFC CS0 20B1104, Description: PFC CS0 $20 B 1104$

Vista Analytical Laboratory

Dataset:	D:IPFAS5.PROIRESULTS 200220 P1 1200220 P1-CRV. qld
Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-5, Date: 20-Feb-2020, Time: 18:06:03, ID: ST200220P1-3 PFC CSO 20B1104, Description: PFC CS0 $20 B 1104$

d5-N-EtFOSAA-EIS

F54:MRM of 2 channels,ES-

F68:MRM of 2 channels,ES
$630.9>8$

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES$614.7>569.7$

Dataset

D:IPFAS5.PRO\RESULTS\200220P1\200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed: Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-5, Date: 20-Feb-2020, Time: 18:06:03, ID: ST200220P1-3 PFC CSO 20B1104, Description: PFC CS0 $20 B 1104$

13C2-10:2 FTS-EIS

F69:MRM of 1 channel ES

F62:MRM of 4 channels,ES-
$612.9>318.8$

13C2-PFDOA-EIS
F63:MRM of 1 channel,ES-
$614.7>569.7$
$4.460 \mathrm{e}+005$

F72:MRM of 2 channels,ES
98.8>98.7

PFTEDA

F73:MRM of 2 channels,ES
713. >369.0

13C2-PFTeDA-EIS
F74:MRM of 2 channels,ES715.1 > 669.7

Dataset:
D:IPFAS5.PRO\RESULTS\200220P1\200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 10:14:20 Pacific Standard Time
Printed: Friday, February 21, 2020 10:14:25 Pacific Standard Time

Name: 200220P1-5, Date: 20-Feb-2020, Time: 18:06:03, ID: ST200220P1-3 PFC CS0 20B1104, Description: PFC CSO $20 B 1104$

PFHxDA	PFODA
F75:MRM of 2 channels,ES- $813.1>768.6$	F77:MRM of 1 channel,ES$913.1>868.8$
	PFODA $\quad 7.073 \mathrm{e}+004$
	$\left[\begin{array}{c}6.66 \\ 2.02 \mathrm{e} 3\end{array}\right]$
	70258
	MM
	-70258.00
$0-$ тmprimpreprer min	
F75:MRM of 2 channels,ES- \%-	
$813.1>219$	\%
$100{ }^{6.13}$ 8.597e+001	
7) 6.44	
\%-1 6.39 6.71 6.847 .00	-
$1{ }^{1}$	
	Tm min
6.500	6.5007 .000

d9-N-EtFOSE-EIS 13C3-PFPeA-RSD
F70:MRM of 1 channel,ES$639.2>58.8$ $6.029 \mathrm{e}+005$

F8:MRM of 1 channel,ES-
$266.0>221.8$

Dataset:	D:IPFAS5.PROURESULTS\200220P1\200220P1-CRV.qld
Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-5, Date: 20-Feb-2020, Time: 18:06:03, ID: ST200220P1-3 PFC CS0 20B1104, Description: PFC CS0 $20 B 1104$

13C2-6:2 FTS-RSD
F30:MRM of 1 channel ES

13C2-PFOA-RSD
F27:MRM of 1 channel,ES-
$\begin{array}{rr}414.9>369.7 \\ 100- & 4.516 e+005\end{array}$

13C8-PFOS-RSD

F42:MRM of 1 channel,ES-

Dataset:	D:IPFAS5.PROIRESULTSI200220P1\200220P1-CRV.qld
Last Aitered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-5, Date: 20-Feb-2020, Time: 18:06:03, ID: ST200220P1-3 PFC CS0 20B1104, Description: PFC CS0 $20 B 1104$

Dataset: D:IPFAS5.PROIRESULTS\200220P1\200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 10:14:20 Pacific Standard Time
Printed: Friday, February 21, 2020 10:14:25 Pacific Standard Time

Name: 200220P1-5, Date: 20-Feb-2020, Time: 18:06:03, ID: ST200220P1-3 PFC CSO 20B1104, Description: PFC CS0 $20 B 1104$

13C7-PFUdA

F57:MRM of 1 channel, ES-
1 channel, ES-
$570.1>524.8$ $570.1>524.8$
$5.608 \mathrm{e}+005$

Dataset:
D:IPFAS5.PRO\RESULTS\200220P1\200220P1-CRV.qld
Last Altered:
Friday, February 21, 2020 10:14:20 Pacific Standard Time
Printed: Friday, February 21, 2020 10:14:25 Pacific Standard Time

Name: 200220P1-6, Date: 20-Feb-2020, Time: 18:16:31, ID: ST200220P1-4 PFC CS1 20B1105, Description: PFC CS1 20B1105

13C3-PFBA-EIS
F3:MRM of 1 channel,ES-

F6:MRM of 2 channels, ES-

13C3-PFBS-EIS
F12:MRM of 1 channel,ES-

13C3-PFPeA-EIS
F8:MRM of 1 channel,ES-

13C3-PFPeA-EIS
F8:MRM of 1 channel,ES-

F16:MRM of 2 channels,ES-
$327.0>80.7$
$1.027 \mathrm{e}+004$

13C2-4:2 FTS-EIS
F17:MRM of 2 channels,ES-
$329.0>79.7$

Dataset:	D:IPFAS5.PRO\RESULTS\200220P1\200220P1-CRV.qld
Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-6, Date: 20-Feb-2020, Time: 18:16:31, ID: ST200220P1-4 PFC CS1 20B1105, Description: PFC CS1 $20 B 1105$

13C4-PFHpA-EIS

F20:MRM of 2 channels,ES-

13C4-PFHpA-EIS

Name: 200220P1-6, Date: 20-Feb-2020, Time: 18:16:31, ID: ST200220P1-4 PFC CS1 20B1105, Description: PFC CS1 $20 B 1105$

L-PFHxS
F23:MRM of 2 channels,ES-
$398.9>79.7$
$100-160 \mathrm{e}+004$

F29:MRM of 3 channels,ES-
$427>80.7$

F26:MRM of 2 channels,ES-

13C2-PFOA-EIS

F27:MRM of 1 channel,ES-
(100_

13C8-PFOS-EIS
F42:MRM of 1 channel,ES

$$
\begin{array}{r}
507.0>79.7 \\
9.511 \mathrm{e}+00
\end{array}
$$

 $5.787 e+003$

13C5-PFNA-EIS

F35:MRM of 1 channel,ES$468.2>422.9$

Dataset: D:IPFAS5.PRO\RESULTS\200220P1\200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed: Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-6, Date: 20-Feb-2020, Time: 18:16:31, ID: ST200220P1-4 PFC CS1 20B1105, Description: PFC CS1 $20 B 1105$

PFNA

F34:MRM of 2 channels,ES-
$463.0>219.0$ $9.602 \mathrm{e}+003$

13C5-PFNA-EIS
F35:MRM of 1 channed,ES

PFOSA
F37:MRM of 2 channels,ES-
$497.9>77.9$
100

13C8-PFOSA-EIS

F39:MRM of 2 channels,ES

13C8-PFOS-EIS
F42:MRM of 1 channel,ES-

F51:MRM of 2 channels,ES-
$530.7>82.8$ $1.134 \mathrm{e}+003$

13C8-PFOS-EIS
F42:MRM of 1 channel,ES-

$$
\begin{array}{r}
507.0>79.7 \\
9.511 \mathrm{e}+004
\end{array}
$$

13C2-PFDA-EIS

F45:MRM of 1 channel,ES-

Last Altered: Printed:

Friday, February 21, 2020 08:56:58 Pacific Standard Time Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-6, Date: 20-Feb-2020, Time: 18:16:31, ID: ST200220P1-4 PFC CS1 20B1105, Description: PFC CS1 $20 B 1105$

F53:MRM of 2 channels,ES$549.1>98.7$

F59:MRM of 2 channels,ES $584.1>52$

d5-N-EtFOSAA-EIS

PFDS

13C2-PFUdA-EIS

F61:MRM of 2 channels,ES-

11Cl-PF30UdS

F68:MRM of 2 channels,ES
$630.9>450.9$ $3.660 \mathrm{e}+004$

F68:MRM of 2 channels,ES
$630.9>83$
$1.693 \mathrm{e}+003$

13C2-PFDoA-EIS

F63:MRM of 1 channel,ES$614.7>569.7$

Dataset:
D:IPFAS5.PRO\RESULTSI200220P1\200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed: Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-6, Date: 20-Feb-2020, Time: 18:16:31, ID: ST200220P1-4 PFC CS1 20B1105, Description: PFC CS1 20 B1105

13C2-10:2 FTS-EIS

F69:MRM of 1 channel,ES-

PFDoA

F62:MRM of 4 channels, ES
$612.9>569.0$

F62:MRM of 4 channels,ES$612.9>318.8$

13C2-PFDoA-EIS

F63:MRM of 1 channel ES-

F43:MRM of 2 channels,ES $512.1>219$

d3-N-MeFOSA-EIS

F46:MRM of 1 channel,ES-

F71:MRM of 2 channels,ES$662.9>319$

13C2-PFDoA-EIS

PFDoS

F72:MRM of 2 channels,ES
$698.8>98.7$ $4.275 e+003$
F74:MRM of 2 channels,ES

PFTeDA
F73:MRM of 2 channels,ES$713.0>669.0$
100

F73:MRM of 2 channels,ES
713. > 369.0

13C2-PFTeDA-EIS
F74:MRM of 2 channels, ES. $715.1>669.7$

Dataset:

D:IPFAS5.PROTRESULTSI200220P11200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 10:14:20 Pacific Standard Time
Printed: Friday, February 21, 2020 10:14:25 Pacific Standard Time

Name: 200220P1-6, Date: 20-Feb-2020, Time: 18:16:31, ID: ST200220P1-4 PFC CS1 20B1105, Description: PFC CS1 $20 B 1105$

13C2-PFHxDA-EIS
F76:MRM of 1 channel,ES-

d9-N-EtFOSE-EIS
F70:MRM of 1 channel,ES-
$639.2>58.8$

13C3-PFBA-RSD

13C3-PFPeA-RSD

F8:MRM of 1 channel,ES-
$266.0>221.8$

Dataset:	D:IPFAS5.PROTRESULTS\200220P1\200220P1-CRV.qld
Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-6, Date: 20-Feb-2020, Time: 18:16:31, ID: ST200220P1-4 PFC CS1 20B1105, Description: PFC CS1 $20 B 1105$

13C3-PFBS-RSD

F27:MRM of 1 channel,ES-

F42:MRM of 1 channel,ES-
F42:MRM of 1 channel,ES-
$507.0>79.7$

13C4-PFHpA-RSD
F21:MRM of 1 channel,ES-
$367.2>321.8$

13C3-PFHxS-RSD
$\begin{aligned} & \text { F24:MRM of } 1 \text { channel, ES- } \\ & 401.8>79.7\end{aligned}$

Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-6, Date: 20-Feb-2020, Time: 18:16:31, ID: ST200220P1-4 PFC CS1 20B1105, Description: PFC CS1 $20 B 1105$

d3-N-MeFOSA-RSD
F46:MRM of 1 channel,ES$515.2>168.9$

13C2-PFTeDA-RSD
F74:MRM of 2 channels,ES-

d5-N-ETFOSA-RSD

 F52:MRM of 1 channel,ES

d7-N-MeFOSE-RSD F65:MRM of 1 channel,ES$623.1>58.9$ $4.708 \mathrm{e}+005$

Dataset: D:IPFAS5.PRO\RESULTS\200220P1\200220P1-CRV.qld

Last Altered: Friday, February 21, 2020 10:14:20 Pacific Standard Time
Printed: Friday, February 21, 2020 10:14:25 Pacific Standard Time

Name: 200220P1-6, Date: 20-Feb-2020, Time: 18:16:31, ID: ST200220P1-4 PFC CS1 20B1105, Description: PFC CS1 20B1105

13C4-PFBA
F4:MRM of1 channel,ES- $217.0>172.0$ $1.474 \mathrm{e}+005$

13C7-PFUdA
F57:MRM of 1 channel,ES$570.1>524.8$

Last Altered: Friday, February 21, 2020 10:14:20 Pacific Standard Time
Printed:
Friday, February 21, 2020 10:14:25 Pacific Standard Time

Name: 200220P1-7, Date: 20-Feb-2020, Time: 18:27:04, ID: ST200220P1-5 PFC CS2 20B1106, Description: PFC CS2 20B1106

13C3-PFBA-EIS
F3:MRM of 1 channel,ES$216.1>171.8$

F6:MRM of 2 channels,ES$248.9>98.7$

13C3-PFBS-EIS
F12:MRM of 1 channel,ES-

13C3-PFPeA-EIS

13C3-PFPEA-EIS
F8:MRM of 1 channel,ES-

13C3-PFBS-EIS
F12:MRM of 1 channel,ES-

Name: 200220P1-7, Date: 20-Feb-2020, Time: 18:27:04, ID: ST200220P1-5 PFC CS2 20B1106, Description: PFC CS2 20 B1106

F13:MRM of 2 channels,ES$313>118.9$

F19:MRM of 2 channels, ES-
$349 .>98.7$
$1.5820+004$

13C3-PFBS-EIS

F12:MRM of 1 channel,ES-
F12:MRM of 1 channel, ES
$302.0>98.8$

13C3-HFPO-DA-EIS

F10:MRM of 2 channels,ES$287.0>168.9$ $9.458 \mathrm{e}+004$

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES$367.2>321.8$

PFHpA

F20:MRM of 2 channels, ES
363.0 > 169.0

13C4-PFHpA-EIS F21:MRM of 1 channel,ES-
$367.2>321.8$

ADONA

F22:MRM of 2 channels,ES376.8 > 85.0

13C4-PFHpA-EIS

$$
\begin{array}{r}
\text { F21:MRM of } 1 \text { channel,ES- } \\
367.2>321.8 \\
3.226 e+005
\end{array}
$$

Dataset:	D:IPFAS5.PROIRESULTSI200220P1 1200220 P1-CRV.qld
Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-7, Date: 20-Feb-2020, Time: 18:27:04, ID: ST200220P1-5 PFC CS2 20B1106, Description: PFC CS2 $20 B 1106$

13C3-PFHxS-EIS

13C2-6:2 FTS-EIS

F26:MRM of 2 channels, ES-
$412.8>169$

13C2-PFOA-EIS

13C2-PFOA-EIS

F27:MRM of 1 channel,ES-
$414.9>369.7$

F32:MRM of 2 channels,ES-

13C8-PFOS-EIS
F42:MRM of 1 channel,ES-
F42:MRM of 1 channel,ES-
$507.0>79.7$
$8.798 \mathrm{e}+004$

7:3 FTCA
F31:MRM of 2 channels,ES$440.9>336.9$ $2.723 \mathrm{e}+0.4$

F31:MRM of 2 channels,ES-
$440.9>316.9$

13C5-PFNA-EIS
F35:MRM of 1 channel, ES-
$468.2>422.9$

Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-7, Date: 20-Feb-2020, Time: 18:27:04, ID: ST200220P1-5 PFC CS2 20B1106, Description: PFC CS2 $20 B 1106$

F34:MRM of 2 channels,ES$463.0>219.0$

13C5-PFNA-EIS

F35:MRM of 1 channel,ES-

F37:MRM of 2 channels,ES-

13C8-PFOSA-EIS

F39:MRM of 2 channels,ES-

13C8-PFOS-EIS

F51:MRM of 2 channels,ES-

13C8-PFOS-EIS

F44:MRM of 2 channels, ES-

13C2-PFDA-EIS
F45:MRM of 1 channel,ES-

F49:MRM of 2 channels,ES$526.9>80.9$

13C2-8:2 FTS-EIS

Dataset:	D:IPFAS5.PRO\RESULTSI200220P1\200220P1-CRV.qld
Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-7, Date: 20-Feb-2020, Time: 18:27:04, ID: ST200220P1-5 PFC CS2 20B1106, Description: PFC CS2 $20 B 1106$

13C8-PFOS-EIS

F42:MRM of 1 channel,ES-

F56:MRM of 2 channels,ES 570. > 512

F59:MRM of 2 channels,ES $584.1>526$

d5-N-EtFOSAA-EIS

F60:MRM of 1 channel

13C2-PFUdA-EIS
F55:MRM of 1 channel,ES-
F55:MRM of 1 channel,ES-
$565>519.8$
$5.290 \mathrm{e}+005$

PFDS

13C8-PFOS-EIS
F42:MRM of 1 channel,ES-

13C2-PFDoA-EIS
F63:MRM of 1 channel, ES 614.7 > 569.7

ast Altered:
Printed:

Friday, February 21, 2020 08:56:58 Pacific Standard Time Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-7, Date: 20-Feb-2020, Time: 18:27:04, ID: ST200220P1-5 PFC CS2 20B1106, Description: PFC CS2 $20 B 1106$

F66:MRM of 2 channels,ES$626.9>80.7$ $1.916 e+004$

13C2-10:2 FTS-EIS
F69:MRM of 1 channel,ES$632.9>80.0$ $2.180 e+004$

F62:MRM of 4 channels,ES$612.9>318.8$

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES$614.7>569.7$

N-MeFOSA
F43:MRM of 2 channels, ES-
$512.1>168.9$
$700-556 e+004$

F43:MRM of 2 channels,ES $512.1>219$

d3-N-MeFOSA-EIS

F46:MRM of 1 channel,ES

F71:MRM of 2 channels,ES$662.9>319$

F63 MRM of 1 Chan ES

F72:MRM of 2 channels,ES
698.8 > 98.7

13C2-PFIEDA-EIS
F74:MRM of 2 channels, ES

PFTeDA
F73:MRM of 2 channels,ES$713.0>669.0$ $2.320 \mathrm{e}+005$

F73:MRM of 2 channels,ES
713. > 369.0

13C2-PFTEDA-EIS
F74:MRM of 2 channels,ES$715.1>669.7$

Dataset:
D:IPFAS5.PROIRESULTSI200220P11200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 10:14:20 Pacific Standard Time
Printed:
Friday, February 21, 2020 10:14:20 Pacific Standard Time
Friday, February 21, 2020 10:14:25 Pacific Standard Time

Name: 200220P1-7, Date: 20-Feb-2020, Time: 18:27:04, ID: ST200220P1-5 PFC CS2 20B1106, Description: PFC CS2 20B1106

13C2-PFHxDA-EIS F76:MRM of 1 channeI, ES-

13C2-PFHxDA-EIS

d7-N-MeFOSE-EIS

d9-N-EtFOSE-EIS

13C3-PFBA-RSD

F3:MRM of 1 channel,ES-

$$
216.1>171.8
$$

13C3-PFPeA-RSD

F8:MRM of 1 channel,ES-
$266.0>221.8$ $2.386 e+005$

Dataset:	D:IPFAS5.PROIRESULTS\200220P1\200220P1-CRV.qld
Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-7, Date: 20-Feb-2020, Time: 18:27:04, ID: ST200220P1-5 PFC CS2 20B1106, Description: PFC CS2 20B1106

4.7505 .0005 .250

13C2-PFOA-RSD

F27:MRM of 1 channel,ES-
$414.9>369.7$

Dataset:	D:IPFAS5.PROIRESULTS 200220 P1 1200220 P1-CRV.qld
Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-7, Date: 20-Feb-2020, Time: 18:27:04, ID: ST200220P1-5 PFC CS2 20B1106, Description: PFC CS2 20B1106

13C2-PFTeDA-RSD F74:MRM of 2 channels,ES$715.1>669.7$ $4.437 \mathrm{e}+0.7$

d5-N-ETFOSA-RSD

d9-N-EtFOSE-RSD
F70:MRM of 1 channel,ES.
$639.2>58.8$

d7-N-MeFOSE-RSD F65:MRM of 1 channel,ES623.1 > 58.9 $4.481 \mathrm{e}+005$

Last Altered: Friday, February 21, 2020 10:14:20 Pacific Standard Time
Printed: Friday, February 21, 2020 10:14:25 Pacific Standard Time

Name: 200220P1-7, Date: 20-Feb-2020, Time: 18:27:04, ID: ST200220P1-5 PFC CS2 20B1106, Description: PFC CS2 $20 B 1106$

13C7-PFUdA
F57:MRM of 1 channel,ES $570.1>524.8$ $5.400 \mathrm{e}+005$

Dataset:
D:IPFAS5.PROIRESULTS\200220P11200220P1-CRV.qld
Last Altered:
Friday, February 21, 2020 10:14:20 Pacific Standard Time
Printed: Friday, February 21, 2020 10:14:25 Pacific Standard Time

Name: 200220P1-8, Date: 20-Feb-2020, Time: 18:37:32, ID: ST200220P1-6 PFC CS3 20B1107, Description: PFC CS3 20B1107

F6:MRM of 2 channels, ES-

13C3-PFPeA-EIS

F11:MRM of 2 channels,ESF11.MRM of $299.0>98.7$

F16:MRM of 2 channels, ES
$327.0>80.7$ $327.0>80.7$
$4.640 \mathrm{e}+004$

13C2-4:2 FTS-EIS

F17:MRM of 2 channels, ES-
$329.0>79.7$

Dataset:	D:IPFAS5.PRO\RESULTSI200220P1\200220P1-CRV.qld
Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-8, Date: 20-Feb-2020, Time: 18:37:32, ID: ST200220P1-6 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

F13:MRM of 2 channels,ES$\begin{array}{r}\text { F13.MRM of } 2 \text { channels,ES- } \\ \\ 100 \\ \hline\end{array}$

13C3-PFBS-EIS

13C4-PFHpA-EIS

13C4-PFHpA-EIS

ADONA

F22:MRM of 2 channels,ES-

13C4-PFHpA-EIS

Dataset:	D:IPFAS5.PROIRESULTSI200220P11200220P1-CRV.qld
Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-8, Date: 20-Feb-2020, Time: 18:37:32, ID: ST200220P1-6 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

Dataset:	D:IPFAS5.PROIRESULTSI200220P1\200220P1-CRV.qld
Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-8, Date: 20-Feb-2020, Time: 18:37:32, ID: ST200220P1-6 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

F39:MRM of 2 channels,ES

13C8-PFOS-EIS

F44:MRM of 2 channels,ES-
$513>219$
$5.100 \mathrm{e}+004$

13C2-PFDA-EIS

F49:MRM of 2 channels,ES$526.9>80.9$

13C2-8:2 FTS-EIS

F50:MRM of 1 channel,ES-
$529>79.7$

Last Altered:
Printed:

Friday, February 21, 2020 08:56:58 Pacific Standard Time Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-8, Date: 20-Feb-2020, Time: 18:37:32, ID: ST200220P1-6 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

F59:MRM of 2 channels,ES $584.1>526$

d5-N-EtFOSAA-EIS
F60:MRM of 1 channel ES

F54:MRM of 2 channels,ES$563.0>269$

13C2-PFUdA-EIS

F55:MRM of 1 channel,ES-

PFDS

F61:MRM of 2 channels,ES

13C8-PFOS-EIS
F42:MRM of 1 channel,ES

11CI-PF30UdS
F68:MRM of 2 channels,ES 630.9 > 450.9 $1.881 e+005$

F68:MRM of 2 channels,ES
$630.9>8$
$9.138 \mathrm{e}+003$

13C2-PFDOA-EIS
F63:MRM of 1 channel,ES$614.7>569.7$

Name: 200220P1-8, Date: 20-Feb-2020, Time: 18:37:32, ID: ST200220P1-6 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

F66:MRM of 2 channels, ES$626.9>80.7$ $4.049 \mathrm{e}+004$

13C2-10:2 FTS-EIS
F69:MRM of 1 channel,ES-
$632.9>80.0$
$1.909 \mathrm{e}+004$

PFDOA
F62:MRM of 4 channels,ES-
$612.9>569.0$
100

F62:MRM of 4 channels, ES-
$612.9>318.8$
$3.695 e+004$

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES-
$614.7>569.7$ $614.7>569.7$
$4.793 \mathrm{e}+005$

F43:MRM of 2 channels, ES-
$512.1>219$

d3-N-MeFOSA-EIS
F46:MRM of 1 channel,ES $515.2>168.9$

F71:MRM of 2 channels,ES$662.9>319$ $6.486 \mathrm{e}+003$

F72:MRM of 2 channels,ES. $698.8>98.7$

F73:MRM of 2 channels, ES

13C2-PFTeDA-EIS
F74:MRM of 2 channels,ES-
$715.1>669.7$
$4.392 \mathrm{e}+005$

Name: 200220P1-8, Date: 20-Feb-2020, Time: 18:37:32, ID: ST200220P1-6 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

D:IPFAS5.PRO\RESULTSI200220P11200220P1-CRV.ald
Last Altered: Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed: Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-8, Date: 20-Feb-2020, Time: 18:37:32, ID: ST200220P1-6 PFC CS3 20B1107, Description: PFC CS3 20B1107

13C3-PFBS-RSD
 F12:MRM of 1 channel,ES$302.0>98.8$ $2.895 \mathrm{e}+004$

13C2-6:2 FTS-RSD

13C5-PFNA-RSD
F35:MRM of 1 channel,ES$468.2>422.9$ $4.384 \mathrm{e}+005$

F17:MRM of 2 channels,ES- $329.0>79.7$ $3.075 \mathrm{e}+004$

13C2-PFOA-RSD
F27:MRM of 1 channel,ES-

13C4-PFHpA-RSD

F21:MRM of 1 channel,ES $367.2>321.8$ $3.421 \mathrm{e}+005$

13C8-PFOS-RSD
F42:MRM of 1 channel, ES

13C3-PFHxS-RSD
F24:MRM of 1 channel,ES$401.8>79.7$ $7.717 \mathrm{e}+004$

13C2-PFDA-RSD
F45:MRM of 1 channel,ES-
$515.1>469.9$

Dataset:

Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-8, Date: 20-Feb-2020, Time: 18:37:32, ID: ST200220P1-6 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

13C2-PFTeDA-RSD
F74:MRM of 2 channels,ES-

d5-N-ETFOSA-RSD
F52:MRM of 1 channel,ES-
$531.1>168.9$

13C2-PFHxDA-RSD
F76:MRM of 1 channel, ES-
$815>769.7$ $815>769.7$

d9-N-EtFOSE-RSD
F70:MRM of 1 channel,ES-
$639.2>58.8$ F70:MRM of 1 channel,ES
$639.2>58.8$
$6.269 \mathrm{e}+005$

d7-N-MeFOSE-RSD
F65:MRM of 1 channel,ES$623.1>58.9$
$4.714 \mathrm{e}+005$

Dataset:	D:IPFAS5.PROIRESULTSI200220P1\200220P1-CRV.qld
Last Altered:	Friday, February 21, 2020 10:22:55 Pacific Standard Time
Printed:	Friday, February 21, 2020 10:23:02 Pacific Standard Time

Name: 200220P1-8, Date: 20-Feb-2020, Time: 18:37:32, ID: ST200220P1-6 PFC CS3 20B1107, Description: PFC CS3 $20 B 1107$

13C7-PFUdA
F57:MRM of 1 channel,ES$570.1>524.8$ $5.058 \mathrm{e}+005$

Dataset: D:IPFAS5.PROURESULTS\200220P1\200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed: Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-9, Date: 20-Feb-2020, Time: 18:48:04, ID: ST200220P1-7 PFC CS4 20B1108, Description: PFC CS4 20B1108

PFBA

13C3-PFBA-EIS
F3:MRM of 1 channel,ES$216.1>171.8$

F6:MRM of 2 channels, ES$248.9>98.7$ $4.582 \mathrm{e}+004$

F12:MRM of 1 channel,ES $302.0>98.8$ $3.224 \mathrm{e}+0.04$

F11:MRM of 2 channels,ES $299.0>98.7$ $1.040 \mathrm{e}+005$

13C3-PFBS-EIS
F12:MRM of 1 channel,ES $3.0>98.8$

Dataset: D:IPFAS5.PROIRESULTS\200220P1\200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:
Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-9, Date: 20-Feb-2020, Time: 18:48:04, ID: ST200220P1-7 PFC CS4 20B1108, Description: PFC CS4 20B1108

13C3-PFBS-EIS
F12:MRM of 1 channel,ES$302.0>98.8$ $3.224 e+004$

 $285.1>168.9$

13C3-HFPO-DA-EIS
F10:MRM of 2 channels,ES-
$287.0>168.9$ $9.654 \mathrm{e}+004$

F18:MRM of 2 channels,ES-

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES-

PFHpA
F20:MRM of 2 channels, ES $363.0>318.9$ $1.704 \mathrm{e}+006$

F20:MRM of 2 channels,ES $363.0>169.0$ $6.954 \mathrm{e}+004$

13C4-PFHpA-EIS

Dataset: D:IPFAS5.PRO\RESULTS\200220P1\200220P1-CRV.qld

Last Altered: Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:
Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-9, Date: 20-Feb-2020, Time: 18:48:04, ID: ST200220P1-7 PFC CS4 20B1108, Description: PFC CS4 20B1108

L-PFHxS

 F23:MRM of 2 channels,ES-

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES-
$401.8>79.7$

13C2-6:2 FTS-EIS F30:MRM of 1 channel,ES $429.0>79.7$ $3.759 \mathrm{e}+004$

L-PFOA
 F26:MRM of 2 channels,ES$412.8>368.9$

 $2.194 \mathrm{e}+006$

F26:MRM of 2 channels, ES

13C2-PFOA-EIS
F27:MRM of 1 channel,ES.

F33:MRM of 2 channels,ES-
F33:MRM of 2 channels,ES-
$460.8>98.9$

13C2-PFOA-EIS
F27:MRM of 1 channel,ES-

F32:MRM of 2 channels,ES$449>98.7$

13C8-PFOS-EIS
F42:MRM of 1 channel,ES

Dataset:
 D:IPFAS5.PRO\RESULTS\200220P11200220P1-CRV.qld

Last Altered: Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed: Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-9, Date: 20-Feb-2020, Time: 18:48:04, ID: ST200220P1-7 PFC CS4 20B1108, Description: PFC CS4 20B1108

13C5-PFNA-EIS
F35:MRM of 1 channel,ES-

13C8-PFOSA-EIS
F41:MRM of 1 channel,ES-
F41:MRM of 1 channel, ES-
$506>78$
13C8-PFOS-EIS
F42:MRM of 1 channel,ES-
$507.0>79.7$
$7.545 \mathrm{e}+004$

F39:MRM of 2 channels,ES $498.9>98.7$
100
$1.341 \mathrm{e}+005$

,

PFDA

F44:MRM of 2 channels,ES-
F44:MRM of 2 channels,ES
$513>468.8$

F49:MRM of 2 channels,ES-
$526.9>80.9$

13C2-8:2 FTS-EIS
F50:MRM of 1 channel,ES-
$529>79.7$
$3.305=+004$ $3.305 \mathrm{e}+004$

Dataset: D:IPFAS5.PRO\RESULTS\200220P11200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed: Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-9, Date: 20-Feb-2020, Time: 18:48:04, ID: ST200220P1-7 PFC CS4 20B1108, Description: PFC CS4 20B1108

F42:MRM of 1 channel,ES-
$507.0>79.7$

F56:MRM of 2 channels,ES-

d3-N-MeFOSAA-EIS
F58:MRM of 1 channel,ES-
$573.3>419$ $8.323 \mathrm{e}+004$

F59:MRM of 2 channels,ES

d5-N-EtFOSAA-EIS

13C2-PFUdA-EIS
F55:MRM of 1 channel,ES$565>519.8$ $5.316 \mathrm{e}+005$

13C8-PFOS-EIS
F42:MRM of 1 channel,ES $507.0>79.7$

11CI-PF30UdS

F68:MRM of 2 channels,ES$630.9>450.9$

13C2-PFDoA-EIS
F63:MRM of 1 channel, ES-
$614.7>569.7$

Name: 200220P1-9, Date: 20-Feb-2020, Time: 18:48:04, ID: ST200220P1-7 PFC CS4 20B1108, Description: PFC CS4 20B1108

Datasel: D:IPFAS5.PROXRESULTS\200220P1\200220P1-CRV.qld

Last Altered: Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed: Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-9, Date: 20-Feb-2020, Time: 18:48:04, JD: ST200220P1-7 PFC CS4 20B1108, Description: PFC CS4 20B1108

13C2-PFHxDA-EIS
F76:MRM of 1 channel,ES

13C2-PFHxDA-EIS
F76:MRM of 1 channel,ES-

d7-N-MeFOSE-EIS
F65:MRM of 1 channel,ES$623.1>58.9$ $4.931 \mathrm{e}+005$

Last Altered: Friday, February 21, 2020 08:56:58 Pacific Standard Time

Name: 200220P1-9, Date: 20-Feb-2020, Time: 18:48:04, ID: ST200220P1-7 PFC CS4 20B1108, Description: PFC CS4 20B1108

13C3-PFBS-RSD
 F12:MRM of 1 channel,ES$302.0>98.8$ $3.224 e+004$

13C2-6:2 FTS-RSD

13C5-PFNA-RSD F35:MRM of 1 channel,ES$+005$

13C2-4:2 FTS-RSD

F17:MRM of 2 channels,ES

13C2-PFOA-RSD

13C8-PFOS-RSD
F42:MRM of 1 channel,ES
$507.0>79.7$ $7.545 \mathrm{e}+004$

13C3-PFHxS-RSD
F24:MRM of 1 channel,ES$401.8>79.7$ $401.8>79.7$
$7.532 e+004$

13C2-PFDA-RSD
F45:MRM of 1 channel,ES-
$515.1>469.9$ $4.891 \mathrm{e}+005$

Dataset: D:IPFAS5.PRO\RESULTS\200220P1\200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed: Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-9, Date: 20-Feb-2020, Time: 18:48:04, ID: ST200220P1-7 PFC CS4 20B1108, Description: PFC CS4 20B1108

13C2-8:2 FTS-RSD
 F50:MRM of 1 channel,ES-
 $529>79.7$

d3-N-MeFOSAA-RSD
F58:MRM of 1 channel.ES-
F58:MRM of 1 channel,ES$573.3>419$

13C2-PFTeDA-RSD
F74:MRM of 2 channels, ES-

d5-N-ETFOSA-RSD
F52:MRM of 1 channel,ES

13C2-PFHxDA-RSD
F76:MRM of 1 channel,ES-

13C2-PFDoA-RSD

F63:MRM of 1 channel,ES
$614.7>569.7$

d9-N-EtFOSE-RSD
F70:MRM of 1 channel,ES.
$639.2>58.8$ $6.145 e+005$

Dataset:

Last Altered: Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed: Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-9, Date: 20-Feb-2020, Time: 18:48:04, ID: ST200220P1-7 PFC CS4 20B1108, Description: PFC CS4 20B1108

13C7-PFUdA
F57:MRM of 1 channel,ES$570.1>524.8$ $5.609 \mathrm{e}+005$

Dataset:	D:IPFAS5.PROIRESULTS\200220P1\200220P1-CRV.qld
Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-10, Date: 20-Feb-2020, Time: 18:58:35, ID: ST200220P1-8 PFC CS5 20B1109, Description: PFC CS5 $20 B 1109$

13C3-PFBA-EIS

F6:MRM of 2 channels,ES-

13C3-PFBS-EIS
F12:MRM of 1 channel,ES-

13C3-PFPeA-EIS

F8:MRM of 1 channel,ES

PFPeA
F7:MRM of 1 channel,ES-
$263.1>218.9$

13C3-PFPeA-EIS
F8:MRM of 1 channel,ES-

PFBS

F11:MRM of 2 channels, ES $299.0>79.7$ $6.029 \mathrm{e}+005$

F11:MRM of 2 channels,ES $299.0>98.7$ $1.834 \mathrm{e}+005$

13C3-PFBS-EIS

F12:MRM of 1 channel,ES

Dataset:
D:IPFAS5.PROIRESULTS\200220P11200220P1-CRV.qld
Last Altered:
Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed: Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-10, Date: 20-Feb-2020, Time: 18:58:35, ID: ST200220P1-8 PFC CS5 20B1109, Description: PFC CS5 $20 B 1109$

13C3-PFBS-EIS
F12:MRM of 1 channet,ES-
F12:MRM of 1 channel, ES-
$302.0>98.8$

13C3-HFPO-DA-EIS

F10:MRM of 2 channels, ES-

F18:MRM of 2 channels,ES-

$$
\begin{array}{r}
\text { F18:MHM of } 2 \text { channeIs, ES- } \\
340.9>216.9
\end{array}
$$

13C4-PFHpA-EIS 13C4-PFHpA-EIS
F21:MRM of 1 channel,ES-

Name: 200220P1-10, Date: 20-Feb-2020, Time: 18:58:35, ID: ST200220P1-8 PFC CS5 20B1109, Description: PFC CS5 $20 B 1109$

13C2-6:2 FTS-EIS F30:MRM of 1 channel,ES$429.0>79.7$ $3.054 \mathrm{e}+004$

F26:MRM of 2 channels,ES

13C2-PFOA-EIS
F27:MRM of 1 channel,ES-
$414.9>369.7$
$4.419 e+005$

13C2-PFOA-EIS
F27:MRM of 1 channel,ES-

F32:MRM of 2 channels,ES

$$
\begin{array}{r}
449>98.7 \\
3.629 \mathrm{e}+005
\end{array}
$$

13C8-PFOS-EIS
F42:MRM of 1 channel,ES-

Dataset:	D:IPFAS5.PRO\RESULTS\200220P1\200220P1-CRV.qld
Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-10, Date: 20-Feb-2020, Time: 18:58:35, ID: ST200220P1-8 PFC CS5 20B1109, Description: PFC CS5 $20 B 1109$

F37:MRM of 2 channels,ES-

13C8-PFOSA-EIS

F39:MRM of 2 channels,ES-
$498.9>98.7$

13C8-PFOS-EIS

F51:MRM of 2 channels,ES-

13C8-PFOS-EIS

13C2-PFDA-EIS
F45:MRM of 1 channel,ES

13C2-8:2 FTS-EIS

Dataset:

D:IPFAS5.PRO\RESULTSI200220P1\200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed: Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-10, Date: 20-Feb-2020, Time: 18:58:35, ID: ST200220P1-8 PFC CS5 20B1109, Description: PFC CS5 20 B1109

13C8-PFOS-EIS

F56:MRM of 2 channels, ES-

d3-N-MeFOSAA-EIS
F58:MRM of 1 channel,ES

F59:MRM of 2 channels,ES-

d5-N-EtFOSAA-EIS

F60:MRM of 1 channel,ES-

13C2-PFUdA-EIS
F55:MRM of 1 channel,ES-

13C8-PFOS-EIS
F42:MRM of 1 channel,ES-

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES614.7 > 569.7 $4.698 \mathrm{e}+005$

Vista Analytical Laboratory

Dataset:	D:IPFAS5.PRO\RESULTS\200220P1\200220P1-CRV.qld
Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-10, Date: 20-Feb-2020, Time: 18:58:35, ID: ST200220P1-8 PFC CS5 20B1109, Description: PFC CS5 $20 B 1109$

13C2-PFDoA-EIS

F72:MRM of 2 channels,ES $698.8>98.7$

13C2-PFTeDA-EIS
F74:MRM of 2 channels, ES
F74:MRM of 2 channels,ES-
$715.1>669.7$
$4.688 \mathrm{e}+005$

PFTeDA

Vista Analytical Laboratory

Dataset:	D:IPFAS5.PRO\RESULTSI200220P1\200220P1-CRV.qld
Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-10, Date: 20-Feb-2020, Time: 18:58:35, ID: ST200220P1-8 PFC CS5 20B1109, Description: PFC CS5 $20 B 1109$

F48:MRM of 2 channels,ES 526.1 > 219

Vista Analytical Laboratory

Dataset: D:IPFAS5.PROIRESULTS\200220P1\200220P1-CRV.qld

Last Altered: Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed: Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-10, Date: 20-Feb-2020, Time: 18:58:35, ID: ST200220P1-8 PFC CS5 20B1109, Description: PFC CS5 $20 B 1109$

13C3-HFPO-DA-RSD
F10:MRM of 2 channels,ES-
$287.0>168.9$
$1.021 \mathrm{e}+005$

13C8-PFOSA-RSD

13C8-PFOS-RSD
F42:MRM of 1 channel, ES

Dataset:	D:IPFAS5.PROIRESULTS\200220P1\200220P1-CRV.qld
Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-10, Date: 20-Feb-2020, Time: 18:58:35, ID: ST200220P1-8 PFC CS5 20B1109, Description: PFC CS5 $20 B 1109$

13C2-PFTeDA-RSD
F74:MRM of 2 channels,ES-
$715.1>669.7$

d5-N-ETFOSA-RSD
F52:MRM of 1 channel,ES-

d7-N-MeFOSE-RSD
F65:MRM of 1 channel,ES-
$623.1>58.9$

Dataset: D:IPFAS5.PROIRESULTS\200220P1\200220P1-CRV.qld

Last Altered: Friday, February 21, 2020 10:14:20 Pacific Standard Time
Printed: Friday, February 21, 2020 10:14:25 Pacific Standard Time

Name: 200220P1-10, Date: 20-Feb-2020, Time: 18:58:35, ID: ST200220P1-8 PFC CS5 20B1109, Description: PFC CS5 $20 B 1109$

13C6-PFDA

F47-MRM of 1 channel ES

13C7-PFUdA
F57:MRM of 1 channel, ES $570.1>524.8$ $4.873 \mathrm{e}+005$

Dataset:	D:IPFAS5.PRO\RESULTSI200220P1\200220P1-CRV.qld
Last Altered:	Friday, February 21, 2020 10:14:20 Pacific Standard Time
Printed:	Friday, February 21, 2020 10:14:25 Pacific Standard Time

Name: 200220P1-11, Date: 20-Feb-2020, Time: 19:09:05, ID: ST200220P1-9 PFC CS6 20B1110, Description: PFC CS6 $20 B 1110$

13C3-PFBA-EIS
F3:MRM of 1 channel,ES-

PFPrS

13C3-PFBS-EIS
F12:MRM of 1 channel,ES.

13C3-PFPeA-EIS

F11:MRM of 2 channels,ES-

13C3-PFBS-EIS
F12:MRM of 1 channel,ES

F16:MRM of 2 channels,ES-
$327.0>80.7$

13C2-4:2 FTS-EIS
F17:MRM of 2 channels, ES$329.0>79.7$

Dataset:	D:IPFAS5.PRO\RESULTSI200220P1\200220P1-CRV.qld
Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-11, Date: 20-Feb-2020, Time: 19:09:05, ID: ST200220P1-9 PFC CS6 20B1110, Description: PFC CS6 $20 B 1110$

Dataset:	D:IPFAS5.PRO\RESULTSI200220P1\200220P1-CRV.qld
Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-11, Date: 20-Feb-2020, Time: 19:09:05, ID: ST200220P1-9 PFC CS6 20B1110, Description: PFC CS6 $20 B 1110$

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES$401.8>79.7$

13C2-6:2 FTS-EIS

13C2-PFOA-EIS
F27:MRM of 1 channel,ES-

F32:MRM of 2 channels,ES $449>98.7$ $8.554 \mathrm{e}+005$

13C8-PFOS-EIS

Dataset:
D:IPFAS5.PROIRESULTSI200220P11200220P1-CRV.qld
Last Altered:
Printed:
Friday, February 21, 2020 08:56:58 Pacific Standard Time
Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-11, Date: 20-Feb-2020, Time: 19:09:05, ID: ST200220P1-9 PFC CS6 20B1110, Description: PFC CS6 $20 B 1110$

13C5-PFNA-EIS

F35:MRM of 1 channel,ES-

13C8-PFOSA-EIS

13C8-PFOS-EIS
F42:MRM of 1 channel,ES

F51:MRM of 2 channels,ES-

13C8-PFOS-EIS
F42:MRM of 1 channel,ES-

F44:MRM of 2 channels, ES-
$513>219$

13C2-PFDA-EIS
F45:MRM of 1 channel,ES-

F49:MRM of 2 channels,ES-
$526.9>80.9$

13C2-8:2 FTS-EIS

F50:MRM of 1 channel,ES-
$529>79.7$

Dataset:	D:IPFAS5.PRO\RESULTS\200220P11200220P1-CRV.qld
Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-11, Date: 20-Feb-2020, Time: 19:09:05, ID: ST200220P1-9 PFC CS6 20B1110, Description: PFC CS6 $20 B 1110$

F53:MRM of 2 channels,ES$549.1>98.7$

F59:MRM of 2 channels,ES$584.1>526$

d5-N-EtFOSAA-EIS

F60:MRM of 1 channel,ES

PFUdA
F54:MRM of 2 channels,ES-
$563.0>518.9$
$1.004 \mathrm{e}+007$

F61:MRM of 2 channels,ES-
$598.8>98.7$

13C8-PFOS-EIS
F42:MRM of 1 channel,ES-

11Cl-PF30UdS
F68:MRM of 2 channels,ES630.9 > 450.9 $4.093 e+006$

F68:MRM of 2 channels,ES-
$630.9>83$
$2.083 e+005$

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES$614.7>569.7$

Dataset:	D:IPFAS5.PRO\RESULTSU200220P1\200220P1-CRV.qld
Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-11, Date: 20-Feb-2020, Time: 19:09:05, ID: ST200220P1-9 PFC CS6 20B1110, Description: PFC CS6 $20 B 1110$

Dataset: D:IPFAS5.PROIRESULTSI200220P11200220P1-GRV.qld
Last Altered: Friday, February 21, 2020 10:14:20 Pacific Standard Time Printed: Friday, February 21, 2020 10:14:25 Pacific Standard Time

Name: 200220P1-11, Date: 20-Feb-2020, Time: 19:09:05, ID: ST200220P1-9 PFC CS6 20B1110, Description: PFC CS6 $20 B 1110$

13C2-PFHxDA-EIS

d9-N-EtFOSE-EIS

13C3-PFPeA-RSD

F8:MRM of 1 channel,ES$266.0>221.8$ $2.417 \mathrm{e}+005$

Dataset:	D:IPFAS5.PRO\RESULTS 200220 P1 1200220 P1-CRV. qld
Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-11, Date: 20-Feb-2020, Time: 19:09:05, ID: ST200220P1-9 PFC CS6 20B1110, Description: PFC CS6 $20 B 1110$

13C8-PFOSA-RSD
F41:MRM of 1 channel,ES

13C2-PFOA-RSD
F27:MRM of 1 channel,ES-
$414.9>369.7$

Dataset:	D:IPFAS5.PROURESULTS\200220P1\200220P1-CRV.qld
Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-11, Date: 20-Feb-2020, Time: 19:09:05, ID: ST200220P1-9 PFC CS6 20B1110, Description: PFC CS6 $20 B 1110$

d3-N-MeFOSAA-RSD
F58:MRM of 1 channel,ES-
$573.3>419$
$8.351 e+004$

13C2-PFTeDA-RSD
F74:MRM of 2 channels,ES-

d5-N-ETFOSA-RSD
F52:MRM of 1 channel,ES-
F52:MRM of 1 channel,ES-
$531.1>168.9$
d5-N-EtFOSAA-RSD
F60:MRM of 1 channel,ES-
$589.3>419$
$1.114 \mathrm{e}+005$

d9-N-EtFOSE-RSD
F70:MRM of 1 channel,ES-
$639.2>58.8$

Vista Analytical Laboratory

Dataset:	D:\PFAS5.PRO\RESULTSI200220P1\200220P1-CRV.qld
Last Altered:	Friday, February 21, 2020 10:14:20 Pacific Standard Time
Printed:	Friday, February 21, 2020 10:14:25 Pacific Standard Time

Name: 200220P1-11, Date: 20-Feb-2020, Time: 19:09:05, ID: ST200220P1-9 PFC CS6 20B1110, Description: PFC CS6 $20 B 1110$

13C7-PFUdA
F57:MRM of 1 channel,ES$570.1>524.8$ $5.024 e+005$

Dataset:	D:IPFAS5.PROIRESULTSI200220P11200220P1-CRV.qld
	Last Altered:
Friday, February 21, 2020 08:56:58 Pacific Standard Time	
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-12, Date: 20-Feb-2020, Time: 19:19:35, ID: ST200220P1-10 PFC CS7 20B1111, Description: PFC CS7 $20 B 1111$

13C3-PFBA-EIS
F3:MRM of 1 channel,ES-

F6:MRM of 2 channels,ES$248.9>98.7$ $4.325 e+005$

13C3-PFBS-EIS
F12:MRM of 1 channel,ES-

13C3-PFPeA-EIS
F8:MRM of 1 channel,ES

13C3-PFPeA-EIS
F8:MRM of 1 channel,ES-

PFBS

F11:MRM of 2 channels, ES-

13C3-PFBS-EIS
F12:MRM of 1 channel,ES-

Vista Analytical Laboratory

Dataset:

D:IPFAS5.PROIRESULTS\200220P1\200220P1-CRV.qld
Last Altered:
Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed: Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-12, Date: 20-Feb-2020, Time: 19:19:35, ID: ST200220P1-10 PFC CS7 20B1111, Description: PFC CS7 $20 B 1111$

PFHxA

 F13:MRM of 2 channels,ES$313>118.9$ $1.099 \mathrm{e}+006$

13C2-PFHxA-EIS
F14:MRM of 1 channel,ES-

13C3-PFBS-EIS

13C3-HFPO-DA-EIS
F10:MRM of 2 channels,ES
F10:MRM of 2 channels,ES-
$287.0>168.9$
$1.001 \mathrm{e}+005$

13C4-PFHpA-EIS
F21:MRM of 1 channel,ES-

F22:MRM of 2 channels,ES$376.8>85.0$ $9.352 \theta+006$

13C4-PFHpA-EIS
F21:MRM of 1 channel,ES-

Dataset: D:IPFAS5.PROIRESULTSI200220P11200220P1-CRV.qld
Last Altered: Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed: Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-12, Date: 20-Feb-2020, Time: 19:19:35, ID: ST200220P1-10 PFC CS7 20B1111, Description: PFC CS7 $20 B 1111$

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES$401.8>79.7$ $6.446 e+004$

13C2-6:2 FTS-EIS F30:MRM of 1 channel,ES$429.0>79.7$ $2.948 \mathrm{e}+004$

13C2-PFOA-EIS
F27:MRM of 1 channel,ES.

F33:MRM of 2 channels,ESF33:MRM of 2 channels,ES-
$460.8>98.9$

13C2-PFOA-EIS 13C8-PFOS-EIS
F27:MRM of 1 channel,ES-

F42:MRM of 1 channel,ES-

Dataset:	D:IPFAS5.PRO\RESULTSI200220P1\200220P1-CRV.qld
Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-12, Date: 20-Feb-2020, Time: 19:19:35, ID: ST200220P1-10 PFC CS7 20B1111, Description: PFC CS7 $20 B 1111$

F37:MRM of 2 channels,ES-
$497.9>169$

13C8-PFOSA-EIS

13C8-PFOS-EIS

F42:MRM of 1 channel,ES

F51:MRM of 2 channels,ES-

13C8-PFOS-EIS
F42:MRM of 1 channel,ES-

13C2-PFDA-EIS
F45:MRM of 1 channel,ES-

Dataset: D:IPFAS5.PRO\RESULTS\200220P1\200220P1-CRV.qld

Last Altered: Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed
Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-12, Date: 20-Feb-2020, Time: 19:19:35, ID: ST200220P1-10 PFC CS7 20B1111, Description: PFC CS7 $20 B 1111$

13C8-PFOS-EIS
F42:MRM of 1 channel,ES-
$507.0>79.7$

F56:MRM of 2 channels,ESF56:MRM of 2 channels,ES-
$570 .>512$

d3-N-MeFOSAA-EIS
F58:MRM of 1 channel,ES $573.3>419$.019e+004

F59:MRM of 2 channels,ES $584.1>526$
$3.519 \mathrm{e}+006$

F54:MRM of 2 channels,ES-

13C2-PFUdA-EIS
F55:MRM of 1 channel,ES-
$565>519.8$
$5.246 \mathrm{e}+005$

F61:MRM of 2 channels,ES-
F61:MRM of 2 channels, 2 S-
PFDS
$1.392 \mathrm{e}+006$

F42:MRM of 1 channel,ES $507.0>79.7$

11Cl-PF30UdS

F68:MRM of 2 channels, ES

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES $614.7>569.7$
$4.192 \mathrm{e}+005$

Dataset:	D:IPFAS5.PRO\RESULTS 1200220 P1 1200220 P1-CRV.qld
Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-12, Date: 20-Feb-2020, Time: 19:19:35, ID: ST200220P1-10 PFC CS7 20B1111, Description: PFC CS7 $20 B 1111$

13C2-PFDoA-EIS

13C2-PFDoA-EIS

$\begin{array}{rr}\text { d3-N-MeFOSA-EIS } & \text { 13C2-PFDoA-EIS } \\ \text { F46:MRM of } 1 \text { channel,ES- } & \text { F63:MRM of } 1 \text { channel,ES- }\end{array}$
F46:MRM of 1 channel,ES-
$515.2>168.9$
$4.291 \mathrm{e}+005$

13C2-PFTeDA-EIS
F74:MRM of 2 channels,ES-

F73:MRM of 2 channels,ES-
713. > 369.0 $1.020 \ominus+006$

13C2-PFTeDA-EIS

F74:MRM of 2 channels,ES-

Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time Printed:

Name: 200220P1-12, Date: 20-Feb-2020, Time: 19:19:35, ID: ST200220P1-10 PFC CS7 20B1111, Description: PFC CS7 $20 B 1111$

F75:MRM of 2 channels,ES-

13C2-PFHxDA-EIS
F76:MRM of 1 channel,ES-

d9-N-EtFOSE-EIS
F70:MRM of 1 channel,ES-
$639.2>58.8$

Dataset:	D:IPFAS5.PRO\RESULTSI200220P1\200220P1-CRV.qld
Last Altered:	Friday, February 21, 2020 08:56:58 Pacific Standard Time
Printed:	Friday, February 21, 2020 09:00:36 Pacific Standard Time

Name: 200220P1-12, Date: 20-Feb-2020, Time: 19:19:35, ID: ST200220P1-10 PFC CS7 20B1111, Description: PFC CS7 $20 B 1111$

Name: 200220P1-12, Date: 20-Feb-2020, Time: 19:19:35, ID: ST200220P1-10 PFC CS7 20B1111, Description: PFC CS7 $20 B 1111$

Dataset:

Last Altered: Friday, February 21, 2020 10:14:20 Pacific Standard Time
Printed: Friday, February 21, 2020 10:14:25 Pacific Standard Time

Name: 200220P1-12, Date: 20-Feb-2020, Time: 19:19:35, ID: ST200220P1-10 PFC CS7 20B1111, Description: PFC CS7 $20 B 1111$

13C7-PFUdA

F57:MRM of 1 channel, ES $570.1>524.8$ $4.927 \mathrm{e}+005$

Dataset: D:IPFAS5.PRO\RESULTSI200220P1\200220P1-ICV.qld
Last Altered: Friday, February 21, 2020 16:14:51 Pacific Standard Time
(A) not in ICV

Printed:
Friday, February 21, 2020 16:14:57 Pacific Standard Time

Name: 200220P1-14, Date: 20-Feb-2020, Time: 19:40:36, ID: ICV200220P1-1 PFC ICV 20B1112, Description: PFC ICV $20 B 1112$

Friday, February 21, 2020 16:49:46 Pacific Standard Time
Printed: Friday, February 21, 2020 16:49:58 Pacific Standard Time

Name: 200220P1-14, Date: 20-Feb-2020, Time: 19:40:36, ID: ICV200220P1-1 PFC ICV 20B1112, Description: PFC ICV $20 B 1112$

	\# Name	Trace	Area	IS Area	witivoi	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
37	71 13C8-PFOS-EIS	$507.0>79.7$	3330.650		1.00	4.80	3330.650	12.500	11.3	90.1	NO		
38	65 13C5-PFNA-EIS	$468.2>422.9$	16657.646		1.00	4.72	16657.646	12.500	12.1	97.0	NO		
39	-1												
40	21 PFNA	$463.0>418.8$	17610.291	16657.646	1.00	4.72	13.215	10.000	10.7	106.8	No	7.996	NO
41	22 PFOSA	$497.9>77.9$	2504.439	3737.408	1.00	4.79	8.376	10.000	9.37	93.7	NO	25.396	NO
42	23 L-PFOS	$498.9>79.7$	2385.938	3330.650	1.00	4.80	8.954	9.280	9.68	104.3	NO	2.486	NO
43	25 9CI-PF30NS	$530.7>350.8$	3269.076	3330.650	1.00	5.01	12.269	9.280	10.6	114.0	No	19.127	NO
44	26 PFDA	$513>468.8$	19067.611	18155.527	1.00	5.08	13.128	10.000	10.7	106.6	NO	10.239	NO
45	27 8:2 FTS	$526.9>507$	1270.531	1119.594	1.00	5.06	14.185	9.600	9.76	101.7	No	2.346	YES
46	65 13C5-PFNA-EIS	$468.2>422.9$	16657.646		1.00	4.72	16657.646	12.500	12.1	97.0	NO		
47	67 13C8-PFOSA-EIS	$506>78$	3737.408		1.00	4.78	3737.408	12.500	11.6	92.5	NO		
48	71 13C8-PFOS-EIS	$507.0>79.7$	3330.650		1.00	4.80	3330.650	12.500	11.3	90.1	NO		
49	71 13C8-PFOS-EIS	$507.0>79.7$	3330.650		1.00	4.80	3330.650	12.500	11.3	90.1	NO		
50	73 13C2-PFDA-EIS	$515.1>469.9$	18155.527		1.00	5.08	18155.527	12.500	13.4	107.1	NO		
51	75 13C2-8:2 FTS-EIS	$529>79.7$	1119.594		1.00	5.06	1119.594	12.500	13.0	104.2	NO		
52	-1												
53	28 PFNS	$549.1>79.7$	2506.160	3330.650	1.00	5.14	9.406	9.600	10.3	106.8	NO	2.298	NO
54	29 L-MeFOSAA	$570>419$	5587.347	3699.965	1.00	5.23	18.876	10.000	9.93	99.3	NO	1.865	NO
55	31 L-EtFOSAA	$584.1>419$	5048.889	5009.155	1.00	5.38	12.599	10.000	10.0	100.0	NO	1.255	NO
56	33 PFUdA	$563.0>518.9$	16074.241	20769.344	1.00	5.39	9.674	10.000	9.22	92.2	NO	21.634	NO
57	34 PFDS	$598.8>79.7$	2221.750	3330.650	1.00	5.44	8.338	9.600	10.3	107.5	NO	1.707	NO
58	3511 Cl -PF30UdS	$630.9>450.9$	6922.639	18142.209	1.00	5.60	4.770	9.440	10.5	$111 . \mathrm{C}$	NO	20.731	NO
59	71 13C8-PFOS-EIS	$507.0>79.7$	3330.650		1.00	4.80	3330.650	12.500	11.3	90.1	NO		
60	77 d3-N-MeFOSAA-EIS	$573.3>419$	3699.965		1.00	5.23	3699.965	12.500	14.1	112.6	NO		
61	$81 \mathrm{d5}$-N-EtFOSAA-EIS	$589.3>419$	5009.155		1.00	5.38	5009.155	12.500	13.9	$111 . \mathrm{C}$	NO		
62	79 13C2-PFUdA-EIS	$565>519.8$	20769.344		1.00	5.39	20769.344	12.500	14.7	117.3	NO		
63	71 13C8-PFOS-EIS	$507.0>79.7$	3330.650		1.00	4.80	3330.650	12.500	11.3	90.1	NO		
64	83 13C2-PFDoA-EIS	$614.7>569.7$	18142.209		1.00	5.67	18142.209	12.500	11.5	92.3	NO		
65	-1												
66	$3610: 2 \mathrm{FTS}$	$626.9>607$			1.00			10.000			NO		YES
67	37 PFDoA	$612.9>569.0$	14821.646	18142.209	1.00	5.67	10.212	10.000	10.6	106.0	No	9.105	NO
68	38 N -MeFOSA	$512.1>168.9$		17786.949	1.00			9.600			NO		YES
69	39 PFTrDA	$662.9>618.9$	17359.354	18142.209	1.00	5.91	11.961	10.000	12.1	120.9	NO	46.228	NO
70	40 PFDoS	$698.8>79.7$		18539.273	1.00			10.000			NO		YES
71	41 PFTeDA	$713.0>669.0$	17298.035	18539.273	1.00	6.12	11.663	10.000	11.1	111.3	NO	17.914	NO
72	85 13C2-10:2 FTS-EIS	-632.9>80.0			1.00			10.000			NO		

Last Altered: Friday, February 21, 2020 16:14:51 Pacific Standard Time
Printed: Friday, February 21, 2020 16:14:57 Pacific Standard Time

Name: 200220P1-14, Date: 20-Feb-2020, Time: 19:40:36, ID: ICV200220P1-1 PFC ICV 20B1112, Description: PFC ICV $20 B 1112$

	\# Name	Trace	Area	IS Area	wtivol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
73	83 13C2-PFDoA-EIS	$614.7>569.7$	18142.209		1.00	5.67	18142.209	12.500	11.5	92.3	NO		
74	87 d3-N-MeFOSA-EIS	$515.2>168.9$	17786.949		1.00	5.84	17786.949	149.200	147	98.5	NO		
75	83 13C2-PFDoA-EIS	$614.7>569.7$	18142.209		1.00	5.67	18142.209	12.500	11.5	92.3	NO		
76	89 13C2-PFTeDA-EIS	$715.1>669.7$	18539.273		1.00	6.12	18539.273	12.500	12.9	103.0	NO		
77	89 13C2-PFTeDA-EIS	$715.1>669.7$	18539.273		1.00	6.12	18539.273	12.500	12.9	103.0	NO		
78	-1												
79	$42 \mathrm{~N}-\mathrm{EtFOSA}$	$526.1>168.9$		23731.000	1.00			9.600		(NO		YES
80	43 PFHxDA	$813.1>768.6$		28203.727	1.00			10.000		4	NO		YES
81	44 PFODA	$913.1>868.8$		28203.727	1.00			10.000			NO		
82	$45 \mathrm{~N}-\mathrm{MeFOSE}$	$616.1>58.9$	6.535	17229.533	1.00	6.08	0.057	9.600			NO		
83	46 N -EtFOSE	$630.1>58.9$		19867.580	1.00			9.600		\downarrow	NO		
84.	91 d5-N-ETFOSA-EIS	$531.1>168.9$	23731.000		1.00	6.20	23731.000	149.200	151	101.4	NO		
85	93 13C2-PFHxDA-EIS	$815>769.7$	28203.727		1.00	6.44	28203.727	12.500	12.0	96.0	NO		
86	93 13C2-PFHxDA-EIS	$815>769.7$	28203.727		1.00	6.44	28203.727	12.500	12.0	96.0	NO		
87	95 d7-N-MeFOSE-EIS	$623.1>58.9$	17229.533		1.00	6.30	17229.533	149.200	154	103.0	NO		
88	97 d9-N-EtFOSE-EIS	$639.2>58.8$	19867.580		1.00	6.45	19867.580	149.200	142	95.0	NO		
89	71 13C8-PFOS-EIS	$507.0>79.7$	3330.650		1.00	4.80	3330.650	12.500	11.3	90.1	NO		
90	-1												
91	48 13C3-PFBA-RSD	$216.1>171.8$	10195.643	12646.554	1.00	1.49	10.077	12.500	12.8	102.1	NO		
92	50 13C3-PFPeA-RSD	$266.0>221.8$	12831.285	21325.498	1.00	2.40	7.521	12.500	13.3	106.5	NO		
93	52 13C3-PFBS-RSD	$302.0>98.8$	1429.316	1187.816	1.00	2.67	15.041	12.500	13.4	107.2	NO		
94	54 13C3-HFPO-DA-RSD	$287.0>168.9$	3713.180	21325.498	1.00	3.39	2.176	12.500	12.2	97.3	NO		
95	56 13C2-4:2 FTS-RSD	$329.0>79.7$	1608.412	1187.816	1.00	3.10	16.926	12.500	14.2	113.7	NO		
96	$5813 \mathrm{C} 2-\mathrm{PFH} \times \mathrm{A}-\mathrm{RSD}$	$315.0>270.0$	21194.129	21325.498	1.00	3.19	12.423	12.500	12.7	101.6	NO		
97	60 13C4-PFHpA-RSD	$367.2>321.8$	13209.952	21325.498	1.00	3.78	7.743	12.500	12.7	101.4	NO		
98	62 13C3-PFHxS-RSD	$401.8>79.7$	2883.571	1187.816	1.00	3.92	30.345	12.500	12.8	102.1	NO		
99	64 13C2-6:2 FTS-RSD	$429.0>79.7$	1280.849	3784.076	1.00	4.23	4.231	12.500	11.2	89.6	NO		
100	66 13C5-PFNA-RSD	$468.2>422.9$	16657.646	17634.207	1.00	4.72	11.808	12.500	12.6	100.9	NO		
101	68 13C8-PFOSA-RSD	$506>78$	3737.408	20904.109	1.00	4.78	2.235	12.500	11.7	93.6	NO		
102	70 13C2-PFOA-RSD	$414.9>369.7$	18813.371	21758.156	1.00	4.29	10.808	12.500	11.8	94.3	NO		
103	-1												
104	72 13C8-PFOS-RSD	$507.0>79.7$	3330.650	3784.076	1.00	4.80	11.002	12.500	11.8	94.1	NO		
105	74 13C2-PFDA-RSD	$515.1>469.9$	18155.527	19955.916	1.00	5.08	11.372	12.500	12.0	96.1	NO		
106	76 13C2-8:2 FTS-RSD	$529>79.7$	1119.594	3784.076	1.00	5.06	3.698	12.500	12.7	101.6	NO		
107	$78 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}-\mathrm{RSD}$	$573.3>419$	3699.965	20904.109	1.00	5.23	2.212	12.500	12.9	102.8	NO		
108	80 13C2-PFUdA-RSD	565>519.8	20769.344	20904.109	1.00	5.39	12.419	12.500	12.3	98.6	NO		

Dataset:

D:IPFAS5.PROTRESULTSI200220P1\200220P1-ICV.qld
Last Altered: Friday, February 21, 2020 16:14:51 Pacific Standard Time
Printed:
Friday, February 21, 2020 16:14:57 Pacific Standard Time

Name: 200220P1-14, Date: 20-Feb-2020, Time: 19:40:36, ID: ICV200220P1-1 PFC ICV 20B1112, Description: PFC ICV $20 B 1112$

	\# Name	Trace	Area	IS Area	witvol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratic Out?
109	82 d5-N-EtFOSAA-RSD	$589.3>419$	5009.155	20904.109	1.00	5.38	2.995	12.500	13.3	106.2	NO		
110	84 13C2-PFDoA-RSD	$614.7>569.7$	18142.209	19955.916	1.00	5.67	11.364	12.500	11.4	91.0	NO		
111	86 13C2-10:2 FTS-RSD	$632.9>80.0$		3784.076	1.00			10.000			NO		
112	88 d 3 -N-MeFOSA-RSD	$515.2>168.9$	18032.967	20904.109	1.00	5.84	10.783	149.200	142	95.1	NO		
113	90 13C2-PFTeDA-RSD	$715.1>669.7$	18539.273	20904.109	1.00	6.12	11.086	12.500	11.5	91.6	NO		
114	92 d5-N-ETFOSA-RSD	$531.1>168.9$	23731.000	20904.109	1.00	6.20	14.190	149.200	140	94.0	NO		
115	94 13C2-PFHxDA-RSD	$815>769.7$	28203.727	20904.109	1.00	6.44	16.865	12.500	11.2	89.7	NO		
116	-1												
117	96 d7-N-MeFOSE-RSD	$623.1>58.9$	17229.533	20904.109	1.00	6.30	10.303	149.200	139	93.0	NO		
118	98 d9-N-EtFOSE-RSD	$639.2>58.8$	19867.580	20904.109	1.00	6.45	11.880	149.200	137	91.9	NO		
119	99 13C4-PFBA	$217.0>172.0$	12646.554	12646.554	1.00	1.49	12.500	12.500	12.5	100.0	NO		
120	1... 13C5-PFHXA	$318.0>272.9$	21325.498	21325.498	1.00	3.18	12.500	12.500	12.5	100.0	NO		
121	1... 13C8-PFOA	$420.9>376.0$	21758.156	21758.156	1.00	4.29	12.500	12.500	12.5	100.0	NO		
122	1... 18O2-PFHxS	$403.0>102.6$	1187.816	1187.816	1.00	3.92	12.500	12.500	12.5	100.0	NO		
123	1... 13C9-PFNA	$472.2>426.9$	17634.207	17634.207	1.00	4.72	12.500	12.500	12.5	100.0	NO		
124	1... 13C4-PFOS	$503>79.7$	3784.076	3784.076	1.00	4.80	12.500	12.500	12.5	100.0	NO		
125	1... 13C6-PFDA	$519.1>473.7$	19955.916	19955.916	1.00	5.08	12.500	12.500	12.5	100.0	NO		
126	1... 13C7-PFUdA	$570.1>524.8$	20904.109	20904.109	1.00	5.40	12.500	12.500	12.5	100.0	NO		

Last Altered:	Friday, February 21, 2020 16:14:51 Pacific Standard Time
Printed:	Friday, February 21, 2020 16:14:57 Pacific Standard Time

Method: D:IPFAS5.PRO\MethDB\PFAS FULL 80C 012320 NEW ICV.mdb 30 Jan 2020 15:52:33 Calibration: D:IPFAS5.PRO\CurveDB\C18_VAL-PFAS_Q5_02-20-20.cdb 21 Feb 2020 15:57:11

Name: 200220P1-14, Date: 20-Feb-2020, Time: 19:40:36, ID: ICV200220P1-1 PFC ICV 20B1112, Description: PFC ICV $20 B 1112$

13C3-PFBA-EIS

F3:MRM of 1 channel,ES$216.1>171.8$

F6:MRM of 2 channels,ES-

13C3-PFBS-EIS

F12:MRM of 1 channel,ES-
F12:MRM of 1 channel,ES-
$302.0>98.8$

13C3-PFPeA-EIS
F8:MRM of 1 channel,ES-
$266.0>221.8$ $266.0>221.8$

13C3-PFPeA-EIS

13C3-PFBS-EIS

$$
\text { F12:MRM of } 1 \text { channel,ES- }
$$

$$
\begin{array}{r}
302.0>98.8 \\
3.056 \mathrm{e}+004
\end{array}
$$

Name: 200220P1-14, Date: 20-Feb-2020, Time: 19:40:36, ID: ICV200220P1-1 PFC ICV 20B1112, Description: PFC ICV $20 B 1112$

F9:MRM of 3 channels,ES$285.1>184.9$ $3.343 e+004$

13C3-HFPO-DA-EIS

 F10:MRM of 2 channels, ES-

13C4-PFHpA-EIS
F21:MRM of 1 channel, ES$367.2>321.8$

Vista Analytical Laboratory

Dataset:
D:IPFAS5.PROXRESULTSI200220P1\200220P1-ICV.qld
Last Altered: Friday, February 21, 2020 16:14:51 Pacific Standard Time
Printed: \quad Friday, February 21, 2020 16:14:57 Pacific Standard Time

Name: 200220P1-14, Date: 20-Feb-2020, Time: 19:40:36, ID: ICV200220P1-1 PFC ICV 20B1112, Description: PFC ICV $20 B 1112$

L-PFHxS
 F23:MRM of 2 channels, ES

 F23:MRM of 2 channels, ES$398.9>98.7$$2.256 \mathrm{e}+004$

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES $401.8>79.7$ $7.000 \mathrm{e}+004$

F30:MRM of 1 channel,ES-
$429.0>79.7$

13C2-PFOA-EIS

F27:MRM of 1 channel,ES

13C2-PFOA-EIS

F27:MRM of 1 channel,ES-
F27.MRM of 1 channel,ES-
$414.9>369.7$

13C8-PFOS-EIS

F42:MRM of 1 channel,ES-
$507.0>79.7$ $507.0>79.7$
$8.254 e+004$

Name: 200220P1-14, Date: 20-Feb-2020, Time: 19:40:36, ID: ICV200220P1-1 PFC ICV 20B1112, Description: PFC ICV $20 B 1112$

Vista Analytical Laboratory

Dataset:	D:IPFAS5.PRO\RESULTSL200220P1\200220P1-ICV.qld
Last Altered:	Friday, February 21, 2020 16:49:46 Pacific Standard Time
Printed:	Friday, February 21, 2020 16:49:58 Pacific Standard Time

Name: 200220P1-14, Date: 20-Feb-2020, Time: 19:40:36, ID: ICV200220P1-1 PFC ICV 20B1112, Description: PFC ICV $20 B 1112$

F53:MRM of 2 channels, ES$549.1>98.7$ $2.795 \mathrm{e}+004$

13C8-PFOS-EIS

F42:MRM of 1 channel,ES

d3-N-MeFOSAA-EIS

F58:MRM of 1 channel,ES-
$573.3>419$

F60:MRM of 1 channel,ES-

PFUdA	
F54:MRM of 2 channels,ES-	
$100{ }^{\text {P }}$ PFUdA $\quad 4.284 \mathrm{e}+005$	
100- 5.39	
1.61 e 4	
\% 427228	
- bb	
-9660.95	
$\square^{10} 9$	

F59:MRM of 2 channels,ES$584.1>526$
$8.840 \mathrm{e}+004$

d5-N EtFOSAA

F54:MRM of 2 channels,ES-

$563.0>269$ $2.052 \mathrm{e}+004$

13C2-PFUdA-EIS
F55:MRM of 1 channel,ES$565>519.8$ $5.792 \mathrm{e}+005$

PFDS

F61:MRM of 2 channels, ES

F61:MRM of 2 channels,ES-

13C2-PFDoA-EIS
F63:MRM of 1 channel,ES614.7 > 569.7 $4.533 \mathrm{e}+005$

Dataset:
D:IPFAS5.PRO\RESULTS\200220P1\200220P1-ICV.qld
Last Altered: Friday, February 21, 2020 16:14:51 Pacific Standard Time
Printed: Friday, February 21, 2020 16:14:57 Pacific Standard Time

Name: 200220P1-14, Date: 20-Feb-2020, Time: 19:40:36, ID: ICV200220P1-1 PFC ICV 20B1112, Description: PFC ICV $20 B 1112$

F62:MRM of 4 channels,ES-

13C2-PFTeDA-EIS
F74:MRM of 2 channels,ES-

13C2-PFTeDA-EIS
F74:MRM of 2 channels,ES $15.1>669.7$
$4.586 \Theta+005$

Last Altered: Friday, February 21, 2020 16:14:51 Pacific Standard Time
Printed: Friday, February 21, 2020 16:14:57 Pacific Standard Time

Name: 200220P1-14, Date: 20-Feb-2020, Time: 19:40:36, ID: ICV200220P1-1 PFC ICV 20B1112, Description: PFC ICV $20 B 1112$

13C2-PFHxDA-EIS

d9-N-EtFOSE-EIS
F70:MRM of 1 channel,ES-
$639.2>58.8$
$5.858+005$
13C8-PFOS-EIS
F42:MRM of 1 channel,ES$507.0>79.7$

Name: 200220P1-14, Date: 20-Feb-2020, Time: 19:40:36, ID: ICV200220P1-1 PFC ICV 20B1112, Description: PFC ICV $20 B 1112$

13C3-PFBA-RSD
 F3:MRM of 1 channel,ES-
 $216.1>171.8$

13C4-PFHpA-RSD

13C3-PFHxS-RSD

F24:MRM of 1 channel,ES-

13C5-PFNA-RSD
F35:MRM of 1 channel,ES-
$468.2>422.9$
$100-\quad 4.355 \mathrm{e}+005$

13C2-PFOA-RSD
F27:MRM of 1 channel,ES-
$414.9>369.7$

Dataset: D:IPFAS5.PROIRESULTSI200220P1\200220P1-ICV.gld
Last Altered: Friday, February 21, 2020 16:14:51 Pacific Standard Time
Printed: Friday, February 21, 2020 16:14:57 Pacific Standard Time

Name: 200220P1-14, Date: 20-Feb-2020, Time: 19:40:36, ID: ICV200220P1-1 PFC ICV 20B1112, Description: PFC ICV $20 B 1112$

Dataset:	D:IPFAS5.PRO\RESULTSL200220P1L200220P1-ICV.qld
	Last Altered:
Friday, February 21, 2020 16:14:51 Pacific Standard Time	
Printed:	Friday, February 21, 2020 16:14:57 Pacific Standard Time

Name: 200220P1-14, Date: 20-Feb-2020, Time: 19:40:36, ID: ICV200220P1-1 PFC ICV 20B1112, Description: PFC ICV $20 B 1112$

d7-N-MeFOSE-RSD

F65:MRM of 1 channel,ES
$623.1>58.9$ $4.907 e+005$

F36:MRM of 1 channel,ES 472.2 > 426.9 $4.595 \mathrm{e}+005$

F40:MRM of 1 channel,ES-

$$
503>79.7
$$ $9.872 \mathrm{e}+004$

13C6-PFDA
F47:MRM of 1 channel,ES-

$$
519.1>473.7
$$

13C7-PFUdA
F57:MRM of 1 channel,ES$570.1>524.8$


```
13C8-PFOA
```

13C8-PFOA
F28:MRM of 1 channel,ES 420.9 > 376.0

```
\[
5.497 \mathrm{e}+005
\]



Friday, February 21, 2020 11:45:42 Pacific Standard Time Printed: Friday, February 21, 2020 11:47:45 Pacific Standard Time

\section*{Method: D:|PFAS5.PRO\MethDBINEW_PFAS_80C_022020.mdb 21 Feb 2020 08:56:55}

\section*{Calibration: D:|PFAS5.PRO\CurveDBIC18_VAL-PFAS_Q5_02-20-20.cdb 21 Feb 2020 11:03:18}

\section*{Name: 200220P1-13, Date: 20-Feb-2020, Time: 19:30:05, ID: IB, Description: IB}

\section*{PFBA}

IB IBF2:MRM of 1 channel,ES-


\section*{13C3-PFBA-EIS}

IB IBF3:MRM of 1 channel,ES-



13C3-PFBS-EIS
F12:MRM of 1 channel,ES-

\section*{3:3 FTCA}


13C3-PFPeA-EIS
IB IBF8:MRM of 1 channel,ES-
266.0 > 221.8 \(1.214 \mathrm{e}+005\)

\section*{PFPeA}

IB IBF7:MRM of 1 channel,ES-


\section*{13C3-PFPeA-EIS}

IB IBF8:MRM of 1 channel,ES-


\section*{PFBS}


13C3-PFBS-EIS
F12:MRM of 1 channel,ES302.0 > 98.8



13C2-4:2 FTS-EIS
F17:MRM of 2 channels,ES-
329.0 > 79.7
\(2.305 \mathrm{e}+004\)

Friday, February 21, 2020 11:45:42 Pacific Standard Time Printed: Friday, February 21, 2020 11:47:45 Pacific Standard Time

Name: 200220P1-13, Date: 20-Feb-2020, Time: 19:30:05, ID: IB, Description: IB


\section*{13C2-PFHxA-EIS}


\section*{PFPeS}

F19:MRM of 2 channels,ES-


F19:MRM of 2 channels,ES-


13C3-PFBS-EIS



F18:MRM of 2 channels,ES-


13C4-PFHpA-EIS



F20:MRM of 2 channels,ES-


\section*{13C4-PFHpA-EIS}


Last Altered: Friday, February 21, 2020 11:45:42 Pacific Standard Time Printed: Friday, February 21, 2020 11:47:45 Pacific Standard Time

Name: 200220P1-13, Date: 20-Feb-2020, Time: 19:30:05, ID: IB, Description: IB

\section*{L-PFHxS}

F23:MRM of 2 channels,ES- \(\begin{array}{r}398.9>79.7 \\ 2.053 \mathrm{e}+002 \\ \hline\end{array}\)
F23:MRM of 2 channels,ES-

\section*{6:2 FTS}

F29:MRM of 3 channels,ES-
\(427.0>407\)

F29:MRM of 3 channels,ES-


13C2-6:2 FTS-EIS
F30:MRM of 1 channel,ES-
\(429.0>79.7\)



13C2-PFOA-EIS



F33:MRM of 2 channels,ES


F32:MRM of 2 channels,ES-




\section*{13C8-PFOS-EIS}



F31:MRM of 2 channels,ES-


\section*{13C5-PFNA-EIS}

Last Altered: Friday, February 21, 2020 11:45:42 Pacific Standard Time Printed: Friday, February 21, 2020 11:47:45 Pacific Standard Time

Name: 200220P1-13, Date: 20-Feb-2020, Time: 19:30:05, ID: IB, Description: IB

\section*{PFNA}


F34:MRM of 2 channels,ESF34:MRM of 2 channels,ES-


\section*{13C5-PFNA-EIS}


\section*{PFOSA}
\(\begin{array}{rrrr} & \text { F39:MRM of } 2 \text { channels,ES- } \\ 498.9>79.7 \\ 6.449 \mathrm{e}+002\end{array}\)


13C8-PFOSA-EIS



F39:MRM of 2 channels,ES- F51:MRM of 2 channels,ES-


\section*{13C8-PFOS-EIS}

F42:MRM of 1 channel,ES-



F44:MRM of 2 channels,ES-


\section*{13C2-8:2 FTS-EIS}

\section*{13C2-PFDA-EIS}


Last Altered: Friday, February 21, 2020 11:45:42 Pacific Standard Time Printed: Friday, February 21, 2020 11:47:45 Pacific Standard Time

Name: 200220P1-13, Date: 20-Feb-2020, Time: 19:30:05, ID: IB, Description: IB

\section*{PFNS}


13C8-PFOS-EIS
13C8-PFOS-EIS
F42:MRM of 1 \begin{tabular}{c} 
channel,ES- \\
\(507.0>79.7\)
\end{tabular}
8

d3-N-MeFOSAA-EIS



\section*{d5-N-EtFOSAA-EIS}




\section*{11CI-PF30UdS}

F68:MRM of 2 channels,ES-
630.9 > 450.9


F68:MRM of 2 channels,ES-


\section*{13C2-PFDoA-EIS}

\section*{13C8-PFOS-EIS}


Last Altered: Friday, February 21, 2020 11:45:42 Pacific Standard Time Printed: \(\quad\) Friday, February 21, 2020 11:47:45 Pacific Standard Time

Name: 200220P1-13, Date: 20-Feb-2020, Time: 19:30:05, ID: IB, Description: IB

\section*{10:2 FTS}


F66:MRM of 2 channels,ES-



F62:MRM of 4 channels,ES-


d3-N-MeFOSA-EIS
F46:MRM of 1 channel,ES-
F46:MRM of 1 channel,ES-
\(515.2>168.9\)
\(4.348 \mathrm{e}+005\)

F71:MRM of 2 channels,ES
\[
\begin{array}{r}
\text { F71:MRM of } 2 \text { channels,ES- } \\
662.9>319
\end{array}
\]



PFTrDA
F71:MRM of 2 channels,ES-
\begin{tabular}{r} 
F71:MRM of 2 channels,ES- \\
\(662.9>618.9\) \\
\(5.687 \mathrm{e}+003\) \\
\hline 100
\end{tabular}



Last Altered: Friday, February 21, 2020 11:45:42 Pacific Standard Time Printed: Friday, February 21, 2020 11:47:45 Pacific Standard Time

Name: 200220P1-13, Date: 20-Feb-2020, Time: 19:30:05, ID: IB, Description: IB
\begin{tabular}{c} 
N-EtFOSA \\
F48:MRM of 2 channels,ES- \\
\(526.1>168.9\) \\
\(1.294 \mathrm{e}+003\) \\
\hline
\end{tabular}

\section*{13C2-PFHxDA-EIS}



13C2-PFHxDA-EIS
F76:MRM of 1 channel,ES-
\(815>769.7\)


d7-N-MeFOSE-EIS
F65:MRM of 1 channel,ES-

d9-N-EtFOSE-EIS


\section*{N-EtFOSE}


\section*{d5-N-ETFOSA-EIS}

F52:MRM of 1 channel,ES-
\(531.1>168.9\) \(5.640 \mathrm{e}+005\)

\section*{13C8-PFOS-EIS}


Last Altered: Friday, February 21, 2020 11:45:42 Pacific Standard Time Printed: Friday, February 21, 2020 11:47:45 Pacific Standard Time

Name: 200220P1-13, Date: 20-Feb-2020, Time: 19:30:05, ID: IB, Description: IB


13C4-PFHpA-RSD
F21:MRM of 1 channel ES
F21:MRM of 1 channel,ES-
\(367.2>321.8\)
\(2.586 \mathrm{e}+005\)




13C2-6:2 FTS-RSD
F30:MRM of 1 channel,ES-

13C3-HFPO-DA-RSD
F10:MRM of 2 channels,ES-


\section*{13C5-PFNA-RSD}

F35:MRM of 1 channel,ES-

\section*{3C2-4:2 FTS-RSD}

F17:MRM of 2 channels,ES-


13C8-PFOSA-RSD



\section*{13C2-PFOA-RSD}


Last Altered: Friday, February 21, 2020 11:45:42 Pacific Standard Time Printed: Friday, February 21, 2020 11:47:45 Pacific Standard Time

Name: 200220P1-13, Date: 20-Feb-2020, Time: 19:30:05, ID: IB, Description: IB


\section*{13C2-PFDoA-RSD}

F63:MRM of 1 channel,ES-



13C2-10:2 FTS-RSD




13C2-PFUdA-RSD
F55:MRM of 1 channel,ES-
channel,ES-
\(565>519.8\) \(4.932 \mathrm{e}+005\)

d5-N-ETFOSA-RSD
F52:MRM of 1 channel ES

d5-N-EtFOSAA-RSD
F60:MRM of 1 channel,ES-
589.3 > 419
\(1.111 e+005\)



Last Altered: Friday, February 21, 2020 11:45:42 Pacific Standard Time Printed: Friday, February 21, 2020 11:47:45 Pacific Standard Time

Name: 200220P1-13, Date: 20-Feb-2020, Time: 19:30:05, ID: IB, Description: IB

\section*{d7-N-MeFOSE-RSD \\ }

\section*{13C9-PFNA}

F36:MRM of 1 channel,ES-



13C4-PFOS
F40:MRM of 1 channel,ES-
\(503>79.7\)



13C6-PFDA


13C5-PFHxA
F15:MRM of 1 channel,ES-
\(318.0>272.9\) \(3.347 e+005\)


13C7-PFUdA


\section*{Last Altered:} Printed:

Friday, February 21, 2020 11:45:42 Pacific Standard Time

Name: 200220P1-13, Date: 20-Feb-2020, Time: 19:30:05, ID: IB, Description: IB
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Trace & Area & IS Area & wt/vol & RT & Response & Std. Conc & Conc. & \%Rec & Recovery ... & Ion Ratio & Ratio Out? \\
\hline 1 & 1 PFBA & \(213.0>168.8\) & 31.824 & 2834.986 & 1.00 & 1.51 & 0.140 & & 0.248 & & NO & & \\
\hline 2 & 2 PFPrS & \(248.9>79.7\) & & 864.655 & 1.00 & & & & & & NO & & YES \\
\hline 3 & 3 3:3 FTCA & \(240.9>176.9\) & & 7024.297 & 1.00 & & & & & & NO & & YES \\
\hline 4 & 4 PFPeA & \(263.1>218.9\) & 5.847 & 7024.297 & 1.00 & 2.43 & 0.010 & & & & NO & & \\
\hline 5 & 5 PFBS & \(299.0>79.7\) & & 864.655 & 1.00 & & & & & & NO & & YES \\
\hline 6 & 6 4:2 FTS & \(327.0>307\) & & 1025.108 & 1.00 & & & & & & NO & & YES \\
\hline 7 & 47 13C3-PFBA-EIS & \(216.1>171.8\) & 2834.986 & & 1.00 & 1.49 & 2834.986 & 12.500 & 3.44 & 27.5 & YES & & \\
\hline 8 & 51 13C3-PFBS-EIS & \(302.0>98.8\) & 864.655 & & 1.00 & 2.68 & 864.655 & 12.500 & 7.55 & 60.4 & NO & & \\
\hline 9 & 49 13C3-PFPeA-EIS & \(266.0>221.8\) & 7024.297 & & 1.00 & 2.41 & 7024.297 & 12.500 & 7.45 & 59.6 & NO & & \\
\hline 10 & 49 13C3-PFPeA-EIS & \(266.0>221.8\) & 7024.297 & & 1.00 & 2.41 & 7024.297 & 12.500 & 7.45 & 59.6 & NO & & \\
\hline 11 & 51 13C3-PFBS-EIS & \(302.0>98.8\) & 864.655 & & 1.00 & 2.68 & 864.655 & 12.500 & 7.55 & 60.4 & NO & & \\
\hline 12 & 55 13C2-4:2 FTS-EIS & \(329.0>79.7\) & 1025.108 & & 1.00 & 3.10 & 1025.108 & 12.500 & 9.43 & 75.4 & NO & & \\
\hline 13 & -1 & & & & & & & & & & & & \\
\hline 14 & 7 PFHxA & \(313.0>269.0\) & 77.982 & 14203.249 & 1.00 & 3.10 & 0.069 & & 0.00188 & & NO & & YES \\
\hline 15 & 8 PFPeS & \(349 .>79.7\) & & 864.655 & 1.00 & & & & & & NO & & YES \\
\hline 16 & 9 HFPO-DA & \(285.1>168.9\) & 7.289 & 2636.307 & 1.00 & 3.30 & 0.035 & & & & NO & & YES \\
\hline 17 & 10 5:3 FTCA & \(340.9>236.9\) & 8.709 & 13500.765 & 1.00 & 3.68 & 0.008 & & 0.0752 & & NO & & YES \\
\hline 18 & 11 PFHpA & \(363.0>318.9\) & 112.199 & 13500.765 & 1.00 & 3.75 & 0.104 & & 0.0217 & & NO & & YES \\
\hline 19 & 12 ADONA & \(376.8>250.9\) & 135.600 & 13500.765 & 1.00 & 3.85 & 0.126 & & & & NO & 4.593 & NO \\
\hline 20 & 57 13C2-PFHxA-EIS & \(315.0>270.0\) & 14203.249 & & 1.00 & 3.18 & 14203.249 & 12.500 & 8.68 & 69.4 & NO & & \\
\hline 21 & 51 13C3-PFBS-EIS & \(302.0>98.8\) & 864.655 & & 1.00 & 2.68 & 864.655 & 12.500 & 7.55 & 60.4 & NO & & \\
\hline 22 & 53 13C3-HFPO-DA-EIS & \(287.0>168.9\) & 2636.307 & & 1.00 & 3.39 & 2636.307 & 12.500 & 8.99 & 72.0 & NO & & \\
\hline 23 & 59 13C4-PFHpA-EIS & \(367.2>321.8\) & 13500.765 & & 1.00 & 3.78 & 13500.765 & 12.500 & 12.2 & 97.6 & NO & & \\
\hline 24 & 59 13C4-PFHpA-EIS & \(367.2>321.8\) & 13500.765 & & 1.00 & 3.78 & 13500.765 & 12.500 & 12.2 & 97.6 & NO & & \\
\hline 25 & 59 13C4-PFHpA-EIS & \(367.2>321.8\) & 13500.765 & & 1.00 & 3.78 & 13500.765 & 12.500 & 12.2 & 97.6 & NO & & \\
\hline 26 & -1 & & & & & & & & & & & & \\
\hline 27 & 13 L-PFHxS & \(398.9>79.7\) & 6.979 & 2838.588 & 1.00 & 3.91 & 0.031 & & & & NO & & YES \\
\hline 28 & 15 6:2 FTS & \(427.0>407\) & & 1102.104 & 1.00 & & & & & & NO & & YES \\
\hline 29 & 16 L-PFOA & \(412.8>368.9\) & 138.428 & 18027.979 & 1.00 & 4.30 & 0.096 & & 0.00266 & & NO & 4.310 & NO \\
\hline 30 & 18 PFecHS & \(460.8>381.0\) & & 18027.979 & 1.00 & & & & & & NO & & YES \\
\hline 31 & 19 PFHpS & \(449.0>79.7\) & 9.055 & 3475.157 & 1.00 & 4.36 & 0.033 & & 0.0837 & & NO & & YES \\
\hline 32 & 20 7:3 FTCA & \(440.9>336.9\) & & 15570.243 & 1.00 & & & & & & NO & & YES \\
\hline 33 & 61 13C3-PFHxS-EIS & \(401.8>79.7\) & 2838.588 & & 1.00 & 3.92 & 2838.588 & 12.500 & 11.2 & 89.9 & NO & & \\
\hline 34 & 63 13C2-6:2 FTS-EIS & \(429.0>79.7\) & 1102.104 & & 1.00 & 4.23 & 1102.104 & 12.500 & 9.07 & 72.6 & NO & & \\
\hline 35 & 69 13C2-PFOA-EIS & 414.9 > 369.7 & 18027.979 & & 1.00 & 4.29 & 18027.979 & 12.500 & 11.8 & 94.4 & NO & & \\
\hline 36 & 69 13C2-PFOA-EIS & \(414.9>369.7\) & 18027.979 & & 1.00 & 4.29 & 18027.979 & 12.500 & 11.8 & 94.4 & NO & & \\
\hline & Work Order 2000314 & & & & & & & & & & & Page 5 & 2 of 1277 \\
\hline
\end{tabular}

\section*{Last Altered:} Printed:

Friday, February 21, 2020 11:45:42 Pacific Standard Time

Name: 200220P1-13, Date: 20-Feb-2020, Time: 19:30:05, ID: IB, Description: IB
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Trace & Area & IS Area & wt/vol & RT & Response & Std. Conc & Conc. & \%Rec & Recovery ... & Ion Ratio & Ratio Out? \\
\hline 37 & 71 13C8-PFOS-EIS & \(507.0>79.7\) & 3475.157 & & 1.00 & 4.79 & 3475.157 & 12.500 & 11.7 & 94.0 & NO & & \\
\hline 38 & 65 13C5-PFNA-EIS & 468.2 > 422.9 & 15570.243 & & 1.00 & 4.72 & 15570.243 & 12.500 & 11.3 & 90.7 & NO & & \\
\hline 39 & -1 & & & & & & & & & & & & \\
\hline 40 & 21 PFNA & \(463.0>418.8\) & 75.063 & 15570.243 & 1.00 & 4.72 & 0.060 & & 0.0002... & & NO & 12.521 & YES \\
\hline 41 & 22 PFOSA & \(497.9>77.9\) & 11.899 & 3678.810 & 1.00 & 4.80 & 0.040 & & 0.0637 & & NO & & YES \\
\hline 42 & 23 L -PFOS & \(498.9>79.7\) & 17.999 & 3475.157 & 1.00 & 4.79 & 0.065 & & 0.0730 & & NO & 3.563 & YES \\
\hline 43 & 259 Cl -PF30NS & \(530.7>350.8\) & 6.496 & 3475.157 & 1.00 & 5.01 & 0.023 & & 0.0254 & & NO & & YES \\
\hline 44 & 26 PFDA & \(513>468.8\) & 110.693 & 17857.156 & 1.00 & 5.08 & 0.077 & & 0.00362 & & NO & & YES \\
\hline 45 & 27 8:2 FTS & \(526.9>507\) & 26.669 & 1054.832 & 1.00 & 5.06 & 0.316 & & 0.360 & & NO & & YES \\
\hline 46 & 65 13C5-PFNA-EIS & \(468.2>422.9\) & 15570.243 & & 1.00 & 4.72 & 15570.243 & 12.500 & 11.3 & 90.7 & NO & & \\
\hline 47 & 67 13C8-PFOSA-EIS & \(506>78\) & 3678.810 & & 1.00 & 4.78 & 3678.810 & 12.500 & 11.4 & 91.1 & NO & & \\
\hline 48 & 71 13C8-PFOS-EIS & \(507.0>79.7\) & 3475.157 & & 1.00 & 4.79 & 3475.157 & 12.500 & 11.7 & 94.0 & NO & & \\
\hline 49 & 71 13C8-PFOS-EIS & \(507.0>79.7\) & 3475.157 & & 1.00 & 4.79 & 3475.157 & 12.500 & 11.7 & 94.0 & NO & & \\
\hline 50 & 73 13C2-PFDA-EIS & \(515.1>469.9\) & 17857.156 & & 1.00 & 5.08 & 17857.156 & 12.500 & 13.2 & 105.3 & NO & & \\
\hline 51 & 75 13C2-8:2 FTS-EIS & \(529>79.7\) & 1054.832 & & 1.00 & 5.05 & 1054.832 & 12.500 & 12.3 & 98.2 & NO & & \\
\hline 52 & -1 & & & & & & & & & & & & \\
\hline 53 & 28 PFNS & \(549.1>79.7\) & & 3475.157 & 1.00 & & & & & & NO & & YES \\
\hline 54 & \(29 \mathrm{~L}-\mathrm{MeFOSAA}\) & \(570>419\) & 16.108 & 3690.109 & 1.00 & 5.23 & 0.055 & & 0.0317 & & NO & 0.414 & YES \\
\hline 55 & 31 L-EtFOSAA & \(584.1>419\) & 39.562 & 4190.298 & 1.00 & 5.37 & 0.118 & & 0.0345 & & NO & 2.011 & YES \\
\hline 56 & 33 PFUdA & \(563.0>518.9\) & 103.046 & 18565.443 & 1.00 & 5.40 & 0.069 & & 0.0777 & & NO & 15.848 & NO \\
\hline 57 & 34 PFDS & \(598.8>79.7\) & 35.439 & 3475.157 & 1.00 & 5.44 & 0.127 & & 0.118 & & NO & 2.848 & NO \\
\hline 58 & 3511 Cl -PF30UdS & \(630.9>450.9\) & 61.168 & 18517.162 & 1.00 & 5.60 & 0.041 & & & & NO & & YES \\
\hline 59 & 71 13C8-PFOS-EIS & \(507.0>79.7\) & 3475.157 & & 1.00 & 4.79 & 3475.157 & 12.500 & 11.7 & 94.0 & NO & & \\
\hline 60 & 77 d3-N-MeFOSAA-EIS & \(573.3>419\) & 3690.109 & & 1.00 & 5.22 & 3690.109 & 12.500 & 14.0 & 112.3 & NO & & \\
\hline 61 & 81 d5-N-EtFOSAA-EIS & \(589.3>419\) & 4190.298 & & 1.00 & 5.38 & 4190.298 & 12.500 & 11.6 & 92.9 & NO & & \\
\hline 62 & 79 13C2-PFUdA-EIS & \(565>519.8\) & 18565.443 & & 1.00 & 5.39 & 18565.443 & 12.500 & 13.1 & 104.9 & NO & & \\
\hline 63 & 71 13C8-PFOS-EIS & \(507.0>79.7\) & 3475.157 & & 1.00 & 4.79 & 3475.157 & 12.500 & 11.7 & 94.0 & NO & & \\
\hline 64 & 83 13C2-PFDoA-EIS & \(614.7>569.7\) & 18517.162 & & 1.00 & 5.67 & 18517.162 & 12.500 & 11.8 & 94.2 & NO & & \\
\hline 65 & -1 & & & & & & & & & & & & \\
\hline 66 & 36 10:2 FTS & \(626.9>607\) & & 688.921 & 1.00 & & & & & & NO & & YES \\
\hline 67 & 37 PFDoA & \(612.9>569.0\) & 182.969 & 18517.162 & 1.00 & 5.68 & 0.124 & & & & NO & 6.911 & NO \\
\hline 68 & 38 N-MeFOSA & \(512.1>168.9\) & 28.521 & 16860.805 & 1.00 & 5.83 & 0.252 & & 0.0998 & & NO & 0.842 & NO \\
\hline 69 & 39 PFTrDA & \(662.9>618.9\) & 210.955 & 18517.162 & 1.00 & 5.91 & 0.142 & & 0.0333 & & NO & & YES \\
\hline 70 & 40 PFDoS & \(698.8>79.7\) & 25.677 & 18754.758 & 1.00 & 5.92 & 0.017 & & 0.0889 & & NO & 3.039 & NO \\
\hline 71 & 41 PFTeDA & \(713.0>669.0\) & 287.497 & 18754.758 & 1.00 & 6.11 & 0.192 & & 0.127 & & NO & & YES \\
\hline 72 & 85 13C2-10:2 FTS-EIS & \(632.9>80.0\) & 688.921 & & 1.00 & 5.66 & 688.921 & 12.500 & 10.3 & 82.6 & NO & & \\
\hline
\end{tabular}

Last Altered: Friday, February 21, 2020 11:45:42 Pacific Standard Time
Printed:
Friday, February 21, 2020 11:47:45 Pacific Standard Time

Name: 200220P1-13, Date: 20-Feb-2020, Time: 19:30:05, ID: IB, Description: IB
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Trace & Area & IS Area & wt/vol & RT & Response & Std. Conc & Conc. & \%Rec & Recovery ... & Ion Ratio & Ratio Out? \\
\hline 73 & 83 13C2-PFDoA-EIS & \(614.7>569.7\) & 18517.162 & & 1.00 & 5.67 & 18517.162 & 12.500 & 11.8 & 94.2 & NO & & \\
\hline 74 & 87 d3-N-MeFOSA-EIS & \(515.2>168.9\) & 16860.805 & & 1.00 & 5.83 & 16860.805 & 149.200 & 139 & 93.3 & NO & & \\
\hline 75 & 83 13C2-PFDoA-EIS & \(614.7>569.7\) & 18517.162 & & 1.00 & 5.67 & 18517.162 & 12.500 & 11.8 & 94.2 & NO & & \\
\hline 76 & 89 13C2-PFTeDA-EIS & \(715.1>669.7\) & 18754.758 & & 1.00 & 6.12 & 18754.758 & 12.500 & 13.0 & 104.2 & NO & & \\
\hline 77 & 89 13C2-PFTeDA-EIS & \(715.1>669.7\) & 18754.758 & & 1.00 & 6.12 & 18754.758 & 12.500 & 13.0 & 104.2 & NO & & \\
\hline 78 & -1 & & & & & & & & & & & & \\
\hline 79 & \(42 \mathrm{~N}-\mathrm{EtFOSA}\) & \(526.1>168.9\) & 58.120 & 22512.211 & 1.00 & 6.19 & 0.385 & & 0.350 & & NO & 1.427 & NO \\
\hline 80 & 43 PFHxDA & \(813.1>768.6\) & 417.085 & 25505.473 & 1.00 & 6.44 & 0.204 & & 0.125 & & NO & & YES \\
\hline 81 & 44 PFODA & \(913.1>868.8\) & 366.883 & 25505.473 & 1.00 & 6.66 & 0.180 & & 0.200 & & NO & & \\
\hline 82 & 45 N -MeFOSE & \(616.1>58.9\) & 83.540 & 15521.402 & 1.00 & 6.31 & 0.803 & & 0.329 & & NO & & \\
\hline 83 & 46 N -EtFOSE & \(630.1>58.9\) & 119.845 & 19186.887 & 1.00 & 6.46 & 0.932 & & 0.958 & & NO & & \\
\hline 84 & 91 d5-N-ETFOSA-EIS & \(531.1>168.9\) & 22512.211 & & 1.00 & 6.20 & 22512.211 & 149.200 & 143 & 96.1 & NO & & \\
\hline 85 & 93 13C2-PFHxDA-EIS & \(815>769.7\) & 25505.473 & & 1.00 & 6.43 & 25505.473 & 12.500 & 10.9 & 86.9 & NO & & \\
\hline 86 & 93 13C2-PFHxDA-EIS & \(815>769.7\) & 25505.473 & & 1.00 & 6.43 & 25505.473 & 12.500 & 10.9 & 86.9 & NO & & \\
\hline 87 & 95 d7-N-MeFOSE-EIS & \(623.1>58.9\) & 15521.402 & & 1.00 & 6.30 & 15521.402 & 149.200 & 138 & 92.8 & NO & & \\
\hline 88 & 97 d9-N-EtFOSE-EIS & \(639.2>58.8\) & 19186.887 & & 1.00 & 6.45 & 19186.887 & 149.200 & 137 & 91.8 & NO & & \\
\hline 89 & 71 13C8-PFOS-EIS & \(507.0>79.7\) & 3475.157 & & 1.00 & 4.79 & 3475.157 & 12.500 & 11.7 & 94.0 & NO & & \\
\hline 90 & -1 & & & & & & & & & & & & \\
\hline 91 & 48 13C3-PFBA-RSD & \(216.1>171.8\) & 2834.986 & 4003.940 & 1.00 & 1.49 & 8.851 & 12.500 & 11.2 & 89.6 & NO & & \\
\hline 92 & 50 13C3-PFPeA-RSD & \(266.0>221.8\) & 7024.297 & 15103.579 & 1.00 & 2.41 & 5.813 & 12.500 & 10.3 & 82.3 & NO & & \\
\hline 93 & 52 13C3-PFBS-RSD & \(302.0>98.8\) & 864.655 & 1389.390 & 1.00 & 2.68 & 7.779 & 12.500 & 6.93 & 55.4 & NO & & \\
\hline 94 & 54 13C3-HFPO-DA-RSD & \(287.0>168.9\) & 2636.307 & 15103.579 & 1.00 & 3.39 & 2.182 & 12.500 & 12.2 & 97.6 & NO & & \\
\hline 95 & 56 13C2-4:2 FTS-RSD & \(329.0>79.7\) & 1025.108 & 1389.390 & 1.00 & 3.10 & 9.223 & 12.500 & 7.75 & 62.0 & NO & & \\
\hline 96 & 58 13C2-PFHxA-RSD & \(315.0>270.0\) & 14203.249 & 15103.579 & 1.00 & 3.18 & 11.755 & 12.500 & 12.0 & 96.1 & NO & & \\
\hline 97 & 60 13C4-PFHpA-RSD & \(367.2>321.8\) & 13500.765 & 15103.579 & 1.00 & 3.78 & 11.173 & 12.500 & 18.3 & 146.3 & NO & & \\
\hline 98 & 62 13C3-PFHxS-RSD & \(401.8>79.7\) & 2838.588 & 1389.390 & 1.00 & 3.92 & 25.538 & 12.500 & 10.7 & 85.9 & NO & & \\
\hline 99 & 64 13C2-6:2 FTS-RSD & \(429.0>79.7\) & 1102.104 & 3518.320 & 1.00 & 4.23 & 3.916 & 12.500 & 10.4 & 83.0 & NO & & \\
\hline 100 & 66 13C5-PFNA-RSD & \(468.2>422.9\) & 15570.243 & 16952.029 & 1.00 & 4.72 & 11.481 & 12.500 & 12.3 & 98.1 & NO & & \\
\hline 101 & 68 13C8-PFOSA-RSD & \(506>78\) & 3678.810 & 19943.203 & 1.00 & 4.78 & 2.306 & 12.500 & 12.1 & 96.6 & NO & & \\
\hline 102 & 70 13C2-PFOA-RSD & \(414.9>369.7\) & 18027.979 & 22134.828 & 1.00 & 4.29 & 10.181 & 12.500 & 11.1 & 88.8 & NO & & \\
\hline 103 & -1 & & & & & & & & & & & & \\
\hline 104 & 72 13C8-PFOS-RSD & \(507.0>79.7\) & 3475.157 & 3518.320 & 1.00 & 4.79 & 12.347 & 12.500 & 13.2 & 105.6 & NO & & \\
\hline 105 & 74 13C2-PFDA-RSD & \(515.1>469.9\) & 17857.156 & 19077.539 & 1.00 & 5.08 & 11.700 & 12.500 & 12.4 & 98.9 & NO & & \\
\hline 106 & 76 13C2-8:2 FTS-RSD & \(529>79.7\) & 1054.832 & 3518.320 & 1.00 & 5.05 & 3.748 & 12.500 & 12.9 & 103.0 & NO & & \\
\hline 107 & 78 d3-N-MeFOSAA-RSD & \(573.3>419\) & 3690.109 & 19943.203 & 1.00 & 5.22 & 2.313 & 12.500 & 13.4 & 107.5 & NO & & \\
\hline 108 & 80 13C2-PFUdA-RSD & \(565>519.8\) & 18565.443 & 19943.203 & 1.00 & 5.39 & 11.636 & 12.500 & 11.5 & 92.4 & NO & & \\
\hline & Work Order 2000314 & & & & & & & & & & & \multicolumn{2}{|l|}{Page 554 of 1277} \\
\hline
\end{tabular}

\section*{Analytical Laboratory}

\section*{Dataset:}

Untitled

\section*{Last Altered:}

Friday, February 21, 2020 11:45:42 Pacific Standard Time Printed: Friday, February 21, 2020 11:47:45 Pacific Standard Time

Name: 200220P1-13, Date: 20-Feb-2020, Time: 19:30:05, ID: IB, Description: IB
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Trace & Area & IS Area & wt/vol & RT & Response & Std. Conc & Conc. & \%Rec & Recovery ... & Ion Ratio & Ratio Out? \\
\hline 109 & \(82 \mathrm{~d} 5-\mathrm{N}-E t F O S A A-R S D\) & \(589.3>419\) & 4190.298 & 19943.203 & 1.00 & 5.38 & 2.626 & 12.500 & 11.6 & 93.1 & NO & & \\
\hline 110 & 84 13C2-PFDoA-RSD & \(614.7>569.7\) & 18517.162 & 19077.539 & 1.00 & 5.67 & 12.133 & 12.500 & 12.1 & 97.1 & NO & & \\
\hline 111 & 86 13C2-10:2 FTS-RSD & \(632.9>80.0\) & 688.921 & 3518.320 & 1.00 & 5.66 & 2.448 & 12.500 & 10.4 & 83.2 & NO & & \\
\hline 112 & \(88 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSA}\)-RSD & \(515.2>168.9\) & 16860.805 & 19943.203 & 1.00 & 5.83 & 10.568 & 149.200 & 139 & 93.2 & NO & & \\
\hline 113 & 90 13C2-PFTeDA-RSD & \(715.1>669.7\) & 18754.758 & 19943.203 & 1.00 & 6.12 & 11.755 & 12.500 & 12.1 & 97.1 & NO & & \\
\hline 114 & 92 d5-N-ETFOSA-RSD & \(531.1>168.9\) & 22512.211 & 19943.203 & 1.00 & 6.20 & 14.110 & 149.200 & 139 & 93.4 & NO & & \\
\hline 115 & 94 13C2-PFHxDA-RSD & \(815>769.7\) & 25505.473 & 19943.203 & 1.00 & 6.43 & 15.986 & 12.500 & 10.6 & 85.0 & NO & & \\
\hline 116 & -1 & & & & & & & & & & & & \\
\hline 117 & \(96 \mathrm{d7}-\mathrm{N}-\mathrm{MeFOSE-RSD}\) & \(623.1>58.9\) & 15521.402 & 19943.203 & 1.00 & 6.30 & 9.729 & 149.200 & 131 & 87.8 & NO & & \\
\hline 118 & 98 d9-N-EtFOSE-RSD & \(639.2>58.8\) & 19186.887 & 19943.203 & 1.00 & 6.45 & 12.026 & 149.200 & 139 & 93.0 & NO & & \\
\hline 119 & 99 13C4-PFBA & \(217.0>172.0\) & 4003.940 & 4003.940 & 1.00 & 1.48 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline 120 & 1... 13C5-PFHxA & \(318.0>272.9\) & 15103.579 & 15103.579 & 1.00 & 3.18 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline 121 & 1... 13C8-PFOA & \(420.9>376.0\) & 22134.828 & 22134.828 & 1.00 & 4.29 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline 122 & 1... 1802-PFHxS & \(403.0>102.6\) & 1389.390 & 1389.390 & 1.00 & 3.91 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline 123 & 1... 13C9-PFNA & \(472.2>426.9\) & 16952.029 & 16952.029 & 1.00 & 4.72 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline 124 & 1... 13C4-PFOS & \(503>79.7\) & 3518.320 & 3518.320 & 1.00 & 4.80 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline 125 & 1... 13C6-PFDA & \(519.1>473.7\) & 19077.539 & 19077.539 & 1.00 & 5.08 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline 126 & 1... 13C7-PFUdA & \(570.1>524.8\) & 19943.203 & 19943.203 & 1.00 & 5.40 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline
\end{tabular}


Curve type: Linear, Origin: Exclude, Weighting: \(1 / \mathrm{x}\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type: & Std. Conc & FT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(x=\) excluded \\
\hline 1 & \(1200225 \mathrm{P} 1-3\) & Standard & 0.250 & 1.42 & 251.559. & 9872.161 & 0.319 & 0.2 & -15.7 & NO & 1.000 & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 1.42 & 439.612 & 9951.374 & 0.552 & 0.4 & -15.6 & NO & 1.000 & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & 1.42 & 1109.572 & 10533.185 & 1.317 & 1.1 & 11.2 & NO & 1.000 & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 1.42 & 2038.873 & 10658.726 & 2.391 & 2.1 & 4.1 & NO & 1.000 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 1.42 & 5143.872 & 10773.149 & 5.968 & 5.3 & 6.3 & NO & 1.000 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 1.42 & 10631.475 & \(11177.67 €\) & 11.889 & 10.7 & 6.6 & NO & 1.000 & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 1.42 & 50046.164 & 11035.579 & 56.687 & 51.1 & 2.2 & NO & 1.000 & NO & bb \\
\hline 8 & 8200225 P1-10 & Standard & 100.000 & 1.42 & 106591.211 & 11651.084 & 114.358 & 103.2 & 3.2 & NO & 1.000 & NO & bb \\
\hline 9 & 9 200225P1-11 & Standard & 250.000 & 1.42 & 241177.609 & 11160.09 E & 270.134 & 243.9 & -2.4 & NO & 1.000 & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 & 1.42 & 487071.875 & 10979.427 & 554.528 & 500.7 & 0.1 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFPrS}

Correlation coefficient: \(\mathrm{r}=0.999715, \mathrm{r}^{\wedge} 2=0.999431\)
Calibration curve: \(1.65319{ }^{*} \times+-0.00618218\)
Response type: Internal Std (Ref 51 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & X=excluded \\
\hline 1 & 1 200225P1-3 & Standard & 0.250 & 1.74 & 34.731 & 1408.205 & 0.308 & 0.2 & -23.9 & NO & 0.999 & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 1.75 & 100.188 & 1358.158 & 0.922 & 0.6 & 12.3 & NO & 0.999 & NO & MM \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & 1.75 & 205.334 & 1522.097 & 1.686 & 1.0 & 2.4 & NO & 0.999 & NO & MM \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 1.74 & 369.582 & 1551.953 & 2.977 & 1.8 & -9.8 & NO & 0.999 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 1.74 & 1050.319 & 1433.439 & 9.159 & 5.5 & 10.9 & NO & 0.999 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 1.74 & 2054.670 & 1500.538 & 17.116 & 10.4 & 3.6 & NO & 0.999 & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 1.75 & 9997.262 & 1530.989 & 81.624 & 49.4 & -1.2 & NO & 0.999 & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 100.000 & 1.75 & 21068.074 & 1504.221 & 175.075 & 105.9 & 5.9 & NO & 0.999 & NO & bb \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 250.000 & 1.74 & 45765.277 & 1395.008 & 410.081 & 248.1 & -0.8 & NO & 0.999 & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 & 1.74 & 89382.742 & 1362.782 & 819.855 & 495.9 & -0.8 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:42:00 Pacific Standard Time

\section*{Compound name: 3:3 FTCA}

Coefficient of Determination: \(R^{\wedge} 2=0.999447\)
Calibration curve: \(6.20578 e-005\) * \(x^{\wedge} 2+0.0762417\) * \(x+0.00385416\)
Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: \(1 / x\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & Fir & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(\mathrm{x}=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 0.250 & 2.20 & 24.067 & 12501.022 & 0.024 & 0.3 & 6.0 & NO & 0.999 & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 2.20 & 43.714 & 12270.164 & 0.045 & 0.5 & 6.7 & NO & 0.999 & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & 2.20 & 87.024 & 13581.839 & 0.080 & 1.0 & -0.1 & NO & 0.999 & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 2.20 & 159.950 & 12997.605 & 0.154 & 2.0 & -1.8 & NO & 0.999 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 2.20 & 454.582 & 13570.021 & 0.419 & 5.4 & 8.4 & NO & 0.999 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 2.20 & 901.412 & 14147.710 & 0.796 & 10.3 & 3.1 & NO & 0.999 & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 2.20 & 4349.683 & 14067.085 & 3.865 & 48.7 & -2.6 & NO & 0.999 & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 100.000 & 2.20 & 9372.919 & 14119.896 & 8.298 & 100.6 & 0.6 & NO & 0.999 & NO & bb \\
\hline 9 & 9.200225P1-11 & Standard & 250.000 & 2.20 & 4452.209 & 12998.085 & 4.282 & 53.8 & -78.5 & YES & 0.999 & NO & bbX \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 & 2.20 & 8717.536 & 13078.697 & 8.332 & 100.9 & -79.8 & YES & 0.999 & NO & bbX \\
\hline
\end{tabular}

\section*{Compound name: PFPeA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999596\)
Calibration curve: \(-5.10583 e-005\) * \(x^{\wedge} 2+0.975868\) * \(x+0.0396465\)
Response type: Internal Std (Ref 49 ), Area " (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 0.250 & 2.35 & 259.623 & 12501.022 & 0.260 & 0.2 & -9.8 & NO & 1.000 & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 2.34 & 554.083 & 12270.164 & 0.564 & 0.5 & 7.6 & NO & 1.000 & NO & bb \\
\hline 3 & \(3200225 \mathrm{P}_{1-5}\) & Standard & 1.000 & 2.34 & 1124.376 & 13581.839 & 1.035 & 1.0 & 2.0 & NO & 1.000 & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 2.34 & 2243.757 & 12997.605 & 2.158 & 2.2 & 8.5 & NO & 1.000 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 2.34 & 5681.469 & 13570.021 & 5.233 & 5.3 & 6.5 & NO & 1.000 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 2.34 & 11192.52¢ & 14147.710 & 9.889 & 10.1 & 1.0 & NO & 1.000 & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 2.34 & 54158.324 & 14067.085 & 48.125 & 49.4 & -1.2 & NO & 1.000 & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 100.000 & 2.35 & 113797.125 & 14119.896 & 100.742 & 103.8 & 3.8 & NO & 1.000 & NO & bb \\
\hline 9 & 9 200225P1-11 & Standard & 250.000 & 2.34 . & 244207.125 & 12998.085 & 234.849 & 243.7 & -2.5 & NO & 1.000 & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 & 2.35 & 499626.188 & 13078.697 & 477.519 & 502.5 & 0.5 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Dataset: & Untitled \\
& \\
Last Altered: & Wednesday, February 26, 2020 11:36:10 Pacific Standard Time \\
Printed: & Wednesday, February 26, 2020 11:42:00 Pacific Standard Time
\end{tabular}

\section*{Compound name: PFBS}

Correlation coefficient: \(r=0.998996, r^{\wedge} 2=0.997993\)
Calibration curve: 2.30898 * \(x+0.0728009\)
Response type: Internal Std (Ref 51 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: \(1 / x\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Fiag & \(\mathrm{x}=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 0.250 & 2.62 & 56.385 & 1408.205 & 0.501 & 0.2 & -25.9. & NO & 0.998 & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 2.62 & 131.499 & 1358.158 & 1.210 & 0.5 & -1.5 & NO & 0.998 & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & 2.62 & 296.173 & 1522.097 & 2.432 & 1.0 & 2.2 & NO & 0.998 & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 2.62 & 617.726 & 1551.953 & 4.975 & 2.1 & 6.2 & NO & 0.998 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 2.62 & 1524.157 & 1433.439 & 13.291 & 5.7 & 14.5 & NO & 0.998 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 2.62 & 2879.698 & 1500.538 & 23.989 & 10.4 & 3.6 & NO & 0.998 & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 2.62 & 15113.940 & 1530.989 & 123.400 & 53.4 & 6.8 & NO & 0.998 & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 100.000 & 2.62 & 30759.455 & 1504.221 & 255.610 & 110.7 & 10.7 & NO & 0.998 & NO & bb \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 250.000 & 2.62 & 63297.770 & 1395.008 & 567.181 & 245.6 & -1.8 & NO & 0.998 & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 & 2.62 & 123142.719 & 1362.782 & 1129.516 & 489.2 & -2.2 & NO & 0.998 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 4:2 FTS}

Coefficient of Determination: R^2 \(=0.999367\)
Calibration curve: \(-0.000434108{ }^{*} x^{\wedge} 2+1.38843\) * \(x+-0.178318\)
Response type: Internal Std (Ref 55), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Coinc & RT & Area & IS Areal & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(\mathrm{x}=\) excluded \\
\hline 1 & 1200225 P1-3 & Standard & 0.250 & 3.05 & 29.600 & 1753.283 & 0.211 & 0.3 & 12.2 & NO & 0.999 & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 3.04 & 73.153 & 1601.853 & 0.571 & 0.5 & 7.9 & NO & 0.999 & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & 3.04 & 158.563 & 1829.602 & 1.083 & 0.9 & -9.1 & NO & 0.999 & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 3.04 & 291.394 & 1688.643 & 2.157 & 1.7 & -15.9 & NO & 0.999 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 3.04 & 1006.785 & 1677.821 & 7.501 & 5.5 & 10.8 & NO & 0.999 & NO & MM \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 3.04 & 1901.413 & 1863.165 & 12.757 & 9.3 & -6.6 & NO & 0.999 & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 3.04 & 9683.509 & 1822.118 & 66.430 & 48.7 & -2.6 & NO & 0.999 & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 100.000 & 3.04 & 18633.348 & 1658.604 & 140.429 & 104.7 & 4.7 & NO & 0.999 & NO & bb \\
\hline 9 & 9 200225P1-11 & Standard & 250.000 & 3.04 & 38064.813 & 1513.540 & 314.369 & 245.4 & -1.9 & NO & 0.999 & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 & 3.04 & 72026.602 & 1533.288 & 587.191 & 501.8 & 0.4 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

Dataset:
Untitled
Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:42:00 Pacific Standard Time

\section*{Compound name: PFHxA}

Correlation coefficient: \(\mathrm{r}=0.999532, \mathrm{r}^{\wedge} 2=0.999064\)
Calibration curve: 0.893131 * \(x+0.0844687\)
Response type: Internal Std (Ref 57 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & FIT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & COD Flag & \(x=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 0.250 & 3.13 & 408.921 & 20600.543 & 0.248 & 0.2 & -26.7 & NO & 0.999 & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 3.13 & 868.738 & 20141.500 & 0.539 & 0.5 & 1.8 & NO & 0.999 & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & 3.13 & 2081.999 & 22269.994 & 1.169 & 1.2 & 21.4 & NO & 0.999 & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 3.13 & 3485.344 & 21692.803 & 2.008 & 2.2 & 7.7 & NO & 0.999 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 3.13 & 9025.080 & 21797.625 & 5.175 & 5.7 & 14.0 & NO & 0.999 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 3.13 & 18079.037 & 22434.781 & 10.073 & 11.2 & 11.8 & NO & 0.999 & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 3.13 & 85265.031 & 22617.182 & 47.124 & 52.7 & 5.3 & NO & 0.999 & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 100.000 & 3.13 & 184612.094 & 24636.209 & 93.669 & 104.8 & 4.8 & NO & 0.999 & NO & bb \\
\hline 9 & 9 200225P1-11 & Standard & 250.000 & 3.13 & 394941.938 & 22282.359 & 221.555 & 248.0 & -0.8 & NO & 0.999 & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 & 3.13 & 766067.313 & 21770.824 & 439.847 & 492.4 & -1.5 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFPeS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999064\)
Calibration curve: -0.000730443 * \(x^{\wedge} 2+2.38201^{*} x+-0.0672473\)
Response type: Internal Std (Ref 51 ), Area * (Is Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & Xeexcluded \\
\hline 1 & 1 200225P1-3 & Standard & 0.250 & 3.34 & 74.246 & 1408.205 & 0.659 & 0.3 & 22.0 & NO & 0.999 & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 3.34 & 84.241 & 1358.158 & 0.775 & 0.4 & -29.2 & NO & 0.999 & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & 3.32 & 259.810 & 1522.097 & 2.134 & 0.9 & -7.6 & NO & 0.999 & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 3.32 & 511.543 & 1551.953 & 4.120 & 1.8 & -12.1 & NO & 0.999 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 3.32 & 1463.007 & 1433.439 & 12.758 & 5.4 & 7.9 & NO & 0.999 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 3.32 & 2960.002 & 1500.538 & 24.658 & 10.4 & 4.1 & NO & 0.999 & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 3.32 & 14794.395 & 1530.989 & 120.791 & 51.6 & 3.1 & NO & 0.999 & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 100.000 & 3.32 & 28802.242 & 1504.221 & 239.345 & 103.8 & 3.8 & NO & 0.999 & NO & bb \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 250.000 & 3.32 & 58911.777 & 1395.008 & 527.880 & 239.2 & -4.3 & NO & 0.999 & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 & 3.32 & 110896.992 & 1362.782 & 1017.193 & 505.4 & 1.1 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

Dataset: Untitled
Last Altered:
Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:42:00 Pacific Standard Time

\section*{Compound name: HFPO-DA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999495\)
Calibration curve: \(-0.000187555^{*} x^{\wedge} 2+0.995843\) * \(x+0.017923\)
Response type: Internal Std (Ref 53 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(\mathrm{x}=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 0.250 & 3.35 & 52.057 & 3378.505 & 0.193 & 0.2 & -29.8 & NO & 0.999 & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 3.34 & 164.853 & 3609.127 & 0.571 & 0.6 & 11.1 & NO & 0.999 & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & 3.34 & 330.065 & 3804.277 & 1.085 & 1.1 & 7.1 & NO & 0.999 & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 3.34 & 618.137 & 3980.255 & 1.941 & 1.9 & -3.4 & NO & 0.999 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 3.34 & 1683.543 & 3826.282 & 5.500 & 5.5 & 10.2 & NO & 0.999 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 3.34 & 3467.524 & 3927.562 & 11.036 & 11.1 & 10.9 & NO & 0.999 & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 3.34 & 16440.258 & 4045.775 & 50.795 & 51.5 & 3.0 & NO & 0.999 & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 100.000 & 3.34 & 35654.125 & 4556.917 & 97.802 & 100.1 & 0.1 & NO & 0.999 & NO & bb \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 250.000 & 3.34 & 76661.898 & 4140.616 & 231.433 & 243.6 & -2.6 & NO & 0.999 & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 & 3.34 & 152800.328 & 4209.138 & 453.776 & 503.4 & 0.7 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 5:3 FTCA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999699\)
Calibration curve: \(1.76506 e-005^{*} x^{\wedge} 2+0.186062\) * \(x+-0.00829431\)
Response type: Internal Std (Ref 59 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Sto. Conc & RT & Area & IS Area & Pesponse & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & x=excluded \\
\hline 1 & 1200225 P1-3 & Standard & 0.250 & 3.68 & 46.139 & 14315.611 & 0.040 & 0.3 & 4.4 & NO & 1.000 & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 3.67 & 84.125 & 13755.051 & 0.076 & 0.5 & -8.9 & NO & 1.000 & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & 3.67 & 198.046 & 15124.546 & 0.164 & 0.9 & -7.6 & NO & 1.000 & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 3.67 & 470.692 & 15091.041 & 0.390 & 2.1 & 7.0 & NO & 1.000 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 3.67 & 1156.000 & 15019.074 & 0.962 & 5.2 & 4.3 & NO & 1.000 & NO & bb \\
\hline 6 & 6200225 P1-8 & Standard & 10.000 & 3.67 & 2335.252 & 15418.089 & 1.893 & 10.2 & 2.1 & NO & 1.000 & NO & MM \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 3.67 & 11314.848 & 15402.855 & 9.182 & 49.2 & -1.7 & NO & 1.000 & NO & bb \\
\hline 8 & \(8200225 \mathrm{P} 1-10\) & Standard & 100.000 & 3.67 & 24340.861 & 16144.262 & 18.846 & 100.4 & 0.4 & NO & 1.000 & NO & bb \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 250.000 & 3.67 & 11122.742 & 14336.560 & 9.698 & 51.9 & -79.2 & YES & 1.000 & NO & \(b b X\) \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 & 3.67 & 22914.650 & 14353.899 & 19.955 & 106.2 & -78.8 & YES & 1.000 & NO & bbX \\
\hline
\end{tabular}

Dataset: Untitled

Last Altered:
Printed:
Wednesday, February 26, 2020 11:36:10 Pacific Standard Time Wednesday, February 26, 2020 11:42:00 Pacific Standard Time

\section*{Compound name: PFHpA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999835\)
Calibration curve: \(-0.000213241^{*} x^{\wedge} 2+1.2385^{*} x+0.0521085\)
Response type: Internal Std ( Ref 59 ), Area * ( IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Resporise & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(\mathrm{x}=\) excluded \\
\hline 1 & \(1200225 \mathrm{P} 1-3\) & Standard & 0.250 & 3.73 & 325.110 & 14315.611 & 0.284 & 0.2 & -25.1 & NO & 1.000 & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 3.72 & 830.759 & 13755.051 & 0.755 & 0.6 & 13.5 & NO & 1.000 & NO & MM \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & 3.72 & 1537.658 & 15124.546 & 1.271 & 1.0 & -1.6 & NO & 1.000 & NO & MM \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 3.72 & 3162.798 & 15091.041 & 2.620 & 2.1 & 3.7 & NO & 1.000 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 3.72 & 7984.577 & 15019.074 & 6.645 & 5.3 & 6.6 & NO & 1.000 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 3.72 & 15772.457 & 15418.089 & 12.787 & 10.3 & 3.0 & NO & 1.000 & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 3.73 & 75329.375 & 15402.855 & 61.133 & 49.7 & -0.5 & NO & 1.000 & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 100.000 & 3.73 & 159716.875 & 16144.262 & 123.664 & 101.6 & 1.6 & NO & 1.000 & NO & bb \\
\hline 9 & 9 200225P1-11 & Standard & 250.000 & 3.72 & 335124.125 & 14336.560 & 292.194 & 246.3 & -1.5 & NO & 1.000 & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 & 3.72 & 651910.188 & 14353.899 & 567.712 & 501.7 & 0.3 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: ADONA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999654\)
Calibration curve: \(-0.00033118^{*} x^{\wedge} 2+2.85271^{*} x+0.0577579\)
Response type: Internal Std (Ref 59 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: \(1 / x\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(x=e x\) cluded \\
\hline 1 & \(1200225 \mathrm{P}^{1-3}\) & Standard & 0.250 & 3.84 & 804.333 & 14315.611 & 0.702 & 0.2 & -9.6 & NO & 1.000 & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 3.83 & 1657.521 & 13755.051 & 1.506 & 0.5 & 1.6 & NO & 1.000 & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & 3.83 & 3447.736 & 15124.546 & 2.849 & 1.0 & -2.1 & NO & 1.000 & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 3.83 & 7266.229 & 15091.041 & 6.019 & 2.1 & 4.5 & NO & 1.000 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 3.83 & 17935.957 & 15019.074 & 14.928 & 5.2 & 4.3 & NO & 1.000 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 3.83 & 37234.676 & 15418.089 & 30.187 & 10.6 & 5.7 & NO & 1.000 & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 3.83 & 167793.672 & 15402.855 & 136.171 & 48.0 & -4.0 & NO & 1.000 & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 100.000 & 3.83 & 356669.906 & 16144.262 & 276.158 & 97.9 & -2.1 & NO & 1.000 & NO & bb \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 250.000 & 3.83 & 811379.125 & 14336.560 & 707.439 & 255.5 & 2.2 & NO & 1.000 & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 & 3.83 & 1536289.125 & 14353.899 & 1337.867 & 497.7 & -0.5 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

\section*{Dataset:}

Untitled
Last Altered:
Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed:
Wednesday, February 26, 2020 11:42:00 Pacific Standard Time

\section*{Compound name: L-PFHxS}

Correlation coefficient: \(r=0.999271, r^{\wedge} 2=0.998543\)
Calibration curve: \(1.018855^{*} x+0.0424708\)
Response type: Internal Std (Ref 61), Area " (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & Cold Flag & \(\mathrm{x}=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 0.250 & 3.87 & 76.970 & 3089.414 & 0.311 & 0.3 & 5.6 & NO & 0.999 & NO & MM \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 3.86 & 129.879 & 3233.223 & 0.502 & 0.5 & -9.8 & NO & 0.999 & NO & MM \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & 3.86 & 260.478 & 3312.404 & 0.983 & 0.9 & -7.7 & NO & 0.999 & NO & MM \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 3.87 & 506.015 & 3236.657 & 1.954 & 1.9 & -6.2 & NO & 0.999 & NO & MM \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 3.86 & 1492.745 & 3307.574 & 5.641 & 5.5 & 9.9 & NO & 0.999 & NO & MM \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 3.86 & 2706.336 & 3416.446 & 9.902 & 9.7 & -3.2 & NO & 0.999 & NO & MM \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 3.86 & 13853.379 & 3190.156 & 54.282 & 53.2 & 6.5 & NO & 0.999 & NO & MM \\
\hline 8 & 8 200225P1-10 & Standard & 100.000 & 3.86 & 30621.656 & 3452.222 & 110.877 & 108.8 & 8.8 & NO & 0.999 & NO & MM \\
\hline 9 & 9.200225P1-11 & Standard & 250.000 & 3.86 & 64861.746 & 3280.190 & 247.172 & 242.6 & -3.0 & NO & 0.999 & NO & MM \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 & 3.86 & 122824.227 & 3040.974 & 504.872 & 495.5 & -0.9 & NO & 0.999 & NO & MM \\
\hline
\end{tabular}

\section*{Compound name: 6:2 FTS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.997864\)
Calibration curve: \(-0.000277268{ }^{*} x^{\wedge} 2+1.56695{ }^{*} x+0.134499\)
Response type: Internal Std (Ref 63), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 0.250 & 4.18 & 59.670 & 1250.351 & 0.597 & 0.3 & 18.0 & NO & 0.998 & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 4.18 & 85.714 & 1319.649 & 0.812 & 0.4 & -13.5 & NO & 0.998 & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & 4.18 & 209.655 & 1355.616 & 1.933 & 1.1 & 14.8 & NO & 0.998 & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 4.17 & 465.777 & 1587.204 & 3.668 & 2.3 & 12.8 & NO & 0.998 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 4.17 & 897.850 & 1543.772 & 7.270 & 4.6 & -8.9 & NO & 0.998 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 4.18 & 2133.570 & 1534.965 & 17.375 & 11.0 & 10.2 & NO & 0.998 & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 4.18 & 9310.367 & 1552.968 & 74.940 & 48.1 & -3.7 & NO & 0.998 & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 100.000 & 4.18 & 22085.416 & 1647.530 & 167.565 & 109.0 & 9.0 & NO & 0.998 & NO & bb \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 250.000 & 4.18 & 39580.113 & 1393.243 & 355.108 & 236.4 & -5.4 & NO & 0.998 & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 & 4.18 & 85141.984 & 1474.945 & 721.569 & 505.6 & 1.1 & NO & 0.998 & NO & bb \\
\hline
\end{tabular}

Dataset:
Untitled
Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:42:00 Pacific Standard Time

\section*{Compound name: L-PFOA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999126\)
Calibration curve: -0.000157489 * \(x^{\wedge} 2+1.13112\) * \(x+0.114857\)
Response type: Internal Std (Ref 69 ), Area * ( IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & 15 Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(\mathrm{x}=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 0.250 & 4.24 & 503.119 & 18905.670 & 0.333 & 0.2 & -23.0 & NO & 0.999 & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 4.23 & 996.054 & 19025.869 & 0.654 & 0.5 & -4.6 & NO & 0.999 & NO & bd \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & 4.23 & 2011.736 & 19788.479 & 1.271 & 1.0 & 2.2 & NO & 0.999 & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 4.23 & 4166.273 & 21544.221 & 2.417 & 2.0 & 1.8 & NO & 0.999 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 4.23 & 11167.40¢ & 20464.119 & 6.821 & 5.9 & 18.7 & NO & 0.999 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 4.23 & 18678.193 & 19919.584 & 11.721 & 10.3 & 2.8 & NO & 0.999 & NO & db \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 4.23 & 94867.516 & 20725.129 & 57.218 & 50.8 & 1.7 & NO & 0.999 & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 100.000 & 4.23 & 199573.672 & 21582.922 & 115.585 & 103.6 & 3.6 & NO & 0.939 & NO & bb \\
\hline 9 & 9 200225P1-11 & Standard & 250.000 & 4.23 & 434959.406 & 20718.783 & 262.419 & 239.9 & -4.0 & NO & 0.999 & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 & 4.23 & 764072.625 & 17996.074 & 530.722 & 504.5 & 0.9 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFecHS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.996153\)
Calibration curve: \(4.46408 \mathrm{e}-005^{*} x^{\wedge} 2+0.147633^{*} x+0.0114163\)
Response type: Internal Std (Ref 69 ), Area * (IS Conc. I IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: \(1 / x\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & is Area & Response & Conc. & \%Dev & Conc. Flag & COD & Cod Flag & x=excluded \\
\hline 1 & 1 200225P1-3 & Standard & 0.250 & 4.25 & 72.448 & 18905.670 & 0.048 & 0.2 & -1.2 & NO & 0.996 & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 4.25 & 118.703 & 19025.869 & 0.078 & 0.5 & -9.8 & NO & 0.996 & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & 4.24 & 263.136 & 19788.479 & 0.166 & 1.0 & 4.8 & NO & 0.996 & NO & bb \\
\hline 4. & 4 200225P1-6 & Standard & 2.000 & 4.24 & 509.567 & 21544.221 & 0.296 & 1.9 & -3.8 & NO & 0.996 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 4.24 & 1340.190 & 20464.119 & 0.819 & 5.5 & 9.2 & NO & 0.996 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 4.24 & 2933.219 & 19919.584 & 1.841 & 12.3 & 23.4 & NO & 0.996 & NO & MM \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 4.24 & 13468.983 & 20725.129 & 8.124 & 54.1 & 8.1 & NO & 0.996 & NO & bb \\
\hline 8 & \(8200225 \mathrm{P} 1-10\) & Standard & 100.000 & 4.25 & 28229.432 & 21582.922 & 15.349 & 107.2 & 7.2 & NO & 0.996 & NO & bb \\
\hline 9 & 9 200225P1-11 & Standard & 250.000 & 4.24 & 59663.828 & 20718.783 & 35.996 & 228.0 & -8.8 & NO & 0.996 & NO & bb \\
\hline 10 & \(10200225 \mathrm{P} 1-12\) & Standard & 500.000 & 4.24 & 124604.023 & 17996.074 & 86.549 & 508.1 & 1.6 & NO & 0.996 & NO & bb \\
\hline
\end{tabular}

Dataset: Untitled
Last Altered:
Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:42:00 Pacific Standard Time

\section*{Compound name: PFHpS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999533\)
Calibration curve: \(-1.97849 e-005{ }^{*} x^{\wedge} 2+0.928406\) * \(x+0.0131066\)
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & COD Flag & \(x=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 0.250 & 4.35 & 47.931 & 3392.257 & 0.177 & 0.2 & -29.6 & NO & 1.000 & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 4.34 & 138.523 & 3412.653 & 0.507 & 0.5 & 6.5 & NO & 1.000 & NO & bb \\
\hline 33 & 3 200225P1-5 & Standard & 1.000 & 4.35 & 266.151 & 3819.392 & 0.871 & 0.9 & -7.6 & NO & 1.000 & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 4.34 & 570.152 & 3246.941 & 2.195 & 2.4 & 17.5 & NO & 1.000 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 4.34 & 1578.352 & 3799.922 & 5.192 & 5.6 & 11.6 & NO & 1.000 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 4.34 & 3018.898 & 3646.993 & 10.347 & 11.1 & 11.3 & NO & 1.000 & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 4.34 & 14246.896 & 4032.981 & 44.157 & 47.6 & -4.8 & NO & 1.000 & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 100.000 & 4.34 & 29885.527 & 3990.603 & 93.612 & 101.0 & 1.0 & NO & 1.000 & NO & bb \\
\hline 9 & 9 200225P1-11 & Standard & 250.000 & 4.34 . & 65846.547 & 3581.742 & 229.799 & 248.8 & -0.5 & NO & 1.000 & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 & 4.34 & 125758.219 & 3418.734 & 459.813 & 500.6 & 0.1 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 7:3 FTCA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998547\)
Calibration curve: \(8.1341 e-005^{*} x^{\wedge} 2+0.155084^{*} x+-0.0133127\)
Response type: Internal Std (Ref 65 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: \(1 / x\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(\mathrm{x}=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 0.250 & 4.66 & 26.776 & 17239.375 & 0.019 & 0.2 & -15.6 & NO & 0.999 & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 4.65 & 86.818 & 16726.338 & 0.065 & 0.5 & 0.8 & NO & 0.999 & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & 4.66 & 212.802 & 19469.943 & 0.137 & 1.0 & -3.4 & NO & 0.999 & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 4.65 & 471.534 & 17698.107 & 0.333 & 2.2 & 11.5 & NO & 0.999 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 4.65 & 1164.208 & 19189.289 & 0.758 & 5.0 & -0.7 & NO & 0.999 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 4.65 & 2554.036 & 18650.008 & 1.712 & 11.1 & 10.6 & NO & 0.999 & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 4.66 & 12022.045 & 19754.828 & 7.607 & 47.9 & -4.1 & NO & 0.999 & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 100.000 & 4.66 & 25325.600 & 19232.490 & 16.460 & 100.9 & 0.9 & NO & 0.999 & NO & bb \\
\hline 9 & 9 200225P1-11 & Standard & 250.000 & 4.66 & 12172.553 & 18824.725 & 8.083 & 50.8 & -79.7 & YES & 0.999 & NO & \(b \mathrm{bx}\) \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 & 4.65 & 24093.377 & 17270.096 & 17.439 & 106.6 & -78.7 & YES & 0.999 & NO & \(b \mathrm{bx}\) \\
\hline
\end{tabular}

Dataset:
Untitled
Last Altered:
Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:42:00 Pacific Standard Time

\section*{Compound name: PFNA}

Correlation coefficient: \(r=0.999628, r^{\wedge} 2=0.999256\)
Calibration curve: 1.17976 * \(x+0.155189\)
Response type: Internal Std (Ref 65 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: \(1 / x\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & x=excluded \\
\hline 1 & 1 200225P1-3 & Standard & 0.250 & 4.68 & 331.835 & 17239.375 & 0.241 & 0.1 & -71.0 & YES & 0.999 & NO & bbX \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 4.67 & 1024.462 & 16726.338 & 0.766 & 0.5 & 3.5 & NO & 0.999 & NO & bb \\
\hline 3. & \(3200225 \mathrm{P}_{1-5}\) & Standard & 1.000 & 4.67. & 1911.482 & 19469.943 & 1.227 & 0.9 & -9.1 & NO & 0.999 & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 4.67 & 3983.001 & 17698.107 & 2.813 & 2.3 & 12.6 & NO & 0.999 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 4.67 & 9800.355 & 19189.289 & 6.384 & 5.3 & 5.6 & NO & 0.999 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 4.67 & 20052.207 & 18650.008 & 13.440 & 11.3 & 12.6 & NO & 0.999 & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 4.67 & 92364.797 & 19754.828 & 58.444 & 49.4 & -1.2 & NO & 0.999 & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 100.000 & 4.67 & 190532.734 & 19232.490 & 123.835 & 104.8 & 4.8 & NO & 0.999 & NO & bb \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 250.000 & 4.67 & 432450.375 & 18824.725 & 287.156 & 243.3 & -2.7 & NO & 0.999 & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 & 4.67 & 816446.938 & 17270.096 & 590.940 & 500.8 & 0.2 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFOSA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998293\)
Calibration curve: \(2.22748 e-005^{*} x^{\wedge} 2+0.82094\) * \(x+-0.0255848\)
Response type: Internal Std ( Ref 67), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & 15 Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(\mathrm{x}=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 0.250 & 4.74 & 42.189 & 4235.302 & 0.125 & 0.2 & -26.9 & NO & 0.998 & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 4.73 & 153.339 & 4234.348 & 0.453 & 0.6 & 16.5 & NO & 0.998 & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & 4.73 & 309.915 & 4865.226 & 0.796 & 1.0 & 0.1 & NO & 0.998 & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 4.73 & 626.369 & 4669.988 & 1.677 & 2.1 & 3.7 & NO & 0.998 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 4.73 & 1663.491 & 4849.630 & 4.288 & 5.3 & 5.1 & NO & 0.998 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 4.73 & 3077.013 & 4697.788 & 8.187 & 10.0 & 0.0 & NO & 0.998 & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 4.73 & 15662.475 & 4952.633 & 39.531 & 48.1 & -3.8 & NO & 0.998 & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 100.000 & 4.73 & 33165.664 & 4614.442 & 89.842 & 109.1 & 9.1 & NO & 0.998 & NO & bb \\
\hline 9 & 9.200225P1-11 & Standard & 250.000 & 4.73 & 65960.297 & 4190.781 & 196.742 & 238.1 & -4.7 & NO & 0.998 & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 & 4.73 & 139279.953 & 4149.340 & 419.585 & 504.2 & 0.8 & NO & 0.998 & NO & bb \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Dataset: & Untitled \\
Last Altered: & Wednesday, February 26, 2020 11:36:10 Pacific Standard Time \\
Printed: & Wednesday, February 26, 2020 11:42:00 Pacific Standard Time \\
\hline
\end{tabular}

\section*{Compound name: L-PFOS}

Coefficient of Determination: \(R^{\wedge} 2=0.999204\)
Calibration curve: \(-1.248 \mathrm{e}-005\) * \(\mathrm{x}^{\wedge} 2+0.936367^{*} \mathrm{x}+-0.00626015\)
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & x=excluded \\
\hline 1 & 1 200225P1-3 & Standard & 0.250 & 4.77 & 46.241 & 3392.257 & 0.170 & 0.2 & -24.5 & NO & 0.999 & NO & MM \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 4.74 & 115.939 & 3412.653 & 0.425 & 0.5 & -8.0 & NO & 0.999 & NO & MM \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & 4.75 & 270.562 & 3819.392 & 0.885 & 1.0 & -4.8 & NO & 0.999 & NO & MM \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 4.75 & 569.972 & 3246.941 & 2.194 & 2.4 & 17.5 & NO & 0.999 & NO & MM \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 4.75 & 1552.437 & 3799.922 & 5.107 & 5.5 & 9.2 & NO & 0.999 & NO & MM \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 4.75 & 3132.146 & 3646.993 & 10.735 & 11.5 & 14.7 & NO & 0.999 & NO & MM \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 4.75 & 14143.180 & 4032.981 & 43.836 & 46.9 & -6.3 & NO & 0.999 & NO & MM \\
\hline 8 & 8 200225P1-10 & Standard & 100.000 & 4.75 & 30848.615 & 3990.603 & 96.629 & 103.3 & 3.3 & NO & 0.999 & NO & MM \\
\hline 9 & 9 200225P1-11 & Standard & 250.000 & 4.75 & 65811.383 & 3581.742 & 229.677 & 246.1 & -1.6 & NO & 0.999 & NO & MM \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 . & 4.75 & 127589.477 & 3418.734 & 466.508 & 501.6 & 0.3 & NO & 0.999 & NO & MM \\
\hline
\end{tabular}

\section*{Compound name: 9CI-PF30NS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999619\)
Calibration curve: \(-0.000173604{ }^{*} x^{\wedge} 2+0.991244\) * \(x+0.177624\)
Response type: Internal Std (Ref 71 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & X=excluded \\
\hline 1 & \(1200225 \mathrm{P} 1-3\) & Standard & 0.250 & 4.97 & 55.418 & 3392.257 & 0.204 & 0.0 & -89.3 & YES & 1.000 & NO & bbX \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 4.96 & 60.848 & 3412.653 & 0.223 & 0.0 & -90.9 & YES & 1.000 & NO & \(b b x\) \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & 4.96 & 351.945 & 3819.392 & 1.152 & 1.0 & -1.7 & NO & 1.000 & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 4.96 & 574.381 & 3246.941 & 2.211 & 2.1 & 2.6 & NO & 1.000 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 4.96 & 1389.860 & 3799.922 & 4.572 & 4.4 & -11.3 & NO & 1.000 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 4.96 & 3202.594 & 3646.993 & 10.977 & 10.9 & 9.2 & NO & 1.000 & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 4.96 & 15993.421 & 4032.981 & 49.571 & 50.3 & 0.5 & NO & 1.000 & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 100.000 & 4.96 & 31843.514 & 3990.603 & 99.745 & 102.3 & 2.3 & NO & 1.000 & NO & bb \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 250.000 & 4.96 & 66602.328 & 3581.742 & 232.437 & 244.8 & -2.1 & NO & 1.000 & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 & 4.96 & 124243.469 & 3418.734 & 454.274 & 502.3 & 0.5 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

Vista Analytical Laboratory
Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:42:00 Pacific Standard Time

\section*{Compound name: PFDA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999769\)
Calibration curve: -0.000263391 * \(x^{\wedge} 2+1.17334\) * \(x+0.0663551\)
Response type: Internal Std (Ref 73), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 0.250 & 5.04 & 457.555 & 17688.168 & 0.323 & 0.2 & -12.4 & NO & 1.000 & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 5.04 & 1071.675 & 18158.623 & 0.738 & 0.6 & 14.5 & NO & 1.000 & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & 5.04 & 2163.829 & 20772.906 & 1.302 & 1.1 & 5.3 & NO & 1.000 & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 5.04 & 4021.795 & 20265.523 & 2.481 & 2.1 & 2.9 & NO & 1.000 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 5.04 & 9888.414 & 20194.920 & 6.121 & 5.2 & 3.3 & NO & 1.000 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 5.04 & 21045.451 & 20439.703 & 12.870 & 10.9 & 9.4 & NO & 1.000 & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 5.04 & 97994.969 & 20732.352 & 59.083 & 50.9 & 1.8 & NO & 1.000 & NO & bb \\
\hline 8. & 8 200225P1-10 & Standard & 100.000 & 5.04 & 188368.891 & 20899.775 & 112.662 & 98.1 & -1.9 & NO & 1.000 & NO & bb \\
\hline 9 & 9 200225P1-11 & Standard & 250.000 & 5.04 & 450311.469 & 20424.217 & 275.599 & 248.7 & -0.5 & NO & 1.000 & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 & 5.04 & 862822.438 & 20667.172 & 521.856 & 501.1 & 0.2 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 8:2 FTS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.996459\)
Calibration curve: -0.000340371 * \(x^{\wedge} 2+1.34102\) * \(x+-0.893418\)
Response type: Internal Std (Ref 75 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 0.250 & 5.02 & 31.988 & 1235.022 & 0.324 & 0.9 & 263.1 & YES & 0.996 & NO & bbX \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 5.00 & 40.994 & 1045.851 & 0.490 & 1.0 & 106.4 & YES & 0.996 & NO & \(b b X\) \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & 5.01 & 186.388 & 1194.706 & 1.950 & 2.1 & 112.2 & YES & 0.996 & NO & bbX \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 5.02 & 192.389 & 1265.179 & 1.901 & 2.1 & 4.2 & NO & 0.996 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 5.01 & 547.248 & 1294.409 & 5.285 & 4.6 & -7.8 & NO & 0.996 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 5.01 & 1349.860 & 1277.157 & 13.212 & 10.5 & 5.5 & NO & 0.996 & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 5.01 & 7535.736 & 1364.021 & 69.058 & 52.9 & 5.7 & NO & 0.996 & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 100.000 & 5.01 & 12873.406 & 1417.279 & 113.540 & 87.3 & -12.7 & NO & 0.996 & NO & bb \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 250.000 & 5.01 & 32055.500 & 1207.879 & 331.733 & 266.0 & 6.4 & NO & 0.996 & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 & 5.01 & 59592.598 & 1288.608 & 578.071 & 493.6 & -1.3 & NO & 0.996 & NO & bb \\
\hline
\end{tabular}

Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:42:00 Pacific Standard Time

\section*{Compound name: PFNS}

Correlation coefficient: \(\mathrm{r}=0.998965, \mathrm{r}^{\wedge} 2=0.997930\)
Calibration curve: \(0.867271^{*} x+0.295013\)
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & R'T & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & \multicolumn{2}{|l|}{COD CoDFlag} & \(x=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 0.250 & 5.10 & 49.022 & 3392.257 & 0.181 & & & NO & 0.998 & NO & bbXI \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 5.10 & 112.890 & 3412.653 & 0.413 & 0.1 & -72.7 & YES & 0.998 & NO & bbx \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & 5.10 & 256.200 & 3819.392 & - 0.838 & 0.6 & -37.3 & YES & 0.998 & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 5.09 & 700.913 & 3246.941 & 2.698 & 2.8 & 38.6 & YES & 0.998 & NO & MM \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 5.10 & - +528.818 & 3799.922 & 5.029 & 5.5 & 9.2 & NO & 0.998 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 5.09 & 3037.604 & 3646.993 & 10.411 & 11.7 & 16.6 & NO & 0.998 & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 5.10 & 14384.352 & 4032.981 & 44.583 & 51.1 & 2.1 & NO & 0.998 & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 100.000 & 5.10 & 29223.545 & 3990.603 & 91.539 & 105.2 & 5.2 & NO & 0.998 & NO & bb \\
\hline 9 & \(9200225 \mathrm{P} 1-1\) & Standard & 250.000 & 5.10 & 63943.840 & 3581.742 & 223.159 & 257.0 & 2.8 & NO & 0.998 & NO & bb \\
\hline 10 & 10200225 P1-12 & Standard & 500.000 & 5.10 & 114939.531 & 3418.734 & 420.256 & 484.2 & -3.2 & NO & 0.998 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: L-MeFOSAA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.997934\)
Calibration curve: \(-0.000651587^{*} x^{\wedge} 2+1.94487^{*} x+-0.0570901\)
Response type: Internal Std (Ref 77), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area. & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(\mathrm{x}=\) excluded \\
\hline 1 & 1200225 P1-3 \(^{1}\) & Standard & 0.250 & 5.20 & 103.931 & 3174.144 & 0.409 & 0.2 & -4.1 & NO & 0.998 & NO & MM \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 5.19 & 242.740 & 3469.963 & 0.874 & 0.5 & -4.2 & NO & 0.998 & NO & MM \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & 5.19 & 583.899 & 3495.821 & 2.088 & 1.1 & 10.3 & NO & 0.998 & NO & MM \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 5.19 & 1202.032 & 3645.388 & 4.122 & 2.2 & 7.5 & NO & 0.998 & NO & MM \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 5.18 & 2796.907 & 3633.896 & 9.621 & 5.0 & -0.3 & NO & 0.998 & NO & MM \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 5.18 & 5463.069 & 4128.875 & 16.539 & 8.6 & -14.4 & NO & 0.998 & NO & MM \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 5.19 & 29074.631 & 4188.330 & 86.773 & 45.3 & -9.3 & NO & 0.998 & NO & MM \\
\hline 8 & 8 200225P1-10 & Standard & 100.000 & 5.19 & 62112.598 & 4211.558 & 184.352 & 98.0 & -2.0 & NO & 0.998 & NO & MM \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 250.000 & 5.19 & 137669.156 & 3648.913 & 471.610 & 266.3 & 6.5 & NO & 0.998 & NO & MM \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 & 5.19 & 258157.016 & 4043.613 & 798.039 & 491.2 & -1.8 & NO & 0.998 & NO & MM \\
\hline
\end{tabular}

Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:42:27 Pacific Standard Time

\section*{Method: P:\PFAS5.PRO\MethDBWEW_PFAS_80C_022520.mdb 26 Feb 2020 11:36:08}

Calibration: P:\PFAS5.PRO\CurveDBIC̄18_VAL-PFAS_Q5_02-25-20.cdb 26 Feb 2020 11:25:03

\section*{Compound name: L-EtFOSAA}

Correlation coefficient: \(\mathrm{r}=0.999424, \mathrm{r}^{\wedge} 2=0.998848\)
Calibration curve: 1.19224 * \(x+0.0364651\)
Response type: Internal Std (Ref 81), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: \(1 / x\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & 7ype & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(\mathrm{x}=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 0.250 & 5.34 & 93.380 & 4635.703 & 0.252 & 0.2 & -27.8 & NO & 0.999 & NO & MM \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 5.34 & 265.956 & 4671.362 & 0.712 & 0.6 & 13.3 & NO & 0.999 & NO & MM \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & 5.34 & 502.087 & 5361.517. & 1.171 & 1.0 & -4.9 & NO & 0.999 & NO & MM \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 5.34 & 1099.765 & 5107.157 & 2.692 & 2.2 & 11.4 & NO & 0.999 & NO & MM \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 5.34 & 2735.706 & 5470.047 & 6.252 & 5.2 & 4.3 & NO & 0.999 & NO & MM \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 5.34 & 4993.793 & 4941.707 & 12.632 & 10.6 & 5.6 & NO & 0.999 & NO & MM \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 5.34 & 25926.740 & 5109.596 & 63.427 & 53.2 & 6.3 & NO & 0.999 & NO & MM \\
\hline 8 & 8 200225P1-10 & Standard & 100.000 & 5.34 & 54543.426 & 5321.571 & 128.119 & 107.4 & 7.4 & NO & 0.999 & NO & MM \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 250.000 & 5.34 & 116866.383 & 5012.692 & 291.426 & 244.4 & -2.2 & NO & 0.999 & NO & MM \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 & 5.34 & 213568.469 & 4532.038 & 589.052 & 494.0 & -1.2 & NO & 0.999 & NO & MM \\
\hline
\end{tabular}

\section*{Compound name: PFUdA}

Correlation coefficient: \(\mathrm{r}=0.998904, \mathrm{r}^{\wedge} 2=0.997808\)
Calibration curve: 0.920819 * \(x+0.155174\)
Response type: Internal Std (Ref 79 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoDFlag & \(\mathrm{x}=\) excludecl \\
\hline 1 & 1200225 P1-3 & Standard & 0.250 & 5.36 & 544.443 & 18802.816 & 0.362 & 0.2 & -10.2 & NO & 0.998 & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 5.35 & 841.646 & 20783.641 & 0.506 & 0.4 & -23.8 & NO & 0.998 & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & 5.35 & 1894.715 & 23235.645 & 1.019 & 0.9 & -6.2 & NO & 0.998 & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 5.35 & 3511.903 & 22555.502 & 1.946 & 1.9 & -2.7 & NO & 0.998 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 5.35 & 9796.873 & 23655.426 & 5.177 & 5.5 & 9.1 & NO & 0.998 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 5.35 & 18472.082 & 20213.629 & 11.423 & 12.2 & 22.4 & NO & 0.998 & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 5.35 & 88697.039 & 22435.588 & 49.418 & 53.5 & 7.0 & NO & 0.998 & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 100.000 & 5.35 & 184083.938 & 22887.840 & 100.536 & 109.0 & 9.0 & NO & 0.998 & NO & bb \\
\hline 9 & 9 200225P1-11 & Standard & 250.000 & 5.35 & 405860.625 & 22758.658 & 222.916 & 241.9 & -3.2 & NO & 0.998 & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 & 5.35 & 776508.125 & 21367.789 & 454.252 & 493.1 & -1.4 & NO & 0.998 & NO & bb \\
\hline
\end{tabular}

Dataset:
Untitled
Last Altered:
Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:42:27 Pacific Standard Time

\section*{Compound name: PFDS}

Correlation coefficient: \(\mathrm{r}=0.999800, \mathrm{r}^{\wedge} 2=0.999601\)
Calibration curve: 0.767019 * \(x+0.0116423\)
Response type: Internal Std (Ref 71), Area * ( IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(x=e x c l u d e d\) \\
\hline 1 & 1 200225P1-3 & Standard & 0.250 & 5.40 & 79.096 & 3392.257 & 0.291 & 0.4 & 45.9 & YES & 1.000 & NO & bbX \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 5.40 & 84.478 & 3412.653 & 0.309 & 0.4 & -22.4 & NO & 1.000 & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & 5.40 & 244.893 & 3819.392 & 0.801 & 1.0 & 3.0 & NO & 1.000 & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 5.40 & 402.231 & 3246.941 & 1.548 & 2.0 & 0.2 & NO & 1.000 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 5.40 & 1288.323 & 3799.922 & 4.238 & 5.5 & 10.2 & NO & 1.000 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 5.40 & 2517.942 & 3646.993 & 8.630 & 11.2 & 12.4 & NO & 1.000 & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 5.40 & 12173.148 & 4032.981 & 37.730 & 49.2 & -1.6 & NO & 1.000 & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 100.000 & 5.40 & 25147.697 & 3990.603 & 78.772 & 102.7 & 2.7 & NO & 1.000 & NO & bb \\
\hline 9 & 9 200225P1-11 & Standard & 250.000 & 5.40 & 54217.523 & 3581.742 & 189.215 & 246.7 & -1.3 & NO & 1.000 & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 & 5.40 & 104850.586 & 3418.734 & 383.368 & 499.8 & -0.0 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 11CI-PF30UdS}

Correlation coefficient: \(\mathrm{r}=0.999589, \mathrm{r}^{\wedge} 2=0.999178\)
Calibration curve: 0.454613 * \(x+0.0281832\)
Response type: Internal Std (Ref 83 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 0.250 & 5.56 & 187.509 & 19794.912 & 0.118 & 0.2 & -20.6 & NO & 0.999 & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 5.56 & 355.033 & 17291.875 & 0.257 & 0.5 & 0.5 & NO & 0.999 & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & 5.55 & 848.483 & 20924.223 & 0.507 & 1.1 & 5.3 & NO & 0.999 & NO & MM \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 5.56 & 1669.959 & 20403.285 & 1.023 & 2.2 & 9.4 & NO & 0.999 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 5.56 & 4216.296 & 19895.336 & 2.649 & 5.8 & 15.3 & NO & 0.999 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 5.56 & 8267.603 & 21078.160 & 4.903 & 10.7 & 7.2 & NO & 0.999 & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 5.56 & 39484.668 & 20754.656 & 23.781 & 52.2 & 4.5 & NO & 0.999 & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 100.000 & 5.56 & 82890.117 & 21822.719 & 47.479 & 104.4 & 4.4 & NO & 0.999 & NO & bb \\
\hline 9 & \(9.200225 \mathrm{P} 1-11\) & Standard & 250.000 & 5.56 & 186889.469 & 20369.846 & 114.685 & 252.2 & 0.9 & NO & 0.999 & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 & 5.56 & 327780.250 & 18409.998 & 222.556 & 489.5 & -2.1 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

Dataset:
Untitled
Last Altered:
Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:42:27 Pacific Standard Time

\section*{Compound name: 10:2 FTS}

Correlation coefficient: \(\mathrm{r}=0.998945, \mathrm{r}^{\wedge} 2=0.997890\)
Calibration curve: 2.19744 * x +0.426867
Response type: Internal Std (Ref 85), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 0.250 & 5.62 & 46.767 & 1004.549 & 0.582 & 0.1 & -71.8 & YES & 0.998 & NO & bbX \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 5.62 & 45.970 & 877.858 & 0.655 & 0.1 & -79.3 & YES & 0.998 & NO & bbx \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & 5.62 & 178.349 & 1029.995 & 2.164 & 0.8 & -20.9 & NO & 0.998 & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 5.61 & 464.011 & 986.869 & 5.877 & 2.5 & 24.0 & NO & 0.998 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 5.61 & 739.347 & 863.880 & 10.698 & 4.7 & -6.5 & NO & 0.998 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 5.61 & 1678.809 & 899.490 & 23.330 & 10.4 & 4.2 & NO & 0.998 & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 5.61 & 7987.114 & 851.594 & 117.238 & 53.2 & 6.3 & NO & 0.998 & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 100.000 & 5.61 & 17130.980 & 1017.819 & 210.388 & 95.5 & -4.5 & NO & 0.998 & NO & bb \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 250.000 & 5.61 & 35756.695 & 862.033 & 518.494 & 235.8 & -5.7 & NO & 0.998 & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 & 5.61 & 62127.332 & 685.745 & 1132.479 & 515.2 & 3.0 & NO & 0.998 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFDoA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999585\)
Calibration curve: \(-0.000140726^{*} x^{\wedge} 2+1.07719 * x+0.077473\)
Response type: Internal Std (Ref 83 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoDFlag & \(x=\) excluded \\
\hline 1 & 1200225 P1-3 & Standard & 0.250 & 5.64 & 593.686 & 19794.912 & 0.375 & 0.3 & 10.4 & NO & 1.000 & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 5.62 & 947.643 & 17291.875 & 0.685 & 0.6 & 12.8 & NO & 1.000 & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & 5.62 & 1787.508 & 20924.223 & 1.068 & 0.9 & -8.0 & NO & 1.000 & NO & MM \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 5.63 & 3915.553 & 20403.285 & 2.399 & 2.2 & 7.8 & NO & 1.000 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 5.63 & 9412.472 & 19895.336 & 5.914 & 5.4 & 8.4 & NO & 1.000 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 5.63 & 17203.012 & 21078.160 & 10.202 & 9.4 & -5.9 & NO & 1.000 & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 5.63 & 92027.055 & 20754.656 & 55.426 & 51.7 & 3.5 & NO & 1.000 & NO & bb \\
\hline 8 & 8200225 P 1 -10 & Standard & 100.000 & 5.63 & 188755.781 & 21822.719 & 108.119 & 101.6 & 1.6 & NO & 1.000 & NO & bb \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 250.000 & 5.63 & 414706.250 & 20369.846 & 254.485 & 244.0 & -2.4 & NO & 1.000 & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 & 5.63 & 745256.063 & 18409.998 & 506.013 & 502.7 & 0.5 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:42:27 Pacific Standard Time

\section*{Compound name: N-MeFOSA}

Coefficient of Determination: \(R^{\wedge} 2=0.999583\)
Calibration curve: \(-5.69994 e-005{ }^{*} x^{\wedge} 2+1.0553\) * \(x+-0.0250783\)
Response type: Internal Std ( Ref 87), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(\mathrm{x}=\) excluded \\
\hline 1 & \(1200225 \mathrm{P} 1-3\) & Standard & 1.250 & 5.74 & 144.805 & 18385.910 & 1.175 & 1.1 & -9.0 & NO & 1.000 & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 2.500 & 5.74 & 315.843 & 18984.031 & 2.482 & 2.4 & -4.9 & NO & 1.000 & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 5.000 & 5.74 & 732.130 & 20984.184 & 5.206 & 5.0 & -0.8 & NO & 1.000 & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 10.000 & 5.74 & 1435.152 & 20764.477 & 10.312 & 9.8 & -2.0 & NO & 1.000 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 25.000 & 5.74 & 3851.416 & 20656.791 & 27.818 & 26.4 & 5.7 & NO & 1.000 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 50.000 & 5.74 & 8076.269 & 21116.357 & 57.064 & 54.3 & 8.5 & NO & 1.000 & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 250.000 & 5.74 & 37439.641 & 21394.961 & 261.089 & 250.8 & 0.3 & NO & 1.000 & NO & bb \\
\hline 8 & \(8200225 \mathrm{P} 1-10\) & Standard & 500.000 & 5.74 & 80771.094 & 22915.986 & 525.879 & 512.5 & 2.5 & NO & 1.000 & NO & bb \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 1250.000 & 5.74: & 170242.203 & 21205.846 & 1197.789 & 1214.7 & -2.8 & NO & 1.000 & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 2500.000 & 5.74 & 324194.531 & 21072.350 & 2295.417 & 2517.5 & 0.7 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFTrDA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999093\)
Calibration curve: \(1.12175 \mathrm{e}-006^{*} x^{\wedge} 2+1.08591^{*} x+0.374825\)
Response type: Internal Std (Ref 83), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: \(1 / x\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(\mathrm{x}=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 0.250 & 5.87 & 537.969 & 19794.912 & 0.340 & & & NO & 0.999 & NO & bbXI \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 5.87 & 1220.636 & 17291.875 & 0.882 & 0.5 & -6.5 & NO & 0.999 & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & 5.87 & 2002.379 & 20924.223 & 1.196 & 0.8 & -24.4 & NO & 0.999 & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 5.87 & 4230.163 & 20403.285 & 2.592 & 2.0 & 2.1 & NO & 0.999 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 5.87 & 10647.867 & 19895.336 & 6.690 & 5.8 & 16.3 & NO & 0.999 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 5.87 & 20937.168 & 21078.160 & 12.416 & 11.1 & 10.9 & NO & 0.999 & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 5.87 & 92226.523 & 20754.656 & 55.546 & 50.8 & 1.6 & NO & 0.999 & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 100.000 & 5.87 & 195963.422 & 21822.719 & 112.247 & 103.0 & 3.0 & NO & 0.999 & NO & bb \\
\hline 9 & \(9.200225 \mathrm{P} 1-11\) & Standard & 250.000 & 5.87 & 426230.313 & 20369.846 & 261.557 & 240.5 & -3.8 & NO & 0.999 & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 & 5.87 & 807121.875 & 18409.998 & 548.019 & 504.1 & 0.8 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:42:27 Pacific Standard Time

\section*{Compound name: PFDoS}

Coefficient of Determination: \(R^{\wedge} 2=0.999202\)
Calibration curve: -4.44146e-005 * x^2 + 0.161935 * x + 0.00601354
Response type: Internal Std (Ref 89), Area * IS Conc. / IS Area )
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & FIT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & \(1200225 \mathrm{P} 1-3\) & Standard & 0.250 & 5.90 & 21.233 & 23904.145 & 0.011 & 0.0 & -87.4 & YES & 0.999 & NO & bbX \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 5.89 & 149.160 & 20899.578 & 0.089 & 0.5 & 2.8 & NO & 0.999 & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & 5.89 & 326.647 & 23536.283 & 0.173 & 1.0 & 3.4 & NO & 0.999 & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 5.89 & 580.527 & 22335.166 & 0.325 & 2.0 & -1.5 & NO & 0.999 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 5.89 & 1462.156 & 23810.332 & 0.768 & 4.7 & -5.8 & NO & 0.999 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 5.89 & 3003.140 & 23705.125 & 1.584 & 9.8 & -2.3 & NO & 0.999 & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 5.89 & 14830.561 & 23014.939 & 8.055 & 50.4 & 0.8 & NO & 0.999 & NO & bb \\
\hline 8 & \(8200225 \mathrm{P} 1-10\) & Standard & 100.000 & 5.89 & 31653.822 & 23827.521 & 16.606 & 105.6 & 5.6 & NO & 0.999 & NO & bb \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 250.000 & 5.89 & 61548.113 & 21136.031 & 36.400 & 240.6 & -3.8 & NO & 0.999 & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 & 5.89 & 115091.773 & 20449.318 & 70.352 & 504.1 & 0.8 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFTeDA}

Correlation coefficient: \(\mathrm{r}=0.999213, \mathrm{r}^{\wedge} 2=0.998426\)
Calibration curve: \(0.946667^{*} x+0.0579059\)
Response type: Internal Std (Ref 89), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: \(1 / x\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Narne & Type & Stc. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CcD Flag & \(x=\) excluded \\
\hline 1 & 1200225 P1-3 & Standard & 0.250 & 6.08 & 477.552 & 23904.145 & 0.250 & 0.2 & -19.0 & NO & 0.998 & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 6.08 & 944.693 & 20899.578 & 0.565 & 0.5 & 7.1 & NO & 0.998 & NO & MM \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & 6.08 & 1971.794 & 23536.283 & 1.047 & 1.0 & 4.5 & NO & 0.998 & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 6.08 & 3860.449 & 22335.166 & 2.161 & 2.2 & 11.1 & NO & 0.998 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 6.08 & 10577.326 & 23810.332 & 5.553 & 5.8 & 16.1 & NO & 0.998 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 6.08 & 18747.641 & 23705.125 & 9.886 & 10.4 & 3.8 & NO & 0.998 & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 6.08 & 85487.188 & 23014.939 & 46.430 & 49.0 & -2.0 & NO & 0.998 & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 100.000 & 6.08 & 193038.250 & 23827.521 & 101.269 & 106.9 & 6.9 & NO & 0.998 & NO & bb \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 250.000 & 6.08 & 379475.656 & 21136.031 & 224.425 & 237.0 & -5.2 & NO & 0.998 & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 & 6.08 & 783200.375 & 20449.318 & 478.745 & 505.7 & 1.1 & NO & 0.998 & NO & bb \\
\hline
\end{tabular}

Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:42:27 Pacific Standard Time

\section*{Compound name: N-EtFOSA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999776\)
Calibration curve: - \(4.37352 e-005^{*} x^{\wedge} 2+1.0291^{*} x+0.393476\)
Response type: Internal Std (Ref 91), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 1.250 & 6.15 & 208.553 & 23419.826 & 1.329 & 0.9 & -27.3 & NO & 1.000 & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 2.500 & 6.14 & 512.089 & 23933.094 & 3.192 & 2.7 & 8.8 & NO & 1.000 & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 5.000 & 6.14 & 1003.737 & 25590.486 & 5.852 & 5.3 & 6.1 & NO & 1.000 & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 10.000 & 6.14 & 1945.755 & 25775.242 & 11.263 & 10.6 & 5.7 & NO & 1.000 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 25.000 & 6.14 & 4870.803 & 27285.506 & 26.634 & 25.5 & 2.1 & NO & 1.000 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 50.000 & 6.14 & 9589.706 & 26960.850 & 53.069 & 51.3 & 2.6 & NO & 1.000 & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 250.000 & 6.14 & 46161.355 & 26238.824 & 262.484 & 257.5 & 3.0 & NO & 1.000 & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 500.000 & 6.14 & 95860.039 & 28234.779 & 506.550 & 502.6 & 0.5 & NO & 1.000 & NO & bb \\
\hline 9 & 9 200225P1-11 & Standard & 1250.000 & 6.14 & 201542.813 & 25151.254 & 1195.574 & 1225.2 & -2.0 & NO & 1.000 & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 2500.000 & 6.14 & 368161.094 & 23779.672 & 2309.941 & 2512.5 & 0.5 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFHxDA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999460\)
Calibration curve: \(-0.000122127^{*} x^{\wedge} 2+0.737678\) * \(x+0.157258\)
Response type: Internal Std (Ref 93 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Narne & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(\mathrm{x}=\) excluded \\
\hline 1 & 1200225 P1-3 & Standard & 0.250 & 6.41 & 753.043 & 32718.949 & 0.288 & 0.2 & -29.3 & NO & 0.999 & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 6.40 & 1211.264 & 30851.906 & 0.491 & 0.5 & -9.6 & NO & 0.999 & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & 6.40 & 2498.671 & 32443.676 & 0.963 & 1.1 & 9.2 & NO & 0.999 & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 6.41 & 4652.971 & 31620.527 & 1.839 & 2.3 & 14.1 & NO & 0.999 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 6.40 & 11228.415 & 34460.848 & 4.073 & 5.3 & 6.3 & NO & 0.999 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 6.40 & 20775.832 & 32395.119 & 8.017 & 10.7 & 6.7 & NO & 0.999 & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 6.40 & 98060.156 & 31727.350 & 38.634 & 52.6 & 5.2 & NO & 0.999 & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 100.000 & 6.41 & 211525.328 & 36623.570 & 72.196 & 99.3 & -0.7 & NO & 0.999 & NO & bb \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 250.000 & 6.40 & 436039.063 & 31588.863 & 172.545 & 243.5 & -2.6 & NO & 0.999 & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 & 6.41 & 797207.938 & 29260.670 & 340.563 & 503.4 & 0.7 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:42:27 Pacific Standard Time

\section*{Compound name: PFODA}

Coefficient of Determination: \(\mathrm{R}^{\wedge 2}=0.999550\)
Calibration curve: \(-6.40276 e-006{ }^{*} \times^{\wedge} 2+0.881896{ }^{*} x+0.0287076\)
Response type: Internal Std ( Ref 93), Area * ( IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & x=excluded \\
\hline 1 & 1 200225P1-3 & Standard & 0.250 & 6.64 & 583.234 & 32718.949 & 0.223 & 0.2 & -12.0 & NO & 1.000 & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & 6.63 & 1104.625 & 30851.906 & 0.448 & 0.5 & -5.0 & NO & 1.000 & NO & bd \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & 6.63 & 2355.217 & 32443.676 & 0.907 & 1.0 & -0.4 & NO & 1.000 & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & 6.63 & 5138.837 & 31620.527 & 2.031 & 2.3 & 13.5 & NO & 1.000 & NO & bd \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & 6.63 & 13186.104 & 34460.848 & 4.783 & 5.4 & 7.8 & NO & 1.000 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & 6.63 & 24421.926 & 32395.119 & 9.423 & 10.7 & 6.5 & NO & 1.000 & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & 6.63 & 116767.883 & 31727.350 & 46.004 & 52.2 & 4.3 & NO & 1.000 & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 100.000 & 6.63 & 258772.859 & 36623.570 & 88.322 & 100.2 & 0.2 & NO & 1.000 & NO & bb \\
\hline 9 & 9 200225P1-11 & Standard & 250.000 & 6.63 & 541393.813 & 31588.863 & 214.234 & 243.3 & -2.7 & NO & 1.000 & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 500.000 & 6.63 & 1034823.875 & 29260.670 & 442.071 & 503.1 & 0.6 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: N-MeFOSE}

Correlation coefficient: \(\mathrm{r}=0.997589, \mathrm{r}^{\wedge} 2=0.995184\)
Calibration curve: 1.07295 * \(x+0.022575\)
Response type: Internal Std (Ref 95), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: \(1 / x\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 1.250 & 6.30 & 123.446 & 17691.047 & 1.041 & 0.9 & -24.1 & NO & 0.995 & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 2.500 & 6.30 & 310.259 & 17581.641 & 2.633 & 2.4 & -2.7 & NO & 0.995 & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 5.000 & 6.29 & 675.737 & 19041.301 & 5.295 & 4.9 & -1.7 & NO & 0.995 & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 10.000 & 6.29 & 1452.987 & 18451.818 & 11.749 & 10.9 & 9.3 & NO & 0.995 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 25.000 & 6.29 & 3410.557 & 18629.246 & 27.315 & 25.4 & 1.7 & NO & 0.995 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 50.000 & 6.29 & 7090.701 & 18021.730 & 58.703 & 54.7 & 9.4 & NO & 0.995 & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 250.000 & 6.29 & 36033.684 & 19080.988 & 281.758 & 262.6 & 5.0 & NO & 0.995 & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 500.000 & 6.29 & 80229.258 & 20077.549 & 596.199 & 555.6 & 11.1 & NO & 0.995 & NO & bb \\
\hline 9 & 9 200225P1-11 & Standard & 1250.000 & 6.29 & 167555.297 & 20780.801 & 1202.997 & 1121.2 & -10.3 & NO & 0.995 & NO & bb \\
\hline 10 & \(10200225 \mathrm{P} 1-12\) & Standard & 2500.000 & 6.29 & 348097.469 & 18944.963 & 2741.422 & 2555.0 & 2.2 & NO & 0.995 & NO & bb \\
\hline
\end{tabular}

Vista Analytical Laboratory
Dataset:
Untitled
Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:42:27 Pacific Standard Time

\section*{Compound name: N-EtFOSE}

Correlation coefficient: \(r=0.999471, r^{\wedge} 2=0.998943\)
Calibration curve: 0.98218 * \(x+0.297158\)
Response type: Internal Std (Ref 97), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 1.250 & 6.45 & 180.219 & 19924.037 & 1.350 & 1.1 & -14.3 & NO & 0.999 & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 2.500 & 6.44 & 371.980 & 21132.717 & 2.626 & 2.4 & -5.1 & NO & 0.999 & NO & MM \\
\hline 3 & 3 200225P1-5 & Standard & 5.000 & 6.44 & 798.631 & 22095.117 & 5.393 & 5.2 & 3.8 & NO & 0.999 & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 10.000 & 6.44 & 1454.679 & 21809.131 & 9.952 & 9.8 & -1.7 & NO & 0.999 & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 25.000 & 6.44 & 4005.540 & 22094.990 & 27.048 & 27.2 & 8.9 & NO & 0.999 & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 50.000 & 6.44 & 7915.414 & 22275.373 & 53.017 & 53.7 & 7.4 & NO & 0.999 & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 250.000 & 6.44 & 37896.887 & 22478.264 & 251.541 & 255.8 & 2.3 & NO & 0.999 & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 500.000 & 6.44 & 80644,219 & 23963.234 & 502.107 & 510.9 & 2.2 & NO & 0.999 & NO & bb \\
\hline 9 & 9 200225P1-11 & Standard & 1250.000 & 6.44 & 183635.031 & 23505.465 & 1165.616 & 1186.5 & -5.1 & NO & 0.999 & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 2500.000 & 6.44 & 373089.125 & 22299.754 & 2496.211 & 2541.2 & 1.6 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C3-PFBA-EIS}

Response Factor: 894.214
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoO Flag & \(x=e x c l u d e d ~\) \\
\hline 1 & 1200225 P1-3 & Standard & 12.500 & 1.42 & 9872.161 & & 9872.161 & 11.0 & -11.7 & NO & & NO & bbX \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 1.42 & 9951.374 & & 9951.374 & 11.1 & -11.0 & NO & & NO & bbX \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 1.42 & 10533.185 & & 10533.185 & 11.8 & -5.8 & NO & & NO & \(b b X\) \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 1.42 & 10658.726 & & 10658.726 & 11.9 & -4.6 & NO & & NO & \(b b X\) \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 1.42 & 10773.149 & & 10773.149 & 12.0 & -3.6 & NO & & NO & bbX \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 1.42 & 11177.67e & & 11177.676 & 12.5 & 0.0 & NO & & NO & \(b b\) \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 1.42 & 11035.579 & & 11035.579 & 12.3 & -1.3 & NO & & NO & \(b b X\) \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 1.42 & 11651.084 & & 11651.084 & 13.0 & 4.2 & NO & & NO & \(b b X\) \\
\hline 9 & 9 200225P1-11 & Standard & 12.500 & 1.42 & 11160.096 & & 11160.096 & 12.5 & -0.2 & NO & & NO & bbX \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 1.42 & 10979.427 & & 10979.427 & 12.3 & -1.8 & NO & & NO & bbX \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Dataset: & Untitled \\
Last Altered: & Wednesday, February 26, 2020 11:36:10 Pacific Standard Time \\
Printed: & Wednesday, February 26, 2020 11:42:27 Pacific Standard Time
\end{tabular}

\section*{Compound name: 13C3-PFBA-RSD}

\section*{Response Factor: 0.799885}

RRF SD: 0.00658297, Relative SD: 0.82299
Response type: Internal Std (Ref 99), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Canc. & \%Dev & Conc. Flag & COD & CoD Flag & \(\mathrm{x}=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 1.42 & 9872.161 & 12266.709 & 10.060 & 12.6 & 0.6 & NO & & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 1.42 & 9951.374 & 12331.454 & 10.087 & 12.6 & 0.9 & NO & & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 1.42 & 10533.185 & 13320.676 & 9.884 & 12.4 & -1.1 & NO & & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 1.42 & 10658.726 & 13219.248 & 10.079 & 12.6 & 0.8 & NO & & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 1.42 & 10773.149 & 13469.415 & 9.998 & 12.5 & -0.0 & NO & & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 1.42 & \(11177.67 \in\) & 14016.627 & 9.968 & 12.5 & -0.3 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 1.42 & 11035.579 & 13947.172 & 9.891 & 12.4 & -1.1 & NO & & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 1.42 & 11651.084 & 14579.886 & 9.989 & 12.5 & -0.1 & NO & & NO & bb \\
\hline 9 & 9 200225P1-11 & Standard & 12.500 & 1.42 & 11160.096 & 13803.979 & 10.106 & 12.6 & 1.1 & NO & & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 1.42 & 10979.427 & 13829.581 & 9.924 & 12.4 & -0.7 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C3-PFPeA-EIS}

Response Factor: 1131.82
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 2.34 & 12501.022 & & 12501.022 & 11.0 & -11.6 & NO & & NO & bbX \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 2.34 & 12270.164 & & 12270.164 & 10.8 & -13.3 & NO & & NO & \(b b X\) \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 2.34 & 13581.839 & & 13581.839 & 12.0 & -4.0 & NO & & NO & \(b b x\) \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 2.34 & 12997,605 & & 12997.605 & 11.5 & -8.1 & NO & & NO & \(b b x\) \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 2.34 & 13570.021 & & 13570.021 & 12.0 & -4.1 & NO & & NO & bbx \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 2.34 & 14147.710 & & 14147.710 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 2.34 & 14067.085 & & 14067.085 & 12.4 & -0.6 & NO & & NO & bbX \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 2.34 & 14119.896 & & 14119.896 & 12.5 & -0.2 & NO & & NO & \(b b x\) \\
\hline 9 & 9.200225P1-11 & Standard & 12.500 & 2.34 & 12998.085 & & 12998.085 & 11.5 & -8.1 & NO & & NO & \(b b x\) \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 2.35 & 13078.697 & & 13078.697 & 11.6 & -7.6 & NO & & NO & \(b \mathrm{bx}\) \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Dataset: & Untitled \\
Last Altered: & Wednesday, February 26, 2020 11:36:10 Pacific Standard Time \\
Printed: & Wednesday, February 26, 2020 11:42:27 Pacific Standard Time \\
\hline
\end{tabular}

\section*{Compound name: 13C3-PFPeA-RSD}

Response Factor: 0.58948
RRF SD: 0.0172638 , Relative SD: 2.92865
Response type: Internal Std ( Ref 100 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(\mathrm{x}=\) excluded \\
\hline 1 & \(1200225 \mathrm{P} 1-3\) & Standard & 12.500 & 2.34 & 12501.022 & 21026.791 & 7.432 & 12.6 & 0.9 & NO & & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 2.34 & 12270.164 & 21114.68 C & 7.264 & 12.3 & -1.4 & NO & & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 2.34 & 13581.839 & 23180.252 & 7.324 & 12.4 & -0.6 & NO & & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 2.34 & 12997.605 & 21748.432 & 7.470 & 12.7 & 1.4 & NO & & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 2.34 & 13570.021 & 22122.477 & 7.668 & 13.0 & 4.1 & NO & & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 2.34 & 14147.710 & 24673.588 & 7.167 & 12.2 & -2.7 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 2.34 & 14067.085 & 23036.369 & 7.633 & 12.9 & 3.6 & NO & & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 2.34 & 14119.896 & 24870.381 & 7.097 & 12.0 & -3.7 & NO & & NO & bb \\
\hline 9 & 9 200225P1-11 & Standard & 12.500 & 2.34 . & 12998.085 & 22955.182 & 7.078 & 12.0 & -3.9 & NO & & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 2.35 & 13078.697 & 21647.338 & 7.552 & 12.8 & 2.5 & NO & & NO & bb \\
\hline
\end{tabular}

Compound name: 13C3-PFBS-EIS
Response Factor: 120.043
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & COD Flag & \(x=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 2.62 & 1408.205 & & 1408.205 & 11.7 & -6.2 & NO & & NO & bbX \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 2.62 & 1358.158 & & 1358.158 & 11.3 & -9.5 & NO & & NO & \(b b x\) \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 2.62 & 1522.097 & & 1522.097 & 12.7 & 1.4 & NO & & NO &  \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 2.62 & 1551.953 & & 1551.953 & 12.9 & 3.4 & NO & & NO & bbx \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 2.61 & 1433.439 & & 1433.439 & 11.9 & -4.5 & NO & & NO & bbx \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 2.62 & 1500.538 & & 1500.538 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 2.62 & 1530.989 & & 1530.989 & 12.8 & 2.0 & NO & & NO & bbx \\
\hline 8 & 8200225 P 1 -10 & Standard & 12.500 & 2.62 & 1504.221 & & 1504.221 & 12.5 & 0.2 & NO & & NO & bbx \\
\hline 9 & 9 200225P1-11 & Standard & 12.500 & 2.61 & 1395.008 & & 1395.008 & 11.6 & -7.0 & NO & & NO & bbX \\
\hline 10 & 10200225 P1-12 & Standard & 12.500 & 2.62 & 1362.782 & & 1362.782 & 11.4 & -9.2 & NO & & NO & bbX \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Dataset: & Untitled \\
& \\
Last Altered: & Wednesday, February 26, 2020 11:36:10 Pacific Standard Time \\
Printed: & Wednesday, February 26, 2020 11:42:27 Pacific Standard Time
\end{tabular}

\section*{Compound name: 13C3-PFBS-RSD}

Response Factor: 1.12694
RRF SD: 0.108089, Relative SD: 9.59142
Response type: Internal Std (Ref 101), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & x=excluded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 2.62 & 1408.205 & 1002.938 & 17.551 & 15.6 & 24.6 & NO & & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 2.62 & 1358.158 & 1233.002 & 13.769 & 12.2 & -2.3 & NO & & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 2.62 & 1522.097 & 1410.673 & 13.487 & 12.0 & -4.3 & NO & & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 2.62 & 1551.953 & 1330.276 & 14.583 & 12.9 & 3.5 & NO & & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 2.61 & 1433.439 & 1261.312 & 14.206 & 12.6 & 0.8 & NO & & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 2.62 & 1500.538 & 1378.876 & 13.603 & 12.1 & -3.4 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 2.62 & 1530.989 & 1316.816 & 14.533 & 12.9 & 3.2 & NO & & NO & bb \\
\hline 8 & 8200225 P1-10 & Standard & 12.500 & 2.62 & 1504.221 & 1449.444 & 12.972 & 11.5 & -7.9 & NO & & NO & bb \\
\hline 9 & 9.200225P1-11 & Standard & 12.500 & 2.61 & 1395.008 & 1340.803 & 13.005 & 11.5 & -7.7 & NO & & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 2.62 & 1362.782 & 1294.671 & 13.158 & 11.7 & -6.6 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C3-HFPO-DA-EIS}

Response Factor: 314.205
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area. & IS Area & Response & Conc. & \%Dev & Conc. Fiag & CoD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1200225 P1-3 & Standard & 12.500 & 3.34 & 3378.505. & & 3378.505 & 10.8 & -14.0 & NO & & NO & bbX \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 3.34 & 3609.127 & & 3609.127 & 11.5 & -8.1 & NO & & NO & \(b b x\) \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 3.34 & 3804.277 & & 3804.277 & 12.1 & -3.1 & NO & & NO & \(b b x\) \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 3.34 & 3980.255 & & 3980.255 & 12.7 & 1.3 & NO & & NO & \(b b x\) \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 3.34 & 3826.282 & & 3826.282 & 12.2 & -2.6 & NO & & NO & \(b b x\) \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 3.34 & 3927.562 & & 3927.562 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 3.34 & 4045.775 & & 4045.775 & 12.9 & 3.0 & NO & & NO & \(b b X\) \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 3.34 & 4556.917 & & 4556.917 & 14.5 & 16.0 & NO & & NO & \(b b x\) \\
\hline 9 & 9200225 P 1 -11 & Standard & 12.500 & 3.34 & 4140.616 & & 4140.616 & 13.2 & 5.4 & NO & & NO & \(b b x\) \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 3.34 & 4209.138 & & 4209.138 & 13.4 & 7.2 & NO & & NO & bbX \\
\hline
\end{tabular}

Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:42:27 Pacific Standard Time

\section*{Compound name: 13C3-HFPO-DA-RSD}

Response Factor: 0.174455
RRF SD: 0.0112091 , Relative SD: 6.4252
Response type: Internal Std (Ref 100 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(\mathrm{x}=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 3.34 & 3378.505 & 21026.791 & 2.008 & 11.5 & -7.9 & NO & & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 3.34 & 3609.127 & 21114.68C & 2.137 & 12.2 & -2.0 & NO & & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 3.34 & 3804.277 & 23180.252 & 2.051 & 11.8 & -5.9 & NO & & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 3.34 & 3980.255 & 21748.432 & 2.288 & 13.1 & 4.9 & NO & & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 3.34 & 3826.282 & 22122.477 & 2.162 & 12.4 & -0.9 & NO & & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 3.34 & 3927.562 & 24673.588 & 1.990 & 11.4 & -8.8 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 3.34 & 4045.775 & 23036.369 & 2.195 & 12.6 & 0.7 & NO & & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 3.34 & 4556.917 & 24870.381 & 2.290 & 13.1 & 5.0 & NO & & NO & bb \\
\hline 9 & 9 200225P1-11 & Standard & 12.500 & 3.34: & 4140.616 & 22955.182 & 2.255 & 12.9 & 3.4 & NO & & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 3.34 & 4209.138 & 21647.338 & 2.431 & 13.9 & 11.5 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C2-4:2 FTS-EIS}

Response Factor: 149.053
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dey & Conc. Flag & CoD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 3.04 & 1753.283 & & 1753.283 & 11.8 & -5.9 & NO & & NO & bbX \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 3.04 & 1601.853 & & 1601.853 & 10.7 & -14.0 & NO & & NO & bbX \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 3.04 & 1829.602 & & 1829.602 & 12.3 & -1.8 & NO & & NO & bbX \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 3.04 & 1688.643 & & 1688.643 & 11.3 & -9.4 & NO & & NO & bbX \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 3.04 & 1677.821 & & 1677.821 & 11.3 & -9.9 & NO & & NO & \(b b x\) \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 3.04 & 1863.165 & & 1863.165 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 3.04 & 1822.118 & & 1822.118 & 12.2 & -2.2 & NO & & NO & bbX \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 3.04 & 1658.604 & & 1658.604 & 11.1 & -11.0 & NO & & NO & bbx \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 12.500 & 3.04 & 1513.540 & & 1513.540 & 10.2 & -18.8 & NO & & NO & \(b b x\) \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 3.04 & 1533.288 & & 1533.288 & 10.3 & -17.7 & NO & & NO & bbX \\
\hline
\end{tabular}

Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:42:27 Pacific Standard Time

\section*{Compound name: 13C2-4:2 FTS-RSD}

Response Factor: 1.31363
RRF SD: 0.175562 , Relative SD: 13.3647
Response type: Internal Std (Ref 101), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Fiag & \(x=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 3.04 & 1753.283 & 1002.938 & 21.852 & 16.6 & 33.1 & NO & & NO & bb \\
\hline 2. & 2 200225P1-4 & Standard & 12.500 & 3.04 & 1601.853 & 1233.002 & 16.239 & 12.4 & -1.1 & NO & & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 3.04 & 1829.602 & 1410.673 & 16.212 & 12.3 & -1.3 & NO & & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 3.04 & 1688.643 & 1330.276 & 15.867 & 12.1 & -3.4 & NO & & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 3.04 & 1677.821 & 1261.312 & 16.628 & 12.7 & 1.3 & NO & & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 3.04 & 1863.165 & 1378.876 & 16.890 & 12.9 & 2.9 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 3.04 & 1822.118 & 1316.816 & 17.297 & 13.2 & 5.3 & NO & & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 3.04 & 1658.604 & 1449.444 & 14.304 & 10.9 & -12.9 & NO & & NO & bb \\
\hline 9 & 9 200225P1-11 & Standard & 12.500 & 3.04 & 1513.540 & 1340.803 & 14.110 & 10.7 & -14.1 & NO & & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 3.04 & 1533.288 & 1294.671 & 14.804 & 11.3 & -9.8 & NO & & NO & bb \\
\hline
\end{tabular}

Compound name: 13C2-PFHxA-EIS
Response Factor: 1794.78
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 3.13 & 20600.543 & & 20600.543 & 11.5 & -8.2 & NO & & NO & bbX \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 3.13 & 20141.500 & & 20141.500 & 11.2 & -10.2 & NO & & NO & bbX \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 3.13 & 22269.994 & & 22269.994 & 12.4 & -0.7 & NO & & NO & bbX \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 3.13 & 21692.803 & & 21692.803 & 12.1 & -3.3 & NO & & NO & bbX \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 3.13 & 21797.625 & & 21797.625 & 12.1 & -2.8 & NO & & NO & bbX \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 3.13 & 22434.781 & & 22434.781 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 3.13 & 22617.182 & & 22617.182 & 12.6 & 0.8 & NO & & NO & bbX \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 3.13 & 24636.209 & & 24636.209 & 13.7 & 9.8 & NO & & NO & bbx \\
\hline 9 & 9 200225P1-11 & Standard & 12.500 & 3.13 & 22282.359 & & 22282.359 & 12.4 & -0.7 & NO & & NO & bbX \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 3.13 & 21770.824 & & 21770.824 & 12.1 & -3.0. & NO & & NO & bbX \\
\hline
\end{tabular}

Vista Analytical Laboratory
Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:42:27 Pacific Standard Time

\section*{Compound name: 13C2-PFHxA-RSD}

Response Factor: 0.973517
RRF SD: 0.0275493 , Relative SD: 2.82987
Response type: Internal Std ( Ref 100 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoL) Flag & \(\mathrm{x}=\) excluded \\
\hline 1 & 1200225 P 1 -3 & Standard & 12.500 & 3.13 & 20600.543 & 21026.791 & 12.247 & 12.6 & 0.6 & NO & & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 3.13 & 20141.500 & 21114.68C & 11.924 & 12.2 & -2.0 & NO & & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 3.13 & 22269.994 & 23180.252 & 12.009 & 12.3 & -1.3 & NO & & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 3.13 & 21692.803 & 21748.432 & 12.468 & 12.8 & 2.5 & NO & & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 3.13 & 21797.625 & 22122.477 & 12.316 & 12.7 & 1.2 & NO & & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 3.13 & 22434.781 & 24673.588 & 11.366 & 11.7 & -6.6 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 3.13 & 22617.182 & 23036.369 & 12.273 & 12.6 & 0.9 & NO & & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 3.13 & 24636.209 & 24870.381 & 12.382 & 12.7 & 1.8 & NO & & NO & bb \\
\hline 9 & 9 200225P1-11 & Standard & 12.500 & 3.13 & 22282.359 & 22955.182 & 12.134 & 12.5 & -0.3 & NO & & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 3.13 & 21770.824 & 21647.338 & 12.571 & 12.9 & 3.3 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C4-PFHPA-EIS}

Response Factor: 1233.45
RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT \({ }^{-1}\) & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(x=\) exciuded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 3.73 & 14315.611 & & 14315.611 & 11.6 & -7.2 & NO & & NO & bbX \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 3.72 & 13755.051 & & 13755.051 & 11.2 & -10.8 & NO & & NO & \(b b X\) \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 3.72 & 15124.546 & & 15124.546 & 12.3 & -1.9 & NO & & NO & \(b b x\) \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 3.72 & 15091.041 & & 15091.041 & 12.2 & -2.1 & NO & & NO & \(b b x\) \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 3.72 & 15019.074 & & 15019.074 & 12.2 & -2.6 & NO & & NO & bbX \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 3.72 & 15418.089 & & 15418.089 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 3.72 & 15402.855 & & 15402.855 & 12.5 & -0.1 & NO & & NO & bbX \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 3.73 & 16144.262 & & 16144.262 & 13.1 & 4.7 & NO & & NO & \(b b X\) \\
\hline 9 & 9 200225P1-11 & Standard & 12.500 & 3.72 & 14336.560 & & 14336.560 & 11.6 & -7.0 & NO & & NO & \(b b x\) \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 3.72 & 14353.899 & & 14353.899 & 11.6 & -6.9 & NO & & NO & \(b b X\) \\
\hline
\end{tabular}

Dataset: Untitled
Last Altered:
Printed:
esday, February 26, 2020 11.36.10 Pacific Standard Time Wednesday, February 26, 2020 11:42:27 Pacific Standard Time

\section*{Compound name: 13C4-PFHpA-RSD}

Response Factor: 0.658782
RRF SD: 0.0229663, Relative SD: 3.48617
Response type: Internal Std (Ref 100 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & COD Flag & \(x=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 3.73 & 14315.611 & 21026.791 & 8.510 & 12.9 & 3.3 & NO & & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 3.72 & 13755.051 & 21114.68C & 8.143 & 12.4 & -1.1 & NO & & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 3.72 & 15124.546 & 23180.252 & 8.156 & 12.4 & -1.0 & NO & & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 3.72 & 15091.041 & 21748.432 & 8.674 & 13.2 & 5.3 & NO & & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 3.72 & 15019.074 & 22122.477 & 8.486 & 12.9 & 3.1 & NO & & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 3.72 & 15418.089 & 24673.588 & 7.811 & 11.9 & -5.1 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 3.72 & 15402.855 & 23036.369 & 8.358 & 12.7 & 1.5 & NO & & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 3.73 & 16144.262 & 24870.381 & 8.114 & 12.3 & -1.5 & NO & & NO & bb \\
\hline 9 & \(9200225 \mathrm{P}^{1-11}\) & Standard & 12.500 & 3.72 & 14336.560 & 22955.182 & 7.807 & 11.9 & -5.2 & NO & & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 3.72 & 14353.899 & 21647.338 & 8.288 & 12.6 & 0.7 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C3-PFHxS-EIS}

Response Factor: 273.316
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc: & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & x=excluded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 3.87 & 3089.414 & & 3089.414 & 11.3 & -9.6 & NO & & NO & bbX \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 3.86 & 3233.223 & & 3233.223 & 11.8 & -5.4 & NO & & NO & \(b b x\) \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 3.86 & 3312.404 & & 3312.404 & 12.1 & -3.0 & NO & & NO & bbx \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 3.86 & 3236.657 & & 3236.657 & 11.8 & -5.3 & NO & & NO & bbx \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 3.86 & 3307.574 & & 3307.574 & 12.1 & -3.2 & NO & & NO & bbX \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 3.86 & 3416.446 & & 3416.446 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 3.86 & 3190.156 & & 3190.156 & 11.7 & -6.6 & NO & & NO & bbx \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 3.86 & 3452.222 & & 3452.222 & 12.6 & 1.0 & NO & & NO & bbx \\
\hline 9 & 9 200225P1-11 & Standard & 12.500 & 3.86 & 3280.190 & & 3280.190 & 12.0 & -4.0 & NO & & NO & \(b \mathrm{bx}\) \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 3.86 & 3040.974 & & 3040.974 & 11.1 & -11.0 & NO & & NO & bbx \\
\hline
\end{tabular}
Dataset: Untitled

Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:42:27 Pacific Standard Time

\section*{Compound name: 13C3-PFHxS-RSD}

Response Factor: 2.51835
RRF SD: 0.220378, Relative SD: 8.7509
Response type: Internal Std ( Ref 101), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Responsie & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 3.87 & 3089.414 & 1002.938 & 38.505 & 15.3 & 22.3 & NO & & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 3.86 & 3233.223 & 1233.002 & 32.778 & 13.0 & 4.1 & NO & & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 3.86 & 3312.404 & 1410.673 & 29.351 & 11.7 & -6.8 & NO & & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 3.86 & 3236.657 & 1330.276 & 30.413 & 12.1 & -3.4 & NO & & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 3.86 & 3307.574 & 1261.312 & 32.779 & 13.0 & 4.1 & NO & & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 3.86 & 3416.446 & 1378.876 & 30.971 & 12.3 & -1.6 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 3.86 & 3190.156 & 1316.816 & 30.283 & 12.0 & -3.8 & NO & & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 3.86 & 3452.222 & 1449.444 & 29.772 & 11.8 & -5.4 & NO & & NO & bb \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 12.500 & 3.86 & 3280.190 & 1340.803 & 30.580 & 12.1 & -2.9 & NO & & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 3.86 & 3040.974 & 1294.671 & 29.360 & 11.7 & -6.7 & NO & & NO & bb \\
\hline
\end{tabular}

Compound name: 13C2-6:2 FTS-EIS
Response Factor: 122.797
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD̄ Flag & x=excluded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 4.18 & 1250.351 & & 1250.351 & 10.2 & -18.5 & NO & & NO & bbX \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 4.18 & 1319.649 & & 1319.649 & 10.7 & -14.0 & NO & & NO & \(b \mathrm{bx}\) \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 4.18 & 1355.616 & & 1355.616 & 11.0 & -11.7 & NO & & NO & bdX \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 4.17 & 1587.204 & & 1587.204 & 12.9 & 3.4 & NO & & NO & bbX \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 4.17 & 1543.772 & & 1543.772 & 12.6 & 0.6 & NO & & NO & \(b b x\) \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 4.17 & 1534.965 & & 1534.965 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 4.18 & 1552.968 & & 1552.968 & 12.6 & 1.2 & NO & & NO & \(b b x\) \\
\hline 8 & \(8200225 \mathrm{P} 1-10\) & Standard & 12.500 & 4.18 & 1647.530 & & 1647.530 & 13.4 & 7.3 & NO & & NO & \(b b x\) \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 12.500 & 4.18 & 1393.243 & & 1393.243 & 11.3 & -9.2 & NO & & NO & \(b \mathrm{bx}\) \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 4.18 & 1474.945 & & 1474.945 & 12.0 & -3.9 & NO & & NO & bbx \\
\hline
\end{tabular}

Vista Analytical Laboratory
Dataset: Untitled

Last Altered:
Printed:
Wednesday, February 26, 2020 11:36:10 Pacific Standard Time Wednesday, February 26, 2020 11:42:27 Pacific Standard Time

\section*{Compound name: 13C2-6:2 FTS-RSD}

Response Factor: 0.384457
RRF SD: 0.0445393, Relative SD: 11.585
Response type: Internal Sid ( Ref 104 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & x=excluded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 4.18 & 1250.351 & 3783.710 & 4.131 & 10.7 & -14.0 & NO & & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 4.18 & 1319.649 & 3695.773 & 4.463 & 11.6 & -7.1 & NO & & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 4.18 & 1355.616 & 3791.307 & 4.469 & 11.6 & -7.0 & NO & & NO & bd \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 4.17 & 1587.204 & 3236.887 & 6.129 & 15.9 & 27.5 & NO & & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 4.17 & 1543.772 & 4232.745 & 4.559 & 11.9 & -5.1 & NO & & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 4.17 & 1534.965 & 3902.713 & 4.916 & 12.8 & 2.3 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 4.18 & 1552.968 & 4223.934 & 4.596 & 12.0 & -4.4 & NO & & NO & bb \\
\hline 8 & \(8200225 \mathrm{P} 1-10\) & Standard & 12.500 & 4.18 & 1647.530 & 4363.684 & 4.719 & 12.3 & -1.8 & NO & & NO & bb \\
\hline 9 & \(9200225 \mathrm{P}_{1-11}\) & Standard & 12.500 & 4.18 & 1393.243 & 3634.562 & 4.792 & 12.5 & -0.3 & NO & & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 4.18 & 1474.945 & 3490.466 & 5.282 & 13.7 & 9.9 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C5-PFNA-EIS}

Response Factor: 1492
RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Narne & Type & Std. Conic & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & COD Fiag & \(x=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 4.67 & 17239.375 & & 17239.375 & 11.6 & -7.6 & NO & & NO & bbX \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 4.67 & 16726.338 & & 16726.338 & 11.2 & -10.3 & NO & & NO & \(b b x\) \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 4.67 & 19469.943 & & 19469.943 & 13.0 & 4.4 & NO & & NO & \(b b x\) \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 4.67 & 17698.107 & & 17698.107 & 11.9 & -5.1 & NO & & NO & bbX \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 4.67 & 19189.289 & & 19189.289 & 12.9 & 2.9 & NO & & NO & \(b b x\) \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 4.67 & 18650.008 & & 18650.008 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 4.67 & 19754.828 & & 19754.828 & 13.2 & 5.9 & NO & & NO & \(b b x\) \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 4.67 & 19232.490 & & 19232.490 & 12.9 & 3.1 & NO & & NO & \(b b x\) \\
\hline 9 & 9 200225P1-11 & Standard & 12.500 & 4.67 & 18824.725 & & 18824.725 & 12.6 & 0.9 & NO & & NO & \(b b x\) \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 4.67 & 17270.096 . & & 17270.096 & 11.6 & -7.4 & NO & & NO & bbX \\
\hline
\end{tabular}

Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:42:27 Pacific Standard Time

\section*{Compound name: 13C5-PFNA-RSD}

Response Factor: 0.937983
RRF SD: 0.0315373 , Relative SD: 3.36224
Response type: Internal Sid (Ref 103 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & FIT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1200225 P1-3 & Standard & 12.500 & 4.67 & 17239.375 & 19086.615 & 11.290 & 12.0 & -3.7 & NO & & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 4.67 & 16726.338 & 18558.656 & 11.266 & 12.0 & -3.9 & NO & & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 4.67 & 19469.943 & 20561.016 & 11.837 & 12.6 & 1.0 & NO & & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 4.67 & 17698.107 & 18224.971 & 12.139 & 12.9 & 3.5 & NO & & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 4.67 & 19189.289 & 19280.119 & 12.441 & 13.3 & 6.1 & NO & & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 4.67 & 18650.008 & 20431.225 & 11.410 & 12.2 & -2.7 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 4.67 & 19754.828 & 20764.564 & 11.892 & 12.7 & 1.4 & NO & & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 4.67 & 19232.490 & 21059.193 & 11.416 & 12.2 & -2.6 & NO & & NO & bb \\
\hline 9 & 9 200225P1-11 & Standard & 12.500 & 4.67 & 18824.725 & 20309.342 & 11.586 & 12.4 & -1.2 & NO & & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 4.67 & 17270.096 & 18033.258 & 11.971 & 12.8 & 2.1 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C8-PFOSA-EIS}

Response Factor: 375.823
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & is Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 4.73 & 4235.302 & & 4235.302 & 11.3 & -9.8 & NO & & NO & bbX \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 4.73 & 4234.348 & & 4234.348 & 11.3 & -9.9 & NO & & NO & bbX \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 4.73 & 4865.226 & & 4865.226 & 12.9 & 3.6 & NO & & NO & \(b b x\) \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 4.73 & 4669.988 & & 4669.988 & 12.4 & -0.6 & NO & & NO & bbX \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 4.73 & 4849.630 & & 4849.630 & 12.9 & 3.2 & NO & & NO & bbX \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 4.73 & 4697.788 & & 4697.788 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 4.73 & 4952.633 & & 4952.633 & 13.2 & 5.4 & NO & & NO & bbX \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 4.73 & 4614.442 & & 4614.442 & 12.3 & -1.8 & NO & & NO & bbX \\
\hline 9 & 9 200225P1-11 & Standard & 12.500 & 4.73 & 4190.781 & & 4190.781 & 11.2 & -10.8 & NO & & NO & bbx \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 4.73 & 4149.340 & & 4149.340 & 11.0 & -11.7 & NO & & NO & bbx \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Dataset: & Untitled \\
Last Altered: & Wednesday, February 26, 2020 11:36:10 Pacific Standard Time \\
Printed: & Wednesday, February 26, 2020 11:42:27 Pacific Standard Time \\
\hline
\end{tabular}

\section*{Compound name: 13C8-PFOSA-RSD}

Response Factor: 0.21001
RRF SD: 0.0157948 , Relative SD: 7.52098
Response type: Internal Std (Ref 106 ), Area * ( IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Filag & \(\mathrm{x}=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 4.73 & 4235.302 & 19831.211 & 2.670 & 12.7 & 1.7 & NO & & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 4.73 & 4234.348 & 20433.932 & 2.590 & 12.3 & -1.3 & NO & & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 4.73 & 4865.226 & 23449.227 & 2.593 & 12.3 & -1.2 & NO & & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 4.73 & 4669.988 & 21906.523 & 2.665 & 12.7 & 1.5 & NO & & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 4.73 & 4849.630 & 23637.857 & 2.565 & 12.2 & -2.3 & NO & & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 4.73 & 4697.788 & 22421.760 & 2.619 & 12.5 & -0.2 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 4.73 & 4952.633 & 19698.072 & 3.143 & 15.0 & 19.7 & NO & & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 4.73 & 4614.442 & 23404.813 & 2.464 & 11.7 & -6.1 & NO & & NO & bb \\
\hline 9 & 9 200225P1-11 & Standard & 12.500 & 4.73 & 4190.781 & 21266.988 & 2.463 & 11.7 & -6.2 & NO & & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 4.73 & 4149.340 & 20920.873 & 2.479 & 11.8 & -5.6 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C2-PFOA-EIS}

Response Factor: 1593.57
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(x=e x c l u d e d\) \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 4.24 & 18905.670 & & 18905.670 & 11.9 & -5.1 & NO & & NO & bbX \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 4.23 & 19025.869 & & 19025.869 & 11.9 & -4.5 & NO & & NO & \(b b X\) \\
\hline 3 & \(3200225 \mathrm{P}_{1-5}\) & Standard & 12.500 & 4.23 & 19788.479 & & 19788.479 & 12.4 & -0.7 & NO & & NO & \(b b X\) \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 4.23 & 21544.221 & & 21544.221 & 13.5 & 8.2 & NO & & NO & \(b b X\) \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 4.23 & 20464.119 & & 20464.119 & 12.8 & 2.7 & NO & & NO & \(b b x\) \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 4.23 & 19919.584 & & 19919.584 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 4.23 & 20725.129 & & 20725.129 & 13.0 & 4.0 & NO & & NO & bbx \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 4.23 & 21582.922 & & 21582.922 & 13.5 & 8.4 & NO & & NO & \(b b x\) \\
\hline 9 & 9 200225P1-11 & Standard & 12.500 & 4.23 & 20718.783 & & 20718.783 & 13.0 & 4.0 & NO & & NO & \(b b X\) \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 4.23 & 17996.074 & & 17996.074 & 11.3 & -9.7 & NO & & NO & bbX \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Dataset: & Untitled \\
& \\
Last Altered: & Wednesday, February 26, 2020 11:36:10 Pacific Standard Time \\
Printed: & Wednesday, February 26, 2020 11:42:27 Pacific Standard Time
\end{tabular}

\section*{Compound name: 13C2-PFOA-RSD}

Response Factor: 0.922223
RRF SD: 0.0497235 , Relative SD: 5.39169
Response type: Internal Std (Ref 102), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & x=excluded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 4.24 & 18905.670 & 20999.771 & 11.253 & 12.2 & -2.4. & NO & & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 4.23 & 19025.869 & 21350.887 & 11.139 & 12.1 & -3.4 & NO & & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 4.23 & 19788.479 & 21723.881 & 11.386 & 12.3 & -1.2 & NO & & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 4.23 & 21544.221 & 21038.039 & 12.801 & 13.9 & 11.0 & NO & & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 4.23 & 20464.119 & 23013.834 & 11.115 & 12.1 & -3.6 & NO & & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 4.23 & 19919.584 & 22838.305 & 10.903 & 11.8 & -5.4 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 4.23 & 20725.129 & 23687.217 & 10.937 & 11.9 & -5.1 & NO & & NO & bb \\
\hline 8 & 8200225 P1-10 & Standard & 12.500 & 4.23 & 21582.922 & 23445.688 & 11.507 & 12.5 & -0.2 & NO & & NO & bb \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 12.500 & 4.23 & 20718.783 & 21333.131 & 12.140 & 13.2 & 5.3 & NO & & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 4.23 & 17996.074 & 18595.418 & 12.097 & 13.1 & 4.9 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C8-PFOS-EIS}

Response Factor: 291.759
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & Coí Flag & \(x=e x c l u d e d ~\) \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 4.76 & 3392.257 & & 3392.257 & 11.6 & -7.0 & NO & & NO & bbX \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 4.75 & 3412.653 & & 3412.653 & 11.7 & -6.4 & NO & & NO & bbx \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 4.75 & 3819.392 & & 3819.392 & 13.1 & 4.7 & NO & & NO & bbX \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 4.75 & 3246.941 & & 3246.941 & 11.1 & -11.0 & NO & & NO & bbX \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 4.75 & 3799.922 & & 3799.922 & 13.0 & 4.2 & NO & & NO & bbX \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 4.75 & 3646.993 & & 3646.993 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 4.75 & 4032.981 & & 4032.981 & 13.8 & 10.6 & NO & & NO & bbX \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 4.75 & 3990.603 & & 3990.603 & 13.7 & 9.4 & NO & & NO & \(b \mathrm{bx}\) \\
\hline 9 & 9 200225P1-11 & Standard & 12.500 & 4.75 & 3581.742 & & 3581.742 & 12.3 & -1.8 & NO & & NO & bbX \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 4.75 & 3418.734 & & 3418.734 & 11.7 & -6.3 & NO & & NO & bdX \\
\hline
\end{tabular}

Vista Analytical Laboratory
Dataset:
Untitled
Last Altered:
Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed Wednesday, February 26, 2020 11:42:27 Pacific Standard Time

\section*{Compound name: 13C8-PFOS-RSD}

Response Factor: 0.949633
RRF SD: 0.0422002 , Relative SD: 4.44385
Response type: Internal Std (Ref 104 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & x=excluded \\
\hline 1 & 1200225 P 1 -3 & Standard & 12.500 & 4.76 & 3392.257 & 3783.710 & 11.207 & 11.8 & -5.6 & NO & & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 4.75 & 3412.653 & 3695.773 & 11.542 & 12.2 & -2.8 & NO & & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 4.75 & 3819.392 & 3791.307 & 12.593 & 13.3 & 6.1 & NO & & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 4.75 & 3246.941 & 3236.887 & 12.539 & 13.2 & 5.6 & NO & & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 4.75 & 3799.922 & 4232.745 & 11.222 & 11.8 & -5.5 & NO & & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 4.75 & 3646.993 & 3902.713 & 11.681 & 12.3 & -1.6 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 4.75 & 4032.981 & 4223.934 & 11.935 & 12.6 & 0.5 & NO & & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 4.75 & 3990.603 & 4363.684 & 11.431 & 12.0 & -3.7 & NO & & NO & bb \\
\hline 9 & 9 200225P1-11 & Standard & 12.500 & 4.75 & 3581.742 & 3634.562 & 12.318 & 13.0 & 3.8 & NO & & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 4.75 & 3416.804 & 3490.466 & 12.236 & 12.9 & 3.1 & NO & & NO & MM \\
\hline
\end{tabular}

\section*{Compound name: 13C2-PFDA-EIS}

Response Factor: 1635.18
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(x=\) excluded \\
\hline 1 & \(1200225 \mathrm{P} 1-3\) & Standard & 12.500 & 5.04 & 17688.168 & & 17688.168 & 10.8 & -13.5 & NO & & NO & bbX \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 5.04 & 18158.623 & & 18158.623 & 11.1 & -11.2 & NO & & NO & \(b b x\) \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 5.04 & 20772.906 & & 20772.906 & 12.7 & 1.6 & NO & & NO & \(b \mathrm{bx}\) \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 5.04 & 20265.523 & & 20265.523 & 12.4 & -0.9 & NO & & NO & \(b b x\) \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 5.04 & 20194.920 & & 20194.920 & 12.4 & -1.2 & NO & & NO & \(b b x\) \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 5.04 & 20439.703 & & 20439.703 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 5.04 & 20732.352 & & 20732.352 & 12.7 & 1.4 & NO & & NO & \(b b x\) \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 5.04 & 20899.775 & & 20899.775 & 12.8 & 2.3 & NO & & NO & bbx \\
\hline 9 & 9 200225P1-11 & Standard & 12.500 & 5.04 & 20424.217 & & 20424.217 & 12.5 & -0.1 & NO & & NO & \(b b x\) \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 5.04 & 20667.172 & & 20667.172 & 12.6. & 1.1 & NO & & NO & bbX \\
\hline
\end{tabular}

Dataset: Untitled

Last Altered:
Printed:
Wednesday, February 26, 2020 11:36:10 Pacific Standard Time Wednesday, February 26, 2020 11:42:27 Pacific Standard Time

\section*{Compound name: 13C2-PFDA-RSD}

Response Factor: 0.96525
RRF SD: 0.0533989 , Relative SD: 5.53213
Response type: Internal Std (Ref 105), Area* (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(\mathrm{x}=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 5.04 & 17688.168 & 18849.785 & 11.730 & 12.2 & -2.8 & NO & & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 5.04 & 18158.623 & 20255.420 & 11.206 & 11.6 & -7.1 & NO & & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 5.04 & 20772.906 & 21458.498 & 12.101 & 12.5 & 0.3 & NO & & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 5.04 & 20265.523 & 21545.986 & 11.757 & 12.2 & -2.6 & NO & & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 5.04 & 20194.920 & 20125.918 & 12.543 & 13.0 & 4.0 & NO & & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 5.04 & 20439.703 & 21679.625 & 11.785 & 12.2 & -2.3 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 5.04 & 20732.352 & 22313.967 & 11.614 & 12.0 & -3.7 & NO & & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 5.04 & 20899.775 & 19321.385 & 13.521 & 14.0 & 12.1 & NO & & NO & bb \\
\hline 9 & 9 200225P1-11 & Standard & 12.500 & 5.04 & 20424.217 & 21719.578 & 11.754 & 12.2 & -2.6 & NO & & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 5.04 & 20667.172 & 20429.818 & 12.645 & 13.1 & 4.8 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C2-8:2 FTS-EIS}

Response Factor: 102.173
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 5.02 & 1235.022 & & 1235.022 & 12.1 & -3.3 & NO & & NO & bbX \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 5.01 & 1045.851 & & 1045.851 & 10.2 & -18.1 & NO & & NO & bbX \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 5.01 & 1194.706 & & 1194.706 & 11.7 & -6.5 & NO & & NO & \(b b X\) \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 5.01 & 1265.179 & & 1265.179 & 12.4 & -0.9 & NO & & NO & bbX \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 5.01 & 1294.409 & & 1294.409 & 12.7 & 1.4 & NO & & NO & \(b \mathrm{bx}\) \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 5.01 & 1277.157 & & 1277.157 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 5.00 & 1364.021 & & 1364.021 & 13.4 & 6.8 & NO & & NO & bbX \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 5.01 & 1417.279 & & 1417.279 & 13.9 & 11.0 & NO & & NO & bbX \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 12.500 & 5.01 & 1207.879 . & & 1207.879 & 11.8 & -5.4 & NO & & NO & \(b \mathrm{bx}\) \\
\hline 10 & \(10200225 \mathrm{P} 1-12\) & Standard & 12.500 & 5.01 & 1288.608 & & 1288.608 & 12.6 & 0.9 & NO & & NO & bbX \\
\hline
\end{tabular}

Dataset: Untitled

Last Altered:
Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed:

\section*{Compound name: 13C2-8:2 FTS-RSD}

Response Factor: 0.329765
RRF SD: 0.0304758 , Relative SD: 9.24165
Response type: Internal Std (Ref 104 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 5.02 & 1235.022 & 3783.710 & 4.080 & 12.4 & -1.0 & NO & & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 5.01 & 1045.851 & 3695.773 & 3.537 & 10.7 & -14.2 & NO & & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 5.01 & 1194.706 & 3791.307 & 3.939 & 11.9 & -4.4 & NO & & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 5.01 & 1265.179 & 3236.887 & 4.886 & 14.8 & 18.5 & NO & & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 5.01 & 1294.409 & 4232.745 & 3.823 & 11.6 & -7.3 & NO & & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 5.01 & 1277.157 & 3902.713 & 4.091 & 12.4 & -0.8 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 5.00 & 1364.021 & 4223.934 & 4.037 & 12.2 & -2.1 & NO & & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 5.01 & 1417.279 & 4363.684 & 4.060 & 12.3 & -1.5 & NO & & NO & bb \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 12.500 & 5.01 & 1207.879 & 3634.562 & 4.154 & 12.6 & 0.8 & NO & & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 5.01 & 1288.608 & 3490.466 & 4.615 & 14.0 & 12.0 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: d3-N-MeFOSAA-EIS}

Response Factor: 330.31
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & FiT & Area. & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & COD Flag & \(x=\) excluded \\
\hline 1 & \(1200225 \mathrm{P} 1-3\) & Standard & 12.500 & 5.19 & 3174.144 & & 3174.144 & 9.6 & -23.1 & NO & & NO & bbX \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 5.18 & 3469.963 & & 3469.963 & 10.5 & -16.0 & NO & & NO & bbX \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 5.18 & 3495.821 & & 3495.821 & 10.6 & -15.3 & NO & & NO & bbx \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 5.18 & 3645.388 & & 3645.388 & 11.0 & -11.7 & NO & & NO & bbX \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 5.18 & 3633.896 & & 3633.896 & 11.0 & -12.0 & NO & & NO & bbX \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 5.18 & 4128.875 & & 4128.875 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 5.18 & 4188.330 & & 4188.330 & 12.7 & 1.4 & NO & & NO & bbX \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 5.18 & 4211.558 & & 4211.558 & 12.8 & 2.0 & NO & & NO & bbX \\
\hline 9 & 9 200225P1-11 & Standard & 12.500 & 5.18 & 3648.913 & & 3648.913 & 11.0 & -11.6 & NO & & NO & bbx \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 5.18 & 4043.613 & & 4043.613 & 12.2 & -2.1 & NO & & NO & bbX \\
\hline
\end{tabular}

Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:42:27 Pacific Standard Time

\section*{Compound name: d3-N-MeFOSAA-RSD}

Response Factor: 0.174066
RRF SD: 0.0191752 , Relative SD: 11.016
Response type: Internal Std (Ref 106), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(\mathrm{x}=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 5.19 & 3174.144 & 19831.211 & 2.001 & 11.5 & -8.0 & NO & & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 5.18 & 3469.963 & 20433.932 & 2.123 & 12.2 & -2.4 & NO & & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 5.18 & 3495.821 & 23449.227 & 1.864 & 10.7 & -14.4 & NO & & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 5.18 & 3645.388 & 21906.523 & 2.080 & 11.9 & -4.4 & NO & & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 5.18 & 3633.896 & 23637.857 & 1.922 & 11.0 & -11.7 & NO & & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 5.18 & 4128.875 & 22421.760 & 2.302 & 13.2 & 5.8 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 5.18 & 4188.330 & 19698.072 & 2.658 & 15.3 & 22.2 & NO & & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 5.18 & 4211.558 & 23404.813 & 2.249 & 12.9 & 3.4 & NO & & NO & bb \\
\hline 9 & 9 200225P1-11 & Standard & 12.500 & 5.18 & 3648.913 & 21266.988 & 2.145 & 12.3 & -1.4 & NO & & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 5.18 & 4043.613 & 20920.873 & 2.416 & 13.9 & 11.0 & NO & & NO & bb \\
\hline
\end{tabular}

Compound name: 13C2-PFUdA-EIS
Response Factor: 1617.09
RRF SD: 0, Relative SD: 0
Response type: External SId, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Cons & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 5.36 & 18802.816 & & 18802.816 & 11.6 & -7.0 & NO & & NO & bbX \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 5.35 & 20783.641 & & 20783.641 & 12.9 & 2.8 & NO & & NO & bbX \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 5.35 & 23235.645 & & 23235.645 & 14.4. & 15.0 & NO & & NO & \(b b x\) \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 5.35 & 22555.502 & & 22555.502 & 13.9 & 11.6 & NO & & NO & MMX \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 5.35 & 23655.426 & & 23655.426 & 14.6 & 17.0 & NO & & NO &  \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 5.35 & 20213.629 & & 20213.629 & 12.5 & 0.0 & NO & & NO & \(b b\) \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 5.35 & 22435.588 & & 22435.588 & 13.9 & 11.0 & NO & & NO & \(b \mathrm{bx}\) \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 5.35 & 22887.840 & & 22887.840 & 14.2 & 13.2 & NO & & NO & \(b b x\) \\
\hline 9 & 9 200225P1-11 & Standard & 12.500 & 5.35 & 22758.658 & & 22758.658 & 14.1 & 12.6 & NO & & NO & bbx \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 5.35 & 21367.789 & & 21367.789 & 13.2 & 5.7 & NO & & NO & bbX \\
\hline
\end{tabular}

Dataset:
Untitled

\section*{Compound name: 13C2-PFUdA-RSD}

Response Factor: 1.00832
RRF SD: 0.0645663, Relative SD: 6.40333
Response type: Internal Std (Ref 106 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & AT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(\mathrm{x}=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 5.36 & 18802.816 & 19831.211 & 11.852 & 11.8 & -6.0 & NO & & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 5.35 & 20783.641 & 20433.932 & 12.714 & 12.6 & 0.9 & NO & & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 5.35 & 23235.645 & 23449.227 & 12.386 & 12.3 & -1.7 & NO & & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 5.35 & 22266.717 & 21906.523 & 12.706 & 12.6 & 0.8 & NO & & NO & MM \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 5.35 & 23655.426 & 23637.857 & 12.509 & 12.4 & -0.8 & NO & & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 5.35 & 20213.629 & 22421.760 & 11.269 & 11.2 & -10.6 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 5.35 & 22435.588 & 19698.072 & 14.237 & 14.1 & 13.0 & NO & & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 5.35 & 22887.840 & 23404.813 & 12.224 & 12.1 & -3.0 & NO & & NO & bb \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 12.500 & 5.35 & 22758.658 & 21266.988 & 13.377 & 13.3 & 6.1 & NO & & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 5.35 & 21367.789 & 20920.873 & 12.767 & 12.7 & 1.3 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: d5-N-EtFOSAA-EIS}

Response Factor: 395.337
RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 5.34 & 4635.703 & & 4635.703 & 11.7 & -6.2 & NO & & NO & bbX \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 5.34 & 4671.362 & & 4671.362 & 11.8 & -5.5 & NO & & NO & \(b b x\) \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 5.33 & 5361.517 & & 5361.517 & 13.6 & 8.5 & NO & & NO & bbX \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 5.33 & 5107.157 & & 5107.157 & 12.9 & 3.3 & NO & & NO & bbX \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 5.33 & 5470.047 & & 5470.047 & 13.8 & 10.7 & NO & & NO & bbx \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 5.33 & 4941.707 & & 4941.707 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 5.34 & 5109.596 & & 5109.596 & 12.9 & 3.4 & NO & & NO & \(b b x\) \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 5.33 & 5321.571 & & 5321.571 & 13.5 & 7.7 & NO & & NO & \(b b x\) \\
\hline 9 & 9 200225P1-11 & Standard & 12.500 & 5.33 & 5012.692 & & 5012.692 & 12.7 & 1.4 & NO & & NO & \(b b x\) \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 5.33 & 4532.038 & & 4532.038 & 11.5 & -8.3 & NO & & NO & bbX \\
\hline
\end{tabular}

Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:42:27 Pacific Standard Time

\section*{Compound name: d5-N-EtFOSAA-RSD}

Response Factor: 0.231505
RRF SD: 0.0114583, Relative SD: 4.94948
Response type: Internal Std ( Ref 106 ), Area * ( IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & x=excluded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 5.34 & 4635.703 & 19831.211 & 2.922 & 12.6 & 1.0 & NO & & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 5.34 & 4671.362 & 20433.932 & 2.858 & 12.3 & -1.3 & NO & & NO & bb \\
\hline 3 & \(3200225 \mathrm{P} 1-5\) & Standard & 12.500 & 5.33 & 5361.517 & 23449.227 & 2.858 & 12.3 & -1.2 & NO & & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 5.33 & 5107.157 & 21906.523 & 2.914 & 12.6 & 0.7 & NO & & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 5.33 & 5470.047 & 23637.857 & 2.893 & 12.5 & -0.0 & NO & & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 5.33 & 4941.707 & 22421.760 & 2.755 & 11.9 & -4.8 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 5.34 & 5109.596 & 19698.072 & 3.242 & 14.0 & 12.0 & NO & & NO & bb \\
\hline 8 & 8200225 P1-10 \(^{1}\) & Standard & 12.500 & 5.33 & 5321.571 & 23404.813 & 2.842 & 12.3 & -1.8 & NO & & NO & bb \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 12.500 & 5.33 & 5012.692 & 21266.988 & 2.946 & 12.7 & 1.8 & NO & & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 5.33 & 4532.038 & 20920.873 & 2.708 & 11.7 & -6.4 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C2-PFDoA-EIS}

Response Factor: 1686.25
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 5.63 & 19794.912 & & 19794.912 & 11.7 & -6.1 & NO & & NO & \(b \mathrm{bX}\) \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 5.63 & 17291.875 & & 17291.875 & 10.3 & -18.0 & NO & & NO & \(b b x\) \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 5.62 & 20924.223 & & 20924.223 & 12.4. & -0.7 & NO & & NO & \(b b x\) \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 5.63 & 20403.285 & & 20403.285 & 12.1 & -3.2 & NO & & NO & \(b b x\) \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 5.62 & 19895.336 & & 19895.336 & 11.8 & -5.6 & NO & & NO & \(b b x\) \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 5.62 & 21078.160 & & 21078.160 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 5.62 & 20754.656 & & 20754.656 & 12.3 & -1.5 & NO & & NO & bbx \\
\hline 8 & \(8200225 \mathrm{P}_{1-10}\) & Standard & 12.500 & 5.63 & 21822.719 & & 21822.719 & 12.9 & 3.5 & NO & & NO & bbX \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 12.500 & 5.63 & 20369.846 & & 20369.846 & 12.1 & -3.4 & NO & & NO & \(b \mathrm{bx}\) \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 5.63 & 18409.998 & & 18409.998 & 10.9 & -12.7 & NO & & NO & \(b \mathrm{bx}\) \\
\hline
\end{tabular}

Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time

\section*{Compound name: 13C2-PFDoA-RSD}

Response Factor: 0.968527
RRF SD: 0.0771921 , Relative SD: 7.97005
Response type: Internal Std (Ref 105), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & FIT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 5.63 & 19794.912 & 18849.785 & 13.127 & 13.6 & 8.4 & NO & & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 5.63 & 17291.875 & 20255.420 & 10.671 & 11.0 & -11.9 & NO & & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 5.62 & 20924.223 & 21458.498 & 12.189 & 12.6 & 0.7 & NO & & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 5.63 & 20403.285 & 21545.986 & 11.837 & 12.2 & -2.2 & NO & & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 5.62 & 19895.336 & 20125.918 & 12.357 & 12.8 & 2.1 & NO & & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 5.62 & 21078.160 & 21679.625 & 12.153 & 12.5 & 0.4 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 5.62 & 20754.656 & 22313.967 & 11.626 & 12.0 & -4.0 & NO & & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 5.63 & 21822.719 & 19321.385 & 14.118 & 14.6 & 16.6 & NO & & NO & bb \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 12.500 & 5.63 & 20369.846 & 21719.578 & 11.723 & 12.1 & -3.2 & NO & & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 . & 5.63 & 18409.998 & 20429.818 & 11.264 & 11.6 & -7.0 & NO & & NO & bb \\
\hline
\end{tabular}

Compound name: 13C2-10:2 FTS-EIS
Response Factor: 71.9592
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Sta. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 5.62 & 1004.549 & & 1004.549 & 14.0 & 11.7 & NO & & NO & bbX \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 5.61 & 877.858 & & 877.858 & 12.2 & -2.4 & NO & & NO & bbX \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 5.61 & 1029.995 & & 1029.995 & 14.3 & 14.5 & NO & & NO & MMX \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 5.61 & 986.869 & & 986.869 & 13.7 & 9.7 & NO & & NO & bbX \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 5.61 & 863.880 & & 863.880 & 12.0 & -4.0. & NO & & NO & bbX \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 5.61 & 899.490 & & 899.490 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 5.61 & 851.594 & & 851.594. & 11.8 & -5.3 & NO & & NO & bbX \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 5.61 & 1017.819 & & 1017.819 & 14.1 & 13.2 & NO & & NO & dbX \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 12.500 & 5.61 & 862.033 & & 862.033 & 12.0 & -4.2 & NO & & NO & dbX \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 5.61 & 685.745 & & 685.745 & 9.5 & -23.8 & NO & & NO & dbX \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Dataset: & Untitled \\
& Last Altered: \\
Wednesday, February 26, 2020 11:36:10 Pacific Standard Time \\
Printed: & Wednesday, February 26, 2020 11:42:27 Pacific Standard Time
\end{tabular}

\section*{Compound name: 13C2-10:2 FTS-RSD}

Response Factor: 0.238298
RRF SD: 0.0344216, Relative SD: 14.4448
Response type: Internal Std ( Ref 104 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & x=excluded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 5.62 & 1004.549 & 3783.710 & 3.319 & 13.9 & 11.4 & NO & & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 5.61 & 877.858 & 3695.773 & 2.969 & 12.5 & -0.3 & NO & & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 5.61 & 1031.251 & 3791.307 & 3.400 & 14.3 & 14.1 & NO & & NO & MM \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 5.61 & 986.869 & 3236.887 & 3.811 & 16.0 & 27.9 & NO & & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 5.61 & 863.880 & 4232.745 & 2.551 & 10.7 & -14.4 & NO & & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 5.61 & 899.490 & 3902.713 & 2.881 & 12.1 & -3.3 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 5.61 & 851.594 & 4223.934 & 2.520 & 10.6 & -15.4. & NO & & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 5.61 & 1017.819 & 4363.684 & 2.916 & 12.2 & -2.1 & NO & & NO & db \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 12.500 & 5.61 & 862.033 & 3634.562 & 2.965 & 12.4. & -0.5 & NO & & NO & db \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 5.61 & 685.745 & 3490.466 & 2.456 & 10.3 & -17.6 & NO & & NO & db \\
\hline
\end{tabular}

\section*{Compound name: d3-N-MeFOSA-EIS}

Response Factor: 141.531
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & x=excluded \\
\hline 1 & \(1200225 \mathrm{P} 1-3\) & Standard & 149.200 & 5.77 & 18385.910 & & 18385.910 & 129.9 & -12.9 & NO & & NO & bbX \\
\hline 2 & 2 200225P1-4 & Standard & 149.200 & 5.76 & 18984.031 & & 18984.031 & 134.1 & -10.1 & NO & & No & bbX \\
\hline 3 & \(3200225 \mathrm{P}_{1-5}\) & Standard & 149.200 & 5.76 & 20984.184 & & 20984.184 & 148.3 & -0.6 & No & & no & bbX \\
\hline 4 & \(4200225 \mathrm{P} 1-6\) & Standard & 149.200 & 5.76 & 20764.477 & & 20764.477 & 146.7 & -1.7 & no & & No & bbX \\
\hline 5 & 5 200225P1-7 & Standard & 149.200 & 5.76 & 20656.791 & & 20656.791 & 146.0 & -2.2 & NO & & No & bbX \\
\hline 6 & 6 200225P1-8 & Standard & 149.200 & 5.76 & 21116.357 & & 21116.357 & 149.2 & 0.0 & No & & No & bb \\
\hline 7 & 7 200225P1-9 & Standard & 149.200 & 5.76 & 21394.961 & & 21394.961 & 151.2 & 1.3 & NO & & NO & bbX \\
\hline 8 & 8 200225P1-10 & Standard & 149.200 & 5.77 & 22915.986 & & 22915.986 & 161.9 & 8.5 & No & & No & bbX \\
\hline 9 & 9 200225P1-11 & Standard & 149.200 & 5.77 & 21205.846 & & 21205.846 & 149.8 & 0.4 . & No & & No & bbX \\
\hline 10 & 10200225 P1-12 & Standard & 149.200 & 5.77 & 21072.350 & & 21072.350 & 148.9 & -0.2 & NO & & No & bbX \\
\hline
\end{tabular}

Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:42:27 Pacific Standard Time

\section*{Compound name: d3-N-MeFOSA-RSD}

Response Factor: 0.0802966
RRF SD: 0.00515231 , Relative SD: 6.4166
Response type: Internal Std (Ref 106 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 149.200 & 5.77 & 18385.910 & 19831.211 & 11.589 & 144.3 & -3.3 & NO & & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 149.200 & 5.76 & 18984.031 & 20433.932 & 11.613 & 144.6 & -3.1 & NO & & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 149.200 & 5.76 & 20984.184 & 23449.227 & 11.186 & 139.3 & -6.6 & NO & & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 149.200 & 5.76 & 20764.477 & 21906.523 & 11.848 & 147.6 & -1.1 & NO & & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 149.200 & 5.76 & 20656.791 & 23637.857 & 10.924 & 136.0 & -8.8 & NO & & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 149.200 & 5.76 & 21116.357 & 22421.760 & 11.772 & 146.6 & -1.7 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 149.200 & 5.76 & 21394.961 & 19698.072 & 13.577 & 169.1 & 13.3 & NO & & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 149.200 & 5.77 & 22915.986 & 23404.813 & 12.239 & 152.4 & 2.2 & NO & & NO & bb \\
\hline 9 & 9 200225P1-11 & Standard & 149.200 & 5.77 & 21205.846 & 21266.988 & 12.464 & 155.2 & 4.0 & NO & & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 149.200 & 5.77 & 21072.350 & 20920.873 & 12.591 & 156.8 & 5.1 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C2-PFTeDA-EIS}

Response Factor: 1896.41
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area. & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & COD Fiag & \(x=\) excluded \\
\hline 1 & 1200225 P1-3 & Standard & 12.500 & 6.08 & 23904.145 & & 23904.145 & 12.6 & 0.8 & NO & & NO & bbX \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 6.08 & 20899.578 & & 20899.578 & 11.0 & -11.8 & NO & & NO & \(b b x\) \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 6.08 & 23536.283 & & 23536.283 & 12.4 & -0.7 & NO & & NO & \(b b x\) \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 6.08 & 22335.166 & & 22335.166 & 11.8 & -5.8 & NO & & NO & \(b b x\) \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 6.08 & 23810.332 & & 23810.332 & 12.6 & 0.4 & NO & & NO & \(b \mathrm{bx}\) \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 6.08 & 23705.125 & & 23705.125 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 6.08 & 23014.939 & & 23014.939 & 12.1 & -2.9 & NO & & NO & \(b b x\) \\
\hline 8 & \(8200225 \mathrm{P} 1-10\) & Standard & 12.500 & 6.08 & 23827.521 & & 23827.521 & 12.6 & 0.5 & NO & & NO & \(b b x\) \\
\hline 9 & 9 200225P1-11 & Standard & 12.500 & 6.08 & 21136.031 & & 21136.031 & 11.1 & -10.8 & NO & & NO & \(b b x\) \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 6.08 & 20449.318 & & 20449.318 & 10.8 & -13.7 & NO & & NO & \(b b x\) \\
\hline
\end{tabular}

Vista Analytical Laboratory
\begin{tabular}{ll} 
Dataset: & Untitled \\
Last Altered: & Wednesday, February 26, 2020 11:36:10 Pacific Standard Time \\
Printed: & Wednesday, February 26, 2020 11:42:27 Pacific Standard Time \\
\hline
\end{tabular}

\section*{Compound name: 13C2-PFTeDA-RSD}

Response Factor: 1.04737
RRF SD: 0.076891, Relative SD: 7.34132
Response type: Internal Std (Ref 106), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(\mathrm{x}=\) excluded \\
\hline 1 & 1200225 P 1 -3 & Standard & 12.500 & 6.08 & 23904.145 & 19831.211 & 15.067 & 14.4 & 15.1 & NO & & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 6.08 & 20899.578 & 20433.932 & 12.785 & 12.2 & -2.3 & NO & & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 6.08 & 23536.283 & 23449.227 & 12.546 & 12.0 & -4.2 & NO & & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 6.08 & 22335.166 & 21906.523 & 12.745 & 12.2 & -2.7 & NO & & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 6.08 & 23810.332 & 23637.857 & 12.591 & 12.0 & -3.8 & NO & & NO & bb \\
\hline 6 & \(6200225 \mathrm{P} 1-8\) & Standard & 12.500 & 6.08 & 23705.125 & 22421.760 & 13.215 & 12.6 & 0.9 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 6.08 & 23014.939 & 19698.072 & 14.605 & 13.9 & 11.6 & NO & & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 6.08 & 23827.521 & 23404.813 & 12.726 & 12.2 & -2.8 & NO & & NO & bb \\
\hline 9 & 9 200225P1-11 & Standard & 12.500 & 6.08 & 21136.031 & 21266.988 & 12.423 & 11.9 & -5.1 & NO & & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 6.08 & 20449.318 & 20920.873 & 12.218 & 11.7 & -6.7 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: d5-N-ETFOSA-EIS}

Response Factor: 180.703
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Narne & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 149.200 & 6.16 & 23419.826 & & 23419.826 & 129.6 & -13.1 & NO & & NO & bbX \\
\hline 2 & 2 200225P1-4 & Standard & 149.200 & 6.15 & 23933.094 & & 23933.094 & 132.4 & -11.2 & NO & & NO & bbx \\
\hline 3 & 3 200225P1-5 & Standard & 149.200 & 6.16 & 25590.486 & & 25590.486 & 141.6 & -5.1 & NO & & NO & \(b b x\) \\
\hline 4 & 4 200225P1-6 & Standard & 149.200 & 6.15 & 25775.242 & & 25775.242 & 142.6 & -4.4 & NO & & NO & \(b \mathrm{bx}\) \\
\hline 5 & 5 200225P1-7 & Standard & 149.200 & 6.16 & 27285.506 & & 27285.506 & 151.0 & 1.2 & NO & & NO & bbx \\
\hline 6 & 6 200225P1-8 & Standard & 149.200 & 6.15 & 26960.850 & & 26960.850 & 149.2 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 149.200 & 6.16 & 26238.824 & & 26238.824 & 145.2 & -2.7 & NO & & NO & \(b b x\) \\
\hline 8 & 8 200225P1-10 & Standard & 149.200 & 6.16 & 28234.779 & & 28234.779 & 156.2 & 4.7 & NO & & NO & \(b b x\) \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 149.200 & 6.16 & 25151.254 & & 25151.254 & 139.2 & -6.7 & NO & & NO & \(b b x\) \\
\hline 10 & 10 200225P1-12 & Standard & 149.200 & 6.16 & 23779.672 & & 23779.672 & 131.6. & -11.8 & NO & & NO & bbX \\
\hline
\end{tabular}

Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time

\section*{Compound name: d5-N-ETFOSA-RSD}

Response Factor: 0.0991503
RRF SD: 0.00520209, Relative SD: 5.24667
Response type: Internal Std (Ref 106 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=e x c l u d e d\) \\
\hline 1 & 1200225 P1-3 & Standard & 149.200 & 6.16 & 23419.826 & 19831.211 & 14.762 & 148.9 & -0.2 & NO & & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 149.200 & 6.15 & 23933.094 & 20433.932 & 14.641 & 147.7 & -1.0 & NO & & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 149.200 & 6.16 & 25590.486 & 23449.227 & 13.641 & 137.6 & -7.8 & NO & & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 149.200 & 6.15 & 25775.242 & 21906.523 & 14.708 & 148.3 & -0.6 & NO & & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 149.200 & 6.16 & 27285.506 & 23637.857 & 14.429 & 145.5 & -2.5 & NO & & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 149.200 & 6.15 & 26960.850 & 22421.760 & 15.031 & 151.6 & 1.6 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 149.200 & 6.16 & 26238.824 & 19698.072 & 16.651 & 167.9 & 12.6 & NO & & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 149.200 & 6.16 & 28234.779 & 23404.813 & 15.080 & 152.1 & 1.9 & NO & & NO & bb \\
\hline 9 & 9 200225P1-11 & Standard & 149.200 & 6.16 & 25151.254 & 21266.988 & 14.783 & 149.1 & -0.1 & NO & & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 149.200 & 6.16 & 23779.672 & 20920.873 & 14.208 & 143.3 & -4.0 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C2-PFHxDA-EIS}

Response Factor: 2591.61
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Sto. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(\mathrm{x}=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 6.41 & 32718.949 & & 32718.949 & 12.6 & 1.0 & NO & & NO & bbX \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 6.40 & 30851.906 & & 30851.906 & 11.9 & -4.8 & NO & & NO & \(b b X\) \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 6.40 & 32443.676 & & 32443.676 & 12.5 & 0.1 & NO & & NO & \(b b x\) \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 6.40 & 31620.527 & & 31620.527 & 12.2 & -2.4 & NO & & NO & \(b b X\) \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 6.40 & 34460.848 & & 34460.848 & 13.3 & 6.4 & NO & & NO & \(b b X\) \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 6.40 & 32395.119 & & 32395.119 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 6.40 & 31727.350 & & 31727.350 & 12.2 & -2.1 & NO & & NO & \(b \mathrm{bx}\) \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 6.40 & 36623.570 & & 36623.570 & 14.1 & 13.1 & NO & & NO & \(b \mathrm{bx}\) \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 12.500 & 6.40 & 31588.863 & & 31588.863 & 12.2 & -2.5 & NO & & NO & \(b b x\) \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 6.41 & 29260.670 & & 29260.670 & 11.3 & -9.7 & NO & & NO & bbX \\
\hline
\end{tabular}

\section*{Compound name: 13C2-PFHxDA-RSD}

Response Factor: 1.49488
RRF SD: 0.0887014 , Relative SD: 5.93367
Response type: Internal Std ( Ref 106 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(x=e x c l u d e d ~\) \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 6.41 & 32718.949 & 19831.211 & 20.623 & 13.8 & 10.4 & NO & & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 6.40 & 30851.906 & 20433.932 & 18.873 & 12.6 & 1.0 & NO & & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 6.40 & 32443.676 & 23449.227 & 17.295 & 11.6 & -7.4 & NO & & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 6.40 & 31620.527 & 21906.523 & 18.043 & 12.1 & -3.4 & NO & & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 6.40 & 34460.848 & 23637.857 & 18.223 & 12.2 & -2.5 & NO & & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 6.40 & 32395.119 & 22421.760 & 18.060 & 12.1 & -3.3 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 6.40 & 31727.350 & 19698.072 & 20.134 & 13.5 & 7.7 & NO & & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 6.40 & 36623.570 & 23404.813 & 19.560 & 13.1 & 4.7 & NO & & NO & bb \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 12.500 & 6.40 & 31588.863 & 21266.988 & 18.567 & 12.4 & -0.6 & NO & & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 6.41 & 29260.670 & 20920.873 & 17.483 & 11.7 & -6.4 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: d7-N-MeFOSE-EIS}

Response Factor: 120.789
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 149.200 & 6.29 & 17691.047 & & 17691.047 & 146.5 & -1.8 & NO & & NO & bbX \\
\hline 2 & 2 200225P1-4 & Standard & 149.200 & 6.29 & 17581.641 & & 17581.641 & 145.6 & -2.4 & NO & & NO & \(b b x\) \\
\hline 3 & 3 200225P1-5 & Standard & 149.200 & 6.29 & 19041.301 & & 19041.301 & 157.6 & 5.7 & NO & & NO & bbX \\
\hline 4 & 4 200225P1-6 & Standard & 149.200 & 6.29 & 18451.818 & & 18451.818 & 152.8 & 2.4 & NO & & NO & MMX \\
\hline 5 & 5 200225P1-7 & Standard & 149.200 & 6.28 & 18629.246 & & 18629.246 & 154.2 & 3.4 & NO & & NO & MMX \\
\hline 6 & 6 200225P1-8 & Standard & 149.200 & 6.29 & 18021.730 & & 18021.730 & 149.2 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 149.200 & 6.28 & 19080.988 & & 19080.988 & 158.0 & 5.9 & NO & & NO & bbX \\
\hline 8 & 8 200225P1-10 & Standard & 149.200 & 6.29 & 20077.549 & & 20077.549 & 166.2 & 11.4 & NO & & NO & bbX \\
\hline 9 & \(9200225 \mathrm{P}_{1-11}\) & Standard & 149.200 & 6.28 & 20780.801 & & 20780.801 & 172.0 & 15.3 & NO & & NO & bbX \\
\hline 10 & 10 200225P1-12 & Standard & 149.200 & 6.28 & 18944.963 & & 18944.963 & 156.8 & 5.1 & NO & & NO & bbX \\
\hline
\end{tabular}
Dataset: Untitled

Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:42:27 Pacific Standard Time

\section*{Compound name: d7-N-MeFOSE-RSD}

Response Factor: 0.072866
RRF SD: 0.00560797, Relative SD: 7.69628
Response type: Internal Std (Ref 106 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & is Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(x=e x\) cluded \\
\hline 1 & 1 200225P1-3 & Standard & 149.200 & 6.29 & 17691.047 & 19831.211 & 11.151 & 153.0 & 2.6 & NO & & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 149.200 & 6.29 & 17581.641 & 20433.932 & 10.755 & 147.6 & -1.1 & NO & & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 149.200 & 6.29 & 19041.301 & 23449.227 & 10.150 & 139.3 & -6.6 & NO & & NO & bb \\
\hline 4. & 4 200225P1-6 & Standard & 149.200 & 6.29 & 18459.666 & 21906.523 & 10.533 & 144.6 & -3.1 & NO & & NO & MM \\
\hline 5 & 5 200225P1-7 & Standard & 149.200 & 6.28 & 18370.014 & 23637.857 & 9.714 & 133.3 & -10.6 & NO & & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 149.200 & 6.29 & 18021.730 & 22421.760 & 10.047 & 137.9 & -7.6 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 149.200 & 6.28 & 19080.988 & 19698.072 & 12.108 & 166.2 & 11.4 & NO & & NO & bb \\
\hline 8 & \(8200225 \mathrm{P} 1-10\) & Standard & 149.200 & 6.29 & 20077.549 & 23404.813 & 10.723 & 147.2 & -1.4 & NO & & NO & bb \\
\hline 9 & 9 200225P1-11 & Standard & 149.200 & 6.28 & 20780.801 & 21266.988 & 12.214 & 167.6 & 12.3 & NO & & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 149.200 & 6.28 & 18944.963 & 20920.873 & 11.319 & 155.3 & 4.1 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: d9-N-EtFOSE-EIS}

Response Factor: 149.299
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 149.200 & 6.44 & 19924.037 & & 19924.037 & 133.5 & -10.6 & NO & & NO & bbx \\
\hline 2 & 2 200225P1-4 & Standard & 149.200 & 6.43 & 21132.717 & & 21132.717 & 141.5 & -5.1 & NO & & NO & bbX \\
\hline 3 & 3 200225P1-5 & Standard & 149.200 & 6.43 & 22095.117 & & 22095.117 & 148.0 & -0.8 & NO & & NO & \(b b X\) \\
\hline 4 & 4 200225P1-6 & Standard & 149.200 & 6.43 & 21809.131 & & 21809.131 & 146.1 & -2.1 & NO & & NO & \(b \mathrm{~b} \times\) \\
\hline 5 & 5 200225P1-7 & Standard & 149.200 & 6.43 & 22094.990 & & 22094.990 & 148.0 & -0.8. & NO & & NO & \(b \mathrm{bX}\) \\
\hline 6 & 6 200225P1-8 & Standard & 149.200 & 6.43 & 22275.373 & & 22275.373 & 149.2 & 0.0 & NO & & NO & MM \\
\hline 7 & 7 200225P1-9 & Standard & 149.200 & 6.43 & 22478.264 & & 22478.264 & 150.6 & 0.9 & NO & & NO & bbX \\
\hline 8 & 8 200225P1-10 & Standard & 149.200 & 6.43 & 23963.234 & & 23963.234 & 160.5 & 7.6 & NO & & NO & \(b b X\) \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 149.200 & 6.43 & 23505.465 & & 23505.465 & 157.4 & 5.5 & NO & & NO & bbx \\
\hline 10 & 10 200225P1-12 & Standard & 149.200 & 6.43 & 22299.754 & & 22299.754 & 149.4 & 0.1 & NO & & NO & bbX \\
\hline
\end{tabular}

\section*{Compound name: d9-N-EtFOSE-RSD}

Response Factor: 0.0858012
RRF SD: 0.00551082 , Relative SD: 6.42278
Response type: Internal Std (Ref 106 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & x=excluded \\
\hline 1 & 1 200225P1-3 & Standard & 149.200 & 6.44 & 19924.037 & 19831.211 & 12.559 & 146.4 & -1.9 & NO & & NO & blo \\
\hline 2 & 2 200225P1-4 & Standard & 149.200 & 6.43 & 21132.717 & 20433.932 & 12.927 & 150.7 & 1.0 & NO & & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 149.200 & 6.43 & 22095.117 & 23449.227 & 11.778 & 137.3 & -8.0 & NO & & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 149.200 & 6.43 & 21809.131 & 21906.523 & 12.444 & 145.0 & -2.8 & NO & & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 149.200 & 6.43 & 22094.990 & 23637.857 & 11.684 & 136.2 & -8.7 & NO & & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 149.200 & 6.43 & 22279.467 & 22421.760 & 12.421 & 144.8 & -3.0 & NO & & NO & MM \\
\hline 7 & 7 200225P1-9 & Standard & 149.200 & 6.43 & 22478.264 & 19698.072 & 14.264 & 166.2 & 11.4 & NO & & NO & bb \\
\hline 8 & \(8200225 \mathrm{P} 1-10\) & Standard & 149.200 & 6.43 & 23963.234 & 23404.813 & 12.798 & 149.2 & -0.0 & NO & & NO & bb \\
\hline 9 & \(9.200225 \mathrm{P} 1-11\) & Standard & 149.200 & 6.43 & 23505.465 & 21266.988 & 13.816 & 161.0 & 7.9 & NO & & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 149.200 & 6.43 & 22299.754 & 20920.873 & 13.324 & 155.3 & 4.1 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C4-PFBA}

Response Factor: 1
RRF SD: 1.28198e-016, Relative SD: \(1.28198 \mathrm{e}-014\)
Response type: Internal Std (Ref 99), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(\mathrm{x}=\) excluded \\
\hline 1 & \(1200225 \mathrm{P} 1-3\) & Standard & 12.500 & 1.42 & 12266.709 & 12266.709 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 1.41 & 12331.454 & 12331.454 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 1.42 & 13320.676 & 13320.676 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 1.42 & 13219.248 & 13219.248 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 1.42 & 13469.415 & 13469.415 & 12.500. & 12.5 & 0.0 & NO & & NO & bb \\
\hline 6 & \(6200225 \mathrm{P} 1-8\) & Standard & 12.500 & 1.42 & 14016.627 & 14016.627 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 1.42 & 13947.172 & 13947.172 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 1.42 & 14579.886 & 14579.886 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 9 & 9 200225P1-11 & Standard & 12.500 & 1.42 & 13803.979 & 13803.979 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 1.42 & 13829.581 & 13829.581 & 12.500. & 12.5 & 0.0 & NO & & NO & bb \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Dataset: & Untitled \\
Last Altered: & Wednesday, February 26, 2020 11:36:10 Pacific Standard Time \\
Printed: & Wednesday, February 26, 2020 11:42:27 Pacific Standard Time
\end{tabular}

\section*{Compound name: 13C5-PFHxA}

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 100), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 3.13 & 21026.791 & 21026.791 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 3.13 & 21114.68C & 21114.68C & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 3.13 & 23180.252 & 23180.252 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 3.13 & 21748.432 & 21748.432 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 3.13 & 22122.477 & 22122.477 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 3.13 & 24673.588 & 24673.588 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 3.13 & 23036.369 & 23036.369 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 3.13 & 24870.381 & 24870.381 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 9 & \(9200225 \mathrm{P} 1-11\) & Standard & 12.500 & 3.13 & 22955.182 & 22955.182 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 3.13 & 21647.338 & 21647.338 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 1802-PFHxS}

\section*{Response Factor: 1}

RRF SD: 0 , Relative SD: 0
Response type: Internal Std ( Ref 101), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(x\)-excluded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 3.87 & 1002.938 & 1002.938 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 3.86 & 1233.002 & 1233.002 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 3.86 & 1410.673 & 1410.673 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 3.86 & 1330.276 & 1330.276 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 3.86 & 1261.312 & 1261.312 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 3.86 & 1378.876 & 1378.876 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 3.86 & 1316.816 & 1316.816 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 8 & 8200225 P 1 -10 & Standard & 12.500 & 3.86 & 1449.444 & 1449.444 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 9 & 9 200225P1-11 & Standard & 12.500 & 3.86 & 1340.803 & 1340.803 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 3.86 & 1294.671 & 1294.671 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C8-PFOA}

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std ( Ref 102 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc: & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD) Flag & x=excluded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 4.24 & 20999.771 & 20999.771 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 4.23 & 21350.887 & 21350.887 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 4.23 & 21723.881 & 21723.881 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 4.23 & 21038.039 & 21038.039 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 4.23 & 23013.834 & 23013.834 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 4.23 & 22838.305 & 22838.305 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 4.23 & 23687.217 & 23687.217 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 8 & \(8200225 \mathrm{P} 1-10\) & Standard & 12.500 & 4.23 & 23445.688 & 23445.688 & 12.500 & 12.5 & 0.0 & NO & & NO & bd \\
\hline 9 & 9 200225P1-11 & Standard & 12.500 & 4.23 & 21333.131 & 21333.131 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 4.23 & 18595.418 & 18595.418 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C9-PFNA}

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 103 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(\mathrm{x}=\) excluded \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 4.67 & 19086.615 & 19086.615 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 4.67 & 18558.656 & 18558.656 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 4.67 & 20561.016 & 20561.016 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 4.67 & 18224.971 & 18224.971 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 4.67 & 19280.119 & 19280.119 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 4.67 & 20431.225 & 20431.225 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 4.67 & 20764.564 & 20764.564 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 18 & 8 200225P1-10 & Standard & 12.500 & 4.67 & 21059.193 & 21059.193 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 9 & 9 200225P1-11 & Standard & 12.500 & 4.67 & 20309.342 & 20309.342 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 4.67 & 18033.258 & 18033.258 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C4-PFOS}

\section*{Response Factor: 1}

RRF SD: 1.04673e-016, Relative SD: 1.04673e-014
Response type: Internal Std (Ref 104 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & COD Flag & \(x=e x c l u d e d\) \\
\hline 1 & 1 200225P1-3 & Standard & 12.500 & 4.76 & 3783.710 & 3783.710 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 2 & 2 200225P1-4 & Standard & 12.500 & 4.75 & 3695.773 & 3695.773 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 3 & 3 200225P1-5 & Standard & 12.500 & 4.75 & 3791.307 & 3791.307 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 4 & 4 200225P1-6 & Standard & 12.500 & 4.75 & 3236.887 & 3236.887 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 5 & 5 200225P1-7 & Standard & 12.500 & 4.75 & 4232.745 & 4232.745 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 6 & 6 200225P1-8 & Standard & 12.500 & 4.75 & 3902.713 & 3902.713 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200225P1-9 & Standard & 12.500 & 4.75 & 4223.934 & 4223.934 & 12.500 & 12.5 & 0.0 & NO & & NO & MM \\
\hline 8 & 8 200225P1-10 & Standard & 12.500 & 4.75 & 4363.684 & 4363.684 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 9 & 9 200225P1-11 & Standard & 12.500 & 4.75 & 3634.562 & 3634.562 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 10 & 10 200225P1-12 & Standard & 12.500 & 4.75 & 3490.466 & 3490.466 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: TDCA}

\section*{No Calibration}

Response type: External Std, Area
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1200225 P 1 -3 & Standard & 0.250 & & & & & & & NO & & NO & \\
\hline 2 & 2 200225P1-4 & Standard & 0.500 & & & & & & & NO & & NO & \\
\hline 3 & 3 200225P1-5 & Standard & 1.000 & & & & & & & NO & & NO & \\
\hline 4 & 4 200225P1-6 & Standard & 2.000 & & & & & & & NO & & NO & \\
\hline 5 & 5 200225P1-7 & Standard & 5.000 & & & & & & & NO & & NO & \\
\hline 6 & 6 200225P1-8 & Standard & 10.000 & & & & & & & NO & & NO & \\
\hline 7 & 7 200225P1-9 & Standard & 50.000 & & & & & & & NO & & NO & \\
\hline 8 & 8200225 P 1 -10 & Standard & 100.000 & & & & & & & NO & & NO & \\
\hline 9 & 9200225 P 1 -11 & Standard & 250.000 & & & & & & & NO & & NO & \\
\hline 10 & 10200225 P1-12 & Standard & 500.000 & & & & & & & NO & & NO & \\
\hline
\end{tabular}

Vista Analytical Laboratory
\begin{tabular}{ll} 
Dataset: & Untitled \\
Last Altered: & Wednesday, February 26, 2020 11:36:10 Pacific Standard Time \\
Printed: & Wednesday, February 26, 2020 11:40:15 Pacific Standard Time \\
\hline
\end{tabular}

Method: P:|PFAS5.PROMMethDBUNEW_PFAS_80C_022520.mdb 26 Feb 2020 11:36:08 Calibration: P:|PFAS5.PROICurveDBIC18_VAL-PFAS_Q5_02-25-20.cdb 26 Feb 2020 11:25:03

Name: 200225P1-3, Date: 25-Feb-2020, Time: 18:19:42, ID: ST200225P1-1 PFC CS-2 20B1102, Description: PFC CS-2 \(20 B 1102\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline & \# Name & IS\# & COD & CoD Flag & \%RSC & \\
\hline 1 & 1 PFBȦ & 47 & 0.9996 & NO & & \\
\hline 2 & 2 PFPrS & 51 & 0.9994 & NO & & \\
\hline 3 & 3 3:3 FTCA & 49 & 0.9994 & NO & & \\
\hline 4 & 4 PFPeA & 49 & 0.9996 & NO & & \\
\hline 5 & 5 PFBS & 51 & 0.9980 & NO & & \\
\hline 6 & 6 4:2 FTS & 55 & 0.9994 & NO & & \\
\hline 7 & 7 PFHxA & 57 & 0.9991 & NO & & \\
\hline 8 & 8 PFPeS & 51 & 0.9991 & NO & & \\
\hline 9 & 9 HFPO-DA & 53 & 0.9995 & NO & & \\
\hline 10 & 10 5:3 FTCA & 59 & 0.9897 & NO & & \\
\hline 11 & 11 PFHpA & 59 & 0.9998 & NO & & \\
\hline 12 & 12 ADONA & 59 & 0.9997 & NO & & \\
\hline 13 & 13 L-PFHxS & 61 & 0.9985 & NO & & \\
\hline 14 & 15 6:2 FTS & 63 & 0.9979 & NO & & \\
\hline 15 & 16 L-PFOA & 69 & 0.9991 & NO & & \\
\hline 16 & 18 PFecHS & 69 & 0.9962 & NO & & \\
\hline 17 & 19 PFHpS & 71 & 0.9995 & NO & & \\
\hline 18 & 20 7:3 FTCA & 65 & 0.9985 & NO & & \\
\hline 19 & 21 PFNA & 65 & 0.9993 & NO & & \\
\hline 20 & 22 PFOSA & 67 & 0.9983 & NO & & \\
\hline 21 & 23 L-PFOS & 71 & 0.9992 & NO & & \\
\hline 22 & 259 Cl -PF30NS & 71 & 0.9996 & NO & & \\
\hline 23 & 26 PFDA & 73 & 0.9998 & NO & & \\
\hline 24 & 27 8:2 FTS & 75 & 0.9965 & NO & & -12 120120 \\
\hline 25 & 20 PFNS & 71 & 0.9779 & NO & & \[
\cos 21241
\] \\
\hline 26 & 29 L-MeFOSAA & 77 & 0.9979 & NO & & \\
\hline
\end{tabular}

Vista Analytical Laboratory
\begin{tabular}{ll} 
Dataset: & Untitled \\
Last Altered: & Wednesday, February 26, 2020 11:36:10 Pacific Standard Time \\
Printed: & Wednesday, February 26, 2020 11:40:34 Pacific Standard Time \\
\hline
\end{tabular}

Method: P:IPFAS5.PROTMethDBINEW_PFAS_80C_022520.mdb 26 Feb 2020 11:36:08 Calibration: P:IPFAS5.PRO\CurveDB\C18_VAL-PFAS_O5_02-25-20.cdb 26 Feb 2020 11:25:03

\section*{Name: 200225P1-3, Date: 25-Feb-2020, Time: 18:19:42, ID: ST200225P1-1 PFC CS-2 20B1102, Description: PFC CS-2 20B1102}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \# Name & is\# & COD & CoD Flag & \%RSD \\
\hline 1 & 31 L-EtFOSAA & 81 & 0.9988 & NO & \\
\hline 2 & 33 PFUdA & 79 & 0.9978 & NO & \\
\hline 3 & 34 PFDS & 71 & 0.9996 & NO & \\
\hline 4 & 3511 Cl -PF30UdS & 83 & 0.9992 & NO & \\
\hline 5 & 36 10:2 FTS & 85 & 0.9979 & NO & \\
\hline 6 & 37 PFDoA & 83 & 0.9996 & NO & \\
\hline 7 & 38 N-MeFOSA & 87 & 0.9996 & NO & \\
\hline 8 & 39 PFTrDA & 83 & 0.9991 & NO & \\
\hline 9 & 40 PFDoS & 89 & 0.9992 & NO & \\
\hline 10 & 41 PFTeDA & 89 & 0.9984 & NO & \\
\hline 11 & 42 N-EtFOSA & 91 & 0.9998 & NO & \\
\hline 12 & 43 PFHxDA & 93 & 0.9995 & No & \\
\hline 13 & 44 PFODA & 93 & 0.9995 & NO & \\
\hline 14 & 45 N -MeFOSE & 95 & 0.9952 & NO & \\
\hline 15 & 46 N-EtFOSE & 97 & 0.9989 & NO & \\
\hline 16 & 47 13C3-PFBA-EIS & & & No & 0.000 \\
\hline 17 & 48 13C3-PFBA-RSD & 99 & & No & 0.823 \\
\hline 18 & 49 13C3-PFPeA-EIS & & & NO & 0.000 \\
\hline 19 & 50 13C3-PFPeA-RSD & 100 & & NO & 2.929 \\
\hline 20 & 51 13C3-PFBS-EIS & & & No & 0.000 \\
\hline 21 & 52 13C3-PFBS-RSD & 101 & & NO & 9.591 \\
\hline 22 & 53 13C3-HFPO-DA-EIS & & & NO & 0.000 \\
\hline 23 & 54 13C3-HFPO-DA-RSD & 100 & & NO & 6.425 \\
\hline 24 & 55 13C2-4:2 FTS-EIS & & & NO & 0.000 \\
\hline 25 & \(5613 \mathrm{C} 2-4: 2\) FTS-RSD & 101 & & NO & 13.365 \\
\hline 26 & 5713 C 2 -PFHxA-EIS & & & NO & 0.000 \\
\hline 27 & 58 13C2-PFHXA-RSD & 100 & & NO & 2.830 \\
\hline 28 & 59 13C4-PFHPA-EIS & & & NO & 0.000 \\
\hline 29 & 60 13C4-PFHPA-RSD & 100 & & NO & 3.486 \\
\hline 30 & 61 13C3-PFHXS-EIS & & & NO & 0.000 \\
\hline 31 & 62 13C3-PFHXS-RSD & 101 & & NO & 8.751 \\
\hline 32 & 63 13C2-6:2 FTS-EIS & & & NO. & 0.000 \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Dataset: & Untitled \\
& Last Altered: \\
Wednesday, February 26, 2020 11:36:10 Pacific Standard Time \\
Printed: & Wednesday, February 26, 2020 11:40:34 Pacific Standard Time \\
\hline
\end{tabular}

Name: 200225P1-3, Date: 25-Feb-2020, Time: 18:19:42, ID: ST200225P1-1 PFC CS-2 20B1102, Description: PFC CS-2 \(20 B 1102\)
\begin{tabular}{|c|c|c|c|c|}
\hline & \# Name & IS\# & CoD CoD Flag & \%RSD \\
\hline 33 & 64 13C2-6:2 FTS-RSD & 104 & NO & 11.585 \\
\hline 34 & 65 13C5-PFNA-EIS & & NO & 0.000 \\
\hline 35 & 66 13C5-PFNA-RSD & 103 & NO & 3.362 \\
\hline 36 & 67 13C8-PFOSA-EIS & & NO & 0.000 \\
\hline 37 & 68 13C8-PFOSA-RSD & 106 & NO & 7.521 \\
\hline 38 & 69 13C2-PFOA-EIS & & NO & 0.000 \\
\hline 39 & 70.13 C 2 -PFOA-RSD & 102 & NO & 5.392 \\
\hline 40 & 71 13C8-PFOS-EIS & & NO & 0.000 \\
\hline 41 & 72 13C8-PFOS-RSD & 104 & NO & 4.444 \\
\hline 42 & 73 13C2-PFDA-EIS & & NO & 0.000 \\
\hline 43 & 74 13C2-PFDA-RSD & 105 & NO & 5.532 \\
\hline 44 & 75 13C2-8:2 FTS-EIS & & NO & 0.000 \\
\hline 45 & 76 13C2-8:2 FTS-RSO & 104 & NO & 9.242 \\
\hline 46 & 77 d3-N-MeFOSAA-EIS & & NO & 0.000 \\
\hline 47 & \(78 \mathrm{d3}\)-N-MeFOSAA-RSD & 106 & NO & 11.016 \\
\hline 48 & 79 13C2-PFUdA-EIS & & NO & 0.000 \\
\hline 49 & 80. 13C2-PFUdA-RSD & 106 & NO & 6.403 \\
\hline 50 & 81 d5-N-EtFOSAA-EIS & & NO & 0.000 \\
\hline 51 & \(82 \mathrm{d5}\)-N-EtFOSAA-RSD & 106 & NO & 4.949 \\
\hline 52 & 83 13C2-PFDOA-EIS & & NO & 0.000 \\
\hline 53 & 84 13C2-PFDOA-RSD & 105 & NO & 7.970 \\
\hline 54 & 85 13C2-10:2 FTS-EIS & & NO & 0.000 \\
\hline 55 & 86 13C2-10:2 FTS-RSD & 104 & NO & 14.445 \\
\hline 56 & 87 d3-N-MeFOSA-EIS & & NO & 0.000 \\
\hline 57 & 88 d3-N-MeFOSA-RSD & 106 & NO & 6.417 \\
\hline 58 & 89 13C2-PFTeDA-EIS & & NO & 0.000 \\
\hline 59 & 90 13C2-PFTeDA-RSD & 106 & NO & 7.341 \\
\hline 60 & 91 d5-N-ETFOSA-EIS & & NO & 0.000 \\
\hline 61 & 92 d5-N-ETFOSA-RSD & 106 & NO & 5.247 \\
\hline 62 & 9313 C 2 -PFH×DA-EIS & & NO & 0.000 \\
\hline 63 & 94 13C2-PFHxDA-RSD & 106 & NO & 5.934 \\
\hline 64 & 95 d7-N-MeFOSE-EIS & & NO & 0.000 \\
\hline 65 & 96 d7-N-MeFOSE-RSD & 106 & NO & 7.696 \\
\hline 66 & 97 d9-N-EtFOSE-EIS & & NO & 0.000 \\
\hline 67 & 98 d9-N-EtFOSE-RSD & 106 & NO & 6.423 \\
\hline 68 & 99 13C4-PFBA & 99 & NO. & 0.000 \\
\hline
\end{tabular}

\section*{Dataset:}

Untitled
Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:40:34 Pacific Standard Time

Name: 200225P1-3, Date: 25-Feb-2020, Time: 18:19:42, ID: ST200225P1-1 PFC CS-2 20B1102, Description: PFC CS-2 20B1102
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \# Name & IS\# & COD & CoD Flag & \%RSD \\
\hline 69 & 1... 13C5-PFHxA & 100 & & NO & 0.000 \\
\hline 70 & 1... 1802-PFHxS & 101 & & NO & 0.000 \\
\hline 71 & 1... 13C8-PFOA & 102 & & NO & 0.000 \\
\hline 72 & 1... 13C9-PFNA & 103 & & NO & 0.000 \\
\hline 73 & 1... 13C4-PFOS & 104 & & NO & 0.000 \\
\hline 74 & 1... TDCA & & & NO & \\
\hline
\end{tabular}

Method: P:\PFAS5.PRO\MethDB\NEW_PFAS_80C_022520.mdb 26 Feb 2020 11:36:08 Calibration: P:\PFAS5.PRO\CurveDBIC18_VAL-PFAS_Q5_02-25-20.cdb 26 Feb 2020 11:25:03

Name: 200225P1-8, Date: 25-Feb-2020, Time: 19:12:14, ID: ST200225P1-6 PFC CS3 20B1107, Description: PFC CS3 \(20 B 1107\)
\begin{tabular}{|llrrrrr|}
\hline & Name & Pred.RT & RT & Pred. Ratio & lon Ratio & Ratio out? \\
1 & PFBA & 1.42 & 1.42 & & & \\
2 & PFPrS & 1.76 & 1.74 & 2.395 & 2.395 & NO \\
3 & \(3: 3\) FTCA & 2.20 & 2.20 & 3.660 & 3.660 & NO \\
4 & PFPeA & 2.34 & 2.34 & & & \\
5 & PFBS & 2.62 & 2.62 & 3.139 & 3.139 & NO \\
6 & \(4: 2\) FTS & 3.04 & 3.04 & 0.899 & 0.899 & NO \\
7 & PFHxA & 3.13 & 3.13 & 16.931 & 16.931 & NO \\
8 & PFPeS & 3.31 & 3.32 & 2.432 & 2.432 & NO \\
93 & HFPO-DA & 3.34 & 3.34 & 2.776 & 2.776 & NO \\
10 & \(5: 3\) FTCA & 3.67 & 3.67 & 1.853 & 1.853 & NO \\
11 & PFHpA & 3.72 & 3.72 & 33.693 & 33.693 & NO \\
12 & ADONA & 3.81 & 3.83 & 4.296 & 4.296 & NO \\
13 & L-PFHxS & 3.86 & 3.86 & 2.174 & 2.174 & NO \\
14 & 6:2 FTS & 4.17 & 4.18 & 1.229 & 1.229 & NO \\
15 & L-PFOA & 4.23 & 4.23 & 2.800 & 2.800 & NO \\
16 & PFecHS & 4.25 & 4.24 & 0.486 & 0.486 & NO \\
17 & PFHpS & 4.35 & 4.34 & 2.025 & 2.025 & NO \\
18 & \(7: 3\) FTCA & 4.66 & 4.65 & 1.539 & 1.539 & NO \\
19 & PFNA & 4.67 & 4.67 & 9.406 & 9.406 & NO \\
20 & PFOSA & 4.73 & 4.73 & 26.472 & 26.472 & NO \\
21 & L-PFOS & 4.75 & 4.75 & 2.608 & 2.608 & NO \\
22 & 9CI-PF30NS & 4.96 & 4.96 & 16.976 & 16.976 & NO \\
23 & PFDA & 5.04 & 5.04 & 11.681 & 11.681 & NO \\
24 & \(8: 2\) FTS & 5.01 & 5.01 & 2.559 & 2.559 & NO \\
25 & PFNS & 5.09 & 5.09 & 2.122 & 2.122 & NO \\
26 & L-MeFOSAA & 5.18 & 5.18 & 1.874 & 1.874 & NO \\
\hline
\end{tabular}

Dataset: P:IPFAS5.PROIRESULTSL200225P11200225P1-CRV.qld
Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:47:32 Pacific Standard Time

Method: P:\PFAS5.PRO\MethDB\NEW_PFAS_80C_022520.mdb 26 Feb 2020 11:36:08 Calibration: P:\PFAS5.PRO\CurveDB\C18_VAL-PFAS_Q5_02-25-20.cdb 26 Feb 2020 11:25:03

Name: 200225P1-8, Date: 25-Feb-2020, Time: 19:12:14, ID: ST200225P1-6 PFC CS3 20B1107, Description: PFC CS3 20B1107
\begin{tabular}{|llrrrrr|}
\hline & Name & Pred.RT & RT & Pred. Ratio & Ion Ratio & Ratio out? \\
1 & L-EtFOSAA & 5.33 & 5.34 & 1.127 & 1.127 & NO \\
2 & PFUdA & 5.35 & 5.35 & 23.768 & 23.768 & NO \\
3 & PFDS & 5.38 & 5.40 & 2.050 & 2.050 & NO \\
4 & 11CI-PF30UdS & 5.56 & 5.56 & 19.229 & 19.229 & NO \\
5 & \(10: 2\) FTS & 5.61 & 5.61 & 0.992 & 0.992 & NO \\
6 & PFDoA & 5.62 & 5.63 & 9.903 & 9.903 & NO \\
7 & N-MeFOSA & 5.75 & 5.74 & 1.781 & 1.781 & NO \\
8 & PFTrDA & 5.88 & 5.87 & 50.652 & 50.652 & NO \\
9 & PFDoS & 5.88 & 5.89 & 3.011 & 3.011 & NO \\
10 & PFTeDA & 6.08 & 6.08 & 17.346 & 17.346 & NO \\
11 & N-EIFOSA & 6.13 & 6.14 & 1.652 & 1.652 & NO \\
12 & PFHxDA & 6.40 & 6.40 & 155.012 & 155.012 & NO \\
13 & PFODA & 6.61 & 6.63 & & & \\
14 & N-MeFOSE & 6.29 & 6.29 & & & \\
15 & N-EtFOSE & 6.43 & 6.44 & & & \\
16 & TDCA & 4.59 & & 0.000 & & \\
\hline
\end{tabular}

\title{
Dataset: Untitled
}

Last Altered: Wednesday, February 26, 2020 11:49:56 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:50:38 Pacific Standard Time

Method: P:\PFAS5.PRO\MethDBINEW_PFAS_80C_022520.mdb 26 Feb 2020 11:36:08 Calibration: P:\PFAS5.PRO\CurveDBIC̄18_VAL-PFAS_Q5_02-25-20.cdb 26 Feb 2020 11:25:03

Compound name: PFBA
\begin{tabular}{|c|c|c|c|c|}
\hline & \# Name & 10 & Acq.Dat \(\Theta\) & Acq. Time \\
\hline 1 & 1 200225P1-2 & IPA & 25-Feb-20 & 18:09:11 \\
\hline 2 & 2 200225P1-3 & ST200225P1-1 PFC CS-2 20B1102 & 25-Feb-20 & 18:19:42 \\
\hline 3 & 3 200225P1-4 & ST200225P1-2 PFC CS-1 20B1103 & 25-Feb-20 & 18:30:13 \\
\hline 4 & 4 200225P1-5 & ST200225P1-3 PFC CSO 20B1104 & 25-Feb-20 & 18:40:42 \\
\hline 5 & 5 200225P1-6 & ST200225P1-4 PFC CS1 20B1105 & 25-Feb-20 & 18:51:13 \\
\hline 6 & 6 200225P1-7 & ST200225P1-5 PFC CS2 20B1106 & 25-Feb-20 & 19:01:42 \\
\hline 7 & 7 200225P1-8 & ST200225P1-6 PFC CS3 20B1107 & 25-Feb-20 & 19:12:14 \\
\hline 8 & 8 200225P1-9 & ST200225P1-7 PFC CS4 20B1108 & 25-Feb-20 & 19:22:44 \\
\hline 9 & 9 200225P1-10 & ST200225P1-8 PFC CS5 20B1109 & 25-Feb-20 & 19:33:15 \\
\hline 10 & 10 200225P1-11 & ST200225P1-9 PFC CS6 20B1110 & 25-Feb-20 & 19:43:44 \\
\hline 11 & 11 200225P1-12 & ST200225P1-10 PFC CS7 20B1111 & 25-Feb-20 & 19:54:16 \\
\hline 12 & 12 200225P1-13 & IB & 25-Feb-20 & 20:04:45 \\
\hline 13 & 13 200225P1-14 & ICV200225P1-1 PFC ICV 2081112 & 25-Feb-20 & 20:15:16 \\
\hline 14 & 14 200225P1-15 & IB & 25-Feb-20 & 20:25:46 \\
\hline
\end{tabular}

\section*{Dataset: Untitled}

Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:37:56 Pacific Standard Time

\section*{Method: P:\PFAS5.PRO\MethDBWNEW_PFAS_80C_022520.mdb 26 Feb 2020 11:36:08}

\section*{Calibration: P:\PFAS5.PRO\CurveDB\C18_VAL-PFAS_Q5_02-25-20.cdb 26 Feb 2020 11:25:03}

Compound name: PFBA
Correlation coefficient: \(\mathrm{r}=0.999793, \mathrm{r}^{\wedge} 2=0.999585\)
Calibration curve: 1.10726 * \(x+0.0852146\)
Response type: Internal Std (Ref 47 ), Area * ( IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


Compound name: PFPrS
Correlation coefficient: \(\mathrm{r}=0.999715, \mathrm{r}^{\wedge} 2=0.999431\)
Calibration curve: 1.65319 * \(x+-0.00618218\)
Response type: Internal Std ( Ref 51 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: \(1 / x\), Axis trans: None


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time Printed: Wednesday, February 26, 2020 11:37:56 Pacific Standard Time

Compound name: 3:3 FTCA
Coefficient of Determination: \(R^{\wedge} 2=0.999447\)
Calibration curve: \(6.20578 \mathrm{e}-005{ }^{*} \mathrm{x}^{\wedge} 2+0.0762417^{*} \mathrm{x}+0.00385416\)
Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None


Compound name: PFPeA
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999596\)
Calibration curve: \(-5.10583 e-005\) * \(x^{\wedge} 2+0.975868\) * \(x+0.0396465\)
Response type: Internal Std (Ref 49 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: \(1 / x\), Axis trans: None


\section*{Dataset: Untitled}

Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time Printed: Wednesday, February 26, 2020 11:37:56 Pacific Standard Time

Compound name: PFBS
Correlation coefficient: \(r=0.998996, r^{\wedge} 2=0.997993\)
Calibration curve: 2.30898 * \(x+0.0728009\)
Response type: Internal Std (Ref 51 ), Area * ( IS Conc. / IS Area )
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None


Compound name: 4:2 FTS
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999367\)
Calibration curve: -0.000434108 * \(x^{\wedge} 2+1.38843\) * \(x+-0.178318\)
Response type: Internal Std (Ref 55 ), Area * ( IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

\begin{tabular}{ll} 
Dataset: & Untitled \\
& Last Altered: \\
Wednesday, February 26, 2020 11:36:10 Pacific Standard Time \\
Printed: & Wednesday, February 26, 2020 11:37:56 Pacific Standard Time
\end{tabular}

Compound name: PFHxA
Correlation coefficient: \(\mathrm{r}=0.999532, \mathrm{r}^{\wedge} 2=0.999064\)
Calibration curve: \(0.893131^{*} x+0.0844687\)
Response type: Internal Std ( Ref 57 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None


Compound name: PFPeS
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999064\)
Calibration curve: -0.000730443 * \(x^{\wedge} 2+2.38201\) * \(x+-0.0672473\)
Response type: Internal Std (Ref 51 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: \(1 / x\), Axis trans: None


\section*{Dataset: Untitled}

Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time Printed: Wednesday, February 26, 2020 11:37:56 Pacific Standard Time

Compound name: HFPO-DA
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999495\)
Calibration curve: \(-0.000187555^{*} x^{\wedge} 2+0.995843\) * \(x+0.017923\)
Response type: Internal Std (Ref 53 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None


Compound name: 5:3 FTCA
Coefficient of Determination: \(R^{\wedge} 2=0.999699\)
Calibration curve: \(1.76506 \mathrm{e}-005\) * \(\mathrm{x}^{\wedge} 2+0.186062\) * \(\mathrm{x}+-0.00829431\)
Response type: Internal Std (Ref 59 ), Area * ( IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time Printed: Wednesday, February 26, 2020 11:37:56 Pacific Standard Time

Compound name: PFHpA
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999835\)
Calibration curve: \(-0.000213241^{*} x^{\wedge} 2+1.2385{ }^{*} x+0.0521085\)
Response type: Internal Std (Ref 59 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Compound name: ADONA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999654\)
Calibration curve: -0.00033118 * \(x^{\wedge} 2+2.85271\) * \(x+0.0577579\)
Response type: Internal Std (Ref 59 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Dataset: Untitled}

Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time Printed: Wednesday, February 26, 2020 11:37:56 Pacific Standard Time

Compound name: L-PFHxS
Correlation coefficient: \(\mathrm{r}=0.999271, \mathrm{r}^{\wedge} 2=0.998543\)
Calibration curve: \(1.01885^{*} x+0.0424708\)
Response type: Internal Std ( Ref 61), Area * ( IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


Compound name: 6:2 FTS
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.997864\)
Calibration curve: - 0.000277268 * \(\wedge^{\wedge} 2+1.56695\) * \(x+0.134499\)
Response type: Internal Std (Ref 63 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: \(1 / x\), Axis trans: None


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:37:56 Pacific Standard Time

Compound name: L-PFOA
Coefficient of Determination: \(R^{\wedge} 2=0.999126\)
Calibration curve: \(-0.000157489{ }^{*} x^{\wedge} 2+1.13112{ }^{*} x+0.114857\)
Response type: Internal Std ( Ref 69 ), Area * ( IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Compound name: PFecHS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.996153\)
Calibration curve: \(4.46408 e-005^{*} x^{\wedge} 2+0.1476333^{*} x+0.0114163\)
Response type: Internal Std (Ref 69 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: \(1 / x\), Axis trans: None

\begin{tabular}{ll} 
Dataset: & Untitted \\
Last Altered: & Wednesday, February 26, 2020 11:36:10 Pacific Standard Time \\
Printed: & Wednesday, February 26, 2020 11:37:56 Pacific Standard Time \\
\hline
\end{tabular}

Compound name: PFHpS
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999533\)
Calibration curve: \(-1.97849 e-005{ }^{*} x^{\wedge} 2+0.928406\) * \(x+0.0131066\)
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: \(1 / x\), Axis trans: None


Compound name: 7:3 FTCA
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998547\)
Calibration curve: \(8.1341 e-005\) * \(x^{\wedge} 2+0.155084\) * \(x+-0.0133127\)
Response type: Internal Std (Rel 65 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Vista Analytical Laboratory Q1}

Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time Printed: Wednesday, February 26, 2020 11:37:56 Pacific Standard Time

Compound name: PFNA
Correlation coefficient: \(\mathrm{r}=0.999628, \mathrm{r}^{\wedge} 2=0.999256\)
Calibration curve: 1.17976 * \(x+0.155189\)
Response type: Internal Std (Ref 65 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None


Compound name: PFOSA
Coefficient of Determination: R^2 \(=0.998293\)
Calibration curve: \(2.22748 \mathrm{e}-005^{*} x^{\wedge} 2+0.82094^{*} x+-0.0255848\)
Response type: Internal Std ( Rel 67 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Dataset: Untitled}

Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:37:56 Pacific Standard Time

Compound name: L-PFOS
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999204\)
Calibration curve: \(-1.248 \mathrm{e}-005^{*} \mathrm{x}^{\wedge} 2+0.936367^{*} \mathrm{x}+-0.00626015\)
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


Compound name: 9CI-PF30NS
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999619\)
Calibration curve: -0.000173604 * \(x^{\wedge} 2+0.991244\) * \(x+0.177624\)
Response type: Internal Std ( Ref 71 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: \(1 / x\), Axis trans: None


\section*{Dataset: Untitled}

Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:37:56 Pacific Standard Time

\section*{Compound name: PFDA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999769\)
Calibration curve: \(-0.000263391^{*} x^{\wedge} 2+1.17334\) * \(x+0.0663551\)
Response type: Internal Std (Ref 73 ), Area * (IS Conc. / IS Area )
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None


Compound name: 8:2 FTS
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.996459\)
Calibration curve: \(-0.000340371^{*} x^{\wedge} 2+1.34102\) * \(x+-0.893418\)
Response type: Internal Std (Ref 75 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: \(1 / x\), Axis trans: None


\section*{Dataset: Untitled}

Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:37:56 Pacific Standard Time

Compound name: PFNS
Correlation coefficient: \(r=0.998965, r^{\wedge} 2=0.997930\)
Calibration curve: \(0.867271^{*} x+0.295013\)
Response type: Internal Std ( Ref 71), Area * ( IS Conc. / IS Area )
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None


Compound name: L-MeFOSAA
Coefficient of Determination: \(R^{\wedge} 2=0.997934\)
Calibration curve: \(-0.000651587^{*} x^{\wedge} 2+1.94487\) * \(x+-0.0570901\)
Response type: Internal Std (Ref 77), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: \(1 / x\), Axis trans: None


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:38:29 Pacific Standard Time

Method: P:\PFAS5.PRO\MethDB\NEW_PFAS_80C_022520.mdb 26 Feb 2020 11:36:08 Calibration: P:\PFAS5.PROICurveDBIC̄18_VAL_PFAS_Q5_02-25-20.cdb 26 Feb 2020 11:25:03

Compound name: L-EtFOSAA
Correlation coefficient: \(\mathrm{r}=0.999424, \mathrm{r}^{\wedge} 2=0.998848\)
Calibration curve: 1.19224 * \(x+0.0364651\)
Response type: Internal Std ( Ref 81 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None


Compound name: PFUdA
Correlation coefficient: \(r=0.998904, r^{\wedge} 2=0.997808\)
Calibration curve: 0.920819 * \(x+0.155174\)
Response type: Internal Std (Ref 79 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:38:29 Pacific Standard Time

Compound name: PFDS
Correlation coefficient: \(\mathrm{r}=0.999800, \mathrm{r}^{\wedge} 2=0.999601\)
Calibration curve: 0.767019 * \(x+0.0116423\)
Response type: Internal Std ( Ref 71 ), Area * ( IS Conc. / IS Area )
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None


Compound name: 11CI-PF30UdS
Correlation coefficient: \(\mathrm{r}=0.999589, \mathrm{r}^{\wedge} 2=0.999178\)
Calibration curve: \(0.454613^{*} x+0.0281832\)
Response type: Internal Std (Ref 83 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: \(1 / x\), Axis trans: None


Dataset: Untitled
\(\begin{array}{ll}\text { Last Altered: } & \text { Wednesday, February 26, } 2020 \text { 11:36:10 Pacific Standard Time } \\ \text { Printed: } & \text { Wednesday, February 26, } 202011: 38: 29 \text { Pacific Standard Time }\end{array}\)
\(\qquad\)

Compound name: 10:2 FTS
Correlation coefficient: \(\mathrm{r}=0.998945, \mathrm{r}^{\wedge} 2=0.997890\)
Calibration curve: \(2.19744 * x+0.426867\)
Response type: Internal Std ( Ref 85 ), Area * ( IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


Compound name: PFDoA
Coefficient of Determination: R^2 \(^{\wedge}=0.999585\)
Calibration curve: \(-0.000140726^{*} x^{\wedge} 2+1.07719^{*} x+0.077473\)
Response type: Internal Std (Ref 83 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: \(1 / x\), Axis trans: None


\section*{Dataset: Untitled}

Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:38:29 Pacific Standard Time

\section*{Compound name: N-MeFOSA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999583\)
Calibration curve: \(-5.69994 \mathrm{e}-005{ }^{*} x^{\wedge} 2+1.0553\) * \(x+-0.0250783\)
Response type: Internal Std (Ref 87), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None


Compound name: PFTrDA
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999093\)
Calibration curve: \(1.12175 e-006^{*} x^{\wedge} 2+1.08591^{*} x+0.374825\)
Response type: Internal Std (Ref 83 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:38:29 Pacific Standard Jime

\section*{Compound name: PFDoS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999202\)
Calibration curve: \(-4.44146 e-005{ }^{*} x^{\wedge} 2+0.161935^{*} x+0.00601354\)
Response type: Internal Std ( Ref 89), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


Compound name: PFTeDA
Correlation coefficient: \(\mathrm{r}=0.999213, \mathrm{r}^{\wedge} 2=0.998426\)
Calibration curve: 0.946667 * \(x+0.0579059\)
Response type: Internal Std (Ref 89), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: \(1 / x\), Axis trans: None

\begin{tabular}{ll} 
Dataset: & Untitled \\
& \\
Last Altered: & Wednesday, February 26, 2020 11:36:10 Pacific Standard Time \\
Printed: & Wednesday, February 26, 2020 11:38:29 Pacific Standard Time
\end{tabular}

Compound name: N-EtFOSA
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999776\)
Calibration curve: \(-4.37352 \mathrm{e}-005^{*} x^{\wedge} 2+1.0291^{*} x+0.393476\)
Response type: Internal Std (Ref 91 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: \(1 / \mathrm{x}\), Axis trans: None


Compound name: PFHxDA
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999460\)
Calibration curve: \(-0.000122127^{*} x^{\wedge} 2+0.737678\) * \(x+0.157258\)
Response type: Internal Std (Ref 93 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: \(1 / x\), Axis trans: None


MassLynx MassLynx V4.1 SCN 945

Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 11:36:10 Pacific Standard Time
Printed: Wednesday, February 26, 2020 11:38:29 Pacific Standard Time

Compound name: PFODA
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999550\)
Calibration curve: \(-6.40276 e-006\) * \(x^{\wedge} 2+0.881896\) * \(x+0.0287076\)
Response type: Internal Std (Ref 93), Area * ( IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None


Compound name: N-MeFOSE
Correlation coefficient: \(\mathrm{r}=0.997589, \mathrm{r}^{\wedge} 2=0.995184\)
Calibration curve: 1.07295 * \(x+0.022575\)
Response type: Internal Std (Ref 95), Area * ( IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

\begin{tabular}{ll} 
Dataset: & Untitled \\
& \\
Last Altered: & Wednesday, February 26, 2020 11:36:10 Pacific Standard Time \\
Printed: & Wednesday, February 26, 2020 11:38:29 Pacific Standard Time \\
\hline
\end{tabular}

Compound name: N-EtFOSE
Correlation coefficient: \(\mathrm{r}=0.999471, \mathrm{r}^{\wedge} 2=0.998943\)
Calibration curve: 0.98218 * \(x+0.297158\)
Response type: Internal Std (Ref 97), Area * ( IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


Compound name: TDCA
No Calibration
Response type: External Std, Area
Curve type: Linear, Origin: Include, Weighting: \(1 / x\), Axis trans: None


Dataset: Untitled
Last Altered:
Wednesday, February 26, 2020 10:17:23 Pacific Standard Time

Printed:
Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Method: P:IPFAS5.PROMMethDBINEW_PFAS_80C_022420.mdb 25 Feb 2020 11:10:09

\section*{Calibration: 26 Feb 2020 10:17:23}

Name: 200225P1-3, Date: 25-Feb-2020, Time: 18:19:42, ID: ST200225P1-1 PFC CS-2 20B1102, Description: PFC CS-2 \(20 B 1102\)


13C3-PFBA-EIS
F3:MRM of 1 channel,ES-



F6:MRM of 2 channels, ES-
\(248.9>98.7\)


13C3-PFBS-EIS
F12:MRM of 1 channel,ES-




13C3-PFPeA-EIS
F8:MRM of 1 channel,ES-
F8:MRM of 1 channel,ES-
\(266.0>221.8\)
\(2.882 \mathrm{e}+005\)




13C3-PFBS-EIS
F12:MRM of 1 channel,ES-



Dataset:
Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed:
Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-3, Date: 25-Feb-2020, Time: 18:19:42, ID: ST200225P1-1 PFC CS-2 20B1102, Description: PFC CS-2 \(20 B 1102\)


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed:
Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-3, Date: 25-Feb-2020, Time: 18:19:42, ID: ST200225P1-1 PFC CS-2 20B1102, Description: PFC CS-2 \(20 B 1102\)


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

\section*{Name: 200225P1-3, Date: 25-Feb-2020, Time: 18:19:42, ID: ST200225P1-1 PFC CS-2 20B1102, Description: PFC CS-2 20B1102}


Name: 200225P1-3, Date: 25-Feb-2020, Time: 18:19:42, ID: ST200225P1-1 PFC CS-2 20B1102, Description: PFC CS-2 20B1102


Dataset:
Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed:
Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-3, Date: 25-Feb-2020, Time: 18:19:42, ID: ST200225P1-1 PFC CS-2 20B1102, Description: PFC CS-2 \(20 B 1102\)


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-3, Date: 25-Feb-2020, Time: 18:19:42, ID: ST200225P1-1 PFC CS-2 20B1102, Description: PFC CS-2 20 B1102


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-3, Date: 25-Feb-2020, Time: 18:19:42, ID: ST200225P1-1 PFC CS-2 20B1102, Description: PFC CS-2 20B1102




\section*{13C5-PFNA-RSD}

F35:MRM of 1 channel,ES-


13C8-PFOSA-RSD
F41:MRM of 1 and





Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-3, Date: 25-Feb-2020, Time: 18:19:42, ID: ST200225P1-1 PFC CS-2 20B1102, Description: PFC CS-2 20B1102

d3-N-MeFOSA-RSD
F46:MRM of 1 channel,ES\(515.2>168.9\)

d3-N-MeFOSAA-RSD
F58:MRM of 1 channel,ES-



13C2-PFTeDA-RSD
F74:MRM of 2 channels, ES-
\(715.1>669.7\) \(5.856 e+005\)


d5-N-ETFOSA-RSD
F52:MRM of 1 channel,ES-



13C2-PFHxDA-RSD
F76:MRM of 1 channel,ES-
\(815>769.7\)
\(9.886 e+005\)

d9-N-EtFOSE-RSD
F70:MRM of 1 channel,ES-



Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-3, Date: 25-Feb-2020, Time: 18:19:42, ID: ST200225P1-1 PFC CS-2 20B1102, Description: PFC CS-2 20 B 1102

\begin{tabular}{ll} 
Dataset: & Untitled \\
Last Altered: & Wednesday, February 26, 2020 10:17:23 Pacific Standard Time \\
Printed: & Wednesday, February 26, 2020 10:18:42 Pacific Standard Time \\
\hline
\end{tabular}

Name: 200225P1-4, Date: 25-Feb-2020, Time: 18:30:13, ID: ST200225P1-2 PFC CS-1 20B1103, Description: PFC CS-1 \(20 B 1103\)


Dataset:
Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

\section*{Name: 200225P1-4, Date: 25-Feb-2020, Time: 18:30:13, ID: ST200225P1-2 PFC CS-1 20B1103, Description: PFC CS-1 \(20 B 1103\)}


Fi3:MRM of 2 channels,ES-
\(313>118.9\)


13C2-PFHxA-EIS
F14:MRM of 1 channel,ES-
\(315.0>270.0\)



F19:MRM of 2 channels,ES-
\(349 .>98.7\)
\(349 .>98.7\)
\(1.398 e+003\)


13C3-PFBS-EIS
F12:MRM of 1 channel,ES \(02.0>98.8\)

F10:MRM of 2 channels, ES




13C4-PFHpA-EIS
F21:MRM of 1 chan



13C4-PFHpA-EIS
F21:MRM of 1 channel,ES-

ADONA


\section*{13C4-PFHpA-EIS}
F21:MRM of 1 channel,ES-
\[
367.2>321.8
\]
\[
\begin{array}{r}
367.2>321.8 \\
3.454 \mathrm{e}+005
\end{array}
\]


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-4, Date: 25-Feb-2020, Time: 18:30:13, ID: ST200225P1-2 PFC CS-1 20B1103, Description: PFC CS-1 \(20 B 1103\)
L-PFHxS
F23:MRM of 2 channels,ES-
\(398.9>79.7\)
\(2.928 \mathrm{e}+003\)




F29:MRM of 3 channels,ESF29.MRM of 3 channels, ES-
\(427 .>80.7\)
\(1.8550+003\)


13C2-6:2 FTS-EIS
F30:MRM of 1 channel, ES-
\(429.0>79.7\)

13C2-PFOA-EIS





\section*{13C8-PFOS-EIS}



F31:MRM of 2 channels,ES\(440.9>316.9\)


13C5-PFNA-EIS
F35:MRM of 1 channel,ES\(468.2>422.9\) \(4.455 \mathrm{e}+005\)


Dataset:
Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed:
Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-4, Date: 25-Feb-2020, Time: 18:30:13, ID: ST200225P1-2 PFC CS-1 20B1103, Description: PFC CS-1 \(20 B 1103\)


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-4, Date: 25-Feb-2020, Time: 18:30:13, ID: ST200225P1-2 PFC CS-1 20B1103, Description: PFC CS-1 \(20 B 1103\)


Dataset:
Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed:
Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-4, Date: 25-Feb-2020, Time: 18:30:13, ID: ST200225P1-2 PFC CS-1 20B1103, Description: PFC CS-1 \(20 B 1103\)


F66:MRM of 2 channels,ES-
\(626.9>80.7\)
\(1.686 \mathrm{e}+003\)


13C2-10:2 FTS-EIS
F69:MRM of 1 channel,ES-
\(632.9>80.0\) \(2.124 e+004\)



13C2-PFDoA-EIS
F63:MRM of 1 channel,ES-



F43:MRM of 2 channels, ES
\[
\begin{array}{ll}
512.1>219 \\
100 & 5.325 e+003
\end{array}
\]
(1007
d3-N-MeFOSA-EIS
F46:MRM of 1 channel,ES-



F71:MRM of 2 channels,ES-


13C2-PFDoA-EIS






Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed:
Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-4, Date: 25-Feb-2020, Time: 18:30:13, ID: ST200225P1-2 PFC CS-1 20B1103, Description: PFC CS-1 20B1103


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-4, Date: 25-Feb-2020, Time: 18:30:13, ID: ST200225P1-2 PFC CS-1 20B1103, Description: PFC CS-1 \(20 B 1103\)




13C5-PFNA-RSD
F35:MRM of 1 channel,ES-


13C8-PFOSA-RSD
F41:MRM of 1 channel,ES-
\(506>78\)





\begin{tabular}{ll} 
Dataset: & Untitled \\
Last Altered: & Wednesday, February 26, 2020 10:17:23 Pacific Standard Time \\
Printed: & Wednesday, February 26, 2020 10:18:42 Pacific Standard Time \\
\hline
\end{tabular}

Name: 200225P1-4, Date: 25-Feb-2020, Time: 18:30:13, ID: ST200225P1-2 PFC CS-1 20B1103, Description: PFC CS-1 20B1103

\section*{13C2-8:2 FTS-RSD \\ F50:MRM of 1 channel,ES- \\ \(529>79.7\) 1007 2.628e+004}
d3-N-MeFOSA-RSD
F46:MRM of 1 channel,ES\(515.2>168.9\) \(4.513 e+005\)

d3-N-MeFOSAA-RSD
F58:MRM of 1 -RSD


13C2-PFTeDA-RSD
F74:MRM of 2 channels, ES-
\(715.1>669.7\)

d5-N-ETFOSA-RSD
F52:MRM of 1 channel,ES-





d9-N-EtFOSE-RSD
F70:MRM of 1 channel, ES-


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-4, Date: 25-Feb-2020, Time: 18:30:13, ID: ST200225P1-2 PFC CS-1 20B1103, Description: PFC CS-1 20 B1103


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-5, Date: 25-Feb-2020, Time: 18:40:42, ID: ST200225P1-3 PFC CS0 20B1104, Description: PFC CS0 \(20 B 1104\)


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-5, Date: 25-Feb-2020, Time: 18:40:42, ID: ST200225P1-3 PFC CS0 20B1104, Description: PFC CS0 \(20 B 1104\)


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed:
Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-5, Date: 25-Feb-2020, Time: 18:40:42, ID: ST200225P1-3 PFC CS0 20B1104, Description: PFC CS0 \(20 B 1104\)


F23:MRM of 2 channels,ES\(398.9>98.7\) \(1.813 e+003\)


13C3-PFHxS-EIS
F24:MRM of 1 channel,ES\(401.8>79.7\) \(8.302 \mathrm{e}+004\)



F29:MRM of 3 channels,ES427. \(>80.7\)


13C2-6:2 FTS-EIS F30:MRM of 1 channel, ES\(429.0>79.7\) \(3.312 e+004\)


\section*{L-PFOA}

F26:MRM of 2 channels,ES- \(\begin{array}{r}412.8>368.9 \\ 4.886 \mathrm{e}+004\end{array}\)
F26:MRM of 2 channels, ES
\(412.8>169\)
\(412.8>169\)
\(1.862 \mathrm{e}+004\)


13C2-PFOA-EIS
F27:MRM of 1 channel,ES



F33:MRM of 2 channels,ES-
\[
\begin{array}{r}
460.8>98.9 \\
1.138 \mathrm{e}+004
\end{array}
\]


13C2-PFOA-EIS
F27:MRM of 1 channel, ES-
\(414.9>369\). \(4.682 \mathrm{e}+005\)





13C8-PFOS-EIS



F31:MRM of 2 channels,ES\(440.9>316.9\)


13C5-PFNA-EIS
F35:MRM of 1 channel,ES-
\begin{tabular}{ll} 
Dataset: & Untitled \\
Last Altered: & Wednesday, February 26, 2020 10:17:23 Pacific Standard Time \\
Printed: & Wednesday, February 26, 2020 10:18:42 Pacific Standard Time \\
\hline
\end{tabular}

\section*{Name: 200225P1-5, Date: 25-Feb-2020, Time: 18:40:42, ID: ST200225P1-3 PFC CSO 20B1104, Description: PFC CS0 \(20 B 1104\)}


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-5, Date: 25-Feb-2020, Time: 18:40:42, ID: ST200225P1-3 PFC CS0 20B1104, Description: PFC CS0 \(20 B 1104\)

\section*{PFNS}
F53:MRM of 2 channels,ES-
\(549.1>79.7\)
\(6.887 \mathrm{e}+003\)

13C8-PFOS-EIS
F42:MRM of 1 channel, ES\(507.0>79.7\) \(9.872 \mathrm{e}+004\)



F56:MRM of 2 channels,ES F56:MRM of 2 channels, ES-
\(570 .>512\)
\(3.327 \mathrm{e}+003\)

d3-N-MeFOSAA-EIS F58:MRM of 1 channel,ES-


d5-N-EtFOSAA-EIS



\section*{F54:MRM of 2 channels,ES-
\(563.0>269\)}


13C2-PFUdA-EIS
\[
\begin{array}{r}
\text { F55:MRM of } 1 \text { channel,ES- } \\
565>519.8 \\
6.366 \mathrm{e}+005
\end{array}
\]


Name: 200225P1-5, Date: 25-Feb-2020, Time: 18:40:42, ID: ST200225P1-3 PFC CS0 20B1104, Description: PFC CS0 20B1104






F43:MRM of 2 channels,ES

\(\begin{array}{r}\text { d3-N-MeFOSA-EIS } \\ \text { F46:MRM of } \begin{array}{l}1 \text { channel,ES- } \\ 515.2>168.9 \\ 5.014 e+005\end{array} \\ \hline\end{array}\)


F71:MRM of 2 channels, ES-



\section*{13C2-PFDoA-EIS}

F63:MRM of 1 channel \(E S\)



F72:MRM of 2 channels,ES-





Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

\section*{Name: 200225P1-5, Date: 25-Feb-2020, Time: 18:40:42, ID: ST200225P1-3 PFC CS0 20B1104, Description: PFC CS0 20B1104}


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

\section*{Name: 200225P1-5, Date: 25-Feb-2020, Time: 18:40:42, ID: ST200225P1-3 PFC CS0 20B1104, Description: PFC CS0 \(20 B 1104\)}

\section*{13C3-PFBS-RSD \\ F12:MRM of 1 channel,ES \\ }

13C2-6:2 FTS-RSD
F30:MRM of 1 channel,ES
\(429.0>79.7\)
\(3.312 \mathrm{e}+004\)


13C3-HFPO-DA-RSD
F10:MRM of 2 channels,ES \(287.0>168.9\) \(9.826 \mathrm{e}+004\)

13C5-PFNA-RSD
F35:MRM of 1 channel,ES


13C8-PFOSA-RSD
F41:MRM of 1 channel,ES-
\(506>78\)
\(506>78\)
\(1.245 e+005\)





13C8-PFOS-RSD
F42:MRM of 1 channel,ES-
F42:MRM of 1 channel,ES-
\(507.0>79.7\) \(507.0>79.7\)
\(9.872 e+004\)



Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-5, Date: 25-Feb-2020, Time: 18:40:42, ID: ST200225P1-3 PFC CS0 20B1104, Description: PFC CS0 \(20 B 1104\)




13C2-PFTeDA-RSD F74:MRM of 2 channels,ES \(715.1>669.7\) \(5.770 \mathrm{e}+005\)








\begin{tabular}{ll} 
Dataset: & Untitled \\
Last Altered: & Wednesday, February 26, 2020 10:17:23 Pacific Standard Time \\
Printed: & Wednesday, February 26, 2020 10:18:42 Pacific Standard Time
\end{tabular}

Name: 200225P1-5, Date: 25-Feb-2020, Time: 18:40:42, ID: ST200225P1-3 PFC CS0 20B1104, Description: PFC CS0 20B1104


\section*{13C6-PFDA}

F47:MRM of 1 channel,ES\(519.1>473.7\) \(5.629 \mathrm{e}+005\)


\section*{13C5-PFHxA}

F15:MRM of 1 channel,ES\(318.0>272.9\) \(6.062 e+005\)


13C7-PFUdA
F57:MRM of 1 channel,ES 570.1 > 524.8 \(570.1>524.8\)
\(6.387 \mathrm{e}+005\)


\section*{13C8-PFOA}

F28:MRM of 1 channel,ES-






Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed:
Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-6, Date: 25-Feb-2020, Time: 18:51:13, ID: ST200225P1-4 PFC CS1 20B1105, Description: PFC CS1 \(20 B 1105\)



3:3 FTCA
F5:MRM of 2 channels, ES-
\(240.9>176.9\)




F12:MRM of 1 channel,ES-
\(302.0>98.8\)


\section*{13C3-PFBS-EIS}


13C3-PFPeA-EIS






Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-6, Date: 25-Feb-2020, Time: 18:51:13, ID: ST200225P1-4 PFC CS1 20B1105, Description: PFC CS1 \(20 B 1105\)


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-6, Date: 25-Feb-2020, Time: 18:51:13, ID: ST200225P1-4 PFC CS1 20B1105, Description: PFC CS1 \(20 B 1105\)




13C2-6:2 FTS-EIS
F30:MRM of 1 channel,ES-
\(429.0>79.7\)
\(429.0>79.7\) \(4.075 \mathrm{e}+004\)









Dataset:
Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-6, Date: 25-Feb-2020, Time: 18:51:13, ID: ST200225P1-4 PFC CS1 20B1105, Description: PFC CS1 \(20 B 1105\)


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-6, Date: 25-Feb-2020, Time: 18:51:13, ID: ST200225P1-4 PFC CS1 20B1105, Description: PFC CS1 \(20 B 1105\)




d3-N-MeFOSAA-EIS
F58:MRM of 1 chann








\footnotetext{
13C2-PFDoA-EIS
F63:MRM of 1 channel,ES\(614.7>569.7\)

}

Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed:
Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-6, Date: 25-Feb-2020, Time: 18:51:13, ID: ST200225P1-4 PFC CS1 20B1105, Description: PFC CS1 \(20 B 1105\)


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-6, Date: 25-Feb-2020, Time: 18:51:13, ID: ST200225P1-4 PFC CS1 20B1105, Description: PFC CS1 \(20 B 1105\)



13C2-PFHxDA-EIS
F76:MRM of 1 channel,ES-



\section*{13C2-PFHxDA-EIS}

F76:MRM of 1 channel,ES







Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed:
Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-6, Date: 25-Feb-2020, Time: 18:51:13, ID: ST200225P1-4 PFC CS1 20B1105, Description: PFC CS1 20 B1105

\section*{13C3-PFBS-RSD \\ }

13C2-6:2 FTS-RSD
F30:MRM of 1 channel,ES
\(429.0>79.7\) \(4.075 \mathrm{e}+004\)



\section*{13C5-PFNA-RSD}

F35:MRM of 1 channel, ES



13C8-PFOSA-RSD
F41:MRM of 1 channel ES


\section*{13C2-PFHxA-RSD
F14:MRM of 1 channel,ES-
\(315.0>270.0\)
\(5.437 \mathrm{e}+005\)}



13C8-PFOS-RSD
F42:MRM of 1 channel,ES-
F42:MRM of 1 channel,ES-
\(507.0>79.7\) \(7.745 \mathrm{e}+004\)



Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-6, Date: 25-Feb-2020, Time: 18:51:13, ID: ST200225P1-4 PFC CS1 20B1105, Description: PFC CS1 20B1105




13C2-PFTeDA-RSD F74:MRM of 2 channeis,ES\(715.1>669.7\) \(5.553 \mathrm{e}+005\)


13C2-PFUdA-RSD
F55:MRM of 1 channel,ES \(565>519.8\) \(5.859 \mathrm{e}+005\)



F52:MRM of 1 channel,ES.
\[
\begin{array}{r}
\text { F52:MRM of } 1 \text { channel,ES- } \\
531.1>168.9
\end{array}
\]


\section*{13C2-PFHxDA-RSD}

F76:MRM of 1 channel,ES \(815>769.7\) \(9.473 \mathrm{e}+005\)


 \(639.2>58.8\)



Dataset: Untitled
\(\begin{array}{ll}\text { Last Altered: } & \text { Wednesday, February 26, } 2020 \text { 10:17:23 Pacific Standard Time } \\ \text { Printed: } & \text { Wednesday, February 26, } 2020 \text { 10:18:42 Pacific Standard Time }\end{array}\)
Printed:

Name: 200225P1-6, Date: 25-Feb-2020, Time: 18:51:13, ID: ST200225P1-4 PFC CS1 20B1105, Description: PFC CS1 20B1105




13C7-PFUdA
F57:MRM of 1 channel ES 570.1 > 524.8



13C4-PFOS
F40:MRM of 1 channel,ES \(503>79.7\)


Name: 200225P1-7, Date: 25-Feb-2020, Time: 19:01:42, ID: ST200225P1-5 PFC CS2 20B1106, Description: PFC CS2 20B1106

PFPrS



\section*{13C3-PFBS-EIS}

F12:MRM of 1 channel ES 302.0 > 98.8 \(3.150 \mathrm{e}+004\)



\[
\text { F8:MRM of } 1 \text { channel, ES- }
\]
\[
\begin{array}{r}
266.0>221.8 \\
3
\end{array}
\]



13C3-PFPeA-EIS
F8:MRM of 1 channel, ES-




F11:MRM of 2 channels,ES\(299.0>98.7\)


\section*{13C3-PFBS-EIS}


4:2 FTS


\section*{13C2-4:2 FTS-EIS}

F17:MRM of 2 channels, ES\(329.0>79.7\) \(4.523 \mathrm{e}+004\)


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed:
Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-7, Date: 25-Feb-2020, Time: 19:01:42, ID: ST200225P1-5 PFC CS2 20B1106, Description: PFC CS2 \(20 B 1106\)




F19:MRM of 2 channels, ES F19:MRM of 2 channels, ES-
\(349 .>98.7\)
\(1.815 \mathrm{e}+004\)


\section*{13C3-PFBS-EIS}



13C3-HFPO-DA-EIS
F10:MRM of 2 channels,ES



\section*{13C4-PFHpA-EIS}

F21:MRM of 1 channel,ES-


13C4-PFHpA-EIS



\section*{13C4-PFHpA-EIS}

F21:MRM of 1 channel,ES367.2 > 321.8



Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed:
Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-7, Date: 25-Feb-2020, Time: 19:01:42, ID: ST200225P1-5 PFC CS2 20B1106, Description: PFC CS2 20 B1106



F29:MRM of 3 channels, ES-


13C2-6:2 FTS-EIS
F30:MRM of 1 channel, ES-




13C2-PFOA-EIS
F27:MRM of \(\begin{array}{r}1 \text { channel,ES- } \\ 414.9>369.7\end{array}\)



13C2-PFOA-EIS
F27:MRM of 1 channel,ES-


Dataset: Untitled
\begin{tabular}{ll} 
Last Altered: & Wednesday, February 26, 2020 10:17:23 Pacific Standard Time \\
Printed: & Wednesday, February 26, 2020 10:18:42 Pacific Standard Time
\end{tabular}

Name: 200225P1-7, Date: 25-Feb-2020, Time: 19:01:42, ID: ST200225P1-5 PFC CS2 20B1106, Description: PFC CS2 20B1106


F34:MRM of 2 channels,ES-






\section*{L-PFOS \\ F39:MRM of 2 channels,ES \(498.9>79.7\) \\ }

F39:MRM of 2 channels,ES


13C8-PFOS-EIS
F42:MRM of 1 channel,ES. \(507.0>79.7\)



F51:MRM of 2 channels,ES\(530.7>82.8\) \(3.104 \mathrm{e}+003\)


13C8-PFOS-EIS
F42:MRM of 1 channel, ESS-
\(507.0>79.7\) \(9.952 \mathrm{e}+004\)



F44:MRM of 2 channels,ES\(513>219\)





13C2-8:2 FTS-EIS F50:MRM of 1 channel, ES\(529>79.7\)


\section*{Name: 200225P1-7, Date: 25-Feb-2020, Time: 19:01:42, ID: ST200225P1-5 PFC CS2 20B1106, Description: PFC CS2 20B1106}


13C8-PFOS-EIS
F42:MRM of 1 channel,ES-


F56:MRM of 2 channels, ES-

d3-N-MeFOSAA-EIS
d3-N-MeFOSAA-EIS
F58:MRM of 1 channel, ES-

d5-N-EtFOSAA-EIS



13C2-PFUdA-EIS
F55:MRM of 1 channel,ES.





13C8-PFOS-EIS



Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed:
Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-7, Date: 25-Feb-2020, Time: 19:01:42, ID: ST200225P1-5 PFC CS2 20B1106, Description: PFC CS2 \(20 B 1106\)


Name: 200225P1-7, Date: 25-Feb-2020, Time: 19:01:42, ID: ST200225P1-5 PFC CS2 20B1106, Description: PFC CS2 20B1106




\section*{13C2-PFHxDA-EIS}

F76:MRM of 1 channel,ES-
\(815>769.7\)
\(1.078 e+006\)







Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-7, Date: 25-Feb-2020, Time: 19:01:42, ID: ST200225P1-5 PFC CS2 20B1106, Description: PFC CS2 20B1106



\section*{13C3-HFPO-DA-RSD}

F10:MRM of 2 channels, ES \(287.0>168.9\) \(1.011 \mathrm{e}+005\)


13C5-PFNA-RSD
F35:MRM of 1 channel,ES\(468.2>422.9\) \(4.984 e+005\)



13C8-PFOSA-RSD
F41:MRM of 1 channel,ES \(506>78\) \(1.240 \mathrm{e}+005\)



\section*{13C2-PFOA-RSD}

F27:MRM of 1 channel,ES-
\(414.9>369.7\) \(4.933 \mathrm{e}+005\)



\section*{13C8-PFOS-RSD}

F42:MRM of 1 channel,ES\(507.0>79.7\) \(507.0>79.7\)
\(9.952 e+004\)



Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-7, Date: 25-Feb-2020, Time: 19:01:42, ID: ST200225P1-5 PFC CS2 20B1106, Description: PFC CS2 20B1106




13C2-PFTeDA-RSD
F74:MRM of 2 channels,ES
F74:MRM of 2 channels,ES-
\(715.1>669.7\)


d5-N-ETFOSA-RSD






Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-7, Date: 25-Feb-2020, Time: 19:01:42, ID: ST200225P1-5 PFC CS2 20B1106, Description: PFC CS2 20B1106



\section*{13C5-PFHxA \\ F15:MRM of 1 channel,ES \(318.0>272.9\) \(5.875 \mathrm{e}+005\) \\ }

13C7-PFUdA
F57:MRM of 1 channel, ES \(570.1>524.8\) \(6.335 \mathrm{e}+005\)




13C4-PFOS
F40:MRM of 1 channel,ES\(503>79.7\)


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

\section*{Name: 200225P1-8, Date: 25-Feb-2020, Time: 19:12:14, ID: ST200225P1-6 PFC CS3 20B1107, Description: PFC CS3 \(20 B 1107\)}


Dataset: Untitled

Last Altered:
Printed:

Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-8, Date: 25-Feb-2020, Time: 19:12:14, ID: ST200225P1-6 PFC CS3 20B1107, Description: PFC CS3 20B1107


13C2-PFHxA-EIS
F14:MRM of 1 channel,ES-



13C3-PFBS-EIS




F18:MRM of 2 channels,ES-


13C4-PFHpA-EIS
F21:MRM of 1 channel,ES-
\(367.2>321.8\)
F21:MRM of 1 channel,ES-
\(367.2>321.8\)
\(3.770 \mathrm{e}+005\)



13C4-PFHpA-EIS



Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: \(\quad\) Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-8, Date: 25-Feb-2020, Time: 19:12:14, ID: ST200225P1-6 PFC CS3 20B1107, Description: PFC CS3 20B1107




13C2-6:2 FTS-EIS



F26:MRM of 2 channels,ES


\section*{13C2-PFOA-EIS}

F27:MRM of 1 channel,ES-
\(414.9>369.7\)



F33:MRM of 2 channels,ES


\section*{13C2-PFOA-EIS}

F27:MRM of 1 channel,ES
414.9 > 369.7




\section*{13C8-PFOS-EIS}

F42:MRM of 1 channel,ES\(507.0>79.7\) \(9.396 \mathrm{e}+004\)



\section*{13C5-PFNA-EIS}

F35:MRM of 1 channel ES\(468.2>422.9\)


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-8, Date: 25-Feb-2020, Time: 19:12:14, ID: ST200225P1-6 PFC CS3 20B1107, Description: PFC CS3 \(20 B 1107\)

Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-8, Date: 25-Feb-2020, Time: 19:12:14, ID: ST200225P1-6 PFC CS3 20B1107, Description: PFC CS3 \(20 B 1107\)




F56:MRM of 2 channels, ES \(570 .>512\)
\(5.702 \theta+004\)


F59:MRM of 2 channels,ES



13C2-PFUdA-EIS
F55:MRM of 1 channel,ES-
\(565>519.8\)



F61:MRM of 2 channels,ES-


13C8-PFOS-EIS
F42:MRM of 1 channel,ES-
\(507.0>79.7\)
\(9.396 \mathrm{e}+004\)

11CI-PF30UdS
F68:MRM of 2 channels,ES \(630.9>450.9\)


F68:MRM of 2 channels,ES\(630.9>83\)


\footnotetext{
13C2-PFDoA-EIS
F63:MRM of 1 channel,ES-


Dataset:
Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: \(\quad\) Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-8, Date: 25-Feb-2020, Time: 19:12:14, ID: ST200225P1-6 PFC CS3 20B1107, Description: PFC CS3 \(20 B 1107\)




F62:MRM of 4 channels, ES-
\(612.9>318.8\)


13C2-PFDOA-EIS
F63:MRM of 1 channel, ES-






13C2-PFDoA-EIS



\[
698.8>98.7
\]
\(2.673 \mathrm{e}+004\)

13C2-PFTeDA-EIS
F74:MRM of 2 channels, ES-
\(715.1>669.7\) \(5.848 e+005\)


PFTeDA



13C2-PFTeDA-EIS
F74:MRM of 2 channels,ES-
\(715.1>669.7\)


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-8, Date: 25-Feb-2020, Time: 19:12:14, ID: ST200225P1-6 PFC CS3 20B1107, Description: PFC CS3 \(20 B 1107\)


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-8, Date: 25-Feb-2020, Time: 19:12:14, ID: ST200225P1-6 PFC CS3 20B1107, Description: PFC CS3 \(20 B 1107\)


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-8, Date: 25-Feb-2020, Time: 19:12:14, ID: ST200225P1-6 PFC CS3 20B1107, Description: PFC CS3 20 B1107

d3-N-MeFOSA-RSD
F46:MRM of 1 channel,ES\(515.2>168.9\)



13C2-PFTeDA-RSD
F74:MRM of 2 channels, ES-
\(715.1>669.7\) \(5.848 \mathrm{e}+005\)


d5-N-EtFOSAA-RSD
F60:MRM of 1 channel ES


13C2-PFHxDA-RSD
F76:MRM of 1 channel, ES-
\(815>769.7\)
\(9.786 e+005\)


13C2-PFDoA-RSD
F63:MRM of 1 channel,ES-
\(614.7>569.7\)




Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed:
Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-8, Date: 25-Feb-2020, Time: 19:12:14, ID: ST200225P1-6 PFC CS3 20B1107, Description: PFC CS3 20B1107


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-9, Date: 25-Feb-2020, Time: 19:22:44, ID: ST200225P1-7 PFC CS4 20B1108, Description: PFC CS4 20B1108


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed:
Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-9, Date: 25-Feb-2020, Time: 19:22:44, ID: ST200225P1-7 PFC CS4 20B1108, Description: PFC CS4 20B1108




13C3-PFBS-EIS
F12:MRM of 1 channel,ES-



\section*{13C3-HFPO-DA-EIS}

F10:MRM of 2 channels,ES



13C4-PFHpA-EIS
F21:MRM of 1 channel, ES-
\(367.2>321.8\)


13C4-PFHpA-EIS



13C4-PFHpA-EIS
F21:MRM of 1 channel,ES-


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed:
Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-9, Date: 25-Feb-2020, Time: 19:22:44, ID: ST200225P1-7 PFC CS4 20B1108, Description: PFC CS4 20B1108


\section*{13C3-PFHxS-EIS}

F24:MRM of 1 channel,ES F24:MRM of 1 channel,ES-
\(401.8>79.7\)
\(7.802 e+004\)



13C2-6:2 FTS-EIS
F30:MRM of 1 channel,ES-
\(429.0>79.7\)



\section*{3C2-PFOA-EIS}

F27:MRM of 1 channel,ES-






F32:MRM of 2 channels,ES-




F31:MRM of 2 channels,ES\(440.9>316.9\) \(1.977 \mathrm{e}+005\)


13C5-PFNA-EIS
F35:MRM of 1 channel,ES-
\(468.2>422.9\)


Dataset: Untitled
\begin{tabular}{ll} 
Last Altered: & Wednesday, February 26, 2020 10:17:23 Pacific Standard Time \\
Printed: & Wednesday February 26, 2020 10:18:42 Pacific Standard Time
\end{tabular}

Name: 200225P1-9, Date: 25-Feb-2020, Time: 19:22:44, ID: ST200225P1-7 PFC CS4 20B1108, Description: PFC CS4 20B1108




13C8-PFOSA-EIS
F41:MRM of 1 channel, ES-
\(506>78\)
\(1.234 \mathrm{e}+005\)



F39:MRM of 2 channels,ES


\section*{13C8-PFOS-EIS}



F51:MRM of 2 channels,ES\(530.7>82.8\) \(100-2.888 \mathrm{e}+004\)


\section*{13C8-PFOS-EIS}

F42:MRM of 1 channel,ES-





F44:MRM of 2 channels,ES-
\(513>219\)
\(744 \mathrm{e}+005\)

Dataset:
Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed:
Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-9, Date: 25-Feb-2020, Time: 19:22:44, ID: ST200225P1-7 PFC CS4 20B1108, Description: PFC CS4 20B1108



d3-N-MeFOSAA-EIS



\section*{d5-N-EtFOSAA-EIS}



13C2-PFUdA-EIS
F55:MRM of 1 channel,ES-
\(565>519.8\)
\(5.993 e+005\)





Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed:
Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-9, Date: 25-Feb-2020, Time: 19:22:44, ID: ST200225P1-7 PFC CS4 20B1108, Description: PFC CS4 \(20 B 1108\)


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-9, Date: 25-Feb-2020, Time: 19:22:44, ID: ST200225P1-7 PFC CS4 20B1108, Description: PFC CS4 20B1108




\section*{13C2-PFHxDA-EIS}

F76:MRM of 1 channel,ESchannel, ES
\(815>769.7\) \(9.255 e+005\)








\section*{13C3-PFBA-RSD}

F3:MRM of 1 channel,ES\(216.1>171.8\)


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-9, Date: 25-Feb-2020, Time: 19:22:44, ID: ST200225P1-7 PFC CS4 20B1108, Description: PFC CS4 20B1108


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-9, Date: 25-Feb-2020, Time: 19:22:44, ID: ST200225P1-7 PFC CS4 20B1108, Description: PFC CS4 20B1108

d3-N-MeFOSA-RSD
F46:MRM of 1 channel,ES \(515.2>168.9\) \(4.992 \mathrm{e}+005\)



13C2-PFTeDA-RSD
F74:MRM of 2 channels,ES
\(715.1>669.7\) \(5.678 \mathrm{e}+005\)


d5-N-ETFOSA-RSD
F52:MRM of 1 channel,ES-



13C2-PFHxDA-RSD
F76:MRM of 1 channel,ES-


d9-N-EtFOSE-RSD
F70:MRM of 1 channel,ES-
\(639.2>58.8\) \(6.557 \mathrm{e}+005\)


d7-N-MeFOSE-RSD
F65:MRM of 1 channel,ES-
\(623.1>58.9\)
\(5.121 e+005\)

Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-9, Date: 25-Feb-2020, Time: 19:22:44, ID: ST200225P1-7 PFC CS4 20B1108, Description: PFC CS4 20B1108


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-10, Date: 25-Feb-2020, Time: 19:33:15, ID: ST200225P1-8 PFC CS5 20B1109, Description: PFC CS5 20 B 1109




F6:MRM of 2 channels,ES-


13C3-PFBS-EIS
F12:MRM of 1 channel,ES 302.0 > 98.8 \(3.355 e+004\)





F11:MRM of 2 channels,ES-
F11:MRM of 2 channels,ES-
\(299.0>98.7\)




13C2-4:2 FTS-EIS
F17:MRM of 2 channels,ES\(329.0>79.7\)


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed:
Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-10, Date: 25-Feb-2020, Time: 19:33:15, ID: ST200225P1-8 PFC CS5 20B1109, Description: PFC CS5 20 B1109




13C3-PFBS-EIS
F12:MRM of 1 channel,ES302.0 > 98.8 \(3.355 \mathrm{e}+004\)



F9:MRM of 3 channels, ES


\section*{13C3-HFPO-DA-EIS}

F10:MRM of 2 channels,ES



13C4-PFHpA-EIS
F21:MRM of 1 channel,ES-



13C4-PFHpA-EIS



Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-10, Date: 25-Feb-2020, Time: 19:33:15, ID: ST200225P1-8 PFC CS5 20B1109, Description: PFC CS5 20B1109




13C2-6:2 FTS-EIS F30:MRM of 1 channel, ES\(429.0>79.7\)
\(4.108 \mathrm{e}+004\)



\section*{13C2-PFOA-EIS}

F27:MRM of 1 channel,ES
\(414.9>369.7\)



\section*{13C2-PFOA-EIS}

F27:MRM of 1 channel,ES-
\(414.9>369.7\)



F32:MRM of 2 channels,ES-


\section*{13C8-PFOS-EIS}

F42:MRM of 1 channel,ES\(507.0>79.7\)



Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed:
Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-10, Date: 25-Feb-2020, Time: 19:33:15, ID: ST200225P1-8 PFC CS5 20B1109, Description: PFC CS5 20B1109




13C8-PFOSA-EIS
F41:MRM of 1 channel, ES




\section*{13C8-PFOS-EIS}

13C8-PFOS-EIS
F42-MRM of 1 channel ES



\section*{13C8-PFOS-EIS}

F42.MRM of 1 channel ES





Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-10, Date: 25-Feb-2020, Time: 19:33:15, ID: ST200225P1-8 PFC CS5 20B1109, Description: PFC CS5 \(20 B 1109\)


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed:
Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-10, Date: 25-Feb-2020, Time: 19:33:15, ID: ST200225P1-8 PFC CS5 20B1109, Description: PFC CS5 20B1109


Dataset: Untitled
\(\begin{array}{ll}\text { Last Altered: } & \text { Wednesday, February 26, } 2020 \text { 10:17:23 Pacific Standard Time } \\ \text { Printed: } & \text { Wednesday, February 26,2020 10:18:42 Pacific Standard Time }\end{array}\)

Name: 200225P1-10, Date: 25-Feb-2020, Time: 19:33:15, ID: ST200225P1-8 PFC CS5 20B1109, Description: PFC CS5 20B1109




13C2-PFHxDA-EIS F76:MRM of 1 channel,ES
\(815>769.7\) \(815>769.7\)





\[
\begin{array}{r}
\text { F65:MRM of } 1 \text { channel, ES- } \\
623.1>58.9 \\
5.446 \mathrm{e}+005
\end{array}
\]



\section*{d9-N-EtFOSE-EIS}

F70:MRM of 1 channel,ES-
\[
\begin{array}{r}
\text { F70:MRM of } 1 \text { channel,ES- } \\
639.2>58.8 \\
7.093 \mathrm{e}+005
\end{array}
\]

13C3-PFBA-RSD
F3:MRM of 1 channel,ES\(216.1>171.8\)



Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed:
Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-10, Date: 25-Feb-2020, Time: 19:33:15, ID: ST200225P1-8 PFC CS5 20B1109, Description: PFC CS5 20B1109


13C2-6:2 FTS-RSD
F30:MRM of 1 channel, ES\(429.0>79.7\) \(4.108 \mathrm{e}+004\)



\section*{13C5-PFNA-RSD}

F35:MRM of 1 channel,ES-
\(468.2>422.9\)


13C8-PFOSA-RSD
F41:MRM of 1 channel, ES-



13C2-PFOA-RSD
F27:MRM of 1 channel,ES-



13C8-PFOS-RSD
F42:MRM of 1 channel,ES-
\(507.0>79.7\) \(1.025 \mathrm{e}+005\)



Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed:
Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-10, Date: 25-Feb-2020, Time: 19:33:15, ID: ST200225P1-8 PFC CS5 20B1109, Description: PFC CS5 \(20 B 1109\)




13C2-PFTeDA-RSD
F74:MRM of 2 channels, ES
\(\begin{aligned} & \text { F74:MRM of } 2 \text { channels, ES- } \\ & 715.1>669.7\end{aligned}\)
\(715.1>669.7\)
\(5.780 \mathrm{e}+005\)





13C2-PFHxDA-RSD
F76:MRM of 1 channel,ES-
\(815>769.7\)





Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-10, Date: 25-Feb-2020, Time: 19:33:15, ID: ST200225P1-8 PFC CS5 20B1109, Description: PFC CS5 \(20 B 1109\)





Dataset:
Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed:
Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

\section*{Name: 200225P1-11, Date: 25-Feb-2020, Time: 19:43:44, ID: ST200225P1-9 PFC CS6 20B1110, Description: PFC CS6 \(20 B 1110\)}


13C3-PFBA-EIS
F3:MRM of 1 channel,ES
\(216.1>171.8\)



F6:MRM of 2 channels,ES
\(248.9>98.7\)
\(3.134 e+005\)


13C3-PFBS-EIS
F12:MRM of 1 channel,ES \(302.0>98.8\) \(3.105 \mathrm{e}+004\)


\section*{3:3 FTCA}

F5:MRM of 2 channels,ES-


F5:MRM of 2 channels, ES
\(240.9>116.9\)


13C3-PFPeA-EIS
F8:MRM of 1 channel,ES-
\(266.0>221.8\)


13C3-PFPeA-EIS
F8:MRM of 1 channel,ES.



F11:MRM of 2 channels,ES-
\(299.0>98.7\)
\(4.650 \mathrm{e}+005\)


13C3-PFBS-EIS
F12:MRM of 1 channel,ES-

F16:MRM of 2 channels,ES-
\[
327.0>80.7
\]

13C2-4:2 FTS-EIS
F17:MRM of 2 channels,ES\(329.0>79.7\) \(3.677 e+004\)

Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-11, Date: 25-Feb-2020, Time: 19:43:44, ID: ST200225P1-9 PFC CS6 20B1110, Description: PFC CS6 \(20 B 1110\)


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-11, Date: 25-Feb-2020, Time: 19:43:44, ID: ST200225P1-9 PFC CS6 20B1110, Description: PFC CS6 \(20 B 1110\)


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed:
Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-11, Date: 25-Feb-2020, Time: 19:43:44, ID: ST200225P1-9 PFC CS6 20B1110, Description: PFC CS6 \(20 B 1110\)


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-11, Date: 25-Feb-2020, Time: 19:43:44, ID: ST200225P1-9 PFC CS6 20B1110, Description: PFC CS6 \(20 B 1110\)


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-11, Date: 25-Feb-2020, Time: 19:43:44, ID: ST200225P1-9 PFC CS6 20B1110, Description: PFC CS6 \(20 B 1110\)


Dataset: Untitled

Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed:
Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-11, Date: 25-Feb-2020, Time: 19:43:44, ID: ST200225P1-9 PFC CS6 20B1110, Description: PFC CS6 \(20 B 1110\)


d5-N-ETFOSA-EIS
F52:MRM of 1 channel,ES\(531.1>168.9\)



13C2-PFHxDA-EIS
F76:MRM of 1 channel,ES



13C2-PFHxDA-EIS
F76:MRM of 1 channel,ES-







Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-11, Date: 25-Feb-2020, Time: 19:43:44, ID: ST200225P1-9 PFC CS6 20B1110, Description: PFC CS6 \(20 B 1110\)






\(506>78\) \(9.919 \mathrm{e}+004\)


 \(414.9>369.7\) \(4.988 \mathrm{e}+005\)


13C4-PFHpA-RSD
F21:MRM of 1 channel,ES-


13C8-PFOS-RSD
F42:MRM of 1 channel,ES\(507.0>79.7\) \(507.0>79.7\)
\(8.810 \mathrm{e}+004\)


\begin{tabular}{ll} 
Dataset: & Untitled \\
Last Altered: & Wednesday, February 26, 2020 10:17:23 Paciific Standard Time \\
Printed: & Wednesday, February 26, 2020 10:18:42 Pacific Standard Time
\end{tabular}

Name: 200225P1-11, Date: 25-Feb-2020, Time: 19:43:44, ID: ST200225P1-9 PFC CS6 20B1110, Description: PFC CS6 20B1110





13C2-PFTeDA-RSD
F74:MRM of 2 channels, ES.
2 channels,ES-
\(715.1>669.7\)
\(5.142 \mathrm{e}+005\)

d5-N-ETFOSA-RSD
F52:MRM of 1 channel,ES-
\(531.1>168.9\)
\(5.865 \mathrm{e}+005\)





\section*{Dataset: Untitled}

Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-11, Date: 25-Feb-2020, Time: 19:43:44, ID: ST200225P1-9 PFC CS6 20B1110, Description: PFC CS6 \(20 B 1110\)




\section*{13C7-PFUdA}

F57:MRM of 1 channel,ES570.1 > 524.8 \(5.574 \mathrm{e}+005\)





Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed:
Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-12, Date: 25-Feb-2020, Time: 19:54:16, ID: ST200225P1-10 PFC CS7 20B1111, Description: PFC CS7 \(20 B 1111\)






13C3-PFPeA-EIS
F8:MRM of 1 channel,ES-
\(266.0>221.8\)




F11:MRM of 2 channels,ES\(299.0>98.7\)


\section*{13C3-PFBS-EIS}

F12:MRM of 1 channel,ES-
\(302.0>98.8\)


\begin{tabular}{ll} 
Dataset: & Untitled \\
& \\
Last Altered: & Wednesday, February 26, 2020 10:17:23 Pacific Standard Time \\
Printed: & Wednesday, February 26, 2020 10:18:42 Pacific Standard Time
\end{tabular}

Name: 200225P1-12, Date: 25-Feb-2020, Time: 19:54:16, ID: ST200225P1-10 PFC CS7 20B1111, Description: PFC CS7 \(20 B 1111\)


F13:MRM of 2 channels,ESF13:MRM of 2 channels, \(\left.\begin{array}{r}\text { ES- } \\ 313>118.9\end{array}\right)\)
\(1.119 \mathrm{e}+0.96\)




13C3-PFBS-EIS





F20:MRM of 2 channels,ES-
\[
363.0>169.0
\]



Dataset:
Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-12, Date: 25-Feb-2020, Time: 19:54:16, ID: ST200225P1-10 PFC CS7 20B1111, Description: PFC CS7 \(20 B 1111\)


F23:MRM of 2 channels,ES-


13C3-PFHxS-EIS



F29:MRM of 3 channels,ES


13C2-6:2 FTS-EIS



13C2-PFOA-EIS




F32:MRM of 2 channels,ES-
\(449>98.7\)





13C5-PFNA-EIS
F35:MRM of 1 channel,ES468.2 > 422.9 \(4.372 \mathrm{e}+005\)

Dataset:
Untitled
Last Altered:
Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed:
Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-12, Date: 25-Feb-2020, Time: 19:54:16, ID: ST200225P1-10 PFC CS7 20B1111, Description: PFC CS7 \(20 B 1111\)




\section*{13C8-PFOSA-EIS}

F41:MRM of 1 channel,ES-



\section*{13C8-PFOS-EIS}

F42:MRM of 1 channel,ES-



\section*{13C8-PFOS-EIS}

F42:MRM of 1 channel,ES-
\(507.0>79.7\)







Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-12, Date: 25-Feb-2020, Time: 19:54:16, ID: ST200225P1-10 PFC CS7 20B1111, Description: PFC CS7 \(20 B 1111\)




F56:MRM of 2 channels,ES F56:MRM of 2 channeis, ES
\(570 .>512\)

d3-N-MeFOSAA-EIS
d3-N-MeFOSAA-EIS



F59:MRM of 2 channels,ES






\section*{13C2-PFUdA-EIS
F55:MRM of 1 channel,ES-
\(565>519.8\) \\ }


F61:MRM of 2 channels,ES-
\[
\begin{array}{lr} 
& 598.8>98.7 \\
100 & 1.511 \mathrm{e}+006
\end{array}
\]



13C2-PFDoA-EIS
F63:MRM of 1 channel,ES\(614.7>569.7\)


Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed:
Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-12, Date: 25-Feb-2020, Time: 19:54:16, ID: ST200225P1-10 PFC CS7 20B1111, Description: PFC CS7 \(20 B 1111\)




13C2-PFDoA-EIS
F63:MRM of 1 channel ES





13C2-PFDoA-EIS



F72:MRM of 2 channels,ES-
\(698.8>98.7\)




Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-12, Date: 25-Feb-2020, Time: 19:54:16, ID: ST200225P1-10 PFC CS7 20B1111, Description: PFC CS7 \(20 B 1111\)




13C2-PFHxDA-EIS
F76:MRM of 1 channel,ES-
\(815>769.7\)
\(8.093 e+005\)







\section*{d9-N-EtFOSE-EIS}

F70:MRM of 1 channel,ES-



Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-12, Date: 25-Feb-2020, Time: 19:54:16, ID: ST200225P1-10 PFC CS7 20B1111, Description: PFC CS7 \(20 B 1111\)




13C5-PFNA-RSD
F35:MRM of 1 channel,ES-
\(468.2>422.9\) \(4.372 \mathrm{e}+005\)




\section*{13C8-PFOSA-RSD}

F41:MRM of 1 channel,ES
\(506>78\)
\(1.034 e+005\)




\section*{13C8-PFOS-RSD}

F42:MRM of \(\begin{array}{r}\text { channel,ESS- } \\ 507.0>79.7\end{array}\)



Dataset: Untitled
Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

Name: 200225P1-12, Date: 25-Feb-2020, Time: 19:54:16, ID: ST200225P1-10 PFC CS7 20B1111, Description: PFC CS7 \(20 B 1111\)




13C2-PFTeDA-RSD
F74-MRM of 2 channels, ES
715.1 > 669.7
\(4.837 \mathrm{e}+005\)


d5-N-ETFOSA-RSD
F52:MRM of 1 channel,ES \(531.1>168.9\) \(5.499 e+005\)








\section*{Dataset: Untitled}

Last Altered: Wednesday, February 26, 2020 10:17:23 Pacific Standard Time
Printed: Wednesday, February 26, 2020 10:18:42 Pacific Standard Time

\section*{Name: 200225P1-12, Date: 25-Feb-2020, Time: 19:54:16, ID: ST200225P1-10 PFC CS7 20B1111, Description: PFC CS7 \(20 B 1111\)}



Name: 200225P1-14, Date: 25-Feb-2020, Time: 20:15:16, ID: ICV200225P1-1 PFC ICV 20B1112, Description: PFC ICV \(20 B 1112\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Trace & Area & IS Area & wivol & RT & Response & Std. Conc & Conc. & \%Rec & Recovery ... & Ion Ratio & Ratio Out? \\
\hline 1 & 1 PFBA & \(213.0>168.8\) & 10298.746 & 10920.761 & 1.00 & 1.42 & 11.788 & 10.000 & 10.6 & 105.7 & NO & & \\
\hline 2 & 2 PFPrS & \(248.9>79.7\) & & 1546.425 & 1.00 & & & 10.000 & & (4) & NO & & \\
\hline 3 & 3 3:3 FTCA & \(240.9>176.9\) & & 13528.744 & 1.00 & & & 10.000 & & \(J\) & NO & & \\
\hline 4 & 4 PFPeA & \(263.1>218.9\) & 11375.653 & 13528.744 & 1.00 & 2.35 & 10.511 & 10.000 & 10.7 & 107.4 & No & & \\
\hline 5 & 5 PFBS & \(299.0>79.7\) & 2863.487 & 1546.425 & 1.00 & 2.62 & 23.146 & 8.840 & 9.99 & 113.0 & NO & 3.289 & NO \\
\hline 6 & 6 4:2 FTS & \(327.0>307\) & 1939.800 & 1699.368 & 1.00 & 3.04 & 14.269 & 9.360 & 10.4 & 111.5 & No & 0.933 & NO \\
\hline 7 & 47 13C3-PFBA-EIS & \(216.1>171.8\) & 10920.761 & & 1.00 & 1.42 & 10920.761 & 12.500 & 12.2 & 97.7 & No & & \\
\hline 8 & 51 13C3-PFBS-EIS & \(302.0>98.8\) & 1546.425 & & 1.00 & 2.62 & 1546.425 & 12.500 & 12.9 & 103.1 & NO & & \\
\hline 9 & 49 13C3-PFPeA-EIS & \(266.0>221.8\) & 13528.744 & & 1.00 & 2.34 & 13528.744 & 12.500 & 12.0 & 95.6. & NO & & \\
\hline 10 & 49 13C3-PFPeA-EIS & \(266.0>221.8\) & 13528.744 & & 1.00 & 2.34 & 13528.744 & 12.500 & 12.0 & 95.6 & NO & & \\
\hline 11 & 51 13C3-PFBS-EIS & \(302.0>98.8\) & 1546.425 & & 1.00 & 2.62 & 1546.425 & 12.500 & 12.9 & 103.1 & NO & & \\
\hline 12 & 55 13C2-4:2 FTS-EIS & \(329.0>79.7\) & 1699.368 & & 1.00 & 3.04 & 1699.368 & 12.500 & 11.4 & 91.2 & NO & & \\
\hline 13 & -1 & & & & & & & & & & & & \\
\hline 14 & 7 PFHxA & \(313.0>269.0\) & 19142.988 & 24208.178 & 1.00 & 3.13 & 9.885 & 10.000 & 11.0 & 109.7 & NO & 15.041 & NO \\
\hline 15 & 8 PFPeS & \(349 .>79.7\) & 2700.508 & 1546.425 & 1.00 & 3.32 & 21.829 & 9.360 & 9.22 & 98.5 & NO & 2.557 & NO \\
\hline 16 & 9 HFPO-DA & \(285.1>168.9\) & 3430.764 & 4035.316 & 1.00 & 3.34 & 10.627 & 10.000 & 10.7 & 106.8 & NO & 2.672 & NO \\
\hline 17 & 10 5:3 FTCA & \(340.9>236.9\) & & 16385.832 & 1.00 & & & 10.000 & & A) & NO & & \\
\hline 18 & 11 PFHpA & \(363.0>318.9\) & 16250.435 & 16385.832 & 1.00 & 3.73 & 12.397 & 10.000 & 9.98 & 99.8 & NO & 31.736 & NO \\
\hline 19 & 12 ADONA & \(376.8>250.9\) & 35319.387 & 16385.832 & 1.00 & 3.83 & 26.944 & 10.000 & 9.43 & 94.3 & NO & 3.962 & NO \\
\hline 20 & 57 13C2-PFHxA-EIS & \(315.0>270.0\) & 24208.178 & & 1.00 & 3.13 & 24208.178 & 12.500 & 13.5 & 107.9 & NO & & \\
\hline 21 & 51 13C3-PFBS-EIS & \(302.0>98.8\) & 1546.425 & & 1.00 & 2.62 & 1546.425 & 12.500 & 12.9 & 103.1 & NO & & \\
\hline 22 & 53 13C3-HFPO-DA-EIS & \(287.0>168.9\) & 4035.316 & & 1.00 & 3.34 & 4035.316 & 12.500 & 12.8. & 102.7 & NO & & \\
\hline 23 & 59 13C4-PFHPA-EIS & \(367.2>321.8\) & 16385.832 & & 1.00 & 3.72 & 16385.832 & 12.500 & 13.3 & 106.3 & NO & & \\
\hline 24 & 59 13C4-PFHPA-EIS & \(367.2>321.8\) & 16385.832 & & 1.00 & 3.72 & 16385.832 & 12.500 & 13.3 & 106.3 & NO & & \\
\hline 25 & 59 13C4-PFHPA-EIS & 367.2 > 321.8 & 16385.832 & & 1.00 & 3.72 & 16385.832 & 12.500 & 13.3 & 106.3 & NO & & \\
\hline 26 & -1 & & & & & & & & & & & & \\
\hline 27 & 13 L-PFHxS & \(398.9>79.7\) & 2530.766 & 3487.608 & 1.00 & 3.86 & 9.071 & 9.120 & 8.86 & 97.2. & NO & 2.023 & NO \\
\hline 28 & 15 6:2 FTS & \(427.0>407\) & 1664.254 & 1242.526 & 1.00 & 4.18 & 16.743 & 9.480 & 10.6 & 112.0 & NO & 1.052 & NO \\
\hline 29 & 16 L-PFOA & \(412.8>368.9\) & 21512.307 & 21463.426 & 1.00 & 4.23 & 12.528 & 10.000 & 11.0 & 109.9 & NO & 3.289 & NO \\
\hline 30 & 18 PFechS & \(460.8>381.0\) & & 21463.426 & 1.00 & & & 10.000 & & (A) & NO & & \\
\hline 31 & 19 PFHpS & \(449.0>79.7\) & 3236.478 & 3720.247 & 1.00 & 4.34 & 10.875 & 9.480 & 11.7 & 123.4 & NO & 2.010 & NO \\
\hline 32 & 20 7:3 FTCA & \(440.9>336.9\) & & 18928.699 & 1.00 & & & 10.000 & & (A) & NO & & \\
\hline 33 & 61 13C3-PFHxS-EIS & \(401.8>79.7\) & 3487.608 & & 1.00 & 3.86 & 3487.608 & 12.500 & 12.8 & 102.1 & NO & & \\
\hline 34 & 63 13C2-6:2 FTS-EIS & \(429.0>79.7\) & 1242.526 & & 1.00 & 4.18 & 1242.526 & 12.500 & 10.1 & 80.9 & NO & & \\
\hline 35 & 69 13C2-PFOA-EIS & \(414.9>369.7\) & 21463.426 & & 1.00 & 4.23 & 21463.426 & 12.500 & 13.5 & 107.8 & NO & & \\
\hline 36 & 69 13C2.PFOA-EIS & \(414.9>369.7\) & 21463.426 & & 1.00 & 4.23 & 21463.426 & 12.500 & 13.5 & 107.8 & NO & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Dataset: & P:IPFAS5.PROIRESULTSL200225P 1200225P1-ICV.qld \\
Last Altered: & Wednesday, February 26, 2020 12:16:24 Pacific Standard Time \\
Printed: & Wednesday, February 26, 2020 12:18:14 Pacific Standard Time
\end{tabular}

Name: 200225P1-14, Date: 25-Feb-2020, Time: 20:15:16, ID: ICV200225P1-1 PFC ICV 20B1112, Description: PFC ICV 2081112
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Trace & Area & IS Areal & witvol & \(\overline{\text { AT }}\) & Response & Std. Cone & Conc. & \%Rec & Recovery ... & Ion Ratio & Ratio Out? \\
\hline 37 & 71 13C8-PFOS-EIS & \(507.0>79.7\) & 3720.247 & & 1.00 & 4.75 & 3720.247 & 12.500 & 12.8 & 102.0 & NO & & \\
\hline 38 & 65 13C5-PFNA-EIS & \(468.2>422.9\) & 18928.699 & & 1.00 & 4.67 & 18928.699 & 12.500 & 12.7 & 101.5 & No & & \\
\hline 39 & -1 & & & & & & & & & & & & \\
\hline 40 & 21 PFNA & \(463.0>418.8\) & 18616.787 & 18928.699 & 1.00 & 4.67 & 12.294 & 10.000 & 10.3 & 102.9 & NO & 8.250 & NO \\
\hline 41 & 22 PFOSA & \(497.9>77.9\) & 3245.099 & 4987.479 & 1.00 . & 4.73 & 8.133 & 10.000 & 9.94 & 99.4 & NO & 22.910 & NO \\
\hline 42 & 23 L-PFOS & \(498.9>79.7\) & 2950.595 & 3720.247 & 1.00 & 4.75 & 9.914 & 9.280 & 10.6 & 114.2 & No & 2.513 & NO \\
\hline 43 & 25 9CI-PF3ONS & \(530.7>350.8\) & 2930.765 & 3720.247 & 1.00 & 4.96 & 9.847 & 9.280 & 9.77 & 105.3 & NO & 15.856 & NO \\
\hline 44 & 26 PFDA & \(513>468.8\) & 18401.865 & 19611.957 & 1.00 & 5.04 & 11.729 & 10.000 & 9.96 & 99.6 & NO & 9.449 & NO \\
\hline 45 & 27 8:2 FTS & \(526.9>507\) & 1508.775 & 1205.674 & 1.00 & 5.01 & 15.642 & 9.600 & 12.4 & 128.9 & NO & 2.206 & YES \\
\hline 46 & 65 13C5-PFNA-EIS & \(468.2>422.9\) & 18928.699 & & 1.00 & 4.67 & 18928.699 & 12.500 & 12.7 & 101.5 & No & & \\
\hline 47 & 67 13C8-PFOSA-EIS & \(506>78\) & 4987.479 & & 1.00 & 4.73 & 4987.479 & 12.500 & 13.3 & 106.2 & NO & & \\
\hline 48 & 71 13C8-PFOS-EIS & \(507.0>79.7\) & 3720.247 & & 1.00 & 4.75 & 3720.247 & 12.500 & 12.8 & 102.0 & No & & \\
\hline 49 & 71 13C8-PFOS-EIS & \(507.0>79.7\) & 3720.247 & & 1.00 & 4.75 & 3720.247 & 12.500 & 12.8 & 102.0 & No & & \\
\hline 50 & 73 13C2-PFDA-EIS & \(515.1>469.9\) & 19611.957 & & 1.00 & 5.04 & 19611.957 & 12.500 & 12.0 & 96.0 & NO & & \\
\hline 51 & 75 13C2-8:2 FTS-EIS & \(529>79.7\) & 1205.674 & & 1.00 & 5.01 & 1205.674 & 12.500 & 11.8 & 94.4 & No & & \\
\hline 52 & -1 & & & & & & & & & & & & \\
\hline 53 & 28 PFNS & \(549.1>79.7\) & 3022.497 & 3720.247 & 1.00 & 5.10 & 10.156 & 9.600 & 11.4 & 118.4 & No & 2.354 & NO \\
\hline 54 & 29 L-MeFOSAA & \(570>419\) & 6104.077 & 4390.783 & 1.00 & 5.19 & 17.378 & 10.000 & 8.99 & 89.9 & NO & 1.878 & NO \\
\hline 55 & 31 L -EtFOSAA & \(584.1>419\) & 5447.836 & 5635.973 & 1.00 & 5.34 & 12.083 & 10.000 & 10.1 & 101.0 & No & 1.164 & NO \\
\hline 56 & 33 PFUdA & \(563.0>518.9\) & 19137.322 & 22407.240 & 1.00 & 5.35 & 10.676 & 10.000 & 11.4 & 114.3 & NO & 24.952 & NO \\
\hline 57 & 34 PFDS & \(598.8>79.7\) & 2683.358 & 3720.247 & 1.00 & 5.40 . & 9.016 . & 9.600 & 11.7 & 122.3 & NO & 1.908 & NO \\
\hline 58 & 3511 Cl PF30udS & \(630.9>450.9\) & 7882.754 & 18890.717 & 1.00 & 5.56 & 5.216 & 9.440 & 11.4 & 120.9 & NO & 19.475 & NO \\
\hline 59 & 71 13C8-PFOS-EIS & \(507.0>79.7\) & 3720.247 & & 1.00 & 4.75 & 3720.247 & 12.500 & 12.8 & 102.0 & No & & \\
\hline 60 & 77 d3-N-MeFOSAA-EIS & \(573.3>419\) & 4390.783 & & 1.00 & 5.18 & 4390.783 & 12.500 & 13.3 & 106.3 & NO & & \\
\hline 61 & 81 d5-N-EtFOSAA-EIS & \(589.3>419\) & 5635.973 & & 1.00 & 5.33 & 5635.973 & 12.500 & 14.3 & 114.0 & No & & \\
\hline 52 & 79 13C2-PFUdA-EIS & \(565>519.8\) & 22407.240 & & 1.00 & 5.35 & 22407.240 & 12.500 & 13.9 & 110.9 & NO & & \\
\hline 63 & 71 13C8-PFOS-EIS & \(507.0>79.7\) & 3720.247 & & 1.00 & 4.75 & 3720.247 & 12.500 & 12.8 & 102.0 & NO & & \\
\hline 54 & 83 13C2-PFDOA-EIS & \(614.7>569.7\) & 18890.717 & & 1.00 & 5.62 & 18890.717 & 12.500 & 11.2 & 89.6 & NO & & \\
\hline 65 & -1 & & & & & & & & & (A) & & & \\
\hline 66 & 36 10:2 FTS & \(626.9>607\) & 5.285 & 845.520 & 1.00 & 5.63 & 0.063 & 10.000 & & (A) & NO & 0.559 & NO \\
\hline 67 & 37 PFDoA & \(612.9>569.0\) & 18885.117 & 18890.717 & 1.00 & 5.62 & 12.496 & 10.000 & 11.5 & 115.5 & NO & 11.138 & NO \\
\hline 68 & 38 N -MeFOSA & \(512.1>168.9\) & & 21195.408 & 1.00 & & & 9.600 & & (A) & NO & & \\
\hline 69 & 39 PFTrDA & \(662.9>618.9\) & 19907.018 & 18890.717 & 1.00 & 5.87 & 13.172 & 10.000 & 11.8 & 117.9 & NO & 53.731 & NO \\
\hline 70 & 40 PFDos & \(698.8>79.7\) & 4.986 & 22225.467 & 1.00 & 5.86 & 0.003 & 10.000 & & (A) & NO & 1.242 & NO \\
\hline 71 & 41 PFTeDA & \(713.0>669.0\) & 19661.219 & 22225.467 & 1.00 & 6.08 & 11.058 & 10.000 & 11.6 & 116.2 & NO & 15.780 & NO \\
\hline 72 & 85 13C2-10:2 FTS-EIS & \(632.9>80.0\) & 845.520 & & 1.00 & 5.61 & 845.520 & 10.000 & 11.7 & 117.5 & NO & & \\
\hline
\end{tabular}

\section*{Dataset: P:IPFAS5.PROIRESULTSI200225P11200225P1-ICV.qld \\ Last Altered: Wednesday, February 26, 2020 12:16:24 Pacific Standard Time \\ Printed: Wednesday, February 26, 2020 12:18:14 Pacific Standard Time}

Name: 200225P1-14, Date: 25-Feb-2020, Time: 20:15:16, ID: ICV200225P1-1 PFC ICV 20B1112, Description: PFC ICV \(20 B 1112\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Trace & Area & IS Area & wtivol & RT & Response & Std. Conc & Conc. & \%Rec & Recovery ... & Ion Ratio & Ratio Out? \\
\hline 73 & 83 13C2-PFDOA-EIS & \(614.7>569.7\) & 18890.717 & & 1.00 & 5.62 & 18890.717 & 12.500 & 11.2 & 89.6 & NO & & \\
\hline 74 & \(87 \mathrm{d3}-\mathrm{N}-\mathrm{MeFOSA}-E I S\) & \(515.2>168.9\) & 21195.408 & & 1.00 & 5.76 & 21195.408 & 149.200 & 150 & 100.4 & NO & & \\
\hline 75 & 83 13C2-PFDOA-EIS & \(614.7>569.7\) & 18890.717 & & 1.00 & 5.62 & 18890.717 & 12.500 & 11.2 & 89.6 & NO & & \\
\hline 76 & 89 13C2-PFTeDA-EIS & \(715.1>669.7\) & 22225.467 & & 1.00 & 6.08 & 22225.467 & 12.500 & 11.7 & 93.8 & NO & & \\
\hline 77 & 89 13C2-PFTeDA-EIS & \(715.1>669.7\) & 22225.467 & & 1.00 & 6.08 & 22225.467 & 12.500 & 11.7 & 93.8 & NO & & \\
\hline 78 & -1 & & & & & & & & & (A) & & & \\
\hline 79 & \(42 \mathrm{~N}-\mathrm{EtFOSA}\) & 526.1 > 168.9 & & 27160.416 & 1.00 & & & 9.600 & & - & NO & & \\
\hline 80 & 43 PFHxDA & \(813.1>768.6\) & & 31592.230 & 1.00 & & & 10.000 & & & NO & & \\
\hline 81 & 44 PFODA & \(913.1>868.8\) & 65.524 & 31592.230 & 1.00 & 6.63 & 0.026 & 10.000 & & & NO & & \\
\hline 82 & \(45 \mathrm{~N}-\mathrm{MeFOSE}\) & \(616.1>58.9\) & & 19540.221 & 1.00 & & & 9.600 & & & NO & & \\
\hline 83 & 46 N -EtFOSE & \(630.1>58.9\) & & 22678.684 & 1.00 & & & 9.600 & & \(\checkmark\) & NO & & \\
\hline 84 & 91 d5-N-ETFOSA-EIS & \(531.1>168.9\) & 27160.416 & & 1.00 & 6.15 & 27160.416 & 149.200 & 150 & 100.7 & NO & & \\
\hline 85 & 93 13C2-PFHxDA-EIS & \(815>769.7\) & 31592.230 & & 1.00 & 6.40 & 31592.230 & 12.500 & 12.2 & 97.5 & NO & & \\
\hline 86 & 93 13C2-PFHxDA-EIS & \(815>769.7\) & 31592.230 & & 1.00 & 6.40 & 31592.230 & 12.500 & 12.2 & 97.5 & NO & & \\
\hline 87 & \(95 \mathrm{d7}-\mathrm{N}-\mathrm{MeFOSE}-E I S\) & \(623.1>58.9\) & 19540.221 & & 1.00 & 6.28 & 19540.221 & 149.200 & 162 & 108.4 & NO & & \\
\hline 88 & 97 d9-N-EtFOSE-EIS & \(639.2>58.8\) & 22678.684 & & 1.00 & 6.43 & 22678.684 & 149.200 & 152 & 101.8 & NO & & \\
\hline 89 & 71 13C8-PFOS-EIS & \(507.0>79.7\) & 3720.247 & & 1.00 & 4.75 & 3720.247 & 12.500 & 12.8 & 102.0 & NO & & \\
\hline 90 & -1 & & & & & & & & & & & & \\
\hline 91 & 48 13C3-PFBA-RSD & \(216.1>171.8\) & 10920.761 & 13872.810 & 1.00 & 1.42 & 9.840 & 12.500 & 12.3 & 98.4 & NO & & \\
\hline 92 & 50 13C3-PFPeA-RSD & \(266.0>221.8\) & 13696.423 & 25504.557 & 1.00 & 2.34 & 6.713 & 12.500 & 11.4 & 91.1 & NO & & \\
\hline 93 & 52 13C3-PFBS-RSD & \(302.0>98.8\) & 1546.675 & 1428.649 & 1.00 & 2.62 & 13.533 & 12.500 & 12.0 & 96.1 & NO & & \\
\hline 94 & 54 13C3-HFPO-DA-RSD & \(287.0>168.9\) & 4035.316 & 25504.557 & 1.00 & 3.34 & 1.978 & 12.500 & 11.3 & 90.7 & NO & & \\
\hline 95 & 56 13C2-4:2 FTS-RSD & \(329.0>79.7\) & 1699.368 & 1428.649 & 1.00 & 3.04 & 14.869 & 12.500 & 11.3 & 90.6 & NO & & \\
\hline 96 & 58 13C2-PFHxA-RSD & \(315.0>270.0\) & 24208.178 & 25504.557 & 1.00 & 3.13 & 11.865 & 12.500 & 12.2 & 97.5 & NO & & \\
\hline 97 & 60 13C4-PFHpA-RSD & \(367.2>321.8\) & 16385.832 & 25504.557 & 1.00 & 3.72 & 8.031 & 12.500 & 12.2 & 97.5 & NO & & \\
\hline 98 & 62 13C3-PFHxS-RSD & \(401.8>79.7\) & 3487.608 & 1428.649 & 1.00 & 3.86 & 30.515 & 12.500 & 12.1 & 96.9 & NO & & \\
\hline 99 & 64 13C2-6:2 FTS-RSD & \(429.0>79.7\) & 1242.526 & 4206.357 & 1.00 & 4.18 & 3.692 & 12.500 & 9.60 & 76.8 & NO & & \\
\hline 100 & 66 13C5-PFNA-RSD & \(468.2>422.9\) & 18928.699 & 20125.334 & 1.00 & 4.67 & 11.757 & 12.500 & 12.5 & 100.3 & NO & & \\
\hline 101 & 68 13C8-PFOSA-RSD & \(506>78\) & 4987.479 & 24458.998 & 1.00 & 4.73 & 2.549 & 12.500 & 12.1 & 97.1 & NO & & \\
\hline 102 & 70 13C2-PFOA-RSD & \(414.9>369.7\) & 21463.426 & 23181.445 & 1.00 & 4.23 & 11.574 & 12.500 & 12.5 & 100.4 & NO & & \\
\hline 103 & -1 & & & & & & & & & & & & \\
\hline 104 & 72 13C8-PFOS-RSD & \(507.0>79.7\) & 3753.851 & 4206.357 & 1.00 & 4.75 & 11.155 & 12.500 & 11.7 & 94.0 & NO & & \\
\hline 105 & 74 13C2-PFDA-RSD & \(515.1>469.9\) & 19611.957 & 21334.279 & 1.00 & 5.04 & 11.491 & 12.500 & 11.9 & 95.2 & NO & & \\
\hline 106 & 76.13C2-8:2 FTS-RSD & \(529>79.7\) & 1202.633 & 4206.357 & 1.00 & 5.01 & 3.574 & 12.500 & 10.8 & 86.7 & NO & & \\
\hline 107 & 78 d3-N-MeFOSAA-RSD & \(573.3>419\) & 4390.783 & 24458.998 & 1.00 & 5.18 & 2.244 & 12.500 & 12.9 & 103.1 & NO & & \\
\hline 108 & 80 13C2-PFUdA-RSD & \(565>519.8\) & 22407.240 & 24458.998 & 1.00 & 5.35 & 11.451 & 12.500 & 11.4 & 90.9 & NO- & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Dataset: & P:IPFAS5.PROIRESULTSL200225P1L200225P1-ICV.qld \\
Last Altered: & Wednesday, February 26, 2020 12:16:24 Pacific Standard Time \\
Printed: & Wednesday, February 26, 2020 12:18:14 Pacific Standard Time \\
\hline
\end{tabular}

Name: 200225P1-14, Date: 25-Feb-2020, Time: 20:15:16, ID: ICV200225P1-1 PFC ICV 20B1112, Description: PFC ICV \(20 B 1112\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Trace & Area & IS Area & witvol & RT & Response & Std. Conc & Conc. & \%Rec & Flecovery ... & Ion Ratio & Ratio Out? \\
\hline 109 & \(82 \mathrm{~d}-\mathrm{N}-\mathrm{EtFOSAA}\)-RSD & \(589.3>419\) & 5635.973 & 24458.998 & 1.00 & 5.33 & 2.880 & 12.500 & 12.4 & 99.5 & NO & & \\
\hline 110 & 84 13C2-PFDOA-RSD & \(614.7>569.7\) & 18890.717 & 21334.279 & 1.00 & 5.62 & 11.068 & 12.500 & 11.4 & 91.4 & NO & & \\
\hline 111 & 86 13C2-10:2 FTS-RSD & \(632.9>80.0\) & 845.520 & 4206.357 & 1.00 & 5.61 & 2.513 & 10.000 & 10.5 & 105.4 & NO & & \\
\hline 112 & 88 d3-N-MeFOSA-RSD & \(515.2>168.9\) & 21195.408 & 24458.998 & 1.00 & 5.76 & 10.832 & 149.200 & 135 & 90.4 & NO & & \\
\hline 113 & 90 13C2-PFTeDA-RSD & \(715.1>669.7\) & 22225.467 & 24458.998 & 1.00 & 6.08 & 11.359 & 12.500 & 10.8 & 86.8 & NO & & \\
\hline 114 & \(92 \mathrm{~d} 5-\mathrm{N}-E T F O S A-R S D\) & \(531.1>168.9\) & 27160.416 & 24458.998 & 1.00 & 6.15 & 13.881 & 149.200 & 140 & 93.8 & NO & & \\
\hline 115 & 94 13C2-PFHxDA-RSD & \(815>769.7\) & 31592.230 & 24458.998 & 1.00 & 6.40 & 16.146 & 12.500 & 10.8 & 86.4 & NO & & \\
\hline 116 & -1 & & & & & & & & & & & & \\
\hline 117 & \(96 \mathrm{d7}-\mathrm{N}-\mathrm{MeFOSE}-\mathrm{RSD}\) & \(623.1>58.9\) & 19540.221 & 24458.998 & 1.00 & 6.28 & 9.986 & 149.200 & 137 & 91.9 & NO & & \\
\hline 118 & 98 d9-N-EtFOSE-RSD & \(639.2>58.8\) & 22678.684 & 24458.998 & 1.00 & 6.43 & 11.590 & 149.200 & 135 & 90.5 & NO & & \\
\hline 119 & 99 13C4-PFBA & \(217.0>172.0\) & 13872.810 & 13872.810 & 1.00 & 1.42 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline 120 & 1.. 13C5-PFHxA & \(318.0>272.9\) & 25504.557 & 25504.557 & 1.00 & 3.13 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline 121 & 1... 13C8-PFOA & \(420.9>376.0\) & 23181.445 & 23181.445 & 1.00 & 4.23 . & 12.500 & 12.500 & 12.5 & 100.0 . & NO & & \\
\hline 122 & 1... 1802-PFHxS & \(403.0>102.6\) & 1428.649 & 1428.649 & 1.00 & 3.86 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline 123 & 1... 13C9-PFNA & \(472.2>426.9\) & 20125.334 & 20125.334 & 1.00 & 4.67 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline 124 & 1... 13C4-PFOS & \(503>79.7\) & 4206.357 & 4206.357 & 1.00 & 4.75 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline 125 & 1... 13C6-PFDA & \(519.1>473.7\) & 21334.279 & 21334.279 & 1.00 & 5.04 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline 126 & 1... 13C7-PFUdA & \(570.1>524.8\) & 24458.998 & 24458.998 & 1.00 & 5.35 . & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Dataset: & P:IPFAS5.PROTRESULTSL200225P11200225P1-ICV.qld \\
Last Altered: & Wednesday, February 26, 2020 12:16:24 Pacific Standard Time \\
Printed: & Wednesday, February 26, 2020 12:18:14 Pacific Standard Time
\end{tabular}

Method: P:|PFAS5.PRO\MethDB\PFAS_FULL_80C_022420_ICV.mdb 25 Feb 2020 15:48:31 Calibration: P:|PFAS5.PRO\CurveDBIC18_VAL-PFAS_Q5_02-25-20.cdb 26 Feb 2020 11:25:03

\section*{Name: 200225P1-14, Date: 25-Feb-2020, Time: 20:15:16, ID: ICV200225P1-1 PFC ICV 20B1112, Description: PFC ICV \(20 B 1112\)}

\begin{tabular}{ll} 
Dataset: & P:IPFAS5.PROIRESULTSL200225P11200225P1-ICV.qld \\
Last Altered: & Wednesday, February 26, 2020 12:16:24 Pacific Standard Time \\
Printed: & Wednesday, February 26, 2020 12:18:14 Pacific Standard Time \\
\hline
\end{tabular}

Name: 200225P1-14, Date: 25-Feb-2020, Time: 20:15:16, ID: ICV200225P1-1 PFC ICV 20B1112, Description: PFC ICV \(20 B 1112\)



PFPeS


\section*{13C3-PFBS-EIS}

F12:MRM of 1 channel,ES-
F12:MRM of 1 channel,ES-
\(302.0>98.8\)


\section*{13C3-HFPO-DA-EIS}

F10:MRM of 2 channels,ES-



\section*{13C4-PFHpA-EIS}

F21:MRM of 1 channel,ES-
F21:MRM of 1 channel,ES-
\(367.2>321.8\)



\section*{13C4-PFHpA-EIS}

F21:MRM of 1 channel,ES-


ADONA
F22:MRM of 2 channels,ES\(376.8>250.9\)


F22:MRM of 2 channels,ES-
\(376.8>85.0\)


\section*{13C4-PFHpA-EIS}

F21:MRM of 1 channel,ES. \(367.2>321.8\) \(4.079 \mathrm{e}+005\)

\begin{tabular}{ll} 
Dataset: & P:IPFAS5.PROIRESULTSL200225P11200225P1-ICV.qld \\
Last Altered: & Wednesday, February 26, 2020 12:16:24 Pacific Standard Time \\
Printed: & Wednesday, February 26, 2020 12:18:14 Pacific Standard Time \\
\hline
\end{tabular}

Name: 200225P1-14, Date: 25-Feb-2020, Time: 20:15:16, ID: ICV200225P1-1 PFC ICV 20B1112, Description: PFC ICV \(20 B 1112\)


Dataset: P:IPFAS5.PROIRESULTSL200225P11200225P1-ICV.qld
Last Altered: Wednesday, February 26, 2020 12:16:24 Pacific Standard Time
Printed:
Wednesday, February 26, 2020 12:18:14 Pacific Standard Time

Name: 200225P1-14, Date: 25-Feb-2020, Time: 20:15:16, ID: ICV200225P1-1 PFC ICV 20B1112, Description: PFC ICV \(20 B 1112\)

\begin{tabular}{ll} 
Dataset: & P:IPFAS5.PROIRESULTSL200225P11200225P1-ICV.qId \\
& \\
Last Altered: & Wednesday, February 26, 2020 12:16:24 Pacific Standard Time \\
Printed: & Wednesday, February 26, 2020 12:18:14 Pacific Standard Time \\
\hline
\end{tabular}

Name: 200225P1-14, Date: 25-Feb-2020, Time: 20:15:16, ID: ICV200225P1-1 PFC ICV 20B1112, Description: PFC ICV \(20 B 1112\)


F53:MRM of 2 channels,ES-


C8-PFOS-EIS


L-MeFOSAA
F56:MRM of 2 channels,ES-
\(570>419\)
\(367 e+005\)


F56:MRM of 2 channels,ES
d3-N-MeFOSAA-EIS


F59:MRM of 2 channels,ES\(584.1>526\)

d5-N-EtFOSAA-EIS
F60:MRM of 1 channel,ES\(589.3>419\) \(1.487 \mathrm{e}+005\)



F54:MRM of 2 channels, ES-
563.0 > 269


\section*{13C2-PFUdA-EIS}

F55:MRM of 1 channel,ES\(565>519.8\) \(6.023 e+005\)


PFDS


F61:MRM of 2 channels,ES-
598.8 > 98.7
\(3.798 e+004\)



11CI-PF30UdS
F68:MRM of 2 channels,ES \(630.9>450.9\)


F68:MRM of 2 channels,ES \(630.9>83\)


13C2-PFDoA-EIS
F63:MRM of 1 channel,ES-
\(614.7>569.7\) \(4.445 e+005\)

\begin{tabular}{ll} 
Dataset: & P:IPFAS5.PROIRESULTSL200225P1L200225P1-ICV.qld \\
Last Altered: & Wednesday, February 26, 2020 12:16:24 Pacific Standard Time \\
Printed: & Wednesday, February 26, 2020 12:18:14 Pacific Standard Time \\
\hline
\end{tabular}

Name: 200225P1-14, Date: 25-Feb-2020, Time: 20:15:16, ID: ICV200225P1-1 PFC ICV 20B1112, Description: PFC ICV \(20 B 1112\)


\section*{Dataset: P:IPFAS5.PRO\RESULTSL200225P11200225P1-ICV.qld}

Last Altered: Wednesday, February 26, 2020 12:16:24 Pacific Standard Time
Printed: Wednesday, February 26, 2020 12:18:14 Pacific Standard Time

Name: 200225P1-14, Date: 25-Feb-2020, Time: 20:15:16, ID: ICV200225P1-1 PFC ICV 20B1112, Description: PFC ICV \(20 B 1112\)


Name: 200225P1-14, Date: 25-Feb-2020, Time: 20:15:16, ID: ICV200225P1-1 PFC ICV 20B1112, Description: PFC ICV \(20 B 1112\)

\begin{tabular}{ll} 
Dataset: & P:IPFAS5.PROIRESULTSL200225P11200225P1-ICV.qId \\
& \\
Last Altered: & Wednesday, February 26, 2020 12:16:24 Pacific Standard Time \\
Printed: & Wednesday, February 26, 2020 12:18:14 Pacific Standard Time
\end{tabular}

Name: 200225P1-14, Date: 25-Feb-2020, Time: 20:15:16, ID: ICV200225P1-1 PFC ICV 20B1112, Description: PFC ICV \(20 B 1112\)




13C2-10:2 FTS-RSD F69:MRM of 1 channel,ES-
\(632.9>80.0\)
\(2.003 \mathrm{e}+004\)


d3-N-MeFOSA-RSD F46:MRM of 1 channel,ESF46:MRM of 1 channel,ES-
\(515.2>168.9\)



13C2-PFTeDA-RSD
F74:MRM of 2 channels,ES-
\(715.1>669.7\)



d5-N-ETFOSA-RSD
F52:MRM of 1 channel,ES-
\(531.1>168.9\)

13C2-PFHxDA-RSD
\[
\begin{array}{r}
\text { F76:MRM of } 1 \text { channel, ES- } \\
815>769.7
\end{array}
\]


\section*{Dataset:} P:IPFAS5.PRO\RESULTSL200225P11200225P1-ICV.qld

Last Altered: Wednesday, February 26, 2020 12:16:24 Pacific Standard Time
Printed: Wednesday, February 26, 2020 12:18:14 Pacific Standard Time

Name: 200225P1-14, Date: 25-Feb-2020, Time: 20:15:16, ID: ICV200225P1-1 PFC ICV 20B1112, Description: PFC ICV \(20 B 1112\)




13C4-PFOS
F40:MRM of 1 channel,ES-
F40:MRM of 1 channel,ES-
\(503>79.7\)



\section*{13C6-PFDA}

F47:MRM of 1 channel,ES\(519.1>473.7\) \(5.232 \mathrm{e}+005\)



\section*{13C7-PFUdA}
\[
\begin{array}{r}
\text { F57:MRM of } 1 \text { channel,ES- } \\
570.1>524.8
\end{array}
\]
\[
6.830 \mathrm{e}+005
\]



18O2-PFHxS
F25:MRM of 1 channel,ES\(403.0>102.6\)


\section*{Method: P:|PFAS5.PRO\MethDB\NEW_PFAS_80C_022520.mdb 26 Feb 2020 11:36:08} Calibration: P:|PFAS5.PRO\CurveDBIC18_VAL-PFAS_Q5_02-25-20.cdb 26 Feb 2020 11:25:03

\section*{Name: 200225P1-13, Date: 25-Feb-2020, Time: 20:04:45, ID: IB, Description: IB}




\section*{13C3-PFBA-EIS}

IB IBF3:MRM of 1 channel,ES-
\(216.1>171.8\) \(4.789 \mathrm{e}+004\)


13C3-PFBS-EIS
F12:MRM of 1 channel,ES-



\section*{13C3-PFPeA-EIS}

IB IBF8:MRM of 1 channel,ES-
\(266.0>221.8\)
\(1.447 e+005\)

\section*{PFPeA}


\section*{13C3-PFPeA-EIS}

IB IBF8:MRM of 1 channel,ES-



F11:MRM of 2 channels,ES-


13C3-PFBS-EIS
F12:MRM of 1 channel,ES\(302.0>98.8\) \(2.014 e+004\)


\section*{4:2 FTS}


13C2-4:2 FTS-EIS
F17:MRM of 2 channels,ES-
\(329.0>79.7\) \(2.667 e+004\)

Name: 200225P1-13, Date: 25-Feb-2020, Time: 20:04:45, ID: IB, Description: IB


13C3-PFBS-EIS




F20:MRM of 2 channels,ES-


\section*{13C4-PFHpA-EIS}


\section*{Quantify Sample Report
Vista Analytical Laboratory}

Name: 200225P1-13, Date: 25-Feb-2020, Time: 20:04:45, ID: IB, Description: IB

\section*{L-PFHxS}

F23:MRM of 2 channels,ES-


\section*{13C3-PFHxS-EIS}



F29:MRM of 3 channels,ES-


13C2-6:2 FTS-EIS



13C2-PFOA-EIS





Name: 200225P1-13, Date: 25-Feb-2020, Time: 20:04:45, ID: IB, Description: IB

\section*{PFNA}


F34:MRM of 2 channels,ES-


\section*{13C5-PFNA-EIS}

F35:MRM of 1 channel,ES-
\(468.2>422.9\)
\(3.965 \mathrm{e}+005\)
13C8-PFOSA-EIS
F41:MRM of 1 channel,ES-
\(506>78\)


F37:MRM of 2 channels,ES-



\section*{13C8-PFOS-EIS}

F42:MRM of 1 channel,ES-


\section*{9CI-PF30NS
F51:MRM of 2 channels,ES-
\(530.7>350.8\)
\(7.557 \mathrm{e}+001\)}


\section*{13C8-PFOS-EIS}



\section*{13C2-PFDA-EIS}


Name: 200225P1-13, Date: 25-Feb-2020, Time: 20:04:45, ID: IB, Description: IB

\section*{PFNS}

F53:MRM of 2 channels,ES-
\(549.1>98.7\)
\(8.227 \mathrm{e}+001\)

\section*{13C8-PFOS-EIS}



F56:MRM of 2 channels,ES-

d3-N-MeFOSAA-EIS



F59:MRM of 2 channels,ES-


\section*{13C2-PFUdA-EIS}


\section*{PFDS}

F61:MRM of 2 channels,ES-


F61:MRM of 2 channels,ES-


\section*{13C8-PFOS-EIS}



Name: 200225P1-13, Date: 25-Feb-2020, Time: 20:04:45, ID: IB, Description: IB




\section*{d3-N-MeFOSA-EIS}

F46:MRM of 1 channel,ES-

F62:MRM of 4 channels,ES-



F71:MRM of 2 channels,ES-
\[
\begin{array}{r}
\text { F/1:MRIM of } 2 \text { channels,ES- } \\
662.9>319
\end{array}
\]



PFTEDA
F73:MRM of 2 channels,ES-
\(713.0>669.0\)
\(2.028 \mathrm{e}+003\)
F73:MRM of 2 channels,ES-


Name: 200225P1-13, Date: 25-Feb-2020, Time: 20:04:45, ID: IB, Description: IB


\section*{13C2-PFHxDA-EIS}
13C2-PFHxDA-EIS
F76:MRM of 1 channel,ES-
\(815>769.7\)
\(9.148 \mathrm{e}+005\)


13C2-PFHxDA-EIS
F76:MRM of 1 channel,ES-
\(815>769.7\)


d7-N-MeFOSE-EIS
F65:MRM of 1 channel,ES-

d9-N-EtFOSE-EIS


\section*{N-EtFOSE}


\section*{13C8-PFOS-EIS}



Name: 200225P1-13, Date: 25-Feb-2020, Time: 20:04:45, ID: IB, Description: IB


\section*{13C4-PFHpA-RSD}



\section*{13C3-PFHxS-RSD}




\section*{13C3-HFPO-DA-RSD}

F10:MRM of 2 channels,ES-



13C8-PFOSA-RSD



\section*{13C2-PFOA-RSD}


Name: 200225P1-13, Date: 25-Feb-2020, Time: 20:04:45, ID: IB, Description: IB


\section*{13C2-PFDoA-RSD}

F63:MRM of 1 channel,ES-



13C2-10:2 FTS-RSD

d3-N-MeFOSA-RSD
F46:MRM of 1 channel,ES-
F46:MRM of 1 channel,ES-
\(515.2>168.9\)
\(4.729 \mathrm{e}+005\)


13C2-PFTeDA-RSD
F74:MRM of 2 channels,ES\(715.1>669.7\) \(5.403 \mathrm{e}+005\)


13C2-PFUdA-RSD
F55:MRM of 1 channel,ES-
channel, ES-
\(565>519.8\) \(5.945 \mathrm{e}+005\)

d5-N-ETFOSA-RSD
F52:MRM of 1 channel ES

d5-N-EtFOSAA-RSD
F60:MRM of 1 channel,ES-
589.3 > 419
\(1.154 \mathrm{e}+005\)



Name: 200225P1-13, Date: 25-Feb-2020, Time: 20:04:45, ID: IB, Description: IB

\section*{d7-N-MeFOSE-RSD \\ }

\section*{13C9-PFNA}

F36:MRM of 1 channel,ES-
 \(4.662 \mathrm{e}+005\)






13C5-PFHxA
F15:MRM of 1 channel,ES-
\(318.0>272.9\)
\(3.574 \mathrm{e}+005\) \(3.574 \mathrm{e}+005\)



Name: 200225P1-13, Date: 25-Feb-2020, Time: 20:04:45, ID: IB, Description: IB
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Trace & Area & IS Area & wt/vol & RT & Response & Std. Conc & Conc. & \%Rec & Recovery ... & Ion Ratio & Ratio Out? \\
\hline 1 & 1 PFBA & \(213.0>168.8\) & 6.087 & 3374.603 & 1.00 & 1.47 & 0.023 & & & & NO & & \\
\hline 2 & 2 PFPrS & \(248.9>79.7\) & & 1117.574 & 1.00 & & & & & & NO & & \\
\hline 3 & 3 3:3 FTCA & \(240.9>176.9\) & & 8162.300 & 1.00 & & & & & & NO & & \\
\hline 4 & 4 PFPeA & \(263.1>218.9\) & 5.105 & 8162.300 & 1.00 & 2.31 & 0.008 & & & & NO & & \\
\hline 5 & 5 PFBS & \(299.0>79.7\) & & 1117.574 & 1.00 & & & & & & NO & & \\
\hline 6 & 6 4:2 FTS & \(327.0>307\) & & 1218.698 & 1.00 & & & & & & NO & & \\
\hline 7 & 47 13C3-PFBA-EIS & \(216.1>171.8\) & 3374.603 & & 1.00 & 1.42 & 3374.603 & 12.500 & 3.77 & 30.2 & YES & & \\
\hline 8 & 51 13C3-PFBS-EIS & \(302.0>98.8\) & 1117.574 & & 1.00 & 2.62 & 1117.574 & 12.500 & 9.31 & 74.5 & NO & & \\
\hline 9 & 49 13C3-PFPeA-EIS & \(266.0>221.8\) & 8162.300 & & 1.00 & 2.35 & 8162.300 & 12.500 & 7.21 & 57.7 & NO & & \\
\hline 10 & 49 13C3-PFPeA-EIS & \(266.0>221.8\) & 8162.300 & & 1.00 & 2.35 & 8162.300 & 12.500 & 7.21 & 57.7 & NO & & \\
\hline 11 & 51 13C3-PFBS-EIS & \(302.0>98.8\) & 1117.574 & & 1.00 & 2.62 & 1117.574 & 12.500 & 9.31 & 74.5 & NO & & \\
\hline 12 & 55 13C2-4:2 FTS-EIS & \(329.0>79.7\) & 1218.698 & & 1.00 & 3.04 & 1218.698 & 12.500 & 8.18 & 65.4 & NO & & \\
\hline 13 & -1 & & & & & & & & & & & & \\
\hline 14 & 7 PFHxA & \(313.0>269.0\) & 59.331 & 20717.152 & 1.00 & 3.02 & 0.036 & & & & NO & & \\
\hline 15 & 8 PFPeS & \(349 .>79.7\) & & 1117.574 & 1.00 & & & & & & NO & & \\
\hline 16 & 9 HFPO-DA & \(285.1>168.9\) & & 3623.440 & 1.00 & & & & & & NO & & \\
\hline 17 & 10 5:3 FTCA & \(340.9>236.9\) & 5.697 & 14782.707 & 1.00 & 3.83 & 0.005 & & 0.0705 & & NO & & \\
\hline 18 & 11 PFHpA & \(363.0>318.9\) & & 14782.707 & 1.00 & & & & & & NO & & \\
\hline 19 & 12 ADONA & \(376.8>250.9\) & 41.141 & 14782.707 & 1.00 & 3.75 & 0.035 & & & & NO & 4.883 & NO \\
\hline 20 & 57 13C2-PFHxA-EIS & \(315.0>270.0\) & 20717.152 & & 1.00 & 3.12 & 20717.152 & 12.500 & 11.5 & 92.3 & NO & & \\
\hline 21 & 51 13C3-PFBS-EIS & \(302.0>98.8\) & 1117.574 & & 1.00 & 2.62 & 1117.574 & 12.500 & 9.31 & 74.5 & NO & & \\
\hline 22 & 53 13C3-HFPO-DA-EIS & \(287.0>168.9\) & 3623.440 & & 1.00 & 3.34 & 3623.440 & 12.500 & 11.5 & 92.3 & NO & & \\
\hline 23 & 59 13C4-PFHpA-EIS & \(367.2>321.8\) & 14782.707 & & 1.00 & 3.72 & 14782.707 & 12.500 & 12.0 & 95.9 & NO & & \\
\hline 24 & 59 13C4-PFHpA-EIS & \(367.2>321.8\) & 14782.707 & & 1.00 & 3.72 & 14782.707 & 12.500 & 12.0 & 95.9 & NO & & \\
\hline 25 & 59 13C4-PFHpA-EIS & \(367.2>321.8\) & 14782.707 & & 1.00 & 3.72 & 14782.707 & 12.500 & 12.0 & 95.9 & NO & & \\
\hline 26 & -1 & & & & & & & & & & & & \\
\hline 27 & 13 L-PFHxS & \(398.9>79.7\) & & 3320.766 & 1.00 & & & & & & NO & & \\
\hline 28 & 15 6:2 FTS & \(427.0>407\) & 13.202 & 1390.905 & 1.00 & 4.13 & 0.119 & & & & NO & & \\
\hline 29 & 16 L-PFOA & \(412.8>368.9\) & 110.780 & 19666.736 & 1.00 & 4.22 & 0.070 & & & & NO & 4.336 & YES \\
\hline 30 & 18 PFechS & \(460.8>381.0\) & & 19666.736 & 1.00 & & & & & & NO & & \\
\hline 31 & 19 PFHpS & \(449.0>79.7\) & & 3852.213 & 1.00 & & & & & & NO & & \\
\hline 32 & 20 7:3 FTCA & \(440.9>336.9\) & & 16544.805 & 1.00 & & & & & & NO & & \\
\hline 33 & 61 13C3-PFHxS-EIS & \(401.8>79.7\) & 3320.766 & & 1.00 & 3.86 & 3320.766 & 12.500 & 12.1 & 97.2 & NO & & \\
\hline 34 & 63 13C2-6:2 FTS-EIS & \(429.0>79.7\) & 1390.905 & & 1.00 & 4.17 & 1390.905 & 12.500 & 11.3 & 90.6 & NO & & \\
\hline 35 & 69 13C2-PFOA-EIS & \(414.9>369.7\) & 19666.736 & & 1.00 & 4.23 & 19666.736 & 12.500 & 12.3 & 98.7 & NO & & \\
\hline 36 & 69 13C2-PFOA-EIS & \(414.9>369.7\) & 19666.736 & & 1.00 & 4.23 & 19666.736 & 12.500 & 12.3 & 98.7 & NO & & \\
\hline & Work Order 2000314 & & & & & & & & & & & \multicolumn{2}{|l|}{Page 758 of 1277} \\
\hline
\end{tabular}

Name: 200225P1-13, Date: 25-Feb-2020, Time: 20:04:45, ID: IB, Description: IB
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Trace & Area & IS Area & wt/vol & RT & Response & Std. Conc & Conc. & \%Rec & Recovery ... & Ion Ratio & Ratio Out? \\
\hline 37 & 71 13C8-PFOS-EIS & \(507.0>79.7\) & 3852.213 & & 1.00 & 4.75 & 3852.213 & 12.500 & 13.2 & 105.6 & NO & & \\
\hline 38 & 65 13C5-PFNA-EIS & \(468.2>422.9\) & 16544.805 & & 1.00 & 4.67 & 16544.805 & 12.500 & 11.1 & 88.7 & NO & & \\
\hline 39 & -1 & & & & & & & & & & & & \\
\hline 40 & 21 PFNA & \(463.0>418.8\) & 21.350 & 16544.805 & 1.00 & 4.66 & 0.016 & & & & NO & & \\
\hline 41 & 22 PFOSA & \(497.9>77.9\) & 5.084 & 4592.565 & 1.00 & 4.65 & 0.014 & & 0.0480 & & NO & & \\
\hline 42 & 23 L-PFOS & \(498.9>79.7\) & & 3852.213 & 1.00 & & & & & & NO & & \\
\hline 43 & 25 9CI-PF30NS & \(530.7>350.8\) & & 3852.213 & 1.00 & & & & & & NO & & \\
\hline 44 & 26 PFDA & \(513>468.8\) & 52.535 & 20059.008 & 1.00 & 4.99 & 0.033 & & & & NO & & \\
\hline 45 & 27 8:2 FTS & \(526.9>507\) & & 1123.938 & 1.00 & & & & & & NO & & \\
\hline 46 & 65 13C5-PFNA-EIS & \(468.2>422.9\) & 16544.805 & & 1.00 & 4.67 & 16544.805 & 12.500 & 11.1 & 88.7 & NO & & \\
\hline 47 & 67 13C8-PFOSA-EIS & \(506>78\) & 4592.565 & & 1.00 & 4.73 & 4592.565 & 12.500 & 12.2 & 97.8 & NO & & \\
\hline 48 & 71 13C8-PFOS-EIS & \(507.0>79.7\) & 3852.213 & & 1.00 & 4.75 & 3852.213 & 12.500 & 13.2 & 105.6 & NO & & \\
\hline 49 & 71 13C8-PFOS-EIS & \(507.0>79.7\) & 3852.213 & & 1.00 & 4.75 & 3852.213 & 12.500 & 13.2 & 105.6 & NO & & \\
\hline 50 & 73 13C2-PFDA-EIS & \(515.1>469.9\) & 20059.008 & & 1.00 & 5.03 & 20059.008 & 12.500 & 12.3 & 98.1 & NO & & \\
\hline 51 & 75 13C2-8:2 FTS-EIS & \(529>79.7\) & 1123.938 & & 1.00 & 5.01 & 1123.938 & 12.500 & 11.0 & 88.0 & NO & & \\
\hline 52 & -1 & & & & & & & & & & & & \\
\hline 53 & 28 PFNS & \(549.1>79.7\) & & 3852.213 & 1.00 & & & & & & NO & & \\
\hline 54 & 29 L-MeFOSAA & \(570>419\) & & 3885.093 & 1.00 & & & & & & NO & & \\
\hline 55 & 31 L-EtFOSAA & \(584.1>419\) & 19.145 & 4576.282 & 1.00 & 5.32 & 0.052 & & 0.0133 & & NO & & \\
\hline 56 & 33 PFUdA & \(563.0>518.9\) & 141.371 & 21489.662 & 1.00 & 5.33 & 0.082 & & & & NO & & \\
\hline 57 & 34 PFDS & \(598.8>79.7\) & 6.220 & 3852.213 & 1.00 & 5.35 & 0.020 & & 0.0111 & & NO & & \\
\hline 58 & 3511 Cl -PF30UdS & \(630.9>450.9\) & 24.052 & 19587.941 & 1.00 & 5.52 & 0.015 & & & & NO & & \\
\hline 59 & 71 13C8-PFOS-EIS & \(507.0>79.7\) & 3852.213 & & 1.00 & 4.75 & 3852.213 & 12.500 & 13.2 & 105.6 & NO & & \\
\hline 60 & 77 d3-N-MeFOSAA-EIS & \(573.3>419\) & 3885.093 & & 1.00 & 5.18 & 3885.093 & 12.500 & 11.8 & 94.1 & NO & & \\
\hline 61 & \(81 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}\)-EIS & \(589.3>419\) & 4576.282 & & 1.00 & 5.33 & 4576.282 & 12.500 & 11.6 & 92.6 & NO & & \\
\hline 62 & 79 13C2-PFUdA-EIS & \(565>519.8\) & 21489.662 & & 1.00 & 5.35 & 21489.662 & 12.500 & 13.3 & 106.3 & NO & & \\
\hline 63 & 71 13C8-PFOS-EIS & \(507.0>79.7\) & 3852.213 & & 1.00 & 4.75 & 3852.213 & 12.500 & 13.2 & 105.6 & NO & & \\
\hline 64 & 83 13C2-PFDoA-EIS & \(614.7>569.7\) & 19587.941 & & 1.00 & 5.62 & 19587.941 & 12.500 & 11.6 & 92.9 & NO & & \\
\hline 65 & -1 & & & & & & & & & & & & \\
\hline 66 & 36 10:2 FTS & \(626.9>607\) & 5.157 & 873.436 & 1.00 & 5.61 & 0.074 & & & & NO & & \\
\hline 67 & 37 PFDoA & \(612.9>569.0\) & 139.302 & 19587.941 & 1.00 & 5.76 & 0.089 & & 0.0106 & & NO & & \\
\hline 68 & 38 N-MeFOSA & \(512.1>168.9\) & 8.689 & 19895.789 & 1.00 & 5.81 & 0.065 & & 0.0855 & & NO & & \\
\hline 69 & 39 PFTrDA & \(662.9>618.9\) & 48.682 & 19587.941 & 1.00 & 5.84 & 0.031 & & & & NO & & \\
\hline 70 & 40 PFDoS & \(698.8>79.7\) & 7.948 & 22213.631 & 1.00 & 5.85 & 0.004 & & & & NO & & \\
\hline 71 & 41 PFTeDA & 713.0 > 669.0 & 80.025 & 22213.631 & 1.00 & 6.04 & 0.045 & & & & NO & & \\
\hline 72 & 85 13C2-10:2 FTS-EIS & \(632.9>80.0\) & 873.436 & & 1.00 & 5.61 & 873.436 & 12.500 & 12.1 & 97.1 & NO & & \\
\hline & Work Order 2000314 & & & & & & & & & & & Page & 9 of 1277 \\
\hline
\end{tabular}

Name: 200225P1-13, Date: 25-Feb-2020, Time: 20:04:45, ID: IB, Description: IB
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Trace & Area & IS Area & wt/vol & RT & Response & Std. Conc & Conc. & \%Rec & Recovery ... & Ion Ratio & Ratio Out? \\
\hline 73 & 83 13C2-PFDoA-EIS & 614.7 > 569.7 & 19587.941 & & 1.00 & 5.62 & 19587.941 & 12.500 & 11.6 & 92.9 & NO & & \\
\hline 74 & 87 d3-N-MeFOSA-EIS & \(515.2>168.9\) & 19895.789 & & 1.00 & 5.76 & 19895.789 & 149.200 & 141 & 94.2 & NO & & \\
\hline 75 & 83 13C2-PFDoA-EIS & \(614.7>569.7\) & 19587.941 & & 1.00 & 5.62 & 19587.941 & 12.500 & 11.6 & 92.9 & NO & & \\
\hline 76 & 89 13C2-PFTeDA-EIS & \(715.1>669.7\) & 22213.631 & & 1.00 & 6.08 & 22213.631 & 12.500 & 11.7 & 93.7 & NO & & \\
\hline 77 & 89 13C2-PFTeDA-EIS & \(715.1>669.7\) & 22213.631 & & 1.00 & 6.08 & 22213.631 & 12.500 & 11.7 & 93.7 & NO & & \\
\hline 78 & -1 & & & & & & & & & & & & \\
\hline 79 & \(42 \mathrm{~N}-\mathrm{EtFOSA}\) & \(526.1>168.9\) & 9.688 & 25288.002 & 1.00 & 6.08 & 0.057 & & & & NO & 0.330 & YES \\
\hline 80 & 43 PFHxDA & \(813.1>768.6\) & 332.756 & 29914.744 & 1.00 & 6.40 & 0.139 & & & & NO & & \\
\hline 81 & 44 PFODA & \(913.1>868.8\) & 86.946 & 29914.744 & 1.00 & 6.64 & 0.036 & & 0.00864 & & NO & & \\
\hline 82 & \(45 \mathrm{~N}-\mathrm{MeFOSE}\) & \(616.1>58.9\) & 21.383 & 18268.793 & 1.00 & 6.27 & 0.175 & & 0.142 & & NO & & \\
\hline 83 & 46 N -EtFOSE & \(630.1>58.9\) & 32.575 & 20460.025 & 1.00 & 6.41 & 0.238 & & & & NO & & \\
\hline 84 & 91 d5-N-ETFOSA-EIS & \(531.1>168.9\) & 25288.002 & & 1.00 & 6.15 & 25288.002 & 149.200 & 140 & 93.8 & NO & & \\
\hline 85 & 93 13C2-PFHxDA-EIS & \(815>769.7\) & 29914.744 & & 1.00 & 6.40 & 29914.744 & 12.500 & 11.5 & 92.3 & NO & & \\
\hline 86 & 93 13C2-PFHxDA-EIS & \(815>769.7\) & 29914.744 & & 1.00 & 6.40 & 29914.744 & 12.500 & 11.5 & 92.3 & NO & & \\
\hline 87 & 95 d7-N-MeFOSE-EIS & \(623.1>58.9\) & 18268.793 & & 1.00 & 6.28 & 18268.793 & 149.200 & 151 & 101.4 & NO & & \\
\hline 88 & 97 d9-N-EtFOSE-EIS & \(639.2>58.8\) & 20460.025 & & 1.00 & 6.43 & 20460.025 & 149.200 & 137 & 91.9 & NO & & \\
\hline 89 & 71 13C8-PFOS-EIS & \(507.0>79.7\) & 3852.213 & & 1.00 & 4.75 & 3852.213 & 12.500 & 13.2 & 105.6 & NO & & \\
\hline 90 & -1 & & & & & & & & & & & & \\
\hline 91 & 48 13C3-PFBA-RSD & 216.1 > 171.8 & 3374.603 & 5063.513 & 1.00 & 1.42 & 8.331 & 12.500 & 10.4 & 83.3 & NO & & \\
\hline 92 & 50 13C3-PFPeA-RSD & 266.0 > 221.8 & 8143.700 & 22758.422 & 1.00 & 2.35 & 4.473 & 12.500 & 7.59 & 60.7 & NO & & \\
\hline 93 & 52 13C3-PFBS-RSD & \(302.0>98.8\) & 1117.574 & 1564.224 & 1.00 & 2.62 & 8.931 & 12.500 & 7.92 & 63.4 & NO & & \\
\hline 94 & 54 13C3-HFPO-DA-RSD & \(287.0>168.9\) & 3623.440 & 22758.422 & 1.00 & 3.34 & 1.990 & 12.500 & 11.4 & 91.3 & NO & & \\
\hline 95 & 56 13C2-4:2 FTS-RSD & \(329.0>79.7\) & 1218.698 & 1564.224 & 1.00 & 3.04 & 9.739 & 12.500 & 7.41 & 59.3 & NO & & \\
\hline 96 & 58 13C2-PFHxA-RSD & \(315.0>270.0\) & 20717.152 & 22758.422 & 1.00 & 3.12 & 11.379 & 12.500 & 11.7 & 93.5 & NO & & \\
\hline 97 & 60 13C4-PFHpA-RSD & \(367.2>321.8\) & 14782.707 & 22758.422 & 1.00 & 3.72 & 8.119 & 12.500 & 12.3 & 98.6 & NO & & \\
\hline 98 & 62 13C3-PFHxS-RSD & \(401.8>79.7\) & 3320.766 & 1564.224 & 1.00 & 3.86 & 26.537 & 12.500 & 10.5 & 84.3 & NO & & \\
\hline 99 & 64 13C2-6:2 FTS-RSD & \(429.0>79.7\) & 1390.905 & 4144.186 & 1.00 & 4.17 & 4.195 & 12.500 & 10.9 & 87.3 & NO & & \\
\hline 100 & 66 13C5-PFNA-RSD & \(468.2>422.9\) & 16544.805 & 19038.262 & 1.00 & 4.67 & 10.863 & 12.500 & 11.6 & 92.6 & NO & & \\
\hline 101 & 68 13C8-PFOSA-RSD & \(506>78\) & 4592.565 & 21475.115 & 1.00 & 4.73 & 2.673 & 12.500 & 12.7 & 101.8 & NO & & \\
\hline 102 & 70 13C2-PFOA-RSD & \(414.9>369.7\) & 19666.736 & 21630.061 & 1.00 & 4.23 & 11.365 & 12.500 & 12.3 & 98.6 & NO & & \\
\hline 103 & -1 & & & & & & & & & & & & \\
\hline 104 & 72 13C8-PFOS-RSD & \(507.0>79.7\) & 3852.213 & 4144.186 & 1.00 & 4.75 & 11.619 & 12.500 & 12.2 & 97.9 & NO & & \\
\hline 105 & 74 13C2-PFDA-RSD & \(515.1>469.9\) & 20059.008 & 21429.576 & 1.00 & 5.03 & 11.701 & 12.500 & 12.1 & 97.0 & NO & & \\
\hline 106 & 76 13C2-8:2 FTS-RSD & \(529>79.7\) & 1123.938 & 4144.186 & 1.00 & 5.01 & 3.390 & 12.500 & 10.3 & 82.2 & NO & & \\
\hline 107 & 78 d3-N-MeFOSAA-RSD & \(573.3>419\) & 3885.093 & 21475.115 & 1.00 & 5.18 & 2.261 & 12.500 & 13.0 & 103.9 & NO & & \\
\hline 108 & 80 13C2-PFUdA-RSD & \(565>519.8\) & 21489.662 & 21475.115 & 1.00 & 5.35 & 12.508 & 12.500 & 12.4 & 99.2 & NO & & \\
\hline & Work Order 2000314 & & & & & & & & & & & \multicolumn{2}{|l|}{Page 760 of 1277} \\
\hline
\end{tabular}

Quantify Sample Report
Vista Analytical Laboratory
Dataset:
Untitled
Last Altered: Wednesday, February 26, 2020 11:58:03 Pacific Standard Time Printed: Wednesday, February 26, 2020 11:58:20 Pacific Standard Time

Name: 200225P1-13, Date: 25-Feb-2020, Time: 20:04:45, ID: IB, Description: IB
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Trace & Area & IS Area & wt/vol & RT & Response & Std. Conc & Conc. & \%Rec & Recovery ... & Ion Ratio & Ratio Out? \\
\hline 109 & 82 d5-N-EtFOSAA-RSD & \(589.3>419\) & 4576.282 & 21475.115 & 1.00 & 5.33 & 2.664 & 12.500 & 11.5 & 92.0 & NO & & \\
\hline 110 & 84 13C2-PFDoA-RSD & \(614.7>569.7\) & 19587.941 & 21429.576 & 1.00 & 5.62 & 11.426 & 12.500 & 11.8 & 94.4 & NO & & \\
\hline 111 & 86 13C2-10:2 FTS-RSD & \(632.9>80.0\) & 873.436 & 4144.186 & 1.00 & 5.61 & 2.635 & 12.500 & 11.1 & 88.4 & NO & & \\
\hline 112 & 88 d3-N-MeFOSA-RSD & \(515.2>168.9\) & 19895.789 & 21475.115 & 1.00 & 5.76 & 11.581 & 149.200 & 144 & 96.7 & NO & & \\
\hline 113 & 90 13C2-PFTeDA-RSD & \(715.1>669.7\) & 22213.631 & 21475.115 & 1.00 & 6.08 & 12.930 & 12.500 & 12.3 & 98.8 & NO & & \\
\hline 114 & 92 d5-N-ETFOSA-RSD & \(531.1>168.9\) & 25288.002 & 21475.115 & 1.00 & 6.15 & 14.719 & 149.200 & 148 & 99.5 & NO & & \\
\hline 115 & 94 13C2-PFHxDA-RSD & \(815>769.7\) & 29914.744 & 21475.115 & 1.00 & 6.40 & 17.412 & 12.500 & 11.6 & 93.2 & NO & & \\
\hline 116 & -1 & & & & & & & & & & & & \\
\hline 117 & \(96 \mathrm{~d} 7-\mathrm{N}-\mathrm{MeFOSE-RSD}\) & \(623.1>58.9\) & 18268.793 & 21475.115 & 1.00 & 6.28 & 10.634 & 149.200 & 146 & 97.8 & NO & & \\
\hline 118 & 98 d9-N-EtFOSE-RSD & \(639.2>58.8\) & 20460.025 & 21475.115 & 1.00 & 6.43 & 11.909 & 149.200 & 139 & 93.0 & NO & & \\
\hline 119 & 99 13C4-PFBA & \(217.0>172.0\) & 5063.513 & 5063.513 & 1.00 & 1.42 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline 120 & 1... 13C5-PFHxA & \(318.0>272.9\) & 22758.422 & 22758.422 & 1.00 & 3.13 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline 121 & 1... 13C8-PFOA & \(420.9>376.0\) & 21630.061 & 21630.061 & 1.00 & 4.23 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline 122 & 1... 18O2-PFHxS & \(403.0>102.6\) & 1564.224 & 1564.224 & 1.00 & 3.86 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline 123 & 1... 13C9-PFNA & \(472.2>426.9\) & 19038.262 & 19038.262 & 1.00 & 4.67 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline 124 & 1... 13C4-PFOS & \(503>79.7\) & 4144.186 & 4144.186 & 1.00 & 4.75 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline 125 & 1... 13C6-PFDA & \(519.1>473.7\) & 21429.576 & 21429.576 & 1.00 & 5.04 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline 126 & 1... 13C7-PFUdA & \(570.1>524.8\) & 21475.115 & 21475.115 & 1.00 & 5.35 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline
\end{tabular}

\begin{tabular}{ll} 
Last Altered: & \begin{tabular}{l} 
Friday, February 28, 2020 09:57:55 Pacific Standard Time \\
Friday, February 28, 2020 10:05:41 Pacific Standard Time
\end{tabular} \\
Printed: &
\end{tabular}

Method: D:IPFAS5.PROIMethDBINEW_PFAS_80C_022720.mdb 28 Feb 2020 08:07:56
Calibration: D:IPFAS5.PROICurveDBIC18_VAL-PFAS_Q5_02-27-20.cdb 28 Feb 2020 09:57:55

\section*{Compound name: PFBA}

Correlation coefficient: \(\mathrm{r}=0.999073, \mathrm{r}^{\wedge} 2=0.998147\)
Calibration curve: \(1.15518{ }^{*} x+0.0395457\)
Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area)
B.P. \(2128 / 2020\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1200227 P 1.3 & Standard & 0.250 & 1.32 & 172.203 & 7590.314 & 0.284 & 0.2 & -15.5 & NO & 0.998 & NO & MM \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 1.32 & 423.593 & 7291.915 & 0.726 & 0.6 & 18.9 & NO & 0.998 & NO & MM \\
\hline 3 & 3 200227P1-5 & Standard & 1.000 & 1.33 & 718.914 & 7825.403 & 1.148 & 1.0 & -4.0 & No & 0.998 & NO & MM \\
\hline 4 & 4 200227P1-6 & Standard & 2.000 & 1.33 & 1449.523 & 8329.849 & 2.175 & 1.8 & -7.6 & NO & 0.998 & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 5.000 & 1.35 & 3758.970 & 7523.821 & 6.245 & 5.4 & 7.4 & NO & 0.998 & NO & bb \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 10.000 & 1.33 & 7233.840 & 8026.943 & 11.265 & 9.7 & -2.8 & NO & 0.998 & NO & MM \\
\hline 7 & 7 200227P1-9 & Standard & 50.000 & 1.33 & 36676.141 & 8364.255 & 54.811 & 47.4 & -5.2 & NO & 0.998 & NO & MM \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 100.000 & 1.34 & 76008.125 & 7368.939 & 128.933 & \(111 . E\) & 11.6 & NO & 0.998 & NO & MM \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 250.000 & 1.37 & 183943.750 & 8128.281 & 282.876 & 244.8 & -2.1 & NO & 0.998 & NO & MM \\
\hline 10 & 10 200227P1-12 & Standard & 500.000 & 1.33 & 356567.438 & 7775.098 & 573.252 & 496.2 & -0.8 & NO & 0.998 & NO & MM \\
\hline
\end{tabular}

\section*{Compound name: PFPrS}

Correlation coefficient: \(r=0.999450, r^{\wedge} 2=0.998900\)
Calibration curve: \(1.40081^{*} x+-0.0217571\)
Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoL Flag & x=excluded \\
\hline 1 & 1 200227P1-3 & Standard & 0.250 & 1.65 & 32.770 & 1446.801 & 0.283 & 0.2 & -12.9 & NO & 0.999 & NO & MM \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 1.65 & 99.394 & 1548.338 & 0.802 & 0.6 & 17.7 & NO & 0.999 & NO & MM \\
\hline 3 & \(3200227 \mathrm{P}_{1-5}\) & Standard & 1.000 & 1.66 & 179.394 & 1573.643 & 1.425 & 1.0 & 3.3 & NO & 0.999 & NO & MM \\
\hline 4 & 4 200227P1-6 & Standard & 2.000 & 1.66 & 336.502 & 1536.398 & 2.738 & 2.0 & -1.5 & NO & 0.999 & NO & MM \\
\hline 5 & \(5200227 \mathrm{P} 1-7\) & Standard & 5.000 & 1.68 & 888.135 & 1590.780 & 6.979 & 5.0 & -0.1 & NO & 0.999 & NO & MM \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 10.000 & 1.66 & 1529.127 & 1534.622 & 12.455 & 8.9 & -10.9 & NO & 0.999 & NO & MM \\
\hline 7 & 7200227 P1-9 & Standard & 50.000 & 1.66 & 8334.349 & 1564.503 & 66.589 & 47.6 & -4.9 & NO & 0.999 & NO & MM \\
\hline 8 & 8200227 P1-10 & Standard & 100.000 & 1.66 & 17837.328 & 1510.565 & 147.605 & 105.4 & 5.4 & NO & 0.999 & NO & db \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 250.000 & 1.69 & 41602.320 & 1542.143 & 337.212 & 240.7 & \(-3.7\) & NO & 0.999 & NO & bb \\
\hline 10 & 10200227P1-12 & Standard & 500.000 & 1.66 & 79359.211 & 1395.823 & 710.685 & 507.4 & 1.5 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

Quantify Compound Summary Repor

\section*{Vista Analytical Laboratory}

Dataset:
D:IPFAS5.PRO\RESULTSI200227P1\200227P1-CRV.qld
Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 10:05:41 Pacific Standard Time

\section*{Compound name: 3:3 FTCA}

Coefficient of Determination: \(R^{\wedge} 2=0.999814\)
Calibration curve: \(-2.09842 \mathrm{e}-005^{*} x^{\wedge} 2+0.0932 * x+-0.000508555\)
Response type: Internal Std (Ref 49 ), Area * IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc. & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoDFlag & \(x=\) excluded \\
\hline 1 & \(1200227 \mathrm{P} 1-3\) & Standard & 0.250 & 2.11 & 22.512 & 13550.682 & 0.021 & 0.2 & -8.7 & NO & 1.000 & NO & MM \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 2.11 & 52.928 & 13046.680 & 0.051 & 0.5 & 9.9 & NO & 1.000 & NO & MM \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 1.000 & 2.11 & 99.850 & 13354.771 & 0.093 & 1.0 & 0.8 & NO & 1.000 & NO & bb \\
\hline 4 & \(4200227 \mathrm{P} 1-6\) & Standard & 2.000 & 2.11 & 197.386 & 13773.231 & 0.179 & 1.9 & -3.6 & NO & 1.000 & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 5.000 & 2.13 & 489.134 & 13673.156 & 0.447 & 4.8 & -3.8 & NO & 1.000 & NO & MM \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 10.000 & 2.12 & 1115.216 & 14499.703 & 0.961 & 10.3 & 3.5 & NO & 1.000 & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 50.000 & 2.12 & 5278.839 & 14377.306 & 4.590 & 49.8 & -0.4 & NO & 1.000 & NO & bb \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 100.000 & 2.12 & 10450.448 & 14329.535 & 9.116 & 100.1 & 0.1 & NO & 1.000 & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 250.000 & 2.12 & 5063.111 & 14007.765 & 4.518 & 49.0 & -80.4 & YES & 1.000 & NO & bbX \\
\hline 10 & 10 200227P1-12 & Standard & 500.000 & 2.12 & 10995.712 & 13866.714 & 9.912 & 109.0 & -78.2 & YES & 1.000 & NO & bbX \\
\hline
\end{tabular}

\section*{Compound name: PFPeA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999912\)
Calibration curve: \(-0.000127545{ }^{*} x^{\wedge} 2+0.952781^{*} x+0.0266328\)
Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: \(1 / x\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & 15 Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 0.250 & 2.25 & 251.001 & 13550.682 & 0.232 & 0.2 & -14.0 & NO & 1.000 & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 2.25 & 546.393 & 13046.680 & 0.523 & 0.5 & 4.3 & NO & 1.000 & NO & bb \\
\hline 3 & 3 200227P1-5 & Standard & 1.000 & 2.26 & 1131.122 & 13354.771 & 1.059 & 1.1 & 8.3 & NO & 1.000 & NO & MM \\
\hline 4 & 4 200227P1-6 & Standard & 2.000 & 2.26 & 2219.540 & 13773.231 & 2.014 & 2.1 & 4.3 & NO & 1.000 & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 5.000 & 2.28 & 5616.797 & 13673.156 & 5.135 & 5.4 & 7.3 & NO & 1.000 & NO & bb \\
\hline 6 & 6 200227P1-8 & Standard & 10.000 & 2.26 & 11149.24C & 14499.703 & 9.612 & 10.1 & 0.7 & NO & 1.000 & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 50.000 & 2.26 & 54665.059 & 14377.306 & 47.527 & 50.2 & 0.4 & NO & 1.000 & NO & bb \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 100.000 & 2.27 & 108304.602 & 14329.535 & 94.477 & 100.5 & 0.5 & NO & 1.000 & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 250.000 & 2.27 & 255598.875 & 14007.765 & 228.087 & 247.6 & -1.0 & NO & 1.000 & NO & bb \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 500.000 & 2.26 & 494209.344 & 13866.714 & 445.500 & 501.2 & 0.2 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

\title{
Quantify Compound Summary Report MassLynx V4.2 SCN977
}

Vista Analytical Laboratory
\(\begin{array}{ll}\text { Dataset: } & \text { D:IPFAS5.PROXRESULTSL200227P1\200227P1-CRV.ald } \\ \text { Last Altered: } & \text { Friday, February 28, 2020 09:57:55 Pacific Standard Time } \\ \text { Printed: } & \text { Friday, February 28, 2020 10:05:41 Pacific Standard Time }\end{array}\)

\section*{Compound name: PFBS}

Correlation coefficient: \(r=0.999221, r^{\wedge} 2=0.998443\)
Calibration curve: 2.36623 * \(x+0.185525\)
Response type: Internal Std (Ref 51), Area * IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: \(1 / x\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 0.250 & 2.53 & 73.164 & 1446.801 & 0.632 & 0.2 & -24.5 & NO & 0.998 & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 2.53 & 196.516 & 1548.338 & 1.587 & 0.6 & 18.4 & NO & 0.998 & NO & bb \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 1.000 & 2.53 & 345.292 & 1573.643 & 2.743 & 1.1 & 8.1 & NO & 0.998 & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 2.000 & 2.54 & 602.431 & 1536.398 & 4.901 & 2.0 & -0.4 & NO & 0.998 & NO & bb \\
\hline 5 & \(5200227 \mathrm{P} 1-7\) & Standard & 5.000 & 2.55 & 1555.357 & 1590.780 & 12.222 & 5.1 & 1.7 & NO & 0.998 & NO & bb \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 10.000 & 2.54 & 3398.236 & 1534.622 & 27.680 & 11.6 & 16.2 & NO & 0.998 & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 50.000 & 2.54 & 16107.025 & 1564.503 & 128.691 & 54.3 & 8.6 & NO & 0.998 & NO & \(b b\) \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 100.000 & 2.55 & 30603.424 & 1510.565 & 253.245 & 106.9 & 6.9 & NO & 0.998 & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 250.000 & 2.54 & 71335.016 & 1542.143 & 578.213 & 244.3 & -2.3 & NO & 0.998 & NO & bb \\
\hline 10 & \(10200227 \mathrm{P1} 12\) & Standard & 500.000 & 2.54 & 130193.148 & 1395.823 & 1165.917 & 492.7 & -1.5 & NO & 0.998 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 4:2 FTS}

Coefficient of Determination: \(R^{\wedge} 2=0.999364\)
Calibration curve: -0.000477753 * \(x^{\wedge} 2+1.31364\) * \(x+-0.105697\)
Response type: Internal Std (Ref 55 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoDFlag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 0.250 & 2.98 & 20.835 & 1991.287 & 0.131 & 0.2 & -28.0 & NO & 0.999 & NO & MM \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 2.98 & 100.425 & 2008.212 & 0.625 & 0.6 & 11.3 & NO & 0.999 & NO & bb \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 1.000 & 2.97 & 200.741 & 2062.690 & 1.217 & 1.0 & 0.7 & NO & 0.999 & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 2.000 & 2.98 & 408.592 & 2103.935 & 2.428 & 1.9 & -3.5 & NO & 0.999 & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 5.000 & 2.95 & 1184.339 & 1939.899 & 7.631 & 5.9 & 18.1 & NO & 0.999 & NO & bb \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 10.000 & 2.97 & 2236.844 & 2072.868 & 13.489 & 10.4 & 3.9 & NO & 0.999 & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 50.000 & 2.97 & 10201.789 & 2014.307 & 63.308 & 49.2 & -1.7 & NO & 0.999 & NO & bb \\
\hline 8 & 8 200227P1-10 & Standard & 100.000 & 2.97 & 20330.830 & 2027.564 & 125.340 & 99.1 & -0.9 & NO & 0.999 & NO & bb \\
\hline 9 & 9 200227P1-11 & Standard & 250.000 & 2.95 & 45818.098 & 1915.017 & 299.071 & 250.6 & 0.2 & NO & 0.999 & NO & bb \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 500.000 & 2.97 & 74313.914 & 1626.885 & 570.983 & 541.3 & 8.3 & NO & 0.999 & NO & bbX \\
\hline
\end{tabular}

Dataset
D:IPFAS5.PROIRESULTSI200227P11200227P1-CRV.qld
Last Altered:
Printed:
Friday, February 28, 2020 09:57:55 Pacific Standard Time Friday, February 28, 2020 10:05:41 Pacific Standard Time

\section*{Compound name: PFHxA}

Correlation coefficient: \(r=0.999013, r^{\wedge} 2=0.998027\)
Calibration curve: 0.884049 * \(x+0.101067\)
Response type: Internal Std (Ref 57), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: \(1 / x\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Stal. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoDFlag & \(x=\) excluded \\
\hline 1 & \(1200227 \mathrm{P} 1-3\) & Standard & 0.250 & 3.05 & 553.439 & 22572.449 & 0.306 & 0.2 & -7.1 & NO & 0.998 & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 3.05 & 971.987 & 22576.160 & 0.538 & 0.5 & -1.1 & NO & 0.998 & NO & bb \\
\hline 3 & 3 200227P1-5 & Standard & 1.000 & 3.05 & 1907.422 & 23153.461 & 1.030 & 1.1 & 5.1 & NO & 0.998 & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 2.000 & 3.05 & 3888.754 & 22529.568 & 2.158 & 2.3 & 16.3 & NO & 0.998 & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 5.000 & 3.04 & 9052.423 & 22330.906 & 5.067 & 5.6 & 12.3 & NO & 0.998 & NO & bb \\
\hline 6 & 6200227 P1-8 & Standard & 10.000 & 3.05 & 17282.563 & 22018.398 & 9.811 & 11.0 & 9.8 & NO & 0.998 & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 50.000 & 3.05 & 89320.734 & 23788.217 & 46.935 & 53.0 & 6.0 & NO & 0.998 & NO & bb \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 100.000 & 3.06 & 176894.984 & 22851.168 & 96.765 & 109.3 & 9.3 & NO & 0.998 & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 250.000 & 3.04 & 408500.438 & 24102.154 & 211.859 & 239.5 & -4.2 & NO & 0.998 & NO & bb \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 500.000 & 3.05 & 807896.875 & 23016.420 & 438.761 & 496.2 & -0.8 & NO & 0.998 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFPeS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999066\)
Calibration curve: \(-0.00110209^{*} x^{\wedge} 2+2.48401^{*} x+-0.0827776\)
Response type: Internal Std (Ref 51 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Narne & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(x=e x c l u d e d\) \\
\hline 1 & \(1200227 \mathrm{P} 1-3\) & Standard & 0.250 & 3.25 & 44.256 & 1446.801 & 0.382 & 0.2 & -25.1 & NO & 0.999 & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 3.25 & 131.801 & 1548.338 & 1.064 & 0.5 & -7.6 & NO & 0.999 & NO & bb \\
\hline 3 & 3 200227P1-5 & Standard & 1.000 & 3.25 & 352.904 & 1573.643 & 2.803 & 1.2 & 16.2 & NO & 0.999 & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 2.000 & 3.26 & 601.921 & 1536.398 & 4.897 & 2.0 & 0.3 & NO & 0.999 & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 5.000 & 3.24 & 1496.959 & 1590.780 & 11.763 & 4.8 & -4.4 & NO & 0.999 & NO & bb \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 10.000 & 3.25 & 3094.012 & 1534.622 & 25.202 & 10.2 & 2.3 & NO \({ }^{-}\) & 0.999 & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 50.000 & 3.26 & . 16033.154 & 1564.503 & 128.101 & 52.8 & 5.7 & NO & 0.999 & NO & bb \\
\hline 8 & 8 200227P1-10 & Standard & 100.000 & 3.25 & 29393.314 & 1510.565 & 243.231 & 102.6 & 2.6 & NO & 0.999 & NO & bb \\
\hline 9 & 9 200227P1-11 & Standard & 250.000 & 3.24 & 65395.855 & 1542.143 & 530.073 & 238.7 & -4.5 & NO & 0.999 & NO & bb \\
\hline 10 & 10 200227P1-12 & Standard & 500.000 & 3.26 & 108931.391 & 1395.823 & 975.512 & 506.6 & 1.3 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

Dataset: D:IPFAS5.PROIRESLULTSL200227P1L200227P1-CRV.qld
Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 10:05:41 Pacific Standard Time

\section*{Compound name: HFPO-DA}

Coefficient of Determination: \(R^{\wedge} 2=0.999113\)
Calibration curve: -0.000254582 * \(x^{\wedge} 2+1.04533\) * \(x+0.0245354\)
Response type: Internal Std (Ref 53 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: \(1 / x\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CaD Flag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 0.250 & 3.27 & 74.062 & 3957.442 & 0.234 & 0.2 & -19.9 & NO & 0.999 & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 3.27 & 146.480 & 3862.557 & 0.474 & 0.4 & -14.0 & NO & 0.999 & NO & bb \\
\hline 3 & 3 200227P1-5 & Standard & 1.000 & 3.27 & 382.132 & 3962.263 & 1.206 & 1.1 & 13.0 & NO & 0.999 & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 2.000 & 3.27 & 765.570 & 4053.925 & 2.361 & 2.2 & 11.8 & NO & 0.999 & NO & bo \\
\hline 5 & 5 200227P1-7 & Standard & 5.000 & 3.25 & 1783.731 & 3904.953 & 5.710 & 5.4 & 8.9 & NO & 0.999 & NO & bb \\
\hline 6 & 6 200227P1-8 & Standard & 10.000 & 3.27 & 3659.696 & 4102.858 & 11.150 & 10.7 & 6.7 & NO & 0.999 & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 50.000 & 3.27 & 18033.654 & 4212.337 & 53.514 & 51.8 & 3.6 & NO & 0.999 & NO & bb \\
\hline 8 & 8 200227P1-10 & Standard & 100.000 & 3.26 & 35209.598 & 4213.042 & 104.466 & 102.5 & 2.5 & NO & 0.999 & NO & bb \\
\hline 9 & 9200227 P 1 -11 & Standard & 250.000 & 3.25 & 81749.586 & 4341.552 & 235.370 & 239.1 & -4.4 & NO & 0.999 & NO & bt \\
\hline 10 & 10 200227P1-12 & Standard & 500.000 & 3.27 & 158178.109 & 4266.929 & 463.384 & 505.5 & 1.1 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 5:3 FTCA}

Coefficient of Determination: \(R^{\wedge} 2=0.999928\)
Calibration curve: -9.69019e-005 * \(x^{\wedge} 2+0.209862{ }^{*} x+0.00231706\)
Response type: Internal Std (Ref 59 ), Area * IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area. & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 0.250 & 3.60 & 69.885 & 15511.189 & 0.056 & 0.3 & 2.9 & NO & 1.000 & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 3.60 & 141.050 & 16026.478 & 0.110 & 0.5 & 2.7 & NO & 1.000 & NO & bb \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 1.000 & 3.60 & 263.185 & 15767.739 & 0.209 & 1.0 & -1.6 & NO & 1.000 & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 2.000 & 3.60 & 527.023 & 16009.256 & 0.411 & 2.0 & -2.4 & NO & 1.000 & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 5.000 & 3.59 & 1353.053 & 16679.984 & 1.014 & 4.8 & -3.4 & NO & 1.000 & NO & bb \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 10.000 & 3.60 & 2744.865 & 16136.509 & 2.126 & 10.2 & 1.7 & NO & 1.000 & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 50.000 & 3.60 & 13018.456 & 15837.346 & 10.275 & 50.1 & 0.2 & NO & 1.000 & NO & bb \\
\hline 8 & 8 200227P1-10 & Standard & 100.000 & 3.60 & 26304.264 & 16434.400 & 20.007 & 99.9 & -0.1 & NO & 1.000 & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 250.000 & 3.59 & 14242.786 & 15712.550 & 11.331 & 55.4 & -77.8 & YES & 1.000 & NO & \(b b x\) \\
\hline 10 & 10 200227P1-12 & Standard & 500.000 & 3.60 & 27289.102 & 13849.063 & 24.631 & 124.5 & -75.1 & YES & 1.000 & NO & bbX \\
\hline
\end{tabular}

Dataset:
D:IPFAS5.PROTRESULTS1200227P11200227P1-CRV.qld
Last Altered:
Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 10:05:41 Pacific Standard Time

\section*{Compound name: PFHpA}

Correlation coefficient: \(\mathrm{r}=0.999568, \mathrm{r}^{\wedge} 2=0.999137\)
Calibration curve: 1.15708 * \(x+0.0926754\)
Response type: Internal Std ( Ref 59 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 0.250 & 3.65 & 390.272 & 15511.189 & 0.315 & 0.2 & -23.3 & NO & 0.999 & NO & bb \\
\hline 2 & 2 200227P1-4 & Standara & 0.500 & 3.66 & 707.544 & 16026.478 & 0.552 & 0.4 & -20.6 & NO & 0.999 & NO & bb \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 1.000 & 3.66 & 1718.006 & 15767.739 & 1.363 & 1.1 & 9.8 & NO & 0.999 & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 2.000 & 3.66 & 3369.674 & 16009.256 & 2.631 & 2.2 & 9.7 & NO & 0.999 & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 5.000 & 3.66 & 8779.510 & 16679.984 & 6.573 & 5.6 & 12.1 & NO & 0.999 & NO & bb \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 10.000 & 3.66 & 15352.724 & 16136.509 & 11.893 & 10.2 & 2.0 & NO & 0.999 & NO & bb \\
\hline 7 & \(7200227 \mathrm{P} 1-9\) & Standard & 50.000 & 3.66 & 80225.531 & 15837.346 & 63.320 & 54.6 & 9.3 & NO & 0.999 & NO & bb \\
\hline 8 & 8 200227P1-10 & Standard & 100.000 & 3.66 & 156891.188 & 16434.400 & 119.331 & 103.1 & 3.1 & NO & 0.999 & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 250.000 & 3.65 & 362083.250 & 15712.550 & 288.053 & 248.9 & -0.5 & NO & 0.999 & NO & bb \\
\hline 10 & \(10200227 P 1-12\) & Standard & 500.000 & 3.66 & 631471.938 & 13849.063 & 569.959 & 492.5 & -1.5 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: ADONA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998227\)
Calibration curve: \(9.46897 e-005\) * \(x^{\wedge} 2+2.62123\) * \(x+0.106178\)
Response type: Internal Std (Ref 59 ), Area * IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 0.250 & 3.76 & 370.048 & 15511.189 & 0.621 & 0.2 & -21.5 & NO & 0.998 & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 3.76 & 1687.109 & 16026.478 & 1.316 & 0.5 & -7.7 & NO & 0.998 & NO & bb \\
\hline 3 & 3 200227P1-5 & Standard & 1.000 & 3.76 & 4047.647 & 15767.739 & 3.209 & 1.2 & 18.4 & NO & 0.998 & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 2.000 & 3.76 & 7055.406 & 16009.256 & 5.509 & 2.1 & 3.0 & NO & 0.998 & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 5.000 & 3.76 & 18831.324 & 16679.984 & 14.112 & 5.3 & 6.8 & NO & 0.998 & NO & bb \\
\hline 6 & 6 200227P1-8 & Standard & 10.000 & 3.76 & 37400.953 & 16136.509 & 28.972 & 11.0 & 10.1 & NO & 0.998 & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 50.000 & 3.76 & 182724.672 & 15837.346 & 144.220 & 54.9 & 9.7 & NO & 0.998 & NO & bb \\
\hline 8 & 8 200227P1-10 & Standard & 100.000 & 3.76 & 352593.719 & 16434.400 & 268.183 & 101.9 & 1.9 & NO & 0.998 & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 250.000 & 3.76 & 782483.438 & 15712.550 & 622.499 & 235.4 & -5.8 & NO & 0.998 & NO & bb \\
\hline 10 & 10200227 P1-12 & Standard & 500.000 & 3.76 & 1497322.000 & 13849.063 & 1351.465 & 506.3 & 1.3 & NO & 0.998 & NO & bb \\
\hline
\end{tabular}

\section*{Quantify Compound Summary Report MassLynx V4.2 SCN977}

Vista Analytical Laboratory
Dataset:
D:IPFAS5.PROIRESULTSI200227P11200227P1-CRV.qld
Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed:
Friday, February 28, 2020 10:05:41 Pacific Standard Time

\section*{Compound name: L-PFHxS}

Correlation coefficient: \(r=0.999244, r^{\wedge} 2=0.998489\)
Calibration curve: \(1.03912 * x+0.141351\)
Response type: Internal Std (Ref 61), Area * ( IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Sta. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoDFlag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 0.250 & 3.81 & 56.353 & 3296.816 & 0.214 & 0.1 & -72.2 & YES & 0.998 & NO & MMX \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 3.80 & 187.947 & 3053.301 & 0.769 & 0.6 & 20.9 & NO & 0.998 & NO & MM \\
\hline 3 & 3 200227P1-5 & Standard & 1.000 & 3.80 & 302.801 & 3456.836 & 1.095 & 0.9 & -8.2 & NO & 0.998 & NO & MM \\
\hline 4 & \(4200227 \mathrm{P} 1-6\) & Standard & 2.000 & 3.80 & 530.041 & 3212.421 & 2.062 & 1.8 & -7.6 & NO & 0.998 & NO & MM \\
\hline 5 & 5 200227P1-7 & Standard & 5.000 & 3.80 & 1546.440 & 3419.747 & 5.653 & 5.3 & 6.1 & NO & 0.998 & NO & MM \\
\hline 6 & 6 200227P1-8 & Standard & 10.000 & 3.80 & 2931.605 & 3865.850 & 9.479 & 9.0 & -10.1 & NO & 0.998 & NO & MM \\
\hline 7 & \(7200227 \mathrm{P} 1-9\) & Standard & 50.000 & 3.80 & 14899.126 & 3884.181 & 47.948 & 46.0 & -8.0 & NO & 0.998 & NO & MM \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 100.000 & 3.80 & 30797.471 & 3401.802 & 113.166 & 108.8 & 8.8 & NO & 0.998 & NO & MM \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 250.000 & 3.79 & 67189.703 & 3299.161 & 254.571 & 244.9 & -2.1 & NO & 0.998 & NO & MM \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 500.000 & 3.80 & 130227.656 & 3124.690 & 520.962 & 501.2 & 0.2 & NO & 0.998 & NO & MM \\
\hline
\end{tabular}

\section*{Compound name: 6:2 FTS}

Coefficient of Determination: R^2 \(=0.998706\)
Calibration curve: - 0.000387912 * \(x^{\wedge} 2+1.57382\) * \(x+0.14932\)
Response type: Internal Std (Ref 63 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & \(1200227 \mathrm{P} 1-3\) & Standard & 0.250 & 4.10 & 71.333 & 1870.401 & 0.477 & 0.2 & -16.8 & NO & 0.999 & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 4.11 & 149.781 & 1862.926 & 1.005 & 0.5 & 8.8 & NO & 0.999 & NO & bb \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 1.000 & 4.11 & 295.745 & 1780.441 & 2.076 & 1.2 & 22.5 & NO & 0.999 & NO & \(b\) \\
\hline 4 & 4200227 P 1 -6 & Standard & 2.000 & 4.12 & 542.431 & 1895.539 & 3.577 & 2.2 & 9.0 & NO & 0.999 & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 5.000 & 4.11 & 1271.821 & 1803.444 & 8.815 & 5.5 & 10.3 & NO & 0.999 & NO & bd \\
\hline 6 & 6200227 P1-8 & Standard & 10.000 & 4.12 & 2339.683 & 1861.131 & 15.714 & 9.9 & -0.9 & NO & 0.999 & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 50.000 & 4.11 & 12356.195 & 1867.446 & 82.708 & 53.2 & 6.3 & NO & 0.999 & NO & bb \\
\hline 8 & 8200227 P1-10 \(^{1}\) & Standard & 100.000 & 4.11 & 24334.445 & 1928.453 & 157.733 & 102.7 & 2.7 & NO & 0.999 & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 250.000 & 4.11 & 52435.254 & 1864.594 & 351.519 & 237.1 & -5.2 & NO & 0.999 & NO & bb \\
\hline 10 & 10 200227P1-12 & Standard & 500.000 , & 4.12 & 94975.445 & 1701.591 & 697.696 & 506.4 & 1.3 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

\title{
Quantify Compound Summary Report MassLynx V4.2 SCN977
}

Dataset: D:IPFAS5.PRO\RESULTSL200227P1\200227P1-CRV.qld
\(\begin{array}{ll}\text { Last Altered: } & \text { Friday, February 28, } 2020 \text { 09:57:55 Pacific Standard Time } \\ \text { Printed: } & \text { Friday, February 28, 2020 10:05:41 Pacific Standard Time }\end{array}\)

\section*{Compound name: L-PFOA}

Coefficient of Determination: \(R^{\wedge} 2=0.999818\)
Calibration curve: \(-0.000410213^{*} x^{\wedge} 2+1.20955^{*} x+0.0799012\)
Response type: Internal Std (Ref 69 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Narne: & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 0.250 & 4.17 & 549.100 & 21251.869 & 0.323 & 0.2 & -19.6 & NO & 1.000 & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 4.17 & 1160.169 & 21819.195 & 0.665 & 0.5 & -3.3 & NO & 1.000 & NO & bb \\
\hline 3 & 3 200227P1-5 & Standard & 1.000 & 4.17 & 2611.057 & 23050.652 & 1.416 & 1.1 & 10.5 & NO & 1.000 & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 2.000 & 4.17 & 4710.436 & 23512.051 & 2.504 & 2.0 & 0.3 & NO & 1.000 & NO & MM \\
\hline 5 & \(5200227 \mathrm{P} 1-7\) & Standard & 5.000 & 4.17 & 11621.629 & 21981.383 & 6.609 & 5.4 & 8.2 & NO & 1.000 & NO & bb \\
\hline 6 & 6200227 P1-8 & Standard & 10.000 & 4.17 & 22981.051 & 22280.803 & 12.893 & 10.6 & 6.3 & NO & 1.000 & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 50.000 & 4.17 & 98821.664 & 21296.773 & 58.003 & 48.7 & -2.6 & NO & 1.000 & NO & bb \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 100.000 & 4.17 & 204043.938 & 21721.619 & 117.420 & 100.4 & 0.4 & NO & 1.000 & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 250.000 & 4.16 & 452102.750 & 20458.150 & 276.236 & 249.4 & -0.2 & NO & 1.000 & NO & bb \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 500.000 & 4.17 & 785699.875 & 19539.482 & 502.636 & 500.4 & 0.1 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFecHS}

Coefficient of Determination: \(R^{\wedge} 2=0.999853\)
Calibration curve: \(-3.94401 e-005\) * \(x^{\wedge} 2+0.1721744^{*} x+-0.0073928\)
Response type: Internal Std (Ref 69 ), Area * (IS Conc. / is Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Sid. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & \(1200227 \mathrm{P} 1-3\) & Standard & 0.250 & 4.18 & 55.001 & 21251.869 & 0.032 & 0.2 & -7.7 & NO & 1.000 & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 4.18 & 101.137 & 21819.195 & 0.058 & 0.4 & -24.1 & NO & 1.000 & NO & bb \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 1.000 & 4.18 & 332.754 & 23050.652 & 0.180 & 1.1 & 9.1 & NO & 1.000 & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 2.000 & 4.18 & 671.391 & 23512.051 & 0.357 & 2.1 & 5.9 & NO & 1.000 & NO & bb \\
\hline 5 & \(5200227 \mathrm{P} 1-7\) & Standard & 5.000 & 4.18 & 1550.161 & 21981.383 & 0.882 & 5.2 & 3.4 & NO & 1.000 & NO & bb \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 10.000 & 4.18 & 2940.923 & 22280.803 & 1.650 & 9.6 & -3.5 & NO & 1.000 & NO & \(b b\) \\
\hline 7 & 7 200227P1-9 & Standard & 50.000 & 4.18 & 14264.705 & 21296.773 & 8.373 & 49.2 & -1.5 & NO & 1.000 & NO & bb \\
\hline 8 & 8 200227P1-10 & Standard & 100.000 & 4.18 & 29704.205 & 21721.619 & 17.094 & 101.7 & 1.7 & NO & 1.000 & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 250.000 & 4.17 & 66117.844 & 20458.150 & 40.398 & 248.9 & -0.5 & NO & 1.000 & NO & db \\
\hline 10 & 10 200227P1-12 & Standard & 500.000 & 4.18 & 119213.453 & 19539.482 & 76.264 & 500.3 & 0.1 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Friday, February 28, 2020 10:05:41 Pacific Standard Time

\section*{Compound name: PFHpS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998747\)
Calibration curve: -9.14847e-005 * \(x^{\wedge} 2+0.96802^{*} x+0.039181\)
Response type: Internal Std (Ref 71), Area * IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: \(1 / x\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 0.250 & 4.28 & 77.820 & 3811.884 & 0.255 & 0.2 & -10.7 & NO & 0.999 & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 4.28 & 173.585 & 3853.942 & 0.563 & 0.5 & 8.2 & NO & 0.999 & NO & bb \\
\hline 3 & 3 200227P1-5 & Standard & 1.000 & 4.28 & 323.534 & 4103.427 & 0.986 & 1.0 & -2.2 & NO & 0.999 & NO & bd \\
\hline 4 & 4 200227P1-6 & Standard & 2.000 & 4.29 & 739.107 & 3785.626 & 2.441 & 2.5 & 24.1 & NO & 0.999 & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 5.000 & 4.28 & 1529.184 & 4162.623 & 4.592 & 4.7 & -5.9 & NO & 0.999 & NO & bb \\
\hline 6 & 6200227 P1-8 & Standard & 10.000 & 4.28 & 3244.303 & 4330.533 & 9.365 & 9.6 & -3.6 & NO & 0.999 & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 50.000 & 4.29 & 15380.911 & 3762.240 & 51.103 & 53.0 & 6.0 & NO & 0.999 & NO & bb \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 100.000 & 4.28 & 31327.684 & 3923.374 & 99.811 & 104.1 & 4.1 & NO & 0.999 & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 250.000 & 4.28 & 72793.531 & 4039.851 & 225.236 & 238.0 & -4.8 & NO & 0.999 & NO & bb \\
\hline 10 & 10200227 P1-12 & Standard & 500.000 & 4.29 & 130270.031 & 3496.880 & 465.665 & 505.1 & 1.0 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 7:3 FTCA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998364\)
Calibration curve: \(5.76096 e-005^{*} x^{\wedge} 2+0.154515{ }^{*} x+0.00622813\)
Response type: Internal Std ( Ref 65 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & COD Flag & \(x=\) excluded \\
\hline 1 & 1200227 P1-3 & Standard & 0.250 & 4.60 & 64.402 & 20147.256 & 0.040 & 0.2 & -12.7 & NO & 0.998 & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 4.60 & 153.389 & 22786.998 & 0.084 & 0.5 & 0.8 & NO & 0.998 & NO & bb \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 1.000 & 4.60 & 258.905 & 23200.951 & 0.139 & 0.9 & -13.8 & NO & 0.998 & NO & bb \\
\hline 4 & \(4200227 \mathrm{P} 1-6\) & Standard & 2.000 & 4.60 & 629.119 & 21380.867 & 0.368 & 2.3 & 16.9 & NO & 0.998 & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 5.000 & 4.60 & 1443.954 & 22412.998 & 0.805 & 5.2 & 3.2 & NO & 0.998 & NO & bb \\
\hline 6 & 6200227 P1-8 \(^{6}\) & Standard & 10.000 & 4.60 & 2968.931 & 21885.287 & 1.696 & 10.9 & 8.9 & NO & 0.998 & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 50.000 & 4.60 & 13166.948 & 21866.051 & 7.527 & 47.8 & -4.4 & NO & 0.998 & NO & bb \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 100.000 & 4.60 & 27167.848 & 20972.752 & 16.192 & 101.0 & 1.0 & NO & 0.998 & NO & bb \\
\hline 9 & \(9200227 \mathrm{P}_{1-11}\) & Standard & 250.000 & 4.60 & 15064.476 & 21927.553 & 8.588 & 54.4 & -78.2 & YES & 0.988 & NO & bbX \\
\hline 10 & 10 200227P1-12 & Standard & 500.000 & 4.60 & 27796.854 & 20111.84 E & 17.276 & 107.5 & -78.5 & YES & 0.998 & NO & \(b \mathrm{bX}\) \\
\hline
\end{tabular}
Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed:
Friday, February 28, 2020 10:05:41 Pacific Standard Time

\section*{Compound name: PFNA}

Correlation coefficient: \(r=0.998714, r^{\wedge} 2=0.997430\)
Calibration curve: \(1.07614^{*} x+0.0721371\)
Response type: Internal Std (Ref 65), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoDFlag & \(x=\) excluded \\
\hline 1 & 1200227 P1-3 & Standard & 0.250 & 4.61 & 451.794 & 20147.256 & 0.280 & 0.2 & -22.6 & NO & 0.997 & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 4.61 & 1067.981 & 22786.998 & 0.586 & 0.5 & -4.5 & NO & 0.997 & NO & bd \\
\hline 3 & 3200227 P1-5 & Standard & 1.000 & 4.62 & 2326.105 & 23200.951 & 1.253 & 1.1 & 9.8 & NO & 0.997 & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 2.000 & 4.62 & 4132.158 & 21380.867 & 2.416 & 2.2 & 8.9 & NO & 0.997 & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 5.000 & 4.61 & 11149.335 & 22412.998 & 6.218 & 5.7 & 14.2 & NO & 0.997 & NO & bb \\
\hline 6 & 6 200227P1-8 & Standard & 10.000 & 4.62 & 20409.455 & 21885.287 & 11.657 & 10.8 & 7.7 & NO & 0.997 & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 50.000 & 4.62 & 100235.727 & 21866.051 & 57.301 & 53.2 & 6.4 & NO & 0.997 & NO & bb \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 100.000 & 4.62 & 202717.031 & 20972.752 & 120.822 & 112.2 & 12.2 & NO & 0.997 & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 250.000 & 4.61 & 455941.969 & 21927.553 & 259.914 & 241.5 & -3.4 & NO & 0.997 & NO & bb \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 500.000 & 4.62 & 851104.063 & 20111.846 & 528.982 & 491.5 & -1.7 & NO & 0.997 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFOSA}

Coefficient of Determination: R^2 \(=0.999714\)
Calibration curve: \(-4.40009 e-005^{*} x^{\wedge} 2+0.782908 * x+0.0473526\)
Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & COD Flag & x=excluded \\
\hline 1 & 1 200227P1-3 & Standard & 0.250 & 4.66 & 89.406 & 5099.000 & 0.219 & 0.2 & -12.2 & NO & 1.000 & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 4.66 & 186.624 & 5352.596 & 0.436 & 0.5 & -0.8 & NO & 1.000 & NO & bb \\
\hline 3 & 3 200227P1-5 & Standard & 1.000 & 4.67 & 387.920 & 5476.014 & 0.885 & 1.1 & 7.1 & No & 1.000 & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 2.000 & 4.67 & 644.688 & 5767.154 & 1.397 & 1.7 & -13.8 & NO & 1.000 & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 5.000 & 4.66 & 1947.066 & 5536.480 & 4.396 & 5.6 & 11.1 & NO & 1.000 & NO & bb \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 10.000 & 4.67 & 3853.182 & 5614.223 & 8.579 & 10.9 & 9.0 & NO & 1.000 & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 50.000 & 4.67 & 17284.828 & 5434.770 & 39.755 & 50.9 & 1.7 & NO & 1.000 & NO & bb \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 100.000 & 4.67 & 33060.758 & 5416.187 & 76.301 & 97.9 & -2.1 & NO & 1.000 & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 250.000 & 4.66 & 86205.398 & 5597.888 & 192.495 & 249.3 & -0.3 & NO & 1.000 & NO & bb \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 500.000 & 4.67 & 145662.266 & 4778.941 & 381.000 & 500.7 & 0.1 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

Last Altered: Friday, February 28, 2020 09:57:55 Pacitic Standard Time
Printed: Friday, February 28, 2020 10:05:41 Pacific Standard Time

\section*{Compound name: L-PFOS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.997544\)
Calibration curve: \(-3.34868 e-005^{*} x^{\wedge} 2+0.937949\) * \(x+-0.0268767\)
Response type: Internal Std (Ref 71 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Sta. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & \(1200227 \mathrm{P} 1-3\) & Standard & 0.250 & 4.70 & 61.040 & 3811.884 & 0.200 & 0.2 & -3.2 & NO & 0.998 & NO & MM \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 4.70 & 98.318 & 3853.942 & 0.319 & 0.4 & -26.3 & NO & 0.998 & NO & MM \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 1.000 & 4.70 & 304.830 & 4103.427 & 0.929 & 1.0 & 1.9 & NO & 0.998 & NO & MM \\
\hline 4 & \(4200227 \mathrm{P} 1-6\) & Standard & 2.000 & 4.70 & 632.509 & 3785.626 & 2.089 & 2.3 & 12.8 & NO & 0.998 & NO & MM \\
\hline 5 & 5200227 P 1.7 & Standard & 5.000 & 4.70 & 1661.574 & 4162.623 & 4.990 & 5.3 & 7.0 & NO & 0.998 & NO & MM \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 10.000 & 4.70 & 3168.878 & 4330.533 & 9.147 & 9.8 & -2.2 & NO & 0.998 & NO & MM \\
\hline 7 & 7 200227P1-9 & Standard & 50.000 & 4.70 & 15706.525 & 3762.240 & 52.185 & 55.8 & 11.6 & NO & 0.998 & NO & MM \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 100.000 & 4.70 & 30459.131 & 3923.374 & 97.044 & 103.9 & 3.9 & NO & 0.998 & NO & MM \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 250.000 & 4.70 & 69928.531 & 4039.851 & 216.371 & 232.6 & -6.9 & NO & 0.998 & NO & MM \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 500.000 & 4.70 & 130730.766 & 3496.880 & 467.312 & 507.4 & 1.5 & NO & 0.998 & NO & MM \\
\hline
\end{tabular}

\section*{Compound name: 9CI-PF30NS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998806\)
Calibration curve: \(-0.000294917^{*} x^{\wedge} 2+1.02474\) * \(x+-0.150151\)
Response type: Internal Std ( Ref 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoDFlag & \(x=\) excluded \\
\hline 1 & \(1200227 \mathrm{Pl} 1-3\) & Standard & 0.250 & 4.92 & 30.106 & 3811.884 & 0.099 & 0.2 & -2.8 & NO & 0.999 & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 4.92 & 79.363 & 3853.942 & 0.257 & 0.4 & -20.4 & NO & 0.999 & NO & bb \\
\hline 3 & 3 200227P1-5 & Standard & 1.000 & 4.92 & 360.942 & 4103.427 & 1.100 & 1.2 & 22.0 & NO & 0.999 & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 2.000 & 4.92 & 633.181 & 3785.626 & 2.091 & 2.2 & 9.4 & NO & 0.999 & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 5.000 & 4.92 & 1628.069 & 4162.623 & 4.889 & 4.9 & -1.5 & NO & 0.999 & NO & bb \\
\hline 6 & 6 200227P1-8 & Standard & 10.000 & 4.92 & 3091.613 & 4330.533 & 8.924 & 8.9 & -11.2 & NO & 0.999 & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 50.000 & 4.92 & 16535.404 & 3762.240 & 54.939 & 54.6 & 9.2 & NO & 0.999 & NO & bb \\
\hline 8 & 8 200227P1-10 & Standard & 100.000 & 4.92 & 29584.863 & 3923.374 & 94.258 & 94.7 & -5.3 & NO & 0.999 & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 250.000 & 4.91 & 77342.711 & 4039.851 & 239.312 & 252.0 & 0.8 & NO & 0.999 & NO & bb \\
\hline 10 & 10 200227P1-12 & Standard & 500.000 & 4.92 & 122592.352 & 3496.880 & 438.220 & 499.6 & -0.1 & NO & 0.999 & NO & \(b\) b \\
\hline
\end{tabular}

\section*{Quantify Compound Summary Report MassLynx V4.2 SCN977}

\section*{Dataset:}

D:IPFAS5.PRO\RESULTS\200227P1200227P1-CRV.qld
Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 10:05:41 Pacific Standard Time

\section*{Compound name: PFDA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999532\)
Calibration curve: \(-0.000220705^{*} x^{\wedge} 2+1.15294^{*} x+0.0597003\)
Response type: Internal Std (Ref 73 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CODFlag & \(x=e x c l u d e d\) \\
\hline 1 & 1200227 P 1 -3 & Standard & 0.250 & 4.99 & 562.787 & 21043.768 & 0.334 & 0.2 & -4.7 & NO & 1.000 & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 4.99 & 1178.214 & 22836.324 & 0.645 & 0.5 & 1.5 & NO & 1.000 & NO & bb \\
\hline 3 & 3 200227P1-5 & Standard & 1.000 & 4.99 & 2590.703 & 22427.988 & 1.444 & 1.2 & 20.1 & NO & 1.000 & NO & ob \\
\hline 4 & 4 200227P1-6 & Standard & 2.000 & 4.99 & 4443.523 & 24894.533 & 2.231 & 1.9 & -5.8 & NO & 1.000 & NO & bb \\
\hline 5 & \(5200227 \mathrm{P} 1-7\) & Standard & 5.000 & 4.99 & 11175.81 c & 22933.172 & 6.092 & 5.2 & 4.7 & NO & 1.000 & NO & bb \\
\hline 6 & 6200227 P1-8 & Standard & 10.000 & 4.99 & 22548.996 & 23944.254 & 11.772 & 10.2 & 1.8 & No & 1.000 & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 50.000 & 4.99 & 116806.344 & 24006.590 & 60.820 & 53.2 & 6.5 & NO & 1.000 & NO & bb \\
\hline 8 & 8 200227P1-10 & Standard & 100.000 & 4.99 & 219822.031 & 24897.689 & 110.363 & 97.5 & -2.5 & NO & 1.000 & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 250.000 & 4.99 & 534721.375 & 24643.057 & 271.233 & 246.9 & -1.3 & NO & 1.000 & NO & bb \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 500.000 & 4.99 & 914682.688 & 21854.182 & 523.174 & 502.0 & 0.4 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 8:2 FTS}

Coefficient of Determination: \(R^{\wedge} 2=0.999278\)
Calibration curve: \(-0.000560644^{*} x^{\wedge} 2+1.41716\) * \(x+-0.136378\)
Response type: Internal Std (Ref 75), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: \(1 / x\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & 15 Area & Response & Canc. & \%Dev & Conc. Flag & COD & COD Flag & \(x=\) excluded \\
\hline 1 & \(1200227 \mathrm{P} 1-3\) & Standard & 0.250 & 4.95 & 29.837 & 1486.300 & 0.251 & 0.3 & 9.3 & NO & 0.999 & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 4.96 & 98.125 & 1656.781 & 0.740 & 0.6 & 23.8 & NO & 0.999 & NO & bb \\
\hline 3 & 3 200227P1-5 & Standard & 1.000 & 4.96 & 153.657 & 1570.424 & 1.223 & 1.0 & -4.0 & NO & 0.999 & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 2.000 & 4.97 & 293.142 & 1578.509 & 2.321 & 1.7 & -13.2 & NO & 0.999 & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 5.000 & 4.96 & 840.852 & 1725.461 & 6.092 & 4.4 & -12.0 & NO & 0.999 & NO & bd \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 10.000 & 4.96 & 1802.264 & 1659.765 & 13.573 & 9.7 & -2.9 & NO & 0.999 & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 50.000 & 4.96 & 8007.568 & 1446.929 & 69.177 & 49.9 & -0.2 & NO & 0.999 & NO & bd \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 100.000 & 4.96 & 16484.561 & 1567.856 & 131.426 & 96.5 & -3.5 & NO & 0.999 & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 250.000 & 4.96 & 39315.816 & 1491.189 & 329.568 & 259.2 & 3.7 & NO & 0.999 & NO & bb \\
\hline 10 & 10 200227P1-12 & Standard & 500.000 & 4.96 & 62052.113 & 1375.282 & 563.994 & 495.0 & -1.0 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

\section*{Quantify Compound Summary Report MassLynx V4.2 SCN977}

Vista Analytical Laboratory
Dataset: D:IPFAS5.PROXRESULTSL200227P1\200227P1-CRV.qld
Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed:
Friday, February 28, 2020 10:05:41 Pacific Standard Time

\section*{Compound name: PFNS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999756\)
Calibration curve: \(-0.000187635^{*} x^{\wedge} 2+0.973141 * x+-0.026475\)
Response type: Internal Std (Rei 71), Area * IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Sta. Conc & RT & Area & is Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag &  \\
\hline 1 & 1 200227P1-3 & Standard & 0.250 & 5.04 & 53.137 & 3811.884 & 0.174 & 0.2 & -17.5 & NO & 1.000 & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 5.06 & 142.734 & 3853.942 & 0.463 & 0.5 & 0.6 & NO & 1.000 & NO & bb \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 1.000 & 5.06 & 352.647 & 4103.427 & 1.074 & 1.1 & 13.1 & NO & 1.000 & NO & bb \\
\hline 4 & 4200227 P1-6 & Standard & 2.000 & 5.06 & 573.585 & 3785.626 & 1.894 & 2.0 & -1.3 & NO & 1.000 & NO & bb \\
\hline 5 & \(5200227 \mathrm{P} 1-7\) & Standard & 5.000 & 5.05 & 1707.260 & 4162.623 & 5.127 & 5.3 & 6.0 & NO & 1.000 & NO & bb \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 10.000 & 5.06 & 3230.814 & 4330.533 & 9.326 & 9.6 & -3.7 & NO & 1.000 & NO & bb \\
\hline 7 & \(7200227 \mathrm{P} 1-9\) & Standard & 50.000 & 5.05 & 14991.118 & 3762.240 & 49.808 & 51.7 & 3.5 & NO & 1.000 & NO & bb \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 100.000 & 5.06 & 30147.430 & 3923.374 & 96.051 & 100.7 & 0.7 & NO & 1.000 & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 250.000 & 5.05 & 73540.555 & 4039.851 & 227.547 & 245.5 & \(-1.8\) & NO & 1.000 & NO & bb \\
\hline 10 & 10 200227P1-12 & Standard & 500.000 & 5.06 & 123464.773 & 3496.880 & 441.339 & 502.2 & 0.4 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: L-MeFOSAA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999179\)
Calibration curve: -0.000374142 * \(x^{\wedge} 2+1.3115^{*} x+-0.0249981\)
Response type: Internal Std (Ref 77), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: \(1 / \mathrm{x}\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1200227 P1-3 & Standard & 0.250 & 5.14 & 95.507 & 5263.099 & 0.227 & 0.2 & -23.2 & NO & 0.999 & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 5.14 & 320.729 & 5443.758 & 0.736 & 0.6 & 16.1 & NO & 0.999 & NO & MM \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 1.000 & 5.15 & 380.018 & 5290.940 & 0.898 & 0.7 & -29.6 & NO & 0.999 & NO & MM \\
\hline 4 & 4 200227P1-6 & Standard & 2.000 & 5.14 & 1347.425 & 5347.418 & 3.150 & 2.4 & 21.1 & NO & 0.999 & NO & MM \\
\hline 5 & 5 200227P1-7 & Standard & 5.000 & 5.14 & 3104.947 & 5811.585 & 6.678 & 5.1 & 2.4 & NO & 0.999 & NO & MM \\
\hline 6 & 6 200227P1-8 & Standard & 10.000 & 5.14 & 6496.339 & 6032.000 & 13.462 & 10.3 & 3.1 & NO & 0.999 & NO & MM \\
\hline 7 & 7 200227P1-9 & Standard & 50.000 & 5.14 & 30979.932 & 5616.224 & 68.952 & 53.4 & 6.8 & NO & 0.999 & NO & MM \\
\hline 8 & 8 200227P1-10 & Standard & 100.000 & 5.14 & 58177.809 & 5959.918 & 122.019 & 95.7 & -4.3 & NO & 0.999 & NO & MM \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 250.000 & 5.14 & 143666.250 & 5912.287 & 303.745 & 249.4 & -0.3 & NO & 0.999 & NO & MM \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 500.000 & 5.14 & 265260.625 & 5887.597 & 563.177 & 501.1 & 0.2 & NO & 0.999 & NO & MM \\
\hline
\end{tabular}

Dataset:
D:IPFAS5.PRO\RESULTSI200227P1【200227P1-CRV.qld
Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed:
Friday, February 28, 2020 09:59:49 Pacific Standard Time

\section*{Method: D:IPFAS5.PRO\MethDBINEW_PFAS_80C_022720.mdb 28 Feb 2020 08:07:56} Calibration: 28 Feb 2020 09:57:55

\section*{Compound name: L-EtFOSAA}

Correlation coefficient: \(r=0.999538, r^{\wedge} 2=0.999077\)
Calibration curve: 1.04314 * x + 0.0808309
Response type: Internal Std (Ref 81 ), Area * ( IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: \(1 / x\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc. & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & x=excluded \\
\hline 1 & \(1200227 \mathrm{P} 1-3\) & Standard & 0.250 & 5.30 & 140.051 & 5304.309 & 0.330 & 0.2 & -4.4 & NO & 0.999 & NO & MM \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 5.30 & 276.238 & 5987.810 & 0.577 & 0.5 & -4.9 & NO & 0.999 & NO & MM \\
\hline 3 & 3 200227P1-5 & Standard & 1.000 & 5.30 & 577.176 & 5982.130 & 1.206 & 1.1 & 7.9 & NO & 0.999 & NO & MM \\
\hline 4 & 4 200227P1-6 & Standard & 2.000 & 5.30 & 1255.850 & 6729.643 & 2.333 & 2.2 & 7.9 & NO & 0.999 & NO & MM \\
\hline 5 & 5 200227P1-7 & Standard & 5.000 & 5.30 & 2913.767 & 5798.325 & 6.281 & 5.9 & 18.9 & NO & 0.999 & NO & MM \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 10.000 & 5.31 & 5591.754 & 6916.312 & 10.106 & 9.6 & -3.9 & NO & 0.999 & NO & MM \\
\hline 7 & 7 200227P1-9 & Standard & 50.000 & 5.30 & 29351.309 & 6574.667 & 55.804 & 53.4 & 6.8 & NO & 0.999 & NO & MM \\
\hline 8 & 8 200227P1-10 & Standard & 100.000 & 5.30 & 55420.844 & 6377.508 & 108.626 & 104.1 & 4.1 & NO & 0.999 & NO & MM \\
\hline 9 & 9 200227P1-11 & Standard & 250.000 & 5.30 & 126621.344 & 6028.284 & 262.557 & 251.6 & 0.6 & NO & 0.999 & NO & MM \\
\hline 10 & 10 200227P1-12 & Standard & 500.000 & 5.30 & 203220.906 & 4967.543 & 511.372 & 490.1 & -2.0 & NO & 0.999 & NO & MM \\
\hline
\end{tabular}

\section*{Compound name: PFUdA}

Correlation coefficient: \(\mathrm{r}=0.999079, \mathrm{r}^{\wedge} 2=0.998158\)
Calibration curve: \(0.924289 * x+0.177335\)
Response type: Internal Std (Ref 79 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Sta. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 0.250 & 5.31 & 718.342 & 25200.305 & 0.356 & 0.2 & -22.5 & NO & 0.998 & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 5.31 & 1103.934 & 25355.393 & 0.544 & 0.4 & -20.6 & NO & 0.998 & NO & bb \\
\hline 3 & 3 200227P1-5 & Standard & 1.000 & 5.32 & 2195.318 & 25529.578 & 1.075 & 1.0 & -2.9 & NO & 0.998 & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 2.000 & 5.31 & 4452.869 & 27138.848 & 2.051 & 2.0 & 1.4 & NO & 0.998 & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 5.000 & 5.31 & 11694.880 & 26397.266 & 5.538 & 5.8 & 16.0 & NO & 0.998 & NO & bb \\
\hline 8 & \(6200227 \mathrm{P} 1-8\) & Standard & 10.000 & 5.32 & 23747.057 & 27430.928 & 10.821 & 11.5 & 15.2 & NO & 0.998 & NO & bb \\
\hline 7 & 7 200227P1-9 & Slandard & 50.000 & 5.32 & 107787.398 & 26523.031 & 50.799 & 54.8 & 9.5 & NO & 0.998 & NO & bb \\
\hline 8 & 8 200227P1-10 & Standard & 100.000 & 5.32 & 213897.281 & 27009.330 & 98.992 & 106.9 & 6.9 & NO & 0.998 & NO & bb \\
\hline 9 & 9 200227P1-11 & Standard & 250.000 & 5.31 & 537969.000 & 29161.537 & 230.599 & 249.3 & -0.3 & NO & 0.998 & NO & bb \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 500.000 & 5.32 & 850345.250 & 23610.824 & 450.188 & 486.9 & -2.6 & NO & 0.998 & NO & bb \\
\hline
\end{tabular}

Last Altered:
Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed:
Friday, February 28, 2020 09:59:49 Pacific Standard Time

\section*{Compound name: PFDS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998198\)
Calibration curve: -0.00017666 * \(x^{\wedge} 2+0.840876\) * \(x+-0.0241212\)
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: \(1 / x\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Sid. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & COD Flag & \(x=\) excluded \\
\hline 1 & \(1200227 \mathrm{P} 1-3\) & Standard & 0.250 & 5.37 & 72.274 & 3811.884 & 0.237 & 0.3 & 24.2 & NO & 0.998 & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 5.36 & 96.508 & 3853.942 & 0.313 & 0.4 & -19.8 & NO & 0.998 & NO & bb \\
\hline 3 & 3 200227P1-5 & Standard & 1.000 & 5.36 & 208.531 & 4103.427 & 0.635 & 0.8 & -21.6 & NO & 0.998 & NO & bb \\
\hline 4 & \(4200227{ }^{1-6}\) & Standard & 2.000 & 5.36 & 552.030 & 3785.626 & 1.823 & 2.2 & 9.9 & NO & 0.998 & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 5.000 & 5.36 & 1412.660 & 4162.623 & 4.242 & 5.1 & 1.6 & NO & 0.998 & NO & bb \\
\hline 6 & \(6200227 P_{1-8}\) & Standard & 10.000 & 5.36 & 2797.913 & 4330.533 & 8.076 & 9.7 & -3.5 & NO & 0.998 & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 50.000 & 5.36 & 11339.687 & 3762.240 & 37.676 & 45.3 & -9.5 & NO & 0.998 & NO & bb \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 100.000 & 5.36 & 28131.508 & 3923.374 & 89.628 & 109.1 & 9.1 & NO & 0.998 & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 250.000 & 5.36 & 63016.098 & 4039.851 & 194.983 & 244.5 & -2.2 & NO & 0.998 & NO & bb \\
\hline 10 & 10 200227P1-12 & Standard & 500.000 & 5.36 & 105539.547 & 3496.880 & 377.263 & 501.5 & 0.3 & NO & 0.998 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 11CI-PF30UdS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.990533\)
Calibration curve: \(-0.000128075{ }^{\star} x^{\wedge} 2+0.447138 * x+0.0250385\)
Response type: Internal Std (Ref 83), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Narne & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & COD Flag & \(x=\) excluded \\
\hline 1 & \(1200227 \mathrm{P} 1-3\) & Standard & 0.250 & 5.52 & 220.459 & 22903.898 & 0.120 & 0.2 & -14.8 & NO & 0.991 & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 5.53 & 436.133 & 23804.039 & 0.229 & 0.5 & -8.7 & NO & 0.991 & NO & bb \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 1.000 & 5.53 & 907.703 & 22481.869 & 0.505 & 1.1 & 7.3 & NO & 0.991 & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 2.000 & 5.53 & 1642.167 & 22749.807 & 0.902 & 2.0 & -1.8 & NO & 0.991 & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 5.000 & 5.52 & 4042.833 & 22389.895 & 2.257 & 5.0 & -0.0 & NO & 0.991 & NO & bb \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 10.000 & 5.53 & 8974.947 & 24332.355 & 4.611 & 10.3 & 2.9 & NO & 0.991 & NO & bb \\
\hline 7 & \(7200227 \mathrm{P} 1-9\) & Standard & 50.000 & 5.53 & 42767.328 & 21432.641 & 24.943 & 56.6 & 13.3 & NO & 0.991 & NO & bb \\
\hline 8 & 8200227 P 1 -10 & Standard & 100.000 & 5.53 & 84686.328 & 21544.352 & 49.135 & 113.5 & 13.5 & NO & 0.991 & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 250.000 & 5.52 & 197818.250 & 27681.455 & 89.328 & 212.7 & -14.9 & NO & 0.991 & NO & bb \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 500.000 & 5.53 & 337641.156 & 21381.818 & 197.388 & 518.4 & 3.7 & NO & 0.991 & NO & bb \\
\hline
\end{tabular}

Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 09:59:49 Pacific Standard Time

\section*{Compound name: 10:2 FTS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999815\)
Calibration curve: \(-7.14305 e-005{ }^{*} x^{\wedge} 2+2.18549\) * \(x+-0.0614199\)
Response type: Internal Std (Ref 85 ), Area * (IS Conc. I IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & COD Fiag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 0.250 & 5.58 & 44.180 & 1520.083 & 0.363 & 0.2 & -22.3 & NO & 1.000 & NO & \(b \mathrm{bX}\) \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 5.58 & 179.058 & 1161.896 & 1.926 & 0.9 & 81.9 & YES & 1.000 & NO & \(b \mathrm{bx}\) \\
\hline 3 & 3 200227P1-5 & Standard & 1.000 & 5.58 & 195.866 & 1141.970 & 2.144 & 1.0 & 0.9 & NO & 1.000 & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 2.000 & 5.59 & 436.162 & 1168.401 & 4.666 & 2.2 & 8.2 & NO & 1.000 & NO & bb \\
\hline 5 & \(5200227 \mathrm{P} 1-7\) & Standard & 5.000 & 5.58 & 1271.776 & 1483.068 & 10.719 & 4.9 & -1.3 & NO & 1.000 & NO & bb \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 10.000 & 5.58 & 2040.166 & 1301.703 & 19.591 & 9.0 & -10.0 & NO & 1.000 & NO & bb \\
\hline 7 & 7200227 P1-9 & Standard & 50.000 & 5.59 & 9972.799 & 1111.605 & 112.144 & 51.4 & 2.9 & NO & 1.000 & NO & bb \\
\hline 8 & 8 200227P1-10 & Standard & 100.000 & 5.58 & 19854.289 & 1146.510 & 216.464 & 99.4 & -0.6 & NO & 1.000 & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 250.000 & 5.58 & 53560.637 & 1234.839 & 542.182 & 250.2 & 0.1 & NO & 1.000 & NO & bb \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 500.000 & 5.58 & 70507.898 & 820.124 & 1074.653 & 499.9 & -0.0 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFDoA}

Coefficient of Determination: \(R^{\wedge} 2=0.993601\)
Calibration curve: -0.000395328 * \(x^{\wedge} 2+1.16883^{*} x+0.0381445\)
Response type: Internal Std (Ref 83 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Sta. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & x=excluded \\
\hline 1 & 1 200227P1-3 & Standard & 0.250 & 5.59 & 528.333 & 22903.898 & 0.288 & 0.2 & -14.4 & NO & 0.994 & NO & MM \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 5.60 & 1145.323 & 23804.039 & 0.601 & 0.5 & -3.6 & NO & 0.994 & NO & MM \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 1.000 & 5.60 & 2342.781 & 22481.869 & 1.303 & 1.1 & 8.2 & NO & 0.994 & NO & MM \\
\hline 4 & \(4200227 \mathrm{P} 1-6\) & Standard & 2.000 & 5.60 & 4493.118 & 22749.807 & 2.469 & 2.1 & 4.0 & NO & 0.994 & NO & bb \\
\hline 5 & \(5200227 \mathrm{P} 1-7\) & Standard & 5.000 & 5.59 & 11157.124 & 22389.895 & 6.229 & 5.3 & 6.1 & NO & 0.994 & NO & bd \\
\hline 6 & 6200227 P1-8 & Standard & 10.000 & 5.60 & 23386.689 & 24332.355 & 12.014 & 10.3 & 2.8 & NO & 0.994 & NO & bb \\
\hline 7 & \(7200227 \mathrm{P} 1-9\) & Standard & 50.000 & 5.60 & 105011.555 & 21432.641 & 61.245 & 53.3 & 6.7 & NO & 0.994 & NO & bb \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 100.000 & 5.60 & 218427.109 & 21544.352 & 126.731 & 112.7 & 12.7 & NO & 0.994 & NO & bb \\
\hline 9 & \(9200227 P 1-11\) & Standard & 250.000 & 5.59 & 525196.250 & 27681.455 & 237.161 & 219.1 & -12.4 & NO & 0.994 & NO & bb \\
\hline 10 & \(10200227 P^{1-12}\) & Standard & 500.000 & 5.60 & 851293.750 & 21381.818 & 497.674 & 515.7 & 3.1 & NO & 0.994 & NO & bb \\
\hline
\end{tabular}

Dataset: D:IPFAS5.PROTRESULTSL200227P11200227P1-CRV.qid
\(\begin{array}{ll}\text { Last Altered: } & \text { Friday, February 28, 2020 09:57:55 Pacific Standard Time } \\ \text { Printed: } & \text { Friday, February 28, 2020 09:59:49 Pacific Standard Time }\end{array}\)

Compound name: N-MeFOSA
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999467\)
Calibration curve: \(-9.45291 e-005^{*} x^{\wedge} 2+1.09751^{*} x+0.280033\)
Response type: Internal Std (Ref 87 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1200227 P 1 -3 & Standard & 1.250 & 5.67 & 241.377 & 21808.662 & 1.651 & 1.2 & -0.0 & NO & 0.999 & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 2.500 & 5.67 & 458.006 & 21244.533 & 3.217 & 2.7 & 7.0 & NO & 0.999 & NO & bb \\
\hline 3 & 3 200227P1-5 & Standard & 5.000 & 5.67 & 836.361 & 21879.736 & 5.703 & 4.9 & -1.1 & NO & 0.999 & NO & bo \\
\hline 4 & 4 200227P1-6 & Standard & 10.000 & 5.67 & 1584.051 & 22544.168 & 10.483 & 9.3 & -7.0 & No & 0.999 & NO & bb \\
\hline 5 & \(5200227 \mathrm{P} 1-7\) & Standard & 25.000 & 5.66 & 4389.076 & 20572.188 & 31.832 & 28.8 & 15.3 & NO & 0.999 & NO & MM \\
\hline 6 & 6 200227P1-8 & Standard & 50.000 & 5.57 & 8431.912 & 21968.227 & 57.266 & 52.2 & 4.3 & NO & 0.999 & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 250.000 & 5.67 & 42011.238 & 22298.123 & 281.103 & 261.8 & 4.7 & NO & 0.999 & NO & bb \\
\hline 13 & 8200227 P1-10 & Standard & 500.000 & 5.67 & 81257.023 & 23388.596 & 518.353 & 493.0 & -1.4 & NO & 0.999 & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 1250.000 & 5.66 & 192931.094 & 23949.617 & 1201.911 & 1223.9 & -2.1 & NO & 0.999 & NO & bb \\
\hline 10 & 10200227 P1-12 & Standard & 2500.000 & 5.67 & 332373.625 & 22909.338 & 2164.626 & 2518.2 & 0.7 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFTrDA}

Coefficient of Determination: \(R^{\wedge} 2=0.991155\)
Calibration curve: \(-0.0005788299^{*} x^{\wedge} 2+1.22195{ }^{*} x+0.123282\)
Response type: Internal Std (Ref 83 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & 15 Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 0.250 & 5.84 & 675.427 & 22903.898 & 0.369 & 0.2 & -19.7 & NO & 0.991 & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 5.84 & 1177.034 & 23804.039 & 0.618 & 0.4 & -19.0 & NO & 0.991 & NO & MM \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 1.000 & 5.84 & 2493.019 & 22481.869 & 1.386 & 1.0 & 3.4 & NO & 0.991 & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 2.000 & 5.84 & 5068.672 & 22749.807 & 2.785 & 2.2 & 9.0 & NO & 0.991 & NO & MM \\
\hline 5 & 5 200227P1-7 & Standard & 5.000 & 5.84 & 12054.166 & 22389.895 & 6.730 & 5.4 & 8.4 & NO & 0.991 & NO & bb \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 10.000 & 5.84 & 24320.143 & 24332.355 & 12.494 & 10.2 & 1.7 & NO & 0.991 & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 50.000 & 5.84 & 122573.430 & 21432.641 & 71.488 & 60.1 & 20.2 & NO & 0.991 & NO & bb \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 100.000 & 5.84 & 213038.047 & 21544.352 & 123.604 & 106.4 & 6.4 & NO & 0.991 & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 250.000 & 5.84 & 521382.250 & 27681.455 & 235.438 & 214.3 & -14.3 & NO & 0.991 & NO & bb \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 500.000 & 5.84 & 822415.313 & 21381.818 & 480.791 & 522.9 & 4.6 & NO & 0.991 & NO & bb \\
\hline
\end{tabular}

Vista Analytical Laboratory
Dataset:
D:IPFAS5.PROIRESULTSI200227P11200227P1-CRV.qld
Last Alter Friday, February 28, 2020 09:59:49 Pacific Standard Time

\section*{Compound name: PFDoS}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.992926\)
Calibration curve: \(-5.89691 e-005^{*} x^{\wedge} 2+0.144524^{*} x+0.0159102\)
Response type: Internal Std (Ref 89 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: \(1 / x\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Sta. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & COD Fiag & \(x=\) excluded \\
\hline 1 & 1200227 P1-3 & Standard & 0.250 & 5.86 & 107.555 & 27977.867 & 0.048 & 0.2 & -11.0 & NO & 0.993 & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 5.87 & 156.125 & 25789.664 & 0.076 & 0.4 & -17.3 & NO & 0.993 & NO & bb \\
\hline 3 & 3 200227P1-5 & Standard & 1.000 & 5.86 & 387.930 & 27034.334 & 0.179 & 1.1 & 13.2 & NO & 0.993 & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 2.000 & 5.86 & 688.820 & 23436.889 & 0.367 & 2.4 & 21.7 & NO & 0.993 & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 5.000 & 5.86 & 1725.084 & 25405.254 & 0.849 & 5.8 & 15.5 & No & 0.993 & NO & bb \\
\hline 6 & 6200227 P1-8 & Standard & 10.000 & 5.87 & 3434.973 & 26069.697 & 1.647 & 11.3 & 13.4 & NO & 0.993 & NO & bb \\
\hline 7 & \(7200227 \mathrm{P} 1-9\) & Standard & 50.000 & 5.87 & 16199.978 & 26311.123 & 7.696 & 54.3 & 8.7 & NO & 0.993 & NO & bb \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 100.000 & 5.87 & 31715.859 & 26123.756 & 15.176 & 109.8 & 9.8 & NO & 0.993 & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 250.000 & 5.86 & 66830.766 & 29233.990 & 28.576 & 216.8 & -13.3 & NO & 0.993 & NO & bb \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 500.000 & 5.87 & 116321.063 & 24580.410 & 59.153 & 519.2 & 3.8 & NO & 0.993 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFTeDA}

Correlation coefficient: \(r=0.999133, r^{\wedge} 2=0.998266\)
Calibration curve: 0.896808 * \(x+0.108589\)
Response type: Internal Std (Ref 89), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & COD Flag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 0.250 & 6.05 & 672.317 & 27977.867 & 0.300 & 0.2 & -14.5 & NO & 0.998 & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 6.06 & 966.845 & 25789.664 & 0.469 & 0.4 & -19.7 & NO & 0.998 & NO & MM \\
\hline 3 & 3 200227P1-5 & Standard & 1.000 & 6.05 & 2365.808 & 27034.334 & 1.094 & 1.1 & 9.9 & NO & 0.998 & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 2.000 & 6.06 & 4438.468 & 23436.889 & 2.367 & 2.5 & 25.9 & No & 0.998 & NO & bb \\
\hline 5 & \(5200227 \mathrm{P} 1-7\) & Standard & 5.000 & 6.06 & 11471.837 & 25405.254 & 5.644 & 6.2 & 23.5 & NO & 0.998 & NO & bb \\
\hline 6 & 6 200227P1-8 & Standard & 10.000 & 6.06 & 21485.725 & 26069.697 & 10.302 & 11.4 & 13.7 & NO & 0.998 & NO & bb \\
\hline 7 & \(7200227 \mathrm{P1}-9\) & Standard & 50.000 & 6.06 & 99924.094 & 26311.123 & 47.472 & 52.8 & 5.6 & NO & 0.998 & NO & bb \\
\hline 8 & 8 200227P1-10 & Standard & 100.000 & 6.05 & 199762.391 & 26123.756 & 95.585 & 106.5 & 6.5 & NO & 0.998 & NO & MM \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 250.000 & 6.05 & 525153.375 & 29233.990 & 224.547 & 250.3 & 0.1 & NO & 0.998 & NO & bb \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 500.000 & 6.06 & 859816.438 & 24580.410 & 437.247 & 487.4 & -2.5 & NO & 0.998 & NO & MM \\
\hline
\end{tabular}

Vista Analytical Laboratory

\section*{Dataset: \\ D:IPFAS5.PROIRESULTSL200227P11200227P1-CRV.qid}

Last Altered
Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 09:59:49 Pacific Standard Time

\section*{Compound name: N-EtFOSA}

Coefficient of Determination: R^2 \(=0.999010\)
Calibration curve: \(-5.6471 \mathrm{e}-005\) * \(x^{\wedge} 2+1.02308\) * \(x+0.202857\)
Response type: Internal Std (Ref 91), Area * IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: \(1 / x\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Sta. Conc & RT & Area & IS Ârea & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag &  \\
\hline 1 & 1 200227P1-3 & Standard & 1.250 & 6.10 & 264.214 & 30400.055 & 1.297 & 1.1 & -14.5 & NO & 0.999 & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 2.500 & 6.10 & 602.409 & 31743.156 & 2.831 & 2.6 & 2.8 & NO & 0.999 & NO & bb \\
\hline 3 & 3 200227P1-5 & Standard & 5.000 & 6.10 & 1148.992 & 31157.057 & 5.502 & 5.2 & 3.6 & NO & 0.999 & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 10.000 & 6.10 & 2355.245 & 32484.291 & 10.818 & 10.4 & 3.8 & NO & 0.999 & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 25.000 & 6.10 & 6041.348 & 31780.652 & 28.362 & 27.6 & 10.3 & NO & 0.999 & NO & bb \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 50.000 & 6.10 & 11964.191 & 32218.385 & 55.405 & 54.1 & 8.2 & NO & 0.999 & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 250.000 & 6.10 & 55012.195 & 32249.908 & 254.507 & 252.1 & 0.8 & NO & 0.999 & NO & bb \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 500.000 & 6.10 & 105722.258 & 30433.887 & 518.296 & 521.4 & 4.3 & NO & 0.999 & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 1250.000 & 6.09 & 232404.344 & 30424.328 & 1139.704 & 1192.3 & -4.6 & NO & 0.999 & NO & bb \\
\hline 10 & 10 200227P1-12 & Standard & 2500.000 & 6.10 & 411836.438 & 27603.184 & 2226.047 & 2528.5 & 1.1 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFHxDA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999762\)
Calibration curve: \(-0.00014335^{*} x^{\wedge} 2+0.706539{ }^{*} x+0.115848\)
Response type: Internal Std (Ref 93), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name: & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 0.250 & 6.39 & 796.464 & 36901.500 & 0.270 & 0.2 & -12.8 & NO & 1.000 & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 6.39 & 1333.842 & 36042.426 & 0.463 & 0.5 & -1.8 & NO & 1.000 & NO & bb \\
\hline 3 & 3 200227P1-5 & Standard & 1.000 & 6.39 & 2529.417 & 36864.965 & 0.858 & 1.1 & 5.0 & NO & 1.000 & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 2.000 & 6.39 & 4701.463 & 36720.137 & 1.600 & 2.1 & 5.1 & NO & 1.000 & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 5.000 & 6.39 & 11477.290 & 37080.008 & 3.869 & 5.3 & 6.4 & NO & 1.000 & NO & bb \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 10.000 & 6.39 & 21739.498 & 38435.602 & 7.070 & 9.9 & -1.4 & NO & 1.000 & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 50.000 & 6.39 & 104269.117 & 38014.348 & 34.286 & 48.8 & -2.3 & NO & 1.000 & NO & bb \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 100.000 & 6.39 & 205399.297 & 35969.020 & 71.381 & 103.0 & 3.0 & NO & 1.000 & NO & \(b b\) \\
\hline 9 & \(9200227 \mathrm{P}_{1-11}\) & Standard & 250.000 & 6.39 & 486242.250 & 36714.754 & 165.547 & 246.5 & -1.4 & NO & 1.000 & NO & bb \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 500.000 & 6.39 & 854989.125 & 33572.141 & 318.340 & 501.4 & 0.3 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: PFODA}

Coefficient of Determination: \(R^{\wedge} 2=0.999135\)
Calibration curve: \(-0.000123507^{*} x^{\wedge} 2+0.908012{ }^{*} x+0.0218764\)
Response type: Internal Std (Ref 93 ), Area * IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & \(1200227 \mathrm{P} 1-3\) & Standard & 0.250 & 6.62 & 567.597 & 36901.500 & 0.192 & 0.2 & -24.9 & NO & 0.999 & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 0.500 & 6.62 & 1418.529 & 36042.426 & 0.492 & 0.5 & 3.5 & NO & 0.999 & NO & MM \\
\hline 3 & 3 200227P1-5 & Standard & 1.000 & 6.62 & 2945.373 & 36864.965 & 0.999 & 1.1 & 7.6 & NO & 0.999 & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 2.000 & 6.62 & 5906.873 & 36720.137 & 2.011 & 2.2 & 9.6 & NO & 0.999 & NO & bb \\
\hline 5 & \(5200227 \mathrm{P} 1-7\) & Standard & 5.000 & 6.62 & 14604.384 & 37080.008 & 4.923 & 5.4 & 8.0 & NO & 0.999 & NO & bb \\
\hline 6 & 6 200227P1-8 & Standard & 10.000 & 6.62 & 29027.596 & 38435.602 & 9.440 & 10.4 & 3.9 & NO & 0.999 & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 50.000 & 6.62 & 137982.156 & 38014.348 & 45.372 & 50.3 & 0.6 & NO & 0.999 & NO & bb \\
\hline 8 & 8 200227P1-10 & Standard & 100.000 & 6.62 & 269698.438 & 35969.020 & 93.726 & 104.7 & 4.7 & NO & 0.999 & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 250.000 & 6.62 & 618011.500 & 36714.754 & 210.410 & 239.5 & -4.2 & NO & 0.999 & NO & bb \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 500.000 & 6.62 & 1146111.006 & 33572.141 & 426.734 & 504.6 & 0.9 & NO & 0.999 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: N-MeFOSE}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999771\)
Calibration curve: \(-1.98902 e-005^{*} x^{\wedge} 2+1.05441\) * \(x+0.358784\)
Response type: Internal Std (Ref 95), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Sta. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & COD Flag & \(x=\) excluded \\
\hline 1 & 1200227 P1-3 & Standard & 1.250 & 6.29 & 248.133 & 22784.545 & 1.625 & 1.2 & -3.9 & NO & 1.000 & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 2.500 & 6.30 & 460.103 & 23573.861 & 2.912 & 2.4 & -3.1 & NO & 1.000 & NO & bb \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 5.000 & 6.30 & 1055.613 & 24814.814 & 6.347 & 5.7 & 13.6 & NO & 1.000 & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 10.000 & 6.30 & 1930.767 & 25282.391 & 11.394 & 10.5 & 4.7 & NO & 1.000 & NO & bb \\
\hline 5 & \(5200227 \mathrm{P} 1-7\) & Standard & 25.000 & 6.30 & 4474.207 & 22479.533 & 29.696 & 27.8 & 11.4 & NO & 1.000 & NO & MM \\
\hline 6 & 6 200227P1-8 & Standard & 50.000 & 6.30 & 9216.988 & 24859.201 & 55.319 & 52.2 & 4.4 & NO & 1.000 & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 250.000 & 6.30 & 44736.992 & 25015.324 & 266.827 & 253.9 & 1.6 & NO & 1.000 & NO & bb \\
\hline 8 & 8 200227P1-10 & Standard & 500.000 & 6.30 & 91666.367 & 26204.295 & 521.923 & 499.4 & -0.1 & NO & 1.000 & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 1250.000 & 6.30 & 204416.422 & 24044.918 & 1268.415 & 1231.2 & -1.5 & NO & 1.000 & NO & bb \\
\hline 10 & \(10200227 P 1-12\) & Standard & 2500.000 & 6.30 & 410290.219 & 24280.707 & 2521.150 & 2509.5 & 0.4 & NO & 1.000 & NO & bb \\
\hline
\end{tabular}

Vista Analytical Laboratory
Dataset:
D:IPFAS5.PROIRESULTSI200227P11200227P1-CRV.qld
Last Altered:
Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 09:59:49 Pacific Standard Time

\section*{Compound name: N-EtFOSE}

Correlation coefficient: \(r=0.998864, r^{\wedge} 2=0.997730\)
Calibration curve: 0.970285 * \(x+0.35217\)
Response type: Internal Std (Ref 97), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: \(1 / x\), Axis trans: None
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Ȧrea & Response & Conc. & \%Dev & Conc. Flag & COD & Couflag & \(x=\) excluded \\
\hline 1 & \(1200227 \mathrm{P} 1-3\) & Standard & 1.250 & 6.45 & 242.281 & 27819.070 & 1.299 & 1.0 & -21.9 & NO & 0.998 & NO & bd \\
\hline 2 & 2 200227P1-4 & Standard & 2.500 & 6.44 & 516.016 & 27953.850 & 2.754 & 2.5 & -1.0 & NO & 0.998 & NO & bb \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 5.000 & 6.44 & 1098.357 & 27550.979 & 5.948 & 5.8 & 15.3 & NO & 0.998 & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 10.000 & 6.44 & 1998.672 & 27343.031 & 10.906 & 10.9 & 8.8 & NO & 0.998 & NO & bb \\
\hline 5 & \(5200227 \mathrm{P} 1-7\) & Standard & 25.000 & 6.44 & 4580.513 & 26338.322 & 25.947 & 26.4 & 5.5 & NO & 0.998 & NO & bb \\
\hline 6 & \(6200227 \mathrm{P}_{1-8}\) & Standard & 50.000 & 6.44 & 10086.944 & 28838.369 & 52.186 & 53.4 & 6.8 & NO & 0.998 & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 250.000 & 6.45 & 51224.137 & 28820.082 & 265.185 & 272.9 & 9.2 & NO & 0.998 & NO & bb \\
\hline 8 & 8 200227P1-10 & Standard & 500.000 & 6.45 & 99465.289 & 27607.914 & 537.535 & 553.6 & 10.7 & NO & 0.998 & NO & bb \\
\hline 9 & 9 200227P1-11 & Standard & 1250.000 & 6.44 & 229413.922 & 28880.707 & 1185.170 & 1221.1 & -2.3 & NO & 0.998 & NO & bb \\
\hline 10 & 10200227 P 1.12 & Standard & 2500.000 & 6.45 & 448534.188 & 28191.189 & 2373.837 & 2446.2 & -2.2 & NO & 0.998 & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C3-PFBA-EIS}

Response Factor: 642.155
RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & \(1200227 \mathrm{P} 1-3\) & Standard & 12.500 & 1.32 & 7590.314 & & 7590.314 & 11.8 & -5.4 & NO & & NO & MMX \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 1.32 & 7291.915 & & 7291.915 & 11.4 & -9.2 & NO & & NO & MMX \\
\hline 3 & 3 200227P1-5 & Standard & 12.500 & 1.32 & 7825.403 & & 7825.403 & 12.2 & -2.5 & NO & & NO & MMX \\
\hline 4 & \(4200227 \mathrm{P} 1-6\) & Standard & 12.500 & 1.33 & 8329.849 & & 8329.849 & 13.0 & 3.8 & NO & & NO & MMX \\
\hline 5 & 5200227 P 1.7 & Standard & 12.500 & 1.35 & 7523.821 & & 7523.821 & 11.7 & -6.3 & NO & & NO & MMX \\
\hline 6 & \(6200227 \mathrm{P1-8}\) & Standard & 12.500 & 1.33 & 8026.943 & & 8026.943 & 12.5 & 0.0 & NO & & NO & MM \\
\hline 7 & \(7200227 \mathrm{P1-9}\) & Standard & 12.500 & 1.33 & 8364.255 & & 8364.255 & 13.0 & 4.2 & NO & & NO & bbX \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 12.500 & 1.34 & 7358.939 & & 7368.939 & 11.5 & -8.2 & NO & & NO & MMX \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 1.37 & 8128.281 & & 8128.281 & 12.7 & 1.3 & NO & & NO & MMX \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 12.500 & 1.33 & 7775.098 & & 7775.098 & 12.1 & -3.1 & NO & & NO & MMX \\
\hline
\end{tabular}

Dataset:
D:IPFAS5.PROTRESULTSI200227P11200227P1-CRV.qld
Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed Friday, February 28, 2020 09:59:49 Pacific Standard Time

\section*{Compound name: 13C3-PFBA-RSD}

Response Factor: 0.812583
RRF SD: 0.0230694 , Relative SD: 2.83902
Response type: Internal Std (Ref 99 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CODFlag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 12.500 & 1.32 & 7591.001 & 9207.453 & 10.306 & 12.7 & 1.5 & NO & & NO & MM \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 1.32 & 7308.312 & 9543.297 & 9.573 & 11.8 & -5.8 & NO & & NO & MM \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 12.500 & 1.32 & 7840.852 & 9432.535 & 10.391 & 12.8 & 2.3 & NO & & NO & MM \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 1.33 & 8328.985 & 10042.703 & 10.367 & 12.8 & 2.1 & NO & & NO & MM \\
\hline 5 & \(5200227 \mathrm{P}_{1-7}\) & Standard & 12.500 & 1.35 & 7529.580 & 9248.677 & 10.177 & 12.5 & 0.2 & NO & & NO & MM \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 12.500 & 1.33 & 8021.751 & 9750.017 & 10.284 & 12.7 & 1.3 & NO & & NO & MM \\
\hline 7 & 7200227 P1-9 & Standard & 12.500 & 1.33 & 8364.255 & 9928.814 & 10.530 & 13.0 & 3.7 & NO & & NO & bb \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 12.500 & 1.34 & 8174.892 & 10378.795 & 9.846 & 12.1 & -3.1 & NO & & NO & MM \\
\hline 9 & 9 200227P1-11 & Standard & 12.500 & 1.37 & 8476.718 & 10619.274 & 9.978 & 12.3 & -1.8 & NO & & NO & MM \\
\hline 10 & 10200227 P1-12 & Standard & 12.500 & 1.33 & 8150.312 & 10064.693 & 10.122 & 12.5 & -0.3 & NO & & NO & MM \\
\hline
\end{tabular}

\section*{Compound name: 13C3-PFPeA-EIS}

Response Factor: 1159.98
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CODFlag & \(x=\) excluded \\
\hline 1 & 1200227 P1-3 & Standard & 12.500 & 2.25 & 13550.682 & & 13550.682 & 11.7 & -6.5 & NO & & NO & bbX \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 2.25 & 13046.680 & & 13046.680 & 11.2 & -10.0 & NO & & NO & \(b b X\) \\
\hline 3 & 3 200227P1-5 & Standard & 12.500 & 2.25 & 13354.771 & & 13354.771 & 11.5 & -7.9 & NO & & NO & \(b b X\) \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 2.26 & 13773.231 & & 13773.231 & 11.9 & -5.0 & NO & & NO & \(b b X\) \\
\hline 5 & \(5200227 \mathrm{P} 1-7\) & Standard & 12.500 & 2.28 & 13673.156 & & 13673.156 & 11.8 & -5.7 & NO & & NO & \(b b^{\prime}\) \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 12.500 & 2.26 & 14499.703 & & 14499.703 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 12.500 & 2.26 & 14377.306 & & 14377.306 & 12.4 & -0.8 & NO & & NO & bbX \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 12.500 & 2.26 & 14329.535 & & 14329.535 & 12.4 & -1.2 & NO & & NO & MMX \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 2.27 & 14007.765 & & 14007.765 & 12.1 & -3.4 & NO & & NO & \(b b X\) \\
\hline 10 & 10200227 P1-12 \(^{1}\) & Standard & 12.500 & 2.26 & 13866.714 & & 13866.714 & 12.0 & -4.4 & NO & & NO & \(b b X\) \\
\hline
\end{tabular}

Vista Analytical Laboratory
Dataset: D:IPFAS5.PROIRESULTSL200227P1200227P1-CRV.gid
Last Altered: Friday, February 28, 2020 09:57:55 Pacitic Standard Time
Printed:
Friday, February 28, 2020 09:59:49 Pacific Standard Time

\section*{Compound name: 13C3-PFPeA-RSD}

Response Factor: 0.590662
RRF SD: 0.0207352, Relative SD: 3.5105
Response type: Internal Std (Ref 100 ), Area * (IS Conc. I IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CODFlag & x=excluded \\
\hline 1 & 1 200227P1-3 & Standard & 12.500 & 2.25 & 13550.682 & 23322.006 & 7.263 & 12.3 & -1.6 & NO & & NO & bb \\
\hline 2 & \(2200227 \mathrm{P} 1-4\) & Standard & 12.500 & 2.25 & 13046.680 & 23173.131 & 7.038 & 11.9 & -4.7 & NO & & NO & bb \\
\hline 3 & 3 200227P1-5 & Standard & 12.500 & 2.25 & 13354.771 & 21964.490 & 7.600 & 12.9 & 2.9 & NO & & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 2.26 & 13773.231 & 24595.543 & 7.000 & 11.9 & -5.2 & NO & & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 12.500 & 2.28 & 13673.156 & 22249.055 & 7.682 & 13.0 & 4.0 & NO & & NO & bb \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 12.500 & 2.26 & 14499.703 & 24781.201 & 7.314 & 12.4 & -0.9 & NO & & NO & bb \\
\hline 7 & \(7200227 \mathrm{P} 1-9\) & Standard & 12.500 & 2.26 & 14377.306 & 23138.252 & 7.767 & 13.1 & 5.2 & NO & & NO & bb \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 12.500 & 2.26 & 14073.620 & 23437.229 & 7.506 & 12.7 & 1.7 & NO & & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 2.27 & 14007.765 & 24166.633 & 7.245 & 12.3 & -1.9 & NO & & NO & bb \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 12.500 & 2.26 & 13866.714 & 23366.463 & 7.418 & 12.6 & 0.5 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C3-PFBS-EIS}

Response Factor: 122.77
RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 12.500 & 2.53 & 1446.801 & & 1446.801 & 11.8 & -5.7 & NO & & NO & bbX \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 2.53 & 1548.338 & & 1548.338 & 12.6 & 0.9 & NO & & NO & \(b b x\) \\
\hline 3 & \(3200227 \mathrm{P}_{1-5}\) & Standard & 12.500 & 2.53 & 1573.643 & & 1573.643 & 12.8 & 2.5 & NO & & NO & bbX \\
\hline 4 & \(4200227 \mathrm{P} 1-6\) & Standard & 12.500 & 2.53 & 1536.398 & & 1536.398 & 12.5 & 0.1 & NO & & NO & \(b b x\) \\
\hline 5 & 5 200227P1-7 & Standard & 12.500 & 2.55 & 1590.780 & & 1590.780 & 13.0 & 3.7 & NO & & NO & bbX \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 12.500 & 2.53 & 1534.622 & & 1534.622 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & \(7200227 \mathrm{P} 1-9\) & Standard & 12.500 & 2.53 & 1564.503 & & 1564.503 & 12.7 & 1.9 & NO & & NO & \(b b X\) \\
\hline 8 & 8 200227P1-10 & Standard & 12.500 & 2.55 & 1510.565 & & 1510.565 & 12.3 & -1.6 & NO & & NO & bbX \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 2.54 & 1542.143 & & 1542.143 & 12.6 & 0.5 & NO & & NO & \(b b X\) \\
\hline 10 & 10 200227P1-12 & Standard & 12.500 & 2.53 & 1395.823 & & 1395.823 & 11.4 & -9.0 & NO & & NO & \(b d X\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{Quantify Compound Summary Report} & MassLynx V4.2 SCN977 & \multirow[t]{3}{*}{Page 11 of 37} \\
\hline \multicolumn{2}{|l|}{Vista Analytical Laboratory} & & \\
\hline Dataset: & D:IPFAS5.PROXRESULT & 00227P11200227P1-CRV.qld & \\
\hline Last Altered: Printed: & \begin{tabular}{l}
Friday, February 28, 2020 \\
Friday, February 28, 2020
\end{tabular} & :57:55 Pacific Standard Time :59:49 Pacific Standard Time & \\
\hline
\end{tabular}

\section*{Compound name: 13C3-PFBS-RSD}

Response Factor: 1.09013
RRF SD: 0.0812028 , Relative SD: 7.44895
Response type: Internal Std (Ref 101 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Cone & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & \(1200227 \mathrm{P} 1-3\) & Standard & 12.500 & 2.53 & 1446.801 & 1416.009 & 12.772 & 11.7 & -6.3 & NO & & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 2.53 & 1548.338 & 1339.785 & 14.446 & 13.3 & 6.0 & NO & & NO & bb \\
\hline 3 & 3 200227P1-5 & Standard & 12.500 & 2.53 & 1573.643 & 1572.158 & 12.512 & 11.5 & -8.2 & NO & & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 2.53 & 1536.398 & 1464.692 & 13.112 & 12.0 & -3.8 & NO & & NO & bb \\
\hline 5 & \(5200227 \mathrm{P} 1-7\) & Standard & 12.500 & 2.55 & 1590.780 & 1329.265 & 14.959 & 13.7 & 9.8 & NO & & NO & bb \\
\hline 6 & 6200227 P1.8 & Standard & 12.500 & 2.53 & 1534.622 & 1549.201 & 12.382 & 11.4 & -9.1 & NO & & NO & bb \\
\hline 7 & 7200227 P1-9 & Standard & 12.500 & 2.53 & 1564.503 & 1511.461 & 12.939 & 11.9 & -5.0 & NO & & NO & bb \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 12.500 & 2.55 & 1510.565 & 1248.387 & 15.125 & 13.9 & 11.0 & NO & & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 2.54 & 1542.143 & 1364.603 & 14.126 & 13.0 & 3.7 & NO & & NO & bb \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 12.500 & 2.53 & 1395.823 & 1255.906 & 13.893 & 12.7 & 2.0 & NO & & NO & bd \\
\hline
\end{tabular}

\section*{Compound name: 13C3-HFPO-DA-EIS}

Response Factor: 328.229
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & 15 Area & Response & Conc. & \%Dev & Conc. Flag & COD & CODFlag & \(x=\) excluded \\
\hline 1 & \(1200227 \mathrm{P}_{1-3}\) & Standard & 12.500 & 3.27 & 3957.442 & & 3957.442 & 12.1 & -3.5 & NO & & NO & MMX \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 3.27 & 3862.557 & & 3862.557 & 11.8 & -5.9 & NO & & NO & bbX \\
\hline 3 & 3 200227P1-5 & Standard & 12.500 & 3.27 & 3962.263 & & 3962.263 & 12.1 & -3.4 & NO & & NO & bbX \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 3.27 & 4053.925 & & 4053.925 & 12.4 & -1.2 & NO & & NO & \(b b X\) \\
\hline 5 & 5 200227P1-7 & Standard & 12.500 & 3.25 & 3904.953 & & 3904.953 & 11.9 & -4.8 & NO & & NO & \(b \mathrm{bX}\) \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 12.500 & 3.27 & 4102.858 & & 4102.858 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & \(7200227 \mathrm{P} 1-9\) & Standard & 12.500 & 3.27 & 4212.337 & & 4212.337 & 12.8 & 2.7 & NO & & NO & \(b \mathrm{bx}\) \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 12.500 & 3.26 & 4213.042 & & 4213.042 & 12.8 & 2.7 & NO & & NO & bbX \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 3.24 & 4341.552 & & 4341.552 & 13.2 & 5.8 & NO & & NO & \(b b x\) \\
\hline 10 & \(10200227 \mathrm{P}_{1-12}\) & Standard & 12.500 & 3.27 & 4266.929 & & 4266.929 & 13.0 & 4.0 & NO & & NO & bbX \\
\hline
\end{tabular}

\section*{Quantify Compound Summary Report MassLynx V4.2 SCN977}

Vista Analytical Laboratory
Dataset:
D:IPFAS5.PROIRESULTSL200227P11200227P1-CRV.qld
Last Altered:
Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 09:59:49 Pacific Standard Time

\section*{Compound name: 13C3-HFPO-DA-RSD}

Response Factor: 0.174668
RRF SD: 0.00723163 , Relative SD: 4.14021
Response type: Internal Std (Ref 100 ), Area * ( IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 12.500 & 3.27 & 3956.328 & 23322.006 & 2.120 & 12.1 & -2.9 & NO & & NO & MM \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 3.27 & 3862.557 & 23173.131 & 2.084 & 11.9 & -4.6 & NO & & NO & bb \\
\hline 3 & 3 200227P1-5 & Standard & 12.500 & 3.27 & 3962.263 & 21964.490 & 2.255 & 12.9 & 3.3 & NO & & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 3.27 & 4053.925 & 24595.543 & 2.060 & 11.8 & -5.6 & NO & & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 12.500 & 3.25 & 3904.953 & 22249.055 & 2.194 & 12.6 & 0.5 & NO & & NO & bb \\
\hline 6 & 6 200227P1-8 & Standard & 12.500 & 3.27 & 4102.858 & 24781.201 & 2.070 & 11.8 & -5.2 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 12.500 & 3.27 & 4212.337 & 23138.252 & 2.276 & 13.0 & 4.2 & NO & & NO & bb \\
\hline 8 & \(8200227 \mathrm{P}_{1-10}\) & Standard & 12.500 & 3.26 & 4213.042 & 23437.229 & 2.247 & 12.9 & 2.9 & NO & & NO & bb \\
\hline 9 & 9 200227P1-11 & Standard & 12.500 & 3.24 & 4341.552 & 24166.633 & 2.246 & 12.9 & 2.9 & NO & & NO & bb \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 12.500 & 3.27 & 4266.929 & 23366.463 & 2.283 & 13.1 & 4.5 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C2-4:2 FTS-EIS}

Response Factor: 165.829
RRF SD: 0 , Relative SD:
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Canc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1200227 P1-3 & Standard & 12.500 & 2.96 & 1991.287 & & 1991.287 & 12.0 & -3.9 & NO & & NO & bbX \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 2.97 & 2008.212 & & 2008.212 & 12.1 & -3.1 & NO & & NO & bbX \\
\hline 3 & 3 200227P1-5 & Standard & 12.500 & 2.97 & 2062.690 & & 2062.690 & 12.4 & -0.5 & NO & & NO & \(b b x\) \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 2.97 & 2103.935 & & 2103.935 & 12.7 & 1.5 & NO & & NO & \(b b x\) \\
\hline 5 & 5 200227P1-7 & Standard & 12.500 & 2.95 & 1939.839 & & 1939.899 & 11.7 & -6.4 & NO & & NO & \(b b X\) \\
\hline 6 & 6200227 P1-8 & Standard & 12.500 & 2.97 & 2072.868 & & 2072.868 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 12.500 & 2.97 & 2014.307 & & 2014.307 & 12.1 & -2.8 & NO & & NO & \(b b x\) \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 12.500 & 2.97 & 2027.564 & & 2027.564 & 12.2 & -2.2 & NO & & NO &  \\
\hline 9 & 9 200227P1-11 & Standard & 12.500 & 2.95 & 1915.017 & & 1915.017 & 11.5 & -7.6 & NO & & NO & \(b b X\) \\
\hline 10 & 10 200227P1-12 & Standard & 12.500 & 2.97 & 1626.885 & & 1626.885 & 9.8 & -21.5 & NO & & NO & \(b b X\) \\
\hline
\end{tabular}

Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed:
Friday, February 28, 2020 09:57:55 Pacific Standard Time
Friday, February 28, 2020 09:59:49 Pacific Standard Time

\section*{Compound name: 13C2-4:2 FTS-RSD}

Response Factor: 1.41066
RRF SD: 0.100471, Relative SD: 7.12225
Response type: Internal Std (Ref 101), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \% Name & Type & Std. Cone & RT & Area & IS Area & Respanse & Conc. & \%Dev & Cone. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & \(1200227 \mathrm{P} 1-3\) & Standard & 12.500 & 2.96 & 1991.287 & 1416.009 & 17.578 & 12.5 & -0.3 & NO & & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 2.97 & 2008.212 & 1339.785 & 18.736 & 13.3 & 6.3 & NO & & NO & bb \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 12.500 & 2.97 & 2062.690 & 1572.158 & 16.400 & 11.6 & -7.0 & NO & & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 2.97 & 2103.935 & 1464.692 & 17.955 & 12.7 & 1.8 & NO & & NO & bb \\
\hline 5 & \(5200227 \mathrm{P} 1-7\) & Standard & 12.500 & 2.95 & 1939.899 & 1329.265 & 18.242 & 12.9 & 3.5 & NO & & NO & bb \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 12.500 & 2.97 & 2072.868 & 1549.201 & 16.725 & 11.9 & -5.1 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 12.500 & 2.97 & 2014.307 & 1511.461 & 16.659 & 11.8 & -5.5 & NO & & NO & bb \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 12.500 & 2.97 & 2027.564 & 1248.387 & 20.302 & 14.4 & 15.1 & NO & & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 2.95 & 1915.017 & 1364.603 & 17.542 & 12.4 & -0.5 & NO & & NO & bb \\
\hline 10 & 10200227 P1-12 & Standard & 12.500 & 2.97 & 1626.885 & 1255.906 & 16.192 & 11.5 & -8.2 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C2-PFHxA-EIS}

Response Factor: 1761.47
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & is Area & Response & Conc. & \%Dev & Conc. Flag & COD & C.D Flag & \(x=e x c l u d e d\) \\
\hline 1 & 1 200227P1-3 & Standard & 12.500 & 3.05 & 22572.449 & & 22572.449 & 12.8 & 2.5 & NO & & NO & bbX \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 3.05 & 22576.160 & & 22576.160 & 12.8 & 2.5 & NO & & NO & bbX \\
\hline 3 & 3 200227P1-5 & Standard & 12.500 & 3.05 & 23153.461 & & 23153.461 & 13.1 & 5.2 & NO & & NO & bbX \\
\hline 4 & \(4200227 \mathrm{P} 1-6\) & Standard & 12.500 & 3.05 & 22529.568 & & 22529.568 & 12.8 & 2.3 & NO & & NO & \(b \mathrm{bx}\) \\
\hline 5 & \(5200227 \mathrm{P} 1-7\) & Standard & 12.500 & 3.04 & 22330.906 & & 22330.906 & 12.7 & 1.4 & NO & & NO & bbX \\
\hline 6 & 6 200227P1-8 & Standard & 12.500 & 3.05 & 22018.398 & & 22018.398 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 12.500 & 3.05 & 23788.217 & & 23788.217 & 13.5 & 8.0 & NO & & NO & bbX \\
\hline 8 & 8 200227P1-10 & Standard & 12.500 & 3.06 & 22851.168 & & 22851.168 & 13.0 & 3.8 & NO & & NO & \(b b x\) \\
\hline 9 & 9 200227P1-11 & Standard & 12.500 & 3.04 & 24102.154 & & 24102.154 & 13.7 & 9.5 & NO & & NO & bbx \\
\hline 10 & 10 200227P1-12 & Standard & 12.500 & 3.05 & 23016.420 & & 23016.420 & 13.1 & 4.5 & NO & & NO & \(b b X\) \\
\hline
\end{tabular}

Last Altered: Printed:Friday, February 28, 2020 09:57:55 Pacific Standard Time Friday, February 28, 2020 09:59:49 Pacific Standard Time

\section*{Compound name: 13C2-PFHxA-RSD}

Response Factor: 0.978986
RRF SD: 0.0487118 , Relative SD: 4.97574
Response type: Internal Std (Ref 100 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & 15 Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(\mathrm{x}=\) excluded \\
\hline 1 & \(1200227 \mathrm{P} 1-3\) & Standard & 12.500 & 3.05 & 22572.449 & 23322.006 & 12.098 & 12.4 & -1.1 & NO & & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 3.05 & 22576.160 & 23173.131 & 12.178 & 12.4 & -0.5 & NO & & NO & bb \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 12.500 & 3.05 & 23153.461 & 21964.490 & 13.177 & 13.5 & 7.7 & NO & & NO & bb \\
\hline 4 & \(4200227 \mathrm{P} 1-6\) & Standard & 12.500 & 3.05 & 22529.568 & 24595.543 & 11.450 & 11.7 & -6.4 & NO & & NO & bb \\
\hline 5 & \(5200227 \mathrm{P} 1-7\) & Standard & 12.500 & 3.04 & 22330.906 & 22249.055 & 12.546 & 12.8 & 2.5 & NO & & NO & bb \\
\hline 6 & 6 200227P1-8 & Standard & 12.500 & 3.05 & 22018.398 & 24781.201 & 11.106 & 11.3 & -9.2 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 12.500 & 3.05 & 23788.217 & 23138.252 & 12.851 & 13.1 & 5.0 & NO & & NO & bb \\
\hline 8 & 8 200227P1-10 & Standard & 12.500 & 3.06 & 22851.168 & 23437.229 & 12.187 & 12.4 & -0.4 & NO & & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 3.04 & 24102.154 & 24166.633 & 12.467 & 12.7 & 1.9 & NO & & NO & bb \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 12.500 & 3.05 & 23016.420 & 23366.463 & 12.313 & 12.6 & 0.6 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C4-PFHpA-EIS}

Response Factor: 1290.92
RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Narne & Type & Std. Conc & RT & Area & IS Area & Respanse & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 12.500 & 3.65 & 15511.189 & & 15511.189 & 12.0 & -3.9 & NO & & NO & bbX \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 3.66 & 16026.478 & & 16026.478 & 12.4 & -0.7 & NO & & NO & \(b b X\) \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 12.500 & 3.66 & 15767.739 & & 15767.739 & 12.2 & -2.3 & NO & & NO & \(b b X\) \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 3.66 & 16009.256 & & 16009.256 & 12.4 & -0.8 & NO & & NO & \(b b x\) \\
\hline 5 & 5 200227P1-7 & Standard & 12.500 & 3.65 & 16679.984 & & 16679.984 & 12.9 & 3.4 & NO & & NO & \(b b X\) \\
\hline 6 & 6 200227P1-8 & Standard & 12.500 & 3.66 & 16136.509 & & 16136.509 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 12.500 & 3.66 & 15837.346 & & 15837.346 & 12.3 & -1.9 & NO & & NO & bbX \\
\hline 8 & 8 200227P1-10 & Standard & 12.500 & 3.66 & 16434.400 & & 16434.400 & 12.7 & 1.8 & NO & & NO & \(b \mathrm{~b} X\) \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 3.65 & 15712.550 & & 15712.550 & 12.2 & -2.6 & NO & & NO & \(b b x\) \\
\hline 10 & 10 200227P1-12 & Standard & 12.500 & 3.66 & 13849.063 & & 13849.063 & 10.7 & -14.2 & NO & & NO & bbX \\
\hline
\end{tabular}

Dataset:
D:IPFAS5.PROIRESULTSL200227P11200227P1-CRV.qld
Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 09:59:49 Pacific Standard Time

\section*{Compound name: 13C4-PFHpA-RSD}

Response Factor: 0.675485
RRF SD: 0.0435962 , Relative SD: 6.45406
Response type: Internal Std (Ref 100 ), Area * (IS Conc. I IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Área & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & \(1200227 \mathrm{P} 1-3\) & Standard & 12.500 & 3.65 & 15511.189 & 23322.006 & 8.314 & 12.3 & -1.5 & NO & & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 3.66 & 16026.478 & 23173.131 & 8.645 & 12.8 & 2.4 & NO & & NO & bb \\
\hline 3 & 3 200227P1-5 & Standard & 12.500 & 3.66 & 15767.739 & 21964.490 & 8.973 & 13.3 & 6.3 & NO & & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 3.66 & 16009.256 & 24595.543 & 8.136 & 12.0 & -3.6 & NO & & NO & bb \\
\hline 5 & \(5200227 \mathrm{P} 1-7\) & Standard & 12.500 & 3.65 & 16679.984 & 22249.055 & 9.371 & 13.9 & 11.0 & NO & & NO & bb \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 12.500 & 3.66 & 16136.509 & 24781.201 & 8.139 & 12.0 & -3.6 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 12.500 & 3.66 & 15837.346 & 23138.252 & 8.556 & 12.7 & 1.3 & NO & & NO & bb \\
\hline 8 & 8 200227P1-10 & Standard & 12.500 & 3.66 & 16434.400 & 23437.229 & 8.765 & 13.0 & 3.8 & NO & & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 3.65 & 15712.550 & 24166.633 & 8.127 & 12.0 & -3.7 & NO & & NO & bb \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 12.500 & 3.66 & 13849.063 & 23366.463 & 7.409 & 11.0 & -12.3 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C3-PFHxS-EIS}

Response Factor: 309.268
RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Fag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 12.500 & 3.80 & 3296.816 & & 3296.816 & 10.7 & -14.7 & NO & & NO & bbX \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 3.80 & 3053.301 & & 3053.301 & 9.9 & -21.0 & NO & & NO & \(b b x\) \\
\hline 3 & 3 200227P1-5 & Standard & 12.500 & 3.80 & 3456.836 & & 3456.836 & 11.2 & -10.6 & NO & & NO & \(b b x\) \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 3.80 & 3212.421 & & 3212.421 & 10.4 & -16.9 & NO & & NO & \(b b x\) \\
\hline 5 & 5 200227P1-7 & Standard & 12.500 & 3.80 & 3419.747 & & 3419.747 & 11.1 & -11.5 & NO & & NO & bbx \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 12.500 & 3.80 & 3865.850 & & 3865.850 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 12.500 & 3.80 & 3884.181 & & 3884.181 & 12.6 & 0.5 & NO & & NO & bbX \\
\hline 8 & 8 200227P1-10 & Standard & 12.500 & 3.80 & 3401.802 & & 3401.802 & 11.0 & -12.0 & NO & & NO & bbX \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 3.79 & 3299.161 & & 3299.161 & 10.7 & -14.7 & NO & & NO & \(b b X\) \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 12.500 & 3.80 & 3124.690 & & 3124.690 & 10.1 & -19.2 & NO & & NO & bbX \\
\hline
\end{tabular}

Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed:
Friday, February 28, 2020 09:59:49 Pacific Standard Time

\section*{Compound name: 13C3-PFHxS-RSD}

Response Factor: 2.42677
RRF SD: 0.175523, Relative SD: 7.23277
Response type: Internal Std (Ref 101 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type: & Sid. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoDFlag & \(x=\) excluded \\
\hline 1 & 1200227 Pq -3 & Standard & 12.500 & 3.80 & 3296.816 & 1416.009 & 29.103 & 12.0 & -4.1 & NO & & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 3.80 & 3053.301 & 1339.785 & 28.487 & 11.7 & -6.1 & NO & & NO & bb \\
\hline 3 & 3 200227P1-5 & Standard & 12.500 & 3.80 & 3456.836 & 1572.158 & 27.485 & 11.3 & -9.4 & NO & & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 3.80 & 3212.421 & 1464.692 & 27.415 & 11.3 & -9.6 & NO & & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 12.500 & 3.80 & 3419.747 & 1329.265 & 32.158 & 13.3 & 6.0 & NO & & NO & bb \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 12.500 & 3.80 & 3865.850 & 1549.201 & 31.192 & 12.9 & 2.8 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 12.500 & 3.80 & 3884.181 & 1511.461 & 32.123 & 13.2 & 5.9 & NO & & NO & bb \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 12.500 & 3.80 & 3401.802 & 1248.387 & 34.062 & 14.0 & 12.3 & NO & & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 3.79 & 3299.161 & 1364.603 & 30.221 & 12.5 & -0.4 & NO & & NO & bb \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 12.500 & 3.80 & 3124.690 & 1255.906 & 31.100 & 12.8 & 2.5 & NO & & NO & bb \\
\hline
\end{tabular}

Compound name: 13C2-6:2 FTS-EIS
Response Factor: 148.89
RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Sto. Conc & RT & Area & is Area & Response & Conc. & \%Dev & Conc. Flag & COO & CoDFlag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 12.500 & 4.11 & 1870.401 & & 1870.401 & 12.6 & 0.5 & NO & & NO & bbX \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 4.11 & 1862.926 & & 1862.926 & 12.5 & 0.1 & NO & & NO & \(b b x\) \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 12.500 & 4.11 & 1780.441 & & 1780.441 & 12.0 & -4.3 & NO & & NO & \(b b X\) \\
\hline 4 & \(4200227 \mathrm{P} 1-6\) & Standard & 12.500 & 4.11 & 1895.539 & & 1895.533 & 12.7 & 1.8 & NO & & NO & \(b b X\) \\
\hline 5 & 5 200227P1-7 & Standard & 12.500 & 4.11 & 1803.444 & & 1803.444 & 12.1 & -3.1 & NO & & NO & \(b b X\) \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 12.500 & 4.12 & 1861.131 & & 1861.131 & 12.5 & 0.0 & NO & & NO & \(b b\) \\
\hline 7 & 7 200227P1-9 & Standard & 12.500 & 4.11 & 1867.446 & & 1867.446 & 12.5 & 0.3 & NO & & NO & bbX \\
\hline 8 & 8 200227P1-10 & Standard & 12.500 & 4.11 & 1928.453 & & 1928.453 & 13.0 & 3.6 & NO & & NO & \(b b X\) \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 4.11 & 1864.594 & & 1864.594 & 12.5 & 0.2 & NO & & NO & bbX \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 12.500 & 4.12 & 1701.591 & & 1701.591 & 11.4 & -8.6 & NO & & NO & bbX \\
\hline
\end{tabular}

Dataset: D:IPFAS5.PROMRESULTSI200227P11200227P1-CRV.qld
Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 09:59:49 Pacific Standard Time

Compound name: 13C2-6:2 FTS-RSD
Response Factor: 0.436051
RRF SD: 0.0253184 , Relative SD: 5.80629
Response type: Internal Std (Ref 104 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & SId. Conc & AT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 12.500 & 4.11 & 1870.401 & 4211.613 & 5.551 & 12.7 & 1.8 & NO & & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 4.11 & 1862.926 & 4384.649 & 5.311 & 12.2 & -2.6 & NO & & NO & bb \\
\hline 3 & 3 200227P1-5 & Standard & 12.500 & 4.11 & 1780.441 & 4334.910 & 5.134 & 11.8 & -5.8 & NO & & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 4.11 & 1895.539 & 3849.120 & 6.156 & 14.1 & 12.9 & NO & & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 12.500 & 4.11 & 1803.444 & 4489.755 & 5.021 & 11.5 & -7.9 & NO & & NO & bb \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 12.500 & 4.12 & 1861.131 & 4439.965 & 5.240 & 12.0 & -3.9 & NO & & NO & bb \\
\hline 7 & 7200227 P 1.9 & Standard & 12.500 & 4.11 & 1867.446 & 4329.113 & 5.392 & 12.4 & -1.1 & NO & & NO & bb \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 12.500 & 4.11 & 1928.453 & 4349.698 & 5.542 & 12.7 & 1.7 & NO & & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 4.11 & 1864.594 & 4183.187 & 5.572 & 12.8 & 2.2 & NO & & NO & bb \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 12.500 & 4.12 & 1701.591 & 3806.387 & 5.588 & 12.8 & 2.5 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C5-PFNA-EIS}

Response Factor: 1750.82
RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & COD Flag & \(x=e x\) cluded \\
\hline 1 & 1 200227P1-3 & Standard & 12.500 & 4.61 & 20147.256 & & 20147.256 & 11.5 & -7.9 & NO & & NO & bbX \\
\hline 2 & \(2200227 \mathrm{P} 1-4\) & Standard & 12.500 & 4.61 & 22786.998 & & 22786.998 & 13.0 & 4.1 & NO & & NO & \(b b x\) \\
\hline 3 & 3 200227P1-5 & Standard & 12.500 & 4.62 & 23200.951 & & 23200.951 & 13.3 & 6.0 & NO & & NO & bbX \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 4.62 & 21380.867 & & 21380.867 & 12.2 & -2.3 & NO & & NO & \(b \mathrm{bx}\) \\
\hline 5 & 5 200227P1-7 & Standard & 12.500 & 4.61 & 22412.998 & & 22412.998 & 12.8 & 2.4 & NO & & NO & \(b b x\) \\
\hline 6 & 6200227 P1-8 & Standard & 12.500 & 4.62 & 21885.287 & & 21885.287 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7200227 P 1.9 & Standard & 12.500 & 4.62 & 21866.051 & & 21866.051 & 12.5 & -0.1 & NO & & NO & bbX \\
\hline 8 & 8 200227P1-10 & Standard & 12.500 & 4.62 & 20972.752 & & 20972.752 & 12.0 & -4.2 & NO & & NO & \(b b x\) \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 4.61 & 21927.553 & & 21927.553 & 12.5 & 0.2 & NO & & NO & \(b b x\) \\
\hline 10 & \(1020022781-12\) & Standard & 12.500 & 4.62 & 20111.846 & & 20111.84 E & 11.5 & -8.1 & NO & & NO & \(b b X\) \\
\hline
\end{tabular}

Vista Analytical Laboratory
Dataset: D:IPFAS5.PROIRESULTSL200227P11200227P1-CRV.qld
Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 09:59:49 Pacific Standard Time

\section*{Compound name: 13C5-PFNA-RSD}

Response Factor: 0.950126
RRF SD: 0.0275816, Relative SD: 2.90294
Response type: Internal Std (Ref 103), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & \(1200227 \mathrm{P} 1-3\) & Standard & 12.500 & 4.61 & 20147.256 & 21849.729 & 11.526 & 12.1 & -3.0 & NO & & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 4.61 & 22786.998 & 23852.248 & 11.942 & 12.6 & 0.5 & NO & & NO & bb \\
\hline 3 & 3 200227P1-5 & Standard & 12.500 & 4.62 & 23200.951 & 24464.400 & 11.854 & 12.5 & -0.2 & NO & & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 4.62 & 21380.867 & 22735.102 & 11.755 & 12.4 & -1.0 & NO & & NO & 6 b \\
\hline 5 & \(5200227 \mathrm{P} 1-7\) & Standard & 12.500 & 4.61 & 22412.998 & 23278.066 & 12.035 & 12.7 & 1.3 & NO & & NO & bb \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 12.500 & 4.62 & 21885.287 & 21606.609 & 12.661 & 13.3 & 6.6 & NO & & NO & bb \\
\hline 7 & \(7200227 \mathrm{P} 1-9\) & Standard & 12.500 & 4.62 & 21866.051 & 23057.561 & 11.854 & 12.5 & -0.2 & NO & & NO & \(b b\) \\
\hline 8 & \(8200227 \mathrm{P} 1 \cdot 10\) & Standard & 12.500 & 4.62 & 20972.752 & 22040.479 & 11.894 & 12.5 & 0.2 & NO & & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 4.61 & 21927.553 & 24165.168 & 11.343 & 11.9 & -4.5 & NO & & NO & bo \\
\hline 10 & \(10200227{ }^{\text {P1-12 }}\) & Standard & 12.500 & 4.62 & 20111.846 & 21125.219 & 11.900 & 12.5 & 0.2 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C8-PFOSA-EIS}

Response Factor: 449.138
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 12.500 & 4.67 & 5099.000 & & 5099.000 & 11.4 & -9.2 & NO & & NO & bbX \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 4.67 & 5352.596 & & 5352.596 & 11.9 & -4.7 & NO & & NO & \(b b x\) \\
\hline 3 & 3 200227P1-5 & Standard & 12.500 & 4.67 & 5476.014 & & 5476.014 & 12.2 & -2.5 & NO & & NO & \(b b x\) \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 4.67 & 5767.154 & & 5767.154 & 12.8 & 2.7 & NO & & NO & bbX \\
\hline 5 & 5200227 P1-7 & Standard & 12.500 & 4.66 & 5536.480 & & 5536.480 & 12.3 & -1.4 & NO & & NO & \(b \mathrm{bx}\) \\
\hline 6 & 6200227 P1-8 & Standard & 12.500 & 4.67 & 5614.223 & & 5614.223 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 12.500 & 4.67 & 5434.770 & & 5434.770 & 12.1 & -3.2 & NO & & NO & \(b b x\) \\
\hline 8 & 8 200227P1-10 & Standard & 12.500 & 4.67 & 5416.187 & & 5416.187 & 12.1 & -3.5 & NO & & NO & \(b b x\) \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 4.66 & 5597.888 & & 5597.888 & 12.5 & -0.3 & NO & & NO & \(b \mathrm{bx}\) \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 12.500 & 4.67 & 4778.941 & & 4778.941 & 10.6 & -14.9 & NO & & NO & bbx \\
\hline
\end{tabular}

\section*{Compound name: 13C8-PFOSA-RSD}

Response Factor: 0.216075
RRF SD: 0.00932684 , Relative SD: 4.31649
Response type: Internal Std (Ref 106 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoDFlag & \(x=0 \times\) cluded \\
\hline 1 & 1200227 P1-3 & Standard & 12.500 & 4.67 & 5099.000 & 24404.371 & 2.612 & 12.1 & -3.3 & NO & & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 4.67 & 5352.596 & 25318.955 & 2.643 & 12.2 & -2.2 & NO & & NO & bb \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 12.500 & 4.67 & 5476.014 & 25984.789 & 2.634 & 12.2 & -2.5 & NO & & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 4.67 & 5767.154 & 26183.898 & 2.753 & 12.7 & 1.9 & NO & & NO & bb \\
\hline 5 & 5200227 P1-7 & Standard & 12.500 & 4.66 & 5536.480 & 23987.494 & 2.885 & 13.4 & 6.8 & NO & & NO & bb \\
\hline 6 & 6200227 P1-8 & Standard & 12.500 & 4.67 & 5614.223 & 26085.492 & 2.690 & 12.5 & -0.4 & NO & & NO & bo \\
\hline 7 & 7 200227P1-9 & Standard & 12.500 & 4.67 & 5434.770 & 26144.961 & 2.598 & 12.0 & -3.8 & NO & & NO & bb \\
\hline 8 & 8200227 P1-10 & Standard & 12.500 & 4.67 & 5416.187 & 25819.922 & 2.622 & 12.1 & -2.9 & NO & & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 4.66 & 5597.888 & 26435.783 & 2.647 & 12.3 & -2.0 & NO & & NO & bb \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 12.500 & 4.67 & 4778.941 & 20424.268 & 2.925 & 13.5 & 8.3 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C2-PFOA-EIS}

Response Factor: 1782.46
RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & FT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1200227 P1-3 & Standard & 12.500 & 4.17 & 21251.869 & & 21251.869 & 11.9 & -4.6 & NO & & NO & bbX \\
\hline 2 & 2200227 P1-4 & Standard & 12.500 & 4.17 & 21819.195 & & 21819.195 & 12.2 & -2.1 & NO & & NO & bbX \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 12.500 & 4.17 & 23050.652 & & 23050.652 & 12.9 & 3.5 & NO & & NO & \(b b x\) \\
\hline 4 & 4200227 P1-6 & Standard & 12.500 & 4.17 & 23512.051 & & 23512.051 & 13.2 & 5.5 & NO & & NO & \(b b x\) \\
\hline 5 & 5 200227P1-7 & Standard & 12.500 & 4.17 & 21981.383 & & 21981.383 & 12.3 & -1.3 & NO & & NO & \(b b x\) \\
\hline 6 & 6 200227P1-8 & Standard & 12.500 & 4.17 & 22280.803 & & 22280.803 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200227P9-9 & Standard & 12.500 & 4.17 & 21296.773 & & 21296.773 & 11.9 & -4.4 & NO & & NO & \(b b X\) \\
\hline 8 & 8 200227P1-10 & Standard & 12.500 & 4.17 & 21721.619 & & 21721.619 & 12.2 & -2.5 & NO & & NO & \(b b x\) \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 4.16 & 20458.150 & & 20458.150 & 11.5 & -8.2 & NO & & NO & \(b b x\) \\
\hline 10 & 10 200227P1-12 & Standard & 12.500 & 4.17 & 19539.482 & & 19539.482 & 11.0 & -12.3 & NO & & NO & \(b b x\) \\
\hline
\end{tabular}

Dataset:
D:IPFAS5.PROIRESULTSL200227P11200227P1-CRV.qld
Last Altered:
Printed:
Friday, February 28, 2020 09:57:55 Pacific Standard Time Friday, February 28, 2020 09:59:49 Pacific Standard Time

\section*{Compound name: 13C2-PFOA-RSD}

Response Factor: 0.917041
RRF SD: 0.0287046 , Relative SD: 3.13013
Response type: Internal Std (Ref 102 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response. & Conc. & \%Dev & Conc. Flag & COD & COD Flag & \(x=\) excluded \\
\hline 1 & \(1200227 \mathrm{P} 1-3\) & Standard & 12.500 & 4.17 & 21251.869 & 23255.871 & 11.423 & 12.5 & -0.4 & NO & & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 4.17 & 21819.195 & 22781.117 & 11.972 & 13.1 & 4.4 & NO & & NO & bb \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 12.500 & 4.17 & 23050.652 & 25051.422 & 11.502 & 12.5 & 0.3 & NO & & NO & bo \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 4.17 & 23512.051 & 24702.975 & 11.897 & 13.0 & 3.8 & NO & & NO & bo \\
\hline 5 & 5200227 P1-7 & Standard & 12.500 & 4.17 & 21981.383 & 23600.613 & 11.642 & 12.7 & 1.6 & NO & & NO & bb \\
\hline 6 & 6200227 P1-8 & Standard & 12.500 & 4.17 & 22280.803 & 25495.762 & 10.924 & 11.9 & -4.7 & NO & & NO & bb \\
\hline 7 & \(7200227 \mathrm{P} 1-9\) & Standard & 12.500 & 4.17 & 21296.773 & 24286.318 & 10.961 & 12.0 & -4.4 & NO & & NO & bb \\
\hline 8 & 8200227 P1-10 & Standard & 12.500 & 4.17 & 21721.619 & 24081.479 & 11.275 & 12.3 & -1.6 & NO & & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 4.16 & 20458.150 & 22625.801 & 11.302 & 12.3 & -1.4 & NO & & NO & bb \\
\hline 10 & 10200227 P1-12 & Standard & 12.500 & 4.17 & 19539.482 & 20820.176 & 11.731 & 12.8 & 2.3 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C8-PFOS-EIS}

Response Factor: 346.443
RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 12.500 & 4.70 & 3811.884 & & 3811.884 & 11.0 & -12.0 & NO & & NO & bbX \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 4.70 & 3853.942 & & 3853.942 & 11.1 & -11.0 & NO & & NO & \(b b x\) \\
\hline 3 & 3 200227P1-5 & Standard & 12.500 & 4.70 & 4103.427 & & 4103.427 & 11.8 & -5.2 & NO & & NO & \(b \mathrm{bx}\) \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 4.70 & 3785.626 & & 3785.626 & 10.9 & -12.6 & NO & & NO & \(b b x\) \\
\hline 5 & 5 200227P1-7 & Standard & 12.500 & 4.70 & 4162.623 & & 4162.623 & 12.0 & -3.9 & NO & & NO & bbX \\
\hline 6 & 6 200227P1-8 & Standard & 12.500 & 4.70 & 4330.533 & & 4330.533 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 12.500 & 4.70 & 3762.240 & & 3762.240 & 10.9 & -13.1 & NO & & NO & bbX \\
\hline 8 & 8 200227P1-10 & Standard & 12.500 & 4.70 & 3923.374 & & 3923.374 & 11.3 & -9.4 & NO & & No & bbX \\
\hline 9 & 9200227 P 1 -11 & Standard & 12.500 & 4.69 & 4039.851 & & 4039.851 & 11.7 & -6.7 & NO & & NO & MMX \\
\hline 10 & 10 200227P1-12 & Standard & 12.500 & 4.70 & 3496.880 & & 3496.880 & 10.1 & -19.3 & NO & & NO & bbX \\
\hline
\end{tabular}

Last Altered:
Printed:
Friday, February 28, 2020 09:57:55 Pacific Standard Time Friday, February 28, 2020 09:59:49 Pacific Standard Time

\section*{Compound name: 13C8-PFOS-RSD}

\section*{Response Factor: 0.927198}

RRF SD: 0.0397834 , Relative SD: 4.29072
Response type: Internal Std (Ref 104 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Sta. Conc & RT & Area & IS Area & Response & Conc. & 960 ev & Conc. Flag & COD & CoDFlag & x=excluded \\
\hline 1 & \(1200227 \mathrm{P} 1-3\) & Standard & 12.500 & 4.70 & 3811.884 & 4211.613 & 11.314 & 12.2 & -2.4 & NO & & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 4.70 & 3853.942 & 4384.649 & 10.987 & 11.8 & -5.2 & NO & & NO & bb \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 12.500 & 4.70 & 4103.427 & 4334.910 & 11.833 & 12.8 & 2.1 & NO & & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 4.70 & 3785.626 & 3849.120 & 12.294 & 13.3 & 6.1 & NO & & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 12.500 & 4.70 & 4162.623 & 4489.755 & 11.589 & 12.5 & -0.0 & NO & & NO & bb \\
\hline 6 & 6 200227P1-8 & Standard & 12.500 & 4.70 & 4330.533 & 4439.965 & 12.192 & 13.1 & 5.2 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 12.500 & 4.70 & 3762.240 & 4329.113 & 10.863 & 11.7 & -6.3 & NO & & NO & bb \\
\hline 8 & 8 200227P1-10 & Standard & 12.500 & 4.70 & 3923.374 & 4349.698 & 11.275 & 12.2 & -2.7 & NO & & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 4.69 & 4039.287 & 4183.187 & 12.070 & 13.0 & 4.1 & NO & & NO & MM \\
\hline 10 & 10200227 P1-12 & Standard & 12.500 & 4.70 & 3496.880 & 3806.387 & 11.484 & 12.4 & -0.9 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C2-PFDA-EIS}

Response Factor: 1915.54
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & FIT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & \(1200227 \mathrm{P} 1-3\) & Standard & 12.500 & 4.99 & 21043.768 & & 21043.768 & 11.0 & -12.1 & NO & & NO & bbX \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 4.99 & 22836.324 & & 22836.324 & 11.9 & -4.6 & NO & & NO & bbX \\
\hline 3 & \(3200227 \mathrm{P}_{1-5}\) & Standard & 12.500 & 4.99 & 22427.988 & & 22427.988 & 11.7 & -6.3 & NO & & NO & \(b b X\) \\
\hline 4 & \(4200227 \mathrm{P} 1-6\) & Standard & 12.500 & 4.99 & 24894.533 & & 24894.533 & 13.0 & 4.0 & NO & & NO & \(b b X\) \\
\hline 5 & 5 200227P1-7 & Standard & 12.500 & 4.99 & 22933.172 & & 22933.172 & 12.0 & -4.2 & NO & & NO & \(b b X\) \\
\hline 6 & 6200227 P1-8 & Standard & 12.500 & 4.99 & 23944.254 & & 23944.254 & 12.5 & 0.0 & NO & & NO & bb \\
\hline \(?\) & \(7200227 \mathrm{P} 1-9\) & Standard & 12.500 & 4.99 & 24006.590 & & 24006.590 & 12.5 & 0.3 & NO & & NO & \(b \mathrm{bx}\) \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 12.500 & 4.99 & 24897.689 & & 24897.689 & 13.0 & 4.0 & NO & & NO & \(b b X\) \\
\hline 9 & 9 200227P1-11 & Standard & 12.500 & 4.99 & 24643.057 & & 24643.057 & 12.9 & 2.9 & NO & & NO & \(b b x\) \\
\hline 10 & 10 200227P1-12 & Standard & 12.500 & 4.99 & 21854.182 & & 21854.182 & 11.4 & -8.7 & NO & & NO & bbX \\
\hline
\end{tabular}
Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed:
Friday, February 28, 2020 09:59:49 Pacific Standard Time

\section*{Compound name: 13C2-PFDA-RSD}

Response Factor: 0.983002
RRF SD: 0.0553709 , Relative SD: 5.63284
Response type: Internal Std (Ref 105), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & 15 Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1200227 P1-3 & Standard & 12.500 & 4.99 & 21043.768 & 23647.152 & 11.124 & 11.3 & -9.5 & NO & & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 4.99 & 22836.324 & 25046.877 & 11.397 & 11.6 & -7.2 & NO & & NO & bb \\
\hline 3 & 3 200227P1-5 & Standard & 12.500 & 4.99 & 22427.988 & 23820.924 & 11.769 & 12.0 & -4.2 & NO & & NO & bb \\
\hline 4 & 4200227 P1-6 \(^{4}\) & Standard & 12.500 & 4.99 & 24894.533 & 24192.422 & 12.863 & 13.1 & 4.7 & NO & & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 12.500 & 4.99 & 22933.172 & 24235.971 & 11.828 & 12.0 & -3.7 & NO & & NO & bb \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 12.500 & 4.99 & 23944.254 & 23466.820 & 12.754 & 13.0 & 3.8 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 12.500 & 4.99 & 24006.590 & 23827.920 & 12.594 & 12.8 & 2.5 & NO & & NO & bb \\
\hline 8 & 8200227 P 1 -10 & Standard & 12.500 & 4.99 & 24897.689 & 23996.334 & 12.970 & 13.2 & 5.6 & NO & & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 4.99 & 24643.057 & 23729.617 & 12.981 & 13.2 & 5.6 & NO & & NO & bb \\
\hline 10 & 10 200227P1-12 & Standard & 12.500 & 4.99 & 21854.182 & 21687.629 & 12.596 & 12.8 & 2.5 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C2-8:2 FTS-EIS}

Response Factor: 132.781
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Frag & COD & COD Flag & \(x=e x\) cluded \\
\hline 1 & \(1200227 \mathrm{P} 1-3\) & Standard & 12.500 & 4.96 & 1486.300 & & 1486.300 & 11.2 & -10.5 & NO & & NO & \(b b x\) \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 4.96 & 1656.781 & & 1656.781 & 12.5 & -0.2 & NO & & NO & \(b d X\) \\
\hline 3 & 3 200227P1-5 & Standard & 12.500 & 4.96 & 1570.424 & & 1570.424 & 11.8 & -5.4 & NO & & NO & \(b b X\) \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 4.96 & 1578.509 & & 1578.509 & 11.9 & -4.9 & NO & & NO & \(b b x\) \\
\hline 5 & 5 200227P1-7 & Standard & 12.500 & 4.96 & 1725.461 & & 1725.461 & 13.0 & 4.0 & NO & & NO &  \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 12.500 & 4.96 & 1659.765 & & 1659.765 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & \(7200227 \mathrm{P} 1-9\) & Standard & 12.500 & 4.96 & 1446.929 & & 1446.929 & 10.9 & -12.8 & NO & & NO & bbX \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 12.500 & 4.96 & 1567.856 & & 1567.856 & 11.8 & -5.5 & NO & & NO & \(b b x\) \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 4.96 & 1491.189 & & 1491.189 & 11.2 & -10.2 & NO & & NO & bbX \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 12.500 & 4.96 & 1375.282 & & 1375.282 & 10.4 & -17.1 & NO & & NO & \(b b x\) \\
\hline
\end{tabular}

Dataset: D:IPFAS5.PRO\RESULTSL200227P1200227P1-CRV.gld
Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 09:59:49 Pacific Standard Time

Compound name: 13C2-8:2 FTS-RSD
Response Factor: 0.367373
RRF SD: 0.0205504 , Relative SD: 5.59387
Response type: Internal Std (Ref 104 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Sta. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & COD Flag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 12.500 & 4.96 & 1486.300 & 4211.613 & 4.411 & 12.0 & -3.9 & NO & & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 4.96 & 1656.781 & 4384.649 & 4.723 & 12.9 & 2.9 & NO & & NO & bd \\
\hline 3 & 3 200227P1-5 & Standard & 12.500 & 4.96 & 1570.424 & 4334.910 & 4.528 & 12.3 & -1.4 & NO & & NO & bb \\
\hline 4 & \(4200227 \mathrm{P} 1-6\) & Standard & 12.500 & 4.96 & 1578.509 & 3849.120 & 5.126 & 14.0 & 11.6 & NO & & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 12.500 & 4.96 & 1725.461 & 4489.755 & 4.804 & 13.1 & 4.6 & NO & & NO & bo \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 12.500 & 4.96 & 1659.765 & 4439.965 & 4.673 & 12.7 & 1.8 & NO & & NO & bb \\
\hline 7 & \(7200227 \mathrm{P} 1-9\) & Standard & 12.500 & 4.96 & 1446.929 & 4329.113 & 4.178 & 11.4 & -9.0 & NO & & NO & bb \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 12.500 & 4.96 & 1567.856 & 4349.698 & 4.506 & 12.3 & -1.9 & NO & & NO & bo \\
\hline 9 & 9 200227P1-11 & Standard & 12.500 & 4.96 & 1491.189 & 4183.187 & 4.456 & 12.1 & -3.0 & NO & & NO & bo \\
\hline 10 & 10 200227P1-12 & Standard & 12.500 & 4.96 & 1375.282 & 3806.387 & 4.516 & 12.3 & -1.7 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: d3-N-MeFOSAA-EIS}

Response Factor: 482.56
RRF SD: 0, Relative SD:
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & COD Flag & \(x=\) excluded \\
\hline 1 & \(1200227 \mathrm{P} 1-3\) & Standard & 12.500 & 5.14 & 5263.099 & & 5263.099 & 10.9 & -12.7 & NO & & NO & \(b b x\) \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 5.14 & 5443.758 & & 5443.758 & 11.3 & -9.8 & NO & & NO & bbX \\
\hline 3 & 3 200227P1-5 & Standard & 12.500 & 5.14 & 5290.940 & & 5290.940 & 11.0 & -12.3 & NO & & NO & \(b b X\) \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 5.14 & 5347.418 & & 5347.418 & 11.1 & -11.3 & NO & & NO & MMX \\
\hline 5 & 5 200227P1-7 & Standard & 12.500 & 5.14 & 5811.585 & & 5811.585 & 12.0 & -3.7 & NO & & NO & bbX \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 12.500 & 5.14 & 6032.000 & & 6032.000 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 12.500 & 5.14 & 5616.224 & & 5616.224 & 11.6 & -6.9 & NO & & NO & bbx \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 12.500 & 5.14 & 5959.918 & & 5959.918 & 12.4 & -1.2 & NO & & NO & \(b \mathrm{bx}\) \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 5.14 & 5912.287 & & 5912.287 & 12.3 & -2.0 & NO & & NO & bbX \\
\hline 10 & 10 200227P1-12 & Standard & 12.500 & 5.14 & 5887.597 & & 5887.597 & 12.2 & -2.4 & NO & & NO & MMX \\
\hline
\end{tabular}

\section*{Compound name: d3-N-MeFOSAA-RSD}

Response Factor: 0.226962
RRF SD: 0.0247697, Relative SD: 10.9136
Response type: Internal Std (Rei 106 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Sta. Conc & RT & Area & is Area & Response & Conc. & \%Dev & Conc. Flag & COD & COD Flag & \(x=\) excluded \\
\hline 1 & \(1200227 \mathrm{P} 1-3\) & Standard & 12.500 & 5.14 & 5263.099 & 24404.371 & 2.696 & 11.9 & -5.0 & NO & & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 5.14 & 5443.758 & 25318.955 & 2.688 & 11.8 & -5.3 & NO & & NO & bb \\
\hline 3 & 3 200227P1-5 & Standard & 12.500 & 5.14 & 5290.940 & 25984.789 & 2.545 & 11.2 & -10.3 & NO & & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 5.14 & 5347.418 & 26183.898 & 2.553 & 11.2 & -10.0 & NO & & NO & MM \\
\hline 5 & \(5200227 \mathrm{P} 1-7\) & Standard & 12.500 & 5.14 & 5811.585 & 23987.494 & 3.028 & 13.3 & 6.7 & NO & & NO & bb \\
\hline 6 & 6 200227P1-8 & Standard & 12.500 & 5.14 & 6032.000 & 26085.492 & 2.890 & 12.7 & 1.9 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 12.500 & 5.14 & 5616.224 & 26144.961 & 2.685 & 11.8 & -5.4 & NO & & NO & bb \\
\hline 8 & 8 200227P1-10 & Standard & 12.500 & 5.14 & 5959.918 & 25819.922 & 2.885 & 12.7 & 1.7 & NO & & NO & bb \\
\hline 9 & 9 200227P1-11 & Standard & 12.500 & 5.14 & 5912.287 & 26435.783 & 2.796 & 12.3 & -1.5 & NO & & NO & bb \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 12.500 & 5.14 & 5888.414 & 20424.268 & 3.604 & 15.9 & 27.0 & NO & & NO & MM \\
\hline
\end{tabular}

\section*{Compound name: 13C2-PFUdA-EIS}

Response Factor: 2194.47
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 12.500 & 5.31 & 25200.305 & & 25200.305 & 11.5 & -8.1 & NO & & NO & \(b b x\) \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 5.31 & 25355.393 & & 25355.393 & 11.6 & -7.6 & NO & & NO & \(b b X\) \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 12.500 & 5.32 & 25529.578 & & 25529.578 & 11.6 & -6.9 & NO & & NO & \(b b X\) \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 5.32 & 27138.848 & & 27138.848 & 12.4 & -1.1 & NO & & NO & \(b b X\) \\
\hline 5 & 5 200227P1-7 & Standard & 12.500 & 5.31 & 26397.266 & & 26397.266 & 12.0 & -3.8 & NO & & NO & \(b b X\) \\
\hline 6 & 6200227 P 1 -8 & Standard & 12.500 & 5.32 & 27430.928 & & 27430.928 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 12.500 & 5.32 & 26523.031 & & 26523.031 & 12.1 & -3.3 & NO & & NO & \(b b X\) \\
\hline 8 & 8 200227P1-10 & Standard & 12.500 & 5.32 & 27009.330 & & 27009.330 & 12.3 & -1.5 & NO & & NO & \(b b X\) \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 5.31 & 29161.537 & & 29161.537 & 13.3 & 6.3 & NO & & NO & \(b b X\) \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 12.500 & 5.32 & 23610.824 & & 23610.824 & 10.8 & -13.9 & NO & & NO & bbX \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Dataset: & D:IPFAS5.PROIRESULTSL200227P11200227P1-CRV.qld \\
Last Altered: & Friday, February 28, 2020 09:57:55 Pacific Standard Time \\
Printed: & Friday, February 28, 2020 09:59:49 Pacific Standard Time \\
\hline
\end{tabular}

\section*{Compound name: 13C2-PFUdA-RSD}

Response Factor: 1.05247
RRF SD: 0.0529452 , Relative SD: 5.03057
Response type: Internal Std (Ref 106 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & \(1200227 \mathrm{P} 1-3\) & Standard & 12.500 & 5.31 & 25200.305 & 24404.371 & 12.908 & 12.3 & -1.9 & NO & & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 5.31 & 25355.393 & 25318.955 & 12.518 & 11.9 & -4.8 & NO & & NO & bb \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 12.500 & 5.32 & 25529.578 & 25984.789 & 12.281 & 11.7 & -6.6 & NO & & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 5.32 & 27138.848 & 26183.898 & 12.956 & 12.3 & -1.5 & NO & & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 12.500 & 5.31 & 26397.266 & 23987.494 & 13.756 & 13.1 & 4.6 & NO & & NO & bb \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 12.500 & 5.32 & 27430.928 & 26085.492 & 13.145 & 12.5 & -0.1 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 12.500 & 5.32 & 26523.031 & 26144.961 & 12.681 & 12.0 & -3.6 & NO & & NO & bb \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 12.500 & 5.32 & 27009.330 & 25819.922 & 13.076 & 12.4 & -0.6 & NO & & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 5.31 & 29161.537 & 26435.783 & 13.789 & 13.1 & 4.8 & NO & & NO & bb \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 12.500 & 5.32 & 23610.824 & 20424.268 & 14.450 & 13.7 & 9.8 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: d5-N-EtFOSAA-EIS}

Response Factor: 553.305
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=e x c l u d e d ~\) \\
\hline 1 & \(1200227 \mathrm{P} 1-3\) & Standard & 12.500 & 5.30 & 5304.309 & & 5304.309 & 9.6 & -23.3 & NO & & NO & bbX \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 5.29 & 5987.810 & & 5987.810 & 10.8 & -13.4 & NO & & NO & bbX \\
\hline 3 & 3 200227P1-5 & Standard & 12.500 & 5.30 & 5982.130 & & 5982.130 & 10.8 & -13.5 & NO & & NO & \(b b X\) \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 5.30 & 6729.643 & & 6729.643 & 12.2 & -2.7 & NO & & NO & \(b b x\) \\
\hline 5 & 5 200227P1-7 & Standard & 12.500 & 5.29 & 5798.325 & & 5798.325 & 10.5 & -16.2 & NO & & NO & bbX \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 12.500 & 5.30 & 6916.312 & & 6916.312 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 12.500 & 5.30 & 6574.667 & & 6574.667 & 11.9 & -4.9 & NO & & NO & bbX \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 12.500 & 5.30 & 6377.508 & & 6377.508 & 11.5 & -7.8 & NO & & NO & \(b b X\) \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 5.29 & 6028.284 & & 6028.284 & 10.9 & -12.8 & NO & & NO & \(b b X\) \\
\hline 10 & 10 200227P1-12 & Standard & 12.500 & 5.29 & 4967.543 & & 4967.543 & 9.0 & -28.2 & NO & & NO & MMX \\
\hline
\end{tabular}

Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Friday, February 28, 2020 09:59:49 Pacific Standard Time

\section*{Compound name: d5-N-EtFOSAA-RSD}

Response Factor: 0.241773
RRF SD: 0.0143316 , Relative SD: 5.92771
Response type: Internal Std (Ref 106 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Sta. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoDFlag & \(x=\) excluded \\
\hline 1 & \(1200227 \mathrm{P} 1-3\) & Standard & 12.500 & 5.30 & 5304.309 & 24404.371 & 2.717 & 11.2 & -10.1 & NO & & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 5.29 & 5987.810 & 25318.955 & 2.956 & 12.2 & -2.2 & NO & & NO & bb \\
\hline 3 & \(3200227 \mathrm{P}_{1-5}\) & Standard & 12.500 & 5.30 & 5982.130 & 25984.789 & 2.878 & 11.9 & -4.8 & NO & & NO & bb \\
\hline 4 & 4200227 P1-6 & Standard & 12.500 & 5.30 & 6729.643 & 26183.898 & 3.213 & 13.3 & 6.3 & NO & & NO & bb \\
\hline 5 & \(5200227 \mathrm{P} 1-7\) & Standard & 12.500 & 5.29 & 5798.325 & 23987.494 & 3.022 & 12.5 & -0.0 & NO & & NO & bb \\
\hline 6 & 6200227 P1-8 & Standard & 12.500 & 5.30 & 6916.312 & 26085.492 & 3.314 & 13.7 & 9.7 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 12.500 & 5.30 & 6574.667 & 26144.961 & 3.143 & 13.0 & 4.0 & NO & & NO & bb \\
\hline 8 & 8 200227P1-10 & Standard & 12.500 & 5.30 & 6377.508 & 25819.922 & 3.087 & 12.8 & 2.2 & NO & & NO & bb \\
\hline 9 & 9 200227P1-11 & Standard & 12.500 & 5.29 & 6028.284 & 26435.783 & 2.850 & 11.8 & -5.7 & NO & & NO & bb \\
\hline 10 & 10 200227P1-12 & Standard & 12.500 & 5.29 & 4968.983 & 20424.268 & 3.041 & 12.6 & 0.6 & NO & & NO & MM \\
\hline
\end{tabular}

\section*{Compound name: 13C2-PFDoA-EIS}

Response Factor: 1946.59
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Cone & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 12.500 & 5.59 & 22903.898 & & 22903.898 & 11.8 & -5.9 & NO & & NO & bbX \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 5.59 & 23804.039 & & 23804.039 & 12.2 & -2.2 & NO & & NO & \(b b x\) \\
\hline 3 & 3 200227P1-5 & Standard & 12.500 & 5.60 & 22481.869 & & 22481.869 & 11.5 & -7.6 & NO & & NO & MMX \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 5.60 & 22749.807 & & 22749.807 & 11.7 & -6.5 & NO & & NO & \(b b x\) \\
\hline 5 & 5 200227P1-7 & Standard & 12.500 & 5.59 & 22389.895 & & 22389.895 & 11.5 & -8.0 & NO & & NO & \(b b X\) \\
\hline 6 & 6 200227P1-8 & Standard & 12.500 & 5.60 & 24332.355 & & 24332.355 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7200227 P1-9 & Standard & 12.500 & 5.60 & 21432.641 & & 21432.641 & 11.0 & -11.9 & NO & & NO & bbX \\
\hline 8 & 8200227 Pr 10 & Standard & 12.500 & 5.60 & 21544.352 & & 21544.352 & 11.1 & -11.5 & NO & & NO & \(b b x\) \\
\hline 9 & 9 200227P1-11 & Standard & 12.500 & 5.59 & 27681.455 & & 27681.455 & 14.2 & 13.8 & NO & & NO & \(b b X\) \\
\hline 10 & 10200227 P1-12 & Standard & 12.500 & 5.60 & 21381.818 & & 21381.818 & 11.0 & -12.1 & NO & & NO & bbX \\
\hline
\end{tabular}

Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed:
\[
\begin{aligned}
& \text { Friday, February 28, } 2020 \text { 09:57:55 Pacific Standard Time } \\
& \text { Friday, February 28, } 2020 \text { 09:59:49 Pacific Standard Time }
\end{aligned}
\]

\section*{Compound name: 13C2-PFDoA-RSD}

Response Factor: 0.97108
RRF SD: 0.0801113 , Relative SD: 8.24971
Response type: Internal Std (Ref 105 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Sta. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conic. Flag & COD & CODFlag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 12.500 & 5.59 & 22903.898 & 23647.152 & 12.107 & 12.5 & -0.3 & NO & & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 5.59 & 23804.039 & 25046.877 & 11.880 & 12.2 & -2.1 & NO & & NO & bb \\
\hline 3 & 3 200227P1-5 & Standard & 12.500 & 5.60 & 22416.367 & 23820.924 & 11.763 & 12.1 & -3.1 & NO & & NO & bd \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 5.60 & 22749.807 & 24192.422 & 11.755 & 12.1 & -3.2 & NO & & NO & bb \\
\hline 5 & \(5200227 \mathrm{P} 1-7\) & Standard & 12.500 & 5.59 & 22389.895 & 24235.971 & 11.548 & 11.9 & -4.9 & NO & & NO & bb \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 12.500 & 5.60 & 24332.355 & 23466.820 & 12.961 & 13.3 & 6.8 & NO & & NO & bb \\
\hline 7 & \(7200227 \mathrm{P} 1-9\) & Standard & 12.500 & 5.60 & 21432.641 & 23827.920 & 11.243 & 11.6 & -7.4 & NO & & NO & bb \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 12.500 & 5.60 & 21544.352 & 23996.334 & 11.223 & 11.6 & -7.5 & NO & & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 5.59 & 27681.455 & 23729.617 & 14.582 & 15.0 & 20.1 & NO & & NO & bb \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 12.500 & 5.60 & 21381.818 & 21687.629 & 12.324 & 12.7 & 1.5 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C2-10:2 FTS-EIS}

Response Factor: 104.136
RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoDFlag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 12.500 & 5.58 & 1520.083 & & 1520.083 & 14.6 & 16.8 & NO & & NO & bbX \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 5.58 & 1161.896 & & 1161.896 & 11.2 & -10.7 & NO & & NO & MMX \\
\hline 3 & 3 200227P1-5 & Standard & 12.500 & 5.58 & 1141.970 & & 1141.970 & 11.0 & -12.3 & NO & & NO & bbX \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 5.58 & 1168.401 & & 1168.401 & 11.2 & -10.2 & NO & & NO & \(b b x\) \\
\hline 5 & 5 200227P1-7 & Standard & 12.500 & 5.58 & 1483.068 & & 1483.068 & 14.2 & 13.9 & NO & & NO & \(b b x\) \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 12.500 & 5.58 & 1301.703 & & 1301.703 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 12.500 & 5.58 & 1111.605 & & 1111.60 E & 10.7 & -14.6 & NO & & NO & MMX \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 12.500 & 5.58 & 1146.510 & & 1146.510 & 11.0 & -11.9 & NO & & NO & MMX \\
\hline 9 & 9200227 P1-11 & Standard & 12.500 & 5.58 & 1234.839 & & 1234.839 & 11.9 & -5.1 & NO & & NO & MMX \\
\hline 10 & 10 200227P1-12 & Standard & 12.500 & 5.58 & 820.124 & & 820.124 & 7.9 & -37.0 & YES & & NO & MMX \\
\hline
\end{tabular}

Last Altered: Printed:Friday, February 28, 2020 09:57:55 Pacific Standard Time

\section*{Compound name: 13C2-10:2 FTS-RSD}

Response Factor: 0.285833
RRF SD: 0.0404726, Relative SD: 14.1596
Response type: Internal Std (Ref 104), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & 15 Area & Response & Conc. & \%Dev & Cone. Flag & COD & CoDFlag & \(x=\) excluded \\
\hline 1 & 1200227 P 1-3 & Standard & 12.500 & 5.58 & 1520.083 & 4211.613 & 4.512 & 15.8 & 26.3 & NO & & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 5.58 & 1158.542 & 4384.649 & 3.303 & 11.6 & -7.6 & No & & NO & bb \\
\hline 3 & 3 200227P1-5 & Standard & 12.500 & 5.58 & 1141.970 & 4334.910 & 3.293 & 11.5 & -7.8 & NO & & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 5.58 & 1168.401 & 3849.120 & 3.794 & 13.3 & 6.2 & No & & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 12.500 & 5.58 & 1483.068 & 4489.755 & 4.129 & 14.4 & 15.6 & NO & & NO & bb \\
\hline 6 & 6 200227P1-8 & Standard & 12.500 & 5.58 & 1301.703 & 4439.965 & 3.665 & 12.8 & 2.6 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 12.500 & 5.58 & 1128.992 & 4329.113 & 3.260 & 11.4 & -8.8 & No & & NO & bb \\
\hline 8 & 8 200227P1-10 & Standard & 12.500 & 5.58 & 1171.373 & 4349.698 & 3.366 & 11.8 & -5.8 & NO & & NO & bb \\
\hline 9 & 9200227 P1-11 & Standard & 12.500 & 5.58 & 1237.953 & 4183.187 & 3.699 & 12.9 & 3.5 & NO & & NO & MM \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 12.500 & 5.58 & 824.687 & 3806.387 & 2.708 & 9.5 & -24.2 & NO & & NO & MM \\
\hline
\end{tabular}

\section*{Compound name: d3-N-MeFOSA-EIS}

Response Factor: 147.24
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conic. & \%Dev & Conc. Flag & COL & CoDFlag & \(x=\) excluded \\
\hline 1 & \(1200227 \mathrm{P} 1-3\) & Standard & 149.200 & 5.69 & 21808.662 & & 21808.662 & 148.1 & -0.7 & NO & & NO & bbX \\
\hline 2 & 2 200227P1-4 & Standard & 149.200 & 5.69 & 21244.533 & & 21244.533 & 144.3 & -3.3 & NO & & NO & \(b b x\) \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 149.200 & 5.70 & 21879.736 & & 21879.736 & 148.6 & -0.4 & NO & & NO & bbX \\
\hline 4 & 4 200227P1-6 & Standard & 149.200 & 5.70 & 22544.168 & & 22544.168 & 153.1 & 2.6 & NO & & NO & \(b b x\) \\
\hline 5 & 5 200227P1-7 & Standard & 149.200 & 5.69 & 20572.188 & & 20572.188 & 139.7 & -6.4 & NO & & NO & \(b b X\) \\
\hline 6 & 6200227 P 1.8 & Standard & 149.200 & 5.70 & 21968.227 & & 21968.227 & 149.2 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 149.200 & 5.70 & 22298.123 & & 22298.123 & 151.4 & 1.5 & NO & & NO & bbX \\
\hline 8 & 8 200227P1-10 & Standard & 149.200 & 5.69 & 23388.596 & & 23388.596 & 158.8 & 6.5 & NO & & NO & \(b b X\) \\
\hline 9 & 9 200227P1-11 & Standard & 149.200 & 5.68 & 23949.617 & & 23949.617 & 162.7 & 9.0 & NO & & NO & \(b b X\) \\
\hline 10 & 10 200227P1-12 & Standard & 149.200 & 5.70 & 22909.338 & & 22909.338 & 155.6 & 4.3 & NO & & NO & \(b b x\) \\
\hline
\end{tabular}

\section*{Vista Analytical Laboratory}

Dataset:
D:IPFAS5.PROTRESULTSL200227P1L200227P1-CRV.qld
Last Altered:
Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 09:59:49 Pacific Standard Time

\section*{Compound name: d3-N-MeFOSA-RSD}

Response Factor: 0.0747473
RRF SD: 0.00709775, Relative SD: 9.49565
Response type: Internal Std (Ref 106), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoDFlag & \(x=\) excluded \\
\hline 1 & 1200227 P1-3 & Standard & 149.200 & 5.69 & 21808.662 & 24404.371 & 11.170 & 149.4 & 0.2 & NO & & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 149.200 & 5.69 & 21244.533 & 25318.955 & 10.488 & 140.3 & -6.0 & NO & & NO & bb \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 149.200 & 5.70 & 21879.736 & 25984.789 & 10.525 & 140.8 & -5.6 & NO & & NO & bb \\
\hline 4 & \(4200227 \mathrm{P} 1-6\) & Standard & 149.200 & 5.70 & 22544.168 & 26183.898 & 10.762 & 144.0 & -3.5 & NO & & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 149.200 & 5.69 & 20572.188 & 23987.494 & 10.720 & 143.4 & -3.9 & NO & & NO & bb \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 149.200 & 5.70 & 21968.227 & 26085.492 & 10.527 & 140.8 & -5.6 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 149.200 & 5.70 & 22298.123 & 26144.961 & 10.661 & 142.6 & -4.4 & NO & & NO & bb \\
\hline 8 & 8 200227P1-10 & Standard & 149.200 & 5.69 & 23388.596 & 25819.922 & 11.323 & 151.5 & 1.5 & NO & & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 149.200 & 5.68 & 23949.617 & 26435.783 & 11.324 & 151.5 & 1.5 & NO & & NO & bb \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 149.200 & 5.70 & 22909.338 & 20424.268 & 14.021 & 187.6 & 25.7 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C2-PFTeDA-EIS}

Response Factor: 2085.58
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc, Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 12.500 & 6.05 & 27977.867 & & 27977.867 & 13.4 & 7.3 & NO & & NO & bbX \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 6.05 & 25789.664 & & 25789.664 & 12.4 & -1.1 & NO & & NO & \(b b x\) \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 12.500 & 6.05 & 27034.334 & & 27034.334 & 13.0 & 3.7 & NO & & NO & \(b b x\) \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 6.05 & 23436.889 & & 23436.889 & 11.2 & -10.1 & NO & & NO & \(b b X\) \\
\hline 5 & 5 200227P1-7 & Standard & 12.500 & 6.05 & 25405.254 & & 25405.254 & 12.2 & -2.5 & NO & & NO & \(b \mathrm{bx}\) \\
\hline 6 & 6200227 P1-8 & Standard & 12.500 & 6.06 & 26069.697 & & 26069.697 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 12.500 & 6.06 & 26311.123 & & 26311.123 & 12.6 & 0.9 & NO & & NO & \(b b x\) \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 12.500 & 6.06 & 26123.756 & & 26123.756 & 12.5 & 0.2 & NO & & NO & \(b b X\) \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 6.05 & 29233.990 & & 29233.990 & 14.0 & 12.1 & NO & & NO & \(b \mathrm{bX}\) \\
\hline 10 & \(10200227 \mathrm{P}^{1-12}\) & Standard & 12.500 & 6.06 & 24580.410 & & 24580.410 & 11.8 & -5.7 & NO & & NO & bbX \\
\hline
\end{tabular}

Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 09:59:49 Pacific Standard Time

\section*{Compound name: 13C2-PFTeDA-RSD}

Response Factor: 1.04865
RRF SD: 0.0863105, Relative SD: 8.23066
Response type: Internal Std (Ref 106 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 12.500 & 6.05 & 27977.867 & 24404.371 & 14.330 & 13.7 & 9.3 & NO & & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 6.05 & 25789.664 & 25318.955 & 12.732 & 12.1 & -2.9 & NO & & NO & bb \\
\hline 3 & 3 200227P1-5 & Standard & 12.500 & 6.05 & 27034.334 & 25984.789 & 13.005 & 12.4 & -0.8 & NO & & NO & bb \\
\hline 4 & \(4200227 \mathrm{P} 1-6\) & Standard & 12.500 & 6.05 & 23436.889 & 26183.898 & 11.189 & 10.7 & -14.6 & NO & & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 12.500 & 6.05 & 25405.254 & 23987.494 & 13.239 & 12.6 & 1.0 & NO & & NO & bb \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 12.500 & 6.06 & 26069.697 & 26085.492 & 12.492 & 11.9 & -4.7 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 12.500 & 6.06 & 26311.123 & 26144.961 & 12.579 & 12.0 & -4.0 & NO & & NO & bb \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 12.500 & 6.06 & 26123.756 & 25819.922 & 12.647 & 12.1 & -3.5 & NO & & NO & \(b b\) \\
\hline 9 & 9200227 P1-11 & Standard & 12.500 & 6.05 & 29233.990 & 26435.783 & 13.823 & 13.2 & 5.5 & NO & & NO & bb \\
\hline 10 & 10 200227P1-12 & Standard & 12.500 & 6.06 & 24580.410 & 20424.268 & 15.044 & 14.3 & 14.8 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: d5-N-ETFOSA-EIS}

Response Factor: 215.941
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=e x c l u d e d\) \\
\hline 1 & \(1200227 \mathrm{P} 1-3\) & Standard & 149.200 & 6.11 & 30400.055 & & 30400.055 & 140.8 & -5.6 & NO & & NO & \(b b X\) \\
\hline 2 & 2 200227P1-4 & Standard & 149.200 & 6.11 & 31743.156 & & 31743.156 & 147.0 & -1.5 & NO & & NO & \(b b x\) \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 149.200 & 6.12 & 31157.057 & & 31157.057 & 144.3 & -3.3 & NO & & NO & \(b b X\) \\
\hline 4 & 4 200227P1-6 & Standard & 149.200 & 6.12 & 32484.291 & & 32484.291 & 150.4 & 0.8 & NO & & NO & \(b b x\) \\
\hline 5 & 5 200227P1-7 & Standard & 149.200 & 6.11 & 31780.652 & & 31780.652 & 147.2 & -1.4 & NO & & NO & \(b b X\) \\
\hline 6 & 6200227 P1-8 & Standard & 149.200 & 6.12 & 32218.385 & & 32218.385 & 149.2 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 149.200 & 6.12 & 32249.908 & & 32249.908 & 149.3 & 0.1 & NO & & NO & \(b b X\) \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 149.200 & 6.11 & 30433.887 & & 30433.887 & 140.9 & -5.5 & NO & & NO & \(b b x\) \\
\hline 9 & 9 200227P1-11 & Standard & 149.200 & 6.11 & 30424.328 & & 30424.328 & 140.9 & -5.6 & NO & & NO & bbX \\
\hline 10 & 10 200227P1-12 & Standard & 149.200 & 6.12 & 27603.184 & & 27603.184 & 127.8 & -14.3 & NO & & NO & \(b b X\) \\
\hline
\end{tabular}

Last Altered:
Printed:
Friday, February 28, 2020 09:57:55 Pacific Standard Time Friday, February 28, 2020 09:59:49 Pacific Standard Time

\section*{Compound name: d5-N-ETFOSA-RSD}

Response Factor: 0.104002
RRF SD: 0.00509475 , Relative SD: 4.89872
Response type: Internal Std (Ref 106), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & 15 Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 149.200 & 6.11 & 30400.055 & 24404.371 & 15.571 & 149.7 & 0.3 & NO & & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 149.200 & 6.11 & 31743.156 & 25318.955 & 15.672 & 150.7 & 1.0 & NO & & NO & bb \\
\hline 3 & 3 200227P1-5 & Standard & 149.200 & 6.12 & 31157.057 & 25984.789 & 14.988 & 144.1 & -3.4 & NO & & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 149.200 & 6.12 & 32484.291 & 26183.898 & 15.508 & 149.1 & -0.1 & NO & & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 149.200 & 6.11 & 31780.652 & 23987.494 & 16.561 & 159.2 & 6.7 & NO & & NO & bo \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 149.200 & 6.12 & 32218.385 & 26085.492 & 15.439 & 148.4 & -0.5 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 149.200 & 6.12 & 32249.908 & 26144.961 & 15.419 & 148.3 & -0.6 & NO & & NO & bb \\
\hline 8 & 8 200227P1-10 & Standard & 149.200 & 6.11 & 30433.887 & 25819.922 & 14.734 & 141.7 & -5.0 & NO & & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 149.200 & 6.11 & 30424.328 & 26435.783 & 14.386 & 138.3 & -7.3 & NO & & NO & bb \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 149.200 & 6.12 & 27603.184 & 20424.268 & 16.894 & 162.4 & 8.9 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C2-PFHxDA-EIS \\ Response Factor: 3074.85}

RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area. & Response & Conc. & \%Dev & Conc. Flag & COD & CODFlag & \(x=\) excluded \\
\hline 1 & \(1200227 \mathrm{P} 1-3\) & Standard & 12.500 & 6.39 & 36901.500 & & 36901.500 & 12.0 & -4.0 & NO & & NO & \(b b x\) \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 6.39 & 36042.426 & & 36042.426 & 11.7 & -6.2 & NO & & NO & \(b b X\) \\
\hline 3 & 3 200227P1-5 & Standard & 12.500 & 6.39 & 36864.965 & & 36864.965 & 12.0 & -4.1 & NO & & NO & \(b b X\) \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 6.39 & 36720.137 & & 36720.137 & 11.9 & -4.5 & NO & & NO & \(b b x\) \\
\hline 5 & \(5200227 \mathrm{P} 1-7\) & Standard & 12.500 & 6.39 & 37080.008 & & 37080.008 & 12.1 & -3.5 & NO & & NO & bbx \\
\hline 6 & 6 200227P1-8 & Standard & 12.500 & 6.39 & 38435.602 & & 38435.602 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 12.500 & 6.39 & 38014.348 & & 38014.348 & 12.4 & -1.1 & NO & & NO & bbX \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 12.500 & 6.39 & 35969.020 & & 35969.020 & 11.7 & -6.4 & NO & & NO & box \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 6.39 & 36714.754 & & 36714.754 & 11.9 & -4.5 & NO & & NO & \(b b X\) \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 12.500 & 6.39 & 33572.141 & & 33572.141 & 10.9 & -12.7 & NO & & NO & bbX \\
\hline
\end{tabular}

Last Altered:
Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed:

\section*{Compound name: 13C2-PFHxDA-RSD}

Response Factor: 1.46556
RRF SD: 0.0814047 , Relative SD: 5.5545
Response type: Internal Std ( Rei 106 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name: & Type & Std. Conc & RT & Area & is Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 12.500 & 6.39 & 36901.500 & 24404.371 & 18.901 & 12.9 & 3.2 & NO & & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 6.39 & 36042.426 & 25318.955 & 17.794 & 12.1 & -2.9 & NO & & NO & bb \\
\hline 3 & 3 200227P1-5 & Standard & 12.500 & 6.39 & 36864.965 & 25984.789 & 17.734 & 12.1 & -3.2 & NO & & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 6.39 & 36720.137 & 26183.898 & 17.530 & 12.0 & -4.3 & NO & & NO & bb \\
\hline 5 & \(5200227 \mathrm{P} 1-7\) & Standard & 12.500 & 6.39 & 37080.008 & 23987.494 & 19.323 & 13.2 & 5.5 & NO & & NO & bb \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 12.500 & 6.39 & 38435.602 & 26085.492 & 18.418 & 12.6 & 0.5 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 12.500 & 6.39 & 38014.348 & 26144.961 & 18.175 & 12.4 & -0.8 & NO & & NO & bb \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 12.500 & 6.39 & 35969.020 & 25819.922 & 17.413 & 11.9 & -4.9 & NO & & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 6.39 & 36714.754 & 26435.783 & 17.360 & 11.8 & -5.2 & NO & & NO & bb \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 12.500 & 6.39 & 33572.141 & 20424.268 & 20.547 & 14.0 & 12.2 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: d7-N-MeFOSE-EIS}

Response Factor: 166.617
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & Is Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 149.200 & 6.29 & 22784.545 & & 22784.545 & 136.7 & -8.3 & NO & & NO & bbX \\
\hline 2 & 2200227 P1-4 & Standard & 149.200 & 6.29 & 23573.861 & & 23573.861 & 141.5 & -5.2 & NO & & NO & \(b b X\) \\
\hline 3 & 3 200227P1-5 & Standard & 149.200 & 6.29 & 24814.814 & & 24814.814 & 148.9 & -0.2 & NO & & NO & \(b b X\) \\
\hline 4 & 4 200227P1-6 & Standard & 149.200 & 6.29 & 25282.391 & & 25282.391 & 151.7 & 1.7 & NO & & NO & \(b \mathrm{~b} X\) \\
\hline 5 & 5 200227P1-7 & Standard & 149.200 & 6.28 & 22479.533 & & 22479.533 & 134.9 & -9.6 & NO & & NO & \(b b X\) \\
\hline 6 & 6200227 P1-8 & Standard & 149.200 & 6.29 & 24859.201 & & 24859.201 & 149.2 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 149.200 & 6.29 & 25015.324 & & 25015.324 & 150.1 & 0.6 & NO & & NO & bbX \\
\hline 8 & 8200227 P 1 -10 & Standard & 149.200 & 6.28 & 26204.295 & & 26204.295 & 157.3 & 5.4 & NO & & NO & \(b b X\) \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 149.200 & 6.29 & 24044.918 & & 24044.918 & 144.3 & -3.3 & NO & & NO & \(b b X\) \\
\hline 10 & 10 200227P1-12 & Standard & 149.200 & 6.29 & 24280.707 & & 24280.707 & 145.7 & -2.3 & NO & & NO & bbX \\
\hline
\end{tabular}
Dataset: D:IPFAS5.PROIRESULTSL200227P1L200227P1-CRV.qld

Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 09:59:49 Pacific Standard Time

\section*{Compound name: d7-N-MeFOSE-RSD}

Response Factor: 0.0816473
RRF SD: 0.00672388 , Relative SD: 8.23527
Response type: Internal Std (Ref 106 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Sid. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & Coú Flag & \(x=e x c l u d e d\) \\
\hline 1 & \(1200227 \mathrm{P} 1-3\) & Standard & 149.200 & 6.29 & 22784.545 & 24404.371 & 11.670 & 142.9 & -4.2 & NO & & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 149.200 & 6.29 & 23573.861 & 25318.955 & 11.638 & 142.5 & -4.5 & NO & & NO & bb \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 149.200 & 6.29 & 24814.814 & 25984.789 & 11.937 & 146.2 & -2.0 & NO & & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 149.200 & 6.29 & 25282.391 & 26183.898 & 12.070 & 147.8 & -0.9 & NO & & NO & bb \\
\hline 5 & \(5200227 \mathrm{P} 1-7\) & Standard & 149.200 & 6.28 & 22479.533 & 23987.494 & 11.714 & 143.5 & -3.8 & NO & & NO & bb \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 149.200 & 6.29 & 24859.201 & 26085.492 & 11.912 & 145.9 & -2.2 & NO & & NO & bb \\
\hline 7 & \(7200227 \mathrm{P} 1-9\) & Standard & 149.200 & 6.29 & 25015.324 & 26144.961 & 11.960 & 146.5 & -1.8 & NO & & NO & bb \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 149.200 & 6.28 & 28204.295 & 25819.922 & 12.686 & 155.4 & 4.1 & NO & & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 149.200 & 6.29 & 24044.918 & 26435.783 & 11.369 & 139.3 & -6.7 & NO & & NO & bb \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 149.200 & 6.29 & 24280.707 & 20424.268 & 14.860 & 182.0 & 22.0 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: d9-N-EtFOSE-EIS}

Response Factor: 193.287
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Respanse & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1200227 P1-3 & Standard & 149.200 & 6.43 & 27819.070 & & 27819.070 & 143.9 & -3.5 & NO & & NO & bbX \\
\hline 2 & 2 200227P1-4 & Standard & 149.200 & 6.44 & 27953.850 & & 27953.850 & 144.6 & -3.1 & NO & & NO & \(b b X\) \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 149.200 & 6.44 & 27550.979 & & 27550.979 & 142.5 & -4.5 & NO & & NO & \(b b X\) \\
\hline 4 & 4 200227P1-6 & Standard & 149.200 & 6.44 & 27343.031 & & 27343.031 & 141.5 & -5.2 & NO & & NO & \(b b X\) \\
\hline 5 & \(5200227 \mathrm{P} 1-7\) & Standard & 149.200 & 6.43 & 26338.322 & & 26338.322 & 136.3 & -8.7 & NO & & NO & \(b b X\) \\
\hline 6 & 6200227 P1-8 & Standard & 149.200 & 6.44 & 28838.369 & & 28838.369 & 149.2 & 0.0 & NO & & NO & bb \\
\hline 7 & \(7200227 \mathrm{P} 1-9\) & Standard & 149.200 & 6.44 & 28820.082 & & 28820.082 & 149.1 & -0.1 & NO & & NO & \(b b X\) \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 149.200 & 6.43 & 27607.914 & & 27607.914 & 142.8 & -4.3 & NO & & NO & bbX \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 149.200 & 6.43 & 28880.707 & & 28880.707 & 149.4 & 0.1 & NO & & NO & \(b b X\) \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 149.200 & 6.43 & 28191.189 & & 28191.189 & 145.9 & -2.2 & NO & & NO & bbx \\
\hline
\end{tabular}

Dataset: D:\PFAS5.PRO\RESULTS\200227P1200227P1-GRV.gid
Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 09:59:49 Pacific Standard Time

\section*{Compound name: d9-N-EtFOSE-RSD}

Response Factor: 0.0938036
RRF SD: 0.00799873 , Relative SD: 8.52711
Response type: Internal Std (Ref 106 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & COD Flag & \(x=\) excludea \\
\hline 1 & 1 200227P1-3 & Standard & 149.200 & 6.43 & 27819.070 & 24404.371 & 14.249 & 151.9 & 1.8 & NO & & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 149.200 & 6.44 & 27953.850 & 25318.955 & 13.801 & 147.1 & -1.4 & NO & & NO & bb \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 149.200 & 6.44 & 27550.979 & 25984.789 & 13.253 & 141.3 & -5.3 & NO & & NO & bb \\
\hline 4 & \(4200227 \mathrm{P} 1-6\) & Standard & 149.200 & 6.44 & 27343.031 & 26183.898 & 13.053 & 139.2 & -6.7 & NO & & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 149.200 & 6.43 & 26338.322 & 23987.494 & 13.725 & 146.3 & -1.9 & NO & & NO & bb \\
\hline 6 & 6 200227P1-8 & Standard & 149.200 & 6.44 & 28838.369 & 26085.492 & 13.819 & 147.3 & -1.3 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 149.200 & 6.44 & 28820.082 & 26144.961 & 13.779 & 146.9 & -1.5 & NO & & NO & bb \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 149.200 & 6.43 & 27607.914 & 25819.922 & 13.366 & 142.5 & -4.5 & NO & & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 149.200 & 6.43 & 28880.707 & 26435.783 & 13.656 & 145.6 & -2.4 & NO & & NO & bb \\
\hline 10 & 10200227 P1-12 & Standard & 149.200 & 6.43 & 28191.189 & 20424.268 & 17.253 & 183.9 & 23.3 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C4-PFBA}

Response Factor: 1
RRF SD: \(3.70074 \mathrm{e}-017\), Relative SD: \(3.70074 \mathrm{e}-015\)
Response type: Internal Std (Ref 99 ), Area * ( IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Sta. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 12.500 & 1.32 & 9207.453 & 9207.453 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 1.32 & 9543.297 & 9543.297 & 12.500 & 12.5 & 0.0 & NO & & NO & MM \\
\hline 3 & 3 200227P1-5 & Standard & 12.500 & 1.33 & 9432.535 & 9432.535 & 12.500 & 12.5 & 0.0 & NO & & NO & MM \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 1.33 & 10042.703 & 10042.703 & 12.500 & 12.5 & 0.0 & NO & & NO & MM \\
\hline 5 & 5 200227P1-7 & Standard & 12.500 & 1.35 & 9248.677 & 9248.677 & 12.500 & 12.5 & 0.0 & NO & & NO & MM \\
\hline 6 & 6 200227P1-8 & Standard & 12.500 & 1.33 & 9750.017 & 9750.017 & 12.500 & 12.5 & 0.0 & NO & & NO & MM \\
\hline 7 & 7 200227P1-9 & Standard & 12.500 & 1.33 & 9928.814 & 9928.814 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline \(B\) & \(8200227 \mathrm{P} 1-10\) & Standard & 12.500 & 1.34 & 10378.795 & 10378.795 & 12.500 & 12.5 & 0.0 & NO & & NO & MM \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 1.37 & 10619.274 & 10619.274 & 12.500 & 12.5 & 0.0 & NO & & NO & MM \\
\hline 10 & 10 200227P1-12 & Standard & 12.500 & 1.33 & 10064.693 & 10064.693 & 12.500 & 12.5 & 0.0 & NO & & NO & MM \\
\hline
\end{tabular}

Vista Analytical Laboratory
Dataset:
D:IPFAS5.PROIRESULTSL200227P11200227P1-CRV.qld
Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 09:59:49 Pacific Standard Time

\section*{Compound name: 13C5-PFHxA}

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 100), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1200227 P1-3 & Standard & 12.500 & 3.05 & 23322.006 & 23322.006 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 3.05 & 23173.131 & 23173.131 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 12.500 & 3.05 & 21964.490 & 21964.490 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 3.05 & 24595.543 & 24595.543 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 12.500 & 3.04 & 22249.055 & 22249.055 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 12.500 & 3.05 & 24781.201 & 24781.201 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 12.500 & 3.05 & 23138.252 & 23138.252 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 12.500 & 3.06 & 23437.229 & 23437.229 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 3.04 & 24166.633 & 24166.633 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 10 & \(10200227 \mathrm{P} 1-12\) & Standard & 12.500 & 3.05 & 23366.463 & 23366.463 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 1802-PFHxS}

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: internal Std (Ref 101), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 12.500 & 3.80 & 1416.009 & 1416.009 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 3.79 & 1339.785 & 1339.785 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 3 & \(3200227 \mathrm{P} 1-5\) & Standard & 12.500 & 3.80 & 1572.158 & 1572.158 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 3.80 & 1464.692 & 1464.692 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 5 & \(5200227 \mathrm{P} 1-7\) & Standard & 12.500 & 3.80 & 1329.265 & 1329.265 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 6 & \(6200227 \mathrm{P} 1-8\) & Standard & 12.500 & 3.80 & 1549.201 & 1549.201 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 12.500 & 3.80 & 1511.461 & 1511.461 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 12.500 & 3.80 & 1248.387 & 1248.387 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 3.79 & 1364.603 & 1364.603 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 10 & 10 200227P1-12 & Standard & 12.500 & 3.80 & 1255.906 & 1255.906 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Vista Analytical Laboratory}

Dataset:
D:IPFAS5.PRO\RESULTSL200227P11200227P1-CRV.qld
Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed:
Friday, February 28, 2020 09:59:49 Pacific Standard Time

\section*{Compound name: 13C8-PFOA}

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 102 ), Area * ( IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Stal. Conc & RT & Area & is Ãrea & Response & Conc. & \%Dev & Conc. Flag & COD & CoDFlag & \(x=e x c l u d e d\) \\
\hline 1 & 1 200227P1-3 & Standard & 12.500 & 4.16 & 23255.871 & 23255.871 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 4.17 & 22781.117 & 22781.117 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 3 & 3 200227P1-5 & Standard & 12.500 & 4.17 & 25051.422 & 25051.422 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 4 & 4 200227P1-6 & Standard & 12.500 & 4.17 & 24702.975 & 24702.975 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 12.500 & 4.16 & 23600.613 & 23600.613 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 6 & 6200227 P1-8 & Slandard & 12.500 & 4.17 & 25495.762 & 25495.762 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7200227 P1-9 & Standard & 12.500 & 4.17 & 24286.318 & 24286.318 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 8 & 8 200227P1-10 & Standard & 12.500 & 4.17 & 24081.479 & 24081.479 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 9 & 9200227 P 1 -11 & Standard & 12.500 & 4.16 & 22625.801 & 22625.801 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 10 & 10 200227P1-12 & Standard & 12.500 & 4.17 & 20820.176 & 20820.176 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline
\end{tabular}

\section*{Compound name: 13C9-PFNA}

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 103), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & COD & CoD Flag & \(x=\) excludec \\
\hline 1 & 1 200227P1-3 & Standard & 12.500 & 4.61 & 21849.729 & 21849.729 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 4.61 & 23852.248 & 23852.248 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 3 & 3 200227P1-5 & Standard & 12.500 & 4.62 & 24464.400 & 24464.400 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 4 & \(4200227 \mathrm{P} 1-6\) & Standard & 12.500 & 4.61 & 22735.102 & 22735.102 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 12.500 & 4.61 & 23278.066 & 23278.066 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 6 & 6200227 P1-8 & Standard & 12.500 & 4.62 & 21606.609 & 21606.609 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 12.500 & 4.62 & 23057.561 & 23057.561 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 8 & \(8200227 \mathrm{P} 1-10\) & Standard & 12.500 & 4.62 & 22040.479 & 22040.479 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 9 & 9200227 P 1 -11 & Standard & 12.500 & 4.61 & 24165.168 & 24165.168 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 10 & 10 200227P1-12 & Standard & 12.500 & 4.62 & 21125.219 & 21125.219 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline
\end{tabular}

Dataset: D:\PFAS5.PRO\RESULTSL200227P1\200227P1-CRV.qld
Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 09:59:49 Pacific Standard Time

\section*{Compound name: 13C4-PFOS}

Response Factor: 1
RRF SD: \(3.70074 \mathrm{e}-017\), Relative SD: \(3.70074 \mathrm{e}-015\)
Response type: Internal Std (Ref 104 ), Area * (IS Conc. / IS Area)
Curve type: RF
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Type & Std. Conc & RT & Area & IS Area & Response & Conc. & \%Dev & Conc. Flag & CoD & CoD Flag & \(x=\) excluded \\
\hline 1 & 1 200227P1-3 & Standard & 12.500 & 4.70 & 4211.613 & 4211.613 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 2 & 2 200227P1-4 & Standard & 12.500 & 4.70 & 4384.649 & 4384.649 & 12.500 & 12.5 & 0.0 & NO & & NO & bd \\
\hline 3 & 3 200227P1-5 & Standard & 12.500 & 4.70 & 4334.910 & 4334.910 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 4 & 4200227 P1-6 & Standard & 12.500 & 4.70 & 3849.120 & 3849.120 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 5 & 5 200227P1-7 & Standard & 12.500 & 4.70 & 4489.755 & 4489.755 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 6. & \(6200227 \mathrm{P} 1-8\) & Standard & 12.500 & 4.70 & 4439.965 & 4439.965 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 7 & 7 200227P1-9 & Standard & 12.500 & 4.70 & 4329.113 & 4329.113 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 8 & 8 200227P1-10 & Standard & 12.500 & 4.70 & 4349.698 & 4349.698 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 9 & \(9200227 \mathrm{P} 1-11\) & Standard & 12.500 & 4.70 & 4183.187 & 4183.187 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline 10 & 10 200227P1-12 & Standard & 12.500 & 4.70 & 3806.387 & 3806.387 & 12.500 & 12.5 & 0.0 & NO & & NO & bb \\
\hline
\end{tabular}

Vista Analytical Laboratory

\section*{Dataset: D:IPFAS5.PROIRESULTSL200227P11200227P1-CRV.qld}

Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 10:05:41 Pacific Standard Time

Method: D:IPFAS5.PRO\MethDBWNEW_PFAS_80C_022720.mdb 28 Feb 2020 08:07:56 Calibration: D:IPFAS5.PRO\CurveDB\C18_VAL-PFAS_Q5_02-27-20.cdb 28 Feb 2020 09:57:55

Name: 200227P1-3, Date: 27-Feb-2020, Time: 15:42:07, ID: ST200227P1-1 PFC CS-2 20B1102, Description: PFC CS-2 2081102
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \# Name & IS\# & CoD & CoD Flag & \%RSD \\
\hline 1 & 1 PFBA & 47 & 0.9981 & NO & \\
\hline 2 & 2 PFPrS & 51 & 0.9989 & NO & \\
\hline 3 & 3 3:3 FTCA & 49 & 0.9998 & NO & \\
\hline 4 & 4 PFPeA & 49 & 0.9999 & NO & \\
\hline 5 & 5 PFBS & 51 & 0.9984 & NO & \\
\hline 6 & 6 4:2 FTS & 55 & 0.9994 & NO & \\
\hline 7 & 7 PFHxA & 57 & 0.9980 & NO & \\
\hline 8 & 8 PFPeS & 51 & 0.9991 & NO & \\
\hline 9 & 9 HFPO-DA & 53 & 0.9991 & NO & \\
\hline 10 & 10 5:3 FTCA & 59 & 0.9999 & NO & \\
\hline 11 & 11 PFHPA & 59 & 0.9991 & NO & \\
\hline 12 & 12 ADONA & 59 & 0.9982 & NO & \\
\hline 13 & 13 L-PFHXS & 61 & 0.9985 & NO & \\
\hline 14 & 15 6:2 FTS & 63 & 0.9987 & NO & \\
\hline 15 & 16 L-PFOA & 69 & 0.9998 & NO & \\
\hline 16 & 18 PFecHS & 69 & 0.9999 & NO & \\
\hline 17 & 19 PFHpS & 71 & 0.9987 & NO & \\
\hline 18 & 20 7:3 FTCA & 65 & 0.9984 & NO & \\
\hline 19 & 21 PFNA & 65 & 0.9974 & NO & \\
\hline 20 & 22 PFOSA & 67 & 0.9997 & NO & \\
\hline 21 & 23 L-PFOS & 71 & 0.9975 & NO & \\
\hline 22 & 259 Cl -PF30NS & 71 & 0.9988 & NO & \\
\hline 23 & 26 PFDA & 73 & 0.9995 & NO & \\
\hline 24 & 27 8:2 FTS & 75 & 0.9993 & NO & \\
\hline 25 & 28 PFNS & 71 & 0.9998 & NO & \\
\hline 26 & 29 L-MeFOSAA & 77 & 0.9992 & NO & \\
\hline
\end{tabular}

Dataset: D:IPFAS5.PROXRESULTSL200227P11200227P1-CRV.qid
Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 09:59:49 Pacific Standard Time

Method: D:IPFAS5.PROMMethDBINEW_PFAS_80C_022720.mdb 28 Feb 2020 08:07:56
Calibration: 28 Feb 2020 09:57:55
Name: 200227P1-3, Date: 27-Feb-2020, Time: 15:42:07, ID: ST200227P1-1 PFC CS-2 20B1102, Description: PFC CS-2 20B1102
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \# Name & IS\# & COD & COD Flag & \%RSD \\
\hline 1 & 31 L-EtFOSAA & 81 & 0.9991 & NO & \\
\hline 2 & 33 PFUdA & 79 & 0.9982 & No & \\
\hline 3 & 34 PFDS & 71 & 0.9982 & NO & \\
\hline 4 & 35 11Cl-PF30UdS & 83 & 0.9905 & NO & \\
\hline 5 & 36 10:2 FTS & 85 & 0.9998 & NO & \\
\hline 6 & 37 PFDOA & 83 & 0.9936 & NO & \\
\hline 7 & 38 N -MeFOSA & 87 & 0.9995 & no & \\
\hline 8 & 39 PFTrDA & 83 & 0.9912 & NO & \\
\hline 9 & 40 PFDos & 89 & 0.9929 & NO & \\
\hline 10 & 41 PFTeDA & 89 & 0.9983 & NO & \\
\hline 11 & 42 N -EtFOSA & 91 & 0.9990 & NO & \\
\hline 12 & 43 PFHxDA & 93 & 0.9998 & NO & \\
\hline 13 & 44 PFODA & 93 & 0.9991 & NO & \\
\hline 14 & 45 N -MeFOSE & 95 & 0.9998 & NO & \\
\hline 15 & 46 N -EtFOSE & 97 & 0.9977 & NO & \\
\hline 16 & 47 13C3-PFBA-EIS & & & NO & 0.000 \\
\hline 17 & 4813 C 3 -PFBA-RSD & 99 & & No & 2.839 \\
\hline 18 & 49 13C3-PFPeA-EIS & & & NO & 0.000 \\
\hline 19 & \(5013 \mathrm{C3}\)-PFPEA-RSD & 100 & & NO & 3.511 \\
\hline 20 & 51 13C3-PFBS-EIS & & & NO & 0.000 \\
\hline 21 & 52 13C3-PFBS-RSD & 101 & & NO & 7.449 \\
\hline 22 & 53 13C3-HFPO-DA-EIS & & & NO & 0.000 \\
\hline 23 & 54 13C3-HFPO-DA-RSD & 100 & & NO & 4.140 \\
\hline 24 & 55 13C2-4:2 FTS-EIS & & & NO & 0.000 \\
\hline 25 & \(5613 \mathrm{C} 2-4: 2 \mathrm{FTS}\)-RSD & 101 & & NO & 7.122 \\
\hline 26 & 5713 C 2 -PFHXA-EIS & & & NO & 0.000 \\
\hline 27 & 58 13C2-PFHXA-RSD & 100 & & NO & 4.976 \\
\hline 28 & 59 13C4-PFHPA-EIS & & & NO & 0.000 \\
\hline 29 & 60 13C4-PFHpA-RSD & 100 & & NO & 8.454 \\
\hline 30 & 61 13C3-PFHxS-EIS & & & NO & 0.000 \\
\hline 31 & 62 13C3-PFHxS-RSD & 101 & & NO & 7.233 \\
\hline 32 & 63 13C2-6:2 FTS-EIS & & & NO & 0.000 \\
\hline
\end{tabular}

Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 09:59:49 Pacific Standard Time

Name: 200227P1-3, Date: 27-Feb-2020, Time: 15:42:07, ID: ST200227P1-1 PFC CS-2 20B1102, Description: PFC CS-2 \(20 B 1102\)
\begin{tabular}{|c|c|c|c|c|}
\hline & \# Name & IS\# & COD COD Flag & \%RSD \\
\hline 33 & 64 13C2-6:2 FTS-RSD & 104 & NO & 5.806 \\
\hline 34 & 65 13C5-PFNA-EIS & & NO & 0.000 \\
\hline 35 & 66 13C5-PFNA-RSD & 103 & NO & 2.903 \\
\hline 36 & 67 13C8-PFOSA-EIS & & NO & 0.000 \\
\hline 37 & 68 13C8-PFOSA-RSD & 106 & NO & 4.316 \\
\hline 38 & 69 13C2-PFOA-EIS & & NO & 0.000 \\
\hline 39 & 70 13C2-PFOA-RSD & 102 & NO & 3.130 \\
\hline 40 & 71 13C8-PFOS-EIS & & No & 0.000 \\
\hline 41 & 72 13C8-PFOS-RSD & 104 & No & 4.291 \\
\hline 42 & 73 13C2-PFDA-EIS & & No & 0.000 \\
\hline 43 & 74 13C2-PFDA-RSD & 105 & NO & 5.633 \\
\hline 44 & 75 13C2-8:2 FTS-EIS & & NO & 0.000 \\
\hline 45 & 76 13C2-8:2 FTS-RSD & 104 & No & 5.594 \\
\hline 46 & 77 d3-N-MeFOSAA-EIS & & NO & 0.000 \\
\hline 47 & 78 d 3 -N-MeFOSAA-RSD & 106 & NO & 10.914 \\
\hline 48 & 79 13C2-PFUdA-EIS & & NO & 0.000 \\
\hline 49 & 80 13C2-PFUdA-RSD & 106 & NO & 5.031 \\
\hline 50 & 81 d5-N-EtFOSAA-EIS & & No & 0.000 \\
\hline 51 & \(82 \mathrm{d5}\)-N-EtFOSAA-RSD & 106 & NO & 5.928 \\
\hline 52 & 8313 C 2 -PFDoA-EIS & & NO & 0.000 \\
\hline 53 & 84 13C2-PFDOA-RSD & 105 & NO & 8.250 \\
\hline 54 & 85 13C2-10:2 FTS-EIS & & NO & 0.000 \\
\hline 55 & 86 13C2-10:2 FTS-RSD & 104 & NO & 14.160 \\
\hline 56 & 87 d3-N-MeFOSA-EIS & & NO & 0.000 \\
\hline 57 & 88 d3-N-MeFOSA-RSD & 106 & NO & 9.496 \\
\hline 58 & 89 13C2-PFTeDA-EIS & & NO & 0.000 \\
\hline 59 & 90 13C2-PFTeDA-RSD & 106 & NO & 8.231 \\
\hline 60 & 91 d5-N-ETFOSA-EIS & & NO & 0.000 \\
\hline 61 & 92 d5-N-ETFOSA-RSO & 106 & No & 4.899 \\
\hline 62 & 93 13C2-PFHxDA-EIS & & NO & 0.000 \\
\hline 63 & 94 13C2-PFHxDA-RSD & 106 & No & 5.555 \\
\hline 64 & 95 d7-N-MeFOSE-EIS & & No & 0.000 \\
\hline 65 & 96 d7-N-MeFOSE-RSD & 106 & NO & 8.235 \\
\hline 66 & 97 d9-N-EtFOSE-EIS & & NO & 0.000 \\
\hline 67 & 98 d9-N-EtFOSE-RSD & 106 & No & 8.527 \\
\hline 68 & 99 13C4-PFBA & 99 & NO & 0.000 \\
\hline
\end{tabular}

Dataset: D:IPFAS5.PROXRESULTSI200227P1【200227P1-CRV.gld
Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 09:59:49 Pacific Standard Time

Name: 200227P1-3, Date: 27-Feb-2020, Time: 15:42:07, ID: ST200227P1-1 PFC CS-2 20B1102, Description: PFC CS-2 20B1102
\begin{tabular}{|c|c|c|c|c|c|}
\hline & \# Name & IS\# & COD & CoDFlag & \%RSD \\
\hline 69 & 1... 13C5-PFHXA & 100 & & NO & 0.000 \\
\hline 70 & 1... 1802-PFHXS & 101 & & NO & 0.000 \\
\hline 71 & 1... 13C8-PFOA & 102 & & NO & 0.000 \\
\hline 72 & 1... 13C9-PFNA & 103 & & NO & 0.000 \\
\hline 73 & 1... 13C4-PFOS & 104 & & NO & 0.000 \\
\hline
\end{tabular}

Vista Analytical Laboratory
Dataset: Untitled
Last Altered: Friday, February 28, 2020 10:15:28 Pacific Standard Time
Printed: Friday, February 28, 2020 10:15:37 Pacific Standard Time

Method: D:IPFAS5.PRQ\MethDB\NEW_PFAS_80C_022720.mdb 28 Feb 2020 10:15:26
Calibration: D:IPFAS5.PRO\CurveDBIC18_VAL-PFAS_Q5_02-27-20.cdb 28 Feb 2020 09:57:55
Name: 200227P1-8, Date: 27-Feb-2020, Time: 16:36:51, ID: ST200227P1-6 PFC CS3 20B1107, Description: PFC CS3 \(20 B 1107\)
\begin{tabular}{|llrrrrr|}
\hline & Name & Pred.FTT & RT Pred. Ratic & lon Ratio & Ratio out? \\
1 & PFBA & 1.33 & 1.33 & & & \\
2 & PFPrS & 1.70 & 1.66 & 2.511 & 2.511 & NO \\
3 & 3:3FTCA & 2.12 & 2.12 & 4.030 & 4.030 & NO \\
4 & PFPEA & 2.26 & 2.26 & & & \\
5 & PFBS & 2.53 & 2.54 & 3.177 & 3.177 & NO \\
6 & \(4: 2\) FTS & 2.97 & 2.97 & 0.836 & 0.836 & NO \\
7 & PFHXA & 3.05 & 3.05 & 16.907 & 16.907 & NO \\
8 & PFPeS & 3.20 & 3.25 & 2.445 & 2.445 & NO \\
9 & HFPO-DA & 3.27 & 3.27 & 2.631 & 2.631 & NO \\
10 & \(5: 3\) FTCA & 3.60 & 3.60 & 1.824 & 1.824 & NO \\
11 & PFHpA & 3.66 & 3.66 & 29.702 & 29.702 & NO \\
12 & ADONA & 3.75 & 3.76 & 4.039 & 4.039 & NO \\
13 & L-PFHXS & 3.80 & 3.80 & 2.010 & 2.010 & NO \\
14 & 6:2FTS & 4.12 & 4.12 & 1.055 & 1.055 & NO \\
15 & L-PFOA & 4.17 & 4.17 & 3.150 & 3.150 & NO \\
16 & PFecHS & 4.18 & 4.18 & 0.488 & 0.488 & NO \\
17 & PFHPS & 4.31 & 4.28 & 2.098 & 2.098 & NO \\
18 & \(7: 3\) FTCA & 4.61 & 4.60 & 1.486 & 1.486 & NO \\
19 & PFNA & 4.62 & 4.62 & 9.553 & 9.553 & NO \\
20 & PFOSA & 4.67 & 4.67 & 24.113 & 24.113 & NO \\
21 & L-PFOS & 4.70 & 4.70 & 2.210 & 2.210 & NO \\
22 & \(9 C I-P F 30 N S\) & 4.91 & 4.92 & 15.070 & 15.070 & NO \\
23 & PFDA & 4.99 & 4.99 & 11.728 & 11.728 & NO \\
24 & \(8: 2\) FTS & 4.96 & 4.96 & 2.632 & 2.632 & NO \\
25 & PFNS & 5.04 & 5.06 & 2.147 & 2.147 & NO \\
26 & L-MeFOSAA & 5.14 & 5.14 & 2.173 & 2.173 & NO \\
\hline
\end{tabular}

Dataset: Untitled
Last Altered: Friday, February 28, 2020 10:15:28 Pacific Standard Time
Printed: Friday, February 28, 2020 10:16:06 Pacific Standard Time

Method: D:\PFAS5.PRO\MethDBINEW_PFAS_80C_022720.mdb 28 Feb 2020 10:15:26
Calibration: D:IPFAS5.PRO\CurveDBIC̄18_VAL-PFAS_Q5_02-27-20.cdb 28 Feb 2020 09:57:55
Name: 200227P1-8, Date: 27-Feb-2020, Time: 16:36:51, ID: ST200227P1-6 PFC CS3 20B1107, Description: PFC CS3 20 B1107
\begin{tabular}{|llrrrrr|}
\hline & Name & Pred.RT & RT & Pred. Ratio & Ion Ratio & Ratio out? \\
1 & L-EtFOSAA & 5.30 & 5.31 & 1.264 & 1.264 & NO \\
2 & PFUdA & 5.32 & 5.32 & 25.550 & 25.550 & NO \\
3 & PFDS & 5.33 & 5.36 & 1.839 & 1.839 & NO \\
4 & 11CI-PF30UdS & 5.53 & 5.53 & 20.446 & 20.446 & NO \\
5 & \(10: 2\) FTS & 5.58 & 5.58 & 0.920 & 0.920 & NO \\
6 & PFDOA & 5.60 & 5.60 & 11.920 & 11.920 & NO \\
7 & N-MeFOSA & 5.69 & 5.67 & 1.622 & 1.622 & NO \\
8 & PFTrDA & 5.85 & 5.84 & 56.460 & 56.460 & NO \\
9 & PFDoS & 5.86 & 5.87 & 3.391 & 3.391 & NO \\
10 & PFTeDA & 6.06 & 6.06 & 14.817 & 14.817 & NO \\
11 & N-EtFOSA & 6.10 & 6.10 & 1.809 & 1.809 & NO \\
12 & PFHXDA & 6.39 & 6.39 & 157.504 & 157.504 & NO \\
13 & PFODA & 6.60 & 6.62 & & & \\
14 & N-MeFOSE & 6.29 & 6.30 & & & \\
15 & N-EIFOSE & 6.44 & 6.44 & & & \\
\hline
\end{tabular}

Last Altered: Friday, February 28, 2020 10:17:12 Pacific Standard Time
Printed: Friday, February 28, 2020 10:17:41 Pacific Standard Time

Method: D:IPFAS5.PRO\MethDBINEW_PFAS_80C_022720.mdb 28 Feb 2020 08:07:56 Calibration: D:IPFAS5.PROICurveDBIC̄18_VAL-PFAS_Q5_02-27-20.cdb 28 Feb 2020 09:57:55

\section*{Compound name: PFBA}
\begin{tabular}{|c|c|c|c|c|}
\hline & \# Name & 1 D & Acq. Date & Acq. Time \\
\hline 1 & \(1200227 \mathrm{P} 1-1\) & IPA & 27-Feb-20 & 15:20:53 \\
\hline 2 & 2 200227P1-2 & IPA & 27-Feb-20 & 15:31:38 \\
\hline 3 & 3 200227P1-3 & ST200227P1-1 PFC CS-2 20B1102 & 27-Feb-20 & 15:42:07 \\
\hline 4 & 4 200227P1-4 & ST200227P1-2 PFC CS-1 20B1103 & 27-Feb-20 & 15:52:39 \\
\hline 5 & 5 200227P1-5 & ST200227P1-3 PFC CSO 20B1104 & 27-Feb-20 & 16:03:08 \\
\hline 6 & 6 200227P1-6 & ST200227P1-4 PFC CS1 20B1105 & 27-Feb-20 & 16:13:39 \\
\hline 7 & \(7200227 \mathrm{P} 1-7\) & ST200227P1-5 PFC CS2 20B1106 & 27-Feb-20 & 16:26:17 \\
\hline 8 & \(8200227 \mathrm{P} 1-8\) & ST200227P1-6 PFC CS3 20B1107 & 27-Feb-20 & 16:36:51 \\
\hline 9 & \(9200227 \mathrm{P} 1-9\) & ST200227P1-7 PFC CS4 20B1108 & 27-Feb-20 & 16:47:20 \\
\hline 10 & 10 200227P1-10 & ST200227P1-8 PFC CS5 20B1109 & 27-Feb-20 & 16:58:53 \\
\hline 11 & 11 200227P1-11 & ST200227P1-9 PFC CS6 \(20 \mathrm{B1110}\) & 27-Feb-20 & 17:16:12 \\
\hline 12 & 12 200227P1-12 & ST200227P1-10 PFC CS7 20B1111 & 27-Feb-20 & 17:26:40 \\
\hline 13 & 13 200227P1-13 & IB & 27-Feb-20 & 17:37:10 \\
\hline 14 & 14 200227P1-14 & ICV200227P1-1 PFC ICV 20 B 1112 & 27-Feb-20 & 17:47:42 \\
\hline 15 & 15 200227P1-15 & 1B & 27-Feb-20 & 17:58:10 \\
\hline
\end{tabular}

Dataset: D:IPFAS5.PROIRESULTSL200227P1L200227P1-CRV.qld
Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 10:13:21 Pacific Standard Time

Method: D:IPFAS5.PRO\MethDB\NEW_PFAS_80C_022720.mdb 28 Feb 2020 08:07:56 Calibration: D:IPFAS5.PRO\CurveDB\C18_VAL_PFAS_Q5_02-27-20.cdb 28 Feb 2020 09:57:55

Compound name: PFBA
Correlation coefficient: \(r=0.999073, r^{\wedge} 2=0.998147\)
Calibration curve: 1.15518 * \(x+0.0395457\)
Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


Compound name: PFPrS
Correlation coefficient: \(r=0.999450, r^{\wedge} 2=0.998900\)
Calibration curve: \(1.40081^{*} x+-0.0217571\)
Response type: Internal Std (Ref 51 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: \(1 / x\), Axis trans: None


Dataset:
D:IPFAS5.PRO\RESULTSI200227P1L200227P1-CRV.qid
Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 10:13:21 Pacific Standard Time

Compound name: 3:3 FTCA
Coefficient of Determination: \(R^{\wedge} 2=0.999814\)
Calibration curve: \(-2.09842 e-005{ }^{\star} x^{\wedge} 2+0.0932 * x+-0.000508555\)
Response type: Internal Std (Ref 49 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: \(1 / x\), Axis trans: None


Compound name: PFPeA
Coefficient of Determination: \(R^{\wedge} 2=0.999912\)
Calibration curve: \(-0.000127545^{*} x^{\wedge} 2+0.952781^{*} x+0.0266328\)
Response type: Internal Std (Ref 49 ), Area * (IS Conc. / IS Area
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None


Dataset: D:IPFAS5.PROIRESULTSL200227P11200227P1-CRV.qld
Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 10:13:21 Pacific Standard Time

Compound name: PFBS
Correlation coefficient: \(r=0.999221, r^{\wedge} 2=0.998443\)
Calibration curve: 2.36623 * \(x+0.185525\)
Response type: Internal Std ( Fef 51), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: \(1 / x\), Axis trans: None


Compound name: 4:2 FTS
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999364\)
Calibration curve: \(-0.000477753^{*} x^{\wedge} 2+1.31364\) * \(x+-0.105697\)
Response type: Internal Std (Ref 55 ), Area * IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Dataset: D:IPFAS5.PROLRESULTSL200227P1200227P1-CRV.qld}

Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 10:13:21 Pacific Standard Time

\section*{Compound name: PFHxA}

Correlation coefficient: \(\mathrm{r}=0.999013, \mathrm{r}^{\wedge} 2=0.998027\)
Calibration curve: 0.884049 * \(x+0.101067\)
Response type: Internal Std (Ref 57), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: \(1 / x\), Axis trans: None


Compound name: PFPeS
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999066\)
Calibration curve: \(-0.00110209^{*} x^{\wedge} 2+2.48401^{*} x+-0.0827776\)
Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None


Dataset: D:\PFAS5.PRO\RESULTSL200227P11200227P1-CRV.qld
Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 10:13:21 Pacific Standard Time

Compound name: HFPO-DA
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999113\)
Calibration curve: -0.000254582 * \(x^{\wedge} 2+1.04533\) * \(x+0.0245354\)
Response type: Internal Std (Ref 53 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: \(1 / x\), Axis trans: None


Compound name: 5:3 FTCA
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999928\)
Calibration curve: \(-9.69019 e-005{ }^{*} x^{\wedge} 2+0.2098622^{*} x+0.00231706\)
Response type: Internal Std (Ref 59 ), Area * (IS Conc./ IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 10:13:21 Pacific Standard Time

Compound name: PFHpA
Correlation coefficient: \(r=0.999568, r^{\wedge} 2=0.999137\)
Calibration curve: 1.15708 * \(x+0.0926754\)
Response type: Internal Std (Ref 59 ), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Compound name: ADONA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998227\)
Calibration curve: \(9.46897 e-005^{*} x^{\wedge} 2+2.62123^{*} x+0.106178\)
Response type: Internal Std (Ref 59 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None


Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 10:13:21 Pacific Standard Time

Compound name: L-PFHxS
Correlation coefficient: \(\mathrm{r}=0.999244, \mathrm{r}^{\wedge} 2=0.998489\)
Calibration curve: 1.03912 * \(x+0.141351\)
Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


Compound name: 6:2 FTS
Coefficient of Determination: \(R^{\wedge} 2=0.998706\)
Calibration curve: \(-0.000387912^{*} x^{\wedge} 2+1.57382\) * \(x+0.14932\)
Response type: Internal Std (Ref 63 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None


\section*{Quantify Calibration Report}
Dataset:
D:IPFAS5.PROIRESULTSL200227P11200227P1-CRV.qld
Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 10:13:21 Pacific Standard Time

Compound name: L-PFOA
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999818\)
Calibration curve: -0.000410213 * \(x^{\wedge} 2+1.20955\) * \(x+0.0799012\)
Response type: Internal Std (Ref 69 ), Area * IS Conc. / IS Area
Curve type: 2nd Order, Origin: Exclude, Weighting: \(1 / x\), Axis trans: None


Compound name: PFecHS
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999853\)
Calibration curve: \(-3.94401 e-005^{*} x^{\wedge} 2+0.172174^{*} x+-0.0073928\)
Response type: Internal Std (Ref 69 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None


\section*{Dataset: D:IPFAS5.PROIRESULTSI200227P11200227P1-CRV.qld}

Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 10:13:21 Pacific Standard Time

Compound name: PFHpS
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998747\)
Calibration curve: -9.14847e-005 * x^2 + 0.96802 * x +0.039181
Response type: Internal Std (Ref 71), Area * IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: \(1 / x\), Axis trans: None


Compound name: 7:3 FTCA
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998364\)
Calibration curve: \(5.76096 e-005{ }^{*} x^{\wedge} 2+0.154515\) * \(x+0.00622813\)
Response type: Internal Std (Ref 65), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Dataset: \\ D:IPFAS5.PROTRESULTSL200227P1L200227P1-CRV.qld}

Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 10:13:21 Pacific Standard Time

Compound name: PFNA
Correlation coefficient: \(r=0.998714, r^{\wedge} 2=0.997430\)
Calibration curve: \(1.07614^{*} x+0.0721371\)
Response type: Internal Std (Ref 65 ), Area * ( IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: \(1 / x\), Axis trans: None


Compound name: PFOSA
Coefficient of Determination: \(R^{\wedge} 2=0.999714\)
Calibration curve: \(-4.40009 \mathrm{e}-005^{*} \mathrm{x}^{\wedge} 2+0.782908\) * \(x+0.0473526\)
Response type: Internal Std (Ref 67 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Dataset: \\ D:IPFAS5.PROIRESULTSL200227P11200227P1-CRV.qld}

Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 10:13:21 Pacific Standard Time

Compound name: L-PFOS
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.997544\)
Calibration curve: \(-3.34868 e-005^{*} x^{\wedge} 2+0.937949\) * \(x+-0.0268767\)
Response type: Internal Std (Ref 71 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


Compound name: 9Cl-PF30NS
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998806\)
Calibration curve: \(-0.000294917^{*} x^{\wedge} 2+1.02474^{*} x+-0.150151\)
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Dataset: D:IPFAS5.PROIRESULTSL200227P11200227P1-CRV.qld}

Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed:
Friday, February 28, 2020 10:13:21 Pacific Standard Time

Compound name: PFDA
Coefficient of Determination: \(R^{\wedge} 2=0.999532\)
Calibration curve: \(-0.000220705^{*} x^{\wedge} 2+1.15294^{*} x+0.0597003\)
Response type: Internal Std (Ref 73), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None


Compound name: 8:2 FTS
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999278\)
Calibration curve: \(-0.000560644^{*} x^{\wedge} 2+1.41716^{*} x+-0.136378\)
Response type: Internal Std (Ref 75), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: \(1 / x\), Axis trans: None


\section*{Dataset: \\ D:IPFAS5.PROIRESULTSI200227P1I200227P1-CRV.qld}

Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 10:13:21 Pacific Standard Time

Compound name: PFNS
Coefficient of Determination: R^2 \(=0.999756\)
Calibration curve: \(-0.000187635^{*} x^{\wedge} 2+0.973141\) * \(x+-0.026475\)
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: \(1 / x\), Axis trans: None


Compound name: L-MeFOSAA
Coeificient of Determination: \(\mathrm{R}^{\wedge} 2=0.999179\)
Calibration curve: -0.000374142 * \(x^{\wedge} 2+1.3115 * x+-0.0249981\)
Response type: Internal Std (Ref 77), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None


Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 10:13:53 Pacific Standard Time

\section*{Method: D:IPFAS5.PROMMethDBINEW_PFAS_80C_022720.mab 28 Feb 2020 08:07:56}

\section*{Calibration: D:IPFAS5.PROICurveDBIC18 VAL-PFAS Q5 02-27-20.cdb 28 Feb 2020 09:57:55}

Compound name: L-EtFOSAA
Correlation coefficient: \(\mathrm{r}=0.999538, \mathrm{r}^{\wedge} 2=0.999077\)
Calibration curve: \(1.04314^{*} x+0.0808309\)
Response type: Internal Std (Ref 81), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: \(1 / x\), Axis trans: None


Compound name: PFUdA
Correlation coefficient: \(\mathrm{r}=0.999079, \mathrm{r}^{\wedge} 2=0.998158\)
Calibration curve: \(0.924289^{*} x+0.177335\)
Response type: Internal Std (Ref 79), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Dataset: \\ D:IPFAS5.PRO\RESULTSL200227P11200227P1-CRV.qld}

Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 10:13:53 Pacific Standard Time

Compound name: PFDS
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.998198\)
Calibration curve: \(-0.00017666^{*} x^{\wedge} 2+0.840876\) * \(x+-0.0241212\)
Response type: Internal Std (Ref 71), Area * IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None


Compound name: 11 Cl -PF30UdS
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.990533\)
Calibration curve: \(-0.000128075^{*} x^{\wedge} 2+0.447138^{*} x+0.0250385\)
Response type: Internal Std (Ref 83), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Dataset: D:IPFAS5.PROIRESULTSL200227P11200227P1-CRV.qld}

Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed:
Friday, February 28, 2020 10:13:53 Pacific Standard Time

Compound name: 10:2 FTS
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999815\)
Calibration curve: -7.14305e-005* \(x^{\wedge} 2+2.18549\) * \(x+-0.0614199\)
Response type: Internal Std (Ref 85 ), Area* (IS Conc. / IS Area
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


Compound name: PFDoA
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.993601\)
Calibration curve: -0.000395328 * \(x^{\wedge} 2+1.16883\) * \(x+0.0381445\)
Response type: Internal Std (Ref 83), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None


\section*{Vista Analytical Laboratory Q1}

\section*{Dataset:}

D:IPFAS5.PRO\RESULTSL200227P11200227P1-CRV.qld
Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 10:13:53 Pacific Standard Time

\section*{Compound name: N-MeFOSA}

Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999467\)
Calibration curve: \(-9.45291 e-005^{*} x^{\wedge} 2+1.09751^{*} x+0.280033\)
Response type: Internal Std (Ref 87), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None


Compound name: PFTrDA
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.991155\)
Calibration curve: \(-0.000578829^{*} x^{\wedge} 2+1.22195 * x+0.123282\)
Response type: Internal Std (Ref 83 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


\section*{Dataset: D:IPFAS5.PROIRESULTSL200227P11200227P1-CRV.qld}

Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 10:13:53 Pacific Standard Time

Compound name: PFDoS
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.992926\)
Calibration curve: -5.89691e-005 * \(x^{\wedge} 2+0.144524\) * \(x+0.0159102\)
Response type: Internal Std (Ref 89 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: \(1 / x\), Axis trans: None


Compound name: PFTeDA
Correlation coefficient: \(r=0.999133, r^{\wedge} 2=0.998266\)
Calibration curve: 0.896808 * \(x+0.108589\)
Response type: Internal Std (Ref 89 ), Area * (IS Conc. I IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None


Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed: Friday, February 28, 2020 10:13:53 Pacific Standard Time

Compound name: N-EtFOSA
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999010\)
Calibration curve: \(-5.6471 \mathrm{e}-005\) * \(x^{\wedge} 2+1.02308\) * \(x+0.202857\)
Response type: Internal Std (Ref 91), Area * IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: \(1 / x\), Axis trans: None


Compound name: PFHxDA
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999762\)
Calibration curve: \(-0.00014335^{*} x^{\wedge} 2+0.706539^{*} x+0.115848\)
Response type: Internal Std (Ref 93 ), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None


Dataset: D:IPFAS5.PROTRESULTS\200227P11200227P1-CRV.qld
Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time Printed: \(\quad\) Friday, February 28, 2020 10:13:53 Pacific Standard Time

Compound name: PFODA
Coefficient of Determination: \(R^{\wedge} 2=0.999135\)
Calibration curve: \(-0.000123507^{*} x^{\wedge} 2+0.908012 * x+0.0218764\)
Response type: Internal Std (Ref 93), Area * IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: \(1 / x\), Axis trans: None


Compound name: N-MeFOSE
Coefficient of Determination: \(\mathrm{R}^{\wedge} 2=0.999771\)
Calibration curve: \(-1.98902 \mathrm{e}-005\) * \(x^{\wedge} 2+1.05441\) * \(x+0.358784\)
Response type: Internal Std (Ref 95), Area * IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: \(1 / x\), Axis trans: None


\section*{Vista Analytical Laboratory Q1}

Dataset:
D:IPFAS5.PROIRESULTSL200227P1L200227P1-CRV.qld
Last Altered: Friday, February 28, 2020 09:57:55 Pacific Standard Time
Printed:
Friday, February 28, 2020 10:13:53 Pacific Standard Time

Compound name: N-EtFOSE
Correlation coefficient: \(r=0.998864, r^{\wedge} 2=0.997730\)
Calibration curve: \(0.970285^{*} x+0.35217\)
Response type: Internal Std (Ref 97), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None


Vista Analytical Laboratory
Dataset:
D:IPFAS5.PROIRESULTSI200227P11200227P1-CRV.qld
Last Altered:
Friday, February 28, 2020 09:22:01 Pacific Standard Time
Printed: Friday, February 28, 2020 09:22:27 Pacific Standard Time

Method: D:IPFAS5.PRO\MethDB\NEW_PFAS_80C_022720.mdb 28 Feb 2020 08:07:56 Calibration: 28 Feb 2020 09:22:01

Name: 200227P1-3, Date: 27-Feb-2020, Time: 15:42:07, ID: ST200227P1-1 PFC CS-2 20B1102, Description: PFC CS-2 20 B 1102


Name: 200227P1-3, Date: 27-Feb-2020, Time: 15:42:07, ID: ST200227P1-1 PFC CS-2 20B1102, Description: PFC CS-2 20B1102

\section*{PFHXA}

F13:MRM of 2 channels,ES.
\(313.0>269.0\) \(1.384 e+004\)


F13:MRM of 2 channels,ES\(313>118.9\) \(3.649 \mathrm{e}+002\)




F19:MRM of 2 channels,ES
349. \(>79.7\)


F19:MRM of 2 channels,ES-


13C3-PFBS-EIS


F9:MRM of 3 channels,ES


13C3-HFPO-DA-EIS
F10:MRM of 2 channels,ES



F18:MRM of 2 channels,ES-
\(340.9>216.9\)




13C4-PFHpA-EIS
F21:MRM of 1 channel,ES.
\(367.2>321.8\)



Dataset: Untitled
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-3, Date: 27-Feb-2020, Time: 15:42:07, ID: ST200227P1-1 PFC CS-2 20B1102, Description: PFC CS-2 20B1102

\section*{L-PFHxS \\ F23:MRM of 2 channels,ES\(398.9>79.7\) \(1.153 e+003\) \\ }

F23:MRM of 2 channeis, ES


13C3-PFHxS-EIS
F24:MRM of 1 channel,ES\(401.8>79.7\) \(8.254 e+004\)



F29:MRM of 3 channels,ES
427. > 80.7


13C2-6:2 FTS-EIS
F30:MRM of 1 channel,ES-
\(429.0>79.7\)
\(4.531 e+004\)



F26:MRM of 2 channels,ES
\(412.8>169\)


13C2-PFOA-EIS
 \(5.484 e+005\)



F33:MRM of 2 channels,ES \(460.8>98.9\)


\section*{13C2-PFOA-EIS}

F27:MRM of 1 channel,ES \(414.9>369.7\) \(5.484 e+005\)




S-EIS
13C8-PFOS-EIS
F42:MRM of 1 channel,ES-
\(507.0>79.7\)



13C5-PFNA-EIS
F35:MRM of 1 channel,ES-
\(468.2>422.9\)
\(5.084 e+005\)

Dataset: Untitled

Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-3, Date: 27-Feb-2020, Time: 15:42:07, ID: ST200227P1-1 PFC CS-2 20B1102, Description: PFC CS-2 20 B1102


Dataset: Untitled

Last Altered:
Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-3, Date: 27-Feb-2020, Time: 15:42:07, ID: ST200227P1-1 PFC CS-2 20B1102, Description: PFC CS-2 \(20 B 1102\)

\section*{PFNS}

F53:MRM of 2 channels,ES. \(\begin{array}{r}549.1>79.7 \\ 1.030 \mathrm{e}+003\end{array}\)
F53:MRM of 2 channels,ES. \(\begin{array}{r}549.1>98.7 \\ 1.516 \mathrm{e}+003\end{array}\)
13C8-PFOS-EIS
F42:MRM of 1 channel,ES\(507.0>79.7\) \(9.582 \mathrm{e}+004\)

d3-N-MeFOSAA-EIS
F58:MRM of 1 channel,ES
\(573.3>419\)
\(1.311 e+005\)



PFUdA


F54:MRM of 2 channels,ES-

d5-N-EtFOSAA-FIS
F60:MRM of 1 channel,ES-


F59:MRM of 2 channels, ES-


13C2-PFUdA-EIS
F55:MRM of 1 channel, ES-
\(565>519.8\)
\(6.462 \mathrm{e}+005\)


F61:MRM of 2 channels,ES-


F42:MRM of 1 channel, ES-
\(5070>797\)
\(507.0>79.7\)
\(9.582 \mathrm{e}+004\)



13C2-PFDOA-EIS
F63:MRM of 1 channel, ES\(614.7>569.7\) \(5.565 e+005\)

Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-3, Date: 27-Feb-2020, Time: 15:42:07, ID: ST200227P1-1 PFC CS-2 20B1102, Description: PFC CS-2 20B1102


Dataset: Untitled
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed:
Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-3, Date: 27-Feb-2020, Time: 15:42:07, ID: ST200227P1-1 PFC CS-2 20B1102, Description: PFC CS-2 \(20 B 1102\)


Dataset: Untitled
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-3, Date: 27-Feb-2020, Time: 15:42:07, ID: ST200227P1-1 PFC CS-2 20B1102, Description: PFC CS-2 20 B1102

\section*{13C3-PFBS-RSD
F12:MRM of 1 channel,ES-
\(302.0>98.8\)
\(2.654 \mathrm{e}+004\)}



13C8-PFOSA-RSD
F41:MRM of 1 channel, ES-
\(506>78\)






Name: 200227P1-3, Date: 27-Feb-2020, Time: 15:42:07, ID: ST200227P1-1 PFC CS-2 20B1102, Description: PFC CS-2 20 B 1102

d3-N-MeFOSA-RSD
F46:MRM of 1 channel,ES-
\(515.2>168.9\) \(4.940 \mathrm{e}+005\)





d5-N-ETFOSA-RSD F52:MRM of 1 channel,ES \(531.1>168.9\) \(6.991 e+005\)



13C2-PFHxDA-RSD


d9-N-EtFOSE-RSD
F70:MRM of 1 channel,ES-
\(639.2>58.8\)


d7-N-MeFOSE-RSD
F65:MRM of 1 channel,ES\(623.1>58.9\) \(6.146 \mathrm{e}+005\)

Dataset: Untitled

Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-3, Date: 27-Feb-2020, Time: 15:42:07, ID: ST200227P1-1 PFC CS-2 20B1102, Description: PFC CS-2 20B1102


Dataset:
D:IPFAS5.PRO\RESULTS\200227P1\200227P1-CRV.qld
Last Altered: Friday, February 28, 2020 09:22:01 Pacific Standard Time Printed: Friday, February 28, 2020 09:22:27 Pacific Standard Time

Name: 200227P1-4, Date: 27-Feb-2020, Time: 15:52:39, ID: ST200227P1-2 PFC CS-1 20B1103, Description: PFC CS-1 20B1103


\section*{13C3-PFBA-EIS}

F3:MRM of 1 channel,ES\(216.1>171.8\) \(1.206 \mathrm{e}+005\)


\section*{PFPrS}


F6:MRM of 2 channels,ES-
\(248.9>98.7\) \(8.491 \mathrm{e}+00\)


\section*{13C3-PFBS-EIS}

F12:MRM of 1 channel,ES \(302.0>98.8\) \(3.150 \mathrm{e}+004\)



\section*{13C3-PFPeA-EIS}

F8:MRM of 1 channel,ES
\(266.0>221.8\)



\section*{PFBS}


F11:MRM of 2 channels,ES\(299.0>98.7\)


\section*{13C3-PFBS-EIS}

F12:MRM of 1 channel,ES \(302.0>98.8\) \(3.150 \mathrm{e}+004\)



Dataset: Untitled
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed:
Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-4, Date: 27-Feb-2020, Time: 15:52:39, ID: ST200227P1-2 PFC CS-1 20B1103, Description: PFC CS-1 20B1103


Name: 200227P1-4, Date: 27-Feb-2020, Time: 15:52:39, ID: ST200227P1-2 PFC CS-1 20B1103, Description: PFC CS-1 20 B 1103


13C3-PFHxS-EIS



13C2-6:2 FTS-EIS


13C2-PFOA-EIS
F27:MRM of 1 channel,ES-



13C2-PFOA-EIS
F27:MRM of 1 channel,ES.




13C8-PFOS-EIS
F42:MRM of 1 channel,ES-



Dataset: Untitled
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-4, Date: 27-Feb-2020, Time: 15:52:39, ID: ST200227P1-2 PFC CS-1 20B1103, Description: PFC CS-1 20B1103


Vista Analytical Laboratory
Dataset: Untitled
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-4, Date: 27-Feb-2020, Time: 15:52:39, ID: ST200227P1-2 PFC CS-1 20B1103, Description: PFC CS-1 20B1103


Name: 200227P1-4, Date: 27-Feb-2020, Time: 15:52:39, ID: ST200227P1-2 PFC CS-1 20B1103, Description: PFC CS-1 20 B1103


Dataset: Untitled
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-4, Date: 27-Feb-2020, Time: 15:52:39, ID: ST200227P1-2 PFC CS-1 20B1103, Description: PFC CS-1 \(20 B 1103\)




13C2-PFHxDA-EIS F76:MRM of 1 channel,ES\(815>769.7\)
\(1.092 e+006\)



13C2-PFHxDA-EIS
F76:MRM of 1 channel,ES-
\(815>769.7\)




d9-N-EtFOSE-EIS 13C3-PFPeA-RSD


Dataset:
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-4, Date: 27-Feb-2020, Time: 15:52:39, ID: ST200227P1-2 PFC CS-1 20B1103, Description: PFC CS-1 20 B 1103










13C8-PFOS-RSD

\begin{tabular}{ll} 
Dataset: & Untitled \\
Last Altered: & Friday, February 28, 2020 09:05:18 Pacific Standard Time \\
Printed: & Friday, February 28, 2020 09:08:38 Pacific Standard Time \\
\hline
\end{tabular}

Name: 200227P1-4, Date: 27-Feb-2020, Time: 15:52:39, ID: ST200227P1-2 PFC CS-1 20B1103, Description: PFC CS-1 \(20 B 1103\)




13C2-PFTeDA-RSD
F74:MRM of 2 channels,ES-
\(715.1>669.7\)


d5-N-ETFOSA-RSD
F52:MRM of 1 channel,ES-
\(531.1>168.9\)








\begin{tabular}{ll} 
Datase:: & Untitled \\
& \\
Last Altered: & Friday, February 28, 2020 09:05:18 Pacific Standard Time \\
Printed: & Friday February 28, 2020 09:08:38 Pacific Standard Time
\end{tabular}

Name: 200227P1-4, Date: 27-Feb-2020, Time: 15:52:39, ID: ST200227P1-2 PFC CS-1 20B1103, Description: PFC CS-1 20B1103


13C5-PFHxA
F15:MRM of 1 channel,ES\(318.0>272.9\) \(5.689 e+005\)


13C7-PFUdA
F57:MRM of 1 channel,ES\(570.1>524.8\) \(6.825 \mathrm{e}+005\)






Name: 200227P1-5, Date: 27-Feb-2020, Time: 16:03:08, ID: ST200227P1-3 PFC CS0 20B1104, Description: PFC CS0 \(20 B 1104\)


Dataset: Untitled
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-5, Date: 27-Feb-2020, Time: 16:03:08, ID: ST200227P1-3 PFC CS0 20B1104, Description: PFC CSO \(20 B 1104\)


Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-5, Date: 27-Feb-2020, Time: 16:03:08, ID: ST200227P1-3 PFC CS0 20B1104, Description: PFC CS0 \(20 B 1104\)


13C3-PFHxS-EIS F24:MRM of 1 channel,ES-



F29:MRM of 3 channels,ES\(427 .>80.7\)


13C2-6:2 FTS-EIS


F26:MRM of 2 channels,ES. \(412.8>169\)


F27:MRM of 1 channel, ES
\(414.9>369.7\)



F33:MRM of 2 channels,ES-


13C2-PFOA-EIS
F27:MRM of 1 channel,ES-



13C8-PFOS-EIS
F42:MRM of 1 channel, ES-
\(507.0>79.7\)



13C5-PFNA-EIS
F35:MRM of 1 channel, ES. \(468.2>422.9\)
\(6.013 \mathrm{e}+005\)


Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-5, Date: 27-Feb-2020, Time: 16:03:08, ID: ST200227P1-3 PFC CS0 20B1104, Description: PFC CS0 20B1104

\section*{PFNA}

F34:MRM of 2 channels,ES\(463.0>418\).
1007 \(\left[\begin{array}{l}\text { PFNA } 5.781 \mathrm{e}+004 \\ 4.62 \\ 2.33 \mathrm{e} 3 \\ 57645 \\ \mathrm{bb} \\ 609.45\end{array}\right.\)


13C5-PFNA-EIS
F35:MRM of 1 channel,ES-

\section*{PFOSA}

F37:MRM of 2 channels,ES\(497.9>77.9\)


4.7505 .0005 .250

13C8-PFOSA-EIS
F41:MRM of 1 channel, ES-
\(506>78\) \(506>78\) \(1.400 \mathrm{e}+005\)

13C8-PFOS-EIS
F42:MRM of 1 channel, ES-



F39:MRM of 2 channels,ES \(\begin{array}{lr} & 498.9>98.7 \\ 100-\text { L-PFOS } & 3.352 \mathrm{e}+003\end{array}\)



\section*{PFDA}

F44:MRM of 2 channels,ES-
\(513>468.8\)


13C2-PFDA-EIS



13C2-8:2 FTS-EIS


Last Altered:
Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-5, Date: 27-Feb-2020, Time: 16:03:08, ID: ST200227P1-3 PFC CS0 20B1104, Description: PFC CS0 20 B1104


F53:MRM of 2 channels,ES-


13C8-PFOS-EIS
F42:MRM of 1 channel,ES\(507.0>79.7\)
\(1.093 e+005\)


L-MeFOSAA
F56:MRM of 2 channels, ES-
\(570>419\)
\(9.142 \mathrm{e}+003\)

d3-N-MeFOSAA-EIS
F58:MRM of 1 channel,ES-



F59:MRM of 2 channels, ES\(\begin{array}{ll} & 584.1>526 \\ 7.896 e+003\end{array}\)

d5-N-EtFOSAA-EIS
F60:MRM of 1 channel,ES-
\(589.3>419\)
\(1.387 e+005\)


\section*{PFUdA}

F54:MRM of 2 channels, ES- \(\begin{array}{r}563.0>518.9 \\ 6.043 \mathrm{e}+004\end{array}\)


13C2-PFUdA-EIS
F55:MRM of 1 channel,ES-
\(565>519.8\)
\(6.9020+005\)



F61:MRM of 2 channels,ES-



F42:MRM of 1 channel,ES-
\(507.0>79.7\)




13C2-PFDoA-EIS
F63:MRM of 1 channel,ES-
\(614.7>569.7\)
\(5.319 \mathrm{e}+005\)


Name: 200227P1-5, Date: 27-Feb-2020, Time: 16:03:08, ID: ST200227P1-3 PFC CS0 20B1104, Description: PFC CS0 20 B1104


F66:MRM of 2 channels,ES\(626.9>80.7\)




F62:MRM of 4 channels,ES
\(612.9>318.8\)


13C2-PFDoA-EIS
F63:MRM of 1 channel,ES-
\(614.7>569.7\) \(5.319 \mathrm{e}+005\)



F43:MRM of 2 channels, ES-
\(512.1>219\)

d3-N-MeFOSA-EIS
F46:MRM of 1 channeI,ES-
\(515.2>168.9\)
\(4.989 e+005\)



F71:MRM of 2 channels,ES-
\(662.9>319\)
1.029


\section*{13C2-PFDOA-EIS}

F63:MRM of 1 channel,ES-



F72:MRM of 2 channels,ES\(698.8>98.7\)




13C2-PFTEDA-EIS
F74:MRM of 2 channels,ES-
\(715.1>669.7\)


Dataset: Untitled
Last Altered:
Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-5, Date: 27-Feb-2020, Time: 16:03:08, ID: ST200227P1-3 PFC CS0 20B1104, Description: PFC CS0 \(20 B 1104\)




F75:MRM of 2 channels,ES -


13C2-PFHxDA-EIS
F76:MRM of 1 channel,ES-
\(815>769.7\)
1.098




 F65:MRM of 1 channel,ES
\(623.1>58.9\) \(6.868 \mathrm{e}+005\)


d9-N-EtFOSE-EIS
F70:MRM of 1 channel,ES\(639.2>58\). \(7.800 \mathrm{e}+005\)



13C3-PFPeA-RSD
F8:MRM of 1 channel,ES
\(266.0>221.8\) \(2.335 e+005\)


Dataset: Untitled

Last Altered:
Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-5, Date: 27-Feb-2020, Time: 16:03:08, ID: ST200227P1-3 PFC CSO 20B1104, Description: PFC CS0 20B1104



F30:MRM of 1 channel,ES
\(429.0>79.7\) \(4.049 e+004\)



13C5-PFNA-RSD
F35:MRM of 1 channel,ES-
\(468.2>422.9\)



13C8-PFOSA-RSD
F41:MRM of 1 channel,ES.
\(400 e+00\)









\begin{tabular}{ll} 
Dataset: & Untitled \\
\begin{tabular}{ll} 
Last Altered: & Friday, February 28, 2020 09:05:18 Pacific Standard Time \\
Printed: & Friday, February 28, 2020 09:08:38 Pacific Standard Time
\end{tabular} \\
\hline
\end{tabular}

Name: 200227P1-5, Date: 27-Feb-2020, Time: 16:03:08, ID: ST200227P1-3 PFC CSO 20B1104, Description: PFC CS0 \(20 B 1104\)


Vista Analytical Laboratory

\section*{Dataset:}

Untitled
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-5, Date: 27-Feb-2020, Time: 16:03:08, ID: ST200227P1-3 PFC CS0 20B1104, Description: PFC CS0 20B1104

Dataset: Untitled

Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-6, Date: 27-Feb-2020, Time: 16:13:39, ID: ST200227P1-4 PFC CS1 20B1105, Description: PFC CS1 20 B1105


Dataset: Untitled
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-6, Date: 27-Feb-2020, Time: 16:13:39, ID: ST200227P1-4 PFC CS1 20B1105, Description: PFC CS1 \(20 B 1105\)


F13:MRM of 2 channels,ES\(313>118.9\) \(3.890 \mathrm{e}+003\)


13C2-PFHxA-EIS
F14:MRM of 1 channel, ES\(315.0>270.0\) \(5.676 \mathrm{e}+005\)


F19:MRM of 2 channels,ES-
349. > 98.7


13C3-PFBS-EIS
F12:MRM of 1 channel,ES 302.0 > 98.8 \(3.218 \mathrm{e}+004\)


13C3-HFPO-DA-EIS
F10:MRM of 2 channels,ES




\section*{13C4-PFHpA-EIS}

F21:MRM of 1 channel,ES-



13C4-PFHpA-EIS
F21:MRM of 1 channel,ES-



F22:MRM of 2 channels,ES-
\[
376.8>85.0
\]


13C4-PFHpA-EIS
F21:MRM of 1 channel, ES\(367.2>321.8\)


Dataset: Untitled
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-6, Date: 27-Feb-2020, Time: 16:13:39, ID: ST200227P1-4 PFC CS1 20B1105, Description: PFC CS1 20B1105

\section*{L-PFHxS \\ F23:MRM of 2 channels,ES\(398.9>79.7\)
\(1.131 e+004\)
}

F23:MRM of 2 channels,ES\(398.9>98.7\) (1007 13C3-PFHxS-EIS
F24:MRM of 1 channel,ES-
\(401.8>79.7\)
\(7.576 \mathrm{e}+004\)


F29:MRM of 3 channels,ES427. \(>80.7\) \(1.086 e+004\)


13C2-6:2 FTS-EIS
F30:MRM of 1 channel,ES-
\(429.0>79.7\)
\(4.625 e+004\)



F26:MRM of 2 channels,ES-
\(412.8>169\)


13C2-PFOA-EIS
F27:MRM of 1 channel,ES-
\(414.9>369.7\)
\(5.834 e+005\)



F33:MRM of 2 channels,ES-




F32:MRM of 2 channels,ES-
\(449>98.7\)


13C8-PFOS-EIS
F42:MRM of 1 channel,ES-
\(507.0>79.7\)
\(1.0110+005\)



13C5-PFNA-EIS
F35:MRM of 1 channel, ES-
\(468.2>422.9\) \(5.434 \mathrm{e}+005\)

Dataset: Untitled
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-6, Date: 27-Feb-2020, Time: 16:13:39, ID: ST200227P1-4 PFC CS1 20B1105, Description: PFC CS1 20B1105


13C5-PFNA-EIS
F35:MRM of 1 channel,ES\(>422.9\)


\section*{PFOSA}

F37:MRM of 2 channels,ES \(497.9>77.9\)


F37:MRM of 2 channels,ES \(497.9>169\)


13C8-PFOSA-EIS
F41:MRM of 1 channel,ES
\(506>78\) \(1.457 e+005\)



F39:MRM of 2 channels,ES \(\begin{array}{ll}\text { L-PFOS } & \begin{array}{l}498.9>98.7 \\ 7.679 e+003\end{array}\end{array}\)


13C8-PFOS-EIS
F42:MRM of 1 channel,ES\(507.0>79.7\)



F51:MRM of 2 channels,ES-


\section*{13C8-PFOS-EIS}

F42:MRM of 1 channel,ES




F44:MRM of 2 channels,ES-
\(513>219\)


13C2-PFDA-EIS
F45:MRM of 1 channel,ES-



F49:MRM of 2 channels,ES\(526.9>80.9\)


Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed:
Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-6, Date: 27-Feb-2020, Time: 16:13:39, ID: ST200227P1-4 PFC CS1 20B1105, Description: PFC CS1 \(20 B 1105\)

\begin{tabular}{ll} 
Dataset: & Untitled \\
Last Altered: & Friday, February 28, 2020 09:05:18 Pacific Standard Time \\
Printed: & Friday, February 28, 2020 09:08:38 Pacific Standard Time \\
\hline
\end{tabular}

Name: 200227P1-6, Date: 27-Feb-2020, Time: 16:13:39, ID: ST200227P1-4 PFC CS1 20B1105, Description: PFC CS1 20 B1105

\begin{tabular}{ll} 
Dataset: & Untitled \\
Last Altered: & Friday, February 28, 2020 09:05:18 Pacific Standard Time \\
Printed: & Friday, February 28, 2020 09:08:38 Pacific Standard Time \\
\hline
\end{tabular}

Name: 200227P1-6, Date: 27-Feb-2020, Time: 16:13:39, ID: ST200227P1-4 PFC CS1 20B1105, Description: PFC CS1 \(20 B 1105\)

\begin{tabular}{ll} 
Dataset: & Untitled \\
Last Altered: & Friday, February 28, 2020 09:05:18 Pacific Standard Time \\
Printed: & Friday, February 28, 2020 09:08:38 Pacific Standard Time
\end{tabular}

Name: 200227P1-6, Date: 27-Feb-2020, Time: 16:13:39, ID: ST200227P1-4 PFC CS1 20B1105, Description: PFC CS1 \(20 B 1105\)


Dataset: Untitled
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed:
Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-6, Date: 27-Feb-2020, Time: 16:13:39, ID: ST200227P1-4 PFC CS1 20B1105, Description: PFC CS1 \(20 B 1105\)

d3-N-MeFOSA-RSD
F46:MRM of 1 channel,ES\(515.2>168.9\) \(5.130 \mathrm{e}+005\)

d3-N-MeFOSAA-RSD
F58:MRM of 1 channel,ES-
\(573.3>419\)
\(1.194 \mathrm{e}+005\)


13C2-PFTEDA-RSD
F74:MRM of 2 channels,ES-
\(715.1>669.7\) \(5.573 \mathrm{e}+005\)




F52:MRM of 1 channel, ES
\(531.1>168.9\)



13C2-PFHxDA-RSD
F76:MRM of 1 channel,ES-
\(815>769.7\)
\(1.095=+006\)


d9-N-EtFOSE-RSD



\section*{Dataset:}

Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-6, Date: 27-Feb-2020, Time: 16:13:39, ID: ST200227P1-4 PFC CS1 20B1105, Description: PFC CS1 20B1105



F47:MRM of 1 channel,ES \(519.1>473.7\) \(6.145 \mathrm{e}+005\)


\section*{13C5-PFHXA \\ F15:MRM of 1 channel,ES
\(318.0>272.9\) 6.2290+005 \\ }

13C7-PFUdA
F57:MRM of 1 channel,ES \(570.1>524.8\) \(7.047 \mathrm{e}+005\)




Dataset: Untitled
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-7, Date: 27-Feb-2020, Time: 16:26:17, ID: ST200227P1-5 PFC CS2 20B1106, Description: PFC CS2 20B1106


\section*{13C3-PFBA-EIS}

F3:MRM of 1 channel,ES \(216.1>171.8\) \(1.108 \mathrm{e}+005\)


\section*{PFPrS}


F6:MRM of 2 channels,ES-
\(248.9>98.7\) \(5.122 \mathrm{e}+003\)


13C3-PFBS-EIS
F12:MRM of 1 channel, ES-
\(302.0>98.8\)
3.48 \(3.348 \mathrm{e}+004\)




PFPeA
F7:MRM of 1 channel,ES \(263.1>218.9\)
\(1.043 e+005\)



\section*{PFBS}

F11:MRM of 2 channels,ES\(299.0>79.7\)



\section*{13C3-PFBS-EIS}

F12:MRM of 1 channel, ES




F16:MRM of 2 channels, ES\(327.0>80.7\)


13C2-4.2 TTS EIS
F17:MRM of 2 channels,ES-

Dataset: Untitled
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-7, Date: 27-Feb-2020, Time: 16:26:17, ID: ST200227P1-5 PFC CS2 20B1106, Description: PFC CS2 \(20 B 1106\)


Dataset: Untitled
\begin{tabular}{ll} 
Last Altered: & Friday, February 28, 2020 09:05:18 Pacific Standard Time \\
Printed: & Friday, February 28, 2020 09:08:38 Pacific Standard Time
\end{tabular}

Name: 200227P1-7, Date: 27-Feb-2020, Time: 16:26:17, ID: ST200227P1-5 PFC CS2 20B1106, Description: PFC CS2 \(20 B 1106\)


Dataset: Untitled
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

\section*{Name: 200227P1-7, Date: 27-Feb-2020, Time: 16:26:17, ID: ST200227P1-5 PFC CS2 20B1106, Description: PFC CS2 20 B1106}

\begin{tabular}{ll} 
Dataset: & Untitled \\
Last Altered: & Friday, February 28, 2020 09:05:18 Pacific Standard Time \\
Printed: & Friday, February 28, 2020 09:08:38 Pacific Standard Time \\
\hline
\end{tabular}

Name: 200227P1-7, Date: 27-Feb-2020, Time: 16:26:17, ID: ST200227P1-5 PFC CS2 20B1106, Description: PFC CS2 20 B1106


Last Altered:
Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-7, Date: 27-Feb-2020, Time: 16:26:17, ID: ST200227P1-5 PFC CS2 20B1106, Description: PFC CS2 20 B1 106
\begin{tabular}{r} 
10:2 FTS \\
F66:MRM of 2 channels,ES- \\
\(626.9>607\) \\
\(3.099 \mathrm{e}+004\) \\
100 \\
\hline
\end{tabular}

F66:MRM of 2 channels, ES-
\(626.9>80.7\)


13C2-10:2 FTS-EIS
F69:MRM of 1 channel,ES-
\(632.9>80.0\) \(3.565 \mathrm{e}+004\)


PFDoA
F62:MRM of 4 channels,ES\(612.9>569.0\) \(2.663 e+005\)


F62:MRM of 4 channels,ES\(612.9>318.8\)


13C2-PFDoA-EIS
F63:MRM of 1 channel,ES-



F43:MRM of 2 channels, ES-\(100-\quad 5.374 \mathrm{e}+004\)

d3-N-MeFOSA-EIS
F46:MRM of 1 channel,ES.
\(\begin{aligned} & 515.2>168.9 \\ & 4.514 e+005\end{aligned}\)







F72:MRM of 2 channels,ES-
\(698.8>98.7\)
\(9.809 \mathrm{e}+003\)


13C2-PFTeDA-EIS
F74:MRM of 2 channels,ES-
\(715.1>669.7\)



13C2-PFTEDA-EIS
F74:MRM of 2 channels, ES-
\(715.1>669.7\) \(6.101 e+005\)

Dataset: Untitled
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed:
Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-7, Date: 27-Feb-2020, Time: 16:26:17, ID: ST200227P1-5 PFC CS2 20B1106, Description: PFC CS2 20 B1106


F48:MRM of 2 channels,ES\(526.1>219\) \(7.658 \mathrm{e}+0.04\)




13C2-PFHxDA-EIS
F76:MRM of 1 channel,ES-



\section*{13C2-PFHxDA-EIS}

F76:MRM of 1 channel,ES-


\section*{d7-N-MeFOSE-EIS}

F65:MRM of 1 channel, ES.
\(623.1>58.9\)



Dataset: Untitled
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-7, Date: 27-Feb-2020, Time: 16:26:17, ID: ST200227P1-5 PFC CS2 20B1106, Description: PFC CS2 \(20 B 1106\)


13C2-6:2 FTS-RSD
F30:MRM of 1 channel,ES-
\(429.0>79.7\) \(4.273 \mathrm{e}+004\)


13C3-HFPO-DA-RSD
F10:MRM of 2 channels, ES-


13C5-PFNA-RSD
F35:MRM of 1 channel,ES.
\(468.2>422.9\)
\(5.743 \mathrm{e}+005\)


13C2-4:2 FTS-RSD
F17:MRM of 2 channels, ES
\(329.0>79.7\) \(5.514 e+004\)


13C8-PFOSA-RSD
F41:MRM of 1 channel,ES-
\(506>78\)
\(1.413 e+005\)



13C2-PFOA-RSD
F27:MRM of 1 channel,ES-
\(414.9>369.7\)



13C8-PFOS-RSD
\[
\begin{array}{r}
\text { F42:MRM of } 1 \text { channel, ES- } \\
507.0>79.7 \\
100
\end{array}
\]


13C2-PFDA-RSD
F45:MRM of 1 channel,ES-


Dataset: Untitied
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-7, Date: 27-Feb-2020, Time: 16:26:17, ID: ST200227P1-5 PFC CS2 20B1106, Description: PFC CS2 \(20 B 1106\)




13C2-PFTeDA-RSD
F74:MRM of 2 channels,ES-
\(715.1>669.7\) \(6.101 \mathrm{e}+005\)


d5-N-ETFOSA-RSD
F52:MRM of 1 channel,ES-

d5-N-EtFOSAA-RSD
F60:MRM of 1 channel,ES
\(589.3>419\)
\(1.345 \mathrm{e}+005\)







Name: 200227P1-7, Date: 27-Feb-2020, Time: 16:26:17, ID: ST200227P1-5 PFC CS2 20B1106, Description: PFC CS2 20B1106


Dataset: Untitled
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-8, Date: 27-Feb-2020, Time: 16:36:51, ID: ST200227P1-6 PFC CS3 20B1107, Description: PFC CS3 \(20 B 1107\)


Dataset: Untitled
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed:
Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-8, Date: 27-Feb-2020, Time: 16:36:51, ID: ST200227P1-6 PFC CS3 20B1107, Description: PFC CS3 20 B1107


Dataset: Untitled
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed:
Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-8, Date: 27-Feb-2020, Time: 16:36:51, ID: ST200227P1-6 PFC CS3 20B1107, Description: PFC CS3 \(20 B 1107\)


F23:MRM of 2 channels,ES-


13C3-PFHxS-EIS



\section*{C2-6:2 FTS-EIS}
\(29.0>79.7\)


F27:MRM of 1 channel,ES
F27:MRM of 1 channel, ES-
\(414.9>369.7\)






13C8-PFOS-EIS



Dataset: Untitled
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-8, Date: 27-Feb-2020, Time: 16:36:51, ID: ST200227P1-6 PFC CS3 20B1107, Description: PFC CS3 20B1107


Name: 200227P1-8, Date: 27-Feb-2020, Time: 16:36:51, ID: ST200227P1-6 PFC CS3 20B1107, Description: PFC CS3 20B1107

\(\left.\begin{array}{rrr}\text { 13C8-PFOS-EIS } & \text { d3-N-MeFOSAA-EIS } \\ \text { F42:MRM of } 1 \text { channel,ES- } \\ 507.0>79.7 \\ 1.129 e+005\end{array}\right)\)


F56:MRM of 2 channels,ES\(570 .>512\)




F59:MRM of 2 channels,ES\(584.1>526\)
\(1.032 \mathrm{e}+005\)

d5-N-EtFOSAA-EIS
F60:MRM of 1 channel,ES-
F60:MRM of 1 channel, ES-
\(589.3>419\)
\(1.714 \mathrm{e}+005\)



F54:MRM of 2 channels,ES-


13C2-PFUdA-EIS
F55:MRM of 1 channel,ES



\section*{13C8-PFOS-EIS}

F42:MRM of 1 channel,ES-





Dataset: Untitled
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-8, Date: 27-Feb-2020, Time: 16:36:51, ID: ST200227P1-6 PFC CS3 20B1107, Description: PFC CS3 20B1107




F62:MRM of 4 channels,ESF62:MAM of 4 channels,ES
\(612.9>318.8\)


13C2-PFDoA-EIS F63:MRM of 1 channel,ESF63:MRM of 1 channel,ES-
\(614.7>569.7\)
\(5.790 e+005\)



F43:MRM of 2 channels,ES F43.MRM of 2 channels, ES
\(512.1>219\)

d3-N-MeFOSA-EIS
F46:MRM of 1 channes



13C2-PFDoA-EIS
F63:MRM of 1 channel,ES-
\(614.7>569.7\)


F72:MRM of 2 channels,ES-
F72:MRM of 2 channels,ES-
\(698.8>98.7\)


13C2-PFTeDA-EIS
F74:MRM of 2 channes, ES



13C2-PFTeDA-EIS
F74:MRM of 2 channels, ES-


Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed:
Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-8, Date: 27-Feb-2020, Time: 16:36:51, ID: ST200227P1-6 PFC CS3 20B1107, Description: PFC CS3 \(20 B 1107\)


Dataset: Untitled
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-8, Date: 27-Feb-2020, Time: 16:36:51, ID: ST200227P1-6 PFC CS3 20B1107, Description: PFC CS3 \(20 B 1107\)




\section*{13C5-PFNA-RSD}

F35:MRM of 1 channel,ES-
\(468.2>422.9\) \(5.615 e+005\)



\(1.431 e+005\)



\section*{13C2-PFOA-RSD}

F27:MRM of 1 channel,ES-
\(414.9>369.7\) \(5.439 e+005\)



\section*{13C8-PFOS-RSD}

F42:MRM of 1 channel,ES\(507.0>79.7\) \(1.129 e+005\)



13C2-PFDA-RSD
F45:MRM of 1 channel,ES-
\(515.1>469.9\) \(6.252 e+005\)


Last Altered:
Printed:

Friday, February 28, 2020 09:05:18 Pacific Standard Time Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-8, Date: 27-Feb-2020, Time: 16:36:51, ID: ST200227P1-6 PFC CS3 20B1107, Description: PFC CS3 20 B1107


Dataset: Untitled
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-8, Date: 27-Feb-2020, Time: 16:36:51, ID: ST200227P1-6 PFC CS3 20B1107, Description: PFC CS3 \(20 B 1107\)

\begin{tabular}{ll} 
Dataset: & Untitled \\
Last Altered: & Friday, February 28, 2020 09:05:18 Pacific Standard Time \\
Printed: & Friday, February 28, 2020 09:08:38 Pacific Standard Time
\end{tabular}

Name: 200227P1-9, Date: 27-Feb-2020, Time: 16:47:20, ID: ST200227P1-7 PFC CS4 20B1108, Description: PFC CS4 20B1108


Dataset: Untitled
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-9, Date: 27-Feb-2020, Time: 16:47:20, ID: ST200227P1-7 PFC CS4 20B1108, Description: PFC CS4 20B1108

Dataset: Untitled

Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-9, Date: 27-Feb-2020, Time: 16:47:20, ID: ST200227P1-7 PFC CS4 20B1108, Description: PFC CS4 \(20 B 1108\)


Dataset: Untitled
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed:
Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-9, Date: 27-Feb-2020, Time: 16:47:20, ID: ST200227P1-7 PFC CS4 20B1108, Description: PFC CS4 20B1108


Dataset: Untitled
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed:
Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-9, Date: 27-Feb-2020, Time: 16:47:20, ID: ST200227P1-7 PFC CS4 20B1108, Description: PFC CS4 \(20 B 1108\)


F53:MRM of 2 channels,ES-
\(549.1>98.7\)
\(1.732 \mathrm{e}+005\)


13C8-PFOS-EIS
F42:MRM of 1 channel,ES-
\(507.0>79.7\)



F56:MRM of 2 channels, ES-
\(570 .>512\)

d3-N-MeFOSAA-EIS
F58:MRM of 1 channel,ES-
\(573.3>419\) \(1.297 e+005\)




Dataset: Untitled
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed:
Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-9, Date: 27-Feb-2020, Time: 16:47:20, ID: ST200227P1-7 PFC CS4 20B1108, Description: PFC CS4 20B1108


Name: 200227P1-9, Date: 27-Feb-2020, Time: 16:47:20, ID: ST200227P1-7 PFC CS4 20B1108, Description: PFC CS4 20B1108




F76:MRM of 1 channel,ES-
\(815>769.7\)


\section*{PFODA}

F77:MRM of 1 channel,ES-
F77:MRM of 1 channel,ES
\(913.1>868.8\)


13C2-PFHxDA-EIS
F76:MRM of 1 channel,ES.
F76:MRM of 1 channel,ES-
\(815>769.7\)
\(1.150 e+006\)


F64:MRM of 1 channel,ES\(616.1>58.9\) \(1.230 e+006\)


\section*{d7-N-MeFOSE-EIS}




13C3-PFBA-RSD
F3:MRM of 1 channel,ES216.1 > 171.8


\section*{Dataset:} Untitled

Last Altered:
Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-9, Date: 27-Feb-2020, Time: 16:47:20, ID: ST200227P1-7 PFC CS4 20B1108, Description: PFC CS4 20B1108




\section*{13C5-PFNA-RSD}

F35:MRM of 1 channel,ES\(468.2>422.9\) \(5.692 \mathrm{e}+005\)





13C8-PFOS-RSD
F42:MRM of 1 channel,ES-
\(507.0>79.7\)



Dataset:
Untitled
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-9, Date: 27-Feb-2020, Time: 16:47:20, ID: ST200227P1-7 PFC CS4 20B1108, Description: PFC CS4 20B1108




13C2-PFTeDA-RSD
F74:MRM of 2 channels,ES-channels,ES-
\(715.1>669.7\) \(6.413 \mathrm{e}+005\)


d5-N-ETFOSA-RSD
F52:MRM of 1 channel,ES
F52:MRM of 1 channel,ES-
\(531.1>168.9\)
\(7.428 e+005\)


\section*{d5-N-EtFOSAA-RSD}

F60:MRM of 1 channel,ES \(589.3>419\) \(1.679 e+005\)






\begin{tabular}{ll} 
Dataset: & Untitled \\
Last Altered: & Friday, February 28, 2020 09:05:18 Pacific Standard Time \\
Printed: & Friday, February 28, 2020 09:08:38 Pacific Standard Time
\end{tabular}

Name: 200227P1-9, Date: 27-Feb-2020, Time: 16:47:20, ID: ST200227P1-7 PFC CS4 20B1108, Description: PFC CS4 20B1108




\section*{13C7-PFUdA}

F57:MRM of 1 channel,ES\(570.1>524.8\) \(.015 \mathrm{e}+005\)



Dataset: Untitled
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed:
Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-10, Date: 27-Feb-2020, Time: 16:58:53, ID: ST200227P1-8 PFC CS5 20B1109, Description: PFC CS5 \(20 B 1109\)


13C3-PFBA-EIS
F3:MRM of 1 channel,ES.



F6:MRM of 2 channels,ES\(248.9>98.7\) \(9.654 \mathrm{e}+004\)


13C3-PFBS-EIS
F12:MRM of 1 channel,ES-
\(3 . M R M\) of 1 channel, ES-
\(302.0>98.8\)



13C3-PFPeA-EIS
F8:MRM of 1 channel,ES-



13C3-PFPEA-EIS 13C3-PFBS-EIS
F8:MRM of 1 channel,ES-



F11:MRM of 2 channels,ES\(299.0>98.7\)


F12:MRM of 1 channel,ES-
\(302.0>98.8\)
\(3.205 e+004\)



Last Altered:
Friday, February 28, 2020 09:05:18 Pacific Standard Time

\section*{Printed:}

Name: 200227P1-10, Date: 27-Feb-2020, Time: 16:58:53, ID: ST200227P1-8 PFC CS5 20B1109, Description: PFC CS5 \(20 B 1109\)


13C2-PFHxA-EIS
F14:MRM of 1 channel,ES-
\(315.0>270.0\)
\(5.961 \mathrm{e}+005\)


\section*{13C3-PFBS-EIS}


\section*{13C3-HFPO-DA-EIS}


F18:MRM of 2 channels,ES\(340.9>216.9\)


\section*{13C4-PFHpA-EIS}

F21:MRM of 1 channel ES



F20:MRM of 2 channels,ES\(363.0>169.0\)


\section*{13C4-PFHpA-EIS}


\begin{tabular}{ll} 
Dataset: & Untitled \\
Last Altered: & Friday, February 28, 2020 09:05:18 Pacific Standard Time \\
Printed: & Friday, February 28, 2020 09:08:38 Pacific Standard Time \\
\hline
\end{tabular}

Name: 200227P1-10, Date: 27-Feb-2020, Time: 16:58:53, ID: ST200227P1-8 PFC CS5 20B1109, Description: PFC CS5 \(20 B 1109\)

\begin{tabular}{ll} 
Last Altered: & \begin{tabular}{l} 
Friday, February 28, 2020 09:05:18 Pacific Standard Time \\
Printed:
\end{tabular} \\
Friday, February 28, 2020 09:08:38 Pacific Standard Time
\end{tabular}

Name: 200227P1-10, Date: 27-Feb-2020, Time: 16:58:53, ID: ST200227P1-8 PFC CS5 20B1109, Description: PFC CS5 20 B1109


13C5-PFNA-EIS







F51:MRM of 2 channels, ES\(530.7>82.8\)
\(6.209 \mathrm{e}+004\)




F44:MRM of 2 channels,ES-


13C2-PFDA-EIS
F45:MRM of 1 channel,ES-
\(515.1>469.9\)
F49:MRM of 2 channels,ES-

13C2-8:2 FTS-EIS
\[
\text { F50:MRM of } 1 \text { channel, ES- }
\]
\[
529>79.7
\]

\begin{tabular}{ll} 
Dataset: & Untittled \\
& \\
Last Altered: & Friday, February 28, 2020 09:05:18 Pacific Standard Time \\
Printed: & Friday, February 28, 2020 09:08:38 Pacific Standard Time
\end{tabular}

Name: 200227P1-10, Date: 27-Feb-2020, Time: 16:58:53, ID: ST200227P1-8 PFC CS5 20B1109, Description: PFC CS5 \(20 B 1109\)

\section*{PFNS \\ }

F53:MRM of 2 channels,ES
3.465- 005




F56:MRM of 2 channels,ES570. > 512





\section*{d5-N-EtFOSAA-EIS}

F60:MRM of 1 channel,ES-



F54:MRM of 2 channels, ES-
\(563.0>269\)



F68:MRM of 2 channels,ES
\(630.9>83\)


\footnotetext{
13C2-PFDOA-EIS
\[
\text { F63:MRM of } 1 \text { channel,ES- }
\]
\[
\begin{array}{r}
614.7>569.7 \\
5.031 e+005
\end{array}
\]

}
\begin{tabular}{ll} 
Dataset: & Untitled \\
Last Altered: & Friday, February 28, 2020 09:05:18 Pacific Standard Time \\
Printed: & Friday, February 28, 2020 09:08:38 Pacific Standard Time \\
\hline
\end{tabular}

Name: 200227P1-10, Date: 27-Feb-2020, Time: 16:58:53, ID: ST200227P1-8 PFC CS5 20B1109, Description: PFC CS5 \(20 B 1109\)


Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-10, Date: 27-Feb-2020, Time: 16:58:53, ID: ST200227P1-8 PFC CS5 20B1109, Description: PFC CS5 \(20 B 1109\)











Dataset: Untitled
Last Altered:
Printed: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-10, Date: 27-Feb-2020, Time: 16:58:53, ID: ST200227P1-8 PFC CS5 20B1109, Description: PFC CS5 \(20 B 1109\)








Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time

Name: 200227P1-10, Date: 27-Feb-2020, Time: 16:58:53, ID: ST200227P1-8 PFC CS5 20B1109, Description: PFC CS5 \(20 B 1109\)
\begin{tabular}{r} 
13C2-8:2 FTS-RSD \\
F50:MRM of \begin{tabular}{r}
1 channel,ES- \\
\(529>79.7\) \\
\(4.140 \mathrm{e}+004\)
\end{tabular} \\
\hline \(100-1\)
\end{tabular}




d5-N-ETFOSA-RSD
F52:MRM of 1 channel,ES-
\(531.1>168.9\)
\(6.968 \mathrm{e}+005\)





13C2-10:2 FTS-RSD
F69:MRM of 1 channel, ES-
\(632.9>80.0\)
\(2644 e+004\)



Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-10, Date: 27-Feb-2020, Time: 16:58:53, ID: ST200227P1-8 PFC CS5 20B1109, Description: PFC CS5 20B1109




13C7-PFUdA
F57:MRM of 1 channel,ES\(570.1>524.8\) \(6.787 \mathrm{e}+005\)




13C4-PFOS
F40:MRM of 1 channel,ES\(503>79.7\) 1.075e+005


Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-11, Date: 27-Feb-2020, Time: 17:16:12, ID: ST200227P1-9 PFC CS6 20B1110, Description: PFC CS6 \(20 B 1110\)


13C3-PFBA-EIS



F6:MRM of 2 channels, ES\(248.9>98.7\) \(2.343 e+005\)


13C3-PFBS-EIS
F12:MRM of 1 channel,ES-
\(302.0>98.8\)
\(3.318 \mathrm{e}+004\)


13C3-PFPeA-EIS
F8:MRM of 1 channel,ES-



13C3-PFPeA-EIS 13C3-PFBS-EIS
F8:MRM of 1 channel,ES-
\(266.0>221.8\)
\(2.616 \mathrm{e}+005\)



F11:MRM of 2 channeis,ES\(299.0>98.7\)




13C2-4:2 FTS-EIS
F17:MRM of 2 channels,ES\(329.0>79.7\) \(4.979 \mathrm{e}+004\)

Dataset: Untitled
\(\begin{array}{ll}\text { Last Altered: } & \text { Friday, February 28, 2020 09:05:18 Pacific Standard Time } \\ \text { Printed: } & \text { Friday, February 28, 2020 09:08:38 Pacific Standard Time }\end{array}\)

Name: 200227P1-11, Date: 27-Feb-2020, Time: 17:16:12, ID: ST200227P1-9 PFC CS6 20B1110, Description: PFC CS6 \(20 B 1110\)



13C2-PFHxA-EIS
F14:MRM of 1 channel,ES-
\(315.0>270\). \(6.130 \mathrm{e}+005\)


13C3-PFBS-EIS
F12:MRM of 1 channel,ES-


\section*{HFPO-DA}

F9:MRM of 3 channels,ES
F9:MRM of 3 channels,ES-
\(285.1>168.9\)


F9:MRM of 3 channels,ESF9:MRM of 3 channels,ES-
\(285.1>184.9\)


13C3-HFPO-DA-EIS
F10:MRM of 2 channels, ES-



F18:MRM of 2 channels,ES-


\section*{13C4-PFHPA-EIS}



F20:MRM of 2 channels,ES-

\section*{F20:MRM of 2 channels,ES-
\(363.0>169.0\)}


13C4-PFHpA-EIS



\section*{13C4-PFHpA-EIS}

F21:MRM of 1 channel,ES-
\(367.2>321.8\) \(3.685 \mathrm{e}+005\)

Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed:
Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-11, Date: 27-Feb-2020, Time: 17:16:12, ID: ST200227P1-9 PFC CS6 20B1110, Description: PFC CS6 \(20 B 1110\)


Dataset: Untitled
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-11, Date: 27-Feb-2020, Time: 17:16:12, ID: ST200227P1-9 PFC CS6 20B1110, Description: PFC CS6 \(20 B 1110\)


13C5-PFNA-EIS
F35:MRM of 1 channel,ES-



13C8-PFOSA-EIS




13C8-PFOS-EIS
F42:MRM of 1 channel,ES-



F51:MRM of 2 channels,ES-
\(530.7>82.8\) \(1.272 \mathrm{e}+005\)


13C8-PFOS-EIS



F44:MRM of 2 channels,ES-
\[
\begin{array}{r}
\text { F44:MRM of } 2 \text { channels,ES- } \\
513>219
\end{array}
\]
\[
100 \quad 1.233 \mathrm{e}+006
\]


\section*{13C2-PFDA-EIS}

F45:MRM of 1 channel,ES-



\section*{13C2-8:2 FTS-EIS}

F50:MRM of 1 channel, ES-
\(529>79.7\)


\section*{Dataset: Untitled}

Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed:
Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-11, Date: 27-Feb-2020, Time: 17:16:12, ID: ST200227P1-9 PFC CS6 20B1110, Description: PFC CS6 \(20 B 1110\)


13C8-PFOS-EIS
F42:MRM of 1 channel,ES



\(1.865 \mathrm{e}+006\)


\section*{d5-N-EtFOSAA-EIS}

F60:MRM of 1 channel,ES





F61:MRM of 2 channels,ES-


13C8-PFOS-EIS
F42:MRM of 1 channel,ES-
\(\begin{array}{rr} & 507.0>79.7 \\ 100- & 9.868 \mathrm{e}+004\end{array}\)



F68:MRM of 2 channels,ES\(630.9>83\)


\section*{13C2-PFDoA-EIS}

F63:MRM of 1 channel,ES\(614.7>569.7\)


\section*{Dataset: Untitled}

Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-11, Date: 27-Feb-2020, Time: 17:16:12, ID: ST200227P1-9 PFC CS6 20B1110, Description: PFC CS6 20B1110

Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-11, Date: 27-Feb-2020, Time: 17:16:12, ID: ST200227P1-9 PFC CS6 20B1110, Description: PFC CS6 20 B1110

d5-N-ETFOSA-EIS

 F75:MRM of 2 channels,ES-







\begin{tabular}{ll} 
Dataset: & Untitled \\
Last Altered: & Friday, February 28, 2020 09:05:18 Pacific Standard Time \\
Printed: & Friday, February 28, 2020 09:08:38 Pacific Standard Time \\
\hline
\end{tabular}

Name: 200227P1-11, Date: 27-Feb-2020, Time: 17:16:12, ID: ST200227P1-9 PFC CS6 20B1110, Description: PFC CS6 \(20 B 1110\)




13C5-PFNA-RSD








Name: 200227P1-11, Date: 27-Feb-2020, Time: 17:16:12, ID: ST200227P1-9 PFC CS6 20B1110, Description: PFC CS6 20B1110

\section*{13C2-8:2 FTS-RSD \\ F50:MRM of 1 channel,ES- \\ \(529>79.7\) \\ }


\section*{d3-N-MeFOSAA-RSD}

F58:MRM of 1 channel,ES\(573.3>419\) \(1.419 \mathrm{e}+005\)



d5-N-ETFOSA-RSD




\section*{13C2-PFDoA-RSD}

F63:MRM of 1 channel,ES-




d7-N-MeFOSE-RSD
F65:MRM of 1 channel,ES


Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-11, Date: 27-Feb-2020, Time: 17:16:12, ID: ST200227P1-9 PFC CS6 20B1110, Description: PFC CS6 20B1110


13C6-PFDA
F47:MRM of 1 channel ES
\(519.1>473.7\) \(5.893 e+005\)



13C7-PFUdA
F57:MRM of 1 channel,ES\(570.1>524.8\) \(6.654 \mathrm{e}+005\)



\begin{tabular}{ll} 
Last Altered: & \begin{tabular}{l} 
Friday, February 28, 2020 09:05:18 Pacific Standard Time \\
Printed:
\end{tabular}\(\quad\) Friday, February 28, 2020 09:08:38 Pacific Standard Time
\end{tabular}

Name: 200227P1-12, Date: 27-Feb-2020, Time: 17:26:40, ID: ST200227P1-10 PFC CS7 20B1111, Description: PFC CS7 \(20 B 1111\)








13C3-PFPeA-EIS





F11:MRM of 2 channels,ES-
\(299.0>98.7\) \(8.250 \mathrm{e}+005\)


\section*{13C3-PFBS-EIS}



F16:MRM of 2 channels,ES\(327.0>80.7\)


13C2-4:2 FTS-EIS


\section*{Dataset:} Untitled

Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-12, Date: 27-Feb-2020, Time: 17:26:40, ID: ST200227P1-10 PFC CS7 20B1111, Description: PFC CS7 \(20 B 1111\)




F19:MRM of 2 channels,ESF19.MRM of 2 channels,ES-
\(349 .>98.7\)
\(100-1.094 \mathrm{e}+006\)






F18:MRM of 2 channels, ES\(340.9>216.9\)


13C4-PFHpA-EIS



F20:MRM of 2 channels,ES-
\(363.0>169.0\)



13C4-PFHpA-EIS

\begin{tabular}{ll} 
Dataset: & Untitled \\
& Last Altered: \\
Friday, February 28, 2020 09:05:18 Pacific Standard Time \\
Printed: & Friday, February 28, 2020 09:08:38 Pacific Standard Time \\
\hline
\end{tabular}

Name: 200227P1-12, Date: 27-Feb-2020, Time: 17:26:40, ID: ST200227P1-10 PFC CS7 20B1111, Description: PFC CS7 \(20 B 1111\)

\section*{L-PFHxS}


F23:MRM of 2 channels,ES \(398.9>98.7\) (1007

13C3-PFHxS-EIS
\(\left.\begin{array}{rrr}\text { F24:MRM of } 1 \text { channel,ES- } \\ 401.8>79.7 \\ 7.690 \mathrm{e}+004\end{array}\right)\)


F29:MRM of 3 channels,ES-


F3C2-6:2 FTS-EIS
F30:MRM of 1 channel,ES-
\(429.0>79.7\)
\(3.759 \mathrm{e}+004\)



\section*{13C2-PFOA-EIS}

F27:MRM of 1 channel,ES-
\(414.9>369.7\)




Dataset:
Untitled
Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-12, Date: 27-Feb-2020, Time: 17:26:40, ID: ST200227P1-10 PFC CS7 20B1111, Description: PFC CS7 \(20 B 1111\)

\begin{abstract}
\section*{PFNA}


F34:MRM of 2 channels,ES

\end{abstract}

13C5-PFNA-EIS
F35:MRM of 1 channel,ES




13C8-PFOSA-EIS
F41:MRM of 1 channel,ES\(506>78\)
\(1.255 \mathrm{e}+005\)



13C8-PFOS-EIS
F42:MRM of 1 channel, ES \(507.0>79.7\)


F51:MRM of 2 channels,ES.


\section*{13C8-PFOS-EIS}



F44:MRM of 2 channeis ES \(513>219\)

13C2-PFDA-EIS
F45:MRM of 1 channel,ES\(515.1>469.9\)



F49:MRM of 2 channels,ES \(526.9>80.9\)


13C2-8:2 FTS-EIS
F50:MRM of 1 channel,ES

Dataset: Untitled

Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-12, Date: 27-Feb-2020, Time: 17:26:40, ID: ST200227P1-10 PFC CS7 20B1111, Description: PFC CS7 \(20 B 1111\)


13C8-PFOS-EIS
F42:MRM of 1 channel,ES-
\(507.0>79.7\) \(8.738 \mathrm{e}+004\)



d3-N-MeFOSAA-EIS



F59:MRM of 2 channels,ES-

d5-N-EtFOSAA-EIS
F60:MRM of 1 channel,ES\(589.3>419\) \(1.251 \mathrm{e}+005\)



13C2-PFUdA-EIS
F55:MRM of 1 channel,ES-
\(565>519.8\)
F55:MRM of 1 channel,ES-
\(565>519.8\)
\(6.291 \mathrm{e}+005\)



F61:MRM of 2 channels,ES( \(598.8>98.7\)


\section*{13C8-PFOS-EIS}

F42:MRM of 1 channel,ES\(507.0>79.7\) \(8.738 e+004\)



F68:MRM of 2 channels,ES-
\(630.9>83\)


13C2-PFDoA-EIS
F63:MRM of 1 channel,ES-
\(614.7>569.7\)


Last Altered:
Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-12, Date: 27-Feb-2020, Time: 17:26:40, ID: ST200227P1-10 PFC CS7 20B1111, Description: PFC CS7 \(20 B 1111\)





13C2-PFDoA-EIS
F63:MRM of 1 channel,ES-



F43:MRM of 2 channels,ES\(512.1>219\)


\section*{d3-N-MeFOSA-EIS}

F46:MRM of 1 channel,ES-


13C2-PFDoA-EIS
F63:MRM of 1 channel,ES-




13C2-PFTeDA-EIS
F74:MRM of 2 channels,ES-


F73:MRM of 2 channels,ES-


\section*{13C2-PFTeDA-EIS}

F74:MRM of 2 channels,ES-
\(715.1>669.7\) \(715.1>669.7\)
\(5.940 \mathrm{e}+005\)

Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-12, Date: 27-Feb-2020, Time: 17:26:40, ID: ST200227P1-10 PFC CS7 20B1111, Description: PFC CS7 \(20 B 1111\)


Last Altered: Friday, February 28, 2020 09:05:18 Pacific Standard Time
Printed: Friday, February 28, 2020 09:08:38 Pacific Standard Time

Name: 200227P1-12, Date: 27-Feb-2020, Time: 17:26:40, ID: ST200227P1-10 PFC CS7 20B1111, Description: PFC CS7 \(20 B 1111\)




13C5-PFNA-RSD
F35:MRM of 1 channel,ES-


13C8-PFOSA-RSD
F41:MRM of 1 channel, ES\(506>78\)
\(1.255 \mathrm{e}+005\)



13C2-PFOA-RSD
F27:MRM of 1 channel,ES-



13C8-PFOS-RSD
F42:MRM of 1 channel,ES-
\(507.0>79.7\)



\begin{tabular}{ll} 
Dataset: & Untitled \\
& \\
Last Altered: & Friday, February 28, 2020 09:05:18 Pacific Standard Time \\
Printed: & Friday, February 28, 2020 09:08:38 Pacific Standard Time
\end{tabular}

Name: 200227P1-12, Date: 27-Feb-2020, Time: 17:26:40, ID: ST200227P1-10 PFC CS7 20B1111, Description: PFC CS7 \(20 B 1111\)





d5-N-ETFOSA-RSD



d9-N-EtFOSE-RSD



\begin{tabular}{ll} 
Last Altered: & Friday, February 28, 2020 09:05:18 Pacific Standard Time \\
Printed: & Friday, February 28, 2020 09:08:38 Pacific Standard Time
\end{tabular}

Name: 200227P1-12, Date: 27-Feb-2020, Time: 17:26:40, ID: ST200227P1-10 PFC CS7 20B1111, Description: PFC CS7 \(20 B 1111\)

\section*{13C4-PFBA \\ F4:MRM of 1 channel, ES \(217.0>172.0\) \(1.403 \mathrm{e}+005\) \\ }



13C7-PFUdA
F57:MRM of 1 channel,ES-



\begin{tabular}{ll} 
Dataset: & Untitled \\
& \\
Last Altered: & Friday, February 28, 2020 10:26:25 Pacific Standard Time \\
Printed: & Friday, February 28, 2020 10:27:20 Pacific Standard Time
\end{tabular}

Name: 200227P1-14, Date: 27-Feb-2020, Time: 17:47:42, ID: ICV200227P1-1 PFC ICV 20B1112, Description: PFC ICV \(20 B 1112\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Trace & Area & IS Area & wi/vo! & RT & Response & Std. Conc & Conc. & \%Rec & Recovery ... & Ion Ratio & Ratio Out? \\
\hline 1 & 1 PFBA & \(213.0>168.8\) & 6322.493 & 8041.106 & 1.00 & 1.33 & 9.828 & 10.000 & 8.47 & 84.7 & NO & & \\
\hline 2 & 2 PFPrs & \(248.9>79.7\) & & 1555.507 & 1.00 & & & 10.000 & & 6 & NO & & YES \\
\hline 3 & 3 3:3 FTCA & \(240.9>176.9\) & & 13751.161 & 1.00 & & & 10.000 & & \(\checkmark\) & NO & & YES \\
\hline 4 & 4 PFPeA & \(263.1>218.9\) & 11481.687 & 13751.161 & 1.00 & 2.26 & 10.437 & 10.000 & 10.9 & 109.4 & NO & & \\
\hline 5 & 5 PFBS & \(299.0>79.7\) & 2661.016 & 1555.507 & 1.00 & 2.54 & 21.384 & 8.840 & 8.96 & 101.3 & NO & 3.169 & NO \\
\hline 6 & 6 4:2 FTS & \(327.0>307\) & 2027.788 & 2009.013 & 1.00 & 2.97 & 12.617 & 9.360 & 9.72 & 103.8 & NO & 0.864 & NO \\
\hline 7 & 47 13C3-PFBA-EIS & \(216.1>171.8\) & 8041.106 & & 1.00 & 1.33 & 8041.106 & 12.500 & 12.5 & 100.2 & NO & & \\
\hline 8 & 51 13C3-PFBS-EIS & \(302.0>98.8\) & 1555.507 & & 1.00 & 2.53 & 1555.507 & 12.500 & 12.7 & 101.4 & NO & & \\
\hline 9 & 49 13C3-PFPeA-EIS & \(266.0>221.8\) & 13751.161 & & 1.00 & 2.26 & 13751.161 & 12.500 & 11.9 & 94.8 & NO & & \\
\hline 10 & 49 13C3-PFPeA-EIS & \(266.0>221.8\) & 13751.161 & & 1.00 & 2.26 & 13751.161 & 12.500 & 11.9 & 94.8 & NO & & \\
\hline 11 & 51 13C3-PFBS-EIS & \(302.0>98.8\) & 1555.507 & & 1.00 & 2.53 & 1555.507 & 12.500 & 12.7 & 101.4 & NO & & \\
\hline 12 & 55 13C2-4:2 FTS-EIS & \(329.0>79.7\) & 2009.013 & & 1.00 & 2.98 & 2009.013 & 12.500 & 12.1 & 96.9 & NO & & \\
\hline 13 & -1 & & & & & & & & & & & & \\
\hline 14 & 7 PFHxA & \(313.0>269.0\) & 18872.977 & 22829.393 & 1.00 & 3.05 & 10.334 & 10.000 & 11.6 & 115.7 & NO & 20.416 & NO \\
\hline 15 & 8 PFPeS & \(349 .>79.7\) & 3091.768 & 1555.507 & 1.00 & 3.25 & 24.845 & 9.360 & 10.1 & 107.7 & NO & 2.805 & NO \\
\hline 16 & 9 HFPO-DA & \(285.1>168.9\) & 3732.078 & 4052.387 & 1.00 & 3.27 & 11.512 & 10.000 & 11.0 & 110.2 & NO & 2.659 & NO \\
\hline 17 & 10 5:3 FTCA & \(340.9>236.9\) & & 16330.987 & 1.00 & & & 10.000 & & (6) & NO & & YES \\
\hline 18. & 11 PFHpA & \(363.0>318.9\) & 16481.484 & 16330.987 & 1.00 & 3.66 & 12.615 & 10.000 & 10.8 & 108.2 & NO & 25.069 & NO \\
\hline 19 & 12 ADONA & \(376.8>250.9\) & 34749.301 & 16330.987 & 1.00 & 3.76 & 26.598 & 10.000 & 10.1 & 101.0 & NO & 3.858 & NO \\
\hline 20 & 57 13C2-PFHXA-EIS & \(315.0>270.0\) & 22829.393 & & 1.00 & 3.05 & 22829.393 & 12.500 & 13.0 & 103.7 & NO & & \\
\hline 21 & 51 13C3-PFBS-EIS & \(302.0>98.8\) & 1555.507 & & 1.00 & 2.53 & 1555.507 & 12.500 & 12.7 & 101.4 & NO & & \\
\hline 22 & 53 13C3-HFPO-DA-EIS & \(287.0>168.9\) & 4052.387 & & 1.00 & 3.27 & 4052.387 & 12.500 & 12.3 & 98.8 & NO & & \\
\hline 23 & 59 13C4-PFHPA-EIS & \(367.2>321.8\) & 16330.987 & & 1.00 & 3.66 & 16330.987 & 12.500 & 12.7 & 101.2 & NO & & \\
\hline 24 & 59 13C4-PFHpA-EIS & \(367.2>321.8\) & 16330.987 & & 1.00 & 3.66 & 16330.987 & 12.500 & 12.7 & 101.2 & NO & & \\
\hline 25 & 59 13C4-PFHPA-EIS & \(367.2>321.8\) & 16330.987 & & 1.00 & 3.66 & 16330.987 & 12.500 & 12.7 & 101.2 & NO & & \\
\hline 26 & -1 & & & & & & & & & & & & \\
\hline 27 & 13 L-PFHxS & \(398.9>79.7\) & 2735.047 & 3444.199 & 1.00 & 3.80 & 9.926 & 9.120 & 9.42 & 103.3 & NO & 2.264 & NO \\
\hline 28 & 15 6:2 FTS & \(427.0>407\) & 2284.346 & 1920.103 & 1.00 & 4.12 & 14.871 & 9.480 & 9.38 & 98.9 & NO & 1.076 & NO \\
\hline 29 & 16 L-PFOA & \(412.8>368.9\) & 21233.619 & 21699.271 & 1.00 & 4.17 & 12.232 & 10.000 & 10.1 & 100.8 & NO & 2.967 & NO \\
\hline 30 & 18 PFecHS & \(460.8>381.0\) & & 21699.271 & 1.00 & & & 10.000 & & (A) & NO & & YES \\
\hline 31 & 19 PFHpS & \(449.0>79.7\) & 3044.593 & 4525.175 & 1.00 & 4.28 & 8.410 & 9.480 & 8.65 & 91.3 & NO & 1.855 & NO \\
\hline 32 & 20 7:3 FTCA & \(440.9>336.9\) & & 21178.857 & 1.00 & & & 10.000 & & (1) & NO & & YES \\
\hline 33 & 61 13C3-PFHxS-EIS & \(401.8>79.7\) & 3444.199 & & 1.00 & 3.80 & 3444.199 & 12.500 & 11.1 & 89.1 & NO & & \\
\hline 34. & 63 13C2-6:2 FTS-EIS & \(429.0>79.7\) & 1920.103 & & 1.00 & 4.12 & 1920.103 & 12.500 & 12.9 & 103.2 & NO & & \\
\hline 35 & 69 13C2-PFOA-EIS & \(414.9>369.7\) & 21699.271 & & 1.00 & 4.17 & 21699.271 & 12.500 & 12.2 & 97.4 & NO & & \\
\hline 36 & 69 13C2-PFOA-EIS & - \(414.9>369.7\) & 21699.271 & & 1.00 & 4.17 & 21699.271 & 12.500 & 12.2 & 97.4 & NO. & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Dataset: & D:IPFAS5.PROURESULTS\200227P1\200227P1-ICV.qld \\
& \\
Last Altered: & Friday, February 28, 2020 10:41:56 Pacific Standard Time \\
Printed: & Friday, February 28, 2020 10:42:14 Pacific Standard Time \\
\hline
\end{tabular}

Name: 200227P1-14, Date: 27-Feb-2020, Time: 17:47:42, ID: ICV200227P1-1 PFC ICV 20B1112, Description: PFC ICV \(20 B 1112\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Trace & Area & IS Area & wt/vol & RT & Response & Std. Conc & Conc. & \%Rec & Recovery ... & Ion Ratio & Ratio Out? \\
\hline 37 & 71 13C8-PFOS-EIS & \(507.0>79.7\) & 4525.175 & & 1.00 & 4.70 & 4525.175 & 12.500 & 13.1 & 104.5 & NO & & \\
\hline 38 & 65 13C5-PFNA-EIS & \(468.2>422.9\) & 21178.857 & & 1.00 & 4.62 & 21178.857 & 12.500 & 12.1 & 96.8 & NO & & \\
\hline 39 & -1 & & & & & & & & & & & & \\
\hline 40 & 21 PFNA & \(463.0>418.8\) & 20805.121 & 21178.857 & 1.00 & 4.62 & 12.279 & 10.000 & 11.3 & 113.4 & NO & 7.745 & NO \\
\hline 41 & 22 PFOSA & \(497.9>77.9\) & 3657.668 & 5462.565 & 1.00 & 4.67 & 8.370 & 10.000 & 10.6 & 106.4 & NO & 24.046 & NO \\
\hline 42 & 23 L-PFOS & \(498.9>79.7\) & 3202.209 & 4525.175 & 1.00 & 4.70 & 8.846 & 9.280 & 9.46 & 102.0 & NO & 2.620 & NO \\
\hline 43 & \(259 \mathrm{Cl}-\mathrm{PF} 30 \mathrm{NS}\) & \(530.7>350.8\) & 3079.607 & 4525.175 & 1.00 & 4.92 & 8.507 & 9.280 & 8.47 & 91.3 & NO & 15.870 & NO \\
\hline 44 & 26 PFDA & \(513>468.8\) & 23411.055 & 21643.455 & 1.00 & 4.99 & 13.521 & 10.000 & 11.7 & 117.0 & NO & 12.086 & NO \\
\hline 45 & 27 8:2 FTS & \(526.9>507\) & 1831.183 & 1591.167 & 1.00 & 4.96 & 14.386 & 9.600 & 10.3 & 107.2 & NO & 2.912 & YES \\
\hline 46 & 65 13C5-PFNA-EIS & \(468.2>422.9\) & 21178.857 & & 1.00 & 4.62 & 21178.857 & 12.500 & 12.1 & 96.8 & NO & & \\
\hline 47 & 67 13C8-PFOSA-EIS & \(506>78\) & 5462.565 & & 1.00 & 4.67 & 5462.565 & 12.500 & 12.2 & 97.3 & NO & & \\
\hline 48 & 71 13C8-PFOS-EIS & \(507.0>79.7\) & 4525.175 & & 1.00 & 4.70 & 4525.175 & 12.500 & 13.1 & 104.5 & NO & & \\
\hline 49 & 71 13C8-PFOS-EIS & \(507.0>79.7\) & 4525.175 & & 1.00 & 4.70 & 4525.175 & 12.500 & 13.1 & 104.5 & NO & & \\
\hline 50 & 73 13C2-PFDA-EIS & \(515.1>469.9\) & 21643.455 & & 1.00 & 4.99 & 21643.455 & 12.500 & 11.3 & 90.4 & NO & & \\
\hline 51 & 75 13C2-8:2 FTS-EIS & \(529>79.7\) & 1591.167 & & 1.00 & 4.96 & 1591.167 & 12.500 & 12.0 & 95.9 & NO & & \\
\hline 52 & -1 & & & & & & & & & & & & \\
\hline 53 & 28 PFNS & \(549.1>79.7\) & 3378.034 & 4525.175 & 1.00 & 5.06 & 9.331 & 9.600 & 9.63 & 100.4 & NO & 2.539 & NO \\
\hline 54. & 29 L-MeFOSAA & \(570>419\) & 6524.342 & 6488.712 & 1.00 & 5.14 & 12.569 & 10.000 & 9.63 & 96.3 & NO & 2.080 & NO \\
\hline 55. & 31 L-EtFOSAA & \(584.1>419\) & 5605.035 & 6445.108 & 1.00 & 5.31 & 10.871 & 10.000 & 10.3 & 103.4 & NO & 1.149 & NO \\
\hline 56 & 33 PFUdA & \(563.0>518.9\) & 23800.664 & 26630.203 & 1.00 & 5.32 & 11.172 & 10.000 & 11.9 & 119.0 & NO & 25.441 & NO \\
\hline 57 & 34 PFDS & \(598.8>79.7\) & 2715.856 & 4525.175 & 1.00 & 5.36 & 7.502 & 9.600 & 8.97 & 93.4 & NO & 1.911 & NO \\
\hline 58 & 3511 Cl -PF30UdS & \(630.9>450.9\) & 8095.046 & 24157.877 & 1.00 & 5.53 & 4.189 & 9.440 & 9.34 & 98.9 & NO & 19.549 & NO \\
\hline 59 & 71 13C8-PFOS-EIS & \(507.0>79.7\) & 4525.175 & & 1.00 & 4.70 & 4525.175 & 12.500 & 13.1 & 104.5 & NO & & \\
\hline 60 & 77 d3-N-MeFOSAA-EIS & \(573.3>419\) & 6488.712 & & 1.00 & 5.14 & 6488.712 & 12.500 & 13.4 & 107.6 & NO & & \\
\hline 61 & \(81 \mathrm{~d} 5-\mathrm{N}\)-EtFOSAA-EIS & \(589.3>419\) & 6445.108 & & 1.00 & 5.30 & 6445.108 & 12.500 & 11.6 & 93.2 & NO & & \\
\hline 62 & 79 13C2-PFUdA-EIS & \(565>519.8\) & 26630.203 & & 1.00 & 5.32 & 26630.203 & 12.500 & 12.1 & 97.1 & NO & & \\
\hline 63 & 71 13C8-PFOS-EIS & \(507.0>79.7\) & 4525.175 & & 1.00 & 4.70 & 4525.175 & 12.500 & 13.1 & 104.5 & NO & & \\
\hline 64 & 83 13C2-PFDOA-EIS & \(614.7>569.7\) & 24157.877 & & 1.00 & 5.60 & 24157.877 & 12.500 & 12.4 & 99.3 & NO & & \\
\hline 65 & -1 & & & & & & & & & 0 & & & \\
\hline 66 & 36 10:2 FTS & \(626.9>607\) & & 1227.195 & 1.00 & & & 10.000 & & \[
(\alpha)
\] & NO & & YES \\
\hline 67 & 37 PFDoA & \(612.9>569.0\) & 22950.121 & 24157.877 & 1.00 & 5.60 & 11.875 & 10.000 & 10.2 & 101.6 & NO & 10.550 & NO \\
\hline 68 & 38 N-MeFOSA & \(512.1>168.9\) & & 22795.076 & 1.00 & & & 9.600 & & (3) & NO & & YES \\
\hline 69 & 39 PFTrDA & \(662.9>618.9\) & 25021.367 & 24157.877 & 1.00 & 5.84 & 12.947 & 10.000 & 10.5 & 105.5 & NO & 61.276 & NO \\
\hline 70 & 40 PFDoS & \(698.8>79.7\) & & 28012.779 & 1.00 & & & 10.000 & & \[
(\phi)
\] & NO & & YES \\
\hline 71 & 41 PFTeDA & \(713.0>669.0\) & 22588.549 & 28012.779 & 1.00 & 6.06 & 10.080 & 10.000 & 11.1 & H1.2 & NO & 15.957 & NO \\
\hline 72 & 85 13C2-10:2 FTS-EIS & \(632.9>80.0\) & 1227.195 & & 1.00 & 5.58 & 1227.195 & 10.000 & 11.8 & 117.8 & NO & & \\
\hline
\end{tabular}

Last Altered: Friday, February 28, 2020 10:26:25 Pacific Standard Time
Printed: Friday, February 28, 2020 10:27:20 Pacific Standard Time

Name: 200227P1-14, Date: 27-Feb-2020, Time: 17:47:42, ID: ICV200227P1-1 PFC ICV 20B1112, Description: PFC ICV \(20 B 1112\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Trace & Area & IS Area & wt/voi & RT & Response & Std. Conc & Conc. & \%Rec & Recovery ... Ion Ratio & Ratio Out? \\
\hline 73 & 83 13C2-PFDoA-EIS & \(614.7>569.7\) & 24157.877 & & 1.00 & 5.60 & 24157.877 & 12.500 & 12.4 & 99.3 & NO & \\
\hline 74 & 87 d3-N-MeFOSA-EIS & \(515.2>168.9\) & 22795.076 & & 1.00 & 5.70 & 22795.076 & 149.200 & 155 & 103.8 & NO & \\
\hline 75 & 83 13C2-PFDoA-EIS & \(614.7>569.7\) & 24157.877 & & 1.00 & 5.60 & 24157.877 & 12.500 & 12.4 & 99.3 & NO & \\
\hline 76 & 89 13C2-PFTeDA-EIS & \(715.1>669.7\) & 28012.779 & & 1.00 & 6.06 & 28012.779 & 12.500 & 13.4 & 107.5 & NO & \\
\hline 77 & 89 13C2-PFTeDA-EIS & \(715.1>669.7\) & 28012.779 & & 1.00 & 6.06 & 28012.779 & 12.500 & 13.4 & 107.5 & NO & \\
\hline 78 & -1 & & & & & & & & & & & \\
\hline 79 & 42 N -EtFOSA & \(526.1>168.9\) & & 32882.824 & 1.00 & & & 9.600 & & (4) & NO & YES \\
\hline 80 & 43 PFHxDA & \(813.1>768.6\) & & 37459.668 & 1.00 & & & 10.000 & & & NO & YES \\
\hline 81 & 44 PFODA & \(913.1>868.8\) & & 37459.668 & 1.00 & & & 10.000 & & & NO & \\
\hline 82 & 45 N-MeFOSE & \(616.1>58.9\) & & 24710.654 & 1.00 & & & 9.600 & & & NO & \\
\hline 83 & \(46 \mathrm{~N}-\mathrm{EtFOSE}\) & \(630.1>58.9\) & & 28454.996 & 1.00 & & & 9.600 & & \(\downarrow\) & NO & \\
\hline 84 & 91 d5-N-ETFOSA-EIS & \(531.1>168.9\) & 32882.824 & & 1.00 & 6.12 & 32882.824 & 149.200 & 152 & 102.1 & NO & \\
\hline 85 & 93 13C2-PFHxDA-EIS & \(815>769.7\) & 37459.668 & & 1.00 & 6.39 & 37459.668 & 12.500 & 12.2 & 97.5 & NO & \\
\hline 86 & 93 13C2-PFHxDA-EIS & \(815>769.7\) & 37459.668 & & 1.00 & 6.39 & 37459.668 & 12.500 & 12.2 & 97.5 & NO & \\
\hline 87 & 95 d7-N-MeFOSE-EIS & \(623.1>58.9\) & 24710.654 & & 1.00 & 6.29 & 24710.654 & 149.200 & 148 & 99.4 & NO & \\
\hline 88 & 97 d9-N-EtFOSE-EIS & \(639.2>58.8\) & 28454.996 & & 1.00 & 6.44 & 28454.996 & 149.200 & 147 & 98.7 & NO & \\
\hline 89 & 71 13C8-PFOS-EIS & \(507.0>79.7\) & 4525.175 & & 1.00 & 4.70 & 4525.175 & 12.500 & 13.1 & 104.5 & NO & \\
\hline 90 & -1 & & & & & & & & & & & \\
\hline 91 & 48 13C3-PFBA-RSD & \(216.1>171.8\) & 8041.106 & 9951.637 & 1.00 & 1.33 & 10.100 & 12.500 & 12.4 & 99.4 & NO & \\
\hline 92 & 50 13C3-PFPeA-RSD & \(266.0>221.8\) & 13978.176 & 23919.768 & 1.00 & 2.26 & 7.305 & 12.500 & 12.4 & 98.9 & NO & \\
\hline 93 & 52 13C3-PFBS-RSD & \(302.0>98.8\) & 1555.507 & 1374.318 & 1.00 & 2.53 & 14.148 & 12.500 & 13.0 & 103.8 & NO & \\
\hline 94 & 54 13C3-HFPO-DA-RSD & \(287.0>168.9\) & 4052.387 & 23919.768 & 1.00 & 3.27 & 2.118 & 12.500 & 12.1 & 97.0 & NO & \\
\hline 95 & 56 13C2-4:2 FTS-RSD & \(329.0>79.7\) & 2009.013 & 1374.318 & 1.00 & 2.98 & 18.273 & 12.500 & 13.0 & 103.6 & NO & \\
\hline 96 & \(5813 \mathrm{C} 2-\mathrm{PFHxA}\)-RSD & \(315.0>270.0\) & 22829.393 & 23919.768 & 1.00 & 3.05 & 11.930 & 12.500 & 12.2 & 97.5 & NO & \\
\hline 97 & 60 13C4-PFHpA-RSD & \(367.2>321.8\) & 16330.987 & 23919.768 & 1.00 & 3.66 & 8.534 & 12.500 & 12.6 & 101.1 & NO & \\
\hline 98 & 62 13C3-PFHxS-RSD & \(401.8>79.7\) & 3444.199 & 1374.318 & 1.00 & 3.80 & 31.326 & 12.500 & 12.9 & 103.3 & NO & \\
\hline 99 & 64 13C2-6:2 FTS-RSD & \(429.0>79.7\) & 1920.103 & 4550.261 & 1.00 & 4.12 & 5.275 & 12.500 & 12.1 & 96.8 & NO & \\
\hline 100 & 66 13C5-PFNA-RSD & \(468.2>422.9\) & 21178.857 & 23781.623 & 1.00 & 4.62 & 11.132 & 12.500 & 11.7 & 93.7 & NO & \\
\hline 101 & 68 13C8-PFOSA-RSD & \(506>78\) & 5462.565 & 25451.531 & 1.00 & 4.67 & 2.683 & 12.500 & 12.4 & 99.3 & NO & \\
\hline 102 & 70 13C2-PFOA-RSD & \(414.9>369.7\) & 21699.271 & 24416.922 & 1.00 & 4.17 & 11.109 & 12.500 & 12.1 & 96.9 & NO & \\
\hline 103 & -1 & & & & & & & & & & & \\
\hline 104 & 72 13C8-PFOS-RSD & \(507.0>79.7\) & 4593.541 & 4550.261 & 1.00 & 4.70 & 12.619 & 12.500 & 13.6 & 108.9 & NO & \\
\hline 105 & 74 13C2-PFDA-RSD & \(515.1>469.9\) & 21643.455 & 21341.871 & 1.00 & 4.99 & 12.677 & 12.500 & 12.9 & 103.2 & NO & \\
\hline 106 & 76 13C2-8:2 FTS-RSD & \(529>79.7\) & 1591.167 & 4550.261 & 1.00 & 4.96 & 4.371 & 12.500 & 11.9 & 95.2 & NO & \\
\hline 107 & 78 d3-N-MeFOSAA-RSD & \(573.3>419\) & 6488.712 & 25451.531 & 1.00 & 5.14 & 3.187 & 12.500 & 14.0 & 112.3 & NO & \\
\hline 108 & 80 13C2-PFUdA-RSD & 565 > 519.8 & 26630.203 & 25451.531 & 1.00 & 5.32 & 13.079 & 12.500 & 12.4 & 99.4 & NO & \\
\hline
\end{tabular}

Last Altered: Friday, February 28, 2020 10:26:25 Pacific Standard Time
Printed:
Friday, February 28, 2020 10:27:20 Pacific Standard Time

Name: 200227P1-14, Date: 27-Feb-2020, Time: 17:47:42, ID: ICV200227P1-1 PFC ICV 20B1112, Description: PFC ICV \(20 B 1112\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Trace & Area & 15 Area & witvol & RT & Response & Std. Conc & Conc. & \%Rec & Recovery ... & Ion Riatio & Ratio Out? \\
\hline 109 & 82 d5-N-EtFOSAA-RSD & \(589.3>419\) & 6445.108 & 25451.531 & 1.00 & 5.30 & 3.165 & 12.500 & 13.1 & 104.7 & NO & & \\
\hline 110 & 84 13C2-PFDoA-RSD & \(614.7>569.7\) & 24157.877 & 21341.871 & 1.00 & 5.60 & 14.149 & 12.500 & 14.6 & 116.6 & NO & & \\
\hline 111 & 86 13C2-10:2 FTS-RSD & \(632.9>80.0\) & 1227.195 & 4550.261 & 1.00 & 5.58 & 3.371 & 10.000 & 11.8 & 117.9 & No & & \\
\hline 112 & \(88 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSA}-\mathrm{RSD}\) & \(515.2>168.9\) & 22795.076 & 25451.531 & 1.00 & 5.70 & 11.195 & 149.200 & 150 & 100.4 & No & & \\
\hline 113 & 90 13C2-PFTeDA-RSD & \(715.1>669.7\) & 28012.779 & 25451.531 & 1.00 & 6.06 & 13.758 & 12.500 & 13.1 & 105.0 & NO & & \\
\hline 114 & \(92 \mathrm{d5}\)-N-ETFOSA-RSD & \(531.1>168.9\) & 32882.824 & 25451.531 & 1.00 & 6.12 & 16.150 & 149.200 & 155 & 104.1 & NO & & \\
\hline 115 & 94 13C2-PFHxDA-RSD & \(815>769.7\) & 37459.668 & 25451.531 & 1.00 & 6.39 & 18.398 & 12.500 & 12.6 & 100.4 & NO & & \\
\hline 116 & -1 & & & & & & & & & & & & \\
\hline 117 & 96 d7-N-MeFOSE-RSD & \(623.1>58.9\) & 24710.654 & 25451.531 & 1.00 & 6.29 & 12.136 & 149.200 & 149 & 99.6 & No & & \\
\hline 118 & 98 d9-N-EtFOSE-RSD & \(639.2>58.8\) & 28454.996 & 25451.531 & 1.00 & 6.44 & 13.975 & 149.200 & 149 & 99.9 & NO & & \\
\hline 119 & 99 13C4-PFBA & \(217.0>172.0\) & 9951.637 & 9951.637 & 1.00 & 1.33 & 12.500 & 12.500 & 12.5 & 100.0 & No & & \\
\hline 120 & 1... 13C5-PFHXA & \(318.0>272.9\) & 23919.768 & 23919.768 & 1.00 & 3.05 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline 121 & 1... 13C8-PFOA & \(420.9>376.0\) & 24416.922 & 24416.922 & 1.00 & 4.17 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline 122 & 1... 1802-PFHxS & \(403.0>102.6\) & 1374.318 & 1374.318 & 1.00 & 3.80 & 12.500 & 12.500 & 12.5 & 100.0 & No & & \\
\hline 123 & 1... 13C9-PFNA & \(472.2>426.9\) & 23781.623 & 23781.623 & 1.00 & 4.62 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline 124 & 1... 13C4-PFOS & \(503>79.7\) & 4550.261 & 4550.261 & 1.00 & 4.70 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline 125 & 1... 13C6-PFDA & \(519.1>473.7\) & 21341.871 & 21341.871 & 1.00 & 4.99 & 12.500 & 12.500 & 12.5 & 100.0 & No & & \\
\hline 126 & 1... 13C7-PFUdA & \(570.1>524.8\) & 25451.531 & 25451.531 & 1.00 & 5.32 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline
\end{tabular}
\begin{tabular}{ll} 
Dataset: & Untitled \\
& Last Altered: \\
Friday, February 28, 2020 10:26:25 Pacific Standard Time \\
Printed: & Friday, February 28, 2020 10:27:20 Pacific Standard Time
\end{tabular}

\section*{Method: D:\PFAS5.PRO\MethDB\PFAS_FULL_80C_012320_NEW_ICV.mdb 28 Feb 2020 10:21:37} Calibration: D:\PFAS5.PRO\CurveDB\C18_VAL-PFAS_Q5_02-27-20.cdb 28 Feb 2020 09:57:55

Name: 200227P1-14, Date: 27-Feb-2020, Time: 17:47:42, ID: ICV200227P1-1 PFC ICV 20B1112, Description: PFC ICV \(20 B 1112\)


Last Altered: Friday, February 28, 2020 10:26:25 Pacific Standard Time
Printed: Friday, February 28, 2020 10:27:20 Pacific Standard Time

Name: 200227P1-14, Date: 27-Feb-2020, Time: 17:47:42, ID: ICV200227P1-1 PFC ICV 20B1112, Description: PFC ICV \(20 B 1112\)


F13:MRM of 2 channels,ESF13:MRM of 2 channels,ES-
\(313>118.9\)
\(2.275 e+004\)


13C2-PFHxA-EIS
F14:MRM of 1 channel,ES-




F9:MRM of 3 channels,ES-








F22:MRM of 2 channels,ES-


13C4-PFHpA-EIS
F21:MRM of 1 channel,ES-
\(367.2>321.8\)
\begin{tabular}{ll} 
Dataset: & Untitled \\
Last Altered: & Friday, February 28, 2020 10:26:25 Pacific Standard Time \\
Printed: & Friday, February 28, 2020 10:27:20 Pacific Standard Time \\
\hline
\end{tabular}

Name: 200227P1-14, Date: 27-Feb-2020, Time: 17:47:42, ID: ICV200227P1-1 PFC ICV 20B1112, Description: PFC ICV \(20 B 1112\)



F33:MRM of 2 channels,ES-
\[
\begin{array}{r}
449>98.7
\end{array}
\]


13C2-PFOA-EIS
F27:MRM of 1 channel,ES-



F32:MRM of 2 channels,ES-

\section*{13C8-PFOS-EIS}

F42:MRM of 1 channel,ES \(507.0>79.7\)



F31:MRM of 2 channels,ES-


13C5-PFNA-EIS
F35:MRM of 1 channel,ES\(468.2>422.9\)

\begin{tabular}{ll} 
Dataset: & Untitled \\
Last Altered: & Friday, February 28, 2020 10:26:25 Pacific Standard Time \\
Printed: & Friday, February 28, 2020 10:27:20 Pacific Standard Time \\
\hline
\end{tabular}

Name: 200227P1-14, Date: 27-Feb-2020, Time: 17:47:42, ID: ICV200227P1-1 PFC ICV 20B1112, Description: PFC ICV \(20 B 1112\)


F34:MRM of 2 channels,ESF34.MRM of 2 channels, ES
\(463.0>219.0\)


13C5-PFNA-EIS



F37:MRM of 2 channels,ES\(497.9>169\)
\(100-3.907 \mathrm{e}+003\)

4.7505 .0005 .250

\section*{13C8-PFOSA-EIS}


F39:MRM of 2 channels,ES F39:MRM of 2 channels, ES
\(498.9>98.7\)



F42:MRM of 1 channel,ES \(507.0>79.7\)



F51:MRM of 2 channels,ES-


13C8-PFOS-EIS
F42:MRM of 1 channel,ES-


\section*{PFDA}

F44:MRM of 2 channels,ES\(513>468.8\) \(5.824 e+005\)


F44:MRM of 2 channels,ES\(513>219\)


13C2-PFDA-EIS
F45:MRM of 1 channel, ES-


\begin{tabular}{ll} 
Last Altered: & Friday, February 28, 2020 10:26:25 Pacific Standard Time \\
Printed: & Friday, February 28, 2020 10:27:20 Pacific Standard Time
\end{tabular}

Name: 200227P1-14, Date: 27-Feb-2020, Time: 17:47:42, ID: ICV200227P1-1 PFC ICV 20B1112, Description: PFC ICV \(20 B 1112\)




F56:MRM of 2 channels,ES-
\(570 .>512\)



F59:MRM of 2 channels,ES-




F54:MRM of 2 channels,ES-
\(563.0>269\)
\(2.566 \mathrm{e}+004\)







13C2-PFDoA-EIS
F63:MRM of 1 channel,ES-
\(614.7>569.7\) \(5.918 \mathrm{e}+005\)

\section*{Dataset: D:IPFAS5.PRO\RESULTSL200227P11200227P1-ICV.qld}

Last Altered: Friday, February 28, 2020 10:41:56 Pacific Standard Time
Printed: Friday, February 28, 2020 10:42:14 Pacific Standard Time

Name: 200227P1-14, Date: 27-Feb-2020, Time: 17:47:42, ID: ICV200227P1-1 PFC ICV 20B1112, Description: PFC ICV \(20 B 1112\)



13C2-PFDoA-EIS




F71:MRM of 2 channels, ES-



F72:MRM of 2 channels,ES-



13C2-PFTeDA-EIS
F74:MRM of 2 channels, ES.
\(715.1>669.7\)
\(6.943 e+005\)

\begin{tabular}{ll} 
Dataset: & Untitled \\
Last Altered: & Friday, February 28, 2020 10:26:25 Pacific Standard Time \\
Printed: & Friday, February 28, 2020 10:27:20 Pacific Standard Time
\end{tabular}

Name: 200227P1-14, Date: 27-Feb-2020, Time: 17:47:42, ID: ICV200227P1-1 PFC ICV 20B1112, Description: PFC ICV \(20 B 1112\)






Dataset: Untitled
Last Altered: Friday, February 28, 2020 10:26:25 Pacific Standard Time
Printed:
Friday, February 28, 2020 10:27:20 Pacific Standard Time

Name: 200227P1-14, Date: 27-Feb-2020, Time: 17:47:42, ID: ICV200227P1-1 PFC ICV 20B1112, Description: PFC ICV \(20 B 1112\)


\section*{13C4-PFHpA-RSD}



13C3-PFHxS-RSD







\(506>78\) 1.367 e+005


Printed: Friday, February 28, 2020 10:27:20 Pacific Standard Time

Name: 200227P1-14, Date: 27-Feb-2020, Time: 17:47:42, ID: ICV200227P1-1 PFC ICV 20B1112, Description: PFC ICV \(20 B 1112\)



\section*{13C2-PFDA-RSD}

F45:MRM of 1 channel,ES\(515.1>469.9\) \(5.474 \mathrm{e}+005\)


13C2-10:2 FTS-RSD
F69:MRM of 1 channel,ES\(632.9>80.0\) \(2.700 \mathrm{e}+004\)



d3-N-MeFOSA-RSD
F46:MRM of 1 channel,ES-
\(515.2>168.9\) \(5.109 e+005\)

\section*{d3-N-MeFOSAA-RSD \\ F58:MRM of 1 channel,ES- \\ \(573.3>419\)}


13C2-PFTEDA-RSD
F74:MRM of 2 channels,ES-
\(715.1>669.7\) \(6.943 \mathrm{e}+005\)


d5-N-ETFOSA-RSD
F52:MRM of 1 channel,ES-



13C2-PFHxDA-RSD
F76:MRM of 1 channel,ES-
\(815>769.7\)
\(1.126 e+006\)

\section*{Dataset: Untitled}

Last Altered: Friday, February 28, 2020 10:26:25 Pacific Standard Time
Printed: \(\quad\) Friday, February 28, 2020 10:27:20 Pacific Standard Time

Name: 200227P1-14, Date: 27-Feb-2020, Time: 17:47:42, ID: ICV200227P1-1 PFC ICV 20B1112, Description: PFC ICV \(20 B 1112\)



\section*{Method: D:|PFAS5.PRO\MethDBINEW_PFAS_80C_022720.mdb 28 Feb 2020 08:07:56}

\section*{Calibration: D:|PFAS5.PRO\CurveDBIC̄18_VAL-PFAS_Q5_02-27-20.cdb 28 Feb 2020 09:57:55}

\section*{Name: 200227P1-15, Date: 27-Feb-2020, Time: 17:58:10, ID: IB, Description: IB}


13C3-PFBA-EIS
IB IBF3:MRM of 1 channel,ES\(216.1>171.8\)
\(2.943 e+004\) (100


13C3-PFBS-EIS
F12:MRM of 1 channel,ES-



13C3-PFPeA-EIS
IB IBF8:MRM of 1 channel,ES-
266.0 > 221.8


\section*{PFPeA}

IB IBF7:MRM of 1 channel,ES-


\section*{13C3-PFPeA-EIS}

IB IBF8:MRM of 1 channel,ES-


\section*{PFBS}


13C3-PFBS-EIS
F12:MRM of 1 channel,ES\(302.0>98.8\) \(1.710 \mathrm{e}+004\)

\section*{4:2 FTS}


13C2-4:2 FTS-EIS
F17:MRM of 2 channels,ES-
\(329.0>79.7\) \(2.942 \mathrm{e}+004\)

Name: 200227P1-15, Date: 27-Feb-2020, Time: 17:58:10, ID: IB, Description: IB
PFHxA
F13:MRM of 2 channels,ES-
\(313.0>269.0\)
100 1.752e+003

\section*{13C2-PFHxA-EIS}





13C3-HFPO-DA-EIS
F10:MRM of 2 channels,ES-
\(287.0>168.9\)
\(6.977 \mathrm{e}+004\)


Name: 200227P1-15, Date: 27-Feb-2020, Time: 17:58:10, ID: IB, Description: IB

\section*{L-PFHxS}

F23:MRM of 2 channels,ES-
\begin{tabular}{r|r} 
\\
100 \\
\hline
\end{tabular}

F23:MRM of 2 channels,ESF23:MRM of 2 channels,ES-


\section*{13C3-PFHxS-EIS}



F29:MRM of 3 channels,ES-


13C2-6:2 FTS-EIS



13C2-PFOA-EIS




\section*{13C8-PFOS-EIS}



\section*{Name: 200227P1-15, Date: 27-Feb-2020, Time: 17:58:10, ID: IB, Description: IB}
F34:MRM of 2 channels,ES-
\(463.0>418.8\)
100


\section*{13C5-PFNA-EIS}


\section*{PFOSA}


F37:MRM of 2 channels,ES-


13C8-PFOSA-EIS


F39:MRM of 2 channels,ES-


\section*{13C8-PFOS-EIS}

F42:MRM of 1 channel,ES-


F51:MRM of 2 channels,ES530.7 > 82.8


\section*{13C8-PFOS-EIS}

F42:MRM of 1 channel ES



\section*{Name: 200227P1-15, Date: 27-Feb-2020, Time: 17:58:10, ID: IB, Description: IB}
\begin{tabular}{l} 
F53:MRM of 2 channels,ES- \\
\(549.1>79.7\) \\
\hline
\end{tabular}

F53:MRM of 2 channels,ES-


F56:MRM of 2 channels,ES-




F59:MRM of 2 channels,ES-


\section*{d5-N-EtFOSAA-EIS}



F54:MRM of 2 channels,ESF54.MRMM.0 > 269


\section*{13C2-PFUdA-EIS}



\section*{13C8-PFOS-EIS}



13C2-PFDoA-EIS

Last Altered: Friday, February 28, 2020 10:18:53 Pacific Standard Time Printed: Friday, February 28, 2020 10:19:02 Pacific Standard Time

Name: 200227P1-15, Date: 27-Feb-2020, Time: 17:58:10, ID: IB, Description: IB

\section*{10:2 FTS}
F66:MRM of 2 channels,ES-
\(626.9>607\)
\(4.495 \mathrm{e}+001\)


\section*{13C2-10:2 FTS-EIS}



13C2-PFDoA-EIS


\section*{d3-N-MeFOSA-EIS}



\section*{13C2-PFDoA-EIS}


F72:MRM of 2 channels,ES-


\section*{13C2-PFTeDA-EIS}


PFTeDA


F73:MRM of 2 channels,ES713. > 369.0


\section*{13C2-PFTeDA-EIS}


Last Altered: Friday, February 28, 2020 10:18:53 Pacific Standard Time Printed: Friday, February 28, 2020 10:19:02 Pacific Standard Time

Name: 200227P1-15, Date: 27-Feb-2020, Time: 17:58:10, ID: IB, Description: IB



\section*{13C2-PFHxDA-EIS}

F76:MRM of 1 channel,ES-
\(815>769.7\)
100


13C2-PFHxDA-EIS


d7-N-MeFOSE-EIS


\section*{N-EtFOSE}

d5-N-ETFOSA-EIS
F52:MRM of 1 channel,ES-
\(531.1>168.9\)


\section*{13C8-PFOS-EIS}


Last Altered: Friday, February 28, 2020 10:18:53 Pacific Standard Time Printed: Friday, February 28, 2020 10:19:02 Pacific Standard Time

Name: 200227P1-15, Date: 27-Feb-2020, Time: 17:58:10, ID: IB, Description: IB

\section*{13C3-PFBA-RSD \\ }

\section*{13C4-PFHpA-RSD}

F21:MRM of 1 channel,ES-
\(367.2>321.8\)
\(2.973 \mathrm{e}+005\)




13C2-6:2 FTS-RSD
F30:MRM of 1 channel,ES-


13C3-HFPO-DA-RSD
F10:MRM of 2 channels,ES-



13C8-PFOSA-RSD



\section*{13C2-PFOA-RSD}


Last Altered: Friday, February 28, 2020 10:18:53 Pacific Standard Time Printed: Friday, February 28, 2020 10:19:02 Pacific Standard Time

Name: 200227P1-15, Date: 27-Feb-2020, Time: 17:58:10, ID: IB, Description: IB


\section*{13C2-PFDoA-RSD}






\section*{13C2-PFTeDA-RSD}

F74:MRM of 2 channels,ES-
\(715.1>669.7\)
\(5.928 \mathrm{e}+005\)
d5-N-ETFOSA-RSD
F52 MRM of 1 chann

d5-N-EtFOSAA-RSD
F60:MRM of 1 channel,ES-
\(589.3>419\)
\(1.515 \mathrm{e}+005\)



Last Altered: Friday, February 28, 2020 10:18:53 Pacific Standard Time Printed: Friday, February 28, 2020 10:19:02 Pacific Standard Time

Name: 200227P1-15, Date: 27-Feb-2020, Time: 17:58:10, ID: IB, Description: IB

\section*{d7-N-MeFOSE-RSD \\ }

\section*{13C9-PFNA}

F36:MRM of 1 channel,ES-
 \(472.2>426.9\)
\(5.804 \mathrm{e}+005\)


13C4-PFOS
F40:MRM of 1 channel,ES-


13C6-PFDA


\section*{13C8-PFOA}

F28:MRM of 1 channel,ES-
\(420.9>376.0\) \(420.9>376.0\)
\(5.479 e+005\) \(5.479 \mathrm{e}+005\)


\section*{Dataset:}

Untitled

\section*{Last Altered:}

Friday, February 28, 2020 10:18:53 Pacific Standard Time
Friday, February 28, 2020 10:19:02 Pacific Standard Time

Name: 200227P1-15, Date: 27-Feb-2020, Time: 17:58:10, ID: IB, Description: IB
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Trace & Area & IS Area & wt/vol & RT & Response & Std. Conc & Conc. & \%Rec & Recovery ... & Ion Ratio & Ratio Out? \\
\hline 1 & 1 PFBA & \(213.0>168.8\) & 5.979 & 2056.498 & 1.00 & 1.12 & 0.036 & & & & NO & & \\
\hline 2 & 2 PFPrS & \(248.9>79.7\) & & 941.691 & 1.00 & & & & & & NO & & YES \\
\hline 3 & 3 3:3 FTCA & \(240.9>176.9\) & & 7211.878 & 1.00 & & & & & & NO & & YES \\
\hline 4 & 4 PFPeA & \(263.1>218.9\) & & 7211.878 & 1.00 & & & & & & NO & & \\
\hline 5 & 5 PFBS & \(299.0>79.7\) & & 941.691 & 1.00 & & & & & & NO & & YES \\
\hline 6 & 6 4:2 FTS & \(327.0>307\) & & 1347.511 & 1.00 & & & & & & NO & & YES \\
\hline 7 & 47 13C3-PFBA-EIS & \(216.1>171.8\) & 2056.498 & & 1.00 & 1.33 & 2056.498 & 12.500 & 3.20 & 25.6 & YES & & \\
\hline 8 & 51 13C3-PFBS-EIS & \(302.0>98.8\) & 941.691 & & 1.00 & 2.54 & 941.691 & 12.500 & 7.67 & 61.4 & NO & & \\
\hline 9 & 49 13C3-PFPeA-EIS & \(266.0>221.8\) & 7211.878 & & 1.00 & 2.26 & 7211.878 & 12.500 & 6.22 & 49.7 & YES & & \\
\hline 10 & 49 13C3-PFPeA-EIS & \(266.0>221.8\) & 7211.878 & & 1.00 & 2.26 & 7211.878 & 12.500 & 6.22 & 49.7 & YES & & \\
\hline 11 & 51 13C3-PFBS-EIS & \(302.0>98.8\) & 941.691 & & 1.00 & 2.54 & 941.691 & 12.500 & 7.67 & 61.4 & NO & & \\
\hline 12 & 55 13C2-4:2 FTS-EIS & \(329.0>79.7\) & 1347.511 & & 1.00 & 2.97 & 1347.511 & 12.500 & 8.13 & 65.0 & NO & & \\
\hline 13 & -1 & & & & & & & & & & & & \\
\hline 14 & 7 PFHxA & 313.0 > 269.0 & 30.188 & 16627.254 & 1.00 & 3.34 & 0.023 & & & & NO & & YES \\
\hline 15 & 8 PFPeS & \(349 .>79.7\) & & 941.691 & 1.00 & & & & & & NO & & YES \\
\hline 16 & 9 HFPO-DA & \(285.1>168.9\) & & 3047.664 & 1.00 & & & & & & NO & & YES \\
\hline 17 & 10 5:3 FTCA & \(340.9>236.9\) & & 16200.894 & 1.00 & & & & & & NO & & YES \\
\hline 18 & 11 PFHpA & 363.0 > 318.9 & 22.115 & 16200.894 & 1.00 & 3.72 & 0.017 & & & & NO & & YES \\
\hline 19 & 12 ADONA & \(376.8>250.9\) & 7.452 & 16200.894 & 1.00 & 3.80 & 0.006 & & & & NO & & YES \\
\hline 20 & 57 13C2-PFHxA-EIS & \(315.0>270.0\) & 16627.254 & & 1.00 & 3.05 & 16627.254 & 12.500 & 9.44 & 75.5 & NO & & \\
\hline 21 & 51 13C3-PFBS-EIS & \(302.0>98.8\) & 941.691 & & 1.00 & 2.54 & 941.691 & 12.500 & 7.67 & 61.4 & NO & & \\
\hline 22 & 53 13C3-HFPO-DA-EIS & \(287.0>168.9\) & 3047.664 & & 1.00 & 3.27 & 3047.664 & 12.500 & 9.29 & 74.3 & NO & & \\
\hline 23 & 59 13C4-PFHpA-EIS & 367.2 > 321.8 & 16200.894 & & 1.00 & 3.66 & 16200.894 & 12.500 & 12.5 & 100.4 & NO & & \\
\hline 24 & 59 13C4-PFHpA-EIS & \(367.2>321.8\) & 16200.894 & & 1.00 & 3.66 & 16200.894 & 12.500 & 12.5 & 100.4 & NO & & \\
\hline 25 & 59 13C4-PFHpA-EIS & 367.2 > 321.8 & 16200.894 & & 1.00 & 3.66 & 16200.894 & 12.500 & 12.5 & 100.4 & NO & & \\
\hline 26 & -1 & & & & & & & & & & & & \\
\hline 27 & 13 L-PFHxS & \(398.9>79.7\) & 8.346 & 3327.413 & 1.00 & 3.81 & 0.031 & & & & NO & & YES \\
\hline 28 & 15 6:2 FTS & \(427.0>407\) & & 1771.795 & 1.00 & & & & & & NO & & YES \\
\hline 29 & 16 L-PFOA & \(412.8>368.9\) & 90.800 & 21312.219 & 1.00 & 4.17 & 0.053 & & & & NO & 12.907 & YES \\
\hline 30 & 18 PFecHS & \(460.8>381.0\) & & 21312.219 & 1.00 & & & & & & NO & & YES \\
\hline 31 & 19 PFHpS & \(449.0>79.7\) & & 3967.881 & 1.00 & & & & & & NO & & YES \\
\hline 32 & 20 7:3 FTCA & \(440.9>336.9\) & & 22886.457 & 1.00 & & & & & & NO & & YES \\
\hline 33 & 61 13C3-PFHxS-EIS & \(401.8>79.7\) & 3327.413 & & 1.00 & 3.80 & 3327.413 & 12.500 & 10.8 & 86.1 & NO & & \\
\hline 34 & 63 13C2-6:2 FTS-EIS & \(429.0>79.7\) & 1771.795 & & 1.00 & 4.11 & 1771.795 & 12.500 & 11.9 & 95.2 & NO & & \\
\hline 35 & 69 13C2-PFOA-EIS & \(414.9>369.7\) & 21312.219 & & 1.00 & 4.17 & 21312.219 & 12.500 & 12.0 & 95.7 & NO & & \\
\hline 36 & 69 13C2-PFOA-EIS & \(414.9>369.7\) & 21312.219 & & 1.00 & 4.17 & 21312.219 & 12.500 & 12.0 & 95.7 & NO & & \\
\hline & Work Order 2000314 & & & & & & & & & & & Page 96 & of 1277 \\
\hline
\end{tabular}

\section*{Last Altered:} Printed:

Friday, February 28, 2020 10:18:53 Pacific Standard Time

Name: 200227P1-15, Date: 27-Feb-2020, Time: 17:58:10, ID: IB, Description: IB
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Trace & Area & IS Area & wt/vol & RT & Response & Std. Conc & Conc. & \%Rec & Recovery ... & Ion Ratio & Ratio Out? \\
\hline 37 & 71 13C8-PFOS-EIS & \(507.0>79.7\) & 3967.881 & & 1.00 & 4.70 & 3967.881 & 12.500 & 11.5 & 91.6 & NO & & \\
\hline 38 & 65 13C5-PFNA-EIS & \(468.2>422.9\) & 22886.457 & & 1.00 & 4.62 & 22886.457 & 12.500 & 13.1 & 104.6 & NO & & \\
\hline 39 & -1 & & & & & & & & & & & & \\
\hline 40 & 21 PFNA & \(463.0>418.8\) & 9.171 & 22886.457 & 1.00 & 4.52 & 0.005 & & & & NO & & YES \\
\hline 41 & 22 PFOSA & \(497.9>77.9\) & 5.847 & 5021.423 & 1.00 & 4.61 & 0.015 & & & & NO & & YES \\
\hline 42 & 23 L-PFOS & \(498.9>79.7\) & 6.075 & 3967.881 & 1.00 & 4.70 & 0.019 & & 0.0491 & & NO & 1.168 & YES \\
\hline 43 & 259 Cl -PF30NS & \(530.7>350.8\) & & 3967.881 & 1.00 & & & & & & NO & & YES \\
\hline 44 & 26 PFDA & \(513>468.8\) & 23.281 & 23565.637 & 1.00 & 5.11 & 0.012 & & & & NO & & YES \\
\hline 45 & 27 8:2 FTS & \(526.9>507\) & & 1579.977 & 1.00 & & & & & & NO & & YES \\
\hline 46 & 65 13C5-PFNA-EIS & \(468.2>422.9\) & 22886.457 & & 1.00 & 4.62 & 22886.457 & 12.500 & 13.1 & 104.6 & NO & & \\
\hline 47 & 67 13C8-PFOSA-EIS & \(506>78\) & 5021.423 & & 1.00 & 4.67 & 5021.423 & 12.500 & 11.2 & 89.4 & NO & & \\
\hline 48 & 71 13C8-PFOS-EIS & \(507.0>79.7\) & 3967.881 & & 1.00 & 4.70 & 3967.881 & 12.500 & 11.5 & 91.6 & NO & & \\
\hline 49 & 71 13C8-PFOS-EIS & \(507.0>79.7\) & 3967.881 & & 1.00 & 4.70 & 3967.881 & 12.500 & 11.5 & 91.6 & NO & & \\
\hline 50 & 73 13C2-PFDA-EIS & \(515.1>469.9\) & 23565.637 & & 1.00 & 4.99 & 23565.637 & 12.500 & 12.3 & 98.4 & NO & & \\
\hline 51 & 75 13C2-8:2 FTS-EIS & \(529>79.7\) & 1579.977 & & 1.00 & 4.96 & 1579.977 & 12.500 & 11.9 & 95.2 & NO & & \\
\hline 52 & -1 & & & & & & & & & & & & \\
\hline 53 & 28 PFNS & \(549.1>79.7\) & & 3967.881 & 1.00 & & & & & & NO & & YES \\
\hline 54 & 29 L-MeFOSAA & \(570>419\) & 6.307 & 5008.103 & 1.00 & 5.32 & 0.016 & & 0.0311 & & NO & & YES \\
\hline 55 & 31 L-EtFOSAA & \(584.1>419\) & & 6147.624 & 1.00 & & & & & & NO & & YES \\
\hline 56 & 33 PFUdA & \(563.0>518.9\) & 52.471 & 26762.389 & 1.00 & 5.31 & 0.025 & & & & NO & & YES \\
\hline 57 & 34 PFDS & \(598.8>79.7\) & & 3967.881 & 1.00 & & & & & & NO & & YES \\
\hline 58 & 3511 Cl -PF30UdS & \(630.9>450.9\) & & 23202.117 & 1.00 & & & & & & NO & & YES \\
\hline 59 & 71 13C8-PFOS-EIS & \(507.0>79.7\) & 3967.881 & & 1.00 & 4.70 & 3967.881 & 12.500 & 11.5 & 91.6 & NO & & \\
\hline 60 & 77 d3-N-MeFOSAA-EIS & \(573.3>419\) & 5008.103 & & 1.00 & 5.14 & 5008.103 & 12.500 & 10.4 & 83.0 & NO & & \\
\hline 61 & 81 d5-N-EtFOSAA-EIS & \(589.3>419\) & 6147.624 & & 1.00 & 5.30 & 6147.624 & 12.500 & 11.1 & 88.9 & NO & & \\
\hline 62 & 79 13C2-PFUdA-EIS & \(565>519.8\) & 26762.389 & & 1.00 & 5.32 & 26762.389 & 12.500 & 12.2 & 97.6 & NO & & \\
\hline 63 & 71 13C8-PFOS-EIS & \(507.0>79.7\) & 3967.881 & & 1.00 & 4.70 & 3967.881 & 12.500 & 11.5 & 91.6 & NO & & \\
\hline 64 & 83 13C2-PFDoA-EIS & \(614.7>569.7\) & 23202.117 & & 1.00 & 5.60 & 23202.117 & 12.500 & 11.9 & 95.4 & NO & & \\
\hline 65 & -1 & & & & & & & & & & & & \\
\hline 66 & 36 10:2 FTS & \(626.9>607\) & & 1208.054 & 1.00 & & & & & & NO & & YES \\
\hline 67 & 37 PFDoA & \(612.9>569.0\) & 182.153 & 23202.117 & 1.00 & 5.70 & 0.098 & & 0.0513 & & NO & & YES \\
\hline 68 & 38 N-MeFOSA & \(512.1>168.9\) & & 21771.527 & 1.00 & & & & & & NO & & YES \\
\hline 69 & 39 PFTrDA & \(662.9>618.9\) & 17.942 & 23202.117 & 1.00 & 5.89 & 0.010 & & & & NO & & YES \\
\hline 70 & 40 PFDoS & \(698.8>79.7\) & & 24353.959 & 1.00 & & & & & & NO & & YES \\
\hline 71 & 41 PFTeDA & \(713.0>669.0\) & 97.627 & 24353.959 & 1.00 & 6.05 & 0.050 & & & & NO & & YES \\
\hline 72 & 85 13C2-10:2 FTS-EIS & \(632.9>80.0\) & 1208.054 & & 1.00 & 5.58 & 1208.054 & 12.500 & 11.6 & 92.8 & NO & & \\
\hline
\end{tabular}

Work Order 2000314
Page 965 of 1277

Name: 200227P1-15, Date: 27-Feb-2020, Time: 17:58:10, ID: IB, Description: IB
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Trace & Area & IS Area & wt/vol & RT & Response & Std. Conc & Conc. & \%Rec & Recovery ... & Ion Ratio & Ratio Out? \\
\hline 73 & 83 13C2-PFDoA-EIS & 614.7 > 569.7 & 23202.117 & & 1.00 & 5.60 & 23202.117 & 12.500 & 11.9 & 95.4 & NO & & \\
\hline 74 & 87 d3-N-MeFOSA-EIS & \(515.2>168.9\) & 21771.527 & & 1.00 & 5.70 & 21771.527 & 149.200 & 148 & 99.1 & NO & & \\
\hline 75 & 83 13C2-PFDoA-EIS & \(614.7>569.7\) & 23202.117 & & 1.00 & 5.60 & 23202.117 & 12.500 & 11.9 & 95.4 & NO & & \\
\hline 76 & 89 13C2-PFTeDA-EIS & \(715.1>669.7\) & 24353.959 & & 1.00 & 6.06 & 24353.959 & 12.500 & 11.7 & 93.4 & NO & & \\
\hline 77 & 89 13C2-PFTeDA-EIS & \(715.1>669.7\) & 24353.959 & & 1.00 & 6.06 & 24353.959 & 12.500 & 11.7 & 93.4 & NO & & \\
\hline 78 & -1 & & & & & & & & & & & & \\
\hline 79 & \(42 \mathrm{~N}-\mathrm{EtFOSA}\) & \(526.1>168.9\) & & 32100.252 & 1.00 & & & & & & NO & & YES \\
\hline 80 & 43 PFHxDA & \(813.1>768.6\) & 262.426 & 36299.520 & 1.00 & 6.39 & 0.090 & & & & NO & & YES \\
\hline 81 & 44 PFODA & \(913.1>868.8\) & 57.165 & 36299.520 & 1.00 & 6.39 & 0.020 & & & & NO & & \\
\hline 82 & 45 N -MeFOSE & \(616.1>58.9\) & & 23417.418 & 1.00 & & & & & & NO & & \\
\hline 83 & 46 N -EtFOSE & \(630.1>58.9\) & 7.379 & 26461.822 & 1.00 & 6.28 & 0.042 & & & & NO & & \\
\hline 84 & 91 d5-N-ETFOSA-EIS & \(531.1>168.9\) & 32100.252 & & 1.00 & 6.12 & 32100.252 & 149.200 & 149 & 99.6 & NO & & \\
\hline 85 & 93 13C2-PFHxDA-EIS & \(815>769.7\) & 36299.520 & & 1.00 & 6.39 & 36299.520 & 12.500 & 11.8 & 94.4 & NO & & \\
\hline 86 & 93 13C2-PFHxDA-EIS & \(815>769.7\) & 36299.520 & & 1.00 & 6.39 & 36299.520 & 12.500 & 11.8 & 94.4 & NO & & \\
\hline 87 & 95 d7-N-MeFOSE-EIS & \(623.1>58.9\) & 23417.418 & & 1.00 & 6.29 & 23417.418 & 149.200 & 141 & 94.2 & NO & & \\
\hline 88 & 97 d9-N-EtFOSE-EIS & \(639.2>58.8\) & 26461.822 & & 1.00 & 6.44 & 26461.822 & 149.200 & 137 & 91.8 & NO & & \\
\hline 89 & 71 13C8-PFOS-EIS & \(507.0>79.7\) & 3967.881 & & 1.00 & 4.70 & 3967.881 & 12.500 & 11.5 & 91.6 & NO & & \\
\hline 90 & -1 & & & & & & & & & & & & \\
\hline 91 & 48 13C3-PFBA-RSD & \(216.1>171.8\) & 2056.498 & 3104.933 & 1.00 & 1.33 & 8.279 & 12.500 & 10.2 & 81.5 & NO & & \\
\hline 92 & 50 13C3-PFPeA-RSD & \(266.0>221.8\) & 7211.878 & 17555.361 & 1.00 & 2.26 & 5.135 & 12.500 & 8.69 & 69.6 & NO & & \\
\hline 93 & 52 13C3-PFBS-RSD & \(302.0>98.8\) & 941.691 & 1388.647 & 1.00 & 2.54 & 8.477 & 12.500 & 7.78 & 62.2 & NO & & \\
\hline 94 & 54 13C3-HFPO-DA-RSD & \(287.0>168.9\) & 3047.664 & 17555.361 & 1.00 & 3.27 & 2.170 & 12.500 & 12.4 & 99.4 & NO & & \\
\hline 95 & 56 13C2-4:2 FTS-RSD & \(329.0>79.7\) & 1347.511 & 1388.647 & 1.00 & 2.97 & 12.130 & 12.500 & 8.60 & 68.8 & NO & & \\
\hline 96 & 58 13C2-PFHxA-RSD & \(315.0>270.0\) & 16627.254 & 17555.361 & 1.00 & 3.05 & 11.839 & 12.500 & 12.1 & 96.7 & NO & & \\
\hline 97 & 60 13C4-PFHpA-RSD & \(367.2>321.8\) & 16200.894 & 17555.361 & 1.00 & 3.66 & 11.536 & 12.500 & 17.1 & 136.6 & NO & & \\
\hline 98 & 62 13C3-PFHxS-RSD & \(401.8>79.7\) & 3327.413 & 1388.647 & 1.00 & 3.80 & 29.952 & 12.500 & 12.3 & 98.7 & NO & & \\
\hline 99 & 64 13C2-6:2 FTS-RSD & \(429.0>79.7\) & 1771.795 & 4646.858 & 1.00 & 4.11 & 4.766 & 12.500 & 10.9 & 87.4 & NO & & \\
\hline 100 & 66 13C5-PFNA-RSD & \(468.2>422.9\) & 22886.457 & 23611.387 & 1.00 & 4.62 & 12.116 & 12.500 & 12.8 & 102.0 & NO & & \\
\hline 101 & 68 13C8-PFOSA-RSD & \(506>78\) & 5021.423 & 27172.432 & 1.00 & 4.67 & 2.310 & 12.500 & 10.7 & 85.5 & NO & & \\
\hline 102 & 70 13C2-PFOA-RSD & 414.9 > 369.7 & 21312.219 & 24551.977 & 1.00 & 4.17 & 10.851 & 12.500 & 11.8 & 94.7 & NO & & \\
\hline 103 & -1 & & & & & & & & & & & & \\
\hline 104 & 72 13C8-PFOS-RSD & \(507.0>79.7\) & 3967.881 & 4646.858 & 1.00 & 4.70 & 10.674 & 12.500 & 11.5 & 92.1 & NO & & \\
\hline 105 & 74 13C2-PFDA-RSD & \(515.1>469.9\) & 23565.637 & 24918.301 & 1.00 & 4.99 & 11.821 & 12.500 & 12.0 & 96.2 & NO & & \\
\hline 106 & 76 13C2-8:2 FTS-RSD & \(529>79.7\) & 1579.977 & 4646.858 & 1.00 & 4.96 & 4.250 & 12.500 & 11.6 & 92.6 & NO & & \\
\hline 107 & 78 d3-N-MeFOSAA-RSD & \(573.3>419\) & 5008.103 & 27172.432 & 1.00 & 5.14 & 2.304 & 12.500 & 10.2 & 81.2 & NO & & \\
\hline 108 & 80 13C2-PFUdA-RSD & \(565>519.8\) & 26762.389 & 27172.432 & 1.00 & 5.32 & 12.311 & 12.500 & 11.7 & 93.6 & NO & & \\
\hline & Work Order 2000314 & & & & & & & & & & & \multicolumn{2}{|l|}{Page 966 of 1277} \\
\hline
\end{tabular}

\section*{Quantify Sample Report
Vista Analytical Laborator}
```

Dataset:
Untitled

```
Last Altered: Friday, February 28, 2020 10:18:53 Pacific Standard Time
Printed:
Friday, February 28, 2020 10:19:02 Pacific Standard Time

Name: 200227P1-15, Date: 27-Feb-2020, Time: 17:58:10, ID: IB, Description: IB
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & \# Name & Trace & Area & IS Area & wt/vol & RT & Response & Std. Conc & Conc. & \%Rec & Recovery ... & Ion Ratio & Ratio Out? \\
\hline 109 & \(82 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}-\mathrm{RSD}\) & \(589.3>419\) & 6147.624 & 27172.432 & 1.00 & 5.30 & 2.828 & 12.500 & 11.7 & 93.6 & NO & & \\
\hline 110 & 84 13C2-PFDoA-RSD & \(614.7>569.7\) & 23202.117 & 24918.301 & 1.00 & 5.60 & 11.639 & 12.500 & 12.0 & 95.9 & NO & & \\
\hline 111 & 86 13C2-10:2 FTS-RSD & \(632.9>80.0\) & 1208.054 & 4646.858 & 1.00 & 5.58 & 3.250 & 12.500 & 11.4 & 91.0 & NO & & \\
\hline 112 & 88 d3-N-MeFOSA-RSD & \(515.2>168.9\) & 21771.527 & 27172.432 & 1.00 & 5.70 & 10.015 & 149.200 & 134 & 89.8 & NO & & \\
\hline 113 & 90 13C2-PFTeDA-RSD & \(715.1>669.7\) & 24353.959 & 27172.432 & 1.00 & 6.06 & 11.203 & 12.500 & 10.7 & 85.5 & NO & & \\
\hline 114 & 92 d5-N-ETFOSA-RSD & \(531.1>168.9\) & 32100.252 & 27172.432 & 1.00 & 6.12 & 14.767 & 149.200 & 142 & 95.2 & NO & & \\
\hline 115 & 94 13C2-PFHxDA-RSD & \(815>769.7\) & 36299.520 & 27172.432 & 1.00 & 6.39 & 16.699 & 12.500 & 11.4 & 91.2 & NO & & \\
\hline 116 & -1 & & & & & & & & & & & & \\
\hline 117 & \(96 \mathrm{d7}\)-N-MeFOSE-RSD & \(623.1>58.9\) & 23417.418 & 27172.432 & 1.00 & 6.29 & 10.773 & 149.200 & 132 & 88.4 & NO & & \\
\hline 118 & 98 d9-N-EtFOSE-RSD & \(639.2>58.8\) & 26461.822 & 27172.432 & 1.00 & 6.44 & 12.173 & 149.200 & 130 & 87.0 & NO & & \\
\hline 119 & 99 13C4-PFBA & \(217.0>172.0\) & 3104.933 & 3104.933 & 1.00 & 1.33 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline 120 & 1... 13C5-PFHxA & \(318.0>272.9\) & 17555.361 & 17555.361 & 1.00 & 3.05 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline 121 & 1... 13C8-PFOA & \(420.9>376.0\) & 24551.977 & 24551.977 & 1.00 & 4.17 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline 122 & 1... 1802-PFHxS & \(403.0>102.6\) & 1388.647 & 1388.647 & 1.00 & 3.80 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline 123 & 1... 13C9-PFNA & \(472.2>426.9\) & 23611.387 & 23611.387 & 1.00 & 4.61 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline 124 & 1... 13C4-PFOS & \(503>79.7\) & 4646.858 & 4646.858 & 1.00 & 4.70 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline 125 & 1... 13C6-PFDA & \(519.1>473.7\) & 24918.301 & 24918.301 & 1.00 & 4.99 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline 126 & 1... 13C7-PFUdA & \(570.1>524.8\) & 27172.432 & 27172.432 & 1.00 & 5.32 & 12.500 & 12.500 & 12.5 & 100.0 & NO & & \\
\hline
\end{tabular}

\section*{TUNE CHECKS}


Reference: c:\masslynx\refIESI Calibration TQ ResCal.ref
Mean residual \(=0.0165 \mathrm{amu}\)


Printed:
Thu Feb 20 16:51:45 2020

Data file: SCNMS1V - Calibrated
23 matches of 23 tested references


Reference: c:Imasslynx\refIESI Calibration TQ ResCal.ref
Mean residual \(=0.0106 \mathrm{amu}\)
74.10

100
100
- 163.06311.08455.29 649.22811 .27973 .321122 .00 1321.98


Calibration Verification Report - MS1 Scan Speed Compensation
Printed:
Thu Feb 20 16:52:57 2020

Data file: FASTMS1V - Calibrated


Reference: c:Imasslynx|reflESI Calibration TQ ResCal.ref
Mean residual \(=0.0459 \mathrm{amu}\)


Calibration Verification Report - MS2 Static
Printed:
Thu Feb 20 16:54:05 2020

Data file: STATMS2V - Calibrated
22 matches of 23 tested references


Reference: c:Imasslynx\reflESI Calibration TQ ResCal.ref
Mean residual \(=0.0153 \mathrm{amu}\)


Printed:
Thu Feb 20 16:55:14 2020

Data file: SCNMS2V - Calibrated
23 matches of 23 tested references


Reference: c:Imasslynx\reflESI Calibration TQ ResCal.ref
Mean residual \(=0.013 \mathrm{amu}\)


Calibration Verification Report - MS2 Scan Speed Compensation
Printed:
Thu Feb 20 16:56:39 2020


Reference: c:ImasslynxIreflESI Calibration TQ ResCal.ref
Mean residual \(=0.0881 \mathrm{amu}\)



Printed: \(\quad\) Tue Feb 25 16:13:36 2020

Data file: SCNMS1V - Calibrated
23 matches of 23 tested references


Reference: c:Imasslynx\reflESI Calibration TQ ResCal.ref
Mean residual \(=0.026 \mathrm{amu}\)


Printed: \(\quad\) Tue Feb 25 16:14:48 2020

Data file: FASTMS1V - Calibrated
23 matches of 23 tested references


Reference: c:Imasslynx|reflESI Calibration TQ ResCal.ref
Mean residual \(=0.038 \mathrm{amu}\)


Printed: Tue Feb 25 16:15:56 2020


Reference: c:Imasslynx|reflESI Calibration TQ ResCal.ref
\[
\text { Mean residual }=0.0228 \mathrm{amu}
\]


Printed: Tue Feb 25 16:17:05 2020

Data file: SCNMS2V - Calibrated
23 matches of 23 tested references


Reference: c:Imasslynx|reflESI Calibration TQ ResCal.ref
Mean residual \(=0.0224 \mathrm{amu}\)


Printed: Tue Feb 25 16:18:30 2020

Data file: FASTMS2V - Calibrated
23 matches of 23 tested references


Reference: c:Imasslynx\reflESI Calibration TQ ResCal.ref
Mean residual \(=0.0672 \mathrm{amu}\)


The check \(02 / 27 / 20\)
Calibration Report - MS1 Static
Page 1 of 6
Printed:
Thu Feb 27 14:34:02 2020

Data file: STATMS1 - Calibrated
22 matches of 23 tested references


Reference: c:ImasslynxIrefIESI Calibration TQ ResCal.ref
Mean residual \(=0.0186 \mathrm{amu}\)


Residual Polynomial order \(=4 \quad\) RMS residual \(=0.0284 \mathrm{amu}\)


Calibration Report - MS1 Scanning
Printed:
Thu Feb 27 14:35:10 2020


Printed: Thu Feb 27 14:36:22 2020


Calibration Report - MS2 Static
Printed:
Thu Feb 27 14:37:31 2020


\section*{Printed: \\ Thu Feb 27 14:38:40 2020}

Data file: SCNMS2 - Calibrated
23 matches of 23 tested references


Reference: c:ImasslynxirefIESI Calibration TQ ResCal.ref
Mean residual \(=0.00829 \mathrm{amu}\)


Residual Polynomial order \(=4\)
RMS residual \(=0.0113 \mathrm{amu}\)


Printed:
Thu Feb 27 14:40:05 2020

Data file: FASTMS2 - Calibrated
23 matches of 23 tested references


Reference: c:Imasslynx|reflESI Calibration TQ ResCal.ref
Mean residual \(=0.0854 \mathrm{amu}\)



\section*{STANDARDS}

\section*{Analytical Standard Record}

Vista Analytical Laboratory
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Parent Standards used in this standard:} \\
\hline Standard & Description & Prepared & Prepared By & Expires & (mls) \\
\hline 19H2706 & 13C2-10:2 FTS & 21-Aug-19 & ** Vendor ** & 21-Aug-24 & 1 \\
\hline 19L0601 & 13C2-4:2 FTS & 06-Dec-19 & ** Vendor ** & 29-Oct-24 & 1.07 \\
\hline 19L0602 & 13C2-6:2 FTS & 06-Dec-19 & ** Vendor ** & 21-Nov-24 & 1.05 \\
\hline 19L0603 & 13C2-8:2 FTS & 06-Dec-19 & ** Vendor ** & 11-Oct-24 & 1.04 \\
\hline 19L0604 & 13 C 3 -PFBA & 06-Dec-19 & ** Vendor ** & 14-Dec-22 & 1 \\
\hline 19L0605 & 13C2-PFDA & 06-Dec-19 & ** Vendor ** & 05-Sep-24 & 1 \\
\hline 19L0606 & 13C2-PFUdA & 06-Dec-19 & ** Vendor ** & 04-Jul-24 & 1 \\
\hline 19L0607 & 13C2-PFTeDA & 06-Dec-19 & ** Vendor ** & 11-Dec-23 & 1 \\
\hline 19L0608 & 13C5-PFNA & 06-Dec-19 & ** Vendor ** & 05-Dec-23 & 1 \\
\hline 19L0609 & 13C2-PFDoA & 06-Dec-19 & ** Vendor ** & 11-Dec-23 & 1 \\
\hline 19L0610 & 13C4-PFHpA & 06-Dec-19 & ** Vendor ** & 06-May-24 & 1 \\
\hline 19L0611 & 13C2-PFOA & 06-Dec-19 & ** Vendor ** & 21-Jun-24 & 1 \\
\hline 19L0612 & 13C3-PFPeA & 06-Dec-19 & ** Vendor ** & 08-Mar-24 & 1 \\
\hline 19L0613 & 13C8-FOSA-I & 06-Dec-19 & ** Vendor ** & 19-Jun-24 & 1 \\
\hline 19L0614 & d3-N-Me-FOSAA & 06-Dec-19 & ** Vendor ** & 24-Jul-24 & 1 \\
\hline 19L0615 & d5-N-EtFOSAA & 06-Dec-19 & ** Vendor ** & 25-Jul-24 & 1 \\
\hline 19L0616 & 13C3-PFBS & 06-Dec-19 & ** Vendor ** & 29-Oct-24 & 1.075 \\
\hline 19L0617 & 13C8-PFOS & 06-Dec-19 & ** Vendor ** & 06-May-24 & 1.045 \\
\hline 19L0618 & 13C3-PFHxS & 06-Dec-19 & ** Vendor ** & 15-Oct-24 & 1.06 \\
\hline 19L0619 & 13C2-PFHxA & 06-Dec-19 & ** Vendor ** & 11-Oct-24 & 1 \\
\hline 19L0620 & 13C2-PFHxDA & 06-Dec-19 & ** Vendor ** & 11-Oct-24 & 1 \\
\hline 19L0621 & 13C3-HFPO-DA & 06-Dec-19 & ** Vendor ** & 20-Sep-22 & 1 \\
\hline
\end{tabular}
\begin{tabular}{llll} 
Description: & PFC - IS & Expires: & 07-Jan-21 \\
Standard Type: & Reagent & Prepared: & 08-Jan-20 \\
Solvent: & MeOH & Prepared By: & Brittany M. Lamb \\
Final Volume \((\mathrm{mls}):\) & 40 & Department: & LCMS \\
Vials: & 1 & Last Edit: & 23-Jan-20 14:53 by BML
\end{tabular}
10:2 added
10 uL spike

10 uL spike
\begin{tabular}{lll}
\hline 13C3-HFPO-DA & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C2-4:2 FTS & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C2-6:2 FTS & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C2-8:2 FTS & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C2-PFDA & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C2-PFDoA & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C2-PFHxA & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C2-PFHxDA & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C2-PFOA & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C2-10:2 FTS & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
13C2-PFUnA & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
d5-EtFOSAA & 1.25 & \(\mathrm{ug} / \mathrm{mL}\)
\end{tabular}

\section*{Analytical Standard Record}

Vista Analytical Laboratory
20A0801
\begin{tabular}{|c|c|c|c|c|}
\hline Description: & PFC - IS & Expires: & \multicolumn{2}{|l|}{07-Jan-21} \\
\hline Standard Type: & Reagent & Prepared: & \multicolumn{2}{|l|}{08-Jan-20} \\
\hline Solvent: & MeOH & Prepared By: & \multicolumn{2}{|l|}{Brittany M. Lamb} \\
\hline Final Volume (mls): & 40 & Department: & \multicolumn{2}{|l|}{LCMS} \\
\hline Vials: & 1 & Last Edit: & \multicolumn{2}{|l|}{23-Jan-20 14:53 by BML} \\
\hline \multicolumn{5}{|l|}{10:2 added} \\
\hline \[
\begin{aligned}
& 10 \text { uL spike } \\
& \hline
\end{aligned}
\] & & CAS Number & Concentration & Units \\
\hline 13C3-PFBA & & & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline 13C3-PFBS & & & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline 13C3-PFHxS & & & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline 13C3-PFPeA & & & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline 13C4-PFHpA & & & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline 13C5-PFNA & & & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline 13C8-PFOS & & & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline 13C8-PFOSA & & & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline d3-MeFOSAA & & & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline 13C2-PFTeDA & & & 1.25 & ug/mL \\
\hline
\end{tabular}

Cambridge Isotope Laboratories, Inc.

\section*{Product Name:}
(Isotopic Label \& Enrichment Specification)

\section*{Lot Number:}

Catalog Number:

1H,1H,2H,2H-PERFLUORODODECANE SULFONATE(10:2 FTS), SODIUM SALT (13C2, 99\%; D4, 98\%) 50 UG/ML IN MEOH

SDIJ-019A
CDLM-10750-S

\section*{Product Information}

Chemical Purity Specification:
MW*:
* For isotopically labeled compounds, MW listed is for the fully enriched product.
Labeled CAS Number:
Unlabeled CAS Number:
Chemical Formula:
Storage:
Stability:
\(\geq 98 \%\)
656.19

NA
108026-35-3

\section*{C10*C2D4F21NaO3S}

Store at room temperature away from light and moisture.
See storage and expiration date.

\section*{Certification}

Cambridge Isotope Laboratories, Inc. guarantees that this material meets or exceeds the specifications stated. Absolute identity as well as chemical and isotopic purities are assured by the use of unambiguous synthetic routes and multiple chemical analyses whenever possible. Results are representative of QC testing at time of release from Quality Control unless otherwise stated. CIL Certificates of Analysis are occasionally updated with new data following recertification. We recommend checking the website for the latest version.

Volumetric measurements were made with Class A glassware. Gravimetry is traceable to the NIST through calibrated balances and certified, calibrated, standard weights. The calibrations are traceable to the NIST under Test No. 822/270236-04. The calibrations also meet specifications outlined in ISO 9001, ISO/IEC 17025, ANSI/NSCL Z540-1-1994, NCR Document 10CFR50 Appendix B, and applicable subdocuments.

This COA references the bulk catalog number before packaging. The COA also applies to the CIL finished good catalog number. Some possible packaging sizes and their corresponding suffix are \(-1.2,-1,-0.5,-10\), or -0.1 .

\title{
Approved by: Sashi Sivendran-Barak
}

Sashi Sivendran-Basak, Ph.D., Quality Review

\section*{Quality Control Tests and Results}
\begin{tabular}{ll} 
QC Release Date & \(8 / 21 / 2019\) \\
Expiration Date & \(8 / 21 / 2024\) \\
Concentration Based on Gravimetry & \(50.0 \pm 0.5 \mu \mathrm{~g} / \mathrm{mL} \mathrm{(k=2)}\) \\
Chemical Purity of Neat Material(s) & \(100.0 \%\)
\end{tabular}

CIL subscribes to the following standards for different products: ISO Guide 34, ISO/IEC 17025, ISO 13485 and cGMP as appropriate.

Fiqure 2: M2-4:2FTS; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure 2:}
Injection: On-column (M2-4:2FTS)
\begin{tabular}{ll} 
Mobile phase: Same as Figure 1 & Collision Gas (mbar) \(=3.51 \mathrm{e}-3\) \\
Flow: & Collision Energy \((\mathrm{eV})=18\)
\end{tabular}
-
Figure 1: M2-4:2FTS; LC/MS Data (TIC and Mass Spectrum)
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Fiqure 1:} \\
\hline LC: & Waters Acquity Ultra Performance LC & \\
\hline MS: & Waters Xevo TQ-S micro MS & \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline Column: & \begin{tabular}{l}
Acquity UPLC BEH Shield RP \({ }_{1}\) \\
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)
\end{tabular} & Experiment: Full Scan (250-850 amu) \\
\hline \multirow[t]{5}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: \(40 \%\) (80:20 MeOH:ACN) / \(60 \% \mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=0.50\) \\
\hline & (both with 10 mM NH & Cone Voltage ( V ) \(=25.00\) \\
\hline & Ramp to \(90 \%\) organic over 8 min and hold for & Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\) \\
\hline & 2 min before returning to initial conditions in 0.75 min . Time: 12 min & Desolvation Gas Flow (1/hr) \(=1000\) \\
\hline Flow: & \(300 \mu / / \mathrm{min}\) & \\
\hline
\end{tabular}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UVIMSIMS, x-ray crystallography, and meiting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS andior LC/MSIMS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\[
x_{i}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where \(x\) is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).


CALA
Tusing
Atreontion matata

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www,well-labs,com or contact us directly at info@well-labs.com**

PRODUCT CODE: COMPOUND:

M2-4:2FTS
Sodium \(1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}\)-perfluoro- \(\left[1,2-{ }^{13} \mathrm{C}_{2}\right]\) hexane sulfonate

\section*{STRUCTURE:}


MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mwodrm)
EXPIRY DATE: (mmdutsmy)
RECOMMENDED STORAGE: Refrigerate ampoule

CAS \#: \(\quad\) Not available

MOLECULAR WEIGHT: 352.12
SOLVENT(S): Methanol

ISOTOPIC PURITY:
\(\geq 99 \%{ }^{13} \mathrm{C}\)
(1,2- \(\left.{ }^{13} \mathrm{C}_{2}\right)\)

\section*{DOCUMENTATION/DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- The native \(4: 2 \mathrm{FTS}\) contains \(4.22 \%\) of \({ }^{34} \mathrm{~S}\) (due to natural isotopic abundance) therefore both native 4:2FTS and M2-4:2FTS will produce signals in the \(\mathrm{m} / \mathrm{z} 329\) to \(\mathrm{m} / \mathrm{z} 309\) channel during SRM analysis. We recommend using the \(\mathrm{m} / \mathrm{z} 329\) to \(\mathrm{m} / \mathrm{z} 81\) transition to monitor for M2-4:2FTS during quantitative analysis as it will be free of any native contribution (see Figure 2).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)
(mmidimand

\section*{Wellington Laboratories inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA \\ 519-822-2436 • Fax: 519-822-2849 • info@well-fabs.com}

Fiqure 2: M2-6:2FTS; LC/MS/MS Data (Selected MRM Transitions)


Conditions for Figure 2:
Injection: On-column (M2-6:2FTS)
Mobile phase: Same as Figure 1

\section*{MS Parameters}

Collision Gas (mbar) \(=3.31 \mathrm{e}-3\)
Collision Energy \((\mathrm{eV})=20\)

Figure 1:
M2-6:2FTS; LC/MS Data (TIC and Mass Spectrum)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{11}{|l|}{21nov2019_M262FTS_001} \\
\hline \multicolumn{11}{|l|}{} \\
\hline
\end{tabular}

\section*{Conditions for Figure 1:}
\begin{tabular}{ll} 
LC: & Waters Acquity Ulitra Performance LC \\
MS: & Waters Xevo TQ-S micro MS
\end{tabular}

MS: \(\quad\) Waters Xevo TQ-S micro MS

\section*{Chromatographic Conditions}

Column: Acquity UPLC BEH Shield RP \({ }_{18}\) \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)

Mobile phase: Gradient
Start: 60\% ( \(80: 20 \mathrm{MeOH}: A C N\) ) \(/ 40 \% \mathrm{H}_{2} \mathrm{O}\) (both with \(10 \mathrm{mM} \mathrm{NH} \mathrm{OAC}_{4}\) buffer)
Ramp to \(90 \%\) organic over 7 min and hold for 3 min before returning to initial conditions in 0.75 min . Time: 12 min

Flow: \(300 \mu 1 / m i n\)

\section*{MS Parameters}

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage ( kV ) \(=0.50\)
Cone Voltage \((\mathrm{V})=25.00\)
Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\)
Desolvation Gas Flow ( \(/ \mathrm{hr}\) ) \(=1000\)

\section*{1910002}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\[
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE/PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc. please visit our website at uww,well-labs.com or contact us directly at info@well-labs.com**

PRODUCT CODE: COMPOUND:

M2-6:2FTS
Sodium \(1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}\)-perfluoro-[1,2- \({ }^{13} \mathrm{C}_{2}\) loctane sulfonate
STRUCTURE:

CAS \#: \(\quad\) Not available


\section*{MOLECULAR FORMULA:} CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mridarm)
EXPIRY DATE: (mnddumy)
RECOMMENDED STORAGE:
\({ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{13} \mathrm{SO}_{3} \mathrm{Na}\)
\(50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \quad\) (Na salt)
\(47.5 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml} \quad\) (M2-6:2FTS anion)
>98\%
11/21/2019
11/21/2024
Refrigerate ampoule

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- The native \(6: 2\) FTS contains \(4.22 \%\) of \({ }^{34} S\) (due to natural isotopic abundance) therefore both native 6:2FTS and M2-6:2FTS will produce signals in the \(\mathrm{m} / \mathrm{z} 429\) to \(\mathrm{m} / \mathrm{z} 409\) channel during SRM analysis. We recommend using the \(\mathrm{m} / \mathrm{z} 429\) to \(\mathrm{m} / \mathrm{z} 81\) transition to monitor for M2-6:2FTS during quantitative analysis as it will be free of any native contribution (see Figure 2).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)
(mmiddyyy)

\footnotetext{
Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 . Fax: 519-822-2849 • info@well-labs.com
}

Figure 2: M2-8:2FTS; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Fiaure 2:}

Injection: On-column (M2-8:2FTS)
Mobile phase: Same as Figure 1
Flow: \(\quad 300 \mu / / m i n\)

\section*{MS Parameters}

Collision Gas (mbar) \(=3.87 \mathrm{e}-3\)
Collision Energy \((\mathrm{eV})=26\)

\section*{1920603}

Fiqure 1: \(\quad\) M2-8:2FTS; LC/MS Data (TIC and Mass Spectrum)

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 1:} \\
\hline LC: & Waters Acquity Ulitra Performance LC & \\
\hline MS: & Waters Xevo TQ-S micro MS & \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline Column: & Acquity UPLC BEH Shield RP \({ }_{18}\) \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\) & Experiment: Full Scan (225-850 amu) \\
\hline \multirow[t]{5}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: \(50 \%\) (80:20 MeOH:ACN) / 50\% \(\mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=0.50\) \\
\hline & (both with \(10 \mathrm{mM} \mathrm{NH} \mathrm{H}_{4} \mathrm{OAC}\) buffer) & Cone Voltage (V) \(=25.00\) \\
\hline & Ramp to \(90 \%\) organic over 8 min and hold for & Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\) \\
\hline & 2 min before returning to initial conditions in 0.75 min . Time: 12 min & Desolvation Gas Flow (l/hr) \(=1000\) \\
\hline Flow: & \(300 \mu 1 / \mathrm{min}\) & \\
\hline
\end{tabular}

\section*{INTENDED USE：}

The products prepared by Wellington Laboratories Inc．are for laboratory use only．This certified reference material（CRM）was designed to be used as a standard for the identification and／or quantification of the specific chemical compound it contains．

\section*{HANDLING：}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals．Due care should be exercised to prevent unnecessary human contact or ingestion．All procedures should be carried out in a well－functioning fume hood and suitable gloves，eye protection，and clothing should be worn at all times．Waste should be disposed of according to national and regional regulations．Safety Data Sheets（SDSs）are available upon request．

\section*{SYNTHESIS／CHARACTERIZATION：}

Our products are synthesized using single－product unambiguous routes whenever possible．They are then characterized，and their structures and purities confirmed，using a combination of the most relevant techniques，such as NMR，GC／MS，LC／MS／MS， SFC／UVIMS／MS，x－ray crystallography，and melting point．Isotopic purities of mass－labelled compounds are also confirmed using HRGC／HRMS and／or LC／MS／MS．

\section*{HOMOGENEITY：}

Prior to solution preparation，crystalline material is tested for homogeneity using a variety of techniques（as stated above）and its solubility in a given diluent is taken into consideration．Duplicate solutions of a new product are prepared from the same crystalline lot and，after the addition of an appropriate internal standard，they are compared by GC／MS，LC／MS／MS，and／or SFC／UV／MS／MS． The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD．New solution lots of existing products are compared to older lots in the same manner，which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers．In order to maintain the integrity of the assigned values），and associated uncertainty，the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment．

\section*{UNCERTAINTY：}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation：

The combined relative standard uncertainty，\(u_{c}(y)\) ，of a value \(y\) and the uncertainty of the independent parameters
\(x_{4}, x_{2^{*}} \ldots x_{n}\) on which it depends is：
\[
u_{t}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter．
The individual uncertainties taken into account include those associated with weights（calibration of the balance）and volumes （calibration of the volumetric glassware）．An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\)（calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ）is stated on the Certificate of Analysis for all of our products．

\section*{TRACEABILITY：}

All reference standard solutions are traceable to specific crystalline lots．The microbalances used for solution preparation are regularly calibrated by an external ISO／IEC 17025 accredited laboratory．In addition，their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO／IEC 17025 accredited laboratory．All volumetric glassware used is calibrated，of Class A tolerance，and traceable to an ISO／IEC 17025 accredited laboratory．For certain products，traceability to international interlaboratory studies has also been established．

\section*{EXPIRY DATE／PERIOD OF VALIDITY：}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration，until the specified expiry date，in the unopened ampoule．Monitoring for any degradation or change in concentration of the listed analyte（s）is performed on a routine basis．

\section*{LIMITED WARRANTY：}

At the time of shipment，all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications．

\section*{QUALITY MANAGEMENT}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAl Global， ISO／IEC 17025 by the Canadian Association for Laboratory Accreditation Inc．（CALA；A 1226），and ISO 17034 by ANSI－ASQ National Accreditation Board（ANAB；AR－1523）．

＊＊For additional information or assistance concerning this or any other products from Wellington Laboratories Inc．， please visit our website at www．well－labs，com or contact us directly at info＠well－labs．com＊＊

PRODUCT CODE: COMPOUND:

M2-8:2FTS
Sodium \(1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}\)-perfluoro-[1,2- \({ }^{13} \mathrm{C}_{2}\) ]decane sulfonate

\section*{STRUCTURE:} Not available



\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- The native 8:2FTS contains \(4.22 \%\) of \({ }^{34} S\) (due to natural isotopic abundance) therefore both native 8:2FTS and M2-8:2FTS will produce signals in the \(\mathrm{m} / \mathrm{z} 529\) to \(\mathrm{m} / \mathrm{z} 509\) channel during SRM analysis. We recommend using the \(\mathrm{m} / \mathrm{z} 529\) to \(\mathrm{m} / \mathrm{z} 81\) transition to monitor for M2-8:2FTS during quantitative analysis as it will be free of any native contribution (see Figure 2).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

\title{
Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com
}

Figure 2: M3PFBA; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure 2:}
\begin{tabular}{|c|c|}
\hline Injection: & \begin{tabular}{l}
Direct loop injection \\
\(10 \mu(500 \mathrm{ng} / \mathrm{ml}\) M3PFBA)
\end{tabular} \\
\hline Mobile phase: & Isocratic 80\% (80:20 MeOH:ACN) / \(20 \% \mathrm{H}_{2} \mathrm{O}\) (both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer) \\
\hline Flow: & \(300 \mu / / \mathrm{min}\) \\
\hline
\end{tabular}

\section*{MS Parameters}

Collision Gas (mbar) \(=3.39 \mathrm{e}-3\)
Collision Energy \((\mathrm{eV})=10\)
- Fiqure 1: M3PFBA; LC/MS Data (TIC and Mass Spectrum)



\section*{Conditions for Fiqure 1:}

\section*{LC: \(\quad\) Waters Acquity Ultra Performance LC \\ MS: Micromass Quattro micro API MS}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & \multirow[t]{2}{*}{MS Parameters} \\
\hline Column: & Acquity UPLC BEH Shield \(\mathrm{RP}_{18}\) & \\
\hline & \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\) & Experiment: Full Scan ( \(150-850 \mathrm{amu}\) ) \\
\hline \multirow[t]{4}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: 30\% (80:20 MeOH:ACN) / 70\% \(\mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=3.00\) \\
\hline & (both with 10 mM NH & Cone Voltage ( V ) \(=10.00\) \\
\hline & \begin{tabular}{l}
Ramp to \(90 \%\) organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min . \\
Time: 10 min
\end{tabular} & \begin{tabular}{l}
Cone Gas Flow (l/hr) \(=100\) \\
Desolvation Gas Flow (l/hr) \(=750\)
\end{tabular} \\
\hline Flow: & \(300 \mu / / \mathrm{min}\) & \\
\hline
\end{tabular}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HAZARDS:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, \(x\)-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company, In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).
**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

\section*{PRODUCT CODE: \\ COMPOUND:}

M3PFBA
Perfluoro-n- \(\left[2,3,4-{ }^{13} \mathrm{C}_{3}\right]\) butanoic acid

\section*{STRUCTURE:}

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mrisadym)
EXPIRY DATE: (mmodism)
RECOMMENDED STORAGE:
\({ }^{13} \mathrm{C}_{3}{ }^{12} \mathrm{CHF}_{7} \mathrm{O}_{2}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
>98\%
12/14/2017
12/14/2022

LOT NUMBER: M3PFBA1217

CAS \#: \(\quad\) Not available

MOLECULAR WEIGHT: 217.02
SOLVENT(S): Methanol
Water ( \(<1 \%\) )
ISOTOPIC PURITY: \(\quad \geq 99 \%{ }^{13} \mathrm{C}\)
\(\left(2,3,4-{ }^{13} \mathrm{C}_{3}\right)\)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains \(\sim 0.2 \%\) of perfluoro-n \(\left[{ }^{3}{ }_{3} \mathrm{C}_{3}\right]\) propanoic acid and also contains \(\sim 1.0 \%\) of perfluoro-n- \(\left[1,2,3,4-{ }^{13} \mathrm{C}_{4}\right]\) butanoic acid due to the naturally occurring isotopic abundance of \({ }^{13} \mathrm{C}\) in the unlabelled carbon atom.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)
(mmiodryy

Figure 2: MPFDA; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure. 2:}
\begin{tabular}{lll} 
Injection: \(\quad\) On-column (MPFDA) & MS Parameters \\
Mobile phase: & Same as Figure 1 & Collision Gas (mbar) \(=3.45 \mathrm{e}-3\) \\
& Collision Energy \((\mathrm{eV})=10\)
\end{tabular}

Figure 1: MPFDA; LC/MS Data (TIC and Mass Spectrum)


\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS /CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{t}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{i}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

\section*{CERTIFICATE OF ANALYSIS DOCUMENTATION}

\section*{PRODUCT CODE:}

COMPOUND:

MPFDA
Perfluoro-n \(-\left[1,2-^{13} \mathrm{C}_{2}\right]\) decanoic acid

STRUCTURE:

\begin{tabular}{|c|c|c|c|}
\hline MOLECULAR FORMULA: & \({ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{8} \mathrm{HF}_{18} \mathrm{O}_{2}\) & MOLECULAR WEIGHT: & 516.07 \\
\hline CONCENTRATION: & \(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) & SOLVENT(S): & Methanol \\
\hline & & & Water (<1\%) \\
\hline CHEMICAL PURITY: & >98\% & ISOTOPIC PURITY: & \(\geq 99 \%{ }^{13} \mathrm{C}\) \\
\hline LAST TESTED: (mmodurw) & 09/05/2019 & & \(\left(1,2-{ }^{13} \mathrm{C}_{2}\right)\) \\
\hline EXPIRY DATE: (mmodimy) & 09/05/2024 & & \\
\hline RECOMMENDED STORAGE: & Sto & & \\
\hline
\end{tabular}

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

Figure 2: \(\quad\) MPFUdA; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Fiqure 2:}

Injection: On-column (MPFUdA)
Mobile phase: Same as Figure 1
MS Parameters
Collision Gas (mbar) \(=3.39 \mathrm{e}-3\)
Collision Energy (eV) \(=12\)

Flow: \(\quad 300 \mu / / \mathrm{min}\)


\section*{INTENDED USE:}

The products prepared by Wellington Laboratories inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be < \(5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(\vartheta\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where \(x\) is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has aiso been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAl Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

\section*{PRODUCT CODE:}

COMPOUND:

MPFUdA
Perfluoro-n-[1,2- \({ }^{33} \mathrm{C}_{2}\) ]undecanoic acid

STRUCTURE:

LOT NUMBER: MPFUdA0619

CAS \#: \(\quad\) Not available

\begin{tabular}{|c|c|}
\hline MOLECULAR FORMULA: CONCENTRATION: & \[
\begin{aligned}
& { }^{13} \mathrm{C}_{2}{ }_{2} \mathrm{C}_{9} \mathrm{HF}_{2} \mathrm{O}_{2} \\
& 50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}
\end{aligned}
\] \\
\hline CHEMICAL PURITY: & >98\% \\
\hline LAST TESTED; (mmodimm) & 07/04/2019 \\
\hline EXPIRY DATE: (mmbudrm) & 07/04/2024 \\
\hline RECOMMENDED STORAGE: & Store ampoule in a cool, dark place \\
\hline
\end{tabular}

MOLECULAR WEIGHT: 566.08
SOLVENT(S): Methanol Water (<1\%)
ISOTOPIC PURITY: \(\quad \geq 99 \%{ }^{13} \mathrm{C}\)
( \(1,2-{ }^{13} \mathrm{C}_{2}\) )

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Presence of \(1{ }^{13} \mathrm{C}_{1}-\) PFUdA ( \(\sim 1 \%\); see Figure 2 ), \(2{ }^{-13} \mathrm{C}_{1}-\mathrm{PF}\) UdA ( \(\sim 1 \%\) ), and PFUdA ( \(\sim 0.2 \%\); see Figure 2) are due to the isotopic purity of the \({ }^{13} \mathrm{C}\)-precursor.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

\title{
Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com
}

Figure 2: M2PFTeDA; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Fiqure 2:}

Injection: On-column (M2PFTeDA)
Mobile phase: Same as Figure 1
Flow: \(\quad 300 \mu / / m i n\)

\section*{MS Parameters}

Collision Gas \((\mathrm{mbar})=3.16 \mathrm{e}-3\)
Collision Energy (eV) \(=14\)
- Fiqure 1: M2PFTeDA; LC/MS Data (TIC and Mass Spectrum)



\section*{Condilions for Fiqure 1:}

LC: \(\quad\) Waters Acquity Ultra Performance LC
MS: \(\quad\) Waters Xevo TQ-S micro MS
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & \multirow[t]{2}{*}{MS Parameters} \\
\hline Column: & Acquity UPLC BEH Shield RP \({ }_{18}\) & \\
\hline & \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\) & Experiment: Full Scan (225-850 amu) \\
\hline \multirow[t]{4}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: 60\% (80:20 MeOH:ACN) / \(40 \% \mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage ( kV ) \(=2.00\) \\
\hline & (both with 10 mM NH & Cone Voltage (V) \(=10.00\) \\
\hline & \begin{tabular}{l}
Ramp to \(90 \%\) organic over 7 min and hold for 3 min before returning to initial conditions in 0.75 min . \\
Time: 12 min
\end{tabular} & \begin{tabular}{l}
Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\) \\
Desolvation Gas Flow \((/ / \mathrm{hr})=1000\)
\end{tabular} \\
\hline Flow: & \(300 \mu / 1 / \mathrm{min}\) & \\
\hline
\end{tabular}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be < \(5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{e}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{z}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where \(x\) is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/EC 17025 accredited laboratory. All volumetnc glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAl Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).


CALA

**For additional information or assistance concerning this or any other products from Wellington Laboratories inc., please visit our website at www,well-labs,com or contact us directly at infoowell-labs,com**

\section*{CERTIFICATE OF ANALYSIS DOCUMENTATION}
\begin{tabular}{ll} 
PRODUCT CODE: & M2PFTeDA \\
COMPOUND: & Perfluoro-n- \(\left[1,2-{ }^{13} \mathrm{C}_{2}\right]\) tetradecanoic acid
\end{tabular}

STRUCTURE:
CAS \#:
Not available


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmoddrmy) EXPIRY DATE: (mmodum) RECOMMENDED STORAGE:
\({ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{12} \mathrm{HF}_{27} \mathrm{O}_{2}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
>98\%
12/11/2018
12/11/2023
Store ampoule in a cool, dark place

\section*{LOT NUMBER: M2PFTeDA1218}
```

COMPOUND:
Perfluoro- $n-\left[1,2-{ }^{13} \mathrm{C}_{2}\right]$ tetradecanoic acid

```


\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: 12/20/2018
(mmodyyyy)

\section*{Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com}


\section*{Conditions for Figure 2:}

Injection: On-column (MPFNA)
\(\begin{array}{ll}\text { Mobile phase: Same as Figure } 1 & \text { Collision Gas (mbar) }=2.88 \mathrm{e}-3 \\ & \text { Collision Energy }(\mathrm{eV})=10\end{array}\)
Flow: \(\quad 300 \mu / \mathrm{min}\)

\section*{MS Parameters}

Figure 1: MPFNA; LC/MS Data (TIC and Mass Spectrum)


\section*{Conditions for Figure 1: \\ LC: \(\quad\) Waters Acquity Ultra Performance LC \\ MS: \(\quad\) Waters Xevo TQ-S micro MS}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline Column: & Acquity UPLC BEH Shield RP \({ }_{\text {s8 }}\) & \multirow[t]{2}{*}{Experiment: Full Scan (225-850 amu)} \\
\hline & \(1.7 \mu \mathrm{~m}, ~ 2.1 \times 100 \mathrm{~mm}\) & \\
\hline \multirow[t]{6}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: 50\% (80:20 MeOH:ACN) / 50\% \(\mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=2.00\) \\
\hline & (both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer) & Cone Voltage ( V ) \(=10.00\) \\
\hline & Ramp to \(90 \%\) organic over 8 min and hold for & Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\) \\
\hline & 2 min before returning to initial conditions in 0.75 min . & Desolvation Gas Flow (l/hr) \(=1000\) \\
\hline & Time: 12 min & \\
\hline
\end{tabular}

Flow:
\(300 \mu / / m i n\)

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MSMS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2} \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an extemal ISO/EC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com** WELLINGTON LABORATORIES

\section*{CERTIFICATE OF ANALYSIS DOCUMENTATION}
\begin{tabular}{ll} 
PRODUCT CODE: & MPFNA \\
COMPOUND: & Perfluoro-n-[1,2,3,4,5- \(\left.{ }^{13} \mathrm{C}_{5}\right]\) nonanoic acid
\end{tabular}

STRUCTURE:

Perfluoro-n-[1,2,3,4,5- \({ }^{3} \mathrm{C}_{5}\) ]nonanoic acid
LOT NUMBER: MPFNA1218

CAS \#: Not available

\begin{tabular}{|c|c|c|c|}
\hline MOLECULAR FORMULA: & \({ }^{13} \mathrm{C}_{5}{ }^{12} \mathrm{C}_{4} \mathrm{HF}_{17} \mathrm{O}_{2}\) & MOLECULAR WEIGHT: & 469.04 \\
\hline CONCENTRATION: & \(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) & SOLVENT(S): & Methanol \\
\hline & & & Water ( \(<1 \%\) ) \\
\hline CHEMICAL PURITY: & >98\% & ISOTOPIC PURITY: & \(\geq 99 \%{ }^{13} \mathrm{C}\) \\
\hline LAST TESTED: \({ }^{\text {(mm/dd/wy }}\) ) & 12/05/2018 & & \(\left(1,2,3,4,5-{ }^{13} \mathrm{C}_{5}\right)\) \\
\hline EXPIRY DATE: (mmiddism) & 12/05/2023 & & \\
\hline RECOMMENDED STORAGE: & Store ampoule in a cool, dark place & & \\
\hline
\end{tabular}

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

PRODUCT CODE: COMPOUND:

MPFDoA
Perfluoro- \(\mathrm{n}-\left[1,2{ }^{-13} \mathrm{C}_{2}\right.\) ]dodecanoic acid

LOT NUMBER: MPFDoA1218

CAS \#: Not available

\begin{tabular}{|c|c|c|c|}
\hline MOLECULAR FORMULA: & \({ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{10} \mathrm{HF}_{23} \mathrm{O}_{2}\) & MOLECULAR WEIGHT: & 616.08 \\
\hline CONCENTRATION: & \(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) & SOLVENT(S): & Methanol \\
\hline & & & Water ( \(<1 \%\) ) \\
\hline CHEMICAL PURITY: & >98\% & ISOTOPIC PURITY: & \(\geq 99 \%{ }^{13} \mathrm{C}\) \\
\hline LAST TESTED: (mmidurw) & 12/11/2018 & & (1,2- \({ }^{13} \mathrm{C}_{2}\) ) \\
\hline EXPIRY DATE: (mmddusm) & 12/11/2023 & & \\
\hline RECOMMENDED STORAGE: & Store ampoule in a cool, dark place & & \\
\hline
\end{tabular}

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: \(\frac{12 / 18 / 2018}{(\text { mndodmm })}\)

> Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 - info@well-labs.com

\section*{19 LO609}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\[
x_{n}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are reguiarly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAl Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

1 Figure 1: MPFDoA; LC/MS Data (TIC and Mass Spectrum)

\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Conditions for Fiqure 1:} & \multirow[t]{3}{*}{} \\
\hline LC: & Waters Acquity Ultra Performance LC & \\
\hline MS: & Waters Xevo TQ-S micro MS & \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline \multirow[t]{2}{*}{Column:} & Acquity UPLC BEH Shield \(\mathrm{RP}_{18}\) & \\
\hline & \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\) & Experiment: Full Scan (225-850 amu) \\
\hline \multirow[t]{4}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: 60\% (80:20 MeOH:ACN) / 40\% \(\mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=2.00\) \\
\hline & (both with \(10 \mathrm{mM} \mathrm{NH} 4_{4} \mathrm{OAc}\) buffer) & Cone Voltage (V) \(=10.00\) \\
\hline & Ramp to \(90 \%\) organic over 7 min and hold for 3 min before returning to initial conditions in 0.75 min . Time: 12 min & \begin{tabular}{l}
Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\) \\
Desolvation Gas Flow (l/hr) \(=1000\)
\end{tabular} \\
\hline Flow: & \(300 \mu / / m i n\) & \\
\hline
\end{tabular}

Figure 2: MPFDoA; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure 2:}

Injection: On-column (MPFDoA
Mobile phase: Same as Figure 1

\section*{MS Parameters}

Collision Gas (mbar) \(=3.16 \mathrm{e}-3\)
Collision Energy (eV) \(=12\)

Figure 2: M4PFHpA; LC/MS/MS Data (Selected MRM Transitions)

\begin{tabular}{|lll}
\hline Conditions for Fiaure 2: & \\
Injection: & On-column (M4PFHpA) & MS Parameters \\
Mobile phase: & Same as Figure 1 & Collision Gas \((\mathrm{mbar})=2.87 \mathrm{e}-3\) \\
Flow: & \(300 \mu \mathrm{l} / \mathrm{min}\) & Collision Energy \((\mathrm{eV})=8\)
\end{tabular}
Fiqure 1: M4PFHPA; LC/MS Data (TIC and Mass Spectrum)


\section*{Conditions for Figure 1:}
\begin{tabular}{ll} 
LC: & Waters Acquity Ultra Performance LC \\
MS: & Waters Xevo TQ-S micro MS
\end{tabular}

\section*{Chromatographic Conditions}

Column: \(\quad\) Acquity UPLC BEH Shield RP \({ }_{\text {va }}\) \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)

Mobile phase: Gradient
Start: 50\% (80:20 MeOH:ACN) / \(50 \% \mathrm{H}_{2} \mathrm{O}\)
(both with \(10 \mathrm{mM} \mathrm{NH} 4_{4} \mathrm{OAc}\) buffer)
Ramp to \(90 \%\) organic over 8 min and hold for
2 min before returning to initial conditions in 0.75 min . Time: 11 min

\section*{MS Parameters}

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) \(=2.00\)
Cone Voltage (V) \(=10.00\)
Desolvation Temperature \(\left({ }^{\circ} \mathrm{C}\right)=500\)
Desolvation Gas Flow (t/hr) \(=1000\)

Flow:
\(300 \mu / / m i n\)

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and sultable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5\% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\[
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where \(x\) is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoning for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www,well-labs.com or contact us directly at infowwell-labs.com**

PRODUCT CODE:
COMPOUND:

\section*{M4PFHpA}

Perfluoro-n-[1,2,3,4- \({ }^{3} \mathrm{C}_{4}\) heptanoic acid

LOT NUMBER: M4PFHpA0519

CAS\#: \(\quad\) Not available

STRUCTURE:

\begin{tabular}{ll} 
MOLECULAR FORMULA: & \({ }^{13} \mathrm{C}_{4}{ }^{12} \mathrm{C}_{3} \mathrm{HF}_{13} \mathrm{O}_{2}\) \\
\hline CONCENTRATION: & \(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) \\
CHEMICAL PURITY: & \(>98 \%\) \\
LAST TESTED: (mmddedmy) & \(05 / 06 / 2019\) \\
EXPIRY DATE: (mmddemm) & \(05 / 06 / 2024\) \\
RECOMMENDED STORAGE: & Store ampoule in a cool, dark place
\end{tabular}

MOLECULAR WEIGHT: 368.03
SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY:
\(\geq 99 \%{ }^{13} \mathrm{C}\)
\(\left(1,2,3,4-{ }^{13} \mathrm{C}_{4}\right)\)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

Figure 2: M2PFOA; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Fiqure 2:}

Injection: On-column (M2PFOA)
Mobile phase: Same as Figure 1

\section*{MS Parameters}

Collision Gas (mbar) \(=2.88 \mathrm{e}-3\)
Collision Energy ( eV ) \(=8\)

Flow: \(\quad 300 \mu 1 / \mathrm{min}\)
; Figure 1: M2PFOA; LC/MS Data (TIC and Mass Spectrum)

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 1:} \\
\hline LC: & Waters Acquity Ultra Performance LC & \\
\hline MS: & Waters Xevo TQ-S micro MS & \\
\hline Chromatograp & hic Conditions & MS Parameters \\
\hline Column: & \[
\begin{aligned}
& \text { Acquity UPLC BEH Shield RP } \\
& 1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}
\end{aligned}
\] & Experiment: Full Scan (250-850 amu) \\
\hline Mobile phase: & \begin{tabular}{l}
Gradient \\
Start: \(55 \%\) ( \(80: 20 \mathrm{MeOH}: A C N\) ) / 45\% \(\mathrm{H}_{2} \mathrm{O}\) \\
(both with \(10 \mathrm{mM} \mathrm{NH} \mathrm{NA}_{4} \mathrm{OAc}\) buffer) \\
Ramp to \(80 \%\) organic over 8 min and hold for 2 min before returning to initial conditions in 0.75 min . Time: 12 min
\end{tabular} & \begin{tabular}{l}
Source: Electrospray (negative) \\
Capillary Voltage (kV) \(=2.00\) \\
Cone Voltage \((\mathrm{V})=10.00\) \\
Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\) \\
Desolvation Gas Flow ( \(/ / \mathrm{hr}\) ) \(=1000\)
\end{tabular} \\
\hline Flow: & \(300 \mu / 1 / \mathrm{min}\) & \\
\hline
\end{tabular}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, \(x\)-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{s}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\[
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where \(x\) is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/EC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com \({ }^{* *}\)

\section*{PRODUCT CODE: \\ COMPOUND:}

\section*{STRUCTURE:}

M2PFOA
Perfluoro-n-[1,2- \({ }^{13} \mathrm{C}_{2}\) ]octanoic acid

\section*{LOT NUMBER: M2PFOA0619}

\section*{CAS\#: Not available}

MOLECULAR FORMULA:
CONCENTRATION: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mnodurm) EXPIRY DATE: (mmidermy) RECOMMENDED STORAGE:
\({ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{6} \mathrm{HF}_{15} \mathrm{O}_{2}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
>98\%
06/21/2019
06/21/2024
Store ampoule in a cool, dark place

\section*{MOLECULAR WEIGHT: 416.05}

SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY: \(\quad \geq 99 \%{ }^{13} \mathrm{C}\)
\(\left(1,2-{ }^{13} \mathrm{C}_{2}\right)\)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains \(<0.1 \%\) of perfluoro-n- \(\left[{ }^{3} \mathrm{C}_{1}\right]\) heptanoic acid ( \({ }^{13} \mathrm{C}_{1}\)-PFHpA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)
(mm/dd/yw)

Fiqure 2: M3PFPeA; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure 2:}
\begin{tabular}{lcl} 
Injection: & On-column (M3PFPeA) & MS Parameters \\
Mobile phase: & Same as Figure 1 & Collision Gas (mbar) \(=2.84 \mathrm{e}-3\) \\
Flow: & 300 ul/min & Collision Energy \((\mathrm{eV})=8\)
\end{tabular}



\section*{Conditions for Fiqure 1:}
\begin{tabular}{|c|c|c|}
\hline \[
\frac{\text { LC: }}{\text { MS: }}
\] & Waters Acquity Ultra Performance LC Waters Xevo TQ-S micro MS & \\
\hline \multicolumn{2}{|l|}{Chromatographic Condilions} & MS Parameters \\
\hline \multirow[t]{2}{*}{Column:} & Acquity UPLC BEH Shield RP \({ }_{19}\) & \\
\hline & \(1.7 \mu \mathrm{~m}, ~ 2.1 \times 100 \mathrm{~mm}\) & Experiment: Full Scan (150-850 amu) \\
\hline \multirow[t]{4}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: \(40 \%\) (80:20 MeOH:ACN)/ \(60 \% \mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=2.00\) \\
\hline & (both with \(10 \mathrm{mM} \mathrm{NH} \mathrm{O}_{4} \mathrm{OAc}\) buffer) & Cone Voltage (V) \(=10.00\) \\
\hline & Ramp to \(90 \%\) organic over 8 min and hold for 2 min before returning to initial conditions in 0.75 min . Time: 12 min & \begin{tabular}{l}
Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\) \\
Desolvation Gas Flow \((1 / \mathrm{hr})=1000\)
\end{tabular} \\
\hline Flow: & \(300 \mu 1 / \mathrm{min}\) & \\
\hline
\end{tabular}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was
designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned values), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2} \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY;}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

\section*{PRODUCT CODE:}

\section*{COMPOUND:}

STRUCTURE:

M3PFPeA
Perfluoro-n-[3,4,5- \(\left.{ }^{13} \mathrm{C}_{3}\right]\) pentanoic acid

LOT NUMBER: M3PFPeA0219

CAS\#: Not available

\begin{tabular}{|c|c|c|c|}
\hline MOLECULAR FORMULA: & \({ }^{13} \mathrm{C}_{3}{ }^{12} \mathrm{C}_{2} \mathrm{HF}_{9} \mathrm{O}_{2}\) & MOLECULAR WEIGHT: & 267.02 \\
\hline CONCENTRATION: & \(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) & SOLVENT(S): & Methanol \\
\hline & & & Water (<1\%) \\
\hline CHEMICAL PURITY: & >98\% & ISOTOPIC PURITY: & \(\geq 99 \%{ }^{13} \mathrm{C}\) \\
\hline LAST TESTED; (mmdarm) & 03/08/2019 & & (3,4,5- \({ }^{1{ }^{\text {C }} \mathrm{C}_{3} \text { ) }{ }^{\text {a }} \text { ( }}\) \\
\hline EXPIRY DATE: (mmddumy & 03/08/2024 & & \\
\hline RECOMMENDED STORAGE: & Store ampoule in a cool, dark place & & \\
\hline
\end{tabular}

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains \(\sim 0.95 \%\) of perfluoro-n- \(\left[{ }^{33} \mathrm{C}_{3}\right.\) butanoic acid and \(0.05 \%\) of perfluoro-1-pentanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

Figure 2: M8FOSA-I; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Fiqure 2:}

Injection: On-column (M8FOSA-1)
Mobile phase: Same as Figure 1
Flow: \(\quad 300 \mu / / \mathrm{min}\)

\section*{MS Parameters}

Collision Gas (mbar) \(=2.94 e-3\)
Collision Energy \((\mathrm{eV})=30\)


\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 1:} \\
\hline LC: & Waters Acquity Ultra Performance LC & \\
\hline MS: & Waters Xevo TQ-S micro MS & \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline Column: & \begin{tabular}{l}
Acquity UPLC BEH Shield RP \({ }_{16}\) \\
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)
\end{tabular} & Experiment: Full Scan (225-850 amu) \\
\hline \multirow[t]{5}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: 50\% (80:20 MeOH:ACN) / 50\% \(\mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=0.50\) \\
\hline & (both with 10 mM NH & Cone Voltage (V) \(=20.00\) \\
\hline & Ramp to \(90 \%\) organic over 8 min and hold for & Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\) \\
\hline & 2 min before returning to initial conditions in 0.75 min . Time: 12 min & Desolvation Gas Flow (//hr) \(=1000\) \\
\hline Flow: & \(300 \mu / / m i n\) & \\
\hline
\end{tabular}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{e}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{7}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/EC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www,well-labs.com or contact us directly at info@well-labs.com**

\section*{PRODOCT CODE: COMPOUND:}

\section*{STRUCTURE:}

M8FOSA-I
Perfluoro-1-[ \({ }^{3} \mathrm{C}_{8}\) loctanesulfonamide

LOT NUMBER: M8FOSA0619

CAS \#: 1365803-60-6


MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mmoditmy)
EXPIRY DATE: (mmudodm)
RECOMMENDED STORAGE:
\({ }^{13} \mathrm{C}_{8} \mathrm{H}_{2} \mathrm{~F}_{10} \mathrm{NO}_{2} \mathrm{~S}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
\(>98 \%\)
06/19/2019
06/19/2024
Refrigerate ampoule

MOLECULAR WEIGHT: 507.09
SOLVENT(S): Isopropanol ISOTOPIC PURITY: \(\quad \geq 99 \%{ }^{13} \mathrm{C}\)
\(\left({ }^{33} \mathrm{C}_{8}\right)\)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains \(\sim 1.2 \%\) of perfluoro- \(1-\left[{ }^{3} \mathrm{C}_{4}\right.\) loctanesulfonamide and \(\sim 0.02 \%\) of perfluoro-1-[ \({ }^{3} \mathrm{C}_{7}\) heptanesulfonamide.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(06 / 21 / 2019\) ( \(\mathrm{mm} / \mathrm{dd} / \mathrm{yw} \%\) )

\section*{CERTIFICATE OF ANALYSIS \\ DOCUMENTATION}

\section*{PRODUCT CODE: COMPOUND:}

\section*{d3-N-MeFOSAA}

LOT NUMBER: d3NMeFOSAA0719
N -methyl-d3-perfluoro-1-octanesulfonamidoacetic acid
STRUCTURE:
CAS \#:
1400690-70-1

\begin{tabular}{|c|c|c|c|}
\hline MOLECULAR FORMULA: & \(\mathrm{C}_{11} \mathrm{D}_{3} \mathrm{H}_{3} \mathrm{~F}_{17} \mathrm{NO}_{4} \mathrm{~S}\) & MOLECULAR WEIGHT: & 574.23 \\
\hline CONCENTRATION: & \(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) & SOLVENT(S): & Methanol \\
\hline & & & Water ( \(<1 \%\) ) \\
\hline CHEMICAL PURITY: & >98\% & ISOTOPIC PURITY: & \(\geq 98 \%{ }^{2} H_{3}\) \\
\hline LAST TESTED: (mnudurym) & 07/24/2019 & & \\
\hline EXPIRY DATE: (mmidarym) & 07/24/2024 & & \\
\hline RECOMMENDED STORAGE: & Refrigerate ampoule & & \\
\hline
\end{tabular}

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LCIMS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent the conversion of the acetic acid moiety to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: 0
( \(\mathrm{mm} / \mathrm{dd} / \mathrm{yyyy}\) )

\footnotetext{
Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
519-822-2436 • Fax: 519-822-2849 • info@well-labs.com
}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystatline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UVIMSIMS. The relative response factors of the analyte of interest in each solution are required to be <5\% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\[
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where \(x\) is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

\(\qquad\)
Acerechanion wh And

**For additional information or assistance conceming this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

\section*{Figure 1: d3-N-MeFOSAA; LC/MS Data (TIC and Mass Spectrum)}


\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 1:} \\
\hline LC: & Waters Acquity Ulitra Performance LC & \\
\hline MS: & Waters Xevo TQ-S micro MS & \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline Column: & \begin{tabular}{l}
Acquity UPLC BEH Shield RP \({ }_{18}\) \\
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)
\end{tabular} & Experiment: Full Scan (250-850 amu) \\
\hline \multirow[t]{5}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: 60\% (80:20 MeOH:ACN) / 40\% \(\mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=2.00\) \\
\hline & (both with 10 mM NH & Cone Voltage (V)=20.00 \\
\hline & Ramp to \(90 \%\) organic over 7 min and hold for & Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\) \\
\hline & 3 min before returning to initial conditions in 0.75 min . Time: 12 min & Desolvation Gas Flow (l/hr) \(=1000\) \\
\hline Flow: & \(300 \mu / / \mathrm{min}\) & \\
\hline
\end{tabular}

Figure 2: d3-N-MeFOSAA; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure 2:}


\section*{MS Parameters}

Collision Gas (mbar) \(=3.33 e-3\)
Collision Energy (eV) \(=18\)

Figure 2: d5-N-EtFOSAA; LC/MS/MS Data (Selected MRM Transitions)

\begin{tabular}{|ll|}
\hline Conditions for Eigure 2: & \\
Injection: \(\quad\) On-column (d5-N-EtFOSAA) & MS Parameters \\
Mobile phase: Same as Figure 1 & \begin{tabular}{l} 
Collision Gas (mbar) \(=3.29 \mathrm{e}-3\) \\
Flow: \\
\\
\(300 \mu / \mathrm{min}\)
\end{tabular} \\
\hline
\end{tabular}
Figure 1: d5-N-EtFOSAA; LC/MS Data (TIC and Mass Spectrum)


\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 1:} \\
\hline LC: & \multicolumn{2}{|l|}{Waters Acquity Ultra Performance LC} \\
\hline MS: & \multicolumn{2}{|l|}{Waters Xevo TQ-S micro MS} \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline Column: & \begin{tabular}{l}
Acquity UPLC BEH Shield RP \({ }_{1 s}\) \\
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)
\end{tabular} & Experiment: Full Scan (225-850 amu) \\
\hline \multirow[t]{5}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: \(60 \%\) ( \(80: 20 \mathrm{MeOH}: \mathrm{ACN}\) ) / \(40 \% \mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=2.00\) \\
\hline & (both with \(10 \mathrm{mM} \mathrm{NH} \mathrm{H}_{4} \mathrm{OAc}\) buffer) & Cone Voltage (V) \(=20.00\) \\
\hline & Ramp to \(90 \%\) organic over 7 min and hold for & Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\) \\
\hline & 3 min before returning to initial conditions in 0.75 min . Time: 12 min & Desolvation Gas Flow (l/hr) \(=1000\) \\
\hline Flow: & \(300 \mu / \mathrm{min}\) & \\
\hline
\end{tabular}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x -ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{e}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\[
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{i}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric giassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories inc., please visit our website at wow well-labs.com or contact us directly at info@well-labs,com**

\section*{PRODUCT CODE: COMPOUND:}
d5-N-EtFOSAA
N -ethyl-d5-perfluoro-1-octanesulfonamidoacetic acid
d5NEtFOSAA0719
LOT NUMBER;

GAS\#: Not available


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmoderm)
EXPIRY DATE: (midedrm)
RECOMMENDED STORAGE:
\(\mathrm{C}_{12} \mathrm{D}_{5} \mathrm{H}_{3} \mathrm{~F}_{17} \mathrm{NO}_{4} \mathrm{~S}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
>98\%
07/25/2019
07/25/2024
Refrigerate ampoule

MOLECULAR WEIGHT: 590.26
SOLVENT (S): Methanol Water (<1\%)
ISOTOPIC PURITY: \(\geq 98 \%{ }^{2} H_{5}\)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LCIMS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent the conversion of the acetic acid moiety to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\) (matidiyyy)

Figure 2: \(\quad\) M3PFBS; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure 2:}

Injection: On-column (M3PFBS)
Mobile phase: Same as Figure 1
Flow: \(\quad 300 \mu / \mathrm{min}\)

\section*{MS. Parameters}
\[
\begin{aligned}
& \text { Collision Gas }(\mathrm{mbar})=3.57 \mathrm{e}-3 \\
& \text { Collision Energy }(\mathrm{eV})=30
\end{aligned}
\]


\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{t}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{7^{*}}, x_{z}, \ldots x_{n}\) on which it depends is:
\[
u_{r}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/EC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).


CALA
Fentera
**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

\section*{CERTIFICATE OF ANALYSIS DOCUMENTATION}

\author{
PRODUCT CODE: COMPOUND: \\ M3PFBS \\ LOT NUMBER: M3PFBS1019 \\ Sodium perfluoro-1-[2,3,4- \(\left.{ }^{13} \mathrm{C}_{3}\right]\) butanesulfonate \\ \section*{STRUCTURE:} \\  \\ CAS \#: Not available
}

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmadrmp)
EXPIRY DATE: (mmddomm)
RECOMMENDED STORAGE:
\({ }^{13} \mathrm{C}_{3}{ }^{12} \mathrm{CF}_{9} \mathrm{SO}_{3} \mathrm{Na}\)
\(50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) (Na salt) \(46.5 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}\) (M3PFBS anion)
>98\% ISOTOPIC PURITY:
10/29/2019
10/29/2024
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 325.06
SOLVENT(S): Methanol

ISOTOPIC PURITY: \(\quad \geq 99 \%{ }^{33} \mathrm{C}\)
(2,3,4- \({ }^{13} \mathrm{C}_{3}\) )

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains \(<0.1 \%\) of perfluoro-1-butanesulfonate.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\) \(\frac{11 / 08 / 2019}{(\mathrm{~mm} / \mathrm{d} / \mathrm{y} y \mathrm{~m})}\)

Figure 2: M8PFOS; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure 2:}

Injection: On-column (MBPFOS)

\section*{MS Parameters}
\(\begin{array}{ll}\text { Mobile phase: Same as Figure } 1 & \text { Collision Gas }(\mathrm{mbar})=2.85 \mathrm{e}-3 \\ & \text { Collision Energy }(\mathrm{eV})=42\end{array}\)
Flow: \(\quad 300 \mu / / \mathrm{min}\)




\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handing of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using singie-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystallire lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \% \mathrm{RSD}\). New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{t}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where \(x\) is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

*For additional information or assistance concerning this or any other products from Wellington Laboratories Inc. please visit our website at www.well-labs.com or contact us directly at infolowell-labs.com**

\section*{19LO6T}

WELLINGTON
LA B ORATORIES

\section*{PRODUCT CODE: COMPOUND:}

M8PFOS
Sodium perfluoro-1-[ \(\left.{ }^{13} \mathrm{C}_{\mathrm{a}}\right]\) octanesulfonate

LOT NUMBER: M8PFOS0519

CAS \#: \(\quad\) Not available


MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/didme)
EXPIRY DATE: (mmeddymy)
RECOMMENDED STORAGE:
\[
{ }^{13} \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}
\]
\[
50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \text { (Na salt) }
\]
\[
47.8 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml} \text { (M8PFOS anion) }
\]
\[
>98 \%
\]
\[
05 / 06 / 2019
\]
\[
05 / 06 / 2024
\]

MOLECULAR WEIGHT: 530.05
SOLVENT(S): Methanol

ISOTOPIC PURITY: \(\quad>99 \%{ }^{13} \mathrm{C}\)
\(\left({ }^{13} \mathrm{C}_{8}\right)\)

Store ampoule in a cool, dark place

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains \(\sim 0.2 \%\) of sodium perfluoro- \(1-\left[{ }^{13} \mathrm{C}_{7}\right]\) heptanesulfonate \(\left({ }^{13} \mathrm{C}_{7}-\mathrm{PFHpS}\right)\) and \(\sim 1.0 \%\) of sodium perfluoro-1-[ \({ }^{3} \mathrm{C}_{4}\) ]octanesulfonate (MPFOS).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: 05/23/2019
(mamdd/yyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

Figure 2: M3PFHxS; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure 2:}

Injection: On-column (M3PFHxS)

\section*{MS Parameters}
\begin{tabular}{lll} 
Mobile phase: Same as Figure 1 & Collision Gas (mbar) \(=3.91 \mathrm{e}-3\) \\
Flow: & Collision Energy \((\mathrm{eV})=32\)
\end{tabular}

Figure 1: M3PFHxS; LC/MS Data (TIC and Mass Spectrum)



\section*{Conditions for Figure 1:}
\begin{tabular}{ll} 
LC: & Waters Acquity Ultra Performance LC \\
MS: & Waters Xevo TQ-S micro MS
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline Column: & \begin{tabular}{l}
Acquity UPLC BEH Shield RP \({ }_{18}\) \\
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)
\end{tabular} & Experiment: Full Scan (225-850 amu) \\
\hline Mobile phase: & \begin{tabular}{l}
Gradient \\
Start: \(60 \%\) ( \(80: 20 \mathrm{MeOH}: \mathrm{ACN}\) ) \(/ 40 \% \mathrm{H}_{2} \mathrm{O}\) \\
(both with \(10 \mathrm{mM} \mathrm{NH}, \mathrm{OAC}\) buffer) \\
Ramp to \(90 \%\) organic over 7 min and hold for \\
3 min before returning to initial conditions in 0.75 min . \\
Time: 12 min
\end{tabular} & \begin{tabular}{l}
Source: Electrospray (negative) \\
Capillary Voltage ( kV ) \(=2.50\) \\
Cone Voltage \((V)=10.00\) \\
Desolvation Temperature \(\left({ }^{\circ} \mathrm{C}\right)=500\) \\
Desolvation Gas Flow (/hr) \(=1000\)
\end{tabular} \\
\hline Flow: & \(300 \mu \mathrm{l} / \mathrm{min}\) & \\
\hline
\end{tabular}

\section*{\(19 L 0618\)}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www,well-labs.com or contact us directly at info@well-labs.com**

\section*{PRODUCT CODE: COMPOUND:}

M3PFHxS
Sodium perfluoro-1-[1,2,3- \(\left.{ }^{13} \mathrm{C}_{3}\right]\) hexanesulfonate
LOT NUMBER: M3PFHxS1019

GAS \#: Not available


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodurys) EXPIRY DATE: (mmdaryyy)
RECOMMENDED STORAGE:
\({ }^{13} \mathrm{C}_{3}{ }^{12} \mathrm{C}_{3} \mathrm{~F}_{13} \mathrm{SO}_{3} \mathrm{Na}\)
\(50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) (Na salt)
\(47.3 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}\) (M3PFHxS anion)
\(>98 \%\) ISOTOPIC PURITY:
10/15/2019
10115/2024
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 425.07
SOLVENTIS): Methanol
ISOTOPIC PURITY: \(\quad \geq 99 \%{ }^{13} \mathrm{C}\)
\(\left(1,2,3-{ }^{13} \mathrm{C}_{3}\right)\)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains \(\sim 0.1 \%\) perfluoro-1-[1,2- \({ }^{13} \mathrm{C}_{2}\) ]pentanesulfonate, \(\sim 0.1 \%\) perfluoro-1-octanesulfonate, and \(\sim 0.05 \%\) of perfluoro-1-hexanesulfonate.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: \(\left.\frac{10 / 16 / 2019}{(\text { mid } / \mathrm{m} \%}\right)\)

Figure 2: MPFHXA; LC/MS/MS Data (Selected MRM Transitions)

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Fiqure 2:} \\
\hline Injection: & On-column (MPFHxA) & MS Parameters \\
\hline Mobile phase: & Same as Figure 1 & \[
\begin{aligned}
& \text { Collision Gas }(\mathrm{mbar})=3.80 \mathrm{e}-3 \\
& \text { Collision Energy }(\mathrm{eV})=8
\end{aligned}
\] \\
\hline Flow: & \(300 \mu / \mathrm{min}\) & \\
\hline
\end{tabular}

Figure 1: MPFHxA; LCIMS Data (TIC and Mass Spectrum)
\begin{tabular}{lll} 
110ct2019_MPFHXA_001 \\
MPFHXA1019 \(250 \mathrm{ng} / \mathrm{ml}\) \\
100 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 1:} \\
\hline LC: & Waters Acquity Ultra Performance LC & \\
\hline MS: & Waters Xevo TQ-S micro MS & \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline Column: & \begin{tabular}{l}
Acquity UPLC BEH Shield RP \({ }_{18}\) \\
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)
\end{tabular} & Experiment: Full Scan (225-850 amu) \\
\hline \multirow[t]{4}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: \(50 \%\) ( \(80: 20 \mathrm{MeOH}: \mathrm{ACN}\) ) / \(50 \% \mathrm{H}_{2} \mathrm{O}\) (both with 10 mM NH, OAc buffer) & Capillary Voltage (kV) \(=2.50\) Cone Voltage (V) \(=10.00\) \\
\hline & Ramp to \(90 \%\) organic over 8 min and hold for & Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\) \\
\hline & 2 min before returning to initial conditions in 0.75 min . Time: 12 min & Desolvation Gas Flow (Vhr) \(=1000\) \\
\hline Flow: & \(300 \mu / / \mathrm{min}\) & \\
\hline
\end{tabular}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are avallable upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystaline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{e}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/EC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOREC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).


CALA
ANAB
ACGAEDTED

*For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

\section*{PRODUCT CODE:}

COMPOUND:

MPFHXA
Perfluoro-n-[1,2- \({ }^{-13} \mathrm{C}_{2}\) ]hexanoic acid

\section*{LOT NUMBER: MPFHXA1019}

STRUCTURE:


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodurym)
EXPIRY DATE: (mmodrmm)
RECOMMENDED STORAGE:
\({ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{4} \mathrm{HF}_{11} \mathrm{O}_{2}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
>98\%
10/11/2019
10/11/2024
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 316.04
SOLVENT(S): Methanol
Water ( \(<1 \%\) )
ISOTOPIC PURITY: \(\quad \geq 99 \%{ }^{13} \mathrm{C}\)
\(\left(1,2 \cdot{ }^{13} \mathrm{C}_{2}\right)\)

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \(\qquad\)
1012212019

Figure 2: M2PFHxDA; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure 2:}

Injection: On-column (M2PFHxDA)
Mobile phase:
Fame as Figure 1
Flow: \(\quad 300 \mu \mathrm{l} / \mathrm{min}\)

\section*{MS Parameters}

Collision Gas \((\mathrm{mbar})=2.97 \mathrm{e}-3\)
Collision Energy (aV) \(=15\)

Figure 1: M2PFHxDA; LCIMS Data (TIC and Mass Spectrum)


\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 1:} \\
\hline LC: & Waters Acquity Ultra Performance LC & \\
\hline MS: & Waters Xevo TQ-S micro MS & \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline Column: & \begin{tabular}{l}
Acquity UPLC BEH Shield RP \({ }_{13}\) \\
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)
\end{tabular} & Experiment: Full Scan (250-1200 amu) \\
\hline \multirow[t]{4}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: 60\% (80:20 MeOH:ACN) / \(40 \% \mathrm{H}_{2} \mathrm{O}\) (both with 10 mM NH OAc buffer) & \begin{tabular}{l}
Capillary Voltage ( kV ) \(=2.00\) \\
Cone Voltage ( V ) \(=10.00\)
\end{tabular} \\
\hline & Ramp to \(90 \%\) organic over 7 min and hold for & Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\) \\
\hline & 3 min before returning to initial conditions in 0.75 min . Time: 12 min & Desolvation Gas Flow ( \(/ \mathrm{hrr}\) ) \(=1000\) \\
\hline Flow: & \(300 \mu \mathrm{l} / \mathrm{min}\) & \\
\hline
\end{tabular}

\section*{\(19 L 0620\)}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualfied personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible, They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFCIUV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MSMS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{i}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where \(x\) is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).



**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

\title{
CERTIFICATE OF ANALYSIS DOCUMENTATION
}

\section*{PRODUCT CODE: COMPOUND:}
M2PFHxDA
Perfluoro-n-[1,2- \({ }^{13} \mathrm{C}_{2}\) hexadecanoic acid

\section*{LOT NUMBER: M2PFHxDA1018}

\section*{STRUCTURE:}


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mprodum) EXPIRY DATE: (mmodrm) RECOMMENDED STORAGE:
\({ }^{13} \mathrm{C}_{2}{ }^{2} \mathrm{C}_{14} \mathrm{HF}_{31} \mathrm{O}_{2}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
>98\%
10/11/2018
10/11/2023
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 816.11
SOLVENT(S): Methanol Water (<1\%)
ISOTOPIC PURITY: \(\quad \geq 99 \%{ }^{13} \mathrm{C}\)
(1,2- \({ }^{13} \mathrm{C}_{2}\) )

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains \(\sim 0.3 \%\) of native perfluoro-n-hexadecanoic acid and \(-0.2 \%\) of perfluoro-n\(\left[{ }^{3} \mathrm{C}\right.\), ]pentadecanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: \(10 / 19 / 2018\)
(mm/ddiyyy)

Figure 2: M3HFPO-DA; LC/MS/MS Data (Selected MRM Transitions)

\begin{tabular}{|lll|}
\hline \multicolumn{2}{|l|}{ Conditions for Figure 2: } & \\
Injection: & On-column (M3HFPO-DA) & MS Parameters \\
Mobile phase: & Same as Figure 1 & Collision Gas (mbar) \(=3.60 \mathrm{e}-3\) \\
Flow: & \(300 \mu / \mathrm{min}\) & Colision Energy (eV) \(=8\) \\
\hline
\end{tabular}
, Figure 1: M3HFPO-DA; LC/MS Data (TIC and Mass Spectrum)


\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Fiqure 1:} \\
\hline LC: & Waters Acquity Ultra Performance LC & \\
\hline MS: & Waters Xevo TQ-S micro MS & \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline Column: & \begin{tabular}{l}
Acquity UPLC BEH Shield RP \({ }_{18}\) \\
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)
\end{tabular} & Experiment: Full Scan (225-850 amu) \\
\hline \multirow[t]{5}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: 50\% (80:20 MeOH:ACN)/50\% \(\mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=3.00\) \\
\hline & (both with 10 mM NH & Cone Voltage ( V ) \(=15.00\) \\
\hline & Ramp to \(90 \%\) organic over 8 min and hold for & Desolvation Temperature ( \({ }^{\text {C }}\) ) \(=325\) \\
\hline & 2 min before returning to initial conditions in 0.75 min . Time: 12 min & Desolvation Gas Flow (//hr) \(=1000\) \\
\hline Flow: & \(300 \mu / / \mathrm{min}\) & \\
\hline
\end{tabular}

\section*{INTENDED USE：}

The products prepared by Wellington Laboratories Inc．are for laboratory use only．This certified reference material（CRM）was designed to be used as a standard for the identification and／or quantification of the specific chemical compound it contains．

HANDLING：
This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals．Due care should be exercised to prevent unnecessary human contact or ingestion．All procedures should be carried out in a well－functioning fume hood and suitable gloves，eye protection，and clothing should be worn at all times．Waste should be disposed of according to national and regional regulations．Safety Data Sheets（SDSs）are available upon request．

\section*{SYNTHESIS／CHARACTERIZATION：}

Our products are synthesized using single－product unambiguous routes whenever possible．They are then characterized，and their structures and purities confirmed，using a combination of the most relevant techniques，such as NMR，GC／MS，LC／MS／MS， SFC／UV／MS／MS，x－ray crystallography，and melting point．Isotopic purities of mass－labelled compounds are also confirmed using HRGC／HRMS and／or LC／MS／MS．

\section*{HOMOGENEITY：}

Prior to solution preparation，crystalline material is tested for homogeneity using a variety of techniques（as stated above）and its solubility in a given diluent is taken into consideration．Duplicate solutions of a new product are prepared from the same crystalline lot and，after the addition of an appropriate internal standard，they are compared by GC／MS，LC／MS／MS，and／or SFC／UV／MS／MS． The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD．New solution lots of existing products are compared to older lots in the same manner，which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers．In order to maintain the integrity of the assigned value（s），and associated uncertainty，the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment．

\section*{UNCERTAINTY：}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation：

The combined relative standard uncertainty，\(u_{c}(y)\) ，of a value \(y\) and the uncertainty of the independent parameters
\[
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where \(x\) is expressed as a relative standard uncertainty of the individual parameter．
The individual uncertaintes taken into account include those associated with weights（calibration of the balance）and volumes （calibration of the volumetric glassware）．An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\)（calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ）is stated on the Certificate of Analysis for all of our products．

\section*{TRACEABILITY：}

All reference standard solutions are traceable to specific crystalline lots．The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory．In addition，their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO／IEC 17025 accredited laboratory．All volumetric glassware used is calibrated，of Class A tolerance，and traceable to an ISO／IEC 17025 accredited laboratory．For certain products，traceability to international interlaboratory studies has also been established．

\section*{EXPIRY DATE／PERIOD OF VALIDITY：}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration，until the specified expiry date，in the unopened ampoule．Monitoring for any degradation or change in concentration of the listed analyte（s）is performed on a routine basis．

\section*{LIMITED WARRANTY：}

At the time of shipment，all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications．

\section*{QUALITY MANAGEMENT：}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global， ISO／ECC 17025 by the Canadian Association for Laboratory Accreditation Inc．（CALA；A 1226），and ISO 17034 by ANSI－ASQ National Accreditation Board（ANAB；AR－1523）．

＊＊For additional information or assistance concerning this or any other products from Wellington Laboratories Inc．， please visit our website at www．well－labs．com or contact us directly at info＠well－labs．com＊＊

PRODUCT CODE: COMPOUND:

\section*{STRUCTURE:}

MOLECULAR FORMULA: CONCENTRATION: CHEMICAL PURITY: LAST TESTED: (mmudrm) EXPIRY DATE: (mmdumm) RECOMMENDED STORAGE:
\({ }^{13} \mathrm{C}_{3}{ }^{12} \mathrm{C}_{3} \mathrm{HF}_{11} \mathrm{O}_{3}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
\(>98 \%\)
09/20/2019
09/20/2022

Refrigerate ampoule

LOT NUMBER: M3HFPODA0919
2,3,3,3-Tetrafluoro-2-(1,1,2,2,3,3,3-heptafluoropropoxy) \({ }^{-13} \mathrm{C}_{3}\)-propanoic acid
CAS \#: Not available

MOLECULAR WEIGHT:
333.03

SOLVENT(S): Methanol
ISOTOPIC PURITY; \(\quad \geq 99 \%{ }^{13} \mathrm{C}\)
\(\left({ }^{3} \mathrm{C}_{3}\right)\)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains \(\sim 1.9 \%\) of the linear M3HFPO-DA isomer.
- Product is commercially known as GenX.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)
(mm/ddiymy)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Parent Standards used in this standard:} \\
\hline Standard & Description & Prepared & Prepared By & Expires & (mls) \\
\hline 19L0635 & PFDoA & 06-Dec-19 & ** Vendor ** & 23-Jan-24 & 0.4 \\
\hline 19L0636 & PFBA & 06-Dec-19 & ** Vendor ** & 10-Jul-24 & 0.4 \\
\hline 19L0637 & PFPeA & 06-Dec-19 & ** Vendor ** & 04-Sep-24 & 0.4 \\
\hline 19L0638 & PFHxA & 06-Dec-19 & ** Vendor ** & 08-Aug-24 & 0.4 \\
\hline 19L0639 & PFDA & 06-Dec-19 & ** Vendor ** & 01-May-24 & 0.4 \\
\hline 19L0640 & PFUdA & 06-Dec-19 & ** Vendor ** & 19-Mar-24 & 0.4 \\
\hline 19L0641 & PFTrDA & 06-Dec-19 & ** Vendor ** & 26-Sep-24 & 0.4 \\
\hline 19L0642 & PFHpA & 06-Dec-19 & ** Vendor ** & 05-Mar-24 & 0.4 \\
\hline 19L0643 & PFOA & 06-Dec-19 & ** Vendor ** & 06-Sep-24 & 0.4 \\
\hline 19L0644 & PFNA & 06-Dec-19 & ** Vendor ** & 08-Jul-24 & 0.4 \\
\hline 19L0645 & PFTeDA & 06-Dec-19 & ** Vendor ** & 11-Mar-24 & 0.4 \\
\hline 19L0646 & PFHxDA & 06-Dec-19 & ** Vendor ** & 03-Nov-24 & 0.4 \\
\hline 19L0647 & PFODA & 06-Dec-19 & ** Vendor ** & 02-May-24 & 0.4 \\
\hline 19L0648 & L-PFBS & 06-Dec-19 & ** Vendor ** & 10-Jul-24 & 0.454 \\
\hline 19L0649 & L-PFPeS & 06-Dec-19 & ** Vendor ** & 08-Jul-24 & 0.428 \\
\hline 19L0650 & L-PFHpS & 06-Dec-19 & ** Vendor ** & 16-Aug-24 & 0.42 \\
\hline 19L0651 & L-PFNS & 06-Dec-19 & ** Vendor ** & 06-Aug-24 & 0.418 \\
\hline 19L0652 & L-PFDS & 06-Dec-19 & ** Vendor ** & 04-Apr-24 & 0.415 \\
\hline 19L0653 & br-PFHxSK & 06-Dec-19 & ** Vendor ** & 02-Oct-23 & 0.44 \\
\hline 19L0654 & br-PFOSK anion & 06-Dec-19 & ** Vendor ** & 07-Jun-24 & 0.431 \\
\hline 19L0655 & 4:2 FTS & 06-Dec-19 & ** Vendor ** & 08-May-24 & 0.43 \\
\hline 19L0656 & 6:2FTS & 06-Dec-19 & ** Vendor ** & 09-Sep-24 & 0.422 \\
\hline 19L0657 & 8:2FTS & 06-Dec-19 & ** Vendor ** & 11-Sep-24 & 0.418 \\
\hline 19L0658 & FOSA-I & 06-Dec-19 & ** Vendor ** & 12-Sep-24 & 0.4 \\
\hline 19L0659 & br-NMeFOSAA & 06-Dec-19 & ** Vendor ** & 08-Jan-24 & 0.4 \\
\hline 19L0660 & br-NEtFOSAA & 06-Dec-19 & ** Vendor ** & 20-Aug-24 & 0.4 \\
\hline 19L0661 & N-MeFOSA-M & 06-Dec-19 & ** Vendor ** & 07-May-24 & 2 \\
\hline 19L0662 & N-EtFOSA-M & 06-Dec-19 & ** Vendor ** & 07-May-24 & 2 \\
\hline 19L0663 & N-MeFOSE-M & 06-Dec-19 & ** Vendor ** & 08-Apr-24 & 2 \\
\hline 19L0664 & N-EtFOSE-M & 06-Dec-19 & ** Vendor ** & 08-Apr-24 & 2 \\
\hline 19L0665 & 10:2FTS & 06-Dec-19 & ** Vendor ** & 11-Jun-22 & 0.415 \\
\hline 19L0666 & HFPO-DA & 06-Dec-19 & ** Vendor ** & 20-Sep-22 & 0.4 \\
\hline 19L0667 & 11Cl-PF3OUdS & 06-Dec-19 & ** Vendor ** & 23-Nov-24 & 0.425 \\
\hline 19L0668 & 9Cl-PF3ONS & 06-Dec-19 & ** Vendor ** & 30-Oct-24 & 0.43 \\
\hline 19L0669 & NaDONA & 06-Dec-19 & ** Vendor ** & 15-Jul-24 & 0.425 \\
\hline 19L0670 & PFECHS & 06-Dec-19 & ** Vendor ** & 04-Apr-24 & 0.435 \\
\hline 19L0671 & L-PFPrS & 06-Dec-19 & ** Vendor ** & 14-Dec-24 & 0.438 \\
\hline 19L1707 & L-PFDoS & 17-Dec-19 & ** Vendor ** & 06-Dec-23 & 0.415 \\
\hline
\end{tabular}

Analytical Standard Record
Vista Analytical Laboratory
20A0803
\begin{tabular}{|c|c|c|c|c|}
\hline Description: & PFC NS Stock & Expires: & 07-Jan-21 & \\
\hline Standard Type: & Analyte Spike & Prepared: & 08-Jan-20 & \\
\hline Solvent: & MeOH & Prepared By: & Brittany M. Lamb & \\
\hline Final Volume (mls): & 20 & Department: & LCMS & \\
\hline Vials: & 1 & Last Edit: & 08-Jan-20 14:18 & BML \\
\hline Analyte & & CAS Number & Concentration & Units \\
\hline L-PFHpA & & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline L-PFOS & & & 0.789 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline L-MeFOSA & & 31506-32-8 & 5 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline L-MeFOSAA & & 2355-31-9 & 0.76 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline L-MeFOSE & & 24448-09-7 & 5 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline L-PFBA & & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline L-PFBS & & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline L-PFDA & & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline L-PFDoA & & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline L-EtFOSAA & & 2991-50-6 & 0.776 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline L-PFDS & & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline L-EtFOSA & & 4151-50-2 & 5 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline L-PFHpS & & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline L-PFHxA & & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline L-PFHxDA & & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline L-PFHxS & & & 0.812 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline L-PFNA & & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline L-PFNS & & 68259-12-1 & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline L-PFOA & & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline 10:2 FTS & & 120226-60-0 & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline L-PFDoS & & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline cis-PFECHS & & & 0.668 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline 11Cl-PF3OUdS & & 763051-92-9 & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline 4:2 FTS & & 757124-72-4 & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline 6:2 FTS & & 27619-97-2 & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline 8:2 FTS & & 39108-34-4 & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline 9Cl-PF3ONS & & 756426-58-1 & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline ADONA & & 919005-14-4 & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline Br-EtFOSAA & & & 0.224 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline Br-MeFOSAA & & & 0.24 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline L-EtFOSE & & 1691-99-2 & 5 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline Br-PFOS & & 2795-39-3 & 0.211 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline L-PFOSA & & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline EtFOSA & & 4151-50-2 & 5 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline
\end{tabular}

Analytical Standard Record
Vista Analytical Laboratory
20A0803
\begin{tabular}{llll}
\hline & & & \\
Description: & PFC NS Stock & Expires: & 07-Jan-21 \\
Standard Type: & Analyte Spike & Prepared: & 08-Jan-20 \\
Solvent: & MeOH & Prepared By: & Brittany M. Lamb \\
Final Volume \((\mathrm{mls}):\) & 20 & Department: & LCMS \\
Vials: & 1 & Last Edit: & 08-Jan-20 14:18 by BML
\end{tabular}
\begin{tabular}{lccc} 
Analyte & CAS Number & Concentration & Units \\
\hline EtFOSAA & \(2991-50-6\) & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
EtFOSE & \(1691-99-2\) & 5 & \(\mathrm{ug} / \mathrm{mL}\) \\
F-53B Total & & 2 & \(\mathrm{ug} / \mathrm{mL}\) \\
HFPO-DA & \(13252-13-6\) & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
L-4:2 FTS & \(75124-72-4\) & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
L-6:2 FTS & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
L-8:2FTS & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
Br-PFHxS & \(3871-99-6\) & 0.189 & \(\mathrm{ug} / \mathrm{mL}\) \\
Total 6:2 FTS & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
L-PFODA & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
PFODA & \(16517-11-6\) & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
PFOS & \(1763-23-1\) & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
PFOSA & \(754-91-6\) & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
PFPeA & \(2706-90-3\) & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
PFPeS & \(2706-91-4\) & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
PFPrS & \(423-41-6\) & 1 & l \\
PFTeDA & \(376-06-7\) & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
PFNS & \(68259-12-1\) & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
PFUnA & \(2058-94-8\) & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
PFNA & \(375-95-1\) & 1 & \(\mathrm{ug} / \mathrm{mL} / \mathrm{mL}\) \\
Total EtFOSAA & & 1 & ugL \\
Total MeFOSAA & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
Total PFDS & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
Total PFHpS & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
Total PFHxS & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
Total PFOA & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
Total PFOS & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
Total PFUnA & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
PFTrDA & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
PFDA & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
L-PFPeA & & 1 & \\
\hline
\end{tabular}

\section*{Analytical Standard Record}

Vista Analytical Laboratory
20A0803
\begin{tabular}{|c|c|c|c|c|}
\hline Description: & PFC NS Stock & Expires: & 07-Jan-21 & \\
\hline Standard Type: & Analyte Spike & Prepared: & 08-Jan-20 & \\
\hline Solvent: & MeOH & Prepared By: & Brittany M. Lam & \\
\hline Final Volume (mls): & 20 & Department: & LCMS & \\
\hline Vials: & 1 & Last Edit: & 08-Jan-20 14:18 & BML \\
\hline \multicolumn{2}{|l|}{Analyte} & CAS Number & Concentration & Units \\
\hline L-PFUnA & & & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline MeFOSA & & 31506-32-8 & 5 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline MeFOSAA & & 2355-31-9 & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline MeFOSE & & 24448-09-7 & 5 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline PFOA & & 335-67-1 & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline PFBS & & 375-73-5 & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline trans-PFECHS & & & 0.335 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline PFDoA & & 307-55-1 & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline PFDS & & 335-77-3 & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline PFecHS & & 646-83-3 & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline PFHpA & & 375-85-9 & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline PFHpS & & 375-92-8 & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline PFHxA & & 307-24-4 & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline PFHxDA & & 67905-19-5 & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline PFHxS & & 355-46-4 & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline PFBA & & 375-22-4 & 1 & \(\mathrm{ug} / \mathrm{mL}\) \\
\hline
\end{tabular}

\section*{PRODUCT CODE: COMPOUND:}

PFDoA
Perfluoro-n-dodecanoic acid

LOT NUMBER: PFDoA0119

CAS \#:
307-55-1

\begin{tabular}{llll} 
MOLECULAR FORMULA: & \(\mathrm{C}_{12} \mathrm{HF}_{23} \mathrm{O}_{2}\) & MOLECULAR WEIGHT: & 614.10 \\
CONCENTRATION: & \(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) & SOLVENT(S): & \begin{tabular}{l} 
Methanol \\
Water \((<1 \%)\)
\end{tabular} \\
CHEMICAL PURITY: & \(>98 \%\) & & \\
LAST TESTED: (mmuddysm) & \(01 / 23 / 2019\) & & \\
EXPIRY DATE: (mmmdsmm) & \(01 / 23 / 2024\) & & \\
RECOMMENDED STORAGE: & Store ampoule in a cool, dark place & &
\end{tabular}

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)
(mmidayyy)

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyse of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned values), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{0}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\[
x_{i}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE /PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAl Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www,well-labs,com or contact us directly at info@well-labs.com \({ }^{* *}\)
- Figure 1: PFDoA; LC/MS Data (TIC and Mass Spectrum)


\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Flgure 1:} \\
\hline LC: & Waters Acquity Ultra Performance LC & \\
\hline MS: & Waters Xevo TQ-S micro MS & \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline Column: & \begin{tabular}{l}
Acquity UPLC BEH Shield \(\mathrm{RP}_{18}\) \\
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)
\end{tabular} & Experiment: Full Scan (225-850 amu) \\
\hline \multirow[t]{6}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: 60\% (80:20 MeOH:ACN)/40\% \(\mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage ( kV ) \(=2.00\) \\
\hline & (both with \(10 \mathrm{mM} \mathrm{NH} \mathrm{Cl}_{4} \mathrm{OAc}\) buffer) & Cone Voltage (V) \(=10.00\) \\
\hline & Ramp to \(90 \%\) organic over 7 min and hold for 3 min & Cone Gas Flow ( \(/ \mathrm{hr}\) ) \(=500\) \\
\hline & before returning to initial conditions in 0.75 min . & Desolvation Gas Flow (//hr) \(=1000\) \\
\hline & Time: 12 min & \\
\hline Flow: & \(300 \mu / / \mathrm{min}\) & \\
\hline
\end{tabular}

Fiqure 2: PFDoA; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure 2:}
\begin{tabular}{lll} 
Injection: & On-column (PFDOA) & MS Parameters \\
Mobile phase: & Same as Figure 1 & Collision Gas (mbar) \(=2.72 \mathrm{e}-3\) \\
Flow: & \(300 \mu \mathrm{l} / \mathrm{min}\) & Collision Energy \((\mathrm{eV})=12\)
\end{tabular}

Fiqure 2: PFBA; LC/MS/MS Data (Selected MRM Transitions)

\begin{tabular}{|lll|}
\hline \multicolumn{2}{l}{\begin{tabular}{l} 
Conditions for Fiqure 2; \\
Injection: \\
On-column (PFBA)
\end{tabular}} & MS Parameters \\
Mobile phase: Same as Figure 1 & Collision Gas (mbar) \(=3.43 \theta-3\) \\
Flow: & \(300 \mu / / \mathrm{min}\) & Collision Energy (eV) \(=8\) \\
& & \\
\hline
\end{tabular}

Figure 1: PFBA; LC/MS Data (TIC and Mass Spectrum)


\section*{Conditions for Figure 1:}
\begin{tabular}{ll} 
LC: & Waters Acquity Ultra Performance LC \\
MS: & Waters Xevo TQ-S micro MS
\end{tabular}

\section*{Chromatographic Conditions}

\section*{Column: Acquity UPLC BEH Shield RP \({ }_{18}\) \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)}

Mobile phase: Gradient
Start: \(40 \%\) ( \(80: 20 \mathrm{MeOH}: A C N) / 60 \% \mathrm{H}_{2} \mathrm{O}\) (both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer) Ramp to \(70 \%\) organic over 7 min .
Ramp to \(90 \%\) organic over 2 min and hold for 1.5 min before returning to initial conditions in 0.75 min . Time: 12 min
Flow: \(300 \mu / / \mathrm{min}\)

\section*{MS Parameters}

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) \(=2.50\)
Cone Voltage (V) \(=10.00\)
Desolvation Temperature \(\left({ }^{\circ} \mathrm{C}\right)=500\)
Desolvation Gas Flow (l/hr) \(=1000\)

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MSIMS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{0}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{i}, x_{2} \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where \(x\) is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOAEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs,com**

\section*{PRODUCT CODE: COMPOUND:}

\section*{STRUCTURE:}

PABA
Perfluoro-n-butanoic acid

LOT NUMBER: PFBA0619

GAS \#:
375-22-4


\section*{MOLECULAR FORMULA:} CONCENTRATION:

\section*{CHEMICAL PURITY:}

LAST TESTED: (nmudrms) EXPIRY DATE: (mmodedmy) RECOMMENDED STORAGE:
\(\mathrm{C}_{4} \mathrm{HF}_{7} \mathrm{O}_{2}\) \(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)

MOLECULAR WEIGHT: SOLVENTS):
>98\%
07/10/2019
07/10/2024

Store ampoule in a cool, dark place
214.04

Methanol
Water (<1\%)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: 07/22/2019
(mmiddyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

Figure 2: PFPeA; LC/MS/MS Data (Selected MRM Transitions)


Conditions for Fiqure 2:
Injection: On-column (PFPeA)
Mobile phase: Same as Figure 1
MS Parameters
Collision Gas (mbar) \(=3.51 \mathrm{e}-3\)
Collision Energy (eV) \(=8\)

\section*{Fiqure 1: PFPeA; LC/MS Data (TIC and Mass Spectrum)}


\section*{Conditions for Figure 1:}

LC: Waters Acquity Ultra Performance LC
MS: \(\quad\) Waters Xevo TQ-S micro MS
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & \multirow[t]{2}{*}{MS Parameters} \\
\hline Column: & Acquity UPLC BEH Shield RP \({ }_{18}\) & \\
\hline & \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\) & Experiment: Full Scan (150-850 amu) \\
\hline \multirow[t]{4}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: 50\% (80:20 MeOH:ACN) / 50\% \(\mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=2.50\) \\
\hline & (both with 10 mM NH & Cone Voltage (V) \(=10.00\) \\
\hline & \begin{tabular}{l}
Ramp to \(90 \%\) organic over 8 min and hold for 2 min before returning to initial conditions in 0.75 min . \\
Time: 12 min
\end{tabular} & \begin{tabular}{l}
Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\) \\
Desolvation Gas Flow ( lhr ) \(=1000\)
\end{tabular} \\
\hline Flow: & \(300 \mu \mathrm{l} / \mathrm{min}\) & \\
\hline
\end{tabular}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\[
x_{r}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{i}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an extemal ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

\section*{CERTIFICATE OF ANALYSIS}

\section*{PRODUCT CODE:}

COMPOUND:
STRUCTURE:

PFPeA
Perfluoro-n-pentanoic acid

LOT NUMBER: PFPeA0919

GAS\#: 2706-90-3


\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains \(\sim 0.3 \%\) of Perfluoro-n-heptanoic acid (PFHpA) and \(\sim 0.2 \%\) of \(\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{~F}_{8} \mathrm{O}_{2}\) (hydrido - derivative) as measured by \({ }^{19} \mathrm{~F}\) NMR.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

Figure 2: PFHXA; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure 2:}

Injection: On-column (PFHxA)
\begin{tabular}{lll} 
Mobile phase: Same as Figure 1 & Collision Gas \((\mathrm{mbar})=3,49 \mathrm{e}-3\) \\
Flow: & \(300 \mu / \mathrm{min}\) & Collision Energy \((\mathrm{eV})=8\)
\end{tabular}

Flow: \(\quad 300 \mu / / \mathrm{min}\)
- Fiqure 1: PFHXA; LC/MS Data (TIC and Mass Spectrum)

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Fiqure 1:} \\
\hline LC: & Waters Acquity Ultra Performance LC & \\
\hline MS: & Waters Xevo TQ-S micro MS & \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline Column: & Acquity UPLC BEH Shield RP \(_{18}\) \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\) & Experiment: Full Scan (225-850 amu) \\
\hline \multirow[t]{6}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: 60\% (80:20 MeOH:ACN) / \(40 \% \mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage ( kV ) \(=2.50\) \\
\hline & (both with 10 mM NH & Cone Voltage (V) \(=10.00\) \\
\hline & Ramp to \(90 \%\) organic over 7 min and hold for & Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\) \\
\hline & 3 min before returning to initial conditions in 0.75 min . & Desolvation Gas Flow ( \(/ 7 \mathrm{hr}\) ) \(=1000\) \\
\hline & Time: 12 min & \\
\hline Flow: & \(300 \mu 1 / \mathrm{min}\) & \\
\hline
\end{tabular}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{e}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/EC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).


CALA


**For additional information or assistance concerning this or any other products from Wellington Laboratories inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

\section*{PRODUCT CODE:}

COMPOUND:

PFHXA
Perfluoro-n-hexanoic acid

\section*{STRUCTURE:}


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodym)
EXPIRY DATE: (mmudswy)
RECOMMENDED STORAGE:
\(\mathrm{C}_{6} \mathrm{HF}_{11} \mathrm{O}_{2}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
>98\%
08/08/2019
08/08/2024

Store ampoule in a cool, dark place

\section*{LOT NUMBER: PFHxA0719}

\section*{CAS \#:}

307-24-4


MOLECULAR WEIGHT:
314.05

SOLVENT(S):
Methanol
Water (<1\%)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains \(-1.0 \%\) of branched isomers.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)
(mm/dd/yyy)

\title{
Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com
}

\section*{PRODUCT CODE: COMPOUND:}

PFDA
Perfluoro-n-decanoic acid

LOT NUMBER: PFDA0419

CAS \#:
335-76-2


\section*{MOLECULAR FORMULA: CONCENTRATION:}

CHEMICAL PURITY:
LAST TESTED: (nmadymp)
EXPIRY DATE: (mmdadrym)
\(\mathrm{C}_{10} \mathrm{HF}_{19} \mathrm{O}_{2}\) \(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
>98\%
05/01/2019
05/01/2024

RECOMMENDED STORAGE: Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S): Methanol
Water ( \(<1 \%\) )

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains \(\sim 0.2 \%\) of perfluoro-n-nonanoic acid (PFNA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: \(\qquad\)
(mm/dd/yyyy)

\footnotetext{
Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com
}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic punties of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LCMS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\[
x_{i}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/EC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc. please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

\section*{Figure 1: PFDA; LC/MS Data (TIC and Mass Spectrum)}


\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 1:} \\
\hline LC: & Waters Acquity Ultra Performance LC & \\
\hline MS: & Waters Xevo TQ-S micro MS & \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline Column: & \begin{tabular}{l}
Acquity UPLC BEH Shield RP \({ }_{18}\) \\
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)
\end{tabular} & Experiment: Full Scan (250-850 amu) \\
\hline \multirow[t]{5}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: 50\% (80:20 MeOH:ACN) / 50\% \(\mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=2.00\) \\
\hline & (both with \(10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}\) buffer) & Cone Voltage (V) \(=10.00\) \\
\hline & Ramp to \(90 \%\) organic over 8 min and hold for & Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\) \\
\hline & 2 min before returning to initial conditions in 0.75 min . Time: 11 min & Desolvation Gas Flow (1/hr) \(=1000\) \\
\hline Flow: & \(300 \mu / / m i n\) & \\
\hline
\end{tabular}

Figure 2: PFDA; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure 2:}
\begin{tabular}{lll} 
Injection: & On-column (PFDA) & MS Parameters \\
Mobile phase: & Same as Figure 1 & Collision Gas (mbar) \(=2.88 \mathrm{e}-3\) \\
Flow: & \(300 \mu / / \mathrm{min}\) & Collision Energy \((\mathrm{eV})=10\)
\end{tabular}

Fiqure 2: \(\quad\) PFUdA; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Fiqure 2:}
\begin{tabular}{lll} 
Injection: & On-column (PFUdA) & MS Parameters \\
Mobile phase: & Same as Figure 1 & Collision Gas (mbar) \(=3.04 \mathrm{e}-3\) \\
& & Collision Energy \((\mathrm{eV})=12\)
\end{tabular}

Fiqure 1: PFUdA; LC/MS Data (TIC and Mass Spectrum)

\begin{tabular}{ll}
\hline Conditions for Figure 1: \\
LC: & Waters Acquity Ultra Performance LC \\
LS: & Waters Xevo TQ-S micro MS
\end{tabular}

Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP \({ }_{18}\)
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)
Mobile phase: Gradient
Start: \(55 \%\) ( \(80: 20 \mathrm{MeOH}: A C N) / 45 \% \mathrm{H}_{2} \mathrm{O}\)
(both with 10 mM NH OAc buffer)
Ramp to \(90 \%\) organic over 8 min and hold for 2 min before returning to initial conditions in 0.75 min . Time: 12 min

Flow:
\(300 \mu 1 / \mathrm{min}\)

\section*{MS Parameters}

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) \(=2.00\)
Cone Voltage (V) \(=10.00\)
Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\)
Desolvation Gas Flow ( \(/ \mathrm{hr}\) ) \(=1000\)

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFCUV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{s}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\[
x_{i}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**
\begin{tabular}{llll} 
PRODUCT CODE: & \begin{tabular}{l} 
PFUdA \\
Perfluoro-n-undecanoic acid
\end{tabular} & LOTNUMBER: PFUdA0319 \\
COMPOUND: & & CAS \#: & 2058-94-8 \\
STRUCTURE: &
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline MOLECULAR FORMULA: & \(\mathrm{C}_{11} \mathrm{HF}_{21} \mathrm{O}_{2}\) & MOLECULAR WEIGHT: & 564.09 \\
\hline CONCENTRATION: & \(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) & SOLVENT(S): & Methanol \\
\hline & & & Water (<1\%) \\
\hline CHEMICAL PURITY: & >98\% & & \\
\hline LAST TESTED: (mmudorw) & 03/19/2019 & & \\
\hline EXPIRY DATE: (mmddesm) & 03/19/2024 & & \\
\hline RECOMMENDED STORAGE: & Store ampoule in a cool, dark place & & \\
\hline
\end{tabular}

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains \(\sim 0.1 \%\) of pefluoro-n-dodecanoic acid (PFDoA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

Fiqure 2: PFTrDA; LC/MS/MS Data (Selected MRM Transitions)

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 2:} \\
\hline Injection: & On-column (PFTrDA) & MS Parameters \\
\hline Mobile phase: & Same as Figure 1 & \[
\begin{aligned}
& \text { Collision Gas }(\mathrm{mbar})=3.73 \mathrm{e}-3 \\
& \text { Collision Energy }(\mathrm{eV})=12
\end{aligned}
\] \\
\hline Flow: & \(300 \mu / \mathrm{min}\) & \\
\hline
\end{tabular}

\section*{1920641}

Fiqure 1: PFTrDA; LC/MS Data (TIC and Mass Spectrum)


\section*{Conditions for Fiqure 1:}

LC: \(\quad\) Waters Acquity Ultra Performance LC
MS: \(\quad\) Waters Xevo TQ-S micro MS

\section*{Chromatoaraphic Conditions \\ Column: Acquity UPLC BEH Shield RP \({ }_{18}\) \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)}

Mobile phase: Gradient
Start: 60\% (80:20 MeOH:ACN)/40\% \(\mathrm{H}_{2} \mathrm{O}\)
(both with \(10 \mathrm{mM} \mathrm{NH}, \mathrm{OAc}\) buffer)
Ramp to 90\% organic over 7 min and hold for 3 min before returning to initial conditions in 0.75 min . Time: 12 min

\section*{MS Parameters}

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage ( kV ) \(=2.50\)
Cone Voltage \((\mathrm{V})=10.00\)
Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\)
Desolvation Gas Flow (l/hr) \(=1000\)

Flow: \(300 \mu \mathrm{l} / \mathrm{min}\)

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystaliography, and melting point. Isotopic punties of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an extemal ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAl Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**
\begin{tabular}{ll} 
PRODUCT CODE: & PFTrDA \\
COMPOUND: & Perfluoro-n-tridecanoic acid
\end{tabular}

Perfluoro-n-tridecanoic acid
LOT NUMBER: PFTrDA0919

STRUCTURE:
CAS\#:
72629-94-8


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED; (mmodirm)
EXPIRY DATE: (mmbuthmy)
RECOMMENDED STORAGE:
\(\mathrm{C}_{13} \mathrm{HF}_{25} \mathrm{O}_{2}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
>98\%
09/26/2019
09/26/2024
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
664.11

SOLVENT(S):
Methanol
Water (<1\%)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains \(\sim 0.1 \%\) of PFUdA ( \(\mathrm{C}_{11} \mathrm{HF}_{21} \mathrm{O}_{2}\) ), ~0.4\% of PFDoA ( \(\mathrm{C}_{12} \mathrm{HF}_{23} \mathrm{O}_{2}\) ), and \(\sim 0.1 \%\) of PFTeDA \(\left(\mathrm{C}_{14} \mathrm{HF}_{27} \mathrm{O}_{\mathrm{z}}\right)\).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

Figure 2: PFHPA; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Fiqure 2:}

Injection: On-column (PFHpA)
Mobile phase: Same as Figure 1
Flow: \(\quad 300 \mu 1 / \mathrm{min}\)

\section*{MS Parameters}

Collision Gas (mbar) \(=2.74 e-3\)
Collision Energy \((\mathrm{eV})=8\)

\section*{/ Figure 1: PFHpA; LC/MS Data (TIC and Mass Spectrum)}


\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 1:} \\
\hline LC: & Waters Acquity Ultra Performance LC & \\
\hline MS: & Waters Xevo TQ-S micro MS & \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline Column: & Acquity UPLC BEH Shield RP \(_{18}\) \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\) & Experiment: Full Scan (225-850 amu) \\
\hline \multirow[t]{5}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: 50\% (80:20 MeOH:ACN)/50\% \(\mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=2.00\) \\
\hline & (both with \(10 \mathrm{mM} \mathrm{NH,OAc} \mathrm{buffer)}\) & Cone Voltage (V) \(=10.00\) \\
\hline & Ramp to \(90 \%\) organic over 8 min and hold for & Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\) \\
\hline & 2 min before returning to initial conditions in 0.75 min . Time: 12 min & Desolvation Gas Flow ( \(/ \mathrm{hrr}\) ) \(=1000\) \\
\hline Flow: & \(300 \mu 1 / \mathrm{min}\) & \\
\hline
\end{tabular}

The products prepared by Wellington Laboratories inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handing of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variely of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be < \(5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE /PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAl Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

WELLINGTON LA B ORATORIES

\section*{CERTIFICATE OF ANALYSIS DOCUMENTATION}

\section*{PRODUCT CODE:}

COMPOUND:

STRUCTURE:

PFHpA
Perfluoro-n-heptanoic acid


MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mviduryw)
EXPIRY DATE: (mmbarmy)
RECOMMENDED STORAGE:
\(\mathrm{C}_{7} \mathrm{HF}_{13} \mathrm{O}_{2}\) \(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
>98\%
03/05/2019
03/05/2024
Store ampoule in a cool, dark place

LOT NUMBER: PFHpA0219

CAS 㷣:
375-85-9

MOLECULAR WEIGHT: 364.06
SOLVENT(S): Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\) \(\frac{(18 / 2019}{\text { (mmaryy) }}\)

\footnotetext{
Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com
}

Figure 2: PFOA; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Fiqure 2:}

Injection: On-column (PFOA)
Mobile phase: Same as Figure 1

\section*{MS Parameters}

Flow: \(\quad 300 \mu /{ }^{m}\) min
Collision Gas (mbar) \(=3.49 \mathrm{e}-3\)
Collision Energy \((\mathrm{eV})=8\)

Figure 1: PFOA; LC/MS Data (TIC and Mass Spectrum)
\begin{tabular}{lll}
\hline 06sep2019_PFOA_001 \\
PFOA0919 \(250 \mathrm{ng} / \mathrm{ml}\) \\
100 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 1;} \\
\hline LC: & Waters Acquity Ultra Performance LC & \\
\hline MS: & Waters Xevo TQ-S micro MS & \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline Column: & Acquity UPLC BEH Shield RP \({ }_{18}\)
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\) & Experiment: Full Scan (225-850 amu) \\
\hline \multirow[t]{5}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: 55\% (80:20 MeOH:ACN) / 45\% \(\mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=2.50\) \\
\hline & (both with \(10 \mathrm{mM} \mathrm{NH} 4 \mathrm{OAc}^{\text {Of buffer) }}\) & Cone Voltage (V) \(=10.00\) \\
\hline & Ramp to \(90 \%\) organic over 8 min and hold for & Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\) \\
\hline & 2 min before returning to initial conditions in 0.75 min . Time: 12 min & Desolvation Gas Flow ( \(/ / \mathrm{hr}\) ) \(=1000\) \\
\hline Flow: & \(300 \mu /\) min & \\
\hline
\end{tabular}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS andfor LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{f}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where \(x\) is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware), An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{IRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc.; please visit our website at www,well-labs.com or contact us directly at info@well-labs.com**

WELLINGTON
LA B OR ATORIES

\section*{CERTIFICATE OF ANALYSIS DOCUMENTATION}

PRODUCT CODE:
COMPOUND:

STRUCTURE:

PFOA
Perfluoro-n-octanoic acid

LOT NUMBER: PFOA0919


CAS \#:
335-67-1

MOLECULAR WEIGHT: 414.07
SOLVENTIS): Methanol
Water (<1\%)

CHEMICAL PURITY:
LAST TESTED: (mmodrym)
EXPIRY DATE: (modourw)
\(\mathrm{C}_{8} \mathrm{HF}_{15} \mathrm{O}_{2}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
>98\%
09/06/2019
09/06/2024
Store ampoule in a cool, dark place


\section*{Conditions for Figure 2:}

Injection: On-column (PFNA)
Mobile phase: Same as Figure 1

\section*{MS Parameters}

Collision Gas \((\mathrm{mbar})=3.35 \mathrm{e}-3\)
Collision Energy \((\mathrm{eV})=10\)

Flow: \(\quad 300 \mu \mathrm{l} / \mathrm{min}\)

Figure 1: PFNA; LC/MS Data (TIC and Mass Spectrum)
\begin{tabular}{lll}
\hline 08jul2019_PFNA_001 \\
PFNA0619 \(250 \mathrm{ng} / \mathrm{ml}\) \\
100 \\
\hline
\end{tabular}


\section*{Conditions for Fiaure 1:}

\section*{LC: Waters Acquity Ultra Performance LC \\ MS: \(\quad\) Waters Xevo TQ-S micro MS}

\section*{Chromatographic Conditions}

Column: Acquity UPLC BEH Shield RP \({ }_{18}\) \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm} \quad\) Experiment: Full Scan (150-850 amu)

Mobile phase: Gradient
Start: \(60 \%\) ( \(80: 20 \mathrm{MeOH}: A C N\) ) \(/ 40 \% \mathrm{H}_{2} \mathrm{O}\)
(both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer)
Ramp to \(90 \%\) organic over 7 min and hold for 3 min before returning to initial conditions in 0.75 min .
Time: 12 min

\section*{MS Parameters}

Source: Electrospray (negative)
Capillary Voltage (kV) \(=2.50\)
Cone Voltage \((\mathrm{V})=10.00\)
Desolvation Temperature \(\left({ }^{\circ} \mathrm{C}\right)=500\)
Desolvation Gas Flow (//hr) \(=1000\)

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic punties of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{k}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an extemal ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to intemational interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of 1509001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www,well-labs.com or contact us directly at inforowell-labs.com**

PRODUCT CODE:
PFNA
COMPOUND:

STRUCTURE:

LOT NUMBER: PFNA0619

> CAS\#:

375-95-1


MOLECULAR FORMULA: CONCENTRATION:

\section*{CHEMICAL PURITY:}

LAST TESTED; (mvidedm) EXPIRY DATE: (muddums) RECOMMENDED STORAGE:
\(\mathrm{C}_{9} \mathrm{HF}_{17} \mathrm{O}_{2}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
>98\%
07/08/2019
07/08/2024
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 464.08
SOLVENT(S): Methanol
Water (<1\%)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains \(\sim 0.2 \%\) of perfluoro-n-octanoic acid (PFOA) \(<0.1 \%\) of perfluoro-n-heptanoic acid (PFHpA), and \(<0.1 \%\) of perfluoro-n-undecanoic acid (PFUdA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: \(\qquad\)
(mm/dayyyy)

\title{
Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA \\ 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com
}

Figure 2: PFTeDA; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure \(2:\)}

Injection: On-column (PFTeDA)
Mobile phase: Same as Figure 1
Flow: \(\quad 300 \mu / / \mathrm{min}\)

\section*{MS Parameters}

Collision Gas (mbar) \(=3.03 \mathrm{e}-3\)
Collision Energy (eV) \(=14\)



\section*{Conditions for Fiqure 1:}
\begin{tabular}{ll} 
LC: & Waters Acquity Ultra Performance LC \\
\hline MS: & Waters Xevo TQ-S micro MS
\end{tabular}

\section*{Chromatographic Conditions}

Column: Acquity UPLC BEH Shield RP \({ }_{18}\) \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)

Mobile phase: Gradient
Start: 60\% (80:20 MeOH:ACN) / 40\% H \(\mathrm{H}_{2} \mathrm{O}\)
(both with \(10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAC}\) buffer)
Ramp to \(90 \%\) organic over 7 min and hold for 3 min before returning to initial conditions in 0.75 min . Time: 12 min

\section*{MS Parameters}

Experiment: Full Scan (250-1200 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) \(=2.00\)
Cone Voltage ( V ) \(=10.00\)
Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\)
Desolvation Gas Flow \((\mathrm{l} / \mathrm{hr})=1000\)

Flow: \(\quad 300 \mu / / m i n\)

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care shouid be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MSMS, SFCIUV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UN/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where \(x\) is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Origoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

Al the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of iSO 9001 by SAl Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).




**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**
PRODUCT CODE:
COMPOUND:
STRUCTURE:

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains \(\sim 0.3 \%\) of PFDoA \(\left(\mathrm{C}_{12} \mathrm{HF}_{23} \mathrm{O}_{2}\right), \sim 0.1 \%\) of PFTrDA \(\left(\mathrm{C}_{13} \mathrm{HF}_{25} \mathrm{O}_{2}\right)\),
and \(\sim 0.1 \%\) of \(\mathrm{PFH} \times D A\left(\mathrm{C}_{16} \mathrm{HF}_{31} \mathrm{O}_{2}\right)\).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

Wellington Laboratories inc., 345 Southgate Dr. Guelph ON N1G \(3 M 5\) CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

Figure 2: \(\quad\) PFHxDA; LC/MS/MS Data (Selected MRM Transitions)


Conditions for Figure 2:
Injection: On-column (PFHxDA)
\(\begin{array}{ll}\text { Mobile phase: Same as Figure } 1 & \text { Collision Gas (mbar) }=3.03 \mathrm{e}-3 \\ & \text { Collision Energy }(\mathrm{eV})=15\end{array}\)
Flow: \(\quad 300 \mu / / m i n\)

Figure 1: \(\quad\) PFHxDA; LC/MS Data (TIC and Mass Spectrum)


\section*{Conditions for Fiqure 1:}

LC: \(\quad\) Waters Acquity Ultra Performance LC
MS: \(\quad\) Waters Xevo TQ-S micro MS

\section*{Chromatographic Conditions}

Column: Acquity UPLC BEH Shield RP \(_{1 \text { 1 }}\)
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm} \quad\) Experiment: Full Scan (250-1200 amu)
Mobile phase: Gradient
Start: 60\% (80:20 MeOH:ACN) / \(40 \% \mathrm{H}_{2} \mathrm{O}\) (both with \(10 \mathrm{mM} \mathrm{NH} \mathrm{OAc}_{4}\) buffer)
Ramp to \(90 \%\) organic over 7 min and hold for 3 min before returning to initial conditions in 0.75 min . Time: 12 min

Flow: \(\quad 300 \mu / / m i n\)

\section*{MS Parameters}

Source: Electrospray (negative)
Capillary Voltage (kV) \(=2.00\)
Cone Voltage ( V ) \(=10.00\)
Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\)
Desolvation Gas Flow (l/hr) \(=1000\)

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS, The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2} \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where \(x\) is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY;}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to intemational interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Weltington Laboratories Inc., please visit our website at www,well-labs.com or contact us directly at inforowell-labs.com**

PRODUCT CODE:
COMPOUND:

PFHxDA
Perfluoro-n-hexadecanoic acid

STRUCTURE:
CAS \#:
67905-19-5


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodrym) EXPIRY DATE: (mmddrmm) RECOMMENDED STORAGE:
\(\mathrm{C}_{16} \mathrm{HF}_{31} \mathrm{O}_{2}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
\(>98 \%\)
03/11/2019
03/11/2024
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S):
814.13

Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

Fiqure 2: PFODA; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure.2:}
\begin{tabular}{lll} 
Injection: & On-column (PFODA) & MS Parameters \\
Mobile phase: & Same as Figure 1 & Collision Gas (mbar) \(=2.92 \mathrm{e}-3\) \\
& 300 & Collision Energy \((\mathrm{eV})=15\)
\end{tabular}

Flow: \(\quad 300 \mu / / m i n\)
Collision Energy ( eV ) \(=15\)
Fiqure 1: PFODA; LC/MS Data (TIC and Mass Spectrum)
\begin{tabular}{ll} 
02may2019_PFODA_003 \\
PFODA0419 \(5 \mathrm{ug} / \mathrm{ml}\) \\
100 \\
\hline
\end{tabular}



\section*{INTENDED USE:}

The products prepared by Wellington Laboratories inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, \(x\)-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relaive response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{s}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{i}, x_{2} \ldots x_{n}\) on which it depends is:
\[
u_{t}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).


CALA



**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**
\begin{tabular}{llll} 
PRODUCT CODE: & PFODA \\
COMPOUND: & Perfluoro-n-octadecanoic acid & LOT NUMBER: PFODA0419 \\
& & CAS \#: & \(16517-11-6\)
\end{tabular}


\section*{MOLECULAR FORMULA: CONCENTRATION:}

\section*{CHEMICAL PURITY:}

LAST TESTED: (mmduyw
EXPIRY DATE: (mmodimy)
RECOMMENDED STORAGE: Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S):
914.14

Methanol Water ( \(<1 \%\) )

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains \(-0.2 \%\) of \(\operatorname{PFHxDA}\left(\mathrm{C}_{16} \mathrm{HF}_{31} \mathrm{O}_{2}\right)\) and \(\sim 0.1 \%\) of \(\mathrm{PFHpDA}\left(\mathrm{C}_{17} \mathrm{HF}_{33} \mathrm{O}_{2}\right)\)

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3 M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

Figure.2: L-PFBS; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure 2:}
\begin{tabular}{ll} 
Injection: & On-column (L-PFBS) \\
Mobile phase: & Same as Figure 1 \\
Flow: & \(300 \mu \mathrm{l} / \mathrm{min}\)
\end{tabular}

\section*{MS Parameters}

Collision Gas \((\mathrm{mbar})=3.25 \mathrm{e}-3\)
Collision Energy \((\mathrm{eV})=30\)
, Figure 1: L-PFBS; LC/MS Data (TIC and Mass Spectrum)



\section*{Conditions for Figure 1:}

\section*{LC: \(\quad\) Waters Acquity Ultra Performance LC \\ MS: \(\quad\) Waters Xevo TQ-S micro MS}

\section*{Chromatoaraphic Conditions}

Column: Acquity UPLC BEH Shield RP \({ }_{18}\) \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)

Mobile phase: Gradient
Start: 50\% (80:20 MeOH:ACN) / 50\% \(\mathrm{H}_{2} \mathrm{O}\) (both with \(10 \mathrm{mM} \mathrm{NH} \mathrm{OAc}_{4}\) buffer) Ramp to \(70 \%\) organic over 7 min , then ramp to \(90 \%\) organic over 2 min and hold for 1.5 min before returning to initial conditions in 0.75 min . Time: 12 min
Flow: \(300 \mu \mathrm{l} / \mathrm{min}\)

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS/CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melling point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS andior LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate intemal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{e}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{i}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOAEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc, please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

\section*{CERTIFICATE OF ANALYSIS DOCUMENTATION}

\section*{PRODUCT CODE: \\ COMPOUND:}

L-PFBS
Potassium perfluoro-1-butanesulfonate

\section*{STRUCTURE:}


\section*{MOLECULAR FORMULA: CONCENTRATION:}

CHEMICAL PURITY:
LAST TESTED: (mnodirm) EXPIRY DATE: (mindidmm
RECOMMENDED STORAGE:
\(\mathrm{C}_{4} \mathrm{~F}_{9} \mathrm{SO}_{3} \mathrm{~K}\)
\(50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) ( K salt)
\(44.2 \pm 2.2 \mu \mathrm{~g} / \mathrm{ml}\) (PFBS anion)
>98\%
07/10/2019
07/10/2024
Store ampoule in a cool, dark place

LOT NUMBER: LPFBS0719

CAS \#: 29420-49-3

MOLECULAR WEIGHT: 338.19
SOLVENTIS): Methanol

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MSIMS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains \(\sim 0.2 \%\) of sodium perfluoro-1-nonanesulfonate (L-PFNS).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: \(\qquad\) (midddymy)

Figure 2: L-PFPeS; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Fiqure 2:}

Injection: On-column (L-PFPeS)
Mobile phase: Same as Figure 1
Flow: \(\quad 300 \mu / / \mathrm{min}\)

\section*{MS Parameters}

Collision Gas (mbar) \(=3.37 \mathrm{e}-3\)
Collision Energy (eV) \(=32\)

Figure 1: L-PFPeS; LC/MS Data (TIC and Mass Spectrum)


\section*{Conditions for Fiqure 1:}

\section*{LC: \(\quad\) Waters Acquity Ultra Performance LC \\ MS: \(\quad\) Waters Xevo TQ-s micro MS}

\section*{Chromatographic Conditions}
\(\begin{array}{ll}\text { Column: } & \text { Acquity UPLC BEH Shield RP } \\ & \\ & 1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\end{array}\)

\section*{MS Parameters}

Experiment: Full Scan (225-850 amu)
Mobile phase: Gradient
Start: \(60 \%\) ( \(80: 20 \mathrm{MeOH}: A C N\) ) / \(40 \% \mathrm{H}_{2} \mathrm{O}\) (both with \(10 \mathrm{mM} \mathrm{NH} H_{4} \mathrm{OAc}\) buffer)
Ramp to \(90 \%\) organic over 7 min and hold for
3 min before returning to initial conditions in 0.75 min .
Time: 12 min
Flow: \(\quad 300 \mu / / m i n\)

Source: Electrospray (negative)
Capillary Voltage (kV) \(=2.50\)
Cone Voltage \((\mathrm{V})=10.00\)
Desolvation Temperature \(\left({ }^{\circ} \mathrm{C}\right)=500\)
Desolvation Gas Flow (l/hr) \(=1000\)

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should oniy be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \% \mathrm{RSD}\). New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{\varepsilon}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE/PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and 15017034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at wwwoll-labs.com or contact us directly at infocowell-labs.com**

PRODUCT CODE:
COMPOUND:

\section*{L-PFPeS}

Sodium perfluoro-1-pentanesulfonate

LOT NUMBER: LPFPeS0619

STRUCTURE:

\(\mathrm{C}_{5} \mathrm{~F}_{11} \mathrm{SO}_{3} \mathrm{Na}\)
\(50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) (Na salt)
\(46.9 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}\) (PFPeS anion)
\(>98 \%\)
07/08/2019
07/08/2024
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 372.09
SOLVENT(S): Methanol

CHEMICAL PURITY:
LAST TESTED: (mmedd/yyy)
EXPIRY DATE: (mmodisyyy)
RECOMMENDED STORAGE:

CAS \#:
630402-22-1
\begin{tabular}{|c|c|c|c|}
\hline MOLECULAR FORMULA: & \(\mathrm{C}_{5} \mathrm{~F}_{11} \mathrm{SO}_{3} \mathrm{Na}\) & MOLECULAR WEIGHT: & 372.09 \\
\hline \multirow[t]{2}{*}{CONCENTRATION:} & \(50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) (Na salt) & SOLVENT(S): & Methanol \\
\hline & \(46.9 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}\) (PFPeS anion) & & \\
\hline CHEMICAL PURITY: & >98\% & & \\
\hline LAST TESTED: (mmedd/my) & 07/08/2019 & & \\
\hline EXPIRY DATE: (mmodisyy) & 07/08/2024 & & \\
\hline RECOMMENDED STORAGE: & Store ampoule in a cool, dark place & & \\
\hline
\end{tabular}

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains \(\sim 0.3 \%\) of sodium perfluoro-1-nonanesulfonate (L-PFNS).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: \(\qquad\) \(\frac{07 / 11 / 2019}{(m \mathrm{mvdahm})}\)

Figure 2: L-PFHpS; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure 2;}

Injection: On-column (L-PFHpS)
Mobile phase: Same as Figure 1
Flow: \(\quad 300 \mu / 7 m i n\)

\section*{MS Parameters}

Collision Gas (mbar) \(=3.61 \mathrm{e}-3\)
Collision Energy (eV) \(=42\)

Figure 1: L-PFHpS; LC/MS Data (TIC and Mass Spectrum)


\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 1:} \\
\hline LC: & Waters Acquity Ultra Performance LC & \\
\hline MS: & Waters Xevo TQ-S micro MS & \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline Column: & \[
\begin{aligned}
& \text { Acquity UPLC BEH Shield RP } \\
& 1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}
\end{aligned}
\] & Experiment: Full Scan (225-850 amu) \\
\hline \multirow[t]{5}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: 60\% (80:20 MeOH:ACN) / \(40 \% \mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage ( kV ) \(=2.50\) \\
\hline & (both with 10 mM NH , OAc buffer) & Cone Voltage (V) \(=10.00\) \\
\hline & Ramp to \(90 \%\) organic over 7 min and hold for & Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\) \\
\hline & 3 min before returning to initial conditions in 0.75 min . Time: 12 min & Desolvation Gas Flow (l/hr) \(=1000\) \\
\hline Flow: & \(300 \mu \mathrm{l} / \mathrm{min}\) & \\
\hline
\end{tabular}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualifed personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS/CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\[
x_{i}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where \(x\) is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an extemal ISOIIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE LPERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of iSO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

\section*{CERTIFICATE OF ANALYSIS}
\begin{tabular}{ll} 
PRODUCT CODE: & L-PFHpS \\
COMPOUND: & Sodium perfluoro-1-heptanesulfonate
\end{tabular}

STRUCTURE:


MOLECULAR FORMULA:
\(\mathrm{C}_{7} \mathrm{~F}_{15} \mathrm{SO}_{3} \mathrm{Na}\)
\(50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) (Na salt)
\(47.6 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}\) (PFHpS anion)
\(>98 \%\)
08/16/2019
LAST TESTED: (mmidam)
08/16/2024
EXPIRY DATE: (mmodrmm)
Store ampoule in a cool, dark place

LOT NUMBER: LPFHpS0819

CAS \#:
21934-50-9

MOLECULAR WEIGHT: 472.10
SOLVENTIS): Methanol

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

Fiqure.2: L-PFNS; LC/MS/MS Data (Selected MRM Transitions)

\begin{tabular}{|ll|}
\hline \multicolumn{2}{l}{ Conditions for Fiqure 2: } \\
Injection: & On-column (L-PFNS) \\
Mobile phase: & Same as Figure 1 \\
Flow: & \(300 \mu / \mathrm{min}\)
\end{tabular} \begin{tabular}{l} 
MS Parameters \\
\\
\end{tabular}

Figure 1: L-PFNS; LC/MS Data (TIC and Mass Spectrum)




\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS /CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystaline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\[
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF YALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www,well-labs.com or contact us directly at info@well-labs.com**

WELLINGTON LABORATORIES

\section*{CERTIFICATE OF ANALYSIS DOCUMENTATION}

\section*{PRODUCT CODE:}

COMPOUND:

STRUCTURE:

L-PFNS
Sodium perfluoro-1-nonanesulfonate


MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED; (nnmudmm)
EXPIRY DATE: (mmodrymy)
RECOMMENDED STORAGE:
\(\mathrm{C}_{9} \mathrm{~F}_{19} \mathrm{SO}_{3} \mathrm{Na}\)
\(50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) (Na salt)
\(48.0 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}\) (PFNS anion)
>98\%
09/06/2019
09/06/2024
Store ampoule in a cool, dark place

LOT NUMBER: LPFNS0919

CAS \#: 98789-57-2


\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.

MOLECULAR WEIGHT: 572.12
SOLVENT(S): Methanol

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

Figure 2: L-PFDS; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Fiaure 2:}

Injection: On-column (L-PFDS)
\begin{tabular}{ll} 
Mobile phase: Same as Figure 1 & Collision Gas (mbar) \(=2.99 \mathrm{e}-3\) \\
& Collision Energy \((\mathrm{eV})=56\)
\end{tabular}


\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Fiqure 1:} \\
\hline LC: & Waters Acquity Ultra Performance LC & \\
\hline MS: & Waters Xevo TQ-S micro MS & \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline Column: & \begin{tabular}{l}
Acquity UPLC BEH Shield RP \({ }_{18}\) \\
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)
\end{tabular} & Experiment: Full Scan (225-850 amu) \\
\hline Mobile phase: & \begin{tabular}{l}
Gradient \\
Start: 55\% (80:20 MeOH:ACN) / 45\% \(\mathrm{H}_{2} \mathrm{O}\) \\
(both with \(10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}\) buffer) \\
Ramp to \(90 \%\) organic over 8 min and hold for 2 min before returning to initial conditions in 0.75 min . Time: 12 min
\end{tabular} & \begin{tabular}{l}
Source: Electrospray (negative) \\
Capillary Voltage (kV) \(=2.00\) \\
Cone Voltage (V) \(=10.00\) \\
Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\) \\
Desolvation Gas Flow ( \(/ \mathrm{hr} \mathrm{r})=1000\)
\end{tabular} \\
\hline Flow: & \(300 \mu / / m i n\) & \\
\hline
\end{tabular}

\section*{1910652}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SUSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned values), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\[
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY;}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of 1509001 by SAl Global, ISO/EC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

\section*{PRODUCT CODE: COMPOUND:}

L-PFDS
Sodium perfluoro-1-decanesulfonate

\section*{LOT NUMBER: LPFDS0419}

CAS\#: 2806-15-7


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (nvodum)
EXPIRY DATE: (mmddedrys)
RECOMMENDED STORAGE:
\(\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{SO}_{3} \mathrm{Na}\)
\(50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) (Na salt)
\(48.2 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}\) (PFDS anion)
>98\%
04/04/2019
04/04/2024
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S): Methanol

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains \(\sim 0.9 \%\) of sodium perfluoro-1-dodecanesulfonate (L-PFDoS).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)
(mmiddyyy)

\section*{Wellington Laboratories Inc., 345 Southgate Dr. GueIph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com}

Figure 3: br-PFHxSK; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure 3:}
\begin{tabular}{lll} 
Injection: & On-column (br-PFHxSK) & MS Parameters \\
Mobile phase: & Same as Figures 1 and 2 & Collision Gas (mbar) \(=2.87 e-3\)
\end{tabular}

Flow: \(\quad 300 \mu / / m i n\)
\[
\text { Collision Energy }(\mathrm{eV})=42
\]

\section*{Fiqure 2: br-PFHxSK; LC/MS Data (SIR)}



Figure 1: \(\quad\) br-PFHxSK; LC/MS Data (TIC and Mass Spectrum)


Conditions for Figure 1:
LC: \(\quad\) Waters Acquity Ultra Performance LC
MS: \(\quad\) Waters Xevo TQ-S micro MS

\section*{Chromatoaraphic Conditions}

Column: Acquity UPLC BEH Shield RP \({ }_{16}\) \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)

Mobile phase: Gradient
Start: \(50 \%\) ( \(80: 20 \mathrm{MeOH}: A C N\) ) / \(50 \% \mathrm{H}_{2} \mathrm{O}\) (both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer)
Ramp to \(90 \%\) organic over 8 min . Hold for 2 min before returning to initial conditions in 0.75 min . Time: 12 min

Flow: \(\quad 300 \mu / / \mathrm{min}\)

\section*{MS Parameters}

Experiment: Full Scan (250-850 amu)
Source: Electrospray (negative)
Capillary Voltage ( kV ) \(=2.00\)
Cone Voltage ( V ) \(=10.00\)
Desolvation Temperature \(\left({ }^{\circ} \mathrm{C}\right)=500\)
Desolvation Gas Flow ( \(/ \mathrm{hr} \mathrm{r})=1000\)

Table A: br-PFHxSK; Isomeric Components and Percent Composition (by \({ }^{19} \mathrm{~F}-\mathrm{NMR}\) )*
\begin{tabular}{|c|c|c|c|}
\hline Isomer & Name & Structure & Percent Composition by \({ }^{19}\) F-NMR \\
\hline 1 & Potassium perfluoro-1-hexanesulfonate & \(\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{SO}_{3} \mathrm{~K}^{+}\) & 81.1 \\
\hline 2 & Potassium 1-trifluoromethylperfluoropentanesulfonate** & \[
\begin{gathered}
\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CFSO}_{3}^{-} \mathrm{K}^{+} \\
\mathrm{CF}_{3}
\end{gathered}
\] & 2.9 \\
\hline 3 & Potassium 2-trifluoromethylperfluoropentanesulfonate &  & 1.4 \\
\hline 4 & Potassium 3-trifluoromethylperfluoropentanesulfonate &  & 5.0 \\
\hline 5 & Potassium 4-trifluoromethylperfluoropentanesulfonate &  & 8.9 \\
\hline 6 & Potassium 3,3-di(trifluoromethyl)perfluorobutanesulfonate &  & 0.2 \\
\hline 7 & Other Unidentified Isomers & & 0.5 \\
\hline
\end{tabular}
* Percent of total perfluorohexanesulfonate isomers only.
** Systematic Name: Potassium perfluorohexane-2-sulfonate.

Date: \(\qquad\)
\(10105 / 2018\) (mivddyyyy)

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFCIUV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products, as well as mixtures and calibration solutions, are compared to older lots in a similar manner. This further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{i}, x_{2}, \ldots x_{n}\) on which it depends is: \(\quad u_{v}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}\)
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

\title{
br-PFHxSK \\ Potassium Perfluorohexanesulfonate Solution/Mixture of Linear and Branched Isomers
}

\section*{PRODUCT CODE:}

LOT NUMBER:
CONCENTRATION:

SOLVENT(S):
DATE PREPARED: (nnadury)
LAST TESTED: (mmudim)
EXPIRY DATE: (nmddumm)
RECOMMENDED STORAGE:
br-PFHxSK
brPFHxSK1018
\(50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) (total potassium salt)
\(45.5 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}\) (total PFHxS anion)
Methanol
10/01/2018
10/02/2018
10/02/2023
Store ampoule in a cool, dark place

\section*{DESCRIPTION:}

The chemical purity has been determined to be \(\geq 98 \%\) perfluorohexanesulfonate linear and branched isomers. The full name, structure and percent composition for each of the identified isomeric components are given in Table A.

\section*{DOCUMENTATION/ DATA ATTACHED:}

Table A: Isomeric Components and Percent Composition by \({ }^{19}\) F-NMR
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (SIR)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains \(\sim 0.3 \%\) of perfluoro-n-hexanoic acid and \(\sim 0.15 \%\) of perfluoro- 1 -pentanesulfonate.
- CAS\#: 3871-99-6 (for linear isomer; potassium salt).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

\section*{Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com}

Figure 3: br-PFOSK; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Fiaure 3;}

Injection: On-colurnn (br-PFOSK)
Mobile phase: Same as Figure 2

\section*{MS Parameters}

Collision Gas \((\) mbar \()=2.97 \mathrm{e}-3\)
Collision Energy \((\mathrm{eV})=64\)

Flow: \(\quad 300 \mu / / \mathrm{min}\)

\section*{Figure 2: br-PFOSK; LC/MS Data (SIR)}
07jun2019_brPFOSK_005
brPFOSK0619 \(50 \mathrm{ng} / \mathrm{ml}\)
100 (17:24:10

\section*{Conditions for Figure 2:}

LC: Waters Acquity Ultra Performance LC
MS: \(\quad\) Waters Xevo TQ-S micro MS
Chromatographic Conditions:
\begin{tabular}{|ll} 
Column: & Acquity UPLC BEH Shield \(\mathrm{RP}_{48}(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm})\) \\
Injection: & \(50 \mathrm{ng} / \mathrm{ml}\) of br-PFOSK \\
Mobile Phase: & \begin{tabular}{l} 
Gradient \\
\(50 \% ~(80: 20 ~ M e O H: A C N) ~\)
\end{tabular} \(50 \% \mathrm{H}_{2} \mathrm{O}\) (both with \(10 \mathrm{mM} \mathrm{NH}, \mathrm{OAc}\) buffer) \\
& \begin{tabular}{l} 
Ramp to \(90 \%\) organic over 8 min and hold for 2 min. \\
Return to initial conditions over 0.75 min. \\
Time: 12 min
\end{tabular} \\
& \(300 \mu / / \mathrm{min}\)
\end{tabular}

\section*{MS Conditians:}

SIR (ES')
Source \(=120^{\circ} \mathrm{C}\)
Desolvation \(=500^{\circ} \mathrm{C}\)
Cone Voltage \(=2.00 \mathrm{~V}\)

Fiqure 1: br-PFOSK; LC/MS Data (TIC and Mass Spectrum)
\begin{tabular}{lll}
\hline 07jun2019_brPFOSK_001 \\
brPFOSK0619 \(250 \mathrm{ng} / \mathrm{ml}\) \\
100 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 1:} \\
\hline LC: & Waters Acquity Ultra Performance LC & \\
\hline MS: & Waters Xevo TQ-S micro MS & \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline Column: & Acquity UPLC BEH Shield RP \({ }_{18}\)
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\) & Experiment: Full Scan (225-850 amu) \\
\hline \multirow[t]{6}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: \(50 \%\) ( \(80: 20 \mathrm{MeOH}: \mathrm{ACN}\) )/50\% \(\mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=2.00\) \\
\hline & (both with 10 mM NH & Cone Voltage ( V ) \(=10.00\) \\
\hline & Ramp to \(90 \%\) organic over 8 min and hold for 2 min . & Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\) \\
\hline & Return to initial conditions over 0.75 min . & Desolvation Gas Flow (l/hr) \(=1000\) \\
\hline & Time: 12 min & \\
\hline Flow: & \(300 \mu / /\) min & \\
\hline
\end{tabular}

Table A:
br-PFOSK; Isomeric Components and Percent Composition (by \({ }^{19} \mathrm{~F}-\mathrm{NMR}\) ) \({ }^{\star}\)
\begin{tabular}{|c|c|c|c|}
\hline Isomer & Name & Structure & Percent Composition by \({ }^{19}\) F-NMR \\
\hline 1 & Potassium perfluoro-1-octanesulfonate & \(\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{SO}_{3} \mathrm{~K}^{+}\) & 78.8 \\
\hline 2 & Potassium 1-trifluoromethylperfluoroheptanesulfonate** &  & 1.2 \\
\hline 3 & Potassium 2-trifluoromethylperfluoroheptanesulfonate &  & 0.6 \\
\hline 4 & Potassium 3-trifluoromethylperfluoroheptanesulfonate &  & 1.9 \\
\hline 5 & Potassium 4-trifluoromethylperfluoroheptanesulfonate &  & 2.2 \\
\hline 6 & Potassium 5-trifluoromethylperfluoroheptanesulfonate &  & 4.5 \\
\hline 7 & Potassium 6-trifluoromethylperfluoroheptanesulfonate &  & 10.0 \\
\hline 8 & Potassium 5,5-di(trifluoromethyl)perfluorohexanesulfonate &  & 0.2 \\
\hline 9 & Potassium 4,4-di(trifluoromethyl)perfluorohexanesulfonate &  & 0.03 \\
\hline 10 & Potassium 4,5-di(trifluoromethyl)perfluorohexanesulfonate &  & 0.4 \\
\hline 11 & Potassium 3,5-di(trifluoromethyl)perfluorohexanesulfonate &  & 0.07 \\
\hline
\end{tabular}
* Percent of total perfluorooctanesulfonate isomers only. Isomers are labelled in Figure 2.
** Systematic Name: Potassium perfluorooctane-2-sulfonate.

Certified By:


Date: 06/17/2019 (mmddyyy)

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic punties of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products, as well as mixtures and calibration solutions, are compared to older lots in a similar manner. This further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE /PERIOD OF VALIDITY:
Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).


CALA

**For additional information or assistance conceming this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

\section*{br-PFOSK}

\section*{Potassium Perfluorooctanesulfonate Solution/Mixture of Linear and Branched Isomers}

\section*{PRODUCT CODE: \\ LOT NUMBER: CONCENTRATION:}

SOLVENT(S):
DATE PREPARED: (mndurym)
LAST TESTED: (mmoduyy)
EXPIRY DATE: (mmodomy)
RECOMMENDED STORAGE:
br-PFOSK
brPFOSK0619
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) (total potassium salt)
\(46.4 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}\) (total PFOS anion)
Methanol
06/03/2019
06/07/2019
06/07/2024
Store ampoule in a cool, dark place

\section*{DESCRIPTION:}

The chemical purity has been determined to be \(\geq 98 \%\) perfluorooctanesulfonate linear and branched isomers. The full name, structure and percent composition for each of the isomeric components are given in Table A.

\section*{DOCUMENTATION/ DATA ATTACHED:}

Table A: Isomeric Components and Percent Composition by \({ }^{19} \mathrm{~F}\)-NMR
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (SIR)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- A 5-point calibration curve was generated using linear PFOS (potassium salt) and mass-labelled PFOS as an internal standard to enable quantitation of br-PFOSK using isotopic dilution.
- CAS\#: 2795-39-3 (for linear isomer; potassium salt).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

\section*{Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G \(3 M 5\) CANADA 519-822-2436 . Fax: 519-822-2849 • info@well-labs.com}

Fiqure 2: \(\quad\) 4:2FTS; LC/MS/MS Data (Selected MRM Transitions)


Conditions for Fiqure 2:

Injection: On-column (4:2FTS)
Mobile phase: Same as Figure 1
Flow: \(\quad 300 \mu / / \mathrm{min}\)

MS Parameters
Collision Gas (mbar) \(=3.07 \mathrm{e}-3\)
Collision Energy \((\mathrm{eV})=18\)
\(\frac{\text { Figure 1: }}{\text { 08may2019 42FTS } 001}\)
42FTS0519 \(250 \mathrm{ng} / \mathrm{ml}\)



\section*{Conditions for Figure 1:}

\section*{LC: \(\quad\) Waters Acquity Ultra Performance LC \\ MS: \(\quad\) Waters Xevo TQ-S micro MS}

\section*{Chromatographic Conditions}

Column: Acquity UPLC BEH Shield RP \({ }_{\text {: }}\) \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)

Mobile phase: Gradient
Start: \(40 \%\) ( \(80: 20\) MeOH:ACN) / \(60 \% \mathrm{H}_{2} \mathrm{O}\) (both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer)
Ramp to \(90 \%\) organic over 8 min and hold for 2 min before returning to initial conditions in 0.75 min . Time: 11 min

Flow: \(\quad 300 \mu / / \mathrm{min}\)

\section*{MS Parameters}

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) \(=0.50\)
Cone Voltage \((V)=25.00\)
Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\)
Desolvation Gas Flow \((\mathrm{lhr})=1000\)

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{n}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{\varepsilon}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an extemal ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOAEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

\section*{PRODUCT CODE: COMPOUND:}

STRUCTURE:

LOT NUMBER: 42FTS0519
Sodium \(1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}\)-perfluorohexane sulfonate

GAS \#:
27619-93-8


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodrym)
EXPIRY DATE: (mmbdury)
RECOMMENDED STORAGE:
\(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{9} \mathrm{SO}_{3} \mathrm{Na}\)
\(50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \quad\) (Na salt)
\(46.7 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml} \quad\) (4:2FTS anion)
>98\%
05/08/2019
05/08/2024
Refrigerate ampoule

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)
(mme

Figure 2: \(\quad 6: 2 \mathrm{FTS}\); LC/MS/MS Data (Selected MRM Transitions)


Conditions for Figure 2:

Injection: On-column (6:2FTS)
Mobile phase: Same as Figure 1
Flow: \(\quad 300 \mu / / \mathrm{min}\)

\section*{MS Parameters}

Collision Gas (mbar) \(=3.61 e-3\)
Collision Energy \((\mathrm{eV})=20\)

\section*{Fiqure 1: \\ 6:2FTS; LC/MS Data (TIC and Mass Spectrum)}



\section*{Conditions for Figure 1:}

\section*{LC: \(\quad\) Waters Acquity Ultra Performance LC \\ MS: \(\quad\) Waters Xevo TQ-S micro MS}

\section*{Chromatoaraphic Conditions}
\begin{tabular}{ll} 
Column: \(\quad\) & Acquity UPLC BEH Shield RP \({ }_{18}\) \\
& \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)
\end{tabular}

Mobile phase:
Gradient
Start: 50\% (80:20 MeOH:ACN)/50\% \(\mathrm{H}_{2} \mathrm{O}\)
(both with 10 mM NH
Ramp to \(90 \%\) organic over 8 min and hold for 2 min before returning to initial conditions in 0.75 min . Time: 12 min

\section*{MS Parameters}

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) \(=0.50\)
Cone Voltage ( V ) \(=25.00\)
Desolvation Temperature \(\left({ }^{\circ} \mathrm{C}\right)=500\)
Desolvation Gas Flow (l/hr) \(=1000\)

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integnity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\[
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAl Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

\section*{CERTIFICATE OF ANALYSIS}



MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiddrm)
EXPIRY DATE: (mmadrumy)
RECOMMENDED STORAGE;
\(\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{13} \mathrm{SO}_{3} \mathrm{Na}\)
MOLECULAR WEIGHT:
SOLVENT(S): Methanol

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LCIMS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)
(mmodiyy

Figure 2: \(\quad\) 8:2FTS; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Fiqure 2:}

Injection: On-column (8:2FTS)
Mobile phase: Same as Figure 1
Flow: \(\quad 300 \mu / m i n\)

\section*{MS Parameters}

Collision Gas \((\mathrm{mbar})=3.49 \mathrm{e}-3\)
Collision Energy \((\mathrm{eV})=26\)
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|l|}{Conditions for Fiqure 1:} \\
\hline LC: Waters Acquity Ultra Performance LC & \\
\hline MS: \(\quad\) Waters Xevo TQ-S micro MS & \\
\hline Chromatographic Conditions & MS Parameters \\
\hline \begin{tabular}{ll} 
Column: & Acquity UPLC BEH Shield \(R P_{18}\) \\
& \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)
\end{tabular} & Experiment: Full Scan (225-850 amu) \\
\hline \begin{tabular}{l}
Mobile phase: Gradient \\
Start: \(60 \%(80: 20 \mathrm{MeOH}: A C N) / 40 \% \mathrm{H}_{2} \mathrm{O}\) (both with 10 mM NH Ramp to \(90 \%\) organic over 7 min and hold for 3 min before returning to initial conditions in 0.75 min . Time: 12 min
\end{tabular} & \begin{tabular}{l}
Source: Electrospray (negative) \\
Capillary Voltage ( kV ) \(=0.50\) \\
Cone Voltage ( \(V\) ) \(=25.00\) \\
Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\) \\
Desolvation Gas Flow (l/hr) \(=1000\)
\end{tabular} \\
\hline Flow: \(\quad 300 \mu / \mathrm{min}\) & \\
\hline
\end{tabular}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techriques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5\% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or irjection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\[
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{IRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

\section*{CERTIFICATE OF ANALYSIS}
\begin{tabular}{|c|c|c|}
\hline PRODUCT CODE: & 8:2FTS LOT NU & 82FTS0919 \\
\hline COMPOUND: & Sodium \(1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}\)-perfluorodecane sulfonate & \\
\hline STRUCTURE: & CAS \#: & 27619-96-1 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline MOLECULAR FORMULA: & \(\mathrm{C}_{10} \mathrm{H}_{4} \mathrm{~F}_{7} \mathrm{SO}_{3} \mathrm{Na}\) & & MOLECULAR WEIGHT: & 550.16 \\
\hline CONCENTRATION: & \(50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) & (Na salt) & SOLVENT(S): & Methanol \\
\hline & \(47.9 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}\) & (8:2FTS anion) & & \\
\hline CHEMICAL PURITY: & >98\% & & & \\
\hline LAST TESTED: (mmidimm) & 09/11/2019 & & & \\
\hline EXPIRY DATE: (mmuddmm) & 09/11/2024 & & & \\
\hline RECOMMENDED STORAGE: & Refrigerate ampo & & & \\
\hline
\end{tabular}

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

Figure 2: FOSA-1; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure 2:}

Injection: On-column (FOSA-I)
Mobile phase: Same as Figure 1
Flow: \(\quad 300 \mu / \mathrm{min}\)

\section*{MS Parameters}

Collision Gas (mbar) \(=3.57 \mathrm{e}-3\)
Collision Energy ( 0 V) \(=30\)

\section*{Fiqure 1: FOSA-I; LC/MS Data (TIC and Mass Spectrum)}


Conditions for Fiqure 1:
LC: Waters Acquity Ultra Performance LC
MS: \(\quad\) Waters Xevo TQ-S micro MS

\section*{Chromatographic Conditions}

Column: Acquity UPLC BEH Shield RP \({ }_{\text {is }}\)
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)
Mobile phase: Gradient
Start: 60\% (80:20 MeOH:ACN) / \(40 \% \mathrm{H}_{2} \mathrm{O}\)
(both with 10 mM NH ©Ac buffer)
Ramp to \(90 \%\) organic over 7 min and hold for 3 min
before returning to initial conditions in 0.75 min .
Time: 12 min

\section*{MS Parameters}

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage \((\mathrm{kV})=0.50\)
Cone Voltage (V) \(=20.00\)
Desolvation Temperature ( \(\left.{ }^{\circ} \mathrm{C}\right)=500\)
Desolvation Gas Flow \((1 / \mathrm{hr})=1000\)

Flow:
\(300 \mu 1 /\) min

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where \(x\) is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance conceming this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs,com or contact us directly at info@well-labs,com**

\section*{CERTIFICATE OF ANALYSIS}

\section*{PRODUCT CODE:}

COMPOUND:

STRUCTURE:

FOSA-I
Perfluoro-1-octanesulfonamide

LOT NUMBER: FOSA0919|

CAS \#:
754-91-6


MOLECULAR FORMULA:
\(\mathrm{C}_{8} \mathrm{H}_{2} \mathrm{~F}_{17} \mathrm{NO}_{2} \mathrm{~S}\)
CONCENTRATION:
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
CHEMICAL PURITY:
LAST TESTED; (mmodrywn)
\(>98 \%\)

EXPIRY DATE: (mmodmy 09/12/2019

RECOMMENDED STORAGE: Refrigerate ampoule

MOLECULAR WEIGHT:
SOLVENT(S):
499.14

Isopropanol

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: \(\qquad\)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-fabs.com

Figure 3: br-NMeFOSAA; LC/MS/MS Data (Selected MRM Transitions)

*Note: N-MeFOSA is formed by in-source fragmentation.

\section*{Conditions for Figure 3:}

Injection: On-column (br-NMeFOSAA
Mobile phase: Same as Figure 1
Flow: \(\quad 300 \mu / / m i n\)

MS Parameters
Collision Gas (mbar) \(=2.79 \mathrm{e}-3\)
Collision Energy \((\mathrm{eV})=16\)

\section*{1920639}

Figure 2: br-NMeFOSAA; LC/MS Data (SIR)
\begin{tabular}{lll}
\hline 09jan2019_brNMeFOSAA_003 \\
brNMeFOSAAO119 \(50 \mathrm{ng} / \mathrm{ml}\) \\
100
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 2:} \\
\hline \[
\frac{\text { LC: }}{M S}
\] & Waters Acquity Ultra Performance LC Waters Xevo TQ-S micro MS & \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline Column: & \begin{tabular}{l}
Acquity UPLC BEH Shield RP \({ }_{\text {s }}\) \\
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)
\end{tabular} & Experiment: SIR (8 channels) \\
\hline Mobile phase: & \begin{tabular}{l}
Gradient \\
Start: \(60 \%\) ( \(80: 20 \mathrm{MeOH}: A C N\) ) \(/ 40 \% \mathrm{H}_{2} \mathrm{O}\) \\
(both with \(10 \mathrm{mM} \mathrm{NH}, \mathrm{OAC}\) buffer) \\
Ramp to \(90 \%\) organic over 7 min and hold for \\
3 min before returning to initial conditions in 0.75 min . \\
Time: 12 min
\end{tabular} & \begin{tabular}{l}
Source: Electrospray (negative) \\
Capillary Voltage (kV) \(=2.00\) \\
Cone Voltage (V) \(=2-64\) \\
Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\) \\
Desolvation Gas Flow \((1 / \mathrm{hr})=1000\)
\end{tabular} \\
\hline Flow: & \(300 \mu 1 / m i n\) & \\
\hline
\end{tabular}

Figure 1: br-NMeFOSAA; LC/MS Data (TIC and Mass Spectrum)


\section*{Conditions for Fiqure 1:}
\begin{tabular}{ll} 
LC: & Waters Acquity Ultra Performance LC \\
MS: & Waters Xevo TQ-S micro MS
\end{tabular}

\section*{Chromatographic Conditions}

Column: Acquity UPLC BEH Shield RP \({ }_{18}\) \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)

Mobile phase: Gradient
Start: \(60 \%\) ( \(80: 20 \mathrm{MeOH}: A C N) / 40 \% \mathrm{H}_{2} \mathrm{O}\) (both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer)
Ramp to \(90 \%\) organic over 7 min and hold for
3 min before returning to initial conditions in 0.75 min .
Time: 12 min
Flow: \(\quad 300 \mu / / m i n\)

\section*{MS Parameters}

Experiment: Full Scan (250-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) \(=2.00\)
Cone Voltage ( V ) \(=20.00\)
Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\)
Desolvation Gas Flow \((\mathrm{l} / \mathrm{hr})=1000\)

Table A: br-NMeFOSAA; Isomeric Components and Percent Composition (by \({ }^{18} \mathrm{~F}-\mathrm{NMR}\) )*
\begin{tabular}{|c|c|c|c|}
\hline Isomer & Name & Structure & Percent Composition by \({ }^{19}\) F-NMR \\
\hline 1 & N -methylperfluoro-1-octanesulfonamidoacetic acid &  & 76.0 \\
\hline 2 & N -methylperfluoro-3-methylheptanesulfonamidoacetic acid &  & 0.7 \\
\hline 3 & N -methylperfluoro-4-methylheptanesulfonamidoacetic acid &  & 2.0 \\
\hline 4 & N -methylperfluoro-5-methylheptanesulfonamidoacetic acid &  & 6.0 \\
\hline 5 & N -methylperfluoro-6-methylheptanesulfonamidoacetic acid &  & 14.0 \\
\hline 6 & N -methylperfluoro-5,5-dimethylhexanesulfonamidoacetic acid &  & 0.2 \\
\hline 7 & Other Unidentified Isomers & & 1.1 \\
\hline
\end{tabular}
* Percent of total N-methylperfluorooctanesulfonamidoacetic acid isomers only.

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste shoutd be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS /CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS; SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products, as well as mixtures and calibration solutions, are compared to older lots in a similar manner. This further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value( s ), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\[
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an extemal ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in matenal and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of 1509001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).


CALA


**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www,well-labs,com or contact us directly at inforowell-labs.com**

\section*{CERTIFICATE OF ANALYSIS}

\section*{br-NMeFOSAA}

\section*{N-Methylperfluorooctanesulfonamidoacetic \\ Acid Solution/Mixture of Linear and \\ Branched Isomers}
```

PRODUCT CODE:
LOT NUMBER:
CONCENTRATION:
SOLVENT(S):
DATE PREPARED;
(mundudrym)
LAST TESTED: (mmodurm)
EXPIRY DATE: (mmaduryw)
RECOMMENDED STORAGE;

```
```

br-NMeFOSAA
brNMeFOSAA0119
50.0\pm2.5 \mug/ml
MethanolWater (<1%)
01/02/2019
01/09/2019
01/09/2024
Refrigerate ampoule

```

\section*{DESCRIPTION:}

The chemical purity has been determined to be \(\geq 98 \% \mathrm{~N}\)-methylperfluorooctanesulfonamidoacetic acid (linear and branched isomers). The full name, structure and percent composition for each of the identified isomeric components are given in Table A.

\section*{DOCUMENTATION/ DATA ATTACHED:}

Table A: Isomeric Components and Percent Composition by \({ }^{99} \mathrm{~F}\)-NMR
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (SIR)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the acetic acid moiety to its respective methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

\footnotetext{
Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com
}

Figure 3: br-NEtFOSAA; LC/MS/MS Data (Selected MRM Transitions)

*Note: N-EtFOSA is formed by in-source fragmentation.
\begin{tabular}{|ll|}
\hline Conditions for Fiqure 3: & MS Parameters \\
Injection: \(\quad\) On-column (br-NEtFOSAA) & Collision Gas (mbar) \(=3.53 \mathrm{e}-3\) \\
Mobile phase: Same as Figure 1 & Collision Energy (eV) \(=18\) \\
Flow: \(\quad 300 \mu / \mathrm{min}\) & \\
&
\end{tabular}

\section*{Figure 2: \(\quad\) br-NEtFOSAA; LC/MS Data (SIR)}

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Fiaure 2:} \\
\hline LC: & Waters Acquity Ultra Performance LC & \\
\hline MS: & Waters Xevo TQ-S micro MS & \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline Column: & Acquity UPLC BEH Shield RP \(_{18}\) \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\) & Experiment: SIR (8 channels) \\
\hline \multirow[t]{6}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: \(50 \%\) (80:20 MeOH:ACN) / \(50 \% \mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=2.00\) \\
\hline & (both with 10 mM NH & Cone Voltage (V) = variable ( \(2-64\) ) \\
\hline & Ramp to \(90 \%\) organic over 8 min and hold for & Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\) \\
\hline & 2 min before returning to initial conditions in 0.75 min . & Desolvation Gas Flow (l/hr) = 1000 \\
\hline & Time: 12 min & \\
\hline Flow: & \(300 \mu \mathrm{l} / \mathrm{min}\) & \\
\hline
\end{tabular}

Fiqure 1: \(\quad\) br-NEtFOSAA; LC/MS Data (TIC and Mass Spectrum)


\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Fiqure 1:} \\
\hline LC: & Waters Acquity Ultra Performance LC & \\
\hline MS: & Waters Xevo TQ-S micro MS & \\
\hline \multicolumn{2}{|l|}{Chromatoaraphic Conditions} & MS Parameters \\
\hline Column: & Acquity UPLC BEH Shield RP \({ }_{\text {\% }}\) & \\
\hline & \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\) & Experiment: Full Scan (250-850 amu) \\
\hline \multirow[t]{5}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: \(50 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 50 \% \mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=2,00\) \\
\hline & (both with 10 mM NH , OAc buffer) & Cone Voltage (V) \(=20\) \\
\hline & Ramp to \(90 \%\) organic over 8 min and hold for & Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\) \\
\hline & 2 min before returning to initial conditions in 0.75 min . Time: 12 min & Desolvation Gas Flow (/hr) \(=1000\) \\
\hline Flow: & \(300 \mu / / \mathrm{min}\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline Isomer & Name & Structure & Percent Composition by \({ }^{19}\) F-NMR \\
\hline 1 & N -ethylperfluoro-1-octanesulfonamidoacetic acid & \[
\begin{gathered}
\mathrm{CF}_{3}\left(\mathrm{CF}_{2}\right)_{7} \mathrm{SO}_{2} \mathrm{NCH}_{2} \mathrm{CO}_{2} \mathrm{H} \\
\mathrm{C}_{2} \mathrm{H}_{5}
\end{gathered}
\] & 77.5 \\
\hline 2 & N-ethylperfluoro-3-methylheptanesulfonamidoacetic acid &  & 2.3 \\
\hline 3 & N-ethylperfluoro-4-methylheptanesulfonamidoacetic acid &  & 2.2 \\
\hline 4 & N-ethylperfluoro-5-methylheptanesulfonamidoacetic acid &  & 5.4 \\
\hline 5 & N-ethylperfluoro-6-methylheptanesulfonamidoacetic acid &  & 10.4 \\
\hline 6 & N -ethylperfluoro-5,5-dimethylhexanesulfonamidoacetic acid &  & 0.3 \\
\hline 7 & N -ethylperfluoro-4,5-dimethylhexanesulfonamidoacetic acid &  & 0.3 \\
\hline 8 & N -ethylperfluoro-3,5-dimethylhexanesulfonamidoacetic acid &  & 0.3 \\
\hline 9 & Other Unidentified Isomers & & 1.3 \\
\hline
\end{tabular}
* Percent of total N -ethylperfluorooctanesulfonamidoacetic acid isomers only.

Certified By:


Date: 08/29/2019 (mndddywn)

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystaline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products, as well as mixtures and calibration solutions, are compared to older lots in a similar manner. This further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\[
x_{i}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly callbrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www,well-labs.com or contact us directly at info@well-labs.com**

\title{
br-NEtFOSAA \\ N-EthyIperfluorooctanesulfonamidoacetic Acid Solution/Mixture of Linear and Branched Isomers
}

\section*{PRODUCT CODE: \\ LOT NUMBER: \\ CONCENTRATION: \\ SOLVENT(S): \\ DATE PREPARED: \\ mundadyyw \\ LAST TESTED: (mmidaym) \\ EXPIRY DATE: (mmddaymy) \\ RECOMMENDED STORAGE:}
br-NEtFOSAA
brNEtFOSAA0819
\(50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
Methanol Water (<1\%)
08/20/2019
08/20/2019
08/20/2024
Refrigerate ampoule

\section*{DESCRIPTION:}

The chemical purity has been determined to be \(\geq 98 \% \mathrm{~N}\)-ethylperfluorooctanesulfonamidoacetic acid (linear and branched isomers). The full name, structure and percent composition for each of the identified isomeric components are given in Table A.

\section*{DOCUMENTATION/ DATA ATTACHED:}

Table A: Isomeric Components and Percent Composition by \({ }^{19} \mathrm{~F}\)-NMR
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (SIR)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the acetic acid moiety to its respective methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

\footnotetext{
Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 * info@well-labs.com
}

Figure 2: N-MeFOSA-M; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure.2:}

Injection: On-column (N-MeFOSA-M)
Mobile phase: Same as Figure 1
Flow: \(\quad 300 \mu / / m i n\)

\section*{MS Parameters}

Collision Gas (mbar) \(=2.99 \mathrm{e}-3\)
Collision Energy (eV) \(=24\)
: Figure 1: N-MeFOSA-M; LC/MS Data (TIC and Mass Spectrum)
\(\downarrow\)


\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 1:} \\
\hline LC: & Waters Acquity Ultra Performance LC & \\
\hline MS: & Waters Xevo TQ-S micro MS & \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline Column: & \begin{tabular}{l}
Acquity UPLC BEH Shield RP \({ }_{18}\) \\
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)
\end{tabular} & Experiment: Full Scan (225-850 amu) \\
\hline \multirow[t]{6}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: 60\% (80:20 MeOH:ACN) / \(40 \% \mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=0.50\) \\
\hline & (both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer) & Cone Voltage (V) \(=20.00\) \\
\hline & Ramp to \(90 \%\) organic over 7 min and hold for & Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\) \\
\hline & 3 min before returning to initial conditions in 0.75 min . & Desolvation Gas Flow (1/hr) \(=1000\) \\
\hline & Time: 11 min & \\
\hline Flow: & \(300 \mu \mathrm{l} / \mathrm{min}\) & \\
\hline
\end{tabular}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS /CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFCIUV/MS/MS, x-ray crystallography, and melting point. Isotopic punties of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\[
x_{i}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{v}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y_{1} x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interiaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

\section*{CERTIFICATE OF ANALYSIS} DOCUMENTATION

\section*{PRODUCT CODE: \\ COMPOUND:}

STRUCTURE:

\begin{tabular}{ll} 
MOLECULAR FORMULA: & \(\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{~F}_{4} \mathrm{NO}_{2} \mathrm{~S}\) \\
CONCENTRATION: & \(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) \\
CHEMICAL PURITY: & \(>98 \%\) \\
LAST TESTED: (mmuddrwn) & \(05 / 07 / 2019\) \\
EXPIRY DATE: (mmudurw) & \(05 / 07 / 2024\) \\
RECOMMENDED STORAGE: & Store ampoule in a cool, dark place
\end{tabular}

LOT NUMBER: NMeFOSA0519M

CAS \#:
31506-32-8

\section*{MOLECULAR WEIGHT: \\ 513.17}

SOLVENT(S):
Methanol

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)
\(19 L 0662\)

Figure 2: N-EtFOSA-M; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure 2:}

Injection: On-column (N-EtFOSA-M)
Mobile phase: Same as Figure 1
Flow: \(\quad 300 \mu / / m i n\)

\section*{MS Parameters}
\[
\begin{aligned}
& \text { Collision Gas }(\mathrm{mbar})=3.00 \mathrm{e}-3 \\
& \text { Collision Energy }(\mathrm{eV})=24
\end{aligned}
\]

\section*{2 Figure 1: N-EtFOSA-M; LC/MS Data (TIC and Mass Spectrum)}
\begin{tabular}{lll}
\hline 07may2019_NEtFOSA_001 \\
NEtFOSA0519M \(250 \mathrm{ng} / \mathrm{ml}\) \\
100 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 1:} \\
\hline LC: & Waters Acquity Ultra Performance LC & \\
\hline MS: & Waters Xevo TQ-S micro MS & \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline Column: & \begin{tabular}{l}
Acquity UPLC BEH Shield RP \({ }_{18}\) \\
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)
\end{tabular} & Experiment: Full Scan (225-850 amu) \\
\hline \multirow[t]{6}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: 60\% (80:20 MeOH:ACN) / 40\% \(\mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=0.50\) \\
\hline & (both with \(10 \mathrm{mM} \mathrm{NH} H_{4} \mathrm{OAc}\) buffer) & Cone Voltage (V) \(=20.00\) \\
\hline & Ramp to \(90 \%\) organic over 7 min and hold for & Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\) \\
\hline & 3 min before returning to initial conditions in 0.75 min . & Desolvation Gas Flow (l/hr) \(=1000\) \\
\hline & Time: 11 min & \\
\hline Flow: & \(300 \mu / / \mathrm{min}\) & \\
\hline
\end{tabular}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2} \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, untl the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

\section*{PRODUCT CODE: \\ COMPOUND:}

N-EtFOSA-M
N -ethylperfluoro-1-octanesulfonamide

LOT NUMBER: NEtFOSA0519M

\section*{CAS \#:}

4151-50-2

\begin{tabular}{|c|c|c|c|}
\hline MOLECULAR FORMULA: & \(\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{~F}_{17} \mathrm{NO}_{2} \mathrm{~S}\) & MOLECULAR WEIGHT: & 527.20 \\
\hline CONCENTRATION: & \(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) & SOLVENT(S): & Methanol \\
\hline CHEMICAL PURITY: & >98\% & & \\
\hline LAST TESTED; (mmderm) & 05/07/2019 & & \\
\hline EXPIRY DATE: (mmbdusm) & 05/07/2024 & & \\
\hline RECOMMENDED STORAGE: & Store ampoule in a cool, dark place & & \\
\hline
\end{tabular}

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains \(\sim 0.5 \%\) branched isomers of N -ethylperfluorooctanesulfonamide.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \(\qquad\) (mmedyyy)
;
Figure 3: N-MeFOSE-M; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Fiqure 3:}

Injection: On-column (N-MeFOSE-M
Mobile phase: Same as Figure 2
Flow: \(\quad 300 \mu / / \mathrm{min}\)

\section*{MS Parameters}

Collision Gas (mbar) \(=2.94 \mathrm{e}-3\)
Collision Energy ( eV ) \(=36\)

Fiqure 2: \(\quad\) N-MeFOSE-M; LC/MS Data (TIC and Mass Spectrum)


\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 2:} \\
\hline LC: & Waters Acquity Ultra Performance LC & \\
\hline MS: & Waters Xevo TQ-S micro MS & \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline Column: & \begin{tabular}{l}
Acquity UPLC BEH Shield RP \({ }_{18}\) \\
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)
\end{tabular} & Experiment: Full Scan (250-850 amu) \\
\hline \multirow[t]{5}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: \(65 \% \mathrm{MeOH} / 35 \% \mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=2.00\) \\
\hline & Ramp to \(90 \%\) organic over 8 min and hold for & Cone Voltage (V) \(=65.00\) \\
\hline & 2 min before returning to initial conditions in 0.75 min . & Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=450\) \\
\hline & Time: 12 min & Desolvation Gas Flow (1/hr) \(=1000\) \\
\hline Flow: & \(300 \mu / / m i n\) & \\
\hline
\end{tabular}

\section*{- Figure 1: N-MeFOSE-M; HRGC/LRMS Data (TIC and Mass Spectrum)}


\section*{HRGC/LRMS:}

Agilent 7890A (HRGC)
Agilent 5975C (LRMS)

\section*{Chromatographic Conditions:}

Column: \(\quad 30 \mathrm{~m}\) DB-5 ( 0.25 mm id, \(0.25 \mu \mathrm{~m}\) film thickness) Agilent J\&W
Injector: \(\quad 250^{\circ} \mathrm{C}\) (Splitless Injection)
Oven: \(\quad 100^{\circ} \mathrm{C}(5 \mathrm{~min})\)
\(10^{\circ} \mathrm{C} / \mathrm{min}\) to \(325^{\circ} \mathrm{C}\)
\(325^{\circ} \mathrm{C}\) (20 min)
Ionization: El+
Detector: \(250^{\circ} \mathrm{C}\) Full Scan (50-1000 amu)

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handing of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times, Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{a}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\[
x_{i}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where \(x\) is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{IRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/EC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**


\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: HRGC/LRMS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (TIC and Mass Spectrum)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- In order to see the molecular ion (adduct free), the LC mobile phase should be free of ammonium acetate buffer.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

Figure 3: N-EtFOSE-M; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure 3:}

Injection: On-column (N-EtFOSE-M)
Mobile phase: Same as Figure 2

\section*{MS Parameters}

Collision Gas (mbar) \(=2.76 \mathrm{e}-3\)
Collision Energy (eV) \(=32\)

Flow:
\(300 \mu / / m i n\)

\section*{19L0664}

Figure 2: N-EtFOSE-M; LC/MS Data (TIC and Mass Spectrum)



\section*{Conditions for Figure 2:}
\begin{tabular}{ll} 
LC: & Waters Acquity Ultra Performance LC \\
MS: & Waters Xevo TQ-S micro MS
\end{tabular}

\section*{Chromatographic Conditions}

Column: \(\quad\) Acquity UPLC BEH Shield \(R P_{1}\)
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)
Mobile phase: Gradient
Start: \(65 \% \mathrm{MeOH} / 35 \% \mathrm{H}_{2} \mathrm{O}\)
Ramp to \(90 \%\) organic over 8 min and hold for 2 min before returning to initial conditions in 0.75 min . Time: 12 min

\section*{MS Parameters}

Experiment: Full Scan (250-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) \(=2.00\)
Cone Voltage (V) \(=65.00\)
Desolvation Temperature \(\left({ }^{\circ} \mathrm{C}\right)=450\)
Desolvation Gas Flow (l/hr) \(=1000\)
```

Flow: }\quad300\mul/mi

```

Figure 1: N-EtFOSE-M; HRGC/LRMS Data (TIC and Mass Spectrum)


\section*{HRGCILRMS:}

Agilent 7890A (HRGC)
Agilent 5975C (LRMS)

\section*{Chromatographic Conditions:}

Column: \(\quad 30 \mathrm{~m} \mathrm{DB}-5(0.25 \mathrm{~mm}\) id, \(0.25 \mu \mathrm{~m}\) film thickness) Agilent J\&W
Injector: \(\quad 250^{\circ} \mathrm{C}\) (Splitless Injection)
Oven: \(\quad 100^{\circ} \mathrm{C}(5 \mathrm{~min})\)
\(10^{\circ} \mathrm{C} / \mathrm{min}\) to \(325^{\circ} \mathrm{C}\)
\(325^{\circ} \mathrm{C}(20 \mathrm{~min})\)
Ionization:
El+
Detector: \(\quad 250^{\circ} \mathrm{C}\)
Full Scan (50-1000 amu)

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS/CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UVIMS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where \(x\) is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{IRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).


CALA


**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**


\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: HRGC/LRMS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (TIC and Mass Spectrum)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- In order to see the molecular ion (adduct free), the LC mobile phase should be free of ammonium acetate buffer.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

Fiqure 2:
10:2FTS; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure 2:}

Injection: On-column (10:2FTS)
Mobile phase: Same as Figure 1
Flow: \(\quad 300 \mu l / m i n\)

\section*{MS Parameters}

Collision Gas (mbar) \(=2.92 \mathrm{e}-3\)
Collision Energy ( eV ) \(=25\)

Figure 1: 10:2FTS; LC/MS Data (TIC and Mass Spectrum)


\section*{Conditions for Fiqure 1:}

LC: Waters Acquity Ultra Performance LC
MS: \(\quad\) Waters Xevo TQ-S micro MS

\section*{Chromatographic Conditions}

Column: Acquity UPLC BEH Shield RP \({ }_{18}\)
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)
Mobile phase: Gradient
Start: \(60 \%\) ( \(80: 20 \mathrm{MeOH}: A C N\) ) \(/ 40 \% \mathrm{H}_{2} \mathrm{O}\) (both with \(10 \mathrm{mM} \mathrm{NH}, \mathrm{OAc}\) buffer)
Ramp to \(90 \%\) organic over 7 min and hold for
3 min before returning to initial conditions in 0.75 min .
Time: 12 min
Flow: \(\quad 300 \mu / /\) min

\section*{MS Parameters}

Experiment: Full Scan (250-850 amu)
Source: Electrospray (negative)
Capillary Voltage ( kV ) \(=0.50\)
Cone Voltage (V) \(=25.00\)
Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\)
Desolvation Gas Flow \((1 / \mathrm{hr})=1000\)

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS. SFCIUV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned values), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\[
x_{i}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

\section*{CERTIFICATE OF ANALYSIS}

\section*{PRODUCT CODE: \\ COMPOUND:}

10:2FTS
Sodium \(1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}\)-perfluorododecane sulfonate

CAS \#:
Not available


MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmididym EXPIRY DATE: (mmbdrm)
\(\mathrm{C}_{12} \mathrm{H}_{4} \mathrm{~F}_{21} \mathrm{SO}_{3} \mathrm{Na}\)
\(50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \quad\) (Na salt)
\(48.2 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml} \quad\) (10:2FTS anion)
>98\%
06/11/2019
06/11/2022
Refrigerate ampoule

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}

See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: \(\qquad\) \(\frac{06 / 18 / 2019}{(\mathrm{~mm} / \mathrm{dd} / \mathrm{yyy})}\)

Figure 2: HFPO-DA; LC/MS/MS Data (Selected MRM Transitions)

\begin{tabular}{|ll|}
\hline Conditions for Figure 2: & \\
Injection: \(\quad\) On-column (HFPO-DA) & MS Parameters \\
Mobile phase: & Same as Figure 1 \\
Flow: \(\quad 300 \mu / / \mathrm{min}\) & Collision Gas (mbar) \(=3.60 \mathrm{e}-3\) \\
& \\
\hline
\end{tabular}



\section*{Conditions for Figure 1:}

\section*{LC: \(\quad\) Waters Acquity Ultra Performance LC \\ MS: \(\quad\) Waters Xevo TQ-S micro MS}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline Column: & Acquity UPLC BEH Shield RP \({ }_{1 *}\) & \\
\hline & \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\) & Experiment: Full Scan (225-850 amu) \\
\hline \multirow[t]{6}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: 50\% (80:20 MeOH:ACN) / \(50 \% \mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage ( kV ) \(=3.00\) \\
\hline & (both with \(10 \mathrm{mM} \mathrm{NH} \mathrm{H}_{4} \mathrm{OAC}\) buffer) & Cone Voltage ( \(V\) ) \(=15.00\) \\
\hline & Ramp to 90\% organic over 8 min and hold for & Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=325\) \\
\hline & 2 min before returning to initial conditions in 0.75 min . & Desolvation Gas Flow (1/hr) \(=1000\) \\
\hline & Time: 12 min & \\
\hline Flow: & \(300 \mu / / m i n\) & \\
\hline
\end{tabular}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use orly. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handing of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{e}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\[
x_{i}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{s}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMIIED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and 18017034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

PRODUCT CODE: COMPOUND:

\section*{STRUCTURE:}
\begin{tabular}{|c|c|c|c|}
\hline MOLECULAR FORMULA: & \(\mathrm{C}_{6} \mathrm{HF}_{\mathrm{n}} \mathrm{O}_{3}\) & MOLECULAR WEIGHT: & 330.05 \\
\hline CONCENTRATION: & \(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) & SOLVENT(S): & Methanol \\
\hline CHEMICAL PURITY: & >98\% & & \\
\hline LAST TESTED: (mvidumm) & 09/20/2019 & & \\
\hline EXPIRY DATE: (mmidury) & 09/20/2022 & & \\
\hline RECOMMENDED STORAGE: & Refrigerate ampoule & & \\
\hline
\end{tabular}

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Product is commercially known as GenX.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\) 91301<01 (mmdd/yyy)

Fiqure 2: \(\quad 11 \mathrm{Cl}-\mathrm{PF} 30 \mathrm{UdS}\); LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure 2:}

Injection: On-column (11CI-PF3OUdS)
Mobile phase: Same as Figure 1

\section*{MS Parameters}

Collision Gas (mbar) \(=2.84 \mathrm{e}-3\)
Collision Energy (eV) \(=24\)

Figure 1: \(\quad 11 \mathrm{Cl}-\mathrm{PF} 30 \mathrm{UdS}\); LC/MS Data (TIC and Mass Spectrum)

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 1:} \\
\hline LC: & Waters Acquity Ultra Performance LC & \\
\hline MS: & Waters Xevo TQ-S micro MS & \\
\hline Chromatograp & ohic Conditions & MS Parameters \\
\hline Column: & \[
\begin{aligned}
& \text { Acquity UPLC BEH Shield RP }{ }_{18} \\
& 1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}
\end{aligned}
\] & Experiment: Full Scan (250-850 amu) \\
\hline Mobile phase: & \begin{tabular}{l}
Gradient \\
Start: 50\% (80:20 MeOH:ACN) / \(50 \% \mathrm{H}_{2} \mathrm{O}\) \\
(both with \(10 \mathrm{mM} \mathrm{NH} \mathrm{H}_{4} \mathrm{OAC}\) buffer) \\
Ramp to \(90 \%\) organic over 8 min and hold for 2 min before returning to initial conditions in 0.75 min . Time: 12 min
\end{tabular} & \begin{tabular}{l}
Source: Electrospray (negative) \\
Capillary Voltage (kV) \(=2.00\) \\
Cone Voltage ( V ) \(=70.00\) \\
Desolvation Temperature \(\left({ }^{\circ} \mathrm{C}\right)=500\) \\
Desolvation Gas Flow ( \(/ \mathrm{hr}\) ) \(=750\)
\end{tabular} \\
\hline Flow: & \(300 \mu / / \mathrm{min}\) & \\
\hline
\end{tabular}

\section*{INTENDED USE}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS. SFC/UV/MS/MS, x-ray crystallography, and meiting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{v}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using callbrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).


CALA
Twateman

**For additional information or assistance conceming this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs,com**

\section*{PRODUCT CODE: COMPOUND:}

11Cl-PF3OUdS
LOT NUMBER:
11CIPF3OUdS1118
Potassium 11-chloroeicosafluoro-3-oxaundecane-1-sulfonate

STRUCTURE:
CAS \#:
83329-89-9

\begin{tabular}{|c|c|c|c|}
\hline MOLECULAR FORMULA: & \(\mathrm{C}_{10} \mathrm{~F}_{20} \mathrm{ClSO}_{4} \mathrm{~K}\) & MOLECULAR WEIGHT: & 670.69 \\
\hline \multirow[t]{2}{*}{CONCENTRATION:} & \(50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) (K Salt) & SOLVENT(S): & Methanol \\
\hline & \(47.1 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}\) (11Cl-PF3OUdS anion) & & \\
\hline CHEMICAL PURITY: & >98\% & & \\
\hline LAST TESTED: (mmdarm) & 11/23/2018 & & \\
\hline EXPIRY DATE: (mmdadysy) & 11/23/2023 & & \\
\hline RECOMMENDED STORAGE: & Store ampoule in a cool, dark place & & \\
\hline
\end{tabular}

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- This compound is a minor component of the commercial formulation known as F-53B.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: \(\qquad\)
( \(\mathrm{mm} / \mathrm{dd} / \mathrm{y} \% \mathrm{y}\) )

Figure 2: 9CI-PF3ONS; LC/MS/MS Data (Selected MRM Transitions)


Conditions for Figure.2:

Injection: On-column (9Cl-PF3ONS)
Mobile phase: Same as Figure 1
Flow: \(\quad 300 \mu / 7 \mathrm{~min}\)

\section*{MS Parameters}

Collision Gas (mbar) \(=3.25 \mathrm{e}-3\)
Collision Energy \((e \mathrm{~V})=20\)

\section*{Fiqure 1: \(\quad 9 C I-P F 3 O N S ;\) LC/MS Data (TIC and Mass Spectrum)}

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 1:} \\
\hline LC: & \multicolumn{2}{|l|}{Waters Acquity Ultra Performance LC} \\
\hline MS: & Waters Xevo TQ-S micro MS & \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline Column: & \[
\begin{aligned}
& \text { Acquity UPLC BEH Shield RP } \\
& 1.7 \mathrm{~mm}, 2.1 \times 100 \mathrm{~mm}
\end{aligned}
\] & Experiment: Full Scan (250-850 amu) \\
\hline \multirow[t]{5}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: 60\% (80:20 MeOH:ACN)/40\% \(\mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=2.00\) \\
\hline & (both with 10 mM NH ¢ OAC buffer) & Cone Voltage (V) \(=70.00\) \\
\hline & Ramp to \(90 \%\) organic over 7 min and hold for & Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\) \\
\hline & 3 min before returning to initial conditions in 0.75 min . Time: 12 min & Desolvation Gas Flow (1/hr) \(=750\) \\
\hline Flow: & \(300 \mu / / \mathrm{min}\) & \\
\hline
\end{tabular}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate intemal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{q}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\[
x_{i}, x_{2^{\prime}} \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOAEC 17025 accredited laboratory. For certain products, traceability to international interfaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:
Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global ISOIIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc. please visit our website at www,well-labs,com or contact us directly at info@well-labs,com**

\section*{CERTIFICATE OF ANALYSIS}

DOCUMENTATION

\section*{PRODUCT CODE:}

COMPOUND:

\section*{STRUCTURE:}

9CI-PF3ONS
Potassium 9-chlorohexadecafluoro-3-oxanonane-1-sulfonate

CAS \#:
73606-19-6


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodimy)
EXPIRY DATE: (mmiddirmm) RECOMMENDED STORAGE: Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S):
570.67
\(\mathrm{C}_{8} \mathrm{~F}_{15} \mathrm{CISO}_{4} \mathrm{~K}\)
\(50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) (K Salt)
\(46.6 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}\) (9Cl-PF3ONS anion)
\(>98 \%\)
10/30/2019
10/30/2024

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- This compound is the major component of the commercial formulation known as F-53B.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

Fiqure 2: NaDONA; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure 2:}
\begin{tabular}{lcl} 
Injection: & On-colurnn (NaDONA) & MS Parameters \\
Mobile phase: & Same as Figure 1 & \begin{tabular}{l} 
Collision Gas (mbar) \(=3.37 \mathrm{e-3}\) \\
Collision Energy \((\mathrm{eV})=10\)
\end{tabular} \\
Flow: & \(300 \mu \mathrm{l} / \mathrm{min}\) & \\
& & \\
\hline
\end{tabular}

Figure 1: NaDONA; LC/MS Data (TIC and Mass Spectrum)



\section*{Conditions for Fiqure 1:}

LC: \(\quad\) Waters Acquity Ultra Performance LC
MS: \(\quad\) Waters Xevo TQ-S micro MS

\section*{Chromatographic Conditions}

Column: Acquity UPLC BEH Shield RP fo \(_{\text {f }}\)
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)
Mobile phase: Gradient
Start: \(55 \%\) ( \(80: 20 \mathrm{MeOH}: A C N\) ) / \(45 \% \mathrm{H}_{2} \mathrm{O}\)
(both with \(10 \mathrm{mM} \mathrm{NH}_{+} \mathrm{OAC}\) buffer)
Ramp to \(90 \%\) organic over 8 min and hold for
2 min before returning to initial conditions in 0.75 min .
Time: 12 min

\section*{MS Parameters}

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) \(=2.70\)
Cone Voltage (V) \(=20.00\)
Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\)
Desolvation Gas Flow (l/hr) \(=1000\)
Flow:
    \(300 \mu / / \mathrm{min}\)

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handing of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFCIUVIMS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\[
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{i}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAl Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories inc., please visit our website at www,well-labs.com or contact us directly at info@well-labs.com**

\section*{CERTIFICATE OF ANALYSIS} DOCUMENTATION

\section*{PRODUCT CODE:}

COMPOUND:

NaDONA
Sodium dodecafluoro-3H-4,8-dioxanonanoate

STRUCTURE:

GAS \#:
958445-44-8
(ammonium salt)

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiddismy)
EXPIRY DATE: (mmodarm)
RECOMMENDED STORAGE: Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
400.05

SOLVENT (S)
Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Product is commercially known as ADONA.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

\section*{Certified By:}


Date: \(\frac{07 / 25 / 2019}{(\mathrm{~mm} / \mathrm{di} / \mathrm{yyy})}\)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

Fiqure 2: PFECHS; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Fiqure 2:}

Injection: On-column (PFECHS)
Mobile phase: Same as Figure 1

\section*{MS Parameters}

Collision Gas (mbar) \(=3.37 \mathrm{e}-3\)
Collision Energy \((\mathrm{eV})=24\)

Figure 1: PFECHS; LC/MS Data (TIC and Mass Spectrum)

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 1:} \\
\hline LC: & \multicolumn{2}{|l|}{Waters Acquity Ultra Performance LC} \\
\hline MS: & \multicolumn{2}{|l|}{Waters Xevo TQ-S micro MS} \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline \multirow[t]{2}{*}{Column:} & Acquity CSH Fluoro-Phenyl & \\
\hline & \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\) & Experiment: Full Scan (350-850 amu) \\
\hline \multirow[t]{7}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: 25\% (80:20 MeOH:ACN) / 75\% \(\mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=2.00\) \\
\hline & (both with 10 mM NH , OAc buffer) & Cone Voltage (V) \(=45.00\) \\
\hline & Ramp to 60\% organic over 13 min . & Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\) \\
\hline & Ramp to \(80 \%\) organic over 2 min and hold for & Desolvation Gas Flow (1/hr) \(=750\) \\
\hline & 2 min before returning to initial conditions in 1 min . & \\
\hline & Time: 20 min & \\
\hline Flow: & \(300 \mu 1 / \mathrm{min}\) & \\
\hline
\end{tabular}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UVIMS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{0}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\[
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{\epsilon}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{1}\right)^{2}}
\]
where \(x\) is expressed as a relative standard uncertainty of the individual parameter,
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their callbration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/ECC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

\section*{CERTIFICATE OF ANALYSIS}

PRODUCT CODE: COMPOUND:

PFECHS
Potassium perfluoro-4-ethylcyclohexanesulfonate (isomeric mixture)

\section*{STRUCTURE:}

cis-isomer

trans-isomer

MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mnddurww)
EXPIRY DATE: (mmadum)
RECOMMENDED STORAGE:
\(\mathrm{C}_{8} \mathrm{~F}_{15} \mathrm{SO}_{3} \mathrm{~K}\)
\(50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) ( K salt)
\(46.1 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}\) (PFECHS anion)
\(>98 \%\)
04/04/2018
04/04/2023
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 500.22 SOLVENT(S): Methanol

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LCIMS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains a mixture of the cis/trans isomers of PFECHS at a ratio of 2:3 (cis:trans).
- Contains \(\sim 1.5 \%\) of other isomeric impurities.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)
(mmddyyy)

Figure 2: L-PFPrS; LC/MS/MS Data (Selected MRM Transitions)


Conditions for Figure 2:

Injection:
Direct loop injection \(10 \mu \mathrm{l}\) ( \(500 \mathrm{ng} / \mathrm{ml}\) L-PFPrS)

Mobile phase: Isocratic \(80 \%\) ( \(80: 20 \mathrm{MeOH}: A C N\) ) / \(20 \% \mathrm{H}_{2} \mathrm{O}\) (both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer)

Flow:
\(300 \mu \mathrm{l} / \mathrm{min}\)

\section*{MS Parameters}

Collision Gas (mbar) \(=3.43 \mathrm{e}-3\)
Collision Energy ( eV ) \(=25\)

Figure 1: L-PFPrS; LC/MS Data (TIC and Mass Spectrum)
\begin{tabular}{lll} 
14dec2017 LPFPrs_001 \\
LPFPrS1217 \(10 \mathrm{ug} / \mathrm{ml}\) \\
100 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|}
\hline \multicolumn{3}{|l|}{Conditions for Figure 1:} \\
\hline LC: & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Waters Acquity Ultra Performance LC Micromass Quattro micro API MS}} \\
\hline MS: & & \\
\hline \multicolumn{2}{|l|}{Chromatoaraphic Conditions} & MS Parameters \\
\hline Column: & Acquity UPLC BEH Shield RP \({ }_{\text {si }}\) & \\
\hline & \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\) & Experiment: Full Scan (150-850 amu) \\
\hline \multirow[t]{5}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: 30\% (80:20 MeOH:ACN) / 70\% \(\mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=3.00\) \\
\hline & (both with 10 mM NH , OAc buffer) & Cone Voltage ( V ) \(=40.00\) \\
\hline & Ramp to \(90 \%\) organic over 7 min and hold for 1.5 min & Cone Gas Flow (/hrr) \(=50\) \\
\hline & before returning to initial conditions over 0.5 min . Time: 10 min & Desolvation Gas Flow (1/hr) \(=750\) \\
\hline Flow: & \(300 \mu / \mathrm{min}\) & \\
\hline
\end{tabular}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HAZARDS:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\[
x_{i}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{i}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{t}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).


**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

\section*{PRODUCT CODE:}

COMPOUND:

L-PFPrS
Sodium perfluoro-1-propanesulfonate

\section*{STRUCTURE:}


\section*{MOLECULAR FORMULA: CONCENTRATION:}

CHEMICAL PURITY: LAST TESTED: (mudarmm) EXPIRY DATE \({ }^{\text {(mmudarmy })}\) RECOMMENDED STORAGE:
\(\mathrm{C}_{3} \mathrm{~F}_{7} \mathrm{SO}_{3} \mathrm{Na}\)
\(50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) ( Na salt)
\(45.8 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}\) (PFPrS anion)
>98\%
12/14/2017
12/14/2022
Store ampoule in a cool, dark place

LOT NUMBER: LPFPrS1217

CAS\#: Not available

\section*{MOLECULAR WEIGHT: \\ 272.07 \\ SOLVENT(S): \\ Methanol}

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)
(mm/dafyyy)

\title{
Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com
}

\section*{CERTIFICATE OF ANALYSIS}

DOCUMENTATION

PRODUCT CODE: COMPOUND:

L-PFDoS
Sodium perfluoro-1-dodecanesulfonate

LOT NUMBER: LPFDoS1218

CAS \#:
1260224-54-1

\begin{tabular}{llll} 
MOLECULAR FORMULA: & \(\mathrm{C}_{12} \mathrm{~F}_{25} \mathrm{SO}_{3} \mathrm{Na}\) & MOLECULAR WEIGHT: & 722.14 \\
CONCENTRATION: & \(50.0 \pm 2.5 \mathrm{\mu g} / \mathrm{ml}\) (Na salt) & SOLVENT(S): & Methanol \\
& \(48.4 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}\) (PFDoS anion) & & \\
CHEMICAL PURITY: & \(>98 \%\) & & \\
LAST TESTED: (mmoddrmy) & \(12 / 06 / 2018\) & & \\
EXPIRY DATE: (mmddarm) & \(12 / 06 / 2023\) & & \\
RECOMMENDED STORAGE: & Store ampoule in a cool, dark place & &
\end{tabular}

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains \(\sim 0.2 \%\) of perfluoro-n-dodecanoic acid (PFDoA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: \(\frac{12 / 20 / 2018}{(\text { mndddyyy })}\)

Figure 2: L-PFDoS; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Fiqure 2:}

Injection: On-column (L-PFDoS)
\begin{tabular}{lll} 
Mobile phase: & Same as Figure 1 & Collision Gas (mbar) \(=3.27 \mathrm{e}-3\) \\
Flow: & 300 & Collision Energy \((\mathrm{eV})=60\)
\end{tabular}

Flow: \(\quad 300 \mu 1 / \mathrm{min}\)

Figure 1: L-PFDoS; LC/MS Data (TIC and Mass Spectrum)


\section*{Conditions for Figure 1:}

\section*{LC: \(\quad\) Waters Acquity Ultra Performance LC \\ MS: \(\quad\) Waters Xevo TQ-S micro MS}

\section*{Chromatographic Conditions}

Column: Acquity UPLC BEH Shield RP 18 \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)

Mobile phase: Gradient
Start: \(60 \%(80: 20 \mathrm{MeOH}: A C N) / 40 \% \mathrm{H}_{2} \mathrm{O}\)
(both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer)
Ramp to \(90 \%\) organic over 7 min and hold for 3 min before returning to initial conditions in 0.75 min .
Time: 12 min

\section*{MS Parameters}

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) \(=2.00\)
Cone Voltage \((\mathrm{V})=10.00\)
Desolvation Temperature \(\left({ }^{\circ} \mathrm{C}\right)=500\)
Desolvation Gas Flow (l/hr) \(=1000\)

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{t}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline iots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).


CALA
Terting
Accreditation Nion, A 126

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

\section*{Analytical Standard Record}

Vista Analytical Laboratory
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|l|}{Parent Standards used in this standard:} \\
\hline Standard Des & & Prepared & Prepared By & Expires & (mls) \\
\hline 19L0626 13C & & 06-Dec-19 & ** Vendor ** & 29-Mar-21 & 1 \\
\hline 19L0627 13C & & 06-Dec-19 & ** Vendor ** & 15-Nov-24 & 1 \\
\hline 19L0628 13C & & 06-Dec-19 & ** Vendor ** & 25-Jul-24 & 1 \\
\hline 19L0629 13C & & 06-Dec-19 & ** Vendor ** & 08-Sep-23 & 1 \\
\hline 19L0630 13C & & 06-Dec-19 & ** Vendor ** & 22-Jul-24 & 1 \\
\hline 19L0631 13C & & 06-Dec-19 & ** Vendor ** & 27-Sep-23 & 1 \\
\hline 19 L 0632 18O & & 06-Dec-19 & ** Vendor ** & 10-Jan-24 & 1.06 \\
\hline 19L0633 13C & & 06-Dec-19 & ** Vendor ** & 01-Nov-24 & 1.05 \\
\hline 19L0634 13C & & 06-Dec-19 & ** Vendor ** & 05-Mar-24 & 1.02 \\
\hline Description: & PFC-RS & Expires: & 09-Jan-21 & & \\
\hline Standard Type: & Reagent & Prepared: & 08-Jan-20 & & \\
\hline Solvent: & MeOH & Prepared By: & Brittany M. La & & \\
\hline Final Volume (mls): & 40 & Department: & LCMS & & \\
\hline Vials: & 1 & Last Edit: & 08-Jan-20 12:4 & BML & \\
\hline \multicolumn{6}{|l|}{10 uL spike} \\
\hline \multicolumn{2}{|l|}{Analyte} & CAS Number & Concentration & Units & \\
\hline \multicolumn{2}{|l|}{18O2-PFHxS} & & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) & \\
\hline \multicolumn{2}{|l|}{13C9-PFNA} & & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) & \\
\hline \multicolumn{2}{|l|}{13C8-PFOA} & & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) & \\
\hline \multicolumn{2}{|l|}{13C7-PFUnA} & & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) & \\
\hline \multicolumn{2}{|l|}{13C6-PFDA} & & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) & \\
\hline \multicolumn{2}{|l|}{13C5-PFHxA} & & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) & \\
\hline \multicolumn{2}{|l|}{13C4-PFOS} & & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) & \\
\hline \multicolumn{2}{|l|}{13C4-PFBA} & & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) & \\
\hline \multicolumn{2}{|l|}{13C2-FOUEA} & & 1.25 & \(\mathrm{ug} / \mathrm{mL}\) & \\
\hline
\end{tabular}

Figure 2: MFOUEA; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Fiqure 2:}

Injection: On-column (MFOUEA)
Mobile phase: Same as Figure 1
Flow: \(\quad 300 \mu / / \mathrm{min}\)

\section*{MS. Parameters}

Collision Gas (mbar) \(=2.84 e-3\)
Collision Energy \((\mathrm{eV})=10\)
Figure 1: MFOUEA; LC/MS Data (TIC and Mass Spectrum)



\section*{1910626}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\[
x_{i}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{1}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www,well-labs.com or contact us directly at info@well-labs.com**

\section*{CERTIFICATE OF ANALYSIS}

\section*{PRODUCT CODE: COMPOUND:}

MFOUEA
2 H -Perfluoro-[1,2- \(\left.{ }^{13} \mathrm{C}_{2}\right]\)-2-decenoic acid

LOT NUMBER: MFOUEA0319

CAS \#: Not available

\section*{STRUCTURE:}


\section*{MOLECULAR FORMULA: CONCENTRATION:}

CHEMICAL PURITY:
LAST TESTED: (munotum)
EXPIRY DATE: (muddurn)
RECOMMENDED STORAGE:
\({ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{8} \mathrm{H}_{2} \mathrm{~F}_{16} \mathrm{O}_{2}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
>98\%
03/29/2019
03/29/2021
Refrigerate ampoule

MOLECULAR WEIGHT: 460.08
SOLVENT(S): Anhydrous Isopropanol \(\geq 99 \%{ }^{13} \mathrm{C}\)
(1,2- \({ }^{13} \mathrm{C}_{2}\) )

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Dilution of this standard in methanol may lead to the formation of \(2 \mathrm{H}-3\)-methoxy-perfluoro-\(\left[1,2-{ }^{13} \mathrm{C}_{2}\right]-2\)-decenoic acid. This reaction can be catalyzed by the presence of acid or base. All dilutions should be routinely checked for degradation.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\) (mmodayz)

Figure 2: MPFBA; LCIMS/MS Data (Selected MRM Transitions)


Conditions for Fiqure 2:
\begin{tabular}{ll} 
Injection: & On-colum \\
Mobile phase: Same as \\
Flow: & \(300 \mu / / \mathrm{min}\)
\end{tabular}

\section*{MS Parameters}

Collision Gas (mbar) \(=3.33 \mathrm{e}-3\)
Collision Energy ( eV ) \(=8\)

\section*{| Figure 1: MPFBA; LC/MS Data (TIC and Mass Spectrum)}
-



\section*{Conditions for Fiqure 1:}
\begin{tabular}{ll} 
LC: & Waters Acquity Ultra Performance LC \\
MS: & Waters Xevo TQ-S micro MS
\end{tabular}

\section*{Chromatographic Conditions}

Column: Acquity UPLC BEH Shield RP \({ }_{18}\) \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)

Mobile phase: Gradient
Start: 50\% (80:20 MeOH:ACN) / 50\% \(\mathrm{H}_{2} \mathrm{O}\)
(both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer)
Ramp to \(90 \%\) organic over 8 min and hold for 2 min before returning to initial conditions in 0.75 min . Time: 12 min

\section*{MS Parameters}

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage ( \(k V\) ) \(=2.00\)
Cone Voltage \((V)=10.00\)
Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\)
Desolvation Gas Flow (l/hr) \(=1000\)

Flow:
\(300 \mu \mathrm{l} / \mathrm{min}\)

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY;}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{r}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOAEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE /PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAl Global, ISO/EC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

*For additional information or assistance concerning this or any other products from Wellington Laboratories inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com \({ }^{* *}\)

\section*{PRODUCT CODE: \\ COMPOUND:}

STRUCTURE:
MPFBA
Perfluoro-n-[1,2,3,4- \({ }^{33} \mathrm{C}_{4}\) ]butanoic acid

LOT NUMBER: MPFBA1119

CAS \#: \(\quad\) Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mnvadym)
EXPIRY DATE: (mmdasmy)
RECOMMENDED STORAGE:
\({ }^{13} \mathrm{C}_{4} \mathrm{HF}_{7} \mathrm{O}_{2}\) \(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
>98\%
11/15/2019
11/15/2024
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: SOLVENT(S):

ISOTOPIC PURITY:
218.01

Methanol
Water ( \(<1 \%\) )
\(\geq 99 \%{ }^{13} \mathrm{C}\)
(1,2,3,4- \({ }^{13} \mathrm{C}_{4}\) )

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

Fiqure 2: M6PFDA; LC/MS/MS Data (Selected MRM Transitions)

\begin{tabular}{|lll|}
\hline \multicolumn{2}{|l|}{ Conditions for Fiqure 2: } & \\
Injection: & On-column (M6PFDA) & MS Parameters \\
Mobile phase: & Same as Figure 1 & \begin{tabular}{l} 
Collision Gas (mbar) \(=3.33 e-3\) \\
Collision Energy \((\mathrm{eV})=10\)
\end{tabular} \\
Flow: & \(300 \mu /\) mint & \\
\hline
\end{tabular}
- Figure 1: M6PFDA; LC/MS Data (TIC and Mass Spectrum)



\section*{Conditions for Figure 1: \\ LC: \(\quad\) Waters Acquity Ultra Performance LC \\ MS: \(\quad\) Waters Xevo TQ-S micro MS}

\section*{Chromatographic Conditions}

Column: \(\quad\) Acquity UPLC BEH Shield RP \({ }_{18}\) \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm} \quad\) Experiment: Full Scan (250-850 amu)

Mobile phase: Gradient
Start: 60\% (80:20 MeOH:ACN) / 40\% \(\mathrm{H}_{2} \mathrm{O}\)
(both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer)
Ramp to \(90 \%\) organic over 7 min and hold for 3 min before returning to initial conditions in 0.75 min . Time: 12 min

Flow:
\(300 \mu / / m i n\)

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UVIMS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{1}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where \(x\) is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/FEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www,well-labs.com or contact us directly at info@well-labs.com**

PRODUCT CODE:
COMPOUND:
STRUCTURE:

M6PFDA
Perfluoro-n-[1,2,3,4,5,6- \({ }^{13} \mathrm{C}_{6}\) ]decanoic acid
LOT NUMBER: M6PFDA0719
■
Ren
Not available

\section*{MOLECULAR FORMULA: CONCENTRATION:}

CHEMICAL PURITY: LAST TESTED: (nmodrmm)
EXPIRY DATE: (mmidisym) RECOMMENDED STORAGE:
\({ }^{13} \mathrm{C}_{6}{ }^{12} \mathrm{C}_{4} \mathrm{HF}_{19} \mathrm{O}_{2}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
\(>98 \%\)
07/25/2019
07/25/2024
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
520.04

SOLVENT(S):
ISOTOPIC PURITY:

Methanol
Water ( \(<1 \%\) )
\(\geq 99 \%{ }^{13} \mathrm{C}\)
(1,2,3,4,5,6- \(\left.{ }^{33} \mathrm{C}_{6}\right)\)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)
\(\frac{7 / 20 / 2019}{(\mathrm{~mm} / 0 \mathrm{~d} / \mathrm{mm})}\)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

Fiqure 2: M9PFNA; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure 2:}

Injection: On-column (M9PFNA)
Mobile phase: Same as Figure 1
Flow: \(\quad 300 \mu / / \mathrm{min}\)

\section*{MS Parameters}

Collision Gas (mbar) \(=2.95 \mathrm{e}-3\)
Collision Energy \((\mathrm{eV})=10\)
Fiqure 1: M9PFNA; LC/MS Data (TIC and Mass Spectrum)



\section*{Conditions for Fiqure 1:}
\begin{tabular}{|c|c|c|}
\hline LC: & Waters Acquity Ultra Performance LC & \\
\hline MS: & Waters Xevo TQ-S micro MS & \\
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline Column: & \begin{tabular}{l}
Acquity UPLC BEH Shield RP \({ }_{\text {th }}\) \\
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)
\end{tabular} & Experiment: Full Scan (225-850 amu) \\
\hline \multirow[t]{5}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: 50\% (80:20 MeOH:ACN) / 50\% \(\mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=2.00\) \\
\hline & (both with 10 mM NH & Cone Voltage (V) \(=10.00\) \\
\hline & Ramp to \(90 \%\) organic over 8 min and hold for & Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\) \\
\hline & 2 min before retuming to initial conditions in 0.75 min . Time: 12 min & Desolvation Gas Flow (//hr) \(=1000\) \\
\hline Flow: & \(300 \mu / / m i n\) & \\
\hline
\end{tabular}

\section*{1920629}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use orly. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\[
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where \(x\) is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

\section*{PRODUCT CODE:}

COMPOUND:

M9PFNA
Perfluoro-n-[ \(\left.{ }^{13} \mathrm{C}_{0}\right]\) nonanoic acid

LOT NUMBER: M9PFNA0918

CAS\#: \(\quad\) Not available

STRUCTURE:


MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mntourm)
EXPIRY DATE: (mmodorm)
RECOMMENDED STORAGE:
\({ }^{13} \mathrm{C}_{9} \mathrm{HF}_{17} \mathrm{O}_{2}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
>98\%
09/08/2018
09/08/2023
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 473.01
SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY:
\(\geq 99 \%{ }^{13} \mathrm{C}\)
\(\left({ }^{13} \mathrm{C}_{9}\right)\)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains \(\sim 1.0 \%\) of \({ }^{13} \mathrm{C}_{5}{ }^{12} \mathrm{C}_{4} \mathrm{HF}_{17} \mathrm{O}_{2}\) (MPFNA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)

Figure 2: M7PFUdA; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure_2:}

Injection: On-column (M7PFUdA)
Mobile phase: Same as Figure 1
Flow: \(\quad 300 \mu / / m i n\)

\section*{MS Parameters}

Collision Gas \((\) mbar \()=3.41 \mathrm{e}-3\)
Collision Energy ( eV ) \(=12\)



\section*{Conditions for Fiqure 1:}
LC: \(\quad\) Waters Acquity Ultra Performance LC

\section*{MS: \(\quad\) Waters Xevo TQ-S micro MS}

\section*{Chromatooraphic Conditions}

Column: Acquity UPLC \(B E H\) Shield \(R P_{1 s}\) \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)

Mobile phase: Gradient
Start: 60\% (80:20 MeOH:ACN) / 40\% \(\mathrm{H}_{2} \mathrm{O}\) (both with 10 mM NH OAc buffer)
Ramp to \(90 \%\) organic over 7 min and hold for 3 min before returning to initial conditions in 0.75 min .
Time: 12 min

\section*{MS Parameters}

Experiment: Full Scan (250-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) \(=2.50\)
Cone Voltage ( V ) \(=10.00\)
Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\)
Desolvation Gas Flow (l/hr) \(=1000\)

\section*{1920630}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS /CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MSMS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\[
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{e}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y_{i} x_{1}\right)^{2}}
\]
where \(x\) is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www,well-labs.com or contact us directly at info@well-labs.com**


\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: \(\qquad\)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

Figure 2: M5PFHxA; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure.2:}

Injection: On-column (M5PFHxA)

\section*{Mobile phase: Same as Figure 1}

Flow: \(\quad 300 \mu / \mathrm{min}\)

\section*{MS Parameters}

Collision Gas (mbar) \(=2.97 e-3\)
Collision Energy (eV) \(=8\)


\section*{Conditions for Fiqure 1 \\ LC: \(\quad\) Waters Acquity Ultra Performance LC \\ MS: \(\quad\) Waters Xevo TQ-S micro MS}

\section*{Chromatographic Conditions}

Column: Acquity UPLC BEH Shield RP; \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)

Mobile phase: Gradient
Start: \(40 \%\) ( \(80: 20 \mathrm{MeOH}: A C N\) ) \(/ 60 \% \mathrm{H}_{2} \mathrm{O}\)
(both with \(10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}\) buffer)
Ramp to \(90 \%\) organic over 8 min and hold for 2 min before returning to initial conditions in 0.75 min . Time: 12 min

Flow: \(300 \mu / / \mathrm{min}\)

\section*{MS Parameters}

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage \((\mathrm{kV})=2.00\)
Cone Voltage (V) \(=10.00\)
Desolvation Temperature \(\left({ }^{\circ} \mathrm{C}\right)=500\)
Desolvation Gas Flow (l/hr) \(=1000\)

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFCIUV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be < \(5 \% \mathrm{RSD}\). New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers, In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{i}, x_{2^{2}}, x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where \(x\) is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc. please visit our website at www,well-labs.com or contact us directly at info@well-labs.com**

\section*{PRODUCT CODE: COMPOUND:}

M5PFHXA
Perfluoro-n- \(\left[1,2,3,4,6-{ }^{33} \mathrm{C}_{5}\right.\) hexanoic acid

LOT NUMBER: M5PFH×A0918

CAS\#: Not available


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmrdasyme)
EXPIRY DATE: (mmddrm)
\({ }^{13} \mathrm{C}_{5}{ }^{12} \mathrm{C}_{1} \mathrm{HF}_{14} \mathrm{O}_{2}\)
\(50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\)
\(>98 \%\)
09/27/2018
09/27/2023

MOLECULAR WEIGHT: 319.02
SOLVENT(S): Methanol
Water ( \(<1 \%\) )
ISOTOPIC PURITY:
\(\geq 99 \%{ }^{13} \mathrm{C}\)
\(\left(1,2,3,4,6-{ }^{13} \mathrm{C}_{5}\right)\)

RECOMMENDED STORAGE: Store ampoule in a cool, dark place

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)
(mmiddyyy)

\title{
Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G \(3 M 5\) CANADA 519-822-2436 . Fax: 519-822-2849 • info@well-labs.com
}

Figure 2: MPFHxS; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure 2:}

Injection: On-column (MPFHxS)
Mobile phase: Same as Figure 1
Flow: \(\quad 300 \mu / / m i n\)

\section*{MS Parameters}

Collision Gas (mbar) \(=2.88 \mathrm{e}-3\)
Collision Energy ( eV ) \(=32\)

Figure 1: MPFHxS; LC/MS Data (TIC and Mass Spectrum)



\section*{Conditions for Figure 1: \\ LC: \(\quad\) Waters Acquity Ultra Performance LC \\ MS: \(\quad\) Waters Xevo TQ-S micro MS}
\begin{tabular}{lll} 
Chromatographic Conditions & MS Parameters \\
\hline Column: & Acquity UPLC BEH Shield \(\mathrm{RP}_{18}\) & Experiment: Full Scan (250-850 amu) \\
& \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\) & \\
Mobile phase: & Gradient & Source: Electrospray (negative) \\
& Start: \(50 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 50 \% \mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage \((\mathrm{kV})=2.00\) \\
& (both with \(10 \mathrm{mM} \mathrm{NH} \mathrm{NH}_{4} \mathrm{OAc}\) buffer) & Cone Voltage \((\mathrm{V})=10.00\) \\
& Ramp to \(90 \%\) organic over 8 min and hold for & Desolvation Temperature \(\left({ }^{\circ} \mathrm{C}\right)=500\) \\
& 2 min before returning to initial conditions in 0.75 min. & Desolvation Gas Flow \((l / \mathrm{hr})=1000\) \\
& Time: 12 min & \\
& \(300 \mu / / \mathrm{min}\) &
\end{tabular}

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are aiso confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\[
x_{i}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

\section*{PRODUCT CODE: COMPOUND:}

MPFHxS
Sodium perfluoro-1-hexane \(\left[{ }^{18} \mathrm{O}_{2}\right]\) sulfonate

LOT NUMBER: MPFHxS0119

\section*{STRUCTURE:}


\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- The response factor for MPFHxS \(\left(\mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{~S}^{18} \mathrm{O}_{2}{ }^{18} \mathrm{O}\right)\) has been observed to be up to \(10 \%\) lower than for PFHxS \(\left(\mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{~S}^{16} \mathrm{O}_{3}\right)\) when both compounds are injected together. This difference may vary between instruments.
- Contains \(\sim 0.6 \%\) of sodium perfluoro- 1 -octane \(\left[{ }^{[8} \mathrm{O}_{2}\right]\) sulfonate \(\left({ }^{18} \mathrm{O}_{2}\right.\)-PFOS \()\) and \(\sim 0.2 \%\) of sodium perfluoro-1-heptane \(\left[{ }^{18} \mathrm{O}_{2}\right.\) ]sulfonate ( \({ }^{88} \mathrm{O}_{2}-\mathrm{PFHpS}\) ).
- Due to the isotopic purity of the starting material ( \({ }^{18} \mathrm{O}_{2}>94 \%\) ), MPFHxS contains \(\sim 0.3 \%\) of PFHxS. This value agrees with the theoretical percent relative abundance that is expected based on the stated isotopic purity.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: 01/21/2019
(middimyy)

Figure 2: MPFOS; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Fiqure 2:}

Injection: On-column (MPFOS)
Mobile phase: Same as Figure 1
Flow: \(\quad 300 \mu / / \mathrm{min}\)
\(\square\)

\section*{MS Parameters}
\[
\begin{aligned}
& \text { Collision Gas }(\mathrm{mbar})=3.39 \mathrm{e}-3 \\
& \text { Collision Energy }(\mathrm{eV})=42
\end{aligned}
\]


\section*{Conditions for Fiqure 1:}
\begin{tabular}{ll} 
LC: & Waters Acquity Ultra Performance LC \\
MS: & Waters Xevo TQ-S micro MS
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline \multicolumn{2}{|l|}{Chromatographic Conditions} & MS Parameters \\
\hline Column: & \begin{tabular}{l}
Acquity UPLC BEH Shield RP \({ }_{56}\) \\
\(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\)
\end{tabular} & Experiment: Full Scan (250-850 amu) \\
\hline \multirow[t]{5}{*}{Mobile phase:} & Gradient & Source: Electrospray (negative) \\
\hline & Start: 60\% (80:20 MeOH:ACN) / 40\% \(\mathrm{H}_{2} \mathrm{O}\) & Capillary Voltage (kV) \(=2.00\) \\
\hline & (both with 10 mM NH & Cone Voltage (V) \(=10.00\) \\
\hline & Ramp to \(90 \%\) organic over 7 min and hold for & Desolvation Temperature ( \({ }^{\circ} \mathrm{C}\) ) \(=500\) \\
\hline & 3 min before returning to initial conditions in 0.75 min . Time: 12 min & Desolvation Gas Flow ( \(/ \mathrm{hr}\) ) \(=1000\) \\
\hline Flow: & \(300 \mu / / \mathrm{min}\) & \\
\hline
\end{tabular}

Form\#:27. Issued 2004-11-10

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{c}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{i}, x_{2^{2}} \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where \(x\) is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

\section*{TRACEABILITY:}

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/EC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceablity to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).


CALA
Teating

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www,well-labs.com or contact us directly at info@well-labs.com**

\section*{PRODUCT CODE:} COMPOUND:

MPFOS
Sodium perfluoro-1-[1,2,3,4- \({ }^{33} \mathrm{C}_{4}\) ]octanesulfonate

CAS\#:
960315-53-1


MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mmduryw)
EXPIRY DATE: (mndadrys)
RECOMMENDED STORAGE:
\({ }^{13} \mathrm{C}_{4}{ }^{12} \mathrm{C}_{4} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}\)
\(50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}\) ( Na salt)
\(47.8 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}\) (MPFOS anion)
\(>98 \%\) ISOTOPIC PURITY:
11/01/2019
11/01/2024
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 526.08
SOLVENT(S): Methanol
\(\geq 99 \%{ }^{13} \mathrm{C}\)
\(\left(1,2,3,4-{ }^{13} \mathrm{C}_{4}\right)\)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains \(\sim 0.3 \%\) Sodium perfluoro-1-[1,2,3- \({ }^{13} \mathrm{C}_{3}\) heptanesulfonate.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3 M5 CANADA 519-822-2436 • Fax: 519-822-2849 - info@well-labs.com

Figure 2: M8PFOA; LC/MS/MS Data (Selected MRM Transitions)


\section*{Conditions for Figure 2:}

Injection: On-column (M8PFOA)
Mobile phase: Same as Figure 1
Flow: \(\quad 300 \mu / / \mathrm{min}\)

\section*{MS Parameters}

Collision Gas (mbar) \(=2.74 \mathrm{e}-3\)
Collision Energy (eV) \(=8\)



\section*{Conditions for Figure 1:}
\begin{tabular}{ll} 
LC: & Waters Acquity Ultra Performance LC \\
MS: & Waters Xevo TQ-S micro MS
\end{tabular}

\section*{Chromatoaraphic Conditions \\ Column: Acquity UPLC BEH Shield RP \({ }_{18}\)} \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm} \quad\) Experiment: Full Scan (225-850 amu)

Mobile phase: Gradient
Start: \(50 \%\) ( \(80: 20 \mathrm{MeOH}: A C N) / 50 \% \mathrm{H}_{4} \mathrm{O}\) (both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer)
Ramp to \(90 \%\) organic over 8 min and hold for 2 min before returning to initial conditions in 0.75 min . Time: 12 min

\section*{MS Parameters}

Source: Electrospray (negative)
Capillary Voltage (kV) \(=2.00\)
Cone Voltage \((\mathrm{V})=10.00\)
Desolvation Temperature \(\left({ }^{\circ} \mathrm{C}\right)=500\)
Desolvation Gas Flow (l/hr) \(=1000\)

\section*{INTENDED USE:}

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This cerified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

\section*{HANDLING:}

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

\section*{SYNTHESIS / CHARACTERIZATION:}

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

\section*{HOMOGENEITY:}

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be \(<5 \%\) RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

\section*{UNCERTAINTY:}

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, \(u_{d}(y)\), of a value \(y\) and the uncertainty of the independent parameters
\(x_{r}, x_{2}, \ldots x_{n}\) on which it depends is:
\[
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
\]
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of \(\pm 5 \%\) (calculated with a coverage factor of 2 and a level of confidence of \(95 \%\) ) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:
All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

\section*{EXPIRY DATE / PERIOD OF VALIDITY:}

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

\section*{LIMITED WARRANTY:}

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

\section*{QUALITY MANAGEMENT:}

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).


CALA
enam


**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www,well-labs.com or contact us directly at info@well-labs.com**

\section*{CERTIFICATE OF ANALYSIS DOCUMENTATION}

\section*{PRODUCT CODE: \\ COMPOUND:}

M8PFOA
Perfluoro-n-[ \({ }^{3} \mathrm{C}_{\varepsilon}\) ]octanoic acid

\section*{STRUCTURE:}


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:

LAST TESTED: (mmedelywy)
EXPIRY DATE: (mnidarmon
RECOMMENDED STORAGE:
\({ }^{13} \mathrm{C}_{8} \mathrm{HF}_{15} \mathrm{O}_{2}\)
\(48.9 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}\)
97.8\% (M8PFOA)
2.2\% (MPFOA [M+4])

03/05/2019
03/05/2024
Store ampoule in a cool, dark place

LOT NUMBER: M8PFOA0219

CAS\#: Not available

MOLECULAR WEIGHT: 422.01
SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY: \(\quad \geq 99 \%{ }^{13} \mathrm{C}\)
\(\left({ }^{33} \mathrm{C}_{8}\right)\)

\section*{DOCUMENTATION/ DATA ATTACHED:}

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

\section*{ADDITIONAL INFORMATION:}
- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains < \(0.1 \%\) of native perfluoro-n-octanoic acid (PFOA) and \(\sim 2.2 \%\) of [M+4] perfluoro-noctanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: \(\qquad\)
(mmiddryy)
"sys_sample_code","lab_anl_method_name","analysis_date","analysis_time","total_or_dissolved","column_number","t est_type","cas_rn","chemical_name",","result_value","result_error_delta","result_type_code","reportable_result","detect_ flag","lab_qualifiers","organic_yn","method_detection_limit","reporting_detection_limit","quantatation_limit","result_u nit","detection_limit_unit","tic_retention_time","result_comment","qc_original_conc","qc_spike_added","qc_spike_me asured","qc_spike_recovery","qc_dup_original_conc","qc_dup_spike_added","qc_dup_spike_measured","qc_dup_spik e_recovery","qc_rpd","qc_spike_lcl","qc_spike_ucl","qc_rpd_cl","qc_spike_status","qc_dup_spike_status","qc_rpd_sta tus"
"SB01-20200212","537_MOD","02/20/20","23:10","N","NA","000","375-73-
5","PFBS","","","TRG","Yes","N","U","Y","0.00140","0.00205","0.00410","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"SB01-20200212","537 MOD","02/20/20","23:10","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID (PFHXA)","","","TRG","Yes","N","U","Y","0.00140","0.00205","0.00410","UG_L","UG_L","","","","","",","","",""," " "" "" "" "" "" "" ""
"SB01-20200212","537_MOD","02/20/20","23:10","N","NA","000","13252-13-6","HEXAFLUOROPROPYLENE OXIDE DIMER ACID (HFPO-
DA)","","","TRG","Yes","N","U","Y","0.00247","0.00307","0.00410","UG_L","UG_L","","","","","","","","","","",""," ","","","","",""
"SB01-20200212","537_MOD","02/20/20","23:10","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID (PFHPA)","","","TRG","Yes","N","U","Y","0.00140","0.00205","0.00410","UG_L","UG_L","","","","","","","","","","" "" "" "" " "" "" "" ""
"SB01-20200212","537_MOD","02/20/20","23:10","N","NA","000","919005-14-4","4,8-DIOXA-3H-
PERFLUORONONANOIC ACID
(ADONA)","","","TRG","Yes","N","U","Y","0.00140","0.00205","0.00410","UG_L","UG_L","","","","","","","","","", "" "" "" "" "" "" " "" ""
"SB01-20200212","537_MOD","02/20/20","23:10","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC ACID
(PFHXS)","","","TRG","Yes","N","U","Y","0.00140","0.00205","0.00410","UG_L","UG_L","","","","","","","","","","" "" "" "" "" "" "" ""
"SB01-20200212","537_MOD","02/20/20","23:10","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID (PFOA)","","","TRG","Yes","N","U","Y","0.00140","0.00205","0.00410","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" "" ""
"SB01-20200212","537_MOD","02/20/20","23:10","N","NA","000","375-95-1","PERFLUORONONANOIC ACID (PFNA)","","","TRG","Yes","N","U","Y","0.00140","0.00205","0.00410","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" "" ""
"SB01-20200212","537_MOD","02/20/20","23:10","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","","","TRG","Yes","N","U","Y","0.00140","0.00205","0.00410","UG_L","UG_L","","","","","","","","","","","","",""," " "" "" ""
"SB01-20200212","537_MOD","02/20/20","23:10","N","NA","000","756426-58-1","9-
CHLOROHEXADECAFLUORO-3-OXANONE-1-SULFONIC ACID (9Cl-
PF3ONS)","","","TRG","Yes","N","U","Y","0.00140","0.00205","0.00410","UG_L","UG_L","","","","","","",","",""," " "" "" "" " " " "" "" ""
"SB01-20200212","537_MOD","02/20/20","23:10","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
(PFDA)","","","TRG","Yes","N","U","Y","0.00140","0.00205","0.00410","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" " "" ""
"SB01-20200212","537_MOD","02/20/20","23:10","N","NA","000","2355-31-
9","MeFOSAA","","","TRG","Yes","N","U","Y","0.00140","0.00205","0.00410","UG_L","UG_L","","","","","","",""," " "" "" "" "" "" "" "" "" ""
"SB01-20200212","537_MOD","02/20/20","23:10","N","NA","000","2991-50-
6","EtFOSAA","","","TR̄G","Yes","N","U","Y","0.00140","0.00205","0.00410","UG_L","UG_L","","","","","","","","", "","","","","","","","","
"SB01-20200212","537_MOD","02/20/20","23:10","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID
(PFUNA)","","","TRG","Yes","N","U","Y","0.00140","0.00205","0.00410","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"SB01-20200212","537_MOD","02/20/20","23:10","N","NA","000","763051-92-9","11-CHLOROEICOSAFLUORO-3-OXAUNDECANE-1-SULFONIC ACID (11Cl-
PF3OUdS)","","","TRG","Yes","N","U","Y","0.00140","0.00205","0.00410","UG L","UG L","","","","","","","","","", "" "" "" "" "" "" "" ""
"SB01-20200212","537_MOD","02/20/20","23:10","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID (PFDOA)","","","TRG","Yes","N","U","Y","0.00140","0.00205","0.00410","UG_L","UG_L","","","","","","","","",""," "," "" "" "" "" "" ""
"SB01-20200212","537_MOD","02/20/20","23:10","N","NA","000","72629-94-
8","PFTrDA","","","TRG","Yes","N","U","Y","0.00140","0.00205","0.00410","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"SB01-20200212","537_MOD","02/20/20","23:10","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.00140","0.00205","0.00410","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"SB01-20200212","537_MOD","02/20/20","23:10","N","NA","000","13C3-PFBS","13C3-
PFBS","95.8","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","95.8","95.8","","","","","","50","150","", "" "" ""
"SB01-20200212","537 MOD","02/20/20","23:10","N","NA","000","13C3-HFPO-DA","13C3-HFPO-
DA","92.6","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","92.6","92.6","","","","","","50","150","","" "" ""
"SB01-20200212","537_MOD","02/20/20","23:10","N","NA","000","13C2-PFHxA","13C2-
PFHxA","92.2","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","92.2","92.2","","","","","","50","150"," " "" "" ""
"SB01-20200212","537_MOD","02/20/20","23:10","N","NA","000","13C4-PFHpA","13C4-
PFHpA","87.5","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","87.5","87.5","","","","","","50","150"," " "" "" ""
"SB01-20200212","537_MOD","02/20/20","23:10","N","NA","000","13C3-PFHxS","13C3-
PFHxS","87.4","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","87.4","87.4","","","","","","50","150"," " "" "" ""
"SB01-20200212","537_MOD","02/20/20","23:10","N","NA","000","13C5-PFNA","13C5-
PFNA","83.6","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","83.6","83.6","","","","","","50","150","" "" "" ""
"SB01-20200212","537_MOD","02/20/20","23:10","N","NA","000","13C2-PFOA","13C2-
PFOA","91.5","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","91.5","91.5","","","","","","50","150","" "" "" ""
"SB01-20200212","537_MOD","02/20/20","23:10","N","NA","000","13C8-PFOS","13C8-
PFOS","82.9","","IS","Ȳes","Y","","Y","","","","PCT_REC","","","","","100","82.9","82.9","","","","","","50","150","", "" "" ""
"SB01-20200212","537_MOD","02/20/20","23:10","N","NA","000","13C2-PFDA","13C2-
PFDA","95.8","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","95.8","95.8","","","","","","50","150","" "" "" ""
"SB01-20200212","537 MOD","02/20/20","23:10","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","88.2","","İS","Yes","Y","","Y","","","","PCT_REC","","","","","100","88.2","88.2","","","","","","50","15 0","","","",""
"SB01-20200212","537_MOD","02/20/20","23:10","N","NA","000","13C2-PFUnA","13C2-
PFUnA","102","","IS","Yes","Y","","Y","","",","PCT_REC","","","","","100","102","102","","","","","","50","150","", "" "" ""
"SB01-20200212","537_MOD","02/20/20","23:10","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","85.6","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","85.6","85.6","","","","","","50","150 ","","","",""
"SB01-20200212","537_MOD","02/20/20","23:10","N","NA","000","13C2-PFDoA","13C2-
PFDoA","75.7","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","75.7","75.7","","","","","","50","150"," " "'r " "' " "'
"SB01-20200212","537_MOD","02/20/20","23:10","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","80.9","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","80.9","80.9","","","","","","50","150" "" "" "" ""
"EB01-20200212","537_MOD","02/20/20","23:21","N","NA","000","375-73-
5","PFBS","","","TRG","Yes","N","U","Y","0.00139","0.00203","0.00406","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"EB01-20200212","537_MOD","02/20/20","23:21","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID (PFHXA)","","","TRG","Yes","N","U","Y","0.00139","0.00203","0.00406","UG_L","UG_L","","","","","","","","",""," ","","","","","","","
"EB01-20200212","537_MOD","02/20/20","23:21","N","NA","000","13252-13-6","HEXAFLUOROPROPYLENE OXIDE DIMER ACID (HFPO-
DA)","","","TRG","Yes","N","U","Y","0.00245","0.00305","0.00406","UG L","UG L","","","","","","","","","","",""," " "" "" "" "" ""
"EB01-20200212","537_MOD","02/20/20","23:21","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID (PFHPA)","","","TRG","Yes","N","U","Y","0.00139","0.00203","0.00406","UG_L","UG_L","","","","","","","","","","" "" "" "" "" "" "" ""
"EB01-20200212","537_MOD","02/20/20","23:21","N","NA","000","919005-14-4","4,8-DIOXA-3H-
PERFLUORONONANOIIC ACID
(ADONA)","","","TRG","Yes","N","U","Y","0.00139","0.00203","0.00406","UG_L","UG_L","","","","","","","","","", "" "" "" "" "" "" "" ""
"EB01-20200212","537_MOD","02/20/20","23:21","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC ACID
(PFHXS)","","","TRG","Yes","N","U","Y","0.00139","0.00203","0.00406","UG_L","UG_L","","","","","","","","","","" "" "" "" "" "" "" ""
"EB01-20200212","537_MOD","02/20/20","23:21","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID (PFOA)","","","TRG","Yes","N","U","Y","0.00139","0.00203","0.00406","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" "" ""
"EB01-20200212","537_MOD","02/20/20","23:21","N","NA","000","375-95-1","PERFLUORONONANOIC ACID (PFNA)","","","TRG","Yes","N","U","Y","0.00139","0.00203","0.00406","UG_L","UG_L","","","","","","","","",","", "" "" "" " " " "" "" ""
"EB01-20200212","537_MOD","02/20/20","23:21","N","NA","000","1763-23-
1","HEPTADECAFLUŌROACTANESULFONIC ACID SOLUTION
","","","TRG","Yes","N","U","Y","0.00139","0.00203","0.00406","UG_L","UG_L","","","","","","","","","","","","",""," ","","","
"EB01-20200212","537_MOD","02/20/20","23:21","N","NA","000","756426-58-1","9-
CHLOROHEXADECAFLUORO-3-OXANONE-1-SULFONIC ACID (9Cl-
PF3ONS)","","","TRG","Yes","N","U","Y","0.00139","0.00203","0.00406","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"EB01-20200212","537_MOD","02/20/20","23:21","N","NA","000","335-76-2","PERFLUORODECANOIC ACID (PFDA)","","","TRG","Yes","N","U","Y","0.00139","0.00203","0.00406","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" "" ""
"EB01-20200212","537_MOD","02/20/20","23:21","N","NA","000","2355-31-
9","MeFOSAA","","","TRG","Yes","N","U","Y","0.00139","0.00203","0.00406","UG_L","UG_L","","","","","","",""," " "" "" " " " "" "" "" "" " "" ""
"EB01-20200212","537_MOD","02/20/20","23:21","N","NA","000","2991-50-
6","EtFOSAA","","","TRG","Yes","N","U","Y","0.00139","0.00203","0.00406","UG_L","UG_L","","","","","","","","", "" "" "" "" " "" "" "" "" ""
"EB01-20200212","537_MOD","02/20/20","23:21","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC
ACID
(PFUNA)","","","TRG","Yes","N","U","Y","0.00139","0.00203","0.00406","UG_L","UG_L","","","","","","",","",""," ","","","","","","","
"EB01-20200212","537_MOD","02/20/20","23:21","N","NA","000","763051-92-9","11-CHLOROEICOSAFLUORO-3-OXAUNDECANE-1-SULFONIC ACID (11Cl-
PF3OUdS)","","","TRG","Yes","N","U","Y","0.00139","0.00203","0.00406","UG_L","UG_L","","","","","","","","","",
"EB01-20200212","537_MOD","02/20/20","23:21","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID (PFDOA)","","","TRG","Yes","N","U","Y","0.00139","0.00203","0.00406","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"EB01-20200212","537 MOD","02/20/20","23:21","N","NA","000","72629-94-
8","PFTrDA","","","TRG","Yes","N","U","Y","0.00139","0.00203","0.00406","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"EB01-20200212","537_MOD","02/20/20","23:21","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.00139","0.00203","0.00406","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"EB01-20200212","537_MOD","02/20/20","23:21","N","NA","000","13C3-PFBS","13C3-
PFBS","92.1","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","92.1","92.1","","","","","","50","150","", "" "" ""
"EB01-20200212","537_MOD","02/20/20","23:21","N","NA","000","13C3-HFPO-DA","13C3-HFPO-
DA","93.4","","IS","Yes","Y","","Y","","",","PCT_REC","","","",","100","93.4","93.4","","",","","","50","150","","" "" ""
"EB01-20200212","537_MOD","02/20/20","23:21","N","NA","000","13C2-PFHxA","13C2-
PFHxA","93.7","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","93.7","93.7","","","","","","50","150"," " "" "" ""
"EB01-20200212","537_MOD","02/20/20","23:21","N","NA","000","13C4-PFHpA","13C4-
PFHpA","86.7","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","86.7","86.7","","","","","","50","150"," " "" "" ""
"EB01-20200212","537_MOD","02/20/20","23:21","N","NA","000","13C3-PFHxS","13C3-
PFHxS","88.3","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","88.3","88.3","","","","","","50","150"," " "" "" ""
"EB01-20200212","537_MOD","02/20/20","23:21","N","NA","000","13C5-PFNA","13C5-
PFNA","86.0","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","86.0","86.0","","","","","","50","150","" "" "" ""
"EB01-20200212","537_MOD","02/20/20","23:21","N","NA","000","13C2-PFOA","13C2-
PFOA","85.8","","IS","Yes","Y","","Y","","",","PCT_REC","","","",","100","85.8","85.8","","","",","","50","150","" "" "" ""
"EB01-20200212","537_MOD","02/20/20","23:21","N","NA","000","13C8-PFOS","13C8-
PFOS","92.5","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","92.5","92.5","","","","","","50","150","", "" "" ""
"EB01-20200212","537_MOD","02/20/20","23:21","N","NA","000","13C2-PFDA","13C2-
PFDA","104","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","104","104","","","","","","50","150",""," " "" ""
"EB01-20200212","537_MOD","02/20/20","23:21","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","96.1","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","96.1","96.1","","","","","","50","15 0","","","",""
"EB01-20200212","537_MOD","02/20/20","23:21","N","NA","000","13C2-PFUnA","13C2-
PFUnA","94.3","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","94.3","94.3","","","","","","50","150"," " "" "" ""
"EB01-20200212","537_MOD","02/20/20","23:21","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","83.7","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","83.7","83.7","","","",","","50","150
","" "", "" ""
"EB01-20200212","537_MOD","02/20/20","23:21","N","NA","000","13C2-PFDoA","13C2-
PFDoA","79.5","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","79.5","79.5","","","","","","50","150"," " "" "" ""
"EB01-20200212","537 MOD","02/20/20","23:21","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","88.6","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","88.6","88.6","","","","",","50","150" "" "" "" ""
"I006MW03SR-20200212","537_MOD","02/21/20","00:03","N","NA","000","375-73-
5","PFBS","0.0513","","TRG","Yes","Y","","Y","0.00135","0.00197","0.00394","UG_L","UG_L","","","","","","","",""
"I006MW03SR-20200212","537_MOD","02/21/20","00:03","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
(PFHXA)","0.628","","TRG","Yes","Y","","Y","0.00135","0.00197","0.00394","UG_L","UG_L","",","","","","","","",

"I006MW03SR-20200212","537_MOD","02/21/20","00:03","N","NA","000","13252-13-
6","HEXAFLUOROPROPYLENE OXIDE DIMER ACID (HFPO-
DA)",",",","TRG","Yes","N","U","Y","0.00237","0.00295","0.00394","UG_L","UG_L","","",","","","",","","","","," " """ "" "" "" ""
"I006MW03SR-20200212","537_MOD","02/21/20","00:03","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
(PFHPA)","0.226","","TRG","Yes","Y","","Y","0.00135","0.00197","0.00394","UG_L","UG_L","","","",","","","","","

"I006MW03SR-20200212","537_MOD","02/21/20","00:03","N","NA","000","919005-14-4","4,8-DIOXA-3H-

\section*{PERFLUORONONANOIC ACID}
(ADONA)","","","TRG","Yes","N","U","Y","0.00135","0.00197","0.00394","UG_L","UG_L","","","",","","","","","",

"I006MW03SR-20200212","537_MOD","02/21/20","00:03","N","NA","000","355-46-

\section*{4","PERFLUOROHEXANESULFONIC ACID}
(PFHXS)","0.333","","TRG","Yes","Y","","Y","0.00135","0.00197","0.00394","UG_L","UG_L","",","","","",","",""," " "" "" "" "" "" "" "" ""
"I006MW03SR-20200212","537_MOD","02/21/20","00:03","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
(PFOA)","0.303","","TRG","Yes","Y","","Y","0.00135","0.00197","0.00394","UG_L","UG_L","","",","","","","","","" "" "" "" "" "" "" "" ""
"I006MW03SR-20200212","537_MOD","02/21/20","00:03","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
(PFNA)","0.00140","","TRG","Yes","Y","J","Y","0.00135","0.00197","0.00394","UG_L","UG_L",","","","",","",""," ","","","",",""","",","",""
"I006MW03SR-20200212","537_MOD","02/21/20","00:03","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","0.00993","","TRG","Yes","Y","","Y","0.00135","0.00197","0.00394","UG_L","UG_L","","",","","","",","","",","", "" "" "" "" "" ""
"I006MW03SR-20200212","537_MOD","02/21/20","00:03","N","NA","000","756426-58-1","9-
CHLOROHEXADECAFLUORO-3-OXANONE-1-SULFONIC ACID (9Cl-
PF3ONS)","","","TRG","Yes","N","U","Y","0.00135","0.00197","0.00394","UG_L","UG_L","","",","","","",","",""," ","" "","","","" "",""
"I006MW03SR-20200212","537_MOD","02/21/20","00:03","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
(PFDA)","",",","TRG","Yes","N","U","Y","0.00135","0.00197","0.00394","UG_L","UG_L","","","",","","","",","","", "" "" "" "" "" "" ""
"I006MW03SR-20200212","537_MOD","02/21/20","00:03","N","NA","000","2355-31-
9","MeFOSAA",","","TRG","Yes","N","U","Y","0.00135","0.00197","0.00394","UG_L","UG_L","",","","","","",""," " "" "" "" "" "" " "" "" "" ""
"I006MW03SR-20200212","537_MOD","02/21/20","00:03","N","NA","000","2991-50-
6","EtFOSAA","",","TRG","Yes","N","U","Y","0.00135","0.00197","0.00394","UG_L","UG_L","","","",","","",","", "" "" "" "" "" "" "" "" ""
"I006MW03SR-20200212","537_MOD","02/21/20","00:03","N","NA","000","2058-94-
8","PERFLUOROUNDECANOIC ACID
(PFUNA)","",",","TRG","Yes","N","U","Y","0.00135","0.00197","0.00394","UG_L","UG_L","","",","","","","",",""," " "" "" "" "" "" "" "" "
"I006MW03SR-20200212","537_MOD","02/21/20","00:03","N","NA","000","763051-92-9","11-
CHLOROEICOSAFLUORO-3-OXAUNDECANE-1-SULFONIC ACID (11Cl-
PF3OUdS)","",",",TRG","Yes","N","U","Y","0.00135","0.00197","0.00394","UG_L","UG_L","",","","","",","","","",

5","PFBS","0.0509","","TRG","Yes","Y","","Y","0.00136","0.00198","0.00398","UG L","UG L","","","","","","","","'"


"I006MW05SR-20200212","537_MOD","02/21/20","00:13","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
(PFHXA)","0.129","","TRG","Yes","Y","","Y","0.00136","0.00198","0.00398","UG_L","UG_L","",","","",","","","", "" "" "" "" "" "" "" "" ""
"I006MW05SR-20200212","537_MOD","02/21/20","00:13","N","NA","000","13252-13-
6","HEXAFLUOROPROPYLENE OXIDE DIMER ACID (HFPO-
DA)","",","TRG","Yes","N","U","Y","0.00240","0.00298","0.00398","UG_L","UG_L","","",","","","",","","","","," " "" "" "" "" ""
"I006MW05SR-20200212","537_MOD","02/21/20","00:13","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
(PFHPA)","0.0436","","TRG","Yes","Y","","Y","0.00136","0.00198","0.00398","UG_L","UG_L","","","","",","","",""

"I006MW05SR-20200212","537_MOD","02/21/20","00:13","N","NA","000","919005-14-4","4,8-DIOXA-3H-
PERFLUORONONANOIC ACID
(ADONA)","",",",TRG","Yes","N","U","Y","0.00136","0.00198","0.00398","UG_L","UG_L","","","",","","","","","",

"I006MW05SR-20200212","537_MOD","02/21/20","00:13","N","NA","000","355-46-
4","PERFLUOROHEXANESULFONIC ACID
(PFHXS)","0.215","","TRG","Yes","Y","","Y","0.00136","0.00198","0.00398","UG_L","UG_L","","","","",","","",""," " "" "" "" "" "" "" "" ""
"I006MW05SR-20200212","537_MOD","02/21/20","00:13","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
(PFOA)","0.0464",",","TRG","Yes","Y","","Y","0.00136","0.00198","0.00398","UG_L","UG_L","",","","",","","",""," " "" "" "" "" "" "" "" ""
"I006MW05SR-20200212","537_MOD","02/21/20","00:13","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
(PFNA)","","","TRG","Yes","N","U","Y","0.00136","0.00198","0.00398","UG_L","UG_L","","","",","","","",","","", "" "" "" "" "" "" """
"I006MW05SR-20200212","537_MOD","02/21/20","00:13","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","0.0182",",","TRG","Yes","Y","","Y","0.00136","0.00198","0.00398","UG_L","UG_L","","","","",","","","","","","","
" "" "" "" "" ""
"I006MW05SR-20200212","537_MOD","02/21/20","00:13","N","NA","000","756426-58-1","9-
CHLOROHEXADECAFLUORO-3-OXANONE-1-SULFONIC ACID (9Cl-
PF3ONS)","",",","TRG","Yes","N","U","Y","0.00136","0.00198","0.00398","UG_L","UG_L","","",","","","","",",""," " "" "" "" "" "" "" ""
"I006MW05SR-20200212","537 MOD","02/21/20","00:13","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
(PFDA)","",",","TRG","Yes","N","U","Y","0.00136","0.00198","0.00398","UG_L","UG_L","","","",","","","",","","",

"I006MW05SR-20200212","537_MOD","02/21/20","00:13","N","NA","000","2355-31-
9","MeFOSAA","","","TRG","Yes","N","U","Y","0.00136","0.00198","0.00398","UG_L","UG_L","",","","","","",""," " "" "" "" "" "" "" "" "" ""
"I006MW05SR-20200212","537_MOD","02/21/20","00:13","N","NA","000","2991-50-
6","EtFOSAA","",","TRG","Yes","N","U","Y","0.00136","0.00198","0.00398","UG_L","UG_L","","","",","","","","",

"I006MW05SR-20200212","537_MOD","02/21/20","00:13","N","NA","000","2058-948","PERFLUOROUNDECANOIC ACID
(PFUNA)","",",","TRG","Yes","N","U","Y","0.00136","0.00198","0.00398","UG_L","UG_L","","","",","","","",",""," " "" """ "" "" "" "" ""
"I006MW05SR-20200212","537_MOD","02/21/20","00:13","N","NA","000","763051-92-9","11-
CHLOROEICOSAFLUORO-3-OXAUNDECANE-1-SULFONIC ACID (11Cl-

PF3OUdS)","","","TRG","Yes","N","U","Y","0.00136","0.00198","0.00398","UG_L","UG_L","","","","","","","","","", "" "" "" ""","" "" "" ""
"I006MW05SR-20200212","537_MOD","02/21/20","00:13","N","NA","000","307-55-
1","PERFLUORODODECANOIC ACID
(PFDOA)","","","TRG","Yes","N","U","Y","0.00136","0.00198","0.00398","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"I006MW05SR-20200212","537_MOD","02/21/20","00:13","N","NA","000","72629-94-
8","PFTrDA","","","TRG","Yes","N","U","Y","0.00136","0.00198","0.00398","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"I006MW05SR-20200212","537_MOD","02/21/20","00:13","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.00136","0.00198","0.00398","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"I006MW05SR-20200212","537_MOD","02/21/20","00:13","N","NA","000","13C3-PFBS","13C3-
PFBS","99.6","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","99.6","99.6","","","","","","50","150","", "" "" ""
"I006MW05SR-20200212","537_MOD","02/21/20","00:13","N","NA","000","13C3-HFPO-DA","13C3-HFPODA","94.4","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","94.4","94.4","","","","","","50","150","","" "" ""
"I006MW05SR-20200212","537_MOD","02/21/20","00:13","N","NA","000","13C2-PFHxA","13C2-
PFHxA","97.2","","IS","Yes","Y","","Y","","","","PCT REC","","","","","100","97.2","97.2","","","","","","50","150"," " "" "" ""
"I006MW05SR-20200212","537_MOD","02/21/20","00:13","N","NA","000","13C4-PFHpA","13C4-
PFHpA","91.2","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","91.2","91.2","","","","","","50","150"," " "" "" ""
"I006MW05SR-20200212","537_MOD","02/21/20","00:13","N","NA","000","13C3-PFHxS","13C3-
PFHxS","93.5","","IS","Yes","Y","","Y","","","","PCT REC","","","","","100","93.5","93.5","","","","","","50","150"," " "" "" ""
"I006MW05SR-20200212","537_MOD","02/21/20","00:13","N","NA","000","13C5-PFNA","13C5-
PFNA","84.3","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","84.3","84.3","","","","","","50","150","" "" "" ""
"I006MW05SR-20200212","537_MOD","02/21/20","00:13","N","NA","000","13C2-PFOA","13C2-
PFOA","89.7","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","89.7","89.7","","","","","","50","150","" "" "" ""
"I006MW05SR-20200212","537_MOD","02/21/20","00:13","N","NA","000","13C8-PFOS","13C8-
PFOS","89.4","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","89.4","89.4","","","","","","50","150","", "" "" ""
"I006MW05SR-20200212","537 MOD","02/21/20","00:13","N","NA","000","13C2-PFDA","13C2-
PFDA","94.0","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","94.0","94.0","","","","","","50","150","" "" "" ""
"I006MW05SR-20200212","537_MOD","02/21/20","00:13","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","79.2","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","79.2","79.2","","","","","","50","15 0","","","",""
"I006MW05SR-20200212","537_MOD","02/21/20","00:13","N","NA","000","13C2-PFUnA","13C2-
PFUnA","86.1","","IS","Yes","Y","","Y","","","","PCT REC","","","","","100","86.1","86.1","","","","","","50","150"," "," "" ""
"I006MW05SR-20200212","537_MOD","02/21/20","00:13","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","88.0","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","88.0","88.0","","","","","","50","150 " "'t " \(" t\) "'" "'"
"I006MW05SR-20200212","537 MOD","02/21/20","00:13","N","NA","000","13C2-PFDoA","13C2-
PFDoA","73.3","","IS","Yes","Y","","Y","","","","PCT REC","","","","","100","73.3","73.3","","","","","","50","150"," ","","","
"I006MW05SR-20200212","537_MOD","02/21/20","00:13","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","92.6","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","92.6","92.6","","","","","","50","150" "" "" "" ""
"DUP01-20200212","537 MOD","02/21/20","00:24","N","NA","000","375-73-
5","PFBS","0.0556","","TRG","Yes","Y","","Y","0.00140","0.00204","0.00408","UG_L","UG_L","","","","","","","","" "" "" "" "" "" "" "" "" ""
"DUP01-20200212","537_MOD","02/21/20","00:24","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID (PFHXA)","0.130","","TRG","Yes","Y","","Y","0.00140","0.00204","0.00408","UG_L","UG_L","","","","","","","","", "" "" "" "" " "" "" "" "" ""
"DUP01-20200212","537 MOD","02/21/20","00:24","N","NA","000","13252-13-6","HEXAFLUOROPROPYLENE OXIDE DIMER ACID (FFPO-
DA)","","","TRG","Yes","N","U","Y","0.00246","0.00306","0.00408","UG_L","UG_L","","","","","","","","","","","," " "" "" "" "" ""
"DUP01-20200212","537_MOD","02/21/20","00:24","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID (PFHPA)","0.0468","","TRG","Yes","Y","","Y","0.00140","0.00204","0.00408","UG_L","UG_L","","","","","","","",""

"DUP01-20200212","537_MOD","02/21/20","00:24","N","NA","000","919005-14-4","4,8-DIOXA-3H-
PERFLUORONONANOIC ACID
(ADONA)","","","TRG","Yes","N","U","Y","0.00140","0.00204","0.00408","UG_L","UG_L","","","","","","","","","", " " " " " " " " " " "" "" ""
"DUP01-20200212","537_MOD","02/21/20","00:24","N","NA","000","355-46-
4","PERFLUOROHEXANESULFONIC ACID
(PFHXS)","0.205","","TRG","Yes","Y","","Y","0.00140","0.00204","0.00408","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"DUP01-20200212","537_MOD","02/21/20","00:24","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID (PFOA)","0.0441","","TRG","Yes","Y","","Y","0.00140","0.00204","0.00408","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"DUP01-20200212","537_MOD","02/21/20","00:24","N","NA","000","375-95-1","PERFLUORONONANOIC ACID (PFNA)","","","TRG","Yes","N","U","Y","0.00140","0.00204","0.00408","UG L","UG L","","","","","","","","","","", "" "" "" "" "" "" ""
"DUP01-20200212","537_MOD","02/21/20","00:24","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","0.0226","","TRG","Yes","Y","","Y","0.00140","0.00204","0.00408","UG L","UG L","","","","","","","","","","",""," " "" "" "" "" ""
"DUP01-20200212","537 MOD","02/21/20","00:24","N","NA","000","756426-58-1","9-
CHLOROHEXADECAFLUORO-3-OXANONE-1-SULFONIC ACID (9Cl-
PF3ONS)","","","TRG","Yes","N","U","Y","0.00140","0.00204","0.00408","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"DUP01-20200212","537_MOD","02/21/20","00:24","N","NA","000","335-76-2","PERFLUORODECANOIC ACID (PFDA)",","",","TRG","Yes","N","U","Y","0.00140","0.00204","0.00408","UG_L","UG_L","","","","",","","","","","",

"DUP01-20200212","537_MOD","02/21/20","00:24","N","NA","000","2355-31-
9","MeFOSAA",","","TRG","Yes","N","U","Y","0.00140","0.00204","0.00408","UG_L","UG_L","",","","","","","","

"DUP01-20200212","537_MOD","02/21/20","00:24","N","NA","000","2991-50-
6","EtFOSAA","",","TRG","Yes","N","U","Y","0.00140","0.00204","0.00408","UG_L","UG_L","","","",","","","","",

"DUP01-20200212","537_MOD","02/21/20","00:24","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID
(PFUNA)","",",","TRG","Yes","N","U","Y","0.00140","0.00204","0.00408","UG_L","UG_L",","","","",","","","","","

"DUP01-20200212","537 MOD","02/21/20","00:24","N","NA","000","763051-92-9","11-
CHLOROEICOSAFLUORO-3-OXAUNDECANE-1-SULFONIC ACID (11Cl-
PF3OUdS)",",",","TRG","Yes","N","U","Y","0.00140","0.00204","0.00408","UG_L","UG_L","",","","","",","","","", "" "" "" "" "" "" "" ""
"DUP01-20200212","537_MOD","02/21/20","00:24","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
(PFDOA)","","","TRG","Yes","N","U","Y","0.00140","0.00204","0.00408","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"DUP01-20200212","537_MOD","02/21/20","00:24","N","NA","000","72629-94-
8","PFTrDA","","","TRG","Yes","N","U","Y","0.00140","0.00204","0.00408","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"DUP01-20200212","537 MOD","02/21/20","00:24","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.00140","0.00204","0.00408","UG_L","UG_L","","","","","","","",""," " "" "" "" "" " " " " "" ""
"DUP01-20200212","537_MOD","02/21/20","00:24","N","NA","000","13C3-PFBS","13C3-
PFBS","99.2","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","99.2","99.2","","","","","","50","150","", "" "" ""
"DUP01-20200212","537_MOD","02/21/20","00:24","N","NA","000","13C3-HFPO-DA","13C3-HFPO-
DA","103","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","103","103","","","","","","50","150","",""," " ""
"DUP01-20200212","537_MOD","02/21/20","00:24","N","NA","000","13C2-PFHxA","13C2-
PFHxA","100","","IS","Yes","Y","","Y","","",","PCT_REC","","","","","100","100","100","","","","","","50","150","", "" "" ""
"DUP01-20200212","537_MOD","02/21/20","00:24","N","NA","000","13C4-PFHpA","13C4-
PFHpA","89.2","","IS","Yes","Y","","Y","","","","PCT REC","","","","","100","89.2","89.2","","","","","","50","150"," " "" "" ""
"DUP01-20200212","537_MOD","02/21/20","00:24","N","NA","000","13C3-PFHxS","13C3-
PFHxS","95.8","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","95.8","95.8","","","","","","50","150"," " "" "" ""
"DUP01-20200212","537_MOD","02/21/20","00:24","N","NA","000","13C5-PFNA","13C5-
PFNA","89.8","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","89.8","89.8","","","","","","50","150","" "" "" ""
"DUP01-20200212","537_MOD","02/21/20","00:24","N","NA","000","13C2-PFOA","13C2-
PFOA","96.4","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","96.4","96.4","","","","","","50","150","" "" "" ""
"DUP01-20200212","537 MOD","02/21/20","00:24","N","NA","000","13C8-PFOS","13C8-
PFOS","90.1","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","90.1","90.1","","","","","","50","150","", "" "" ""
"DUP01-20200212","537_MOD","02/21/20","00:24","N","NA","000","13C2-PFDA","13C2-
PFDA","101","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","101","101","","","","","","50","150",""," ","",""
"DUP01-20200212","537 MOD","02/21/20","00:24","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","92.7","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","92.7","92.7","","","","","","50","15 0","","","",""
"DUP01-20200212","537_MOD","02/21/20","00:24","N","NA","000","13C2-PFUnA","13C2-
PFUnA","96.0","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","96.0","96.0","","","","","","50","150"," ","","","
"DUP01-20200212","537_MOD","02/21/20","00:24","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","78.8","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","78.8","78.8","","","","","","50","150 " "" "" "" ""
"DUP01-20200212","537_MOD","02/21/20","00:24","N","NA","000","13C2-PFDoA","13C2-
PFDoA","68.5","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","68.5","68.5","","","","","","50","150"," " "" "" ""
"DUP01-20200212","537_MOD","02/21/20","00:24","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","96.5","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","96.5","96.5","","","","","","50","150" "" "" "" ""
"I006MW01S-20200212","537_MOD","02/21/20","00:34","N","NA","000","375-73-
5","PFBS","0.217","","TRG","Yes","Y","","Y","0.00134","0.00196","0.00392","UG_L","UG_L","","","","","","","","", "" "" "" "" "" "" "" "" ""
"I006MW01S-20200212","537_MOD","02/26/20","03:46","N","NA","DL1","307-24-4","PERFLUOROHEXANOIC

ACID
(PFHXA)","3.09","","TRG","Yes","Y","D","Y","0.00671","0.00980","0.0196","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"I006MW01S-20200212","537_MOD","02/21/20","00:34","N","NA","000","13252-13-
6","HEXAFLUOROPROPYLENE OXIDE DIMER ACID (HFPO-
DA)","","","TRG","Yes","N","U","Y","0.00236","0.00294","0.00392","UG_L","UG_L","","","","","","","","","","",""," " "" "" "" "" ""
"I006MW01S-20200212","537 MOD","02/26/20","03:46","N","NA","DL1","375-85-9","PERFLUOROHEPTANOIC ACID
(PFHPA)","3.28","","TRG","Yes","Y","D","Y","0.00671","0.00980","0.0196","UG_L","UG_L","","","","","","","",""," " "" " " "" "" "" " " "" ""
"I006MW01S-20200212","537_MOD","02/21/20","00:34","N","NA","000","919005-14-4","4,8-DIOXA-3H-
PERFLUORONONANOIC ACID
(ADONA)","","","TRG","Yes","N","U","Y","0.00134","0.00196","0.00392","UG_L","UG_L","","","","","","","","","", "" "" "" "" "" "" "" ""
"I006MW01S-20200212","537_MOD","02/21/20","00:34","N","NA","000","355-46-
4","PERFLUOROHEXANESULFONIC ACID
(PFHXS)","1.06","","TRG","Yes","Y","","Y","0.00134","0.00196","0.00392","UG_L","UG_L","","","","","","","","","" "" "" "" "" "" "" "" ""
"I006MW01S-20200212","537_MOD","02/21/20","00:34","N","NA","000","335-67-1","PERFLUOROOCTANOIC
ACID
(PFOA)","1.70","","TRG","Yes","Y","","Y","0.00134","0.00196","0.00392","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"I006MW01S-20200212","537_MOD","02/21/20","00:34","N","NA","000","375-95-1","PERFLUORONONANOIC
ACID
(PFNA)","0.0412","","TRG","Yes","Y","","Y","0.00134","0.00196","0.00392","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"I006MW01S-20200212","537_MOD","02/21/20","00:34","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","0.199","","TRG","Yes","Y","","Y","0.00134","0.00196","0.00392","UG L","UG L","","","","","","","","","","","","" "" "" "" "" ""
"I006MW01S-20200212","537_MOD","02/21/20","00:34","N","NA","000","756426-58-1","9-
CHLOROHEXADECAFLUORO-3-OXANONE-1-SULFONIC ACID (9Cl-
PF3ONS)","","","TRG","Yes","N","U","Y","0.00134","0.00196","0.00392","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"I006MW01S-20200212","537_MOD","02/21/20","00:34","N","NA","000","335-76-2","PERFLUORODECANOIC
ACID
(PFDA)","0.00191","","TRG","Yes","Y","J","Y","0.00134","0.00196","0.00392","UG L","UG L","",","","","","",""," " "" "" "" "" "" "" "" "" ""
"I006MW01S-20200212","537_MOD","02/21/20","00:34","N","NA","000","2355-31-
9","MeFOSAA",","","TRG","Yes","N","U","Y","0.00134","0.00196","0.00392","UG_L","UG_L",","","","",","","","

"I006MW01S-20200212","537_MOD","02/21/20","00:34","N","NA","000","2991-50-
6","EtFOSAA","",",",TRG","Yes","N","U","Y","0.00134","0.00196","0.00392","UG_L","UG_L","","",","","","","","", "" "" "" "" "" "" "" """ ""
"IO06MW01s-20200212","537_MOD","02/21/20","00:34","N","NA","000","2058-94-
8","PERFLUOROUNDECANŌIC ACID
(PFUNA)","",",","TRG","Yes","N","U","Y","0.00134","0.00196","0.00392","UG_L","UG_L","","","",","","","",",""," " "" "" "" "" "" "" ""
"I006MW01S-20200212","537_MOD","02/21/20","00:34","N","NA","000","763051-92-9","11-
CHLOROEICOSAFLUORO-3-OXAUNDECANE-1-SULFONIC ACID (11Cl-
PF3OUdS)","",",",TRG","Yes","N","U","Y","0.00134","0.00196","0.00392","UG_L","UG_L","",","","",","","","","", "" "" "" "" "" "" "" ""
"I006MW01S-20200212","537_MOD","02/21/20","00:34","N","NA","000","307-55-

\section*{1","PERFLUORODODECANOIC ACID}
(PFDOA)","","","TRG","Yes","N","U","Y","0.00134","0.00196","0.00392","UG_L","UG_L","","","","","","",","",""," " "" "" "" "" "" "" ""
"I006MW01S-20200212","537_MOD","02/21/20","00:34","N","NA","000","72629-94-
8","PFTrDA","","","TRG","Yes","N","U","Y","0.00134","0.00196","0.00392","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"I006MW01S-20200212","537 MOD","02/21/20","00:34","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.00134","0.00196","0.00392","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"I006MW01S-20200212","537_MOD","02/21/20","00:34","N","NA","000","13C3-PFBS","13C3-
PFBS","101","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","101","101","","","","","","50","150","","" "" ""
"I006MW01S-20200212","537 MOD","02/21/20","00:34","N","NA","000","13C3-HFPO-DA","13C3-HFPO-
DA","99.8","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","99.8","99.8","","","","",","50","150","",""
"" ""
"I006MW01S-20200212","537_MOD","02/26/20","03:46","N","NA","DL1","13C2-PFHxA","13C2-
PFHxA","92.0","","IS","Yes","Y","D","Y","","","","PCT_REC","","","","","100","92.0","92.0","","","","","","50","150" "" "" "" ""
"I006MW01S-20200212","537_MOD","02/26/20","03:46","N","NA","DL1","13C4-PFHpA","13C4-
PFHpA","85.0","","IS","Yes","Y","D","Y","","","","PCT_REC","","","","","100","85.0","85.0","","","","","","50","150" "" "" "" ""
"I006MW01S-20200212","537_MOD","02/21/20","00:34","N","NA","000","13C3-PFHxS","13C3-
PFHxS","91.1","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","91.1","91.1","","","","","","50","150"," " "" "" ""
"I006MW01S-20200212","537 MOD","02/21/20","00:34","N","NA","000","13C5-PFNA","13C5-
PFNA","91.8","","IS","Yes","Y","","Y","","","","PCT REC","","","","","100","91.8","91.8","","","","","","50","150","" "" "" ""
"I006MW01S-20200212","537_MOD","02/21/20","00:34","N","NA","000","13C2-PFOA","13C2-
PFOA","90.2","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","90.2","90.2","","","","","","50","150","" "" "" ""
"I006MW01S-20200212","537_MOD","02/21/20","00:34","N","NA","000","13C8-PFOS","13C8-
PFOS","94.6","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","94.6","94.6","","","","","","50","150","", "" "" ""
"I006MW01S-20200212","537_MOD","02/21/20","00:34","N","NA","000","13C2-PFDA","13C2-
PFDA","87.8","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","87.8","87.8","","","",","","50","150","" "" "" ""
"I006MW01S-20200212","537_MOD","02/21/20","00:34","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","93.3","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","93.3","93.3","","","","","","50","15 0","","","",""
"I006MW01S-20200212","537_MOD","02/21/20","00:34","N","NA","000","13C2-PFUnA","13C2-
PFUnA","88.8","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","88.8","88.8","","","","","","50","150"," " "" "" ""
"I006MW01S-20200212","537_MOD","02/21/20","00:34","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","79.1","","IS","Yes","Y","","Y","","","","PCT REC","","","","","100","79.1","79.1","","","","","","50","150 " "" " " " " ""
"I006MW01S-20200212","537_MOD","02/21/20","00:34","N","NA","000","13C2-PFDoA","13C2-
PFDoA","65.2","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","65.2","65.2","","","","","","50","150"," " "" "" ""
"I006MW01S-20200212","537 MOD","02/21/20","00:34","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","79.6","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","79.6","79.6","","","","","","50","150" "" "" "" ""
"I006MW08S-20200212","537_MOD","02/26/20","04:07","N","NA","000","375-73-
5","PFBS","0.557","","TRG","Yes","Y","","Y","0.00137","0.00199","0.00399","UG_L","UG_L","","","","","","","","",

"I006MW08S-20200212","537_MOD","02/26/20","04:07","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
(PFHXA)","0.630","","TRG","Yes","Y","","Y","0.00137","0.00199","0.00399","UG_L","UG_L","","","","","","","","", "" "" "" "" "" " "" "" "" ""
"I006MW08S-20200212","537_MOD","02/26/20","04:07","N","NA","000","13252-13-
6","HEXAFLUOROPROPYLENE OXIDE DIMER ACID (HFPO-
DA)","","","TRG","Yes","N","U","Y","0.00240","0.00299","0.00399","UG L","UG L","","","","","","", "", "", "", "", "" " " "" "" "" "" ""
, , , , ,
"I006MW08S-20200212","537_MOD","02/26/20","04:07","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
(PFHPA)","0.112","","TRG","Yes","Y","","Y","0.00137","0.00199","0.00399","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"I006MW08S-20200212","537_MOD","02/26/20","04:07","N","NA","000","919005-14-4","4,8-DIOXA-3H-
PERFLUORONONANOIC ACID
(ADONA)","","","TRG","Yes","N","U","Y","0.00137","0.00199","0.00399","UG_L","UG_L","","","","","","","","","", "" "" "" "" "" "" " "" ""
"I006MW08S-20200212","537_MOD","02/26/20","04:07","N","NA","000","355-46-
4","PERFLUOROHEXANESULFONIC ACID
(PFHXS)","1.92","","TRG","Yes","Y","","Y","0.00137","0.00199","0.00399","UG_L","UG_L","","","","","","","","","" "" "" "" "" "" "" "" ""
"I006MW08S-20200212","537_MOD","02/26/20","04:07","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
(PFOA)","0.194","","TRG","Yes","Y","","Y","0.00137","0.00199","0.00399","UG_L","UG_L","","","","","","","","","" "" "" "" "" "" "" "" ""
"I006MW08S-20200212","537_MOD","02/26/20","04:07","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
(PFNA)","0.00175","","TRG","Yes","Y","J","Y","0.00137","0.00199","0.00399","UG_L","UG_L","","","","","","",""," " "" "" "" "" "" "" "" "" ""
"I006MW08S-20200212","537_MOD","02/26/20","04:07","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","0.779","","TRG","Yes","Y","","Y","0.00137","0.00199","0.00399","UG_L","UG_L","","","","","","","","","","","","" "" "" "" "" ""
"I006MW08S-20200212","537_MOD","02/26/20","04:07","N","NA","000","756426-58-1","9-
CHLOROHEXADECAFLUORO-3-OXANONE-1-SULFONIC ACID (9Cl-
PF3ONS)","","","TRG","Yes","N","U","Y","0.00137","0.00199","0.00399","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
 ACID
(PFDA)","","","TRG","Yes","N","U","Y","0.00137","0.00199","0.00399","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" "" ""
"I006MW08S-20200212","537_MOD","02/26/20","04:07","N","NA","000","2355-31-
9","MeFOSAA","","","TRG","Yes","N","U","Y","0.00137","0.00199","0.00399","UG_L","UG_L","","","","","","",""," " "" "" "" "" "" "" "" "" ""
"I006MW08S-20200212","537_MOD","02/26/20","04:07","N","NA","000","2991-50-
6","EtFOSAA","","","TRG","Yes","N","U","Y","0.00137","0.00199","0.00399","UG_L","UG_L","","","","","","","","", "" "" "" "" "" "" "" "" ""
"I006MW08S-20200212","537_MOD","02/26/20","04:07","N","NA","000","2058-94-
8","PERFLUOROUNDECANOIC ACID
(PFUNA)","","","TRG","Yes","N","U","Y","0.00137","0.00199","0.00399","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"I006MW08S-20200212","537_MOD","02/26/20","04:07","N","NA","000","763051-92-9","11-
CHLOROEICOSAFLUORO-3-OXAUNDECANE-1-SULFONIC ACID (11Cl-
PF3OUdS)","",",",TRG","Yes","N","U","Y","0.00137","0.00199","0.00399","UG_L","UG_L","",","","","",","","","",

"I006MW08S-20200212","537 MOD","02/26/20","04:07","N","NA","000","307-55-
1","PERFLUORODODECANOIC ACID
(PFDOA)","","","TRG","Yes","N","U","Y","0.00137","0.00199","0.00399","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"I006MW08S-20200212","537 MOD","02/26/20","04:07","N","NA","000","72629-94-
8","PFTrDA","","","TRG","Yes","N","U","Y","0.00137","0.00199","0.00399","UG_L","UG_L","","","","","","","","","

"I006MW08S-20200212","537_MOD","02/26/20","04:07","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.00137","0.00199","0.00399","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"I006MW08S-20200212","537_MOD","02/26/20","04:07","N","NA","000","13C3-PFBS","13C3-
PFBS","92.2","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","92.2","92.2","","","","","","50","150","", "" "" ""
"I006MW08S-20200212","537_MOD","02/26/20","04:07","N","NA","000","13C3-HFPO-DA","13C3-HFPO-
DA","91.8","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","91.8","91.8","","","","","","50","150","","" "" ""
"I006MW08S-20200212","537_MOD","02/26/20","04:07","N","NA","000","13C2-PFHxA","13C2-
PFHxA","90.7","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","90.7","90.7","","","","","","50","150"," " "" "" ""
"I006MW08S-20200212","537_MOD","02/26/20","04:07","N","NA","000","13C4-PFHpA","13C4-
PFHpA","98.9","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","98.9","98.9","","","","","","50","150"," " "" "" ""
"I006MW08S-20200212","537 MOD","02/26/20","04:07","N","NA","000","13C3-PFHxS","13C3-
PFHxS","76.9","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","76.9","76.9","","","","","","50","150"," " "" "" ""
"I006MW08S-20200212","537_MOD","02/26/20","04:07","N","NA","000","13C5-PFNA","13C5-
PFNA","97.8","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","97.8","97.8","","","",","","50","150","" "" "" ""
"I006MW08S-20200212","537_MOD","02/26/20","04:07","N","NA","000","13C2-PFOA","13C2-
PFOA","98.4","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","98.4","98.4","","","","","","50","150","" "" "" ""
"I006MW08S-20200212","537_MOD","02/26/20","04:07","N","NA","000","13C8-PFOS","13C8-
PFOS","90.8","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","90.8","90.8","","","","","","50","150","", "" "" ""
"I006MW08S-20200212","537_MOD","02/26/20","04:07","N","NA","000","13C2-PFDA","13C2-
PFDA","95.3","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","95.3","95.3","","","","","","50","150","" "" "" ""
"I006MW08S-20200212","537_MOD","02/26/20","04:07","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","89.7","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","89.7","89.7","","","","","","50","15 0","","","",""
"I006MW08S-20200212","537_MOD","02/26/20","04:07","N","NA","000","13C2-PFUnA","13C2-
PFUnA","86.9","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","86.9","86.9","","","","","","50","150"," " "" "" ""
"I006MW08S-20200212","537_MOD","02/26/20","04:07","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","89.3","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","89.3","89.3","","","","","","50","150
" "" "" "" ""
"I006MW08S-20200212","537_MOD","02/26/20","04:07","N","NA","000","13C2-PFDoA","13C2-
PFDoA","68.3","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","68.3","68.3","","","","","","50","150"," " "" "" ""
"I006MW08S-20200212","537_MOD","02/26/20","04:07","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","65.4","","IS","Yes","Y","","Y","","",","PCT_REC","","","",","100","65.4","65.4","","","",","","50","150" "","""","
"BMW07S-20200212","537_MOD","02/21/20","00:55","N","NA","000","375-73-
5","PFBS","0.515","","TRG","Yes","Y","","Y","0.00135","0.00197","0.00394","UG_L","UG_L","","","","","","","","",

"BMW07S-20200212","537_MOD","02/26/20","04:28","N","NA","DL1","307-24-4","PERFLUOROHEXANOIC ACID
(PFHXA)","2.08","","TRG","Yes","Y","D","Y","0.00674","0.00984","0.0197","UG_L","UG_L","","","","","","","",""," ","","",","","","","","
"BMW07S-20200212","537_MOD","02/21/20","00:55","N","NA","000","13252-13-
6","HEXAFLUOROPROPYLENE OXIDE DIMER ACID (HFPO-
DA)","","","TRG","Yes","N","U","Y","0.00237","0.00295","0.00394","UG_L","UG_L","","","","","","","","","","",""," " "" "" "" "" ""
"BMW07S-20200212","537_MOD","02/21/20","00:55","N","NA","000","375-85-9","PERFLUOROHEPTANOIC
ACID
(PFHPA)","0.625","","TRG","Yes","Y","","Y","0.00135","0.00197","0.00394","UG_L","UG_L","","","","","","","",""," " "" "" "", "" "" "" " "" ""
"BMW07S-20200212","537_MOD","02/21/20","00:55","N","NA","000","919005-14-4","4,8-DIOXA-3H-
PERFLUORONONANOIC ACID
(ADONA)","","","TRG","Yes","N","U","Y","0.00135","0.00197","0.00394","UG_L","UG_L","","","","","","","","","", "" "" "" "" "" "" " "" ""
"BMW07S-20200212","537_MOD","02/26/20","04:28","N","NA","DL1","355-46-
4","PERFLUOROHEXANESULFONIC ACID
(PFHXS)","3.08","","TRG","Yes","Y","D","Y","0.00674","0.00984","0.0197","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"BMW07S-20200212","537_MOD","02/28/20","06:55","N","NA","DL1","335-67-1","PERFLUOROOCTANOIC
ACID
(PFOA)","6.29","","TRG","Yes","Y","D","Y","0.0135","0.0197","0.0394","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" """ ""
"BMW07S-20200212","537_MOD","02/21/20","00:55","N","NA","000","375-95-1","PERFLUORONONANOIC
ACID
(PFNA)","0.0250","","TRG","Yes","Y","","Y","0.00135","0.00197","0.00394","UG_L","UG_L","","","","","","","",""," " "" " " " "" "" "" "" "" ""
"BMW07S-20200212","537_MOD","02/21/20","00:55","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","1.10","","TRG","Yes","Y","","Y","0.00135","0.00197","0.00394","UG_L","UG_L","","","","","","","","","","","",""," ","","","",""
"BMW07S-20200212","537_MOD","02/21/20","00:55","N","NA","000","756426-58-1","9-
CHLOROHEXADECAFLUORO-3-OXANONE-1-SULFONIC ACID (9Cl-
PF3ONS)","","","TRG","Yes","N","U","Y","0.00135","0.00197","0.00394","UG_L","UG_L","","","","","","","","",""," ","","","","","","",""
"BMW07S-20200212","537_MOD","02/21/20","00:55","N","NA","000","335-76-2","PERFLUORODECANOIC
ACID (PFDA)","0.00150","","TRG","Yes","Y","J,
Q","Y","0.00135","0.00197","0.00394","UG_L","UG_L","","","","","","","","","","","","","","","","",""
"BMW07S-20200212","537_MOD","02/21/20","00:55","N","NA","000","2355-31-
9","MeFOSAA","","","TRG","Yes","N","U","Y","0.00135","0.00197","0.00394","UG_L","UG_L","","","","","","",""," ","","","","","","","","" ""
"BMW07S-20200212","537_MOD","02/21/20","00:55","N","NA","000","2991-50-
6","EtFOSAA","","","TRG","Yes","N","U","Y","0.00135","0.00197","0.00394","UG_L","UG_L","","","","","","","","", "" "" "" "" """ "" "" "" ""
"BMW07S-20200212","537_MOD","02/21/20","00:55","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID
(PFUNA)","","","TRG","Yes","N","U","Y","0.00135","0.00197","0.00394","UG_L","UG_L","","","","","","","","",""," ","","","","","","","
"BMW07S-20200212","537_MOD","02/21/20","00:55","N","NA","000","763051-92-9","11-
CHLOROEICOSAFLUORO-3-OXAUNDECANE-1-SULFONIC ACID (11Cl-
PF3OUdS)","",",",TRG","Yes","N","U","Y","0.00135","0.00197","0.00394","UG_L","UG_L","","",","","","",","","",

"BMW07S-20200212","537_MOD","02/21/20","00:55","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
(PFDOA)","","","TRG","Yes","N","U","Y","0.00135","0.00197","0.00394","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"BMW07S-20200212","537_MOD","02/21/20","00:55","N","NA","000","72629-94-
8","PFTrDA","","","TRG","Yes","N","U","Y","0.00135","0.00197","0.00394","UG_L","UG_L","","","","","","","","","

"BMW07S-20200212","537_MOD","02/21/20","00:55","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.00135","0.00197","0.00394","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"BMW07S-20200212","537_MOD","02/21/20","00:55","N","NA","000","13C3-PFBS","13C3-
PFBS","96.8","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","96.8","96.8","","","","","","50","150","", """ """ ""
"BMW07S-20200212","537_MOD","02/21/20","00:55","N","NA","000","13C3-HFPO-DA","13C3-HFPO-
DA","110","","IS","Yes","Y","","Y","","",","PCT_REC","","","","","100","110","110","","","","","","50","150","",""," " ""
"BMW07S-20200212","537_MOD","02/26/20","04:28","N","NA","DL1","13C2-PFHxA","13C2-
PFHxA","111","","IS","Yes","Y","D","Y","","","","PCT_REC","","","","","100","111","111","","","","","","50","150"," " "" "" ""
"BMW07S-20200212","537_MOD","02/21/20","00:55","N","NA","000","13C4-PFHpA","13C4-
PFHpA","92.0","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","92.0","92.0","","","","",","50","150"," " "" "" ""
"BMW07S-20200212","537_MOD","02/26/20","04:28","N","NA","DL1","13C3-PFHxS","13C3-
PFHxS","109","","IS","Yes","Y","D","Y","","","","PCT_REC","","","","","100","109","109","","","","","","50","150"," " "" "" ""
"BMW07S-20200212","537_MOD","02/21/20","00:55","N","NA","000","13C5-PFNA","13C5-
PFNA","90.7","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","90.7","90.7","","","","","","50","150","" "" "" ""
"BMW07S-20200212","537_MOD","02/28/20","06:55","N","NA","DL1","13C2-PFOA","13C2-
PFOA","92.1","","IS","Yes","Y","D","Y","","","","PCT_REC","","","","","100","92.1","92.1","","","","","","50","150", "" "" "" ""
"BMW07S-20200212","537_MOD","02/21/20","00:55","N","NA","000","13C8-PFOS","13C8-
PFOS","98.4","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","98.4","98.4","","","","","","50","150","", "" "" ""
"BMW07S-20200212","537_MOD","02/21/20","00:55","N","NA","000","13C2-PFDA","13C2-
PFDA","114","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","114","114","","","","","","50","150",""," ","",""
"BMW07S-20200212","537_MOD","02/21/20","00:55","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","106","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","106","106","","","","","","50","150 " "" "" "" ""
"BMW07S-20200212","537_MOD","02/21/20","00:55","N","NA","000","13C2-PFUnA","13C2-
PFUnA","107","","IS","Yes","Y","","Y","","",","PCT_REC","","","","","100","107","107","","","","","","50","150","", "" "" ""
"BMW07S-20200212","537_MOD","02/21/20","00:55","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","95.1","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","95.1","95.1","","","","","","50","150 ","" "" "" ""
"BMW07S-20200212","537_MOD","02/21/20","00:55","N","NA","000","13C2-PFDoA","13C2-
PFDoA","86.5","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","86.5","86.5","","","","","","50","150"," " "" "" ""
"BMW07S-20200212","537_MOD","02/21/20","00:55","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","102","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","102","102","","","","","","50","150"," ","","","
"I005MW01SR-20200212","537_MOD","02/26/20","04:50","N","NA","000","375-73-
5","PFBS","0.501","","TRG","Yes","Y","","Y","0.00134","0.00196","0.00392","UG_L","UG_L","","","","","","","","",
(PFHPA)","0.395","","TRG","Yes","Y","","Y","0.00134","0.00196","0.00392","UG_L","UG_L","","","",","","","","","

"I005MW01SR-20200212","537_MOD","02/26/20","04:50","N","NA","000","919005-14-4","4,8-DIOXA-3H-

\section*{PERFLUORONONANOIC ACID}
(ADONA)","","","TRG","Yes","N","U","Y","0.00134","0.00196","0.00392","UG_L","UG_L","","","",","","","","","",

"I005MW01SR-20200212","537_MOD","02/26/20","04:39","N","NA","DL1","355-46-

\section*{4","PERFLUOROHEXANESULFONIC ACID}
(PFHXS)","2.62","","TRG","Yes","Y","D","Y","0.00672","0.00980","0.0196","UG_L","UG_L","",","","","","",","","

"I005MW01SR-20200212","537_MOD","02/26/20","04:39","N","NA","DL1","335-67-1","PERFLUOROOCTANOIC ACID
(PFOA)","3.76","","TRG","Yes","Y","D","Y","0.00672","0.00980","0.0196","UG_L","UG_L","",","","","","","","","", "" "" "" "" "" "" "" ""
"I005MW01SR-20200212","537_MOD","02/26/20","04:50","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
(PFNA)","0.0245",",","TRG","Yes","Y","","Y","0.00134","0.00196","0.00392","UG_L","UG_L","",","","",","","",""," " "" "" "" "" "" "" "" ""
"I005MW01SR-20200212","537_MOD","02/26/20","04:50","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","1.08","","TRG","Yes","Y","","Y","0.00134","0.00196","0.00392","UG L","UG L","",","","","",","","","","","",""," " "" "" "" ""
"I005MW01SR-20200212","537_MOD","02/26/20","04:50","N","NA","000","756426-58-1","9-
CHLOROHEXADECAFLUORO-3-OXANONE-1-SULFONIC ACID (9Cl-
PF3ONS)","","","TRG","Yes","N","U","Y","0.00134","0.00196","0.00392","UG_L","UG_L","","",","","","","",",""," " "" "" "" "" "" "" ""
"I005MW01SR-20200212","537_MOD","02/26/20","04:50","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
(PFDA)","","","TRG","Yes","N","U","Y","0.00134","0.00196","0.00392","UG_L","UG_L","","","",","","","",","","", "" "" "" "" "" "" ""
"I005MW01SR-20200212","537_MOD","02/26/20","04:50","N","NA","000","2355-31-
9","MeFOSAA",","","TRG","Yes","N","U","Y","0.00134","0.00196","0.00392","UG_L","UG_L","",","","","","",""," " "" "" "" "" "" "" "" "" ""
"I005MW01SR-20200212","537_MOD","02/26/20","04:50","N","NA","000","2991-50-
6","EtFOSAA","",","TRG","Yes","N","U","Y","0.00134","0.00196","0.00392","UG_L","UG_L","","","",","","",","", "" "" "" "" "" "" "" "" ""
"I005MW01SR-20200212","537_MOD","02/26/20","04:50","N","NA","000","2058-94-
8","PERFLUOROUNDECANOIC ACID
(PFUNA)","",",","TRG","Yes","N","U","Y","0.00134","0.00196","0.00392","UG_L","UG_L",","","","","","",","",""," " "" "" "" "" "" "" ""
"IO05MW01SR-20200212","537_MOD","02/26/20","04:50","N","NA","000","763051-92-9","11-
CHLOROEICOSAFLUORO-3-OXAUNDECANE-1-SULFONIC ACID (11Cl-
PF3OUdS)","",",",TRG","Yes","N","U","Y","0.00134","0.00196","0.00392","UG_L","UG_L","",","","","",","","","",
"" "" ""
"I005MW01SR-20200212","537_MOD","02/26/20","04:50","N","NA","000","13C8-PFOS","13C8-
PFOS","96.5","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","96.5","96.5","","","","","","50","150","",
"" "" ""
"I005MW01SR-20200212","537 MOD","02/26/20","04:50","N","NA","000","13C2-PFDA","13C2-
PFDA","98.0","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","98.0","98.0","","","","","","50","150",""
"" "" ""
"I005MW01SR-20200212","537_MOD","02/26/20","04:50","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","101","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","101","101","","","","","","50","150
" "" "" "" ""
"I005MW01SR-20200212","537_MOD","02/26/20","04:50","N","NA","000","13C2-PFUnA","13C2-
PFUnA","97.4","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","97.4","97.4","","","","","","50","150","
" "" "" ""
"I005MW01SR-20200212","537_MOD","02/26/20","04:50","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","105","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","105","105","","","","","","50","150",
"" "" "" ""
"I005MW01SR-20200212","537_MOD","02/26/20","04:50","N","NA","000","13C2-PFDoA","13C2-
PFDoA","70.8","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","70.8","70.8","","","","","","50","150","
" "" "" ""
"I005MW01SR-20200212","537_MOD","02/26/20","04:50","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","78.6","","IS","Yes","Y","","Y","","",","PCT_REC","","","",","100","78.6","78.6","","","",","","50","150"
"" "" "" ""
"DUP05-20200212","537_MOD","02/21/20","01:16","N","NA","000","375-73-

5","PFBS","0.525","","TRG","Yes","Y","","Y","0.00135","0.00198","0.00396","UG L","UG L","","","","","","","","",

"DUP05-20200212","537_MOD","02/21/20","01:16","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID (PFHXA)","1.51","","TRG","Yes","Y","","Y","0.00135","0.00198","0.00396","UG_L","UG_L","","",","","","",","","

"DUP05-20200212","537 MOD","02/21/20","01:16","N","NA","000","13252-13-6","HEXAFLUOROPROPYLENE OXIDE DIMER ACID (HFPO-
DA)",",",","TRG","Yes","N","U","Y","0.00238","0.00296","0.00396","UG_L","UG_L","",","","",","","","",","",""," " "" "" "" "" ""
"DUP05-20200212","537_MOD","02/21/20","01:16","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID (PFHPA)","0.411","","TRG","Yes","Y","","Y","0.00135","0.00198","0.00396","UG_L","UG_L","",","","","",","",""," " "" "" "" "" "" "" "" ""
"DUP05-20200212","537_MOD","02/21/20","01:16","N","NA","000","919005-14-4","4,8-DIOXA-3H-
PERFLUORONONANOIC ACID
(ADONA)","",",","TRG","Yes","N","U","Y","0.00135","0.00198","0.00396","UG_L","UG_L","","","",","","","",","", "" "" "" "" "" "" "" ""
"DUP05-20200212","537_MOD","02/26/20","05:11","N","NA","DL1","355-46-
4","PERFLUOROHEXANESULFONIC ACID
(PFHXS)","2.84","","TRG","Yes","Y","D","Y","0.00677","0.00988","0.0198","UG_L","UG_L","","",","","","","","","

"DUP05-20200212","537_MOD","02/26/20","05:11","N","NA","DL1","335-67-1","PERFLUOROOCTANOIC ACID (PFOA)","4.15","","TRG","Yes","Y","D","Y","0.00677","0.00988","0.0198","UG_L","UG_L","",","","","",","","","", "" "" "" "" "" "" "" ""
"DUP05-20200212","537_MOD","02/21/20","01:16","N","NA","000","375-95-1","PERFLUORONONANOIC ACID (PFNA)","0.0267","","TRG","Yes","Y","","Y","0.00135","0.00198","0.00396","UG_L","UG_L","","","",","","","",""," " "" "" "" "" "" "" "" ""
"DUP05-20200212","537_MOD","02/21/20","01:16","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","1.11","","TRG","Yes","Y","","Y","0.00135","0.00198","0.00396","UG L","UG L","",","","","",","","","","","",""," " "" "" "" ""
"DUP05-20200212","537_MOD","02/21/20","01:16","N","NA","000","756426-58-1","9-
CHLOROHEXADECAFLUORO-3-OXANONE-1-SULFONIC ACID (9Cl-
PF3ONS)","","","TRG","Yes","N","U","Y","0.00135","0.00198","0.00396","UG_L","UG_L","","","",","","","","",""," ","","","","","","",""
"DUP05-20200212","537_MOD","02/21/20","01:16","N","NA","000","335-76-2","PERFLUORODECANOIC ACID (PFDA)","0.00176","","TRG","Yes","Y","J,
Q","Y","0.00135","0.00198","0.00396","UG L","UG_L","","","","","","","","","","",","","","","","",""
"DUP05-20200212","537_MOD","02/21/20","01:16","N","NA","000","2355-31-
9","MeFOSAA",","","TRG","Yes","N","U","Y","0.00135","0.00198","0.00396","UG_L","UG_L",","","","",","",""," " "" "" "" "" "" "" "" "" ""
"DUP05-20200212","537_MOD","02/21/20","01:16","N","NA","000","2991-50-
6","EtFOSAA","",",",TRḠ","Yes","N","U","Y","0.00135","0.00198","0.00396","UG_L","UG_L","","","",","","","","", "" "" "" "" "" "" "" "" ""
"DUP05-20200212","537_MOD","02/21/20","01:16","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID
(PFUNA)","",",","TRG","Yes","N","U","Y","0.00135","0.00198","0.00396","UG_L","UG_L","","",","","","","","",""," " "" "" "" "" "" "" ""
"DUP05-20200212","537 MOD","02/21/20","01:16","N","NA","000","763051-92-9","11-
CHLOROEICOSAFLUORO-3-OXAUNDECANE-1-SULFONIC ACID (11Cl-
PF3OUdS)","","","TRG","Yes","N","U","Y","0.00135","0.00198","0.00396","UG_L","UG_L","",","","","",","","","",

"DUP05-20200212","537_MOD","02/21/20","01:16","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
(PFDOA)","",",""TRG","Yes","N","U","Y","0.00135","0.00198","0.00396","UG_L","UG_L",","","","",","","","","","
"DUP05-20200212","537_MOD","02/21/20","01:16","N","NA","000","72629-94-
8","PFTrDA","","","TRG","Yes","N","U","Y","0.00135","0.00198","0.00396","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"DUP05-20200212","537 MOD","02/21/20","01:16","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.00135","0.00198","0.00396","UG_L","UG_L","","","","","","","","","

"DUP05-20200212","537_MOD","02/21/20","01:16","N","NA","000","13C3-PFBS","13C3-
PFBS","87.2","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","87.2","87.2","","","","","","50","150","", "" "" ""
"DUP05-20200212","537_MOD","02/21/20","01:16","N","NA","000","13C3-HFPO-DA","13C3-HFPO-
DA","92.2","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","92.2","92.2","","","","","","50","150","","" "" ""
"DUP05-20200212","537_MOD","02/21/20","01:16","N","NA","000","13C2-PFHxA","13C2-
PFHxA","86.8","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","86.8","86.8","","","","",","50","150"," " "" "" ""
"DUP05-20200212","537_MOD","02/21/20","01:16","N","NA","000","13C4-PFHpA","13C4-
PFHpA","84.8","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","84.8","84.8","","","","","","50","150"," " "" "" ""
"DUP05-20200212","537_MOD","02/26/20","05:11","N","NA","DL1","13C3-PFHxS","13C3-
PFHxS","105","","IS","Yes","Y","D","Y","","","","PCT_REC","","","","","100","105","105","","","","","","50","150"," " "" "" ""
"DUP05-20200212","537_MOD","02/21/20","01:16","N","NA","000","13C5-PFNA","13C5-
PFNA","85.9","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","85.9","85.9","","","","","","50","150","" "" "" ""
"DUP05-20200212","537_MOD","02/26/20","05:11","N","NA","DL1","13C2-PFOA","13C2-
PFOA","112","","IS","Yes","Y","D","Y","","","","PCT_REC","","","",","100","112","112","","","","",","50","150","" "" "" ""
"DUP05-20200212","537_MOD","02/21/20","01:16","N","NA","000","13C8-PFOS","13C8-
PFOS","80.6","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","80.6","80.6","","","","","","50","150","", "" "" ""
"DUP05-20200212","537_MOD","02/21/20","01:16","N","NA","000","13C2-PFDA","13C2-
PFDA","88.2","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","88.2","88.2","","","","","","50","150","" "" "" ""
"DUP05-20200212","537_MOD","02/21/20","01:16","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","96.9","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","96.9","96.9","","","","","","50","15 0","","","",""
"DUP05-20200212","537_MOD","02/21/20","01:16","N","NA","000","13C2-PFUnA","13C2-
PFUnA","93.8","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","93.8","93.8","","","","","","50","150"," ","","" ""
"DUP05-20200212","537_MOD","02/21/20","01:16","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","79.6","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","79.6","79.6","","","","","","50","150 " "" "" "" ""
"DUP05-20200212","537_MOD","02/21/20","01:16","N","NA","000","13C2-PFDoA","13C2-
PFDoA","73.7","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","73.7","73.7","","","","","","50","150"," ","","" ""
"DUP05-20200212","537_MOD","02/21/20","01:16","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","83.0","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","83.0","83.0","","","","","","50","150" "" "" "" ""
"IS72MW15S-20200212","537_MOD","02/26/20","05:21","N","NA","000","375-73-
5","PFBS","0.0993","","TRG","Yes","Y","","Y","0.00135","0.00197","0.00393","UG_L","UG_L","","","","","","","","" ,"","","","","","","","",""
"IS72MW15S-20200212","537_MOD","02/26/20","05:21","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
(PFHXA)","0.258","","TRG","Yes","Y","","Y","0.00135","0.00197","0.00393","UG_L","UG_L","","","","","","","","", "" "" "" "" "" "" "" "" ""
"IS72MW15S-20200212","537_MOD","02/26/20","05:21","N","NA","000","13252-13-
6","HEXAFLUOROPROPYLENE OXIDE DIMER ACID (HFPO-
DA)","","","TRG","Yes","N","U","Y","0.00237","0.00295","0.00393","UG L","UG L","","","","","","","","","","",""," " "" "" "" "" ""
"IS72MW15S-20200212","537_MOD","02/26/20","05:21","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
(PFHPA)","0.0730","","TRG","Yes","Y","","Y","0.00135","0.00197","0.00393","UG_L","UG_L","","","","","","","","" "" "" "" "" "" "" "" "" ""
"IS72MW15S-20200212","537_MOD","02/26/20","05:21","N","NA","000","919005-14-4","4,8-DIOXA-3H-
PERFLUORONONANOIC ACID
(ADONA)","","","TRG","Yes","N","U","Y","0.00135","0.00197","0.00393","UG_L","UG_L","","","","","","","","","", "" "" "" "" "" "" "" ""
"IS72MW15S-20200212","537_MOD","02/26/20","05:21","N","NA","000","355-46-
4","PERFLUOROHEXANESULFONIC ACID
(PFHXS)","0.829","","TRG","Yes","Y","","Y","0.00135","0.00197","0.00393","UG_L","UG_L","","","","","","","","","

"IS72MW15S-20200212","537_MOD","02/26/20","05:21","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
(PFOA)","0.420","","TRG","Yes","Y","","Y","0.00135","0.00197","0.00393","UG_L","UG_L","","","","","","","","","" "" "" "" "" "" " " " " " ""
"IS72MW15S-20200212","537_MOD","02/26/20","05:21","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
(PFNA)","0.0216","","TRG","Yes","Y","","Y","0.00135","0.00197","0.00393","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"IS72MW15S-20200212","537_MOD","02/26/20","05:21","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","1.71","","TRG","Yes","Y","","Y","0.00135","0.00197","0.00393","UG_L","UG_L","","","","","","","","","","","",""," " "" "" "" ""
"IS72MW15S-20200212","537_MOD","02/26/20","05:21","N","NA","000","756426-58-1","9-
CHLOROHEXADECAFLUORO-3-OXANONE-1-SULFONIC ACID (9Cl-
PF3ONS)","","","TRG","Yes","N","U","Y","0.00135","0.00197","0.00393","UG_L","UG_L","","","","","","","","",""," ","","","","","","","
"IS72MW15S-20200212","537_MOD","02/26/20","05:21","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
(PFDA)","","","TRG","Yes","N","U","Y","0.00135","0.00197","0.00393","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" "" ""
"IS72MW15S-20200212","537_MOD","02/26/20","05:21","N","NA","000","2355-31-
9","MeFOSAA","","","TRG","Yes","N","U","Y","0.00135","0.00197","0.00393","UG_L","UG_L","","","","","","",""," " "" "" "" "" "" "" "" "" ""
"IS72MW15S-20200212","537_MOD","02/26/20","05:21","N","NA","000","2991-50-
6","EtFOSAA","","","TRG","Yes","N","U","Y","0.00135","0.00197","0.00393","UG_L","UG_L","","","","","","","","",

"IS72MW15S-20200212","537_MOD","02/26/20","05:21","N","NA","000","2058-94-
8","PERFLUOROUNDECANOIC ACID
(PFUNA)","","","TRG","Yes","N","U","Y","0.00135","0.00197","0.00393","UG_L","UG_L","","","","","","","","","","

"IS72MW15S-20200212","537_MOD","02/26/20","05:21","N","NA","000","763051-92-9","11-
CHLOROEICOSAFLUORO-3-OXAUNDECANE-1-SULFONIC ACID (11Cl-
PF3OUdS)","","","TRG","Yes","N","U","Y","0.00135","0.00197","0.00393","UG_L","UG_L","","","","","","","","","", "","","",","","" "" ""
"IS72MW15S-20200212","537_MOD","02/26/20","05:21","N","NA","000","307-55-
1","PERFLUORODODECANOIC ACID
(PFDOA)","","","TRG","Yes","N","U","Y","0.00135","0.00197","0.00393","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"IS72MW15S-20200212","537_MOD","02/26/20","05:21","N","NA","000","72629-94-
8","PFTrDA","","","TRG","Yes","N","U","Y","0.00135","0.00197","0.00393","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"IS72MW15S-20200212","537_MOD","02/26/20","05:21","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.00135","0.00197","0.00393","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"IS72MW15S-20200212","537_MOD","02/26/20","05:21","N","NA","000","13C3-PFBS","13C3-
PFBS","92.3","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","92.3","92.3","","","","","","50","150","", "" "" ""
"IS72MW15S-20200212","537_MOD","02/26/20","05:21","N","NA","000","13C3-HFPO-DA","13C3-HFPO-
DA","88.0","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","88.0","88.0","","","","","","50","150","","" "" ""
"IS72MW15S-20200212","537_MOD","02/26/20","05:21","N","NA","000","13C2-PFHxA","13C2-
PFHxA","85.6","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","85.6","85.6","","","","","","50","150"," " "" "" ""
"IS72MW15S-20200212","537_MOD","02/26/20","05:21","N","NA","000","13C4-PFHpA","13C4-
PFHpA","85.0","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","85.0","85.0","","","","","","50","150"," " "" "" " "
"IS72MW15S-20200212","537_MOD","02/26/20","05:21","N","NA","000","13C3-PFHxS","13C3-
PFHxS","79.9","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","79.9","79.9","","","","","","50","150"," " "" "" ""
"IS72MW15S-20200212","537_MOD","02/26/20","05:21","N","NA","000","13C5-PFNA","13C5-
PFNA","79.7","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","79.7","79.7","","","","","","50","150","" "" "" ""
"IS72MW15S-20200212","537_MOD","02/26/20","05:21","N","NA","000","13C2-PFOA","13C2-
PFOA","90.0","","IS","Yes","Y","","Y","","",","PCT_REC","","","","","100","90.0","90.0","","","","","","50","150","" "" "" ""
"IS72MW15S-20200212","537 MOD","02/26/20","05:21","N","NA","000","13C8-PFOS","13C8-
PFOS","82.7","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","82.7","82.7","","","","","","50","150","", "" "" ""
"IS72MW15S-20200212","537_MOD","02/26/20","05:21","N","NA","000","13C2-PFDA","13C2-
PFDA","81.4","","IS","Yes","Y","","Y","","",","PCT_REC","","","","","100","81.4","81.4","","","","",","50","150","" "" "" ""
"IS72MW15S-20200212","537_MOD","02/26/20","05:21","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","70.6","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","70.6","70.6","","","","","","50","15 0","","" "" ""
"IS72MW15S-20200212","537_MOD","02/26/20","05:21","N","NA","000","13C2-PFUnA","13C2-
PFUnA","75.9","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","75.9","75.9","","","","",","50","150"," ","","","
"IS72MW15S-20200212","537_MOD","02/26/20","05:21","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","79.6","","IS","Yes","Y","","Y","","","","PCT REC","","","",","100","79.6","79.6","","","","","","50","150 " "" "" "" ""
"IS72MW15S-20200212","537_MOD","02/26/20","05:21","N","NA","000","13C2-PFDoA","13C2-
PFDoA","53.2","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","53.2","53.2","","","","",","50","150"," " "" "" ""
"IS72MW15S-20200212","537_MOD","02/26/20","05:21","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","34.4","","IS","Yes","Y","H","Y","","","","PCT_REC","","","","","100","34.4","34.4","","","","","","50","15 0","","*","",""
"IS72MW18SR-20200212","537_MOD","02/21/20","01:37","N","NA","000","375-73-
5","PFBS","0.0451","","TRG","Yes","Y","","Y","0.00140","0.00204","0.00409","UG_L","UG_L","","","","","","","","" "" "" "" "" "" "" "" "" ""
"IS72MW18SR-20200212","537_MOD","02/21/20","01:37","N","NA","000","307-24-4","PERFLUOROHEXANOIC

ACID
(PFHXA)","0.0998","","TRG","Yes","Y","","Y","0.00140","0.00204","0.00409","UG_L","UG_L","","","","","","","","" "" "" "" "" "" "" "" "" ""
"IS72MW18SR-20200212","537 MOD","02/21/20","01:37","N","NA","000","13252-13-
6","HEXAFLUOROPROPYLENE OXIDE DIMER ACID (HFPO-
DA)","","","TRG","Yes","N","U","Y","0.00246","0.00306","0.00409","UG_L","UG_L","","","","","","","","","","",""," " "" "" "" "" ""
"IS72MW18SR-20200212","537 MOD","02/21/20","01:37","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
(PFHPA)","0.0378","","TRG","Yes","Y","","Y","0.00140","0.00204","0.00409","UG_L","UG_L","","","","","","","","" "" "" "" "" "" "" "" "" ""
"IS72MW18SR-20200212","537_MOD","02/21/20","01:37","N","NA","000","919005-14-4","4,8-DIOXA-3H-
PERFLUORONONANOIC ACID
(ADONA)","","","TRG","Yes","N","U","Y","0.00140","0.00204","0.00409","UG_L","UG_L","","","","","","","","","", "" "" "" "" "" "" "" ""
"IS72MW18SR-20200212","537_MOD","02/21/20","01:37","N","NA","000","355-46-
4","PERFLUOROHEXANESULFONIC ACID
(PFHXS)","0.323","","TRG","Yes","Y","","Y","0.00140","0.00204","0.00409","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"IS72MW18SR-20200212","537_MOD","02/21/20","01:37","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
(PFOA)","0.325","","TRG","Yes","Y","","Y","0.00140","0.00204","0.00409","UG_L","UG_L","","","","","","","","","" "" "" "" "" "" "" "" ""
"IS72MW18SR-20200212","537_MOD","02/21/20","01:37","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
(PFNA)","0.00422","","TRG","Yes","Y","","Y","0.00140","0.00204","0.00409","UG_L","UG_L","","","","","","","","" "" "" "" "" """ "" "" "" ""
"IS72MW18SR-20200212","537_MOD","02/21/20","01:37","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","0.252","","TRG","Yes","Y","","Y","0.00140","0.00204","0.00409","UG L","UG L","","","","","","","","","","","","" "" "" "" "" ""
"IS72MW18SR-20200212","537_MOD","02/21/20","01:37","N","NA","000","756426-58-1","9-
CHLOROHEXADECAFLUORO-3-OXANONE-1-SULFONIC ACID (9Cl-
PF3ONS)","","","TRG","Yes","N","U","Y","0.00140","0.00204","0.00409","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"IS72MW18SR-20200212","537_MOD","02/21/20","01:37","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
(PFDA)","","","TRG","Yes","N","U","Y","0.00140","0.00204","0.00409","UG L","UG L","","","",","","","","",","", "","","",","","","
"IS72MW18SR-20200212","537_MOD","02/21/20","01:37","N","NA","000","2355-31-
9","MeFOSAA",","","TRG","Yes","N","U","Y","0.00140","0.00204","0.00409","UG_L","UG_L",","","","",","",""," ","" "" "" "", "" "" "" """ ""
"IS72MW18SR-20200212","537_MOD","02/21/20","01:37","N","NA","000","2991-50-
6","EtFOSAA","","","TRG","Yes","N","U","Y","0.00140","0.00204","0.00409","UG_L","UG_L","","",","","","","","", "" "" "" "" "" "" "" "" ""
"IS72MW18SR-20200212","537_MOD","02/21/20","01:37","N","NA","000","2058-94-
8","PERFLUOROUNDECANOIC ACID
(PFUNA)","",",","TRG","Yes","N","U","Y","0.00140","0.00204","0.00409","UG_L","UG_L","","","",","","","",",""," " "" "" "" "" "" "" ""
"IS72MW18SR-20200212","537_MOD","02/21/20","01:37","N","NA","000","763051-92-9","11-
CHLOROEICOSAFLUORO-3-OXAUNDECANE-1-SULFONIC ACID (11Cl-
PF3OUdS)","",",",TRG","Yes","N","U","Y","0.00140","0.00204","0.00409","UG_L","UG_L","",","","",","","","","",

"IS72MW18SR-20200212","537_MOD","02/21/20","01:37","N","NA","000","307-55-

\section*{1","PERFLUORODODECANOIC ACID}
(PFDOA)","","","TRG","Yes","N","U","Y","0.00140","0.00204","0.00409","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"IS72MW18SR-20200212","537_MOD","02/21/20","01:37","N","NA","000","72629-94-
8","PFTrDA","","","TRG","Yes","N","U","Y","0.00140","0.00204","0.00409","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"IS72MW18SR-20200212","537_MOD","02/21/20","01:37","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.00140","0.00204","0.00409","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" " " "" ""
"IS72MW18SR-20200212","537_MOD","02/21/20","01:37","N","NA","000","13C3-PFBS","13C3-
PFBS","99.2","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","99.2","99.2","","","","","","50","150","", "" "" ""
"IS72MW18SR-20200212","537_MOD","02/21/20","01:37","N","NA","000","13C3-HFPO-DA","13C3-HFPO-
DA","92.6","","IS","Yes","Y","","Y","","","","PCT REC","","","","","100","92.6","92.6","","","","","","50","150","",""
"" ""
"IS72MW18SR-20200212","537_MOD","02/21/20","01:37","N","NA","000","13C2-PFHxA","13C2-
PFHxA","89.6","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","89.6","89.6","","","","","","50","150"," " "" "" ""
"IS72MW18SR-20200212","537_MOD","02/21/20","01:37","N","NA","000","13C4-PFHpA","13C4-
PFHpA","85.3","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","85.3","85.3","","","","","","50","150"," " "" "" ""
"IS72MW18SR-20200212","537_MOD","02/21/20","01:37","N","NA","000","13C3-PFHxS","13C3-
PFHxS","90.6","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","90.6","90.6","","","","","","50","150"," " "" "" ""
"IS72MW18SR-20200212","537_MOD","02/21/20","01:37","N","NA","000","13C5-PFNA","13C5-
PFNA","90.2","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","90.2","90.2","","","","",","50","150","" "" "" ""
"IS72MW18SR-20200212","537_MOD","02/21/20","01:37","N","NA","000","13C2-PFOA","13C2-
PFOA","91.4","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","91.4","91.4","","","",","","50","150","" "" "" ""
"IS72MW18SR-20200212","537_MOD","02/21/20","01:37","N","NA","000","13C8-PFOS","13C8-
PFOS","84.5","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","84.5","84.5","","","","","","50","150","", "" "" ""
"IS72MW18SR-20200212","537_MOD","02/21/20","01:37","N","NA","000","13C2-PFDA","13C2-
PFDA","94.8","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","94.8","94.8","","","","","","50","150","" "" "" ""
"IS72MW18SR-20200212","537_MOD","02/21/20","01:37","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","74.2","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","74.2","74.2","","","","","","50","15 0","","","",""
"IS72MW18SR-20200212","537_MOD","02/21/20","01:37","N","NA","000","13C2-PFUnA","13C2-
PFUnA","96.0","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","96.0","96.0","","","","","","50","150"," " "" "" ""
"IS72MW18SR-20200212","537 MOD","02/21/20","01:37","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","80.5","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","80.5","80.5","","","","","","50","150 " "" "" "" ""
"IS72MW18SR-20200212","537_MOD","02/21/20","01:37","N","NA","000","13C2-PFDoA","13C2-
PFDoA","67.3","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","67.3","67.3","","","","","","50","150"," " "t" "" " 17
"IS72MW18SR-20200212","537 MOD","02/21/20","01:37","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","86.1","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","86.1","86.1","","","","","","50","150" "" "" "" ""
"222MW02S-20200212","537_MOD","02/21/20","02:19","N","NA","000","375-73-
5","PFBS","0.00456","","TRG","Yes","Y","","Y","0.00136","0.00198","0.00396","UG_L","UG_L","","","","","","","",

"222MW02S-20200212","537_MOD","02/21/20","02:19","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
(PFHXA)","","","TRG","Yes","N","U","Y","0.00136","0.00198","0.00396","UG_L","UG_L","","","","","","","","",""," ","" "" "" "" "" "" ""
"222MW02S-20200212","537_MOD","02/21/20","02:19","N","NA","000","13252-13-
6","HEXAFLUOROPROPYLĒNE OXIDE DIMER ACID (HFPO-
DA)","","","TRG","Yes","N","U","Y","0.00239","0.00298","0.00396","UG L","UG L","","","","","","", "", "", "", "" "" " " "" "" "" "" ""
, , , ,
"222MW02S-20200212","537 MOD","02/21/20","02:19","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
(PFHPA)","","","TRG","Yes","N","U","Y","0.00136","0.00198","0.00396","UG_L","UG_L","","","","","","","","","","" "" "" "" "" "" "" ""
"222MW02S-20200212","537_MOD","02/21/20","02:19","N","NA","000","919005-14-4","4,8-DIOXA-3HPERFLUORONONANOIC ACID
(ADONA)","","","TRG","Yes","N","U","Y","0.00136","0.00198","0.00396","UG_L","UG_L","","","","","","","","","", "" "" "" "" "" "" "" ""
"222MW02S-20200212","537_MOD","02/21/20","02:19","N","NA","000","355-46-
4","PERFLUOROHEXANESULFONIC ACID
(PFHXS)","0.0145","","TRG","Yes","Y","","Y","0.00136","0.00198","0.00396","UG_L","UG_L","","","","","","","","" "" "" "" "" "" "" "" "" ""
"222MW02S-20200212","537_MOD","02/21/20","02:19","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
(PFOA)","","","TRG","Yes","N","U","Y","0.00136","0.00198","0.00396","UG_L","UG_L","","","","","","","","","","",

"222MW02S-20200212","537_MOD","02/21/20","02:19","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
(PFNA)","","","TRG","Yes","N","U","Y","0.00136","0.00198","0.00396","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" "" ""
"222MW02S-20200212","537_MOD","02/21/20","02:19","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","0.00624","","TRG","Yes","Y","","Y","0.00136","0.00198","0.00396","UG_L","UG_L","","","","","","","","","","","",

"222MW02S-20200212","537_MOD","02/21/20","02:19","N","NA","000","756426-58-1","9-
CHLOROHEXADECAFLUORO-3-OXANONE-1-SULFONIC ACID (9Cl-
PF3ONS)","","","TRG","Yes","N","U","Y","0.00136","0.00198","0.00396","UG_L","UG_L","","","","","","","","","","

"222MW02S-20200212","537_MOD","02/21/20","02:19","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
(PFDA)","","","TRG","Yes","N","U","Y","0.00136","0.00198","0.00396","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" "" ""
"222MW02S-20200212","537_MOD","02/21/20","02:19","N","NA","000","2355-31-
9","MeFOSAA","","","TRG","Yes","N","U","Y","0.00136","0.00198","0.00396","UG_L","UG_L","","","","","","",""," " "" "" "" "" "" "" "" "" ""
"222MW02S-20200212","537_MOD","02/21/20","02:19","N","NA","000","2991-50-
6","EtFOSAA","","","TRG","Ȳes","N","U","Y","0.00136","0.00198","0.00396","UG_L","UG_L","","","","","","","","", "" "" "" "" " "" "" "" "" ""
"222MW02S-20200212","537_MOD","02/21/20","02:19","N","NA","000","2058-94-
8","PERFLUOROUNDECANOIC ACID
(PFUNA)","","","TRG","Yes","N","U","Y","0.00136","0.00198","0.00396","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"222MW02S-20200212","537_MOD","02/21/20","02:19","N","NA","000","763051-92-9","11-
CHLOROEICOSAFLUORO-3-OXAUNDECANE-1-SULFONIC ACID (11Cl-
PF3OUdS)","",",",TRG","Yes","N","U","Y","0.00136","0.00198","0.00396","UG_L","UG_L","",","","",","","","","",

"222MW02S-20200212","537_MOD","02/21/20","02:19","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
(PFDOA)","",",","TRG","Yes","N","U","Y","0.00136","0.00198","0.00396","UG_L","UG_L","","",","","","","","","","

"222MW02S-20200212","537_MOD","02/21/20","02:19","N","NA","000","72629-94-
8","PFTrDA","","","TRG","Yes","N","U","Y","0.00136","0.00198","0.00396","UG_L","UG_L","","","","","","","","","

"222MW02S-20200212","537_MOD","02/21/20","02:19","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.00136","0.00198","0.00396","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"222MW02S-20200212","537_MOD","02/21/20","02:19","N","NA","000","13C3-PFBS","13C3-
PFBS","94.3","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","94.3","94.3","","","","","","50","150","", "" "" ""
"222MW02S-20200212","537_MOD","02/21/20","02:19","N","NA","000","13C3-HFPO-DA","13C3-HFPO-
DA","96.6","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","96.6","96.6","","","","",","50","150","","" "" ""
"222MW02S-20200212","537_MOD","02/21/20","02:19","N","NA","000","13C2-PFHxA","13C2-
PFHxA","87.3","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","87.3","87.3","","","","","","50","150"," " "" "" ""
"222MW02S-20200212","537_MOD","02/21/20","02:19","N","NA","000","13C4-PFHpA","13C4-
PFHpA","83.3","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","83.3","83.3","","","","","","50","150"," " "" "" ""
"222MW02S-20200212","537 MOD","02/21/20","02:19","N","NA","000","13C3-PFHxS","13C3-
PFHxS","88.2","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","88.2","88.2","","","","","","50","150"," " "" "" ""
"222MW02S-20200212","537_MOD","02/21/20","02:19","N","NA","000","13C5-PFNA","13C5-
PFNA","84.7","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","84.7","84.7","","","",","","50","150","" "" "" ""
"222MW02S-20200212","537_MOD","02/21/20","02:19","N","NA","000","13C2-PFOA","13C2-
PFOA","90.4","","IS","Yes","Y","","Y","","",","PCT_REC","","","",","100","90.4","90.4","","","",","","50","150","" "" "" ""
"222MW02S-20200212","537_MOD","02/21/20","02:19","N","NA","000","13C8-PFOS","13C8-
PFOS","89.6","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","89.6","89.6","","","","","","50","150","", "" "" ""
"222MW02S-20200212","537_MOD","02/21/20","02:19","N","NA","000","13C2-PFDA","13C2-
PFDA","88.1","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","88.1","88.1","","","","",","50","150","" "" "" ""
"222MW02S-20200212","537_MOD","02/21/20","02:19","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","88.7","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","88.7","88.7","","","","","","50","15 0","","","",""
"222MW02S-20200212","537_MOD","02/21/20","02:19","N","NA","000","13C2-PFUnA","13C2-
PFUnA","92.0","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","92.0","92.0","","","","","","50","150"," " "" "" ""
"222MW02S-20200212","537_MOD","02/21/20","02:19","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","83.0","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","83.0","83.0","","","","",","50","150
" "" "" "" ""
"222MW02S-20200212","537_MOD","02/21/20","02:19","N","NA","000","13C2-PFDoA","13C2-
PFDoA","67.5","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","67.5","67.5","","","","","","50","150"," " "" "" ""
"222MW02S-20200212","537 MOD","02/21/20","02:19","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","87.5","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","87.5","87.5","","","","","","50","150" "",""" ""
"DUP03-20200212","537_MOD","02/21/20","02:30","N","NA","000","375-73-
5","PFBS","0.00587","","TRG","Yes","Y","","Y","0.00140","0.00205","0.00409","UG_L","UG_L","","","","","","","",

"DUP03-20200212", "537_MOD","02/21/20","02:30","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID (PFHXA)","","","TRG","Yes","N","U","Y","0.00140","0.00205","0.00409","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"DUP03-20200212","537_MOD","02/21/20","02:30","N","NA","000","13252-13-6","HEXAFLUOROPROPYLENE OXIDE DIMER ACID (HFPO-
DA)","","","TRG","Yes","N","U","Y","0.00246","0.00307","0.00409","UG L","UG L","","","","","","","","","","","","
 , , ,



"DUP03-20200212","537 MOD", "02/21/20", "02:30", "N", "NA","000", "919005-14-4", "4,8-DIOXA-3H-
PERFLUORONONANOIC ACID


"DUP03-20200212", "537 MOD", "02/21/20", "02:30", "N", "NA", "000", "355-46-
4","PERFLUOROHEXANESULFONIC ACID





"DUP03-20200212","537_MOD","02/21/20","02:30","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
 "'" "'" "'" "'" "'" "'" "'"
"DUP03-20200212","537 MOD", "02/21/20", "02:30", "N", "NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION


"DUP03-20200212", "537 MOD", "02/21/20", "02:30", "N", "NA","000", "756426-58-1","9-
CHLOROHEXADECAFLUORO-3-OXANONE-1-SULFONIC ACID (9C1-
PF3ONS)","","","TRG","Yes","N","U","Y","0.00140","0.00205","0.00409","UG_L","UG_L","","","","","","","","","","


 "'t "'l "'" "'t "'" "'" "'"
"DUP03-20200212","537 MOD", "02/21/20","02:30", "N", "NA","000","2355-31-


"DUP03-20200212", "537 MOD", "02/21/20", "02:30", "N", "NA","000", "2991-50-



ACID
(PFUNA)","","","TRG","Yes","N","U","Y","0.00140","0.00205","0.00409","UG_L","UG_L","","","","","',"","',"",""," ","","","","","","","
"DUP03-20200212","537_MOD","02/21/20","02:30","N","NA","000","763051-92-9","11-
CHLOROEICOSAFLUORO-3-OXAUNDECANE-1-SULFONIC ACID (11Cl-
PF3OUdS)","","","TRG","Yes","N","U","Y","0.00140","0.00205","0.00409","UG_L","UG_L","',"","","","","","","","",

"DUP03-20200212","537_MOD","02/21/20","02:30","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
(PFDOA)","",",","TRG","Yes","N","U","Y","0.00140","0.00205","0.00409","UG_L","UG_L","","",","","","",","","","

"DUP03-20200212","537_MOD","02/21/20","02:30","N","NA","000","72629-94-
8","PFTrDA","","","TRG","Yes","N","U","Y","0.00140","0.00205","0.00409","UG_L","UG_L","","",","","","","",""," " "" "" "" "" "" "" "" ""
"DUP03-20200212","537_MOD","02/21/20","02:30","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.00140","0.00205","0.00409","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"DUP03-20200212","537_MOD","02/21/20","02:30","N","NA","000","13C3-PFBS","13C3-
PFBS","95.7","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","95.7","95.7","","","","","","50","150","", "" "" ""
"DUP03-20200212","537_MOD","02/21/20","02:30","N","NA","000","13C3-HFPO-DA","13C3-HFPO-
DA","93.6","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","93.6","93.6","","","","","","50","150","","" "" ""
"DUP03-20200212","537_MOD","02/21/20","02:30","N","NA","000","13C2-PFHxA","13C2-
PFHxA","94.4","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","94.4","94.4","","","","","","50","150"," " "" "" ""
"DUP03-20200212","537_MOD","02/21/20","02:30","N","NA","000","13C4-PFHpA","13C4-
PFHpA","90.6","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","90.6","90.6","","","","","","50","150"," " "" "" ""
"DUP03-20200212","537_MOD","02/21/20","02:30","N","NA","000","13C3-PFHxS","13C3-
PFHxS","91.1","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","91.1","91.1","","","","","","50","150"," ","" "" ""
"DUP03-20200212","537_MOD","02/21/20","02:30","N","NA","000","13C5-PFNA","13C5-
PFNA","82.7","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","82.7","82.7","","","",","","50","150","" "","",""
"DUP03-20200212","537_MOD","02/21/20","02:30","N","NA","000","13C2-PFOA","13C2-
PFOA","91.0","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","91.0","91.0","","","","","","50","150","" "" "" ""
"DUP03-20200212","537_MOD","02/21/20","02:30","N","NA","000","13C8-PFOS","13C8-
PFOS","92.6","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","92.6","92.6","","","","","","50","150","", "" "" ""
"DUP03-20200212","537_MOD","02/21/20","02:30","N","NA","000","13C2-PFDA","13C2-
PFDA","92.4","","IS","Yes","Y","","Y","","","","PCT REC","","","","","100","92.4","92.4","","","","","","50","150","" "" "" ""
"DUP03-20200212","537_MOD","02/21/20","02:30","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","89.8","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","89.8","89.8","","","","","","50","15 0","","","",""
"DUP03-20200212","537_MOD","02/21/20","02:30","N","NA","000","13C2-PFUnA","13C2-
PFUnA","91.8","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","91.8","91.8","","","","",","50","150"," "," "" ""
"DUP03-20200212","537_MOD","02/21/20","02:30","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","79.8","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","79.8","79.8","","","","","","50","150 " "" "" "" ""
"DUP03-20200212","537_MOD","02/21/20","02:30","N","NA","000","13C2-PFDoA","13C2-
PFDoA","80.3","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","80.3","80.3","","","","",","50","150"," " "" "" ""
"DUP03-20200212","537_MOD","02/21/20","02:30","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","79.5","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","79.5","79.5","","","","","","50","150" "" "" "" ""
"A000MW42S-20200212","537_MOD","02/21/20","02:40","N","NA","000","375-73-
5","PFBS","0.0134","","TRG","Yes","Y","","Y","0.00135","0.00198","0.00395","UG_L","UG_L","","","","","","","","" "" "" "" "" "" "" "" "" ""
"A000MW42S-20200212","537_MOD","02/21/20","02:40","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID
(PFHXA)","","","TRG","Yes","N","U","Y","0.00135","0.00198","0.00395","UG_L","UG_L","","","","","","","","","","

"A000MW42S-20200212","537_MOD","02/21/20","02:40","N","NA","000","13252-13-
6","HEXAFLUOROPROPYLENE OXIDE DIMER ACID (HFPO-
DA)","","","TRG","Yes","N","U","Y","0.00238","0.00296","0.00395","UG_L","UG_L","","","","","","","","","","",""," " "" "" "" "" ""
"A000MW42S-20200212","537_MOD","02/21/20","02:40","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
(PFHPA)","",",",TRG","Yes","N","U","Y","0.00135","0.00198","0.00395","UG_L","UG_L","","",","","","",","","","" "" "" """ "" "" "" ""
"A000MW42S-20200212","537_MOD","02/21/20","02:40","N","NA","000","919005-14-4","4,8-DIOXA-3H-
PERFLUORONONANOIC ACID
(ADONA)","","","TRG","Yes","N","U","Y","0.00135","0.00198","0.00395","UG_L","UG_L","","","","","","","","","", "" "" "" "" "" "" "" ""
"A000MW42S-20200212","537_MOD","02/21/20","02:40","N","NA","000","355-46-
4","PERFLUOROHEXANESULFONIC ACID
(PFHXS)","0.0302","","TRG","Yes","Y","","Y","0.00135","0.00198","0.00395","UG_L","UG_L","","","","","","","","" "" "" "" "" "" "" "" "" ""
"A000MW42S-20200212","537_MOD","02/21/20","02:40","N","NA","000","335-67-1","PERFLUOROOCTANOIC
ACID
(PFOA)","0.00366","","TRG","Yes","Y","J","Y","0.00135","0.00198","0.00395","UG_L","UG_L","","","","","","",""," " "" "" "" " " " " " " " "" "" ""
"A000MW42S-20200212","537_MOD","02/21/20","02:40","N","NA","000","375-95-1","PERFLUORONONANOIC ACID
(PFNA)","","","TRG","Yes","N","U","Y","0.00135","0.00198","0.00395","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" " "" ""
"A000MW42S-20200212","537_MOD","02/21/20","02:40","N","NA","000","1763-23-
1","HEPTADECAFLUOROACT̄ANESULFONIC ACID SOLUTION ","0.00333","","TRG","Yes","Y","J,
Q","Y","0.00135","0.00198","0.00395","UG_L","UG_L","","","","","","","","","",","","","","","","",""
"A000MW42S-20200212","537_MOD","02/21/20","02:40","N","NA","000","756426-58-1","9-
CHLOROHEXADECAFLUORO-3-OXANONE-1-SULFONIC ACID (9Cl-
PF3ONS)","","","TRG","Yes","N","U","Y","0.00135","0.00198","0.00395","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"A000MW42S-20200212","537_MOD","02/21/20","02:40","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
(PFDA)","","","TRG","Yes","N","U","Y","0.00135","0.00198","0.00395","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" "" ""
"A000MW42S-20200212","537 MOD","02/21/20","02:40","N","NA","000","2355-31-
9","MeFOSAA","","","TRG","Yes","N","U","Y","0.00135","0.00198","0.00395","UG_L","UG_L","","","","","","",""," ","","","","","","","","","
"A000MW42S-20200212","537_MOD","02/21/20","02:40","N","NA","000","2991-50-
6","EtFOSAA","","","TRG","Yes","N","U","Y","0.00135","0.00198","0.00395","UG_L","UG_L","","","","","","","","", "" "","","","","","""","
"A000MW42S-20200212","537_MOD","02/21/20","02:40","N","NA","000","2058-94-
8","PERFLUOROUNDECANOIC ACID
(PFUNA)","","","TRG","Yes","N","U","Y","0.00135","0.00198","0.00395","UG_L","UG_L","","","","","","","","",""," " "", "","" "" "" "" ""
"A000MW42S-20200212","537_MOD","02/21/20","02:40","N","NA","000","763051-92-9","11-
CHLOROEICOSAFLUORO-3-OXAUNDECANE-1-SULFONIC ACID (11Cl-
PF3OUdS)","","","TRG","Yes","N","U","Y","0.00135","0.00198","0.00395","UG_L","UG_L","","","","","","","","","", "" "" "" "" "" "" "" ""
"A000MW42S-20200212","537_MOD","02/21/20","02:40","N","NA","000","307-55-
1","PERFLUORODODECANOIC ACID
(PFDOA)","","","TRG","Yes","N","U","Y","0.00135","0.00198","0.00395","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" " "" ""
"A000MW42S-20200212","537_MOD","02/21/20","02:40","N","NA","000","72629-94-
8","PFTrDA","","","TRG","Yes","N","U","Y","0.00135","0.00198","0.00395","UG_L","UG_L","","","","","","","",""," ","","","","","","","","
"A000MW42S-20200212","537_MOD","02/21/20","02:40","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.00135","0.00198","0.00395","UG L","UG L","","","","","","","",""," " "" "" "" "" "" " " " " " ""
"A000MW42S-20200212","537_MOD","02/21/20","02:40","N","NA","000","13C3-PFBS","13C3-
PFBS","103","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","103","103","","","","","","50","150","","" ""","
"A000MW42S-20200212","537_MOD","02/21/20","02:40","N","NA","000","13C3-HFPO-DA","13C3-HFPO-
DA","105","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","105","105","","","","","","50","150","",""," " ""
"A000MW42S-20200212","537_MOD","02/21/20","02:40","N","NA","000","13C2-PFHxA","13C2-
PFHxA","106","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","106","106","","","","","","50","150","",
"A000MW42S-20200212","537_MOD","02/21/20","02:40","N","NA","000","13C4-PFHpA","13C4-
PFHpA","95.5","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","95.5","95.5","","","","","","50","150"," " "" "" ""
"A000MW42S-20200212","537_MOD","02/21/20","02:40","N","NA","000","13C3-PFHxS","13C3-
PFHxS","104","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","104","104","","","","","","50","150","", "" "" ""
"A000MW42S-20200212","537_MOD","02/21/20","02:40","N","NA","000","13C5-PFNA","13C5-
PFNA","90.1","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","90.1","90.1","","","","","","50","150","" "" "" ""
"A000MW42S-20200212","537_MOD","02/21/20","02:40","N","NA","000","13C2-PFOA","13C2-
PFOA","99.3","","IS","Yes","Y","","Y","","","","PCT REC","","","","","100","99.3","99.3","","","","","","50","150","" "" "" ""
"A000MW42S-20200212","537_MOD","02/21/20","02:40","N","NA","000","13C8-PFOS","13C8-
PFOS","98.5","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","98.5","98.5","","","","","","50","150","", "" "" ""
"A000MW42S-20200212","537_MOD","02/21/20","02:40","N","NA","000","13C2-PFDA","13C2-
PFDA","107","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","107","107","","","","","","50","150",""," " "" ""
"A000MW42S-20200212","537_MOD","02/21/20","02:40","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","96.3","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","96.3","96.3","","","","","","50","15 0","","","",""
"A000MW42S-20200212","537_MOD","02/21/20","02:40","N","NA","000","13C2-PFUnA","13C2-
PFUnA","102","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","102","102","","","","","","50","150","", "" "" ""
"A000MW42S-20200212","537_MOD","02/21/20","02:40","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","89.5","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","89.5","89.5","","","","","","50","150 " "" "" "" ""
"A000MW42S-20200212","537_MOD","02/21/20","02:40","N","NA","000","13C2-PFDoA","13C2-
PFDoA","72.8","","IS","Yes","Y","","Y","","","","PCT REC","","","","","100","72.8","72.8","","","","","","50","150"," " "" "" ""
"A000MW42S-20200212","537_MOD","02/21/20","02:40","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","90.0","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","90.0","90.0","","","","","","50","150" "" "" "" ""
"B0B0118-BLK1","537_MOD","02/20/20","22:28","N","NA","000","375-73-
5","PFBS","","","TRG","Yes","N","U","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","","","","","",""," "," "" "" "" "" "" ""
"B0B0118-BLK1","537_MOD","02/20/20","22:28","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID (PFHXA)","","","TRG","Yes","N","U","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","","","","","","","

"B0B0118-BLK1","537_MOD","02/20/20","22:28","N","NA","000","13252-13-6","HEXAFLUOROPROPYLENE OXIDE DIMER ACID (HFPO-
DA)","","","TRG","Yes","N","U","Y","0.00241","0.00300","0.00400","UG_L","UG_L","","","","","","","","","","",""," " "" "" "" "" ""
"B0B0118-BLK1","537_MOD","02/20/20","22:28","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID (PFHPA)","","","TRG","Yes","N","U","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","","","","","","","" "" "" "" "" "" "" ""
"B0B0118-BLK1","537_MOD","02/20/20","22:28","N","NA","000","919005-14-4","4,8-DIOXA-3H-
PERFLUORONONANOIC ACID
(ADONA)","","","TRG","Yes","N","U","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","","","","","","", "" "" "" "" "" "" " "" ""
"B0B0118-BLK1","537_MOD","02/20/20","22:28","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC ACID
(PFHXS)","","","TRG","Yes","N","U","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","",","","","",","","","" "" "" "" "" "" "" ""
"B0B0118-BLK1","537_MOD","02/20/20","22:28","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID (PFOA)","","","TRG","Yes","N","U","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" " "" ""
"B0B0118-BLK1","537_MOD","02/20/20","22:28","N","NA","000","375-95-1","PERFLUORONONANOIC ACID (PFNA)","","","TRG","Yes","N","U","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","","","","","","","", "" "" "" "" " " " " " " "
"B0B0118-BLK1","537_MOD","02/20/20","22:28","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","",",",TRG","Yes","N","U","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","",","","","",","","","",","",""," " "" "" ""
"B0B0118-BLK1","537_MOD","02/20/20","22:28","N","NA","000","756426-58-1","9-
CHLOROHEXADECAFLUORO-3-OXANONE-1-SULFONIC ACID (9Cl-
PF3ONS)","",",","TRG","Yes","N","U","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","",","","","",","",""," " "" "" "" "" "" "" ""
"B0B0118-BLK1","537_MOD","02/20/20","22:28","N","NA","000","335-76-2","PERFLUORODECANOIC ACID (PFDA)","",",","TRG","Yes","N","U","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","",","","","",","","",

"B0B0118-BLK1","537_MOD","02/20/20","22:28","N","NA","000","2355-31-
9","MeFOSAA","",",",TRG","Yes","N","U","Y","0.00137","0.00200","0.00400","UG_L","UG_L",","","","",","",""," " "" "" "" "" "" "" "" "" ""
"B0B0118-BLK1","537_MOD","02/20/20","22:28","N","NA","000","2991-50-
6","EtFOSAA","",",",TRG","Yes","N","U","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","",","","","","", "" "" "" "" "" "" "" "" ""
"B0B0118-BLK1","537 MOD","02/20/20","22:28","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC
ACID
(PFUNA)","",",","TRG","Yes","N","U","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","",","","","","",","","

"B0B0118-BLK1","537_MOD","02/20/20","22:28","N","NA","000","763051-92-9","11-CHLOROEICOSAFLUORO-3-OXAUNDECANE-1-SULFONIC ACID (11Cl-
PF3OUdS)",",",","TRG","Yes","N","U","Y","0.00137","0.00200","0.00400","UG_L","UG_L","",","","","",","","","", "" "" "" "" "" "" "" ""
"B0B0118-BLK1","537_MOD","02/20/20","22:28","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID (PFDOA)","",",","TRG","Yes","N","U","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","",","","","",",""," " "" "" "" "" "" "" ""
"B0B0118-BLK1","537_MOD","02/20/20","22:28","N","NA","000","72629-94-
8","PFTrDA",",",","TRḠ","Yes","N","U","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","",","","","","",""," " "" "" "" "" "" "" "" ""
"B0B0118-BLK1","537_MOD","02/20/20","22:28","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.00137","0.00200","0.00400","UG_L","UG_L","",","","",","","","","
"B0B0118-BLK1","537_MOD","02/20/20","22:28","N","NA","000","13C3-PFBS","13C3-
PFBS","93.9","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","93.9","93.9","","","","","","50","150","", "" "" ""
"B0B0118-BLK1","537_MOD","02/20/20","22:28","N","NA","000","13C3-HFPO-DA","13C3-HFPO-
DA","87.6","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","87.6","87.6","","","","","","50","150","","" "" ""
"B0B0118-BLK1","537_MOD","02/20/20","22:28","N","NA","000","13C2-PFHxA","13C2-
PFHxA","83.5","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","83.5","83.5","","","","","","50","150"," " "" "" ""
"B0B0118-BLK1","537_MOD","02/20/20","22:28","N","NA","000","13C4-PFHpA","13C4-
PFHpA","84.5","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","84.5","84.5","","","","","","50","150"," " "" "" ""
"B0B0118-BLK1","537_MOD","02/20/20","22:28","N","NA","000","13C3-PFHxS","13C3-
PFHxS","89.6","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","89.6","89.6","","","","","","50","150"," " "" "" ""
"B0B0118-BLK1","537_MOD","02/20/20","22:28","N","NA","000","13C5-PFNA","13C5-
PFNA","78.0","","IS","Yes","Y","","Y","","",","PCT_REC","","","",","100","78.0","78.0","","","","","","50","150","" "" "" ""
"B0B0118-BLK1","537_MOD","02/20/20","22:28","N","NA","000","13C2-PFOA","13C2-
PFOA","89.5","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","89.5","89.5","","","","","","50","150","" "" "" ""
"B0B0118-BLK1","537_MOD","02/20/20","22:28","N","NA","000","13C8-PFOS","13C8-
PFOS","91.6","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","91.6","91.6","","","","","","50","150","", "" "" ""
"B0B0118-BLK1","537_MOD","02/20/20","22:28","N","NA","000","13C2-PFDA","13C2-
PFDA","95.9","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","95.9","95.9","","","","","","50","150","" "" "" ""
"B0B0118-BLK1","537_MOD","02/20/20","22:28","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","84.2","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","84.2","84.2","","","","","","50","15 0","","","",""
"B0B0118-BLK1","537_MOD","02/20/20","22:28","N","NA","000","13C2-PFUnA","13C2-
PFUnA","100","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","100","100","","","","","","50","150","", "" "" ""
"B0B0118-BLK1","537_MOD","02/20/20","22:28","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","78.2","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","78.2","78.2","","","","","","50","150 " "" "" "" ""
"B0B0118-BLK1","537_MOD","02/20/20","22:28","N","NA","000","13C2-PFDoA","13C2-
PFDoA","73.3","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","73.3","73.3","","","","",","50","150"," ","" "" ""
"B0B0118-BLK1","537_MOD","02/20/20","22:28","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","79.9","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","79.9","79.9","","","","","","50","150" "" "" "" ""
"B0B0118-BS1","537_MOD","02/20/20","22:39","N","NA","000","375-73-
5","PFBS","0.0400","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","",","0.0400","0. 0400","100","","","","","","72","130","","","",""
"B0B0118-BS1","537_MOD","02/20/20","22:39","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID (PFHXA)","0.0388","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","0.0400","0. 0388","97.1","","","","","","72","129","","","",""
"B0B0118-BS1","537_MOD","02/20/20","22:39","N","NA","000","13252-13-6","HEXAFLUOROPROPYLENE OXIDE DIMER ACID (HFPO-
DA)","0.0379","","TRG","Yes","Y","","Y","0.00241","0.00300","0.00400","UG_L","UG_L","","","","0.0400","0.0379 ","94.8","","","","","","70","130","","","",""
"B0B0118-BS1","537_MOD","02/20/20","22:39","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID
(PFHPA)","0.0365","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","",","","0.0400","0. 0365","91.3",,","","","","","72","130","","","",""
"B0B0118-BS1","537_MOD","02/20/20","22:39","N","NA","000","919005-14-4","4,8-DIOXA-3H-
PERFLUORONONANOIC ACID
(ADONA)","0.0359","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","",","","0.0400","0 .0359","89.7","","","","","","70","130","","","",""
"B0B0118-BS1","537_MOD","02/20/20","22:39","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC ACID
(PFHXS)","0.0393","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","",","","0.0400","0. 0393","98.2","","","","","","68","131","","","",""
"B0B0118-BS1","537_MOD","02/20/20","22:39","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID (PFOA)","0.0355","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","",","0.0400","0.0 355","88.7","","","","","","71","133","","","",""
"B0B0118-BS1","537_MOD","02/20/20","22:39","N","NA","000","375-95-1","PERFLUORONONANOIC ACID (PFNA)","0.0372","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","",","0.0400","0.0 372","93.1","","","","",",",69","130","","","",""
"B0B0118-BS1","537_MOD","02/20/20","22:39","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","0.0369","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","",","0.0400","0.0369","92 .2","","","","","","65","140","","","",""
"B0B0118-BS1","537_MOD","02/20/20","22:39","N","NA","000","756426-58-1","9-
CHLOROHEXADECAFLUORO-3-OXANONE-1-SULFONIC ACID (9Cl-
PF3ONS)","0.0344","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","",","0.0400","0. 0344","86.1","","","","","","70","130","","","",""
"B0B0118-BS1","537_MOD","02/20/20","22:39","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
(PFDA)","0.0405","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","",","0.0400","0.0 405","101","","","","",","71","129","","","",""
"B0B0118-BS1","537_MOD","02/20/20","22:39","N","NA","000","2355-31-
9","MeFOSAA","0.0346","","TRG","Yes","Y",",""Y","0.00137","0.00200","0.00400","UG_L","UG_L","","",","0.040 0","0.0346","86.5","","","","","","65","136","","","",""
"B0B0118-BS1","537_MOD","02/20/20","22:39","N","NA","000","2991-50-
6","EtFOSAA","0.0385","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","",","0.0400 ","0.0385","96.2","","","","",",","61","135","","","",""
"B0B0118-BS1","537_MOD","02/20/20","22:39","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID (PFUNA)","0.0350","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","",","0.0400","0. 0350","87.5","","","","","","69","133","","","",""
"B0B0118-BS1","537_MOD","02/20/20","22:39","N","NA","000","763051-92-9","11-CHLOROEICOSAFLUORO-3-OXAUNDECANE-1-SULFONIC ACID (11Cl-
PF3OUdS)","0.0459","","TRG","Yes","Y",",",Y","0.00137","0.00200","0.00400","UG_L","UG_L","",","","0.0400"," 0.0459","115","","","","",","70","130","","","",""
"B0B0118-BS1","537_MOD","02/20/20","22:39","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID (PFDOA)","0.0421","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L",","","","0.0400","0. 0421"," 105 ","","","","","","72","134","","","",""
"B0B0118-BS1","537_MOD","02/20/20","22:39","N","NA","000","72629-94-
8","PFTrDA","0.0381","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","",","","0.0400", "0.0381","95.2","","","","","","65","144","","","",""
"B0B0118-BS1","537_MOD","02/20/20","22:39","N","NA","000","376-06-
7","PFTeDA","0.0389","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","",","","0.0400", "0.0389","97.3","","","","","","71","132","","","",""
"B0B0118-BS1","537_MOD","02/20/20","22:39","N","NA","000","13C3-PFBS","13C3-
PFBS","88.9","","IS","Yes","Y","","Y","",","","PCT_REC","","","","","100","88.9","88.9","","",","","","50","150","", "" "" ""
"B0B0118-BS1","537_MOD","02/20/20","22:39","N","NA","000","13C3-HFPO-DA","13C3-HFPO-
DA","81.0","","IS","Yes","Y","","Y","","",","PCT_REC",","","",","100","81.0","81.0","",","","",","50","150","",""
"B0B0118-BS1","537_MOD","02/20/20","22:39","N","NA","000","13C2-PFHxA","13C2-
PFHxA","84.6","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","84.6","84.6","","","","","","50","150"," " "" "" ""
"B0B0118-BS1","537_MOD","02/20/20","22:39","N","NA","000","13C4-PFHpA","13C4-
PFHpA","83.7","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","83.7","83.7","","","","","","50","150"," " "" "" ""
"B0B0118-BS1","537_MOD","02/20/20","22:39","N","NA","000","13C3-PFHxS","13C3-
PFHxS","75.7","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","75.7","75.7","","","","","","50","150"," " "" "" ""
"B0B0118-BS1","537_MOD","02/20/20","22:39","N","NA","000","13C5-PFNA","13C5-
PFNA","82.9","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","82.9","82.9","","","","","","50","150","" "" "" ""
"B0B0118-BS1","537_MOD","02/20/20","22:39","N","NA","000","13C2-PFOA","13C2-
PFOA","86.1","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","86.1","86.1","","","","","","50","150","" """""""
"B0B0118-BS1","537_MOD","02/20/20","22:39","N","NA","000","13C8-PFOS","13C8-
PFOS","89.1","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","89.1","89.1","","","","","","50","150","", "" "" ""
"B0B0118-BS1","537_MOD","02/20/20","22:39","N","NA","000","13C2-PFDA","13C2-
PFDA","86.2","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","86.2","86.2","","","","","","50","150","" "" "" ""
"B0B0118-BS1","537_MOD","02/20/20","22:39","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","84.0","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","84.0","84.0","","","","","","50","15 0","","","",""
"B0B0118-BS1","537_MOD","02/20/20","22:39","N","NA","000","13C2-PFUnA","13C2-
PFUnA","90.9","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","90.9","90.9","","","","",","50","150"," " "" "" ""
"B0B0118-BS1","537_MOD","02/20/20","22:39","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","76.7","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","76.7","76.7","","","","","","50","150 " "" "" "" " ""
"B0B0118-BS1","537_MOD","02/20/20","22:39","N","NA","000","13C2-PFDoA","13C2-
PFDoA","71.1","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","71.1","71.1","","","","","","50","150"," " "" "" ""
"B0B0118-BS1","537_MOD","02/20/20","22:39","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","78.1","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","78.1","78.1","","","","","","50","150" "" "" "" ""
"B0B0118-MS1","537_MOD","02/20/20","22:49","N","NA","000","375-73-
5","PFBS","0.100","","TRG","Yes","Y","","Y","0.00133","0.00194","0.00387","UG_L","UG_L","","","0.0513","0.038 7","0.100","126","","","","","","72","130","","","",""
"B0B0118-MS1","537_MOD","02/20/20","22:49","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID (PFHXA)","0.670","","TRG","Yes","Y","","Y","0.00133","0.00194","0.00387","UG_L","UG_L","","","0.628","0.0387 ","0.670","111","","","","","","72","129","","","",""
"B0B0118-MS1","537_MOD","02/20/20","22:49","N","NA","000","13252-13-6","HEXAFLUOROPROPYLENE OXIDE DIMER ACID (HFPO-
DA)","0.0386","","TRG","Yes","Y","","Y","0.00233","0.00291","0.00387","UG_L","UG_L","","","","0.0387","0.0386 ","99.8","","","","","","70","130","","","",""
"B0B0118-MS1","537_MOD","02/20/20","22:49","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID (PFHPA)","0.273","","TRG","Yes","Y","","Y","0.00133","0.00194","0.00387","UG_L","UG_L","","","0.226","0.0387 ","0.273","119","","","","","","72","130","","","",""
"B0B0118-MS1","537_MOD","02/20/20","22:49","N","NA","000","919005-14-4","4,8-DIOXA-3H-
PERFLUORONONANOIC ACID
(ADONA)","0.0381","","TRG","Yes","Y","","Y","0.00133","0.00194","0.00387","UG_L","UG_L","","","","0.0387","0 .0381","98.4","","","","","","70","130","","","",""
"B0B0118-MS1","537_MOD","02/20/20","22:49","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC ACID
(PFHXS)","0.401","","TRG","Yes","Y","H","Y","0.00133","0.00194","0.00387","UG_L","UG_L","","","0.333","0.038 7","0.401","174","","","","","","68","131","","+","",""
"B0B0118-MS1","537_MOD","02/20/20","22:49","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID (PFOA)","0.350","","TRG","Yes","Y","","Y","0.00133","0.00194","0.00387","UG_L","UG_L","","","0.303","0.0387", "0.350","123","","","","","","71","133","","","",""
"B0B0118-MS1","537_MOD","02/20/20","22:49","N","NA","000","375-95-1","PERFLUORONONANOIC ACID (PFNA)","0.0402","","TRG","Yes","Y","","Y","0.00133","0.00194","0.00387","UG_L","UG_L","","","0.00140","0.03 87","0.0402","100","","","","","","69","130","","","",""
"B0B0118-MS1","537_MOD","02/20/20","22:49","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","0.0498","","TRG","Yes","Y","","Y","0.00133","0.00194","0.00387","UG_L","UG_L","","","0.00993","0.0387","0.0 498","103","","","","","","65","140","","","",""
"B0B0118-MS1","537_MOD","02/20/20","22:49","N","NA","000","756426-58-1","9-
CHLOROHEXADECAFLUORO-3-OXANONE-1-SULFONIC ACID (9Cl-
PF3ONS)","0.0357","","TRG","Yes","Y","","Y","0.00133","0.00194","0.00387","UG_L","UG_L","","","","0.0387","0. 0357","92.2","","","","","","70","130","","","",""
"B0B0118-MS1","537_MOD","02/20/20","22:49","N","NA","000","335-76-2","PERFLUORODECANOIC ACID
(PFDA)","0.0399","","TRG","Yes","Y","","Y","0.00133","0.00194","0.00387","UG_L","UG_L","","","","0.0387","0.0 399","103","","","","","","71","129","","","",""
"B0B0118-MS1","537_MOD","02/20/20","22:49","N","NA","000","2355-31-
9","MeFOSAA","0.0357","","TRG","Yes","Y","","Y","0.00133","0.00194","0.00387","UG_L","UG_L","","","","0.038 7","0.0357","92.2","","","","","","65","136","","","",""
"B0B0118-MS1","537_MOD","02/20/20","22:49","N","NA","000","2991-50-
6","EtFOSAA","0.0379̄","","TRG","Yes","Y","","Y","0.00133","0.00194","0.00387","UG_L","UG_L","","","","0.0387 ","0.0379","98.0","","","","","","61","135","","","",""
"B0B0118-MS1","537_MOD","02/20/20","22:49","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID (PFUNA)","0.0350","","TRG","Yes","Y","","Y","0.00133","0.00194","0.00387","UG_L","UG_L","","","","0.0387","0. 0350","90.4","","","","","","69","133","","","",""
"B0B0118-MS1","537_MOD","02/20/20","22:49","N","NA","000","763051-92-9","11-CHLOROEICOSAFLUORO-3-OXAUNDECANE-1-SULFONIC ACID (11Cl-
PF3OUdS)","0.0443","","TRG","Yes","Y","","Y","0.00133","0.00194","0.00387","UG_L","UG_L","","","","0.0387"," 0.0443","114","","",","","","70","130","","","",""
"B0B0118-MS1","537_MOD","02/20/20","22:49","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID (PFDOA)","0.0429","","TRG","Yes","Y","","Y","0.00133","0.00194","0.00387","UG_L","UG_L","","","","0.0387","0. 0429","111","","","","","","72","134","","","",""
"B0B0118-MS1","537_MOD","02/20/20","22:49","N","NA","000","72629-94-
8","PFTrDA","0.0380","","TRG","Yes","Y","","Y","0.00133","0.00194","0.00387","UG_L","UG_L","","","","0.0387", "0.0380","98.2","","","","","","65","144","","","",""
"B0B0118-MS1","537_MOD","02/20/20","22:49","N","NA","000","376-06-
7","PFTeDA","0.0338","","TRG","Yes","Y","","Y","0.00133","0.00194","0.00387","UG_L","UG_L","","","","0.0387", "0.0338","87.2","","","","","","71","132","","","",""
"B0B0118-MS1","537_MOD","02/20/20","22:49","N","NA","000","13C3-PFBS","13C3-
PFBS","88.6","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","88.6","88.6","","","","","","50","150","", "" "" ""
"B0B0118-MS1","537_MOD","02/20/20","22:49","N","NA","000","13C3-HFPO-DA","13C3-HFPO-
DA","97.0","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","97.0","97.0","","","","","","50","150","","" "" ""
"B0B0118-MS1","537 MOD","02/20/20","22:49","N","NA","000","13C2-PFHxA","13C2-
PFHxA","93.0","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","93.0","93.0","","","","","","50","150"," "," "" ""
"B0B0118-MS1","537_MOD","02/20/20","22:49","N","NA","000","13C4-PFHpA","13C4-
PFHpA","82.2","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","82.2","82.2","","","","","","50","150","
"B0B0118-MS1","537_MOD","02/20/20","22:49","N","NA","000","13C3-PFHxS","13C3-
PFHxS","84.1","","IS","Yes","Y","","Y","","",","PCT_REC","","","",","100","84.1","84.1","","","","","","50","150"," " "" "" ""
"B0B0118-MS1","537 MOD","02/20/20","22:49","N","NA","000","13C5-PFNA","13C5-
PFNA","83.2","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","83.2","83.2","","","","","","50","150","" "" "" ""
"B0B0118-MS1","537_MOD","02/20/20","22:49","N","NA","000","13C2-PFOA","13C2-
PFOA","86.1","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","86.1","86.1","","","",","","50","150","" "" "" ""
"B0B0118-MS1","537_MOD","02/20/20","22:49","N","NA","000","13C8-PFOS","13C8-
PFOS","80.7","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","80.7","80.7","","","","","","50","150","", "" "'" "'"
"B0B0118-MS1","537_MOD","02/20/20","22:49","N","NA","000","13C2-PFDA","13C2-
PFDA","85.5","","IS","Yes","Y","","Y","","","","PCT REC","","","","","100","85.5","85.5","","","",","","50","150","" "" "" ""
"B0B0118-MS1","537_MOD","02/20/20","22:49","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","83.9","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","83.9","83.9","","","","","","50","15 0","","","",""
"B0B0118-MS1","537_MOD","02/20/20","22:49","N","NA","000","13C2-PFUnA","13C2-
PFUnA","83.2","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","83.2","83.2","","","","","","50","150"," " "" "" ""
"B0B0118-MS1","537_MOD","02/20/20","22:49","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","76.4","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","76.4","76.4","","","","","","50","150

"B0B0118-MS1","537_MOD","02/20/20","22:49","N","NA","000","13C2-PFDoA","13C2-
PFDoA","65.3","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","65.3","65.3","","","","","","50","150"," " "" "" ""
"B0B0118-MS1","537_MOD","02/20/20","22:49","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","68.4","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","68.4","68.4","","","","","","50","150"

"B0B0118-MSD1","537_MOD","02/20/20","23:00","N","NA","000","375-73-
5","PFBS","0.0986","","TRG","Yes","Y","","Y","0.00135","0.00198","0.00395","UG_L","UG_L","","","0.0513","0.03 95","0.0986","120","0.100","0.0395","0.0986","120","4.88","72","130","30","","",""
"B0B0118-MSD1","537_MOD","02/20/20","23:00","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID (PFHXA)","0.655","","TRG","Yes","Y","H","Y","0.00135","0.00198","0.00395","UG_L","UG_L","","","0.628","0.03 95","0.655","69.2","0.670","0.0395","0.655","69.2","46.4","72","129","30","","*","*"
"B0B0118-MSD1","537_MOD","02/20/20","23:00","N","NA","000","13252-13-6","HEXAFLUOROPROPYLENE OXIDE DIMER ACID (HFPO-
DA)","0.0378","","TRG","Yes","Y","","Y","0.00238","0.00296","0.00395","UG_L","UG_L","","","","0.0395","0.0378 ","95.7","0.0386","0.0395","0.0378","95.7","4.19","70","130","30","","",""
"B0B0118-MSD1","537_MOD","02/20/20","23:00","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID (PFHPA)","0.257","","TRG","Yes","Y","H","Y","0.00135","0.00198","0.00395","UG_L","UG_L","","","0.226","0.039 5","0.257","77.9","0.273","0.0395","0.257","77.9","41.7","72","130","30","","","*"
"B0B0118-MSD1","537_MOD","02/20/20","23:00","N","NA","000","919005-14-4","4,8-DIOXA-3H-
PERFLUORONONANOIC ACID
(ADONA)","0.0356","","TRG","Yes","Y","","Y","0.00135","0.00198","0.00395","UG_L","UG_L","","","","0.0395","0 .0356","90.1","0.0381","0.0395","0.0356","90.1","8.81","70","130","30","","",""
"B0B0118-MSD1","537_MOD","02/20/20","23:00","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC ACID
(PFHXS)","0.385","","TRG","Yes","Y","H","Y","0.00135","0.00198","0.00395","UG_L","UG_L","","","0.333","0.039 5","0.385","132","0.401","0.0395","0.385","132","27.5","68","131","30","","*",""
"B0B0118-MSD1","537_MOD","02/20/20","23:00","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID (PFOA)","0.349","","TRG","Yes","Y","","Y","0.00135","0.00198","0.00395","UG_L","UG_L","","","0.303","0.0395",
"0.349","116","0.350","0.0395","0.349","116","5.86","71","133","30","","",""
"B0B0118-MSD1","537_MOD","02/20/20","23:00","N","NA","000","375-95-1","PERFLUORONONANOIC ACID (PFNA)","0.0379","","TRG","Yes","Y","","Y","0.00135","0.00198","0.00395","UG_L","UG_L","","","0.00140","0.03 95","0.0379","92.5","0.0402","0.0395","0.0379","92.5","7.79","69","130","30","","",""
"B0B0118-MSD1","537_MOD","02/20/20","23:00","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","0.0447","","TRG","Yes","Y","","Y","0.00135","0.00198","0.00395","UG_L","UG_L","","","0.00993","0.0395","0.0 447","88.1","0.0498","0.0395","0.0447","88.1","15.6","65","140","30","","",""
"B0B0118-MSD1","537 MOD","02/20/20","23:00","N","NA","000","756426-58-1","9-
CHLOROHEXADECAFLUORO-3-OXANONE-1-SULFONIC ACID (9Cl-
PF3ONS)","0.0349","","TRG","Yes","Y","","Y","0.00135","0.00198","0.00395","UG_L","UG_L","","","","0.0395","0. 0349","88.3","0.0357","0.0395","0.0349","88.3","4.32","70","130","30","","",""
"B0B0118-MSD1","537_MOD","02/20/20","23:00","N","NA","000","335-76-2","PERFLUORODECANOIC ACID (PFDA)","0.0394","","TRG","Yes","Y","","Y","0.00135","0.00198","0.00395","UG_L","UG_L","","","","0.0395","0.0 394","99.7","0.0399","0.0395","0.0394","99.7","3.26","71","129","30","","",""
"B0B0118-MSD1","537_MOD","02/20/20","23:00","N","NA","000","2355-31-
9","MeFOSAA","0.0349","","TRG","Yes","Y","","Y","0.00135","0.00198","0.00395","UG_L","UG_L","","","","0.039 5","0.0349","88.4","0.0357","0.0395","0.0349","88.4","4.21","65","136","30","","",""
"B0B0118-MSD1","537_MOD","02/20/20","23:00","N","NA","000","2991-50-
6","EtFOSAA","0.0366","","TRG","Yes","Y","","Y","0.00135","0.00198","0.00395","UG_L","UG_L","","","","0.0395 ","0.0366","92.7","0.0379","0.0395","0.0366","92.7","5.56","61","135","30","","",""
"B0B0118-MSD1","537_MOD","02/20/20","23:00","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC
ACID
(PFUNA)","0.0352","","TRG","Yes","Y","","Y","0.00135","0.00198","0.00395","UG_L","UG_L","","","","0.0395","0. 0352","89.1","0.0350","0.0395","0.0352","89.1","1.45","69","133","30","","",""
"B0B0118-MSD1","537 MOD","02/20/20","23:00","N","NA","000","763051-92-9","11-CHLOROEICOSAFLUORO-3-OXAUNDECANE-1-SUUFONIC ACID (11Cl-
PF3OUdS)","0.0416","","TRG","Yes","Y","","Y","0.00135","0.00198","0.00395","UG_L","UG_L","","","","0.0395"," 0.0416","105","0.0443","0.0395","0.0416","105","8.22","70","130","30","","",""
"B0B0118-MSD1","537_MOD","02/20/20","23:00","N","NA","000","307-55-1","PERFLUORODODECANOIC
ACID
(PFDOA)","0.0410","","TRG","Yes","Y","","Y","0.00135","0.00198","0.00395","UG_L","UG_L","","","","0.0395","0. 0410","104","0.0429","0.0395","0.0410","104","6.51","72","134","30","","",""
"B0B0118-MSD1","537_MOD","02/20/20","23:00","N","NA","000","72629-94-
8","PFTrDA","0.0392","","TRG","Yes","Y","","Y","0.00135","0.00198","0.00395","UG_L","UG_L","","","","0.0395", "0.0392","99.2","0.0380","0.0395","0.0392","99.2","1.01","65","144","30","","",""
"B0B0118-MSD1","537_MOD","02/20/20","23:00","N","NA","000","376-06-
7","PFTeDA","0.0389","","TRG","Yes","Y","","Y","0.00135","0.00198","0.00395","UG_L","UG_L","","","","0.0395", "0.0389","98.5","0.0338","0.0395","0.0389","98.5","12.2","71","132","30","","",""
"B0B0118-MSD1","537 MOD","02/20/20","23:00","N","NA","000","13C3-PFBS","13C3-
PFBS","94.3","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","94.3","94.3","","","","","","50","150","", "" "" ""
"B0B0118-MSD1","537 MOD","02/20/20","23:00","N","NA","000","13C3-HFPO-DA","13C3-HFPO-
DA","107","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","107","107","","","","","","50","150","",""," " ""
"B0B0118-MSD1","537_MOD","02/20/20","23:00","N","NA","000","13C2-PFHxA","13C2-
PFHxA","104","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","104","104","","","","","","50","150","", "" "" ""
"B0B0118-MSD1","537 MOD","02/20/20","23:00","N","NA","000","13C4-PFHpA","13C4-
PFHpA","97.6","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","97.6","97.6","","","","","","50","150","
" "t" "" " "'
"B0B0118-MSD1","537_MOD","02/20/20","23:00","N","NA","000","13C3-PFHxS","13C3-
PFHxS","93.8","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","93.8","93.8","","","","","","50","150"," " "" "" ""
"B0B0118-MSD1","537_MOD","02/20/20","23:00","N","NA","000","13C5-PFNA","13C5-
PFNA","90.5","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","90.5","90.5","","","","","","50","150","" ,"","",""
"B0B0118-MSD1","537_MOD","02/20/20","23:00","N","NA","000","13C2-PFOA","13C2-
PFOA","97.5","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","97.5","97.5","","","","","","50","150","" "" "" ""
"B0B0118-MSD1","537_MOD","02/20/20","23:00","N","NA","000","13C8-PFOS","13C8-
PFOS","90.2","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","90.2","90.2","","","","","","50","150","", "","",""
"B0B0118-MSD1","537_MOD","02/20/20","23:00","N","NA","000","13C2-PFDA","13C2-
PFDA","92.8","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","92.8","92.8","","","","","","50","150","" "" "" ""
"B0B0118-MSD1","537_MOD","02/20/20","23:00","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","95.7","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","95.7","95.7","","","","","","50","15 0","","","",""
"B0B0118-MSD1","537_MOD","02/20/20","23:00","N","NA","000","13C2-PFUnA","13C2-
PFUnA","92.3","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","92.3","92.3","","","","","","50","150"," " "" "" ""
"B0B0118-MSD1","537_MOD","02/20/20","23:00","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","90.3","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","90.3","90.3","","","","","","50","150
","","","",""
"B0B0118-MSD1","537_MOD","02/20/20","23:00","N","NA","000","13C2-PFDoA","13C2-
PFDoA","71.3","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","71.3","71.3","","","","","","50","150"," ","","" ""
"B0B0118-MSD1","537_MOD","02/20/20","23:00","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","81.6","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","81.6","81.6","","","","","","50","150" ,"","","",""

Wood Environment \& Infrastructure Solutions, Inc.
March 20, 2020
7376 SW Durham Road
Portland, OR 97224
Attn: Ms. Kimberly Shiroodi
Kimberly.Shiroodi@woodplc.com
SUBJECT: MCAS El Toro \& Tustin PFAs, Data Validation
Dear Ms. Shiroodi,
Enclosed are the final validation reports for the fraction listed below. These SDGs were received on March 11, 2020. Attachment 1 is a summary of the samples that were reviewed for analysis.

\section*{LDC Project \#47508:}

\section*{SDG \#}

2000314,2000321,2000330
2000356,2000372,2000390

\section*{Fraction}

Perfluoroalkyl \& Polyfluoroalkyl Substances

The data validation was performed under Stage 4 guidelines. The analyses were validated using the following documents, as applicable to each method:
- Final Sampling and Analysis Plan for Per- and Polyfluoroalkyl Substances in Groundwater in Carve -Outs 2, 5, 6 \& 9 and Groundwater and Surface Water Near Operable Unit 3, Former Marine Corps Air Station Tustin, Tustin, California, with Addendum \#02 to Final Sampling and Analysis Plan for Per- and Polyfluoroalkyl Substances Sampling for Groundwater Remedial Action at Operable Unit 3, Installation Restoration Program Site 1, February 2020
- U.S. Department of Defense Quality Systems Manual for Environmental Laboratories, Version 5.3, 2019
- DoD General Validation Guidelines, February 2018

Please feel free to contact us if you have any questions.
Sincerely,


\section*{Pei Geng}

Pgeng@lab-data.com
Project Manager/Senior Chemist


\title{
Laboratory Data Consultants, Inc. Data Validation Report
}

\section*{Project/Site Name:}

\section*{LDC Report Date:}

Parameters:
Validation Level:
Laboratory:
Sample Delivery Group (SDG): 2000314
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Sample Identification } & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Laboratory Sample \\
Identification
\end{tabular}} & Matrix & \begin{tabular}{c} 
Collection \\
Date
\end{tabular} \\
\hline IO06MW03SR-20200212 & \(2000314-03\) & Water & \(02 / 12 / 20\) \\
\hline IO06MW05SR-20200212 & \(2000314-04\) & Water & \(02 / 12 / 20\) \\
\hline DUP01-20200212 & \(2000314-05\) & Water & \(02 / 12 / 20\) \\
\hline I006MW01S-20200212 & \(2000314-06\) & Water & \(02 / 12 / 20\) \\
\hline IO06MW08S-20200212 & \(2000314-07\) & Water & \(02 / 12 / 20\) \\
\hline BMW07S-20200212 & \(2000314-08\) & Water & \(02 / 12 / 20\) \\
\hline IO05MW01SR-20200212 & \(2000314-09\) & Water & \(02 / 12 / 20\) \\
\hline DUP05-20200212 & \(2000314-10\) & Water & \(02 / 12 / 20\) \\
\hline IS72MW15S-20200212 & \(2000314-11\) & Water & \(02 / 12 / 20\) \\
\hline IS72MW18SR-20200212 & \(2000314-12\) & Water & \(02 / 12 / 20\) \\
\hline 222MW02S-20200212 & \(2000314-13\) & Water & \(02 / 12 / 20\) \\
\hline DUP03-20200212 & \(2000314-14\) & Water & \(02 / 12 / 20\) \\
\hline A000MW42S-20200212 & \(2000314-15\) & Water & \(02 / 12 / 20\) \\
\hline IO06MW03SR-20200212MS & \(2000314-03 M S\) & Water & \(02 / 12 / 20\) \\
\hline I006MW03SR-20200212MSD & \(2000314-03 M S D\) & Water & \(02 / 12 / 20\) \\
\hline
\end{tabular}

\section*{Introduction}

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Per- and Polyfluoroalkyl Substances in Groundwater in Carve-Outs 2, 5, 6, and 9 and Groundwater and Surface Water Near Operable Unit 3, Former Marine Corps Air Station Tustin, Tustin, California, with Addendum \#02 to Final Sampling and Analysis Plan for Per- and Polyfluoroalkyl Substances Sampling for Groundwater Remedial Action at Operable Unit 3, Installation Restoration Program Site 1 (February 2020), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (February 2018). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:
Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) by Environmental Protection Agency (EPA) Method 537 Modified and LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

\section*{I. Sample Receipt and Technical Holding Times}

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

\section*{II. LC/MS Instrument Performance Check}

Instrument performance was checked and the requirements were met.

\section*{III. Initial Calibration and Initial Calibration Verification}

Initial calibration was performed as required by the methods.
The percent relative standard deviations (\%RSD) were less than or equal to \(20.0 \%\) for all compounds.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination \(\left(r^{2}\right)\) were greater than or equal to 0.990 .

For each calibration standard, all compounds were within \(70-130 \%\) of their true value.
The signal to noise \((\mathrm{S} / \mathrm{N})\) ratio was within validation criteria for all compounds.
Retention time windows were established as required by the methods.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to \(30.0 \%\) for all compounds.

\section*{IV. Continuing Calibration and Instrument Sensitivity Check}

Continuing calibration was performed at required frequencies.
The percent differences (\%D) were less than or equal to \(30.0 \%\) for all compounds.
The signal to noise \((S / N)\) ratio was within validation criteria for all compounds.
The percent differences (\%D) of the instrument sensitivity check (ISC) were less than or equal to \(30.0 \%\) for all compounds.

Retention times of all compounds in the calibration standards were within the established retention time windows.

\section*{V. Laboratory Blanks}

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

\section*{VI. Field Blanks}

Sample EB01-20200212 was identified as an equipment blank. No contaminants were found.

Sample SB01-20200212 was identified as a source blank. No contaminants were found.

\section*{VII. Matrix Spike/Matrix Spike Duplicates}

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. For I006MW03SR-20200212MS/MSD, no data were qualified for perfluorohexane sulfonic acid (PFHxS) percent recoveries (\%R) and Perfluorohexanoic acid (PFHxA) and Perfluoroheptanoic acid (PFHpA) relative percent differences (RPD) outside the QC limits since the parent sample results were greater than 4 X the spike concentration. All other relative percent differences (RPD) were within QC limits.

\section*{VIII. Laboratory Control Samples}

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (\%R) were within QC limits.

\section*{IX. Field Duplicates}

Samples I006MW05SR-20200212 and DUP01-20200212, samples I005MW01SR20200212 and DUP05-20200212, and samples 222MW02S-20200212 and DUP0320200212 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Compound} & \multicolumn{2}{|l|}{Concentration (ug/L)} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { RPD } \\
\text { (Limits) } \\
\hline
\end{gathered}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Difference } \\
\text { (Limits) } \\
\hline \hline
\end{gathered}
\]} & \multirow[b]{2}{*}{Flag} & \multirow[b]{2}{*}{A or P} \\
\hline & I006MW05SR-20200212 & DUP01-20200212 & & & & \\
\hline Perfluorobutanesulfonic acid (PFBS) & 0.0509 & 0.0556 & \(9(\leq 30)\) & - & - & - \\
\hline Perfluorohexanoic acid (PFHxA) & 0.129 & 0.130 & \(1(\leq 30)\) & - & - & - \\
\hline Perfluoroheptanoic acid (PFHpA) & 0.0436 & 0.0468 & \(7(\leq 30)\) & - & - & - \\
\hline Perfluorohexanesulfonic acid (PFHxS) & 0.215 & 0.205 & \(5(\leq 30)\) & - & - & - \\
\hline Perfluorooctanoic acid (PFOA) & 0.0464 & 0.0441 & \(5(\leq 30)\) & - & - & - \\
\hline Perfluorooctanesulfonic acid (PFOS) & 0.0182 & 0.0226 & \(22(\leq 30)\) & - & - & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Compound} & \multicolumn{2}{|l|}{Concentration (ug/L)} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { RPD } \\
\text { (Limits) } \\
\hline
\end{gathered}
\]} & \multirow[b]{2}{*}{Difference (Limits)} & \multirow[b]{2}{*}{Flag} & \multirow[b]{2}{*}{A or P} \\
\hline & I005MW01SR-20200212 & DUP05-20200212 & & & & \\
\hline Perfluorobutanesulfonic acid (PFBS) & 0.501 & 0.525 & \(5(\leq 30)\) & - & - & - \\
\hline Perfluorohexanoic acid (PFHXA) & 1.52 & 1.51 & 1 ( \(\leq 30\) ) & - & - & - \\
\hline Perfluoroheptanoic acid (PFHpA) & 0.395 & 0.411 & \(4(\leq 30)\) & - & - & - \\
\hline Perfluorohexanesulfonic acid (PFHxS) & 2.62 & 2.84 & \(8(\leq 30)\) & - & - & - \\
\hline Perfluorooctanoic acid (PFOA) & 3.76 & 4.15 & 10 ( 530 ) & - & - & - \\
\hline Perfluorononanoic acid (PFNA) & 0.0245 & 0.0267 & \(9(\leq 30)\) & - & - & - \\
\hline Perfluorooctanesulfonic acid (PFOS) & 1.08 & 1.11 & \(3(\leq 30)\) & - & - & - \\
\hline Perfluorodecanoic acid (PFDA) & 0.00196 U & 0.00176 & - & 0.0002 ( 50.00396 ) & - & - \\
\hline
\end{tabular}
\begin{tabular}{||c|c|c|c|c|c|c||}
\hline \hline \multirow{3}{*}{\begin{tabular}{c} 
Compound
\end{tabular}} & \multicolumn{2}{|c|}{\begin{tabular}{c} 
Concentration (ug/L)
\end{tabular}} & \begin{tabular}{c} 
RPD \\
Difference \\
(Limits)
\end{tabular} & Flag
\end{tabular} A or P \(\mid\)

\section*{X. Labeled Compounds}

All percent recoveries (\%R) for labeled compounds used to quantitate target compounds were within QC limits with the following exceptions:
\begin{tabular}{|c|c|c|c|c|c||}
\hline Sample & \begin{tabular}{c} 
Labeled \\
Compound
\end{tabular} & \%R (Limits) & \begin{tabular}{c} 
Affected \\
Compound
\end{tabular} & Flag & A or \(\mathbf{P}\) \\
\hline \hline IS72MW15S-20200212 & 13C2-PFTeDA & 34.4 (50-150) & Perfluorotetradecanoic acid (PFTeDA) & NA & - \\
\hline
\end{tabular}

\section*{XI. Compound Quantitation}

All compound quantitations met validation criteria.

\section*{XII. Target Compound Identifications}

All target compound identifications met validation criteria with the following exceptions:
\begin{tabular}{||l|l|c|c|c||}
\hline \multicolumn{1}{|c|}{\begin{tabular}{c|c|c|c||} 
Sample & & Compound & \begin{tabular}{c} 
lon Abundance Ratio \\
(Limits)
\end{tabular} \\
\hline BMW07S-20200212 & Perfluorodecanoic acid (PFDA) & \(50.940(4.8175-14.4525)\) & J (all detects)
\end{tabular} A} \\
\hline DUP03-20200212 & Perfluorooctanesulfonic acid (PFOS) & \(3.412(1.12-3.36)\) & J (all detects) & A \\
\hline A000MW42S-20200212 & Perfluorooctanesulfonic acid (PFOS) & \(9.108(1.12-3.36)\) & J (all detects) & A \\
\hline DUP05-20200212 & Perfluorodecanoic acid (PFDA) & \(14.922(4.8175-14.4525)\) & J (all detects) & A \\
\hline
\end{tabular}

\section*{XIII. System Performance}

The system performance was acceptable.

\section*{XIV. Overall Assessment of Data}

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to ion abundance ratio, data were qualified as estimated in four samples.
The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

MCAS El Toro and Tustin PFAS
Perfluoroalkyl \& Polyfluoroalkyl Substances - Data Qualification Summary - SDG 2000314
\begin{tabular}{||l|l|c|c|l||}
\hline \multicolumn{1}{|c|}{ Sample } & \multicolumn{1}{|c|}{ Compound } & & Flag & A or P
\end{tabular}

\section*{MCAS EI Toro and Tustin PFAS \\ Perfluoroalkyl \& Polyfluoroalkyl Substances - Laboratory Blank Data Qualification Summary - SDG 2000314}

No Sample Data Qualified in this SDG

\author{
MCAS EI Toro and Tustin PFAS \\ Perfluoroalkyl \& Polyfluoroalkyl Substances - Field Blank Data Qualification Summary - SDG 2000314
}

No Sample Data Qualified in this SDG

LDC \#: 47508A96

METHOD: LC/MS Perfluoroalkyl \& Polyfluoroalkyl Substances (EPA Method 537M DOD QSM 5.3)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

\(\begin{array}{ll}\text { Note: } & \\ & A=\text { Acceptable } \\ & N=\text { Not provided/applicable } \\ & S W=\text { See worksheet }\end{array}\)

ND = No compounds detected R = Rinsate FB = Field blank

D = Duplicate
\(\mathrm{TB}=\) Trip blank
EB = Equipment blank

SB=Source blank OTHER:
\begin{tabular}{||l|l|l|l|l||}
\hline & Client ID & Lab ID & Matrix & Date \\
\hline (SB0120200212 & \(2000314-01\) & Water & O2/12/20 \\
\hline 2 & EB01-20200212 & & Water & \(02 / 12 / 20\) \\
\hline 3 & I006MW03SR-20200212 & \(2000314-03\) & Water & \(02 / 12 / 20\) \\
\hline 4 & I006MW05SR-20200212 & \(2000314-04\) & Water & \(02 / 12 / 20\) \\
\hline 5 & DUP01-20200212 & \(2000314-05\) & Water & \(02 / 12 / 20\) \\
\hline 6 & I006MW01S-20200212 & \(2000314-06\) & Water & \(02 / 12 / 20\) \\
\hline 7 & I006MW08S-20200212 & \(2000314-07\) & Water & \(02 / 12 / 20\) \\
\hline 8 & BMW07S-20200212 & \(2000314-08\) & Water & \(02 / 12 / 20\) \\
\hline 9 & I005MW01SR-20200212 & \(2000314-09\) & Water & \(02 / 12 / 20\) \\
\hline 10 & DUP05-20200212 & \(2000314-10\) & Water & \(02 / 12 / 20\) \\
\hline 11 & IS72MW15S-20200212 & \(2000314-11\) & Water & \(02 / 12 / 20\) \\
\hline 12 & IS72MW18SR-20200212 & \(2000314-12\) & Water & \(02 / 12 / 20\) \\
\hline 13 & \(222 M W 02 S-20200212\) & \(2000314-13\) & Water & \(02 / 12 / 20\) \\
\hline 14 & DUP03-20200212 & \(2000314-14\) & Water & \(02 / 12 / 20\) \\
\hline 15 & A000MW42S-20200212 & \(2000314-15\) & Water & \(02 / 12 / 20\) \\
\hline
\end{tabular}

METHOD: LC/MS Perfluoroalkyl \& Polyfluoroalkyl Substances (EPA Method 537M DOD QSM 5.3)
\begin{tabular}{|l|l|l|l|l||}
\hline 16 & I006MW03SR-20200212MS & 2000314-03MS & Water \\
\hline 17 & I006MW03SR-20200212MSD & 2000314-03MSD & Water \\
\hline 18 & & & & \\
\hline 19 & & & & \\
\hline 20 & & & & \\
\hline
\end{tabular}

Notes:


\section*{VALIDATION FINDINGS CHECKLIST}

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3
\begin{tabular}{|c|c|c|c|c|}
\hline Validation Area & Yes & No & NA & Findings/Comments \\
\hline \multicolumn{5}{|l|}{1. Technical holding times} \\
\hline Were all technical holding times met? & \(\nearrow\) & & & \\
\hline Was cooler temperature criteria met? & \(\square\) & & & \\
\hline \multicolumn{5}{|l|}{II. LC/MS Instrument performance check} \\
\hline Were the instrument performance reviewed and found to be within the validation criteria? & \[
l
\] & & & \\
\hline \multicolumn{5}{|l|}{III. Initial calibration and Initial Calibration Verification} \\
\hline Did the laboratory perform a 5 point calibration prior to sample analysis? & \(\Gamma\) & & & \\
\hline Were all percent relative standard deviations (\%RSD) \(\leq 20 \%\) ? & \(\Gamma\) & & & \\
\hline Was a curve fit used for evaluation? If yes, did the initial calibration meet the coefficient of determination \(\left(r^{2}\right)\) criteria of \(\geq 0.990\) ? & \[
1
\] & & & \\
\hline Were all analytes within \(70-130 \%\) or percent differences (\%D) \(\leq 30 \%\) of their true value for each calibration standard? & \[
1
\] & & & \\
\hline Was the signal to noise \((\mathrm{S} / \mathrm{N})\) ratio for all compounds within the validation criteria? & \[
1
\] & & & \\
\hline Were the retention time windows properly established? & 7 & & & \\
\hline Was an initial calibration verification standard analyzed after each initial calibration for each instrument? & 1 & & & \\
\hline Were all percent differences (\%D) of the initial calibration verification \(\leq 30 \%\) ? & 7 & & & \\
\hline \multicolumn{5}{|l|}{IV. Continuing calibration and Instrument Sensitivity Check} \\
\hline Was a continuing calibration analyzed prior to sample analysis, after every 10 samples and at the end of the analytical sequence? &  & & & \\
\hline Were all percent differences (\%D) of the continuing calibration \(\leq 30 \%\) ? & 7 & & & \\
\hline Were all the retention times within the acceptance windows? & 7 & & & \\
\hline Was the signal to noise \((\mathrm{S} / \mathrm{N})\) ratio for all compounds within the validation criteria? & T & & & \\
\hline Were all percent differences (\%D) of the Instrument Sensitivity Check \(\leq 30 \%\) ? & & & & \\
\hline \multicolumn{5}{|l|}{V. Laboratory Blanks} \\
\hline Was a laboratory blank associated with every sample in this SDG? & 7 & & & \\
\hline Was a laboratory blank analyzed for each matrix and concentration? &  & & & \\
\hline Was there contamination in the laboratory blanks? & & 7 & & \\
\hline \multicolumn{5}{|l|}{VI. Field blanks} \\
\hline Were field blanks identified in this SDG? & & & & \\
\hline Were target compounds detected in the field blanks? & & & & \\
\hline \multicolumn{5}{|l|}{VII. Matrix spike/Matrix spike duplicates} \\
\hline Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG? & & & & \\
\hline Were the MS/MSD percent recoveries (\%R) and the relative percent differences (RPD) within the QC limits? & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline \multicolumn{5}{|l|}{\begin{tabular}{l}
LDC \#: \(4 \operatorname{soc} A 16\) VALIDATION FINDINGS CHECKLIST \(\qquad\) \\
Reviewer: \(\qquad\) \\
2nd Reviewer: \(\qquad\)
\end{tabular}} \\
\hline Validation Area & Yes & No & NA & Findings/Comments \\
\hline \multicolumn{5}{|l|}{VIII. Laboratory control samples} \\
\hline Was an LCS analyzed per extraction batch for this SDG? & \(\square\) & & & \\
\hline Were the LCS percent recoveries (\%R) and relative percent difference (RPD) within the QC limits? & / & & & \\
\hline \multicolumn{5}{|l|}{IX. Field duplicates} \\
\hline Were field duplicate pairs identified in this SDG? & 7 & & & \\
\hline \multicolumn{5}{|l|}{Were target compounds detected in the field duplicates?} \\
\hline \multicolumn{5}{|l|}{X. Labeled compounds} \\
\hline \multicolumn{5}{|l|}{Were labeled compound percent recoveries (\%R) within the QC limits?} \\
\hline \multicolumn{5}{|l|}{Were retention times within 0.4 minutes of the associated calibration standard?} \\
\hline \multicolumn{5}{|l|}{XI. Compound quantitation} \\
\hline \multicolumn{5}{|l|}{Did the laboratory reporting limits (i.e. DL, LOD, LOQ) meet the QAPP?} \\
\hline \multicolumn{5}{|l|}{Did reported results include both branched and linear isomers?} \\
\hline \multicolumn{5}{|l|}{Were the correct ion transition, labeled compound and relative response factor (RRF) used to quantitate the compound?} \\
\hline Were compound retention times within 0.1 minutes of the associated labeled compound for compounds with a labeled analog? & \[
1
\] & & & \\
\hline \multicolumn{5}{|l|}{Were compound quantitation and reporting limits adjusted to reflect all sample dilutions and dry weight factors applicable to Stage 4 validation?} \\
\hline \multicolumn{5}{|l|}{XII. Target compound identification} \\
\hline \multicolumn{5}{|l|}{Was the signal to noise \((\mathrm{S} / \mathrm{N})\) ratio for all compounds within the validation criteria?} \\
\hline \multicolumn{5}{|l|}{Were two transitions and the ion transition ratio per analyte monitored and documented with the exception of PFBA and PFPeA?} \\
\hline \multicolumn{5}{|l|}{Were ion ratios between \(50-150 \%\) ?} \\
\hline \multicolumn{5}{|l|}{XIII. System performance} \\
\hline \multicolumn{5}{|l|}{System performance was found to be acceptable.} \\
\hline \multicolumn{5}{|l|}{XIV. Overall assessment of Data} \\
\hline Overall assessment of data was found to be acceptable. & & & & \\
\hline
\end{tabular}

TARGET COMPOUND WORKSHEET
METHOD: PFOS/PFOAs


VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

METHOD: LC/MS PFAS (EPA Method 537M)
Please see qualifications below for all questions answered " N ". Not applicable questions are identified as " \(\mathrm{N} / \mathrm{A}\) ".
N N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) or duplicate sample analyzed for each matrix in this SDG?
\(\boxed{ } \downarrow\) N/A Was a MS/MSD analyzed every 20 samples of each matrix?
Y(N)N/A Were the MS/MSD percent recoveries (\%R) and the relative percent differences (RPD) within the QC limits?
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \# & Date & MS/MSD ID & Compound & \[
\begin{gathered}
\text { MS } \\
\text { \%R (Limits) } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { MSD } \\
\text { \%R(Limits) } \\
\hline \hline
\end{gathered}
\] & RPD (Limits) & Associated Samples & Qualifications \\
\hline & & \(16 / 17\) & \(4414 \times\) & (7d) \((68+3 /)\) & \(132(68-13)\) & ( ) & 3 & \[
\text { No Ceurel }(\geqslant 4 x)
\] \\
\hline & & & \(\rightarrow 77 x A\) & ( ) & ( ) & 46.4 ( 530\()\) & & 1 \\
\hline & & & PHAPA & ( ) & ( ) & \(41.7(\downarrow)\) & & 4 \\
\hline & & & & ( ) & ( ) & ( & & \\
\hline & & & & ( ) & ( ) & ( ) & & \\
\hline & & & & ( ) & ( ) & ( ) & & \\
\hline & & & & ( ) & ( ) & ( ) & & \\
\hline & & & & ( ) & ( ) & ( ) & & \\
\hline & & & & ( ) & ( ) & ( ) & & \\
\hline & & & & ( ) & ( ) & ( ) & & \\
\hline & & & & ( ) & ( ) & ( ) & & \\
\hline & & & & ( ) & \((\quad)\) & ( ) & & \\
\hline & & & & ( ) & ( ) & ( ) & & \\
\hline & & & & ( ) & ( ) & ( ) & & \\
\hline & & & & ( ) & ( ) & ( ) & & \\
\hline & & & & ( ) & ( ) & ( ) & & \\
\hline & & & & ( ) & ( ) & ( ) & & \\
\hline & & & & ( ) & ( ) & ( ) & & \\
\hline & & & & ( ) & ( ) & ( ) & & \\
\hline & & & & ( ) & ( ) & ( ) & & \\
\hline & & & & ( ) & ( ) & ( ) & & \\
\hline & & & & ( ) & ( ) & ( ) & & \\
\hline & & & & ( ) & ( ) & ( ) & & \\
\hline & & & & ( ) & ( ) & ( ) & & \\
\hline & & & & ( ) & ( ) & ( ) & & \\
\hline & & & & ( ) & ( ) & ( ) & & \\
\hline
\end{tabular}

VALIDATION FINDINGS WORKSHEET
Field Duplicates

Page: / of \(/\) Reviewer: \(\frac{8}{1 \sqrt{6}}\)

METHOD: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Compound} & \multicolumn{2}{|c|}{Concentration (ug/L)} & \multirow[t]{2}{*}{\begin{tabular}{l}
( \(\leq 30\) ) \\
RPD
\end{tabular}} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Difference } \\
\text { (<LOQ) }
\end{gathered}
\]} & \multirow{2}{*}{Limits} & \multirow{2}{*}{Qual} \\
\hline & 4 & 5 & & & & \\
\hline PFBS & 0.0509 & 0.0556 & 9 & & & \\
\hline PFHxA & 0.129 & 0.130 & 1 & & & \\
\hline PFHpA & 0.0436 & 0.0468 & 7 & & & \\
\hline PFHxS & 0.215 & 0.205 & 5 & & & \\
\hline PFOA & 0.0464 & 0.0441 & 5 & & & \\
\hline PFOS & 0.0182 & 0.0226 & 22 & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Compound} & \multicolumn{2}{|c|}{Concentration (ug/L)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& (\leq 30) \\
& R P D
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Difference } \\
\text { (LLOQ) }
\end{gathered}
\]} & \multirow{2}{*}{Limits} & \multirow{2}{*}{Qual} \\
\hline & 9 & 10 & & & & \\
\hline PFBS & 0.501 & 0.525 & 5 & & & \\
\hline PFHxA & 1.52 & 1.51 & 1 & & & \\
\hline PFHpA & 0.395 & 0.411 & 4 & & & \\
\hline PFHxS & 2.62 & 2.84 & 8 & & & \\
\hline PFOA & 3.76 & 4.15 & 10 & & & \\
\hline PFNA & 0.0245 & 0.0267 & 9 & & & \\
\hline PFOS & 1.08 & 1.11 & 3 & & & \\
\hline PFDA & 0.00196 U & 0.00176 & & 0.0002 & \(\leq 0.00396\) & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Compound} & \multicolumn{2}{|c|}{Concentration (ug/L)} & \multirow[t]{2}{*}{\begin{tabular}{l}
\[
(\leq 30)
\] \\
RPD
\end{tabular}} & \multirow[b]{2}{*}{Difference ( \(\leq L O Q\) )} & \multirow{2}{*}{Limits} & \multirow{2}{*}{Qual} \\
\hline & 13 & 14 & & & & \\
\hline PFBS & 0.00456 & 0.00587 & & 0.00131 & \(\leq 0.00409\) & \\
\hline PFHxS & 0.0145 & 0.0166 & & 0.0021 & \(\leq 0.00409\) & \\
\hline PFOS & 0.00624 & 0.00544 & & 0.0008 & \(\leq 0.00409\) & \\
\hline
\end{tabular}

METHOD: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3
Pleasesee qualifications below for all questions answered " N ". Not applicable questions are identified as " \(\mathrm{N} / \mathrm{A}\) ". Y N N/A Were all labeled compound recoveries within the QC criteria?
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \# & Date & Lab ID/Reference & Labeled Compound & \% Recovery & (Limit) & Qualifications \\
\hline & & \(1 /\) (NO) & 13C2-中FTEOA & 34.4 & ( \(50-150\) ) &  \\
\hline & & 1 & & & ) & \\
\hline & & & & & ) & \\
\hline & & & & & ( ) & \\
\hline & & & & & ( ) & \\
\hline & & & & & \((\quad)\) & \\
\hline & & & & & ( ) & \\
\hline & & & & & ( ) & \\
\hline & & & & & ( ) & \\
\hline & & & & & ) & \\
\hline & & & & & ( ) & \\
\hline & & & & & ) & \\
\hline & & & & & ( & \\
\hline & & & & & ( ) & \\
\hline & & & & & 1 & \\
\hline & & & & & ( & \\
\hline & & & & & \((\) & \\
\hline & & & & & \((\square)\) & \\
\hline & & & & & ( ) & \\
\hline & & & & & ( ) & \\
\hline & & & & & ( \()^{\text {) }}\) & \\
\hline & & & & & 1 & \\
\hline & & & & & ) & \\
\hline & & & & & ( ) & \\
\hline & & & & & ( ) & \\
\hline & & & & & ( ) & \\
\hline & & & & & ( ) & \\
\hline & & & & & \((\square)\) & \\
\hline
\end{tabular}

METHOD: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.1.1
Please see qualifications below for all questions answered " N ". Not applicable questions are identified as " \(\mathrm{N} / \mathrm{A}\) ".
N N/A Was the signal to noise (S/N) ratio for all compounds within the validation criteria?
V NNA Were two transitions and the ion transition ratio per analyte monitored and documented with the exception of PFBA and PFPeA? Y/N X/A Were ion ratios between \(50-150 \%\) ?
\begin{tabular}{|c|c|c|c|c|c|}
\hline \# & Date & Sample id & Associated Samples & Ion Ratio \(\underset{\text { Finding }}{ } 50\) & Qualifications \\
\hline & & 8 & \$4 \({ }^{\text {A }}\) & 50.940 ( \(4.8175-14.4525)\) & \(\cdots \operatorname{lot}_{3} \mathrm{~A}\) \\
\hline & & & & & 1 \\
\hline & & 4 & PFOS & \(3.412(1.12-336)\) & \\
\hline & & & & 1 & \\
\hline & & 15 & PFOS & 9.108 & \\
\hline & & & & & 1 \\
\hline & & 10 & \(\nsim F D A\) & \(14.922(4.817514 .4525)\) & \(\sqrt{ }\) \\
\hline & & & & & \\
\hline
\end{tabular}

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:
Reviewer: 10 9 9

Method: LC/MS PFCs (EPA Method 537)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\hline \hline \text { Calibration } \\
\text { Date } \\
\hline \hline
\end{gathered}
\] & System & Compound & Standard & \((\mathrm{Y})\)
Response & \begin{tabular}{l}
\[
\overline{(\mathrm{X})}
\] \\
Concentration
\end{tabular} \\
\hline \multirow[t]{10}{*}{2/20/2020} & \multirow[t]{10}{*}{MQ4} & \multirow[t]{10}{*}{PFBS} & 1 & 0.778438094 & 0.250 \\
\hline & & & 2 & 1.089880137 & 0.500 \\
\hline & & & 3 & 2.682696141 & 1.000 \\
\hline & & & 4 & 4.958188677 & 2.000 \\
\hline & & & 5 & 12.64820119 & 5.000 \\
\hline & & & 6 & 25.44695127 & 10.000 \\
\hline & & & 7 & 117.4792844 & 50.000 \\
\hline & & & 8 & 238.0977354 & 100.000 \\
\hline & & & 9 & 566.0823864 & 250.000 \\
\hline & & & 10 & 1133.899995 & 500.000 \\
\hline
\end{tabular}

Regression Output
\begin{tabular}{|c|c|c|}
\hline Constant & 2.209556 & 0.162081 \\
\hline Std Err of Y Est & & \\
\hline R Squared & 0.999907 & 0.999487 \\
\hline Degrees of Freedom & & \\
\hline & & \\
\hline X Coefficient(s) & 2.265108 & 2.287390 \\
\hline Std Err of Coef. & & \\
\hline & & \\
\hline Correlation Coefficient & 0.999953 & \\
\hline Coefficient of Determination ( \(\mathrm{r}^{\wedge} 2\) ) & 0.999907 & 0.999487 \\
\hline
\end{tabular}

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:
Reviewer:
2nd Reviewer: JV6

Method: LC/MS PFCs (EPA Method 537)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Calibration Date & System & Compound & Standard & \[
\begin{gathered}
(\mathrm{Y}) \\
\text { Response }
\end{gathered}
\] &  \\
\hline \multirow[t]{10}{*}{2/20/2020} & \multirow[t]{10}{*}{MQ4} & \multirow[t]{10}{*}{PFHxA} & 1 & 0.284890588 & 0.250 \\
\hline & & & 2 & 0.446339310 & 0.500 \\
\hline & & & 3 & 0.984796904 & 1.000 \\
\hline & & & 4 & 2.021324537 & 2.000 \\
\hline & & & 5 & 5.003588711 & 5.000 \\
\hline & & & 6 & 9.977193119 & 10.000 \\
\hline & & & 7 & 47.15559216 & 50.000 \\
\hline & & & 8 & 92.60790279 & 100.000 \\
\hline & & & 9 & 225.8014014 & 250.000 \\
\hline & & & 10 & 431.1547913 & 500.000 \\
\hline
\end{tabular}

Regression Output
Reported
\begin{tabular}{|l||r||c|}
\hline Constant & & 1.829494 \\
\hline Std Err of Y Est & & 0.066967 \\
\hline R Squared & & 0.998785 \\
\hline Degrees of Freedom & & \\
\hline & & 0.8930 \\
\hline X Coefficient(s) & & \\
\hline Std Err of Coef. & & 0.886822 \\
\hline & & 0.999715 \\
\hline Correlation Coefficient & 0.999430 & 0.998785 \\
\hline Coefficient of Determination (r^2) & & \\
\hline
\end{tabular}

Method: LC/MS PFCs (EPA Method 537)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Calibration Date & System & Compound & Standard & \((\mathrm{Y})\)
Response & \begin{tabular}{l}
(X) \\
Concentration
\end{tabular} \\
\hline \multirow[t]{10}{*}{2/25/2020} & \multirow[t]{10}{*}{MQ4} & \multirow[t]{10}{*}{PFHxA} & 1 & 0.248125134 & 0.250 \\
\hline & & & 2 & 0.539146786 & 0.500 \\
\hline & & & 3 & 1.168615070 & 1.000 \\
\hline & & & 4 & 2.008352724 & 2.000 \\
\hline & & & 5 & 5.175495037 & 5.000 \\
\hline & & & 6 & 10.07310758 & 10.000 \\
\hline & & & 7 & 47.12403550 & 50.000 \\
\hline & & & 8 & 93.66908582 & 100.000 \\
\hline & & & 9 & 221.5552772 & 250.000 \\
\hline & & & 10 & 439.8474496 & 500.000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{Constant Regression Output}} & & Reported \\
\hline & & 1.341585 & 0.084469 \\
\hline Std Err of Y Est & & & \\
\hline R Squared & & 0.999839 & 0.999064 \\
\hline Degrees of Freedom & & & \\
\hline & & & \\
\hline X Coefficient(s) & & 0.879448 & 0.893131 \\
\hline Std Err of Coef. & & & \\
\hline & & & \\
\hline Correlation Coefficient & & 0.999919 & \\
\hline Coefficient of Determination ( \(\mathrm{r}^{\wedge} 2\) ) & & 0.999839 & 0.999064 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Calibration \\
Date
\end{tabular} & Instrument & Compound & Standard & \begin{tabular}{l}
(Y) \\
Response
\end{tabular} & \begin{tabular}{l}
\[
(X)
\] \\
Conc.
\end{tabular} & \[
\begin{aligned}
& \left(X^{\wedge} 2\right) \\
& \text { Conc. }
\end{aligned}
\] \\
\hline \multirow[t]{10}{*}{2/25/2020} & MQ4 & PFOS & 1 & 0.170391718 & 0.250 & 0.0625 \\
\hline & & & 2 & 0.424665941 & 0.500 & 0.25 \\
\hline & & & 3 & 0.885487794 & 1.000 & 1 \\
\hline & & & 4 & 2.19426531 & 2.000 & 4 \\
\hline & & & 5 & 5.106805482 & 5.000 & 25 \\
\hline & & & 6 & 10.73537158 & 10.000 & 100 \\
\hline & & & 7 & 43.83599873 & 50.000 & 2500 \\
\hline & & & 8 & 96.62892738 & 100.000 & 10000 \\
\hline & & & 9 & 229.6765896 & 250.000 & 62500 \\
\hline & & & 10 & 466.5084977 & 500.000 & 250000 \\
\hline
\end{tabular}
\begin{tabular}{||l|c|c||}
\multicolumn{1}{c|}{ Regression Output } & Calculated \\
\hline Constant & c & 0.40720 \\
\hline Std Err of Y Est & & \\
\hline R Squared & & 0.9998589 \\
\hline Degrees of Freedom & & \\
\hline & & \\
\hline Coefficient(s) & & \\
\hline Std Err of Coef. & & \\
\hline & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Calibration \\
Date
\end{tabular} & Instrument & Compound & Standard & \begin{tabular}{l}
(Y) \\
Response
\end{tabular} & \begin{tabular}{l}
\[
(X)
\] \\
Conc.
\end{tabular} & \begin{tabular}{l}
\[
\left(X^{\wedge} 2\right)
\] \\
Conc.
\end{tabular} \\
\hline \multirow[t]{10}{*}{2/27/2020} & MQ4 & PFOA & 1 & 0.322971593 & 0.250 & 0.0625 \\
\hline & & & 2 & 0.664649291 & 0.500 & 0.25 \\
\hline & & & 3 & 1.41593446 & 1.000 & 1 \\
\hline & & & 4 & 2.504266854 & 2.000 & 4 \\
\hline & & & 5 & 6.608790835 & 5.000 & 25 \\
\hline & & & 6 & 12.89285388 & 10.000 & 100 \\
\hline & & & 7 & 58.00272182 & 50.000 & 2500 \\
\hline & & & 8 & 117.4198491 & 100.000 & 10000 \\
\hline & & & 9 & 276.2363349 & 250.000 & 62500 \\
\hline & & & 10 & 502.6360698 & 500.000 & 250000 \\
\hline
\end{tabular}
\begin{tabular}{||l|c|c||}
\multicolumn{1}{c|}{ Regression Output } & Reported \\
\hline \hline Constant & c & 0.20152 \\
\hline Std Err of Y Est & & \\
\hline R Squared & & 0.9999868 \\
\hline Degrees of Freedom & & \\
\hline & & \\
\hline Coefficient(s) & & \\
\hline Std Err of Coef. & & \\
\hline & & -0.000398275 \\
\hline
\end{tabular}

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page: \(/\) of \(/\)
Reviewer: 2nd Reviewer: \(\qquad\)

METHOD: LC/MS PFAS (EPA Method 537M)
The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:
\% Difference \(=100\) * (ave. RRF - RRF)/ave. RRF RRF \(=\left(A_{x}\right)\left(C_{i s}\right) /\left(A_{i s}\right)\left(C_{x}\right)\)

Where: ave. RRF = initial calibration average RRF
RRF = continuing calibration RRF
\(A_{x}=\) Area of compound,
\(C_{x}=\) Concentration of compound \(\quad A_{i s}=\) Area of associated internal standard \(\mathrm{C}_{\mathrm{is}}=\) Concentration of internal standard
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & & Renorted & Recalculated & Renorted & Recalculated \\
\hline \# & Standard ID & \[
\begin{gathered}
\text { Calibration } \\
\text { Date }
\end{gathered}
\] & Compound (Reference Internal Standard) & Average RRF (initial) & RRF & RRF & \%D & \%D \\
\hline \multirow[t]{2}{*}{1} & \(2002200+37\) & 7-20-20 &  & 10.070 & 11.8 & 11.77 & 17.7 & 17.7 \\
\hline & 1 & &  & \(V\) & 10.6 & 10.58 & 5.8 & 5.8 \\
\hline \multirow[t]{2}{*}{2} & 20032091-50 & 2/21/20 &  & 10.00 & 10.9 & 10.87 & 8.7 & 87 \\
\hline & & &  & 1 & 10.7 & 10.66 & 6.6 & 66 \\
\hline \multirow[t]{2}{*}{3} & 20022591.53 & \(2 / 26 / 20\) &  & 10.00 & 11.1 & 11.06 & 10.6 & 10.6 \\
\hline & & & PFOS (TC.PEOS) \(¢ \mathrm{P}\) & 10.00 & \(11^{2}\) & 11.20 & 12.0 & 12.0 \\
\hline \multirow[t]{3}{*}{4} & 20022771-86 & \(2 / 28 / 20\) & PFOA ( \(\left.{ }^{3} C_{2} \mathrm{PFOA}\right)\) PFO \(A\) & 10.00 & 9.67 & 9.67 & 33 & \(3 \cdot 3\) \\
\hline & & & PFOS ( \({ }^{\text {PC } C_{8} \text { PFOS }}\) & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within \(10.0 \%\) of the recalculated results

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

Page: (of 1
Reviewer nd Reviewer: DK

\section*{METHOD: LC/MS PFAS (EPA Method 537M)}

The percent recoveries (\%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:
\% Recovery \(=100\) * (SSS - SC)/SA

RFD \(=\mid\) MSS - MS \(\mid * 2 /(M S C+M S D C)\)
Where: \(\quad\) SSS \(=\) Spiked sample concentration SA = Spike added
MSG \(=\) Matrix spike concentration

SC = Sample concentration

MSDC \(=\) Matrix spike duplicate concentration
MS/MSD samples: \(\qquad\)


Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within \(10.0 \%\) of the recalculated results

appoint spite cone. -

METHOD: LC/MS PFAS (EPA Method 537M)
The percent recoveries (\%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Compound & \multicolumn{2}{|l|}{} & \multicolumn{2}{|r|}{} & \multicolumn{2}{|l|}{\(\xrightarrow{\text { Percent Recovery }}\)} & \multicolumn{2}{|l|}{\(\xrightarrow[\text { Percent Pecovery }]{\text { LCSn }}\)} & \multicolumn{2}{|r|}{SSLCsD} \\
\hline \(\underline{ }\) & Lcs & LCsD & Lcs & Lcso & Reoorted & Reala, & Reported & Recalc. & Reoorted & Reacaluated \\
\hline proa & 0.0400 & NA & 0.0755 & N* & 88.7 & 887 & & & & \\
\hline pros & V & \(\downarrow\) & 0.0369 & \(\downarrow\) & 93.2 & \(92^{2}\) & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within \(10.0 \%\) of the recalculated results.

VALIDATION FINDINGS WORKSHEET
Sample Calculation Verification

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)
\(Y \mathrm{Y} N / A\)
\(Y N N / A\)
Were all reported results recalculated and verified for all level IV samples?
Were all recalculated results for detected target compounds agree within \(10.0 \%\) of the reported results?
\[
\text { Concentration }=\frac{\left(\mathrm{A}_{\mathrm{a}}\right)\left(\mathrm{I}_{1}\right)\left(\mathrm{V}_{4}\right)(\mathrm{DF})(2.0)}{(2)}
\]
\[
\left(A_{i s}\right)(R R F)\left(V_{0}\right)\left(V_{i}\right)(\% S)
\]
\(A_{x}=\) Area of the characteristic ion (EICP) for the compound to be measured
\(A_{\text {is }} \quad=\quad\) Area of the characteristic ion (EICP) for the specific internal standard
\(\mathrm{I}_{\mathrm{s}} \quad=\quad\) Amount of internal standard added in nanograms (ng)
\(V_{0}=\) Volume or weight of sample extract in milliliters (ml) or grams (g).
\(V_{1}=\quad\) Volume of extract injected in microliters (ul)
\(V_{t}=\) Volume of the concentrated extract in microliters (ul)
Df \(=\) Dilution Factor.
\%S = Percent solids, applicable to soil and solid matrices only.
\(2.0=\) Factor of 2 to account for GPC cleanup
\begin{tabular}{|c|c|c|c|c|c|}
\hline \# & Sample ID & Compound & \[
\begin{gathered}
\text { Reported } \\
\text { Concentration } \\
\text { fof }
\end{gathered}
\] & \(\xrightarrow{\left.\begin{array}{c}\text { Calculated } \\ \text { Concentration } \\ 1\end{array}\right)}\) & Qualification \\
\hline & & \(4+9\) & \[
0.0513
\] & & \\
\hline & & & & & \\
\hline
\end{tabular}

\title{
Laboratory Data Consultants, Inc. Data Validation Report
}

\section*{Project/Site Name:}

LDC Report Date:

\section*{Parameters:}

Validation Level:
Laboratory:

\section*{MCAS EI Toro and Tustin PFAS}

March 19, 2020
Perfluoroalkyl \& Polyfluoroalkyl Substances
Stage 4
Vista Analytical Laboratory

Sample Delivery Group (SDG): 2000321
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Sample Identification } & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Laboratory Sample \\
Identification
\end{tabular}} & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Matrix \\
Date
\end{tabular}} \\
\hline EB02-20200213 & \(2000321-01\) & Water & \(02 / 13 / 20\) \\
\hline I013WMW02SR-20200213 & \(2000321-02\) & Water & \(02 / 13 / 20\) \\
\hline IS72MW17S-20200213 & \(2000321-03\) & Water & \(02 / 13 / 20\) \\
\hline I012MW01SR-20200213 & \(2000321-04\) & Water & \(02 / 13 / 20\) \\
\hline I012MW10S-20200213 & \(2000321-05\) & Water & \(02 / 13 / 20\) \\
\hline I012MW11S-20200213 & \(2000321-06\) & Water & \(02 / 13 / 20\) \\
\hline I012MW15S-20200213 & \(2000321-07\) & Water & \(02 / 13 / 20\) \\
\hline DUP02-20200213 & \(2000321-08\) & Water & \(02 / 13 / 20\) \\
\hline I003MW01S-20200213 & \(2000321-09\) & Water & \(02 / 13 / 20\) \\
\hline I003MW15S-20200213 & \(2000321-10\) & Water & \(02 / 13 / 20\) \\
\hline I003MW02S-20200213 & \(2000321-11\) & Water & \(02 / 13 / 20\) \\
\hline IS72MW17S-20200213MS & \(2000321-03 M S\) & Water & \(02 / 13 / 20\) \\
\hline IS72MW17S-20200213MSD & \(2000321-03 M S D\) & Water & \(02 / 13 / 20\) \\
\hline
\end{tabular}

\section*{Introduction}

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Per- and Polyfluoroalkyl Substances in Groundwater in Carve-Outs 2, 5, 6, and 9 and Groundwater and Surface Water Near Operable Unit 3, Former Marine Corps Air Station Tustin, Tustin, California, with Addendum \#02 to Final Sampling and Analysis Plan for Per- and Polyfluoroalkyl Substances Sampling for Groundwater Remedial Action at Operable Unit 3, Installation Restoration Program Site 1 (February 2020), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (February 2018). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:
Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) by Environmental Protection Agency (EPA) Method 537 Modified and LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

\section*{I. Sample Receipt and Technical Holding Times}

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

\section*{II. LC/MS Instrument Performance Check}

Instrument performance was checked and the requirements were met.

\section*{III. Initial Calibration and Initial Calibration Verification}

Initial calibration was performed as required by the methods.
The percent relative standard deviations (\%RSD) were less than or equal to \(20.0 \%\) for all compounds.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination ( \(\mathrm{r}^{2}\) ) were greater than or equal to 0.990 .

For each calibration standard, all compounds were within \(70-130 \%\) of their true value.
The signal to noise \((\mathrm{S} / \mathrm{N})\) ratio was within validation criteria for all compounds.
Retention time windows were established as required by the methods.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to \(30.0 \%\) for all compounds.

\section*{IV. Continuing Calibration and Instrument Sensitivity Check}

Continuing calibration was performed at required frequencies.
The percent differences (\%D) were less than or equal to \(30.0 \%\) for all compounds.
The signal to noise \((\mathrm{S} / \mathrm{N})\) ratio was within validation criteria for all compounds.
The percent differences (\%D) of the instrument sensitivity check (ISC) were less than or equal to \(30.0 \%\) for all compounds.

Retention times of all compounds in the calibration standards were within the established retention time windows.

\section*{V. Laboratory Blanks}

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

\section*{VI. Field Blanks}

Sample EB02-20200213 was identified as an equipment blank. No contaminants were found.

Sample SB01-20200212 (from SDG 2000314) was identified as a source blank. No contaminants were found.

\section*{VII. Matrix Spike/Matrix Spike Duplicates}

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. For IS72MW17S-20200213MS/MSD, no data were qualified for perfluorohexanoic acid (PFHxA), perfluorohexanesulfonic acid (PFHxS), and perfluorooctanoic acid (PFOA) percent recoveries (\%R) and perfluorooctanoic acid (PFOA), relative percent differences (RPD) outside the QC limits since the parent sample results were greater than 4 X the spike concentration. All other relative percent differences (RPD) were within QC limits.

\section*{VIII. Laboratory Control Samples}

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (\%R) were within QC limits.

\section*{IX. Field Duplicates}

Samples 1012MW15S-20200213 and DUP02-20200213 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Compound} & \multicolumn{2}{|l|}{Concentration (ug/L)} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { RPD } \\
\text { (Limits) }
\end{gathered}
\]} & \multirow[b]{2}{*}{Difference (Limits)} & \multirow[b]{2}{*}{Flag} & \multirow[b]{2}{*}{A or P} \\
\hline & I012MW15S-20200213 & DUP02-20200213 & & & & \\
\hline Perfluorobutanesulfonic acid (PFBS) & 0.179 & 0.181 & 1 ( \(\leq 30\) ) & - & - & - \\
\hline Perfluorohexanoic acid (PFHxA) & 0.908 & 0.881 & \(3(\leq 30)\) & - & - & - \\
\hline Perfluoroheptanoic acid (PFHPA) & 0.200 & 0.191 & 5 ( 530 ) & - & - & - \\
\hline Perfluorohexanesulfonic acid (PFHxS) & 0.526 & 0.505 & \(4(\leq 30)\) & - & - & - \\
\hline Perfluorooctanoic acid (PFOA) & 0.312 & 0.306 & 2 ( \(\leq 30\) ) & - & - & - \\
\hline Perfluorononanoic acid (PFNA) & 0.00292 & 0.00251 & - & \(0.0004(\leq 0.00406)\) & - & - \\
\hline Perfluorooctanesulfonic acid (PFOS) & 0.109 & 0.112 & 3 ( \(\leq 30\) ) & - & - & - \\
\hline
\end{tabular}

\section*{X. Labeled Compounds}

All percent recoveries (\%R) for labeled compounds used to quantitate target compounds were within QC limits.

\section*{XI. Compound Quantitation}

All compound quantitations met validation criteria.

\section*{XII. Target Compound Identifications}

All target compound identifications met validation criteria with the following exceptions:
\begin{tabular}{|c|c|c|c|c||}
\hline \hline Sample & Compound & \begin{tabular}{c} 
lon Abundance Ratio \\
(Limits)
\end{tabular} & Flag & A or P \\
\hline \hline 1013WMW02SR-20200213 & Perfluorooctanesulfonic acid (PFOS) & \(4.901(1.304-3.912)\) & J (all detects) & A \\
\hline
\end{tabular}

\section*{XIII. System Performance}

The system performance was acceptable.

\section*{XIV. Overall Assessment of Data}

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to ion abundance ratio, data were qualified as estimated in one sample.
The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

MCAS EI Toro and Tustin PFAS
Perfluoroalkyl \& Polyfluoroalkyl Substances - Data Qualification Summary - SDG 2000321
\begin{tabular}{|c|c|c|c|c||}
\hline Sample & Compound & & & \\
\hline \hline \(1013 W M W 02 S R-20200213\) & Perfluorooctanesulfonic acid (PFOS) & J (all detects) & A & \begin{tabular}{l} 
Reas \\
Target compound identification \\
(ion abundance ratio)
\end{tabular} \\
\hline
\end{tabular}

MCAS EI Toro and Tustin PFAS
Perfluoroalkyl \& Polyfluoroalkyl Substances - Laboratory Blank Data Qualification Summary - SDG 2000321

No Sample Data Qualified in this SDG
MCAS EI Toro and Tustin PFAS
Perfluoroalkyl \& Polyfluoroalkyl Substances - Field Blank Data Qualification Summary - SDG 2000321

No Sample Data Qualified in this SDG

LDC \#: 47508B96
SD \#: 2000321
Laboratory: Vista Analytical Laboratory

Date:
Page: \(/\) of \(/ 1\)
Reviewer: \(\qquad\) 2nd Reviewer: \(\qquad\)

METHOD: LC/MS Perfluoroalkyl \& Polyfluoroalkyl Substances (EPA Method 537M DOD QSM 5.3)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.


Note: \(\quad\) A \(=\) Acceptable
\(\mathrm{N}=\) Not provided/applicable
SW = See worksheet

ND = No compounds detected
R = Rinsate
\(\mathrm{FB}=\) Field blank

D = Duplicate
TB = Trip blank
\(E B=\) Equipment blank

SB=Source blank OTHER:


\section*{VALIDATION FINDINGS CHECKLIST}

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3
\begin{tabular}{|c|c|c|c|c|}
\hline Validation Area & Yes & No & NA & Findings/Comments \\
\hline \multicolumn{5}{|l|}{I. Technical holding times} \\
\hline Were all technical holding times met? & \(\square\) & & & \\
\hline Was cooler temperature criteria met? & \(r\) & & & \\
\hline \multicolumn{5}{|l|}{II. LC/MS Instrument performance check} \\
\hline Were the instrument performance reviewed and found to be within the validation criteria? & \(\Gamma\) & & & \\
\hline \multicolumn{5}{|l|}{III. Initial calibration and Initial Calibration Verification} \\
\hline Did the laboratory perform a 5 point calibration prior to sample analysis? & \(\square\) & & & \\
\hline Were all percent relative standard deviations (\%RSD) \(\leq 20 \%\) ? & \% & & & \\
\hline \multicolumn{5}{|l|}{Was a curve fit used for evaluation? If yes, did the initial calibration meet the coefficient of determination \(\left(r^{2}\right)\) criteria of \(\geq 0.990\) ?} \\
\hline Were all analytes within \(70-130 \%\) or percent differences (\%D) \(\leq 30 \%\) of their true value for each calibration standard? & 7 & & & \\
\hline Was the signal to noise \((\mathrm{S} / \mathrm{N})\) ratio for all compounds within the validation criteria? & \[
C
\] & & & \\
\hline Were the retention time windows properly established? & \[
1
\] & & & \\
\hline Was an initial calibration verification standard analyzed after each initial calibration for each instrument? & \[
r
\] & & & \\
\hline Were all percent differences (\%D) of the initial calibration verification \(\leq 30 \%\) ? & \[
7
\] & & & \\
\hline \multicolumn{5}{|l|}{IV. Continuing calibration and Instrument Sensitivity Check} \\
\hline Was a continuing calibration analyzed prior to sample analysis, after every 10 samples and at the end of the analytical sequence? & \[
7
\] & & & \\
\hline \multicolumn{5}{|l|}{Were all percent differences (\%D) of the continuing calibration \(\leq 30 \%\) ?} \\
\hline Were all the retention times within the acceptance windows? & 7 & & & \\
\hline Was the signal to noise ( \(\mathrm{S} / \mathrm{N}\) ) ratio for all compounds within the validation criteria? & \[
1
\] & & & \\
\hline \multicolumn{5}{|l|}{Were all percent differences (\%D) of the Instrument Sensitivity Check \(\leq 30 \%\) ?} \\
\hline \multicolumn{5}{|l|}{V. Laboratory Blanks} \\
\hline Was a laboratory blank associated with every sample in this SDG? & \[
7
\] & & & \\
\hline Was a laboratory blank analyzed for each matrix and concentration? & 2 & & & \\
\hline Was there contamination in the laboratory blanks? & & & & \\
\hline \multicolumn{5}{|l|}{VI. Field blanks} \\
\hline Were field blanks identified in this SDG? &  & & & \\
\hline Were target compounds detected in the field blanks? & & & & \\
\hline \multicolumn{5}{|l|}{VII. Matrix spike/Matrix spike duplicates} \\
\hline Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG? & \[
7
\] & & & \\
\hline Were the MS/MSD percent recoveries (\%R) and the relative percent differences (RPD) within the QC limits? & & & & \\
\hline
\end{tabular}
\(\qquad\) Reviewer: 2nd Reviewer: \(\qquad\)
\begin{tabular}{|c|c|c|c|c|}
\hline Validation Area & Yes & No & NA & Findings/Comments \\
\hline \multicolumn{5}{|l|}{VIII. Laboratory control samples} \\
\hline \multicolumn{5}{|l|}{Was an LCS analyzed per extraction batch for this SDG?} \\
\hline Were the LCS percent recoveries (\%R) and relative percent difference (RPD) within the QC limits? & 7 & & & \\
\hline \multicolumn{5}{|l|}{IX. Field duplicates} \\
\hline Were field duplicate pairs identified in this SDG? & \(r\) & & & \\
\hline Were target compounds detected in the field duplicates? & \(\square\) & & & \\
\hline \multicolumn{5}{|l|}{X. Labeled compounds} \\
\hline Were labeled compound percent recoveries (\%R) within the QC limits? & & \(r\) & & \\
\hline Were retention times within 0.4 minutes of the associated calibration standard? & 7 & & & \\
\hline \multicolumn{5}{|l|}{XI. Compound quantitation} \\
\hline Did the laboratory reporting limits (i.e. DL, LOD, LOQ) meet the QAPP? & \(\bigcirc\) & & & \\
\hline \multicolumn{5}{|l|}{Did reported results include both branched and linear isomers?} \\
\hline \multicolumn{5}{|l|}{Were the correct ion transition, labeled compound and relative response factor (RRF) used to quantitate the compound?} \\
\hline \multicolumn{5}{|l|}{Were compound retention times within 0.1 minutes of the associated labeled compound for compounds with a labeled analog?} \\
\hline \multicolumn{5}{|l|}{Were compound quantitation and reporting limits adjusted to reflect all sample dilutions and dry weight factors applicable to Stage 4 validation?} \\
\hline \multicolumn{5}{|l|}{XII. Target compound identification} \\
\hline Was the signal to noise ( \(\mathrm{S} / \mathrm{N}\) ) ratio for all compounds within the validation criteria? & & & & \\
\hline Were two transitions and the ion transition ratio per analyte monitored and documented with the exception of PFBA and PFPeA? & \[
\Delta
\] & & & \\
\hline Were ion ratios between \(50-150 \%\) ? & & 7 & & \\
\hline \multicolumn{5}{|l|}{XIII. System performance} \\
\hline System performance was found to be acceptable. & 7 & & & \\
\hline \multicolumn{5}{|l|}{XIV. Overall assessment of Data} \\
\hline Overall assessment of data was found to be acceptable. & & & & \\
\hline
\end{tabular}

TARGET COMPOUND WORKSHEET
\begin{tabular}{||l|l|l|l||}
\hline METHOD: PFOS/PFOAs \\
\begin{tabular}{|l|l|l||}
\hline A. Perfluorohexanoic acid (PFHXA) & & \\
\hline B. Perfluoroheptanoic acid (PFHPA) & & \\
\hline C. Perfluorooctanoic acid (PFOA) & & \\
\hline D. Perfluorononanoic acid (PFNA) & & \\
\hline E. Perfluorodecanoic acid (PFDA) & & \\
\hline F. Perfluoroundecanoic acid (PFUnA) & & \\
\hline G. Perfluorododecanoic acid (PFDoA) & & \\
\hline H. Perfluorotridecanoic acid (PFTriDA) & & \\
\hline I. Perfluorotetradecanoic acid (PFTeDA) & & \\
\hline J. Perfluorobutanesulfonic acid (PFBS) & & \\
\hline K. Perfluorohexanesulfonic acid (PFHxS) & & \\
\hline L. Perfluoroheptanesulfonic acid (PFHpS) & & \\
\hline M. Perfluorooctanesulfonic acid (PFOS) & & \\
\hline N.Perfluorodecanesulfonic acid (PFDS) & & \\
\hline O. Perfluorooctane Sulfonamide (FOSA) & & \\
\hline P. Perfluorobutanoic acid (PFBA) & & \\
\hline Q. Perfluoropentanoic acis (PFPeA) & & \\
\hline R. 1H, 1H, 2H, 2H-perfluorooctane sulfonate (6:2FTS) & & \\
\hline S. 1H, 1H, 2H, 2H-perfluorodecane sulfonate (8:2 FTS) & & \\
\hline T. N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA) & & \\
\hline U. N-Ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA) & & \\
\hline V. 1H,1H,2H,2H-Perfluorohexanesulfonic Acid (4:2FTS) & & \\
\hline & & \\
\hline
\end{tabular} \\
\hline
\end{tabular}

METHOD: LC/MS PFAS (EPA Method 537M)
Peease see qualifications below for all questions answered " N ". Not applicable questions are identified as " \(\mathrm{N} / \mathrm{A}\) ".
(N N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) or duplicate sample analyzed for each matrix in this SDG?
V N N/A Was a MS/MSD analyzed every 20 samples of each matrix?
YN)N/A Were the MS/MSD percent recoveries (\%R) and the relative percent differences (RPD) within the QC limits?
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \# & Date & MS/MSD ID & Compound & \[
\begin{gathered}
\text { MS } \\
\% \mathrm{R} \text { (Limits) } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
\text { MSD } \\
\text { \%R (Limits) } \\
\hline
\end{gathered}
\] & RPD (Limits) & Associated Samples & Qualifications \\
\hline & & \(17 / 13\) & PFH×A & \(17^{1}(2-129)\) & \(145(5-129)\) & ( ) & 3 & No Cual>4x \\
\hline & & & fFHxS & \(191(68-131)\) & \(158(68-131)\) & \((\quad)\) & & \\
\hline & & & PFOA & \(419(71-133)\) & \(225(71-133)\) & ( ) & & \\
\hline & & & PFOA & ( ) & ( ) & \(60^{2}(\leqslant 30)\) & & \(\checkmark\) \\
\hline & & & & ( ) & ( ) & ( ) & & \\
\hline & & & & ( ) & ( ) & ( ) & & \\
\hline & & & & ( ) & ( ) & \((\quad)\) & & \\
\hline & & & & ( ) & ( ) & ( ) & & \\
\hline & & & & ( ) & \((\quad)\) & \((\quad)\) & & \\
\hline & & & & ( ) & ( ) & \((\quad)\) & & \\
\hline & & & & ( ) & ( ) & ( ) & & \\
\hline & & & & ( ) & ( ) & \((\quad)\) & & \\
\hline & & & & ) & ( ) & ( ) & & \\
\hline & & & & ( ) & ( ) & ( ) & & \\
\hline & & & & ) & \((1)\) & \((1)\) & & \\
\hline & & & & ) & ) & ( ) & & \\
\hline & & & & ) & ) & ) & & \\
\hline & & & & ) & ( ) & ( ) & & \\
\hline & & & & ) & \((1)\) & ( ) & & \\
\hline & & & & ) & ( ) & ( ) & & \\
\hline & & & & ( ) & ( ) & ( ) & & \\
\hline & & & & ( ) & ( ) & ( ) & & \\
\hline & & & & ( ) & ( ) & \((1)\) & & \\
\hline & & & & ( ) & ( ) & ( ) & & \\
\hline & & & & ( ) & ( ) & \((1)\) & & \\
\hline & & & & ) & \((\mathrm{l}\) & \((1)\) & & \\
\hline
\end{tabular}

VALIDATION FINDINGS WORKSHEET
Field Duplicates

Page: /of \(/\)
Reviewer: \(\overline{64}\) 2nd Reviewer: \(\qquad\)

METHOD: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Compound} & \multicolumn{2}{|c|}{Concentration (ug/L)} & \multirow[t]{2}{*}{\begin{tabular}{l}
\[
(\leq 30)
\] \\
RPD
\end{tabular}} & \multirow[b]{2}{*}{Difference ( \(\leq\) LOQ)} & \multirow{2}{*}{Limits} & \multirow{2}{*}{Qual} \\
\hline & 7 & 8 & & & & \\
\hline PFBS & 0.179 & 0.181 & 1 & & & \\
\hline PFHxA & 0.908 & 0.881 & 3 & & & \\
\hline PFHpA & 0.200 & 0.191 & 5 & & & \\
\hline PFHxS & 0.526 & 0.505 & 4 & & & \\
\hline PFOA & 0.312 & 0.306 & 2 & & & \\
\hline PFNA & 0.00292 & 0.00251 & & 0.0004 & \(\leq 0.00406\) & \\
\hline PFOS & 0.109 & 0.112 & 3 & & & \\
\hline
\end{tabular}

METHOD: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3
Please see qualifications below for all questions answered " \(N\) ". Not applicable questions are identified as "N/A"
\(Y / N / N / A \quad\) Were all labeled compound recoveries within the QC criteria?
\begin{tabular}{|c|c|c|c|c|c|}
\hline \# & Date & Lab ID/Reference & Labeled Compound & \% Recovery (Limit) & Qualifications \\
\hline & & 1 & \(13 ¢ 3-\) PFHxs & \(35^{2}\) (50-158) & Nolfudl (20x) \\
\hline & & & \(13 C 8-P F 0 S\) & 1561 & \(\downarrow\) (10x) \\
\hline & & & & ( ) & \\
\hline & & & & ( ) & \\
\hline & & & & ( ) & \\
\hline & & & & ( ) & \\
\hline & & & & ( ) & \\
\hline & & & & ( ) & \\
\hline & & & & ( ) & \\
\hline & & & & ( ) & \\
\hline & & & & ( ) & \\
\hline & & & & \((\) ) & \\
\hline & & & & ( ) & \\
\hline & & & & ( ) & \\
\hline & & & & ( ) & \\
\hline & & & & \((\) ) & \\
\hline & & & & ( ) & \\
\hline & & & & \((\square)\) & \\
\hline & & & & ( ) & \\
\hline & & & & ( ) & \\
\hline & & & & ( ) & \\
\hline & & & & ( ) & \\
\hline & & & & ( ) & \\
\hline & & & & \((\mathrm{l}\) & \\
\hline & & & & ( ) & \\
\hline & & & & ( ) & \\
\hline & & & & ( & \\
\hline & & & & \((\quad)\) & \\
\hline
\end{tabular}

METHOD: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.1.1
Please see qualifications below for all questions answered " N ". Not applicable questions are identified as " \(\mathrm{N} / \mathrm{A}\) ".
(1) N/A Was the signal to noise (S/N) ratio for all compounds within the validation criteria?

N N/A Were two transitions and the ion transition ratio per analyte monitored and documented with the exception of PFBA and PFPeA? Y JN/A Were ion ratios between \(50-150 \%\) ?
\begin{tabular}{|c|c|c|c|c|c|}
\hline \# & Date & Sample ID & Associated Samples & Ion Ratio ( \(50-150 \%\) ) Finding & Qualifications \\
\hline & & 2 & TFOs & \(4.901(1.304-3.912)\) & veots \\
\hline & & & & & N/N \\
\hline & & & & & \\
\hline
\end{tabular}

Method: LC/MS PFCs (EPA Method 537)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Calibration Date & System & Compound & Standard & \begin{tabular}{l}
(Y) \\
Response
\end{tabular} & \[
\begin{gathered}
\hline \hline(X) \\
\text { Concentration }
\end{gathered}
\] \\
\hline \multirow[t]{10}{*}{2/25/2020} & \multirow[t]{10}{*}{MQ4} & \multirow[t]{10}{*}{PFHxA} & 1 & 0.248125134 & 0.250 \\
\hline & & & 2 & 0.539146786 & 0.500 \\
\hline & & & 3 & 1.168615070 & 1.000 \\
\hline & & & 4 & 2.008352724 & 2.000 \\
\hline & & & 5 & 5.175495037 & 5.000 \\
\hline & & & 6 & 10.07310758 & 10.000 \\
\hline & & & 7 & 47.12403550 & 50.000 \\
\hline & & & 8 & 93.66908582 & 100.000 \\
\hline & & & 9 & 221.5552772 & 250.000 \\
\hline & & & 10 & 439.8474496 & 500.000 \\
\hline
\end{tabular}

Regression Output
\begin{tabular}{|l||r||c||}
\hline Constant & & 1.341585 \\
\hline Std Err of Y Est & & 0.084469 \\
\hline R Squared & & 0.999839 \\
\hline Degrees of Freedom & & \\
\hline & & 0.999064 \\
\hline\(X\) Coefficient(s) & & 0.879448 \\
\hline Std Err of Coef. & & \\
\hline Correlation Coefficient & 0.999919 & \\
\hline Coefficient of Determination (r^2) & 0.999839 & 0.993131 \\
\hline
\end{tabular}

Validation Findings Worksheet
Initial Calibration Calculation Verification

Page: 2 of \(\mathscr{E}\)
Reviewer: 8
2nd Reviewer: OM

Method: LC/MS PFCs (EPA Method 537)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Calibration \\
Date
\end{tabular} & Instrument & Compound & Standard & \begin{tabular}{l}
(Y) \\
Response
\end{tabular} & \begin{tabular}{l}
(X) \\
Conc.
\end{tabular} & \[
\begin{aligned}
& \left(X^{\wedge} 2\right) \\
& \text { Conc. }
\end{aligned}
\] \\
\hline \multirow[t]{10}{*}{2/25/2020} & MQ4 & PFOS & 1 & 0.170391718 & 0.250 & 0.0625 \\
\hline & & & 2 & 0.424665941 & 0.500 & 0.25 \\
\hline & & & 3 & 0.885487794 & 1.000 & 1 \\
\hline & & & 4 & 2.19426531 & 2.000 & 4 \\
\hline & & & 5 & 5.106805482 & 5.000 & 25 \\
\hline & & & 6 & 10.73537158 & 10.000 & 100 \\
\hline & & & 7 & 43.83599873 & 50.000 & 2500 \\
\hline & & & 8 & 96.62892738 & 100.000 & 10000 \\
\hline & & & 9 & 229.6765896 & 250.000 & 62500 \\
\hline & & & 10 & 466.5084977 & 500.000 & 250000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Regression Output & \multicolumn{2}{|c|}{Calculated} & \multicolumn{2}{|c|}{Reported} \\
\hline Constant & c & 0.40720 & & -0.00626015 \\
\hline Std Err of Y Est & & & & \\
\hline R Squared & & 0.9998589 & & 0.9992040 \\
\hline Degrees of Freedom & & & & \\
\hline & b & a & b & a \\
\hline X Coefficient(s) & 0.917505066 & \(2.81034 \mathrm{E}-05\) & 0.936367 & -0.00001248 \\
\hline Std Err of Coef. & & & & \\
\hline Correlation Coefficient & & 0.999929 & & \\
\hline Coefficient of Determination ( \(\mathrm{r}^{\wedge} 2\) ) & & 0.999859 & & \\
\hline
\end{tabular}

Method: LC/MS PFCs (EPA Method 537)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Calibration Date & System & Compound & Standard & \begin{tabular}{l}
(Y) \\
Response
\end{tabular} &  \\
\hline \multirow[t]{10}{*}{2/20/2020} & \multirow[t]{10}{*}{MQ4} & \multirow[t]{10}{*}{PFBS} & 1 & 0.218140541 & 0.250 \\
\hline & & & 2 & 0.476012601 & 0.500 \\
\hline & & & 3 & 0.98083487 & 1.000 \\
\hline & & & 4 & 2.429106694 & 2.000 \\
\hline & & & 5 & 6.071180012 & 5.000 \\
\hline & & & 6 & 11.56255063 & 10.000 \\
\hline & & & 7 & 59.02012306 & 50.000 \\
\hline & & & 8 & 115.8441307 & 100.000 \\
\hline & & & 9 & 268.6755383 & 250.000 \\
\hline & & & 10 & 533.3780838 & 500.000 \\
\hline
\end{tabular}

Regression Output
\begin{tabular}{|l||r||c||}
\hline Constant & & 0.000349 \\
\hline Std Err of Y Est & & 0.855723 \\
\hline R Squared & & 0.999682 \\
\hline Degrees of Freedom & & \\
\hline & & \\
\hline X Coefficient(s) & & 1.098678 \\
\hline Std Err of Coef. & & \\
\hline Correlation Coefficient & 0.996774 \\
\hline Coefficient of Determination (r^2) & 0.999681 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline Calibration Date & Instrument & Compound & Standard & \begin{tabular}{l}
(Y) \\
Response
\end{tabular} & \begin{tabular}{l}
\[
(\mathrm{X})
\] \\
Conc.
\end{tabular} & \begin{tabular}{l}
\[
\left(X^{\wedge} 2\right)
\] \\
Conc.
\end{tabular} \\
\hline \multirow[t]{10}{*}{2/26/2020} & MQ4 & PFOA & 1 & 0.364321782 & 0.250 & 0.0625 \\
\hline & & & 2 & 0.719574409 & 0.500 & 0.25 \\
\hline & & & 3 & 1.352100428 & 1.000 & 1 \\
\hline & & & 4 & 2.401378426 & 2.000 & 4 \\
\hline & & & 5 & 6.039297964 & 5.000 & 25 \\
\hline & & & 6 & 11.76681779 & 10.000 & 100 \\
\hline & & & 7 & 54.54803356 & 50.000 & 2500 \\
\hline & & & 8 & 115.7280924 & 100.000 & 10000 \\
\hline & & & 9 & 272.0486296 & 250.000 & 62500 \\
\hline & & & 10 & 521.2496897 & 500.000 & 250000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Regression Output & \multicolumn{2}{|c|}{Calculated} & \multicolumn{2}{|c|}{Reported} \\
\hline Constant & c & 0.18709 & & 0.120191 \\
\hline \multicolumn{5}{|l|}{Std Err of Y Est} \\
\hline R Squared & & 0.9999340 & & 0.9997660 \\
\hline \multicolumn{5}{|l|}{Degrees of Freedom} \\
\hline & b & a & b & a \\
\hline X Coefficient(s) & 1.143310231 & -0.000203208 & 1.14636 & -0.000209775 \\
\hline \multicolumn{5}{|l|}{Std Err of Coef.} \\
\hline Correlation Coefficient & & 0.999967 & & \\
\hline Coefficient of Determination ( \(\mathrm{r}^{\wedge}\) 2) & & 0.999934 & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Calibration \\
Date
\end{tabular} & Instrument & Compound & Standard & \begin{tabular}{l}
(Y) \\
Response
\end{tabular} & \begin{tabular}{l}
(X) \\
Conc.
\end{tabular} & \begin{tabular}{l}
\[
\left(X^{\wedge} 2\right)
\] \\
Conc.
\end{tabular} \\
\hline \multirow[t]{10}{*}{2/29/2020} & MQ4 & PFHxS & 1 & 0.090312611 & 0.250 & 0.0625 \\
\hline & & & 2 & 0.554619134 & 0.500 & 0.25 \\
\hline & & & 3 & 0.879094479 & 1.000 & 1 \\
\hline & & & 4 & 1.88339845 & 2.000 & 4 \\
\hline & & & 5 & 5.243644386 & 5.000 & 25 \\
\hline & & & 6 & 11.85984225 & 10.000 & 100 \\
\hline & & & 7 & 50.53408586 & 50.000 & 2500 \\
\hline & & & 8 & 102.9247442 & 100.000 & 10000 \\
\hline & & & 9 & 270.4999765 & 250.000 & 62500 \\
\hline & & & 10 & 481.5067366 & 500.000 & 250000 \\
\hline
\end{tabular}
\begin{tabular}{||l|c|c||}
\multicolumn{1}{c|}{ Regression Output } & Calculated & Reported \\
\hline Constant & c & -1.40260 \\
\hline Std Err of Y Est & & \\
\hline R Squared & & 0.9994316 \\
\hline Degrees of Freedom & & \\
\hline & & \\
\hline Coefficient(s) & & \\
\hline Std Err of Coef. & & \\
\hline & & -0.145925 \\
\hline Correlation Coefficient & & \\
\hline Coefficient of Determination \(\left(r^{\wedge} 2\right)\) & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Calibration \\
Date
\end{tabular} & Instrument & Compound & Standard & \begin{tabular}{l}
(Y) \\
Response
\end{tabular} & \begin{tabular}{l}
(X) \\
Conc.
\end{tabular} & \begin{tabular}{l}
\[
\left(X^{\wedge} 2\right)
\] \\
Conc.
\end{tabular} \\
\hline \multirow[t]{10}{*}{2/29/2020} & MQ4 & PFOA & 1 & 0.341872059 & 0.250 & 0.0625 \\
\hline & & & 2 & 0.833811058 & 0.500 & 0.25 \\
\hline & & & 3 & 1.310270348 & 1.000 & 1 \\
\hline & & & 4 & 2.523838971 & 2.000 & 4 \\
\hline & & & 5 & 6.966030299 & 5.000 & 25 \\
\hline & & & 6 & 13.0191009 & 10.000 & 100 \\
\hline & & & 7 & 62.65294692 & 50.000 & 2500 \\
\hline & & & 8 & 116.749093 & 100.000 & 10000 \\
\hline & & & 9 & 284.132683 & 250.000 & 62500 \\
\hline & & & 10 & 558.8260031 & 500.000 & 250000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Regression Output & \multicolumn{2}{|c|}{Calculated} & \multicolumn{2}{|c|}{Reported} \\
\hline Constant & c & 1.01258 & & 0.255567 \\
\hline \multicolumn{5}{|l|}{Std Err of Y Est} \\
\hline R Squared & & 0.9999339 & & 0.9995660 \\
\hline \multicolumn{5}{|l|}{Degrees of Freedom} \\
\hline & b & a & b & a \\
\hline X Coefficient(s) & 1.162937577 & -9.60201E-05 & 1.19871 & -0.000173152 \\
\hline \multicolumn{5}{|l|}{Std Err of Coef.} \\
\hline Correlation Coefficient & & 0.999967 & & \\
\hline Coefficient of Determination ( \(\mathrm{r}^{\wedge} 2\) ) & & 0.999934 & & \\
\hline
\end{tabular}

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

Page: \(\quad\) _of 1
Reviewer: \(\frac{f}{4}\)

METHOD: LC/MS PFAS (EPA Method 537M)
The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:
\% Difference \(=100^{*}\) (ave. RRF - RRF)/ave. RRF \(\operatorname{RRF}=\left(A_{x}\right)\left(C_{i s}\right) /\left(A_{i s}\right)\left(C_{x}\right)\)

Where: ave. RRF = initial calibration average RRF
RRF = continuing calibration RRF
\(A_{x}=\) Area of compound, \(\quad A_{i s}=\) Area of associated internal standard
\(C_{x}=\) Concentration of compound,\(\quad C_{i s}=\) Concentration of internal standard
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & & Remortar & Recalculated & Renorted & Recalculated \\
\hline \# & Standard ID & Calibration & Compound (Reference Internal Standard) & Average RRF (initial) & RRF & RRF & \%D & \%D \\
\hline 1 & \(2003959+35\) & \(2 / 25 / 20\) & PFOA ( \({ }^{13} C_{2}\) PFPA) \(C H \times A\) & 10.00 & 10.9 & 10.87 & 87 & 87 \\
\hline & & & PFOS ( \(\left({ }^{13} \mathrm{C}_{8} \mathrm{PEOS}\right)\) 中f0S & 10.00 & 10.6 & 10.55 & 5.5- & 5.5 \\
\hline & & & & & & & & \\
\hline \multirow[t]{2}{*}{2} & \(200235+1.53\) & \(2 /-6 / 00\) &  & 10.0 & 11.1 & 11.06 & 106 & 10.0 \\
\hline & & , 1 &  & \(d\) & 11.2 & 11.2 & 120 & 120 \\
\hline & & & & & & & & \\
\hline \multirow[t]{2}{*}{3} & 2002269131 & \(3 / 26 / 20\) &  & 10.0 & 10.4 & 10.41 & 41 & +. \\
\hline & & & PFOS \(\left(\frac{13}{} C_{8}\right.\) PEOS \()\) PTEA & 10.0 & 10.7 & 10,66 & \(6 \leqslant\) & 66 \\
\hline & & & & & & & & \\
\hline \multirow[t]{3}{*}{4} & \(20022601-51\) & 2/27/31 & PFOA ( \({ }^{3} \mathrm{C}_{2} \mathrm{PFOAA}\) ) \(P \mp\) P & 10.00 & 10.1 & 10.13 & 1.3 & 13 \\
\hline & & & PEOS ( \({ }^{\left(3 C_{8} \mathrm{C}_{8} \text { PFOS }\right) ~ P F O ~}\) & 10.00 & 9.56 & 9.56 & 44 & 4.4 \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within \(10.0 \%\) of the recalculated results \(\qquad\)
\(\qquad\)
\(\square\)

\section*{METHOD: LC/MS PFAS (EPA Method 537M)}

The percent recoveries (\%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:
\(\%\) Recovery \(=100\) * (SSS - SC) \(/\) SA
\(R P D=|M S C-M S C| * 2 /(M S C+M S D C)\)

SSC = Spiked sample concentration SA = Spike added

MSC = Matrix spike concentration

SC = Sample concentration

MSDC \(=\) Matrix spike duplicate concentration

MS/MSD samples: \(13 / 13\)


Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within \(10.0 \%\) of the recalculated results.

METHOD: LC/MS PFAS (EPA Method 537M)
The percent recoveries (\%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:
\begin{tabular}{|c|c|}
\hline \% Recovery \(=100\) * (SC/SA Where: & SSC = Spike concentration SA = Spike added \\
\hline RPD \(=\) I LCSC - LCSDC I * 2/(LCSC + LCSDC) & LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration \\
\hline LCSILCSD samples: EOEOMT-351 & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Compound & \multicolumn{2}{|l|}{} & \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { spike } \\
\text { concentution } \\
\text { if }
\end{gathered}
\]} & \multicolumn{2}{|l|}{\(\xrightarrow[\text { Percent Recovery }]{\text { ces }}\)} & \multicolumn{2}{|l|}{\(\xrightarrow[\text { Percent Recovery }]{\text { Cosp }}\)} & \multicolumn{2}{|c|}{\begin{tabular}{l}
LCS/LCSD \\
RPD
\end{tabular}} \\
\hline - & Lcs & LCSD & Lcs & LCSD & Reported & Recalc. & Reported & Recalc. & Reported & Recalculated \\
\hline PFOA & 0.0400 & NA & 0.0406 & NA & \(10^{2}\) & 102 & & & & \\
\hline PFos & 1 & \(\downarrow\) & 0.0342 & \(\downarrow\) & 85.6 & 85,5 & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within \(10.0 \%\) of the recalculated results.

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)
Y N N/A Were all reported results recalculated and verified for all level IV samples?
\(Y\) N N/A Were all recalculated results for detected target compounds agree within \(10.0 \%\) of the reported results?
 \(\left(A_{i s}\right)(R R F)\left(V_{0}\right)\left(V_{i}\right)(\% S)\)
\(A_{x} \quad=\quad\) Area of the characteristic ion (EICP) for the compound to be measured
\(A_{\text {is }} \quad=\quad\) Area of the characteristic ion (EICP) for the specific internal standard
\(I_{s} \quad=\quad\) Amount of internal standard added in nanograms (ing)
\(\mathrm{V}_{0} \quad=\quad\) Volume or weight of sample extract in milliliters (ml) or grams (g)
\(V_{1} \quad=\quad\) Volume of extract injected in microliters (ul)
\(V_{t}=\quad\) Volume of the concentrated extract in microliters (ul)
Vf \(=\) Dilution Factor.
\(\%\) S \(=\) Percent solids, applicable to soil and solid matrices only.
\(2.0=\) Factor of 2 to account for GPC cleanup

Example:
Sample I.D \(\qquad\) FOR

Conc. \(=\left(-1.14636+1(1.14636)-\sqrt{2} 4(-0.000209 \pi 15)\left(-\frac{22^{2} 4 \times 1 R^{5}}{1\left(38 e^{5}\right)}+0.120191\right)\right.\) \((\Rightarrow)-0.000204775)(245)\)
\(=0.7401\)



\title{
Laboratory Data Consultants, Inc. Data Validation Report
}

\section*{Project/Site Name:}

\section*{LDC Report Date:}

Parameters:
Validation Level:
Laboratory:

MCAS El Toro and Tustin PFAS
March 19, 2020
Perfluoroalkyl \& Polyfluoroalkyl Substances
Stage 4
Vista Analytical Laboratory

Sample Delivery Group (SDG): 2000330
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Sample Identification } & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Laboratory Sample \\
Identification
\end{tabular}} & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Matrix
\end{tabular}} & \begin{tabular}{c} 
Collection \\
Date
\end{tabular} \\
\hline IO03MW05S-20200214 & \(2000330-02\) & Water & \(02 / 14 / 20\) \\
\hline IO03MW12S-20200214 & \(2000330-03\) & Water & \(02 / 14 / 20\) \\
\hline DUP04-20200214 & \(2000330-04\) & Water & \(02 / 14 / 20\) \\
\hline I003MW14S-20200214 & \(2000330-05\) & Water & \(02 / 14 / 20\) \\
\hline IO03MW14S-20200214MS & \(2000330-05 M S\) & Water & \(02 / 14 / 20\) \\
\hline I003MW14S-20200214MSD & \(2000330-05 M S D\) & Water & \(02 / 14 / 20\) \\
\hline
\end{tabular}

\section*{Introduction}

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Per- and Polyfluoroalkyl Substances in Groundwater in Carve-Outs 2, 5, 6, and 9 and Groundwater and Surface Water Near Operable Unit 3, Former Marine Corps Air Station Tustin, Tustin, California, with Addendum \#02 to Final Sampling and Analysis Plan for Per- and Polyfluoroalkyl Substances Sampling for Groundwater Remedial Action at Operable Unit 3, Installation Restoration Program Site 1 (February 2020), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (February 2018). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:
Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) by Environmental Protection Agency (EPA) Method 537 Modified and LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

\section*{I. Sample Receipt and Technical Holding Times}

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

\section*{II. LC/MS Instrument Performance Check}

Instrument performance was checked and the requirements were met.

\section*{III. Initial Calibration and Initial Calibration Verification}

Initial calibration was performed as required by the methods.
The percent relative standard deviations (\%RSD) were less than or equal to \(20.0 \%\) for all compounds.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination \(\left(r^{2}\right)\) were greater than or equal to 0.990 .

For each calibration standard, all compounds were within \(70-130 \%\) of their true value.
The signal to noise ( \(\mathrm{S} / \mathrm{N}\) ) ratio was within validation criteria for all compounds.
Retention time windows were established as required by the methods.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to \(30.0 \%\) for all compounds.

\section*{IV. Continuing Calibration and Instrument Sensitivity Check}

Continuing calibration was performed at required frequencies.
The percent differences (\%D) were less than or equal to \(30.0 \%\) for all compounds.
The signal to noise \((S / N)\) ratio was within validation criteria for all compounds.
The percent differences (\%D) of the instrument sensitivity check (ISC) were less than or equal to \(30.0 \%\) for all compounds.

Retention times of all compounds in the calibration standards were within the established retention time windows.

\section*{V. Laboratory Blanks}

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

\section*{VI. Field Blanks}

Sample EB03-20200214 was identified as an equipment blank. No contaminants were found.

Sample SB01-20200212 (from SDG 2000314) was identified as a source blank. No contaminants were found.

\section*{VII. Matrix Spike/Matrix Spike Duplicates}

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. For IO03MW14S-20200214MS/MSD, no data were qualified for perfluorobutanesulfonic acid (PFBS), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), and perfluorooctanoic acid (PFOA) percent outside the QC limits since the parent sample results were greater than 4 X the spike concentration.

Relative percent differences (RPD) were within QC limits with the following exceptions:
\begin{tabular}{||c|c|c|c|c||}
\hline \begin{tabular}{c} 
Spike ID \\
(Associated Samples)
\end{tabular} & Compound & \begin{tabular}{c} 
RPD \\
(Limits)
\end{tabular} & Flag & A or \(\mathbf{P}\) \\
\hline \hline \begin{tabular}{l} 
IO03MW14S-20200214MS/MSD \\
\((1003 M W 14 S-20200214)\)
\end{tabular} & MeFOSAA & \(32.5(\leq 30)\) & NA & - \\
\hline
\end{tabular}

For I003MW14S-20200214MS/MSD, no data were qualified for perfluorobutanesulfonic acid (PFBS), perfluorohexanoic acid (PFHxA), perfluoroheptanoic acid (PFHpA), and perfluorooctanoic acid (PFOA) relative percent differences (RPD) outside the QC limits since the parent sample results were greater than 4 X the spike concentration.

\section*{VIII. Laboratory Control Samples}

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (\%R) were within QC limits.

\section*{IX. Field Duplicates}

Samples IO03MW12S-20200214 and DUP04-20200214 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Compound} & \multicolumn{2}{|l|}{Concentration (ug/L)} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { RPD } \\
\text { (Limits) } \\
\hline
\end{gathered}
\]} & \multirow[b]{2}{*}{Difference (Limits)} & \multirow[b]{2}{*}{Flag} & \multirow[b]{2}{*}{A or P} \\
\hline & I003MW12S-20200214 & DUP04-20200214 & & & & \\
\hline Perfluorobutanesulfonic acid (PFBS) & 0.0346 & 0.0349 & \(1(\leq 30)\) & - & - & - \\
\hline Perfluorohexanoic acid (PFHxA) & 0.164 & 0.155 & \(6(\leq 30)\) & - & - & - \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Compound} & \multicolumn{2}{|l|}{Concentration (ug/L)} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { RPD } \\
\text { (Limits) } \\
\hline
\end{gathered}
\]} & \multirow[b]{2}{*}{Difference (Limits)} & \multirow[b]{2}{*}{Flag} & \multirow[b]{2}{*}{A or P} \\
\hline & 1003MW12S-20200214 & DUP04-20200214 & & & & \\
\hline Perfluoroheptanoic acid (PFHpA) & 0.0538 & 0.0547 & \(2(\leq 30)\) & - & - & - \\
\hline Perfluorohexanesulfonic acid (PFHxS) & 0.190 & 0.166 & \(13(\leq 30)\) & - & - & - \\
\hline Perfluorooctanoic acid (PFOA) & 0.402 & 0.403 & \(0(\leq 30)\) & - & - & - \\
\hline Perfluorooctanesulfonic acid (PFOS) & 0.0519 & 0.0574 & \(10(\leq 30)\) & - & - & - \\
\hline
\end{tabular}

\section*{X. Labeled Compounds}

All percent recoveries (\%R) for labeled compounds used to quantitate target compounds were within QC limits with the following exceptions:
\begin{tabular}{||c|c|c|c|c|c||}
\hline Sample & \begin{tabular}{c} 
Labeled \\
Compound
\end{tabular} & \%R (Limits) & \begin{tabular}{c} 
Affected \\
Compound
\end{tabular} & Flag & A or P \\
\hline \hline DUP04-20200214 & 13C2-PFTeDA & \(39.9(50-150)\) & Perfluorotetradecanoic acid (PFTeDA) & NA & - \\
\hline
\end{tabular}

\section*{XI. Compound Quantitation}

All compound quantitations met validation criteria.

\section*{XII. Target Compound Identifications}

All target compound identifications met validation criteria.

\section*{XIII. System Performance}

The system performance was acceptable.

\section*{XIV. Overall Assessment of Data}

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

MCAS El Toro and Tustin PFAS
Perfluoroalkyl \& Polyfluoroalkyl Substances - Data Qualification Summary - SDG 2000330

No Sample Data Qualified in this SDG
MCAS EI Toro and Tustin PFAS
Perfluoroalkyl \& Polyfluoroalkyl Substances - Laboratory Blank Data Qualification Summary - SDG 2000330

No Sample Data Qualified in this SDG
MCAS El Toro and Tustin PFAS
Perfluoroalkyl \& Polyfluoroalkyl Substances - Field Blank Data Qualification Summary - SDG 2000330

No Sample Data Qualified in this SDG

METHOD: LC/MS Perfluoroalkyl \& Polyfluoroalkyl Substances (EPA Method 537M DOD QSM 5.3)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.
\begin{tabular}{|c|c|c|c|}
\hline & Validation Area & & Comments \\
\hline 1. & Sample receipt/Technical holding times & 4 & \\
\hline II. & LC/MS Instrument performance check & A & \\
\hline III. & Initial calibration/ICV & \[
A
\] & \[
x=50 \equiv 20 . r^{2} \text { Tued } 10 / \leqslant-30 \beta
\] \\
\hline IV. & Continuing calibration/ISC & \[
\triangle
\] & \[
\mathrm{gal} / 18 \mathrm{c}=30
\] \\
\hline V. & Laboratory Blanks & \(A\) & , 7 \\
\hline VI. & Field blanks & \(N D\) & \(\angle B=1 . S B=5301-20200212(200031+)\) \\
\hline VII. & Matrix spike/Matrix spike duplicates & M & \\
\hline VIII. & Laboratory control samples & A & 14S \\
\hline IX. & Field duplicates & av, & \(\phi=3+2\) \\
\hline X. & Labeled Compounds & UN & \\
\hline VI. & Compound quantitation RL/LOQ/LODs & \[
o f
\] & \\
\hline XII. & Target compound identification & \[
A
\] & \\
\hline XIII. & System performance & \[
A
\] & \\
\hline XIV. & Overall assessment of data & \(\pm\) & \\
\hline
\end{tabular}
\begin{tabular}{lllll} 
Note: & \(A=\) Acceptable & \(N D=\) No compounds detected & \(D=\) Duplicate & SB=Source blank \\
\(N=\) Not provided/applicable & \(R=\) Rinsate & TB = Trip blank & OTHER: \\
& SW = See worksheet & FB = Field blank & EB = Equipment blank &
\end{tabular}


\section*{VALIDATION FINDINGS CHECKLIST}

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3
\begin{tabular}{|c|c|c|c|c|}
\hline Validation Area & Yes & No & NA & Findings/Comments \\
\hline \multicolumn{5}{|l|}{1. Technical holding times} \\
\hline Were all technical holding times met? & 7 & & & \\
\hline Was cooler temperature criteria met? & - & & & \\
\hline \multicolumn{5}{|l|}{II. LC/MS Instrument performance check} \\
\hline Were the instrument performance reviewed and found to be within the validation criteria? & & & & \\
\hline \multicolumn{5}{|l|}{III. Initial calibration and Initial Calibration Verification} \\
\hline Did the laboratory perform a 5 point calibration prior to sample analysis? & \(r\) & & & \\
\hline Were all percent relative standard deviations (\%RSD) \(\leq 20 \%\) ? & T & & & \\
\hline Was a curve fit used for evaluation? If yes, did the initial calibration meet the coefficient of determination \(\left(r^{2}\right)\) criteria of \(\geq 0.990\) ? & T & & & \\
\hline Were all analytes within \(70-130 \%\) or percent differences (\%D) \(\leq 30 \%\) of their true value for each calibration standard? & 7 & & & \\
\hline Was the signal to noise \((\mathrm{S} / \mathrm{N})\) ratio for all compounds within the validation criteria? & \(\square\) & & & \\
\hline Were the retention time windows properly established? & & & & \\
\hline Was an initial calibration verification standard analyzed after each initial calibration for each instrument? & 7 & & & \\
\hline Were all percent differences (\%D) of the initial calibration verification \(\leq 30 \%\) ? & \(\bigcirc\) & & & \\
\hline \multicolumn{5}{|l|}{IV. Continuing calibration and Instrument Sensitivity Check} \\
\hline Was a continuing calibration analyzed prior to sample analysis, after every 10 samples and at the end of the analytical sequence? & \[
1
\] & & & \\
\hline Were all percent differences (\%D) of the continuing calibration \(\leq 30 \%\) ? & T & & & \\
\hline Were all the retention times within the acceptance windows? & r & & & \\
\hline Was the signal to noise \((\mathrm{S} / \mathrm{N})\) ratio for all compounds within the validation criteria? & \[
7
\] & & & \\
\hline Were all percent differences (\%D) of the Instrument Sensitivity Check \(\leq 30 \%\) ? & & & & \\
\hline \multicolumn{5}{|l|}{V. Laboratory Blanks} \\
\hline Was a laboratory blank associated with every sample in this SDG? & & & & \\
\hline Was a laboratory blank analyzed for each matrix and concentration? & & & & \\
\hline Was there contamination in the laboratory blanks? & & \(\checkmark\) & & \\
\hline \multicolumn{5}{|l|}{Vl. Field blanks} \\
\hline Were field blanks identified in this SDG? & & & & \\
\hline \multicolumn{2}{|l|}{Were target compounds detected in the field blanks?} & & & \\
\hline \multicolumn{5}{|l|}{VII. Matrix spike/Matrix spike duplicates} \\
\hline Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG? & & & & \\
\hline Were the MS/MSD percent recoveries (\%R) and the relative percent differences (RPD) within the QC limits? & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Validation Area & Yes & No & NA & Findings/Comments \\
\hline \multicolumn{5}{|l|}{VIII. Laboratory control samples} \\
\hline Was an LCS analyzed per extraction batch for this SDG? & 7 & & & \\
\hline Were the LCS percent recoveries (\%R) and relative percent difference (RPD) within the QC limits? & \(\bigcirc\) & & & \\
\hline \multicolumn{5}{|l|}{IX. Field duplicates} \\
\hline Were field duplicate pairs identified in this SDG? & 7 & & & \\
\hline Were target compounds detected in the field duplicates? & 7 & & & \\
\hline \multicolumn{5}{|l|}{X. Labeled compounds} \\
\hline Were labeled compound percent recoveries (\%R) within the QC limits? & & C & & \\
\hline Were retention times within 0.4 minutes of the associated calibration standard? & / & & & \\
\hline \multicolumn{5}{|l|}{XI. Compound quantitation} \\
\hline Did the laboratory reporting limits (i.e. DL, LOD, LOQ ) meet the QAPP? & 7 & & & \\
\hline Did reported results include both branched and linear isomers? & 7 & & & \\
\hline Were the correct ion transition, labeled compound and relative response factor (RRF) used to quantitate the compound? & \(r\) & & & \\
\hline Were compound retention times within 0.1 minutes of the associated labeled compound for compounds with a labeled analog? & / & & & \\
\hline Were compound quantitation and reporting limits adjusted to reflect all sample dilutions and dry weight factors applicable to Stage 4 validation? & 7 & & & \\
\hline \multicolumn{5}{|l|}{XII. Target compound identification} \\
\hline Was the signal to noise \((\mathrm{S} / \mathrm{N})\) ratio for all compounds within the validation criteria? & & & & \\
\hline Were two transitions and the ion transition ratio per analyte monitored and documented with the exception of PFBA and PFPeA? & \(\Gamma\) & & & \\
\hline Were ion ratios between 50-150\%? & & & & \\
\hline \multicolumn{5}{|l|}{XIII. System performance} \\
\hline System performance was found to be acceptable. & I & & & \\
\hline \multicolumn{5}{|l|}{XIV. Overall assessment of Data} \\
\hline Overall assessment of data was found to be acceptable. & 7 & & & \\
\hline
\end{tabular}

TARGET COMPOUND WORKSHEET
\begin{tabular}{|c|c|c|c|}
\hline A. Perfluoronexanoic acid (PFH HAA) & & & \\
\hline B. Perfluroneptanoic acid (PFHPA) & & & \\
\hline C. Perflurooctanoic acid (PFOA) & & & \\
\hline D. Perflurorononanoic acid (PFNA) & & & \\
\hline E. Perflurodecanoic acid (PFDA) & & & \\
\hline F. Perfluroundecanoic acid (PFUnA) & & & \\
\hline G. Perflurocodoecanoic acid (PFDoA) & & & \\
\hline H. Perfluorortidecanoic acid (PFTTiDA) & & & \\
\hline 1. Perfluortetaraecanoic acid (PFTeDA) & & & \\
\hline J. Perflurobutanesuliforic acid (PFES) & & & \\
\hline K. Pefluworoxexanesulfonic a acid (PFHxs) & & & \\
\hline L. Perfluroroneplanesulforic acid (PFHPS) & & & \\
\hline M. Perflurooctanesulfonic acid (PFOS) & & & \\
\hline N.Perflurodecanesulfonic acid (PFDS) & & & \\
\hline O. Perfuurooctane Sulfonamide (FOSA) & & & \\
\hline P. Perfluoroulanoic acid ( PFBA) & & & \\
\hline Q. Perfluoropentanoic acis (PFPeA) & & & \\
\hline R. \(1 \mathrm{HH}, 1 \mathrm{iH}, 2 \mathrm{LH}, 2 \mathrm{H}\)-perfluoroctane sulfionate (6:2FTS) & & & \\
\hline S. \(1 \mathrm{H}, 1 \mathrm{HH}, 2 \mathrm{HH}, 2 \mathrm{H}\)-perfluorodecane sulfonate ( \(8: 2 \mathrm{FTS}\) ) & & & \\
\hline T. N-methy Peerflurococtanesulfonamidoaceicic acid (NMeFOSAA) & & & \\
\hline U. N-Ethy Perflurooctanesulfonamidoaceitic aid (NEIFOSAA) & & & \\
\hline V. \(1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{LH}, 2 \mathrm{H}\)-Perfluorohexeanesulforic Acid ( 4.2 FTS ) & & & \\
\hline \end{tabular}

\section*{VALIDATION FINDINGS WORKSHEET \\ Matrix Spike/Matrix Spike Duplicates}

METHOD: LC/MS PFAS (EPA Method 537M)
Please see qualifications below for all questions answered " N ". Not applicable questions are identified as " \(\mathrm{N} / \mathrm{A}\) ".
F N N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) or duplicate sample analyzed for each matrix in this SDG?
V N N/A Was a MS/MSD analyzed every 20 samples of each matrix?
Y(NNI/A Were the MS/MSD percent recoveries (\%R) and the relative percent differences (RPD) within the QC limits?
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \# & Date & MS/MSD ID & Compound & \[
\underset{\text { \%R (Limits) }}{\text { MS }}
\] & \[
\begin{gathered}
\text { MSD } \\
\text { \%R (Limits) }
\end{gathered}
\] & RPD (Limits) & Associated Samples & Qualifications \\
\hline & & 97 & F3s & 53.' \(72-130)\) & \(\left.68^{3} 72+30\right)\) & ) & 5 & No Cual \(\geqslant 4 x\) \\
\hline & & & PFHXA & ( ) & \(699(7-129)\) & \(69.9(530)\) & & , \\
\hline & & & PFHPA & \(138(72130)\) & G等 (10y30) & 5141 & & 1 \\
\hline & & & & ( ) & -314 ( ) & 1 ( 10 & & \\
\hline & & & PFHxS & \(44^{2}(68-33)\) & \(-379(68-13)\) & 2531 & & , \\
\hline & & & PFOA & 164.417133 & \(26.4(71-133)\) & 83.71 & & \(\checkmark\) \\
\hline & & & & ( ) & ( ) & ( ) & & \\
\hline & & & Me FOSAA & ) & , & \(32.5(\checkmark 30)\) & \(5(N / 0)\) & Let3/R \\
\hline & & & & ) & ) & ( ) & & 1 \\
\hline & & & & ( ) & ( ) & ( ) & & \\
\hline & & & & ( ) & ( ) & ( ) & & \\
\hline & & & & ) & ) & ( ) & & \\
\hline & & & & ( ) & ) & ( ) & & \\
\hline & & & & ( ) & ) & ( ) & & \\
\hline & & & & ( ) & ) & ) & & \\
\hline & & & & ( ) & ) & ( ) & & \\
\hline & & & & ) & ) & ( ) & & \\
\hline & & & & ( ) & ) & ( ) & & \\
\hline & & & & \((\) & ) & ) & & \\
\hline & & & & ( ) & ) & ) & & \\
\hline & & & & ( ) & ( ) & ( ) & & \\
\hline & & & & ) & ( ) & ( ) & & \\
\hline & & & & ) & ( ) & ( ) & & \\
\hline & & & & ( ) & ( ) & ( ) & & \\
\hline & & & & ( ) & ( ) & ) & & \\
\hline & & & & \(\left({ }^{\text {( }}\right.\) & \((\quad)\) & \((\) & & \\
\hline
\end{tabular}

\section*{VALIDATION FINDINGS WORKSHEET \\ Field Duplicates}

METHOD: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Compound} & \multicolumn{2}{|c|}{Concentration (ug/L)} & \multirow[t]{2}{*}{\begin{tabular}{l}
\[
(\leq 30)
\] \\
RPD
\end{tabular}} & \multirow[b]{2}{*}{\[
\begin{gathered}
\text { Difference } \\
\text { ( } \leq L O Q)
\end{gathered}
\]} & \multirow{2}{*}{Limits} & \multirow{2}{*}{Qual} \\
\hline & 3 & 4 & & & & \\
\hline PFBS & 0.0346 & 0.0349 & 1 & & & \\
\hline PFHxA & 0.164 & 0.155 & 6 & & & \\
\hline PFHpA & 0.0538 & 0.0547 & 2 & & & \\
\hline PFHxS & 0.190 & 0.166 & 13 & & & \\
\hline PFOA & 0.402 & 0.403 & 0 & & & \\
\hline PFOS & 0.0519 & 0.0574 & 10 & & & \\
\hline
\end{tabular}

VALIDATION FINDINGS WORKSHEET Labeled Compounds

Page: \(\qquad\) /of 1
\(\qquad\)
METHOD: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3
Please see qualifications below for all questions answered " N ". Not applicable questions are identified as " \(\mathrm{N} / \mathrm{A}\) ".
Y N N/A Were all labeled compound recoveries within the QC criteria?


2nd Reviewer: \(\sqrt{\sqrt{6}}\)
Method: LC/MS PFCs (EPA Method 537)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Calibration Date & System & Compound & Standard & \((\mathrm{Y})\)
Response & \begin{tabular}{l}
(X) \\
Concentration
\end{tabular} \\
\hline \multirow[t]{10}{*}{2/24/2020} & \multirow[t]{10}{*}{MQ4} & \multirow[t]{10}{*}{PFBS} & 1 & 0.633875728 & 0.250 \\
\hline & & & 2 & 1.101680907 & 0.500 \\
\hline & & & 3 & 2.371425822 & 1.000 \\
\hline & & & 4 & 5.122410556 & 2.000 \\
\hline & & & 5 & 12.14561292 & 5.000 \\
\hline & & & 6 & 24.17966012 & 10.000 \\
\hline & & & 7 & 120.66273230 & 50.000 \\
\hline & & & 8 & 249.1365015 & 100.000 \\
\hline & & & 9 & 585.9840235 & 250.000 \\
\hline & & & 10 & 1193.961241 & 500.000 \\
\hline
\end{tabular}

Regression Output
Reported
\begin{tabular}{|l||r||c|}
\hline Constant & 0.816967 & 0.022226 \\
\hline Std Err of Y Est & & 0.999677 \\
\hline R Squared & & \\
\hline Degrees of Freedom & & \\
\hline & & 2.999841 \\
\hline X Coefficient(s) & & \\
\hline Std Err of Coef. & 2.380549 & \\
\hline Correlation Coefficient & 0.9999200 \\
\hline Coefficient of Determination \(\left(\mathrm{r}^{\wedge} 2\right)\) & 0.999841 & \\
\hline
\end{tabular}

Method: LC/MS PECs (EPA Method 537)


Regression Output
\begin{tabular}{|l|l||c|}
\hline Constant & Regression Output & 0.859876 \\
\hline Std Err of Y Est & & 0.075621 \\
\hline R Squared & & 0.999930 \\
\hline Degrees of Freedom & & 0.999659 \\
\hline & & \\
\hline X Coefficients) & & 0.901577 \\
\hline Std Err of Coef. & & \\
\hline & & 0.910113 \\
\hline Correlation Coefficient & & 0.999965 \\
\hline Coefficient of Determination \(\left(r^{\wedge} 2\right)\) & 0.999930 & 0.999659 \\
\hline
\end{tabular}

Method: LC/MS PFCs (EPA Method 537)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\hline \hline \text { Calibration } \\
\text { Date } \\
\hline
\end{gathered}
\] & System & Compound & Standard & \((\mathrm{Y})\)
Response & \begin{tabular}{l}
\[
\overline{(X)}
\] \\
Concentration
\end{tabular} \\
\hline \multirow[t]{10}{*}{2/27/2020} & \multirow[t]{10}{*}{MQ4} & \multirow[t]{10}{*}{PFBS} & 1 & 0.632118722 & 0.250 \\
\hline & & & 2 & 1.586507597 & 0.500 \\
\hline & & & 3 & 2.742775839 & 1.000 \\
\hline & & & 4 & 4.901326024 & 2.000 \\
\hline & & & 5 & 12.22165384 & 5.000 \\
\hline & & & 6 & 27.67974785 & 10.000 \\
\hline & & & 7 & 128.6912281 & 50.000 \\
\hline & & & 8 & 253.2448455 & 100.000 \\
\hline & & & 9 & 578.2133693 & 250.000 \\
\hline & & & 10 & 1165.917419 & 500.000 \\
\hline
\end{tabular}

Regression Output
Reported
\begin{tabular}{|c|c|c|}
\hline Constant & 3.957059 & 0.185525 \\
\hline Std Err of Y Est & & \\
\hline R Squared & 0.999640 & 0.998443 \\
\hline Degrees of Freedom & & \\
\hline & & \\
\hline X Coefficient(s) & 2.325181 & 2.366230 \\
\hline Std Err of Coef. & & \\
\hline & & \\
\hline Correlation Coefficient & 0.999820 & \\
\hline Coefficient of Determination ( \(\mathrm{r}^{\wedge} 2\) ) & 0.999640 & 0.998443 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Calibration \\
Date
\end{tabular} & Instrument & Compound & Standard & \begin{tabular}{l}
(Y) \\
Response
\end{tabular} & \begin{tabular}{l}
\[
(X)
\] \\
Conc.
\end{tabular} & \[
\begin{aligned}
& \left(X^{\wedge} 2\right) \\
& \text { Conc. }
\end{aligned}
\] \\
\hline \multirow[t]{10}{*}{2/27/2020} & MQ4 & PFOA & 1 & 0.322971593 & 0.250 & 0.0625 \\
\hline & & & 2 & 0.664649291 & 0.500 & 0.25 \\
\hline & & & 3 & 1.41593446 & 1.000 & 1 \\
\hline & & & 4 & 2.504266854 & 2.000 & 4 \\
\hline & & & 5 & 6.608790835 & 5.000 & 25 \\
\hline & & & 6 & 12.89285388 & 10.000 & 100 \\
\hline & & & 7 & 58.00272182 & 50.000 & 2500 \\
\hline & & & 8 & 117.4198491 & 100.000 & 10000 \\
\hline & & & 9 & 276.2363349 & 250.000 & 62500 \\
\hline & & & 10 & 502.6360698 & 500.000 & 250000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Regression Output & \multicolumn{2}{|c|}{Calculated} & \multicolumn{2}{|c|}{Reported} \\
\hline Constant & c & 0.20152 & & 0.0799012 \\
\hline Std Err of Y Est & & & & \\
\hline R Squared & & 0.9999868 & & 0.9998180 \\
\hline Degrees of Freedom & & & & \\
\hline & b & a & b & a \\
\hline X Coefficient(s) & 1.20400609 & -0.000398275 & 1.20955 & -0.000410213 \\
\hline Std Err of Coef. & & & & \\
\hline Correlation Coefficient & & 0.999993 & & \\
\hline Coefficient of Determination ( \(\left.\mathrm{r}^{\wedge} 2\right)\) & & 0.999987 & & \\
\hline
\end{tabular}

VALIDATION FINDINGS WORKSHEET
Page: Initial Calibration Calculation Verification

Method: LC/MS PECs (EPA Method 537)


Regression Output
\begin{tabular}{|l||r||c|}
\hline Constant & & 0.120 .481143 \\
\hline Std Err of Y Est & & 0.999080 \\
\hline R Squared & & 0.997551 \\
\hline Degrees of Freedom & & \\
\hline & & 0.844901 \\
\hline X Coefficients) & & \\
\hline Std Err of Coef. & & 0.870570 \\
\hline & & 0.999540 \\
\hline Correlation Coefficient & 0.999080 & \\
\hline Coefficient of Determination (r^2) & & 0.997551 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \begin{tabular}{l}
Calibration \\
Date
\end{tabular} & Instrument & Compound & Standard & \begin{tabular}{l}
(Y) \\
Response
\end{tabular} & \begin{tabular}{l}
\[
(X)
\] \\
Conc.
\end{tabular} & \begin{tabular}{l}
\[
\left(X^{\wedge} 2\right)
\] \\
Conc.
\end{tabular} \\
\hline \multirow[t]{10}{*}{2/28/2020} & MQ4 & PFHxS & 1 & 0.12583571 & 0.250 & 0.0625 \\
\hline & & & 2 & 0.546220095 & 0.500 & 0.25 \\
\hline & & & 3 & 1.100093989 & 1.000 & 1 \\
\hline & & & 4 & 2.268965029 & 2.000 & 4 \\
\hline & & & 5 & 5.842901742 & 5.000 & 25 \\
\hline & & & 6 & 12.00998324 & 10.000 & 100 \\
\hline & & & 7 & 51.40861626 & 50.000 & 2500 \\
\hline & & & 8 & 106.1284785 & 100.000 & 10000 \\
\hline & & & 9 & 267.918899 & 250.000 & 62500 \\
\hline & & & 10 & 468.4202122 & 500.000 & 250000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline Regression Output & \multicolumn{2}{|c|}{Calculated} & \multicolumn{2}{|c|}{Reported} \\
\hline Constant & c & -1.04004 & & -0.0812317 \\
\hline Std Err of Y Est & & & & \\
\hline R Squared & & 0.9996150 & & 0.9990280 \\
\hline Degrees of Freedom & & & & \\
\hline & b & a & b & a \\
\hline X Coefficient(s) & 1.170779375 & -0.000459763 & 1.12704 & -0.00036565 \\
\hline Std Err of Coef. & & & & \\
\hline Correlation Coefficient & & 0.999807 & & \\
\hline Coefficient of Determination ( \(\mathrm{r}^{\wedge} 2\) ) & & 0.999615 & & \\
\hline
\end{tabular}

\section*{VALIDATION FINDINGS WORKSHEET} Continuing Calibration Results Verification

METHOD: LC/MS PFAS (EPA Method 537M)
The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

\section*{\% Difference \(=100\) * (ave. RRF - RRF)/ave. RRF} \(R R F=\left(A_{x}\right)\left(C_{i s}\right) /\left(A_{i s}\right)\left(C_{x}\right)\)

Where: ave. \(\mathrm{RRF}=\) initial calibration average RRF
RRF = continuing calibration RRF
\(A_{x}=\) Area of compound,
\(C_{x}=\) Concentration of compound \(\quad A_{i s}=\) Area of assocd internal standard
\(\mathrm{C}_{\mathrm{is}}=\) Concentration of internal standard


Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within \(10.0 \%\) of the recalculated results

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

\section*{METHOD: LC/MS PFAS (EPA Method 537M)}

The percent recoveries (\%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:


Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within \(10.0 \%\) of the recalculated results.

METHOD: LC/MS PFAS (EPA Method 537M)
The percent recoveries (\%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:
\begin{tabular}{|c|c|}
\hline \% Recovery \(=100\) (SC/SA Where: & \begin{tabular}{l}
SSC = Spike concentration \\
SA = Spike added
\end{tabular} \\
\hline RPD \(=1\) LCSC - LCSDC 1* 2 (LCSC + LCSDC) & LCSC \(=\) Laboratory control sample concentration LCSDC \(=\) Laboratory control sample duplicate concentration \\
\hline LCS/LCSD samples: BOBOIBT-®s/ & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Compound & \multicolumn{2}{|c|}{} & \multicolumn{2}{|r|}{\[
\begin{gathered}
\text { Spike } \\
\text { congenfation } \\
\text { and }
\end{gathered}
\]} & \multicolumn{2}{|l|}{\(\xrightarrow[\text { Percent Recovery }]{\text { Las }}\)} & \multicolumn{2}{|l|}{Percent Recovery} & \multicolumn{2}{|c|}{\begin{tabular}{l}
1عS/ \\
RPD
\end{tabular}} \\
\hline - & Lcs & LCSD & Lcs & LCSD & Reported & Recalc. & Reported & Recalc. & Reported & Recalculated \\
\hline PFOA & 0.0400 & NA & 0.0354 & NA & 88,5 & 80.5 & & & & \\
\hline Pfos & \(\downarrow\) & d & 00359 & \(\downarrow\) & 89.7 & 89.7 & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within \(10.0 \%\) of the recalculated results.

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)
Y N N/A Were all reported results recalculated and verified for all level IV samples?
\(Y / \mathrm{N}\) N/A Were all recalculated results for detected target compounds agree within \(10.0 \%\) of the reported results?



\section*{Laboratory Data Consultants, Inc. \\ Data Validation Report}
\begin{tabular}{ll} 
Project/Site Name: & MCAS El Toro and Tustin PFAS \\
LDC Report Date: & March 19, 2020 \\
Parameters: & Perfluoroalkyl \& Polyfluoroalkyl Substances \\
Validation Level: & Stage 4 \\
Laboratory: & Vista Analytical Laboratory
\end{tabular}

Sample Delivery Group (SDG): 2000356
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ Sample Identification } & \multicolumn{1}{c|}{\begin{tabular}{c} 
Laboratory Sample \\
Identification
\end{tabular}} & Matrix & \begin{tabular}{c} 
Collection \\
Date
\end{tabular} \\
\hline IS720W02D-20200219 & \(2000356-02\) & Water & \(02 / 19 / 20\) \\
\hline IS720W06D-20200219 & \(2000356-03\) & Water & \(02 / 19 / 20\) \\
\hline IS720W03D-20200219 & \(2000356-04\) & Water & \(02 / 19 / 20\) \\
\hline TW08S-20200219 & \(2000356-05\) & Water & \(02 / 19 / 20\) \\
\hline TW09S-20200219 & \(2000356-06\) & Water & \(02 / 19 / 20\) \\
\hline TW10S-20200219 & \(2000356-07\) & Water & \(02 / 19 / 20\) \\
\hline TW11S-20200219 & \(2000356-08\) & Water & \(02 / 19 / 20\) \\
\hline TW13S-20200219 & \(2000356-09\) & Water & \(02 / 19 / 20\) \\
\hline TW12S-20200219 & \(2000356-10\) & Water & \(02 / 19 / 20\) \\
\hline
\end{tabular}

\section*{Introduction}

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Per- and Polyfluoroalkyl Substances in Groundwater in Carve-Outs 2, 5, 6, and 9 and Groundwater and Surface Water Near Operable Unit 3, Former Marine Corps Air Station Tustin, Tustin, California, with Addendum \#02 to Final Sampling and Analysis Plan for Per- and Polyfluoroalkyl Substances Sampling for Groundwater Remedial Action at Operable Unit 3, Installation Restoration Program Site 1 (February 2020), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (February 2018). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:
Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) by Environmental Protection Agency (EPA) Method 537 Modified and LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

\section*{I. Sample Receipt and Technical Holding Times}

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

\section*{II. LC/MS Instrument Performance Check}

Instrument performance was checked and the requirements were met.

\section*{III. Initial Calibration and Initial Calibration Verification}

Initial calibration was performed as required by the methods.
The percent relative standard deviations (\%RSD) were less than or equal to \(20.0 \%\) for all compounds.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination ( \(r^{2}\) ) were greater than or equal to 0.990 .

For each calibration standard, all compounds were within \(70-130 \%\) of their true value.
The signal to noise ( \(\mathrm{S} / \mathrm{N}\) ) ratio was within validation criteria for all compounds.
Retention time windows were established as required by the methods.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to \(30.0 \%\) for all compounds.

\section*{IV. Continuing Calibration and Instrument Sensitivity Check}

Continuing calibration was performed at required frequencies.
The percent differences (\%D) were less than or equal to \(30.0 \%\) for all compounds.
The signal to noise \((\mathrm{S} / \mathrm{N})\) ratio was within validation criteria for all compounds.
The percent differences (\%D) of the instrument sensitivity check (ISC) were less than or equal to \(30.0 \%\) for all compounds.

Retention times of all compounds in the calibration standards were within the established retention time windows.

\section*{V. Laboratory Blanks}

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

\section*{VI. Field Blanks}

Sample EB04-20200219 was identified as an equipment blank. No contaminants were found.

Sample SB01-20200212 (from SDG 2000314) was identified as a source blank. No contaminants were found.

\section*{VII. Matrix Spike/Matrix Spike Duplicates}

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

\section*{VIII. Laboratory Control Samples}

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

\section*{IX. Field Duplicates}

No field duplicates were identified in this SDG.

\section*{X. Labeled Compounds}

All percent recoveries (\%R) for labeled compounds used to quantitate target compounds were within QC limits.

\section*{XI. Compound Quantitation}

All compound quantitations met validation criteria.

\section*{XII. Target Compound Identifications}

All target compound identifications met validation criteria with the following exceptions:
\begin{tabular}{|c|c|c|c|c|}
\hline Sample & Compound & Ion Abundance Ratio (Limits) & Flag & A or P \\
\hline IS720W06D-20200219 & Perfluorononanoic acid (PFNA) & 14.064 (2.6685-8.0055) & \(J\) (all detects) & A \\
\hline TW08S-20200219 & \begin{tabular}{l}
Perfluorononanoic acid (PFNA) \\
Perfluorooctanesulfonic acid (PFOS)
\end{tabular} & \[
\begin{gathered}
8.031(2.6685-8.005) \\
3.631(1.027-3.081)
\end{gathered}
\] & \begin{tabular}{l}
\(J\) (all detects) \\
\(J\) (all detects)
\end{tabular} & A \\
\hline TW09S-20200219 & Perfluorononanoic acid (PFNA) & 8.314 (2.6685-8.0055) & \(J\) (all detects) & A \\
\hline
\end{tabular}

\section*{XIII. System Performance}

The system performance was acceptable.

\section*{XIV. Overall Assessment of Data}

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to ion abundance ratio, data were qualified as estimated in three samples.
The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

MCAS EI Toro and Tustin PFAS
Perfluoroalkyl \& Polyfluoroalkyl Substances - Data Qualification Summary - SDG 2000356
\begin{tabular}{||l|c|c|c|c||}
\hline \multicolumn{1}{|c|}{ Sample } & Compound & & Flag & A or P
\end{tabular}

\section*{MCAS EI Toro and Tustin PFAS \\ Perfluoroalkyl \& Polyfluoroalkyl Substances - Laboratory Blank Data Qualification Summary - SDG 2000356}

No Sample Data Qualified in this SDG
MCAS EI Toro and Tustin PFAS
Perfluoroalkyl \& Polyfluoroalkyl Substances - Field Blank Data Qualification Summary - SDG 2000356

No Sample Data Qualified in this SDG

LDC \#: 47508D96 VALIDATION COMPLETENESS WORKSHEET
SDG \#: 2000356
Laboratory: Vista Analytical Laboratory
METHOD: LC/MS Perfluoroalkyl \& Polyfluoroalkyl Substances (EPA Method 537M DOD QSM 5.3)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.
\begin{tabular}{|c|c|c|c|}
\hline & Validation Area & & Comments \\
\hline 1. & Sample receipt/Technical holding times & A & \\
\hline II. & LC/MS Instrument performance check & \[
A
\] & \\
\hline III. & Initial calibration/ICV & \[
A, A
\] & \[
x-\infty=-\infty / D \cdot r^{2} \text { Tme/leV } \leqslant 3 \infty
\] \\
\hline IV. & Continuing calibration/ISC & \[
A
\] & \[
\text { ccvllse se } 3 \mathrm{dp}
\] \\
\hline V . & Laboratory Blanks & \[
A
\] & 7, \\
\hline VI. & Field blanks & NO & \(\angle \beta=1.2 B=5801-20200 \rightarrow 1212000314\) \\
\hline VII. & Matrix spike/Matrix spike duplicates & \(N\) & \(\sim 3\) \\
\hline VIII. & Laboratory control samples & \(A\) & \(\angle C=1 \mathbb{}\) \\
\hline IX. & Field duplicates & \(N\) & \\
\hline X. & Labeled Compounds & a & \\
\hline VI. & Compound quantitation RL/LOQ/LODs & A & \\
\hline XII. & Target compound identification & 1U & \\
\hline XIII. & System performance & A & \\
\hline XIV. & Overall assessment of data & \(N\) & \\
\hline
\end{tabular}

Note: \(\quad \mathrm{A}=\) Acceptable
\(\mathrm{N}=\) Not provided/applicable
SW = See worksheet

ND = No compounds detected \(\mathrm{R}=\) Rinsate
FB = Field blank
\(\mathrm{D}=\) Duplicate
SB=Source blank \(T B=\) Trip blank \(\mathrm{EB}=\) Equipment blank

OTHER:
\begin{tabular}{||l|l|l|l|l||}
\hline & Client ID & Lab ID & Matrix & Date \\
\hline 4 & EBO4-20200249 & \(2000356-04\) & Water & O2/49/20 \\
\hline 2 & IS720W02D-20200219 & \(2000356-02\) & Water & \(02 / 19 / 20\) \\
\hline 3 & IS720W06D-20200219 & \(2000356-03\) & Water & \(02 / 19 / 20\) \\
\hline 4 & IS720W03D-20200219 & \(2000356-04\) & Water & \(02 / 19 / 20\) \\
\hline 5 & TW08S-20200219 & \(2000356-05\) & Water & \(02 / 19 / 20\) \\
\hline 6 & TW09S-20200219 & \(2000356-06\) & Water & \(02 / 19 / 20\) \\
\hline 7 & TW10S-20200219 & \(2000356-07\) & Water & \(02 / 19 / 20\) \\
\hline 8 & TW11S-20200219 & \(2000356-08\) & Water & \(02 / 19 / 20\) \\
\hline 9 & TW13S-20200219 & \(2000356-09\) & Water & \(02 / 19 / 20\) \\
\hline 10 & TW12S-20200219 & \(2000356-10\) & Water & \(02 / 19 / 20\) \\
\hline 11 & & & & \\
\hline
\end{tabular}

Notes:
\begin{tabular}{||l|l|l|l|l|l|l||}
\hline & FOBO/OB-ECK/ & & & & & \\
\hline & & & & & & \\
\hline & & & & & & \\
\hline
\end{tabular}

\section*{VALIDATION FINDINGS CHECKLIST}

\author{
Page: \(\quad\) of \(\geq\) \\ Reviewer: 2nd Reviewer: \\ Me
}

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3


\begin{tabular}{||l|l|l|l|l|l|l||}
\hline \multicolumn{1}{|c|}{ Validation Area } & Yes & No & NA & \multicolumn{1}{|c|}{ Findings/Comments } \\
\hline VIII. Laboratory control samples \\
\hline Was an LCS analyzed per extraction batch for this SDG? & & \\
\hline \begin{tabular}{l} 
Were the LCS percent recoveries (\%R) and relative percent difference (RPD) \\
within the QC limits?
\end{tabular} & & & & \\
\hline XX. Field duplicates & & \\
\hline Were field duplicate pairs identified in this SDG? & & & \\
\hline Were target compounds detected in the field duplicates? & & \\
\hline X. Labeled compounds
\end{tabular}

TARGET COMPOUND WORKSHEET


VALIDATION FINDINGS WORKSHEET
Labeled Compounds

METHOD: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3
Please see qualifications below for all questions answered " N ". Not applicable questions are identified as " \(\mathrm{N} / \mathrm{A}\) ".
YN/A Were all labeled compound recoveries within the QC criteria?


VALIDATION FINDINGS WORKSHEET Target Compound Identification

Page:
Reviewer:

METHOD: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.1.1
Please see qualifications below for all questions answered " N ". Not applicable questions are identified as " \(\mathrm{N} / \mathrm{A}\) ".

H N N/A

Was the signal to noise \((\mathrm{S} / \mathrm{N})\) ratio for all compounds within the validation criteria?
Were two transitions and the ion transition ratio per analyte monitored and documented with the exception of PFBA and PFPeA? Were ion ratios between \(50-150 \%\) ?
\begin{tabular}{|c|c|c|c|c|c|}
\hline \# & Date & Sample ID & Associated Samples & \(102 \times \underset{\substack{\text { Potio } \\ \text { Finding }}}{ } 00-1507 \phi\) & Qualifications \\
\hline & & 3 & OFNX & 14.064 (26685-8.0055) & whets/ \\
\hline & & 5 & PFNA & \(8.071(26685-8.0055)\) & \\
\hline & & & PFOS & \(3631(1.077-3081)\) & \\
\hline & & & & & \\
\hline & & 6 & PFNA & \(0.314(26685-8.0055)\) & 1 \\
\hline & & & & & \\
\hline
\end{tabular}

Method: LC/MS PFCs (EPA Method 537)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Calibration Date & System & Compound & Standard & \[
\begin{gathered}
\hline(\mathrm{Y}) \\
\text { Response }
\end{gathered}
\] &  \\
\hline \multirow[t]{10}{*}{3/3/2020} & \multirow[t]{10}{*}{MQ4} & \multirow[t]{10}{*}{PFBS} & 1 & 0.554705098 & 0.250 \\
\hline & & & 2 & 1.200240315 & 0.500 \\
\hline & & & 3 & 2.661566497 & 1.000 \\
\hline & & & 4 & 4.565038616 & 2.000 \\
\hline & & & 5 & 11.70798422 & 5.000 \\
\hline & & & 6 & 24.59190858 & 10.000 \\
\hline & & & 7 & 123.1772944 & 50.000 \\
\hline & & & 8 & 228.7428464 & 100.000 \\
\hline & & & 9 & 652.3548228 & 250.000 \\
\hline & & & 10 & 1232.788197 & 500.000 \\
\hline
\end{tabular}

Regression Output
\begin{tabular}{||l||r||c|}
\hline Constant & & -0.055572 \\
\hline Std Err of Y Est & & -0.438622 \\
\hline R Squared & & 0.999028 \\
\hline Degrees of Freedom & & \\
\hline & & 0.998545 \\
\hline X Coefficient(s) & & 2.488959 \\
\hline Std Err of Coef. & & \\
\hline & & 0.484790 \\
\hline Correlation Coefficient & 0.999514 & \\
\hline Coefficient of Determination (r^2) & 0.999028 & 0.998545 \\
\hline
\end{tabular}

Method: LC/MS PFCs (EPA Method 537)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\hline \hline \text { Calibration } \\
\text { Date } \\
\hline
\end{gathered}
\] & System & Compound & Standard & \((\mathrm{Y})\)
Response &  \\
\hline \multirow[t]{10}{*}{3/3/2020} & \multirow[t]{10}{*}{MQ4} & \multirow[t]{10}{*}{PFHxA} & 1 & 0.284453925 & 0.250 \\
\hline & & & 2 & 0.563641632 & 0.500 \\
\hline & & & 3 & 0.853216191 & 1.000 \\
\hline & & & 4 & 1.758122628 & 2.000 \\
\hline & & & 5 & 3.931533913 & 5.000 \\
\hline & & & 6 & 8.197558343 & 10.000 \\
\hline & & & 7 & 44.22352528 & 50.000 \\
\hline & & & 8 & 88.16450415 & 100.000 \\
\hline & & & 9 & 228.8115199 & 250.000 \\
\hline & & & 10 & 439.6866489 & 500.000 \\
\hline
\end{tabular}

Regression Output
\begin{tabular}{||l||r||c|}
\hline Constant & 0.288773 & 0.023652 \\
\hline Std Err of Y Est & & 0.999493 \\
\hline R Squared & & \\
\hline Degrees of Freedom & & \\
\hline & & 0.999657 \\
\hline X Coefficient(s) & & 0.885537 \\
\hline Std Err of Coef. & & \\
\hline Correlation Coefficient & 0.999829 & \\
\hline Coefficient of Determination \(\left(\mathrm{r}^{\wedge} 2\right)\) & 0.999657 & 0.999493 \\
\hline
\end{tabular}

VALIDATION FINDINGS WORKSHEET
Page: \(\quad 3_{\text {of }}\) \&
Reviewer: Initial Calibration Calculation Verification

Method: LC/MS PFCs (EPA Method 537)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Calibration Date & System & Compound & Standard & \[
\begin{gathered}
\hline(\mathrm{Y}) \\
\text { Response }
\end{gathered}
\] & (X) Concentration \\
\hline \multirow[t]{10}{*}{3/4/2020} & \multirow[t]{10}{*}{MQ4} & \multirow[t]{10}{*}{PFBS} & 1 & 0.587190232 & 0.250 \\
\hline & & & 2 & 1.302489993 & 0.500 \\
\hline & & & 3 & 2.382420295 & 1.000 \\
\hline & & & 4 & 4.640189802 & 2.000 \\
\hline & & & 5 & 12.43729927 & 5.000 \\
\hline & & & 6 & 22.28433527 & 10.000 \\
\hline & & & 7 & 120.4758055 & 50.000 \\
\hline & & & 8 & 242.8732193 & 100.000 \\
\hline & & & 9 & 682.9602572 & 250.000 \\
\hline & & & 10 & 1288.660676 & 500.000 \\
\hline
\end{tabular}

Regression Output
Reported
\begin{tabular}{|l||r||c|}
\hline Constant & & -0.116823 \\
\hline Std Err of Y Est & -1.500233 & \\
\hline R Squared & & 0.998244 \\
\hline Degrees of Freedom & & \\
\hline & & \\
\hline X Coefficient(s) & & 2.999024 \\
\hline Std Err of Coef. & & \\
\hline Correlation Coefficient & & \\
\hline Coefficient of Determination \(\left(r^{\wedge} 2\right)\) & 0.9999512 & \\
\hline
\end{tabular}

Method: LC/MS PFCs (EPA Method 537)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\hline \hline \text { Calibration } \\
\text { Date }
\end{gathered}
\] & System & Compound & Standard & \((\mathrm{Y})\)
Response & \begin{tabular}{l}
(X) \\
Concentration
\end{tabular} \\
\hline \multirow[t]{10}{*}{3/4/2020} & \multirow[t]{10}{*}{MQ4} & \multirow[t]{10}{*}{PFHxA} & 1 & 0.31107562 & 0.250 \\
\hline & & & 2 & 0.537330688 & 0.500 \\
\hline & & & 3 & 0.920922420 & 1.000 \\
\hline & & & 4 & 1.813037164 & 2.000 \\
\hline & & & 5 & 4.474043531 & 5.000 \\
\hline & & & 6 & 9.166550489 & 10.000 \\
\hline & & & 7 & 43.86348346 & 50.000 \\
\hline & & & 8 & 85.83019426 & 100.000 \\
\hline & & & 9 & 226.2737151 & 250.000 \\
\hline & & & 10 & 433.2922326 & 500.000 \\
\hline
\end{tabular}

Regression Output
\begin{tabular}{|c|c|c|}
\hline Constant & 0.492762 & 0.058589 \\
\hline Std Err of Y Est & & \\
\hline R Squared & 0.999590 & 0.999543 \\
\hline Degrees of Freedom & & \\
\hline & & \\
\hline X Coefficient(s) & 0.872441 & 0.877166 \\
\hline Std Err of Coef. & & \\
\hline & & \\
\hline Correlation Coefficient & 0.999795 & \\
\hline Coefficient of Determination ( \(\mathrm{r}^{\wedge} 2\) ) & 0.999590 & 0.999543 \\
\hline
\end{tabular}

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

METHOD: LC/MS PFAS (EPA Method 537M)
The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:
\% Difference \(=100\) * (ave. RRF - RRF)/ave. RRF RRF \(=\left(A_{x}\right)\left(C_{i s}\right) /\left(A_{i s}\right)\left(C_{x}\right)\)

Where: ave. RRF = initial calibration average RRF
RRF = continuing calibration RRF
\(A_{x}=\) Area of compound, \(\quad A_{i s}=\) Area of associated internal standard
\(\mathrm{C}_{\mathrm{x}}=\) Concentration of compound,\(\quad \mathrm{C}_{\text {is }}=\) Concentration of internal standard
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & & Reported & Recalculated & Reported & Recalculated \\
\hline \# & Standard ID & Calibration Date & Compound (Reference Internal Standard) & Average RRF (initial) & RRF & RRF & \%D & \%D \\
\hline 1 & \[
200304125
\] & \[
3 / 5 />0
\] & PFOA ( \(\left.{ }^{13} \mathrm{G}_{2} \mathrm{PFOA}\right)\) ¢Y 5 & \(10 . \infty\) & \[
9.86
\] & \[
986
\] & \[
1.4
\] & \[
1.5
\] \\
\hline & & +7 & \[
\text { PFOS }\left({ }^{13} \mathrm{U}_{8}^{-}-\mathrm{PFOS}\right)
\] & \[
10,00
\] & 10.1 & \(10 P 8\) & 0.3 & \[
0.8
\] \\
\hline & & & & & & & & \\
\hline 2 & & & PFOA ( \({ }^{13} \mathrm{C}_{2}\)-PFOA) & & & & & \\
\hline & & & PFOS ( \({ }^{13} \mathrm{C}_{8}\)-PFOS) & & & & & \\
\hline & & & & & & & & \\
\hline 3 & & & PFOA ( \({ }^{13} \mathrm{C}_{2}\)-PFOA) & & & & & \\
\hline & & & PFOS ( \({ }^{13} \mathrm{C}_{8}\)-PFOS) & & & & & \\
\hline & & & & & & & & \\
\hline 4 & & & PFOA ( \({ }^{13} \mathrm{C}_{2}\)-PFOA) & & & & & \\
\hline & & & PFOS ( \({ }^{3} \mathrm{C}_{8}\)-PFOS) & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within \(10.0 \%\) of the recalculated results

VALIDATION FINDINGS WORKSHEET
Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page:/of/ Reviewer: \(Q\) 2nd Reviewer: JMe

METHOD: LC/MS PFAS (EPA Method 537M)
The percent recoveries (\%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline Compound & \multicolumn{2}{|c|}{} & \multicolumn{2}{|r|}{\[
\begin{gathered}
\text { Spike } \\
\text { Concentration }
\end{gathered}
\]} & \multicolumn{2}{|l|}{Percent Recovery} & \multicolumn{2}{|l|}{\(\xrightarrow[\text { Percent Recovery }]{\text { C.S. }}\)} & \multicolumn{2}{|c|}{RPD} \\
\hline  & Lcs & LCSD & Lcs & LCSD & Reported & Recalc. & Reported & Recalc. & Reported & Recalculated \\
\hline PFOA & 0.0400 & 0.0400 & 0.0374 & 0.0385 & 93.4 & 93.4 & 96.3 & 96.3 & 3.06 & 2.90 \\
\hline pFos & \(\downarrow\) & \(\downarrow\) & 0.0361 & 0.0483 & \(90^{2}\) & \(90^{2}\) & 101 & 101 & 11.1 & 11.0 \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within \(10.0 \%\) of the recalculated results.

VALIDATION FINDINGS WORKSHEET
Sample Calculation Verification
Page:
Reviewer
\(\qquad\)
and reviewer \(\qquad\)

\section*{METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)}

YN N/A Were all reported results recalculated and verified for all level IV samples?
\(Y / \mathrm{N}\) N/A Were all recalculated results for detected target compounds agree within \(10.0 \%\) of the reported results?


Example:
Sample I.D. 2, PuBS

=0.0-264



\title{
Laboratory Data Consultants, Inc. Data Validation Report
}

\section*{Project/Site Name:}

LDC Report Date:
Parameters:
Validation Level:
Laboratory:

MCAS El Toro and Tustin PFAS
March 19, 2020
Perfluoroalkyl \& Polyfluoroalkyl Substances
Stage 4
Vista Analytical Laboratory

Sample Delivery Group (SDG): 2000372
\begin{tabular}{|l|l|l|c|}
\hline \multicolumn{1}{|c|}{ Sample Identification } & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Laboratory Sample \\
Identification
\end{tabular}} & Matrix & \begin{tabular}{c} 
Collection \\
Date
\end{tabular} \\
\hline TW07S-20200220 & \(2000372-02\) & Water & \(02 / 20 / 20\) \\
\hline TW05S-20200220 & \(2000372-03\) & Water & \(02 / 20 / 20\) \\
\hline TW06S-20200220 & \(2000372-04\) & Water & \(02 / 20 / 20\) \\
\hline TW21S-20200220 & \(2000372-05\) & Water & \(02 / 20 / 20\) \\
\hline TW20S-20200220 & \(2000372-06\) & Water & \(02 / 20 / 20\) \\
\hline TW19S-20200220 & \(2000372-07\) & Water & \(02 / 20 / 20\) \\
\hline TW18S-20200220 & \(2000372-08\) & Water & \(02 / 20 / 20\) \\
\hline
\end{tabular}

\section*{Introduction}

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Per- and Polyfluoroalkyl Substances in Groundwater in Carve-Outs 2, 5, 6, and 9 and Groundwater and Surface Water Near Operable Unit 3, Former Marine Corps Air Station Tustin, Tustin, California, with Addendum \#02 to Final Sampling and Analysis Plan for Per- and Polyfluoroalkyl Substances Sampling for Groundwater Remedial Action at Operable Unit 3, Installation Restoration Program Site 1 (February 2020), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (February 2018). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:
Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) by Environmental Protection Agency (EPA) Method 537 Modified and LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

\section*{I. Sample Receipt and Technical Holding Times}

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

\section*{II. LC/MS Instrument Performance Check}

Instrument performance was checked and the requirements were met.

\section*{III. Initial Calibration and Initial Calibration Verification}

Initial calibration was performed as required by the methods.
The percent relative standard deviations (\%RSD) were less than or equal to \(20.0 \%\) for all compounds.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination \(\left(r^{2}\right)\) were greater than or equal to 0.990 .

For each calibration standard, all compounds were within \(70-130 \%\) of their true value.
The signal to noise ( \(\mathrm{S} / \mathrm{N}\) ) ratio was within validation criteria for all compounds.
Retention time windows were established as required by the methods.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to \(30.0 \%\) for all compounds.

\section*{IV. Continuing Calibration and Instrument Sensitivity Check}

Continuing calibration was performed at required frequencies.
The percent differences (\%D) were less than or equal to \(30.0 \%\) for all compounds.
The signal to noise \((S / N)\) ratio was within validation criteria for all compounds.
The percent differences (\%D) of the instrument sensitivity check (ISC) were less than or equal to \(30.0 \%\) for all compounds.

Retention times of all compounds in the calibration standards were within the established retention time windows.

\section*{V. Laboratory Blanks}

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

\section*{VI. Field Blanks}

Sample EB04-20200219 was identified as an equipment blank. No contaminants were found.

Sample SB01-20200212 (from SDG 2000314) was identified as a source blank. No contaminants were found.

\section*{VII. Matrix Spike/Matrix Spike Duplicates}

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

\section*{VIII. Laboratory Control Samples}

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

\section*{IX. Field Duplicates}

No field duplicates were identified in this SDG.

\section*{X. Labeled Compounds}

All percent recoveries (\%R) for labeled compounds used to quantitate target compounds were within QC limits.

\section*{XI. Compound Quantitation}

All compound quantitations met validation criteria.

\section*{XII. Target Compound Identifications}

All target compound identifications met validation criteria with the following exceptions:
\begin{tabular}{||l|l|c|c|c||}
\hline \multicolumn{1}{|c|}{ Sample } & \multicolumn{1}{|c|}{\begin{tabular}{c} 
Compound
\end{tabular}} & \begin{tabular}{c} 
lon Abundance Ratio \\
(Limits)
\end{tabular} & Flag & A or P \\
\hline \hline TW05S-20200220 & Perfluorononanoic acid (PFNA) & \(9.388(2.6685-8.0055)\) & J (all detects) & A \\
\hline TW21S-20200220 & Perfluorononanoic acid (PFNA) & \(16.165(3.6265-10.8795)\) & J (all detects) & A \\
\hline TW20S-20200220 & Perfluorohexanoic acid (PFHXA) & \(125.926(10.3835-31.1505)\) & J (all detects) & A \\
\hline TW18S-20200220 & Perfluoroheptanoic acid (PFHpA) & \(27.375(8.382-25.146)\) & J (all detects) & A \\
\hline
\end{tabular}

\section*{XIII. System Performance}

The system performance was acceptable.

\section*{XIV. Overall Assessment of Data}

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to ion abundance ratio, data were qualified as estimated in four samples.
The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

MCAS EI Toro and Tustin PFAS
Perfluoroalkyl \& Polyfluoroalkyl Substances - Data Qualification Summary - SDG 2000372
\begin{tabular}{||l|c|c|c|c||}
\hline \multicolumn{1}{|c|}{ Sample } & Compound & \multicolumn{1}{c|}{ Flag } & A or P & \multicolumn{1}{c|}{ Reason } \\
\hline \hline TW05S-20200220 & Perfluorononanoic acid (PFNA) & J (all detects) & A & \begin{tabular}{l} 
Target compound identification \\
(ion abundance ratio)
\end{tabular} \\
\hline TW21S-20200220 & Perfluorohexanoic acid (PFHXA) & J (all detects) & A & \begin{tabular}{l} 
Target compound identification \\
(ion abundance ratio)
\end{tabular} \\
\hline TW18S-20200220 & Perfluoroheptanoic acid (PFHpA) & J (all detects) & A & \begin{tabular}{l} 
Target compound identification \\
(ion abundance ratio)
\end{tabular} \\
\hline
\end{tabular}

\section*{MCAS EI Toro and Tustin PFAS}

Perfluoroalkyl \& Polyfluoroalkyl Substances - Laboratory Blank Data Qualification Summary - SDG 2000372

No Sample Data Qualified in this SDG
MCAS EI Toro and Tustin PFAS
Perfluoroalkyl \& Polyfluoroalkyl Substances - Field Blank Data Qualification Summary - SDG 2000372

No Sample Data Qualified in this SDG

LDC \#: 47508E96
VALIDATION COMPLETENESS WORKSHEET
SD \#: 2000372
Laboratory: Vista Analytical Laboratory
Reviewer:
2nd Reviewer \(\qquad\)
METHOD: LC/MS Perfluoroalkyl \& Polyfluoroalkyl Substances (EPA Method 537M DOD QSM 5.3)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note:
A = Acceptable
\(\mathrm{N}=\) Not provided/applicable
SW = See worksheet
ND = No compounds detected
D = Duplicate
TB = Trip blank
EB = Equipment blank
SB=Source blank OTHER:
\begin{tabular}{||l|l|l|l|l||}
\hline & Client ID & Lab ID & Matrix & Date \\
\hline 4 & EDO5-20200220 & & & \\
\hline 2 & TW07S-20200220 & Water & \(02 / 20 / 20\) \\
\hline 3 & TW05S-20200220 & \(2000372-02\) & Water & \(02 / 20 / 20\) \\
\hline 4 & TW06S-20200220 & \(2000372-03\) & Water & \(02 / 20 / 20\) \\
\hline 5 & TW21S-20200220 & \(2000372-04\) & Water & \(02 / 20 / 20\) \\
\hline 6 & TW20S-20200220 & \(2000372-05\) & Water & \(02 / 20 / 20\) \\
\hline 7 & TW19S-20200220 & \(2000372-06\) & Water & \(02 / 20 / 20\) \\
\hline 8 & TW18S-20200220 & \(2000372-07\) & Water & \(02 / 20 / 20\) \\
\hline 9 & & \(2000372-08\) & Water & \(02 / 20 / 20\) \\
\hline 10 & & & & \\
\hline
\end{tabular}

Notes


VALIDATION FINDINGS CHECKLIST
Page: 1 of 2
2nd Reviewer:
2
R

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3


\section*{VALIDATION FINDINGS CHECKLIST}
\(\qquad\) 2nd Reviewer:
\begin{tabular}{|c|c|c|c|c|}
\hline Validation Area & Yes & No & NA & Findings/Comments \\
\hline \multicolumn{5}{|l|}{VIII. Laboratory control samples} \\
\hline Was an LCS analyzed per extraction batch for this SDG? & \(\nearrow\) & & & \\
\hline Were the LCS percent recoveries (\%R) and relative percent difference (RPD) within the QC limits? & \(\square\) & & & \\
\hline \multicolumn{5}{|l|}{IX. Field duplicates} \\
\hline Were field duplicate pairs identified in this SDG? & & 7 & & \\
\hline Were target compounds detected in the field duplicates? & & & , & \\
\hline \multicolumn{5}{|l|}{X. Labeled compounds} \\
\hline Were labeled compound percent recoveries (\%R) within the QC limits? & \(r\) & & & \\
\hline Were retention times within 0.4 minutes of the associated calibration standard? & \(\angle\) & & & \\
\hline \multicolumn{5}{|l|}{XI. Compound quantitation} \\
\hline Did the laboratory reporting limits (i.e. DL, LOD, LOQ) meet the QAPP? & / & & & \\
\hline Did reported results include both branched and linear isomers? & \(\bigcirc\) & & & \\
\hline Were the correct ion transition, labeled compound and relative response factor (RRF) used to quantitate the compound? & \(\square\) & & & \\
\hline Were compound retention times within 0.1 minutes of the associated labeled compound for compounds with a labeled analog? & 1 & & & \\
\hline Were compound quantitation and reporting limits adjusted to reflect all sample dilutions and dry weight factors applicable to Stage 4 validation? & 7 & & & \\
\hline \multicolumn{5}{|l|}{XII. Target compound identification} \\
\hline Was the signal to noise ( \(\mathrm{S} / \mathrm{N}\) ) ratio for all compounds within the validation criteria? & I & & & \\
\hline Were two transitions and the ion transition ratio per analyte monitored and documented with the exception of PFBA and PFPeA? & \(\checkmark\) & & & \\
\hline Were ion ratios between \(50-150 \%\) ? & & 7 & & \\
\hline \multicolumn{5}{|l|}{XIII. System performance} \\
\hline System performance was found to be acceptable. & 7 & & & \\
\hline \multicolumn{5}{|l|}{XIV. Overall assessment of Data} \\
\hline Overall assessment of data was found to be acceptable. & \[
7
\] & & & \\
\hline
\end{tabular}

TARGET COMPOUND WORKSHEET

\section*{METHOD: PFOS/PFOAS}


\section*{VALIDATION FINDINGS WORKSHEET Target Compound Identification}

METHOD: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.1.1
Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".
N \(/ \mathrm{A}\) Was the signal to noise \((\mathrm{S} / \mathrm{N})\) ratio for all compounds within the validation criteria?
WN/A Were two transitions and the ion transition ratio per analyte monitored and documented with the exception of PFBA and PFPeA? \(Y(N) N / A \quad\) Were ion ratios between \(50-150 \%\) ?
\begin{tabular}{|c|c|c|c|c|c|}
\hline \# & Date & Sample ID & Associated Samples & \[
\begin{gathered}
\text { 1on Rafio ( } 50-1507) \\
\text { Finding }
\end{gathered}
\] & Qualifications \\
\hline & & 3 & OFNA & \(9.388(0.6685-8.0055)\) & vels \(A\) \\
\hline & & & & & , \\
\hline & & 5 & PFNA & 16.165 (3.6265-10.8795) & \\
\hline & & & & & \\
\hline & & 6 & PFHXA & \(125.9+6(10.3835-31.1505)\) & \\
\hline & & & & & \\
\hline & & 8 & DFHFA & \(27.375\left(8.38^{2}-25.146\right)\) & \(\checkmark\) \\
\hline & & & Pr & & \\
\hline & & & & & \\
\hline
\end{tabular}

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:
Reviewer:
2nd Reviewer: JMa

Method: LC/MS PFCs (EPA Method 537)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Calibration Date & System & Compound & Standard & \begin{tabular}{l}
(Y) \\
Response
\end{tabular} & \begin{tabular}{l}
(X) \\
Concentration
\end{tabular} \\
\hline \multirow[t]{10}{*}{3/4/2020} & \multirow[t]{10}{*}{MQ4} & \multirow[t]{10}{*}{PFBS} & 1 & 0.587190232 & 0.250 \\
\hline & & & 2 & 1.302489993 & 0.500 \\
\hline & & & 3 & 2.382420295 & 1.000 \\
\hline & & & 4 & 4.640189802 & 2.000 \\
\hline & & & 5 & 12.43729927 & 5.000 \\
\hline & & & 6 & 22.28433527 & 10.000 \\
\hline & & & 7 & 120.4758055 & 50.000 \\
\hline & & & 8 & 242.8732193 & 100.000 \\
\hline & & & 9 & 682.9602572 & 250.000 \\
\hline & & & 10 & 1288.660676 & 500.000 \\
\hline
\end{tabular}

\section*{Regression Output}

Reported
\begin{tabular}{|l||r||c|}
\hline Constant & & -1.500233 \\
\hline Std Err of Y Est & & -0.116823 \\
\hline R Squared & & 0.999024 \\
\hline Degrees of Freedom & & \\
\hline & & \\
\hline X Coefficient(s) & & 2.998244 \\
\hline Std Err of Coef. & & 2.5905286 \\
\hline & & \\
\hline Correlation Coefficient & 0.999512 & \\
\hline Coefficient of Determination (r^2) & 0.999024 & 0.998244 \\
\hline
\end{tabular}

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:
2nd Reviewer:.JM

Method: LC/MS PFCs (EPA Method 537)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\hline \hline \text { Calibration } \\
\text { Date } \\
\hline \hline
\end{gathered}
\] & System & Compound & Standard & \[
\begin{gathered}
\hline(\mathrm{Y}) \\
\text { Response } \\
\hline
\end{gathered}
\] & \[
\begin{gathered}
(X) \\
\text { Concentration } \\
\hline \hline
\end{gathered}
\] \\
\hline \multirow[t]{10}{*}{3/4/2020} & \multirow[t]{10}{*}{MQ4} & \multirow[t]{10}{*}{PFHxA} & 1 & 0.31107562 & 0.250 \\
\hline & & & 2 & 0.537330688 & 0.500 \\
\hline & & & 3 & 0.920922420 & 1.000 \\
\hline & & & 4 & 1.813037164 & 2.000 \\
\hline & & & 5 & 4.474043531 & 5.000 \\
\hline & & & 6 & 9.166550489 & 10.000 \\
\hline & & & 7 & 43.86348346 & 50.000 \\
\hline & & & 8 & 85.83019426 & 100.000 \\
\hline & & & 9 & 226.2737151 & 250.000 \\
\hline & & & 10 & 433.2922326 & 500.000 \\
\hline
\end{tabular}

Regression Output
\begin{tabular}{|c|c|c|}
\hline Constant & 0.492762 & 0.058589 \\
\hline Std Err of Y Est & & \\
\hline R Squared & 0.999590 & 0.999543 \\
\hline Degrees of Freedom & & \\
\hline & & \\
\hline X Coefficient(s) & 0.872441 & 0.877166 \\
\hline Std Err of Coef. & & \\
\hline & & \\
\hline Correlation Coefficient & 0.999795 & \\
\hline Coefficient of Determination ( \(\mathrm{r}^{\wedge} 2\) ) & 0.999590 & 0.999543 \\
\hline
\end{tabular}

Method: LC/MS PFCs (EPA Method 537)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\hline \hline \text { Calibration } \\
\text { Date } \\
\hline
\end{gathered}
\] & System & Compound & Standard & \[
\begin{gathered}
\hline(\mathrm{Y}) \\
\text { Response }
\end{gathered}
\] & \begin{tabular}{l}
(X) \\
Concentration
\end{tabular} \\
\hline \multirow[t]{10}{*}{3/5/2020} & \multirow[t]{10}{*}{MQ4} & \multirow[t]{10}{*}{PFBS} & 1 & 0.726555356 & 0.250 \\
\hline & & & 2 & 1.104992504 & 0.500 \\
\hline & & & 3 & 2.524191830 & 1.000 \\
\hline & & & 4 & 5.242095397 & 2.000 \\
\hline & & & 5 & 12.56394309 & 5.000 \\
\hline & & & 6 & 24.35921505 & 10.000 \\
\hline & & & 7 & 128.0155043 & 50.000 \\
\hline & & & 8 & 263.9439244 & 100.000 \\
\hline & & & 9 & 580.1280986 & 250.000 \\
\hline & & & 10 & 1282.892279 & 500.000 \\
\hline
\end{tabular}
\begin{tabular}{l}
\multicolumn{1}{l|}{ Regression Output } \\
\begin{tabular}{||l||r||c|}
\hline Constant & Reported \\
\hline Std Err of Y Est & & 0.020965 \\
\hline R Squared & & -1.958225 \\
\hline Degrees of Freedom & & 0.997967 \\
\hline & & \\
\hline X Coefficient(s) & & \\
\hline Std Err of Coef. & & 2.526349 \\
\hline Correlation Coefficient & & 2.504810 \\
\hline Coefficient of Determination \(\left(\mathrm{r}^{\wedge} 2\right)\) & 0.998983 & \\
\hline
\end{tabular} \\
\hline
\end{tabular}

Method：LC／MS PFCs（EPA Method 537）
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\hline \hline \text { Calibration } \\
\text { Date } \\
\hline
\end{gathered}
\] & System & Compound & Standard & \begin{tabular}{l}
（Y） \\
Response
\end{tabular} & \((X)\)
Concentration \\
\hline \multirow[t]{10}{*}{3／5／2020} & \multirow[t]{10}{*}{MQ4} & \multirow[t]{10}{*}{PFHxA} & 1 & 0.303339179 & 0.250 \\
\hline & & & 2 & 0.512576408 & 0.500 \\
\hline & & & 3 & 0.938837798 & 1.000 \\
\hline & & & 4 & 1.910591972 & 2.000 \\
\hline & & & 5 & 4.666418299 & 5.000 \\
\hline & & & 6 & 9.287534991 & 10.000 \\
\hline & & & 7 & 45.54031784 & 50.000 \\
\hline & & & 8 & 89.32557222 & 100.000 \\
\hline & & & 9 & 217.1793728 & 250.000 \\
\hline & & & 10 & 414.4291907 & 500.000 \\
\hline
\end{tabular}

Regression Output
\begin{tabular}{|l||r||c||}
\hline Constant & & 0.082029 \\
\hline Std Err of Y Est & & 1.769943 \\
\hline R Squared & 0.999397 \\
\hline Degrees of Freedom & & 0.998840 \\
\hline & & \\
\hline X Coefficient（s） & & 0.852543 \\
\hline Std Err of Coef． & & \\
\hline & & 0.834171 \\
\hline Correlation Coefficient & 0.999698 & \\
\hline Coefficient of Determination（r＾2） & 0.999397 & 0.998840 \\
\hline
\end{tabular}


METHOD: LC/MS PFAS (EPA Method 537M)
The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:
\% Difference \(=100^{*}\) (ave. RRF - RRF)/ave. RRF \(R R F=\left(A_{x}\right)\left(C_{i k}\right) /\left(A_{i s}\right)\left(C_{x}\right)\)

Where: ave. RRF = initial calibration average RRF
RRF = continuing calibration RRF
\(A_{x}=\) Area of compound,\(\quad A_{i s}=\) Area of associated internal standard
\(\mathrm{C}_{\mathrm{x}}=\) Concentration of compound,\(\quad \mathrm{C}_{\mathrm{is}}=\) Concentration of internal standard


Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within \(10.0 \%\) of the recalculated results

VALIDATION FINDINGS WORKSHEET
Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

METHOD: LC/MS PFAS (EPA Method 537M)
The percent recoveries (\%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:
```

% Recovery = 100 * (SC/SA Where: SSC = Spike concentration
SA = Spike added
$R P D=1 \operatorname{LCSC}-\left.\operatorname{LCSDC}\right|^{*} 2 /(L C S C+L C S D C) \quad$ LCSC $=$ Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration LCSILCSD samples: BOBO $\because 3-B S^{\prime} /$ BSO

```
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{Compound} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{}} & \multicolumn{2}{|r|}{\multirow[t]{2}{*}{\[
\begin{gathered}
\text { Spike } \\
\text { concentyation } \\
\text { ( } / 4) \text { ) }
\end{gathered}
\]}} & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\(\xrightarrow[\text { Percent Recovery }]{\text { Ces }}\)}} & & & csu & \\
\hline & & & & & & & \multicolumn{2}{|l|}{Percent Recovery} & \multicolumn{2}{|c|}{RPD} \\
\hline + & Lcs & LCSD & Lcs & LCSD & Reported & Recalc. & Reported & Recalc. & Reported & Recalculated \\
\hline PFoA & 0.0400 & 0.0400 & \(0.04>9\) & 00420 & 107 & 107 & 105 & 105 & 2.03 & 2.12 \\
\hline pros & \(\downarrow\) & \(\downarrow\) & 0.0403 & 0.0436 & 101 & 101 & 109 & 109 & 791 & 7.87 \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline & & & & & & & & & & \\
\hline
\end{tabular}

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within \(10.0 \%\) of the recalculated results.

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

\section*{METHOD: LC/MS PFOS/PFOAs (EPA Method 537M) \\ (EPA Me}

\(\begin{array}{ll}Y \text { N N/A } & \text { Were all reported results recalculated and verified for all level IV samples? } \\ Y \text { N N/A } & \text { Were all recalculated results for detected target compounds agree within } 10.0 \% \text { of the reported results? }\end{array}\)


Example:
Sample I.D \(\qquad\) PF HA

\(=0.0497\) co.


\title{
Laboratory Data Consultants, Inc. Data Validation Report
}

Project/Site Name:
LDC Report Date:
Parameters:
Validation Level:
Laboratory:

MCAS EI Toro and Tustin PFAS
March 20, 2020
Perfluoroalkyl \& Polyfluoroalkyl Substances
Stage 4
Vista Analytical Laboratory

Sample Delivery Group (SDG): 2000390
\begin{tabular}{|l|l|l|c|}
\hline \multicolumn{1}{|c|}{ Sample Identification } & \multicolumn{1}{c|}{\begin{tabular}{c} 
Laboratory Sample \\
Identification
\end{tabular}} & Matrix & \begin{tabular}{c} 
Collection \\
Date
\end{tabular} \\
\hline TW14S-20200221 & \(2000390-02\) & Water & \(02 / 21 / 20\) \\
\hline TW17S-20200221 & \(2000390-03\) & Water & \(02 / 21 / 20\) \\
\hline TW16S-20200221 & \(2000390-04\) & Water & \(02 / 21 / 20\) \\
\hline TW15S-20200221 & \(2000390-05\) & Water & \(02 / 21 / 20\) \\
\hline
\end{tabular}

\section*{Introduction}

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Per- and Polyfluoroalkyl Substances in Groundwater in Carve-Outs 2, 5, 6, and 9 and Groundwater and Surface Water Near Operable Unit 3, Former Marine Corps Air Station Tustin, Tustin, California, with Addendum \#02 to Final Sampling and Analysis Plan for Per- and Polyfluoroalkyl Substances Sampling for Groundwater Remedial Action at Operable Unit 3, Installation Restoration Program Site 1 (February 2020), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (February 2018). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:
Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) by Environmental Protection Agency (EPA) Method 537 Modified and LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

\section*{I. Sample Receipt and Technical Holding Times}

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

\section*{II. LC/MS Instrument Performance Check}

Instrument performance was checked and the requirements were met.

\section*{III. Initial Calibration and Initial Calibration Verification}

Initial calibration was performed as required by the methods.
The percent relative standard deviations (\%RSD) were less than or equal to \(20.0 \%\) for all compounds.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination \(\left(\mathrm{r}^{2}\right)\) were greater than or equal to 0.990 .

For each calibration standard, all compounds were within 70-130\% of their true value.
The signal to noise ( \(\mathrm{S} / \mathrm{N}\) ) ratio was within validation criteria for all compounds.
Retention time windows were established as required by the methods.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to \(30.0 \%\) for all compounds.

\section*{IV. Continuing Calibration and Instrument Sensitivity Check}

Continuing calibration was performed at required frequencies.
The percent differences (\%D) were less than or equal to \(30.0 \%\) for all compounds.
The signal to noise ( \(\mathrm{S} / \mathrm{N}\) ) ratio was within validation criteria for all compounds.
The percent differences (\%D) of the instrument sensitivity check (ISC) were less than or equal to \(30.0 \%\) for all compounds.

Retention times of all compounds in the calibration standards were within the established retention time windows.

\section*{V. Laboratory Blanks}

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

\section*{VI. Field Blanks}

Sample EB06-20200221 was identified as an equipment blank. No contaminants were found.

Sample SB01-20200212 (from SDG 2000314) was identified as a source blank. No contaminants were found.

\section*{VII. Matrix Spike/Matrix Spike Duplicates}

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

\section*{VIII. Laboratory Control Samples}

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

\section*{IX. Field Duplicates}

No field duplicates were identified in this SDG.

\section*{X. Labeled Compounds}

All percent recoveries (\%R) for labeled compounds used to quantitate target compounds were within QC limits.

\section*{XI. Compound Quantitation}

All compound quantitations met validation criteria.

\section*{XII. Target Compound Identifications}

All target compound identifications met validation criteria with the following exceptions:
\begin{tabular}{||c|c|c|c|c||}
\hline Sample & Compound & \begin{tabular}{c} 
Ion Abundance Ratio \\
(Limits)
\end{tabular} & Flag & A or P \\
\hline \hline TW14S-20200221 & Perfluorononanoic acid (PFNA) & \(8.665(2.6685-8.0055)\) & J (all detects) & A \\
\hline TW15S-20200221 & Perfluorononanoic acid (PFNA) & \(8.257(2.6685-8.0055)\) & J (all detects) & A \\
\hline
\end{tabular}

\section*{XIII. System Performance}

The system performance was acceptable.

\section*{XIV. Overall Assessment of Data}

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to ion abundance ratio, data were qualified as estimated in two samples.
The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

\section*{MCAS El Toro and Tustin PFAS}

Perfluoroalkyl \& Polyfluoroalkyl Substances - Data Qualification Summary - SDG 2000390
\begin{tabular}{||c|c|c|c|c||}
\hline & & & & \\
Sample & Compound & Flag & A or P & \\
\hline \hline TW14S-20200221 & Perfluorononanoic acid (PFNA) & \(J\) (all detects) & A & \begin{tabular}{l} 
Target compound identification \\
(ion abundance ratio)
\end{tabular} \\
\hline \hline
\end{tabular}

\section*{MCAS El Toro and Tustin PFAS \\ Perfluoroalkyl \& Polyfluoroalkyl Substances - Laboratory Blank Data Qualification Summary - SDG 2000390}

No Sample Data Qualified in this SDG
MCAS El Toro and Tustin PFAS
Perfluoroalkyl \& Polyfluoroalkyl Substances - Field Blank Data Qualification Summary - SDG 2000390

No Sample Data Qualified in this SDG

METHOD: LC/MS Perfluoroalkyl \& Polyfluoroalkyl Substances (EPA Method 537M DOD QSM 5.3)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.


Note: \(\quad \mathrm{A}=\) Acceptable
\(\mathrm{N}=\) Not provided/applicable SW = See worksheet

ND = No compounds detected
\(\mathrm{R}=\) Rinsate
FB = Field blank
\(D=\) Duplicate
TB = Trip blank \(\mathrm{EB}=\) Equipment blank

SB=Source blank OTHER:
\begin{tabular}{|c|c|c|c|c|}
\hline & Client ID & Lab ID & Matrix & Date \\
\hline & EB06-20200221 & \(2000390-04\) & Water & 02/24120 \\
\hline 2 & TW14S-20200221 & 2000390-02 & Water & 02/21/20 \\
\hline 3 & TW17S-20200221 & 2000390-03 & Water & 02/21/20 \\
\hline 4 & TW16S-20200221 & 2000390-04 & Water & 02/21/20 \\
\hline 5 & TW15S-20200221 & 2000390-05 & Water & 02/21/20 \\
\hline 6 & & & & \\
\hline 7 & & & & \\
\hline 8 & & & & \\
\hline 9 & & & & \\
\hline 10 & & & & \\
\hline
\end{tabular}

Notes:
\begin{tabular}{||l|l|l|l|l|l|l|l||}
\hline BopO2/3-p/t & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline & & & & & & & \\
\hline
\end{tabular}

\section*{VALIDATION FINDINGS CHECKLIST}
Page: 2 Reviewer:

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3
\begin{tabular}{|c|c|c|c|c|}
\hline Validation Area & Yes & No & NA & Findings/Comments \\
\hline \multicolumn{5}{|l|}{L. Technical holding times} \\
\hline Were all technical holding times met? & \(\square\) & & & \\
\hline Was cooler temperature criteria met? & \(\square\) & & & \\
\hline \multicolumn{5}{|l|}{II. LC/MS Instrument performance check} \\
\hline Were the instrument performance reviewed and found to be within the validation criteria? & 7 & & & \\
\hline \multicolumn{5}{|l|}{III. Initial calibration and Initial Calibration Verification} \\
\hline Did the laboratory perform a 5 point calibration prior to sample analysis? & \(r\) & & & \\
\hline Were all percent relative standard deviations (\%RSD) \(\leq 20 \%\) ? & & & & \\
\hline \multicolumn{5}{|l|}{Was a curve fit used for evaluation? If yes, did the initial calibration meet the coefficient of determination \(\left(r^{2}\right)\) criteria of \(\geq 0.990\) ?} \\
\hline Were all analytes within \(70-130 \%\) or percent differences (\%D) \(\leq 30 \%\) of their true value for each calibration standard? & \[
1
\] & & & \\
\hline Was the signal to noise \((\mathrm{S} / \mathrm{N})\) ratio for all compounds within the validation criteria? & / & & & \\
\hline Were the retention time windows properly established? & 7 & & & \\
\hline Was an initial calibration verification standard analyzed after each initial calibration for each instrument? & 7 & & & \\
\hline Were all percent differences (\%D) of the initial calibration verification \(\leq 30 \%\) ? & 7 & & & \\
\hline \multicolumn{5}{|l|}{IV. Continuing calibration and Instrument Sensitivity Check} \\
\hline Was a continuing calibration analyzed prior to sample analysis, after every 10 samples and at the end of the analytical sequence? & \[
6
\] & & & \\
\hline \multicolumn{5}{|l|}{\begin{tabular}{|l|l}
\hline Were all percent differences (\%D) of the continuing calibration \(\leq 30 \%\) ? & \\
\hline
\end{tabular}} \\
\hline Were all the retention times within the acceptance windows? & 7 & & & \\
\hline Was the signal to noise \((\mathrm{S} / \mathrm{N})\) ratio for all compounds within the validation criteria? &  & & & \\
\hline Were all percent differences (\%D) of the Instrument Sensitivity Check \(\leq 30 \%\) ? & & & & \\
\hline \multicolumn{5}{|l|}{V. Laboratory Blanks} \\
\hline Was a laboratory blank associated with every sample in this SDG? & & & & \\
\hline Was a laboratory blank analyzed for each matrix and concentration? &  & & & \\
\hline Was there contamination in the laboratory blanks? & & & & \\
\hline \multicolumn{5}{|l|}{VI. Field blanks} \\
\hline Were field blanks identified in this SDG? & \[
7
\] & & & \\
\hline Were target compounds detected in the field blanks? & & < & & \\
\hline \multicolumn{5}{|l|}{VII. Matrix spike/Matrix spike duplicates} \\
\hline Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG? & & \[
l
\] & & \\
\hline Were the MS/MSD percent recoveries (\%R) and the relative percent differences (RPD) within the QC limits? & & & 7 & \\
\hline
\end{tabular}

\section*{VALIDATION FINDINGS CHECKLIST}

\begin{tabular}{|c|c|c|c|c|}
\hline Validation Area & Yes & No & NA & Findings/Comments \\
\hline \multicolumn{5}{|l|}{VIII. Laboratory control samples} \\
\hline Was an LCS analyzed per extraction batch for this SDG? & , & & & \\
\hline \multicolumn{5}{|l|}{Were the LCS percent recoveries (\%R) and relative percent difference (RPD) within the QC limits?} \\
\hline \multicolumn{5}{|l|}{IX. Field duplicates} \\
\hline \multicolumn{5}{|l|}{Were field duplicate pairs identified in this SDG?} \\
\hline \multicolumn{5}{|l|}{Were target compounds detected in the field duplicates?} \\
\hline \multicolumn{5}{|l|}{\(X\). Labeled compounds} \\
\hline \multicolumn{5}{|l|}{Were labeled compound percent recoveries (\%R) within the QC limits?} \\
\hline \multicolumn{5}{|l|}{Were retention times within 0.4 minutes of the associated calibration standard?} \\
\hline \multicolumn{5}{|l|}{XI. Compound quantitation} \\
\hline \multicolumn{5}{|l|}{Did the laboratory reporting limits (i.e. DL, LOD, LOQ) meet the QAPP?} \\
\hline \multicolumn{5}{|l|}{Did reported results include both branched and linear isomers?} \\
\hline \multicolumn{5}{|l|}{Were the correct ion transition, labeled compound and relative response factor (RRF) used to quantitate the compound?} \\
\hline Were compound retention times within 0.1 minutes of the associated labeled compound for compounds with a labeled analog? & / & & & \\
\hline Were compound quantitation and reporting limits adjusted to reflect all sample dilutions and dry weight factors applicable to Stage 4 validation? & & & & \\
\hline \multicolumn{5}{|l|}{XII. Target compound identification} \\
\hline Was the signal to noise \((\mathrm{S} / \mathrm{N})\) ratio for all compounds within the validation criteria? & & & & \\
\hline Were two transitions and the ion transition ratio per analyte monitored and documented with the exception of PFBA and PFPeA? & & & & \\
\hline \multicolumn{5}{|l|}{Were ion ratios between \(50-150 \%\) ?} \\
\hline \multicolumn{5}{|l|}{XIII. System performance} \\
\hline \multicolumn{5}{|l|}{System performance was found to be acceptable.} \\
\hline \multicolumn{5}{|l|}{XIV. Overall assessment of Data} \\
\hline Overall assessment of data was found to be acceptable. & & & & \\
\hline
\end{tabular}

TARGET COMPOUND WORKSHEET

\section*{METHOD: PFOS/PFOAS}


METHOD: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3
Ptease see qualifications below for all questions answered " N ". Not applicable questions are identified as " \(\mathrm{N} / \mathrm{A}\) ". Y N N/A Were all labeled compound recoveries within the QC criteria?


METHOD: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.1.1
Please see qualifications below for all questions answered " N ". Not applicable questions are identified as " \(\mathrm{N} / \mathrm{A}\) ".
\begin{tabular}{ll} 
N NRA & Was the signal to noise \((S / \mathrm{N})\) ratio for all compounds within the validation criteria? \\
N NA & Were two transitions and the ion transition ratio per analyte monitored and documented with the exception of PFBA and PFPeA? \\
W NA & Were ion ratios between \(50-150 \%\) ?
\end{tabular}


VALIDATION FINDINGS WORKSHEET
Page:
Reviewer: 1 of 4 Initial Calibration Calculation Verification
and Reviewer: \(-6 / 6\)
Method: LC/MS PFC (EPA Method 537)
\begin{tabular}{||c|c|c|c|c|c||}
\hline \begin{tabular}{c} 
Calibration \\
Date
\end{tabular} & System & Compound & & \begin{tabular}{c}
\((Y)\) \\
Response
\end{tabular} & \begin{tabular}{c}
\((X)\) \\
Concentration
\end{tabular} \\
\hline \hline \(3 / 4 / 2020\) & MQ4 & & PF BS & 0.587190232 & 0.250 \\
\hline
\end{tabular}


Method: LC/MS PFC (EPA Method 537)



VALIDATION FINDINGS WORKSHEET
Page: \(\Rightarrow\) of \(\not \subset=\)
Reviewer:
Reviewer: 2 R Reviewer: JWe
Method: LC/MS PFCs (EPA Method 537)
\begin{tabular}{|c|c|c|c|c|c|}
\hline Calibration Date & System & Compound & Standard & \begin{tabular}{l}
(Y) \\
Response
\end{tabular} &  \\
\hline \multirow[t]{10}{*}{3/5/2020} & \multirow[t]{10}{*}{MQ4} & \multirow[t]{10}{*}{PFBS} & 1 & 0.726555356 & 0.250 \\
\hline & & & 2 & 1.104992504 & 0.500 \\
\hline & & & 3 & 2.524191830 & 1.000 \\
\hline & & & 4 & 5.242095397 & 2.000 \\
\hline & & & 5 & 12.56394309 & 5.000 \\
\hline & & & 6 & 24.35921505 & 10.000 \\
\hline & & & 7 & 128.0155043 & 50.000 \\
\hline & & & 8 & 263.9439244 & 100.000 \\
\hline & & & 9 & 580.1280986 & 250.000 \\
\hline & & & 10 & 1282.892279 & 500.000 \\
\hline
\end{tabular}

Regression Output
\begin{tabular}{|l||r||c|}
\hline Constant & & 0.020965 \\
\hline Std Err of Y Est & -1.958225 & \\
\hline R Squared & & 0.997967 \\
\hline Degrees of Freedom & & \\
\hline & & 0.997821 \\
\hline X Coefficient(s) & & 2.526349 \\
\hline Std Err of Coef. & & 2.504810 \\
\hline Correlation Coefficient & 0.998983 & \\
\hline Coefficient of Determination \(\left(r^{\wedge} 2\right)\) & 0.997967 & 0.997821 \\
\hline
\end{tabular}

Method: LC/MS PFCs (EPA Method 537)
\begin{tabular}{|c|c|c|c|c|c|}
\hline \[
\begin{gathered}
\hline \hline \text { Calibration } \\
\text { Date }
\end{gathered}
\] & System & Compound & Standard & \begin{tabular}{l}
(Y) \\
Response
\end{tabular} & \((X)\)
Concentration \\
\hline \multirow[t]{10}{*}{3/5/2020} & \multirow[t]{10}{*}{MQ4} & \multirow[t]{10}{*}{PFHxA} & 1 & 0.303339179 & 0.250 \\
\hline & & & 2 & 0.512576408 & 0.500 \\
\hline & & & 3 & 0.938837798 & 1.000 \\
\hline & & & 4 & 1.910591972 & 2.000 \\
\hline & & & 5 & 4.666418299 & 5.000 \\
\hline & & & 6 & 9.287534991 & 10.000 \\
\hline & & & 7 & 45.54031784 & 50.000 \\
\hline & & & 8 & 89.32557222 & 100.000 \\
\hline & & & 9 & 217.1793728 & 250.000 \\
\hline & & & 10 & 414.4291907 & 500.000 \\
\hline
\end{tabular}

\(\qquad\)
METHOD: LC/MS PFAS (EPA Method 537M)
The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:
\% Difference \(=100\) * (ave. RRF - RRF)/ave. RRF RRF \(=\left(A_{x}\right)\left(C_{i s}\right) /\left(A_{i s}\right)\left(C_{x}\right)\)

Where: ave. \(\mathrm{RRF}=\) initial calibration average RRF
RRF = continuing calibration RRF
\(A_{x}=\) Area of compound,
\(\mathrm{C}_{\mathrm{x}}=\) Concentration of compound,\(\quad \mathrm{C}_{\mathrm{is}}=\) Concentration of internal standard
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & & Reported & Recalculated & Reported & Recalculated \\
\hline \# & Standard ID & Calibration Date & Compound (Reference Internal Standard) & Average RRF (initial) & RRF & RRF & \%D & \%D \\
\hline 1 & \(20032472-29\) & \[
3 / 5 / 20
\] & PFOA ( \({ }^{13} \mathrm{C}_{2}\)-PFOAT \(\triangle+5\) & \[
10.0
\] & \[
9.73
\] & 4.73 & \[
27
\] & 87 \\
\hline & & 17 & PFOS ( \(\left.{ }^{13} \mathrm{O}_{8} \mathrm{P} \mathrm{PFOS}\right)\) & 10.00 & 7.92 & 9.93 & 0.8 & 0.8 \\
\hline & & & & & & & & \\
\hline 2 & & & PFOA ( \({ }^{13} \mathrm{C}_{2}\)-PFOA) & & & & & \\
\hline & & & PFOS ( \({ }^{13} \mathrm{C}_{8}\)-PFOS) & & & & & \\
\hline & & & & & & & & \\
\hline 3 & & & PFOA ( \({ }^{13} \mathrm{C}_{2}\)-PFOA) & & & & & \\
\hline & & & PFOS ( \({ }^{13} \mathrm{C}_{8}\)-PFOS) & & & & & \\
\hline & & & & & & & & \\
\hline 4 & & & PFOA ( \({ }^{13} \mathrm{C}_{2}\)-PFOA) & & & & & \\
\hline & & & PFOS ( \({ }^{13} \mathrm{C}_{8}\)-PFOS) & & & & & \\
\hline & & & & & & & & \\
\hline
\end{tabular}

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within \(10.0 \%\) of the recalculated results 2nd Reviewer: JV

METHOD: LC/MS PFAS (EPA Method 537M)
The percent recoveries (\%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:



Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within \(10.0 \%\) of the recalculated results.

\section*{VALIDATION FINDINGS WORKSHEET \\ Sample Calculation Verification}

\section*{METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)}

Were all reported results recalculated and verified for all level IV samples?
Were all recalculated results for detected target compounds agree within \(10.0 \%\) of the reported results?

Concentration \(=\frac{\left(\mathrm{A}_{2}\right)\left(\mathrm{I}_{s}\right)\left(\mathrm{V}_{4}\right)(\mathrm{DF})(2.0)}{} \quad\) Example:
\(\left(\mathrm{A}_{\mathrm{is}}\right)(\mathrm{RRF})\left(\mathrm{V}_{0}\right)\left(\mathrm{V}_{\mathrm{i}}\right)(\% \mathrm{~S})\)
\(A_{x} \quad=\quad\) Area of the characteristic ion (EICP) for the compound to be measured
\(A_{\text {is }} \quad=\quad\) Area of the characteristic ion (EICP) for the specific internal standard
\(\mathrm{I}_{\mathrm{s}} \quad=\quad\) Amount of internal standard added in nanograms (hg)
\(V_{0} \quad=\quad\) Volume or weight of sample extract in milliliters \((\mathrm{ml})\) or grams (g)
\(V_{1} \quad=\quad\) Volume of extract injected in microliters (ul)
\(V_{t}=\) Volume of the concentrated extract in microliters (ul)
Df \(=\) Dilution Factor.
\(\%\) S = Percent solids, applicable to soil and solid matrices only.
\(2.0=\) Factor of 2 to account for GPC cleanup

Sane e. 2 FAt \(\times A\)
Conc. \(=\frac{\frac{1.51 e 4 \times 12.5}{1.33) e 4}-9.0585 \%, 1, x,}{(0.8 * 166)(\$ 52, x}\)
\(=0.0639 \mu \mu_{c}\)

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline INSTALLATION_ID & SITE_NAME & LOCATION_NAME & LOCATION_TYPE_DESC & COORD_X & COORD_Y & SAMPLE_NAME & SAMPLE_MATRIX_DESC & COLLECT_DATE & ANALYTICAL_METHOD_GRP_DESC & SDG \\
\hline TUSTIN_MCAS & SITE 00013S & IS72MW15D & Monitoring well & 6080923.8 & 2205875.3 & IS72MW15S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013 S & 222MW02S & Monitoring well & 6081283.5 & 2207582.9 & DUP03-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW08S & Well & 6082854.35 & 2201435.38 & 1006MW08S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW03SR & Monitoring well & 6082820.6 & 2201165.2 & 1006MW03SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & A000MW42S & Monitoring well & 6081103.46 & 2207072.5 & A000MW42S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & 1005MW01SR & Monitoring well & 6083854.94 & 2202499.94 & 1005MW01SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & 222MW02S & Monitoring well & 6081283.5 & 2207582.9 & 222MW02S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW03SR & Monitoring well & 6082820.6 & 2201165.2 & 1006MW03SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW01S & Monitoring well & 6082832.42 & 2201302.28 & IO06MW01S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & DUP01-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & 222MW02S & Monitoring well & 6081283.5 & 2207582.9 & DUP03-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013 S & 222MW02S & Monitoring well & 6081283.5 & 2207582.9 & 222MW02S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & OU 0000001A & IS72MW18SR & Monitoring well & 6080878.6 & 2206101 & IS72MW18SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW03SR & Monitoring well & 6082820.6 & 2201165.2 & I006MW03SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & IS72MW15D & Monitoring well & 6080923.8 & 2205875.3 & IS72MW15S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & A000MW42S & Monitoring well & 6081103.46 & 2207072.5 & A000MW42S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & 1005MW01SR & Monitoring well & 6083854.94 & 2202499.94 & DUP05-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & 1005MW01SR & Monitoring well & 6083854.94 & 2202499.94 & I005MW01SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & 1006MW05SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & 1005MW01SR & Monitoring well & 6083854.94 & 2202499.94 & DUP05-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW01S & Monitoring well & 6082832.42 & 2201302.28 & IO06MW01S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW01S & Monitoring well & 6082832.42 & 2201302.28 & IO06MW01S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW08S & Well & 6082854.35 & 2201435.38 & I006MW08S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & IS72MW15D & Monitoring well & 6080923.8 & 2205875.3 & IS72MW15S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & 222MW02S & Monitoring well & 6081283.5 & 2207582.9 & DUP03-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & DUP01-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & OU 0000001A & IS72MW18SR & Monitoring well & 6080878.6 & 2206101 & IS72MW18SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW03SR & Monitoring well & 6082820.6 & 2201165.2 & 1006MW03SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & 1005MW01SR & Monitoring well & 6083854.94 & 2202499.94 & I005MW01SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & OU 0000001A & IS72MW18SR & Monitoring well & 6080878.6 & 2206101 & IS72MW18SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & OU 0000001A & IS72MW18SR & Monitoring well & 6080878.6 & 2206101 & IS72MW18SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 SOUTH-A & BMW07S & Monitoring well & 6083933.12 & 2202044.05 & BMW07S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & 1005MW01SR & Monitoring well & 6083854.94 & 2202499.94 & 1005MW01SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & 1005MW01SR & Monitoring well & 6083854.94 & 2202499.94 & 1005MW01SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & I005MW01SR & Monitoring well & 6083854.94 & 2202499.94 & DUP05-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & 222MW02S & Monitoring well & 6081283.5 & 2207582.9 & 222MW02S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & IS72MW15D & Monitoring well & 6080923.8 & 2205875.3 & IS72MW15S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & A000MW42S & Monitoring well & 6081103.46 & 2207072.5 & A000MW42S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & 222MW02S & Monitoring well & 6081283.5 & 2207582.9 & DUP03-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & I006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & DUP01-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & IS72MW15D & Monitoring well & 6080923.8 & 2205875.3 & IS72MW15S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW03SR & Monitoring well & 6082820.6 & 2201165.2 & 1006MW03SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & IS72MW15D & Monitoring well & 6080923.8 & 2205875.3 & IS72MW15S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & 1005MW01SR & Monitoring well & 6083854.94 & 2202499.94 & DUP05-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & 1005MW01SR & Monitoring well & 6083854.94 & 2202499.94 & DUP05-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & IS72MW15D & Monitoring well & 6080923.8 & 2205875.3 & IS72MW15S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & OU 0000001A & IS72MW18SR & Monitoring well & 6080878.6 & 2206101 & IS72MW18SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW03SR & Monitoring well & 6082820.6 & 2201165.2 & 1006MW03SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & 1005MW01SR & Monitoring well & 6083854.94 & 2202499.94 & I005MW01SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & A000MW42S & Monitoring well & 6081103.46 & 2207072.5 & A000MW42S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & 1006MW05SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & 1005MW01SR & Monitoring well & 6083854.94 & 2202499.94 & DUP05-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline INSTALLATION_ID & SITE_NAME & LOCATION_NAME & LOCATION_TYPE_DESC & COORD_X & COORD_Y & SAMPLE_NAME & SAMPLE_MATRIX_DESC & COLLECT_DATE & ANALYTICAL_METHOD_GRP_DESC & SDG \\
\hline TUSTIN_MCAS & SITE 00013S & IS72MW15D & Monitoring well & 6080923.8 & 2205875.3 & IS72MW15S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW08S & Well & 6082854.35 & 2201435.38 & 1006MW08S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW03SR & Monitoring well & 6082820.6 & 2201165.2 & 1006MW03SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013 S & IS72MW15D & Monitoring well & 6080923.8 & 2205875.3 & IS72MW15S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & OU 0000001A & IS72MW18SR & Monitoring well & 6080878.6 & 2206101 & IS72MW18SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 SOUTH-A & BMW07S & Monitoring well & 6083933.12 & 2202044.05 & BMW07S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & 1005MW01SR & Monitoring well & 6083854.94 & 2202499.94 & 1005MW01SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & DUP01-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & DUP01-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & 1006MW05SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013 S & 222MW02S & Monitoring well & 6081283.5 & 2207582.9 & DUP03-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & OU 0000001A & IS72MW18SR & Monitoring well & 6080878.6 & 2206101 & IS72MW18SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & 1006MW05SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & 222MW02S & Monitoring well & 6081283.5 & 2207582.9 & 222MW02S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & I006MW05SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW01S & Monitoring well & 6082832.42 & 2201302.28 & I006MW01S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013 S & IS72MW15D & Monitoring well & 6080923.8 & 2205875.3 & IS72MW15S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 SOUTH-A & BMW07S & Monitoring well & 6083933.12 & 2202044.05 & BMW07S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & IS72MW15D & Monitoring well & 6080923.8 & 2205875.3 & IS72MW15S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & 1006MW05SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & 222MW02S & Monitoring well & 6081283.5 & 2207582.9 & 222MW02S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & OU 0000001A & IS72MW18SR & Monitoring well & 6080878.6 & 2206101 & IS72MW18SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013 S & 222MW02S & Monitoring well & 6081283.5 & 2207582.9 & DUP03-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & 1005MW01SR & Monitoring well & 6083854.94 & 2202499.94 & I005MW01SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & A000MW42S & Monitoring well & 6081103.46 & 2207072.5 & A000MW42S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & A000MW42S & Monitoring well & 6081103.46 & 2207072.5 & A000MW42S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & 1005MW01SR & Monitoring well & 6083854.94 & 2202499.94 & DUP05-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW08S & Well & 6082854.35 & 2201435.38 & IO06MW08S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & DUP01-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & 222MW02S & Monitoring well & 6081283.5 & 2207582.9 & 222MW02S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013 S & 222MW02S & Monitoring well & 6081283.5 & 2207582.9 & DUP03-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013 S & 222MW02S & Monitoring well & 6081283.5 & 2207582.9 & DUP03-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & 1005MW01SR & Monitoring well & 6083854.94 & 2202499.94 & DUP05-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & A000MW42S & Monitoring well & 6081103.46 & 2207072.5 & A000MW42S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW01S & Monitoring well & 6082832.42 & 2201302.28 & IO06MW01S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW03SR & Monitoring well & 6082820.6 & 2201165.2 & I006MW03SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & 222MW02S & Monitoring well & 6081283.5 & 2207582.9 & 222MW02S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & 222MW02S & Monitoring well & 6081283.5 & 2207582.9 & 222MW02S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 SOUTH-A & BMW07S & Monitoring well & 6083933.12 & 2202044.05 & BMW07S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & 1005MW01SR & Monitoring well & 6083854.94 & 2202499.94 & I005MW01SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & 1005MW01SR & Monitoring well & 6083854.94 & 2202499.94 & DUP05-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & IS72MW15D & Monitoring well & 6080923.8 & 2205875.3 & IS72MW15S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & OU 0000001A & IS72MW18SR & Monitoring well & 6080878.6 & 2206101 & IS72MW18SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & DUP01-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW03SR & Monitoring well & 6082820.6 & 2201165.2 & I006MW03SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW03SR & Monitoring well & 6082820.6 & 2201165.2 & 1006MW03SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & DUP01-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & I006MW05SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW01S & Monitoring well & 6082832.42 & 2201302.28 & IO06MW01S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & I006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & I006MW05SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013 S & 222MW02S & Monitoring well & 6081283.5 & 2207582.9 & DUP03-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & 1005 MW 01 SR & Monitoring well & 6083854.94 & 2202499.94 & DUP05-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline INSTALLATION_ID & SITE_NAME & LOCATION_NAME & LOCATION_TYPE_DESC & COORD_X & COORD_Y & SAMPLE_NAME & SAMPLE_MATRIX_DESC & COLLECT_DATE & ANALYTICAL_METHOD_GRP_DESC & SDG \\
\hline TUSTIN_MCAS & SITE 00005 SOUTH-A & BMW07S & Monitoring well & 6083933.12 & 2202044.05 & BMW07S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW01S & Monitoring well & 6082832.42 & 2201302.28 & I006MW01S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & 1006MW05SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & 1006MW05SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW08S & Well & 6082854.35 & 2201435.38 & I006MW08S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 SOUTH-A & BMW07S & Monitoring well & 6083933.12 & 2202044.05 & BMW07S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & DUP01-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & IS72MW15D & Monitoring well & 6080923.8 & 2205875.3 & IS72MW15S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & 222MW02S & Monitoring well & 6081283.5 & 2207582.9 & DUP03-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & OU 0000001A & IS72MW18SR & Monitoring well & 6080878.6 & 2206101 & IS72MW18SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW08S & Well & 6082854.35 & 2201435.38 & I006MW08S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & 1005MW01SR & Monitoring well & 6083854.94 & 2202499.94 & 1005MW01SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 SOUTH-A & BMW07S & Monitoring well & 6083933.12 & 2202044.05 & BMW07S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & OU 0000001A & IS72MW18SR & Monitoring well & 6080878.6 & 2206101 & IS72MW18SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW03SR & Monitoring well & 6082820.6 & 2201165.2 & 1006MW03SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW03SR & Monitoring well & 6082820.6 & 2201165.2 & 1006MW03SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & A000MW42S & Monitoring well & 6081103.46 & 2207072.5 & A000MW42S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW01S & Monitoring well & 6082832.42 & 2201302.28 & I006MW01S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013 S & A000MW42S & Monitoring well & 6081103.46 & 2207072.5 & A000MW42S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & 1005MW01SR & Monitoring well & 6083854.94 & 2202499.94 & DUP05-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & 1006MW05SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 SOUTH-A & BMW07S & Monitoring well & 6083933.12 & 2202044.05 & BMW07S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & 1005MW01SR & Monitoring well & 6083854.94 & 2202499.94 & DUP05-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 SOUTH-A & BMW07S & Monitoring well & 6083933.12 & 2202044.05 & BMW07S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & I005MW01SR & Monitoring well & 6083854.94 & 2202499.94 & 1005MW01SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 SOUTH-A & BMW07S & Monitoring well & 6083933.12 & 2202044.05 & BMW07S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & DUP01-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & I006MW05SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & OU 0000001A & IS72MW18SR & Monitoring well & 6080878.6 & 2206101 & IS72MW18SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & OU 0000001A & IS72MW18SR & Monitoring well & 6080878.6 & 2206101 & IS72MW18SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 SOUTH-A & BMW07S & Monitoring well & 6083933.12 & 2202044.05 & BMW07S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW03SR & Monitoring well & 6082820.6 & 2201165.2 & 1006MW03SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & 1005MW01SR & Monitoring well & 6083854.94 & 2202499.94 & DUP05-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & 222MW02S & Monitoring well & 6081283.5 & 2207582.9 & 222MW02S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW01S & Monitoring well & 6082832.42 & 2201302.28 & 1006MW01S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013 S & 222MW02S & Monitoring well & 6081283.5 & 2207582.9 & 222MW02S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013 S & A000MW42S & Monitoring well & 6081103.46 & 2207072.5 & A000MW42S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW01S & Monitoring well & 6082832.42 & 2201302.28 & I006MW01S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & 1005MW01SR & Monitoring well & 6083854.94 & 2202499.94 & 1005MW01SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & 1005MW01SR & Monitoring well & 6083854.94 & 2202499.94 & DUP05-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013 S & A000MW42S & Monitoring well & 6081103.46 & 2207072.5 & A000MW42S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & 222MW02S & Monitoring well & 6081283.5 & 2207582.9 & DUP03-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013 S & 222MW02S & Monitoring well & 6081283.5 & 2207582.9 & DUP03-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013 S & A000MW42S & Monitoring well & 6081103.46 & 2207072.5 & A000MW42S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013 S & 222MW02S & Monitoring well & 6081283.5 & 2207582.9 & DUP03-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & 222MW02S & Monitoring well & 6081283.5 & 2207582.9 & DUP03-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 SOUTH-A & BMW07S & Monitoring well & 6083933.12 & 2202044.05 & BMW07S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & 222MW02S & Monitoring well & 6081283.5 & 2207582.9 & 222MW02S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW01S & Monitoring well & 6082832.42 & 2201302.28 & I006MW01S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & 1005MW01SR & Monitoring well & 6083854.94 & 2202499.94 & I005MW01SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & 1006MW05SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013 S & 222MWO2S & Monitoring well & 6081283.5 & 2207582.9 & DUP03-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline INSTALLATION_ID & SITE_NAME & LOCATION_NAME & LOCATION_TYPE_DESC & COORD_X & COORD_Y & SAMPLE_NAME & SAMPLE_MATRIX_DESC & COLLECT_DATE & ANALYTICAL_METHOD_GRP_DESC & SDG \\
\hline TUSTIN_MCAS & SITE 00013S & 222MWO2S & Monitoring well & 6081283.5 & 2207582.9 & 222MW02S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & DUP01-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW08S & Well & 6082854.35 & 2201435.38 & I006MW08S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & DUP01-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & DUP01-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & OU 0000001A & IS72MW18SR & Monitoring well & 6080878.6 & 2206101 & IS72MW18SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW08S & Well & 6082854.35 & 2201435.38 & I006MW08S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & 1006MW05SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & 1005MW01SR & Monitoring well & 6083854.94 & 2202499.94 & DUP05-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013 S & 222MW02S & Monitoring well & 6081283.5 & 2207582.9 & 222MW02S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & OU 0000001A & IS72MW18SR & Monitoring well & 6080878.6 & 2206101 & IS72MW18SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & DUP01-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & 1006MW05SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 SOUTH-A & BMW07S & Monitoring well & 6083933.12 & 2202044.05 & BMW07S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW01S & Monitoring well & 6082832.42 & 2201302.28 & IO06MW01S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW01S & Monitoring well & 6082832.42 & 2201302.28 & I006MW01S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW08S & Well & 6082854.35 & 2201435.38 & I006MW08S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW08S & Well & 6082854.35 & 2201435.38 & I006MW08S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW08S & Well & 6082854.35 & 2201435.38 & I006MW08S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013 S & A000MW42S & Monitoring well & 6081103.46 & 2207072.5 & A000MW42S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & 222MW02S & Monitoring well & 6081283.5 & 2207582.9 & 222MW02S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW01S & Monitoring well & 6082832.42 & 2201302.28 & 1006MW01S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013 S & A000MW42S & Monitoring well & 6081103.46 & 2207072.5 & A000MW42S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & 1005MW01SR & Monitoring well & 6083854.94 & 2202499.94 & DUP05-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 SOUTH-A & BMW07S & Monitoring well & 6083933.12 & 2202044.05 & BMW07S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & OU 0000001A & IS72MW18SR & Monitoring well & 6080878.6 & 2206101 & IS72MW18SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & I006MW05SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & 1005MW01SR & Monitoring well & 6083854.94 & 2202499.94 & I005MW01SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & OU 0000001A & IS72MW18SR & Monitoring well & 6080878.6 & 2206101 & IS72MW18SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW08S & Well & 6082854.35 & 2201435.38 & 1006MW08S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & 222MW02S & Monitoring well & 6081283.5 & 2207582.9 & 222MW02S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & OU 0000001A & IS72MW18SR & Monitoring well & 6080878.6 & 2206101 & IS72MW18SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW08S & Well & 6082854.35 & 2201435.38 & IO06MW08S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & IO06MW05SR & Monitoring well & 6082775.54 & 2201315.4 & DUP01-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & IS72MW15D & Monitoring well & 6080923.8 & 2205875.3 & IS72MW15S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 SOUTH-A & BMW07S & Monitoring well & 6083933.12 & 2202044.05 & BMW07S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 SOUTH-A & BMW07S & Monitoring well & 6083933.12 & 2202044.05 & BMW07S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW08S & Well & 6082854.35 & 2201435.38 & I006MW08S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & 1005MW01SR & Monitoring well & 6083854.94 & 2202499.94 & I005MW01SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & IO06MW05SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & IS72MW15D & Monitoring well & 6080923.8 & 2205875.3 & IS72MW15S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & I006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & DUP01-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW08S & Well & 6082854.35 & 2201435.38 & IO06MW08S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW03SR & Monitoring well & 6082820.6 & 2201165.2 & I006MW03SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013 S & 222MW02S & Monitoring well & 6081283.5 & 2207582.9 & DUP03-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & 222MW02S & Monitoring well & 6081283.5 & 2207582.9 & DUP03-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013 S & A000MW42S & Monitoring well & 6081103.46 & 2207072.5 & A000MW42S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & 1005MW01SR & Monitoring well & 6083854.94 & 2202499.94 & I005MW01SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW01S & Monitoring well & 6082832.42 & 2201302.28 & IO06MW01S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & I006MW03SR & Monitoring well & 6082820.6 & 2201165.2 & I006MW03SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW03SR & Monitoring well & 6082820.6 & 2201165.2 & 1006MW03SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & 222MWO2S & Monitoring well & 6081283.5 & 2207582.9 & DUP03-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline INSTALLATION_ID & SITE_NAME & LOCATION_NAME & LOCATION_TYPE_DESC & COORD_X & COORD_Y & SAMPLE_NAME & SAMPLE_MATRIX_DESC & COLLECT_DATE & ANALYTICAL_METHOD_GRP_DESC & SDG \\
\hline TUSTIN_MCAS & SITE 00013S & IS72MW15D & Monitoring well & 6080923.8 & 2205875.3 & IS72MW15S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW08S & Well & 6082854.35 & 2201435.38 & I006MW08S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & 1006MW05SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & 1005MW01SR & Monitoring well & 6083854.94 & 2202499.94 & DUP05-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW01S & Monitoring well & 6082832.42 & 2201302.28 & IO06MW01S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW03SR & Monitoring well & 6082820.6 & 2201165.2 & I006MW03SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013 S & A000MW42S & Monitoring well & 6081103.46 & 2207072.5 & A000MW42S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 SOUTH-A & BMW07S & Monitoring well & 6083933.12 & 2202044.05 & BMW07S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW08S & Well & 6082854.35 & 2201435.38 & 1006MW08S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW01S & Monitoring well & 6082832.42 & 2201302.28 & IO06MW01S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & IS72MW15D & Monitoring well & 6080923.8 & 2205875.3 & IS72MW15S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 SOUTH-A & BMW07S & Monitoring well & 6083933.12 & 2202044.05 & BMW07S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW01S & Monitoring well & 6082832.42 & 2201302.28 & 1006MW01S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013 S & 222MW02S & Monitoring well & 6081283.5 & 2207582.9 & 222MW02S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013 S & A000MW42S & Monitoring well & 6081103.46 & 2207072.5 & A000MW42S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & DUP01-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & 222MW02S & Monitoring well & 6081283.5 & 2207582.9 & 222MW02S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW05SR & Monitoring well & 6082775.54 & 2201315.4 & DUP01-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & 1005MW01SR & Monitoring well & 6083854.94 & 2202499.94 & I005MW01SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00005 & 1005MW01SR & Monitoring well & 6083854.94 & 2202499.94 & DUP05-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW03SR & Monitoring well & 6082820.6 & 2201165.2 & 1006MW03SR-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013 S & 222MW02S & Monitoring well & 6081283.5 & 2207582.9 & 222MW02S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013 S & A000MW42S & Monitoring well & 6081103.46 & 2207072.5 & A000MW42S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00006 & 1006MW08S & Well & 6082854.35 & 2201435.38 & I006MW08S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline TUSTIN_MCAS & SITE 00013S & IS72MW15D & Monitoring well & 6080923.8 & 2205875.3 & IS72MW15S-20200212 & Ground water & 12-Feb-20 & Perfluoroalkyl Compounds & 2000314 \\
\hline
\end{tabular}```


[^0]:    13C2-PFDOA-EIS
    F63:MRM of 1 channel,ES $614.7>569.7$
    

