Groundwater Sample Results,
Level 2 Laboratory Report, Level 4 Laboratory Report, Electronic Data Deliverable, Data Validation Report, Sample Location Report, SDG 2001436
MCAS
Tustin, CA
April 2021

July 22, 2020

Vista Work Order No. 2001436

Ms. Kimberly Shiroodi

KMEA
2423 Hoover Avenue
National City, CA 91950
Dear Ms. Shiroodi,
Enclosed are the results for the sample set received at Vista Analytical Laboratory on July 09, 2020 under your Project Name 'MCAS El Toro and Tustin, PFAS'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier
Laboratory Director

Vista Work Order No. 2001436

Case Narrative

Sample Condition on Receipt:

Two blank water samples and six groundwater samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

PFAS Isotope Dilution/LC-MSMS Method Compliant with Table B-15 of QSM 5.3 (Aqueous)

The following samples contained particulate and were centrifuged prior to extraction:

Laboratory ID		Sample Name
$2001436-02$		TW21D-20200707
2001436-03		TW09D-20200707
2001436-04		TW22D-20200707
$2001436-06$		TW23D-20200708
$2001436-07$		TW24D-20200708
$2001436-08$		TW17D-20200708

Sample "TW17D-20200708" was very high in particulates: the solids made up approximately one-half of the sample. Following standard procedure, the solids were rinsed in methanol and the rinses were included in the extraction.

The samples were extracted and analyzed for a selected list of PFAS using Isotope Dilution and LC-MS/MS compliant with Table B-15 of QSM 5.3. The results for PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Results for all other analytes include the linear isomers only.

Holding Times

The samples were extracted and analyzed within the hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD) were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above $1 / 2$ of the LOQ concentrations. The LCS/LCSD recoveries were within the acceptance criteria.

The labeled standard recoveries outside the acceptance criteria are flagged with an "H" qualifier.

TABLE OF CONTENTS

Case Narrative 1
Table of Contents 3
Sample Inventory 4
Analytical Results 5
Qualifiers 17
Certifications 18
Sample Receipt 21

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
2001436-01	EB05-20200707	07-Jul-20 14:00	09-Jul-20 08:57	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2001436-02	TW21D-20200707	07-Jul-20 08:30	09-Jul-20 08:57	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2001436-03	TW09D-20200707	07-Jul-20 10:40	09-Jul-20 08:57	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2001436-04	TW22D-20200707	07-Jul-20 15:15	09-Jul-20 08:57	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2001436-05	EB06-20200708	08-Jul-20 14:00	09-Jul-20 08:57	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2001436-06	TW23D-20200708	08-Jul-20 09:30	09-Jul-20 08:57	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2001436-07	TW24D-20200708	08-Jul-20 11:20	09-Jul-20 08:57	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2001436-08	TW17D-20200708	08-Jul-20 13:40	09-Jul-20 08:57	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL

ANALYTICAL RESULTS

Sample ID: Method Blank					PFAS Isotope Dilution Table B-15						
Client Data Name: Project:	KMEA MCAS El Toro and Tustin, PFAS	Matrix:				tory Data mple:	B0G0058-B		Column:	BEH C18	
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	ND	0.00137	0.00200	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
PFHxA	307-24-4	ND	0.00137	0.00200	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
HFPO-DA	13252-13-6	ND	0.00241	0.00300	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
PFHpA	375-85-9	ND	0.00137	0.00200	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
ADONA	919005-14-4	ND	0.00137	0.00200	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
PFHxS	355-46-4	ND	0.00137	0.00200	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
PFOA	335-67-1	ND	0.00137	0.00200	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
PFNA	375-95-1	ND	0.00137	0.00200	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
PFOS	1763-23-1	ND	0.00137	0.00200	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
9Cl-PF3ONS	756426-58-1	ND	0.00137	0.00200	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
PFDA	335-76-2	ND	0.00137	0.00200	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
MeFOSAA	2355-31-9	ND	0.00137	0.00200	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
EtFOSAA	2991-50-6	ND	0.00137	0.00200	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
PFUnA	2058-94-8	ND	0.00137	0.00200	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
11Cl-PF3OUdS	763051-92-9	ND	0.00137	0.00200	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
PFDoA	307-55-1	ND	0.00137	0.00200	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
PFTrDA	72629-94-8	ND	0.00137	0.00200	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
PFTeDA	376-06-7	ND	0.00137	0.00200	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	69.5		50-150			B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
13C3-HFPO-DA	IS	65.4		50-150			B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
13C2-PFHxA	IS	67.9		50-150			B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
13C4-PFHpA	IS	66.1		50-150			B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
13C3-PFHxS	IS	74.9		50-150			B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
13C5-PFNA	IS	64.3		50-150			B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
13C2-PFOA	IS	72.0		50-150			B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
13C8-PFOS	IS	63.4		50-150			B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
13C2-PFDA	IS	60.3		50-150			B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
d3-MeFOSAA	IS	56.5		50-150			B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
13C2-PFUnA	IS	57.4		50-150			B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
d5-EtFOSAA	IS	54.6		50-150			B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
13C2-PFDoA	IS	55.5		50-150			B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
13C2-PFTeDA	IS	59.0		50-150			B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results re	ted to the DL.			When re linear and analytes.	orted, PFHxS, branched isom	FOA, PFOS, M rs. Only the li	eFOSAA and EtF ear isomer is repo	OSAA include both red for all other	

Sample ID: LCSD													PFAS Isotope Dilution Table B-15			
Name: Project: Matrix:	KMEA MCAS El Toro and Tustin, PFAS Aqueous			Lab Sample: QC Batch: Samp Size:		$\begin{aligned} & \text { B0G0058-BS1/B0G0058-BSD1 } \\ & \text { B0G0058 } \\ & 0.250 / 0.250 \mathrm{~L} \end{aligned}$				Date Extracted: Column:				12-Jul-20 BEH C18		
Analyte	CAS Number	$\begin{gathered} \hline \mathrm{LCS} \\ (\mathrm{ug} / \mathrm{L}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { LCS } \\ \text { Spike } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { LCS } \\ \% \text { Rec } \\ \hline \end{gathered}$	LCS Quals	$\begin{aligned} & \text { LCSD } \\ & (\mathrm{ug} / \mathrm{L}) \\ & \hline \end{aligned}$	LCSD Spike	$\begin{aligned} & \text { LCSD } \\ & \text { \% Rec } \end{aligned}$	RPD	LCSD Ouals	$\begin{gathered} \hline \text { \%Rec } \\ \text { Limits I } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { RPD } \\ \text { Limits } \end{gathered}$	LCS Analyzed	$\begin{gathered} \hline \text { LCS } \\ \text { Dil } \\ \hline \end{gathered}$	$\begin{gathered} \text { LCSD } \\ \text { Analyzed } \end{gathered}$	$\begin{gathered} \hline \text { LCSD } \\ \text { Dil } \\ \hline \end{gathered}$
PFBS	375-73-5	0.0413	0.0400	103		0.0425	0.0400	106	2.83		72-130	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
PFHxA	307-24-4	0.0434	0.0400	108		0.0441	0.0400	110	1.64		72-129	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
HFPO-DA	13252-13-6	0.0413	0.0400	103		0.0437	0.0400	109	5.60		70-130	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
PFHpA	375-85-9	0.0406	0.0400	101		0.0399	0.0400	99.6	1.77		72-130	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
ADONA	919005-14-4	0.0397	0.0400	99.3		0.0423	0.0400	106	6.30		70-130	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
PFHxS	355-46-4	0.0397	0.0400	99.1		0.0430	0.0400	107	8.07		68-131	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
PFOA	335-67-1	0.0380	0.0400	95.1		0.0422	0.0400	105	10.4		71-133	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
PFNA	375-95-1	0.0410	0.0400	103		0.0446	0.0400	111	8.27		69-130	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
PFOS	1763-23-1	0.0365	0.0400	91.2		0.0485	0.0400	121	28.4		65-140	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
9Cl-PF3ONS	756426-58-1	0.0338	0.0400	84.5		0.0456	0.0400	114	29.7		70-130	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
PFDA	335-76-2	0.0413	0.0400	103		0.0432	0.0400	108	4.51		71-129	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
MeFOSAA	2355-31-9	0.0428	0.0400	107		0.0368	0.0400	91.9	15.1		65-136	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
EtFOSAA	2991-50-6	0.0422	0.0400	106		0.0412	0.0400	103	2.39		61-135	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
PFUnA	2058-94-8	0.0396	0.0400	99.1		0.0405	0.0400	101	2.23		69-133	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
11Cl-PF3OUdS	763051-92-9	0.0393	0.0400	98.1		0.0432	0.0400	108	9.63		70-130	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
PFDoA	307-55-1	0.0431	0.0400	108		0.0401	0.0400	100	7.17		72-134	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
PFTrDA	72629-94-8	0.0382	0.0400	95.6		0.0402	0.0400	100	4.93		65-144	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
PFTeDA	376-06-7	0.0406	0.0400	102		0.0425	0.0400	106	4.62		71-132	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
Labeled Standar		Type		$\begin{gathered} \hline \text { LCS } \\ \text { \% Rec } \\ \hline \end{gathered}$	LCS Quals			$\begin{aligned} & \text { LCSD } \\ & \text { \% Rec } \\ & \hline \end{aligned}$		LCSD Ouals	Limits		$\begin{gathered} \text { LCS } \\ \text { Analyzed } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { LCS } \\ \text { Dil } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { LCSD } \\ \text { Analyzed } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { LCSD } \\ \text { Dil } \\ \hline \end{gathered}$
13C3-PFBS		IS		66.5				74.2			50-150		14-Jul-20 18:31	1	14-Jul-20 18:41	1
13C3-HFPO-DA		IS		59.5				72.0			50-150		14-Jul-20 18:31	1	14-Jul-20 18:41	1
13C2-PFHxA		IS		59.7				72.8			50-150		14-Jul-20 18:31	1	14-Jul-20 18:41	1
13C4-PFHpA		IS		60.0				74.0			50-150		14-Jul-20 18:31	1	14-Jul-20 18:41	1
13C3-PFHxS		IS		71.1				77.4			50-150		14-Jul-20 18:31	1	14-Jul-20 18:41	1
13C5-PFNA		IS		57.9				67.2			50-150		14-Jul-20 18:31	1	14-Jul-20 18:41	1
13C2-PFOA		IS		66.0				75.3			50-150		14-Jul-20 18:31	1	14-Jul-20 18:41	1
13C8-PFOS		IS		69.6				63.6			50-150		14-Jul-20 18:31	1	14-Jul-20 18:41	1
13C2-PFDA		IS		57.2				64.5			50-150		14-Jul-20 18:31	1	14-Jul-20 18:41	1
d3-MeFOSAA		IS		47.0	H			63.0			50-150		14-Jul-20 18:31	1	14-Jul-20 18:41	1
13C2-PFUnA		IS		55.9				62.0			50-150		14-Jul-20 18:31	1	14-Jul-20 18:41	1
d5-EtFOSAA		IS		44.2	H			57.3			50-150		14-Jul-20 18:31	1	14-Jul-20 18:41	1
13C2-PFDoA		IS		46.9	H			56.6			50-150		14-Jul-20 18:31	1	14-Jul-20 18:41	1

Work Order 2001436

Sample ID: LCSD							PFAS Isotope Dilution Table B-15			
Name: Project: Matrix:	KMEA MCAS El Toro and Tustin, PFAS Aqueous	Lab Sample: QC Batch: Samp Size:		B0G0058-BS1/B0G0058-BSD1 B0G0058 0.250/0.250 L			Date Extracted: Column:	$\begin{aligned} & \text { 12-Jul-20 } \\ & \text { BEH C18 } \end{aligned}$		
Labeled Standards		$\begin{gathered} \hline \text { LCS } \\ \text { \% Rec } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { LCS } \\ \text { Quals } \end{gathered}$	$\begin{aligned} & \text { LCSD } \\ & \text { \% Rec } \end{aligned}$	LCSD Ouals	Limits	LCS Analyzed	$\begin{gathered} \hline \text { LCS } \\ \text { Dil } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { LCSD } \\ \text { Analyzed } \end{gathered}$	$\begin{gathered} \hline \text { LCSD } \\ \text { Dil } \\ \hline \end{gathered}$
13C2-PF	IS	51.5		63.7		50-150	14-Jul-20 18:31	1	14-Jul-20 18:41	1

Sample ID: EB05-20200707					PFAS Isotope Dilution Table B-15						
Client Data Name: Project:	KMEA MCAS El Toro and Tustin, PFAS	Matrix: Date Collected:		Blank Water 07-Jul-20 14:00	Laboratory Data Lab Sample: Date Received:		$\begin{aligned} & \text { 2001436-01 } \\ & \text { 09-Jul-20 08:57 } \end{aligned}$		Column:	BEH C18	Dilution
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	
PFBS	375-73-5	ND	0.00136	0.00198	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
PFHxA	307-24-4	ND	0.00136	0.00198	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
HFPO-DA	13252-13-6	ND	0.00239	0.00298	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
PFHpA	375-85-9	ND	0.00136	0.00198	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
ADONA	919005-14-4	ND	0.00136	0.00198	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
PFHxS	355-46-4	ND	0.00136	0.00198	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
PFOA	335-67-1	ND	0.00136	0.00198	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
PFNA	375-95-1	ND	0.00136	0.00198	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
PFOS	1763-23-1	ND	0.00136	0.00198	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
9Cl-PF3ONS	756426-58-1	ND	0.00136	0.00198	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
PFDA	335-76-2	ND	0.00136	0.00198	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
MeFOSAA	2355-31-9	ND	0.00136	0.00198	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
EtFOSAA	2991-50-6	ND	0.00136	0.00198	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
PFUnA	2058-94-8	ND	0.00136	0.00198	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
11Cl-PF3OUdS	763051-92-9	ND	0.00136	0.00198	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
PFDoA	307-55-1	ND	0.00136	0.00198	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
PFTrDA	72629-94-8	ND	0.00136	0.00198	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
PFTeDA	376-06-7	ND	0.00136	0.00198	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	67.2		50-150			B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
13C3-HFPO-DA	IS	57.9		50-150			B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
13C2-PFHxA	IS	63.0		50-150			B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
13C4-PFHpA	IS	63.0		50-150			B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
13C3-PFHxS	IS	72.2		50-150			B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
13C5-PFNA	IS	61.8		50-150			B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
13C2-PFOA	IS	68.2		50-150			B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
13C8-PFOS	IS	66.9		50-150			B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
13C2-PFDA	IS	63.4		50-150			B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
d3-MeFOSAA	IS	53.2		50-150			B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
13C2-PFUnA	IS	63.7		50-150			B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
d5-EtFOSAA	IS	56.3		50-150			B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
13C2-PFDoA	IS	59.1		50-150			B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
13C2-PFTeDA	IS	57.5		50-150			B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results reported to the DL.			When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.						

Sample ID: TW21D-20200707					PFAS Isotope Dilution Table B-15						
Client Data Name: Project:	KMEA MCAS El Toro and Tustin, PFAS	Matrix: Date C	$\begin{array}{cc} & \text { Gro } \\ \text { cted: } & 07- \end{array}$	ater 08:30		tory Data mple: eceived:	$\begin{aligned} & 2001436-0 \\ & 09-J u l-20 \end{aligned}$		Column:	BEH C18	
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	0.00455	0.00139	0.00202	0.00405		B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
PFHxA	307-24-4	0.00920	0.00139	0.00202	0.00405		B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
HFPO-DA	13252-13-6	ND	0.00244	0.00304	0.00405		B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
PFHpA	375-85-9	0.00212	0.00139	0.00202	0.00405	J	B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
ADONA	919005-14-4	ND	0.00139	0.00202	0.00405		B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
PFHxS	355-46-4	0.00969	0.00139	0.00202	0.00405		B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
PFOA	335-67-1	0.0157	0.00139	0.00202	0.00405		B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
PFNA	375-95-1	ND	0.00139	0.00202	0.00405		B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
PFOS	1763-23-1	0.00245	0.00139	0.00202	0.00405	J	B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
9Cl-PF3ONS	756426-58-1	ND	0.00139	0.00202	0.00405		B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
PFDA	335-76-2	ND	0.00139	0.00202	0.00405		B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
MeFOSAA	2355-31-9	ND	0.00139	0.00202	0.00405		B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
EtFOSAA	2991-50-6	ND	0.00139	0.00202	0.00405		B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
PFUnA	2058-94-8	ND	0.00139	0.00202	0.00405		B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
11Cl-PF3OUdS	763051-92-9	ND	0.00139	0.00202	0.00405		B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
PFDoA	307-55-1	ND	0.00139	0.00202	0.00405		B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
PFTrDA	72629-94-8	ND	0.00139	0.00202	0.00405		B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
PFTeDA	376-06-7	ND	0.00139	0.00202	0.00405		B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	73.1		50-150			B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
13C3-HFPO-DA	IS	73.1		50-150			B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
13C2-PFHxA	IS	69.3		50-150			B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
13C4-PFHpA	IS	69.5		50-150			B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
13C3-PFHxS	IS	76.8		50-150			B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
13C5-PFNA	IS	68.1		50-150			B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
13C2-PFOA	IS	73.6		50-150			B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
13C8-PFOS	IS	67.1		50-150			B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
13C2-PFDA	IS	63.9		50-150			B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
d3-MeFOSAA	IS	59.8		50-150			B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
13C2-PFUnA	IS	59.3		50-150			B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
d5-EtFOSAA	IS	56.1		50-150			B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
13C2-PFDoA	IS	51.9		50-150			B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
13C2-PFTeDA	IS	32.1		50-150		H	B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results r	ed to the DL.			When re linear and analytes.	orted, PFHxS, branched isom	FOA, PFOS, M rs. Only the li	eFOSAA and EtF ear isomer is repo	OSAA include both ted for all other	

Sample ID: TW09D-20200707					PFAS Isotope Dilution Table B-15						
Client Data Name: Project:	KMEA MCAS El Toro and Tustin, PFAS	Matrix: Date Collected:		Groundwater 07-Jul-20 10:40	Laboratory Data Lab Sample: Date Received:		$\begin{aligned} & \text { 2001436-03 } \\ & \text { 09-Jul-20 08:57 } \end{aligned}$		Column:	BEH C18	Dilution
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	
PFBS	375-73-5	0.0693	0.00131	0.00191	0.00382		B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
PFHxA	307-24-4	0.192	0.00131	0.00191	0.00382		B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
HFPO-DA	13252-13-6	ND	0.00230	0.00286	0.00382		B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
PFHpA	375-85-9	0.0511	0.00131	0.00191	0.00382		B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
ADONA	919005-14-4	ND	0.00131	0.00191	0.00382		B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
PFHxS	355-46-4	0.387	0.00131	0.00191	0.00382		B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
PFOA	335-67-1	0.463	0.00131	0.00191	0.00382		B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
PFNA	375-95-1	0.00524	0.00131	0.00191	0.00382		B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
PFOS	1763-23-1	0.349	0.00131	0.00191	0.00382		B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
9Cl-PF3ONS	756426-58-1	ND	0.00131	0.00191	0.00382		B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
PFDA	335-76-2	0.00377	0.00131	0.00191	0.00382	J	B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
MeFOSAA	2355-31-9	ND	0.00131	0.00191	0.00382		B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
EtFOSAA	2991-50-6	ND	0.00131	0.00191	0.00382		B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
PFUnA	2058-94-8	ND	0.00131	0.00191	0.00382		B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
11Cl-PF3OUdS	763051-92-9	ND	0.00131	0.00191	0.00382		B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
PFDoA	307-55-1	ND	0.00131	0.00191	0.00382		B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
PFTrDA	72629-94-8	ND	0.00131	0.00191	0.00382		B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
PFTeDA	376-06-7	ND	0.00131	0.00191	0.00382		B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	75.0		50-150			B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
13C3-HFPO-DA	IS	64.6		50-150			B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
13C2-PFHxA	IS	69.8		50-150			B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
13C4-PFHpA	IS	69.1		50-150			B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
13C3-PFHxS	IS	75.4		50-150			B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
13C5-PFNA	IS	62.9		50-150			B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
13C2-PFOA	IS	69.9		50-150			B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
13C8-PFOS	IS	68.1		50-150			B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
13C2-PFDA	IS	64.8		50-150			B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
d3-MeFOSAA	IS	53.8		50-150			B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
13C2-PFUnA	IS	56.6		50-150			B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
d5-EtFOSAA	IS	42.0		50-150		H	B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
13C2-PFDoA	IS	38.5		50-150		H	B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
13C2-PFTeDA	IS	11.4		50-150		H	B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results	ed to the DL			When re linear and analytes.	orted, PFHxS, branched ison	FOA, PFOS, M rs. Only the lin	FOSAA and Et ear isomer is rep	OSAA include both rted for all other	

Sample ID: TW22D-20200707					PFAS Isotope Dilution Table B-15						
Client Data Name: Project:	KMEA MCAS El Toro and Tustin, PFAS	Matrix: Date Collected:		Groundwater 07-Jul-20 15:15	Laboratory Data Lab Sample: Date Received:		$\begin{aligned} & \text { 2001436-04 } \\ & \text { 09-Jul-20 08:57 } \end{aligned}$		Column:	BEH C18	Dilution
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	
PFBS	375-73-5	0.209	0.00127	0.00186	0.00372		B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
PFHxA	307-24-4	1.00	0.00127	0.00186	0.00372		B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
HFPO-DA	13252-13-6	ND	0.00224	0.00279	0.00372		B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
PFHpA	375-85-9	0.363	0.00127	0.00186	0.00372		B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
ADONA	919005-14-4	ND	0.00127	0.00186	0.00372		B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
PFHxS	355-46-4	0.886	0.00127	0.00186	0.00372		B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
PFOA	335-67-1	0.961	0.00127	0.00186	0.00372		B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
PFNA	375-95-1	0.00496	0.00127	0.00186	0.00372		B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
PFOS	1763-23-1	0.444	0.00127	0.00186	0.00372		B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
9Cl-PF3ONS	756426-58-1	ND	0.00127	0.00186	0.00372		B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
PFDA	335-76-2	0.00303	0.00127	0.00186	0.00372	J	B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
MeFOSAA	2355-31-9	ND	0.00127	0.00186	0.00372		B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
EtFOSAA	2991-50-6	ND	0.00127	0.00186	0.00372		B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
PFUnA	2058-94-8	ND	0.00127	0.00186	0.00372		B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
11Cl-PF3OUdS	763051-92-9	ND	0.00127	0.00186	0.00372		B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
PFDoA	307-55-1	ND	0.00127	0.00186	0.00372		B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
PFTrDA	72629-94-8	ND	0.00127	0.00186	0.00372		B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
PFTeDA	376-06-7	ND	0.00127	0.00186	0.00372		B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	72.4		50-150			B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
13C3-HFPO-DA	IS	65.4		50-150			B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
13C2-PFHxA	IS	68.6		50-150			B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
13C4-PFHpA	IS	70.2		50-150			B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
13C3-PFHxS	IS	70.5		50-150			B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
13C5-PFNA	IS	64.5		50-150			B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
13C2-PFOA	IS	70.7		50-150			B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
13C8-PFOS	IS	64.2		50-150			B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
13C2-PFDA	IS	57.3		50-150			B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
d3-MeFOSAA	IS	30.9		50-150		H	B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
13C2-PFUnA	IS	35.7		50-150		H	B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
d5-EtFOSAA	IS	23.3		50-150		H	B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
13C2-PFDoA	IS	13.5		50-150		H	B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
13C2-PFTeDA	IS	6.30		50-150		H	B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results r	ed to the DL			When r linear an analytes	orted, PFHxS, branched isom	FOA, PFOS, M rs. Only the li	FOSAA and EtF ear isomer is rep	OSAA include both rted for all other	

Sample ID: EB06-20200708					PFAS Isotope Dilution Table B-15						
Client Data Name: Project:	KMEA MCAS El Toro and Tustin, PFAS	Matrix: Date Collected:		Blank Water 08-Jul-20 14:00	Laboratory Data Lab Sample: Date Received:		$\begin{aligned} & \text { 2001436-05 } \\ & \text { 09-Jul-20 08:57 } \end{aligned}$		Column:	BEH C18	Dilution
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	
PFBS	375-73-5	ND	0.00134	0.00196	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
PFHxA	307-24-4	ND	0.00134	0.00196	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
HFPO-DA	13252-13-6	ND	0.00236	0.00294	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
PFHpA	375-85-9	ND	0.00134	0.00196	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
ADONA	919005-14-4	ND	0.00134	0.00196	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
PFHxS	355-46-4	ND	0.00134	0.00196	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
PFOA	335-67-1	ND	0.00134	0.00196	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
PFNA	375-95-1	ND	0.00134	0.00196	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
PFOS	1763-23-1	ND	0.00134	0.00196	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
9Cl-PF3ONS	756426-58-1	ND	0.00134	0.00196	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
PFDA	335-76-2	ND	0.00134	0.00196	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
MeFOSAA	2355-31-9	ND	0.00134	0.00196	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
EtFOSAA	2991-50-6	ND	0.00134	0.00196	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
PFUnA	2058-94-8	ND	0.00134	0.00196	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
11Cl-PF3OUdS	763051-92-9	ND	0.00134	0.00196	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
PFDoA	307-55-1	ND	0.00134	0.00196	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
PFTrDA	72629-94-8	ND	0.00134	0.00196	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
PFTeDA	376-06-7	ND	0.00134	0.00196	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	71.2		50-150			B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
13C3-HFPO-DA	IS	70.4		50-150			B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
13C2-PFHxA	IS	66.5		50-150			B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
13C4-PFHpA	IS	68.8		50-150			B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
13C3-PFHxS	IS	74.1		50-150			B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
13C5-PFNA	IS	65.3		50-150			B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
13C2-PFOA	IS	71.3		50-150			B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
13C8-PFOS	IS	72.0		50-150			B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
13C2-PFDA	IS	65.4		50-150			B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
d3-MeFOSAA	IS	58.9		50-150			B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
13C2-PFUnA	IS	66.2		50-150			B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
d5-EtFOSAA	IS	51.8		50-150			B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
13C2-PFDoA	IS	59.4		50-150			B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
13C2-PFTeDA	IS	59.6		50-150			B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results reported to the DL.			When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.						

Sample ID: TW23D-20200708					PFAS Isotope Dilution Table B-15						
Client Data Name: KMEA Project: MCAS El Toro and Tustin, PFAS		Matrix: Groundwate Date Collected: 08-Jul-20 09			Laboratory Data Lab Sample: Date Received:		$\begin{aligned} & \text { 2001436-06 } \\ & \text { 09-Jul-20 08:57 } \end{aligned}$		Column:	BEH C18	Dilution
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	
PFBS	375-73-5	0.711	0.00123	0.00180	0.00360		B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
PFHxA	307-24-4	2.98	0.0123	0.0180	0.0360	D	B0G0058	12-Jul-20	0.278 L	15-Jul-20 15:20	10
HFPO-DA	13252-13-6	ND	0.00217	0.00270	0.00360		B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
PFHpA	375-85-9	0.772	0.00123	0.00180	0.00360		B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
ADONA	919005-14-4	ND	0.00123	0.00180	0.00360		B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
PFHxS	355-46-4	3.87	0.0123	0.0180	0.0360	D	B0G0058	12-Jul-20	0.278 L	15-Jul-20 15:20	10
PFOA	335-67-1	10.8	0.0123	0.0180	0.0360	D	B0G0058	12-Jul-20	0.278 L	15-Jul-20 15:20	10
PFNA	375-95-1	0.00760	0.00123	0.00180	0.00360		B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
PFOS	1763-23-1	1.32	0.00123	0.00180	0.00360		B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
9Cl-PF3ONS	756426-58-1	ND	0.00123	0.00180	0.00360		B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
PFDA	335-76-2	ND	0.00123	0.00180	0.00360		B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
MeFOSAA	2355-31-9	ND	0.00123	0.00180	0.00360		B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
EtFOSAA	2991-50-6	ND	0.00123	0.00180	0.00360		B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
PFUnA	2058-94-8	ND	0.00123	0.00180	0.00360		B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
11Cl-PF3OUdS	763051-92-9	ND	0.00123	0.00180	0.00360		B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
PFDoA	307-55-1	ND	0.00123	0.00180	0.00360		B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
PFTrDA	72629-94-8	ND	0.00123	0.00180	0.00360		B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
PFTeDA	376-06-7	ND	0.00123	0.00180	0.00360		B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	62.6		50-150			B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
13C3-HFPO-DA	IS	64.7		50-150			B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
13C2-PFHxA	IS	71.5		50-150		D	B0G0058	12-Jul-20	0.278 L	15-Jul-20 15:20	10
13C4-PFHpA	IS	60.8		50-150			B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
13C3-PFHxS	IS	66.8		50-150		D	B0G0058	12-Jul-20	0.278 L	15-Jul-20 15:20	10
13C5-PFNA	IS	61.0		50-150			B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
13C2-PFOA	IS	77.0		50-150		D	B0G0058	12-Jul-20	0.278 L	15-Jul-20 15:20	10
13C8-PFOS	IS	64.0		50-150			B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
13C2-PFDA	IS	59.5		50-150			B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
d3-MeFOSAA	IS	53.2		50-150			B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
13C2-PFUnA	IS	50.7		50-150			B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
d5-EtFOSAA	IS	48.0		50-150		H	B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
13C2-PFDoA	IS	35.0		50-150		H	B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
13C2-PFTeDA	IS	5.40		50-150		H	B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results reported to the DL.			When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.						

Sample ID: TW24D-20200708					PFAS Isotope Dilution Table B-15						
Client Data Name: Project:	KMEA MCAS El Toro and Tustin, PFAS	Matrix: Date C	$\begin{array}{ll} & \text { Grc } \\ \text { cted: } & 08 \end{array}$	ater 11:20		tory Data mple: eceived:	$\begin{aligned} & 2001436-0 \\ & 09-J u l-20 \end{aligned}$		Column:	BEH C18	
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	0.0448	0.00122	0.00177	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
PFHxA	307-24-4	0.332	0.00122	0.00177	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
HFPO-DA	13252-13-6	ND	0.00214	0.00266	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
PFHpA	375-85-9	0.0561	0.00122	0.00177	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
ADONA	919005-14-4	ND	0.00122	0.00177	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
PFHxS	355-46-4	0.248	0.00122	0.00177	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
PFOA	335-67-1	1.55	0.00122	0.00177	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
PFNA	375-95-1	ND	0.00122	0.00177	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
PFOS	1763-23-1	0.0326	0.00122	0.00177	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
9Cl-PF3ONS	756426-58-1	ND	0.00122	0.00177	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
PFDA	335-76-2	ND	0.00122	0.00177	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
MeFOSAA	2355-31-9	ND	0.00122	0.00177	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
EtFOSAA	2991-50-6	ND	0.00122	0.00177	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
PFUnA	2058-94-8	ND	0.00122	0.00177	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
11Cl-PF3OUdS	763051-92-9	ND	0.00122	0.00177	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
PFDoA	307-55-1	ND	0.00122	0.00177	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
PFTrDA	72629-94-8	ND	0.00122	0.00177	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
PFTeDA	376-06-7	ND	0.00122	0.00177	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	70.5		50-150			B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
13C3-HFPO-DA	IS	66.9		50-150			B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
13C2-PFHxA	IS	66.7		50-150			B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
13C4-PFHpA	IS	63.0		50-150			B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
13C3-PFHxS	IS	73.2		50-150			B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
13C5-PFNA	IS	65.5		50-150			B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
13C2-PFOA	IS	64.6		50-150			B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
13C8-PFOS	IS	70.8		50-150			B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
13C2-PFDA	IS	67.3		50-150			B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
d3-MeFOSAA	IS	63.6		50-150			B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
13C2-PFUnA	IS	59.3		50-150			B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
d5-EtFOSAA	IS	50.2		50-150			B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
13C2-PFDoA	IS	45.9		50-150		H	B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
13C2-PFTeDA	IS	7.80		50-150		H	B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results r	ed to the DL.			When re linear and analytes.	orted, PFHxS, branched isom	FOA, PFOS, M rs. Only the li	eFOSAA and EtF ear isomer is repo	OSAA include both ted for all other	

Sample ID: TW17D-20200708					PFAS Isotope Dilution Table B-15						
Client Data Name: Project:	KMEA MCAS El Toro and Tustin, PFAS	Matrix: Date Co	$\begin{array}{cc} & \text { Gro } \\ \text { cted: } & 08-1 \end{array}$	ater $13: 40$		tory Data mple: eceived:	$\begin{aligned} & 2001436-0 \\ & 09-J u l-20 \end{aligned}$		Column:	BEH C18	
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	0.169	0.000844	0.00123	0.00246		B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
PFHxA	307-24-4	0.987	0.000844	0.00123	0.00246		B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
HFPO-DA	13252-13-6	ND	0.00148	0.00185	0.00246		B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
PFHpA	375-85-9	0.196	0.000844	0.00123	0.00246		B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
ADONA	919005-14-4	ND	0.000844	0.00123	0.00246		B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
PFHxS	355-46-4	0.990	0.000844	0.00123	0.00246		B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
PFOA	335-67-1	3.87	0.00422	0.00616	0.0123	D	B0G0058	12-Jul-20	0.406 L	15-Jul-20 15:51	5
PFNA	375-95-1	0.00194	0.000844	0.00123	0.00246	J	B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
PFOS	1763-23-1	0.334	0.000844	0.00123	0.00246		B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
9Cl-PF3ONS	756426-58-1	ND	0.000844	0.00123	0.00246		B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
PFDA	335-76-2	ND	0.000844	0.00123	0.00246		B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
MeFOSAA	2355-31-9	ND	0.000844	0.00123	0.00246		B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
EtFOSAA	2991-50-6	ND	0.000844	0.00123	0.00246		B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
PFUnA	2058-94-8	ND	0.000844	0.00123	0.00246		B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
11Cl-PF3OUdS	763051-92-9	ND	0.000844	0.00123	0.00246		B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
PFDoA	307-55-1	ND	0.000844	0.00123	0.00246		B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
PFTrDA	72629-94-8	ND	0.000844	0.00123	0.00246		B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
PFTeDA	376-06-7	ND	0.000844	0.00123	0.00246		B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	44.4		50-150		H	B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
13C3-HFPO-DA	IS	39.6		50-150		H	B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
13C2-PFHxA	IS	42.2		50-150		H	B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
13C4-PFHpA	IS	45.2		50-150		H	B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
13C3-PFHxS	IS	44.2		50-150		H	B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
13C5-PFNA	IS	41.9		50-150		H	B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
13C2-PFOA	IS	47.8		50-150		D, H	B0G0058	12-Jul-20	0.406 L	15-Jul-20 15:51	5
13C8-PFOS	IS	45.5		50-150		H	B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
13C2-PFDA	IS	39.0		50-150		H	B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
d3-MeFOSAA	IS	27.8		50-150		H	B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
13C2-PFUnA	IS	28.3		50-150		H	B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
d5-EtFOSAA	IS	22.3		50-150		H	B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
13C2-PFDoA	IS	15.3		50-150		H	B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
13C2-PFTeDA	IS	3.30		50-150		H	B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results re	ted to the DL.			When re linear and analytes	orted, PFHxS, branched isom	FOA, PFOS, M rs. Only the li	eFOSAA and EtF ear isomer is repo	OSAA include both ted for all other	

DATA QUALIFIERS \& ABBREVIATIONS

B	This compound was also detected in the method blank
Conc.	Concentration
CRS	Cleanup Recovery Standard
D	Dilution
DL	Detection limit
E	The associated compound concentration exceeded the calibration range of the instrument
H	Recovery and/or RPD was outside laboratory acceptance limits
I	Chemical Interference
IS	Internal Standard
J	The amount detected is below the Reporting Limit/LOQ
LOD	Limit of Detection
LOQ	Limit of Quantitation
M	Estimated Maximum Possible Concentration (CA Region 2 projects only)
NA	Not applicable
ND	Not Detected
OPR	Ongoing Precision and Recovery sample
P	The reported concentration may include contribution from chlorinated diphenyl ether(s).
Q	The ion transition ratio is outside of the acceptance criteria.
RL	Reporting Limit
TEQ	Toxic Equivalency
U	Not Detected (specific projects only)
*	See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Vista Analytical Laboratory Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	$17-013$
Arkansas Department of Environmental Quality	$19-013-0$
California Department of Health - ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-23
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2018017
Massachusetts Department of Environmental Protection	N/A
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1521520
New Hampshire Environmental Accreditation Program	$207718-$ B
New Jersey Department of Environmental Protection	190001
New York Department of Health	11411
Oregon Laboratory Accreditation Program	$4042-010$
Pennsylvania Department of Environmental Protection	016
Texas Commission on Environmental Quality	T104704189-19-10
Vermont Department of Health	VT-4042
Virginia Department of General Services	10272
Washington Department of Ecology	C584-19
Wisconsin Department of Natural Resources	998036160

NELAP Accredited Test Methods

MATRIX: Air	Method
Description of Test	EPA 23
Determination of Polychlorinated p-Dioxins \& Polychlorinated Dibenzofurans	EPA TO-9A
Determination of Polychlorinated p-Dioxins \& Polychlorinated Dibenzofurans	

MATRIX: Biological Tissue	Method
Description of Test	EPA 1613B
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1614A
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1668A/C
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1699
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 8280A/B
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8290/8290A
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	$\begin{aligned} & \text { EPA } \\ & 1613 / 1613 B \end{aligned}$
1,4-Dioxane (1,4-Diethyleneoxide) analysis by GC/HRMS	EPA 522
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	$\begin{array}{\|l\|} \hline \text { ISO } 25101 \\ 2009 \\ \hline \end{array}$

MATRIX: Non-Potable Water	Method
Description of Test	EPA 1613B
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1614A
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1668A/C
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 537
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 613
Dioxin by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8290/8290A
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	

MATRIX: Solids	Method
Description of Test	EPA 1613B
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1614A
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1668A/C
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1699
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 8280A/B
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA $8290 / 8290 \mathrm{~A}$
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	

TEL: 916-673-1520
$201426301^{\circ} \mathrm{C}$
Vista PM: Jade White-Dobbs

CHAIN OF CUSTODY RECORD
DATE: 7/7/20
PAGE: \qquad OF \qquad 1

Sample Log-In Checklist

Vista Work Order \#: \qquad
Page \# \qquad of \qquad TAT

Logged In:	Date/Time $07 / 09 \mid 200037$	Initials: wUS	Location: $\begin{gathered}R-13, W R-2 \\ v\end{gathered}$ Shelf/Rack: $\delta-2, \quad \in-2$
COC Anomaly/Sample Acceptance Form completed?			

Comments:

CoC/Label Reconciliation Report WO\# 2001436

LabNumber	CoC Sample ID		SampleAlias	Samplc Date/Time		Container	BaseMarix	Sampic Comments
2001436-01	A EBOS-20200707	\square		07-Jut-20 14:00	\square	HDPE Botte, 250 mL	Aqueous	
2001436-01	B EB05-20200707	\square		07-Jul-20 14:00	\square	HDPE Bortc, 250 mL	Aqucous	
2001436-02	A TW21D-20200707	\square		07-Jul-20 08:30	\square	HDPE Botrle, 250 mL	Aqueous	
2001436-02	B TW21D-20200707	\square		07-Jul-20 08:30	\square	HDPE Botlle. 250 mL	Aqucous	
2001436-02	C TW21D-20200707	\square		07-Ju-20 08:30	\square	HDPE Borte, 250 mL	Aqueous	
2001436-02	D TW21D-20200707	\square		07-Jul-20 08:30	\square	HDPE Botlle. 250 mL	Aqueous	
2001436-03	A TW09D-20200707	\square		07-Jul-20 10:40	\square	HDPE Bottle, 250 mL	Aqueous	
2001436-03	B TW09D-20200707	\square		07-Jul-20 10:40	\square	HDPE Borlc. 250 mL	Aqucous	
2001436-03	C TW09D-20200707	\square		07-Jul-20 10:40	\square	HDPE Bottle, 250 mL	Aqueous	
2001436-03	D TW09D-20200707	\square		07-Jul-20 10:40	\square	HDPE Bortle. 250 mL	Aqucous	
2001436-04	A TW22D-20200707	\square		07-Jul-20 15:15	\square	HDPE Botte, 250 mL	Aqueous	
2001436-04	B TW22D-20200707	\square		07-Sul-20 15:15	\square	HDPE Botle. 250 mL	Aqucous	
2001436-04	C TW22D-20200707	\square		07-Jul-20 15:15	\square	HDPE Botre, 250 mL	Aqueous	
2001436-04	D TW22D-20200707	\square		07-Jul-20 Is:15	\square	HDPE Boulc. 250 mL	Aqucous	
2001436-05	A EB06-20200708	\square		08-Jul-20 14:00	\square	HDPE Botle, 250 mL	Aqueous	
2001436-05	B EB06-20200708	\square		08-Jul-20 14:00	\square	HDPE Bottle. 250 mL	Aqueous	
2001436-06	A TW23D-20200708	\square		08-Jul-20 09:30	\square	HDPE Bottle, 250 mL	Aqueous	
2001436-06	B TW23D-20200708	\square		08-Jul-2009:30	\square	HDPE Boule, 250 mL	Aqueous	
2001436-06	C TW23D-20200708	\square		08-Jul-20 09:30		HDPE Boulce 250 mL	Aqucous	
2001436-06	D TW23D-20200708	\square		08-Jul-20 09:30	\square	HDPE Boitle. 250 mL	Aqueous	
2001436-07	A TW24D-20200708	\square		08-Jul-20 11:20	\square	HDPE Bortle, 250 mL	Aqueous	
2001436-07	B TW24D-20200708	\square		08-Jul-20 11:20	\square	HDPE Bottle, 250 mL	Aqueous	
2001436-07	C TW24D-20200708	\square		08-Jul-20 11:20	\square	HDPE Botle, 250 mL	Aqucous	
2001436-07	D TW24D-20200708	\square		08-sul-20 11:20	\square	HDPE Botle, 250 mL	Aqueous	
2001436-08	A TWITD-20200708	\square		08-Jul-20 13:40	\square	HDPE Botlc, 250 mL	Aqucous	
2001436-08	B TWI7D-20200708	\square		08-Jul-20 13:40	\square	HDPE Bonle, 250 mL	Aqucous	
2001436-08	C TWITD-20200708	\square		08-Jul-20 13:40	\square	HDPE Bottle, 250 mL	Aqueous	
2001436-08	D TW17D-20200708	\square		08-Jul-20 13:40	\square	HDPE Borle, 250 mL	Aqucous	

Printed: 7/9/2020 11:10:16AM

Checkmarks indicate that information on the COC reconciled with the sample label.
Any discrepancies are noted in the following columns.

	Yes	No	NA
Sample Container Intact?			
Sample Custody Seals Intact?			
Adequate Sample Volume?			
Container Type Appropriate for Analysis(es)			
Preservation Documented: Na2S2O3 Trizma Cone Other			
If Chlorinated or Drinking Water Samples, Acceptable Preservation?			

Verifed by/Date: 14 o 7108120

July 22, 2020

Vista Work Order No. 2001436

Ms. Kimberly Shiroodi

KMEA
2423 Hoover Avenue
National City, CA 91950
Dear Ms. Shiroodi,
Enclosed are the results for the sample set received at Vista Analytical Laboratory on July 09, 2020 under your Project Name 'MCAS El Toro and Tustin, PFAS'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier
Laboratory Director

Vista Work Order No. 2001436

Case Narrative

Sample Condition on Receipt:

Two blank water samples and six groundwater samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

PFAS Isotope Dilution/LC-MSMS Method Compliant with Table B-15 of QSM 5.3 (Aqueous)

The following samples contained particulate and were centrifuged prior to extraction:

Laboratory ID	Sample Name
2001436-02	TW21D-20200707
2001436-03	TW09D-20200707
2001436-04	TW22D-20200707
2001436-06	TW23D-20200708
2001436-07	TW24D-20200708
2001436-08	TW17D-20200708

Sample "TW17D-20200708" was very high in particulates: the solids made up approximately one-half of the sample. Following standard procedure, the solids were rinsed in methanol and the rinses were included in the extraction.

The samples were extracted and analyzed for a selected list of PFAS using Isotope Dilution and LC-MS/MS compliant with Table B-15 of QSM 5.3. The results for PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Results for all other analytes include the linear isomers only.

Holding Times

The samples were extracted and analyzed within the hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD) were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above $1 / 2$ of the LOQ concentrations. The LCS/LCSD recoveries were within the acceptance criteria.

The labeled standard recoveries outside the acceptance criteria are flagged with an "H" qualifier.

TABLE OF CONTENTS

Case Narrative 1
Table of Contents 3
Sample Inventory 4
Analytical Results. 5
Qualifiers 17
Certifications 18
Sample Receipt 21
Extraction Information 25
Sample Data - PFAS Isotope Dilution Table B-15 30
IBs and CCVs 112
ICAL with ICV and IB 192
Tune Checks. 607
Standards 620

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
2001436-01	EB05-20200707	07-Jul-20 14:00	09-Jul-20 08:57	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2001436-02	TW21D-20200707	07-Jul-20 08:30	09-Jul-20 08:57	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2001436-03	TW09D-20200707	07-Jul-20 10:40	09-Jul-20 08:57	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2001436-04	TW22D-20200707	07-Jul-20 15:15	09-Jul-20 08:57	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2001436-05	EB06-20200708	08-Jul-20 14:00	09-Jul-20 08:57	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2001436-06	TW23D-20200708	08-Jul-20 09:30	09-Jul-20 08:57	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2001436-07	TW24D-20200708	08-Jul-20 11:20	09-Jul-20 08:57	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
2001436-08	TW17D-20200708	08-Jul-20 13:40	09-Jul-20 08:57	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL

ANALYTICAL RESULTS

Sample ID: Method Blank					PFAS Isotope Dilution Table B-15						
Client Data Name: Project:	KMEA MCAS El Toro and Tustin, PFAS	Matrix:				atory Data mple:	B0G0058		Column:	BEH C18	
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	ND	0.00137	0.00200	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
PFHxA	307-24-4	ND	0.00137	0.00200	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
HFPO-DA	13252-13-6	ND	0.00241	0.00300	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
PFHpA	375-85-9	ND	0.00137	0.00200	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
ADONA	919005-14-4	ND	0.00137	0.00200	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
PFHxS	355-46-4	ND	0.00137	0.00200	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
PFOA	335-67-1	ND	0.00137	0.00200	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
PFNA	375-95-1	ND	0.00137	0.00200	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
PFOS	1763-23-1	ND	0.00137	0.00200	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
9Cl-PF3ONS	756426-58-1	ND	0.00137	0.00200	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
PFDA	335-76-2	ND	0.00137	0.00200	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
MeFOSAA	2355-31-9	ND	0.00137	0.00200	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
EtFOSAA	2991-50-6	ND	0.00137	0.00200	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
PFUnA	2058-94-8	ND	0.00137	0.00200	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
11Cl-PF3OUdS	763051-92-9	ND	0.00137	0.00200	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
PFDoA	307-55-1	ND	0.00137	0.00200	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
PFTrDA	72629-94-8	ND	0.00137	0.00200	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
PFTeDA	376-06-7	ND	0.00137	0.00200	0.00400		B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	69.5		50-150			B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
13C3-HFPO-DA	IS	65.4		50-150			B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
13C2-PFHxA	IS	67.9		50-150			B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
13C4-PFHpA	IS	66.1		50-150			B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
13C3-PFHxS	IS	74.9		50-150			B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
13C5-PFNA	IS	64.3		50-150			B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
13C2-PFOA	IS	72.0		50-150			B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
13C8-PFOS	IS	63.4		50-150			B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
13C2-PFDA	IS	60.3		50-150			B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
d3-MeFOSAA	IS	56.5		50-150			B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
13C2-PFUnA	IS	57.4		50-150			B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
d5-EtFOSAA	IS	54.6		50-150			B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
13C2-PFDoA	IS	55.5		50-150			B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
13C2-PFTeDA	IS	59.0		50-150			B0G0058	12-Jul-20	0.250 L	14-Jul-20 18:20	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results re	ted to the DL.			When re linear and analytes	orted, PFHxS, branched ison	FOA, PFOS, M rs. Only the li	eFOSAA and EtF ear isomer is rep	OSAA include both ted for all other	

Sample ID: LCSD													PFAS Isotope Dilution Table B-15			
Name: Project: Matrix:	KMEA MCAS El Toro and Tustin, PFAS Aqueous			Lab Sample: QC Batch: Samp Size:		$\begin{aligned} & \text { B0G0058-BS1/B0G0058-BSD1 } \\ & \text { B0G0058 } \\ & 0.250 / 0.250 \mathrm{~L} \end{aligned}$							Date Extracted: Column:		12-Jul-20 BEH C18	
Analyte	CAS Number	$\begin{gathered} \hline \text { LCS } \\ (\mathrm{ug} / \mathrm{L}) \\ \hline \end{gathered}$	LCS Spike	$\begin{gathered} \text { LCS } \\ \text { \% Rec } \end{gathered}$	LCS Quals	$\begin{aligned} & \text { LCSD } \\ & (\mathrm{ug} / \mathrm{L}) \end{aligned}$	LCSD Spike	$\begin{aligned} & \text { LCSD } \\ & \text { \% Rec } \end{aligned}$	RPD	LCSD Ouals	$\begin{gathered} \hline \text { \%Rec } \\ \text { Limits I } \end{gathered}$	$\begin{gathered} \hline \text { RPD } \\ \text { Limits } \end{gathered}$	LCS Analyzed	$\begin{gathered} \mathrm{LCS} \\ \text { Dil } \\ \hline \end{gathered}$	LCSD Analvzed	$\begin{gathered} \text { LCSD } \\ \text { Dil } \\ \hline \end{gathered}$
PFBS	375-73-5	0.0413	0.0400	103		0.0425	0.0400	106	2.83		72-130	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
PFHxA	307-24-4	0.0434	0.0400	108		0.0441	0.0400	110	1.64		72-129	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
HFPO-DA	13252-13-6	0.0413	0.0400	103		0.0437	0.0400	109	5.60		70-130	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
PFHpA	375-85-9	0.0406	0.0400	101		0.0399	0.0400	99.6	1.77		72-130	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
ADONA	919005-14-4	0.0397	0.0400	99.3		0.0423	0.0400	106	6.30		70-130	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
PFHxS	355-46-4	0.0397	0.0400	99.1		0.0430	0.0400	107	8.07		68-131	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
PFOA	335-67-1	0.0380	0.0400	95.1		0.0422	0.0400	105	10.4		71-133	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
PFNA	375-95-1	0.0410	0.0400	103		0.0446	0.0400	111	8.27		69-130	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
PFOS	1763-23-1	0.0365	0.0400	91.2		0.0485	0.0400	121	28.4		65-140	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
9Cl-PF3ONS	756426-58-1	0.0338	0.0400	84.5		0.0456	0.0400	114	29.7		70-130	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
PFDA	335-76-2	0.0413	0.0400	103		0.0432	0.0400	108	4.51		71-129	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
MeFOSAA	2355-31-9	0.0428	0.0400	107		0.0368	0.0400	91.9	15.1		65-136	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
EtFOSAA	2991-50-6	0.0422	0.0400	106		0.0412	0.0400	103	2.39		61-135	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
PFUnA	2058-94-8	0.0396	0.0400	99.1		0.0405	0.0400	101	2.23		69-133	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
11Cl-PF3OUdS	763051-92-9	0.0393	0.0400	98.1		0.0432	0.0400	108	9.63		70-130	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
PFDoA	307-55-1	0.0431	0.0400	108		0.0401	0.0400	100	7.17		72-134	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
PFTrDA	72629-94-8	0.0382	0.0400	95.6		0.0402	0.0400	100	4.93		65-144	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
PFTeDA	376-06-7	0.0406	0.0400	102		0.0425	0.0400	106	4.62		71-132	30	14-Jul-20 18:31	1	14-Jul-20 18:41	1
Labeled Standar		Type		$\begin{gathered} \hline \text { LCS } \\ \text { \% Rec } \\ \hline \end{gathered}$	LCS Quals			$\begin{aligned} & \text { LCSD } \\ & \text { \% Rec } \end{aligned}$		LCSD Ouals	Limits		LCS Analyzed	$\begin{gathered} \text { LCS } \\ \text { Dil } \\ \hline \end{gathered}$	$\begin{gathered} \text { LCSD } \\ \text { Analyzed } \\ \hline \end{gathered}$	$\begin{array}{c\|} \hline \text { LCSD } \\ \text { Dil } \\ \hline \end{array}$
13C3-PFBS		IS		66.5				74.2			50-150		14-Jul-20 18:31	1	14-Jul-20 18:41	1
13C3-HFPO-DA		IS		59.5				72.0			50-150		14-Jul-20 18:31	1	14-Jul-20 18:41	1
13C2-PFHxA		IS		59.7				72.8			50-150		14-Jul-20 18:31	1	14-Jul-20 18:41	1
13C4-PFHpA		IS		60.0				74.0			50-150		14-Jul-20 18:31	1	14-Jul-20 18:41	1
13C3-PFHxS		IS		71.1				77.4			50-150		14-Jul-20 18:31	1	14-Jul-20 18:41	1
13C5-PFNA		IS		57.9				67.2			50-150		14-Jul-20 18:31	1	14-Jul-20 18:41	1
13C2-PFOA		IS		66.0				75.3			50-150		14-Jul-20 18:31	1	14-Jul-20 18:41	1
13C8-PFOS		IS		69.6				63.6			50-150		14-Jul-20 18:31	1	14-Jul-20 18:41	1
13C2-PFDA		IS		57.2				64.5			50-150		14-Jul-20 18:31	1	14-Jul-20 18:41	1
d3-MeFOSAA		IS		47.0	H			63.0			50-150		14-Jul-20 18:31	1	14-Jul-20 18:41	1
13C2-PFUnA		IS		55.9				62.0			50-150		14-Jul-20 18:31	1	14-Jul-20 18:41	1
d5-EtFOSAA		IS		44.2	H			57.3			50-150		14-Jul-20 18:31	1	14-Jul-20 18:41	1
13C2-PFDoA		IS		46.9	H			56.6			50-150		14-Jul-20 18:31	1	14-Jul-20 18:41	1

Work Order 2001436

Sample ID: EB05-20200707					PFAS Isotope Dilution Table B-15						
Client Data Name: Project:	KMEA MCAS El Toro and Tustin, PFAS	Matrix: Date Collected:		Blank Water 07-Jul-20 14:00	Laboratory Data Lab Sample: Date Received:		$\begin{aligned} & \text { 2001436-01 } \\ & \text { 09-Jul-20 08:57 } \end{aligned}$		Column:	BEH C18	Dilution
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	
PFBS	375-73-5	ND	0.00136	0.00198	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
PFHxA	307-24-4	ND	0.00136	0.00198	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
HFPO-DA	13252-13-6	ND	0.00239	0.00298	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
PFHpA	375-85-9	ND	0.00136	0.00198	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
ADONA	919005-14-4	ND	0.00136	0.00198	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
PFHxS	355-46-4	ND	0.00136	0.00198	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
PFOA	335-67-1	ND	0.00136	0.00198	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
PFNA	375-95-1	ND	0.00136	0.00198	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
PFOS	1763-23-1	ND	0.00136	0.00198	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
9Cl-PF3ONS	756426-58-1	ND	0.00136	0.00198	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
PFDA	335-76-2	ND	0.00136	0.00198	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
MeFOSAA	2355-31-9	ND	0.00136	0.00198	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
EtFOSAA	2991-50-6	ND	0.00136	0.00198	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
PFUnA	2058-94-8	ND	0.00136	0.00198	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
11Cl-PF3OUdS	763051-92-9	ND	0.00136	0.00198	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
PFDoA	307-55-1	ND	0.00136	0.00198	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
PFTrDA	72629-94-8	ND	0.00136	0.00198	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
PFTeDA	376-06-7	ND	0.00136	0.00198	0.00397		B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	67.2		50-150			B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
13C3-HFPO-DA	IS	57.9		50-150			B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
13C2-PFHxA	IS	63.0		50-150			B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
13C4-PFHpA	IS	63.0		50-150			B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
13C3-PFHxS	IS	72.2		50-150			B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
13C5-PFNA	IS	61.8		50-150			B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
13C2-PFOA	IS	68.2		50-150			B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
13C8-PFOS	IS	66.9		50-150			B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
13C2-PFDA	IS	63.4		50-150			B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
d3-MeFOSAA	IS	53.2		50-150			B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
13C2-PFUnA	IS	63.7		50-150			B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
d5-EtFOSAA	IS	56.3		50-150			B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
13C2-PFDoA	IS	59.1		50-150			B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
13C2-PFTeDA	IS	57.5		50-150			B0G0058	12-Jul-20	0.252 L	14-Jul-20 18:52	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results reported to the DL.			When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.						

Analytical Laboratory

Sample ID: TW21D-20200707					PFAS Isotope Dilution Table B-15						
Client Data Name: KMEA Project: MCAS El Toro and Tustin, PFAS		Matrix: Groundwate Date Collected: $07-J u l-2008$			Laboratory Data Lab Sample: Date Received:		$\begin{aligned} & \text { 2001436-02 } \\ & \text { 09-Jul-20 08:57 } \end{aligned}$		Column:	BEH C18	Dilution
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	
PFBS	375-73-5	0.00455	0.00139	0.00202	0.00405		B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
PFHxA	307-24-4	0.00920	0.00139	0.00202	0.00405		B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
HFPO-DA	13252-13-6	ND	0.00244	0.00304	0.00405		B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
PFHpA	375-85-9	0.00212	0.00139	0.00202	0.00405	J	B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
ADONA	919005-14-4	ND	0.00139	0.00202	0.00405		B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
PFHxS	355-46-4	0.00969	0.00139	0.00202	0.00405		B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
PFOA	335-67-1	0.0157	0.00139	0.00202	0.00405		B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
PFNA	375-95-1	ND	0.00139	0.00202	0.00405		B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
PFOS	1763-23-1	0.00245	0.00139	0.00202	0.00405	J	B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
9Cl-PF3ONS	756426-58-1	ND	0.00139	0.00202	0.00405		B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
PFDA	335-76-2	ND	0.00139	0.00202	0.00405		B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
MeFOSAA	2355-31-9	ND	0.00139	0.00202	0.00405		B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
EtFOSAA	2991-50-6	ND	0.00139	0.00202	0.00405		B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
PFUnA	2058-94-8	ND	0.00139	0.00202	0.00405		B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
11Cl-PF3OUdS	763051-92-9	ND	0.00139	0.00202	0.00405		B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
PFDoA	307-55-1	ND	0.00139	0.00202	0.00405		B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
PFTrDA	72629-94-8	ND	0.00139	0.00202	0.00405		B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
PFTeDA	376-06-7	ND	0.00139	0.00202	0.00405		B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	73.1		50-150			B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
13C3-HFPO-DA	IS	73.1		50-150			B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
13C2-PFHxA	IS	69.3		50-150			B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
13C4-PFHpA	IS	69.5		50-150			B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
13C3-PFHxS	IS	76.8		50-150			B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
13C5-PFNA	IS	68.1		50-150			B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
13C2-PFOA	IS	73.6		50-150			B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
13C8-PFOS	IS	67.1		50-150			B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
13C2-PFDA	IS	63.9		50-150			B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
d3-MeFOSAA	IS	59.8		50-150			B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
13C2-PFUnA	IS	59.3		50-150			B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
d5-EtFOSAA	IS	56.1		50-150			B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
13C2-PFDoA	IS	51.9		50-150			B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
13C2-PFTeDA	IS	32.1		50-150		H	B0G0058	12-Jul-20	0.247 L	14-Jul-20 19:02	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results reported to the DL.			When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.						

Sample ID: TW09D-20200707					PFAS Isotope Dilution Table B-15						
Client Data Name: KMEA Project: MCAS El Toro and Tustin, PFAS		Matrix: Groundwate Date Collected: 07-Jul-20 10:			Laboratory Data Lab Sample: Date Received:		$\begin{aligned} & \text { 2001436-03 } \\ & \text { 09-Jul-20 08:57 } \end{aligned}$		Column: Samp Size	BEH C18	Dilution
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted		Analyzed	
PFBS	375-73-5	0.0693	0.00131	0.00191	0.00382		B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
PFHxA	307-24-4	0.192	0.00131	0.00191	0.00382		B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
HFPO-DA	13252-13-6	ND	0.00230	0.00286	0.00382		B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
PFHpA	375-85-9	0.0511	0.00131	0.00191	0.00382		B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
ADONA	919005-14-4	ND	0.00131	0.00191	0.00382		B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
PFHxS	355-46-4	0.387	0.00131	0.00191	0.00382		B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
PFOA	335-67-1	0.463	0.00131	0.00191	0.00382		B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
PFNA	375-95-1	0.00524	0.00131	0.00191	0.00382		B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
PFOS	1763-23-1	0.349	0.00131	0.00191	0.00382		B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
9Cl-PF3ONS	756426-58-1	ND	0.00131	0.00191	0.00382		B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
PFDA	335-76-2	0.00377	0.00131	0.00191	0.00382	J	B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
MeFOSAA	2355-31-9	ND	0.00131	0.00191	0.00382		B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
EtFOSAA	2991-50-6	ND	0.00131	0.00191	0.00382		B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
PFUnA	2058-94-8	ND	0.00131	0.00191	0.00382		B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
11Cl-PF3OUdS	763051-92-9	ND	0.00131	0.00191	0.00382		B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
PFDoA	307-55-1	ND	0.00131	0.00191	0.00382		B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
PFTrDA	72629-94-8	ND	0.00131	0.00191	0.00382		B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
PFTeDA	376-06-7	ND	0.00131	0.00191	0.00382		B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	75.0		50-150			B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
13C3-HFPO-DA	IS	64.6		50-150			B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
13C2-PFHxA	IS	69.8		50-150			B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
13C4-PFHpA	IS	69.1		50-150			B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
13C3-PFHxS	IS	75.4		50-150			B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
13C5-PFNA	IS	62.9		50-150			B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
13C2-PFOA	IS	69.9		50-150			B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
13C8-PFOS	IS	68.1		50-150			B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
13C2-PFDA	IS	64.8		50-150			B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
d3-MeFOSAA	IS	53.8		50-150			B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
13C2-PFUnA	IS	56.6		50-150			B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
d5-EtFOSAA	IS	42.0		50-150		H	B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
13C2-PFDoA	IS	38.5		50-150		H	B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
13C2-PFTeDA	IS	11.4		50-150		H	B0G0058	12-Jul-20	0.262 L	14-Jul-20 19:13	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results reported to the DL.			When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.						

Sample ID: TW22D-20200707					PFAS Isotope Dilution Table B-15						
Client Data Name: Project:	KMEA MCAS El Toro and Tustin, PFAS	Matrix: Date C	$\begin{array}{cc} & \text { Gro } \\ \text { cted: } & 07- \end{array}$	ater $15: 15$		tory Data mple: eceived:	$\begin{aligned} & 2001436-0 \\ & 09-J u l-20 \end{aligned}$		Column:	BEH C18	
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	0.209	0.00127	0.00186	0.00372		B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
PFHxA	307-24-4	1.00	0.00127	0.00186	0.00372		B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
HFPO-DA	13252-13-6	ND	0.00224	0.00279	0.00372		B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
PFHpA	375-85-9	0.363	0.00127	0.00186	0.00372		B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
ADONA	919005-14-4	ND	0.00127	0.00186	0.00372		B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
PFHxS	355-46-4	0.886	0.00127	0.00186	0.00372		B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
PFOA	335-67-1	0.961	0.00127	0.00186	0.00372		B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
PFNA	375-95-1	0.00496	0.00127	0.00186	0.00372		B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
PFOS	1763-23-1	0.444	0.00127	0.00186	0.00372		B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
9Cl-PF3ONS	756426-58-1	ND	0.00127	0.00186	0.00372		B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
PFDA	335-76-2	0.00303	0.00127	0.00186	0.00372	J	B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
MeFOSAA	2355-31-9	ND	0.00127	0.00186	0.00372		B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
EtFOSAA	2991-50-6	ND	0.00127	0.00186	0.00372		B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
PFUnA	2058-94-8	ND	0.00127	0.00186	0.00372		B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
11Cl-PF3OUdS	763051-92-9	ND	0.00127	0.00186	0.00372		B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
PFDoA	307-55-1	ND	0.00127	0.00186	0.00372		B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
PFTrDA	72629-94-8	ND	0.00127	0.00186	0.00372		B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
PFTeDA	376-06-7	ND	0.00127	0.00186	0.00372		B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	72.4		50-150			B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
13C3-HFPO-DA	IS	65.4		50-150			B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
13C2-PFHxA	IS	68.6		50-150			B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
13C4-PFHpA	IS	70.2		50-150			B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
13C3-PFHxS	IS	70.5		50-150			B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
13C5-PFNA	IS	64.5		50-150			B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
13C2-PFOA	IS	70.7		50-150			B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
13C8-PFOS	IS	64.2		50-150			B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
13C2-PFDA	IS	57.3		50-150			B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
d3-MeFOSAA	IS	30.9		50-150		H	B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
13C2-PFUnA	IS	35.7		50-150		H	B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
d5-EtFOSAA	IS	23.3		50-150		H	B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
13C2-PFDoA	IS	13.5		50-150		H	B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
13C2-PFTeDA	IS	6.30		50-150		H	B0G0058	12-Jul-20	0.269 L	14-Jul-20 19:23	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results r	ed to the DL.			When re linear and analytes	rted, PFHxS, branched isom	FOA, PFOS, M rs. Only the li	eFOSAA and EtF ear isomer is repo	OSAA include both ted for all other	

Sample ID: EB06-20200708					PFAS Isotope Dilution Table B-15						
Client Data Name: Project:	KMEA MCAS El Toro and Tustin, PFAS	Matrix: Date Collected:		Blank Water 08-Jul-20 14:00	Laboratory Data Lab Sample: Date Received:		$\begin{aligned} & \text { 2001436-05 } \\ & \text { 09-Jul-20 08:57 } \end{aligned}$		Column:	BEH C18	Dilution
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	
PFBS	375-73-5	ND	0.00134	0.00196	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
PFHxA	307-24-4	ND	0.00134	0.00196	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
HFPO-DA	13252-13-6	ND	0.00236	0.00294	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
PFHpA	375-85-9	ND	0.00134	0.00196	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
ADONA	919005-14-4	ND	0.00134	0.00196	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
PFHxS	355-46-4	ND	0.00134	0.00196	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
PFOA	335-67-1	ND	0.00134	0.00196	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
PFNA	375-95-1	ND	0.00134	0.00196	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
PFOS	1763-23-1	ND	0.00134	0.00196	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
9Cl-PF3ONS	756426-58-1	ND	0.00134	0.00196	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
PFDA	335-76-2	ND	0.00134	0.00196	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
MeFOSAA	2355-31-9	ND	0.00134	0.00196	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
EtFOSAA	2991-50-6	ND	0.00134	0.00196	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
PFUnA	2058-94-8	ND	0.00134	0.00196	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
11Cl-PF3OUdS	763051-92-9	ND	0.00134	0.00196	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
PFDoA	307-55-1	ND	0.00134	0.00196	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
PFTrDA	72629-94-8	ND	0.00134	0.00196	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
PFTeDA	376-06-7	ND	0.00134	0.00196	0.00392		B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	71.2		50-150			B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
13C3-HFPO-DA	IS	70.4		50-150			B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
13C2-PFHxA	IS	66.5		50-150			B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
13C4-PFHpA	IS	68.8		50-150			B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
13C3-PFHxS	IS	74.1		50-150			B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
13C5-PFNA	IS	65.3		50-150			B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
13C2-PFOA	IS	71.3		50-150			B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
13C8-PFOS	IS	72.0		50-150			B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
13C2-PFDA	IS	65.4		50-150			B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
d3-MeFOSAA	IS	58.9		50-150			B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
13C2-PFUnA	IS	66.2		50-150			B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
d5-EtFOSAA	IS	51.8		50-150			B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
13C2-PFDoA	IS	59.4		50-150			B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
13C2-PFTeDA	IS	59.6		50-150			B0G0058	12-Jul-20	0.255 L	14-Jul-20 19:45	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results reported to the DL.			When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.						

Analytical Laboratory

Sample ID: TW23D-20200708					PFAS Isotope Dilution Table B-15						
Client Data Name: KMEA Project: MCAS El Toro and Tustin, PFAS		Matrix: Groundwate Date Collected: 08-Jul-20 09			Laboratory Data Lab Sample: Date Received:		$\begin{aligned} & \text { 2001436-06 } \\ & \text { 09-Jul-20 08:57 } \end{aligned}$		Column:	BEH C18	Dilution
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	
PFBS	375-73-5	0.711	0.00123	0.00180	0.00360		B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
PFHxA	307-24-4	2.98	0.0123	0.0180	0.0360	D	B0G0058	12-Jul-20	0.278 L	15-Jul-20 15:20	10
HFPO-DA	13252-13-6	ND	0.00217	0.00270	0.00360		B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
PFHpA	375-85-9	0.772	0.00123	0.00180	0.00360		B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
ADONA	919005-14-4	ND	0.00123	0.00180	0.00360		B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
PFHxS	355-46-4	3.87	0.0123	0.0180	0.0360	D	B0G0058	12-Jul-20	0.278 L	15-Jul-20 15:20	10
PFOA	335-67-1	10.8	0.0123	0.0180	0.0360	D	B0G0058	12-Jul-20	0.278 L	15-Jul-20 15:20	10
PFNA	375-95-1	0.00760	0.00123	0.00180	0.00360		B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
PFOS	1763-23-1	1.32	0.00123	0.00180	0.00360		B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
9Cl-PF3ONS	756426-58-1	ND	0.00123	0.00180	0.00360		B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
PFDA	335-76-2	ND	0.00123	0.00180	0.00360		B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
MeFOSAA	2355-31-9	ND	0.00123	0.00180	0.00360		B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
EtFOSAA	2991-50-6	ND	0.00123	0.00180	0.00360		B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
PFUnA	2058-94-8	ND	0.00123	0.00180	0.00360		B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
11Cl-PF3OUdS	763051-92-9	ND	0.00123	0.00180	0.00360		B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
PFDoA	307-55-1	ND	0.00123	0.00180	0.00360		B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
PFTrDA	72629-94-8	ND	0.00123	0.00180	0.00360		B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
PFTeDA	376-06-7	ND	0.00123	0.00180	0.00360		B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	62.6		50-150			B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
13C3-HFPO-DA	IS	64.7		50-150			B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
13C2-PFHxA	IS	71.5		50-150		D	B0G0058	12-Jul-20	0.278 L	15-Jul-20 15:20	10
13C4-PFHpA	IS	60.8		50-150			B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
13C3-PFHxS	IS	66.8		50-150		D	B0G0058	12-Jul-20	0.278 L	15-Jul-20 15:20	10
13C5-PFNA	IS	61.0		50-150			B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
13C2-PFOA	IS	77.0		50-150		D	B0G0058	12-Jul-20	0.278 L	15-Jul-20 15:20	10
13C8-PFOS	IS	64.0		50-150			B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
13C2-PFDA	IS	59.5		50-150			B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
d3-MeFOSAA	IS	53.2		50-150			B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
13C2-PFUnA	IS	50.7		50-150			B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
d5-EtFOSAA	IS	48.0		50-150		H	B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
13C2-PFDoA	IS	35.0		50-150		H	B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
13C2-PFTeDA	IS	5.40		50-150		H	B0G0058	12-Jul-20	0.278 L	14-Jul-20 19:55	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results reported to the DL.			When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.						

Sample ID: TW24D-20200708					PFAS Isotope Dilution Table B-15						
Client Data Name: Project:	KMEA MCAS El Toro and Tustin, PFAS	Matrix: Date C	$\begin{array}{ll} & \text { Grc } \\ \text { cted: } & 08 \end{array}$	ater 11:20		tory Data mple: eceived:	$\begin{aligned} & 2001436-0 \\ & 09-J u l-20 \end{aligned}$		Column:	BEH C18	
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	0.0448	0.00122	0.00177	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
PFHxA	307-24-4	0.332	0.00122	0.00177	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
HFPO-DA	13252-13-6	ND	0.00214	0.00266	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
PFHpA	375-85-9	0.0561	0.00122	0.00177	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
ADONA	919005-14-4	ND	0.00122	0.00177	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
PFHxS	355-46-4	0.248	0.00122	0.00177	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
PFOA	335-67-1	1.55	0.00122	0.00177	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
PFNA	375-95-1	ND	0.00122	0.00177	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
PFOS	1763-23-1	0.0326	0.00122	0.00177	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
9Cl-PF3ONS	756426-58-1	ND	0.00122	0.00177	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
PFDA	335-76-2	ND	0.00122	0.00177	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
MeFOSAA	2355-31-9	ND	0.00122	0.00177	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
EtFOSAA	2991-50-6	ND	0.00122	0.00177	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
PFUnA	2058-94-8	ND	0.00122	0.00177	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
11Cl-PF3OUdS	763051-92-9	ND	0.00122	0.00177	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
PFDoA	307-55-1	ND	0.00122	0.00177	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
PFTrDA	72629-94-8	ND	0.00122	0.00177	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
PFTeDA	376-06-7	ND	0.00122	0.00177	0.00355		B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	70.5		50-150			B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
13C3-HFPO-DA	IS	66.9		50-150			B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
13C2-PFHxA	IS	66.7		50-150			B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
13C4-PFHpA	IS	63.0		50-150			B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
13C3-PFHxS	IS	73.2		50-150			B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
13C5-PFNA	IS	65.5		50-150			B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
13C2-PFOA	IS	64.6		50-150			B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
13C8-PFOS	IS	70.8		50-150			B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
13C2-PFDA	IS	67.3		50-150			B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
d3-MeFOSAA	IS	63.6		50-150			B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
13C2-PFUnA	IS	59.3		50-150			B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
d5-EtFOSAA	IS	50.2		50-150			B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
13C2-PFDoA	IS	45.9		50-150		H	B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
13C2-PFTeDA	IS	7.80		50-150		H	B0G0058	12-Jul-20	0.282 L	15-Jul-20 15:41	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results r	ed to the DL.			When re linear and analytes.	orted, PFHxS, branched isom	FOA, PFOS, M rs. Only the li	eFOSAA and EtF ear isomer is repo	OSAA include both ted for all other	

Sample ID: TW17D-20200708					PFAS Isotope Dilution Table B-15						
Client Data Name: Project:	KMEA MCAS El Toro and Tustin, PFAS	Matrix: Date Co	$\begin{array}{cc} & \text { Gro } \\ \text { cted: } & 08-1 \end{array}$	ater $13: 40$		tory Data mple: eceived:	$\begin{aligned} & 2001436-0 \\ & 09-J u l-20 \end{aligned}$		Column:	BEH C18	
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	0.169	0.000844	0.00123	0.00246		B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
PFHxA	307-24-4	0.987	0.000844	0.00123	0.00246		B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
HFPO-DA	13252-13-6	ND	0.00148	0.00185	0.00246		B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
PFHpA	375-85-9	0.196	0.000844	0.00123	0.00246		B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
ADONA	919005-14-4	ND	0.000844	0.00123	0.00246		B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
PFHxS	355-46-4	0.990	0.000844	0.00123	0.00246		B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
PFOA	335-67-1	3.87	0.00422	0.00616	0.0123	D	B0G0058	12-Jul-20	0.406 L	15-Jul-20 15:51	5
PFNA	375-95-1	0.00194	0.000844	0.00123	0.00246	J	B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
PFOS	1763-23-1	0.334	0.000844	0.00123	0.00246		B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
9Cl-PF3ONS	756426-58-1	ND	0.000844	0.00123	0.00246		B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
PFDA	335-76-2	ND	0.000844	0.00123	0.00246		B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
MeFOSAA	2355-31-9	ND	0.000844	0.00123	0.00246		B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
EtFOSAA	2991-50-6	ND	0.000844	0.00123	0.00246		B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
PFUnA	2058-94-8	ND	0.000844	0.00123	0.00246		B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
11Cl-PF3OUdS	763051-92-9	ND	0.000844	0.00123	0.00246		B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
PFDoA	307-55-1	ND	0.000844	0.00123	0.00246		B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
PFTrDA	72629-94-8	ND	0.000844	0.00123	0.00246		B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
PFTeDA	376-06-7	ND	0.000844	0.00123	0.00246		B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
Labeled Standards	s Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	44.4		50-150		H	B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
13C3-HFPO-DA	IS	39.6		50-150		H	B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
13C2-PFHxA	IS	42.2		50-150		H	B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
13C4-PFHpA	IS	45.2		50-150		H	B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
13C3-PFHxS	IS	44.2		50-150		H	B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
13C5-PFNA	IS	41.9		50-150		H	B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
13C2-PFOA	IS	47.8		50-150		D, H	B0G0058	12-Jul-20	0.406 L	15-Jul-20 15:51	5
13C8-PFOS	IS	45.5		50-150		H	B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
13C2-PFDA	IS	39.0		50-150		H	B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
d3-MeFOSAA	IS	27.8		50-150		H	B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
13C2-PFUnA	IS	28.3		50-150		H	B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
d5-EtFOSAA	IS	22.3		50-150		H	B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
13C2-PFDoA	IS	15.3		50-150		H	B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
13C2-PFTeDA	IS	3.30		50-150		H	B0G0058	12-Jul-20	0.406 L	14-Jul-20 20:16	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results re	ted to the DL.			When re linear and analytes	orted, PFHxS, branched isom	FOA, PFOS, M rs. Only the li	eFOSAA and EtF ear isomer is repo	OSAA include both ted for all other	

DATA QUALIFIERS \& ABBREVIATIONS

B	This compound was also detected in the method blank
Conc.	Concentration
CRS	Cleanup Recovery Standard
D	Dilution
DL	Detection limit
E	The associated compound concentration exceeded the calibration range of the instrument
H	Recovery and/or RPD was outside laboratory acceptance limits
I	Chemical Interference
IS	Internal Standard
J	The amount detected is below the Reporting Limit/LOQ
LOD	Limit of Detection
LOQ	Limit of Quantitation
M	Estimated Maximum Possible Concentration (CA Region 2 projects only)
NA	Not applicable
ND	Not Detected
OPR	Ongoing Precision and Recovery sample
P	The reported concentration may include contribution from chlorinated diphenyl ether(s).
Q	The ion transition ratio is outside of the acceptance criteria.
RL	Reporting Limit
TEQ	Toxic Equivalency
U	Not Detected (specific projects only)
*	See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Vista Analytical Laboratory Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	$17-013$
Arkansas Department of Environmental Quality	$19-013-0$
California Department of Health - ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-23
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2018017
Massachusetts Department of Environmental Protection	N/A
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1521520
New Hampshire Environmental Accreditation Program	$207718-$ B
New Jersey Department of Environmental Protection	190001
New York Department of Health	11411
Oregon Laboratory Accreditation Program	$4042-010$
Pennsylvania Department of Environmental Protection	016
Texas Commission on Environmental Quality	T104704189-19-10
Vermont Department of Health	VT-4042
Virginia Department of General Services	10272
Washington Department of Ecology	C584-19
Wisconsin Department of Natural Resources	998036160

NELAP Accredited Test Methods

MATRIX: Air	Method
Description of Test	EPA 23
Determination of Polychlorinated p-Dioxins \& Polychlorinated Dibenzofurans	EPA TO-9A
Determination of Polychlorinated p-Dioxins \& Polychlorinated Dibenzofurans	

MATRIX: Biological Tissue	Method
Description of Test	EPA 1613B
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1614A
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1668A/C
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1699
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 8280A/B
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8290/8290A
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	$\begin{aligned} & \text { EPA } \\ & \text { 1613/1613B } \end{aligned}$
1,4-Dioxane (1,4-Diethyleneoxide) analysis by GC/HRMS	EPA 522
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	$\begin{array}{\|l\|} \hline \text { ISO } 25101 \\ 2009 \\ \hline \end{array}$

MATRIX: Non-Potable Water	Method
Description of Test	EPA 1613B
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1614A
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1668A/C
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 537
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 613
Dioxin by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8290/8290A
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	

MATRIX: Solids	Method
Description of Test	EPA 1613B
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1614A
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1668A/C
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1699
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 8280A/B
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA $8290 / 8290 \mathrm{~A}$
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	

TEL: 916-673-1520
$201426301^{\circ} \mathrm{C}$
Vista PM: Jade White-Dobbs

CHAIN OF CUSTODY RECORD
DATE: 7/7/20
PAGE: \qquad OF \qquad 1

Sample Log-In Checklist

Vista Work Order \#: \qquad
Page \# \qquad of \qquad TAT

Logged In:	Date/Time $07 / 09 \mid 200037$	Initials: wUS	Location: $\begin{gathered}R-13, W R-2 \\ v\end{gathered}$ Shelf/Rack: $\delta-2, \quad \in-2$
COC Anomaly/Sample Acceptance Form completed?			

Comments:

CoC/Label Reconciliation Report WO\# 2001436

LabNumber	CoC Sample ID		SampleAlias	Sample Date/Time		Container	BaseMatrix	Sample Comments
2001436-01	A EB05-20200707	4		07-Juf-20 14:00	\square	HDPE Botte, 250 mL	Aqueous	
2001436-01	B EB05-20200707	\square		07-Jul-20 14:00	\square	HDPE Bortle, 250 mL	Aqucous	
2001436-02	A TW21D-20200707	\square		07-Jul-20 08:30	\square	HDPE Botle, 250 mL	Aqueous	
2001436-02	B TW2ID-20200707	\square		07-Jul-20 08:30	\square	HDPE Borlc. 250 mL	Aqucous	
2001436-02	C TW21D-20200707	\square		07-Jul-20 08:30	\square	HDPE Botle, 250 mL	Aqueous	
2001436-02	D TW21D-20200707	\square		07-Jul-20 08:30	\square	HDPE Bottle. 250 mL	Aqueous	
2001436-03	A TW09D-20200707	\square		07-Jul-20 10:40	\square	HDPE Bortle, 250 mL	Aqueous	
2001436-03	B TW09D-20200707	\square		07-Jul-20 10:40	\square	HDPE Borlc, 250 mL	Aqucous	
2001436-03	C TW09D-20200707	\square		07-Jul-20 10:40	\square	HDPE Bottle, 250 mL	Aqueous	
2001436-03	D TW09D-20200707	\square		07-Jul-20 10:40	\square	HDPE Borte. 250 mL	Aqucous	
2001436-04	A TW22D-20200707	\square		07-Jul-20 15:15	\square	HDPE Bottle, 250 mL	Aqueous	
2001436-04	B TW22D-20200707	\square		07-Jul-20 15:15	\square	HDPE Bortle 250 mL	Aqucous	
2001436-04	C TW22D-20200707	\square		07-Jul-20 15:15	\square	HDPE Botle, 250 mL	Aqueous	
2001436-04	D TW22D-20200707	\square		07-Jul-20 15:15	\square	HDPE Boule. 250 mL	Aqucous	
2001436-05	A EB06-20200708	\square		08-Jul-20 14:00	\square	HDPE Boutle, 250 mL	Aqueous	
2001436-05	B EB06-20200708	\square		08-Jul-20 14:00	\square	HDPE Bottle. 250 mL	Aqucous	
2001436-06	A TW23D-20200708			08-Jul-20 09:30	\square	HDPE Bottle, 250 mL	Aqueous	
2001436-06	B TW23D-20200708	\square		08-Jul-20 09:30	\square	HDPE Boule, 250 mL	Aqueous	
2001436-06	C TW23D-20200708	\square		08-Jul-20 09:30		HDPE Bollle, 250 mL	Aqucous	
2001436-06	D TW23D-20200708	\square		08-Jul-20 09:30		HDPE Bottle. 250 mL	Aqueous	
2001436-07	A TW24D-20200708	\square		08-Jul-20 11:20	\square	HDPE Borle, 250 mL	Aqueous	
2001436-07	B TW24D-20200708	\square		08-Jul-20 II: 20	\square	HDPE Bottle, 250 mL	Aqueous	
2001436-07	C TW24D-20200708			08-Jul-20 11:20		HDPE Botle, 250 mL	Aqucous	
2001436-07	D TW24D-20200708	\square		08-Jul-20 \|1:20	\square	HDPE Borte, 250 mL	Aqueous	
2001436-08	A TWI7D-20200708	\square		08-Jul-20 13:40	\square	HDPE Bottle, 250 mL	Aqucous	
2001436-08	B TWI7D-20200708	\square		08-Jul-20 13:40	\square	HDPE Borte, 250 mL	Aqucous	
2001436-08	C TWITD-20200708	\square		08-Jul-20 13:40	\square	HDPE Bottic, 250 mL	Aqueous	
2001436-08	D TW17D-20200708			08-Jul-20 13:40	\square	HDPE Borrle, 250 mL	Aqucous	

Checkmarks indicate that information on the COC reconciled with the sample label.
Any discrepancies are noted in the following columns.

	Yes	No	NA
Sample Comments:			
Sample Custody Seals Intact?			
Adequate Sample Volume?			
Container Type Appropriate for Analysis(es)			
Preservation Documented: Na2S2O3 Trizma (Vone Other			
If Chlorinated or Drinking Water Samples, Acceptable Preservation?			

Verifed by/Date: 14 o 7108120

EXTRACTION INFORMATION

Prep Expiration: 2020-07-21
Client: KMEA

Workorder Due:30-Jul-20 00:00

Prep Batch: \qquad Prep Data Entered: $\quad A M \quad \Omega 7 / 13 / 20$
Version: 537.1 List of 18-EIS
DoD: DoD QSM 5.3

> WO Comments: May have elevated PFAS levels - isolate samples. HR 07/12/20 Instrument - begin w/ dias.
> Report to DL
> Use SOP HT

Analytical Laboratory

	Location		12	813	L2	$R 12$	$\checkmark 2$	$R 12$			
	Reason		Prep	.89	124	$R 2$	R6	$R 9$			
	Initials		CHT	CH	HR	+C	HR	TC			
	Date/Time		071101200820	07110, 206845	07/12/200743	07/12/20 13:40	O7/13/20 0646107/13/20 10:16				
Initial Storage	LabNumber	Cont			\%	边	10	-	-	.	
R-13 A-2	2001436-01	A	0	0	0	E	t	E			
R-13 A-2	2001436-02	1	1	1	\top		T				
R-13 A-2	2001436-03										
R-13 A-2	2001436-04										
R-I3 A-2	2001436-05						-				
R-13 A-2	2001436-06										
R-13 A-2	2001436-07										
R-13 A-2	2001436-08	1	\downarrow	\downarrow	\checkmark	V	\downarrow	\downarrow			
Location Key: $\mathrm{L} 1=$ Prep Lab $\mathrm{L} 2=\operatorname{Prep} \mathrm{Lab}$ L3 $=$ HRMS Di L4 = Instrument Other $=$ \qquad	$\begin{aligned} & 1 \\ & 2 \\ & \text { iox } \\ & \text { nt } \\ & \hline \end{aligned}$			on Key: Percent Solids Eluate Preservation Sub-Sample Extraction	$\begin{aligned} & \text { R6 }=\text { Concentratia } \\ & \text { R7 }=\text { Filtering } \\ & \text { R8 }=\text { Analysis } \\ & \text { R9 }=\text { Storage } \\ & \text { Other }= \end{aligned}$			Type Key: $\mathrm{O}=$ Original Sample E = Extract of Sampl			

Chemist: \qquad IR
Prep Date: $07 / 12 / 20$
Prep Time: O8!1 5
Hood\#: \qquad
and Reconciliation

Matrix: Aqueous

LabNumber	WetWeight (Initial)	$\begin{gathered} \text { \% Solids } \\ \text { (Extraction Solids) } \end{gathered}$	DryWeight	Final	Extracted	Ext By	Spike	SpikeAmount	ClientMatrix	Analysis
2001436-01	$0.25168{ }^{\prime}$	NA	$N{ }_{\text {N }}$	1000	12-Jul-20 08:11	HNR \downarrow			Blank Water	537M PFAS DOD QSM 5.3
2001436-02	$0.24685 \sim$			1000	12-Jul-20 08:11	HNR			Groundwater	537M PFAS DOD QSM 5.3
2001436-03	0.26203 ./			1000	12-Jul-20 08:11	HNR			Groundwater	537M PFAS DOD QSM 5.3
2001436-04	0.2687			1000	12-Jul-20 08:11	HNR			Groundwater	537M PFAS DOD QSM 5.3
2001436-05	0.2553		!	1000	12-Jul-20 08:11	HNR			Blank Water	537M PFAS DOD QSM 5.3
2001436-06	0.27774			1000	12-Jul-20 08:11	HNR			Groundwater	537M PFAS DOD QSM 5.3
2001436-07	0.28174			1000	12-Jul-20 08:11	HNR			Groundwater	537M PFAS DOD QSM 5.3
2001436-08	$0.40597 \checkmark$			1000	12-Jul-20 08:11	HNR			Groundwater	537M PFAS DOD QSM 5.3
B0G0058-BLK1	$0.25 \quad \checkmark$			1000	12-Jul-20 08:11	HNR				QC
B0G0058-BS1	0.25 /	,		1000	12-Jul-20 08:11	HNR	20E1202	$\checkmark 10 \checkmark$		QC
B0G0058-BSD1	$0.25 \checkmark$	\checkmark	,	1000	12-Jul-20 08:11	AHNR	20 E 1202	$\checkmark 10 \checkmark$		QC

All bolded data on report verified against written benchsheet by (initial/date) AM $07 / 13 / 20$

Sample Data - PFAS Isotope Dilution Table B-15

Quantify Sample Report

Dataset: P:IPFAS5.PROTRESULTSI200714P11200714P1-50-56.qld

Last Altered: Thursday, July 16, 2020 15:59:13 Pacific Daylight Time
Printed: Thursday, July 16, 2020 16:00:03 Pacific Daylight Time

Name: 200714P1-50, Date: 14-Jul-2020, Time: 18:20:36, ID: B0G0058-BLK1 Method Blank 0.25, Description: Method Blank

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	$299.0>80$		1.372 e 3	0.250		2.67						YES
2	7 PFHxA	$313.0>269.0$		1.143 e 4	0.250		3.20						YES
3	9 HFPO-DA	$285.1>168.9$		2.134 e 3	0.250		3.42						YES
4	11 PFHpA	$363.0>319$		1.063 e 4	0.250		3.80						YES
5	12 ADONA	$376.8>250.9$		1.063 e 4	0.250		3.89						YES
6	51 13C3-PFBS-EIS	$302.0>98.9$	1.372 e 3		0.250	157.875	2.67	2.67	1370	34.754	69.5		
7	57 13C2-PFHxA-EIS	$315.0>270.0$	1.143 e 4		0.250	1345.825	3.19	3.20	11400	33.962	67.9		
8	53 13C3-HFPO-DA-EIS	$287.0>168.9$	2.134 e 3		0.250	261.275	3.41	3.42	2130	32.677	65.4		
9	59 13C4-PFHpA-EIS	367.2 > 321.8	1.063 e 4		0.250	1285.879	3.79	3.80	10600	33.070	66.1		
10	59 13C4-PFHpA-EIS	367.2 > 321.8	1.063 e 4		0.250	1285.879	3.79	3.80	10600	33.070	66.1		
11	-1												
12	13 L-PFHxS	$399>79.9$		2.856 e 3	0.250		3.94						YES
13	1... Total PFHxS	$399>79.9$	0.000 e 0	2.856 e 3	0.250		3.93		0.000				
14	16 L-PFOA	$413>369$		1.559 e 4	0.250		4.31						YES
15	1... Total PFOA	$413>369$	0.000 e 0	1.559 e 4	0.250		4.60		0.000				
16	21 PFNA	$463.0>418.8$		1.343 e 4	0.250		4.75						YES
17	61 13C3-PFHxS-EIS	$402>80$	2.856 e 3		0.250	305.184	3.93	3.94	2860	37.431	74.9		
18	61 13C3-PFHxS-EIS	$402>80$	2.856 e 3		0.250	305.184	3.93	3.94	2860	37.431	74.9		
19	69 13C2-PFOA-EIS	$414.9>369.7$	1.559 e 4		0.250	1733.544	4.47	4.31	15600	35.976	72.0		
20	69 13C2-PFOA-EIS	$414.9>369.7$	1.559 e 4		0.250	1733.544	4.47	4.31	15600	35.976	72.0		
21	65 13C5-PFNA-EIS	$468.2>422.9$	1.343 e 4		0.250	1672.506	4.96	4.75	13400	32.127	64.3		
22	-1												
23	23 L-PFOS	$499>80$		2.369 e 3	0.250		4.84						YES
24	1... Total PFOS	$499>80$	0.000 e 0	2.369 e 3	0.250		4.60		0.000				
25	25 9CI-PF30NS	$531>351$		2.369 e 3	0.250		5.05						YES
26	26 PFDA	$513>469$		1.505 e 4	0.250		5.13						YES
27	33 PFUdA	$563.0>519$		1.375 e 4	0.250		5.45						YES
28	71 13C8-PFOS-EIS	$507.1>80$	2.369 e 3		0.250	299.078	4.83	4.84	2370	31.690	63.4		
29	71 13C8-PFOS-EIS	$507.1>80$	2.369 e 3		0.250	299.078	4.83	4.84	2370	31.690	63.4		
30	71 13C8-PFOS-EIS	$507.1>80$	2.369 e 3		0.250	299.078	4.83	4.84	2370	31.690	63.4		
31	73 13C2-PFDA-EIS	$515.1>469.9$	1.505 e 4		0.250	1995.916	5.12	5.13	15100	30.167	60.3		
32	79 13C2-PFUdA-EIS	$565>519.8$	1.375 e 4		0.250	1917.639	5.36	5.45	13700	28.680	57.4		
33	-1												
34	29 L-MeFOSAA	$570>419$		2.764 e 3	0.250		5.28						YES
35	1... Total N-MeFOSAA	570. >419	0.000 e 0	2.764 e 3	0.250		5.19		0.000				
36	31 L-EtFOSAA	$583.9>419$		2.336 e 3	0.250		5.43						YES

Work Order 2001436

Quantify Sample Report

Dataset: P:IPFAS5.PROTRESULTSI200714P11200714P1-50-56.qld

Last Altered: Thursday, July 16, 2020 15:59:13 Pacific Daylight Time
Printed: Thursday, July 16, 2020 16:00:03 Pacific Daylight Time

Name: 200714P1-50, Date: 14-Jul-2020, Time: 18:20:36, ID: B0G0058-BLK1 Method Blank 0.25, Description: Method Blank

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	1... Total N-EtFOSAA	$583.9>419$	0.000 e 0	2.336 e 3	0.250		5.37		0.000				
38	35 11CI-PF30UdS	$631>451$		1.597 e 4	0.250		5.67						YES
39	77 d3-N-MeFOSAA-EIS	$573.1>419$	2.764 e 3		0.250	391.230	5.27	5.28	2760	28.257	56.5		
40	77 d3-N-MeFOSAA-EIS	$573.1>419$	2.764 e 3		0.250	391.230	5.27	5.28	2760	28.257	56.5		
41	81 d5-N-EtFOSAA-EIS	$589.3>419$	2.336 e 3		0.250	342.385	5.42	5.43	2340	27.289	54.6		
42	81 d5-N-EtFOSAA-EIS	$589.3>419$	2.336 e 3		0.250	342.385	5.42	5.43	2340	27.289	54.6		
43	83 13C2-PFDoA-EIS	$614.9>569.9$	1.597 e 4		0.250	2303.973	5.87	5.73	16000	27.728	55.5		
44	-1												
45	37 PFDoA	$612.9>569.0$		$1.597 e 4$	0.250		5.73						YES
46	39 PFTrDA	$662.9>618.9$		$1.597 e 4$	0.250		5.97						YES
47	41 PFTeDA	$713.0>669.0$		1.655 e 4	0.250		6.18						YES
48	1... TDCA	$498.3>106.9$			0.250		4.47						YES
49	71 13C8-PFOS-EIS	$507.1>80$	2.369 e 3		0.250	299.078	4.83	4.84	2370	31.690	63.4		
50	83 13C2-PFDoA-EIS	$614.9>569.9$	1.597 e 4		0.250	2303.973	5.87	5.73	16000	27.728	55.5		
51	83 13C2-PFDoA-EIS	$614.9>569.9$	1.597 e 4		0.250	2303.973	5.87	5.73	16000	27.728	55.5		
52	89 13C2-PFTeDA-EIS	$715.1>669.7$	1.655 e 4		0.250	2242.342	6.18	6.18	16500	29.514	59.0		

Quantify Sample Report

Last Altered: Thursday, July 16, 2020 15:59:13 Pacific Daylight Time
Printed: Thursday, July 16, 2020 16:00:03 Pacific Daylight Time

Method: P:\PFAS5.PRO\MethDB\NEW_PFAS_80C_071420.mdb 14 Jul 2020 15:40:52

Calibration: P:\PFAS5.PRO\CurveDB\C18_VAL-PFAS_Q5_07-14-20.cdb 15 Jul 2020 08:25:12

Name: 200714P1-50, Date: 14-Jul-2020, Time: 18:20:36, ID: B0G0058-BLK1 Method Blank 0.25, Description: Method Blank

13C2-PFHxA-EIS
F14:MRM of 1 channel,ES$315.0>270.0$ $2.775 \mathrm{e}+005$

HFPO-DA

13C3-HFPO-DA-EIS

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES367.2 > 321.8 $2.940 \mathrm{e}+005$

ADONA

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES-

Quantify Sample Report

Dataset: P:IPFAS5.PRO\RESULTSI200714P11200714P1-50-56.qld
Last Altered: Thursday, July 16, 2020 15:59:13 Pacific Daylight Time
Printed: Thursday, July 16, 2020 16:00:03 Pacific Daylight Time

Name: 200714P1-50, Date: 14-Jul-2020, Time: 18:20:36, ID: B0G0058-BLK1 Method Blank 0.25, Description: Method Blank
L-PFHxS
F23:MRM of 2 channels,ES-
$399>79.9$
$8.668 \mathrm{e}+001$

13C3-PFHxS-EIS

Total PFHxS
F23:MRM of 2 channels,ES-
$399>79.9$
$8.668 \mathrm{e}+001$

13C3-PFHxS-EIS

L-PFOA
F26:MRM of 2 channels,ES-
$413>369$

13C2-PFOA-EIS

F27:MRM of 1 channel,ES$414.9>369.7$ $4.579 \mathrm{e}+005$

Total PFOA
F26:MRM of 2 channels,ES-
$413>369$

13C2-PFOA-EIS

F27:MRM of 1 channel,ES$414.9>369.7$ $4.579 \mathrm{e}+005$

13C5-PFNA-EIS
F36:MRM of 1 channel,ES$468.2>422.9$

Quantify Sample Report

Last Altered: Thursday, July 16, 2020 15:59:13 Pacific Daylight Time
Printed: Thursday, July 16, 2020 16:00:03 Pacific Daylight Time

Name: 200714P1-50, Date: 14-Jul-2020, Time: 18:20:36, ID: B0G0058-BLK1 Method Blank 0.25, Description: Method Blank

13C8-PFOS-EIS

Total PFOS

13C8-PFOS-EIS

9Cl-PF30NS

13C8-PFOS-EIS

PFDA

13C2-PFDA-EIS

13C2-PFUdA-EIS
F56:MRM of 1 channel,ES-

$$
565>519.8
$$

$$
3.602 e+005
$$

Quantify Sample Report

Last Altered: Thursday, July 16, 2020 15:59:13 Pacific Daylight Time
Printed: Thursday, July 16, 2020 16:00:03 Pacific Daylight Time

Name: 200714P1-50, Date: 14-Jul-2020, Time: 18:20:36, ID: B0G0058-BLK1 Method Blank 0.25, Description: Method Blank

L-MeFOSAA

$$
\begin{array}{r}
\text { F57:MRM of } 2 \text { channels,ES- } \\
570 .>512 \\
1.480 \mathrm{e}+002
\end{array}
$$

d3-N-MeFOSAA-EIS

F59:MRM of 1 channel,ES-

Total N-MeFOSAA

F57:MRM of 2 channels,ES-

d3-N-MeFOSAA-EIS

L-EtFOSAA

d5-N-EtFOSAA-EIS

d5-N-EtFOSAA-EIS

11CI-PF30UdS

13C2-PFDoA-EIS
F64:MRM of 1 channel,ES-
$614.9>569.9$ $4.223 e+005$

Quantify Sample Report

Dataset: P:IPFAS5.PRO\RESULTS\200714P1\200714P1-50-56.qld
Last Altered: Thursday, July 16, 2020 15:59:13 Pacific Daylight Time
Printed: Thursday, July 16, 2020 16:00:03 Pacific Daylight Time

Name: 200714P1-50, Date: 14-Jul-2020, Time: 18:20:36, ID: B0G0058-BLK1 Method Blank 0.25, Description: Method Blank

PFDoA

F63:MRM of 2 channels,ES- | $612.9>569.0$ |
| ---: |
| $6.417 \mathrm{e}+002$ |

PFTrDA

13C2-PFDoA-EIS
F64:MRM of 1 channel,ES$614.9>569.9$ $4.223 e+005$

PFTeDA

13C2-PFTeDA-EIS

F75:MRM of 2 channels,ES-
$715.1>669.7$ $4.218 \mathrm{e}+005$

TDCA

Quantify Sample Report

Dataset:

$\begin{array}{ll}\text { Last Altered: } & \text { Thursday, July 16, 2020 16:04:18 Pacific Daylight Time } \\ \text { Printed: } & \text { Thursday, July 16, 2020 16:05:03 Pacific Daylight Time }\end{array}$

Name: 200714P1-51, Date: 14-Jul-2020, Time: 18:31:12, ID: B0G0058-BS1 OPR 0.25, Description: OPR

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	$299.0>80$	2.712 e 3	1.312 e 3	0.250		2.67	2.67	25.8	41.344	103.4	2.519	NO
2	7 PFHxA	$313.0>269.0$	9.065 e 3	1.005 e 4	0.250		3.20	3.20	11.3	43.360	108.4	16.003	NO
3	9 HFPO-DA	$285.1>168.9$	1.545 e 3	1.942 e 3	0.250		3.42	3.41	9.95	41.304	103.3	2.123	NO
4	11 PFHpA	$363.0>319$	9.592 e 3	9.648 e 3	0.250		3.80	3.80	12.4	40.572	101.4	59.766	NO
5	12 ADONA	$376.8>250.9$	1.644 e 4	9.648 e 3	0.250		3.89	3.90	21.3	39.724	99.3	3.581	NO
6	51 13C3-PFBS-EIS	$302.0>98.9$	1.312 e 3		0.250	157.875	2.67	2.67	1310	33.232	66.5		
7	57 13C2-PFHxA-EIS	$315.0>270.0$	1.005 e 4		0.250	1345.825	3.19	3.20	10000	29.857	59.7		
8	53 13C3-HFPO-DA-EIS	$287.0>168.9$	1.942 e 3		0.250	261.275	3.41	3.42	1940	29.736	59.5		
9	59 13C4-PFHpA-EIS	$367.2>321.8$	9.648 e 3		0.250	1285.879	3.79	3.80	9650	30.013	60.0		
10	59 13C4-PFHpA-EIS	$367.2>321.8$	9.648 e 3		0.250	1285.879	3.79	3.80	9650	30.013	60.0		
11	-1												
12	13 L-PFHxS	$399>79.9$	2.441 e 3	2.710 e 3	0.250		3.93	3.94	11.3	39.651	99.1	4.152	NO
13	1... Total PFHxS	$399>79.9$	2.441 e 3	2.710 e 3	0.250		3.93		11.3	39.651			
14	16 L-PFOA	$413>369$	1.017 e 4	1.430 e 4	0.250		4.31	4.31	8.89	38.034	95.1	2.827	NO
15	1... Total PFOA	$413>369$	1.017 e 4	1.430 e 4	0.250		4.60		8.89	38.034			
16	21 PFNA	$463.0>418.8$	1.176 e 4	1.211 e 4	0.250		4.75	4.75	12.1	41.023	102.6	13.367	NO
17	61 13C3-PFHxS-EIS	$402>80$	2.710 e 3		0.250	305.184	3.93	3.93	2710	35.525	71.1		
18	61 13C3-PFHxS-EIS	$402>80$	2.710 e 3		0.250	305.184	3.93	3.93	2710	35.525	71.1		
19	69 13C2-PFOA-EIS	$414.9>369.7$	1.430 e 4		0.250	1733.544	4.47	4.31	14300	32.990	66.0		
20	69 13C2-PFOA-EIS	$414.9>369.7$	1.430 e 4		0.250	1733.544	4.47	4.31	14300	32.990	66.0		
21	65 13C5-PFNA-EIS	$468.2>422.9$	1.211 e 4		0.250	1672.506	4.96	4.75	12100	28.966	57.9		
22	-1												
23	23 L-PFOS	$499>80$	2.254 e 3	2.602 e 3	0.250		4.83	4.83	10.8	36.479	91.2	2.295	NO
24	1... Total PFOS	499> 80	2.254 e 3	2.602 e 3	0.250		4.60		10.8	36.479			
25	25 9CI-PF30NS	$531>351$	4.391 e 3	2.602 e 3	0.250		5.04	5.05	21.1	33.806	84.5	31.182	NO
26	26 PFDA	$513>469$	9.371 e 3	$1.427 e 4$	0.250		5.13	5.12	8.21	41.333	103.3	4.816	NO
27	33 PFUdA	$563.0>519$	1.005 e 4	1.341 e 4	0.250		5.45	5.45	9.37	39.642	99.1	17.512	NO
28	71 13C8-PFOS-EIS	$507.1>80$	2.602 e 3		0.250	299.078	4.83	4.83	2600	34.796	69.6		
29	71 13C8-PFOS-EIS	$507.1>80$	2.602 e 3		0.250	299.078	4.83	4.83	2600	34.796	69.6		
30	71 13C8-PFOS-EIS	$507.1>80$	2.602 e 3		0.250	299.078	4.83	4.83	2600	34.796	69.6		
31	73 13C2-PFDA-EIS	$515.1>469.9$	1.427 e 4		0.250	1995.916	5.12	5.13	14300	28.600	57.2		
32	79 13C2-PFUdA-EIS	$565>519.8$	1.341 e 4		0.250	1917.639	5.36	5.45	13400	27.973	55.9		
33	-1												
34	29 L-MeFOSAA	$570>419$	2.363 e 3	2.298 e 3	0.250		5.27	5.28	12.9	42.788	107.0	1.571	NO
35	1... Total N-MeFOSAA	570. >419	2.363 e 3	2.298 e 3	0.250		5.19		12.9	42.788			
36	31 L-EtFOSAA	583.9>419	2.594 e 3	1.892 e 3	0.250		5.42	5.43	17.1	42.205	105.5	1.422	NO

Work Order 2001436

Quantify Sample Report

Dataset: P:IPFAS5.PRO\RESULTS\200714P1\200714P1-50-56.qld

Last Altered: Thursday, July 16, 2020 16:04:18 Pacific Daylight Time
Printed: \quad Thursday, July 16, 2020 16:05:03 Pacific Daylight Time

Name: 200714P1-51, Date: 14-Jul-2020, Time: 18:31:12, ID: B0G0058-BS1 OPR 0.25, Description: OPR

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	1... Total N-EtFOSAA	$583.9>419$	2.594 e 3	1.892 e 3	0.250		5.37		17.1	42.205			
38	$3511 \mathrm{Cl}-\mathrm{PF} 30 \mathrm{UdS}$	$631>451$	2.769 e 3	1.352 e 4	0.250		5.67	5.65	2.56	39.252	98.1	13.802	NO
39	77 d3-N-MeFOSAA-EIS	$573.1>419$	2.298 e 3		0.250	391.230	5.27	5.27	2300	23.495	47.0		
40	77 d3-N-MeFOSAA-EIS	$573.1>419$	2.298 e 3		0.250	391.230	5.27	5.27	2300	23.495	47.0		
41	$81 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}-E I S$	$589.3>419$	1.892 e 3		0.250	342.385	5.42	5.42	1890	22.107	44.2		
42	$81 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$-EIS	$589.3>419$	1.892 e 3		0.250	342.385	5.42	5.42	1890	22.107	44.2		
43	83 13C2-PFDoA-EIS	$614.9>569.9$	1.352 e 4		0.250	2303.973	5.87	5.73	13500	23.469	46.9		
44	-1												
45	37 PFDoA	$612.9>569.0$	1.036 e 4	1.352 e 4	0.250		5.73	5.73	9.58	43.052	107.6	11.315	NO
46	39 PFTrDA	$662.9>618.9$	1.104 e 4	1.352 e 4	0.250		5.97	5.97	10.2	38.229	95.6	112.572	NO
47	41 PFTeDA	$713.0>669.0$	6.641 e 3	1.444 e 4	0.250		6.17	6.18	5.75	40.625	101.6	14.215	NO
48	1... TDCA	$498.3>106.9$			0.250		4.47						YES
49	71 13C8-PFOS-EIS	$507.1>80$	2.602 e 3		0.250	299.078	4.83	4.83	2600	34.796	69.6		
50	83 13C2-PFDoA-EIS	$614.9>569.9$	1.352 e 4		0.250	2303.973	5.87	5.73	13500	23.469	46.9		
51	83 13C2-PFDoA-EIS	$614.9>569.9$	1.352 e 4		0.250	2303.973	5.87	5.73	13500	23.469	46.9		
52	89 13C2-PFTeDA-EIS	$715.1>669.7$	1.444 e 4		0.250	2242.342	6.18	6.17	14400	25.750	51.5		

Quantify Sample Report

Dataset: P:IPFAS5.PRO\RESULTS\200714P1\200714P1-50-56.qld
Last Altered: Thursday, July 16, 2020 16:04:18 Pacific Daylight Time
Printed: \quad Thursday, July 16, 2020 16:05:03 Pacific Daylight Time

Method: P:\PFAS5.PRO\MethDB\NEW_PFAS_80C_071420.mdb 14 Jul 2020 15:40:52

Calibration: P:\PFAS5.PRO\CurveDB\C18_VAL-PFAS_Q5_07-14-20.cdb 15 Jul 2020 08:25:12

Name: 200714P1-51, Date: 14-Jul-2020, Time: 18:31:12, ID: B0G0058-BS1 OPR 0.25, Description: OPR

PFBS		
	F11:MRM of 2 channels,ES-	
100	PFBS	$7.687 \mathrm{e}+004$
	2.67	
	2.71 e3	
\% -	76732	
	bd 5189.41	
		mmorm min

13C2-PFHxA-EIS
F14:MRM of 1 channel,ES$315.0>270.0$ $2.475 \mathrm{e}+005$

HFPO-DA

	F9:MRM of 3 channels,ES-	
		285.1 > 168.9
100	HFPO-DA	$3.685 \mathrm{e}+004$
	3.41	
	1.55 e 3	
\%-	36759	
	bb	
	36759.00	

13C3-HFPO-DA-EIS

PFHpA

F20:MRM of 2 channels,ES$363.0>169.0$

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES367.2 > 321.8 $2.652 \mathrm{e}+005$

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES-

Quantify Sample Report

Dataset: P:IPFAS5.PRO\RESULTSI200714P11200714P1-50-56.qld
Last Altered: Thursday, July 16, 2020 16:04:18 Pacific Daylight Time
Printed: Thursday, July 16, 2020 16:05:03 Pacific Daylight Time

Name: 200714P1-51, Date: 14-Jul-2020, Time: 18:31:12, ID: B0G0058-BS1 OPR 0.25, Description: OPR

13C3-PFHxS-EIS

F24:MRM of 1 channel,ES-

Total PFHxS
F23:MRM of 2 channels,ES-

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES$402>80$ $7.716 \mathrm{e}+004$

L-PFOA

13C2-PFOA-EIS
F27:MRM of 1 channel,ES414.9 > 369.7 $4.154 \mathrm{e}+005$

Total PFOA

	F26:MRM of 2 channels,ES-	
100	L-PFOA	$2.922 \mathrm{e}+005$
	4.31	
	1.02 e 4	
\%-	290126	
	bb	
	2218.70	

13C2-PFOA-EIS
F27:MRM of 1 channel,ES$414.9>369.7$ $4.154 \mathrm{e}+005$

PFNA

1007	F35:MRM of 2 channels,ES$463.0>418.8$	
	PFNA	$3.381 e+005$
	4.75	
	1.18 e 4	
\% -	337219	
	bb	
	2875.00	

13C5-PFNA-EIS
F36:MRM of 1 channel,ES$468.2>422.9$

Quantify Sample Report

Dataset: P:IPFAS5.PROIRESULTS\200714P1\200714P1-50-56.qld
Last Altered: Thursday, July 16, 2020 16:04:18 Pacific Daylight Time
Printed: Thursday, July 16, 2020 16:05:03 Pacific Daylight Time

Name: 200714P1-51, Date: 14-Jul-2020, Time: 18:31:12, ID: B0G0058-BS1 OPR 0.25, Description: OPR

L-PFOS		
	F40:MRM of 2 channels,ES-	
	L-PFOS	$499>80$
100	4.83	$4.874 \mathrm{e}+004$
	2.25 e 3	
	48739	
\%-	MM	
	48739.00	

Total PFOS

13C8-PFOS-EIS

9CI-PF30NS

13C8-PFOS-EIS

PFDA

F45:MRM of 2 channels, ES-	
$513>469$	
100	$2.798 \mathrm{e}+005$
PFDA	
5.12	
9.37 e 3	
278929	
bb	
4684.57	
0	

13C2-PFDA-EIS

13C2-PFUdA-EIS

Quantify Sample Report

Dataset: P:IPFAS5.PROIRESULTS\200714P1\200714P1-50-56.qld
Last Altered: Thursday, July 16, 2020 16:04:18 Pacific Daylight Time
Printed: Thursday, July 16, 2020 16:05:03 Pacific Daylight Time

Name: 200714P1-51, Date: 14-Jul-2020, Time: 18:31:12, ID: B0G0058-BS1 OPR 0.25, Description: OPR

L-MeFOSAA
F57:MRM of 2 channels,ES-
$570>419$
$6.180 \mathrm{e}+004$
100

$$
\text { F57:MRM of } 2 \text { channels,ES- } \begin{array}{r}
570 .>512 \\
3.224 \mathrm{e}+004
\end{array}
$$

d3-N-MeFOSAA-EIS

F59:MRM of 1 channel,ES-

Total N-MeFOSAA

F57:MRM of 2 channels,ES-

d3-N-MeFOSAA-EIS

L-EtFOSAA

F60:MRM of 2 channels, ES-

d5-N-EtFOSAA-EIS

Total N-EtFOSAA		
	F60:MRM of 2 channels,ES-	
		583.9 > 419
	L-EtFOSAA	$6.257 e+004$
1007	5.43	
	2.59 e 3	
\%-	62404	
\%	MM	
	62404.00	

d5-N-EtFOSAA-EIS

13C2-PFDoA-EIS

F64:MRM of 1 channel,ES$614.9>569.9$ $3.595 \mathrm{e}+005$

Quantify Sample Report

Dataset: P:|PFAS5.PRO\RESULTS\200714P1\200714P1-50-56.qld
Last Altered: Thursday, July 16, 2020 16:04:18 Pacific Daylight Time
Printed: Thursday, July 16, 2020 16:05:03 Pacific Daylight Time

Name: 200714P1-51, Date: 14-Jul-2020, Time: 18:31:12, ID: B0G0058-BS1 OPR 0.25, Description: OPR

PFTeDA

13C2-PFDoA-EIS

F64:MRM of 1 channel,ESF64:MRM of 1 channel,ES-
$614.9>569.9$

PFTrDA

$3.595 \mathrm{e}+005$

13C2-PFDoA-EIS

F64:MRM of 1 channel,ES-
$614.9>569.9$
$3.595 \mathrm{e}+005$
F64:MRM of 1 channel,ES-
$614.9>569.9$
$3.595 \mathrm{e}+005$
F64:MRM of 1 channel,ES-
$614.9>569.9$
$3.595 \mathrm{e}+005$

13C2-PFTeDA-EIS
F75:MRM of 2 channels,ES-
$715.1>669.7$
$3.670 \mathrm{e}+005$
F75:MRM of 2 channels,ES-
$715.1>669.7$
$3.670 \mathrm{e}+005$
F75:MRM of 2 channels,ES-
$715.1>669.7$
$3.670 \mathrm{e}+005$

$6.250 \quad 6.500$

F72:MRM of 2 channels,ES-

13C8-PFOS-EIS

Quantify Sample Report

Last Altered: Thursday, July 16, 2020 16:08:51 Pacific Daylight Time
Printed: Thursday, July 16, 2020 16:09:32 Pacific Daylight Time

Name: 200714P1-52, Date: 14-Jul-2020, Time: 18:41:38, ID: B0G0058-BSD1 LCSD 0.25, Description: LCSD

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	$299.0>80$	3.112e3	1.463 e 3	0.250		2.67	2.67	26.6	42.531	106.3	2.397	NO
2	7 PFHxA	313.0 > 269.0	1.123 e 4	1.225 e 4	0.250		3.20	3.20	11.5	44.075	110.2	15.413	NO
3	9 HFPO-DA	$285.1>168.9$	1.978 e 3	2.351 e 3	0.250		3.42	3.41	10.5	43.683	109.2	2.152	NO
4	11 PFHpA	$363.0>319$	1.162 e 4	1.190 e 4	0.250		3.80	3.80	12.2	39.859	99.6	43.719	NO
5	12 ADONA	376.8 > 250.9	2.158 e 4	1.190e4	0.250		3.89	3.90	22.7	42.308	105.8	3.850	NO
6	51 13C3-PFBS-EIS	$302.0>98.9$	1.463 e 3		0.250	157.875	2.67	2.67	1460	37.075	74.2		
7	57 13C2-PFHxA-EIS	$315.0>270.0$	1.225 e 4		0.250	1345.825	3.19	3.20	12200	36.394	72.8		
8	53 13C3-HFPO-DA-EIS	$287.0>168.9$	2.351 e 3		0.250	261.275	3.41	3.42	2350	35.998	72.0		
9	59 13C4-PFHPA-EIS	367.2 > 321.8	1.190 e 4		0.250	1285.879	3.79	3.80	11900	37.005	74.0		
10	59 13C4-PFHPA-EIS	367.2 > 321.8	1.190 e 4		0.250	1285.879	3.79	3.80	11900	37.005	74.0		
11	-1												
12	13 L-PFHxS	$399>79.9$	2.881e3	2.951e3	0.250		3.94	3.94	12.2	42.987	107.5	4.418	NO
13	1... Total PFHxS	$399>79.9$	2.881e3	2.951e3	0.250		3.93		12.2	42.987			
14	16 L-PFOA	$413>369$	1.286 e 4	1.631 e 4	0.250		4.31	4.31	9.86	42.187	105.5	2.983	NO
15	1... Total PFOA	$413>369$	1.286 e 4	1.631 e 4	0.250		4.60		9.86	42.187			
16	21 PFNA	$463.0>418.8$	1.482 e 4	1.406 e 4	0.250		4.75	4.75	13.2	44.561	111.4	13.386	NO
17	61 13C3-PFHxS-EIS	$402>80$	2.951e3		0.250	305.184	3.93	3.94	2950	38.682	77.4		
18	61 13C3-PFHxS-EIS	$402>80$	2.951e3		0.250	305.184	3.93	3.94	2950	38.682	77.4		
19	69 13C2-PFOA-EIS	414.9 > 369.7	1.631 e 4		0.250	1733.544	4.47	4.31	16300	37.630	75.3		
20	69 13C2-PFOA-EIS	414.9 > 369.7	1.631 e 4		0.250	1733.544	4.47	4.31	16300	37.630	75.3		
21	65 13C5-PFNA-EIS	$468.2>422.9$	1.406 e 4		0.250	1672.506	4.96	4.75	14100	33.620	67.2		
22	-1												
23	23 L-PFOS	$499>80$	2.743 e 3	2.377 e 3	0.250		4.84	4.83	14.4	48.538	121.3	2.562	NO
24	1... Total PFOS	$499>80$	2.743 e 3	2.377 e3	0.250		4.60		14.4	48.538			
25	259 Cl -PF30NS	$531>351$	5.408 e 3	2.377 e3	0.250		5.05	5.05	28.4	45.619	114.0	32.261	NO
26	26 PFDA	$513>469$	1.105 e 4	1.609 e 4	0.250		5.13	5.12	8.58	43.240	108.1	4.847	NO
27	33 PFUdA	$563.0>519$	1.138 e 4	1.486 e 4	0.250		5.45	5.45	9.58	40.538	101.3	16.177	NO
28	71 13C8-PFOS-EIS	$507.1>80$	2.377e3		0.250	299.078	4.83	4.84	2380	31.798	63.6		
29	71 13C8-PFOS-EIS	$507.1>80$	2.377e3		0.250	299.078	4.83	4.84	2380	31.798	63.6		
30	71 13C8-PFOS-EIS	$507.1>80$	2.377e3		0.250	299.078	4.83	4.84	2380	31.798	63.6		
31	73 13C2-PFDA-EIS	$515.1>469.9$	1.609 e 4		0.250	1995.916	5.12	5.13	16100	32.237	64.5		
32	79 13C2-PFUdA-EIS	$565>519.8$	1.486 e 4		0.250	1917.639	5.36	5.45	14900	30.988	62.0		
33	-1												
34	29 L-MeFOSAA	$570>419$	2.722 e 3	3.079 e 3	0.250		5.27	5.28	11.1	36.778	91.9	1.568	NO
35	1... Total N-MeFOSAA	570. >419	2.722e3	3.079e3	0.250		5.19		11.1	36.778			
36	31 L-EtFOSAA	$583.9>419$	3.281 e 3	2.452 e 3	0.250		5.43	5.43	16.7	41.208	103.0	1.269	NO

Work Order 2001436

Quantify Sample Report

Dataset: P:IPFAS5.PRO\RESULTS\200714P1\200714P1-50-56.qld

Last Altered: Thursday, July 16, 2020 16:08:51 Pacific Daylight Time

Printed: Thursday, July 16, 2020 16:09:32 Pacific Daylight Time

Name: 200714P1-52, Date: 14-Jul-2020, Time: 18:41:38, ID: B0G0058-BSD1 LCSD 0.25, Description: LCSD

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	1... Total N-EtFOSAA	$583.9>419$	3.281 e 3	2.452 e 3	0.250		5.37		16.7	41.208			
38	$3511 \mathrm{Cl}-\mathrm{PF} 30 \mathrm{UdS}$	$631>451$	3.674 e 3	1.629 e 4	0.250		5.67	5.65	2.82	43.223	108.1	16.835	NO
39	77 d3-N-MeFOSAA-EIS	$573.1>419$	3.079 e 3		0.250	391.230	5.27	5.27	3080	31.477	63.0		
40	77 d3-N-MeFOSAA-EIS	$573.1>419$	3.079 e 3		0.250	391.230	5.27	5.27	3080	31.477	63.0		
41	$81 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$-EIS	$589.3>419$	2.452 e 3		0.250	342.385	5.42	5.43	2450	28.643	57.3		
42	$81 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$-EIS	$589.3>419$	2.452 e 3		0.250	342.385	5.42	5.43	2450	28.643	57.3		
43	83 13C2-PFDoA-EIS	$614.9>569.9$	1.629 e 4		0.250	2303.973	5.87	5.73	16300	28.285	56.6		
44	-1												
45	37 PFDoA	$612.9>569.0$	1.164 e 4	1.629 e 4	0.250		5.73	5.73	8.93	40.074	100.2	10.467	NO
46	39 PFTrDA	$662.9>618.9$	1.397 e 4	1.629 e 4	0.250		5.97	5.97	10.7	40.163	100.4	134.430	NO
47	41 PFTeDA	$713.0>669.0$	8.598 e 3	1.785 e 4	0.250		6.18	6.18	6.02	42.544	106.4	13.256	NO
48	1... TDCA	$498.3>106.9$			0.250		4.47						YES
49	71 13C8-PFOS-EIS	$507.1>80$	2.377 e 3		0.250	299.078	4.83	4.84	2380	31.798	63.6		
50	83 13C2-PFDoA-EIS	$614.9>569.9$	1.629 e 4		0.250	2303.973	5.87	5.73	16300	28.285	56.6		
51	83 13C2-PFDoA-EIS	$614.9>569.9$	1.629 e 4		0.250	2303.973	5.87	5.73	16300	28.285	56.6		
52	89 13C2-PFTeDA-EIS	$715.1>669.7$	1.785 e 4		0.250	2242.342	6.18	6.18	17900	31.843	63.7		

Quantify Sample Report

Dataset: P:IPFAS5.PRO\RESULTS\200714P1\200714P1-50-56.qld
Last Altered: Thursday, July 16, 2020 16:08:51 Pacific Daylight Time
Printed: \quad Thursday, July 16, 2020 16:09:32 Pacific Daylight Time

Method: P:|PFAS5.PRO\MethDB\NEW_PFAS_80C_071420.mdb 14 Jul 2020 15:40:52

Calibration: P:\PFAS5.PRO\CurveDB\C18_VAL-PFAS_Q5_07-14-20.cdb 15 Jul 2020 08:25:12

Name: 200714P1-52, Date: 14-Jul-2020, Time: 18:41:38, ID: B0G0058-BSD1 LCSD 0.25, Description: LCSD

PFBS		
	F11:MRM of 2 channels,ES-	
		$299.0>80$
${ }^{100}$	PFBS	$8.819 \mathrm{e}+004$
	2.67	
	3.11 e 3	
\% -	87781	
	bb	
	21628.01	

13C2-PFHxA-EIS
F14:MRM of 1 channel,ES$315.0>270.0$ $2.982 \mathrm{e}+005$

HFPO-DA

	F9:MRM of 3 channels,ES	
100	HFPO-DA	$4.869 \mathrm{e}+004$
	3.41	
	1.98 e 3	
\%	48563	
	bb	
	48563.00	

13C3-HFPO-DA-EIS

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES367.2 > 321.8 $3.314 \mathrm{e}+005$

ADONA

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES-
$367.2>321.8$ $3.314 \mathrm{e}+005$

Quantify Sample Report

Dataset: P:IPFAS5.PRO\RESULTSI200714P11200714P1-50-56.qld
Last Altered: Thursday, July 16, 2020 16:08:51 Pacific Daylight Time
Printed: Thursday, July 16, 2020 16:09:32 Pacific Daylight Time

Name: 200714P1-52, Date: 14-Jul-2020, Time: 18:41:38, ID: B0G0058-BSD1 LCSD 0.25, Description: LCSD

L-PFHxS		
F23:MRM of 2 channels, ES-		
		399 > 79.9
100	L-PFHxS	$6.836 \mathrm{e}+004$
100	3.94	
	2.88 e 3	
\%-	68359	
	MM	
	68359.00	

13C3-PFHxS-EIS

Total PFHxS

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES$402>80$ $402>80$
$8.565 \mathrm{e}+004$

L-PFOA

F26:MRM of 2 channels,ES-
$413>369$
$3.661 \mathrm{e}+005$

13C2-PFOA-EIS

Total PFOA

F26:MRM of 2 channels,ES-
$413>369$
$3.661 \mathrm{e}+005$

13C5-PFNA-EIS
F36:MRM of 1 channel,ES$468.2>422.9$

Quantify Sample Report

Dataset: P:IPFAS5.PRO\RESULTSI200714P11200714P1-50-56.qld
Last Altered: Thursday, July 16, 2020 16:08:51 Pacific Daylight Time
Printed: Thursday, July 16, 2020 16:09:32 Pacific Daylight Time

Name: 200714P1-52, Date: 14-Jul-2020, Time: 18:41:38, ID: B0G0058-BSD1 LCSD 0.25, Description: LCSD

13C8-PFOS-EIS

F43:MRM of 1 channel,ES-

Total PFOS

13C8-PFOS-EIS
F43:MRM of 1 channel,ES$507.1>80$ $6.505 \mathrm{e}+004$

9Cl-PF30NS

F52:MRM of 2 channels,ES-

13C8-PFOS-EIS

13C2-PFDA-EIS

13C2-PFUdA-EIS

Quantify Sample Report

Dataset: P:IPFAS5.PRO\RESULTS\200714P1\200714P1-50-56.qld
Last Altered: Thursday, July 16, 2020 16:08:51 Pacific Daylight Time
Printed: Thursday, July 16, 2020 16:09:32 Pacific Daylight Time

Name: 200714P1-52, Date: 14-Jul-2020, Time: 18:41:38, ID: B0G0058-BSD1 LCSD 0.25, Description: LCSD

L-MeFOSAA
F57:MRM of 2 channels,ES-
$570>419$
100

Total N-MeFOSAA

F57:MRM of 2 channels,ES-

| |
| ---: | :--- |
| 100 |
| |

F57:MRM of 2 channels,ES-

d3-N-MeFOSAA-EIS

L-EtFOSAA

d5-N-EtFOSAA-EIS

d5-N-EtFOSAA-EIS

13C2-PFDoA-EIS

F64:MRM of 1 channel,ES-
$614.9>569.9$ $4.269 e+005$

Quantify Sample Report

Dataset: P:|PFAS5.PRO\RESULTS\200714P1\200714P1-50-56.qld
Last Altered: Thursday, July 16, 2020 16:08:51 Pacific Daylight Time
Printed: \quad Thursday, July 16, 2020 16:09:32 Pacific Daylight Time

Name: 200714P1-52, Date: 14-Jul-2020, Time: 18:41:38, ID: B0G0058-BSD1 LCSD 0.25, Description: LCSD

$612.9>569.0$
F63:MRM of 2 channels,ES-
$612.9>569.0$
PFDoA $3.106 \mathrm{e}+005$
5.73
100
309518
bb
14068.47

PFTrDA

13C2-PFDoA-EIS

F64:MRM of 1 channel,ES$614.9>569.9$ $4.269 \mathrm{e}+005$

PFTeDA

13C2-PFTeDA-EIS

F75:MRM of 2 channels,ES-
$715.1>669.7$ $4.553 \mathrm{e}+005$

Abstract

TDCA

13C8-PFOS-EIS
F43:MRM of 1 channel,ES-
$507.1>80$
$6.505 e+004$

Quantify Sample Report

Dataset: P:IPFAS5.PROTRESULTSI200714P11200714P1-50-56.qld

Last Altered: Thursday, July 16, 2020 16:12:59 Pacific Daylight Time
Printed: Thursday, July 16, 2020 16:13:25 Pacific Daylight Time

Name: 200714P1-53, Date: 14-Jul-2020, Time: 18:52:15, ID: 2001436-01 EB05-20200707 0.25168, Description: EB05-20200707

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	$299.0>80$		1.326 e 3	0.252		2.67						YES
2	7 PFHxA	$313.0>269.0$		1.059 e 4	0.252		3.20						YES
3	9 HFPO-DA	$285.1>168.9$		1.891 e 3	0.252		3.42						YES
4	11 PFHpA	$363.0>319$		1.012 e 4	0.252		3.80						YES
5	12 ADONA	$376.8>250.9$		1.012 e 4	0.252		3.89						YES
6	51 13C3-PFBS-EIS	$302.0>98.9$	1.326 e 3		0.252	157.875	2.67	2.67	1330	33.362	67.2		
7	57 13C2-PFHxA-EIS	$315.0>270.0$	1.059 e 4		0.252	1345.825	3.19	3.20	10600	31.273	63.0		
8	53 13C3-HFPO-DA-EIS	$287.0>168.9$	1.891 e 3		0.252	261.275	3.41	3.42	1890	28.760	57.9		
9	59 13C4-PFHpA-EIS	$367.2>321.8$	1.012 e 4		0.252	1285.879	3.79	3.80	10100	31.271	63.0		
10	59 13C4-PFHpA-EIS	$367.2>321.8$	1.012 e 4		0.252	1285.879	3.79	3.80	10100	31.271	63.0		
11	-1												
12	13 L-PFHxS	$399>79.9$		2.756 e 3	0.252		3.94						YES
13	1... Total PFHxS	$399>79.9$	0.000 e 0	2.756 e 3	0.252		3.93		0.000				
14	16 L-PFOA	$413>369$		1.479 e 4	0.252		4.31						YES
15	1... Total PFOA	$413>369$	0.000e0	1.479 e 4	0.252		4.60		0.000				
16	21 PFNA	$463.0>418.8$		1.292 e 4	0.252		4.75						YES
17	61 13C3-PFHxS-EIS	$402>80$	2.756 e 3		0.252	305.184	3.93	3.94	2760	35.875	72.2		
18	61 13C3-PFHxS-EIS	$402>80$	2.756 e 3		0.252	305.184	3.93	3.94	2760	35.875	72.2		
19	69 13C2-PFOA-EIS	$414.9>369.7$	1.479 e 4		0.252	1733.544	4.47	4.31	14800	33.887	68.2		
20	69 13C2-PFOA-EIS	$414.9>369.7$	1.479 e 4		0.252	1733.544	4.47	4.31	14800	33.887	68.2		
21	65 13C5-PFNA-EIS	$468.2>422.9$	1.292 e 4		0.252	1672.506	4.96	4.75	12900	30.692	61.8		
22	-1												
23	23 L-PFOS	$499>80$		2.499 e 3	0.252		4.83						YES
24	1... Total PFOS	$499>80$	0.000 e 0	2.499 e 3	0.252		4.60		0.000				
25	25 9CI-PF30NS	$531>351$		2.499 e 3	0.252		5.05						YES
26	26 PFDA	$513>469$		1.581 e 4	0.252		5.13						YES
27	33 PFUdA	$563.0>519$		1.527 e 4	0.252		5.45						YES
28	71 13C8-PFOS-EIS	$507.1>80$	2.499 e 3		0.252	299.078	4.83	4.83	2500	33.203	66.9		
29	71 13C8-PFOS-EIS	$507.1>80$	2.499 e 3		0.252	299.078	4.83	4.83	2500	33.203	66.9		
30	71 13C8-PFOS-EIS	$507.1>80$	2.499 e 3		0.252	299.078	4.83	4.83	2500	33.203	66.9		
31	73 13C2-PFDA-EIS	$515.1>469.9$	1.581 e 4		0.252	1995.916	5.12	5.13	15800	31.476	63.4		
32	79 13C2-PFUdA-EIS	$565>519.8$	1.527 e 4		0.252	1917.639	5.36	5.45	15300	31.649	63.7		
33	-1												
34	29 L-MeFOSAA	$570>419$		2.600 e 3	0.252		5.27						YES
35	1... Total N-MeFOSAA	570. >419	0.000 e 0	2.600 e 3	0.252		5.19		0.000				
36	31 L-EtFOSAA	583.9>419		2.412 e 3	0.252		5.43						YES

Work Order 2001436

Quantify Sample Report

Dataset: P:IPFAS5.PROTRESULTS|200714P11200714P1-50-56.qld

Last Altered: Thursday, July 16, 2020 16:12:59 Pacific Daylight Time
Printed: Thursday, July 16, 2020 16:13:25 Pacific Daylight Time

Name: 200714P1-53, Date: 14-Jul-2020, Time: 18:52:15, ID: 2001436-01 EB05-20200707 0.25168, Description: EB05-20200707

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	1... Total N-EtFOSAA	$583.9>419$	0.000 e 0	2.412e3	0.252		5.37		0.000				
38	3511 Cl -PF30UdS	$631>451$		1.703 e 4	0.252		5.66						YES
39	77 d3-N-MeFOSAA-EIS	$573.1>419$	2.600 e 3		0.252	391.230	5.27	5.27	2600	26.405	53.2		
40	77 d3-N-MeFOSAA-EIS	$573.1>419$	2.600 e 3		0.252	391.230	5.27	5.27	2600	26.405	53.2		
41	$81 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$-EIS	$589.3>419$	2.412 e 3		0.252	342.385	5.42	5.43	2410	27.986	56.3		
42	81 d5-N-EtFOSAA-EIS	$589.3>419$	2.412 e 3		0.252	342.385	5.42	5.43	2410	27.986	56.3		
43	83 13C2-PFDoA-EIS	$614.9>569.9$	1.703 e 4		0.252	2303.973	5.87	5.72	17000	29.365	59.1		
44	-1												
45	37 PFDoA	$612.9>569.0$		1.703 e 4	0.252		5.72						YES
46	39 PFTrDA	$662.9>618.9$		1.703 e 4	0.252		5.96						YES
47	41 PFTeDA	$713.0>669.0$		1.610 e 4	0.252		6.18						YES
48	1... TDCA	$498.3>106.9$			0.252		4.47						YES
49	71 13C8-PFOS-EIS	$507.1>80$	2.499 e 3		0.252	299.078	4.83	4.83	2500	33.203	66.9		
50	83 13C2-PFDoA-EIS	$614.9>569.9$	1.703 e 4		0.252	2303.973	5.87	5.72	17000	29.365	59.1		
51	83 13C2-PFDoA-EIS	$614.9>569.9$	1.703 e 4		0.252	2303.973	5.87	5.72	17000	29.365	59.1		
52	89 13C2-PFTeDA-EIS	$715.1>669.7$	1.610e4		0.252	2242.342	6.18	6.18	16100	28.537	57.5		

Quantify Sample Report

Dataset: P:IPFAS5.PROIRESULTS\200714P1\200714P1-50-56.qld
Last Altered: Thursday, July 16, 2020 16:12:59 Pacific Daylight Time
Printed: Thursday, July 16, 2020 16:13:25 Pacific Daylight Time

Method: P:|PFAS5.PRO\MethDB|NEW_PFAS_80C_071420.mdb 14 Jul 2020 15:40:52

Calibration: P:|PFAS5.PRO\CurveDBIC18_VAL-PFAS_Q5_07-14-20.cdb 15 Jul 2020 08:25:12

Name: 200714P1-53, Date: 14-Jul-2020, Time: 18:52:15, ID: 2001436-01 EB05-20200707 0.25168, Description: EB05-20200707

13C3-PFBS-EIS

F12:MRM of 1 channel,ES$302.0>98.9$ $3.738 \mathrm{e}+004$

PFHxA

13C2-PFHxA-EIS
F14:MRM of 1 channel,ES$315.0>270.0$ $2.575 \mathrm{e}+005$

HFPO-DA

13C3-HFPO-DA-EIS

F10:MRM of 2 channels,ES$287.0>168.9$ $4.534 \mathrm{e}+004$

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES$367.2>321.8$ $2.787 e+005$

ADONA

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES-

Quantify Sample Report

Dataset: P:IPFAS5.PRO\RESULTSI200714P11200714P1-50-56.qld
Last Altered: Thursday, July 16, 2020 16:12:59 Pacific Daylight Time
Printed: Thursday, July 16, 2020 16:13:25 Pacific Daylight Time

Name: 200714P1-53, Date: 14-Jul-2020, Time: 18:52:15, ID: 2001436-01 EB05-20200707 0.25168, Description: EB05-20200707

L-PFOA

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES$402>80$ $402>80$
$7.887 e+004$

Total PFOA

F26:MRM of 2 channels,ES-
$413>369$
$2.044 \mathrm{e}+003$

13C2-PFOA-EIS

F27:MRM of 1 channel,ES414.9 > 369.7 $4.354 \mathrm{e}+005$

PFNA

13C5-PFNA-EIS
F36:MRM of 1 channel,ES468.2 > 422.9

Quantify Sample Report

Last Altered: Thursday, July 16, 2020 16:12:59 Pacific Daylight Time
Printed: Thursday, July 16, 2020 16:13:25 Pacific Daylight Time

Name: 200714P1-53, Date: 14-Jul-2020, Time: 18:52:15, ID: 2001436-01 EB05-20200707 0.25168, Description: EB05-20200707
L-PFOS

13C8-PFOS-EIS

Total PFOS

13C8-PFOS-EIS

9Cl-PF30NS

13C8-PFOS-EIS

PFDA

PFUdA

13C2-PFUdA-EIS
F56:MRM of 1 channel,ES-
$565>519.8$ $4.057 e+005$

Quantify Sample Report

Last Altered: Thursday, July 16, 2020 16:12:59 Pacific Daylight Time
Printed: Thursday, July 16, 2020 16:13:25 Pacific Daylight Time

Name: 200714P1-53, Date: 14-Jul-2020, Time: 18:52:15, ID: 2001436-01 EB05-20200707 0.25168, Description: EB05-20200707

$$
\begin{array}{r}
\text { F57:MRM of } 2 \text { channels,ES- } \\
570 .>512 \\
9.884 \mathrm{e}+001
\end{array}
$$

d3-N-MeFOSAA-EIS

F59:MRM of 1 channel,ES-

Total N-MeFOSAA

d3-N-MeFOSAA-EIS

L-EtFOSAA

F60:MRM of 2 channels,ES-

d5-N-EtFOSAA-EIS

d5-N-EtFOSAA-EIS

11CI-PF30UdS

F69:MRM of 2 channels,ES-
$631>451$

13C2-PFDoA-EIS
F64:MRM of 1 channel,ES-

$$
614.9>569.9
$$

Quantify Sample Report

Dataset: P:IPFAS5.PRO\RESULTS\200714P1\200714P1-50-56.qld
Last Altered: Thursday, July 16, 2020 16:12:59 Pacific Daylight Time
Printed: \quad Thursday, July 16, 2020 16:13:25 Pacific Daylight Time

Name: 200714P1-53, Date: 14-Jul-2020, Time: 18:52:15, ID: 2001436-01 EB05-20200707 0.25168, Description: EB05-20200707

F63:MRM of 2 channels,ES-

13C2-PFDoA-EIS

F64:MRM of 1 channel,ES-

13C2-PFDoA-EIS
F64:MRM of 1 channel,ES$614.9>569.9$ $4.510 \mathrm{e}+005$

PFTeDA

13C2-PFTeDA-EIS
F75:MRM of 2 channels,ES-
$715.1>669.7$ $4.104 \mathrm{e}+005$

TDCA $\begin{array}{r}\text { F39:MRM of } 3 \text { channels, ES- } \\ 498.3>106.9\end{array}$

13C8-PFOS-EIS

F43:MRM of 1 channel,ES-
$507.1>80$ $6.884 \mathrm{e}+004$

Quantify Sample Report

Dataset: P:IPFAS5.PROTRESULTS|200714P11200714P1-50-56.qld

Last Altered: Tuesday, July 21, 2020 13:43:17 Pacific Daylight Time
Printed: Tuesday, July 21, 2020 13:43:36 Pacific Daylight Time

Name: 200714P1-54, Date: 14-Jul-2020, Time: 19:02:50, ID: 2001436-02 TW21D-20200707 0.24685, Description: TW21D-20200707

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	$299.0>80$	3.248e2	1.443 e 3	0.247		2.67	2.67	2.81	4.545		2.849	NO
2	7 PFHxA	$313.0>269.0$	2.264 e 3	1.166 e 4	0.247		3.20	3.20	2.43	9.196		16.283	NO
3	9 HFPO-DA	$285.1>168.9$		2.388 e 3	0.247		3.42						YES
4	11 PFHpA	$363.0>319$	5.891 e 2	1.117 e 4	0.247		3.80	3.80	0.659	2.120		35.588	NO
5	12 ADONA	$376.8>250.9$		1.117 e 4	0.247		3.89						YES
6	51 13C3-PFBS-EIS	$302.0>98.9$	1.443 e 3		0.247	157.875	2.67	2.67	1440	37.026	73.1		
7	57 13C2-PFHxA-EIS	$315.0>270.0$	1.166 e 4		0.247	1345.825	3.19	3.20	11700	35.091	69.3		
8	53 13C3-HFPO-DA-EIS	$287.0>168.9$	2.388 e 3		0.247	261.275	3.41	3.42	2390	37.020	73.1		
9	59 13C4-PFHpA-EIS	$367.2>321.8$	1.117 e 4		0.247	1285.879	3.79	3.80	11200	35.186	69.5		
10	59 13C4-PFHpA-EIS	$367.2>321.8$	1.117 e 4		0.247	1285.879	3.79	3.80	11200	35.186	69.5		
11	-1												
12	13 L-PFHxS	$399>79.9$	6.405 e 2	2.928 e 3	0.247		3.94	3.94	2.73	9.691		4.860	NO
13	1... Total PFHxS	$399>79.9$	6.405 e 2	2.928 e 3	0.247		3.93		2.73	9.691			
14	16 L-PFOA	$413>369$	4.611 e 3	1.596 e 4	0.247		4.31	4.31	3.61	15.658		2.705	NO
15	1... Total PFOA	$413>369$	4.611 e 3	1.596 e 4	0.247		4.60		3.61	15.658			
16	21 PFNA	$463.0>418.8$		1.424 e 4	0.247		4.75						YES
17	61 13C3-PFHxS-EIS	$402>80$	2.928 e 3		0.247	305.184	3.93	3.94	2930	38.871	76.8		
18	61 13C3-PFHxS-EIS	$402>80$	2.928 e 3		0.247	305.184	3.93	3.94	2930	38.871	76.8		
19	69 13C2-PFOA-EIS	$414.9>369.7$	1.596 e 4		0.247	1733.544	4.47	4.31	16000	37.292	73.6		
20	69 13C2-PFOA-EIS	$414.9>369.7$	1.596 e 4		0.247	1733.544	4.47	4.31	16000	37.292	73.6		
21	65 13C5-PFNA-EIS	$468.2>422.9$	1.424 e 4		0.247	1672.506	4.96	4.75	14200	34.481	68.1		
22	-1												
23	23 L-PFOS	$499>80$	1.431 e 2	2.510 e 3	0.247		4.84	4.73	0.713	2.454		2.265	NO
24	1... Total PFOS	$499>80$	1.431 e 2	2.510 e 3	0.247		4.60		0.713	2.454			
25	25 9CI-PF30NS	$531>351$		2.510 e 3	0.247		5.05						YES
26	26 PFDA	$513>469$	2.759 e 2	1.593 e 4	0.247		5.13	5.13	0.216	0.956		3.589	NO
27	33 PFUdA	$563.0>519$		1.420 e 4	0.247		5.45						YES
28	71 13C8-PFOS-EIS	$507.1>80$	2.510 e 3		0.247	299.078	4.83	4.84	2510	34.003	67.1		
29	71 13C8-PFOS-EIS	$507.1>80$	2.510 e 3		0.247	299.078	4.83	4.84	2510	34.003	67.1		
30	71 13C8-PFOS-EIS	$507.1>80$	2.510 e 3		0.247	299.078	4.83	4.84	2510	34.003	67.1		
31	73 13C2-PFDA-EIS	$515.1>469.9$	1.593 e 4		0.247	1995.916	5.12	5.13	15900	32.339	63.9		
32	79 13C2-PFUdA-EIS	$565>519.8$	1.420 e 4		0.247	1917.639	5.36	5.45	14200	30.004	59.3		
33	-1												
34	29 L-MeFOSAA	$570>419$		2.923 e 3	0.247		5.27						YES
35	1... Total N-MeFOSAA	570. >419	0.000 e 0	2.923 e 3	0.247		5.19		0.000				
36	31 L-EtFOSAA	583.9>419		2.401 e 3	0.247		5.43						YES

Work Order 2001436

Quantify Sample Report

Dataset: P:IPFAS5.PRO\RESULTSI200714P11200714P1-50-56.qld

Last Altered: Tuesday, July 21, 2020 13:43:17 Pacific Daylight Time
Printed: Tuesday, July 21, 2020 13:43:36 Pacific Daylight Time

Name: 200714P1-54, Date: 14-Jul-2020, Time: 19:02:50, ID: 2001436-02 TW21D-20200707 0.24685, Description: TW21D-20200707

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	1... Total N-EtFOSAA	$583.9>419$	0.000 e 0	2.401 e 3	0.247		5.37		0.000				
38	3511 Cl -PF30UdS	$631>451$		1.495e4	0.247		5.67						YES
39	77 d3-N-MeFOSAA-EIS	$573.1>419$	2.923 e3		0.247	391.230	5.27	5.27	2920	30.262	59.8		
40	77 d3-N-MeFOSAA-EIS	$573.1>419$	2.923e3		0.247	391.230	5.27	5.27	2920	30.262	59.8		
41	$81 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$-EIS	$589.3>419$	2.401 e 3		0.247	342.385	5.42	5.43	2400	28.405	56.1		
42	81 d5-N-EtFOSAA-EIS	$589.3>419$	2.401 e 3		0.247	342.385	5.42	5.43	2400	28.405	56.1		
43	83 13C2-PFDoA-EIS	$614.9>569.9$	1.495 e 4		0.247	2303.973	5.87	5.73	15000	26.294	51.9		
44	-1												
45	37 PFDoA	$612.9>569.0$		1.495 e 4	0.247		5.73						YES
46	39 PFTrDA	$662.9>618.9$		1.495 e 4	0.247		5.97						YES
47	41 PFTeDA	$713.0>669.0$		8.997e3	0.247		6.18						YES
48	1... TDCA	$498.3>106.9$			0.247		4.47						YES
49	71 13C8-PFOS-EIS	$507.1>80$	2.510 e 3		0.247	299.078	4.83	4.84	2510	34.003	67.1		
50	83 13C2-PFDoA-EIS	$614.9>569.9$	1.495 e 4		0.247	2303.973	5.87	5.73	15000	26.294	51.9		
51	83 13C2-PFDoA-EIS	$614.9>569.9$	1.495 e 4		0.247	2303.973	5.87	5.73	15000	26.294	51.9		
52	89 13C2-PFTeDA-EIS	$715.1>669.7$	8.997e3		0.247	2242.342	6.18	6.18	9000	16.255	32.1		

Quantify Sample Report

Dataset: P:IPFAS5.PRO\RESULTS\200714P1\200714P1-50-56.qld
Last Altered: Tuesday, July 21, 2020 13:43:17 Pacific Daylight Time
Printed: \quad Tuesday, July 21, 2020 13:43:36 Pacific Daylight Time

Method: P:|PFAS5.PRO\MethDB\NEW_PFAS_80C_071420.mdb 14 Jul 2020 15:40:52

Calibration: P:\PFAS5.PRO\CurveDB\C18_VAL-PFAS_Q5_07-14-20.cdb 15 Jul 2020 08:25:12

Name: 200714P1-54, Date: 14-Jul-2020, Time: 19:02:50, ID: 2001436-02 TW21D-20200707 0.24685, Description: TW21D-20200707

13C3-PFBS-EIS

F12:MRM of 1 channel,ES-

13C2-PFHxA-EIS

HFPO-DA

13C3-HFPO-DA-EIS

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES$367.2>321.8$ $3.100 \mathrm{e}+005$

ADONA

F22:MRM of 2 channels,ES-

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES-

Quantify Sample Report

Dataset: P:IPFAS5.PRO\RESULTS\200714P1\200714P1-50-56.qld
Last Altered: Tuesday, July 21, 2020 13:43:17 Pacific Daylight Time
Printed: Tuesday, July 21, 2020 13:43:36 Pacific Daylight Time

Name: 200714P1-54, Date: 14-Jul-2020, Time: 19:02:50, ID: 2001436-02 TW21D-20200707 0.24685, Description: TW21D-20200707

13C3-PFHxS-EIS

F24:MRM of 1 channel,ES-

Total PFHxS

F23:MRM of 2 channels,ES-
$399>79.9$ $1.495 \mathrm{e}+004$

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES$402>80$
$8.314 \mathrm{e}+004$

$\begin{array}{r}\text { L-PFOA } \\ \text { F26:MRM of } 2 \text { channels,ES- } \\ 413>369 \\ 1.133 \mathrm{e}+005 \\ \hline 100\end{array}$

F27:MRM of 1 channel,ES414.9 > 369.7 $4.819 e+005$

Total PFOA

F26:MRM of 2 channels,ES-
$413>369$
$1.133 \mathrm{e}+005$

F26:MRM of 2 channels,ES-

F27:MRM of 1 channel,ES$414.9>369.7$ $4.819 \mathrm{e}+005$

PFNA

13C5-PFNA-EIS

F36:MRM of 1 channel,ES$468.2>422.9$

Quantify Sample Report

Dataset: P:IPFAS5.PRO\RESULTSI200714P11200714P1-50-56.qld
Last Altered: Tuesday, July 21, 2020 13:43:17 Pacific Daylight Time
Printed: \quad Tuesday, July 21, 2020 13:43:36 Pacific Daylight Time

Name: 200714P1-54, Date: 14-Jul-2020, Time: 19:02:50, ID: 2001436-02 TW21D-20200707 0.24685, Description: TW21D-20200707

13C8-PFOS-EIS

13C8-PFOS-EIS

PFDA

13C2-PFDA-EIS

PFUdA
F55:MRM of 2 channels,ES-
$563.0>519$
$2.159 \mathrm{e}+003$

13C2-PFUdA-EIS
F56:MRM of 1 channel,ES-
$565>519.8$ $3.901 e+005$

Quantify Sample Report

Dataset: P:IPFAS5.PRO\RESULTS\200714P1\200714P1-50-56.qld
Last Altered: Tuesday, July 21, 2020 13:43:17 Pacific Daylight Time
Printed: Tuesday, July 21, 2020 13:43:36 Pacific Daylight Time

Name: 200714P1-54, Date: 14-Jul-2020, Time: 19:02:50, ID: 2001436-02 TW21D-20200707 0.24685, Description: TW21D-20200707
L-MeFOSAA

d3-N-MeFOSAA-EIS

F59:MRM of 1 channel,ES-

Total N-MeFOSAA

F57:MRM of 2 channels,ES-
$570>419$

$$
\begin{array}{r}
\text { F57:MRM of } 2 \text { channels,ES- } \\
570 .>512 \\
3.491 \mathrm{e}+001
\end{array}
$$

d3-N-MeFOSAA-EIS
F59:MRM of 1 channel,ES-

L-EtFOSAA

F60:MRM of 2 channels, ES- $\begin{array}{r}583.9>419 \\ 2.354 \mathrm{e}+001\end{array}$

d5-N-EtFOSAA-EIS

Total N-EtFOSAA

F60:MRM of 2 channels,ES-
(100

d5-N-EtFOSAA-EIS

11CI-PF30UdS
F69:MRM of 2 channels,ES-
$631>451$

13C2-PFDoA-EIS
F64:MRM of 1 channel,ES$614.9>569.9$ $3.991 e+005$

Quantify Sample Report

Dataset: P:IPFAS5.PRO\RESULTS\200714P1\200714P1-50-56.qld
Last Altered: Tuesday, July 21, 2020 13:43:17 Pacific Daylight Time
Printed: Tuesday, July 21, 2020 13:43:36 Pacific Daylight Time

Name: 200714P1-54, Date: 14-Jul-2020, Time: 19:02:50, ID: 2001436-02 TW21D-20200707 0.24685, Description: TW21D-20200707

PFDoA

13C2-PFDoA-EIS

F64:MRM of 1 channel,ES$614.9>569.9$
$100-991 \mathrm{e}+005$

13C2-PFDoA-EIS

13C2-PFTeDA-EIS

F75:MRM of 2 channels,ES-
$715.1>669.7$ $2.303 \mathrm{e}+005$

F39:MRM of 3 channels,ES-
$498.3>123.9$
$2.595 e+002$

Quantify Sample Report

Dataset:
 P:IPFAS5.PRO\RESULTSI200714P1\200714P1-50-56.qld

Last Altered: Tuesday, July 21, 2020 13:45:40 Pacific Daylight Time
Printed: Tuesday, July 21, 2020 13:46:34 Pacific Daylight Time

Name: 200714P1-55, Date: 14-Jul-2020, Time: 19:13:17, ID: 2001436-03 TW09D-20200707 0.26203, Description: TW09D-20200707

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	299.0 > 80	5.375 e 3	1.480 e 3	0.262		2.67	2.67	45.4	69.301		2.464	NO
2	7 PFHxA	$313.0>269.0$	4.884 e 4	1.174 e 4	0.262		3.20	3.19	52.0	191.811		14.152	NO
3	9 HFPO-DA	$285.1>168.9$		2.109 e 3	0.262		3.42						YES
4	11 PFHpA	$363.0>319$	1.456 e 4	1.111 e 4	0.262		3.79	3.80	16.4	51.085		43.219	NO
5	12 ADONA	$376.8>250.9$		1.111 e 4	0.262		3.89						YES
6	51 13C3-PFBS-EIS	$302.0>98.9$	1.480 e 3		0.262	157.875	2.67	2.67	1480	35.778	75.0		
7	57 13C2-PFHxA-EIS	$315.0>270.0$	1.174 e 4		0.262	1345.825	3.19	3.20	11700	33.295	69.8		
8	53 13C3-HFPO-DA-EIS	$287.0>168.9$	2.109 e 3		0.262	261.275	3.41	3.42	2110	30.800	64.6		
9	59 13C4-PFHpA-EIS	$367.2>321.8$	1.111 e 4		0.262	1285.879	3.79	3.79	11100	32.966	69.1		
10	59 13C4-PFHpA-EIS	367.2 > 321.8	1.111 e 4		0.262	1285.879	3.79	3.79	11100	32.966	69.1		
11	-1												
12	13 L-PFHxS	$399>79.9$	2.655 e 4	2.876 e 3	0.262		3.93	3.94	115	386.816		4.061	NO
13	1... Total PFHxS	$399>79.9$	2.655 e 4	2.876 e 3	0.262		3.93		115	386.816			
14	16 L-PFOA	$413>369$	1.354 e 5	1.515 e 4	0.262		4.31	4.31	112	462.528		2.766	NO
15	1... Total PFOA	$413>369$	1.354 e 5	1.515 e 4	0.262		4.60		112	462.528			
16	21 PFNA	$463.0>418.8$	1.754 e 3	1.314 e 4	0.262		4.75	4.75	1.67	5.239		14.734	NO
17	61 13C3-PFHxS-EIS	$402>80$	2.876 e 3		0.262	305.184	3.93	3.93	2880	35.969	75.4		
18	61 13C3-PFHxS-EIS	$402>80$	2.876 e 3		0.262	305.184	3.93	3.93	2880	35.969	75.4		
19	69 13C2-PFOA-EIS	$414.9>369.7$	1.515 e 4		0.262	1733.544	4.47	4.31	15200	33.355	69.9		
20	69 13C2-PFOA-EIS	$414.9>369.7$	1.515 e 4		0.262	1733.544	4.47	4.31	15200	33.355	69.9		
21	65 13C5-PFNA-EIS	$468.2>422.9$	1.314 e 4		0.262	1672.506	4.96	4.75	13100	29.994	62.9		
22	-1												
23	23 L-PFOS	$499>80$	2.251 e 4	2.547 e 3	0.262		4.83	4.83	111	349.420		2.471	NO
24	1... Total PFOS	$499>80$	2.251 e 4	2.547 e 3	0.262		4.60		111	349.420			
25	25 9CI-PF30NS	$531>351$		2.547 e 3	0.262		5.05						YES
26	26 PFDA	$513>469$	1.050 e 3	1.616 e 4	0.262		5.13	5.13	0.812	3.769		3.877	NO
27	33 PFUdA	$563.0>519$		1.357 e 4	0.262		5.45						YES
28	71 13C8-PFOS-EIS	$507.1>80$	2.547 e 3		0.262	299.078	4.83	4.83	2550	32.495	68.1		
29	71 13C8-PFOS-EIS	$507.1>80$	2.547 e 3		0.262	299.078	4.83	4.83	2550	32.495	68.1		
30	71 13C8-PFOS-EIS	$507.1>80$	2.547 e 3		0.262	299.078	4.83	4.83	2550	32.495	68.1		
31	73 13C2-PFDA-EIS	$515.1>469.9$	1.616 e 4		0.262	1995.916	5.12	5.13	16200	30.907	64.8		
32	79 13C2-PFUdA-EIS	$565>519.8$	1.357 e 4		0.262	1917.639	5.36	5.45	13600	26.997	56.6		
33	-1												
34	29 L-MeFOSAA	$570>419$		2.629 e 3	0.262		5.27						YES
35	1... Total N-MeFOSAA	570. >419	0.000 e 0	2.629 e 3	0.262		5.19		0.000				
36	31 L-EtFOSAA	583.9>419		1.797 e 3	0.262		5.43						YES

Work Order 2001436

Quantify Sample Report

Dataset: P:IPFAS5.PRO\RESULTS\200714P1\200714P1-50-56.qld

Last Altered: Tuesday, July 21, 2020 13:45:40 Pacific Daylight Time
Printed:
Tuesday, July 21, 2020 13:46:34 Pacific Daylight Time

Name: 200714P1-55, Date: 14-Jul-2020, Time: 19:13:17, ID: 2001436-03 TW09D-20200707 0.26203, Description: TW09D-20200707

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	1... Total N-EtFOSAA	$583.9>419$	0.000e0	1.797e3	0.262		5.37		0.000				
38	3511 Cl -PF30UdS	$631>451$		1.110e4	0.262		5.66						YES
39	77 d3-N-MeFOSAA-EIS	$573.1>419$	2.629e3		0.262	391.230	5.27	5.27	2630	25.643	53.8		
40	77 d3-N-MeFOSAA-EIS	$573.1>419$	2.629e3		0.262	391.230	5.27	5.27	2630	25.643	53.8		
41	81 d5-N-EtFOSAA-EIS	$589.3>419$	1.797e3		0.262	342.385	5.42	5.43	1800	20.029	42.0		
42	81 d5-N-EtFOSAA-EIS	$589.3>419$	1.797e3		0.262	342.385	5.42	5.43	1800	20.029	42.0		
43	83 13C2-PFDoA-EIS	$614.9>569.9$	1.110e4		0.262	2303.973	5.87	5.72	11100	18.384	38.5		
44	-1												
45	37 PFDoA	$612.9>569.0$		1.110 e 4	0.262		5.72						YES
46	39 PFTrDA	$662.9>618.9$		1.110 e 4	0.262		5.96						YES
47	41 PFTeDA	$713.0>669.0$		3.200 e 3	0.262		6.18						YES
48	1... TDCA	$498.3>106.9$			0.262		4.47						YES
49	71 13C8-PFOS-EIS	$507.1>80$	2.547 e 3		0.262	299.078	4.83	4.83	2550	32.495	68.1		
50	83 13C2-PFDoA-EIS	$614.9>569.9$	1.110e4		0.262	2303.973	5.87	5.72	11100	18.384	38.5		
51	83 13C2-PFDoA-EIS	$614.9>569.9$	1.110 e 4		0.262	2303.973	5.87	5.72	11100	18.384	38.5		
52	89 13C2-PFTeDA-EIS	$715.1>669.7$	3.200 e 3		0.262	2242.342	6.18	6.18	3200	5.446	11.4		

Quantify Sample Report

Dataset: P:IPFAS5.PRO\RESULTS\200714P1\200714P1-50-56.qld
Last Altered: Tuesday, July 21, 2020 13:45:40 Pacific Daylight Time
Printed: \quad Tuesday, July 21, 2020 13:46:34 Pacific Daylight Time

Method: P:\PFAS5.PRO\MethDB\NEW_PFAS_80C_071420.mdb 14 Jul 2020 15:40:52

Calibration: P:\PFAS5.PRO\CurveDB\C18_VAL-PFAS_Q5_07-14-20.cdb 15 Jul 2020 08:25:12

Name: 200714P1-55, Date: 14-Jul-2020, Time: 19:13:17, ID: 2001436-03 TW09D-20200707 0.26203, Description: TW09D-20200707

PFBS		
	F11:MRM of 2 channels,ES-	
		$299.0>80$
${ }^{100}$	PFBS	$1.513 \mathrm{e}+005$
	2.67	
	5.37 e 3	
\% -	150495	
	bb	
	2927.96	

13C3-PFBS-EIS

F12:MRM of 1 channel,ES$302.0>98.9$ $4.100 e+004$

PFHxA

PFHpA

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES367.2 > 321.8 $3.064 \mathrm{e}+005$

ADONA

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES-

Quantify Sample Report

Dataset: P:IPFAS5.PRO\RESULTS\200714P1\200714P1-50-56.qld
Last Altered: Tuesday, July 21, 2020 13:45:40 Pacific Daylight Time
Printed: \quad Tuesday, July 21, 2020 13:46:34 Pacific Daylight Time

Name: 200714P1-55, Date: 14-Jul-2020, Time: 19:13:17, ID: 2001436-03 TW09D-20200707 0.26203, Description: TW09D-20200707

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES-

Total PFHxS

Total PFHXS
F23:MRM of 2 channels,ES-
$399>79.9$
F23:MRM of 2 channels,ES-
$399>79.9$ $6.124 \mathrm{e}+005$

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES$402>80$ $8.325 \mathrm{e}+004$

L-PFOA
F26:MRM of 2 channels,ES-
$413>369$
$3.405 \mathrm{e}+006$
F26:MRM of 2 channels,ES-

Total PFOA PFNA
F26:MRM of 2 channels,ES-
413 > 369
$3.405 \mathrm{e}+006$

F27:MRM of 1 channel,ES$414.9>369.7$ $4.371 \mathrm{e}+005$

13C2-PFOA-EIS
F27:MRM of 1 channel,ES$414.9>369.7$ $4.371 e+005$

PFNA		
	F35:MRM of 2 channels,ES-	
		463.0 > 418.8
1007	PFNA	$4.922 \mathrm{e}+004$
	4.75	
	1.75 e 3	
\%-	48741	
\%	bb	
	48741.00	

13C5-PFNA-EIS

F36:MRM of 1 channel,ES468.2 > 422.9

Quantify Sample Report

Dataset: P:IPFAS5.PRO\RESULTS\200714P1\200714P1-50-56.qld
Last Altered: Tuesday, July 21, 2020 13:45:40 Pacific Daylight Time
Printed: Tuesday, July 21, 2020 13:46:34 Pacific Daylight Time

Name: 200714P1-55, Date: 14-Jul-2020, Time: 19:13:17, ID: 2001436-03 TW09D-20200707 0.26203, Description: TW09D-20200707

13C8-PFOS-EIS

Total PFOS

F40:MRM of 2 channels,ES-

13C8-PFOS-EIS

9Cl-PF30NS

F52:MRM of 2 channels, ES-

13C8-PFOS-EIS

PFDA

13C2-PFDA-EIS

13C2-PFUdA-EIS
F56:MRM of 1 channel,ES-

$$
565>519.8
$$

$$
3.587 e+005
$$

Quantify Sample Report

Dataset: P:IPFAS5.PRO\RESULTS\200714P1\200714P1-50-56.qld
Last Altered: Tuesday, July 21, 2020 13:45:40 Pacific Daylight Time
Printed: Tuesday, July 21, 2020 13:46:34 Pacific Daylight Time

Name: 200714P1-55, Date: 14-Jul-2020, Time: 19:13:17, ID: 2001436-03 TW09D-20200707 0.26203, Description: TW09D-20200707

L-MeFOSAA

L-MeFOSAA			
F57:MRM of 2 channels,ES-			
			$570>419$
$100 \square$			
\%-			
	905.11		
	-	5.30	

$$
\text { F57:MRM of } 2 \text { channels,ES- } \begin{array}{r}
570 .>512 \\
1.004 \mathrm{e}+002
\end{array}
$$

d3-N-MeFOSAA-EIS

F59:MRM of 1 channel,ES-

Total N-MeFOSAA

F57:MRM of 2 channels,ES-

d3-N-MeFOSAA-EIS

L-EtFOSAA

F60:MRM of 2 channels,ES-

$$
\text { F60:MRM of } 2 \text { channels,ES- } \begin{array}{r}
583.9>526 \\
4.634 \mathrm{e}+001
\end{array}
$$

d5-N-EtFOSAA-EIS

Total N-EtFOSAA

F60:MRM of 2 channels,ES$583.9>419$
$2721-+001$

100 | $583.9>419$ |
| :--- |
| $2.721 \mathrm{e}+001$ |

d5-N-EtFOSAA-EIS

11CI-PF30UdS

F69:MRM of 2 channels,ES-

13C2-PFDoA-EIS
F64:MRM of 1 channel,ES$614.9>569.9$ $2.969 e+005$

Quantify Sample Report

Dataset: P:IPFAS5.PRO\RESULTS\200714P1\200714P1-50-56.qld
Last Altered: Tuesday, July 21, 2020 13:45:40 Pacific Daylight Time
Printed: Tuesday, July 21, 2020 13:46:34 Pacific Daylight Time

Name: 200714P1-55, Date: 14-Jul-2020, Time: 19:13:17, ID: 2001436-03 TW09D-20200707 0.26203, Description: TW09D-20200707

F63:MRM of 2 channels,ES$612.9>318.8$ $9.495 \mathrm{e}+001$

13C2-PFDoA-EIS

F64:MRM of 1 channel,ES$614.9>569.9$
$2.969 \mathrm{e}+005$

F64:MRM of 1 channel,ES$614.9>569.9$ $2.969 \mathrm{e}+005$

13C2-PFDoA-EIS

F75:MRM of 2 channels,ES-
$715.1>669.7$ $7.951 \mathrm{e}+004$

Quantify Sample Report

Dataset: P:IPFAS5.PROTRESULTS|200714P11200714P1-50-56.qld

Last Altered: Tuesday, July 21, 2020 13:48:45 Pacific Daylight Time
Printed:
Tuesday, July 21, 2020 13:49:24 Pacific Daylight Time

Name: 200714P1-56, Date: 14-Jul-2020, Time: 19:23:53, ID: 2001436-04 TW22D-20200707 0.2687, Description: TW22D-20200707

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	$299.0>80$	1.599 e 4	1.428 e 3	0.269		2.67	2.67	140	208.645		2.427	NO
2	7 PFHxA	$313.0>269.0$	2.566 e 5	1.153 e 4	0.269		3.20	3.20	278	1001.936		14.620	NO
3	9 HFPO-DA	$285.1>168.9$		2.137 e 3	0.269		3.42						YES
4	11 PFHpA	$363.0>319$	1.067 e 5	1.129 e 4	0.269		3.79	3.80	118	363.370		45.160	NO
5	12 ADONA	$376.8>250.9$		1.129 e 4	0.269		3.89						YES
6	51 13C3-PFBS-EIS	$302.0>98.9$	1.428 e 3		0.269	157.875	2.67	2.67	1430	33.658	72.4		
7	57 13C2-PFHxA-EIS	$315.0>270.0$	1.153 e 4		0.269	1345.825	3.19	3.20	11500	31.892	68.6		
8	53 13C3-HFPO-DA-EIS	$287.0>168.9$	2.137 e 3		0.269	261.275	3.41	3.42	2140	30.439	65.4		
9	59 13C4-PFHpA-EIS	$367.2>321.8$	1.129 e 4		0.269	1285.879	3.79	3.79	11300	32.672	70.2		
10	59 13C4-PFHpA-EIS	367.2 > 321.8	1.129 e 4		0.269	1285.879	3.79	3.79	11300	32.672	70.2		
11	-1												
12	13 L-PFHxS	$399>79.9$	5.865e4	2.689 e 3	0.269		3.94	3.94	273	885.872		4.126	NO
13	1... Total PFHxS	$399>79.9$	5.865e4	2.689 e 3	0.269		3.93		273	885.872			
14	16 L-PFOA	$413>369$	2.864 e 5	1.532 e 4	0.269		4.31	4.31	234	960.559		2.654	NO
15	1... Total PFOA	$413>369$	2.864 e 5	1.532 e 4	0.269		4.60		234	960.559			
16	21 PFNA	$463.0>418.8$	1.749 e 3	1.349 e 4	0.269		4.75	4.75	1.62	4.960		13.197	NO
17	61 13C3-PFHxS-EIS	$402>80$	2.689 e 3		0.269	305.184	3.93	3.94	2690	32.798	70.5		
18	61 13C3-PFHxS-EIS	$402>80$	2.689 e 3		0.269	305.184	3.93	3.94	2690	32.798	70.5		
19	69 13C2-PFOA-EIS	$414.9>369.7$	1.532 e 4		0.269	1733.544	4.47	4.31	15300	32.887	70.7		
20	69 13C2-PFOA-EIS	$414.9>369.7$	1.532 e 4		0.269	1733.544	4.47	4.31	15300	32.887	70.7		
21	65 13C5-PFNA-EIS	$468.2>422.9$	1.349 e 4		0.269	1672.506	4.96	4.75	13500	30.022	64.5		
22	-1												
23	23 L-PFOS	$499>80$	2.777 e 4	2.398 e 3	0.269		4.84	4.83	145	443.928		2.528	NO
24	1... Total PFOS	$499>80$	2.777 e 4	2.398 e 3	0.269		4.60		145	443.928			
25	25 9CI-PF30NS	$531>351$		2.398 e 3	0.269		5.05						YES
26	26 PFDA	$513>469$	7.729 e 2	1.430 e 4	0.269		5.13	5.13	0.675	3.034		5.354	NO
27	33 PFUdA	$563.0>519$		8.558 e 3	0.269		5.45						YES
28	71 13C8-PFOS-EIS	$507.1>80$	2.398 e 3		0.269	299.078	4.83	4.84	2400	29.843	64.2		
29	71 13C8-PFOS-EIS	$507.1>80$	2.398 e 3		0.269	299.078	4.83	4.84	2400	29.843	64.2		
30	71 13C8-PFOS-EIS	$507.1>80$	2.398 e 3		0.269	299.078	4.83	4.84	2400	29.843	64.2		
31	73 13C2-PFDA-EIS	$515.1>469.9$	1.430 e 4		0.269	1995.916	5.12	5.13	14300	26.668	57.3		
32	79 13C2-PFUdA-EIS	$565>519.8$	8.558 e 3		0.269	1917.639	5.36	5.45	8560	16.608	35.7		
33	-1												
34	29 L-MeFOSAA	$570>419$		1.510 e 3	0.269		5.27						YES
35	1... Total N-MeFOSAA	570. >419	0.000 e 0	1.510 e 3	0.269		5.19		0.000				
36	31 L-EtFOSAA	583.9>419		9.985 e 2	0.269		5.43						YES

Work Order 2001436

Quantify Sample Report

Dataset: P:IPFAS5.PRO\RESULTSI200714P11200714P1-50-56.qld

Last Altered: Tuesday, July 21, 2020 13:48:45 Pacific Daylight Time
Printed:
Tuesday, July 21, 2020 13:49:24 Pacific Daylight Time

Name: 200714P1-56, Date: 14-Jul-2020, Time: 19:23:53, ID: 2001436-04 TW22D-20200707 0.2687, Description: TW22D-20200707

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	1... Total N-EtFOSAA	$583.9>419$	0.000e0	9.985e2	0.269		5.37		0.000				
38	35 11CI-PF30UdS	$631>451$		3.900e3	0.269		5.67						YES
39	77 d3-N-MeFOSAA-EIS	$573.1>419$	1.510 e 3		0.269	391.230	5.27	5.27	1510	14.362	30.9		
40	77 d3-N-MeFOSAA-EIS	$573.1>419$	1.510 e 3		0.269	391.230	5.27	5.27	1510	14.362	30.9		
41	81 d5-N-EtFOSAA-EIS	$589.3>419$	9.985 e 2		0.269	342.385	5.42	5.43	998	10.853	23.3		
42	$81 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}-\mathrm{EIS}$	$589.3>419$	9.985 e 2		0.269	342.385	5.42	5.43	998	10.853	23.3		
43	83 13C2-PFDoA-EIS	$614.9>569.9$	3.900 e 3		0.269	2303.973	5.87	5.73	3900	6.300	13.5		
44	-1												
45	37 PFDoA	$612.9>569.0$		3.900 e 3	0.269		5.73						YES
46	39 PFTrDA	$662.9>618.9$		3.900 e 3	0.269		5.97						YES
47	41 PFTeDA	$713.0>669.0$		1.763 e 3	0.269		6.17						YES
48	1... TDCA	$498.3>106.9$			0.269		4.47						YES
49	71 13C8-PFOS-EIS	$507.1>80$	2.398 e 3		0.269	299.078	4.83	4.84	2400	29.843	64.2		
50	83 13C2-PFDoA-EIS	$614.9>569.9$	3.900 e 3		0.269	2303.973	5.87	5.73	3900	6.300	13.5		
51	83 13C2-PFDoA-EIS	$614.9>569.9$	3.900 e 3		0.269	2303.973	5.87	5.73	3900	6.300	13.5		
52	89 13C2-PFTeDA-EIS	$715.1>669.7$	1.763 e 3		0.269	2242.342	6.18	6.17	1760	2.927	6.3		

Quantify Sample Report

Dataset: P:IPFAS5.PRO\RESULTS\200714P1\200714P1-50-56.qld
Last Altered: Tuesday, July 21, 2020 13:48:45 Pacific Daylight Time
Printed: Tuesday, July 21, 2020 13:49:24 Pacific Daylight Time

Method: P:|PFAS5.PRO\MethDB\NEW_PFAS_80C_071420.mdb 14 Jul 2020 15:40:52

Calibration: P:\PFAS5.PRO\CurveDB\C18_VAL-PFAS_Q5_07-14-20.cdb 15 Jul 2020 08:25:12

Name: 200714P1-56, Date: 14-Jul-2020, Time: 19:23:53, ID: 2001436-04 TW22D-20200707 0.2687, Description: TW22D-20200707

PFBS		
	F11:MRM of 2 channels,ES-	
		$299.0>80$
${ }^{100} 7$	PFBS	$4.553 \mathrm{e}+005$
	2.67	
	1.60 e 4	
\% -	453042	
	bb	
	14814.98	

13C3-PFBS-EIS

F12:MRM of 1 channel,ES-

PFHxA

PFHxA		
	F13:MRM of 2 channels,ES-	
		313.0 > 269.0
100	PFHxA	$6.159 \mathrm{e}+006$
	3.20	
	2.57e5	
\%	6132240	
	bb	
	21672.32	
	गा1101	T17T1TT1 min

13C2-PFHxA-EIS
F14:MRM of 1 channel,ES$315.0>270.0$ $2.762 \mathrm{e}+005$

13C3-HFPO-DA-EIS

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES367.2 > 321.8 $3.124 \mathrm{e}+005$

ADONA

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES-

Quantify Sample Report

Dataset: P:IPFAS5.PRO\RESULTS\200714P1\200714P1-50-56.qld
Last Altered: Tuesday, July 21, 2020 13:48:45 Pacific Daylight Time
Printed: \quad Tuesday, July 21, 2020 13:49:24 Pacific Daylight Time

Name: 200714P1-56, Date: 14-Jul-2020, Time: 19:23:53, ID: 2001436-04 TW22D-20200707 0.2687, Description: TW22D-20200707
L-PFHxS
F23:MRM of 2 channels,ES-
$399>79.9$
$1.304 \mathrm{e}+006$

13C3-PFHxS-EIS

F24:MRM of 1 channel,ES-

Total PFHxS
F23:MRM of 2 channels,ES-
$399>79.9$ $1.304 \mathrm{e}+006$

L-PFOA

F26:MRM of 2 channels,ES- $\begin{array}{r}413>369 \\ 6.986 \mathrm{e}+006 \\ \hline\end{array}$
F26:MRM of 2 channels,ES$413>169$
$2.369 e+006$

13C2-PFOA-EIS

PFNA

Total PFOA

F26:MRM of 2 channels,ES-
$413>369$
$6.986 \mathrm{e}+006$
F26:MRM of 2 channels,ES-
$413>369$
$6.986 \mathrm{e}+006$
F26:MRM of 2 channels,ES-
$413>369$
$6.986 \mathrm{e}+006$

F27:MRM of $\begin{array}{r}1 \text { channel,ES- } \\ 414.9>369.7 \\ 4.553 e+005\end{array}$
F27:MRM of 1 channel,ES- $\begin{array}{r}414.9>369.7 \\ 4.553 \mathrm{e}+005\end{array}$
F27:MRM of $\begin{array}{r}1 \text { channel,ES- } \\ 414.9>369.7 \\ 4.553 \mathrm{e}+005\end{array}$

13C2-PFOA-EIS

Quantify Sample Report

Dataset: P:IPFAS5.PRO\RESULTS\200714P1\200714P1-50-56.qld
Last Altered: Tuesday, July 21, 2020 13:48:45 Pacific Daylight Time
Printed: Tuesday, July 21, 2020 13:49:24 Pacific Daylight Time

Name: 200714P1-56, Date: 14-Jul-2020, Time: 19:23:53, ID: 2001436-04 TW22D-20200707 0.2687, Description: TW22D-20200707

Total PFOS

F40:MRM of 2 channels,ES-

F40:MRM of 2 channels,ES-

13C8-PFOS-EIS
F43:MRM of 1 channel,ES$507.1>80$ $6.711 \mathrm{e}+004$

9CI-PF30NS

13C8-PFOS-EIS

PFDA

F45:MRM of 2 channels,ES-		
100	PFDA	
	5.13	
	7.73 e 2	
\%-	22088	
	bb	
	113.41	34

13C2-PFUdA-EIS
F56:MRM of 1 channel,ES$565>519.8$ $2.245 \mathrm{e}+005$

Quantify Sample Report

Dataset: P:IPFAS5.PRO\RESULTSI200714P11200714P1-50-56.qld
Last Altered: Tuesday, July 21, 2020 13:48:45 Pacific Daylight Time
Printed: \quad Tuesday, July 21, 2020 13:49:24 Pacific Daylight Time

Name: 200714P1-56, Date: 14-Jul-2020, Time: 19:23:53, ID: 2001436-04 TW22D-20200707 0.2687, Description: TW22D-20200707

d3-N-MeFOSAA-EIS

F59:MRM of 1 channel,ES-

Total N-MeFOSAA

F57:MRM of 2 channels,ES-
$570>419$
$1.928 \mathrm{e}+002$

d3-N-MeFOSAA-EIS

d5-N-EtFOSAA-EIS

d5-N-EtFOSAA-EIS

13C2-PFDoA-EIS

F64:MRM of 1 channel,ES-

Quantify Sample Report

Dataset: P:IPFAS5.PRO\RESULTS\200714P1\200714P1-50-56.qld
Last Altered: Tuesday, July 21, 2020 13:48:45 Pacific Daylight Time
Printed: Tuesday, July 21, 2020 13:49:24 Pacific Daylight Time

Name: 200714P1-56, Date: 14-Jul-2020, Time: 19:23:53, ID: 2001436-04 TW22D-20200707 0.2687, Description: TW22D-20200707

13C2-PFDoA-EIS

F64:MRM of 1 channel,ES$614.9>569.9$
$100-1.038 \mathrm{e}+005$

13C2-PFDoA-EIS

F64:MRM of 1 channel,ES$614.9>569.9$ $1.038 \mathrm{e}+005$

F75:MRM of 2 channels,ES-
$715.1>669.7$

13C8-PFOS-EIS

Quantify Sample Report

Dataset: P:IPFAS5.PRO\RESULTSL200714P11200714P1-58.qld

Last Altered: Thursday, July 16, 2020 16:34:03 Pacific Daylight Time
Printed: Thursday, July 16, 2020 16:36:51 Pacific Daylight Time

Name: 200714P1-58, Date: 14-Jul-2020, Time: 19:45:05, ID: 2001436-05 EB06-20200708 0.2553, Description: EB06-20200708

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	$299.0>80$		1.404 e 3	0.255		2.67						YES
2	7 PFHxA	$313.0>269.0$		1.119 e 4	0.255		3.20						YES
3	9 HFPO-DA	$285.1>168.9$		2.300 e 3	0.255		3.42						YES
4	11 PFHpA	$363.0>319$		1.105 e 4	0.255		3.80						YES
5	12 ADONA	$376.8>250.9$		1.105 e 4	0.255		3.89						YES
6	51 13C3-PFBS-EIS	$302.0>98.9$	1.404 e 3		0.255	157.875	2.67	2.67	1400	34.845	71.2		
7	57 13C2-PFHxA-EIS	$315.0>270.0$	1.119 e 4		0.255	1345.825	3.19	3.20	11200	32.574	66.5		
8	53 13C3-HFPO-DA-EIS	$287.0>168.9$	2.300 e 3		0.255	261.275	3.41	3.42	2300	34.474	70.4		
9	59 13C4-PFHpA-EIS	$367.2>321.8$	1.105 e 4		0.255	1285.879	3.79	3.80	11100	33.666	68.8		
10	59 13C4-PFHpA-EIS	$367.2>321.8$	1.105 e 4		0.255	1285.879	3.79	3.80	11100	33.666	68.8		
11	-1												
12	13 L-PFHxS	$399>79.9$		2.825 e 3	0.255		3.94						YES
13	1... Total PFHxS	$399>79.9$	0.000 e 0	2.825 e 3	0.255		3.93		0.000				
14	16 L-PFOA	$413>369$		1.545 e 4	0.255		4.31						YES
15	1... Total PFOA	$413>369$	0.000 e 0	1.545 e 4	0.255		4.60		0.000				
16	21 PFNA	$463.0>418.8$		1.365 e 4	0.255		4.75						YES
17	61 13C3-PFHxS-EIS	$402>80$	2.825 e 3		0.255	305.184	3.93	3.94	2830	36.262	74.1		
18	61 13C3-PFHxS-EIS	$402>80$	2.825 e 3		0.255	305.184	3.93	3.94	2830	36.262	74.1		
19	69 13C2-PFOA-EIS	$414.9>369.7$	1.545 e 4		0.255	1733.544	4.47	4.31	15400	34.902	71.3		
20	69 13C2-PFOA-EIS	$414.9>369.7$	1.545 e 4		0.255	1733.544	4.47	4.31	15400	34.902	71.3		
21	65 13C5-PFNA-EIS	$468.2>422.9$	1.365 e 4		0.255	1672.506	4.96	4.75	13700	31.972	65.3		
22	-1												
23	23 L-PFOS	$499>80$		2.692 e 3	0.255		4.84						YES
24	1... Total PFOS	$499>80$	0.000 e 0	2.692 e 3	0.255		4.60		0.000				
25	25 9CI-PF30NS	$531>351$		2.692 e 3	0.255		5.05						YES
26	26 PFDA	$513>469$		1.633 e 4	0.255		5.13						YES
27	33 PFUdA	$563.0>519$		1.587 e 4	0.255		5.45						YES
28	71 13C8-PFOS-EIS	$507.1>80$	2.692 e 3		0.255	299.078	4.83	4.84	2690	35.251	72.0		
29	71 13C8-PFOS-EIS	$507.1>80$	2.692 e3		0.255	299.078	4.83	4.84	2690	35.251	72.0		
30	71 13C8-PFOS-EIS	$507.1>80$	2.692 e3		0.255	299.078	4.83	4.84	2690	35.251	72.0		
31	73 13C2-PFDA-EIS	$515.1>469.9$	1.633 e 4		0.255	1995.916	5.12	5.13	16300	32.038	65.4		
32	79 13C2-PFUdA-EIS	$565>519.8$	1.587 e 4		0.255	1917.639	5.36	5.45	15900	32.412	66.2		
33	-1												
34	29 L-MeFOSAA	$570>419$		2.880 e 3	0.255		5.28						YES
35	1... Total N-MeFOSAA	570. >419	0.000 e 0	2.880 e 3	0.255		5.19		0.000				
36	31 L-EtFOSAA	583.9>419		2.215 e 3	0.255		5.43						YES

Work Order 2001436

Quantify Sample Report

Printed: Thursday, July 16, 2020 16:36:51 Pacific Daylight Time

Name: 200714P1-58, Date: 14-Jul-2020, Time: 19:45:05, ID: 2001436-05 EB06-20200708 0.2553, Description: EB06-20200708

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	1... Total N-EtFOSAA	$583.9>419$	0.000 e 0	2.215 e 3	0.255		5.37		0.000				
38	3511 Cl -PF30UdS	$631>451$		1.711e4	0.255		5.67						YES
39	77 d3-N-MeFOSAA-EIS	$573.1>419$	2.880e3		0.255	391.230	5.27	5.28	2880	28.838	58.9		
40	77 d3-N-MeFOSAA-EIS	$573.1>419$	2.880 e 3		0.255	391.230	5.27	5.28	2880	28.838	58.9		
41	$81 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$-EIS	$589.3>419$	2.215 e 3		0.255	342.385	5.42	5.43	2220	25.340	51.8		
42	81 d5-N-EtFOSAA-EIS	$589.3>419$	2.215 e 3		0.255	342.385	5.42	5.43	2220	25.340	51.8		
43	83 13C2-PFDoA-EIS	$614.9>569.9$	1.711 e 4		0.255	2303.973	5.87	5.73	17100	29.091	59.4		
44	-1												
45	37 PFDoA	$612.9>569.0$		1.711e4	0.255		5.73						YES
46	39 PFTrDA	$662.9>618.9$		1.711e4	0.255		5.97						YES
47	41 PFTeDA	$713.0>669.0$		1.669 e 4	0.255		6.18						YES
48	1... TDCA	$498.3>106.9$			0.255		4.47						YES
49	71 13C8-PFOS-EIS	$507.1>80$	2.692e3		0.255	299.078	4.83	4.84	2690	35.251	72.0		
50	83 13C2-PFDoA-EIS	$614.9>569.9$	1.711 e 4		0.255	2303.973	5.87	5.73	17100	29.091	59.4		
51	83 13C2-PFDoA-EIS	$614.9>569.9$	1.711 e 4		0.255	2303.973	5.87	5.73	17100	29.091	59.4		
52	89 13C2-PFTeDA-EIS	$715.1>669.7$	1.669 e 4		0.255	2242.342	6.18	6.18	16700	29.158	59.6		

Quantify Sample Report

Last Altered: Thursday, July 16, 2020 16:34:03 Pacific Daylight Time
Printed: Thursday, July 16, 2020 16:36:51 Pacific Daylight Time

Method: P:|PFAS5.PRO\MethDB|NEW_PFAS_80C_071420.mdb 14 Jul 2020 15:40:52

Calibration: P:|PFAS5.PRO\CurveDBIC18_VAL-PFAS_Q5_07-14-20.cdb 15 Jul 2020 08:25:12

Name: 200714P1-58, Date: 14-Jul-2020, Time: 19:45:05, ID: 2001436-05 EB06-20200708 0.2553, Description: EB06-20200708

13C2-PFHxA-EIS
F14:MRM of 1 channel,ES$315.0>270.0$ $2.702 \mathrm{e}+005$

HFPO-DA

13C3-HFPO-DA-EIS

PFHpA

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES367.2 > 321.8 $3.075 \mathrm{e}+005$

ADONA

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES-

Quantify Sample Report

Last Altered: Thursday, July 16, 2020 16:34:03 Pacific Daylight Time
Printed: Thursday, July 16, 2020 16:36:51 Pacific Daylight Time

Name: 200714P1-58, Date: 14-Jul-2020, Time: 19:45:05, ID: 2001436-05 EB06-20200708 0.2553, Description: EB06-20200708
L-PFHxS
F23:MRM of 2 channels,ES-
$399>79.9$
$1.007 \mathrm{e}+002$

Total PFHxS

F23:MRM of 2 channels,ES-

13C3-PFHxS-EIS

L-PFOA

F-PFOA
F26:MRM of 2 channels,ES-
$413>369$
$2.586 \mathrm{e}+003$

13C2-PFOA-EIS

13C2-PFOA-EIS

13C5-PFNA-EIS

F36:MRM of 1 channel,ES468.2 > 422.9

Quantify Sample Report

Last Altered: Thursday, July 16, 2020 16:34:03 Pacific Daylight Time
Printed: Thursday, July 16, 2020 16:36:51 Pacific Daylight Time

Name: 200714P1-58, Date: 14-Jul-2020, Time: 19:45:05, ID: 2001436-05 EB06-20200708 0.2553, Description: EB06-20200708

\section*{L-PFOS
 | F40:MRM of 2 channels,ES- | |
| ---: | ---: |
| $499>80$ | |
| 100 | $5.350 \mathrm{e}+001$ |}

13C8-PFOS-EIS

13C8-PFOS-EIS

13C2-PFDA-EIS

13C2-PFUdA-EIS

Quantify Sample Report

Last Altered: Thursday, July 16, 2020 16:34:03 Pacific Daylight Time
Printed: Thursday, July 16, 2020 16:36:51 Pacific Daylight Time

Name: 200714P1-58, Date: 14-Jul-2020, Time: 19:45:05, ID: 2001436-05 EB06-20200708 0.2553, Description: EB06-20200708

L-MeFOSAA

F57:MRM of 2 channels,ES-
570×419

$$
\text { F57:MRM of } 2 \text { channels,ES- } \begin{array}{r}
\text { 570. }>512 \\
1.425 \mathrm{e}+002
\end{array}
$$

d3-N-MeFOSAA-EIS

F59:MRM of 1 channel,ES-

Total N-MeFOSAA

d3-N-MeFOSAA-EIS
F59:MRM of 1 channel,ES-

L-EtFOSAA

F60:MRM of 2 channels, ES- $\begin{array}{r}583.9>419 \\ 5.109 \mathrm{e}+001\end{array}$
d5-N-EtFOSAA-EIS

d5-N-EtFOSAA-EIS

11CI-PF30UdS

F69:MRM of 2 channels,ES-
$631>451$

F69:MRM of 2 channels,ES-

13C2-PFDoA-EIS

Quantify Sample Report

Dataset: P:\PFAS5.PRO\RESULTS\200714P1\200714P1-58.qld
Last Altered: Thursday, July 16, 2020 16:34:03 Pacific Daylight Time
Printed: Thursday, July 16, 2020 16:36:51 Pacific Daylight Time

Name: 200714P1-58, Date: 14-Jul-2020, Time: 19:45:05, ID: 2001436-05 EB06-20200708 0.2553, Description: EB06-20200708

PFDoA
 F63:MRM of 2 channels,ES- $612.9>569.0$

PFTrDA

13C2-PFDoA-EIS

F64:MRM of 1 channel,ES$614.9>569.9$ $4.508 \mathrm{e}+005$

PFTeDA

13C2-PFTeDA-EIS

F75:MRM of 2 channels,ES-
$715.1>669.7$ $4.243 \mathrm{e}+005$

TDCA

F39:MRM of 3 channels,ES- | $498.3>106.9$ |
| ---: |
| $1.459 \mathrm{e}+002$ |

13C8-PFOS-EIS
F43:MRM of 1 channel,ES-
$507.1>80$ $7.724 \mathrm{e}+004$

Quantify Sample Report

Last Altered: Tuesday, July 21, 2020 14:25:37 Pacific Daylight Time
*See Dilution

Printed:

Tuesday, July 21, 2020 14:27:25 Pacific Daylight Time

Name: 200714P1-59, Date: 14-Jul-2020, Time: 19:55:41, ID: 2001436-06 TW23D-20200708 0.27774, Description: TW23D-20200708

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	$299.0>80$	4.865e4	1.236 e 3	0.278		2.67	2.67	492	711.069		2.380	NO
2	7 PFHxA	$313.0>269.0$	7.531 e 5	9.598 e 3	0.278		3.20	3.19	981	3418.495 E*		14.464	NO
3	9 HFPO-DA	$285.1>168.9$		2.113 e 3	0.278		3.42						YES
4	11 PFHpA	$363.0>319$	1.999 e 5	9.765 e 3	0.278		3.79	3.79	256	772.075		44.429	NO
5	12 ADONA	$376.8>250.9$		9.765 e 3	0.278		3.89						YES
6	51 13C3-PFBS-EIS	$302.0>98.9$	1.236 e 3		0.278	157.875	2.67	2.67	1240	28.193	62.6		
7	57 13C2-PFHxA-EIS	$315.0>270.0$	9.598 e 3		0.278	1345.825	3.19	3.20	9600	25.678	57.1		
8	53 13C3-HFPO-DA-EIS	$287.0>168.9$	2.113 e 3		0.278	261.275	3.41	3.42	2110	29.118	64.7		
9	59 13C4-PFHpA-EIS	$367.2>321.8$	9.765 e 3		0.278	1285.879	3.79	3.79	9770	27.343	60.8		
10	59 13C4-PFHpA-EIS	367.2 > 321.8	9.765 e 3		0.278	1285.879	3.79	3.79	9770	27.343	60.8		
11	-1												
12	13 L-PFHxS	$399>79.9$	2.080 e 5	1.994 e 3	0.278		3.93	3.93	1300	$3947.960{ }^{\text {E* }}$		4.000	NO
13	1... Total PFHxS	$399>79.9$	2.080 e 5	1.994 e 3	0.278		3.93		1300	3947.960			
14	16 L-PFOA	$413>369$	2.514 e 6	1.036 e 4	0.278		4.31	4.31	3030	E*		2.651	NO
15	1... Total PFOA	$413>369$	2.514 e 6	1.036 e 4	0.278		4.60		0.000				
16	21 PFNA	$463.0>418.8$	2.589e3	1.276 e 4	0.278		4.75	4.75	2.54	7.596		13.643	NO
17	61 13C3-PFHxS-EIS	$402>80$	1.994 e 3		0.278	305.184	3.93	3.93	1990	23.527	52.3		
18	61 13C3-PFHxS-EIS	$402>80$	1.994 e 3		0.278	305.184	3.93	3.93	1990	23.527	52.3		
19	69 13C2-PFOA-EIS	$414.9>369.7$	1.036 e 4		0.278	1733.544	4.47	4.31	10400	21.524	47.8		
20	69 13C2-PFOA-EIS	$414.9>369.7$	1.036 e 4		0.278	1733.544	4.47	4.31	10400	21.524	47.8		
21	65 13C5-PFNA-EIS	$468.2>422.9$	1.276 e 4		0.278	1672.506	4.96	4.75	12800	27.463	61.0		
22	-1												
23	23 L-PFOS	$499>80$	8.925 e 4	2.393 e 3	0.278		4.83	4.69	466	1322.114		2.561	NO
24	1... Total PFOS	$499>80$	8.925e4	2.393 e 3	0.278		4.60		466	1322.114			
25	25 9CI-PF30NS	$531>351$		2.393 e 3	0.278		5.04						YES
26	26 PFDA	$513>469$	1.409 e 2	1.484 e 4	0.278		5.13	5.12	0.119	0.406		5.257	NO
27	33 PFUdA	$563.0>519$		1.215 e 4	0.278		5.45						YES
28	71 13C8-PFOS-EIS	$507.1>80$	2.393 e 3		0.278	299.078	4.83	4.83	2390	28.810	64.0		
29	71 13C8-PFOS-EIS	$507.1>80$	2.393 e 3		0.278	299.078	4.83	4.83	2390	28.810	64.0		
30	71 13C8-PFOS-EIS	$507.1>80$	2.393 e 3		0.278	299.078	4.83	4.83	2390	28.810	64.0		
31	73 13C2-PFDA-EIS	$515.1>469.9$	1.484 e 4		0.278	1995.916	5.12	5.13	14800	26.779	59.5		
32	79 13C2-PFUdA-EIS	$565>519.8$	1.215 e 4		0.278	1917.639	5.36	5.45	12200	22.813	50.7		
33	-1												
34	29 L-MeFOSAA	$570>419$		2.601 e 3	0.278		5.27						YES
35	1... Total N-MeFOSAA	570. >419	0.000 e 0	2.601 e 3	0.278		5.19		0.000				
36	31 L-EtFOSAA	583.9>419		2.055 e 3	0.278		5.43						YES

Work Order 2001436

Quantify Sample Report

Dataset: P:\PFAS5.PRO\RESULTS\200714P1\200714P1-59.qld

Last Altered: Tuesday, July 21, 2020 14:25:37 Pacific Daylight Time
Printed:
Tuesday, July 21, 2020 14:27:25 Pacific Daylight Time

Name: 200714P1-59, Date: 14-Jul-2020, Time: 19:55:41, ID: 2001436-06 TW23D-20200708 0.27774, Description: TW23D-20200708

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	1... Total N-EtFOSAA	$583.9>419$	0.000e0	2.055 e 3	0.278		5.37		0.000				
38	3511 Cl -PF30UdS	$631>451$		1.007 e 4	0.278		5.67						YES
39	77 d3-N-MeFOSAA-EIS	$573.1>419$	2.601 e 3		0.278	391.230	5.27	5.27	2600	23.933	53.2		
40	77 d3-N-MeFOSAA-EIS	$573.1>419$	2.601 e 3		0.278	391.230	5.27	5.27	2600	23.933	53.2		
41	81 d5-N-EtFOSAA-EIS	$589.3>419$	2.055 e 3		0.278	342.385	5.42	5.43	2060	21.612	48.0		
42	81 d5-N-EtFOSAA-EIS	$589.3>419$	2.055 e 3		0.278	342.385	5.42	5.43	2060	21.612	48.0		
43	83 13C2-PFDoA-EIS	$614.9>569.9$	1.007 e 4		0.278	2303.973	5.87	5.73	10100	15.743	35.0		
44	-1												
45	37 PFDoA	$612.9>569.0$		1.007 e 4	0.278		5.73						YES
46	39 PFTrDA	$662.9>618.9$		1.007 e 4	0.278		5.97						YES
47	41 PFTeDA	713.0 > 669.0		1.521 e 3	0.278		6.17						YES
48	1... TDCA	$498.3>106.9$			0.278		4.47						YES
49	71 13C8-PFOS-EIS	$507.1>80$	2.393 e 3		0.278	299.078	4.83	4.83	2390	28.810	64.0		
50	83 13C2-PFDoA-EIS	$614.9>569.9$	1.007 e 4		0.278	2303.973	5.87	5.73	10100	15.743	35.0		
51	83 13C2-PFDoA-EIS	$614.9>569.9$	1.007 e 4		0.278	2303.973	5.87	5.73	10100	15.743	35.0		
52	89 13C2-PFTeDA-EIS	$715.1>669.7$	1.521 e 3		0.278	2242.342	6.18	6.17	1520	2.442	5.4		

Quantify Sample Report

Dataset: P:\PFAS5.PRO\RESULTS\200714P1\200714P1-59.qld
Last Altered: Tuesday, July 21, 2020 14:25:37 Pacific Daylight Time Printed: Tuesday, July 21, 2020 14:27:25 Pacific Daylight Time

Method: P:\PFAS5.PRO\MethDB\NEW_PFAS_80C_071420.mdb 14 Jul 2020 15:40:52

Calibration: P:\PFAS5.PRO\CurveDB\C18_VAL-PFAS_Q5_07-14-20.cdb 15 Jul 2020 08:25:12

Name: 200714P1-59, Date: 14-Jul-2020, Time: 19:55:41, ID: 2001436-06 TW23D-20200708 0.27774, Description: TW23D-20200708

13C3-PFBS-EIS

F12:MRM of 1 channel,ES$302.0>98.9$

HFPO-DA

13C2-PFHxA-EIS

F14:MRM of 1 channel,ES315.0 > 270.0 $2.227 \mathrm{e}+005$

F13:MRM of 2 channels,ES-

13C3-HFPO-DA-EIS

PFHpA

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES367.2 > 321.8 $2.669 \mathrm{e}+005$

ADONA
F22:MRM of 2 channels,ES-
$376.8>250.9$

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES367.2 > 321.8

Quantify Sample Report

Printed: Tuesday, July 21, 2020 14:27:25 Pacific Daylight Time

Name: 200714P1-59, Date: 14-Jul-2020, Time: 19:55:41, ID: 2001436-06 TW23D-20200708 0.27774, Description: TW23D-20200708

13C3-PFHxS-EIS

F24:MRM of 1 channel,ES-

L-PFOA

F26:MRM of 2 channels,ES-
$413>369$
$4.946 \mathrm{e}+007$

Total PFHxS

Total PFHxS
F23:MRM of 2 channels,ES-
$399>79.9$
Total PFHxS
F23:MRM of 2 channels, ES-
$399>79.9$ $4.205 \mathrm{e}+006$

13C3-PFHxS-EIS

13C2-PFOA-EIS

F27:MRM of 1 channel,ES$414.9>369.7$ $2.617 e+005$

Total PFOA

F26:MRM of 2 channels,ES-
$413>369$
$4.946 \mathrm{e}+007$

13C2-PFOA-EIS
F27:MRM of 1 channel,ES$414.9>369.7$

PFNA

13C5-PFNA-EIS

F36:MRM of 1 channel,ES$468.2>422.9$

Quantify Sample Report

Last Altered: Tuesday, July 21, 2020 14:25:37 Pacific Daylight Time
Printed: \quad Tuesday, July 21, 2020 14:27:25 Pacific Daylight Time

Name: 200714P1-59, Date: 14-Jul-2020, Time: 19:55:41, ID: 2001436-06 TW23D-20200708 0.27774, Description: TW23D-20200708

13C8-PFOS-EIS

Total PFOS

F40:MRM of 2 channels,ES-
nnels,ES-
$499>80$

13C8-PFOS-EIS
F43:MRM of 1 channel,ES$507.1>80$ $6.540 \mathrm{e}+004$

9Cl-PF30NS

13C8-PFOS-EIS

PFDA

F45:MRM of 2 channels, ES-
$513>469$
$6.267 \mathrm{e}+003$

13C2-PFDA-EIS

PFUdA
PFUDA
F55:MRM of 2 channels,ES-
$563.0>519$
$1.109 \mathrm{e}+003$

13C2-PFUdA-EIS
F56:MRM of 1 channel,ES$565>519.8$ $3.255 \mathrm{e}+005$

Quantify Sample Report

Last Altered: Tuesday, July 21, 2020 14:25:37 Pacific Daylight Time
Printed: \quad Tuesday, July 21, 2020 14:27:25 Pacific Daylight Time

Name: 200714P1-59, Date: 14-Jul-2020, Time: 19:55:41, ID: 2001436-06 TW23D-20200708 0.27774, Description: TW23D-20200708

F57:MRM of 2 channels,ES- | $570>419$ |
| ---: |
| $1.907 \mathrm{e}+002$ |

d3-N-MeFOSAA-EIS

F59:MRM of 1 channel,ES-

Total N-MeFOSAA

F57:MRM of 2 channels,ES- | $570>419$ |
| ---: |
| 500 |
| $1.907 \mathrm{e}+002$ |

$$
\text { F57:MRM of } 2 \text { channels,ES- } \begin{array}{r}
\text { 570. }>512 \\
3.175 \mathrm{e}+002
\end{array}
$$

d3-N-MeFOSAA-EIS

L-EtFOSAA

F60:MRM of 2 channels,ES-

d5-N-EtFOSAA-EIS

Total N-EtFOSAA

F60:MRM of 2 channels,ES$583.9>419$ $1.363 \mathrm{e}+002$
100

d5-N-EtFOSAA-EIS

13C2-PFDoA-EIS
F64:MRM of 1 channel,ES-

$$
614.9>569.9
$$

Quantify Sample Report

Last Altered: Tuesday, July 21, 2020 14:25:37 Pacific Daylight Time
Printed: Tuesday, July 21, 2020 14:27:25 Pacific Daylight Time

Name: 200714P1-59, Date: 14-Jul-2020, Time: 19:55:41, ID: 2001436-06 TW23D-20200708 0.27774, Description: TW23D-20200708

PFDoA

13C2-PFDoA-EIS

F64:MRM of 1 channel,ES-
 $2.735 \mathrm{e}+005$

13C2-PFDoA-EIS

F64:MRM of 1 channel,ES$614.9>569.9$ $2.735 \mathrm{e}+005$

PFTeDA

13C2-PFTeDA-EIS

F75:MRM of 2 channels,ES-
$715.1>669.7$ $3.826 e+004$

TDCA

13C8-PFOS-EIS

F43:MRM of 1 channel,ES-
$507.1>80$ $6.540 \mathrm{e}+004$

Quantify Sample Report
MassLynx V4.2 SCN982

Last Altered: Thursday, July 16, 2020 15:28:34 Pacific Daylight Time Printed: \quad Thursday, July 16, 2020 15:41:31 Pacific Daylight Time

Name: 200715P1-22, Date: 15-Jul-2020, Time: 15:20:02, ID: 2001436-06@10X TW23D-20200708 0.27774, Description: TW23D-20200708

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	RT	Response	Conc. *	\%Rec	Ion Ratio	Ratio Out?
1	7 PFHxA	313.0 > 269.0	7.998e4	1.097 e 3	0.278		3.16	0.911	2.976		14.761	NO
2	13 L-PFHxS	$399>79.9$	2.278 e 4	2.242 e 2	0.278		3.90	1.270	3.867		4.118	NO
3	1... Total PFHxS	$399>79.9$	2.415 e 4	2.242 e 2	0.278			1.346	4.036			
4	16 L-PFOA	$413>369$	3.461 e 5	1.463 e 3	0.278		4.28	2.957	10.795		2.700	NO
5	1... Total PFOA	$413>369$	3.461 e 5	1.463 e 3	0.278			2.957	10.795			
6	69 13C2-PFOA-EIS	$414.9>369.7$	1.463 e 3		0.278	1519.812	4.28	1462.830	3.465	$7700 . \dagger$	77	
7	57 13C2-PFHxA-EIS	$315.0>270.0$	1.097 e 3		0.278	1226.714	3.16	1097.019	3.220	7154.2	71.54	
8	61 13C3-PFHxS-EIS	$402>80$	2.242 e 2		0.278	268.614	3.90	224.184	3.005	6676.8	66.77	
9	61 13C3-PFHxS-EIS	$402>80$	2.242 e 2		0.278	268.614	3.90	224.184	3.005	6676.8		
10	69 13C2-PFOA-EIS	$414.9>369.7$	1.463 e 3		0.278	1519.812	4.28	1462.830	3.465	7700.1		
11	69 13C2-PFOA-EIS	$414.9>369.7$	1.463 e 3		0.278	1519.812	4.28	1462.830	3.465	7700.1		
12	-1											

Dataset: P:\PFAS5.PRO\RESULTSI200715P1\200715P1-22.qld
Last Altered: Thursday, July 16, 2020 15:28:34 Pacific Daylight Time
Printed: \quad Thursday, July 16, 2020 15:41:31 Pacific Daylight Time

Method: P:|PFAS5.PRO\MethDB\NEW_PFAS_80C_071520.mdb 15 Jul 2020 14:50:21

Calibration: P:\PFAS5.PRO\CurveDB\C̄18_VAL-PFAS_Q5_07-15-20.cdb 16 Jul 2020 10:32:09

Name: 200715P1-22, Date: 15-Jul-2020, Time: 15:20:02, ID: 2001436-06@10X TW23D-20200708 0.27774, Description: TW23D-20200708

PFHxA		
F13:MRM of 2 channels,ES		
		313.0 > 269.0
100	PFHxA	$2.373 \mathrm{e}+006$
	3.16	
	8.00 e 4	
\%-	2362590	
	bb	
	9673.78	

13C2-PFHxA-EIS

F14:MRM of 1 channel,ES$315.0>270.0$

13C3-PFHxS-EIS

13C3-PFHxS-EIS

13C2-PFOA-EIS

F27:MRM of 1 channel,ES $414.9>369.7$

Total PFOA

F26:MRM of 2 channels,ES-
$413>369$

13C2-PFOA-EIS
F27:MRM of 1 channel,ES 414.9 > 369.7

Quantify Sample Report

Dataset:

P:IPFAS5.PROIRESULTSI200715P1|200715P1-24.qld
Last Altered: Tuesday, July 21, 2020 13:56:42 Pacific Daylight Time
Printed:
Tuesday, July 21, 2020 13:57:09 Pacific Daylight Time

Name: 200715P1-24, Date: 15-Jul-2020, Time: 15:41:13, ID: 2001436-07 TW24D-20200708 0.28174, Description: TW24D-20200708

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	$299.0>80$	3.260 e 3	1.281 e 3	0.282		2.64	2.64	31.8	44.805		2.613	NO
2	7 PFHxA	$313.0>269.0$	7.573 e 4	1.022 e 4	0.282		3.16	3.16	92.6	331.895		14.229	NO
3	9 HFPO-DA	$285.1>168.9$		2.163 e 3	0.282		3.38						YES
4	11 PFHpA	$363.0>319$	1.630 e 4	1.001 e 4	0.282		3.76	3.76	20.4	56.133		48.196	NO
5	12 ADONA	$376.8>250.9$		1.001 e 4	0.282		3.86						YES
6	51 13C3-PFBS-EIS	$302.0>98.9$	1.281 e 3		0.282	145.309	2.64	2.64	1280	31.301	70.5		
7	57 13C2-PFHxA-EIS	$315.0>270.0$	1.022 e 4		0.282	1226.714	3.16	3.16	10200	29.584	66.7		
8	53 13C3-HFPO-DA-EIS	$287.0>168.9$	2.163 e 3		0.282	258.676	3.36	3.38	2160	29.681	66.9		
9	59 13C4-PFHpA-EIS	$367.2>321.8$	1.001 e 4		0.282	1270.326	3.75	3.76	10000	27.963	63.0		
10	59 13C4-PFHpA-EIS	367.2 > 321.8	1.001 e 4		0.282	1270.326	3.75	3.76	10000	27.963	63.0		
11	-1												
12	13 L-PFHxS	$399>79.9$	1.581 e 4	2.458 e 3	0.282		3.91	3.91	80.4	247.971		4.113	NO
13	1... Total PFHxS	$399>79.9$	1.581 e 4	2.458 e 3	0.282		3.93		80.4	247.971			
14	16 L-PFOA	$413>369$	3.693 e 5	1.228 e 4	0.282		4.28	4.28	376	1545.248		2.703	NO
15	1... Total PFOA	$413>369$	3.693e5	1.228 e 4	0.282		4.60		376	1545.248			
16	21 PFNA	$463.0>418.8$		1.219 e 4	0.282		4.72						YES
17	61 13C3-PFHxS-EIS	$402>80$	2.458 e 3		0.282	268.614	3.90	3.91	2460	32.473	73.2		
18	61 13C3-PFHxS-EIS	$402>80$	2.458 e 3		0.282	268.614	3.90	3.91	2460	32.473	73.2		
19	69 13C2-PFOA-EIS	$414.9>369.7$	1.228 e 4		0.282	1519.812	4.47	4.28	12300	28.669	64.6		
20	69 13C2-PFOA-EIS	$414.9>369.7$	1.228 e 4		0.282	1519.812	4.47	4.28	12300	28.669	64.6		
21	65 13C5-PFNA-EIS	$468.2>422.9$	1.219 e 4		0.282	1488.463	4.90	4.72	12200	29.071	65.5		
22	-1												
23	23 L-PFOS	$499>80$	2.208 e 3	2.469 e 3	0.282		4.80	4.65	11.2	32.635		2.511	NO
24	1... Total PFOS	$499>80$	2.208 e 3	2.469 e 3	0.282		4.60		11.2	32.635			
25	25 9CI-PF30NS	$531>351$		2.469 e 3	0.282		5.01						YES
26	26 PFDA	$513>469$		1.412 e 4	0.282		5.09						YES
27	33 PFUdA	$563.0>519$		1.276 e 4	0.282		5.42						YES
28	71 13C8-PFOS-EIS	$507.1>80$	2.469 e 3		0.282	278.862	4.80	4.80	2470	31.427	70.8		
29	71 13C8-PFOS-EIS	$507.1>80$	2.469 e 3		0.282	278.862	4.80	4.80	2470	31.427	70.8		
30	71 13C8-PFOS-EIS	$507.1>80$	2.469 e 3		0.282	278.862	4.80	4.80	2470	31.427	70.8		
31	73 13C2-PFDA-EIS	$515.1>469.9$	1.412 e 4		0.282	1677.890	5.09	5.09	14100	29.874	67.3		
32	79 13C2-PFUdA-EIS	$565>519.8$	1.276 e 4		0.282	1719.985	5.33	5.42	12800	26.322	59.3		
33	-1												
34	29 L-MeFOSAA	$570>419$		2.958 e 3	0.282		5.24						YES
35	1... Total N-MeFOSAA	570. >419	0.000 e 0	2.958 e 3	0.282		5.19		0.000				
36	31 L-EtFOSAA	583.9>419		2.258 e 3	0.282		5.40						YES

Work Order 2001436

Quantify Sample Report

Dataset: P:\PFAS5.PRO\RESULTS\200715P1\200715P1-24.qld

Last Altered: Tuesday, July 21, 2020 13:56:42 Pacific Daylight Time
Printed:
Tuesday, July 21, 2020 13:57:09 Pacific Daylight Time

Name: 200715P1-24, Date: 15-Jul-2020, Time: 15:41:13, ID: 2001436-07 TW24D-20200708 0.28174, Description: TW24D-20200708

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	1... Total N-EtFOSAA	$583.9>419$	0.000 e 0	2.258 e 3	0.282		5.37		0.000				
38	35 11CI-PF30UdS	$631>451$		1.082 e 4	0.282		5.63						YES
39	77 d3-N-MeFOSAA-EIS	$573.1>419$	2.958 e3		0.282	371.929	5.23	5.24	2960	28.233	63.6		
40	77 d3-N-MeFOSAA-EIS	$573.1>419$	2.958e3		0.282	371.929	5.23	5.24	2960	28.233	63.6		
41	81 d5-N-EtFOSAA-EIS	$589.3>419$	2.258 e 3		0.282	359.971	5.39	5.40	2260	22.267	50.2		
42	81 d5-N-EtFOSAA-EIS	$589.3>419$	2.258e3		0.282	359.971	5.39	5.40	2260	22.267	50.2		
43	83 13C2-PFDoA-EIS	$614.9>569.9$	1.082 e 4		0.282	1888.181	5.92	5.69	10800	20.347	45.9		
44	-1												
45	37 PFDoA	$612.9>569.0$		1.082 e 4	0.282		5.69						YES
46	39 PFTrDA	$662.9>618.9$		1.082 e 4	0.282		5.93						YES
47	41 PFTeDA	$713.0>669.0$		1.848 e 3	0.282		6.14						YES
48	1... TDCA	$498.3>106.9$			0.282		4.47						YES
49	71 13C8-PFOS-EIS	$507.1>80$	2.469 e 3		0.282	278.862	4.80	4.80	2470	31.427	70.8		
50	83 13C2-PFDoA-EIS	$614.9>569.9$	1.082 e 4		0.282	1888.181	5.92	5.69	10800	20.347	45.9		
51	83 13C2-PFDoA-EIS	$614.9>569.9$	1.082 e 4		0.282	1888.181	5.92	5.69	10800	20.347	45.9		
52	89 13C2-PFTeDA-EIS	$715.1>669.7$	1.848 e 3		0.282	1893.854	6.14	6.14	1850	3.464	7.8		

Quantify Sample Report

Last Altered: Tuesday, July 21, 2020 13:56:42 Pacific Daylight Time
Printed: \quad Tuesday, July 21, 2020 13:57:09 Pacific Daylight Time

Method: P:|PFAS5.PRO\MethDB\NEW_PFAS_80C_071520.mdb 15 Jul 2020 14:50:21

Calibration: P:\PFAS5.PRO\CurveDB\C18_VAL-PFAS_Q5_07-15-20.cdb 16 Jul 2020 10:32:09

Name: 200715P1-24, Date: 15-Jul-2020, Time: 15:41:13, ID: 2001436-07 TW24D-20200708 0.28174, Description: TW24D-20200708

PFBS		
F11:MRM of 2 channels,ES-		
		299.0 > 80
1007	PFBS	$8.327 \mathrm{e}+004$
	2.64	
	3.26 e 3	
\%-	82797	
	bb	
	82797.00	

13C3-PFBS-EIS

F12:MRM of 1 channel,ES-

PFHxA

PFHxA		
	F13:MRM of 2 channels,ES-	
		313.0 > 269.0
100	PFHxA	$2.248 \mathrm{e}+006$
	3.16	
	7.57e4	
\%-	2239407	
	bb	
	14248.07	
	गागा	गтाттाт min

HFPO-DA

13C3-HFPO-DA-EIS

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES-
$367.2>321.8$ $3.018 \mathrm{e}+005$

ADONA

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES-
367.2 > 321.8 $3.018 \mathrm{e}+005$

Quantify Sample Report

Dataset:
Last Altered: Tuesday, July 21, 2020 13:56:42 Pacific Daylight Time
Printed: Tuesday, July 21, 2020 13:57:09 Pacific Daylight Time

Name: 200715P1-24, Date: 15-Jul-2020, Time: 15:41:13, ID: 2001436-07 TW24D-20200708 0.28174, Description: TW24D-20200708

L-PFHxS		
	F23:MRM of 2 channels,ES-	
	L-PFHxS	399 > 79.9
00	3.91	$4.363 \mathrm{e}+005$
	1.58 e 4	
	436333	
\%-	MM	
	436333.00	

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES-

Total PFHxS

13C3-PFHxS-EIS

13C2-PFOA-EIS
F27:MRM of 1 channel,ES414.9 > 369.7 $3.797 e+005$

Total PFOA

F26:MRM of 2 channels, ES-
$413>369$
$9.677 \mathrm{e}+006$

13C2-PFOA-EIS
F27:MRM of 1 channel,ES$414.9>369.7$ $3.797 e+005$

13C5-PFNA-EIS
F36:MRM of 1 channel,ES468.2 > 422.9

Quantify Sample Report

Last Altered: Tuesday, July 21, 2020 13:56:42 Pacific Daylight Time
Printed: \quad Tuesday, July 21, 2020 13:57:09 Pacific Daylight Time

Name: 200715P1-24, Date: 15-Jul-2020, Time: 15:41:13, ID: 2001436-07 TW24D-20200708 0.28174, Description: TW24D-20200708

13C8-PFOS-EIS

F43:MRM of 1 channel,ES-

Total PFOS

13C8-PFOS-EIS

9CI-PF30NS

13C8-PFOS-EIS

13C2-PFDA-EIS

PFUdA

PFUdA			
F55:MRM of 2 channels,ES-			
563.0 > 519			
$100 \rightarrow 1.711 \mathrm{e}+003$			
\%- $\quad 5.49 \quad 5.78$			

13C2-PFUdA-EIS

Quantify Sample Report

Last Altered: Tuesday, July 21, 2020 13:56:42 Pacific Daylight Time Printed: Tuesday, July 21, 2020 13:57:09 Pacific Daylight Time

Name: 200715P1-24, Date: 15-Jul-2020, Time: 15:41:13, ID: 2001436-07 TW24D-20200708 0.28174, Description: TW24D-20200708
L-MeFOSAA

d3-N-MeFOSAA-EIS

F59:MRM of 1 channel,ES-

Total N-MeFOSAA

Total N-MeFOSAA
F57:MRM of 2 channels,ES-
$570>419$
100

d3-N-MeFOSAA-EIS
F59:MRM of 1 channel,ES-

d5-N-EtFOSAA-EIS

d5-N-EtFOSAA-EIS

11CI-PF30UdS
F69:MRM of 2 channels,ES-
$631>451$

13C2-PFDoA-EIS

Quantify Sample Report

Dataset: P:\PFAS5.PRO\RESULTS\200715P1\200715P1-24.qld
Last Altered: Tuesday, July 21, 2020 13:56:42 Pacific Daylight Time
Printed: Tuesday, July 21, 2020 13:57:09 Pacific Daylight Time

Name: 200715P1-24, Date: 15-Jul-2020, Time: 15:41:13, ID: 2001436-07 TW24D-20200708 0.28174, Description: TW24D-20200708

13C2-PFDoA-EIS

F64:MRM of 1 channel,ES-

13C2-PFDoA-EIS
F64:MRM of 1 channel,ES$614.9>569.9$ $3.255 \mathrm{e}+005$

PFTeDA

F74:MRM of 2 channels,ES-
$713.0>669.0$

13C2-PFTeDA-EIS

13C8-PFOS-EIS
F43:MRM of 1 channel,ES-
$507.1>80$
$7.393 e+004$

Quantify Sample Report

Last Altered: Tuesday, July 21, 2020 13:52:34 Pacific Daylight Time

Name: 200714P1-61, Date: 14-Jul-2020, Time: 20:16:53, ID: 2001436-08 TW17D-20200708 0.40597, Description: TW17D-20200708

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	$299.0>80$	1.198 e 4	8.756e2	0.406		2.67	2.67	171	168.719		2.434	NO
2	7 PFHxA	$313.0>269.0$	2.354 e 5	7.104 e 3	0.406		3.20	3.19	414	987.371		14.503	NO
3	9 HFPO-DA	$285.1>168.9$		1.292 e 3	0.406		3.42						YES
4	11 PFHpA	$363.0>319$	5.618 e 4	7.260e3	0.406		3.79	3.80	96.7	196.397		44.950	NO
5	12 ADONA	$376.8>250.9$		7.260e3	0.406		3.89						YES
6	51 13C3-PFBS-EIS	$302.0>98.9$	8.756 e 2		0.406	157.875	2.67	2.67	876	13.662	44.4		
7	57 13C2-PFHxA-EIS	$315.0>270.0$	7.104e3		0.406	1345.825	3.19	3.20	7100	13.003	42.2		
8	53 13C3-HFPO-DA-EIS	$287.0>168.9$	1.292 e 3		0.406	261.275	3.41	3.42	1290	12.185	39.6		
9	59 13C4-PFHpA-EIS	$367.2>321.8$	7.260e3		0.406	1285.879	3.79	3.79	7260	13.907	45.2		
10	59 13C4-PFHpA-EIS	$367.2>321.8$	7.260e3		0.406	1285.879	3.79	3.79	7260	13.907	45.2		
11	-1												
12	13 L-PFHxS	$399>79.9$	6.254 e 4	1.687 e 3	0.406		3.93	3.94	464	989.837		4.053	NO
13	1... Total PFHxS	$399>79.9$	6.254 e 4	1.687 e 3	0.406		3.93		464	989.837			
14	16 L-PFOA	$413>369$	1.077 e 6	8.791 e 3	0.406		4.31	4.31	1530	5760.014 E*		2.660	NO
15	1... Total PFOA	$413>369$	1.077 e 6	8.791 e 3	0.406		4.60		1530	5760.014			
16	21 PFNA	$463.0>418.8$	6.860e2	8.770 e 3	0.406		4.75	4.75	0.978	1.940		12.845	NO
17	61 13C3-PFHxS-EIS	$402>80$	1.687 e 3		0.406	305.184	3.93	3.93	1690	13.613	44.2		
18	61 13C3-PFHxS-EIS	$402>80$	1.687 e 3		0.406	305.184	3.93	3.93	1690	13.613	44.2		
19	69 13C2-PFOA-EIS	$414.9>369.7$	8.791 e3		0.406	1733.544	4.47	4.31	8790	12.492	40.6		
20	69 13C2-PFOA-EIS	$414.9>369.7$	8.791 e 3		0.406	1733.544	4.47	4.31	8790	12.492	40.6		
21	65 13C5-PFNA-EIS	$468.2>422.9$	8.770 e 3		0.406	1672.506	4.96	4.75	8770	12.916	41.9		
22	-1												
23	23 L-PFOS	$499>80$	2.247 e 4	1.702 e 3	0.406		4.83	4.83	165	334.157		2.456	NO
24	1... Total PFOS	499>80	2.247 e 4	1.702 e 3	0.406		4.60		165	334.157			
25	25 9CI-PF30NS	$531>351$		1.702 e 3	0.406		5.04						YES
26	26 PFDA	$513>469$	1.772 e 2	9.739 e 3	0.406		5.13	5.12	0.227	0.616		11.272	YES
27	33 PFUdA	$563.0>519$		6.790 e 3	0.406		5.45						YES
28	71 13C8-PFOS-EIS	$507.1>80$	1.702 e 3		0.406	299.078	4.83	4.83	1700	14.015	45.5		
29	71 13C8-PFOS-EIS	$507.1>80$	1.702 e 3		0.406	299.078	4.83	4.83	1700	14.015	45.5		
30	71 13C8-PFOS-EIS	$507.1>80$	1.702 e 3		0.406	299.078	4.83	4.83	1700	14.015	45.5		
31	73 13C2-PFDA-EIS	$515.1>469.9$	9.739 e 3		0.406	1995.916	5.12	5.13	9740	12.020	39.0		
32	79 13C2-PFUdA-EIS	$565>519.8$	6.790 e 3		0.406	1917.639	5.36	5.45	6790	8.721	28.3		
33	-1												
34	29 L-MeFOSAA	$570>419$		1.357 e 3	0.406		5.27						YES
35	1... Total N-MeFOSAA	570. >419	0.000 e 0	1.357 e 3	0.406		5.19		0.000				
36	31 L-EtFOSAA	583.9>419		9.541 e 2	0.406		5.42						YES

Work Order 2001436

Quantify Sample Report

Dataset: P:IPFAS5.PRO\RESULTS\200714P1\200714P1-61.qld

Last Altered: Tuesday, July 21, 2020 13:52:34 Pacific Daylight Time
Printed:
Tuesday, July 21, 2020 13:52:57 Pacific Daylight Time

Name: 200714P1-61, Date: 14-Jul-2020, Time: 20:16:53, ID: 2001436-08 TW17D-20200708 0.40597, Description: TW17D-20200708

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	1... Total N-EtFOSAA	$583.9>419$	0.000e0	9.541 e 2	0.406		5.37		0.000				
38	35 11CI-PF30UdS	$631>451$		4.403 e 3	0.406		5.67						YES
39	77 d3-N-MeFOSAA-EIS	$573.1>419$	1.357e3		0.406	391.230	5.27	5.27	1360	8.547	27.8		
40	77 d3-N-MeFOSAA-EIS	$573.1>419$	1.357e3		0.406	391.230	5.27	5.27	1360	8.547	27.8		
41	81 d5-N-EtFOSAA-EIS	$589.3>419$	9.541 e 2		0.406	342.385	5.42	5.42	954	6.864	22.3		
42	81 d5-N-EtFOSAA-EIS	$589.3>419$	9.541 e 2		0.406	342.385	5.42	5.42	954	6.864	22.3		
43	83 13C2-PFDoA-EIS	$614.9>569.9$	4.403e3		0.406	2303.973	5.87	5.73	4400	4.708	15.3		
44	-1												
45	37 PFDoA	612.9 > 569.0		4.403 e 3	0.406		5.73						YES
46	39 PFTrDA	$662.9>618.9$		4.403 e 3	0.406		5.97						YES
47	41 PFTeDA	$713.0>669.0$		9.235 e 2	0.406		6.17						YES
48	1... TDCA	$498.3>106.9$			0.406		4.47						YES
49	71 13C8-PFOS-EIS	$507.1>80$	1.702e3		0.406	299.078	4.83	4.83	1700	14.015	45.5		
50	83 13C2-PFDoA-EIS	$614.9>569.9$	4.403 e 3		0.406	2303.973	5.87	5.73	4400	4.708	15.3		
51	83 13C2-PFDoA-EIS	$614.9>569.9$	4.403e3		0.406	2303.973	5.87	5.73	4400	4.708	15.3		
52	89 13C2-PFTeDA-EIS	$715.1>669.7$	9.235e2		0.406	2242.342	6.18	6.17	923	1.014	3.3		

Quantify Sample Report

Last Altered: Tuesday, July 21, 2020 13:52:34 Pacific Daylight Time
Printed: \quad Tuesday, July 21, 2020 13:52:57 Pacific Daylight Time

Method: P:|PFAS5.PRO\MethDB\NEW_PFAS_80C_071420.mdb 14 Jul 2020 15:40:52

Calibration: P:\PFAS5.PRO\CurveDB\C18_VAL-PFAS_Q5_07-14-20.cdb 15 Jul 2020 08:25:12

Name: 200714P1-61, Date: 14-Jul-2020, Time: 20:16:53, ID: 2001436-08 TW17D-20200708 0.40597, Description: TW17D-20200708

PFBS		
	F11:MRM of 2 channels,ES-	
		$299.0>80$
${ }^{100}$	PFBS	$3.352 \mathrm{e}+005$
	2.67	
	1.20 e 4	
\%-	333770	
	bb	
	16291.57	

13C3-PFBS-EIS

F12:MRM of 1 channel,ES-

PFHxA

PFHxA		
F13:MRM of 2 channels,ES-		
		313.0 > 269.0
	PFHxA	$5.710 \mathrm{e}+006$
1007	3.19	
	2.35 e 5	
\%-	5687330	
	bb	
	5687330.00	

100	F13:MRM of 2 channels,ES-	
	PFHxA	$3.952 \mathrm{e}+005$
	3.20	
	1.62 e 4	
\%-	393832	
	bb	
	393832.00	
	ттाтт	Tr min
	3.0003.	3.400

13C2-PFHxA-EIS

HFPO-DA

PFHpA

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES367.2 > 321.8 $2.028 \mathrm{e}+005$

ADONA

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES367.2 > 321.8

Quantify Sample Report

Printed: Tuesday, July 21, 2020 13:52:57 Pacific Daylight Time

Name: 200714P1-61, Date: 14-Jul-2020, Time: 20:16:53, ID: 2001436-08 TW17D-20200708 0.40597, Description: TW17D-20200708
L-PFHxS
F23:MRM of 2 channels,ES-
$399>79.9$
$1.384 \mathrm{e}+006$

13C3-PFHxS-EIS

L-PFOA

F26:MRM of 2 channels,ES- $\begin{array}{r}413>369 \\ 2.423 \mathrm{e}+007\end{array}$

Total PFHxS

Total PFHxS
F23:MRM of 2 channels,ES-
$399>79.9$
Total PFHxS
F23:MRM of 2 channels,ES-
$399>79.9$ $1.384 \mathrm{e}+006$

13C3-PFHxS-EIS

13C2-PFOA-EIS
F27:MRM of 1 channel,ES$414.9>369.7$ $2.396 e+005$

Total PFOA

F26:MRM of 2 channels,ES-
$413>369$
$2.423 \mathrm{e}+007$

13C2-PFOA-EIS
F27:MRM of 1 channel,ES$414.9>369.7$ $2.396 e+005$

PFNA

13C5-PFNA-EIS
F36:MRM of 1 channel,ES-
$468.2>422.9$

Quantify Sample Report

Last Altered: Tuesday, July 21, 2020 13:52:34 Pacific Daylight Time
Printed: Tuesday, July 21, 2020 13:52:57 Pacific Daylight Time

Name: 200714P1-61, Date: 14-Jul-2020, Time: 20:16:53, ID: 2001436-08 TW17D-20200708 0.40597, Description: TW17D-20200708

13C8-PFOS-EIS

F43:MRM of $\begin{array}{r}\text { channel,ES- } \\ 507.1>80 \\ 4.694 \mathrm{e}+004\end{array}$
F43:MRM of $\begin{array}{r}\text { channel,ES- } \\ 507.1>80 \\ 4.694 \mathrm{e}+004\end{array}$
F43:MRM of $\begin{array}{r}\text { channel,ES- } \\ 507.1>80 \\ 4.694 \mathrm{e}+004\end{array}$

Total PFOS

F40:MRM of 2 channels,ES-

13C8-PFOS-EIS

F43:MRM of $\begin{array}{r}\text { channel,ES- } \\ 507.1>80 \\ 4.694 \mathrm{e}+004\end{array}$
F43:MRM of $\begin{array}{r}\text { channel,ES- } \\ 507.1>80 \\ 4.694 \mathrm{e}+004\end{array}$
F43:MRM of $\begin{array}{r}\text { channel,ES- } \\ 507.1>80 \\ 4.694 \mathrm{e}+004\end{array}$

9CI-PF30NS

13C8-PFOS-EIS

F45:MRM of 2 channels,ES-

F55:MRM of 2 channels,ES-

13C2-PFUdA-EIS

Quantify Sample Report

Last Altered: Tuesday, July 21, 2020 13:52:34 Pacific Daylight Time
Printed: Tuesday, July 21, 2020 13:52:57 Pacific Daylight Time

Name: 200714P1-61, Date: 14-Jul-2020, Time: 20:16:53, ID: 2001436-08 TW17D-20200708 0.40597, Description: TW17D-20200708

L-MeFOSAA

F57:MRM of 2 channels,ES-

d3-N-MeFOSAA-EIS

F59:MRM of 1 channel,ES-

Total N-MeFOSAA

F57:MRM of 2 channels,ES-

d3-N-MeFOSAA-EIS

L-EtFOSAA

F60:MRM of 2 channels,ES-
100

$$
\begin{array}{r}
\text { F60:MRM of } 2 \text { channels,ES- } \\
583.9>526 \\
9.070 \mathrm{e}+001
\end{array}
$$

d5-N-EtFOSAA-EIS

Total N-EtFOSAA
F60:MRM of 2 channels,ES-
$583.9>419$
100

d5-N-EtFOSAA-EIS

13C2-PFDoA-EIS
F64:MRM of 1 channel,ES-

$$
614.9>569.9
$$

Quantify Sample Report

Dataset: P:\PFAS5.PRO\RESULTS\200714P1\200714P1-61.qld
Last Altered: Tuesday, July 21, 2020 13:52:34 Pacific Daylight Time Printed: Tuesday, July 21, 2020 13:52:57 Pacific Daylight Time

Name: 200714P1-61, Date: 14-Jul-2020, Time: 20:16:53, ID: 2001436-08 TW17D-20200708 0.40597, Description: TW17D-20200708

PFDoA

F63:MRM of 2 channels,ES-
$612.9>569.0$
$5.667 \mathrm{e}+002$

13C2-PFDoA-EIS
F64:MRM of 1 channel,ES-
 $1.187 e+005$

PFTrDA

13C2-PFDoA-EIS
F64:MRM of 1 channel,ES$614.9>569.9$ $1.187 e+005$

PFTeDA

13C2-PFTeDA-EIS

F75:MRM of 2 channels,ES-
$715.1>669.7$ $2.372 \mathrm{e}+004$

TDCA

13C8-PFOS-EIS

Quantify Sample Report

Dataset: P:\PFAS5.PRO\RESULTS\200715P1\200715P1-25.qld

Last Altered: Thursday, July 16, 2020 15:44:46 Pacific Daylight Time
*ug/L
Printed: Monday, July 20, 2020 09:39:30 Pacific Daylight Time

Name: 200715P1-25, Date: 15-Jul-2020, Time: 15:51:49, ID: 2001436-08@5X TW17D-20200708 0.40597, Description: TW17D-20200708

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	16 L-PFOA	$413>369$	2.258 e 5	1.815 e 3	0.406		4.28	1.555	3.875		2.678	NO
2	1... Total PFOA	$413>369$	2.258 e 5	1.815 e 3	0.406			1.555	3.875			
3	69 13C2-PFOA-EIS	$414.9>369.7$	1.815 e 3		0.406	1519.812	4.28	1815.006	2.942	9553.8	47.77	
4	69 13C2-PFOA-EIS	$414.9>369.7$	1.815 e 3		0.406	1519.812	4.28	1815.006	2.942	9553.8		
5	-1											

Quantify Sample Report

Dataset: P:\PFAS5.PRO\RESULTS\200715P1\200715P1-25.qld
Last Altered: Thursday, July 16, 2020 15:44:46 Pacific Daylight Time
Printed: Monday, July 20, 2020 09:39:30 Pacific Daylight Time

Method: P:|PFAS5.PRO\MethDB\NEW_PFAS_80C_071520.mdb 15 Jul 2020 14:50:21

Calibration: P:\PFAS5.PRO\CurveDB\C̄18_VAL-PFAS_Q5_07-15-20.cdb 16 Jul 2020 10:32:09

Name: 200715P1-25, Date: 15-Jul-2020, Time: 15:51:49, ID: 2001436-08@5X TW17D-20200708 0.40597, Description: TW17D-20200708

L-PFOA

200715P1-25 Smooth(Mn,1x2)

TW17D-20200708 2001436-08@5X TW17D-20200708 0.40597

200715P1-25 Smooth(Mn,1x2)
TW17D-20200708 2001436-08@5X TW17D-20200708 0.40597

13C2-PFOA-EIS

200715P1-25 Smooth(Mn,1x2)
TW17D-20200708 2001436-08@5X TW17D-20200708 0.40597

Total PFOA

200715P1-25 Smooth(Mn,1x2)
F26:MRM of 2 channels,ES
TW17D-20200708 2001436-08@5X TW17D-20200708 0.40597

200715P1-25 Smooth(Mn, 1x2)
F26:MRM of 2 channels,ES-
TW17D-20200708 2001436-08@5X TW17D-20200708 $0.40597 \quad 413>169$

13C2-PFOA-EIS
200715P1-25 Smooth(Mn,1x2)
TW17D-20200708 2001436-08@5X TW17D-20200708 0.40597

[^0]
INSTRUMENT BLANKS (IB)

AND

CONTINUTING CALIBRATION VERIFICATIONS (CCV)

Dataset:

Untitled
Wednesday, July 15, 2020 08:45:05 Pacific Daylight Time Printed: Wednesday, July 15, 2020 08:45:14 Pacific Daylight Time

Method: D:|PFAS5.PRO\MethDB\NEW_PFAS_80C_071420.mdb 14 Jul 2020 15:40:52

Calibration: D:IPFAS5.PRO\CurveDBIC18_VAL-PFAS_Q5_07-14-20.cdb 15 Jul 2020 08:25:12

Name: 200714P1-15, Date: 14-Jul-2020, Time: 12:10:00, ID: IB, Description: IB

13C3-PFBA-EIS
IB IBF3:MRM of 1 channel,ES-

F6:MRM of 2 channels,ES-

13C3-PFBS-EIS
F12:MRM of 1 channel,ES$302.0>98.9$ $4.777 e+004$

13C3-PFPeA-EIS
IB IBF8:MRM of 1 channel,ES-

13C3-PFPeA-EIS

IB IBF8:MRM of 1 channel,ES-

13C3-PFBS-EIS

F12:MRM of 1 channel,ES-

13C2-4:2 FTS-EIS
F17:MRM of 2 channels,ES$329.0>80.8$

Dataset:
 Untitled

Last Altered: Printed:

Wednesday, July 15, 2020 08:45:05 Pacific Daylight Time Wednesday, July 15, 2020 08:45:14 Pacific Daylight Time

Name: 200714P1-15, Date: 14-Jul-2020, Time: 12:10:00, ID: IB, Description: IB

PFHxA
 F13:MRM of 2 channels,ES-
 $313.0>269.0$ $100 \quad 3.21 \quad 3.459 \mathrm{e}+003$

F13:MRM of 2 channels,ES-

13C2-PFHxA-EIS

F14:MRM of 1 channel,ES$315.0>270.0$
$4.077 \mathrm{e}+005$

PFPeS

$\begin{array}{rrr}2 & \text { F9:MRM of } 3 \text { channels,ES- } \\ 285.1>168.9 \\ 4.297 e+001\end{array}$

13C3-PFBS-EIS

13C3-HFPO-DA-EIS

F20:MRM of 2 channels,ES$3.93^{363.0}>169.0$ 100-3.72 $\quad 2.513 e^{3.93}+001$

13C4-PFHpA-EIS

F21-MRM of 1 channel ES

13C4-PFHpA-EIS

F22:MRM of 2 channels,ES-

13C4-PFHpA-EIS

Dataset:
 Untitled

Last Altered:
Wednesday, July 15, 2020 08:45:05 Pacific Daylight Time Printed: Wednesday, July 15, 2020 08:45:14 Pacific Daylight Time

Name: 200714P1-15, Date: 14-Jul-2020, Time: 12:10:00, ID: IB, Description: IB

L-PFHxS
F23:MRM of 2 channels,ES-
$399>79.9$
$4.049 \mathrm{e}+001$

13C3-PFHxS-EIS

F24:MRM of 1 channel,ES-

F29:MRM of 2 channels,ES-

13C2-6:2 FTS-EIS

F30:MRM of 1 channel,ES-
$429.0>79.7$

F26:MRM of 2 channels,ES-

F34:MRM of 2 channels,ES-

13C2-PFOA-EIS

F27:MRM of 1 channel,ES$414.9>369.7$ $6.782 \mathrm{e}+005$

F32:MRM of 2 channels,ES-

13C8-PFOS-EIS
F43:MRM of 1 channel,ES$507.1>80$

F31:MRM of 2 channels,ES-

$$
\begin{aligned}
& \text { F31:MRM of } 2 \text { channels, ES. } \\
& 440.9>316.9
\end{aligned}
$$

13C5-PFNA-EIS

F36:MRM of 1 channel,ES-
$468.2>422.9$

Dataset:
 Untitled

Last Altered:
Wednesday, July 15, 2020 08:45:05 Pacific Daylight Time Printed: Wednesday, July 15, 2020 08:45:14 Pacific Daylight Time

Name: 200714P1-15, Date: 14-Jul-2020, Time: 12:10:00, ID: IB, Description: IB

PFNA
F35:MRM of 2 channels,ES-
$463.0>418.8$
$7.125 \mathrm{e}+002$

13C5-PFNA-EIS

F36:MRM of 1 channel,ES$468.2>422.9$
$5.936 \mathrm{e}+005$

$$
100
$$

13C8-PFOSA-EIS

F40:MRM of 2 channels,ES-

13C8-PFOS-EIS

F52:MRM of 2 channels,ES-

13C8-PFOS-EIS

F43:MRM of 1 channel,ES$507.1>80$

F45:MRM of 2 channels,ES-

13C2-PFDA-EIS

Dataset:
 Untitled

Last Altered:
Wednesday, July 15, 2020 08:45:05 Pacific Daylight Time Printed: Wednesday, July 15, 2020 08:45:14 Pacific Daylight Time

Name: 200714P1-15, Date: 14-Jul-2020, Time: 12:10:00, ID: IB, Description: IB

F54:MRM of 2 channels,ES-

d3-N-MeFOSAA-EIS

d5-N-EtFOSAA-EIS

F61:MRM of 1 channel,ES-
F61:MRM of 1 channel,ES-
$589.3>419$

13C2-PFUdA-EIS

F56:MRM of 1 channel ES

13C8-PFOS-EIS

11Cl-PF30UdS

F69:MRM of 2 channels,ES-

13C2-PFDoA-EIS

Dataset:
 Untitled

Last Altered:
Wednesday, July 15, 2020 08:45:05 Pacific Daylight Time Printed: Wednesday, July 15, 2020 08:45:14 Pacific Daylight Time

Name: 200714P1-15, Date: 14-Jul-2020, Time: 12:10:00, ID: IB, Description: IB

10:2 FTS

F67:MRM of 2 channels,ES$626.9>80.7$ $3.789 e+002$
 5.7506 .0006 .250

13C2-10:2 FTS-EIS

F70:MRM of 1 channel,ES$632.9>80.0$ $4.393 \mathrm{e}+004$

13C2-PFDoA-EIS

13C2-PFDoA-EIS
F64:MRM of 1 channel,ES-

13C2-PFTeDA-EIS

Dataset:
 Untitled

Last Altered:
Wednesday, July 15, 2020 08:45:05 Pacific Daylight Time Printed: Wednesday, July 15, 2020 08:45:14 Pacific Daylight Time

Name: 200714P1-15, Date: 14-Jul-2020, Time: 12:10:00, ID: IB, Description: IB

N-EtFOSA
F49:MRM of 2 channels,ES-
$526.1>168.9$
$4.598 \mathrm{e}+002$

F49:MRM of 2 channels,ES

d5-N-ETFOSA-EIS
F53:MRM of 1 channel,ES $531.1>168.9$ $6.394 \mathrm{e}+005$

13C2-PFHxDA-EIS

d7-N-MeFOSE-EIS

Dataset:
 Untitled

Wednesday, July 15, 2020 08:45:05 Pacific Daylight Time Printed: Wednesday, July 15, 2020 08:45:14 Pacific Daylight Time

Name: 200714P1-15, Date: 14-Jul-2020, Time: 12:10:00, ID: IB, Description: IB

13C3-PFBS-RSD

13C2-6:2 FTS-RSD

F30:MRM of 1 channel,ES$429.0>79.7$ $6.957 e+004$

13C5-PFNA-RSD

13C8-PFOSA-RSD

F42:MRM of 1 channel,ES-
$506>78$

13C2-PFOA-RSD

F27:MRM of 1 channel,ES$414.9>369.7$

Dataset:
 Untitled

Wednesday, July 15, 2020 08:45:05 Pacific Daylight Time Printed: Wednesday, July 15, 2020 08:45:14 Pacific Daylight Time

Name: 200714P1-15, Date: 14-Jul-2020, Time: 12:10:00, ID: IB, Description: IB

13C2-8:2 FTS-RSD

d3-N-MeFOSA-RSD

F47:MRM of 1 channel,ES $515.2>168.9$ $5.637 e+005$

13C2-PFTeDA-RSD

d5-N-ETFOSA-RSD
F53:MRM of 1 channel,ES$531.1>168.9$ $6.394 \mathrm{e}+005$

d9-N-EtFOSE-RSD
F71:MRM of 1 channel,ES $639.2>58.8$ $7.319 \mathrm{e}+005$

Dataset:
 Untitled

Wednesday, July 15, 2020 08:45:05 Pacific Daylight Time Printed: Wednesday, July 15, 2020 08:45:14 Pacific Daylight Time

Name: 200714P1-15, Date: 14-Jul-2020, Time: 12:10:00, ID: IB, Description: IB

13C4-PFBA
 IB IBF4:MRM of 1 channel,ES-
 100

13C6-PFDA

F48:MRM of 1 channel,ES$519.1>473.7$
$3.399 \mathrm{e}+002$
100

13C7-PFUdA

F58:MRM of 1 channel,ES-
$570.1>524.8$
$4.841 \mathrm{e}+002$
F58:MRM of $\begin{array}{r}1 \text { channel,ES- } \\ 570.1>524.8 \\ 4.841 \mathrm{e}+002\end{array}$
F58:MRM of $\begin{array}{r}1 \text { channel,ES- } \\ 570.1>524.8 \\ 4.841 \mathrm{e}+002\end{array}$

Dataset:
 Untitled
 Last Altered: Wednesday, July 15, 2020 08:45:05 Pacific Daylight Time Printed: Wednesday, July 15, 2020 08:45:14 Pacific Daylight Time

Name: 200714P1-15, Date: 14-Jul-2020, Time: 12:10:00, ID: IB, Description: IB

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
1	1 PFBA	$213.0>168.8$		9513.212	1.00						NO		
2	2 PFPrs	$249>80$		1992.017	1.00						NO		YES
3	3 3:3 FTCA	$240.9>176.9$		17131.500	1.00						NO		YES
4	4 PFPeA	$263.1>218.9$		17131.500	1.00						NO		
5	5 PFBS	$299.0>80$		1992.017	1.00						NO		YES
6	6 4:2 FTS	$326.9>306.9$		2153.246	1.00						NO		YES
7	47 13C3-PFBA-EIS	$216.1>171.8$	9513.212		1.00	1.44	9513.212	12.500	14.5	116.1	NO		
8	51 13C3-PFBS-EIS	$302.0>98.9$	1992.017		1.00	2.67	1992.017	12.500	12.6	100.9	NO		
9	49 13C3-PFPeA-EIS	266.0 > 221.8	17131.500		1.00	2.39	17131.500	12.500	12.9	103.2	NO		
10	49 13C3-PFPeA-EIS	266.0 > 221.8	17131.500		1.00	2.39	17131.500	12.500	12.9	103.2	NO		
11	51 13C3-PFBS-EIS	$302.0>98.9$	1992.017		1.00	2.67	1992.017	12.500	12.6	100.9	NO		
12	55 13C2-4:2 FTS-EIS	$329.0>80.8$	2153.246		1.00	3.11	2153.246	12.500	14.0	111.8	NO		
13	-1												
14	7 PFHxA	313.0 > 269.0	34.478	17163.252	1.00	2.93	0.025				NO		YES
15	8 PFPeS	349.>80		1992.017	1.00						NO		YES
16	9 HFPO-DA	$285.1>168.9$		3305.184	1.00						NO		YES
17	10 5:3 FTCA	$340.9>236.9$	5.703	16015.530	1.00	4.02	0.004		0.0648		NO		YES
18	11 PFHpA	$363.0>319$	18.997	16015.530	1.00	3.92	0.015				NO		YES
19	12 ADONA	376.8 > 250.9		16015.530	1.00						NO		YES
20	57 13C2-PFHxA-EIS	$315.0>270.0$	17163.252		1.00	3.20	17163.252	12.500	12.8	102.0	NO		
21	51 13C3-PFBS-EIS	$302.0>98.9$	1992.017		1.00	2.67	1992.017	12.500	12.6	100.9	NO		
22	53 13C3-HFPO-DA-EIS	287.0 > 168.9	3305.184		1.00	3.41	3305.184	12.500	12.7	101.2	NO		
23	59 13C4-PFHpA-EIS	367.2 > 321.8	16015.530		1.00	3.79	16015.530	12.500	12.5	99.6	NO		
24	59 13C4-PFHpA-EIS	367.2 > 321.8	16015.530		1.00	3.79	16015.530	12.500	12.5	99.6	NO		
25	59 13C4-PFHpA-EIS	367.2 > 321.8	16015.530		1.00	3.79	16015.530	12.500	12.5	99.6	NO		
26	-1												
27	13 L-PFHxS	$399>79.9$		4131.388	1.00						NO		YES
28	15 6:2 FTS	$427.0>407$		2575.395	1.00						NO		YES
29	16 L-PFOA	$413>369$	101.135	22652.164	1.00	4.31	0.056		0.0658		NO	6.534	YES
30	18 PFechS	$461>381.0$		22652.164	1.00						NO		YES
31	19 PFHpS	$449.0>80$		3845.086	1.00						NO		YES
32	20 7:3 FTCA	$440.9>336.9$		20484.012	1.00						NO		YES
33	61 13C3-PFHxS-EIS	$402>80$	4131.388		1.00	3.93	4131.388	12.500	13.5	108.3	NO		
34	63 13C2-6:2 FTS-EIS	$429.0>79.7$	2575.395		1.00	4.25	2575.395	12.500	13.0	103.6	NO		
35	69 13C2-PFOA-EIS	414.9 > 369.7	22652.164		1.00	4.31	22652.164	12.500	13.1	104.5	NO		
36	69 13C2-PFOA-EIS	414.9 > 369.7	22652.164		1.00	4.31	22652.164	12.500	13.1	104.5	NO		
	Work Order 2001436											Page 123 of 873	

Dataset:

Untitled
Last Altered: Wednesday, July 15, 2020 08:45:05 Pacific Daylight Time

Printed:
 Wednesday, July 15, 2020 08:45:14 Pacific Daylight Time

Name: 200714P1-15, Date: 14-Jul-2020, Time: 12:10:00, ID: IB, Description: IB

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery	Ion Ratio	Ratio Out?
37	71 13C8-PFOS-EIS	$507.1>80$	3845.086		1.00	4.84	3845.086	12.500	12.9	102.9	NO		
38	65 13C5-PFNA-EIS	468.2 > 422.9	20484.012		1.00	4.75	20484.012	12.500	12.2	98.0	NO		
39	-1												
40	21 PFNA	$463.0>418.8$	16.722	20484.012	1.00	4.71	0.010				NO		YES
41	22 PFOSA	$498>78$	5.786	9497.403	1.00	4.79	0.008		0.0200		NO		YES
42	23 L-PFOS	$499>80$		3845.086	1.00						NO		YES
43	259 Cl -PF30NS	$531>351$		3845.086	1.00						NO		YES
44	26 PFDA	$513>469$		25875.230	1.00						NO		YES
45	27 8:2 FTS	$526.8>506.9$		2048.711	1.00						NO		YES
46	65 13C5-PFNA-EIS	$468.2>422.9$	20484.012		1.00	4.75	20484.012	12.500	12.2	98.0	NO		
47	67 13C8-PFOSA-EIS	$506>78$	9497.403		1.00	4.80	9497.403	12.500	13.3	106.2	NO		
48	71 13C8-PFOS-EIS	$507.1>80$	3845.086		1.00	4.84	3845.086	12.500	12.9	102.9	NO		
49	71 13C8-PFOS-EIS	$507.1>80$	3845.086		1.00	4.84	3845.086	12.500	12.9	102.9	NO		
50	73 13C2-PFDA-EIS	$515.1>469.9$	25875.230		1.00	5.13	25875.230	12.500	13.0	103.7	NO		
51	75 13C2-8:2 FTS-EIS	$529>80$	2048.711		1.00	5.10	2048.711	12.500	11.7	93.6	NO		
52	-1												
53	28 PFNS	$549>80$		3845.086	1.00						NO		YES
54	29 L-MeFOSAA	$570>419$	7.000	4908.206	1.00	5.45	0.018		0.0207		NO		YES
55	$31 \mathrm{~L}-\mathrm{EtFOSAA}$	$583.9>419$		4413.458	1.00						NO		YES
56	33 PFUdA	$563.0>519$	82.139	24818.340	1.00	5.45	0.041				NO		YES
57	34 PFDS	$598.8>79.9$		3845.086	1.00						NO		YES
58	3511 Cl -PF30UdS	$631>451$		28920.432	1.00						NO		YES
59	71 13C8-PFOS-EIS	$507.1>80$	3845.086		1.00	4.84	3845.086	12.500	12.9	102.9	NO		
60	77 d3-N-MeFOSAA-EIS	$573.1>419$	4908.206		1.00	5.27	4908.206	12.500	12.5	100.4	NO		
61	81 d5-N-EtFOSAA-EIS	$589.3>419$	4413.458		1.00	5.43	4413.458	12.500	12.9	103.1	NO		
62	79 13C2-PFUdA-EIS	$565>519.8$	24818.340		1.00	5.45	24818.340	12.500	12.9	103.5	NO		
63	71 13C8-PFOS-EIS	$507.1>80$	3845.086		1.00	4.84	3845.086	12.500	12.9	102.9	NO		
64	83 13C2-PFDoA-EIS	$614.9>569.9$	28920.432		1.00	5.73	28920.432	12.500	12.6	100.4	NO		
65	-1												
66	36 10:2 FTS	$626.9>607$	6.495	1627.563	1.00	5.73	0.050		0.117		NO	0.408	NO
67	37 PFDoA	$612.9>569.0$	318.598	28920.432	1.00	5.73	0.138		0.0426		NO		YES
68	38 N-MeFOSA	$512.1>168.9$	12.792	23015.049	1.00	5.71	0.083				NO		YES
69	39 PFTrDA	$662.9>618.9$		28920.432	1.00						NO		YES
70	40 PFDoS	$699>80$		28326.213	1.00						NO		YES
71	41 PFTeDA	713.0 > 669.0	53.048	28326.213	1.00	6.17	0.023				NO		YES
72	85 13C2-10:2 FTS-EIS	$632.9>80.0$	1627.563		1.00	5.71	1627.563	12.500	13.6	109.1	NO		
	Work Order 2001436											Page	24 of 873

Dataset:

Untitled
Last Altered: Wednesday, July 15, 2020 08:45:05 Pacific Daylight Time Printed: Wednesday, July 15, 2020 08:45:14 Pacific Daylight Time

Name: 200714P1-15, Date: 14-Jul-2020, Time: 12:10:00, ID: IB, Description: IB

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
73	83 13C2-PFDoA-EIS	$614.9>569.9$	28920.432		1.00	5.73	28920.432	12.500	12.6	100.4	NO		
74	87 d3-N-MeFOSA-EIS	$515.2>168.9$	23015.049		1.00	5.73	23015.049	149.200	129	86.3	NO		
75	83 13C2-PFDoA-EIS	$614.9>569.9$	28920.432		1.00	5.73	28920.432	12.500	12.6	100.4	NO		
76	89 13C2-PFTeDA-EIS	$715.1>669.7$	28326.213		1.00	6.18	28326.213	12.500	12.6	101.1	NO		
77	89 13C2-PFTeDA-EIS	$715.1>669.7$	28326.213		1.00	6.18	28326.213	12.500	12.6	101.1	NO		
78	-1												
79	$42 \mathrm{~N}-\mathrm{EtFOSA}$	$526.1>168.9$	7.015	26932.115	1.00	6.10	0.039				NO		YES
80	43 PFHxDA	$813>769$	241.693	29006.180	1.00	6.49	0.104				NO	37.414	NO
81	44 PFODA	$913.1>868.8$	103.514	29006.180	1.00	6.72	0.045		0.0364		NO		
82	45 N -MeFOSE	$616.1>58.9$	28.298	23923.449	1.00	6.33	0.176				NO		
83	46 N -EtFOSE	$630.1>58.9$	13.771	27124.117	1.00	6.63	0.076				NO		
84	48 13C3-PFBA-RSD	$216.1>171.8$	9513.212	107.341	1.00	1.44	1107.826	12.500	1190	9495.5	YES		
85	91 d5-N-ETFOSA-EIS	$531.1>168.9$	26932.115		1.00	6.14	26932.115	149.200	132	88.2	NO		
86	93 13C2-PFHxDA-EIS	$815>769.7$	29006.180		1.00	6.49	29006.180	12.500	11.8	94.5	NO		
87	93 13C2-PFHxDA-EIS	$815>769.7$	29006.180		1.00	6.49	29006.180	12.500	11.8	94.5	NO		
88	95 d7-N-MeFOSE-EIS	$623.1>58.9$	23923.449		1.00	6.31	23923.449	149.200	134	90.1	NO		
89	97 d9-N-EtFOSE-EIS	$639.2>58.8$	27124.117		1.00	6.45	27124.117	149.200	132	88.5	NO		
90	50 13C3-PFPeA-RSD	$266.0>221.8$			1.00			12.500			NO		
91	-1												
92	52 13C3-PFBS-RSD	$302.0>98.9$			1.00			12.500			NO		
93	54 13C3-HFPO-DA-RSD	$287.0>168.9$			1.00			12.500			NO		
94	56 13C2-4:2 FTS-RSD	$329.0>80.8$			1.00			12.500			NO		
95	58 13C2-PFHxA-RSD	$315.0>270.0$			1.00			12.500			NO		
96	60 13C4-PFHpA-RSD	$367.2>321.8$			1.00			12.500			NO		
97	62 13C3-PFHxS-RSD	$402>80$			1.00			12.500			NO		
98	64 13C2-6:2 FTS-RSD	$429.0>79.7$	2575.395	55.125	1.00	4.25	583.990	12.500	1080	8614.1	YES		
99	66 13C5-PFNA-RSD	$468.2>422.9$	20484.012	6.128	1.00	4.75	41783.641	12.500	44400	35505...	YES		
100	68 13C8-PFOSA-RSD	$506>78$	9497.403	17.706	1.00	4.80	6704.933	12.500	13600	10897...	YES		
101	70 13C2-PFOA-RSD	$414.9>369.7$			1.00			12.500			NO		
102	72 13C8-PFOS-RSD	$507.1>80$	3845.086	55.125	1.00	4.84	871.902	12.500	1100	8839.4	YES		
103	74 13C2-PFDA-RSD	$515.1>469.9$	25875.230	9.614	1.00	5.13	33642.644	12.500	30000	24015...	YES		
104	-1												
105	76 13C2-8:2 FTS-RSD	$529>80$	2048.711	55.125	1.00	5.10	464.560	12.500	1030	8237.2	YES		
106	$78 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$-RSD	$573.1>419$	4908.206	17.706	1.00	5.27	3465.073	12.500	13200	10564...	YES		
107	80 13C2-PFUdA-RSD	$565>519.8$	24818.340	17.706	1.00	5.45	17521.137	12.500	13700	10959...	YES		
108	$82 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}-\mathrm{RSD}$	$589.3>419$	4413.458	17.706	1.00	5.43	3115.793	12.500	14300	11406...	YES		

Work Order 2001436

Dataset: Untitled
 Last Altered: Wednesday, July 15, 2020 08:45:05 Pacific Daylight Time Printed: Wednesday, July 15, 2020 08:45:14 Pacific Daylight Time

Name: 200714P1-15, Date: 14-Jul-2020, Time: 12:10:00, ID: IB, Description: IB

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery	Ion Ratio	Ratio Out?
109	84 13C2-PFDoA-RSD	614.9 > 569.9	28920.432	9.614	1.00	5.73	37601.976	12.500	29300	23413...	YES		
110	86 13C2-10:2 FTS-RSD	$632.9>80.0$	1627.563	55.125	1.00	5.71	369.062	12.500	1180	9414.1	YES		
111	88 d3-N-MeFOSA-RSD	$515.2>168.9$	23015.049	17.706	1.00	5.73	16248.058	149.200	140000	93738.9	YES		
112	90 13C2-PFTeDA-RSD	$715.1>669.7$	28326.213	17.706	1.00	6.18	19997.609	12.500	13200	10541...	YES		
113	92 d5-N-ETFOSA-RSD	$531.1>168.9$	26932.115	17.706	1.00	6.14	19013.410	149.200	139000	93447.5	YES		
114	94 13C2-PFHxDA-RSD	$815>769.7$	29006.180	17.706	1.00	6.49	20477.649	12.500	12200	97590.7	YES		
115	96 d7-N-MeFOSE-RSD	$623.1>58.9$	23923.449	17.706	1.00	6.31	16889.366	149.200	137000	92057.3	YES		
116	98 d9-N-EtFOSE-RSD	$639.2>58.8$	27124.117	17.706	1.00	6.45	19148.959	149.200	137000	91562.8	YES		
117	-1												
118	99 13C4-PFBA	$217.0>172.0$	107.341	107.341	1.00	1.44	12.500	12.500	12.5	100.0	NO		
119	1... 13C5-PFHxA	318.0 > 272.9			1.00			12.500			NO		
120	1... 13C8-PFOA	$420.9>376.0$			1.00			12.500			NO		
121	1... 18O2-PFHxS	$403.0>103$			1.00			12.500			NO		
122	1... 13C9-PFNA	$472.2>426.9$	6.128	6.128	1.00	4.75	12.500	12.500	12.5	100.0	NO		
123	1... 13C4-PFOS	$503>79.7$	55.125	55.125	1.00	4.84	12.500	12.500	12.5	100.0	NO		
124	1... 13C6-PFDA	$519.1>473.7$	9.614	9.614	1.00	5.13	12.500	12.500	12.5	100.0	NO		
125	1... 13C7-PFUdA	$570.1>524.8$	17.706	17.706	1.00	5.45	12.500	12.500	12.5	100.0	NO		

Quantify Sample Report

Dataset: D:IPFAS5.PROIRESULTSI200714P11200714P1-42.qld
Last Altered: Wednesday, July 15, 2020 12:49:51 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 12:50:31 Pacific Daylight Time

Name: 200714P1-42, Date: 14-Jul-2020, Time: 16:55:49, ID: ST200714P1-12 PFC CS3 20F1906, Description: PFC CS3 20F1906

	\# Name	Trace	Area	IS Area	wituol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
37	71 13C8-PFOS-EIS	$507.1>80$	3746.411		1.00	4.83	3746.411	12.500	12.5	100.2	NO		
38	65 13C5-PFNA-EIS	$468.2>422.9$	20213.443		1.00	4.75	20213.443	12.500	12.1	96.7	NO		
39	-1												
40	21 PFNA	$463.0>418.8$	20011.354	20213.443	1.00	4.75	12.375	10.000	10.5	104.6	NO	15.007	NO
41	22 PFOSA	$498>78$	5058.499	9221.471	1.00	4.80	6.857	10.000	9.92	99.2	NO	21.229	NO
42	23 L-PFOS	$499>80$	3819.240	3746.411	1.00	4.83	12.743	10.000	10.7	107.2	NO	2.506	NO
43	259 Cl -PF30NS	$531>351$	7569.352	3746.411	1.00	5.05	25.255	10.000	10.1	101.3	NO	30.045	NO
44	26 PFDA	$513>469$	15335.070	24049.006	1.00	5.13	7.971	10.000	10.0	100.3	NO	4.743	NO
45	27 8:2 FTS	$526.8>506.9$	2040.887	2006.211	1.00	5.10	12.716	10.000	10.5	105.3	NO	0.742	NO
4.6	65 13C5-PFNA-EIS	$468.2>422.9$	20213.443		1.00	4.75	20213.443	12.500	12.1	96.7	NO		
47	67 13C8-PFOSA-EIS	$506>78$	9221.471		1.00	4.80	9221.471	12.500	12.9	103.1	NO		
48	71 13C8-PFOS-EIS	$507.1>80$	3746.411		1.00	4.83	3746.411	12.500	12.5	100.2	NO		
49	71 13C8-PFOS-EIS	$507.1>80$	3746.411		1.00	4.83	3746.411	12.500	12.5	100.2	NO		
50	73 13C2-PFDA-EIS	$515.1>469.9$	24049.006		1.00	5.13	24049.006	12.500	12.0	96.4	NO		
51	75 13C2-8:2 FTS-EIS	$529>80$	2006.211		1.00	5.10	2006.211	12.500	11.5	91.6	NO		
52	-1												
53	28 PFNS	$549>80$	3646.590	3746.411	1.00	5.19	12.167	10.000	9.58	95.8	NO	2.359	NO
54	29 L-MeFOSAA	$570>419$	4710.891	5062.860	1.00	5.28	11.631	10.000	9.68	96.8	NO	1.642	NO
55	31 L-EtFOSAA	$583.9>419$	5591.316	4514.753	1.00	5.43	15.481	10.000	9.54	95.4	NO	1.457	NO
56	33 PFUdA	$563.0>519$	18223.477	24315.789	1.00	5.45	9.368	10.000	9.91	99.1	NO	17.464	NO
57	34 PFDS	$598.8>79.9$	3927.310	3746.411	1.00	5.49	13.104	10.000	9.87	98.7	NO	2.273	NO
58	3511 Cl -PF30UdS	$631>451$	5709.067	27613.732	1.00	5.65	2.584	10.000	9.91	99.1	NO	13.645	NO
59	71 13C8-PFOS-EIS	$507.1>80$	3746.411		1.00	4.83	3746.411	12.500	12.5	100.2	NO		
60	77 d3-N-MeFOSAA-EIS	$573.1>419$	5062.860		1.00	5.28	5062.860	12.500	12.9	103.5	NO		
61	81 d5-N-EtFOSAA-EIS	$589.3>419$	4514.753		1.00	5.43	4514.753	12.500	13.2	105.5	NO		
62	79 13C2-PFUdA-EIS	$565>519.8$	24315.789		1.00	5.45	24315.789	12.500	12.7	101.4	NO		
63	71 13C8-PFOS-EIS	$507.1>80$	3746.411		1.00	4.83	3746.411	12.500	12.5	100.2	NO		
64	83 13C2-PFDoA-EIS	$614.9>569.9$	27613.732		1.00	5.73	27613.732	12.500	12.0	95.9	NO		
65	-1												
66	36 10:2 FTS	$626.9>607$	2246.998	1462.479	1.00	5.72	19.205	10.000	10.1	101.2	NO	0.916	NO
67	37 PFDoA	$612.9>569.0$	19736.877	27613.732	1.00	5.73	8.934	10.000	10.0	100.2	NO	10.302	NO
68	38 N-MeFOSA	$512.1>168.9$	10019.475	26494.260	1.00	5.71	56.424	50.000	50.5	101.0	NO	1.969	NO
69	39 PFTrDA	$662.9>618.9$	23114.572	27613.732	1.00	5.97	10.463	10.000	9.80	98.0	NO	105.114	NO
70	40 PFDoS	$699>80$	4257.392	27987.609	1.00	5.99	1.901	10.000	10.8	108.2	NO	2.191	NO
71	41 PFTeDA	$713.0>669.0$	13838.096	27987.609	1.00	6.18	6.180	10.000	10.9	109.2	NO	13.266	NO
72	85 13C2-10:2 FTS-EIS	$632.9>80.0$	1462.479		1.00	5.71	1462.479	12.500	12.3	98.0	NO		

Dataset: D:IPFAS5.PROIRESULTSI200714P11200714P1-42.qld
Last Altered: Wednesday, July 15, 2020 12:49:51 Pacific Daylight Time
Printed:
Wednesday, July 15, 2020 12:50:31 Pacific Daylight Time

Name: 200714P1-42, Date: 14-Jul-2020, Time: 16:55:49, ID: ST200714P1-12 PFC CS3 20F1906, Description: PFC CS3 20F1906

	\# Name	Trace	Area	IS Area	witvol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
73	83 13C2-PFDoA-EIS	$614.9>569.9$	27613.732		1.00	5.73	27613.732	12.500	12.0	95.9	NO		
74	87 d3-N-MeFOSA-EIS	$515.2>168.9$	26494.260		1.00	5.73	26494.260	149.200	148	99.3	NO		
75	83 13C2-PFDoA-EIS	$614.9>569.9$	27613.732		1.00	5.73	27613.732	12.500	12.0	95.9	NO		
76	89 13C2-PFTeDA-EIS	$715.1>669.7$	27987.609		1.00	6.18	27987.609	12.500	12.5	99.9	NO		
77	89 13C2-PFTeDA-EIS	$715.1>669.7$	27987.609		1.00	6.18	27987.609	12.500	12.5	99.9	NO		
78	-1												
79	$42 \mathrm{~N}-\mathrm{EtFOSA}$	$526.1>168.9$	12462.681	31180.166	1.00	6.13	59.635	50.000	52.9	105.8	NO	1.965	NO
80	43 PFHxDA	$813>769$	22772.129	30439.539	1.00	6.49	9.351	10.000	10.4	104.2	NO	28.781	NO
81	44 PFODA	$913.1>868.8$	20013.197	30439.539	1.00	6.72	8.218	10.000	10.6	106.0	NO		
82	45 N -MeFOSE	$616.1>58.9$	10604.813	27100.338	1.00	6.31	58.384	50.000	52.4	104.9	NO		
83	$46 \mathrm{~N}-\mathrm{EtFOSE}$	$630.1>58.9$	10908.526	31114.439	1.00	6.46	52.309	50.000	52.3	104.7	NO		
84	48 13C3-PFBA-RSD	$216.1>171.8$	9414.549	9933.421	1.00	1.44	11.847	12.500	12.7	101.5	NO		
85	$91 \mathrm{~d} 5-\mathrm{N}-E T F O S A-E I S$	$531.1>168.9$	31180.166		1.00	6.14	31180.166	149.200	152	102.1	NO		
86	93 13C2-PFHxDA-EIS	$815>769.7$	30439.539		1.00	6.49	30439.539	12.500	12.4	99.2	NO		
87	93 13C2-PFHxDA-EIS	$815>769.7$	30439.539		1.00	6.49	30439.539	12.500	12.4	99.2	NO		
88	95 d7-N-MeFOSE-EIS	$623.1>58.9$	27100.338		1.00	6.31	27100.338	149.200	152	102.1	NO		
89	$97 \mathrm{d9}$-N-EtFOSE-EIS	$639.2>58.8$	31114.439		1.00	6.45	31114.439	149.200	151	101.5	NO		
90	50 13C3-PFPeA-RSD	$266.0>221.8$	16757.367	20130.887	1.00	2.39	10.405	12.500	12.9	103.3	NO		
91	-1												
92	52 13C3-PFBS-RSD	$302.0>98.9$	1926.445	1628.888	1.00	2.67	14.783	12.500	11.9	95.0	NO		
93	54 13C3-HFPO-DA-RSD	$287.0>168.9$	3352.966	20130.887	1.00	3.41	2.082	12.500	13.5	108.1	NO		
94	56 13C2-4:2 FTS-RSD	$329.0>80.8$	1986.557	1628.888	1.00	3.11	15.245	12.500	12.0	95.7	NO		
95	58 13C2-PFHxA-RSD	$315.0>270.0$	17166.529	20130.887	1.00	3.20	10.659	12.500	13.4	106.9	NO		
96	60 13C4-PFHpA-RSD	$367.2>321.8$	16664.188	20130.887	1.00	3.79	10.347	12.500	13.7	109.6	NO		
97	62 13C3-PFHxS-RSD	$402>80$	4012.806	1628.888	1.00	3.93	30.794	12.500	12.4	99.5	NO		
98	64 13C2-6:2 FTS-RSD	$429.0>79.7$	2634.156	4766.815	1.00	4.25	6.908	12.500	12.7	101.9	NO		
99	66 13C5-PFNA-RSD	$468.2>422.9$	20213.443	21485.840	1.00	4.75	11.760	12.500	12.5	99.9	NO		
100	68 13C8-PFOSA-RSD	$506>78$	9221.471	18603.139	1.00	4.80	6.196	12.500	12.6	100.7	NO		
101	70 13C2-PFOA-RSD	$414.9>369.7$	21746.898	17704.627	1.00	4.31	15.354	12.500	12.3	98.7	NO		
102	72 13C8-PFOS-RSD	$507.1>80$	3746.411	4766.815	1.00	4.83	9.824	12.500	12.4	99.6	NO		
103	74 13C2-PFDA-RSD	$515.1>469.9$	24049.006	21199.566	1.00	5.13	14.180	12.500	12.7	101.2	NO		
104	-1												
105	76 13C2-8:2 FTS-RSD	$529>80$	2006.211	4766.815	1.00	5.10	5.261	12.500	11.7	93.3	NO		
106	78 d3-N-MeFOSAA-RSD	$573.1>419$	5062.860	18603.139	1.00	5.28	3.402	12.500	13.0	103.7	NO		
107	80 13C2-PFUdA-RSD	$565>519.8$	24315.789	18603.139	1.00	5.45	16.338	12.500	12.8	102.2	NO		
108	$82 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}-\mathrm{RSD}$	$589.3>419$	4514.753	18603.139	1.00	5.43	3.034	12.500	13.9	111.1	NO		

Quantify Sample Report \quad MassLynx V4.2 SCN977 Vista Analytical Laboratory Dataset:\quad D:IPFAS5.PRO\RESULTS\200714P11200714P1-42.qld
Last Altered:
Wednesday, July 15, 2020 12:49:51 Pacific Daylight Time
Printed:

Name: 200714P1-42, Date: 14-Jul-2020, Time: 16:55:49, ID: ST200714P1-12 PFC CS3 20F1906, Description: PFC CS3 20F1906

	\# Name	Trace	Area	IS Area	wtivol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
109	84 13C2-PFDoA-RSD	$614.9>569.9$	27613.732	21199.566	1.00	5.73	16.282	12.500	12.7	101.4	NO		
110	$8613 \mathrm{C} 2-10: 2 \mathrm{FTS}-\mathrm{RSD}$	$632.9>80.0$	1462.479	4766.815	1.00	5.71	3.835	12.500	12.2	97.8	NO		
111	$88 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSA}$-RSD	$515.2>168.9$	26494.260	18603.139	1.00	5.73	17.802	149.200	153	102.7	NO		
112	90 13C2-PFTeDA-RSD	$715.1>669.7$	27987.609	18603.139	1.00	6.18	18.806	12.500	12.4	99.1	NO		
113	$92 \mathrm{~d} 5-\mathrm{N}-E T F O S A-R S D$	$531.1>168.9$	31180.166	18603.139	1.00	6.14	20.951	149.200	154	103.0	NO		
114	94 13C2-PFHxDA-RSD	$815>769.7$	30439.539	18603.139	1.00	6.49	20.453	12.500	12.2	97.5	NO		
115	$96 \mathrm{d7}-\mathrm{N}-\mathrm{MeFOSE-RSD}$	$623.1>58.9$	27100.338	18603.139	1.00	6.31	18.210	149.200	148	99.3	NO		
116	$98 \mathrm{~d} 9-\mathrm{N}$-EtFOSE-RSD	$639.2>58.8$	31114.439	18603.139	1.00	6.45	20.907	149.200	149	100.0	NO		
117	-1												
118	99 13C4-PFBA	$217.0>172.0$	9933.421	9933.421	1.00	1.44	12.500	12.500	12.5	100.0	NO		
119	1... 13C5-PFHxA	$318.0>272.9$	20130.887	20130.887	1.00	3.20	12.500	12.500	12.5	100.0	NO		
120	1... 13C8-PFOA	$420.9>376.0$	17704.627	17704.627	1.00	4.31	12.500	12.500	12.5	100.0	NO		
121	1... 1802-PFHxS	$403.0>103$	1628.888	1628.888	1.00	3.94	12.500	12.500	12.5	100.0	NO		
122	1... 13C9-PFNA	$472.2>426.9$	21485.840	21485.840	1.00	4.75	12.500	12.500	12.5	100.0	NO		
123	1... 13C4-PFOS	$503>79.7$	4766.815	4766.815	1.00	4.84	12.500	12.500	12.5	100.0	NO		
12.4	1... 13C6-PFDA	$519.1>473.7$	21199.566	21199.566	1.00	5.13	12.500	12.500	12.5	100.0	NO		
125	1... 13C7-PFUdA	$570.1>524.8$	18603.139	18603.139	1.00	5.45	12.500	12.500	12.5	100.0	NO		

Dataset:	Untitled
Last Altered:	Wednesday, July 15, 2020 13:03:07 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 13:03:29 Pacific Daylight Time

Method: D:IPFAS5.PROMMethDBINEW PFAS 80C 071420.mdb 14 Jul 2020 15:40:52 Calibration: D:IPFAS5.PROICurveDBIC18_VAL-PFAS_Q5_07-14-20.cdb 15 Jul 2020 08:25:12

Compound name: PFBA

	\# Name	10	Acq.Date	Acq.Time
1	$1200714 \mathrm{P1-01}$	IPA	14-Jul-20	09:41:26
2	2 200714P1-02	IPA	14-Jul-20	09:52:13
3	3 200714P1-03	TESTER	14-Jul-20	10:02:49
4	$4200714 \mathrm{P1} 104$	IPA	14-Jul-20	10:13:25
5	5 200714P1-05	ST200714P1-1 PFC CS-2 20F1901	14-Jul-20	10:24:01
6	6 200714P1-06	ST200714P1-2 PFC CS-1 20 F 1902	14-Jul-20	10:34:37
7	$7200714 \mathrm{P1-07}$	ST200714P1-3 PFC CS0 20F1903	14-Jul-20	10:45:12
8	$8200714 \mathrm{P} 1-08$	ST200714P1-4 PFC CS1 20F1904	14-Jul-20	10:55:49
9	$9200714 \mathrm{P1-09}$	ST200714P1-5 PFC CS2 20F1905	14-Jul-20	11:06:24
10	$10200714 \mathrm{P} 1-10$	ST200714P1-6 PFC CS3 20F1906	14-Jul-20	11:17:00
11	11 200714P1-11	ST200714P1-7 PFC CS4 20F1907	14-Jul-20	11:27:36
12	12 200714P1-12	ST200714P1-8 PFC CS5 20F1908	14-Jul-20	11:38:12
13	13 200714P1-13	ST200714P1-9 PFC CS6 20F1909	14-Jul-20	11:48:48
14	14 200714P1-14	ST200714P1-10 PFC CS7 20F1910	14-Jul-20	11:59:24
15	15 200714P1-15	IB	14-Jul-20	12:10:00
16	$16200714 \mathrm{P} 1-16$	ICV200714P1-1 PFC ICV 20F1911	14-Jul-20	12:20:26
17	17 200714P1-17	IB	14-Jul-20	12:31:02
18	18 200714P1-18	2001368-02 CH48-SB01-0406 2.54	14-Jul-20	12:41:38
19	19 200714P1-19	2001368-05 CH48-SB02-0406 2.46	14-Jul-20	12:52:14
20	$20200714 \mathrm{P1} 120$	2001368-08 CH48-SB03-0406 2.44	14-Jul-20	13:02:50
21	21 200714P1-21	2001368-01@5X CH48-SB01-0204 2.42	14-Jul-20	13:13:26
22	22 200714P1-22	2001368-04@5X CH48-SB02-0204 2.29	14-Jul-20	13:24:01
23	23 200714P1-23	2001368-06@5X CH48-SB02-0810 2.47	14-Jul-20	13:34:37
24	24 200714P1-24	2001368-07@5X CH48-SS03-000H 2.02	14-Jul-20	13:45:13
25	25 200714P1-25	2001379-01@5X CH48-SB05-0406 2.57	14-Jul-20	13:55:48
26	26 200714P1-26	2001379-02@5X CH48-SS05-000H 2.41	14-Jul-20	14:06:24
27	27 200714P1-27	2001379-03@5X CH48-SB05-0810 2.46	14-Jul-20	14:17:00
28	28 200714P1-28	IB	14-Jul-20	14:27:36
29	29 200714P1-29	ST200714P1-11 PFC CS3 20F1906	14-Jul-20	14:38:12
30	$30200714 \mathrm{P} 1-30$	IB	14-Jul-20	14:48:48
31	31 200714P1-31	2001379-05 CH48-SB06-0406 2.07	14-Jul-20	14:59:14
32	32 200714P1-32	2001379-04@10X CH48-SS06-000H 2.07	14-Jul-20	15:09:50

Dataset:	Untitled
Last Altered:	Wednesday, July 15, 2020 13:03:07 Paciitic Daylight Time
Printed:	Wednesday, July 15, 15200 13:03:29 Pacific Daylight Time

Compound name: PFBA

	\# Name	10	Acq. Date	Acq. Time
33	33 200714P1-33	2001379-04@5X CH48-SS06-000H 2.07	14-Jul-20	15:20:25
34	$34200714 \mathrm{P} 1-34$	2001379-09@5X CH48-SB07-0810 2.47	14-Jul-20	15:31:01
35	35 200714P1-35	2001354-01@10X IN-36 0.24241	14-Jul-20	15:41:37
36	$36200714 \mathrm{P} 1-36$	2001354-02@10X OUT-360.2466	14-Jul-20	15:52:13
37	37 200714P1-37	2001354-01@5X IN-36 0.24241	14-Jul-20	16:02:48
38	$38200714 \mathrm{P} 1-38$	2001354-02@5X OUT-36 0.2466	14-Jul-20	16:13:25
39	39 200714P1-39	2001366-02@5X AA-MW-2 0.2333	14-Jul-20	16:24:01
40	$40200714 \mathrm{P} 1-40$	2001366-03@5X AA-MW-4 0.24243	14-Jul-20	16:34:36
41	41 200714P1-41	IB	14-Jul-20	16:45:12
42	42 200714P1-42	ST200714P1-12 PFC CS3 20F1906	14-Jul-20	16:55:49
43	43 200714P1-43	IB	14-Jul-20	17:06:25
44	44 200714P1-44	2001366-04@5X AA-MW-1 0.25105	14-Jul-20	17:17:01
45	45 200714P1-45	2001366-05@5X AA-MW-5 0.24827	14-Jul-20	17:27:37
46	$46200714 \mathrm{P} 1-46$	2001366-06@5X AA-MW-4 DUP 0.23012	14-Jul-20	17:38:13
47	47 200714P1-47	2001366-06 AA-MW-4 DUP 0.23012	14-Jul-20	17:48:48
48	$48200714 \mathrm{P} 1-48$	IB	14-Jul-20	17:59:24
49	49 200714P1-49	2001366-07 Field Blank 0.25496	14-Jul-20	18:10:00
50	50 200714P1-50	B0G0058-BLK1 Method Blank 0.25	14-Jul-20	18:20:36
51	51 200714P1-51	B0G0058-BS1 OPR 0.25	14-Jul-20	18:31:12
52	52 200714P1-52	B0G0058-BSD1 LCSD 0.25	14-Jul-20	18:41:38
53	53 200714P1-53	2001436-01 EB05-20200707 0.25168	14-Jul-20	18:52:15
54	54 200714P1-54	2001436-02 TW21D-20200707 0.24685	14-Jul-20	19:02:50
55	55 200714P1-55	2001436-03 TWO9D-20200707 0.26203	14-Jul-20	19:13:17
56	$56200714 \mathrm{P} 1-56$	2001436-04 TW22D-202007070.2687	14-Jul-20	19:23:53
57	57 200714P1-57	IB	14-Jul-20	19:34:29
58	$58200714 \mathrm{P} 1-58$	2001436-05 EB06-20200708 0.2553	14-Jul-20	19:45:05
59	59 200714P1-59	2001436-06 TW23D-20200708 0.27774	14-Jul-20	19:55:41
60	$60200714 \mathrm{P} 1-60$	2001436-07 TW24D-20200708 0.28174	14-Jul-20	20:06:17
61	$61200714 \mathrm{P} 1-61$	2001436-08 TW 170-20200708 0.40597	14-Jul-20	20:16:53
62	62 200714P1-62	IB	14-Jul-20	20:27:28
63	63 200714P1-63	ST200714P1-13 PFC CS3 20F1906	14-Jul-20	20:38:04
64	$64200714 \mathrm{P} 1-64$	1 B	14-Jul-20	20:48:39
65	65 200714P1-65	B0G0044-BLK1 Method Blank 0.25	14-Jul-20	20:59:16
66	66 200714P1-66	B0G0044-BS1 OPR 0.25	14-Jul-20	21:09:52
67	67 200714P1-67	2001430-01 IN-49 0.24168	14-Jul-20	21:20:28
68	$68200714 \mathrm{P} 1-68$	2001430-02 OUT-49 0.23991	14-Jul-20	21:31:04

Quantify Compound Summary Report	MassLynx V4.2 SCN977	
Vista Analytical Laboratory		
Dataset:	Untitled	
Last Altered:	Wednesday, July 15, 2020	13:03:07 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 13:03:29 Pacific Daylight Time	

Compound name: PFBA

	\# Name	ID	Acq.Date	Acq.Time
69	69 200714P1-69	IB	14-Jul-20	21:41:39
70	70 200714P1-70	B0G0055-BS5 OPR 2	14-Jul-20	21:52:15
71	71 200714P1-71	IB	14-Jul-20	22:02:52
72	72 200714P1-72	ST200714P1-14 PFC CS3 20F1906	14-Jul-20	22:13:28
73	73 200714P1-73	IB	14-Jul-20	22:24:04

Method: D:\PFAS5.PROWMethDB\NEW PFAS 80C 071420.mdb 14 Jul 2020 15:40:52

Calibration: D:IPFAS5.PRO\CurveDBIC18_VAL-PFAS_Q5_07-14-20.cdb 15 Jul 2020 08:25:12
Name: 200714P1-42, Date: 14-Jul-2020, Time: 16:55:49, ID: ST200714P1-12 PFC CS3 20F1906, Description: PFC CS3 20F1906

F6:MRM of 2 channels,ES$249>98.9$

13C3-PFBS-EIS

F12:MRM of 1 channel,ES-

PFPeA

PFBS

F11:MRM of 2 channels,ES$299.0>80$
 F11:MRM of 2 channels,ES$299.0>98.9$
$3.409 \theta+004$

13C3-PFBS-EIS
F12:MRM of 1 channel,ES$302.0>98.9$

Dataset:	D:IPFAS5.PRO\RESULTSL200714P1 200714 P1-42.qId
Last Altered:	Wednesday, July 15, 2020 12:49:51 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 12:50:31 Pacific Daylight Time

Name: 200714P1-42, Date: 14-Jul-2020, Time: 16:55:49, ID: ST200714P1-12 PFC CS3 20F1906, Description: PFC CS3 $20 F 1906$

F18:MRM of 2 channels,ES-

13C4-PFHPA-EIS
F21:MRM of 1 channel,ES-
$367.2>321.8$

F20:MRM of 2 channels, ES$363.0>169.0$

13C4-PFHpA-EIS
F21:MRM of 1 channel,ES-
$367.2>321.8$

Vista Analytical Laboratory

Dataset:	D:IPFAS5.PRO\RESULTS\200714P11200714P1-42.qld
Last Altered:	Wednesday, July 15, 2020 12:49:51 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 12:50:31 Pacific Daylight Time

Name: 200714P1-42, Date: 14-Jul-2020, Time: 16:55:49, ID: ST200714P1-12 PFC CS3 20F1906, Description: PFC CS3 20F1906

F23:MRM of 2 channels,ESF23:MRM of 2 channels,ES
$399>98.9$

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES. $402>80$ $1.126 e+005$

F29:MRM of 2 channels,ES-

13C2-6:2 FTS-EIS
F30:MRM of 1 channel,ES$429.0>79.7$ $7.244 \mathrm{e}+004$

F26:MRM of 2 channels,ES

F34:MRM of 2 channels,ES-
$461>99$

F32:MRM of 2 channels,ES-

F32:MRM of 2 channels,ES-
$449>99$
$4.828 \mathrm{e}+004$

13C8-PFOS-EIS
F43:MRM of 1 channel,ES

Dataset:	D:IPFAS5.PRO\RESULTSI200714P11200714P1-42.qld
Last Altered:	Wednesday, July 15, 2020 12:49:51 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 12:50:31 Pacific Daylight Time

Name: 200714P1-42, Date: 14-Jul-2020, Time: 16:55:49, ID: ST200714P1-12 PFC CS3 20F1906, Description: PFC CS3 20F1906

F35:MRM of 2 channels,ES$463.0>219.0$ $3.700 \mathrm{e}+004$

PFOSA

F38:MRM of 2 channels,ES-

F38:MRM of 2 channels,ES-

13C8-PFOSA-EIS
F42:MRM of 1 channel,ES$506>78$

13C8-PFOS-EIS
F43:MRM of 1 channel,ES $507.1>80$

F52:MRM of 2 channels, ES-
$531>83$

13C8-PFOS-EIS
F43:MRM of 1 channel,ES-

PFDA

F45:MRM of 2 channels, ES-
$513>219$
$9.835 e+004$

13C2-PFDA-EIS
F46:MRM of 1 channel,ES-
$515.1>469.9$
$7.187 \mathrm{e}+005$

Dataset:	D:IPFAS5.PROIRESULTSI200714P11200714P1-42.qld
Last Altered:	Wednesday, July 15, 2020 12:49:51 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 12:50:31 Pacific Daylight Time

Name: 200714P1-42, Date: 14-Jul-2020, Time: 16:55:49, ID: ST200714P1-12 PFC CS3 20F1906, Description: PFC CS3 20F1906

F54:MRM of 2 channels,ES-

F57:MRM of 2 channels,ES-

d3-N-MeFOSAA-EIS

F55:MRM of 2 channels,ES$563.0>269$

3C2-PFUdA-EIS

 $598.8>98.9$ $100-\quad 4.626 e+004$

13C8-PFOS-EIS
F43:MRM of 1 channel,ES-

$$
\begin{array}{r}
507.1>80 \\
1.051 \mathrm{e}+005
\end{array}
$$

F69:MRM of 2 channels,ES-
$631>83$

13C2-PFDOA-EIS
F64:MRM of 1 channel,ES$614.9>569.9$

Vista Analytical Laboratory

Dataset:	D:IPFAS5.PROIRESULTS 200714 P1 200714 P1-42.qId
Last Altered:	Wednesday, July 15, 2020 12:49:51 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 12:50:31 Pacific Daylight Time

Name: 200714P1-42, Date: 14-Jul-2020, Time: 16:55:49, ID: ST200714P1-12 PFC CS3 20F1906, Description: PFC CS3 20F1906

F63:MRM of 2 channels,ES-

5.7506 .000

F44:MRM of 2 channels,ES

$$
\begin{array}{r}
\text { F44:MRMM of } 2 \text { channels, tS- } \\
512.1>219 \\
1.279 \mathrm{e}+005
\end{array}
$$

5.6005 .800

F72:MRM of 2 channels,ES-

13C2-PFDOA-EIS
F64:MRM of 1 channel,ES-
$614.9>569.9$

PFDoS

F73:MRM of 2 channels,ES$699>80$ $1.096 \mathrm{e}+005$

F73:MRM of 2 channels,ES

$$
\begin{array}{r}
699>99 \\
\end{array}
$$ 5.8006 .0006 .200

13C2-PFTeDA-EIS
F75:MRM of 2 channels, ES
$\begin{array}{rr}715.1>669.7 \\ 100- & 7.137 e+005\end{array}$

PFTeDA

F74:MRM of 2 channels,ES-
$713.0>669.0$ $3.538 \mathrm{e}+005$

13C2-PFTeDA-EIS
F75:MRM of 2 channels,ES-
$715.1>669.7$
$7.137 e+005$

Dataset:	D:IPFAS5.PRO\RESULTSL200714P11200714P1-42.qld
Last Altered:	Wednesday, July 15, 2020 12:49:51 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 12:50:31 Pacific Daylight Time

Name: 200714P1-42, Date: 14-Jul-2020, Time: 16:55:49, ID: ST200714P1-12 PFC CS3 20F1906, Description: PFC CS3 $20 F 1906$

13C2-PFHxDA-EIS 13C2-PFHxDA-EIS
F77:MRM of 1 channel,ES$815>769.7$

Dataset:	D:IPFAS5.PRO\RESULTSI200714P1 1200714P1-42.qld
Last Altered:	Wednesday, July 15, 2020 12:49:51 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 12:50:31 Pacific Daylight Time

Name: 200714P1-42, Date: 14-Jul-2020, Time: 16:55:49, ID: ST200714P1-12 PFC CS3 20F1906, Description: PFC CS3 20F1906

F30:MRM of 1 channel,ES$429.0>79.7$ $7.244 e+004$

13C5-PFNA-RSD
F36:MRM of 1 channel,ES$468.2>422.9$ $5.699 \mathrm{e}+005$

13C8-PFOSA-RSD
F42:MRM of 1 channel,ES$506>78$ $2.603 e+005$

13C2-PFOA-RSD

F27:MRM of 1 channel,ES$414.9>369.7$

 $6.197 e+005$

13C8-PFOS-RSD
F43:MRM of 1 channel,ES$507.1>80$ $1.051 \mathrm{e}+005$

Dataset:	D:IPFAS5.PROIRESULTSI200714P11200714P1-42.qld
Last Altered:	Wednesday, July 15, 2020 12:49:51 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 12:50:31 Pacific Daylight Time

Name: 200714P1-42, Date: 14-Jul-2020, Time: 16:55:49, ID: ST200714P1-12 PFC CS3 20F1906, Description: PFC CS3 $20 F 1906$

d3-N-MeFOSA-RSD
F47:MRM of 1 channel,ES-
$515.2>168.9$

13C2-PFTeDA-RSD
F75:MRM of 2 channels,ES-
$715.1>669.7$
$7.137 e+005$

d5-N-ETFOSA-RSD
F53:MRM of 1 channel,ES-
$531.1>168.9$

13C2-PFHxDA-RSD
F77:MRM of 1 channel,ES-
$815>769.7$
$8.218 \mathrm{e}+005$

d7-N-MeFOSE-RSD
F66:MRM of 1 channel,ES-
$623.1>58.9$
$6.779 \mathrm{e}+005$

d9-N-EtFOSE-RSD
F71:MRM of 1 channel,ES$639.2>58.8$

Dataset:	D:IPFAS5.PROIRESULTSI200714P11200714P1-42.qld
	Last Altered:
Wednesday, July 15, 2020 12:49:51 Pacific Daylight Time	
Printed:	Wednesday, July 15, 2020 12:50:31 Pacific Daylight Time

Name: 200714P1-42, Date: 14-Jul-2020, Time: 16:55:49, ID: ST200714P1-12 PFC CS3 20F1906, Description: PFC CS3 20F1906

13C6-PFDA
F48:MRM of 1 channel,ES$519.1>473.7$ $6.372 e+005$

13C7-PFUdA
F58:MRM of 1 channel,ES$570.1>524.8$ $4.971 e+005$

Dataset:	D:IPFAS5.PROIRESULTSI200714P11200714P1-63.qld
Last Altered:	Wednesday, July 15, 2020 12:54:20 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 12:54:57 Pacific Daylight Time

Name: 200714P1-63, Date: 14-Jul-2020, Time: 20:38:04, ID: ST200714P1-13 PFC CS3 20F1906, Description: PFC CS3 20F1906

	\# Name	Trace	Area	IS Area	witivol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
1	1 PFBA	$213.0>168.8$	7939.076	9458.469	1.00	1.44	10.492	10.000	10.6	105.8	NO		
2	2 PFPrS	$249>80$	1885.248	1926.237	1.00	1.77	12.234	10.000	11.6	115.8	NO	2.514	NO
3	3 3:3 FTCA	$240.9>176.9$	1031.640	17038.701	1.00	2.25	0.757	10.000	9.50	95.0	NO	3.217	NO
4	4 PFPeA	$263.1>218.9$	12471.147	17038.701	1.00	2.39	9.149	10.000	10.3	102.6	NO		
5	5 PFBS	$299.0>80$	4029.888	1926.237	1.00	2.67	26.151	10.000	10.5	104.6	NO	2.488	NO
6	6 4:2 FTS	$326.9>306.9$	4263.150	1919.940	1.00	3.11	27.756	10.000	10.9	109.0	NO	11.765	NO
7	47 13C3-PFBA-EIS	$216.1>171.8$	9458.469		1.00	1.44	9458.469	12.500	14.4	115.4	NO		
8	51 13C3-PFBS-EIS	$302.0>98.9$	1926.237		1.00	2.67	1926.237	12.500	12.2	97.6	NO		
9	49 13C3-PFPeA-EIS	$266.0>221.8$	17038.701		1.00	2.39	17038.701	12.500	12.8	102.7	NO		
10	49 13C3-PFPeA-EIS	$266.0>221.8$	17038.701		1.00	2.39	17038.701	12.500	12.8	102.7	NO		
11	51 13C3-PFBS-EIS	$302.0>98.9$	1926.237		1.00	2.67	1926.237	12.500	12.2	97.6	NO		
12	55 13C2-4:2 FTS-EIS	$329.0>80.8$	1919.940		1.00	3.11	1919.940	12.500	12.5	99.7	NO		
13	-1												
14	7 PFHxA	$313.0>269.0$	14586.766	16378.499	1.00	3.19	11.133	10.000	10.7	107.0	NO	15.357	NO
15	8 PFPeS	349.>80	3261.883	1926.237	1.00	3.39	21.167	10.000	10.7	106.6	NO	2.134	NO
16	9 HFPO-DA	$285.1>168.9$	2597.511	3384.180	1.00	3.41	9.594	10.000	9.96	99.6	NO	2.279	NO
17	10 5:3 FTCA	$340.9>236.9$	2013.903	15850.358	1.00	3.73	1.588	10.000	9.22	92.2	NO	1.589	NO
18	11 PFHpA	$363.0>319$	15601.383	15850.358	1.00	3.79	12.304	10.000	10.0	100.4	NO	42.597	NO
19	12 ADONA	$376.8>250.9$	28754.531	15850.358	1.00	3.90	22.677	10.000	10.6	105.8	NO	4.116	NO
20	57 13C2-PFHxA-EIS	$315.0>270.0$	16378.499		1.00	3.19	16378.499	12.500	12.2	97.4	NO		
21	51 13C3-PFBS-EIS	$302.0>98.9$	1926.237		1.00	2.67	1926.237	12.500	12.2	97.6	NO		
22	53 13C3-HFPO-DA-EIS	$287.0>168.9$	3384.180		1.00	3.41	3384.180	12.500	13.0	103.6	NO		
23	59 13C4-PFHPA-EIS	$367.2>321.8$	15850.358		1.00	3.79	15850.358	12.500	12.3	98.6	NO		
24	59 13C4-PFHPA-EIS	$367.2>321.8$	15850.358		1.00	3.79	15850.358	12.500	12.3	98.6	NO		
25	59 13C4-PFHPA-EIS	$367.2>321.8$	15850.358		1.00	3.79	15850.358	12.500	12.3	98.6	NO		
26	-1												
27	13 L-PFHxS	$399>79.9$	3642.357	4072.684	1.00	3.93	11.179	10.000	9.84	98.4	NO	4.168	NO
28	15 6:2 FTS	$427.0>407$	1837.967	2453.483	1.00	4.25	9.364	10.000	10.2	102.3	NO	0.653	NO
29	16 L-PFOA	$413>369$	16433.701	22128.412	1.00	4.31	9.283	10.000	9.93	99.3	NO	2.943	NO
30	18 PFecHS	$461>381.0$	2927.803	22128.412	1.00	4.32	1.654	10.000	9.55	95.5	NO	0.463	NO
31	19 PFHpS	$449.0>80$	3078.591	3682.483	1.00	4.42	10.450	10.000	10.6	105.8	NO	1.785	NO
32	$207: 3$ FTCA	$440.9>336.9$	4480.020	20431.617	1.00	4.73	2.741	10.000	9.23	92.3	NO	1.396	NO
33	61 13C3-PFHxS-EIS	$402>80$	4072.684		1.00	3.93	4072.684	12.500	13.3	106.8	NO		
34	63 13C2-6:2 FTS-EIS	$429.0>79.7$	2453.483		1.00	4.25	2453.483	12.500	12.3	98.7	NO		
35	69 13C2-PFOA-EIS	$414.9>369.7$	22128.412		1.00	4.31	22128.412	12.500	12.8	102.1	NO		
36	69 13C2-PFOA-EIS	$414.9>369.7$	22128.412		1.00	4.31	22128.412	12.500	12.8	102.1	NO		

Name: 200714P1-63, Date: 14-Jul-2020, Time: 20:38:04, ID: ST200714P1-13 PFC CS3 20F1906, Description: PFC CS3 $20 F 1906$

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
37	71 13C8-PFOS-EIS	$507.1>80$	3682.483		1.00	4.83	3682.483	12.500	12.3	98.5	NO		
38	65 13C5-PFNA-EIS	$468.2>422.9$	20431.617		1.00	4.75	20431.617	12.500	12.2	97.7	NO		
39	-1												
40	21 PFNA	$463.0>418.8$	19533.645	20431.617	1.00	4.75	11.951	10.000	10.1	101.0	NO	14.680	NO
41	22 PFOSA	$498>78$	4827.433	8835.735	1.00	4.80	6.829	10.000	9.88	98.8	NO	22.358	NO
42	23 L-PFOS	$499>80$	3710.489	3682.483	1.00	4.83	12.595	10.000	10.6	106.0	NO	2.623	NO
43	$259 \mathrm{Cl}-\mathrm{PF} 30 \mathrm{NS}$	$531>351$	7453.375	3682.483	1.00	5.05	25.300	10.000	10.1	101.4	NO	33.532	NO
44	26 PFDA	$513>469$	15348.408	23833.994	1.00	5.12	8.050	10.000	10.1	101.3	NO	5.036	NO
45	27 8:2 FTS	$526.8>506.9$	1930.158	2019.299	1.00	5.10	11.948	10.000	9.90	99.0	NO	0.644	NO
46	65 13C5-PFNA-EIS	$468.2>422.9$	20431.617		1.00	4.75	20431.617	12.500	12.2	97.7	NO		
47	67 13C8-PFOSA-EIS	$506>78$	8835.735		1.00	4.80	8835.735	12.500	12.3	98.8	NO		
48	71 13C8-PFOS-EIS	$507.1>80$	3682.483		1.00	4.83	3682.483	12.500	12.3	98.5	NO		
49	71 13C8-PFOS-EIS	$507.1>80$	3682.483		1.00	4.83	3682.483	12.500	12.3	98.5	NO		
50	73 13C2-PFDA-EIS	$515.1>469.9$	23833.994		1.00	5.13	23833.994	12.500	11.9	95.5	NO		
51	75 13C2-8:2 FTS-EIS	$529>80$	2019.299		1.00	5.10	2019.299	12.500	11.5	92.2	NO		
52	-1												
53	28 PFNS	$549>80$	3719.576	3682.483	1.00	5.18	12.626	10.000	9.94	99.4	NO	2.544	NO
54	29 L-MeFOSAA	$570>419$	4724.438	4923.770	1.00	5.27	11.994	10.000	9.98	99.8	NO	1.852	NO
55	31 L-EtFOSAA	$583.9>419$	5559.917	3959.523	1.00	5.43	17.552	10.000	10.8	108.1	NO	1.412	NO
56	33 PFUdA	$563.0>519$	17934.150	23682.273	1.00	5.45	9.466	10.000	10.0	100.2	NO	17.545	NO
57	34 PFDS	$598.8>79.9$	4063.063	3682.483	1.00	5.49	13.792	10.000	10.4	103.9	NO	2.102	NO
58	3511 Cl -PF30UdS	$631>451$	5647.990	27485.732	1.00	5.65	2.569	10.000	9.85	98.5	NO	15.152	NO
59	71 13C8-PFOS-EIS	$507.1>80$	3682.483		1.00	4.83	3682.483	12.500	12.3	98.5	NO		
60	77 d3-N-MeFOSAA-EIS	$573.1>419$	4923.770		1.00	5.27	4923.770	12.500	12.6	100.7	NO		
61	$81 \mathrm{~d} 5-\mathrm{N}$-EtFOSAA-EIS	$589.3>419$	3959.523		1.00	5.42	3959.523	12.500	11.6	92.5	NO		
62	79 13C2-PFUdA-EIS	$565>519.8$	23682.273		1.00	5.45	23682.273	12.500	12.3	98.8	NO		
63	71 13C8-PFOS-EIS	$507.1>80$	3682.483		1.00	4.83	3682.483	12.500	12.3	98.5	NO		
64	83 13C2-PFDoA-EIS	$614.9>569.9$	27485.732		1.00	5.72	27485.732	12.500	11.9	95.4	NO		
65	-1												
66	36 10:2 FTS	$626.9>607$	2187.494	1386.305	1.00	5.71	19.724	10.000	10.4	103.9	NO	0.903	NO
67	37 PFDoA	$612.9>569.0$	18792.020	27485.732	1.00	5.73	8.546	10.000	9.58	95.8	NO	9.966	NO
68	$38 \mathrm{~N}-\mathrm{MeFOSA}$	$512.1>168.9$	9961.005	25394.732	1.00	5.71	58.523	50.000	52.4	104.8	NO	2.030	NO
159	39 PFTrDA	$662.9>618.9$	24144.660	27485.732	1.00	5.97	10.981	10.000	10.3	102.9	NO	123.297	NO
70	40 PFDoS	$699>80$	3924.180	26949.268	1.00	5.99	1.820	10.000	10.4	103.5	NO	2.108	NO
71	41 PFTeDA	$713.0>669.0$	13232.048	26949.268	1.00	6.17	6.137	10.000	10.8	108.4	NO	13.162	NO
72	85 13C2-10:2 FTS-EIS	$632.9>80.0$	1386.305		1.00	5.71	1386.305	12.500	11.6	92.9	NO		OPV 7

Quantify Sample Report \quad MassLynx V4.2 SCN977		Page 13 of 14
Vista Analytical Laboratory		
Dataset:	D:IPFAS5.PROIRESULTSI200714P11200714P1-63.qld	
Last Altered:	Wednesday, July 15, 2020 12:54:20 Pacific Daylight Time	
Printed:	Wednesday, July 15, 2020 12:54:57 Pacific Daylight Time	

Name: 200714P1-63, Date: 14-Jul-2020, Time: 20:38:04, ID: ST200714P1-13 PFC CS3 20F1906, Description: PFC CS3 20F1906

	\# Name	Trace	Area	IS Area	witvol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery...	Ion Ratio	Ratio Out?
73	83 13C2-PFDoA-EIS	$614.9>569.9$	27485.732		1.00	5.72	27485.732	12.500	11.9	95.4	NO		
74	$87 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSA}-E I S$	$515.2>168.9$	25394.732		1.00	5.73	25394.732	149.200	142	95.2	NO		
75	83 13C2-PFDoA-EIS	$614.9>569.9$	27485.732		1.00	5.72	27485.732	12.500	11.9	95.4	NO		
76	89 13C2-PFTeDA-EIS	$715.1>669.7$	26949.268		1.00	6.17	26949.268	12.500	12.0	96.1	NO		
77	89 13C2-PFTeDA-EIS	$715.1>669.7$	26949.268		1.00	6.17	26949.268	12.500	12.0	96.1	NO		
78	-1												
79	42 N -EtFOSA	$526.1>168.9$	12251.762	29683.482	1.00	6.13	61.582	50.000	54.6	109.3	NO	1.992	NO
80	43 PFHxDA	$813>769$	23368.496	30892.164	1.00	6.49	9.456	10.000	10.5	105.4	NO	30.810	NO
81	44 PFODA	$913.1>868.8$	19610.609	30892.164	1.00	6.72	7.935	10.000	10.2	102.3	NO		
82	45 N -MeFOSE	$616.1>58.9$	10035.111	26263.852	1.00	6.31	57.008	50.000	51.2	102.4	NO		
83	46 N -EtFOSE	$630.1>58.9$	10691.540	30352.836	1.00	6.46	52.554	50.000	52.6	105.2	NO		
84	48 13C3-PFBA-RSD	$216.1>171.8$	9382.488	10037.129	1.00	1.44	11.685	12.500	12.5	100.2	NO		
85	91 d5-N-ETFOSA-EIS	$531.1>168.9$	29683.482		1.00	6.14	29683.482	149.200	145	97.2	NO		
85	93 13C2-PFHxDA-EIS	$815>769.7$	30892.164		1.00	6.49	30892.164	12.500	12.6	100.7	NO		
87	93 13C2-PFHxDA-EIS	$815>769.7$	30892.164		1.00	6.49	30892.164	12.500	12.6	100.7	NO		
88	95 d7-N-MeFOSE-EIS	$623.1>58.9$	26263.852		1.00	6.30	26263.852	149.200	148	98.9	NO		
89	$97 \mathrm{~d} 9-\mathrm{N}-\mathrm{EtFOSE}-E I S$	$639.2>58.8$	30352.836		1.00	6.45	30352.836	149.200	148	99.0	NO		
90	50 13C3-PFPeA-RSD	$266.0>221.8$	17038.701	20901.363	1.00	2.39	10.190	12.500	12.7	101.2	NO		
91	-1												
92	52 13C3-PFBS-RSD	$302.0>98.9$	1926.237	1526.765	1.00	2.67	15.771	12.500	12.7	101.3	NO		
93	54 13C3-HFPO-DA-RSD	$287.0>168.9$	3384.180	20901.363	1.00	3.41	2.024	12.500	13.1	105.1	NO		
94	$5613 \mathrm{C}-4: 2 \mathrm{FTS}$-RSD	$329.0>80.8$	1919.940	1526.765	1.00	3.11	15.719	12.500	12.3	98.7	NO		
95	58 13C2-PFHxA-RSD	$315.0>270.0$	16378.499	20901.363	1.00	3.19	9.795	12.500	12.3	98.3	NO		
96	60 13C4-PFHpA-RSD	$367.2>321.8$	15850.358	20901.363	1.00	3.79	9.479	12.500	12.6	100.4	NO		
97	62 13C3-PFHxS-RSD	$402>80$	4072.684	1526.765	1.00	3.93	33.344	12.500	13.5	107.7	NO		
98	64 13C2-6:2 FTS-RSD	$429.0>79.7$	2453.483	4776.461	1.00	4.25	6.421	12.500	11.8	94.7	NO		
99	66 13C5-PFNA-RSD	$468.2>422.9$	20431.617	21723.232	1.00	4.75	11.757	12.500	12.5	99.9	NO		
100	68 13C8-PFOSA-RSD	$506>78$	8835.735	18616.719	1.00	4.80	5.933	12.500	12.1	96.4	NO		
101	70 13C2-PFOA-RSD	$414.9>369.7$	22128.412	17742.092	1.00	4.31	15.590	12.500	12.5	100.3	NO		
102	72 13C8-PFOS-RSD	$507.1>80$	3682.483	4776.461	1.00	4.83	9.637	12.500	12.2	97.7	NO		
103	74 13C2-PFDA-RSD	$515.1>469.9$	23833.994	21965.834	1.00	5.13	13.563	12.500	12.1	96.8	NO		
104	-1												
105	76 13C2-8:2 FTS-RSD	$529>80$	2019.299	4776.461	1.00	5.10	5.285	12.500	11.7	93.7	NO		
106	78 d3-N-MeFOSAA-RSD	$573.1>419$	4923.770	18616.719	1.00	5.27	3.306	12.500	12.6	100.8	NO		
107	80 13C2-PFUdA-RSD	$565>519.8$	23682.273	18616.719	1.00	5.45	15.901	12.500	12.4	99.5	NO		
108	$82 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$-RSD	$589.3>419$	3959.523	18616.719	1.00	5.42	2.659	12.500	12.2	97.3	NO.		OPV 7

Dataset:	D:IPFAS5.PROIRESULTS\200714P1\200714P1-63.qld
Last Altered:	Wednesday, July 15, 2020 12:54:20 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 12:54:57 Pacific Daylight Time

Name: 200714P1-63, Date: 14-Jul-2020, Time: 20:38:04, ID: ST200714P1-13 PFC CS3 20F1906, Description: PFC CS3 20F1906

	\# Name	Trace	Area	IS Area	witvol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
109	84 13C2-PFDoA-RSD	$614.9>569.9$	27485.732	21965.834	1.00	5.72	15.641	12.500	12.2	97.4	NO		
110	86 13C2-10:2 FTS-RSD	$632.9>80.0$	1386.305	4776.461	1.00	5.71	3.628	12.500	11.6	92.5	NO		
111	$88 \mathrm{d3}-\mathrm{N}-\mathrm{MeFOSA}$-RSD	$515.2>168.9$	25394.732	18616.719	1.00	5.73	17.051	149.200	147	98.4	NO		
112	90 13C2-PFTeDA-RSD	$715.1>669.7$	26949.268	18616.719	1.00	6.17	18.095	12.500	11.9	95.4	NO		
113	92 d5-N-ETFOSA-RSD	$531.1>168.9$	29683.482	18616.719	1.00	6.14	19.931	149.200	146	98.0	NO		
114	94 13C2-PFHxDA-RSD	$815>769.7$	30892.164	18616.719	1.00	6.49	20.742	12.500	12.4	98.9	NO		
115	96 d7-N-MeFOSE-RSD	$623.1>58.9$	26263.852	18616.719	1.00	6.30	17.635	149.200	143	96.1	NO		
116	98 d9-N-EtFOSE-RSD	$639.2>58.8$	30352.836	18616.719	1.00	6.45	20.380	149.200	145	97.4	NO		
117	-1												
118	99 13C4-PFBA	$217.0>172.0$	10037.129	10037.129	1.00	1.44	12.500	12.500	12.5	100.0	NO		
119	1... 13C5-PFHxA	$318.0>272.9$	20901.363	20901.363	1.00	3.19	12.500	12.500	12.5	100.0	NO		
120	1... 13C8-PFOA	$420.9>376.0$	17742.092	17742.092	1.00	4.31	12.500	12.500	12.5	100.0	NO		
121	1... 1802-PFHxS	$403.0>103$	1526.765	1526.765	1.00	3.94	12.500	12.500	12.5	100.0	NO		
122	1... 13C9-PFNA	$472.2>426.9$	21723.232	21723.232	1.00	4.75	12.500	12.500	12.5	100.0	NO		
123	1... 13C4-PFOS	$503>79.7$	4776.461	4776.461	1.00	4.83	12.500	12.500	12.5	100.0	NO		
124	1... 13C6-PFDA	$519.1>473.7$	21965.834	21965.834	1.00	5.13	12.500	12.500	12.5	100.0	NO		
125	1... 13C7-PFUdA	$570.1>524.8$	18616.719	18616.719	1.00	5.45	12.500	12.500	12.5	100.0	NO		

Dataset:	Untitled
Last Altered:	Wednesday, July 15, 2020 13:03:07 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 13:03:29 Pacific Daylight Time

Method: D:IPFAS5.PROMMethDBINEW_PFAS_80C_071420.mdb 14 Jul 2020 15:40:52 Calibration: D:IPFAS5.PROICurveDBIC18_VAL-PFAS_Q5_07-14-20.cdb 15 Jul 2020 08:25:12

Compound name: PFBA

	\# Name	ID	Acq.Date	Acq. Time
1	1 200714P1-01	IPA	14-Jul-20	09:41:26
2	2 200714P1-02	IPA	14-Jul-20	09:52:13
3	3 200714P1-03	TESTER	14-Jul-20	10:02:49
4	4 200714P1-04	IPA	14-Jul-20	10:13:25
5	5 200714P1-05	ST200714P1-1 PFC CS-2 20F1901	14-Jul-20	10:24:01
6	6 200714P1-06	ST200714P1-2 PFC CS-1 20F1902	14-Jul-20	10:34:37
7	7 200714P1-07	ST200714P1-3 PFC CSO 20F1903	14-Jul-20	10:45:12
8	8 200714P1-08	ST200714P1-4 PFC CS1 20F1904	14-Jul-20	10:55:49
9	9 200714P1-09	ST200714P1-5 PFC CS2 20F1905	14-Jul-20	11:06:24
10	10 200714P1-10	ST200714P1-6 PFC CS3 20F1906	14-Jul-20	11:17:00
11	11 200714P1-11	ST200714P1-7 PFC CS4 20F1907	14-Jul-20	11:27:36
12	12 200714P1-12	ST200714P1-8 PFC CS5 20F1908	14-Jul-20	11:38:12
13	13 200714P1-13	ST200714P1-9 PFC CS6 20F1909	14-Jul-20	11:48:48
14	14 200714P1-14	ST200714P1-10 PFC CS7 20F1910	14-Jul-20	11:59:24
15	15 200714P1-15	IB	14-Jul-20	12:10:00
16	$16200714 \mathrm{P} 1-16$	ICV200714P1-1 PFC ICV 20F1911	14-Jul-20	12:20:26
17	17 200714P1-17	IB	14-Jul-20	12:31:02
18	18 200714P1-18	2001368-02 CH48-SB01-0406 2.54	14-Jul-20	12:41:38
19	19 200714P1-19	2001368-05 CH48-SB02-0406 2.46	14-Jul-20	12:52:14
20	$20200714 \mathrm{P} 1-20$	$2001368-08 \mathrm{CH} 48-\mathrm{SB} 03-04062.44$	14-Jul-20	13:02:50
21	21 200714P1-21	2001368-01@5X CH48-SB01-0204 2.42	14-Jul-20	13:13:26
22	22 200714P1-22	2001368-04@5X CH48-SB02-0204 2.29	14-Jul-20	13:24:01
23	23 200714P1-23	2001368-06@5X CH48-SB02-0810 2.47	14-Jul-20	13:34:37
24	24 200714P1-24	2001368-07@5X CH48-SS03-000H 2.02	14-Jul-20	13:45:13
25	25 200714P1-25	2001379-01@5X CH48-SB05-0406 2.57	14-Jul-20	13:55:48
26	26 200714P1-26	2001379-02@5X CH48-SS05-000H 2.41	14-Jul-20	14:06:24
27	27 200714P1-27	2001379-03@5X CH48-SB05-0810 2.46	14-Jul-20	14:17:00
28	28 200714P1-28	IB	14-Jul-20	14:27:36
29	29 200714P1-29	ST200714P1-11 PFC CS3 20F1906	14-Jul-20	14:38:12
30	$30200714 \mathrm{P} 1-30$	18	14-Jul-20	14:48:48
31	31 200714P1-31	2001379-05 CH48-SB06-0406 2.07	14-Jul-20	14:59:14
32	32 200714P1-32	2001379-04@10X CH48-SS06-000H 2.07	14-Jul-20	15:09:50

Quantify Compound Summary Report	MassLynx V4.2 SCN977	
Vista Analytical Laboratory		
Dataset:	Untitled	
Last Altered:	Wednesday, July 15, 2020 13:03:07 Pacific Daylight Time	
Printed:	Wednesday, July 15, 2020 13:03:29 Pacific Daylight Time	

Compound name: PFBA

	\# Name	10	Acq. Date	Acq.Time
33	33 200714P1-33	2001379-04@5X CH48-SS06-000H 2.07	14-Jul-20	15:20:25
34	$34200714 \mathrm{P} 1-34$	2001379-09@5X CH48-SB07-0810 2.47	14-Jul-20	15:31:01
35	35 200714P1-35	2001354-01@10X IN-36 0.24241	14-Jul-20	15:41:37
36	$36200714 \mathrm{P} 1-36$	2001354-02@10X OUT-36 0.2466	14-Jul-20	15:52:13
37	37 200714P1-37	2001354-01@5X IN-36 0.24241	14-Jul-20	16:02:48
38	$38200714 \mathrm{P} 1-38$	2001354-02@5X OUT-36 0.2466	14-Jul-20	16:13:25
39	39 200714P1-39	2001366-02@5X AA-MW-2 0.2333	14-Jul-20	16:24:01
40	40 200714P1-40	2001366-03@5X AA-MW-4 0.24243	14-Jul-20	16:34:36
41	$41200714 \mathrm{P} 1-41$	IB	14-Jul-20	16:45:12
42	42 200714P1-42	ST200714P1-12 PFC CS3 20F1906	14-Jul-20	16:55:49
43	43 200714P1-43	IB	14-Jul-20	17:06:25
44	44 200714P1-44	2001366-04@5X AA-MW-1 0.25105	14-Jul-20	17:17:01
45	45 200714P1-45	2001366-05@5X AA-MW-5 0.24827	14-Jul-20	17:27:37
46	$46200714 \mathrm{P} 1-46$	2001366-06@5X AA-MW-4 DUP 0.23012	14-Jul-20	17:38:13
47	47 200714P1-47	2001366-06 AA-MW-4 DUP 0.23012	14-Jul-20	17:48:48
48	$48200714 \mathrm{P} 1-48$	1 B	14-Jul-20	17:59:24
49	49 200714P1-49	2001366-07 Field Blank 0.25496	14-Jul-20	18:10:00
50	50 200714P1-50	B0G0058-BLK1 Method Blank 0.25	14-Jul-20	18:20:36
51	51 200714P1-51	B0G0058-BS1 OPR 0.25	14-Jul-20	18:31:12
52	52 200714P1-52	B0G0058-BSD1 LCSD 0.25	14-Jul-20	18:41:38
53	53 200714P1-53	2001436-01 EB05-20200707 0.25168	14-Jul-20	18:52:15
54	54 200714P1-54	2001436-02 TW21D-20200707 0.24685	14-Jul-20	19:02:50
55	55 200714P1-55	2001436-03 TWO9D-20200707 0.26203	14-Jul-20	19:13:17
56	$56200714 \mathrm{P} 1-56$	2001436-04 TW22D-20200707 0.2687	14-Jul-20	19:23:53
57	57 200714P1-57	IB	14-Jul-20	19:34:29
58	$58200714 \mathrm{P} 1-58$	2001436-05 EB06-20200708 0.2553	14-Jul-20	19:45:05
59	59 200714P1-59	2001436-06 TW23D-20200708 0.27774	14-Jul-20	19:55:41
60	$60200714 \mathrm{P} 1-60$	2001436-07 TW24D-20200708 0.28174	14-Jul-20	20:06:17
61	$61200714 \mathrm{P} 1-61$	2001436-08 TW 17D-20200708 0.40597	14-Jul-20	20:16:53
62	62 200714P1-62	IB	14-Jul-20	20:27:28
63	63 200714P1-63	ST200714P1-13 PFC CS3 20F1906	14-Jul-20	20:38:04
64	64 200714P1-64	IB	14-Jul-20	20:48:39
65	65 200714P1-65	B0G0044-BLK1 Method Blank 0.25	14-Jul-20	20:59:16
66	66 200714P1-66	B0G0044-BS 1 OPR 0.25	14-Jul-20	21:09:52
67	67 200714P1-67	2001430-01 IN-49 0.24168	14-Jul-20	21:20:28
68	68 200714P1-68	2001430-02 OUT-49 0.23991	14-Jul-20	21:31:04

Dataset: Untitled
 Last Altered: Wednesday, July 15, 2020 13:03:07 Pacific Daylight Time
 Printed: Wednesday, July 15, 2020 13:03:29 Pacific Daylight Time

Compound name: PFBA

	\#Name	ID	Acq.Date	Acq.Time
69	$69200714 P 1-69$	IB	14-Jul-20	$21: 41: 39$
70	$70200714 P 1-70$	B0G0055-BS5 OPR 2	14-Jul-20	$21: 52: 15$
71	$71200714 P 1-71$	IB	14-Jul-20	$22: 02: 52$
72	$72200714 P 1-72$	ST200714P1-14 PFC CS3 20F1906	14-Jul-20	$22: 13: 28$
73	$73200714 P 1-73$	IB	14-Jul-20	$22: 24: 04$

Vista Analytical Laboratory
Dataset: D:IPFAS5.PROXRESULTSI200714P11200714P1-63.qld
Last Altered: Wednesday, July 15, 2020 12:54:20 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 12:54:57 Pacific Daylight Time

Method: D:IPFAS5.PRO\MethDBINEW PFAS 80C 071420.mdb 14 Jul 2020 15:40:52

Calibration: D:\PFAS5.PRO\CurveDBIC18_VAL-PFAS_Q5_07-14-20.cdb 15 Jul 2020 08:25:12
Name: 200714P1-63, Date: 14-Jul-2020, Time: 20:38:04, ID: ST200714P1-13 PFC CS3 20F1906, Description: PFC CS3 20F1906

F6:MRM of 2 channels,ES-

13C3-PFBS-EIS

PFPeA

F11:MRM of 2 channels,ES299.0 > 98.9

13C3-PFBS-EIS

F12:MRM of 1 channel,ES $302.0>98.9$

F16:MRM of 2 channels,ES$326.9>80.8$

13C2-4:2 FTS-EIS
F17:MRM of 2 channels,ES$4.299 \mathrm{e}+0.8$

Name: 200714P1-63, Date: 14-Jul-2020, Time: 20:38:04, ID: ST200714P1-13 PFC CS3 20F1906, Description: PFC CS3 $20 F 1906$
 F13:MRM of 2 channels,ES-

		313 > 118.9
100	PFHxA	$2.086 \mathrm{e}+004$
	3.19	
	9.50 e 2	
\%-	20786	
	bb	
	4777.06	
	mprom	min
	3.0003.	

F19:MRM of 2 channels,ES349. > 98.9 $3.541 \mathrm{e}+004$

HFPO-DA

F9:MRM of 3 channels,ES

F18:MRM of 2 channels,ES-

F22:MRM of 2 channels, ES$376.8>85.0$ $1.897 \mathrm{e}+005$

Dataset:	D:IPFAS5.PRO\RESULTS\200714P11200714P1-63.qId
Last Altered:	Wednesday, July 15, 2020 12:54:20 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 12:54:57 Pacific Daylight Time

Name: 200714P1-63, Date: 14-Jul-2020, Time: 20:38:04, ID: ST200714P1-13 PFC CS3 20F1906, Description: PFC CS3 $20 F 1906$

F23:MRM of 2 channels, ES$399>98.9$

$3.750 \quad 4.000 \quad 4.250$

F26:MRM of 2 channels,ESF26:MRM of 2 channels,
$413>169$

F32:MRM of 2 channels,ES-
$449>99$
$4.898 \mathrm{e}+004$
100

F31:MRM of 2 channels,ES$440.9>316.9$

13C5-PFNA-EIS
F36:MRM of 1 channel,ES$468.2>422.9$ $6.002 \mathrm{e}+005$

Dataset:	D:\PFAS5.PROIRESULTS\200714P11200714P1-63.qld
Last Altered:	Wednesday, July 15, 2020 12:54:20 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 12:54:57 Pacific Daylight Time

Name: 200714P1-63, Date: 14-Jul-2020, Time: 20:38:04, ID: ST200714P1-13 PFC CS3 20F1906, Description: PFC CS3 20F1906

F35:MRM of 2 channels,ES-

	463.0 > 219.0
100- PFNA $3.813 \mathrm{e}+004$	
100 7.75	
-1.33e3	
\% - 38058	
\% bb	
-3508.43	
4.500	5.000

PFOSA

F38:MRM of 2 channels,ES$498>169$

13C8-PFOSA-EIS
F42:MRM of 1 channel,ES$506>78$

13C8-PFOS-EIS
F43:MRM of 1 channel,ES $507.1>80$

F52:MRM of 2 channels,ES-
$531>83$

13C8-PFOS-EIS
F43:MRM of 1 channel,ES$507.1>80$

F45:MRM of 2 channels,ES-
$513>219$
$8.436 e+004$

13C2-PFDA-EIS
F46:MRM of 1 channel,ES

Dataset:	D:IPFAS5.PRO\RESULTSL200714P11200714P1-63.qld
Last Altered:	Wednesday, July 15, 2020 12:54:20 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 12:54:57 Pacific Daylight Time

Name: 200714P1-63, Date: 14-Jul-2020, Time: 20:38:04, ID: ST200714P1-13 PFC CS3 20F1906, Description: PFC CS3 $20 F 1906$

F54:MRM of 2 channels,ES-

d3-N-MeFOSAA-EIS
F59:MRM of 1 channel,ES-

d5-N-EtFOSAA-EIS

PFUdA

F55:MRM of 2 channels, ES$563.0>269$
$2.802 \mathrm{e}+004$

13C2-PFUdA-EIS
F56:MRM of 1 channel,ES-
$565>519.8$
$6.422 e+005$

F62:MRM of 2 channels,ES-
(100

13C8-PFOS-EIS

Dataset:	D:IPFAS5.PROIRESULTS\200714P11200714P1-63.qld
	Last Altered:
Wednesday, July 15, 2020 12:54:20 Pacific Daylight Time	
Printed:	Wednesday, July 15, 2020 12:54:57 Pacific Daylight Time

Name: 200714P1-63, Date: 14-Jul-2020, Time: 20:38:04, ID: ST200714P1-13 PFC CS3 20F1906, Description: PFC CS3 $20 F 1906$

F67:MRM of 2 channels,ES$626.9>80.7$ $6.460 \mathrm{e}+004$

5.7506 .0006 .250

F63:MRM of 2 channels,ES-

F72:MRM of 2 channels,ES$662.9>319$ $4.930 e+003$

13C2-PFDoA-EIS
F64:MRM of 1 channel,ES-
$614.9>569.9$

13C2-PFTeDA-EIS
F75:MRM of 2 channels,ES
$715.1>669.7$

F74:MRM of 2 channels,ES-
713. > 369.0

13C2-PFTeDA-EIS
F75:MRM of 2 channels,ES-
$715.1>669.7$

Dataset:	D:IPFAS5.PROIRESULTS\200714P11200714P1-63.qld
Last Altered:	Wednesday, July 15, 2020 12:54:20 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 12:54:57 Pacific Daylight Time

Name: 200714P1-63, Date: 14-Jul-2020, Time: 20:38:04, ID: ST200714P1-13 PFC CS3 20F1906, Description: PFC CS3 20F1906

F49:MRM of 2 channels,ES-

d5-N-ETFOSA-EIS
F53:MRM of 1 channel,ES-
$531.1>168.9$

13C2-PFHxDA-EIS F77:MRM of 1 channel,ES$815>769.7$ $8.532 \mathrm{e}+005$

13C2-PFHxDA-EIS
F77:MRM of 1 channel,ES-
$815>769.7$

d7-N-MeFOSE-EIS
F66:MRM of 1 channel ES-

d9-N-EIFOSE-EIS
F71:MRM of 1 channel,ES-
$639.2>58.8$
$8.026 e+005$

13C3-PFPeA-RSD

F8:MRM of 1 channel,ES$266.0>221.8$

Dataset:	D:IPFAS5.PRO\RESULTSI200714P11200714P1-63.qId
Last Altered:	Wednesday, July 15, 2020 12:54:20 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 12:54:57 Pacific Daylight Time

Name: 200714P1-63, Date: 14-Jul-2020, Time: 20:38:04, ID: ST200714P1-13 PFC CS3 20F1906, Description: PFC CS3 20F1906

13C8-PFOSA-RSD
F42:MRM of 1 channel,ES-
$506>78$

F43:MRM of 1 channel, ES
$507.1>80$
$1.056 \mathrm{e}+005$

Dataset:	D:IPFAS5.PROURESULTSI200714P11200714P1-63.qld
Last Altered:	Wednesday, July 15, 2020 12:54:20 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 12:54:57 Pacific Daylight Time

Name: 200714P1-63, Date: 14-Jul-2020, Time: 20:38:04, ID: ST200714P1-13 PFC CS3 20F1906, Description: PFC CS3 20F1906

Dataset:	D:IPFAS5.PROIRESULTS\200714P1 1200714P1-63.qld
Last Altered:	Wednesday, July 15, 2020 12:54:20 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 12:54:57 Pacific Daylight Time

Name: 200714P1-63, Date: 14-Jul-2020, Time: 20:38:04, ID: ST200714P1-13 PFC CS3 20F1906, Description: PFC CS3 20F1906

Dataset:
 Untitled

Last Altered: Printed:

Thursday, July 16, 2020 08:33:14 Pacific Daylight Time Thursday, July 16, 2020 08:33:20 Pacific Daylight Time

Method: D:\PFAS5.PRO\MethDB\NEW_PFAS_80C_071520.mdb 15 Jul 2020 14:50:21

Calibration: D:|PFAS5.PRO\CurveDB|C̄18_VAL-PFAS_Q5_07-15-20.cdb 16 Jul 2020 08:15:46

Name: 200715P1-15, Date: 15-Jul-2020, Time: 14:05:50, ID: IB, Description: IB

F6:MRM of 2 channels,ES-

13C3-PFBS-EIS
F12:MRM of 1 channel,ES302.0 > 98.9 $4.258 \mathrm{e}+004$

13C3-PFPeA-EIS
IB IBF8:MRM of 1 channel,ES-

PFPeA

13C3-PFPeA-EIS

IB IBF8:MRM of 1 channel,ES-

F11:MRM of 2 channels,ES-

13C3-PFBS-EIS
F12:MRM of 1 channel,ES-

F16:MRM of 2 channels,ES-

13C2-4:2 FTS-EIS

F17:MRM of 2 channels,ES$329.0>80.8$

Dataset:
 Untitled

Last Altered:
Thursday, July 16, 2020 08:33:14 Pacific Daylight Time Printed: Thursday, July 16, 2020 08:33:20 Pacific Daylight Time

Name: 200715P1-15, Date: 15-Jul-2020, Time: 14:05:50, ID: IB, Description: IB

PFHxA
 F13:MRM of 2 channels,ES-

F13:MRM of 2 channels,ESFi3.MRM of 2 channels,ES
(100)

13C2-PFHxA-EIS

F14:MRM of 1 channel,ES-

13C3-PFBS-EIS

13C4-PFHPA-EIS

Dataset:
 Untitled

Last Altered: Thursday, July 16, 2020 08:33:14 Pacific Daylight Time Printed: Thursday, July 16, 2020 08:33:20 Pacific Daylight Time

Name: 200715P1-15, Date: 15-Jul-2020, Time: 14:05:50, ID: IB, Description: IB

$\left.\begin{array}{rrr}\text { F30:MRM of } 1 \text { channel,ES- } \\ 429.0>79.7 \\ 7.608 \mathrm{e}+004\end{array}\right)$
L-PFHxS
F23:MRM of 2 channels,ES-
3.86 (79.9
$1.281 \mathrm{e}+002$

F23:MRM of 2 channels,ES-

13C2-6:2 FTS-EIS

13C3-PFHxS-EIS

F24:MRM of 1 channel,ES-

$3.500 \quad 4.000$

S
100

13C2-PFOA-EIS

13C8-PFOS-EIS

F43:MRM of 1 channel, ES-
$507.1>80$ $1.168 \mathrm{e}+005$

Dataset:
 Untitled

Last Altered:
Thursday, July 16, 2020 08:33:14 Pacific Daylight Time Printed: Thursday, July 16, 2020 08:33:20 Pacific Daylight Time

Name: 200715P1-15, Date: 15-Jul-2020, Time: 14:05:50, ID: IB, Description: IB

PFNA
F35:MRM of 2 channels,ES-
$463.0>418.8$
$1.820 \mathrm{e}+003$

F35:MRM of 2 channels,ES

13C5-PFNA-EIS

F36:MRM of 1 channel,ES$6.2>422.9$

F38:MRM of 2 channels,ES-

13C8-PFOSA-EIS

13C8-PFOS-EIS

F52:MRM of 2 channels,ES-

13C8-PFOS-EIS

F43:MRM of 1 channel,ES$507.1>80$ $168 \mathrm{e}+005$

F45:MRM of 2 channels,ES-

13C2-PFDA-EIS
F46:MRM of 1 channel,ES-

F50:MRM of 2 channels,ES-

13C2-8:2 FTS-EIS

F51:MRM of 1 channel,ES-

Dataset:
 Untitled

Last Altered: Printed:

Thursday, July 16, 2020 08:33:14 Pacific Daylight Time Thursday, July 16, 2020 08:33:20 Pacific Daylight Time
PFNS
F54:MRM of 2 channels,ES-
$549>80$
$1.907 \mathrm{e}+002$

F54:MRM of 2 channels,ES-
100

13C8-PFOS-EIS

F43:MRM of 1 channel,ES-

F57:MRM of 2 channels,ES-

d3-N-MeFOSAA-EIS
F59:MRM of 1 channel,ES$573.1>419$

d5-N-EtFOSAA-EIS
F61:MRM of 1 channel,ES-
F61:MRM of 1 channel,ES-
$589.3>419$

13C2-PFUdA-EIS
F56:MRM of 1 channel,ES-

F62:MRM of 2 channels,ES-

13C8-PFOS-EIS

F43:MRM of 1 channel,ES-

F69:MRM of 2 channels,ES-

13C2-PFDoA-EIS

Dataset:
 Untitled

Last Altered: Printed:

Thursday, July 16, 2020 08:33:14 Pacific Daylight Time Thursday, July 16, 2020 08:33:20 Pacific Daylight Time

Name: 200715P1-15, Date: 15-Jul-2020, Time: 14:05:50, ID: IB, Description: IB

10:2 FTS
 F67:MRM of 2 channels,ES- $626.9>607$ $6.231 \mathrm{e}+001$

F67:MRM of 2 channels,ES-

13C2-10:2 FTS-EIS

F70:MRM of 1 channel,ES632.9 > 80.0 $4.091 \mathrm{e}+004$
100

13C2-PFDoA-EIS

Dataset:
 Untitled

Last Altered:
Thursday, July 16, 2020 08:33:14 Pacific Daylight Time Printed: Thursday, July 16, 2020 08:33:20 Pacific Daylight Time

Name: 200715P1-15, Date: 15-Jul-2020, Time: 14:05:50, ID: IB, Description: IB

N-EtFOSA
F49:MRM of 2 channels,ES-
$526.1>168.9$
$7.785 \mathrm{e}+002$

Dataset:
 Untitled

Last Altered:
Thursday, July 16, 2020 08:33:14 Pacific Daylight Time Printed: Thursday, July 16, 2020 08:33:20 Pacific Daylight Time

Name: 200715P1-15, Date: 15-Jul-2020, Time: 14:05:50, ID: IB, Description: IB

13C2-6:2 FTS-RSD

F30:MRM of 1 channel,ES429.0 > 79.7 $7.608 \mathrm{e}+004$

13C5-PFNA-RSD

13C2-PFOA-RSD

F27:MRM of 1 channel,ES$414.9>369.7$ $6.415 \mathrm{e}+005$

13C8-PFOS-RSD

F43:MRM of 1 channel,ES $507.1>80$ $1.168 \mathrm{e}+005$

Dataset:
 Untitled

Last Altered:
Thursday, July 16, 2020 08:33:14 Pacific Daylight Time Printed: Thursday, July 16, 2020 08:33:20 Pacific Daylight Time

Name: 200715P1-15, Date: 15-Jul-2020, Time: 14:05:50, ID: IB, Description: IB

13C2-8:2 FTS-RSD

 5.0005 .200

d3-N-MeFOSA-RSD

F47:MRM of 1 channel,ES $515.2>168.9$

13C2-PFTeDA-RSD
F75:MRM of 2 channels,ES-

d5-N-ETFOSA-RSD

F53:MRM of 1 channel,ES$531.1>168.9$ $6.743 \mathrm{e}+005$

13C2-PFHxDA-RSD
F77:MRM of 1 channel,ES$815>769.7$ $1.058 \mathrm{e}+006$

d9-N-EtFOSE-RSD
F71:MRM of 1 channel,ES$639.2>58.8$ $8.889 \mathrm{e}+005$

Dataset:
 Untitled

Thursday, July 16, 2020 08:33:14 Pacific Daylight Time Printed: Thursday, July 16, 2020 08:33:20 Pacific Daylight Time

Name: 200715P1-15, Date: 15-Jul-2020, Time: 14:05:50, ID: IB, Description: IB

13C4-PFBA
 IB IBF4:MRM of 1 channel,ES$217.0>172.0$ $1.673 \mathrm{e}+003$
 100

13C6-PFDA

F48:MRM of 1 channel,ES$519.1>473.7$ $100 \quad 1.685 \mathrm{e}+002$

13C7-PFUdA

Dataset:	Untitled
Last Altered:	Thursday, July 16, 2020 08:33:14 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 08:33:20 Pacific Daylight Time

Name: 200715P1-15, Date: 15-Jul-2020, Time: 14:05:50, ID: IB, Description: IB

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
1	1 PFBA	$213.0>168.8$	12.119	10778.824	1.00	1.31	0.014				NO		
2	2 PFPrs	$249>80$		1813.848	1.00						NO		YES
3	3 3:3 FTCA	$240.9>176.9$		15224.953	1.00						NO		YES
4	4 PFPeA	$263.1>218.9$	8.944	15224.953	1.00	2.22	0.007				NO		
5	5 PFBS	$299.0>80$		1813.848	1.00						NO		YES
6	6 4:2 FTS	$326.9>306.9$		2010.718	1.00						NO		YES
7	47 13C3-PFBA-EIS	$216.1>171.8$	10778.824		1.00	1.42	10778.824	12.500	16.2	129.8	NO		
8	51 13C3-PFBS-EIS	$302.0>98.9$	1813.848		1.00	2.64	1813.848	12.500	12.5	99.9	NO		
9	49 13C3-PFPeA-EIS	266.0 > 221.8	15224.953		1.00	2.36	15224.953	12.500	13.5	108.1	NO		
10	49 13C3-PFPeA-EIS	266.0 > 221.8	15224.953		1.00	2.36	15224.953	12.500	13.5	108.1	NO		
11	51 13C3-PFBS-EIS	$302.0>98.9$	1813.848		1.00	2.64	1813.848	12.500	12.5	99.9	NO		
12	55 13C2-4:2 FTS-EIS	$329.0>80.8$	2010.718		1.00	3.08	2010.718	12.500	13.2	105.5	NO		
13	-1												
14	7 PFHxA	313.0 > 269.0	52.881	16232.079	1.00	3.19	0.041				NO		YES
15	8 PFPeS	349.>80		1813.848	1.00						NO		YES
16	9 HFPO-DA	$285.1>168.9$		3081.270	1.00						NO		YES
17	10 5:3 FTCA	$340.9>236.9$		14878.547	1.00						NO		YES
18	11 PFHpA	$363.0>319$		14878.547	1.00						NO		YES
19	12 ADONA	$376.8>250.9$	108.036	14878.547	1.00	3.81	0.091		0.0695		NO	14.687	YES
20	57 13C2-PFHxA-EIS	$315.0>270.0$	16232.079		1.00	3.16	16232.079	12.500	13.2	105.9	NO		
21	51 13C3-PFBS-EIS	$302.0>98.9$	1813.848		1.00	2.64	1813.848	12.500	12.5	99.9	NO		
22	53 13C3-HFPO-DA-EIS	$287.0>168.9$	3081.270		1.00	3.39	3081.270	12.500	11.9	95.3	NO		
23	59 13C4-PFHpA-EIS	$367.2>321.8$	14878.547		1.00	3.76	14878.547	12.500	11.7	93.7	NO		
24	59 13C4-PFHpA-EIS	367.2 > 321.8	14878.547		1.00	3.76	14878.547	12.500	11.7	93.7	NO		
25	59 13C4-PFHpA-EIS	367.2 > 321.8	14878.547		1.00	3.76	14878.547	12.500	11.7	93.7	NO		
26	-1												
27	13 L-PFHxS	$399>79.9$		3888.677	1.00						NO		YES
28	15 6:2 FTS	$427.0>407$	14.528	2437.521	1.00	4.17	0.075		0.101		NO	1.658	YES
29	16 L-PFOA	$413>369$	60.749	19905.926	1.00	4.28	0.038		0.0321		NO	6.815	YES
30	18 PFechS	$461>381.0$	9.962	19905.926	1.00	4.24	0.006		0.0592		NO	0.527	NO
31	19 PFHpS	$449.0>80$		3934.740	1.00						NO		YES
32	20 7:3 FTCA	$440.9>336.9$		20104.855	1.00						NO		YES
33	61 13C3-PFHxS-EIS	$402>80$	3888.677		1.00	3.91	3888.677	12.500	14.5	115.8	NO		
34	63 13C2-6:2 FTS-EIS	$429.0>79.7$	2437.521		1.00	4.22	2437.521	12.500	12.9	102.8	NO		
35	69 13C2-PFOA-EIS	414.9 > 369.7	19905.926		1.00	4.28	19905.926	12.500	13.1	104.8	NO		
36	69 13C2-PFOA-EIS	414.9 > 369.7	19905.926		1.00	4.28	19905.926	12.500	13.1	104.8	NO		
	Work Order 2001436											Page 171 of 873	

Dataset:	Untitled
Last Altered:	Thursday, July 16, 2020 08:33:14 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 08:33:20 Pacific Daylight Time

Name: 200715P1-15, Date: 15-Jul-2020, Time: 14:05:50, ID: IB, Description: IB

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery	Ion Ratio	Ratio Out?
37	71 13C8-PFOS-EIS	$507.1>80$	3934.740		1.00	4.80	3934.740	12.500	14.1	112.9	NO		
38	65 13C5-PFNA-EIS	468.2 > 422.9	20104.855		1.00	4.72	20104.855	12.500	13.5	108.1	NO		
39	-1												
40	21 PFNA	$463.0>418.8$	84.844	20104.855	1.00	4.68	0.053		0.0321		NO		YES
41	22 PFOSA	$498>78$	14.863	8009.700	1.00	4.73	0.023		0.00177		NO		YES
42	23 L-PFOS	$499>80$	5.432	3934.740	1.00	4.81	0.017		0.0008...		NO		YES
43	259 Cl -PF30NS	$531>351$	5.270	3934.740	1.00	4.97	0.017				NO		YES
44	26 PFDA	$513>469$	14.619	23947.822	1.00	5.07	0.008				NO		YES
45	27 8:2 FTS	$526.8>506.9$		2023.324	1.00						NO		YES
46	65 13C5-PFNA-EIS	$468.2>422.9$	20104.855		1.00	4.72	20104.855	12.500	13.5	108.1	NO		
47	67 13C8-PFOSA-EIS	$506>78$	8009.700		1.00	4.77	8009.700	12.500	13.5	107.7	NO		
48	71 13C8-PFOS-EIS	$507.1>80$	3934.740		1.00	4.80	3934.740	12.500	14.1	112.9	NO		
49	71 13C8-PFOS-EIS	$507.1>80$	3934.740		1.00	4.80	3934.740	12.500	14.1	112.9	NO		
50	73 13C2-PFDA-EIS	$515.1>469.9$	23947.822		1.00	5.10	23947.822	12.500	14.3	114.2	NO		
51	75 13C2-8:2 FTS-EIS	$529>80$	2023.324		1.00	5.07	2023.324	12.500	13.9	111.6	NO		
52	-1												
53	28 PFNS	$549>80$		3934.740	1.00						NO		YES
54	29 L-MeFOSAA	$570>419$	22.608	4814.739	1.00	5.20	0.059		0.104		NO	3.117	YES
55	$31 \mathrm{~L}-\mathrm{EtFOSAA}$	$583.9>419$	21.482	4313.271	1.00	5.37	0.062		0.0521		NO	1.701	NO
56	33 PFUdA	$563.0>519$	66.650	22660.191	1.00	5.41	0.037				NO		YES
57	34 PFDS	$598.8>79.9$	6.290	3934.740	1.00	5.42	0.020				NO		YES
58	3511 Cl -PF30UdS	$631>451$	12.852	25573.779	1.00	5.60	0.006				NO		YES
59	71 13C8-PFOS-EIS	$507.1>80$	3934.740		1.00	4.80	3934.740	12.500	14.1	112.9	NO		
60	77 d3-N-MeFOSAA-EIS	$573.1>419$	4814.739		1.00	5.24	4814.739	12.500	12.9	103.6	NO		
61	81 d5-N-EtFOSAA-EIS	$589.3>419$	4313.271		1.00	5.40	4313.271	12.500	12.0	95.9	NO		
62	79 13C2-PFUdA-EIS	$565>519.8$	22660.191		1.00	5.42	22660.191	12.500	13.2	105.4	NO		
63	71 13C8-PFOS-EIS	$507.1>80$	3934.740		1.00	4.80	3934.740	12.500	14.1	112.9	NO		
64	83 13C2-PFDoA-EIS	$614.9>569.9$	25573.779		1.00	5.69	25573.779	12.500	13.5	108.4	NO		
65	-1												
66	36 10:2 FTS	$626.9>607$		1392.512	1.00						NO		YES
67	37 PFDoA	$612.9>569.0$	231.340	25573.779	1.00	5.73	0.113		0.0144		NO		YES
68	38 N-MeFOSA	$512.1>168.9$	24.931	20233.803	1.00	5.65	0.184				NO		YES
69	39 PFTrDA	$662.9>618.9$	53.053	25573.779	1.00	5.90	0.026				NO		YES
70	40 PFDoS	$699>80$	6.107	25175.213	1.00	5.91	0.003		0.0172		NO		YES
71	41 PFTeDA	713.0 > 669.0		25175.213	1.00						NO		YES
72	85 13C2-10:2 FTS-EIS	$632.9>80.0$	1392.512		1.00	5.68	1392.512	12.500	13.4	106.9	NO	Page 172 of 873	
	Work Order 2001436												

Dataset:	Untitled
Last Altered:	Thursday, July 16, 2020 08:33:14 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 08:33:20 Pacific Daylight Time

Name: 200715P1-15, Date: 15-Jul-2020, Time: 14:05:50, ID: IB, Description: IB

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
73	83 13C2-PFDoA-EIS	$614.9>569.9$	25573.779		1.00	5.69	25573.779	12.500	13.5	108.4	NO		
74	87 d3-N-MeFOSA-EIS	$515.2>168.9$	20233.803		1.00	5.73	20233.803	149.200	133	88.9	NO		
75	83 13C2-PFDoA-EIS	$614.9>569.9$	25573.779		1.00	5.69	25573.779	12.500	13.5	108.4	NO		
76	89 13C2-PFTeDA-EIS	715.1 > 669.7	25175.213		1.00	6.15	25175.213	12.500	13.3	106.3	NO		
77	89 13C2-PFTeDA-EIS	715.1 > 669.7	25175.213		1.00	6.15	25175.213	12.500	13.3	106.3	NO		
78	-1												
79	$42 \mathrm{~N}-\mathrm{EtFOSA}$	$526.1>168.9$	32.519	25671.865	1.00	6.07	0.189		0.0174		NO	2.212	NO
80	43 PFHxDA	$813>769$	263.047	28307.994	1.00	6.47	0.116		0.0334		NO		YES
81	44 PFODA	$913.1>868.8$	141.381	28307.994	1.00	6.69	0.062		0.100		NO		
82	45 N -MeFOSE	$616.1>58.9$		20843.137	1.00						NO		
83	$46 \mathrm{~N}-\mathrm{EtFOSE}$	$630.1>58.9$		23969.789	1.00						NO		
84	48 13C3-PFBA-RSD	$216.1>171.8$	10778.824	89.973	1.00	1.42	1497.508	12.500	1630	13038.6	YES		
85	91 d5-N-ETFOSA-EIS	$531.1>168.9$	25671.865		1.00	6.13	25671.865	149.200	135	90.2	NO		
86	93 13C2-PFHxDA-EIS	$815>769.7$	28307.994		1.00	6.47	28307.994	12.500	12.4	98.9	NO		
87	93 13C2-PFHxDA-EIS	$815>769.7$	28307.994		1.00	6.47	28307.994	12.500	12.4	98.9	NO		
88	95 d7-N-MeFOSE-EIS	$623.1>58.9$	20843.137		1.00	6.29	20843.137	149.200	136	91.5	NO		
89	97 d9-N-EtFOSE-EIS	$639.2>58.8$	23969.789		1.00	6.44	23969.789	149.200	136	91.1	NO		
90	50 13C3-PFPeA-RSD	266.0 > 221.8			1.00			12.500			NO		
91	-1												
92	52 13C3-PFBS-RSD	$302.0>98.9$			1.00			12.500			NO		
93	54 13C3-HFPO-DA-RSD	287.0 > 168.9	3081.270		1.00	3.39		12.500			NO		
94	56 13C2-4:2 FTS-RSD	$329.0>80.8$			1.00			12.500			NO		
95	58 13C2-PFHxA-RSD	$315.0>270.0$			1.00			12.500			NO		
96	60 13C4-PFHpA-RSD	$367.2>321.8$	14878.547		1.00	3.76		12.500			NO		
97	62 13C3-PFHxS-RSD	$402>80$			1.00			12.500			NO		
98	64 13C2-6:2 FTS-RSD	$429.0>79.7$	2437.521	44.122	1.00	4.22	690.563	12.500	1230	9811.9	YES		
99	66 13C5-PFNA-RSD	$468.2>422.9$	20104.855	8.771	1.00	4.72	28652.456	12.500	31000	24770...	YES		
100	68 13C8-PFOSA-RSD	$506>78$	8009.700	8.442	1.00	4.77	11859.897	12.500	26500	21202..	YES		
101	70 13C2-PFOA-RSD	$414.9>369.7$	19905.926	6.776	1.00	4.28	36721.381	12.500	30800	24600...	YES		
102	72 13C8-PFOS-RSD	$507.1>80$	3934.740	44.122	1.00	4.80	1114.733	12.500	1430	11441.6	YES		
103	74 13C2-PFDA-RSD	$515.1>469.9$	23947.822	6.025	1.00	5.10	49684.278	12.500	45000	36039...	YES		
104	-1												
105	76 13C2-8:2 FTS-RSD	$529>80$	2023.324	44.122	1.00	5.07	573.219	12.500	1270	10128.3	YES		
106	78 d3-N-MeFOSAA-RSD	$573.1>419$	4814.739	8.442	1.00	5.24	7129.144	12.500	25700	20522...	YES		
107	80 13C2-PFUdA-RSD	$565>519.8$	22660.191	8.442	1.00	5.42	33552.759	12.500	26000	20804...	YES		
108	82 d5-N-EtFOSAA-RSD	$589.3>419$	4313.271	8.442	1.00	5.40	6386.625	12.500	25900	20709..	YES		
	Work Order 2001436											Page 1	73 of 873

Dataset: Untitled
 Last Altered: Thursday, July 16, 2020 08:33:14 Pacific Daylight Time Printed:
 Thursday, July 16, 2020 08:33:20 Pacific Daylight Time

Name: 200715P1-15, Date: 15-Jul-2020, Time: 14:05:50, ID: IB, Description: IB

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery	Ion Ratio	Ratio Out?
109	84 13C2-PFDoA-RSD	614.9 > 569.9	25573.779	6.025	1.00	5.69	53057.633	12.500	43100	34445...	YES		
110	86 13C2-10:2 FTS-RSD	$632.9>80.0$	1392.512	44.122	1.00	5.68	394.506	12.500	1330	10635.9	YES		
111	88 d3-N-MeFOSA-RSD	$515.2>168.9$	20233.803	8.442	1.00	5.73	29960.026	149.200	251000	16845...	YES		
112	90 13C2-PFTeDA-RSD	$715.1>669.7$	25175.213	8.442	1.00	6.15	37276.731	12.500	25000	20038...	YES		
113	92 d5-N-ETFOSA-RSD	$531.1>168.9$	25671.865	8.442	1.00	6.13	38012.119	149.200	268000	17968...	YES		
114	94 13C2-PFHxDA-RSD	$815>769.7$	28307.994	8.442	1.00	6.47	41915.414	12.500	23900	19118...	YES		
115	96 d7-N-MeFOSE-RSD	$623.1>58.9$	20843.137	8.442	1.00	6.29	30862.262	149.200	256000	17180...	YES		
116	98 d9-N-EtFOSE-RSD	$639.2>58.8$	23969.789	8.442	1.00	6.44	35491.870	149.200	259000	17374...	YES		
117	-1												
118	99 13C4-PFBA	$217.0>172.0$	89.973	89.973	1.00	1.42	12.500	12.500	12.5	100.0	NO		
119	1... 13C5-PFHxA	318.0 > 272.9			1.00			12.500			NO		
120	1... 13C8-PFOA	$420.9>376.0$	6.776	6.776	1.00	4.28	12.500	12.500	12.5	100.0	NO		
121	1... 1802-PFHxS	$403.0>103$			1.00			12.500			NO		
122	1... 13C9-PFNA	$472.2>426.9$	8.771	8.771	1.00	4.72	12.500	12.500	12.5	100.0	NO		
123	1... 13C4-PFOS	$503>79.7$	44.122	44.122	1.00	4.81	12.500	12.500	12.5	100.0	NO		
124	1... 13C6-PFDA	$519.1>473.7$	6.025	6.025	1.00	5.10	12.500	12.500	12.5	100.0	NO		
125	1... 13C7-PFUdA	$570.1>524.8$	8.442	8.442	1.00	5.42	12.500	12.500	12.5	100.0	NO		

LC Calibration Standards Review Checklist \qquad

Full Mass Cal. Date: of - 10-2020

Run Log Present:	
\# of Samples per Sequence Checked:	
Instrument Blank Saved	
All Branches in Acquisition Window	
IIS Area Saved	\square
N IA	

Reviewed By: $\quad 7 R \quad 07 / 16 / 2020$ VIA

Name: 200715P1-36, Date: 15-Jul-2020, Time: 17:48:15, ID: ST200715P1-11 PFC CS3 20F1906, Description: PFC CS3 20 F1906

	\# Name	Trace	Area	IS Area	witvol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
1	1 PFBA	$213.0>168.8$	7124.953	8333.914	1.00	1.42	10.687	10.000	10.8	107.8	NO		
2	2 PFPrs	$249>80$	1879.532	1819.442	1.00	1.75	12.913	10.000	10.1	101.2	NO	2.796	NO
3	3 3:3 FTCA	$240.9>176.9$	839.566	14659.771	1.00	2.22	0.716	10.000	9.39	93.9	NO	3.247	NO
4	4 PFPeA	$263.1>218.9$	11084.158	14659.771	1.00	2.36	9.451	10.000	10.1	100.9	NO		
5	5 PFBS	$299.0>80$	3521.401	1819.442	1.00	2.64	24.193	10.000	9.60	96.0	NO	2.358	NO
6	6 4:2 FTS	$326.9>306.9$	4044.387	1844.722	1.00	3.08	27.405	10.000	10.9	108.9	NO	10.320	NO
7	47 13C3-PFBA-EIS	$216.1>171.8$	8333.914		1.00	1.42	8333.914	12.500	12.5	100.3	NO		
8	51 13C3-PFBS-EIS	$302.0>98.9$	1819.442		1.00	2.64	1819.442	12.500	12.5	100.2	NO		
9	49 13C3-PFPeA-EIS	$266.0>221.8$	14659.771		1.00	2.36	14659.771	12.500	13.0	104.1	NO		
10	49 13C3-PFPeA-EIS	$266.0>221.8$	14659.771		1.00	2.36	14659.771	12.500	13.0	104.1	NO		
11	51 13C3-PFBS-EIS	$302.0>98.9$	1819.442		1.00	2.64	1819.442	12.500	12.5	100.2	NO		
12	55 13C2-4:2 FTS-EIS	$329.0>80.8$	1844.722		1.00	3.08	1844.722	12.500	12.1	96.8	NO		
13	-1												
14	7 PFHxA	$313.0>269.0$	13499.114	15610.274	1.00	3.16	10.809	10.000	10.8	108.3	NO	15.869	NO
15	8 PFPeS	$349 .>80$	3102.873	1819.442	1.00	3.36	21.317	10.000	10.4	104.0	NO	2.363	NO
16	9 HFPO-DA	$285.1>168.9$	2530.410	3305.196	1.00	3.38	9.570	10.000	9.73	97.3	NO	2.291	NO
17	10 5:3 FTCA	$340.9>236.9$	1757.410	14872.864	1.00	3.70	1.477	10.000	9.79	97.9	NO	1.645	NO
18	11 PFHpA	$363.0>319$	13925.848	14872.864	1.00	3.76	11.704	10.000	9.08	90.8	NO	51.455	NO
19	12 ADONA	$376.8>250.9$	26174.326	14872.864	1.00	3.87	21.998	10.000	9.60	96.0	NO	3.713	NO
20	57 13C2-PFHxA-EIS	$315.0>270.0$	15610.274		1.00	3.16	15610.274	12.500	12.7	101.8	NO		
21	51 13C3-PFBS-EIS	$302.0>98.9$	1819.442		1.00	2.64	1819.442	12.500	12.5	100.2	NO		
22	53 13C3-HFPO-DA-EIS	$287.0>168.9$	3305.196		1.00	3.38	3305.196	12.500	12.8	102.2	NO		
23	59 13C4-PFHPA-EIS	$367.2>321.8$	14872.864		1.00	3.76	14872.864	12.500	11.7	93.7	NO		
24	59 13C4-PFHPA-EIS	$367.2>321.8$	14872.864		1.00	3.76	14872.864	12.500	11.7	93.7	NO		
25	59 13C4-PFHpA-EIS	$367.2>321.8$	14872.864		1.00	3.76	14872.864	12.500	11.7	93.7	NO		
26	-1												
27	13 L-PFHxS	$399>79.9$	3274.831	3480.682	1.00	3.91	11.761	10.000	10.1	101.2	NO	3.813	NO
28	15 6:2 FTS	$427.0>407$	1838.024	2337.447	1.00	4.22	9.829	10.000	9.78	97.8	NO	0.716	NO
29	16 L-PFOA	$413>369$	14904.339	19930.416	1.00	4.28	9.348	10.000	9.51	95.1	NO	2.930	NO
30	18 PFecHS	$461>381.0$	2834.354	19930.416	1.00	4.29	1.778	10.000	9.22	92.2	NO	0.497	NO
31	19 PFHpS	$449.0>80$	2827.431	3365.132	1.00	4.39	10.503	10.000	10.9	109.0	NO	1.881	NO
32	20 7:3 FTCA	$440.9>336.9$	3339.676	18050.121	1.00	4.71	2.313	10.000	10.2	101.7	NO	1.343	NO
33	61 13C3-PFHxS-EIS	$402>80$	3480.682		1.00	3.91	3480.682	12.500	13.0	103.7	NO		
34	63 13C2-6:2 FTS-EIS	$429.0>79.7$	2337.447		1.00	4.22	2337.447	12.500	12.3	98.6	NO		
35	69 13C2-PFOA-EIS	$414.9>369.7$	19930.416		1.00	4.28	19930.416	12.500	13.1	104.9	NO		
36	69 13C2-PFOA-EIS	$414.9>369.7$	19930.416		1.00	4.28	19930.416	12.500	13.1	104.9	NO		

Last Altered: Thursday, July 16, 2020 12:37:53 Pacific Daylight Time
Printed: Thursday, July 16, 2020 12:39:18 Pacific Daylight Time

Name: 200715P1-36, Date: 15-Jul-2020, Time: 17:48:15, ID: ST200715P1-11 PFC CS3 20F1906, Description: PFC CS3 20F1906

	\# Name	Trace	Area	IS Area	witvol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
37	71 13C8-PFOS-EIS	$507.1>80$	3365.132		1.00	4.80	3365.132	12.500	12.1	96.5	NO		
38	65 13C5-PFNA-EIS	$468.2>422.9$	18050.121		1.00	4.72	18050.121	12.500	12.1	97.0	NO		
39	-1												
40	21 PFNA	$463.0>418.8$	16947.041	18050.121	1.00	4.72	11.736	10.000	9.93	99.3	NO	12.659	NO
41	22 PFOSA	$498>78$	4102.801	7130.445	1.00	4.77	7.192	10.000	10.3	103.4	NO	23.322	NO
42	23 L-PFOS	$499>80$	3409.648	3365.132	1.00	4.80	12.665	10.000	10.4	104.2	NO	2.400	NO
43	$25 \mathrm{9Cl}-\mathrm{PF} 30 \mathrm{NS}$	$531>351$	6163.757	3365.132	1.00	5.02	22.896	10.000	9.56	95.6	NO	26.415	NO
44	26 PFDA	$513>469$	13719.299	22157.275	1.00	5.09	7.740	10.000	9.34	93.4	NO	4.814	NO
45	27 8:2 FTS	$526.8>506.9$	2013.363	1970.627	1.00	5.07	12.771	10.000	10.5	104.7	NO	0.801	NO
46	65 13C5-PFNA-EIS	$468.2>422.9$	18050.121		1.00	4.72	18050.121	12.500	12.1	97.0	NO		
47	67 13C8-PFOSA-EIS	$506>78$	7130.445		1.00	4.77	7130.445	12.500	12.0	95.9	NO		
48	71 13C8-PFOS-EIS	$507.1>80$	3365.132		1.00	4.80	3365.132	12.500	12.1	96.5	NO		
49	71 13C8-PFOS-EIS	$507.1>80$	3365.132		1.00	4.80	3365.132	12.500	12.1	96.5	NO		
50	73 13C2-PFDA-EIS	$515.1>469.9$	22157.275		1.00	5.09	22157.275	12.500	13.2	105.6	NO		
51	75 13C2-8:2 FTS-EIS	$529>80$	1970.627		1.00	5.07	1970.627	12.500	13.6	108.7	NO		
52	-1												
53	28 PFNS	$549>80$	3584.452	3365.132	1.00	5.16	13.315	10.000	10.9	109.0	NO	2.368	NO
54	29 L-MeFOSAA	$570>419$	4480.299	4667.393	1.00	5.24	11.999	10.000	9.88	98.8	NO	1.847	NO
55	31 L-EtFOSAA	$583.9>419$	5499.588	3904.618	1.00	5.40	17.606	10.000	11.2	111.9	NO	1.466	NO
56	33 PFUdA	$563.0>519$	16731.439	21671.645	1.00	5.41	9.651	10.000	10.1	101.1	NO	17.635	NO
57	34 PFDS	$598.8>79.9$	3521.802	3365.132	1.00	5.46	13.082	10.000	10.9	108.7	NO	2.162	NO
58	3511 Cl -PF30UdS	$631>451$	5276.146	23844.336	1.00	5.62	2.766	10.000	10.7	106.7	NO	15.308	NO
59	71 13C8-PFOS-EIS	$507.1>80$	3365.132		1.00	4.80	3365.132	12.500	12.1	96.5	NO		
60	77 d3-N-MeFOSAA-EIS	$573.1>419$	4667.393		1.00	5.24	4667.393	12.500	12.5	100.4	NO		
611	$81 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$-EIS	$589.3>419$	3904.618		1.00	5.39	3904.618	12.500	10.8	86.8	NO		
62	79 13C2-PFUdA-EIS	$565>519.8$	21671.645		1.00	5.42	21671.645	12.500	12.6	100.8	NO		
63	71 13C8-PFOS-EIS	$507.1>80$	3365.132		1.00	4.80	3365.132	12.500	12.1	96.5	NO		
64	83 13C2-PFDoA-EIS	$614.9>569.9$	23844.336		1.00	5.69	23844.336	12.500	12.6	101.0	NO		
65	-1												
66	36 10:2 FTS	$626.9>607$	1842.051	1324.835	1.00	5.68	17.380	10.000	9.00	90.0	NO	0.834	NO
67	37 PFDoA	$612.9>569.0$	17347.688	23844.336	1.00	5.69	9.094	10.000	10.1	101.2	NO	10.567	NO
68	38 N-MeFOSA	$512.1>168.9$	8370.574	22756.172	1.00	5.70	54.881	50.000	52.0	104.0	NO	1.999	NO
69	39 PFTrDA	$662.9>618.9$	20288.563	23844.336	1.00	5.93	10.636	10.000	10.1	101.0	NO	93.088	NO
70	40 PFDoS	$699>80$	3798.842	24687.342	1.00	5.96	1.923	10.000	10.1	100.9	NO	2.254	NO
71	41 PFTeDA	$713.0>669.0$	12057.662	24687.342	1.00	6.14	6.105	10.000	10.6	106.2	NO	13.933	NO
72	85 13C2-10:2 FTS-EIS	$632.9>80.0$	1324.835		1.00	5.68	1324.835	12.500	12.7	101.7	NO		

Work Order 2001436

Dataset:	Z:IPFAS5.PRO\RESULTSL200715P1L200715P1-36.qld
Last Altered:	Thursday, July 16, 2020 12:37:53 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 12:39:18 Pacific Daylight Time

Name: 200715P1-36, Date: 15-Jul-2020, Time: 17:48:15, ID: ST200715P1-11 PFC CS3 20F1906, Description: PFC CS3 20F1906

	\# Name	Trace	Area	IS Area	witivol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
73	83 13C2-PFDoA-EIS	$614.9>569.9$	23844.336		1.00	5.69	23844.336	12.500	12.6	101.0	NO		
74	87 d3-N-MeFOSA-EIS	$515.2>168.9$	22756.172		1.00	5.73	22756.172	149.200	149	100.0	NO		
75	83 13C2-PFDOA-EIS	$614.9>569.9$	23844.336		1.00	5.69	23844.336	12.500	12.6	101.0	NO		
76	89 13C2-PFTeDA-EIS	$715.1>669.7$	24687.342		1.00	6.14	24687.342	12.500	13.0	104.3	NO		
77	89 13C2-PFTeDA-EIS	$715.1>669.7$	24687.342		1.00	6.14	24687.342	12.500	13.0	104.3	NO		
78	-1												
79	42 N -EtFOSA	$526.1>168.9$	11457.647	29135.488	1.00	6.12	58.673	50.000	50.3	100.6	NO	2.011	NO
80	43 PFHxDA	$813>769$	21359.457	29536.582	1.00	6.46	9.039	10.000	9.21	92.1	NO	29.228	NO
81	44 PFODA	$913.1>868.8$	18676.920	29536.582	1.00	6.69	7.904	10.000	10.0	100.2	NO		
82	$45 \mathrm{~N}-\mathrm{MeFOSE}$	$616.1>58.9$	8874.549	22762.611	1.00	6.29	58.169	50.000	55.8	111.6	NO		
83	46 N -EtFOSE	$630.1>58.9$	9039.263	25868.955	1.00	6.44	52.134	50.000	54.8	109.5	NO		
84	48 13C3-PFBA-RSD	$216.1>171.8$	8034.194	9169.693	1.00	1.42	10.952	12.500	11.9	95.4	NO		
85	91 d5-N-ETFOSA-EIS	$531.1>168.9$	29135.488		1.00	6.13	29135.488	149.200	153	102.3	NO		
86	93 13C2-PFHxDA-EIS	$815>769.7$	29536.582		1.00	6.46	29536.582	12.500	12.9	103.2	NO		
87	93 13C2-PFHxDA-EIS	$815>769.7$	29536.582		1.00	6.46	29536.582	12.500	12.9	103.2	NO		
88	95 d7-N-MeFOSE-EIS	$623.1>58.9$	22762.611		1.00	6.29	22762.611	149.200	149	99.9	NO		
89	$97 \mathrm{~d} 9-\mathrm{N}$-EtFOSE-EIS	$639.2>58.8$	25868.955		1.00	6.43	25868.955	149.200	147	98.3	NO		
90	50 13C3-PFPeA-RSD	$266.0>221.8$	14659.771	19104.449	1.00	2.36	9.592	12.500	12.5	100.0	NO		
91	-1												
92	52 13C3-PFBS-RSD	$302.0>98.9$	1819.442	1491.065	1.00	2.64	15.253	12.500	12.3	98.5	NO		
93	54 13C3-HFPO-DA-RSD	$287.0>168.9$	3305.196	19104.449	1.00	3.38	2.163	12.500	13.0	104.3	NO		
94	56 13C2-4:2 FTS-RSD	$329.0>80.8$	1844.722	1491.065	1.00	3.08	15.465	12.500	11.8	94.1	NO		
95	58 13C2-PFHxA-RSD	$315.0>270.0$	15610.274	19104.449	1.00	3.16	10.214	12.500	12.4	99.2	NO		
96	60 13C4-PFHpA-RSD	$367.2>321.8$	14872.864	19104.449	1.00	3.76	9.731	12.500	12.6	101.1	NO		
97	62 13C3-PFHxS-RSD	$402>80$	3480.682	1491.065	1.00	3.91	29.179	12.500	12.1	97.2	NO		
98	64 13C2-6:2 FTS-RSD	$429.0>79.7$	2337.447	4406.790	1.00	4.22	6.630	12.500	12.6	100.8	NO		
99	66 13C5-PFNA-RSD	$468.2>422.9$	18050.121	19292.094	1.00	4.72	11.695	12.500	12.6	101.1	NO		
100	68 13C8-PFOSA-RSD	$506>78$	7130.445	17156.707	1.00	4.77	5.195	12.500	11.6	92.9	NO		
101	70 13C2-PFOA-RSD	$414.9>369.7$	19930.416	15440.847	1.00	4.28	16.134	12.500	13.5	108.1	NO		
102	72 13C8-PFOS-RSD	$507.1>80$	3365.132	4406.790	1.00	4.80	9.545	12.500	12.2	98.0	NO		
103	74 13C2-PFDA-RSD	$515.1>469.9$	22157.275	19811.434	1.00	5.09	13.980	12.500	12.7	101.4	NO		
104	-1												
105	76 13C2-8:2 FTS-RSD	$529>80$	1970.627	4406.790	1.00	5.07	5.590	12.500	12.3	98.8	NO		
106	$78 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$-RSD	$573.1>419$	4667.393	17156.707	1.00	5.24	3.401	12.500	12.2	97.9	NO		
107	80 13C2-PFUdA-RSD	$565>519.8$	21671.645	17156.707	1.00	5.42	15.789	12.500	12.2	97.9	NO		
108	$82 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}-\mathrm{RSD}$	$589.3>419$	3904.618	17156.707	1.00	5.39	2.845	12.500	11.5	92.2	NO		

OPV 7/16/2020

Last Altered: Thursday, July 16, 2020 12:37:53 Pacific Daylight Time
Printed: Thursday, July 16, 2020 12:39:18 Pacific Daylight Time

Name: 200715P1-36, Date: 15-Jul-2020, Time: 17:48:15, ID: ST200715P1-11 PFC CS3 20F1906, Description: PFC CS3 20F1906

	\# Name	Trace	Area	IS Area	wivol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
109	84 13C2-PFDoA-RSD	$614.9>569.9$	23844.336	19811.434	1.00	5.69	15.045	12.500	12.2	97.7	No		
110	86 13C2-10:2 FTS-RSD	$632.9>80.0$	1324.835	4406.790	1.00	5.68	3.758	12.500	12.7	101.3	NO		
111	88 d3-N-MeFOSA-RSD	$515.2>168.9$	22756.172	17156.707	1.00	5.73	16.580	149.200	139	93.2	NO		
112	90 13C2-PFTeDA-RSD	$715.1>669.7$	24687.342	17156.707	1.00	6.14	17.987	12.500	12.1	96.7	NO		
113	92 d5-N-ETFOSA-RSD	$531.1>168.9$	29135.488	17156.707	1.00	6.13	21.227	149.200	150	100.3	NO		
114	94 13C2-PFHxDA-RSD	$815>769.7$	29536.582	17156.707	1.00	6.46	21.520	12.500	12.3	98.2	NO		
115	96 d7-N-MeFOSE-RSD	$623.1>58.9$	22762.611	17156.707	1.00	6.29	16.584	149.200	138	92.3	NO		
116	98 d9-N-EtFOSE-RSD	$639.2>58.8$	25868.955	17156.707	1.00	6.43	18.848	149.200	138	92.3	NO		
117	-1												
118	99 13C4-PFBA	$217.0>172.0$	9169.693	9169.693	1.00	1.42	12.500	12.500	12.5	100.0	NO		
119	1... 13C5-PFHxA	$318.0>272.9$	19104.449	19104.449	1.00	3.16	12.500	12.500	12.5	100.0	NO		
120	1... 13C8-PFOA	$420.9>376.0$	15440.847	15440.847	1.00	4.28	12.500	12.500	12.5	100.0	NO		
121	1... 1802-PFHxS	$403.0>103$	1491.065	1491.065	1.00	3.91	12.500	12.500	12.5	100.0	NO		
122	1... 13C9-PFNA	$472.2>426.9$	19292.094	19292.094	1.00	4.72	12.500	12.500	12.5	100.0	NO		
123	1... 13C4-PFOS	$503>79.7$	4406.790	4406.790	1.00	4.80	12.500	12.500	12.5	100.0	NO		
124	1... 13C6-PFDA	$519.1>473.7$	19811.434	19811.434	1.00	5.09	12.500	12.500	12.5	100.0	NO		
125	1... 13C7-PFUdA	$570.1>524.8$	17156.707	17156.707	1.00	5.42	12.500	12.500	12.5	100.0	NO		

Dataset:	Untitled
Last Altered:	Thursday, July 16, 2020 12:42:36 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 12:43:11 Pacific Daylight Time

Method: Z:IPFAS5.PROMMethDBINEW_PFAS_80C_071520.mdb 15 Jul 2020 14:50:21 Calibration: Z:IPFAS5.PRO|CurveDBIC18_VAL-PFAS_Q5_07-15-20.cdb 16 Jul 2020 10:32:09

Compound name: PFBA

	\# Name	ID	Acq. Date	Alcq. Time
1	$1200715 \mathrm{P} 1-01$	IPA	15-Jul-20	11:36:45
2	2 200715P1-02	IPA	15-Jul-20	11:47:32
3	3 200715P1-03	TESTER	15-Jul-20	11:58:08
4	4 200715P1-04	IPA	15-Jul-20	12:08:44
5	5 200715P1-05	ST200715P1-1 PFC CS-2 20F1901	15-Jul-20	12:20:20
6	6 200715P1-06	ST200715P1-2 PFC CS-1 20F1902	15-Jul-20	12:30:45
7	7 200715P1-07	ST200715P1-3 PFC CSO 20F1903	15-Jul-20	12:41:22
8	8 200715P1-08	ST200715P1-4 PFC CS1 20F1904	15-Jul-20	12:51:58
9	9 200715P1-09	ST200715P1-5 PFC CS2 20F1905	15-Jul-20	13:02:34
10	10 200715P1-10	ST200715P1-6 PFC CS3 20F1906	15-Jul-20	13:13:09
11	11 200715P1-11	ST200715P1-7 PFC CS4 20F1907	15-Jul-20	13:23:45
12	12 200715P1-12	ST200715P1-8 PFC CS5 20F1908	15-Jul-20	13:34:11
13	13 200715P1-13	ST200715P1-9 PFC CS6 20F1909	15-Jul-20	13:44:48
14	14 200715P1-14	ST200715P1-10 PFC CS7 20F1910	15-Jul-20	13:55:24
15	15 200715P1-15	IB	15-Jul-20	14:05:50
16	16 200715P1-16	ICV200715P1-1 PFC ICV 20 F 1911	15-Jul-20	14:16:27
17	17 200715P1-17	IB	15-Jul-20	14:27:03
18	18 200715P1-18	2001430-01@10X IN-49 0.24168	15-Jul-20	14:37:38
19	19 200715P1-19	2001430-02@10X OUT-49 0.23991	15-Jul-20	14:48:14
20	20 200715P1-20	2001354-02 OUT-36 0.2466	15-Jul-20	14:58:50
21	21 200715P1-21	IB	15-Jul-20	15:09:26
22	22 200715P1-22	2001436-06@10X TW23D-20200708 0.27774	15-Jul-20	15:20:02
23	23 200715P1-23	IB	15-Jul-20	15:30:37
24	24 200715P1-24	2001436-07 TW24D-20200708 0.28174	15-Jul-20	15:41:13
25	25 200715P1-25	2001436-08@5X TW17D-20200708 0.40597	15-Jul-20	15:51:49
26	26 200715P1-26	2001379-09@5X CH48-SB07-0810 2.47	15-Jul-20	16:02:25
27	27 200715P1-27	B0G0077-BLK1 Method Blank 250	15-Jul-20	16:13:00
28	28 200715P1-28	B0G0077-BS1 OPR 250	15-Jul-20	16:23:36
29	29 200715P1-29	2001415-01 Annual 224.87	15-Jul-20	16:34:12
30	$30200715 \mathrm{P} 1-30$	B0G0089-BLK1 Method Blank 0.25	15-Jul-20	16:44:48
31	31 200715P1-31	B0G0089-BS1 OPR 0.25	15-Jul-20	16:55:24
32	32 200715P1-32	B0G0089-BSD1 LCSD 0.25	15-Jul-20	17:06:01

Dataset:	Untitled
Last Altered:	Thursday, July 16, 2020 12:42:36 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 12:43:11 Pacific Daylight Time

Compound name: PFBA

	\# Name	ID	Acq.Date	Acq.Time
33	$33200715 P 1-33$	2001418-08 EQ Rinsate-1 0.24429	15-Jul-20	$17: 16: 26$
34	$34200715 P 1-34$	B0G0055-BS5 OPR 2	15-Jul-20	$17: 27: 03$
35	$35200715 P 1-35$	IB	15-Jul-20	$17: 37: 39$
36	$36200715 P 1-36$	ST200715P1-11 PFC CS3 20F1906	15-Jul-20	$17: 48: 15$
37	$37200715 P 1-37$	IB	15-Jul-20	$17: 58: 50$

Printed: Thursday, July 16, 2020 12:39:18 Pacific Daylight Time

Method: Z:\PFAS5.PRO\MethDBINEW_PFAS_80C_071520.mdb 15 Jul 2020 14:50:21

Calibration: Z:IPFAS5.PRO\CurveDBIC̄18_VAL-PFAS_Q5_07-15-20.cdb 16 Jul 2020 10:32:09

Name: 200715P1-36, Date: 15-Jul-2020, Time: 17:48:15, ID: ST200715P1-11 PFC CS3 20F1906, Description: PFC CS3 20F1906

13C3-PFBS-EIS

F12:MRM of 1 channel,ES
$302.0>98.9$

PFPeA

F7:MRM of 1 channel,ES263.1 > 218.9 $2.095 e+005$

13C3-PFPeA-EIS
F8:MRM of 1 channel,ES-
$266.0>221.8$

$299.0>98.9$

Printed: Thursday, July 16, 2020 12:39:18 Pacific Daylight Time

Name: 200715P1-36, Date: 15-Jul-2020, Time: 17:48:15, ID: ST200715P1-11 PFC CS3 20F1906, Description: PFC CS3 20F1906
PFHXA
F13:MRM of 2 channels, ES-

313.0 > 269.0			
$100-\mathrm{PFHXA} \quad 3.745 \mathrm{e}+005$			
100	3.16		
- 1.35 e 4			
\% 371290			
	- 1228.81		
- 1228.81			
		TTT	proprir min

F13:MRM of 2 channels, ES$313>118.9$
$2.375 \mathrm{e}+004$

F18:MRM of 2 channels,ES-

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES367.2 > 321.8

F20:MRM of 2 channels, ES-
$363.0>169.0$

13C4-PFHPA-EIS
F21:MRM of 1 channel,ES-
$367.2>321.8$

Printed: Thursday, July 16, 2020 12:39:18 Pacific Daylight Time

Name: 200715P1-36, Date: 15-Jul-2020, Time: 17:48:15, ID: ST200715P1-11 PFC CS3 20F1906, Description: PFC CS3 $20 F 1906$

F23-MRM of 2 channels ES
F23:MRM of 2 channels,ES-
L-PFHxS $\quad 399>98.9$

13C3-PFHxS-EIS

F24:MRM of 1 channel,ES-

F29:MRM of 2 channels,ES27. >81

13C2-6:2 FTS-EIS

 F30:MRM of 1 channel,ES-

L-PFOA

F26:MRM of 2 channels,ES $413>169$

F34:MRM of 2 channels, ES-

13C2-PFOA-EIS
F27:MRM of 1 channel, ES-
$414.9>369.7$
$6.397 e+005$

F32:MRM of 2 channels,ES$449>99$

F31:MRM of 2 channels,ES$440.9>316.9$

13C5-PFNA-EIS
F36:MRM of 1 channel,ES$468.2>422.9$

Vista Analytical Laboratory

Dataset:	Z:IPFAS5.PROIRESLILTS\200715P1\200715P1-36.qld
Last Altered:	Thursday, July 16, 2020 12:37:53 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 12:39:18 Pacific Daylight Time

Name: 200715P1-36, Date: 15-Jul-2020, Time: 17:48:15, ID: ST200715P1-11 PFC CS3 20F1906, Description: PFC CS3 $20 F 1906$

F38:MRM of 2 channels,ES$498>169$

13C8-PFOSA-EIS
F42:MRM of 1 channel,ES-
$506>78$
$2.1330+005$

F40:MRM of 2 channels,ES-

F52:MRM of 2 channels, ES-
$531>83$

13C8-PFOS-EIS
F43:MRM of 1 channel,ES-
$507.1>80$
$1.014 e+005$

F45:MRM of 2 channels, ES $513>219$

13C2-PFDA-EIS

F46:MRM of 1 channel,ES $515.1>469.9$

F50:MRM of 2 channels,ES$526.8>80.9$

13C2-8:2 FTS-EIS
F51:MRM of 1 channel,ES-
$529>80$
$5.110 \mathrm{e}+004$

Dataset:	Z:IPFAS5.PRO\RESULTSL200715P1【200715P1-36.qld
	Last Altered:
Thursday, July 16, 2020 12:37:53 Pacific Daylight Time	
Printed:	Thursday, July 16, 2020 12:39:18 Pacific Daylight Time

Name: 200715P1-36, Date: 15-Jul-2020, Time: 17:48:15, ID: ST200715P1-11 PFC CS3 20F1906, Description: PFC CS3 20F1906

F54:MRM of 2 channels,ES-

13C8-PFOS-EIS

F57:MRM of 2 channels,ES-

d3-N-MeFOSAA-EIS

13C2-PFUdA-EIS
F56:MRM of 1 channel,ES-
$565>519.8$
$7075 e+005$

F62:MRM of 2 channels,ES-

$$
\begin{array}{r}
\text { F62:MRM of } 2 \text { channels,ES- } \\
598.8>98.9 \\
100 \\
\hline
\end{array}
$$

$$
\begin{aligned}
& \text { 13C8-PFOS-EIS } \\
& \text { F43:MRM of } 1 \text { channel,ES- } \\
& 507.1>80
\end{aligned}
$$

F69:MRM of 2 channels,ES-
$631>83$

13C2-PFDoA-EIS
F64:MRM of 1 channel,ES$14.9>569.9$
$7.190 e+005$

Last Altered:	Thursday, July 16, 2020 12:37:53 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 12:39:18 Pacific Daylight Time

Name: 200715P1-36, Date: 15-Jul-2020, Time: 17:48:15, ID: ST200715P1-11 PFC CS3 20F1906, Description: PFC CS3 20F1906

F67:MRM of 2 channels,ES-
$626.9>80.7$
$6.556 e+004$

5.7506 .0006 .250

F44:MRM of 2 channels,ES-

$$
\begin{array}{r}
\text { F44:MRM of } 2 \text { channels,ES- } \\
512.1>219
\end{array}
$$

5.6005 .800

F73:MRM of 2 channels,ES-

13C2-PFTeDA-EIS
F75:MRM of 2 channels,ES-

Dataset:	Z:IPFAS5.PROIRESULTSL200715P11200715P1-36.qld
Last Altered:	Thursday, July 16, 2020 12:37:53 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 12:39:18 Pacific Daylight Time

Name: 200715P1-36, Date: 15-Jul-2020, Time: 17:48:15, ID: ST200715P1-11 PFC CS3 20F1906, Description: PFC CS3 $20 F 1906$

F49:MRM of 2 channels,ES-
$526.1>219$

F76:MRM of 2 channels,ES-

13C2-PFHxDA-EIS
F77:MRM of 1 channel,ES-
$815>769.7$

d9-N-EtFOSE-EIS
F71:MRM of 1 channel,ES-
$639.2>58.8$
$9.384 \mathrm{e}+005$

Printed: Thursday, July 16, 2020 12:39:18 Pacific Daylight Time

Dataset:	Z:IPFAS5.PRO\RESULTSI200715P1L200715P1-36.qld
Last Altered:	Thursday, July 16, 2020 12:37:53 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 12:39:18 Pacific Daylight Time

Name: 200715P1-36, Date: 15-Jul-2020, Time: 17:48:15, ID: ST200715P1-11 PFC CS3 20F1906, Description: PFC CS3 20F1906

13C2-8:2 FTS-RSD
 F51:MRM of 1 channel,ES-
 $529>80$

13C2-PFTeDA-RSD

d5-N-ETFOSA-RSD
F53:MRM of 1 channel, ES-
$531.1>168.9$

13C2-PFHxDA-RSD
F77:MRM of 1 channel,ES-
$815>769.7$

d7-N-MeFOSE-RSD
F66:MRM of 1 channel,ES-
$623.1>58.9$

d9-N-EtFOSE-RSD
F71:MRM of 1 channel,ES$639.2>58.8$

Last Altered:	Thursday, July 16, 2020 12:37:53 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 12:39:18 Pacific Daylight Time

Name: 200715P1-36, Date: 15-Jul-2020, Time: 17:48:15, ID: ST200715P1-11 PFC CS3 20F1906, Description: PFC CS3 20F1906

13C7-PFUdA
F58:MRM of 1 channel,ES$570.1>524.8$ $5.567 e+005$

INITIAL CALIBRATION (ICAL)
 INCLUDING ASSOCIATED

INITIAL CALIBRATION VERIFICATION (ICV) AND INSTRUMENT BLANK (IB)

Quantify Compound Summary Report Vista Analytical Laboratory		MassLynx V4.2 SCN977
Dataset:	D:IPFAS5.PRO\RESULTS	200714P11200714P1-CRV.qld
Last Altered: Printed:	Wednesday, July 15, 2020 Wednesday, July 15, 2020	08:25:12 Pacific Daylight Time 08:31:19 Pacific Daylight Time

Method: D:IPFAS5.PROMMethDBINEW_PFAS_80C_071420.mdb 14 Jul 2020 15:40:52
Calibration: D:IPFAS5.PROICurveDBIC18_VAL-PFAS_Q5_07-14-20.cdb 15 Jul 2020 08:25:12
$\sqrt{ } / 7 R \quad 07 / 15 / 2020$

Compound name: PFBA

High points

Printed: Wednesday, July 15, 2020 08:31:19 Pacific Daylight Time

Correlation coefficient: $\mathrm{r}=0.999617, \mathrm{r}^{\wedge} 2=0.999235$
Calibration curve: $0.987981^{*} x+0.0366579$
Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFPrS

Coefficient of Determination: R^2 $=0.997706$
Calibration curve: $0.000798452{ }^{*} x^{\wedge} 2+1.04054{ }^{*} x+0.0822656$
Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

*	1 200714P1-05	Standard	0.250	1.77	45.628	1903.052	0.300	0.2	-16.4	NO	0.998	NO	MM
\because	2 200714P1-06	Standard	0.500	1.77	78.240	1862.609	0.525	0.4	-14.9	NO	0.998	NO	MM
	3 200714P1-07	Standard	1.000	1.76	152.260	1743.585	1.092	1.0	-3.1	NO	0.998	NO	bb
	4 200714P1-08	Standard	2.000	1.77	327.820	1978.787	2.071	1.9	-4.6	NO	0.998	NO	MM
7. 2	5 200714P1-09	Standard	5.000	1.77	970.535	1868.767	6.492	6.1	22.6	NO	0.998	NO	MM
c	6 200714P1-10	Standard	10.000	1.77	1775.407	1973.438	11.246	10.6	6.4	NO	0.998	NO	MM
	7 200714P1-11	Standard	50.000	1.77	8963.530	1875.573	59.739	55.0	10.0	NO	0.998	NO	MM
*	8 200714P1-12	Standard	100.000	1.77	17242.676	1822.421	118.268	105.1	5.1	NO	0.998	NO	MM
*	$9200714 \mathrm{P} 1-13$	Standard	250.000	1.77	42652.816	1857.944	286.962	233.8	-6.5	NO	0.998	NO	MM
	10 200714P1-14	Standard	500.000	1.77	98642.758	1689.719	729.728	505.3	1.1	NO	0.998	NO	MM

Compound name: 3:3 FTCA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998582$
Calibration curve: -9.63309e-005 * x^2 + 0.0810066 * x + -0.00413307
Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

	1 200714P1-05	Standard	0.250	2.24	22.873	16412.875	0.017	0.3	6.5	NO	0.999	NO	MM
	2 200714P1-06	Standard	0.500	2.25	45.954	15752.672	0.036	0.5	0.3	NO	0.999	NO	bb
	3 200714P1-07	Standard	1.000	2.24	89.947	15528.102	0.072	0.9	-5.4	NO	0.999	NO	bb
	4 200714P1-08	Standard	2.000	2.24	177.217	16146.918	0.137	1.7	-12.6	NO	0.999	NO	bb
	5 200714P1-09	Standard	5.000	2.24	471.163	16187.636	0.364	4.6	-8.7	NO	0.999	NO	bb
	6 200714P1-10	Standard	10.000	2.24	1015.772	16593.268	0.765	9.6	-3.9	NO	0.999	NO	bb
	7 200714P1-11	Standard	50.000	2.25	5369.175	16893.504	3.973	52.4	4.7	NO	0.999	NO	bb
	$8200714 \mathrm{P} 1-12$	Standard	100.000	2.24	9236.140	16365.034	7.055	98.7	-1.3	NO	0.999	NO	bb
	9 200714P1-13	Standard	250.000	2.24	5460.247	16390.885	4.164	55.1	-78.0	YES	0.999	NO	bbX
	10 200714P1-14	Standard	500.000	2.24	9714.050	15678.485	7.745	110.1	-78.0	YES	0.999	NO	bbX

Compound name: PFPeA

Coefficient of Determination: $R^{\wedge} 2=0.999276$
Calibration curve: $3.3512 e-005^{*} x^{\wedge} 2+0.888386$ * $x+0.0341154$
Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

$1200714 \mathrm{P} 1-05$	Standard	0.250	2.39	314.524	16412.875	0.240	0.2	-7.5	NO	0.999	NO	MM
2 200714P1-06	Standard	0.500	2.39	641.144	15752.672	0.509	0.5	6.9	NO	0.999	NO	bb
3 200714P1-07	Standard	1.000	2.39	1151.484	15528.102	0.927	1.0	0.5	NO	0.999	NO	bb
4 200714P1-08	Standard	2.000	2.39	2375.880	16146.918	1.839	2.0	1.6	NO	0.999	NO	bb
5 200714P1-09	Standard	5.000	2.39	6131.300	16187.636	4.735	5.3	5.8	NO	0.999	NO	bb
6 200714P1-10	Standard	10.000	2.39	12224.443	16593.268	9.209	10.3	3.2	NO	0.999	NO	bb
77 200714P1-11	Standard	50.000	2.39	63850.113	16893.504	47.245	53.0	6.1	NO	0.999	NO	bb
8 200714P1-12	Standard	100.000	2.39	118969.891	16365.034	90.872	101.9	1.9	NO	0.999	NO	bb
$9200714 \mathrm{P} 1-13$	Standard	250.000	2.39	282608.719	16390.885	215.523	240.4	-3.8	NO	0.999	NO	bb
$10200714 \mathrm{P} 1-14$	Standard	500.000	2.39	572382.875	15678.485	456.344	504.1	0.8	NO	0.999	NO	bb

Compound name: PFBS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998723$
Calibration curve: $-4.69568 \mathrm{e}-005$ * ${ }^{\wedge}{ }^{\wedge}+2.50017$ * $x+0.00855197$
Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Compound name: 4:2 FTS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999202$
Calibration curve: $-0.000737288^{*} x^{\wedge} 2+2.54728^{*} x+0.0768653$
Response type: Internal Std (Ref 55), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Dataset:

D:IPFAS5.PROIRESULTSL200714P11200714P1-CRV.qId
Last Altered:
Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:31:19 Pacific Daylight Time

Compound name: PFHxA

Correlation coefficient: $\mathrm{r}=0.999268, \mathrm{r}^{\wedge} 2=0.998537$
Calibration curve: 1.0329 * $x+0.0827038$
Response type: Internal Std (Ret 57), Area * (IS Conc. I IS Area)
Curve type: Linear, Origin: Include, Weighting: $1 / x$, Axis trans: None

Compound name: PFPeS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999032$
Calibration curve: -0.000461665 * $x^{\wedge} 2+1.992577^{*} x+-0.028792$
Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

$1200714 \mathrm{P} 1-05$	Standard	0.250	3.39	75.625	1903.052	0.497						
2 200714P1-06	Standard	0.500	3.39	129.534	1862.609	0.869	0.5	-9.8	NO	0.999	NO	bb
3 200714P1-07	Standard	1.000	3.39	276.874	1743.585	1.985	1.0	1.1	NO	0.999	NO	bb
4 200714P1-08	Standard	2.000	3.39	570.505	1978.787	3.604	1.8	-8.8	NO	0.999	NO	bb
5 200714P1-09	Standard	5.000	3.39	1557.450	1868.767	10.418	5.2	5.0	NO	0.999	NO	bb
6 200714P1-10	Standard	10.000	3.39	3166.952	1973.438	20.060	10.1	1.1	NO	0.999	NO	bb
7 200714P1-11	Standard	50.000	3.39	15877.334	1875.573	105.817	53.8	7.6	NO	0.999	NO	bb
8 200714P1-12	Standard	100.000	3.39	28856.383	1822.421	197.926	101.7	1.7	NO	0.999	NO	bb
9 200714P1-13	Standard	250.000	3.39	66900.281	1857.944	450.096	239.2	-4.3	NO	0.999	NO	bb
10 200714P1-14	Standard	500.000	3.39	120174.961	1689.719	889.016	505.3	1.1	NO	0.999	NO	bb

Dataset: D:IPFAS5.PRO\RESULTSI200714P11200714P1-CRV.qld
Last Altered:
Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:31:19 Pacific Daylight Time

Compound name: HFPO-DA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999007$
Calibration curve: $-8.42178 \mathrm{e}-005{ }^{*} x^{\wedge} 2+0.962438$ * $x+0.0164412$
Response type: Internal Std (Ref 53), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

	$1200714 \mathrm{P} 1-05$	Standard	0.250	3.41	53.778	2989.123	0.225	0.2	-13.4	NO	0.999	NO	bb
\$	2 200714P1-06	Standard	0.500	3.41	111.089	2842.123	0.489	0.5	-1.9	NO	0.999	NO	bb
Rest	3 200714P1-07	Standard	1.000	3.41	261.694	2963.256	1.104	1.1	13.0	NO	0.999	NO	bb
\%	4 200714P1-08	Standard	2.000	3.41	477.872	3239.311	1.844	1.9	-5.0	NO	0.999	NO	bb
	5 200714P1-09	Standard	5.000	3.41	1250.931	2921.836	5.352	5.5	10.9	NO	0.999	NO	bb
	6 200714P1-10	Standard	10.000	3.41	2535.565	3265.933	9.705	10.1	0.8	NO	0.999	NO	bb
	7 200714P1-11	Standard	50.000	3.41	13057.020	3398.220	48.029	50.1	0.2	NO	0.999	NO	bb
:	8 200714P1-12	Standard	100.000	3.41	24970.145	3097.782	100.758	105.7	5.7	NO	0.999	NO	bb
	9 200714P1-13	Standard	250.000	3.41	58466.770	3241.229	225.481	239.3	-4.3	NO	0.999	NO	bb
	10 200714P1-14	Standard	500.000	3.41	112651.367	3034.546	464.037	504.4	0.9	NO	0.999	NO	bb

Compound name: 5:3 FTCA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998761$
Calibration curve: $-0.000177325^{*} x^{\wedge} 2+0.174581^{*} x+-0.00686176$
Response type: Internal Std (Ref 59), Area " (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

1 200714P1-05	Standard	0.250	3.73	38.633	15346.607	0.031	0.2	-12.2	NO	0.999	NO	bb
2 200714P1-06	Standard	0.500	3.73	102.800	15259.326	0.084	0.5	4.4	NO	0.999	No	bb
3 200714P1-07	Standard	1.000	3.73	203.677	14560.729	0.175	1.0	4.2	NO	0.999	No	bb
4 200714P1-08	Standard	2.000	3.73	421.042	15698.976	0.335	2.0	-1.8	NO	0.999	NO	bb
5 200714P1-09	Standard	5.000	3.73	1015.482	15596.706	0.814	4.7	-5.5	NO	0.999	NO	bb
6 200714P1-10	Standard	10.000	3.73	2037.094	16073.489	1.584	9.2	-8.0	NO	0.999	No	bb
7 200714P1-11	Standard	50.000	3.73	11150.403	16174.724	8.617	52.2	4.3	NO	0.999	NO	bb
8 200714P1-12	Standard	100.000	3.73	18454.902	14859.042	15.525	98.9	-1.1	NO	0.999	NO	bb
9 200714P1-13	Standard	250.000	3.73	10997.056	14794.651	9.291	56.5	-77.4	YES	0.999	No	bbx
10 200714P1-14	Standard	500.000	3.73	19562.098	13581.220	18.005	117.1	-76.6	YES	0.999	NO	bbX

Dataset: D:IPFAS5.PROIRESULTSL200714P11200714P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed:
Wednesday, July 15, 2020 08:31:19 Pacific Daylight Time

Compound name: PFHPA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999695$
Calibration curve: $-0.0001492355^{*} x^{\wedge} 2+1.22492$ * $x+0.01823$
Response type: Internal Std (Ref 59), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Compound name: ADONA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998298$
Calibration curve: $1.42154 \mathrm{e}-005{ }^{*} \mathrm{x}^{\wedge} 2+2.14318^{*} \mathrm{x}+0.00966498$
Response type: Internal Std (Ref 59), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: D:IPFAS5.PROTRESULTSL200714P11200714P1-CRV.qld

Last Altered:
Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed:
Wednesday, July 15, 2020 08:31:19 Pacific Daylight Time

Compound name: L-PFHxS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999607$
Calibration curve: $5.12413 e-005^{*} x^{\wedge} 2+1.13279$ * $x+0.0236401$
Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	$1200714 \mathrm{P} 1-05$	Standard	0.250	3.93	87.639	3766.335	0.291	0.2	-5.6	NO	1.000	NO	MM
	2 200714P1-06	Standard	0.500	3.93	184.469	3819.933	0.604	0.5	2.4	NO	1.000	NO	MM
	$3200714 \mathrm{P} 1-07$	Standard	1.000	3.93	327.524	3651.700	1.121	1.0	-3.1	NO	1.000	NO	MM
-5,	4 200714P1-08	Standard	2.000	3.93	719.724	3841.074	2.342	2.0	2.3	NO	1.000	NO	MM
	5 200714P1-09	Standard	5.000	3.93	1747.648	3815.933	5.725	5.0	0.6	NO	1.000	NO	MM
	6 200714P1-10	Standard	10.000	3.93	3500.016	3814.796	11.469	10.1	1.0	NO	1.000	NO	MM
	7 200714P1-11	Standard	50.000	3.93	18397.334	4010.179	57.346	50.5	1.0	NO	1.000	NO	MM
	8 200714P1-12	Standard	100.000	3.93	34018.215	3602.187	118.047	103.7	3.7	NO	1.000	NO	MM
	$9200714 \mathrm{P} 1-13$	Standard	250.000	3.93	79003.016	3548.005	278.336	243.0	-2.8	NO	1.000	NO	MM
	10 200714P1-14	Standard	500.000	3.93	147027.750	3155.803	582.371	502.7	0.5	NO	1.000	NO	MM

Compound name: 6:2 FTS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997011$
Calibration curve: -0.000138526 * $x^{\wedge} 2+0.916332$ * $x+0.000564268$
Response type: Internal Std (Ref 63), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Dataset: D:IPFAS5.PRO\RESULTSL200714P11200714P1-CRV.qid
Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:31:19 Pacific Daylight Time

Compound name: L-PFOA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999948$
Calibration curve: -0.000120375 * $x^{\wedge} 2+0.936543$ * $x+-0.00584507$
Response type: Internal Std (Ref 69), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: PFecHS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999883$
Calibration curve: $2.27208 e-005$ * $x^{\wedge} 2+0.173314$ * $x+-0.00389701$
Response type: Internal Std (Rei 69), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Dataset: D:IPFAS5.PROIRESULTSL200714P11200714P1-CRV.qld

Compound name: PFHpS

Coefficient of Determination: $\mathrm{R}^{\wedge 2}=0.999308$
Calibration curve: $-2.51256 \mathrm{e}-005^{*} x^{\wedge} 2+0.987253^{*} x+0.0125449$
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: 7:3 FTCA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998328$
Calibration curve: $-0.000437387^{*} x^{\wedge} 2+0.302919{ }^{*} x+-0.0184761$
Response type: Internal Std (Ref 65), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

Dataset: D:IPFAS5.PROIRESULTSL200714P11200714P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:31:19 Pacific Daylight Time

Compound name: PFNA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999434$
Calibration curve: -0.000138506 * $x^{\wedge} 2+1.17974$ * $x+0.048578$
Response type: Internal Std (Ref 65), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

1 200714P1-05	Standard	0.250	4.75	489.370	19972.742	0.306	0.2	-12.6	NO	0.999	NO	MM
2 200714P1-06	Standard	0.500	4.75	915.663	19571.732	0.585	0.5	-9.1	NO	0.999	No	bb
3 200714P1-07	Standard	1.000	4.75	1948.628	19051.625	1.279	1.0	4.3	NO	0.999	NO	bb
4 200714P1-08	Standard	2.000	4.75	3960.575	19361.764	2.557	2.1	6.3	NO	0.999	NO	bb
5 200714P1-09	Standard	5.000	4.75	10006.070	19859.246	6.298	5.3	6.0	NO	0.999	NO	bb
6 200714P1-10	Standard	10.000	4.75	19949.311	20906.328	11.928	10.1	0.8	NO	0.999	NO	bb
7 200714P1-11	Standard	50.000	4.75	100565.984	20276.420	61.997	52.8	5.7	NO	0.999	NO	bb
8 200714P1-12	Standard	100.000	4.75	184357.406	19536.756	117.955	101.1	1.1	NO	0.999	NO	bb
9 200714P1-13	Standard	250.000	4.75	419807.375	18933.551	277.158	241.8	-3.3	NO	0.999	NO	bb
10 200714P1-14	Standard	500.000	4.75	777351.688	17374.082	559.275	503.8	0.8	NO	0.999	NO	bb

Compound name: PFOSA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999787$
Calibration curve: $-9.50649 e-005^{*} x^{\wedge} 2+0.693143$ * $x+-0.0062738$
Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Dataset: D:IPFAS5.PRO\RESULTSL200714P11200714P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:31:19 Pacific Daylight Time

Compound name: L-PFOS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999166$
Calibration curve: $0.000226617^{*} x^{\wedge} 2+1.18631^{*} x+-0.00608768$
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: 9Cl-PF30NS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999413$
Calibration curve: 0.000168672 * $x^{\wedge} 2+2.48158^{*} x+0.109799$
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

Dataset:	D:IPFAS5.PROIRESULTSL200714P1L200714P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 08:31:19 Pacific Daylight Time

Compound name: PFDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999298$
Calibration curve: $-0.000109701^{*} x^{\wedge} 2+0.792617^{*} x+0.0293832$
Response type: Internal Std (Ref 73), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: 8:2 FTS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998700$
Calibration curve: -0.000435021 * $x^{\wedge} 2+1.22328$ * $x+-0.117694$
Response type: Internal Std (Ref 75), Area * (IS Conc. / IS Area
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

$1200714 \mathrm{P} 1-05$	Standard	0.250	5.11	32.420	1964.635	0.206	0.3	5.9	NO	0.999	NO	MM
2 200714P1-06	Standard	0.500	5.10	79.567	1916.729	0.519	0.5	4.1	NO	0.999	NO	bb
3 200714P1-07	Standard	1.000	5.11	152.218	2081.913	0.914	0.8	-15.6	NO	0.999	NO	bb
4 200714P1-08	Standard	2.000	5.10	394.665	2058.287	2.397	2.1	2.9	NO	0.999	NO	bb
5 200714P1-09	Standard	5.000	5.10	995.960	2129.042	5.847	4.9	-2.3	NO	0.999	NO	bb
6 200714P1-10	Standard	10.000	5.10	2169.599	2189.957	12.384	10.3	2.6	NO	0.999	NO	bb
7 200714P1-11	Standard	50.000	5.10	10120.622	2129.608	59.404	49.5	-0.9	NO	0.999	NO	bb
8 200714P1-12	Standard	100.000	5.10	19100.855	1895.378	125.970	107.2	7.2	NO	0.999	NO	bb
9 200714P1-13	Standard	250.000	5.10	40978.699	1923.111	266.357	238.0	-4.8	NO	0.999	NO	bb
10 200714P1-14	Standard	500.000	5.10	76198.547	1877.654	507.272	505.7	1.1	NO	0.999	NO	bb

Compound name: PFNS

Coefficient of Determination: $R^{\wedge} 2=0.999187$
Catibration curve: $-6.20869 e-005$ * $x^{\wedge} 2+1.27536$ * $x+-0.0463716$
Response type: Internal Std (Ret 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Compound name: L-MeFOSAA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999483$
Calibration curve: $-0.000284164{ }^{*} x^{\wedge} 2+1.20535^{*} x+-0.00718213$
Response type: Internal Std (Ref 77), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Dataset:
D:IPFAS5.PRO\RESULTSL200714P1L200714P1-CRV.qld
Last Altered:
Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:32:42 Pacific Daylight Time

Method: D:IPFAS5.PROWethDB\NEW_PFAS_80C_071420.mdb 14 Jul 2020 15:40:52 Calibration: D:IPFAS5.PROICurveDBIC18_VAL-PFAS_Q5_07-14-20.cdb 15 Jul 2020 08:25:12

Compound name: L-EtFOSAA

Coefficient of Determination: R^2 $=0.997393$
Calibration curve: -0.000282602 * $x^{\wedge} 2+1.63624^{*} x+-0.0984931$
Response type: Internal Std (Ref 81), Area * (IS Conc. I IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFUdA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999172$
Calibration curve: -5.81281e-005 * $x^{\wedge} 2+0.938538^{*} x+0.0721579$
Response type: Internal Std (Ref 79), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: D:IPFAS5.PROIRESULTSL200714P11200714P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed Wednesday, July 15, 2020 08:32:42 Pacific Daylight Time

Compound name: PFDS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998888$
Calibration curve: $-0.000105434^{*} x^{\wedge} 2+1.3242^{*} x+0.0489966$
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Compound name: 11CI-PF30UdS

Correlation coefficient: $\mathrm{r}=0.999903, \mathrm{r}^{\wedge} 2=0.999807$
Calibration curve: $0.260724^{*} x+0.00162518$
Response type: Internal Std (Ref 83), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

$1200714 \mathrm{P} 1-05$	Standard	0.250	5.66	170.730	28899.332	0.074	0.3	10.8	NO	1.000	NO	bb
2 200714P1-06	Standard	0.500	5.65	288.189	27005.604	0.133	0.5	1.1	NO	1.000	NO	bb
3 200714P1-07	Standard	1.000	5.65	569.255	27706.188	0.257	1.0	-2.1	NO	1.000	NO	bb
4 200714P1-08	Standard	2.000	5.65	1096.410	27549.563	0.497	1.9	-4.9	NO	1.000	NO	bb
5 200714P1-09	Standard	5.000	5.66	2969.135	27539.930	1.348	5.2	3.3	NO	1.000	NO	bb
$6200714 \mathrm{P} 1-10$	Standard	10.000	5.65	5706.777	28799.658	2.477	9.5	-5.1	NO	1.000	NO	bb
7 200714P1-11	Standard	50.000	5.66	29718.678	29855.451	12.443	47.7	-4.6	NO	1.000	NO	bb
$8200714 \mathrm{P} 1-12$	Standard	100.000	5.65	55243.984	26112.064	26.446	101.4	1.4	NO	1.000	NO	bb
9 200714P1-13	Standard	250.000	5.65	127421.703	24515.406	64.970	249.2	-0.3	NO	1.000	NO	bb
$10200714 \mathrm{P} 1-14$	Standard	500.000	5.65	239072.875	22827.689	130.912	502.1	0.4	NO	1.000	NO	bb

Dataset: D:IPFAS5.PRO\RESULTS\200714P11200714P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:32:42 Pacific Daylight Time

Compound name: 10:2 FTS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998347$
Calibration curve: $-0.000187848^{*} x^{\wedge} 2+1.91721^{*} x+-0.173821$
Response type: Internal Std (Ref 85), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

	1 200714P1-05	Standard	0.250	5.72	26.518	1541.734	0.215	0.2	-18.9	NO	0.998	NO	bb
	2 200714P1-06	Standard	0.500	5.72	86.379	1696.700	0.636	0.4	-15.5	NO	0.998	NO	bb
.	3 200714P1-07	Standard	1.000	5.72	264.713	1566.035	2.113	1.2	19.3	No	0.998	NO	bb
dem	4 200714P1-08	Standard	2.000	5.71	451.650	1543.193	3.658	2.0	-0.0	No	0.998	NO	bb
30, 0^{3}	5 200714P1-09	Standard	5.000	5.72	1161.960	1534.456	9.466	5.0	0.6	NO	0.998	NO	bb
	6 200714P1-10	Standard	10.000	5.71	2457.000	1492.248	20.581	10.8	8.4	NO	0.998	NO	bb
	7 200714P1-11	Standard	50.000	5.72	11326.204	1394.419	101.532	53.3	6.7	NO	0.998	NO	bb
	8 200714P1-12	Standard	100.000	5.71	19540.855	1236.919	197.475	104.2	4.2	NO	0.998	NO	bb
	9 200714P1-13	Standard	250.000	5.72	40839.281	1160.157	440.019	235.0	-6.0	NO	0.998	NO	bb
, \%	10 200714P1-14	Standard	500.000	5.71	69613.453	942.835	922.927	506.6	1.3	NO	0.998	No	bb

Compound name: PFDoA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999776$
Calibration curve: $-0.000180161^{*} x^{\wedge} 2+0.883117^{*} x+0.100074$
Response type: Internal Std (Ref 83), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

	$1200714 \mathrm{P} 1-05$	Standard	0.250	5.73	846.371	28899.332	0.366	0.3	20.5	NO	1.000	NO	bb
	2 200714P1-06	Standard	0.500	5.73	1263.476	27005.604	0.585	0.5	9.8	NO	1.000	NO	bb
	3 200714P1-07	Standard	1.000	5.73	2203.720	27706.188	0.994	1.0	1.3	NO	1.000	NO	bb
	4 200714P1-08	Standard	2.000	5.73	4374.940	27549.563	1.985	2.1	6.8	NO	1.000	NO	bb
	5 200714P1-09	Standard	5.000	5.73	10687.967	27539.930	4.851	5.4	7.7	NO	1.000	NO	bb
4sers	6 200714P1-10	Standard	10.000	5.73	20415.998	28799.658	8.861	9.9	-0.6	NO	1.000	NO	bb
	7 200714P1-11	Standard	50.000	5.73	103842.492	29855.451	43.477	49.6	-0.8	NO	1.000	NO	bb
	8 200714P1-12	Standard	100.000	5.73	183915.844	26112.064	88.042	101.7	1.7	NO	1.000	NO	bb
	9 200714P1-13	Standard	250.000	5.73	405802.188	24515.406	206.912	246.6	-1.4	NO	1.000	NO	bb
	10 200714P1-14	Standard	500.000	5.73	726315.000	22827.689	397.716	501.6	0.3	NO	1.000	NO	bb

Dataset:
D:IPFAS5.PRO\RESULTSL200714P11200714P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time Printed: Wednesday, July 15, 2020 08:32:42 Pacific Daylight Time

Compound name: N-MeFOSA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998718$
Calibration curve: -6.83846e-005 * $x^{\wedge} 2+1.11717^{*} x+0.189665$
Response type: Internal Std (Ref 87), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

1 200714P1-05	Standard	1.250	5.70	210.579	25001.195	1.257	1.0	-23.6	NO	0.999	NO	bb
2 200714P1-06	Standard	2.500	5.70	564.146	24880.635	3.383	2.9	14.4	NO	0.999	NO	bb
3 200714P1-07	Standard	5.000	5.71	976.602	24379.451	5.977	5.2	3.6	NO	0.999	NO	bb
4 200714P1-08	Standard	10.000	5.70	2110.002	25946.547	12.133	10.7	7.0	NO	0.999	NO	bb
5 200714P1-09	Standard	25.000	5.70	5017.485	25299.283	29.590	26.4	5.4	NO	0.999	NO	bb
6 200714P1-10	Standard	50.000	5.70	10149.167	26676.906	56.763	50.8	1.6	No	0.999	No	bb
7 200714P1-11	Standard	250.000	5.71	51931.137	26700.266	290.189	263.8	5.5	NO	0.999	NO	bb
8 200714P1-12	Standard	500.000	5.70	93518.367	24842.984	561.645	519.1	3.8	NO	0.999	NO	bb
9 200714P1-13	Standard	1250.000	5.70	200945.656	24493.023	1224.067	1180.9	-5.5	NO	0.999	NO	bb
10 200714P1-14	Standard	2500.000	5.70	353625.219	22047.441	2393.062	2535.4	1.4	NO	0.999	NO	bb

Compound name: PFTrDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999891$
Calibration curve: -0.000298642 * $x^{\wedge} 2+1.06717^{*} x+0.0322737$
Response type: Internal Std (Ref 83), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: D:IPFAS5.PRO\RESULTSI200714P11200714P1-CRV.qld
Last Altered:
Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed:
Wednesday, July 15, 2020 08:32:42 Pacific Daylight Time

Compound name: PFDoS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999713$
Calibration curve: $-2.15044 \mathrm{e}-005$ * $\mathrm{x}^{\wedge} 2+0.17459$ * $x+0.01518$
Response type: Internal Std (Ref 89), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFTeDA

Correlation coefficient: $\mathrm{r}=0.999476, \mathrm{r}^{\wedge} 2=0.998952$
Calibration curve: $0.562517^{*} x+0.0379145$
Response type: Internal Std (Ref 89), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

	$1200714 \mathrm{P} 1-05$	Standard	0.250	6.18	339.095	28348.844	0.150	0.2	-20.6	NO	0.999	NO	MM
	2 200714P1-06	Standard	0.500	6.18	761.407	27195.896	0.350	0.6	10.9	NO	0.999	NO	bb
	3 200714P1-07	Standard	1.000	6.18	1309.769	27176.436	0.602	1.0	0.4	NO	0.999	NO	bb
	$4200714 \mathrm{P} 1-08$	Standard	2.000	6.18	2794.774	27075.727	1.290	2.2	11.3	NO	0.999	NO	bb
	5 200714P1-09	Standard	5.000	6.18	7032.069	28104.383	3.128	5.5	9.9	NO	0.999	NO	bb
	6 200714P1-10	Standard	10.000	6.18	13359.132	28029.271	5.958	10.5	5.2	NO	0.999	NO	bb
	7 200714P1-11	Standard	50.000	6.18	71721.484	28920.814	30.999	55.0	10.1	NO	0.999	NO	bb
	8 200714P1-12	Standard	100.000	6.18	129994.656	27996.127	58.041	103.1	3.1	NO	0.999	NO	bb
	9 200714P1-13	Standard	250.000	6.18	291827.906	26693.490	136.657	242.9	-2.9	NO	0.999	NO	bb
':	10 200714P1-14	Standard	500.000	6.18	544333.500	24299.152	280.017	497.7	-0.5	NO	0.999	NO	bb

Dataset: D:IPFAS5.PRO\RESULTSI200714P11200714P1-CRV.qid
Last Altered:
Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:32:42 Pacific Daylight Time

Compound name: N-EtFOSA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998527$
Calibration curve: $-3.21665 \mathrm{e}-005{ }^{*} \mathrm{x}^{\wedge} 2+1.12508^{*} \mathrm{x}+0.210037$
Response type: Internal Std (Ref 91), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

1 200714P1-05	Standard	1.250	6.12	257.283	29955.465	1.281	1.0	-23.8	NO	0.999	NO	bb
2 200714P1-06	Standard	2.500	6.12	576.091	28843.000	2.980	2.5	-1.5	NO	0.999	NO	bb
3 200714P1-07	Standard	5.000	6.12	1209.530	29362.738	6.146	5.3	5.5	NO	0.999	NO	bb
4 200714P1-08	Standard	10.000	6.12	2629.860	30136.287	13.020	11.4	13.9	NO	0.999	NO	bb
5 200714P1-09	Standard	25.000	6.13	6164.792	30226.980	30.429	26.9	7.5	NO	0.999	NO	bb
6 200714P1-10	Standard	50.000	6.12	12599.517	30537.547	61.559	54.6	9.2	NO	0.999	No	bb
7 200714P1-11	Standard	250.000	6.12	63127.563	32286.406	291.721	261.1	4.4	NO	0.999	NO	bb
8 200714P1-12	Standard	500.000	6.12	114940.141	29710.975	577.196	520.6	4.1	NO	0.999	NO	bb
9 200714P1-13	Standard	1250.000	6.12	246039.906	28657.531	1280.960	1178.0	-5.8	No	0.999	NO	bb
10 200714P1-14	Standard	2500.000	6.12	432128.438	24387.775	2643.684	2533.0	1.3	NO	0.999	NO	bb

Compound name: PFHxDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999036$
Calibration curve: $-5.90081 e-005$ * $x^{\wedge} 2+0.883241 * x+0.156927$
Response type: Internal Std (Ref 93), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

$1200714 \mathrm{P} 1-05$	Standard	0.250	6.49	860.372	31730.168	0.339	0.2	-17.6	NO	0.999	NO	bb
2 200714P1-06	Standard	0.500	6.49	1331.147	29605.863	0.562	0.5	-8.3	No	0.999	No	bb
3 200714P1-07	Standard	1.000	6.49	2527.355	29535.994	1.070	1.0	3.3	No	0.999	No	bb
4 200714P1-08	Standard	2.000	6.49	4939.370	29942.436	2.062	2.2	7.9	NO	0.999	NO	bb
5 200714P1-09	Standard	5.000	6.49	11984.801	31860.355	4.702	5.1	3.0	NO	0.999	NO	bb
6 200714P1-10	Standard	10.000	6.49	23953.498	30678.719	9.760	10.9	8.8	NO	0.999	No	bb
7 200714P1-11	Standard	50.000	6.50	118266.555	32782.980	45.094	51.1	2.1	NO	0.999	No	bb
8 200714P1-12	Standard	100.000	6.49	220697.141	30092.316	91.675	104.3	4.3	NO	0.999	NO	bb
9 200714P1-13	Standard	250.000	6.49	498969.094	30044.176	207.598	238.7	-4.5	NO	0.999	NO	bb
10 200714P1-14	Standard	500.000	6.49	920717.750	26702.994	430.999	504.8	1.0	No	0.999	No	bb

Dataset: D:IPFAS5.PRO\RESULTSL200714P1L200714P1-CRV.qld
Last Altered:
Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:32:42 Pacific Daylight Time

Compound name: PFODA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999276$
Calibration curve: $-0.000105558^{*} x^{\wedge} 2+0.775176^{*} x+0.0163938$
Response type: Internal Sid (Ref 93), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

1 200714P1-05	Standard	0.250	6.72	499.094	31730.168	0.197	0.2	-7.0	NO	0.999	NO	bb
2 200714P1-06	Standard	0.500	6.72	952.010	29605.863	0.402	0.5	-0.5	NO	0.999	NO	bb
3 200714P1-07	Standard	1.000	6.72	1925.417	29535.994	0.815	1.0	3.0	NO	0.999	No	bb
4 200714P1-08	Standard	2.000	6.72	3983.696	29942.436	1.663	2.1	6.2	NO	0.999	NO	bb
5 200714P1-09	Standard	5.000	6.72	9904.623	31860.355	3.886	5.0	-0.1	NO	0.999	NO	bb
6 200714P1-10	Standard	10.000	6.72	19559.615	30678.719	7.970	10.3	2.7	No	0.999	NO	bb
7 200714P1-11	Standard	50.000	6.72	104827.328	32782.980	39.970	51.9	3.8	NO	0.999	NO	bb
8 200714P1-12	Standard	100.000	6.72	190364.500	30092.316	79.075	103.4	3.4	NO	0.999	NO	bb
9 200714P1-13	Standard	250.000	6.72	432192.781	30044.176	179.816	239.8	-4.1	No	0.999	No	bb
10 200714P1-14	Standard	500.000	6.72	778111.500	26702.994	364.244	504.5	0.9	NO	0.999	NO	bb

Compound name: N-MeFOSE

Correlation coefficient: $\mathrm{r}=0.999902, \mathrm{r}^{\wedge} 2=0.999804$
Calibration curve: $1.10733^{*} x+0.324889$
Response type: Internal Std (Ref 95), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: $1 / \mathrm{x}$, Axis trans: None

Dataset: D:IPFAS5.PROIRESULTSL200714P11200714P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:32:42 Pacific Daylight Time

Compound name: N-EtFOSE

Correlation coefficient: $\mathrm{r}=0.999451, \mathrm{r}^{\wedge} 2=0.998902$
Calibration curve: $0.992318{ }^{*} x+0.375815$
Response type: Internal Std (Ref 97), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: 13C3-PFBA-EIS

Response Factor: 655.69
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

1 200714P1-05	Standard	12.500	1.43	8634.482	8634.482	13.2	5.3	NO	NO	MMX
2 200714P1-06	Standard	12.500	1.44	7761.148	7761.148	11.8	-5.3	No	No	MmX
3 200714P1-07	Standard	12.500	1.44	8054.958	8054.958	12.3	-1.7	NO	NO	MMX
4 200714P1-08	Standard	12.500	1.44	8093.072	8093.072	12.3	-1.3	No	NO	MMX
5 200714P1-09	Standard	12.500	1.44	8777.822	8777.822	13.4	7.1	NO	NO	MMX
6 200714P1-10	Standard	12.500	1.44	8196.123	8196.123	12.5	0.0	No	No	MM
7 200714P1-11	Standard	12.500	1.44	8846.722	8846.722	13.5	7.9	No	No	MmX
8 200714P1-12	Standard	12.500	1.44	8020.483	8020.483	12.2	-2.1	NO	NO	MMX
9200714 Pl 1 -13	Standard	12.500	1.44	9781.167	9781.167	14.9	19.3	NO	NO	MMX
10 200714P1-14	Standard	12.500	1.44	10062.881	10062.881	15.3	22.8	NO	No	MMX

Compound name: 13C3-PFBA-RSD

Response Factor: 0.933344
RRF SD: 0.031825, Relative SD: 3.40978
Response type: Internal Std (Ref 99), Area * (IS Conc. / IS Area)
Curve type: RF

1 200714P1-05	Standard	12.500	1.43	8613.404	8885.112	12.118	13.0	3.9	NO	NO	MM
2 200714P1-06	Standard	12.500	1.44	7826.519	8720.292	11.219	12.0	-3.8	No	No	MM
3 200714P1-07	Standard	12.500	1.44	8465.811	9075.949	11.660	12.5	-0.1	NO	NO	MM
4 200714P1-08	Standard	12.500	1.44	8357.626	9362.128	11.159	12.0	-4.4	NO	NO	MM
5 200714P1-09	Standard	12.500	1.44	9302.258	9944.453	11.693	12.5	0.2	NO	NO	MM
6 200714P1-10	Standard	12.500	1.44	8299.081	9086.962	11.416	12.2	-2.1	NO	NO	MM
7200714 P 1 -11	Standard	12.500	1.44	8876.046	9580.989	11.580	12.4	-0.7	NO	NO	MM
8 200714P1-12	Standard	12.500	1.44	8448.764	9050.654	11.669	12.5	0.0	NO	No	MM
9 200714P1-13	Standard	12.500	1.44	9728.032	10431.643	11.657	12.5	-0.1	NO	NO	MM
10 200714P1-14	Standard	12.500	1.44	10021.724	10023.224	12.498	13.4	7.1	No	NO	MM

Compound name: 13C3-PFPeA-EIS

Response Factor: 1327.46
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

1 200714P1-05	Standard	12.500	2.39	16412.875	16412.875	12.4	-1.1	NO	NO	bbX
2 200714P1-06	Standard	12.500	2.39	15752.672	15752.672	11.9	-5.1	NO	NO	$b b X$
3 200714P1-07	Standard	12.500	2.39	15528.102	15528.102	11.7	-6.4	No	No	$b b x$
4 200714P1-08	Standard	12.500	2.39	16146.918	16146.918	12.2	-2.7	No	NO	$b b x$
5 200714P1-09	Standard	12.500	2.39	16187.636	16187.636	12.2	-2.4	NO	NO	bbX
6 200714P1-10	Standard	12.500	2.39	16593.268	16593.268	12.5	0.0	No	No	bb
7 200714P1-11	Standard	12.500	2.39	16893.504	16893.504	12.7	1.8	No	NO	bbX
8 200714P1-12	Standard	12.500	2.39	16365.034	16365.034	12.3	-1.4	NO	NO	bbx
9 200714P1-13	Standard	12.500	2.39	16390.885	16390.885	12.3	-1.2	NO	No	bbx
10 200714P1-14	Standard	12.500	2.39	15678.485	15678.485	11.8	-5.5	NO	NO	bbX

Dataset: D:IPFAS5.PRO\RESULTSL200714P1L200714P1-CRV.qld
Last Altered:
Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:32:42 Pacific Daylight Time

Compound name: 13C3-PFPeA-RSD
Response Factor: 0.805502
RRF SD: 0.0332901, Relative SD: 4.13283
Response type: Internal Std (Ref 101), Area * (IS Conc. / IS Area)
Curve type: RF

1 200714P1-05	Standard	12.500	2.39	16412.875	18866.482	10.874	13.5	8.0	NO	NO	bb
2 200714P1-06	Standard	12.500	2.39	15752.672	20787.566	9.472	11.8	-5.9	NO	NO	bb
$3200714 \mathrm{P} 1-07$	Standard	12.500	2.39	15528.102	19919.666	9.744	12.1	-3.2	NO	NO	bb
4 200714P1-08	Standard	12.500	2.39	16146.918	20599.625	9.798	12.2	-2.7	No	No	bb
5 200714P1-09	Standard	12.500	2.39	16187.636	20465.453	9.887	12.3	-1.8	NO	NO	bb
6 200714P1-10	Standard	12.500	2.39	16593.268	20497.014	10.119	12.6	0.5	NO	NO	bb
$7200714 \mathrm{P} 1-11$	Standard	12.500	2.39	16893.504	21261.203	9.932	12.3	-1.4	NO	NO	bb
8 200714P1-12	Standard	12.500	2.39	16365.034	19705.504	10.381	12.9	3.1	NO	NO	bb
9 200714P1-13	Standard	12.500	2.39	16390.885	20587.143	9.952	12.4	-1.2	NO	NO	bb
10 200714P1-14	Standard	12.500	2.39	15678.485	18617.133	10.527	13.1	4.6	NO	NO	bb

Compound name: 13C3-PFBS-EIS
Response Factor: 157.875
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

$1200714 \mathrm{P1-05}$	Standard	12.500	2.67	1903.052	1903.052	12.1	-3.6	NO	NO	bbX
2 200714P1-06	Standard	12.500	2.67	1862.609	1862.609	11.8	-5.6	No	NO	bbX
3 200714P1-07	Standard	12.500	2.67	1743.585	1743.585	11.0	-11.6	No	No	bbX
4 200714P1-08	Standard	12.500	2.67	1978.787	1978.787	12.5	0.3	No	NO	MMX
5 200714P1-09	Standard	12.500	2.67	1868.767	1868.767	11.8	-5.3	NO	No	bbX
6 200714P1-10	Standard	12.500	2.67	1973.438	1973.438	12.5	0.0	NO	NO	bb
$7200714 \mathrm{P} 1-11$	Standard	12.500	2.67	1875.573	1875.573	11.9	-5.0	No	NO	bbx
8 200714P1-12	Standard	12.500	2.67	1822.421	1822.421	11.5	-7.7	NO	No	bbX
9 200714P1-13	Standard	12.500	2.67	1857.944	1857.944	11.8	-5.9	NO	No	bbx
10 200714P1-14	Standard	12.500	2.67	1689.719	1689.719	10.7	-14.4	NO	NO	bbX

Dataset: D:IPFAS5.PROIRESULTSL200714P11200714P1-CRV.qid
Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time Printed: Wednesday, July 15, 2020 08:32:42 Pacific Daylight Time

Compound name: 13C3-PFBS-RSD

Response Factor: 1.24531
RRF SD: 0.0520366, Relative SD: 4.17862
Response type: Internal Std (Ref 102), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C3-HFPO-DA-EIS

Response Factor: 261.275
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

1200714 P 1 -05	Standard	12.500	3.41	2989.123	2989.123	11.4	-8.5	NO	NO	bbX
2 200714P1-06	Standard	12.500	3.41	2842.123	2842.123	10.9	-13.0	No	No	bbX
3 200714P1-07	Standard	12.500	3.41	2963.256	2963.256	11.3	-9.3	NO	NO	bbX
- 4 200714P1-08	Standard	12.500	3.41	3239.311	3239.311	12.4	-0.8	NO	NO	bbX
5 200714P1-09	Standard	12.500	3.41	2921.836	2921.836	11.2	-10.5	NO	NO	bbX
6 200714P1-10	Standard	12.500	3.41	3265.933	3265.933	12.5	0.0	NO	NO	bb
7 200714P1-11	Standard	12.500	3.41	3398.220	3398.220	13.0	4.1	NO	NO	bbX
8 200714P1-12	Standard	12.500	3.41	3097.782	3097.782	11.9	-5.1	NO	NO	bbX
9 200714P1-13	Standard	12.500	3.41	3241.229	3241.229	12.4	-0.8	NO	NO	bbX
-10 200714P1-14	Standard	12.500	3.41	3034.546	3034.546	11.6	-7.1	NO	NO	bbX

Quantify Compound Summary Report

Vista Analytical Laboratory

Dataset:	D:IPFAS5.PROIRESULTSL200714P1L200714P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 08:32:42 Pacific Daylight Time

Compound name: 13C3-HFPO-DA-RSD
Response Factor: 0.154075
RRF SD: 0.00848423 , Relative SD: 5.50656
Response type: Internal Std (Ref 101), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C2-4:2 FTS-EIS
Response Factor: 154.05
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

Dataset:	D:IPFAS5.PROIRESULTSL200714P1L200714P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 08:32:42 Pacific Daylight Time

Compound name: 13C2-4:2 FTS-RSD
Response Factor: 1.27424
RRF SD: 0.0777941, Relative SD: 6.10512
Response type: Internal Std (Ref 102), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C2-PFHxA-EIS
Response Factor: 1345.83
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

Dataset:	D:IPFAS5.PROTRESULTSL200714P1\200714P1-CRV.qId
Last Altered:	Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 08:32:42 Pacific Daylight Time

Compound name: 13C2-PFHxA-RSD
Response Factor: 0.79744
RRF SD: 0.027804, Relative SD: 3.48665
Response type: Internal Std (Ref 101), Area * (IS Conc. / IS Area)
Curve type: RF

1200714 P 1 -05	Standard	12.500	3.19	15907.278	18866.482	10.539	13.2	5.7	NO	NO	bb
2 200714P1-06	Standard	12.500	3.19	15890.239	20787.566	9.555	12.0	-4.1	No	NO	bb
3 200714P1-07	Standard	12.500	3.19	15532.705	19919.666	9.747	12.2	-2.2	No	NO	bb
4 200714P1-08	Standard	12.500	3.19	15996.962	20599.625	9.707	12.2	-2.6	NO	NO	bb
5 200714P1-09	Standard	12.500	3.20	15976.589	20465.453	9.758	12.2	-2.1	NO	NO	bb
6 200714P1-10	Standard	12.500	3.19	16822.816	20497.014	10.259	12.9	2.9	No	NO	bb
7 200714P1-11	Standard	12.500	3.20	16609.658	21261.203	9.765	12.2	-2.0	NO	NO	bb
8 200714P1-12	Standard	12.500	3.19	16154.389	19705.504	10.247	12.9	2.8	No	NO	bb
9 200714P1-13	Standard	12.500	3.19	16017.276	20587.143	9.725	12.2	-2.4	NO	NO	bb
10 200714P1-14	Standard	12.500	3.20	15453.551	18617.133	10.376	13.0	4.1	NO	NO	bb

Compound name: 13C4-PFHPA-EIS
Response Factor: 1285.88
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

1 200714P1-05	Standard	12.500	3.79	15346.607	15346.607	11.9	-4.5	NO	NO	bbX
2 200714P1-06	Standard	12.500	3.79	15259.326	15259.326	11.9	-5.1	NO	NO	bbX
3 200714P1-07	Standard	12.500	3.79	14560.729	14560.729	11.3	-9.4	NO	NO	bbx
4 200714P1-08	Standard	12.500	3.79	15698.976	15698.976	12.2	-2.3	NO	NO	bbX
5 200714P1-09	Standard	12.500	3.79	15596.706	15596.706	12.1	-3.0	NO	NO	bbX
6 200714P1-10	Standard	12.500	3.79	16073.489	16073.489	12.5	0.0	NO	NO	bb
7 200714P1-11	Standard	12.500	3.79	16174.724	16174.724	12.6	0.6	NO	NO	bbx
8 200714P1-12	Standard	12.500	3.79	14859.042	14859.042	11.6	-7.6	NO	No	bbx
9 200714P1-13	Standard	12.500	3.79	14794.651	14794.651	11.5	-8.0	No	No	$b b x$
10 200714P1-14	Standard	12.500	3.79	13581.220	13581.220	10.6	-15.5	NO	NO	bbx

Dataset: D:IPFAS5.PROIRESULTSI200714P11200714P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed:
Wednesday, July 15, 2020 08:32:42 Pacific Daylight Time

Compound name: 13C4-PFHPA-RSD
Response Factor: 0.754981
RRF SD: 0.028654 , Relative SD: 3.79533
Response type: Internal Std (Ref 101), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C3-PFHxS-EIS
Response Factor: 305.184
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

1 200714P1-05	Standard	12.500	3.93	3766.335	3766.335	12.3	-1.3	NO	NO	bbX
2 200714P1-06	Standard	12.500	3.93	3819.933	3819.933	12.5	0.1	NO	NO	bbx
3 200714P1-07	Standard	12.500	3.93	3651.700	3651.700	12.0	-4.3	NO	NO	bbx
4 200714P1-08	Standard	12.500	3.93	3841.074	3841.074	12.6	0.7	No	NO	bbx
5 200714P1-09	Standard	12.500	3.93	3815.933	3815.933	12.5	0.0	NO	NO	bbx
6 200714P1-10	Standard	12.500	3.93	3814.796	3814.796	12.5	0.0	NO	NO	bb
7 200714P1-11	Standard	12.500	3.93	4010.179	4010.179	13.1	5.1	NO	NO	bbx
8 200714P1-12	Standard	12.500	3.93	3602.187	3602.187	11.8	-5.6	NO	NO	bbx
9 200714P1-13	Standard	12.500	3.93	3548.005	3548.005	11.6	-7.0	NO	NO	bbx
10 200714P1-14	Standard	12.500	3.93	3155.803	3155.803	10.3	-17.3	NO	NO	bbX

Dataset: D:IPFAS5.PRO\RESULTSL200714P1L200714P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:32:42 Pacific Daylight Time

Compound name: 13C3-PFHxS-RSD
Response Factor: 2.47642
RRF SD: 0.0922512 , Relative SD: 3.72519
Response type: Internal Std (Ref 102), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C2-6:2 FTS-EIS
Response Factor: 198.809
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

Quantlfy Compound Summary Report

Vista Analytical Laboratory
Dataset: D:IPFAS5.PROIRESULTSL200714P11200714P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:32:42 Pacific Daylight Time

Compound name: 13C2-6:2 FTS-RSD
Response Factor: 0.542354
RRF SD: 0.0360433, Relative SD: 6.64571
Response type: Internal Std (Ref 105), Area * (IS Conc. / IS Area)
Curve type: RF

$1200714 \mathrm{P} 1-05$	Standard	12.500	4.25	2520.341	4342.000	7.256	13.4	7.0	NO	NO	bb
2 200714P1-06	Standard	12.500	4.25	2589.569	4575.810	7.074	13.0	4.3	No	No	bb
3 200714P1-07	Standard	12.500	4.25	2349.270	4881.507	6.016	11.1	-11.3	NO	No	bb
4 200714P1-08	Standard	12.500	4.25	2426.874	4537.158	6.686	12.3	-1.4	NO	NO	bb
5 200714P1-09	Standard	12.500	4.25	2602.857	4512.778	7.210	13.3	6.3	NO	NO	bb
6 200714P1-10	Standard	12.500	4.25	2485.114	4668.967	6.653	12.3	-1.9	NO	NO	bb
7 200714P1-11	Standard	12.500	4.25	2371.706	4686.146	6.326	11.7	-6.7	No	No	bb
8 200714P1-12	Standard	12.500	4.25	2362.379	4608.026	6.408	11.8	-5.5	NO	NO	bb
9 200714P1-13	Standard	12.500	4.25	2348.477	4335.323	6.771	12.5	-0.1	NO	NO	bb
10 200714P1-14	Standard	12.500	4.25	2176.854	3680.293	7.394	13.6	9.1	NO	NO	bb

Compound name: 13C5-PFNA-EIS

Response Factor: 1672.51
RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF

$1200714 \mathrm{P} 1-05$	Standard	12.500	4.75	19972.742	19972.742	11.9	-4.5	NO	NO	bbX
2 200714P1-06	Standard	12.500	4.75	19571.732	19571.732	11.7	-6.4	No	NO	bbX
3 200714P1-07	Standard	12.500	4.75	19051.625	19051.625	11.4	-8.9	No	NO	bbX
4 200714P1-08	Standard	12.500	4.75	19361.764	19361.764	11.6	-7.4	NO	NO	bbX
$5200714 \mathrm{P} 1-09$	Standard	12.500	4.75	19859.246	19859.246	11.9	-5.0	NO	NO	bbX
6 200714P1-10	Standard	12.500	4.75	20906.328	20906.328	12.5	0.0	NO	NO	bb
7 200714P1-11	Standard	12.500	4.75	20276.420	20276.420	12.1	-3.0	NO	NO	bbX
8 200714P1-12	Standard	12.500	4.75	19536.756	19536.756	11.7	-6.6	NO	NO	bbX
9 200714P1-13	Standard	12.500	4.75	18933.551	18933.551	11.3	-9.4	NO	NO	bbX
$10200714 \mathrm{P} 1-14$	Standard	12.500	4.75	17374.082	17374.082	10.4	-16.9	NO	NO	bbX

Dataset: D:IPFAS5.PRO\RESULTSL200714P1200714P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:32:42 Pacific Daylight Time

Compound name: 13C5-PFNA-RSD
Response Factor: 0.941471
RRF SD: 0.0319652, Relative SD: 3.39525
Response type: Internal Std (Ref 104), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C8-PFOSA-EIS
Response Factor: 715.499
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

1 200714P1-05	Standard	12.500	4.80	9252.494	9252.494	12.9	3.5	NO	NO	bbx
2 200714P1-06	Standard	12.500	4.80	8679.499	8679.499	12.1	-3.0	NO	NO	bbx
3 200714P1-07	Standard	12.500	4.80	8519.868	8519.868	11.9	-4.7	No	NO	bbx
4 200714P1-08	Standard	12.500	4.80	9343.495	9343.495	13.1	4.5	NO	NO	bbx
5 200714P1-09	Standard	12.500	4.80	9461.762	9461.762	13.2	5.8	NO	NO	bbx
6 200714P1-10	Standard	12.500	4.80	8943.736	8943.736	12.5	0.0	NO	NO	bb
7 200714P1-11	Standard	12.500	4.80	9289.922	9289.922	13.0	3.9	NO	NO	bbx
8 200714P1-12	Standard	12.500	4.80	8893.026	8893.026	12.4	-0.6	No	NO	bbx
9 200714P1-13	Standard	12.500	4.80	8309.279	8309.279	11.6	-7.1	NO	NO	bbX
10 200714P1-14	Standard	12.500	4.80	8106.487	8106.487	11.3	-9.4	NO	NO	bbX

Dataset: D:IPFAS5.PROIRESULTSL200714P11200714P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed Wednesday, July 15, 2020 08:32:42 Pacific Daylight Time

Compound name: 13C8-PFOSA-RSD
Response Factor: 0.492199
RRF SD: 0.0239961, Relative SD: 4.87528
Response type: Internal Std (Ref 107), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C2-PFOA-EIS
Response Factor: 1733.54
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

\% $1200714 \mathrm{P} 1-05$	Standard	12.500	4.31	21637.133	21637.133	12.5	-0.1	NO	NO	bbX
2 200714P1-06	Standard	12.500	4.31	21370.082	21370.082	12.3	-1.4	No	No	bbx
3 200714P1-07	Standard	12.500	4.31	20538.236	20538.236	11.8	-5.2	NO	No	bbX
4 200714P1-08	Standard	12.500	4.31	21193.795	21193.795	12.2	-2.2	No	NO	bbx
5 200714P1-09	Standard	12.500	4.31	22283.082	22283.082	12.9	2.8	NO	NO	bbX
6 200714P1-10	Standard	12.500	4.31	21669.301	21669.301	12.5	0.0	No	NO	bb
7 200714P1-11	Standard	12.500	4.31	21987.039	21987.039	12.7	1.5	No	NO	bbX
8 200714P1-12	Standard	12.500	4.31	20678.270	20678.270	11.9	-4.6	NO	NO	bbX
9 200714P1-13	Standard	12.500	4.31	18985.717	18985.717	11.0	-12.4	No	NO	bbx
10 200714P1-14	Standard	12.500	4.31	17379.904	17379.904	10.0	-19.8	No	NO	bbX

Dataset:
 D:IPFAS5.PROIRESULTSL200714P11200714P1-CRV.qld

Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed:
Wednesday, July 15, 2020 08:32:42 Pacific Daylight Time

Compound name: 13C2-PFOA-RSD
Response Factor: 1.24397
RRF SD: 0.0472783 , Relative SD: 3.8006
Response type: Internal Std (Ref 103), Area * (IS Conc. / IS Area)
Curve type: RF

$1200714 \mathrm{P} 1-05$	Standard	12.500	4.31	21637.133	16144.792	16.752	13.5	7.7	NO	NO	bb
2 200714P1-06	Standard	12.500	4.31	21370.082	17366.801	15.381	12.4	-1.1	NO	NO	bb
3 200714P1-07	Standard	12.500	4.31	20538.236	16744.137	15.332	12.3	-1.4	NO	No	bb
4 200714P1-08	Standard	12.500	4.31	21193.795	17080.313	15.510	12.5	-0.3	NO	No	bb
5 200714P1-09	Standard	12.500	4.31	22283.082	18201.951	15.303	12.3	-1.6	NO	NO	bb
6 200714P1-10	Standard	12.500	4.31	21669.301	18261.623	14.833	11.9	-4.6	NO	NO	bb
7 200714P1-11	Standard	12.500	4.31	21987.039	17977.918	15.288	12.3	-1.7	NO	NO	bb
8 200714P1-12	Standard	12.500	4.31	20678.270	16470.166	15.694	12.6	0.9	NO	NO	bb
9 200714P1-13	Standard	12.500	4.31	18985.717	15792.484	15.027	12.1	-3.4	NO	NO	bb
10 200714P1-14	Standard	12.500	4.31	17379.904	13266.573	16.376	13.2	5.3	NO	NO	bb

Compound name: 13C8-PFOS-EIS
Response Factor: 299.078
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

$1200714 \mathrm{P1-05}$	Standard	12.500	4.83	3606.335	3606.335	12.1	-3.5	NO	NO	bbX
2 200714P1-06	Standard	12.500	4.83	3498.795	3498.795	11.7	-6.4	No	NO	bbX
3 200714P1-07	Standard	12.500	4.83	3526.449	3526.449	11.8	-5.7	No	NO	bbX
4200714 P 1 -08	Standard	12.500	4.83	3326.762	3326.762	11.1	-11.0	NO	NO	bbX
5 200714P1-09	Standard	12.500	4.83	4003.688	4003.688	13.4	7.1	No	NO	bbX
6 200714P1-10	Standard	12.500	4.83	3738.472	3738.472	12.5	0.0	NO	NO	bb
7 200714P1-11	Standard	12.500	4.83	3559.743	3559.743	11.9	-4.8	NO	NO	bbX
8 200714P1-12	Standard	12.500	4.83	3637.705	3637.705	12.2	-2.7	No	NO	bbX
9 200714P1-13	Standard	12.500	4.84	3408.620	3408.620	11.4	-8.8	No	No	bbX
10 200714P1-14	Standard	12.500	4.83	3034.717	3034.717	10.1	-18.8	NO	NO	bbX

Quantify Compound Summary Report MassLynx V4.2 SCN977

Vista Analytical Laboratory

Dataset:	D:IPFAS5.PRO\RESULTSL200714P1 1200714P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time Wednesday, July 15, 2020 08:32:42 Pacific Daylight Time
Printed:	

Compound name: 13C8-PFOS-RSD
Response Factor: 0.789108
RRF SD: 0.0473126, Relative SD: 5.99571
Response type: Internal Std (Ref 105), Area * (IS Conc. / IS Area)
Curve type: RF

1 200714P1-05	Standard	12.500	4.83	3606.335	4342.000	10.382	13.2	5.3	NO	NO	bb
2 200714P1-06	Standard	12.500	4.83	3498.795	4575.810	9.558	12.1	-3.1	NO	No	bb
3 200714P1-07	Standard	12.500	4.83	3526.449	4881.507	9.030	11.4	-8.5	NO	NO	bb
4 200714P1-08	Standard	12.500	4.83	3326.762	4537.158	9.165	11.6	-7.1	NO	NO	bb
5 200714P1-09	Standard	12.500	4.83	3960.673	4512.778	10.971	13.9	11.2	NO	NO	bb
6 200714P1-10	Standard	12.500	4.83	3738.472	4668.967	10.009	12.7	1.5	NO	NO	bb
7 200714P1-11	Standard	12.500	4.83	3559.743	4686.146	9.495	12.0	-3.7	NO	NO	bb
8 200714P1-12	Standard	12.500	4.83	3637.705	4608.026	9.868	12.5	0.0	NO	No	bb
9 200714P1-13	Standard	12.500	4.84	3408.620	4335.323	9.828	12.5	-0.4	NO	NO	bb
10 200714P1-14	Standard	12.500	4.83	3042.042	3680.293	10.332	13.1	4.7	NO	NO	bb

Compound name: 13C2-PFDA-EIS
Response Factor: 1995.92
RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF

1200714 P 1 -05	Standard	12.500	5.12	23368.150	23368.150	11.7	-6.3	NO	NO	bbX
2 200714P1-06	Standard	12.500	5.13	22980.668	22980.668	11.5	-7.9	NO	NO	bbX
3 200714P1-07	Standard	12.500	5.13	23334.533	23334.533	11.7	-6.5	NO	NO	bbX
4 200714P1-08	Standard	12.500	5.13	24066.725	24066.725	12.1	-3.5	NO	NO	bbX
5 200714P1-09	Standard	12.500	5.13	24689.447	24689.447	12.4	-1.0	NO	NO	bbX
6 200714P1-10	Standard	12.500	5.13	24948.947	24948.947	12.5	0.0	NO	NO	bb
$7200714 \mathrm{P} 1-11$	Standard	12.500	5.13	24347.441	24347.441	12.2	-2.4	NO	NO	bbX
8 200714P1-12	Standard	12.500	5.13	23742.848	23742.848	11.9	-4.8	NO	NO	bbX
$9200714 \mathrm{P} 1-13$	Standard	12.500	5.13	23145.813	23145.813	11.6	-7.2	NO	NO	bbX
10 200714P1-14	Standard	12.500	5.13	21335.008	21335.008	10.7	-14.5	NO	NO	bbX

Dataset: D:IPFAS5.PRO\RESULTSL200714P11200714P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:32:42 Pacific Daylight Time

Compound name: 13C2-PFDA-RSD
Response Factor: 1.1207
RRF SD: 0.0251841, Relative SD: 2.24718
Response type: Internal Std (Ref 106), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C2-8:2 FTS-EIS
Response Factor: 175.197
RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF

$1200714 \mathrm{P} 1-05$	Standard	12.500	5.10	1964.635	1964.635	11.2	-10.3	NO	NO	bbX
2 200714P1-06	Standard	12.500	5.10	1916.729	1916.729	10.9	-12.5	NO	No	bbX
3 200714P1-07	Standard	12.500	5.10	2081.913	2081.913	11.9	-4.9	No	No	MmX
4 200714P1-08	Standard	12.500	5.10	2058.287	2058.287	11.7	-6.0	NO	No	bbX
5 200714P1-09	Standard	12.500	5.10	2129.042	2129.042	12.2	-2.8	No	No	bbX
6 200714P1-10	Standard	12.500	5.10	2189.957	2189.957	12.5	0.0	No	No	bb
7 200714P1-11	Standard	12.500	5.10	2129.608	2129.608	12.2	-2.8	NO	No	bbX
8 200714P1-12	Standard	12.500	5.10	1895.378	1895.378	10.8	-13.5	NO	NO	bbX
9200714 Pl 13	Standard	12.500	5.10	1923.111	1923.111	11.0	-12.2	No	No	bbX
10 200714P1-14	Standard	12.500	5.10	1877.654	1877.654	10.7	-14.3	NO	No	bbX

Dataset: D:IPFAS5.PRO\RESULTS\200714P11200714P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:32:42 Pacific Daylight Time

Compound name: 13C2-8:2 FTS-RSD

Response Factor: 0.451181
RRF SD: 0.0289568, Relative SD: 6.418
Response type: Internal Std (Ref 105), Area * (IS Conc. / IS Area)
Curve type: RF

1 200714P1-05	Standard	12.500	5.10	1964.635	4342.000	5.656	12.5	0.3	NO	NO	bb
2 200714P1-06	Standard	12.500	5.10	1916.729	4575.810	5.236	11.6	-7.2	NO	NO	bb
3 200714P1-07	Standard	12.500	5.10	2081.609	4881.507	5.330	11.8	-5.5	NO	NO	MM
$4200714 \mathrm{P} 1-08$	Standard	12.500	5.10	2058.287	4537.158	5.671	12.6	0.5	NO	NO	bb
$5200714 \mathrm{P} 1-09$	Standard	12.500	5.10	2129.042	4512.778	5.897	13.1	4.6	NO	NO	bb
$6200714 \mathrm{P} 1-10$	Standard	12.500	5.10	2189.957	4668.967	5.863	13.0	4.0	NO	NO	bb
7 200714P1-11	Standard	12.500	5.10	2129.608	4686.146	5.681	12.6	0.7	NO	NO	bb
8 200714P1-12	Standard	12.500	5.10	1895.378	4608.026	5.142	11.4	-8.8	NO	NO	bb
9 200714P1-13	Standard	12.500	5.10	1923.111	4335.323	5.545	12.3	-1.7	NO	NO	bb
10200714 P 1 -14	Standard	12.500	5.10	1877.654	3680.293	6.377	14.1	13.1	NO	NO	bb

Compound name: d3-N-MeFOSAA-EIS

Response Factor: 391.23
RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF

$1200714 \mathrm{P} 1-05$	Standard	12.500	5.27	4618.156	4618.156	11.8	-5.6	NO	NO	bbX
2 200714P1-06	Standard	12.500	5.27	4686.311	4686.311	12.0	-4.2	No	NO	bbx
3 200714P1-07	Standard	12.500	5.27	4361.361	4361.361	11.1	-10.8	No	NO	bbX
4 200714P1-08	Standard	12.500	5.27	4787.729	4787.729	12.2	-2.1	No	No	bbx
5 200714P1-09	Standard	12.500	5.27	4916.231	4916.231	12.6	0.5	NO	NO	bbX
6 200714P1-10	Standard	12.500	5.27	4890.375	4890.375	12.5	0.0	NO	NO	bb
7 200714P1-11	Standard	12.500	5.27	4902.015	4902.015	12.5	0.2	No	NO	bbx
8 200714P1-12	Standard	12.500	5.27	4690.507	4690.507	12.0	-4.1	NO	NO	bbX
9 200714P1-13	Standard	12.500	5.27	4773.129	4773.129	12.2	-2.4	NO	NO	bbX
10 200714P1-14	Standard	12.500	5.27	4631.904	4631.904	11.8	-5.3	NO	NO	bbX

Dataset:
D:IPFAS5.PROIRESULTSL200714P11200714P1-CRV.qld
Last Altered:
Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:32:42 Pacific Daylight Time

Compound name: d3-N-MeFOSAA-RSD
Response Factor: 0.262388
RRF SD: 0.018354, Relative SD: 6.99499
Response type: Internal Std (Ref 107), Area * (IS Conc. / IS Area)
Curve type: RF

1 200714P1-05	Standard	12.500	5.27	4618.156	17934.158	3.219	12.3	-1.9	NO	NO	bb
2 200714P1-06	Standard	12.500	5.27	4686.311	18804.207	3.115	11.9	-5.0	No	NO	bb
3 200714P1-07	Standard	12.500	5.27	4361.361	18229.691	2.991	11.4	-8.8	NO	NO	bb
4 200714P1-08	Standard	12.500	5.27	4787.729	18290.113	3.272	12.5	-0.2	NO	NO	bb
5 200714P1-09	Standard	12.500	5.27	4916.231	19788.580	3.105	11.8	-5.3	NO	NO	bb
6 200714P1-10	Standard	12.500	5.27	4890.375	18650.055	3.278	12.5	-0.1	NO	NO	bb
7 200714P1-11	Standard	12.500	5.27	4902.015	18798.543	3.260	12.4	-0.6	No	NO	bb
8 200714P1-12	Standard	12.500	5.27	4690.507	17734.996	3.306	12.6	0.8	NO	NO	bb
9 200714P1-13	Standard	12.500	5.27	4773.129	17457.488	3.418	13.0	4.2	NO	NO	bb
10 200714P1-14	Standard	12.500	5.27	4631.904	15095.888	3.835	14.6	16.9	NO	NO	bb

Compound name: 13C2-PFUdA-EIS
Response Factor: 1917.64
RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF

1 200714P1-05	Standard	12.500	5.45	23457.783	23457.783	12.2	-2.1	NO	NO	bbx
2 200714P1-06	Standard	12.500	5.45	22756.576	22756.576	11.9	-5.1	NO	NO	bbX
3 200714P1-07	Standard	12.500	5.45	23169.525	23169.525	12.1	-3.3	NO	NO	bbx
4 200714P1-08	Standard	12.500	5.45	23991.473	23991.473	12.5	0.1	NO	NO	bbx
5 200714P1-09	Standard	12.500	5.45	24467.885	24467.885	12.8	2.1	NO	NO	bbX
6 200714P1-10	Standard	12.500	5.45	23970.490	23970.490	12.5	0.0	NO	NO	bb
7 200714P1-11	Standard	12.500	5.45	23967.434	23967.434	12.5	-0.0	NO	NO	bbX
8 200714P1-12	Standard	12.500	5.45	22860.875	22860.875	11.9	-4.6	NO	NO	bbX
9 200714P1-13	Standard	12.500	5.45	22522.078	22522.078	11.7	-6.0	No	No	bbx
10 200714P1-14	Standard	12.500	5.45	19828.572	19828.572	10.3	-17.3	NO	NO	bbx

Dataset:
D:IPFAS5.PRO\RESULTSL200714P1L200714P1-GRV.qld
Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:32:42 Pacific Daylight Time

Compound name: 13C2-PFUdA-RSD

Response Factor: 1.27902
RRF SD: 0.0333178 , Relative SD: 2.60494
Response type: Internal Std (Ref 107), Area * (IS Conc. / IS Area)
Curve type: RF

1 200714P1-05	Standard	12.500	5.45	23457.783	17934.158	16.350	12.8	2.3	NO	NO	bb
2 200714P1-06	Standard	12.500	5.45	22756.576	18804.207	15.127	11.8	-5.4	No	No	bb
3 200714P1-07	Standard	12.500	5.45	23169.525	18229.691	15.887	12.4	-0.6	NO	NO	bb
4 200714P1-08	Standard	12.500	5.45	23991.473	18290.113	16.396	12.8	2.6	NO	NO	bb
5 200714P1-09	Standard	12.500	5.45	24467.885	19788.580	15.456	12.1	-3.3	NO	NO	bb
6 200714P1-10	Standard	12.500	5.45	23970.490	18650.055	16.066	12.6	0.5	No	NO	bb
7200714 P 1 -11	Standard	12.500	5.45	23967.434	18798.543	15.937	12.5	-0.3	NO	NO	bb
8 200714P1-12	Standard	12.500	5.45	22860.875	17734.996	16.113	12.6	0.8	No	NO	bb
9 200714P1-13	Standard	12.500	5.45	22522.078	17457.488	16.126	12.6	0.9	No	NO	bb
10 200714P1-14	Standard	12.500	5.45	19828.572	15095.888	16.419	12.8	2.7	NO	NO	bb

Compound name: d5-N-EtFOSAA-EIS
Response Factor: 342.385
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

1 200714P1-05	Standard	12.500	5.42	3925.879	3925.879	11.5	-8.3	NO	NO	bbx
2 200714P1-06	Standard	12.500	5.42	3901.416	3901.416	11.4	-8.8	No	No	bbx
$3200714 \mathrm{P} 1-07$	Standard	12.500	5.43	3957.867	3957.867	11.6	-7.5	No	No	bbx
$4200714 \mathrm{P1-08}$	Standard	12.500	5.42	4226.074	4226.074	12.3	-1.3	NO	NO	bbx
5 200714P1-09	Standard	12.500	5.43	3924.296	3924.296	11.5	-8.3	NO	NO	bbx
6200714 P 1 -10	Standard	12.500	5.42	4279.810	4279.810	12.5	0.0	No	No	bb
$7200714 \mathrm{P} 1-11$	Standard	12.500	5.43	3788.670	3788.670	11.1	-11.5	NO	NO	bbx
8 200714P1-12	Standard	12.500	5.42	4450.607	4450.607	13.0	4.0	NO	NO	bbx
9 200714P1-13	Standard	12.500	5.42	3543.901	3543.901	10.4	-17.2	NO	NO	bbx
10 200714P1-14	Standard	12.500	5.42	3434.674	3434.674	10.0	-19.7	NO	NO	bbX

Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:32:42 Pacific Daylight Time

Compound name: d5-N-EtFOSAA-RSD
Response Factor: 0.218536
RRF SD: 0.0165722 , Relative SD: 7.58329
Response type: Internal Std (Ref 107), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C2-PFDOA-EIS
Response Factor: 2303.97
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

$1200714 \mathrm{P} 1-05$	Standard	12.500	5.72	28899.332	28899.332	12.5	0.3	NO	NO	bbX
2 200714P1-06	Standard	12.500	5.73	27005.604	27005.604	11.7	-6.2	NO	NO	bbx
3 200714P1-07	Standard	12.500	5.73	27706.188	27706.188	12.0	-3.8	NO	NO	bbx
4 200714P1-08	Standard	12.500	5.73	27549.563	27549.563	12.0	-4.3	NO	NO	bbX
5 200714P1-09	Standard	12.500	5.73	27539.930	27539.930	12.0	-4.4	NO	NO	bbX
6 200714P1-10	Standard	12.500	5.73	28799.658	28799.658	12.5	0.0	NO	NO	bb
7 200714P1-11	Standard	12.500	5.73	29855.451	29855.451	13.0	3.7	NO	NO	bbX
8 200714P1-12	Standard	12.500	5.73	26112.064	26112.064	11.3	-9.3	NO	NO	bbX
9 200714P1-13	Standard	12.500	5.73	24515.406	24515.406	10.6	-14.9	NO	NO	bbX
10 200714P1-14	Standard	12.500	5.73	22827.689	22827.689	9.9	-20.7	NO	NO	bbX

Dataset: D:IPFAS5.PROTRESULTSL200714P11200714P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:32:42 Pacific Daylight Time

Compound name: 13C2-PFDoA-RSD
Response Factor: 1.2848
RRF SD: 0.064343, Relative SD: 5.00803
Response type: Internal Std (Ref 106), Area * (IS Conc. / IS Area)
Curve type: RF

1 200714P1-05	Standard	12.500	5.72	28899.332	20368.861	17.735	13.8	10.4	NO	NO	bb
2 200714P1-06	Standard	12.500	5.73	27005.604	20726.273	16.287	12.7	1.4	No	NO	bb
3 200714P1-07	Standard	12.500	5.73	27706.188	21136.891	16.385	12.8	2.0	No	NO	bb
4 200714P1-08	Standard	12.500	5.73	27549.563	21789.701	15.804	12.3	-1.6	No	NO	bb
5 200714P1-09	Standard	12.500	5.73	27539.930	22672.555	15.184	11.8	-5.5	NO	No	bb
6 200714P1-10	Standard	12.500	5.73	28799.658	21944.688	16.405	12.8	2.1	NO	NO	bb
7 200714P1-11	Standard	12.500	5.73	29855.451	22437.697	16.632	12.9	3.6	NO	No	bb
8 200714P1-12	Standard	12.500	5.73	26112.064	20687.416	15.778	12.3	-1.8	No	NO	bb
9 200714P1-13	Standard	12.500	5.73	24515.406	20115.176	15.234	11.9	-5.1	NO	NO	bb
10 200714P1-14	Standard	12.500	5.73	22827.689	18827.635	15.156	11.8	-5.6	No	NO	bb

Compound name: 13C2-10:2 FTS-EIS
Response Factor: 119.38
RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF

1 200714P1-05	Standard	12.500	5.71	1541.734	1541.734	12.9	3.3	NO	NO	bbX
2 200714P1-06	Standard	12.500	5.71	1696.700	1696.700	14.2	13.7	NO	NO	bbX
3 200714P1-07	Standard	12.500	5.71	1566.035	1566.035	13.1	4.9	NO	NO	bbX
4 200714P1-08	Standard	12.500	5.71	1543.193	1543.193	12.9	3.4	NO	NO	bbX
5 200714P1-09	Standard	12.500	5.71	1534.456	1534.456	12.9	2.8	NO	NO	bbX
$6200714 \mathrm{P} 1-10$	Standard	12.500	5.71	1492.248	1492.248	12.5	0.0	NO	NO	bi
7200714 P 1 -11	Standard	12.500	5.71	1394.419	1394.419	11.7	-6.6	NO	NO	dbX
$8200714 \mathrm{P} 1-12$	Standard	12.500	5.71	1236.919	1236.919	10.4	-17.1	NO	NO	MMX
$9200714 \mathrm{P} 1-13$	Standard	12.500	5.71	1160.157	1160.157	9.7	-22.3	NO	NO	MMX
10 200714P1-14	Standard	12.500	5.71	942.835	942.835	7.9	-36.8	YES	NO	MMX

Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:32:42 Pacific Daylight Time

Compound name: 13C2-10:2 FTS-RSD

Response Factor: 0.313625
RRF SD: 0.039701 , Relative SD: 12.6588
Response type: Internal Std (Ref 105), Area * (IS Conc. / IS Area)
Curve type: RF

1 200714P1-05	Standard	12.500	5.71	1541.734	4342.000	4.438	14.2	13.2	NO	NO	bb
2 200714P1-06	Standard	12.500	5.71	1696.700	4575.810	4.635	14.8	18.2	No	No	bb
3 200714P1-07	Standard	12.500	5.71	1566.035	4881.507	4.010	12.8	2.3	NO	NO	bb
$4200714 \mathrm{P1-08}$	Standard	12.500	5.71	1543.193	4537.158	4.252	13.6	8.4	NO	NO	bb
5 200714P1-09	Standard	12.500	5.71	1534.456	4512.778	4.250	13.6	8.4	NO	NO	bb
6 200714P1-10	Standard	12.500	5.71	1492.248	4668.967	3.995	12.7	1.9	No	No	bb
$7200714 \mathrm{P} 1-11$	Standard	12.500	5.71	1394.419	4686.146	3.720	11.9	-5.1	NO	NO	db
8 200714P1-12	Standard	12.500	5.71	1236.574	4608.026	3.354	10.7	-14.4	NO	NO	MM
9 200714P1-13	Standard	12.500	5.71	1159.967	4335.323	3.345	10.7	-14.7	No	No	MM
10 200714P1-14	Standard	12.500	5.71	943.368	3680.293	3.204	10.2	-18.3	NO	NO	MM

Compound name: d3-N-MeFOSA-EIS

Response Factor: 178.8
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

$1200714 \mathrm{P} 1-05$	Standard	149.200	5.73	25001.195	25001.195	139.8	-6.3	NO	NO	bbX
2 200714P1-06	Standard	149.200	5.73	24880.635	24880.635	139.2	-6.7	NO	NO	$b b X$
3 200714P1-07	Standard	149.200	5.73	24379.451	24379.451	136.4	-8.6	NO	NO	$b b X$
4 200714P1-08	Standard	149.200	5.73	25946.547	25946.547	145.1	-2.7	NO	NO	bbX
5 200714P1-09	Standard	149.200	5.73	25299.283	25299.283	141.5	-5.2	NO	NO	bbX
6 200714P1-10	Standard	149.200	5.73	26676.906	26676.906	149.2	0.0	NO	NO	bb
7 200714P1-11	Standard	149.200	5.73	26700.266	26700.266	149.3	0.1	NO	NO	$b b X$
8 200714P1-12	Standard	149.200	5.73	24842.984	24842.984	138.9	-6.9	NO	NO	$b b x$
$9200714 \mathrm{P} 1-13$	Standard	149.200	5.73	24493.023	24493.023	137.0	-8.2	NO	NO	$b b X$
10 200714P1-14	Standard	149.200	5.73	22047.441	22047.441	123.3	-17.4	NO	NO	bbX

Dataset: D:IPFAS5.PRO\RESULTSL200714P11200714P1-CRV.qld

Last Altered:
Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:32:42 Pacific Daylight Time

Compound name: d3-N-MeFOSA-RSD
Response Factor: 0.116175
RRF SD: 0.00469051, Relative SD: 4.03745
Response type: Internal Std (Ref 107), Area * (IS Conc. / IS Area)
Curve type: RF

1 200714P1-05	Standard	149.200	5.73	25001.195	17934.158	17.426	150.0	0.5	NO	NO	bb
2 200714P1-06	Standard	149.200	5.73	24880.635	18804.207	16.539	142.4	-4.6	NO	NO	bb
3 200714P1-07	Standard	149.200	5.73	24379.451	18229.691	16.717	143.9	-3.6	NO	NO	bb
4 200714P1-08	Standard	149.200	5.73	25946.547	18290.113	17.733	152.6	2.3	No	No	bb
5 200714P1-09	Standard	149.200	5.73	25299.283	19788.580	15.981	137.6	-7.8	No	No	bb
6 200714P1-10	Standard	149.200	5.73	26676.906	18650.055	17.880	153.9	3.2	NO	NO	bb
7 200714P1-11	Standard	149.200	5.73	26700.266	18798.543	17.754	152.8	2.4	NO	No	bb
8 200714P1-12	Standard	149.200	5.73	24842.984	17734.996	17.510	150.7	1.0	NO	NO	bb
9 200714P1-13	Standard	149.200	5.73	24493.023	17457.488	17.538	151.0	1.2	No	NO	bb
$10200714 \mathrm{P} 1-14$	Standard	149.200	5.73	22047.441	15095.888	18.256	157.1	5.3	NO	No	bb

Compound name: 13C2-PFTeDA-EIS

Response Factor: 2242.34

RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF

1 200714P1-05	Standard	12.500	6.18	28348.844	28348.844	12.6	1.1	NO	NO	bbX
2 200714P1-06	Standard	12.500	6.18	27195.896	27195.896	12.1	-3.0	NO	NO	bbx
3 200714P1-07	Standard	12.500	6.18	27176.436	27176.436	12.1	-3.0	NO	NO	bbx
4 200714P1-08	Standard	12.500	6.17	27075.727	27075.727	12.1	-3.4	NO	NO	bbX
5 200714P1-09	Standard	12.500	6.18	28104.383	28104.383	12.5	0.3	NO	NO	bbX
6 200714P1-10	Standard	12.500	6.18	28029.271	28029.271	12.5	0.0	NO	NO	bb
7 200714P1-11	Standard	12.500	6.18	28920.814	28920.814	12.9	3.2	NO	NO	bbX
8 200714P1-12	Standard	12.500	6.17	27996.127	27996.127	12.5	-0.1	NO	NO	bbx
9 200714P1-13	Standard	12.500	6.18	26693.490	26693.490	11.9	-4.8	No	NO	bbx
10 200714P1-14	Standard	12.500	6.18	24299.152	24299.152	10.8	-13.3	NO	NO	bbX

Dataset: D:IPFAS5.PRO\RESULTSL200714P11200714P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:32:42 Pacific Daylight Time

Compound name: 13C2-PFTeDA-RSD
Response Factor: 1.5177
RRF SD: 0.0611325, Relative SD: 4.02797
Response type: Internal Std (Ref 107), Area * (IS Conc. / IS Area)
Curve type: RF

1200714 P 1.05	Standard	12.500	6.18	28348.844	17934.158	19.759	13.0	4.2	NO	NO	bb
2 200714P1-06	Standard	12.500	6.18	27195.896	18804.207	18.078	11.9	-4.7	NO	NO	bb
3 200714P1-07	Standard	12.500	6.18	27176.436	18229.691	18.635	12.3	-1.8	NO	NO	bb
4 200714P1-08	Standard	12.500	6.17	27075.727	18290.113	18.504	12.2	-2.5	NO	NO	bb
5 200714P1-09	Standard	12.500	6.18	28104.383	19788.580	17.753	11.7	-6.4	No	NO	bb
6200714 P 1 -10	Standard	12.500	6.18	28029.271	18650.055	18.786	12.4	-1.0	NO	NO	bb
7 200714P1-11	Standard	12.500	6.18	28920.814	18798.543	19.231	12.7	1.4	No	NO	bb
8 200714P1-12	Standard	12.500	6.17	27996.127	17734.996	19.732	13.0	4.0	NO	NO	bb
9 200714P1-13	Standard	12.500	6.18	26693.490	17457.488	19.113	12.6	0.7	NO	NO	bb
10 200714P1-14	Standard	12.500	6.18	24299.152	15095.888	20.121	13.3	6.1	NO	NO	bb

Compound name: d5-N-ETFOSA-EIS

Response Factor: 204.675
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

$1200714 \mathrm{P} 1-05$	Standard	149.200	6.14	29955.465	29955.465	146.4	-1.9	No	No	bbX
2 200714P1-06	Standard	149.200	6.14	28843.000	28843.000	140.9	-5.5	NO	NO	bbx
3 200714P1-07	Standard	149.200	6.14	29362.738	29362.738	143.5	-3.8	NO	No	bbx
4 200714P1-08	Standard	149.200	6.14	30136.287	30136.287	147.2	-1.3	NO	No	bbx
5 200714P1-09	Standard	149.200	6.14	30226.980	30226.980	147.7	-1.0	No	No	bbx
6 200714P1-10	Standard	149.200	6.14	30537.547	30537.547	149.2	0.0	NO	NO	bb
7 200714P1-11	Standard	149.200	6.14	32286.406	32286.406	157.7	5.7	NO	NO	bbx
8 200714P1-12	Standard	149.200	6.14	29710.975	29710.975	145.2	-2.7	NO	No	bbx
9 200714P1-13	Standard	149.200	6.14	28657.531	28657.531	140.0	-6.2	NO	NO	bbx
10 200714P1-14	Standard	149.200	6.14	24387.775	24387.775	119.2	-20.1	NO	NO	bbX

Dataset: D:IPFAS5.PRO\RESULTSL200714P11200714P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:32:42 Pacific Daylight Time

Compound name: d5-N-ETFOSA-RSD
Response Factor: 0.136371
RRF SD: 0.00500432 , Relative SD: 3.66962
Response type: Internal Std (Ref 107), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C2-PFHxDA-EIS
Response Factor: 2454.3
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

1200714 P 1 -05	Standard	12.500	6.49	31730.168	31730.168	12.9	3.4	NO	NO	bbx
2 200714P1-06	Standard	12.500	6.49	29605.863	29605.863	12.1	-3.5	NO	No	bbx
3 200714P1-07	Standard	12.500	6.49	29535.994	29535.994	12.0	-3.7	No	NO	bbX
4 200714P1-08	Standard	12.500	6.49	29942.436	29942.436	12.2	-2.4	No	No	bbx
5 200714P1-09	Standard	12.500	6.49	31860.355	31860.355	13.0	3.9	NO	No	bbx
6 200714P1-10	Standard	12.500	6.49	30678.719	30678.719	12.5	0.0	No	No	bb
7 200714P1-11	Standard	12.500	6.49	32782.980	32782.980	13.4	6.9	No	No	bbX
8 200714P1-12	Standard	12.500	6.49	30092.316	30092.316	12.3	-1.9	NO	NO	$\mathrm{bbX}^{\text {a }}$
9 200714P1-13	Standard	12.500	6.49	30044.176	30044.176	12.2	-2.1	NO	NO	bbX
10 200714P1-14	Standard	12.500	6.49	26702.994	26702.994	10.9	-13.0	NO	NO	bbX

Dataset: D:IPFAS5.PRO\RESULTS\200714P11200714P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:32:42 Pacific Daylight Time

Compound name: 13C2-PFHxDA-RSD

Response Factor: 1.67866
RRF SD: 0.0703807 , Relative SD: 4.19268
Response type: Internal Std (Ref 107), Area * (IS Conc. / IS Area)
Curve type: RF

1 200714P1-05	Standard	12.500	6.49	31730.168	17934.158	22.116	13.2	5.4	NO	NO	bb
2 200714P1-06	Standard	12.500	6.49	29605.863	18804.207	19.680	11.7	-6.2	NO	NO	bb
3 200714P1-07	Standard	12.500	6.49	29535.994	18229.691	20.253	12.1	-3.5	NO	No	bb
4 200714P1-08	Standard	12.500	6.49	29942.436	18290.113	20.464	12.2	-2.5	No	No	bb
5 200714P1-09	Standard	12.500	6.49	31860.355	19788.580	20.125	12.0	-4.1	NO	No	bb
6 200714P1-10	Standard	12.500	6.49	30678.719	18650.055	20.562	12.2	-2.0	NO	NO	bb
7 200714P1-11	Standard	12.500	6.49	32782.980	18798.543	21.799	13.0	3.9	NO	No	bb
8 200714P1-12	Standard	12.500	6.49	30092.316	17734.996	21.210	12.6	1.1	NO	No	bb
9 200714P1-13	Standard	12.500	6.49	30044.176	17457.488	21.512	12.8	2.5	NO	No	bb
10 200714P1-14	Standard	12.500	6.49	26702.994	15095.888	22.111	13.2	5.4	NO	No	bb

Compound name: d7-N-MeFOSE-EIS
Response Factor: 177.939
RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF

$1200714 \mathrm{P} 1-05$	Standard	149.200	6.31	25873.684	25873.684	145.4	-2.5	NO	NO	bbX
2 200714P1-06	Standard	149.200	6.30	25152.414	25152.414	141.4	-5.3	No	No	$b b x$
3200714 P 1.07	Standard	149.200	6.30	25712.727	25712.727	144.5	-3.1	NO	NO	bbx
4 200714P1-08	Standard	149.200	6.30	25659.541	25659.541	144.2	-3.3	NO	No	bbx
5 200714P1-09	Standard	149.200	6.31	27093.271	27093.271	152.3	2.1	NO	NO	$b b x$
6 200714P1-10	Standard	149.200	6.30	26548.555	26548.555	149.2	0.0	NO	No	bb
7 200714P1-11	Standard	149.200	6.31	28773.104	28773.104	161.7	8.4	NO	NO	$b b X$
8 200714P1-12	Standard	149.200	6.30	26893.195	26893.195	151.1	1.3	NO	No	$b b x$
9 200714P1-13	Standard	149.200	6.31	26758.592	26758.592	150.4	0.8	No	No	$b b x$
10 200714P1-14	Standard	149.200	6.30	25831.100	25831.100	145.2	-2.7	NO	No	bbx

Compound name: d7-N-MeFOSE-RSD

Response Factor: 0.122966
RRF SD: 0.00911429 , Relative SD: 7.41202
Response type: Internal Std (Ref 107), Area * (IS Conc. / IS Area)
Curve type: RF

$1200714 \mathrm{P} 1-05$	Standard	149.200	6.31	25873.684	17934.158	18.034	146.7	-1.7	NO	NO	bb
2 200714P1-06	Standard	149.200	6.30	25152.414	18804.207	16.720	136.0	-8.9	No	NO	bb
3 200714P1-07	Standard	149.200	6.30	25712.727	18229.691	17.631	143.4	-3.9	NO	NO	bb
4 200714P1-08	Standard	149.200	6.30	25659.541	18290.113	17.536	142.6	-4.4	NO	NO	bb
5 200714P1-09	Standard	149.200	6.31	27093.271	19788.580	17.114	139.2	-6.7	NO	NO	bb
6 200714P1-10	Standard	149.200	6.30	26548.555	18650.055	17.794	144.7	-3.0	NO	NO	bb
7200714 P 1 -11	Standard	149.200	6.31	28773.104	18798.543	19.133	155.6	4.3	No	NO	bb
8 200714P1-12	Standard	149.200	6.30	26893.195	17734.996	18.955	154.1	3.3	NO	NO	bb
9 200714P1-13	Standard	149.200	6.31	26758.592	17457.488	19.160	155.8	4.4	NO	No	bb
10 200714P1-14	Standard	149.200	6.30	25831.100	15095.888	21.389	173.9	16.6	NO	NO	bb

Compound name: d9-N-EtFOSE-EIS

Response Factor: 205.463
RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF

1 200714P1-05	Standard	149.200	6.45	28655.701	28655.701	139.5	-6.5	NO	NO	bbX
2 200714P1-06	Standard	149.200	6.45	29116.070	29116.070	141.7	-5.0	NO	NO	bbX
$3200714 \mathrm{P} 1-07$	Standard	149.200	6.45	28599.301	28599.301	139.2	-6.7	NO	NO	$b b X$
$4200714 \mathrm{P} 1-08$	Standard	149.200	6.45	29822.564	29822.564	145.1	-2.7	NO	NO	$b b X$
5 200714P1-09	Standard	149.200	6.45	31202.797	31202.797	151.9	1.8	NO	NO	$b b X$
6 200714P1-10	Standard	149.200	6.45	30655.066	30655.066	149.2	0.0	NO	NO	$b b$
7 200714P1-11	Standard	149.200	6.45	32652.547	32652.547	158.9	6.5	NO	NO	bbX
$8200714 \mathrm{P} 1-12$	Standard	149.200	6.45	30162.348	30162.348	146.8	-1.6	NO	NO	bbX
9 200714P1-13	Standard	149.200	6.45	30691.268	30691.268	149.4	0.1	NO	NO	bbX
10 200714P1-14	Standard	149.200	6.45	29723.055	29723.055	144.7	-3.0	NO	NO	bbX

Compound name: d9-N-EtFOSE-RSD

Response Factor: 0.140171
RRF SD: 0.0105838 , Relative SD: 7.55066
Response type: Internal Std (Ref 107), Area * (IS Conc. / IS Area)
Curve type: RF

1 200714P1-05	Standard	149.200	6.45	28655.701	17934.158	19.973	142.5	-4.5	NO	NO	bb
2 200714P1-06	Standard	149.200	6.45	29116.070	18804.207	19.355	138.1	-7.5	No	No	bb
3 200714P1-07	Standard	149.200	6.45	28599.301	18229.691	19.610	139.9	-6.2	NO	NO	bb
4 200714P1-08	Standard	149.200	6.45	29822.564	18290.113	20.382	145.4	-2.5	No	No	bb
5 200714P1-09	Standard	149.200	6.45	31202.797	19788.580	19.710	140.6	-5.8	NO	NO	bb
6 200714P1-10	Standard	149.200	6.45	30655.066	18650.055	20.546	146.6	-1.8	No	No	bb
7 200714P1-11	Standard	149.200	6.45	32652.547	18798.543	21.712	154.9	3.8	No	NO	bb
8 200714P1-12	Standard	149.200	6.45	30162.348	17734.996	21.259	151.7	1.7	NO	No	bb
$9200714 \mathrm{P} 1-13$	Standard	149.200	6.45	30691.268	17457.488	21.976	156.8	5.1	No	No	bb
10 200714P1-14	Standard	149.200	6.45	29723.055	15095.888	24.612	175.6	17.7	NO	No	bb

Compound name: 13C4-PFBA

Response Factor: 1
RRF SD: $3.70074 \mathrm{e}-017$, Relative SD: $3.70074 \mathrm{e}-015$
Response type: Internal Std (Ref 99), Area * (IS Conc. / IS Area)
Curve type: RF

1 200714P1-05	Standard	12.500	1.43	8885.112	8885.112	12.500	12.5	0.0	NO	NO	MM
2 200714P1-06	Standard	12.500	1.44	8720.292	8720.292	12.500	12.5	0.0	NO	NO	MM
3 200714P1-07	Standard	12.500	1.43	9075.949	9075.949	12.500	12.5	0.0	NO	NO	MM
4 200714P1-08	Standard	12.500	1.43	9362.128	9362.128	12.500	12.5	0.0	No	NO	MM
5 200714P1-09	Standard	12.500	1.44	9944.453	9944.453	12.500	12.5	0.0	NO	NO	MM
6 200714P1-10	Standard	12.500	1.43	9086.962	9086.962	12.500	12.5	0.0	NO	NO	MM
7 200714P1-11	Standard	12.500	1.44	9580.989	9580.989	12.500	12.5	0.0	NO	NO	MM
8 200714P1-12	Standard	12.500	1.43	9050.654	9050.654	12.500	12.5	0.0	NO	NO	MM
9 200714P1-13	Standard	12.500	1.43	10431.643	10431.643	12.500	12.5	0.0	NO	NO	MM
10 200714P1-14	Standard	12.500	1.44	10023.224	10023.224	12.500	12.5	0.0	No	No	MM

Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time

Compound name: 13C5-PFHxA
Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 101), Area * (IS Conc. / IS Area)
Curve type: RF

1200714 P 1 -05	Standard	12.500	3.19	18866.482	18866.482	12.500	12.5	0.0	NO	NO	bb
2 200714P1-06	Standard	12.500	3.19	20787.566	20787.566	12.500	12.5	0.0	No	NO	bb
3 200714P1-07	Standard	12.500	3.19	19919.666	19919.666	12.500	12.5	0.0	NO	NO	bb
4 200714P1-08	Standard	12.500	3.19	20599.625	20599.625	12.500	12.5	0.0	NO	NO	bb
5 200714P1-09	Standard	12.500	3.20	20465.453	20465.453	12.500	12.5	0.0	NO	NO	bb
6 200714P1-10	Standard	12.500	3.19	20497.014	20497.014	12.500	12.5	0.0	NO	NO	bb
7200714 P 1 -11	Standard	12.500	3.20	21261.203	21261.203	12.500	12.5	0.0	NO	NO	bb
8 200714P1-12	Standard	12.500	3.19	19705.504	19705.504	12.500	12.5	0.0	NO	No	bb
9 200714P1-13	Standard	12.500	3.19	20587.143	20587.143	12.500	12.5	0.0	NO	NO	bb
10 200714P1-14	Standard	12.500	3.19	18617.133	18617.133	12.500	12.5	0.0	No	NO	bb

Compound name: 1802-PFHxS

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 102), Area * (IS Conc. / IS Area)
Curve type: RF

1 200714P1-05	Standard	12.500	3.93	1443.999	1443.999	12.500	12.5	0.0	NO	NO	bb
2 200714P1-06	Standard	12.500	3.93	1495.675	1495.675	12.500	12.5	0.0	No	No	bb
3 200714P1-07	Standard	12.500	3.93	1475.380	1475.380	12.500	12.5	0.0	NO	NO	bb
4 200714P1-08	Standard	12.500	3.94	1492.467	1492.467	12.500	12.5	0.0	NO	No	bb
5 200714P1-09	Standard	12.500	3.94	1596.817	1596.817	12.500	12.5	0.0	NO	NO	bb
6 200714P1-10	Standard	12.500	3.94	1566.257	1566.257	12.500	12.5	0.0	No	No	bb
$7200714 \mathrm{P} 1-11$	Standard	12.500	3.94	1564.087	1564.087	12.500	12.5	0.0	NO	NO	bb
8 200714P1-12	Standard	12.500	3.94	1486.187	1486.187	12.500	12.5	0.0	NO	NO	bb
9 200714P1-13	Standard	12.500	3.94	1514.581	1514.581	12.500	12.5	0.0	NO	NO	bb
$10200714 \mathrm{P} 1-14$	Standard	12.500	3.94	1316.234	1316.234	12.500	12.5	0.0	NO	NO	bb

Compound name: 13C8-PFOA

Response Factor: 1
RRF SD: 1.11022e-016, Relative SD: 1.11022e-014
Response type: Internal Std (Ref 103), Area * (IS Conc. / IS Area)
Curve type: RF

1 200714P1-05	Standard	12.500	4.31	16144.792	16144.792	12.500	12.5	0.0	NO	NO	bb
2 200714P1-06	Standard	12.500	4.31	17366.801	17366.801	12.500	12.5	0.0	NO	NO	bb
3 200714P1-07	Standard	12.500	4.31	16744.137	16744.137	12.500	12.5	0.0	NO	NO	bb
4 200714P1-08	Standard	12.500	4.31	17080.313	17080.313	12.500	12.5	0.0	NO	NO	bb
5 200714P1-09	Standard	12.500	4.31	18201.951	18201.951	12.500	12.5	0.0	NO	NO	bb
6 200714P1-10	Standard	12.500	4.31	18261.623	18261.623	12.500	12.5	0.0	NO	NO	bb
7 200714P1-11	Standard	12.500	4.31	17977.918	17977.918	12.500	12.5	0.0	NO	NO	bb
8 200714P1-12	Standard	12.500	4.31	16470.166	16470.166	12.500	12.5	0.0	NO	NO	bb
9 200714P1-13	Standard	12.500	4.31	15792.484	15792.484	12.500	12.5	0.0	No	NO	bb
10 200714P1-14	Standard	12.500	4.31	13266.573	13266.573	12.500	12.5	0.0	NO	NO	bb

Compound name: 13C9-PFNA
Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 104), Area * (IS Conc. / IS Area)
Curve type: RF

1200714 P 1 -05	Standard	12.500	4.75	19925.254	19925.254	12.500	12.5	0.0	NO	NO	bb
2 200714P1-06	Standard	12.500	4.75	21069.840	21069.840	12.500	12.5	0.0	NO	NO	bb
3 200714P1-07	Standard	12.500	4.75	21517.859	21517.859	12.500	12.5	0.0	No	NO	bb
4 200714P1-08	Standard	12.500	4.75	21104.348	21104.348	12.500	12.5	0.0	NO	NO	bb
5 200714P1-09	Standard	12.500	4.75	21557.045	21557.045	12.500	12.5	0.0	NO	NO	bb
6 200714P1-10	Standard	12.500	4.75	21648.375	21648.375	12.500	12.5	0.0	No	NO	bb
7 200714P1-11	Standard	12.500	4.75	21192.848	21192.848	12.500	12.5	0.0	No	NO	bb
8 200714P1-12	Standard	12.500	4.75	20765.273	20765.273	12.500	12.5	0.0	NO	NO	bb
9 200714P1-13	Standard	12.500	4.75	20227.121	20227.121	12.500	12.5	0.0	No	NO	bb
10 200714P1-14	Standard	12.500	4.75	18098.008	18098.008	12.500	12.5	0.0	NO	NO	bb

Dataset: D:IPFAS5.PROIRESULTSL200714P11200714P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:32:42 Pacific Daylight Time

Compound name: 13C4-PFOS

Response Factor: 1
RRF SD: 7.40149e-017, Relative SD: 7.40149e-015
Response type: Internal Std (Ref 105), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C6-PFDA

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 106), Area * (IS Conc. / IS Area)
Curve type: RF

1200714 P 1 -05	Standard	12.500	5.12	20368.861	20368.861	12.500	12.5	0.0	NO	NO	bb
2 200714P1-06	Standard	12.500	5.13	20726.273	20726.273	12.500	12.5	0.0	NO	NO	bb
3 200714P1-07	Standard	12.500	5.13	21136.891	21136.891	12.500	12.5	0.0	NO	NO	bb
4 200714P1-08	Standard	12.500	5.13	21789.701	21789.701	12.500	12.5	0.0	NO	NO	bb
5 200714P1-09	Standard	12.500	5.13	22672.555	22672.555	12.500	12.5	0.0	NO	NO	bb
6200714 P 1 -10	Standard	12.500	5.13	21944.688	21944.688	12.500	12.5	0.0	NO	NO	bb
7 200714P1-11	Standard	12.500	5.13	22437.697	22437.697	12.500	12.5	0.0	NO	NO	bb
8 200714P1-12	Standard	12.500	5.13	20687.416	20687.416	12.500	12.5	0.0	NO	NO	bb
$9200714 \mathrm{P} 1-13$	Standard	12.500	5.13	20115.176	20115.176	12.500	12.5	0.0	NO	NO	bb
10 200714P1-14	Standard	12.500	5.13	18827.635	18827.635	12.500	12.5	0.0	NO	NO	bb

Dataset:	D:IPFAS5.PROURESULTSL200714P11200714P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 08:32:42 Pacific Daylight Time

Compound name: 13C7-PFUdA

Response Factor: 1
RRF SD: 3.70074e-017, Relative SD: 3.70074e-015
Response type: Internal Std (Ref 107), Area * (IS Conc. / IS Area)
Curve type: RF

1 200714P1-05	Standard	12.500	5.45	17934.158	17934.158	12.500	12.5	0.0	NO	NO	bb
2 200714P1-06	Standard	12.500	5.45	18804.207	18804.207	12.500	12.5	0.0	NO	NO	bb
3 200714P1-07	Standard	12.500	5.45	18229.691	18229.691	12.500	12.5	0.0	NO	NO	bb
4 200714P1-08	Standard	12.500	5.45	18290.113	18290.113	12.500	12.5	0.0	NO	NO	bb
5 200714P1-09	Standard	12.500	5.45	19788.580	19788.580	12.500	12.5	0.0	NO	NO	bb
6 200714P1-10	Standard	12.500	5.45	18650.055	18650.055	12.500	12.5	0.0	NO	NO	bb
7 200714P1-11	Standard	12.500	5.45	18798.543	18798.543	12.500	12.5	0.0	NO	NO	bb
$8200714 \mathrm{P} 1-12$	Standard	12.500	5.45	17734.996	17734.996	12.500	12.5	0.0	NO	NO	bb
9 200714P1-13	Standard	12.500	5.45	17457.488	17457.488	12.500	12.5	0.0	NO	NO	bb
10 200714P1-14	Standard	12.500	5.45	15095.888	15095.888	12.500	12.5	0.0	NO	NO	bb

Dataset:

D:IPFAS5.PRO\RESULTSL200714P11200714P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:31:19 Pacific Daylight Time

Method: D:\PFAS5.PROMethDBWEW_PFAS_80C_071420.mdb 14 Jul 2020 15:40:52
Calibration: D:|PFAS5.PROICurveDBIC̄18_VAL-PFAS_Q5_07-14-20.cdb 15 Jul 2020 08:25:12
Name: 200714P1-05, Date: 14-Jul-2020, TIme: 10:24:01, ID: ST200714P1-1 PFC CS-2 20F1901, Descriptlon: PFC CS-2 20F1901

Method: D:IPFAS5.PROMethDBWEW PFAS 80C 071420.mdb 14 Jul 2020 15:40:52
Calibration: D:IPFAS5.PRO\CurveDBIC18_VAL-PFAS_Q5_07-14-20.cdb 15 Jul 2020 08:25:12
Name: 200714P1-05, Date: 14-Jul-2020, TIme: 10:24:01, ID: ST200714P1-1 PFC CS-2 20F1901, Description: PFC CS-2 20F1901

31 L-EtFOSAA	81	0.9974	NO	
33 PFUdA	79	0.9992	NO	
34 PFDS	71	0.9989	NO	
$3511 \mathrm{Cl}-\mathrm{PF} 30 \mathrm{UdS}$	83	0.9998	NO	
36 10:2 FTS	85	0.9983	NO	
37 PFDoA	83	0.9998	NO	
38 N-MeFOSA	87	0.9987	NO	
39 PFTrDA	83	0.9999	NO	
40 PFDos	89	0.9997	NO	
41 PFTeDA	89	0.9990	NO	
42 N-EtFOSA	91	0.9985	NO	
43 PFHxDA	93	0.9990	NO	
44 PFODA	93	0.9993	NO	
45 N-MeFOSE	95	0.9998	NO	
$46 \mathrm{~N}-\mathrm{EtFOSE}$	97	0.9989	NO	
47 13C3-PFBA-EIS			NO	0.000
48 13C3-PFBA-RSD	99		NO	3.410
49 13C3-PFPeA-EIS			NO	0.000
50 13C3-PFPeA-RSD	101		NO	4.133
51 13C3-PFBS-EIS			NO	0.000
52 13C3-PFBS-RSD	102		NO	4.179
53 13C3-HFPO-DA-EIS			NO	0.000
54 13C3-HFPO-DA-RSD	101		NO	5.507
55 13C2-4:2 FTS-EIS			NO	0.000
56 13C2-4:2 FTS-RSD	102		NO	6.105
57 13C2-PFHxA-EIS			NO	0.000
58 13C2-PFHxA-RSD	101		NO	3.487
59 13C4-PFHPA-EIS			NO	0.000
60 13C4-PFHpA-RSD	101		NO	3.795
61 13C3-PFHxS-EIS			NO	0.000
62 13C3-PFHxS-RSD	102		NO	3.725
63 13C2-6:2 FTS-EIS			NO	0.000

Name: 200714P1-05, Date: 14-Jul-2020, Time: 10:24:01, ID: ST200714P1-1 PFC CS-2 20F1901, Description: PFC CS-2 20F1901

64 13C2-6:2 FTS-RSD	105	NO	6.646
65 13C5-PFNA-EIS		No	0.000
66 13C5-PFNA-RSD	104	No	3.395
67 13C8-PFOSA-EIS		NO	0.000
68 13C8-PFOSA-RSD	107	NO	4.875
69 13C2-PFOA-EIS		No	0.000
70 13C2-PFOA-RSD	103	NO	3.801
71 13C8-PFOS-EIS		NO	0.000
72 13C8-PFOS-RSD	105	NO	5.996
73 13C2-PFDA-EIS		NO	0.000
74 13C2-PFDA-RSD	106	NO	2.247
75 13C2-8:2 FTS-EIS		NO	0.000
76 13C2-8:2 FTS-RSD	105	NO	6.418
$77 \mathrm{d3}$-N-MeFOSAA-EIS		NO	0.000
78 d3-N-MeFOSAA-RSD	107	NO	6.995
79 13C2-PFUdA-EIS		NO	0.000
80 13C2-PFUdA-RSD	107	NO	2.605
$81 \mathrm{d5}$-N-EtFOSAA-EIS		NO	0.000
$82 \mathrm{d5}$-N-EtFOSAA-RSD	107	NO	7.583
83 13C2-PFDOA-EIS		NO	0.000
84 13C2-PFDoA-RSD	106	No	5.008
85 13C2-10:2 FTS-EIS		NO	0.000
86 13C2-10:2 FTS-RSD	105	NO	12.659
87 d3-N-MeFOSA-EIS		NO	0.000
88 d3-N-MeFOSA-RSD	107	NO	4.037
89 13C2-PFTeDA-EIS		NO	0.000
90 13C2-PFTeDA-RSD	107	NO	4.028
91 d5-N-ETFOSA-EIS		NO	0.000
92 d5-N-ETFOSA-RSD	107	NO	3.670
93 13C2-PFHxDA-EIS		NO	0.000
94 13C2-PFHxDA-RSD	107	NO	4.193
95 d7-N-MeFOSE-EIS		NO	0.000
$96 \mathrm{d7}$-N-MeFOSE-RSD	107	NO	7.412
97 d9-N-EtFOSE-EIS		NO	0.000
98 d9-N-EtFOSE-RSD	107	NO	7.551
99.13 C 4 -PFBA	99.	NO	0.000

Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:32:42 Pacific Daylight Time

Name: 200714P1-05, Date: 14-Jul-2020, Time: 10:24:01, ID: ST200714P1-1 PFC CS-2 20F1901, Description: PFC CS-2 20F1901

1... 13C5-PFHxA	101	NO	0.000
1... 18O2-PFHxS	102	NO	0.000
1... 13C8-PFOA	103	NO	0.000
1... 13C9-PFNA	104	NO	0.000
1... 13C4-PFOS	105	NO	0.000
1... 13C6-PFDA	106	NO	0.000
1... 13C7-PFUdA	107	NO	0.000

Dataset:	D:IPFAS5.PROIRESULTSI200714P11200714P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 08:39:15 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 08:39:31 Pacific Daylight Time

Method: D:IPFAS5.PROXMethDB\NEW_PFAS_80C_071420.mdb 15 Jul 2020 08:39:13 Callbration: D:IPFAS5.PRO\CurveDB\C18_VAL-PFAS_Q5_07-14-20.cdb 15 Jul 2020 08:25:12

Name: 200714P1-10, Date: 14-Jul-2020, Time: 11:17:00, ID: ST200714P1-6 PFC CS3 20F1906, Description: PFC CS3 20F1906

1 PFBA	1.44	1.44			
2 PFPrs	1.80	1.77	2.857	2.857	NO
3 3:3 FTCA	2.24	2.24	3.270	3.270	NO
4 PFPeA	2.39	2.39			
5 PFBS	2.67	2.67	2.414	2.414	NO
64:2 FTS	3.11	3.11	10.647	10.647	NO
$7 \mathrm{PFH} \times \mathrm{A}$	3.19	3.19	13.923	13.923	NO
8 PFPeS	3.38	3.39	2.154	2.154	NO
9 HFPO-DA	3.41	3.41	2.294	2.294	NO
10 5:3 FTCA	3.75	3.73	1.544	1.544	NO
11 PFHpA	3.79	3.79	46.520	46.520	NO
12 ADONA	3.89	3.90	3.765	3.765	NO
13 L-PFHxS	3.93	3.93	3.985	3.985	NO
15 6:2 FTS	4.25	4.25	0.629	0.629	NO
16 L-PFOA	4.31	4.31	2.883	2.883	NO
18 PFechS	4.32	4.32	0.499	0.499	NO
19 PFHpS	4.39	4.42	1.818	1.818	NO
20 7:3 FTCA	4.67	4.73	1.201	1.201	NO
21 PFNA	4.75	4.75	14.024	14.024	NO
22 PFOSA	4.80	4.79	20.851	20.851	NO
23 L-PFOS	4.83	4.83	2.760	2.760	NO
25 9CI-PF30NS	5.04	5.05	36.858	36.858	NO
26 PFDA	5.13	5.12	4.418	4.418	NO
27 8:2 FTS	5.10	5.10	0.734	0.734	NO
28 PFNS	5.18	5.19	2.367	2.367	NO
29 L-MeFOSAA	5.27	5.28	1.682	1.682	NO

Dataset: D:IPFAS5.PROIRESULTS|200714P1|200714P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 08:42:26 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:42:32 Pacific Daylight Time

Method: D:IPFAS5.PROMMethDBWNEW_PFAS_80C_071420.mdb 15 Jul 2020 08:42:23 Calibration: D:IPFAS5.PROICurveDBIC18_VAL-PFAS_Q5_07-14-20.cdb 15 Jul 2020 08:25:12

Name: 200714P1-10, Date: 14-Jul-2020, TIme: 11:17:00, ID: ST200714P1-6 PFC CS3 20F1906, Description: PFC CS3 20F1906

31 L-EtFOSAA	5.42	5.43	1.528	1.528	NO
33 PFUdA	5.45	5.45	15.703	15.703	NO
34 PFDS	5.48	5.49	2.231	2.231	NO
3511 Cl -PF30UdS	5.67	5.65	14.569	14.569	NO
36 10:2 FTS	5.71	5.71	0.941	0.941	NO
37 PFDoA	5.73	5.73	10.361	10.361	NO
38 N-MeFOSA	5.72	5.70	1.982	1.982	NO
39 PFTrDA	5.97	5.97	115.034	115.034	NO
40 PFDoS	5.98	5.99	2.126	2.126	NO
41 PFTeDA	6.18	6.18	13.282	13.282	NO
42 N-EtFOSA	6.12	6.12	2.089	2.089	NO
43 PFHxDA	6.49	6.49	30.457	30.457	NO
44 PFODA	6.71	6.72			
45 N -MeFOSE	6.30	6.31			
46 N -EtFOSE	6.45	6.46			

Dataset:	Untitled
Last Altered:	Wednesday, July 15, 2020 08:43:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 08:43:43 Pacific Daylight Time

Method: D:\PFAS5.PRO\MethDBWEW_PFAS_80C_071420.mdb 14 Jul 2020 15:40:52
Calibration: D:IPFAS5.PRO\CurveDBIC̄18_VAL-PFAS_Q5_07-14-20.cdb 15 Jul 2020 08:25:12
Compound name: PFBA

$1200714 \mathrm{P} 1-01$	IPA	14-Jul-20	09:41:26
2 200714P1-02	IPA	14-Jul-20	09:52:13
3 200714P1-03	tester	14-Jul-20	10:02:49
4 200714P1-04	IPA	14-Jul-20	10:13:25
5 200714P1-05	ST200714P1-1 PFC CS-2 20F1901	14-Jul-20	10:24:01
6 200714P1-06	ST200714P1-2 PFC CS-1 20 F 1902	14-Jul-20	10:34:37
7 200714P1-07	ST200714P1-3 PFC CSO 20F1903	14-Jul-20	10:45:12
8 200714P1-08	ST200714P1-4 PFC CS1 20F1904	14-Jul-20	10:55:49
9 200714P1-09	ST200714P1-5 PFC CS2 20F1905	14-Jul-20	11:06:24
10 200714P1-10	ST200714P1-6 PFC CS3 20F1906	14-Jul-20	11:17:00
11 200714P1-11	ST200714P1-7 PFC CS4 20F1907	14-Jul-20	11:27:36
12 200714P1-12	ST200714P1-8 PFC CS5 20F1908	14-Jul-20	11:38:12
13 200714P1-13	ST200714P1-9 PFC CS6 20F1909	14-Jul-20	11:48:48
14 200714P1-14	ST200714P1-10 PFC CS7 20F1910	14-Jul-20	11:59:24
15 200714P1-15	IB	14-Jul-20	12:10:00
16200714 P 1 -16	ICV200714P1-1 PFC ICV 20F1911	14-Jul-20	12:20:26
17 200714P1-17	18	14-Jul-20	12:31:02

Dataset: D:IPFAS5.PROTRESULTSL200714P11200714P1-CRV.qld

Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time

Method: D:IPFAS5.PROMMethDBWEW_PFAS_80C_071420.mdb 14 Jul 2020 15:40:52

Calibration: D:IPFAS5.PROICurveDBIC18_VAL-PFAS_Q5_07-14-20.cdb 15 Jul 2020 08:25:12

Compound name: PFBA
Correlation coefficient: $\mathrm{r}=0.999617, \mathrm{r}^{\wedge} 2=0.999235$
Calibration curve: $0.987981 * x+0.0366579$
Response type: Internal Std (Ref 47), Area * (IS Conc. IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFPrS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997706$
Calibration curve: 0.000798452 * $x^{\wedge} 2+1.04054^{*} x+0.0822656$
Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset:
D:IPFAS5.PROIRESULTS\200714P11200714P1-CRV.qid
Last Altered:
Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:36:45 Pacific Daylight Time

Compound name: 3:3 FTCA
Coefficient of Determination: $R^{\wedge} 2=0.998582$
Calibration curve: -9.63309e-005 * $x^{\wedge} 2+0.0810066{ }^{*} x+-0.00413307$
Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: PFPeA
Coefficient of Determination: $R^{\wedge} 2=0.999276$
Calibration curve: $3.3512 e-005{ }^{*} x^{\wedge} 2+0.888386$ * $x+0.0341154$
Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Dataset: D:IPFAS5.PROIRESULTSL200714P11200714P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:36:45 Pacific Daylight Time

Compound name: PFBS

Coefficient of Determination: $R^{\wedge} 2=0.998723$
Calibration curve: -4.69568e-005 * $x^{\wedge} 2+2.50017^{*} x+0.00855197$
Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: 4:2 FTS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999202$
Calibration curve: -0.000737288 * $x^{\wedge} 2+2.54728$ * $x+0.0768653$
Response type: Internal Std (Ref 55), Area * (IS Conc. / IS Area
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Dataset: D:IPFAS5.PRO\RESULTSL200714P11200714P1-CRV.qld

Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time Printed: Wednesday, July 15, 2020 08:25:12 Paciric Daylight Time

Compound name: PFHxA
Correlation coefficient: $\mathrm{r}=0.999268, \mathrm{r}^{\wedge} 2=0.998537$
Calibration curve: 1.0329 * $x+0.0827038$
Response type: Internal Std (Ref 57), Area * (IS Conc. I IS Area)
Curve type: Linear, Origin: Include, Weighting: $1 / \mathrm{x}$, Axis trans: None

Compound name: PFPeS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999032$
Calibration curve: -0.000461665 * $x^{\wedge} 2+1.99257^{*} x+-0.028792$
Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: D:IPFAS5.PRO\RESULTSL200714P1200714P1-CRV.qld

Last Altered:
Printed:
Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time Wednesday, July 15, 2020 08:36:45 Pacific Daylight Time

Compound name: HFPO-DA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999007$
Calibration curve: $-8.42178 \mathrm{e}-005^{*} x^{\wedge} 2+0.962438{ }^{*} x+0.0164412$
Response type: Internal Std (Ref 53), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: 5:3 FTCA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998761$
Calibration curve: -0.000177325 * $x^{\wedge} 2+0.174581$ * $x+-0.00686176$
Response type: Internal Std (Ref 59), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Dataset: D:IPFAS5.PRO\RESULTSL200714P11200714P1-CRV.qld

Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:36:45 Pacific Daylight Time

Compound name: PFHpA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999695$
Calibration curve: $-0.000149235{ }^{*} x^{\wedge} 2+1.22492$ * $x+0.01823$
Response type: Internal Std (Ref 59), Area* (IS Conc. I IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: ADONA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998298$
Calibration curve: $1.42154 \mathrm{e}-005^{*} \mathrm{x}^{\wedge} 2+2.14318{ }^{*} \mathrm{x}+0.00966498$
Response type: Internal Std (Ref 59), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

Dataset: D:IPFAS5.PROIRESULTSL200714P11200714P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:36:45 Pacific Daylight Time

Compound name: L-PFHxS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999607$
Calibration curve: $5.12413 e-005{ }^{*} x^{\wedge} 2+1.13279$ * $x+0.0236401$
Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: 6:2 FTS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997011$
Calibration curve: -0.000138526 * $x^{\wedge} 2+0.916332$ * $x+0.000564268$
Response type: Internal Std (Ref 63), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Dataset: D:IPFAS5.PROIRESULTSL200714P11200714P1-CRV.qld

Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:36:45 Pacific Daylight Time

Compound name: L-PFOA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999948$
Calibration curve: $-0.000120375{ }^{*} x^{\wedge} 2+0.936543^{*} x+-0.00584507$
Response type: Internal Std (Ref 69), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: PFecHS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999883$
Calibration curve: $2.27208 e-005$ * $x^{\wedge} 2+0.173314$ * $x+-0.00389701$
Response type: Internal Std (Ref 69), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Dataset: D:IPFAS5.PROIRESULTSL200714P11200714P1-CRV.qid

Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:36:45 Pacific Daylight Time

Compound name: PFHpS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999308$
Calibration curve: $-2.51256 e-005^{*} x^{\wedge} 2+0.987253^{*} x+0.0125449$
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: $1 / \mathrm{x}$, Axis trans: None

Compound name: 7:3 FTCA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998328$
Calibration curve: $-0.000437387^{*} x^{\wedge} 2+0.302919^{*} x+-0.0184761$
Response type: Internal Std (Ref 65), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset:	D:IPFAS5.PRO\RESULTSL200714P1L200714P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 08:36:45 Pacific Daylight Time

Compound name: PFNA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999434$
Calibration curve: $-0.000138506^{*} x^{\wedge} 2+1.179744^{*} x+0.048578$
Response type: Internal Std (Ref 65), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFOSA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999787$
Calibration curve: $-9.50649 \mathrm{e}-005$ * $\mathrm{x}^{\wedge} 2+0.693143$ * $x+-0.0062738$
Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Dataset: D:IPFAS5.PROIRESULTSL200714P11200714P1-CRV.qld

Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed:
Wednesday, July 15, 2020 08:36:45 Pacific Daylight Time

Compound name: L-PFOS
Coefficient of Determination: R^2 $^{\wedge}=0.999166$
Calibration curve: $0.000226617^{*} x^{\wedge} 2+1.18631$ * $x+-0.00608768$
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: 9CI-PF30NS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999413$
Calibration curve: 0.000168672 * $x^{\wedge} 2+2.48158{ }^{*} x+0.109799$
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: D:IPFAS5.PROIRESULTSL200714P11200714P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:36:45 Pacific Daylight Time

Compound name: PFDA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999298$
Calibration curve: $-0.000109701^{*} x^{\wedge} 2+0.792617^{*} x+0.0293832$
Response type: Internal Std (Ref 73), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: 8:2 FTS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998700$
Calibration curve: -0.000435021 * $x^{\wedge} 2+1.22328$ * $x+-0.117694$
Response type: Internal Std (Ref 75), Area* (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: D:IPFAS5.PRO\RESULTSL200714P11200714P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:36:45 Pacific Daylight Time

Compound name: PFNS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999187$
Calibration curve: $-6.20869 \mathrm{e}-005{ }^{*} x^{\wedge} 2+1.27536$ * $x+-0.0463716$
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: L-MeFOSAA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999483$
Calibration curve: -0.000284164 * $x^{\wedge} 2+1.20535{ }^{*} x+-0.00718213$
Response type: Internal Std (Ref 77), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Dataset: D:IPFAS5.PROTRESULTSL200714P11200714P1-CRV.qld

Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Wednesday, July 15, 2020 08:36:59 Pacific Daylight Time

Method: D:IPFAS5.PROXMethDBWEW_PFAS_80C_071420.mdb 14 Jul 2020 15:40:52

Callbratlon: D:IPFAS5.PROICurveDBIC18_VAL-PFAS_Q5_07-14-20.cdb 15 Jul 2020 08:25:12

Compound name: L-EtFOSAA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997393$
Calibration curve: $-0.000282602^{*} x^{\wedge} 2+1.63624$ * $x+-0.0984931$
Response type: Internal Std (Ref 81), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFUdA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999172$
Calibration curve: -5.81281e-005 * $x^{\wedge} 2+0.938538$ * $x+0.0721579$
Response type: Internal Std (Ref 79), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

Dataset:
 D:IPFAS5.PRO\RESULTSL200714P11200714P1-CRV.qld

Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:36:59 Pacific Daylight Time

Compound name: PFDS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998888$
Calibration curve: $-0.000105434{ }^{*} x^{\wedge} 2+1.3242{ }^{*} x+0.0489966$
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: 11CI-PF30UdS
Correlation coefficient: $\mathrm{r}=0.999903, \mathrm{r}^{\wedge} 2=0.999807$
Calibration curve: 0.260724 * $x+0.00162518$
Response type: Internal Std (Ref 83), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: D:IPFAS5.PROIRESULTSL200714P11200714P1-CRV.qld

Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time Printed: Wednesday, July 15, 2020 08:36:59 Pacific Daylight Time

Compound name: 10:2 FTS
Coefficient of Determination: $R^{\wedge} 2=0.998347$
Calibration curve: $-0.000187848{ }^{*} \cdot x^{\wedge} 2+1.91721$ * $x+-0.173821$
Response type: Internal Std (Ref 85), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFDoA
Coefficient of Determination: R^2 $=0.999776$
Calibration curve: -0.000180161 * $x^{\wedge} 2+0.883117^{*} x+0.100074$
Response type: Internal Std (Ref 83), Area * (IS Conc. / IS Area
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Dataset: D:IPFAS5.PROIRESULTSL200714P1200714P1-CRV.qld

Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed:
Wednesday, July 15, 2020 08:36:59 Pacific Daylight Time

Compound name: N-MeFOSA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998718$
Calibration curve: $-6.83846 e-005{ }^{*} x^{\wedge} 2+1.11717^{*} x+0.189665$
Response type: Internal Std (Ref 87), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: PFTrDA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999891$
Calibration curve: -0.000298642 * $x^{\wedge} 2+1.06717^{*} x+0.0322737$
Response type: Internal Std (Ref 83), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: D:IPFAS5.PROIRESULTSL200714P1200714P1-CRV.qld

Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed:
Wednesday, July 15, 2020 08:36:59 Pacific Daylight Time

Compound name: PFDoS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999713$
Calibration curve: $-2.15044 \mathrm{e}-005^{*} x^{\wedge} 2+0.17459^{*} x+0.01518$
Response type: Internal Std (Ref 89), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFTeDA
Correlation coefficient: $\mathrm{r}=0.999476, \mathrm{r}^{\wedge} 2=0.998952$
Calibration curve: $0.562517^{*} x+0.0379145$
Response type: Internal Std (Ref 89), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

Dataset: D:IPFAS5.PROXRESULTSL200714P11200714P1-CRV.qld

Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:36:59 Pacific Daylight Time

Compound name: N-EtFOSA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998527$
Calibration curve: $-3.21665 \mathrm{e}-005^{*} x^{\wedge} 2+1.12508 * x+0.210037$
Response type: Internal Std (Ref 91), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: PFHxDA
Coefficient of Determination: $\mathrm{R}^{\wedge} \mathbf{2}=0.999036$
Calibration curve: $-5.90081 e-005{ }^{*} x^{\wedge} 2+0.883241^{*} x+0.156927$
Response type: Internal Std (Ref 93), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: D:IPFAS5.PROIRESULTSL200714P11200714P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed:
Wednesday, July 15, 2020 08:36:59 Pacific Daylight Time

Compound name: PFODA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999276$
Calibration curve: -0.000105558 * $x^{\wedge} 2+0.775176$ * $x+0.0163938$
Response type: Internal Std (Ref 93), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: N-MeFOSE
Correlation coefficient: $\mathrm{r}=0.999902, \mathrm{r}^{\wedge} 2=0.999804$
Calibration curve: 1.10733 * x +0.324889
Response type: Internal Std (Ref 95), Area * (IS Conc. I IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: D:IPFAS5.PROXRESULTSL200714P11200714P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:36:59 Pacific Daylight Time

Compound name: N-EtFOSE
Correlation coefficient: $\mathrm{r}=0.999451, \mathrm{r}^{\wedge} 2=0.998902$
Calibration curve: 0.992318 * $x+0.375815$
Response type: Internal Std (Ref 97), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset:

Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
 Printed: Wednesday, July 15, 2020 08:25:32 Pacific Daylight Time

Method: D:|PFAS5.PRO\MethDBWNEW_PFAS_80C_071420.mdb 14 Jul 2020 15:40:52 Calibration: D:IPFAS5.PRO\CurveDBIC18_VAL-PFAS_Q5_07-14-20.cdb 15 Jul 2020 08:25:12

Name: 200714P1-05, Date: 14-Jul-2020, Time: 10:24:01, ID: ST200714P1-1 PFC CS-2 20F1901, Description: PFC CS-2 20F1901

F6:MRM of 2 channels,ES$249>98.9$

13C3-PFPeA-EIS

F11:MRM of 2 channels,ES-
$299.0>98.9$

13C3-PFBS-EIS
F12:MRM of 1 channolt

Name: 200714P1-05, Date: 14-Jul-2020, Time: 10:24:01, ID: ST200714P1-1 PFC CS-2 20F1901, Description: PFC CS-2 20F1901
PFHXA
F13:MRM of 2 channels, ES.
$313.0>269.0$

13C3-HFPO-DA-EIS
F10:MRM of 2 channels,ES
F10:MRM of 2 channels, ES.
$287.0>168.9$

F18:MRM of 2 channels, ES$340.9>216.9$

13C4-PFHpA-EIS

F20:MRM of 2 channels,ES
$363.0>169.0$ $4.291 \theta+002$

Dataset:	D:IPFAS5.PRO\RESULTS\200714P1\200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daytight Time

Name: 200714P1-05, Date: 14-Jul-2020, Time: 10:24:01, ID: ST200714P1-1 PFC CS-2 20F1901, Description: PFC CS-2 20F1901

13C2-6:2 FTS-EIS
F30:MRM of 1 channel,ES$429.0>79.7$ $7.103 e+004$

F26:MRM of 2 channels,ES$413>169$

13C2-PFOA-EIS
F27-MRM of 1 channel ES

F34:MRM of 2 channels,ES-

13C2-PFOA-EIS
F27:MRM of 1 channel,ES
$\begin{array}{rr} & 414.9>369.7 \\ 100-6.431 \mathrm{e}+005\end{array}$

F32:MRM of 2 channels,ES
$449>99$

13C8-PFOS-EIS

F43:MRM of 1 channel,ES

Dataset: D:IPFAS5.PROIRESULTS\200714P1\200714P1-CRV.qld
Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-05, Date: 14-Jul-2020, Time: 10:24:01, ID: ST200714P1-1 PFC CS-2 20F1901, Description: PFC CS-2 20F1901

F35:MRM of 2 channels,ES463.0 > 219.0

13C5-PFNA-EIS
F36:MRM of 1 channel,ES-

F38:MRM of 2 channels,ES498 > 169

13C8-PFOSA-EIS

13C8-PFOS-EIS

F52:MRM of 2 channels,ES-

13C8-PFOS-EIS

F43:MRM of 1 channel,ES-

13C2-PFDA-EIS
F46:MRM of 1 channel,ES

Dataset:	D:IPFAS5.PRO\RESULTSI200714P1\200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-05, Date: 14-Jul-2020, Time: 10:24:01, ID: ST200714P1-1 PFC CS-2 20F1901, Description: PFC CS-2 20F1901

13C8-PFOS-EIS
F43:MRM of 1 channel,ES-

F57:MRM of 2 channels,ESF57.MRM of 2 channels, 512
$570 .>512$

d3-N-MeFOSAA-EIS
F59:MRM of 1 channel,ES$573.1>419$ $1.352 \theta+005$

F60:MRM of 2 channels,ES $583.9>526$ $1.531 \theta+003$

d5-N-EtFOSAA-EIS
F61:MRM of 1 channel,ES-

F55:MRM of 2 channels,ES-
563.0 > 269

13C2-PFUdA-EIS
F56:MRM of 1 channel,ES-

F62:MRM of 2 channels,ES 598.8 > 98.9

13C8-PFOS-EIS
F43:MRM of 1 channel,ES-

Dataset:
D:IPFAS5.PRO\RESULTS\200714P1\200714P1-CRV.qld
Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: \quad Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-05, Date: 14-Jul-2020, Time: 10:24:01, ID: ST200714P1-1 PFC CS-2 20F1901, Description: PFC CS-2 20F1901

F67:MRM of 2 channels,ES
626.9 > 80.7 $1.591 e+003$

F63:MRM of 2 channels,ES$12.9>318.8$

13C2-PFDoA-EIS
F64:MRM of 1 channel,ES-
$614.9>569.9$

F44:MRM of 2 channels, ES

d3-N-MeFOSA-EIS
F47:MRM of 1 channel, ES-
$515.2>168.9$

F72:MRM of 2 channels,ES-

PFDoS	
F73:MRM of 2 channels,ES-	
	$699>80$
$100{ }^{\text {PFDOS }}$ - $2.889 \mathrm{e}+003$	
$10075.99]$	
1.12 e 2	
\%- 2882	
\%- bb	
1267.80	
- 1260	गT1TTT

13C2-PFTeDA-EIS
F75:MRM of 2 channels,ES$715.1>669.7$

Dataset:	D:IPFAS5.PRO\RESULTSI200714P1\200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-05, Date: 14-Jul-2020, Time: 10:24:01, ID: ST200714P1-1 PFC CS-2 20F1901, Description: PFC CS-2 20F1901

d9-N-EtFOSE-EIS
F71:MRM of 1 channel,ES-
$639.2>58.8$

Dataset:
D:IPFAS5.PRO\RESULTS\200714P11200714P1-CRV.qld
Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-05, Date: 14-Jul-2020, Time: 10:24:01, ID: ST200714P1-1 PFC CS-2 20F1901, Description: PFC CS-2 20F1901

Dataset:

D:IPFAS5.PRO\RESULTSL200714P11200714P1-CRV.qld
Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-05, Date: 14-Jul-2020, Time: 10:24:01, ID: ST200714P1-1 PFC CS-2 20F1901, Description: PFC CS-2 20F1901

Dataset: D:IPFAS5.PROIRESULTSL200714P11200714P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:25:32 Pacific Daylight Time

Name: 200714P1-05, Date: 14-Jul-2020, Time: 10:24:01, ID: ST200714P1-1 PFC CS-2 20F1901, Description: PFC CS-2 20F1901

Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:25:32 Pacific Daylight Time

Name: 200714P1-13, Date: 14-Jul-2020, Time: 11:48:48, ID: ST200714P1-9 PFC CS6 20F1909, Description: PFC CS6 20F1909

F6:MRM of 2 channels,ES $249>98.9$ $2.703 e+005$

13C3-PFPeA-EIS
F8:MRM of 1 channel, ES.
$266.0>221.8$ $266.0>221.8$ $2.819 \mathrm{e}+005$

 $299.0>98.9$ $7.345 \theta+005$

13C3-PFBS-EIS

F12:MRM of 1 channel E 302.0 > 98.9 $4.059 \mathrm{e}+004$

F16:MRM of 2 channels,ES$326.9>80.8$ $1.685 e+005$

Dataset:
 D:IPFAS5.PRO\RESULTS\200714P1\200714P1-CRV.qld

Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: \quad Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-06, Date: 14-Jul-2020, Time: 10:34:37, ID: ST200714P1-2 PFC CS-1 20F1902, Description: PFC CS-1 20F1902

Dataset:	D:IPFAS5.PROIRESULTSL200714P11200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-06, Date: 14-Jul-2020, TIme: 10:34:37, ID: ST200714P1-2 PFC CS-1 20F1902, Description: PFC CS-1 20F1902

PFPeS

13C3-PFBS-EIS
F12:MRM of 1 channel,ES$302.0>98.9$ $3.762 e+004$

13C4-PFHpA-EIS
F21:MRM of 1 channel,ES-
$367.2>321.8$ $4.199 \mathrm{e}+005$

Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-06, Date: 14-Jul-2020, Time: 10:34:37, ID: ST200714P1-2 PFC CS-1 20F1902, Descriptlon: PFC CS-1 $20 F 1902$

F23:MRM of 2 channels,ES-
$399>98.9$ $1.463 \theta+003$

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES$02>80$

F29:MRM of 2 channels,ES-

F32:MRM of 2 channels,ES
$449>99$
2.007 •+003

Dataset:	D:IPFAS5.PROURESULTSI200714P1\200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-06, Date: 14-Jul-2020, Time: 10:34:37, ID: ST200714P1-2 PFC CS-1 20F1902, Description: PFC CS-1 20F1902

PFNA		
F35:MRM of 2 channels,ES-		
100 PFNA $2.553 \mathrm{e}+004$		
\% 4.75		
- 9.16 e 2		
\%-25459		
$\left\{\begin{array}{c}\text { bb } \\ 1181.07\end{array}\right.$		

F35:MRM of 2 channels,ES$463.0>219.0$

13C5-PFNA-EIS
F36:MRM of 1 channel,ES-

F38:MRM of 2 channels,ES$498>169$

F40:MRM of 2 channels,ES$499>99$

13C8-PFOS-EIS

F52:MRM of 2 channels, ES-

$\begin{array}{r}\text { 13C8-PFOS-EIS } \\ \text { F43:MRM of } 1 \text { channel,ES- } \\ 507.1>80 \\ 9.8 \\ \hline\end{array}$

F45:MRM of 2 channels,ES.
$513>219$

13C2-PFDA-EIS
F46:MRM of 1 channel,ES $515.1>469.9$ $6.859 e+005$

Dataset:
D:IPFAS5.PRO\RESULTSI200714P11200714P1-CRV.qld
Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-06, Date: 14-Jul-2020, Time: 10:34:37, ID: ST200714P1-2 PFC CS-1 20F1902, Description: PFC CS-1 20F1902

Dataset:
Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-06, Date: 14-Jul-2020, Time: 10:34:37, ID: ST200714P1-2 PFC CS-1 20F1902, Description: PFC CS-1 20F1902

Dataset:

> D:IPFAS5.PRO\RESULTSI200714P1\200714P1-CRV.qld

Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-06, Date: 14-Jul-2020, Time: 10:34:37, ID: ST200714P1-2 PFC CS-1 20F1902, Description: PFC CS-1 $20 F 1902$

Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-06, Date: 14-Jul-2020, Time: 10:34:37, ID: ST200714P1-2 PFC CS-1 20F1902, Description: PFC CS-1 20F1902

Dataset: D:IPFAS5.PRO\RESULTS\200714P11200714P1-CRV.qld

Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-06, Date: 14-Jul-2020, Time: 10:34:37, ID: ST200714P1-2 PFC CS-1 20F1902, Description: PFC CS-1 20F1902

d3-N-MeFOSAA-RSD
F59:MRM of 1 channel,ES$573.1>419$ $1.376 \ominus+005$

d5-N-ETFOSA-RSD

Name: 200714P1-06, Date: 14-Jul-2020, Time: 10:34:37, ID: ST200714P1-2 PFC CS-1 20F1902, Description: PFC CS-1 20F1902

Dataset:
D:IPFAS5.PRO\RESULTSL200714P11200714P1-CRV.qld
Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-07, Date: 14-Jul-2020, Time: 10:45:12, ID: ST200714P1-3 PFC CSO 20F1903, Description: PFC CS0 $20 F 1903$

Dataset:	D:IPFAS5.PROIRESULTSL200714P1\|200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-07, Date: 14-Jul-2020, Time: 10:45:12, ID: ST200714P1-3 PFC CS0 20F1903, Description: PFC CS0 20F1903

F13:MRM of 2 channels,ES

13C2-PFHxA-EIS
F14:MRM of 1 channel,ES

13C3-PFBS-EIS
F12:MRM of 1 channel,ES-
$302.0>98.9$

F22:MRM of 2 channels,ES$376.8>85.0$ $1.823 e+004$

13C4-PFHpA-EIS
F21:MRM of 1 channel,ES-
367.2 > 321.8 $3.920 \mathrm{e}+005$

Dataset:	D:IPFAS5.PRO\RESULTSI200714P1\200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-07, Date: 14-Jul-2020, Time: 10:45:12, ID: ST200714P1-3 PFC CSO 20F1903, Description: PFC CSO $20 F 1903$

L-PFHxS

F23:MRM of 2 channels,ES$399>98$.

13C3-PFHxS-EIS

13C2-6:2 FTS-EIS

F30:MRM of 1 channel,ES-

F26:MRM of 2 channels,ES $413>169$

13C2-PFOA-EIS
F27:MRM of 1 channel,ES
F27:MRM of 1 channel,ES-
$414.9>369.7$
$6.025 \mathrm{e}+005$

13C2-PFOA-EIS
F27:MRM of 1 channel E,

F32:MRM of 2 channels,ES$63 \mathrm{e}+003$

13C8-PFOS-EIS
F43:MRM of 1 channel,ES-
$507.1>80$

F31:MRM of 2 channels,ES440.9 > 316.9

13C5-PFNA-EIS
F36:MRM of 1 channel,ES468.2 > 422.9

Dataset: D:IPFAS5.PROXRESULTSL200714P11200714P1-CRV.qld
Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: \quad Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-07, Date: 14-Jul-2020, Time: 10:45:12, ID: ST200714P1-3 PFC CSO 20F1903, Description: PFC CS0 20F1903

13C5-PFNA-EIS
F36:MRM of 1 channel $E S$

13C8-PFOSA-EIS

F40:MRM of 2 channels,ES

13C8-PFOS-EIS
F43:MRM of 1 channel, ES-
$507.1>80$

F52:MRM of 2 channels,ES-
$531>83$

F45:MRM of 2 channels, ES-
$513>219$.454e+003

13C2-PFDA-EIS
F46:MRM of 1 channel,ES
F46:MRM of 1 channel,ES-
$515.1>469.9$
$7.274 \mathrm{e}+005$

Dataset: D:IPFAS5.PROTRESULTS\200714P11200714P1-CRV.qld

Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-07, Date: 14-Jul-2020, Time: 10:45:12, ID: ST200714P1-3 PFC CSO 20F1903, Description: PFC CS0 $20 F 1903$

F54:MRM of 2 channels,ES-
$549>99$

13C8-PFOS-EIS
F43:MRM of 1 channel,ES-
$507.1>80$
$9.853 \mathrm{e}+004$

L-MeFOSAA
F57:MRM of 2 channels,ES-
$570>419$
$1.1710+004$

F57:MRM of 2 channels,ES570. > 512

F60:MRM of 2 channels,ES $583.9>52$

d5-N-EtFOSAA-EIS

13C2-PFUdA-EIS

F56:MRM of 1 channel,ES-
$565>519.8$
$6.312 e+005$

F55:MRM of 2 channels,ES-
$563.0>269$
$3.294 e+003$

Dataset:	D:IPFAS5.PRO\RESULTS\200714P1\200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-07, Date: 14-Jul-2020, TIme: 10:45:12, ID: ST200714P1-3 PFC CSO 20F1903, Description: PFC CSO 20F1903

5.7506 .0006 .250

13C2-PFDoA-EIS

F64:MRM of 1 channel,ES-

F73:MRM of 2 channels,ES-
$699>99$
$4.336 e+003$

Dataset:	D:IPFAS5.PROIRESULTSI200714P11200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-07, Date: 14-Jul-2020, Time: 10:45:12, ID: ST200714P1-3 PFC CSO 20F1903, Description: PFC CS0 20F1903

N-EtFOSA

F49:MRM of 2 channels,ES$526.1>219$ $1.383 \theta+004$

13C2-PFHxDA-EIS
F77:MRM of 1 channel,ES

13C2-PFHxDA-EIS
F77:MRM of 1 channel,ES

13C3-PFPeA-RSD

F8:MRM of 1 channel,ES$266.0>221.8$ $2.725 e+005$

Dataset:

D:IPFAS5.PRO\RESULTSL200714P1200714P1-CRV.qld
Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-07, Date: 14-Jul-2020, Time: 10:45:12, ID: ST200714P1-3 PFC CS0 20F1903, Description: PFC CS0 20F1903

3C5-PFNA-RSD

13C8-PFOSA-RSD
F42:MRM of 1 channel,ES

13C2-PFHxA-RSD

13C2-PFOA-RSD
F27:MRM of 1 channel,ES-
$414.9>369.7$

13C4-PFHpA-RSD

13C3-PFHxS-RSD
F24:MRM of 1 channel,ES$402>80$ $1.029 \theta+005$

13C2-PFDA-RSD

F46:MRM of 1 channel,ES$515.1>469.9$

Dataset:	D:IPFAS5.PRO\RESULTS\200714P1\200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-07, Date: 14-Jul-2020, TIme: 10:45:12, ID: ST200714P1-3 PFC CS0 20F1903, Description: PFC CSO 20F1903

Dataset: D:IPFAS5.PRO\RESULTSL200714P1\200714P1-CRV.qld

Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-07, Date: 14-Jul-2020, Time: 10:45:12, ID: ST200714P1-3 PFC CSO 20F1903, Description: PFC CS0 $20 F 1903$

Dataset:	D:IPFAS5.PROTRESULTSI200714P11200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-08, Date: 14-Jul-2020, Time: 10:55:49, ID: ST200714P1-4 PFC CS1 20F1904, Description: PFC CS1 20F1904

13C3-PFBS-EIS
F12:MRM of 1 channel, ES-
$302.0>98.9$

13C3-PFPeA-EIS

F8:MRM of 1 channel E S

F11:MRM of 2 channels,ES $299.0>98.9$ $6.020 \theta+00$

13C3-PFBS-EIS
F12:MRM of 1 channel, ES channel, ES-
$302.0>98.9$ $4.037 e+004$

Dataset:	D:IPFAS5.PROIRESULTSL200714P1L200714P1-CRV.qId
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-08, Date: 14-Jul-2020, Time: 10:55:49, ID: ST200714P1-4 PFC CS1 20F1904, Description: PFC CS1 20F1904

PFHxA		
F13:MRM of 2 channels,ES-		
$100{ }_{7}{ }^{\text {PFHxA }}$ 3.19 ${ }^{\text {6.854e+004 }}$		
100 3.19		
2.95 e 3		
66105		
723.62		
F13:MRM of 2 channels,ES-		
$313>118.9$		
100 PFHXA 4.185e+003		
10073.19		
1.87 e 2		
\%- 4164		
$\%$ bb		
$=4164.00$		

HFPO-DA
F9:MRM of 3 channels,ES$285.1>168.9$
00-HFPO-DA 1.114e+004
10073.41
4.78 e 2
\%-11107
11107.00

13C3-HFPO-DA-EIS
F10:MRM of 2 channels, ES

13C4-PFHPA-EIS

13C4-PFHPA-EIS
F21:MRM of 1 channel, ES$367.2>321.8$

Dataset: D:IPFAS5.PROIRESULTSI200714P1\200714P1-CRV.qld

Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: \quad Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-08, Date: 14-Jul-2020, Time: 10:55:49, ID: ST200714P1-4 PFC CS1 20F1904, Description: PFC CS1 $20 F 1904$

L-PFHxS

F23:MRM of 2 channels,ES

F23:MRM of 2 channels,ES
$399>98.9$

F29:MRM of 2 channels,ES-

13C2-6:2 FTS-EIS

F30:MRM of 1 channel,ES$429.0>79.7$ $6.804 \ominus+004$

L-PFOA

F26:MRM of 2 channels, ES-

F26:MRM of 2 channels,ES
$413>169$

F32:MRM of 2 channels,ES-
$.659 \ominus+003$

Dataset:	D:IPFAS5.PROVRESULTSI200714P1I200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-08, Date: 14-Jul-2020, Time: 10:55:49, ID: ST200714P1-4 PFC CS1 20F1904, Description: PFC CS1 $20 F 1904$

F35:MRM of 2 channels,ES-

13C5-PFNA-EIS

F36:MRM of 1 channel,ES-

F38:MRM of 2 channels,ES- $\begin{array}{r}498>169 \\ 1.350 e+003\end{array}$

L-PFOS

F40:MRM of 2 channels,ES-
$499>99$

13C8-PFOS-EIS

F52:MRM of 2 channels,ES-

13C8-PFOS-EIS

$\begin{array}{r}\text { F45:MRM of } 2 \text { channels,ES. } \\ 513>219 \\ 100 \\ \hline\end{array}$

Dataset:
D:IPFAS5.PROIRESULTS\200714P11200714P1-CRV.qld
Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-08, Date: 14-Jul-2020, Time: 10:55:49, ID: ST200714P1-4 PFC CS1 20F1904, Description: PFC CS1 20F1904

13C8-PFOS-EIS

d3-N-MeFOSAA-EIS

F60:MRM of 2 channels,ES $583.9>526$ $1.832 \theta+004$

d5-N-EtFOSAA-EIS

13C2-PFUdA-EIS

F64:MRM of 1 channel,ES-

Dataset:	D:IPFAS5.PRO\RESULTS\200714P1\200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-08, Date: 14-Jul-2020, Time: 10:55:49, ID: ST200714P1-4 PFC CS1 20F1904, Description: PFC CS1 20F1904

d3-N-MeFOSA-EIS
F47:MRM of 1 channel ES

13C2-PFDoA-EIS

$\begin{array}{r}\text { F73:MRM of } 2 \text { channels,ES- } \\ 699>99 \\ 100 \\ \hline 1.0220+004 \\ \hline\end{array}$

13C2-PFTeDA-EIS
F75:MRM of 2 channels,ES
F75:MRM of 2 channels, ES
$715.1>669.7$

Dataset:	D:IPFAS5.PRO\RESULTS\200714P1\200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-08, Date: 14-Jul-2020, Time: 10:55:49, ID: ST200714P1-4 PFC CS1 20F1904, Description: PFC CS1 $20 F 1904$

F49:MRM of 2 channels,ES$526.1>219$ $3.082 \theta+004$

d5-N-ETFOSA-EIS
F53:MRM of 1 channel,ES-

13C2-PFHxDA-EIS

13C2-PFHxDA-EIS
F77:MRM of 1 channel,ES.

13C3-PFBA-RSD

Dataset:
D:IPFAS5.PRO\RESULTS\200714P11200714P1-CRV.qld
Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-08, Date: 14-Jul-2020, TIme: 10:55:49, ID: ST200714P1-4 PFC CS1 20F1904, Description: PFC CS1 20F1904

Dataset:	D:IPFAS5.PRO\RESULTSI200714P1\200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-08, Date: 14-Jul-2020, Time: 10:55:49, ID: ST200714P1-4 PFC CS1 20F1904, Description: PFC CS1 $20 F 1904$

d5-N-ETFOSA-RSD
F53:MRM of 1 channel,ES

13C2-PFHxDA-RSD
F77:MRM of 1 channel,ES-
$815>769.7$
$8.136 \mathrm{e}+005$

d7-N-MeFOSE-RSD
F66:MRM of 1 channel,ES-
$623.1>58.9$

Dataset:

D:IPFAS5.PRO\RESULTS\200714P1\200714P1-CRV.qld
Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daytight Time
Printed: Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-08, Date: 14-Jul-2020, Time: 10:55:49, ID: ST200714P1-4 PFC CS1 20F1904, Description: PFC CS1 20F1904

Name: 200714P1-09, Date: 14-Jul-2020, Time: 11:06:24, ID: ST200714P1-5 PFC CS2 20F1905, Description: PFC CS2 20F1905

```
PFBA
```


13C3-PFBA-EIS

F3:MRM of 1 channel,ES-

F6:MRM of 2 channels,ES$249>98.9$ $6.323 \ominus+003$

13C3-PFBS-EIS

F12:MRM of 1 channel,ES-
$302.0>98.9$

PFPeA
F7:MRM of 1 channel,ES$263.1>218.9$

$1.119 \theta+005$

13C3-PFPeA-EIS

F8:MRM of 1 channel,ES-
F8:MRM of 1 channel,ES-
$266.0>221.8$

PFBS
F11:MRM of 2 channels,ES$299.0>80$ $4.111 \theta+004$

4:2 FTS
F16:MRM of 2 channels,ES$326.9>306.9$ $4.824 \theta+004$

F11:MRM of 2 channels,ES$299.0>98.9$ $1.677 e+004$

13C3-PFBS-EIS

F12:MRM of 1 channel,ES-

F16:MRM of 2 channels,ES$326.9>80.8$ $4.561 \theta+003$

13C2-4:2 FTS-EIS
F17:MRM of 2 channels,ESF17:MRM of 2 channels,ES-
$329.0>80.8$

Name: 200714P1-09, Date: 14-Jul-2020, Time: 11:06:24, ID: ST200714P1-5 PFC CS2 20F1905, Description: PFC CS2 20F1905

PFHxA

F13:MRM of 2 channels,ES.$313.0>269.0$		
	PFHxA	$1.720 \mathrm{e}+005$
1007	3.19	
	7.43e3	
\%-	169018	
	bb	
	1129.83	
	\cdots	Trmerm min

13C2-PFHxA-EIS

PFPeS

F18:MRM of 2 channels,ES$1.702 \theta+004$

3.8004 .000

F20:MRM of 2 channels,ES
$363.0>169.0$ $4.304 e+003$

13C4-PFHpA-EIS
F21:MRM of 1 channel,ES $367.2>321.8$ $4.233 \mathrm{e}+005$

Dataset: D:IPFAS5.PRO\RESULTS\200714P1【200714P1-CRV.qld
Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-09, Date: 14-Jul-2020, Time: 11:06:24, ID: ST200714P1-5 PFC CS2 20F1905, Description: PFC CS2 20F1905

Dataset: D:IPFAS5.PROIRESULTSI200714P11200714P1-CRV.qld

Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time Printed:

Name: 200714P1-09, Date: 14-Jul-2020, Time: 11:06:24, ID: ST200714P1-5 PFC CS2 20F1905, Description: PFC CS2 20F1905

PFNA

F35:MRM of 2 channels,ES$463.0>219.0$ $2.036 \ominus+004$

13C5-PFNA-EIS

F38:MRM of 2 channels,ES$498>169$

F40:MRM of 2 channels, ES

13C2-8:2 FTS-EIS

F51:MRM of 1 channel,ES-

Dataset:

D:IPFAS5.PROXRESULTSL200714P11200714P1-CRV.qld
Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-09, Date: 14-Jul-2020, Time: 11:06:24, ID: ST200714P1-5 PFC CS2 20F1905, Description: PFC CS2 20F1905

F60:MRM of 2 channels,ES. $583.9>526$

d5-N-EtFOSAA-EIS
F61:MRM of 1 channel,ES. $589.3>419$ $1.021 e+005$

F55:MRM of 2 channels,ES.
$563.0>269$

13C2-PFUdA-EIS

13C8-PFOS-EIS
F43:MRM of 1 channel,ES-
$507.1>80$

F69:MRM of 2 channels, ES-
$631>83$

Dataset: D:IPFAS5.PROXRESULTSL200714P11200714P1-CRV.qld
Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-09, Date: 14-Jul-2020, Time: 11:06:24, ID: ST200714P1-5 PFC CS2 20F1905, Description: PFC CS2 20F1905

F67:MRM of 2 channels,ES $626.9>80.7$ 100

13C2-PFDoA-EIS

F44:MRM of 2 channels,ES 6.280 +004

d3-N-MeFOSA-EIS

F73:MRM of 2 channels,ES $699>99$

Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-09, Date: 14-Jul-2020, Time: 11:06:24, ID: ST200714P1-5 PFC CS2 20F1905, Description: PFC CS2 20F1905

Dataset:	D:IPFAS5.PROXRESULTSI200714P1\200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-09, Date: 14-Jul-2020, Time: 11:06:24, ID: ST200714P1-5 PFC CS2 20F1905, Description: PFC CS2 20F1905

Dataset:
D:IPFAS5.PRO\RESULTS\200714P1\200714P1-CRV.qld

Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: \quad Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-09, Date: 14-Jul-2020, Time: 11:06:24, ID: ST200714P1-5 PFC CS2 20F1905, Description: PFC CS2 20F1905

Dataset:	D:IPFAS5.PROIRESULTSI200714P1\200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-09, Date: 14-Jul-2020, Time: 11:06:24, ID: ST200714P1-5 PFC CS2 20F1905, Description: PFC CS2 20F1905

13C6-PFDA

F48:MRM of 1 channel,ES-

13C7-PFUdA

F58:MRM of 1 channel,ES1 channel, ES-
$570.1>524.8$ $570.1>524.8$
$5.288 \ominus+005$

Dataset:	D:IPFAS5.PROIRESULTSI200714P1\200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-10, Date: 14-Jul-2020, Time: 11:17:00, ID: ST200714P1-6 PFC CS3 20F1906, Description: PFC CS3 20F1906

1.2501 .500

13C3-PFBS-EIS

F11:MRM of 2 channels,ES-
$299.0>98.9$ $3.332 \mathrm{e}+004$

13C3-PFBS-EIS
F12:MRM of 1 channel,ES
F12:MRM of 1 channel,ES-
$302.0>98.9$
$4.025 \mathrm{e}+004$

F16:MRM of 2 channels,ES$326.9>80.8$

13C2-4:2 FTS-EIS

F17:MRM of 2 channels,ES$329.0>80.8$

Dataset: D:IPFAS5.PRO\RESULTSL200714P1\200714P1-CRV.qld
Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-10, Date: 14-Jul-2020, Time: 11:17:00, ID: ST200714P1-6 PFC CS3 20F1906, Descriptlon: PFC CS3 20F1906

13C3-PFBS-EIS
F12:MRM of 1 channel,ES-

13C3-HFPO-DA-EIS
F10:MRM of 2 channels, ES

13C4-PFHpA-EIS

F21:MRM of 1 channel E.

Dataset:
D:IPFAS5.PRO\RESULTSL200714P11200714P1-CRV.qld
Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-10, Date: 14-Jul-2020, Time: 11:17:00, ID: ST200714P1-6 PFC CS3 20F1906, Description: PFC CS3 20F1906

Dataset:
D:IPFAS5.PRO\RESULTS\200714P1\200714P1-CRV.qld
Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: \quad Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-10, Date: 14-Jul-2020, Time: 11:17:00, ID: ST200714P1-6 PFC CS3 20F1906, Description: PFC CS3 20F1906

PFNA

F35:MRM of 2 channels,ES $463.0>219.0$

F38:MRM of 2 channels,ES-
$498>78$

13C8-PFOSA-EIS
F42:MRM of 1 channel,ES-
$506>78$

F40:MRM of 2 channels, ES

13C8-PFOS-EIS 13C8-PFOS-EIS
F43:MRM of 1 channel,ES-
$507.1>80$
$1.030 \mathrm{e}+005$

F52:MRM of 2 channels,ES-

F45:MRM of 2 channels,ES
$513>219$

13C2-PFDA-EIS

F46:MRM of 1 channel,ES-

Dataset:	D:IPFAS5.PROXRESULTSL200714P1L200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-10, Date: 14-Jul-2020, Time: 11:17:00, ID: ST200714P1-6 PFC CS3 20F1906, Description: PFC CS3 20F1906

F54:MRM of 2 channels,ES-
$549>99$

F57:MRM of 2 channels,ES-

F62:MRM of 2 channels, ES
$598.8>98.9$

Dataset:	D:IPFAS5.PROIRESULTSI200714P1\200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-10, Date: 14-Jul-2020, Tlme: 11:17:00, ID: ST200714P1-6 PFC CS3 20F1906, Description: PFC CS3 20F1906

13C2-PFDoA-EIS

13C2-PFDoA-EIS

Dataset:	D:IPFAS5.PRO\RESULTSI200714P1\200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-10, Date: 14-Jul-2020, Time: 11:17:00, ID: ST200714P1-6 PFC CS3 20F1906, Description: PFC CS3 20F1906

F49:MRM of 2 channels,ES$526.1>219$ $1.486 \ominus+005$

d5-N-ETFOSA-EIS
F53:MRM of 1 channel,ES-
$531.1>168.9$

Dataset:	D:IPFAS5.PROXRESULTS\200714P1\200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-10, Date: 14-Jul-2020, Time: 11:17:00, ID: ST200714P1-6 PFC CS3 20F1906, Description: PFC CS3 20F1906

$468.2>422.9$ $6.114 e+005$

13C5-PFNA-RSD
 F36:MRM of 1 channel,ES-

13C8-PFOSA-RSD
F42:MRM of 1 channel,ES

Dataset:
 D:IPFAS5.PRO\RESULTS\200714P1\200714P1-CRV.qld

Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-10, Date: 14-Jul-2020, Time: 11:17:00, ID: ST200714P1-6 PFC CS3 20F1906, Description: PFC CS3 20F1906

Dataset:
 D:IPFAS5.PRO\RESULTS\200714P1\200714P1-CRV.qld

Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-10, Date: 14-Jul-2020, Time: 11:17:00, ID: ST200714P1-6 PFC CS3 20F1906, Description: PFC CS3 20F1906

Dataset:	D:IPFAS5.PRO\RESULTSI200714P1\200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-11, Date: 14-Jul-2020, Time: 11:27:36, ID: ST200714P1-7 PFC CS4 20F1907, Description: PFC CS4 20F1907

PFPrS
F6:MRM of 2 channels,ES-

F6:MRM of 2 channels,ES$249>98.9$

13C3-PFBS-EIS
F12:MRM of 1 channel,ES-
F12:MRM of 1 channel,ES-
$302.0>98.9$
$3.889 e+004$

13C3-PFPeA-EIS

PFBS

F11:MRM of 2 channels,ES $299.0>80$
$4.154 \mathrm{e}+005$

13C3-PFBS-EIS
F12:MRM of 1 channel,ES $302.0>98.9$ $302.0>98.9$
$3.889 \mathrm{e}+004$

13C2-4:2 FTS-EIS
F17:MRM of 2 channels,ES$329.0>80.8$ $4.646 \mathrm{e}+004$

Dataset: D:IPFAS5.PROTRESULTS\200714P1\200714P1-CRV.qld
Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-11, Date: 14-Jul-2020, Time: 11:27:36, ID: ST200714P1-7 PFC CS4 20F1907, Description: PFC CS4 20F1907

F13:MRM of 2 channels,ES-

13C2-PFHxA-EIS
F14:MRM of 1 channel,ES

13C3-PFBS-EIS

HFPO-DA

F9:MRM of 3 channels,ES

13C3-HFPO-DA-EIS
F10:MRM of 2 channels,ES
F10:MRM of 2 channels, ES.
$287.0>168.9$

F20:MRM of 2 channels,ES$363.0>169.0$

13C4-PFHPA-EIS

Dataset:
D:IPFAS5.PRO\RESULTSL200714P1\200714P1-CRV.qld
Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-11, Date: 14-Jul-2020, Time: 11:27:36, ID: ST200714P1-7 PFC CS4 20F1907, Description: PFC CS4 20F1907

Dataset:

Last Altered: Printed:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-11, Date: 14-Jul-2020, Time: 11:27:36, ID: ST200714P1-7 PFC CS4 20F1907, Descriptlon: PFC CS4 $20 F 1907$

Dataset:	D:IPFAS5.PRO\RESULTSI200714P1\200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-11, Date: 14-Jul-2020, TIme: 11:27:36, ID: ST200714P1-7 PFC CS4 20F1907, Description: PFC CS4 $20 F 1907$

F54:MRM of 2 channels,ES-
$549>99$

F57:MRM of 2 channels, ES570. >512

d3-N-MeFOSAA-EIS
F59:MRM of 1 channel, ES-

F60:MRM of 2 channels,ES $583.9>526$

13C2-PFUdA-EIS
F56:MRM of 1 channel,ES-
$565>519.8$

13C2-PFDoA-EIS

F64:MRM of 1 channel,ES614.9 > 569.9 $7.878 e+005$

Dataset:	D:IPFAS5.PROURESULTS\200714P1\200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-11, Date: 14-Jul-2020, Time: 11:27:36, ID: ST200714P1-7 PFC CS4 20F1907, Description: PFC CS4 $20 F 1907$

Dataset:	D:IPFAS5.PROIRESULTSL200714P1\200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-11, Date: 14-Jul-2020, Time: 11:27:36, ID: ST200714P1-7 PFC CS4 20F1907, Description: PFC CS4 20F1907

13C2-PFHxDA-EIS
F77:MRM of 1 channel, ES-
$815>769.7$

13C2-PFHxDA-EIS

F77:MRM of 1 channel,ES

d7-N-MeFOSE-EIS

F66:MRM of 1 channel,ES-

Dataset:
D:IPFAS5.PROXRESULTSI200714P11200714P1-CRV.qld
Last Altered:
Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-11, Date: 14-Jul-2020, Time: 11:27:36, ID: ST200714P1-7 PFC CS4 20F1907, Description: PFC CS4 20F1907

13C2-6:2 FTS-RSD

F30:MRM of 1 channel,ES$429.0>79.7$

13C3-HFPO-DA-RSD
F10:MRM of 2 channels,ES-
$287.0>168.9$

13C2-4:2 FTS-RSD
F17:MRM of 2 channels,ES-

13C8-PFOSA-RSD F42:MRM of 1 channel,ES $506>78$ $2.490 \mathrm{e}+005$

13C2-PFHxA-RSD
F14:MRM of 1 channel,ES-

13C2-PFOA-RSD
F27:MRM of 1 channel,ES-

$$
\begin{array}{r}
\text { F27:MRM of } 1 \text { channel,ES- } \\
414.9>369.7
\end{array}
$$

13C8-PFOS-RSD

F43:MRM of 1 channel,ES$507.1>80$

Dataset:

Name: 200714P1-11, Date: 14-Jul-2020, Time: 11:27:36, ID: ST200714P1-7 PFC CS4 20F1907, Description: PFC CS4 20F1907

Dataset: D:IPFAS5.PROIRESULTSL200714P11200714P1-CRV.qld
 Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
 Printed: Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-11, Date: 14-Jul-2020, TIme: 11:27:36, ID: ST200714P1-7 PFC CS4 20F1907, Description: PFC CS4 $20 F 1907$

Dataset:	D:IPFAS5.PROURESULTSI200714P1\200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-12, Date: 14-Jul-2020, Time: 11:38:12, ID: ST200714P1-8 PFC CS5 20F1908, Description: PFC CS5 20F1908

F6:MRM of 2 channels,ES$249>98.9$

13C3-PFPeA-EIS

PFBS

F11:MRM of 2 channels,ES $299.0>80$

13C3-PFBS-EIS

F12:MRM of 1 channel,ES $302.0>98.9$ $3.660 \mathrm{e}+004$

13C2-4:2 FTS-EIS
F17:MRM of 2 channeis,ES$329.0>80.8$

Dataset:	D:IPFAS5.PROIRESULTSI200714P11200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-12, Date: 14-Jul-2020, Time: 11:38:12, ID: ST200714P1-8 PFC CS5 20F1908, Description: PFC CS5 20F1908

PFPES
F19:MRM of 2 channels, ES-
$349 .>80$
$6.699 e+005$

13C3-HFPO-DA-EIS
F10:MRM of 2 channels, ES

13C4-PFHpA-EIS
F21:MRM of 1 channel, ES-
$367.2>321.8$

Dataset:

Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-12, Date: 14-Jul-2020, Time: 11:38:12, ID: ST200714P1-8 PFC CS5 20F1908, Description: PFC CS5 20F1908

Dataset:	D:IPFAS5.PRO\RESULTSI200714P1\200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-12, Date: 14-Jul-2020, Time: 11:38:12, ID: ST200714P1-8 PFC CS5 20F1908, Description: PFC CS5 20 F1908

13C5-PFNA-EIS

F36:MRM of 1 channel,ES-

F38:MRM of 2 channels, ES-

13C8-PFOSA-EIS

13C8-PFOS-EIS
F43:MRM of 1 channel ES

F52:MRM of 2 channels,ES-
$531>83$

13C8-PFOS-EIS
F43:MRM of 1 channel,ES- $\begin{array}{r}507.1>80\end{array}$

$\begin{array}{r}\text { F45:MRM of } 2 \text { channels, ES- } \\ 513>219 \\ 100 \\ \hline\end{array}$

Dataset:
D:IPFAS5.PRO\RESULTSL200714P11200714P1-CRV.qld
$\begin{array}{ll}\text { Last Altered: } & \text { Tuesday, July 14, } 2020 \text { 16:20:24 Pacific Daylight Time } \\ \text { Printed: } & \text { Tuesday, July 14, } 2020 \text { 16:21:31 Pacific Daylight Time }\end{array}$

Name: 200714P1-12, Date: 14-Jul-2020, Time: 11:38:12, ID: ST200714P1-8 PFC CS5 20F1908, Description: PFC CS5 20F1908

F54:MRM of 2 channels,ES-
$549>99$ $100-4.544 e+005$

13C8-PFOS-EIS

F43:MRM of 1 channel,ES-

F57:MRM of 2 channels,ES 637 - 005

d3-N-MeFOSAA-EIS
F59:MRM of 1 channel,ES-

F60:MRM of 2 channels,ES $583.9>52$

d5-N-EtFOSAA-EIS

13C2-PFUdA-EIS

F56:MRM of 1 channel,ES-
$565>519.8$
$6.051 \mathrm{e}+005$

PFDS

13C8-PFOS-EIS

F43:MRM of 1 channel,ES $507.1>80$

F69:MRM of 2 channels,ES$631>83$ $1.028 e+005$

13C2-PFDoA-EIS
F64:MRM of 1 channel,ES$614.9>569.9$

Dataset:	D:IPFAS5.PROXRESULTSL200714P11200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-12, Date: 14-Jul-2020, Time: 11:38:12, ID: ST200714P1-8 PFC CS5 20F1908, Description: PFC CS5 20F1908

13C2-10:2 FTS-EIS
F70:MRM of 1 channel ES

d3-N-MeFOSA-EIS
F47:MRM of 1 channel,ES

13C2-PFDoA-EIS

13C2-PFTeDA-EIS

Dataset:	D:IPFAS5.PROIRESULTSL200714P1\200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-12, Date: 14-Jul-2020, Time: 11:38:12, ID: ST200714P1-8 PFC CS5 20F1908, Description: PFC CS5 20F1908

d5-N-ETFOSA-EIS
F53:MRM of 1 channel,ES-

13C2-PFHxDA-EIS
F77:MRM of 1 channel,ES-

d9-N-EtFOSE-EIS
F71:MRM of 1 channel,ES

Dataset:	D:IPFAS5.PROIRESULTSI200714P1\200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-12, Date: 14-Jul-2020, Time: 11:38:12, ID: ST200714P1-8 PFC CS5 20F1908, Description: PFC CS5 20F1908

13C3-PFBS-RSD F12:MRM of 1 channei,ES- $302.0>98.9$

13C5-PFNA-RSD
F36:MRM of 1 channel,ES-
$468.2>422.9$
$5.534 \mathrm{e}+005$

13C8-PFOSA-RSD
F42:MRM of 1 channel,ES-
$506>78$
$2.486 \mathrm{e}+005$

13C2-PFOA-RSD

F27:MRM of 1 channel,ES-

Name: 200714P1-12, Date: 14-Jul-2020, Time: 11:38:12, ID: ST200714P1-8 PFC CS5 20F1908, Description: PFC CS5 20F1908

Dataset: D:IPFAS5.PROIRESULTSL200714P1200714P1-CRV.qld

Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-12, Date: 14-Jul-2020, Time: 11:38:12, ID: ST200714P1-8 PFC CS5 20F1908, Description: PFC CS5 20F1908

13C7-PFUdA

F58:MRM of 1 channel,ES$570.1>524.8$ $4.760 \mathrm{e}+005$

Dataset:
Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-13, Date: 14-Jul-2020, Time: 11:48:48, ID: ST200714P1-9 PFC CS6 20F1909, Description: PFC CS6 $20 F 1909$

13C2-PFHxA-EIS

ADONA

F22:MRM of 2 channels,ES$376.8>250.9$ $1.655 e+007$

F22:MRM of 2 channels,ES-
$376.8>85.0$

Dataset:	D:IPFAS5.PRO\RESULTSI200714P1L200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-13, Date: 14-Jul-2020, Time: 11:48:48, ID: ST200714P1-9 PFC CS6 20F1909, Description: PFC CS6 20F1909

Dataset:
D:IPFAS5.PRO\RESULTSI200714P1\200714P1-CRV.qld
Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-13, Date: 14-Jul-2020, Tlme: 11:48:48, ID: ST200714P1-9 PFC CS6 20F1909, Description: PFC CS6 20F1909

Dataset: D:IPFAS5.PRO\RESULTS\200714P11200714P1-CRV.qld
Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:
Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-13, Date: 14-Jul-2020, Time: 11:48:48, ID: ST200714P1-9 PFC CS6 20F1909, Description: PFC CS6 20F1909

Dataset:	D:IPFAS5.PROIRESULTS\200714P1\200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-13, Date: 14-Jul-2020, Time: 11:48:48, ID: ST200714P1-9 PFC CS6 20F1909, Description: PFC CS6 20F1909

d3-N-MeFOSA-EIS
F47:MRM of 1 channel,ES

13C2-PFDOA-EIS
F64:MRM of $\begin{array}{r}1 \text { channel,ES- } \\ 614.9>569.9\end{array}$

13C2-PFTeDA-EIS

F75:MRM of 2 channels,ES-

Dataset:
D:IPFAS5.PRO\RESULTS\200714P1\200714P1-CRV.qld
Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: \quad Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-13, Date: 14-Jul-2020, Time: 11:48:48, ID: ST200714P1-9 PFC CS6 20F1909, Description: PFC CS6 20F1909

F76:MRM of 2 channels,ES-
$813>219$

13C2-PFHxDA-EIS
F77:MRM of 1 channel,ES-
F77:MRM of 1 channel,ES-
$815>769.7$

13C2-PFHxDA-EIS
F77:MRM of 1 channel,ES$815>769.7$ $8.016 e+005$

d7-N-MeFOSE-EIS

F66:MRM of 1 channel,ES-
F66:MRM of 1 channel,ES-
$623.1>58.9$

d9-N-EtFOSE-EIS

F71:MRM of 1 channel,ES $639.2>58.8$
$8.144 e+005$

13C3-PFBA-RSD
F3:MRM of 1 channel,ES-
$216.1>171.8$

13C3-PFPeA-RSD
F8:MRM of 1 channel,ES. $266.0>221.8$

Dataset:

D:IPFAS5.PRO\RESULTS\200714P1\200714P1-CRV.qld
Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-13, Date: 14-Jul-2020, Time: 11:48:48, ID: ST200714P1-9 PFC CS6 20F1909, Description: PFC CS6 20F1909

13C8-PFOSA-RSD
F42:MRM of 1 channel,ES
$506>78$

 $414.9>369.7$ $5.262 \mathrm{e}+005$

13C4-PFHpA-RSD

F43:MRM of 1 channel,ES

$$
507.1>8
$$

Dataset:	D:IPFAS5.PROIRESULTSL200714P11200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-13, Date: 14-Jul-2020, Time: 11:48:48, ID: ST200714P1-9 PFC CS6 20F1909, Description: PFC CS6 20F1909

Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-13, Date: 14-Jul-2020, Time: 11:48:48, ID: ST200714P1-9 PFC CS6 20F1909, Description: PFC CS6 20F1909

13C6-PFDA
F48:MRM of 1 channel,

13C7-PFUdA
F58:MRM of 1 channel,ES $570.1>524.8$ $4.616 \mathrm{e}+005$

13C9-PFNA

F37:MRM of 1 channel,ES $472.2>426.9$ $5.765 \mathrm{e}+005$

Dataset:

Last Altered: Wednesday, July 15, 2020 08:25:12 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 08:25:32 Pacific Daylight Time

Name: 200714P1-14, Date: 14-Jul-2020, TIme: 11:59:24, ID: ST200714P1-10 PFC CS7 20F1910, Description: PFC CS7 $20 F 1910$

PFBA

13C3-PFBA-EIS
F3:MRM of 1 channel,ES $216.1>171.8$

PFPrS

F6:MRM of 2 channels,ES-

F6:MRM of 2 channels,ES-
$249>98.9$

13C3-PFBS-EIS
F12:MRM of 1 channel,ES-
$\begin{array}{lr} & 302.0>98.9 \\ 100-3.392 \mathrm{e}+004\end{array}$

3:3 FTCA

F5:MRM of 2 channels,ES $240.9>176.9$ 1.851 ө+005

F5:MRM of 2 channels,ES 240.9 > 116.9

13C3-PFPeA-EIS
F8:MRM of 1 channel,ES-
$266.0>221.8$

PFPeA
F7:MRM of 1 channel,ES263.1 > 218.9 $9.764 \mathrm{e}+006$

F11:MRM of 2 channels,ES 299.0 > 98.9

13C3-PFBS-EIS
F12:MRM of 1 channel,ES 302.0 > 98.9 $3.392 e+004$

F16:MRM of 2 channels,ES$326.9>80.8$ $2.966 \theta+005$

13C2-4:2 FTS-EIS
F17:MRM of 2 channels,ES$329.0>80.8$ $3.544 e+004$

Dataset: D:IPFAS5.PROIRESULTS\200714P11200714P1-CRV.qld

| Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
 Printed: Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time |
| :--- | :--- |

Name: 200714P1-14, Date: 14-Jul-2020, Time: 11:59:24, ID: ST200714P1-10 PFC CS7 20F1910, Description: PFC CS7 $20 F 1910$

13C3-HFPO-DA-EIS
F10:MRM of 2 channels,ES
F10:MRM of 2 channels,ES
$287.0>168.9$
$287.0>168.9$
$6.959 \mathrm{e}+004$

F20:MRM of 2 channels,ES-

ADONA

F22:MRM of 2 channels,ES$376.8>85.0$

Dataset:
Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-14, Date: 14-Jul-2020, Time: 11:59:24, ID: ST200714P1-10 PFC CS7 20F1910, Description: PFC CS7 20F1910

Dataset:

D:IPFAS5.PROXRESULTS\200714P1\200714P1-CRV.qld
Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-14, Date: 14-Jul-2020, Time: 11:59:24, ID: ST200714P1-10 PFC CS7 20F1910, Description: PFC CS7 20F1910

F35:MRM of 2 channels,ES$463.0>219.0$

13C5-PFNA-EIS

F38:MRM of 2 channels, ES-
$498>169$

13C8-PFOS-EIS

F45:MRM of 2 channels, ES-
$3.917 \mathrm{e}+00$

13C2-PFDA-EIS

F46:MRM of 1 channel,ES $515.1>469.9$ $6.093 e+005$

Dataset:	D:IPFAS5.PRO\RESULTSI200714P1\200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-14, Date: 14-Jul-2020, TIme: 11:59:24, ID: ST200714P1-10 PFC CS7 20F1910, Description: PFC CS7 20F1910

Dataset:	D:IPFAS5.PROIRESULTSL200714P1L200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-14, Date: 14-Jul-2020, Time: 11:59:24, ID: ST200714P1-10 PFC CS7 20F1910, Description: PFC CS7 $20 F 1910$

13C2-PFDOA-EIS

d3-N-MeFOSA-EIS

F47:MRM of 1 channel,

F72:MRM of 2 channels,ES$662.9>319$

13C2-PFDOA-EIS

13C2-PFTeDA-EIS
F75:MRM of 2 channels,ES
F75:MRM of 2 channels,ES-
$715.1>669.7$

Dataset: D:IPFAS5.PRO\RESULTSL200714P1\200714P1-CRV.qld

Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time Printed:

Name: 200714P1-14, Date: 14-Jul-2020, Time: 11:59:24, ID: ST200714P1-10 PFC CS7 20F1910, Description: PFC CS7 20F1910

F49:MRM of 2 channels,ES$526.1>219$ $4.986 \ominus+006$

d5-N-ETFOSA-EIS
F53:MRM of 1 channel,ES$531.1>168.9$ $5.827 e+005$

Dataset:

D:IPFAS5.PROXRESULTS\200714P1|200714P1-CRV.qld
Last Altered: Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed: Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-14, Date: 14-Jul-2020, Time: 11:59:24, ID: ST200714P1-10 PFC CS7 20F1910, Description: PFC CS7 20F1910

Name: 200714P1-14, Date: 14-Jul-2020, Time: 11:59:24, ID: ST200714P1-10 PFC CS7 20F1910, Description: PFC CS7 20F1910

Dataset:	D:IPFAS5.PROVRESULTSI200714P1L200714P1-CRV.qld
Last Altered:	Tuesday, July 14, 2020 16:20:24 Pacific Daylight Time
Printed:	Tuesday, July 14, 2020 16:21:31 Pacific Daylight Time

Name: 200714P1-14, Date: 14-Jul-2020, Time: 11:59:24, ID: ST200714P1-10 PFC CS7 20F1910, Description: PFC CS7 20F1910

1 PFBA	$213.0>168.8$	7218.825	9023.642	1.00	1.44	10.000	10.000	10.1	100.8	NO		
2 PFPrS	$249>80$		1938.842	1.00			10.000		(4)	NO		YeS
3 3:3 FTCA	$240.9>176.9$		16347.065	1.00			10.000		\checkmark	NO		YES
4 PFPeA	$263.1>218.9$	11994.819	16347.065	1.00	2.39	9.172	10.000	10.3	102.8	NO		
5 PFBS	$299.0>80$	3313.575	1938.842	1.00	2.67	21.363	8.840	8.54	96.6	No	2.400	NO
6 4:2 FTS	$326.9>306.9$	3578.212	1921.517	1.00	3.11	23.277	9.360	9.13	97.6	NO	9.620	YES
47 13C3-PFBA-EIS	$216.1>171.8$	9023.642		1.00	1.44	9023.642	12.500	13.8	110.1	NO		
51 13C3-PFBS-EIS	$302.0>98.9$	1938.842		1.00	2.67	1938.842	12.500	12.3	98.2	NO		
49 13C3-PFPeA-EIS	266.0 > 221.8	16347.065		1.00	2.39	16347.065	12.500	12.3	98.5	NO		
49 13C3-PFPeA-EIS	$266.0>221.8$	16347.065		1.00	2.39	16347.065	12.500	12.3	98.5	NO		
51 13C3-PFBS-EIS	$302.0>98.9$	1938.842		1.00	2.67	1938.842	12.500	12.3	98.2	NO		
55 13C2-4:2 FTS-EIS	$329.0>80.8$	1921.517		1.00	3.11	1921.517	12.500	12.5	99.8	No		
-1												
7 PFHxA	$313.0>269.0$	14544.584	16510.848	1.00	3.19	11.011	10.000	10.6	105.8	No	14.921	NO
8 PFPeS	349.>80	2796.821	1938.842	1.00	3.39	18.032	9.360	9.08	97.0	NO	2.159	NO
9 HFPO-DA	$285.1>168.9$	2516.414	3213.970	1.00	3.41	9.787	10.000	10.2	101.6	NO	2.313	NO
10 5:3 FTCA	$340.9>236.9$		15526.923	1.00			10.000		(f)	NO		YES
11 PFHpA	$363.0>319$	15312.332	15526.923	1.00	3.79	12.327	10.000	10.1	100.6	No	46.829	YES
12 ADONA	$376.8>250.9$	27429.336	15526.923	1.00	3.90	22.082	9.440	10.3	109.1	No	4.129	NO
57 13C2-PFHxA-EIS	$315.0>270.0$	16510.848		1.00	3.20	16510.848	12.500	12.3	98.1	NO		
51 13C3-PFBS-EIS	$302.0>98.9$	1938.842		1.00	2.67	1938.842	12.500	12.3	98.2	NO		
53 13C3-HFPO-DA-EIS	$287.0>168.9$	3213.970		1.00	3.42	3213.970	12.500	12.3	98.4	NO		
59 13C4-PFHpA-EIS	$367.2>321.8$	15526.923		1.00	3.79	15526.923	12.500	12.1	96.6	NO		
59 13C4-PFHPA-EIS	$367.2>321.8$	15526.923		1.00	3.79	15526.923	12.500	12.1	96.6	NO		
59 13C4-PFHPA-EIS	367.2 > 321.8	15526.923		1.00	3.79	15526.923	12.500	12.1	96.6	NO		
-1												
13 L-PFHxS	$399>79.9$	3312.230	3828.919	1.00	3.93	10.813	9.120	9.52	104.4	NO	4.415	YES
15 6:2 FTS	427.0 > 407	1792.462	2366.457	1.00	4.25	9.468	9.480	10.3	109.2	No	0.645	NO
16 L-PFOA	$413>369$	15952.440	22056.738	1.00	4.31	9.041	10.000	9.67	96.7	NO	2.838	NO
18 PFechS	$461>381.0$		22056.738	1.00			10.000		(4)	NO		YES
19 PFHpS	$449.0>80$	2924.212	3410.384	1.00	4.42	10.718	9.520	10.8	113.9	NO	1.871	NO
20 7:3 FTCA	$440.9>336.9$		20226.139	1.00			10.000		(A)	NO		YES
61 13C3-PFHxS-EIS	$402>80$	3828.919		1.00	3.93	3828.919	12.500	12.5	100.4	NO		
63 13C2-6:2 FTS-EIS	$429.0>79.7$	2366.457		1.00	4.25	2366.457	12.500	11.9	95.2	No		
69 13C2-PFOA-EIS	$414.9>369.7$	22056.738		1.00	4.31	22056.738	12.500	12.7	101.8	No		
69 13C2-PFOA-EIS	414.9 > 369.7	22056.738		1.00	4.31	22056.738	12.500	12.7	101.8	NO		

Dataset:	D:IPFAS5.PROIRESULTSL200714P11200714P1-ICV.qld
Last Altered:	Wednesday, July 15, 2020 08:49:29 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 08:49:55 Pacific Daylight Time

Name: 200714P1-16, Date: 14-Jul-2020, Time: 12:20:26, ID: ICV200714P1-1 PFC ICV 20F1911, Description: PFC ICV 20F1911

71 13C8-PFOS-EIS	$507.1>80$	3410.384		1.00	4.83	3410.384	12.500	11.4	91.2	NO		
65 13C5-PFNA-EIS	$468.2>422.9$	20226.139		1.00	4.75	20226.139	12.500	12.1	96.7	NO		
-1												
21 PFNA	$463.0>418.8$	18994.207	20226.139	1.00	4.75	11.739	10.000	9.92	99.2	No	14.617	YES
22 PFOSA	$498>78$	4878.791	9290.273	1.00	4.80	6.564	10.000	9.49	94.9	No	21.367	NO
23 L-PFOS	$499>80$	3296.682	3410.384	1.00	4.83	12.083	9.280	10.2	109.6	No	2.543	NO
25 9CI-PF30NS	$531>351$	7026.456	3410.384	1.00	5.05	25.754	9.320	10.3	110.8	No	29.606	YES
26 PFDA	$513>469$	14697.398	23783.740	1.00	5.12	7.724	10.000	9.72	97.2	No	4.582	NO
27 8:2 FTS	$526.8>506.9$	1985.401	2074.218	1.00	5.10	11.965	9.600	9.91	103.3	No	0.697	NO
65 13C5-PFNA-EIS	$468.2>422.9$	20226.139		1.00	4.75	20226.139	12.500	12.1	96.7	NO		
67 13C8-PFOSA-EIS	$506>78$	9290.273		1.00	4.80	9290.273	12.500	13.0	103.9	NO		
71 13C8-PFOS-EIS	$507.1>80$	3410.384		1.00	4.83	3410.384	12.500	11.4	91.2	NO		
71 13C8-PFOS-EIS	507.1 > 80	3410.384		1.00	4.83	3410.384	12.500	11.4	91.2	No		
73 13C2-PFDA-EIS	$515.1>469.9$	23783.740		1.00	5.13	23783.740	12.500	11.9	95.3	No		
75 13C2-8:2 FTS-EIS	$529>80$	2074.218		1.00	5.10	2074.218	12.500	11.8	94.7	NO		
-1												
28 PFNS	$549>80$	3570.998	3410.384	1.00	5.19	13.089	9.600	10.3	107.3	No	2.400	NO
29 L-MeFOSAA	$570>419$	4878.992	4866.376	1.00	5.28	12.532	10.000	10.4	104.3	No	1.872	NO
31 L-EtFOSAA	$583.9>419$	5466.846	4219.164	1.00	5.43	16.196	10.000	9.98	99.8	NO	1.411	NO
33 PFUdA	$563.0>519$	18633.371	24246.650	1.00	5.45	9.606	10.000	10.2	101.6	No	18.443	NO
34 PFDS	$598.8>79.9$	3745.249	3410.384	1.00	5.49	13.727	9.640	10.3	107.2	No	2.047	NO
3511 Cl PF30UdS	$631>451$	5062.650	27840.941	1.00	5.65	2.273	9.440	8.71	92.3	No	14.592	NO
71 13C8-PFOS-EIS	$507.1>80$	3410.384		1.00	4.83	3410.384	12.500	11.4	91.2	NO		
$77 \mathrm{d3}$-N-MeFOSAA-EIS	$573.1>419$	4866.376		1.00	5.27	4866.376	12.500	12.4	99.5	No		
81 d5-N-EtFOSAA-EIS	$589.3>419$	4219.164		1.00	5.42	4219.164	12.500	12.3	98.6	No		
79 13C2-PFUdA-EIS	$565>519.8$	24246.650		1.00	5.45	24246.650	12.500	12.6	101.2	No		
71 13C8-PFOS-EIS	$507.1>80$	3410.384		1.00	4.83	3410.384	12.500	11.4	91.2	No		
83 13C2-PFDoA-EIS	$614.9>569.9$	27840.941		1.00	5.73	27840.941	12.500	12.1	96.7	NO		
-1												
36 10:2 FTS	$626.9>607$		1563.687	1.00			10.000		(4)	NO		YES
37 PFDoA	$612.9>569.0$	19618.830	27840.941	1.00	5.73	8.808	10.000	9.88	98.8	No	10.227	NO
38 N -MeFOSA	$512.1>168.9$		26454.725	1.00			9.600		(Q)	No		YES
39 PFTrDA	$662.9>618.9$	22778.639	27840.941	1.00	5.97	10.227	10.000	9.58	95.8	No	102.351	YES
40 PFDoS	$699>80$		28662.805	1.00			10.000		(b)	No		YES
41 PFTeDA	$713.0>669.0$	13381.869	28662.805	1.00	6.18	5.836	10.000	10.3	103.1	NO	13.305	NO
85 13C2-10:2 FTS-EIS	$632.9>80.0$	1563.687		1.00	5.71	1563.687	12.500	13.1	104.8	No		

Dataset:	D:IPFAS5.PROIRESULTSL200714P1 1200714P1-ICV.qld
Last Altered:	Wednesday, July 15, 2020 08:49:29 Paciicic Daylight Time
Printed:	Wednesday, July 15, 2020 08:49:55 Pacific Daylight Time

Name: 200714P1-16, Date: 14-Jul-2020, TIme: 12:20:26, ID: ICV200714P1-1 PFC ICV 20F1911, Description: PFC ICV 20F1911

83 13C2-PFDoA-EIS	$614.9>569.9$	27840.941		1.00	5.73	27840.941	12.500	12.1	96.7	NO	
87 d3-N-MeFOSA-EIS	$515.2>168.9$	26454.725		1.00	5.73	26454.725	149.200	148	99.2	No	
83 13C2-PFDoA-EIS	$614.9>569.9$	27840.941		1.00	5.73	27840.941	12.500	12.1	96.7	NO	
89 13C2-PFTeDA-EIS	715.1 > 669.7	28662.805		1.00	6.18	28662.805	12.500	12.8	102.3	NO	
89 13C2-PFTeDA-EIS	715.1 > 669.7	28662.805		1.00	6.18	28662.805	12.500	12.8	102.3	NO	
-1											
42 N-EtFOSA	$526.1>168.9$		31556.365	1.00			9.600		(4)	No	YES
43 PFHxDA	$813>769$		31443.863	1.00			10.000		T	NO	YES
44 PFODA	$913.1>868.8$		31443.863	1.00			10.000			NO	
45 N -MeFOSE	$616.1>58.9$		26578.174	1.00			9.600			NO	
$46 \mathrm{~N}-\mathrm{EtFOSE}$	$630.1>58.9$		30771.617	1.00			9.600		\downarrow	NO	
$4813 C 3-P F B A-R S D$	$216.1>171.8$	9053.575	9787.257	1.00	1.44	11.563	12.500	12.4	99.1	NO	
91 d5-N-ETFOSA-EIS	$531.1>168.9$	31556.365		1.00	6.14	31556.365	149.200	154	103.3	NO	
93 13C2-PFHxDA-EIS	$815>769.7$	31443.863		1.00	6.49	31443.863	12.500	12.8	102.5	NO	
93 13C2-PFHxDA-EIS	$815>769.7$	31443.863		1.00	6.49	31443.863	12.500	12.8	102.5	No	
95 d7-N-MeFOSE-EIS	$623.1>58.9$	26578.174		1.00	6.30	26578.174	149.200	149	100.1	NO	
97 d9-N-EIFOSE-EIS	$639.2>58.8$	30771.617		1.00	6.45	30771.617	149.200	150	100.4	NO	
50 13C3-PFPeA-RSD	266.0 > 221.8	16595.543	20161.691	1.00	2.39	10.289	12.500	12.8	102.2	No	
-1											
52 13C3-PFBS-RSD	$302.0>98.9$	1938.842	1577.924	1.00	2.67	15.359	12.500	12.3	98.7	NO	
54 13C3-HFPO-DA-RSD	$287.0>168.9$	3213.970	20161.691	1.00	3.42	1.993	12.500	12.9	103.5	No	
56 13C2-4:2 FTS-RSD	$329.0>80.8$	1921.517	1577.924	1.00	3.11	15.222	12.500	11.9	95.6	NO	
$5813 \mathrm{C} 2-\mathrm{PFHxA}$-RSD	$315.0>270.0$	16510.848	20161.691	1.00	3.20	10.237	12.500	12.8	102.7	No	
60 13C4-PFHPA-RSD	$367.2>321.8$	15526.923	20161.691	1.00	3.79	9.627	12.500	12.8	102.0	NO	
62 13C3-PFHxS-RSD	$402>80$	3828.919	1577.924	1.00	3.93	30.332	12.500	12.2	98.0	No	
64 13C2-6:2 FTS-RSD	$429.0>79.7$	2366.457	4832.003	1.00	4.25	6.122	12.500	11.3	90.3	No	
66 13C5-PFNA-RSD	$468.2>422.9$	20226.139	21076.125	1.00	4.75	11.996	12.500	12.7	101.9	NO	
68 13C8-PFOSA-RSD	$506>78$	9290.273	18187.818	1.00	4.80	6.385	12.500	13.0	103.8	NO	
70 13C2-PFOA-RSD	$414.9>369.7$	22056.738	18072.352	1.00	4.31	15.256	12.500	12.3	98.1	NO	
72 13C8-PFOS-RSD	$507.1>80$	3410.384	4832.003	1.00	4.83	8.822	12.500	11.2	89.4	NO	
74 13C2-PFDA-RSD	$515.1>469.9$	23783.740	20996.398	1.00	5.13	14.159	12.500	12.6	101.1	No	
- 1											
76 13C2-8:2 FTS-RSD	$529>80$	2074.218	4832.003	1.00	5.10	5.366	12.500	11.9	95.1	NO	
78 d3-N-MeFOSAA-RSD	$573.1>419$	4866.376	18187.818	1.00	5.27	3.345	12.500	12.7	102.0	NO	
80 13C2-PFUdA-RSD	$565>519.8$	24246.650	18187.818	1.00	5.45	16.664	12.500	13.0	104.2	No	
82 d5-N-EtFOSAA-RSD	$589.3>419$	4219.164	18187.818	1.00	5.42	2.900	12.500	13.3	106.2	NO	

Quantify Sample Report	MassLynx V4.2 SCN977	Page 14 of 14
Vista Analytical Laboratory		
Dataset:	D:IPFAS5.PROIRESULTSI200714P11200714P1-ICV.qld	
Last Altered:	Wednesday, July 15, 2020 08:49:29 Pacific Daylight Time	
Printed:	Wednesday, July 15, 2020 08:49:55 Pacific Daylight Time	

Name: 200714P1-16, Date: 14-Jul-2020, Time: 12:20:26, ID: ICV200714P1-1 PFC ICV 20F1911, Description: PFC ICV 20F1911

84 13C2-PFDoA-RSD	614.9 > 569.9	27840.941	20996.398	1.00	5.73	16.575	12.500	12.9	103.2	NO
86 13C2-10:2 FTS-RSD	$632.9>80.0$	1563.687	4832.003	1.00	5.71	4.045	12.500	12.9	103.2	NO
88 d3-N-MeFOSA-RSD	$515.2>168.9$	26454.725	18187.818	1.00	5.73	18.182	149.200	157	104.9	NO
90 13C2-PFTeDA-RSD	$715.1>669.7$	28662.805	18187.818	1.00	6.18	19.699	12.500	13.0	103.8	NO
92 d5-N-ETFOSA-RSD	$531.1>168.9$	31556.365	18187.818	1.00	6.14	21.688	149.200	159	106.6	NO
94 13C2-PFHxDA-RSD	$815>769.7$	31443.863	18187.818	1.00	6.49	21.611	12.500	12.9	103.0	NO
$96 \mathrm{d7}-\mathrm{N}-\mathrm{MeFOSE-RSD}$	$623.1>58.9$	26578.174	18187.818	1.00	6.30	18.266	149.200	149	99.6	NO
98 d9-N-EtFOSE-RSD -1	639.2 > 58.8	30771.617	18187.818	1.00	6.45	21.149	149.200	151	101.1	NO
99 13C4-PFBA	$217.0>172.0$	9787.257	9787.257	1.00	1.43	12.500	12.500	12.5	100.0	NO
1... 13C5-PFHXA	$318.0>272.9$	20161.691	20161.691	1.00	3.20	12.500	12.500	12.5	100.0	NO
1... 13C8-PFOA	$420.9>376.0$	18072.352	18072.352	1.00	4.31	12.500	12.500	12.5	100.0	NO
1... 1802-PFHxS	$403.0>103$	1577.924	1577.924	1.00	3.94	12.500	12.500			NO
1... 13C9-PFNA	$472.2>426.9$	21076.125	21076.125	1.00	4.75	12.500	12.500	12.5	100.0	NO
1... 13C4-PFOS	$503>79.7$	4832.003	4832.003	1.00	4.84	12.500	12.500			NO
1... 13C6-PFDA	$519.1>473.7$	20996.398	20996.398	1.00	5.13	12.500	12.500	12.5	100.0	NO
1... 13C7-PFUdA	$570.1>524.8$	18187.818	18187.818	1.00	5.45	12.500	12.500			NO

Dataset:	D:IPFAS5.PROIRESULTS 200714 P1\200714P1-ICV.qld
Last Altered:	Wednesday, July 15, 2020 08:49:29 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 08:49:55 Pacific Daylight Time

Method: D:\PFAS5.PROWMethDB\NEW_PFAS_80C_071420_ICV.mdb 15 Jul 2020 08:49:27 Calibration: D:IPFAS5.PROICurveDBIC18_VAL-PFAS_Q5_07-14-20.cdb 15 Jul 2020 08:25:12

Name: 200714P1-16, Date: 14-Jul-2020, TIme: 12:20:26, ID: ICV200714P1-1 PFC ICV 20F1911, Description: PFC ICV 20F1911

13C3-PFBA-EIS
F3:MRM of 1 channel, ES216.1 > 171.8

F6:MRM of 2 channels,ES-

13C3-PFBS-EIS
F12:MRM of 1 channel, ES-

13C3-PFPeA-EIS
F8:MRM of 1 channel,ES$266.0>221.8$ $2.805 \theta+005$

PFPeA

F7:MRM of 1 channel,ES-
F7:MRM of 1 channel,ES-
$263.1>218.9$

 F11:MRM of 2 channels, ES. $299.0>98.9$

13C3-PFBS-EIS

F12:MRM of 1 channel,ES. $302.0>98.9$ $3.807 e+004$

13C2-4:2 FTS-EIS
F17:MRM of 2 channels,ES$329.0>80.8$

Dataset:	D:IPFAS5.PROIRESULTSL200714P1 200714 P1-ICV.qld
Last Altered:	Wednesday, July 15, 2020 08:49:29 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 08:49:55 Pacific Daylight Time

Name: 200714P1-16, Date: 14-Jul-2020, Time: 12:20:26, ID: ICV200714P1-1 PFC ICV 20F1911, Description: PFC ICV 20F1911

F13:MRM of 2 channels,ES-

13C3-PFBS-EIS

F18:MRM of 2 channels,ES-

13C4-PFHpA-EIS
F21:MRM of 1 channel,ES-
$367.2>321.8$
$4.216 e+005$

F20:MRM of 2 channels,ESF20.MRM or 2 channels, ES-
3.499 .0
$8.499 e+003$

13C4-PFHpA-EIS
F21:MRM of 1 channel,ES-
$367.2>321.8$

F22:MRM of 2 channels,ES$376.8>85.0$

13C4-PFHPA-EIS
F21:MRM of 1 channel,ES$367.2>321.8$ $4.216 e+005$

Dataset:	D:IPFAS5.PROIRESULTSL200714P1 1200714 P1-ICV.qld
Last Altered:	Wednesday, July 15, 2020 08:49:29 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 08:49:55 Pacific Daylight Time

Name: 200714P1-16, Date: 14-Jul-2020, Time: 12:20:26, ID: ICV200714P1-1 PFC ICV 20F1911, Description: PFC ICV $20 F 1911$

13C3-PFHxS-EIS

F24:MRM of 1 channel,ES-

F29:MRM of 2 channels, ES-
$427 .>81$

F26:MRM of 2 channels,ES-

F34:MRM of 2 channels,ES- F32:MRM of 2 channels,ES-

F31:MRM of 2 channels,ES-

Dataset:	D:IPFAS5.PRO\RESULTSI200714P11200714P1-ICV.qld
Last Altered:	Wednesday, July 15, 2020 08:49:29 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 08:49:55 Pacific Daylight Time

Name: 200714P1-16, Date: 14-Jul-2020, Time: 12:20:26, ID: ICV200714P1-1 PFC ICV 20F1911, Description: PFC ICV $20 F 1911$

F35:MRM of 2 channels,ES-

13C5-PFNA-EIS
F36:MRM of 1 channel,ES-

PFOSA

F38:MRM of 2 channels,ES-
$498>169$ $6.164 \mathrm{e}+003$

13C8-PFOSA-EIS

F40:MRM of 2 channels,ES-

13C8-PFOS-EIS

F52:MRM of 2 channels,ES-

13C8-PFOS-EIS

Dataset:
 D:IPFAS5.PRO\RESULTSI200714P12000714P1-ICV.qld
 Last Altered: Wednesday, July 15, 2020 08:49:29 Pacific Daylight Time
 Printed: Wednesday, July 15, 2020 08:49:55 Pacific Daylight Time

Name: 200714P1-16, Date: 14-Jul-2020, Time: 12:20:26, ID: ICV200714P1-1 PFC ICV 20F1911, Descriptlon: PFC ICV $20 F 1911$

F54:MRM of 2 channels,ES-

5.2005 .400

F43:MRM of 1 channel,ES$507.1>80$
$96569+004$

F57:MRM of 2 channels,ES-

d3-N-MeFOSAA-EIS
F59:MRM of 1 channel,ES

F60:MRM of 2 channels,ES-
$583.9>526$

F55:MRM of 2 channels,ES-

$$
\begin{array}{r}
\text { F55:MRM of } 2 \text { channels, ES- } \\
563.0>269
\end{array}
$$

$$
\begin{aligned}
& 563.0>269 \\
& 2.611 e+004
\end{aligned}
$$

13C2-PFUdA-EIS
F56:MRM of 1 channel,ES-
$565>519.8$

F62:MRM of 2 channels,ES$\begin{aligned} & \text { F62.MAM or } 2 \text { chanels, } \\ & 598.8>98.9\end{aligned}$

F69:MRM of 2 channels,ES-
$631>83$

13C2-PFDOA-EIS
F64:MRM of 1 channel,ES$7.365 e+005$

Dataset:	D:IPFAS5.PRO\RESULTSL200714P1L200714P1-ICV.qld
Last Altered:	Wednesday, July 15, 2020 08:49:29 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 08:49:55 Pacific Daylight Time

Name: 200714P1-16, Date: 14-Jul-2020, TIme: 12:20:26, ID: ICV200714P1-1 PFC ICV 20F1911, Description: PFC ICV $20 F 1911$

F67:MRM of 2 channels,ES$\begin{array}{lll} & 626.9>80.7 \\ 100- & 5.72 & 4.307 \mathrm{e}+002\end{array}$
$5.85 \quad 6.09$ Min 5.7506 .0006 .250

F63:MRM of 2 channels,ES-
$612.9>318.8$

13C2-PFDoA-EIS
F64:MRM of 1 channel,ES$614.9>569.9$ $7.365 e+005$

d3-N-MeFOSA-EIS

F73:MRM of 2 channels,ES-
$699>99$

13C2-PFTeDA-EIS
F75:MRM of 2 channels,ES-
$715.1>669.7$ $7.311 \mathrm{e}+005$

Dataset:	D:IPFAS5.PRO\RESULTSL200714P11200714P1-ICV.qld
Last Altered:	Wednesday, July 15, 2020 08:49:29 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 08:49:55 Pacific Daylight Time

Name: 200714P1-16, Date: 14-Jul-2020, Time: 12:20:26, ID: ICV200714P1-1 PFC ICV 20F1911, Description: PFC ICV 20F1911

F49:MRM of 2 channels,ES-

F76:MRM of 2 channels,ES-

13C3-PFPeA-RSD
F8:MRM of 1 channel,ES$2.805 \ominus+005$

Dataset:	D:IPFAS5.PROIRESULTSL200714P11200714P1-ICV.qld
Last Altered:	Wednesday, July 15, 2020 08:49:29 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 08:49:55 Pacific Daylight Time

Name: 200714P1-16, Date: 14-Jul-2020, Time: 12:20:26, ID: ICV200714P1-1 PFC ICV 20F1911, Description: PFC ICV $20 F 1911$

F42:MRM of 1 channel,ES-
$506>78$
$2.637 \mathrm{e}+005$

13C2-PFOA-RSD
F27:MRM of 1 channel,ES-
$414.9>369.7$

13CB-PFOS-RSD
F43:MRM of 1 channel,ES $507.1>80$

Dataset:	D:IPFAS5.PROIRESULTSL200714P11200714P1-ICV.qld
Last Altered:	Wednesday, July 15, 2020 08:49:29 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 08:49:55 Pacific Daylight Time

Name: 200714P1-16, Date: 14-Jul-2020, Time: 12:20:26, ID: ICV200714P1-1 PFC ICV 20F1911, Description: PFC ICV $20 F 1911$

13C2-PFTeDA-RSD F75:MRM of 2 channels,ES-

13C2-PFHxDA-RSD
F77:MRM of 1 channel,ES-
$815>769.7$
$8.534 e+005$

d7-N-MeFOSE-RSD
F66:MRM of 1 channel,ES-
$623.1>58.9$
$6.748 \mathrm{e}+005$

Dataset:	D:IPFAS5.PRO\RESULTSL200714P11200714P1-ICV.qld
Last Altered:	Wednesday, July 15, 2020 08:49:29 Pacific D
Printed:	Wednesday, July 15, 2020 08:49:55 Pacific Daylight

Name: 200714P1-16, Date: 14-Jul-2020, Time: 12:20:26, ID: ICV200714P1-1 PFC ICV 20F1911, Description: PFC ICV $20 F 1911$

Dataset:

Untitled
Wednesday, July 15, 2020 08:45:05 Pacific Daylight Time Printed: Wednesday, July 15, 2020 08:45:14 Pacific Daylight Time

Method: D:|PFAS5.PRO\MethDB\NEW_PFAS_80C_071420.mdb 14 Jul 2020 15:40:52

Calibration: D:IPFAS5.PRO\CurveDBIC18_VAL-PFAS_Q5_07-14-20.cdb 15 Jul 2020 08:25:12

Name: 200714P1-15, Date: 14-Jul-2020, Time: 12:10:00, ID: IB, Description: IB

13C3-PFBA-EIS
IB IBF3:MRM of 1 channel,ES-

F6:MRM of 2 channels,ES-

13C3-PFBS-EIS
F12:MRM of 1 channel,ES$302.0>98.9$ $4.777 \mathrm{e}+004$

13C3-PFPeA-EIS
IB IBF8:MRM of 1 channel,ES-

13C3-PFPeA-EIS

IB IBF8:MRM of 1 channel,ES-

13C3-PFBS-EIS

F12:MRM of 1 channel,ES-

13C2-4:2 FTS-EIS
F17:MRM of 2 channels,ES$329.0>80.8$

Dataset:
 Untitled

Last Altered: Printed:

Wednesday, July 15, 2020 08:45:05 Pacific Daylight Time Wednesday, July 15, 2020 08:45:14 Pacific Daylight Time

Name: 200714P1-15, Date: 14-Jul-2020, Time: 12:10:00, ID: IB, Description: IB

PFHxA
 F13:MRM of 2 channels,ES-
 $313.0>269.0$ $100 \quad 3.21 \quad 3.459 \mathrm{e}+003$

F13:MRM of 2 channels,ES-

13C2-PFHxA-EIS

F14:MRM of 1 channel,ES-
F14:MRM of 1 channel,ES-
$315.0>270.0$ $100 \quad \begin{array}{r}4.077 \mathrm{e}+005\end{array}$
PFPES
F19:MRM of 2 channels,ES-
$349 .>80$
$6.764 \mathrm{e}+001$

13C3-PFBS-EIS

3C4-PFHpA-EIS

F20:MRM of 2 channels,ES$3.93^{363.0}>169.0$ 100-3.72 $\quad 2.513 e^{3.93}+001$

F22:MRM of 2 channels,ES-

13C4-PFHpA-EIS

Dataset:
 Untitled

Last Altered:
Wednesday, July 15, 2020 08:45:05 Pacific Daylight Time Printed: Wednesday, July 15, 2020 08:45:14 Pacific Daylight Time

Name: 200714P1-15, Date: 14-Jul-2020, Time: 12:10:00, ID: IB, Description: IB

L-PFHxS
F23:MRM of 2 channels,ES-
$399>79.9$
$4.049 \mathrm{e}+001$

13C3-PFHxS-EIS

F24:MRM of 1 channel,ES-

F29:MRM of 2 channels,ES-

13C2-6:2 FTS-EIS

F30:MRM of 1 channel,ES-
$429.0>79.7$

F26:MRM of 2 channels,ES-

F34:MRM of 2 channels,ES-

13C2-PFOA-EIS

F27:MRM of 1 channel,ES$414.9>369.7$ $6.782 \mathrm{e}+005$

F32:MRM of 2 channels,ES-

13C8-PFOS-EIS
F43:MRM of 1 channel,ES$507.1>80$

F31:MRM of 2 channels,ES-

$$
\begin{aligned}
& \text { F31:MRM of } 2 \text { channels, ES. } \\
& 440.9>316.9
\end{aligned}
$$

13C5-PFNA-EIS

F36:MRM of 1 channel,ES-
$468.2>422.9$

Dataset:
 Untitled

Last Altered:
Wednesday, July 15, 2020 08:45:05 Pacific Daylight Time Printed: Wednesday, July 15, 2020 08:45:14 Pacific Daylight Time

Name: 200714P1-15, Date: 14-Jul-2020, Time: 12:10:00, ID: IB, Description: IB

PFNA
F35:MRM of 2 channels,ES-
$463.0>418.8$
$7.125 \mathrm{e}+002$

13C5-PFNA-EIS

F36:MRM of 1 channel,ES $468.2>422.9$
$5.936 \mathrm{e}+005$ 100

F38:MRM of 2 channels,ES-

13C8-PFOSA-EIS

F40:MRM of 2 channels,ES-

13C8-PFOS-EIS

F52:MRM of 2 channels,ES-

13C8-PFOS-EIS

F43:MRM of 1 channel,ES$507.1>80$

F45:MRM of 2 channels,ES-

13C2-PFDA-EIS

F50:MRM of 2 channels,ES$526.8>80.9$

13C2-8:2 FTS-EIS

F51:MRM of 1 channel,ES$529>80$

Dataset:
 Untitled

Last Altered:
Wednesday, July 15, 2020 08:45:05 Pacific Daylight Time Printed: Wednesday, July 15, 2020 08:45:14 Pacific Daylight Time

Name: 200714P1-15, Date: 14-Jul-2020, Time: 12:10:00, ID: IB, Description: IB

F54:MRM of 2 channels,ES-

d3-N-MeFOSAA-EIS

d5-N-EtFOSAA-EIS

F61:MRM of 1 channel,ES-
F61:MRM of 1 channel,ES-
$589.3>419$

13C2-PFUdA-EIS

F56:MRM of 1 channel ES

13C8-PFOS-EIS

11Cl-PF30UdS

F69:MRM of 2 channels,ES-

13C2-PFDoA-EIS

Dataset:
 Untitled

Last Altered:
Wednesday, July 15, 2020 08:45:05 Pacific Daylight Time Printed: Wednesday, July 15, 2020 08:45:14 Pacific Daylight Time

Name: 200714P1-15, Date: 14-Jul-2020, Time: 12:10:00, ID: IB, Description: IB

10:2 FTS

F67:MRM of 2 channels,ES$626.9>80.7$ $3.789 e+002$
 5.7506 .0006 .250

13C2-10:2 FTS-EIS

F70:MRM of 1 channel,ES$632.9>80.0$ $4.393 \mathrm{e}+004$

13C2-PFDoA-EIS

13C2-PFDoA-EIS
F64:MRM of 1 channel,ES-

13C2-PFTeDA-EIS

Dataset:
 Untitled

Last Altered:
Wednesday, July 15, 2020 08:45:05 Pacific Daylight Time Printed: Wednesday, July 15, 2020 08:45:14 Pacific Daylight Time

Name: 200714P1-15, Date: 14-Jul-2020, Time: 12:10:00, ID: IB, Description: IB

N-EtFOSA
F49:MRM of 2 channels,ES-
$526.1>168.9$
$4.598 \mathrm{e}+002$

F49:MRM of 2 channels,ES

d5-N-ETFOSA-EIS
F53:MRM of 1 channel,ES $531.1>168.9$ $6.394 \mathrm{e}+005$

13C2-PFHxDA-EIS

d7-N-MeFOSE-EIS

Dataset:
 Untitled

Wednesday, July 15, 2020 08:45:05 Pacific Daylight Time Printed: Wednesday, July 15, 2020 08:45:14 Pacific Daylight Time

Name: 200714P1-15, Date: 14-Jul-2020, Time: 12:10:00, ID: IB, Description: IB

13C3-PFBS-RSD

13C2-6:2 FTS-RSD

F30:MRM of 1 channel,ES$429.0>79.7$ $6.957 e+004$

13C5-PFNA-RSD

13C8-PFOSA-RSD

F42:MRM of 1 channel,ES-
$506>78$

13C2-PFOA-RSD

F27:MRM of 1 channel,ES$414.9>369.7$

Dataset:
 Untitled

Wednesday, July 15, 2020 08:45:05 Pacific Daylight Time Printed: Wednesday, July 15, 2020 08:45:14 Pacific Daylight Time

Name: 200714P1-15, Date: 14-Jul-2020, Time: 12:10:00, ID: IB, Description: IB

13C2-8:2 FTS-RSD

d3-N-MeFOSA-RSD

F47:MRM of 1 channel,ES $515.2>168.9$ $5.637 e+005$

13C2-PFTeDA-RSD

d5-N-ETFOSA-RSD
F53:MRM of 1 channel,ES$531.1>168.9$ $6.394 \mathrm{e}+005$

d9-N-EtFOSE-RSD
F71:MRM of 1 channel,ES $639.2>58.8$ $7.319 \mathrm{e}+005$

Dataset:
 Untitled

Wednesday, July 15, 2020 08:45:05 Pacific Daylight Time Printed: Wednesday, July 15, 2020 08:45:14 Pacific Daylight Time

Name: 200714P1-15, Date: 14-Jul-2020, Time: 12:10:00, ID: IB, Description: IB

13C4-PFBA
 IB IBF4:MRM of 1 channel,ES-
 100

13C6-PFDA

F48:MRM of 1 channel,ES$519.1>473.7$
$3.399 \mathrm{e}+002$
100

13C7-PFUdA

F58:MRM of 1 channel,ES$570.1>524.8$ $570.1>524.8$
$100 \quad 4.841 \mathrm{e}+002$

Dataset:
 Untitled
 Last Altered: Wednesday, July 15, 2020 08:45:05 Pacific Daylight Time Printed: Wednesday, July 15, 2020 08:45:14 Pacific Daylight Time

Name: 200714P1-15, Date: 14-Jul-2020, Time: 12:10:00, ID: IB, Description: IB

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
1	1 PFBA	213.0 > 168.8		9513.212	1.00						NO		
2	2 PFPrs	$249>80$		1992.017	1.00						NO		YES
3	3 3:3 FTCA	$240.9>176.9$		17131.500	1.00						NO		YES
4	4 PFPeA	$263.1>218.9$		17131.500	1.00						NO		
5	5 PFBS	$299.0>80$		1992.017	1.00						NO		YES
6	6 4:2 FTS	$326.9>306.9$		2153.246	1.00						NO		YES
7	47 13C3-PFBA-EIS	$216.1>171.8$	9513.212		1.00	1.44	9513.212	12.500	14.5	116.1	NO		
8	51 13C3-PFBS-EIS	$302.0>98.9$	1992.017		1.00	2.67	1992.017	12.500	12.6	100.9	NO		
9	49 13C3-PFPeA-EIS	266.0 > 221.8	17131.500		1.00	2.39	17131.500	12.500	12.9	103.2	NO		
10	49 13C3-PFPeA-EIS	266.0 > 221.8	17131.500		1.00	2.39	17131.500	12.500	12.9	103.2	NO		
11	51 13C3-PFBS-EIS	$302.0>98.9$	1992.017		1.00	2.67	1992.017	12.500	12.6	100.9	NO		
12	55 13C2-4:2 FTS-EIS	$329.0>80.8$	2153.246		1.00	3.11	2153.246	12.500	14.0	111.8	NO		
13	-1												
14	7 PFHxA	313.0 > 269.0	34.478	17163.252	1.00	2.93	0.025				NO		YES
15	8 PFPeS	349.>80		1992.017	1.00						NO		YES
16	9 HFPO-DA	$285.1>168.9$		3305.184	1.00						NO		YES
17	10 5:3 FTCA	$340.9>236.9$	5.703	16015.530	1.00	4.02	0.004		0.0648		NO		YES
18	11 PFHpA	$363.0>319$	18.997	16015.530	1.00	3.92	0.015				NO		YES
19	12 ADONA	376.8 > 250.9		16015.530	1.00						NO		YES
20	57 13C2-PFHxA-EIS	$315.0>270.0$	17163.252		1.00	3.20	17163.252	12.500	12.8	102.0	NO		
21	51 13C3-PFBS-EIS	$302.0>98.9$	1992.017		1.00	2.67	1992.017	12.500	12.6	100.9	NO		
22	53 13C3-HFPO-DA-EIS	287.0 > 168.9	3305.184		1.00	3.41	3305.184	12.500	12.7	101.2	NO		
23	59 13C4-PFHpA-EIS	367.2 > 321.8	16015.530		1.00	3.79	16015.530	12.500	12.5	99.6	NO		
24	59 13C4-PFHpA-EIS	367.2 > 321.8	16015.530		1.00	3.79	16015.530	12.500	12.5	99.6	NO		
25	59 13C4-PFHpA-EIS	367.2 > 321.8	16015.530		1.00	3.79	16015.530	12.500	12.5	99.6	NO		
26	-1												
27	13 L-PFHxS	$399>79.9$		4131.388	1.00						NO		YES
28	15 6:2 FTS	$427.0>407$		2575.395	1.00						NO		YES
29	16 L-PFOA	$413>369$	101.135	22652.164	1.00	4.31	0.056		0.0658		NO	6.534	YES
30	18 PFecHS	$461>381.0$		22652.164	1.00						NO		YES
31	19 PFHpS	449.0 > 80		3845.086	1.00						NO		YES
32	20 7:3 FTCA	$440.9>336.9$		20484.012	1.00						NO		YES
33	61 13C3-PFHxS-EIS	$402>80$	4131.388		1.00	3.93	4131.388	12.500	13.5	108.3	NO		
34	63 13C2-6:2 FTS-EIS	$429.0>79.7$	2575.395		1.00	4.25	2575.395	12.500	13.0	103.6	NO		
35	69 13C2-PFOA-EIS	414.9 > 369.7	22652.164		1.00	4.31	22652.164	12.500	13.1	104.5	NO		
36	69 13C2-PFOA-EIS	414.9 > 369.7	22652.164		1.00	4.31	22652.164	12.500	13.1	104.5	NO		
	Work Order 2001436											Page 396 of 873	

Dataset:

Untitled
Last Altered: Wednesday, July 15, 2020 08:45:05 Pacific Daylight Time

Printed:
 Wednesday, July 15, 2020 08:45:14 Pacific Daylight Time

Name: 200714P1-15, Date: 14-Jul-2020, Time: 12:10:00, ID: IB, Description: IB

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery	Ion Ratio	Ratio Out?
37	71 13C8-PFOS-EIS	$507.1>80$	3845.086		1.00	4.84	3845.086	12.500	12.9	102.9	NO		
38	65 13C5-PFNA-EIS	468.2 > 422.9	20484.012		1.00	4.75	20484.012	12.500	12.2	98.0	NO		
39	-1												
40	21 PFNA	$463.0>418.8$	16.722	20484.012	1.00	4.71	0.010				NO		YES
41	22 PFOSA	$498>78$	5.786	9497.403	1.00	4.79	0.008		0.0200		NO		YES
42	23 L-PFOS	$499>80$		3845.086	1.00						NO		YES
43	259 Cl -PF30NS	$531>351$		3845.086	1.00						NO		YES
44	26 PFDA	$513>469$		25875.230	1.00						NO		YES
45	27 8:2 FTS	$526.8>506.9$		2048.711	1.00						NO		YES
46	65 13C5-PFNA-EIS	$468.2>422.9$	20484.012		1.00	4.75	20484.012	12.500	12.2	98.0	NO		
47	67 13C8-PFOSA-EIS	$506>78$	9497.403		1.00	4.80	9497.403	12.500	13.3	106.2	NO		
48	71 13C8-PFOS-EIS	$507.1>80$	3845.086		1.00	4.84	3845.086	12.500	12.9	102.9	NO		
49	71 13C8-PFOS-EIS	$507.1>80$	3845.086		1.00	4.84	3845.086	12.500	12.9	102.9	NO		
50	73 13C2-PFDA-EIS	$515.1>469.9$	25875.230		1.00	5.13	25875.230	12.500	13.0	103.7	NO		
51	75 13C2-8:2 FTS-EIS	$529>80$	2048.711		1.00	5.10	2048.711	12.500	11.7	93.6	NO		
52	-1												
53	28 PFNS	$549>80$		3845.086	1.00						NO		YES
54	29 L-MeFOSAA	$570>419$	7.000	4908.206	1.00	5.45	0.018		0.0207		NO		YES
55	$31 \mathrm{~L}-\mathrm{EtFOSAA}$	$583.9>419$		4413.458	1.00						NO		YES
56	33 PFUdA	$563.0>519$	82.139	24818.340	1.00	5.45	0.041				NO		YES
57	34 PFDS	$598.8>79.9$		3845.086	1.00						NO		YES
58	3511 Cl -PF30UdS	$631>451$		28920.432	1.00						NO		YES
59	71 13C8-PFOS-EIS	$507.1>80$	3845.086		1.00	4.84	3845.086	12.500	12.9	102.9	NO		
60	77 d3-N-MeFOSAA-EIS	$573.1>419$	4908.206		1.00	5.27	4908.206	12.500	12.5	100.4	NO		
61	81 d5-N-EtFOSAA-EIS	$589.3>419$	4413.458		1.00	5.43	4413.458	12.500	12.9	103.1	NO		
62	79 13C2-PFUdA-EIS	$565>519.8$	24818.340		1.00	5.45	24818.340	12.500	12.9	103.5	NO		
63	71 13C8-PFOS-EIS	$507.1>80$	3845.086		1.00	4.84	3845.086	12.500	12.9	102.9	NO		
64	83 13C2-PFDoA-EIS	$614.9>569.9$	28920.432		1.00	5.73	28920.432	12.500	12.6	100.4	NO		
65	-1												
66	36 10:2 FTS	$626.9>607$	6.495	1627.563	1.00	5.73	0.050		0.117		NO	0.408	NO
67	37 PFDoA	$612.9>569.0$	318.598	28920.432	1.00	5.73	0.138		0.0426		NO		YES
68	38 N-MeFOSA	512.1 > 168.9	12.792	23015.049	1.00	5.71	0.083				NO		YES
69	39 PFTrDA	$662.9>618.9$		28920.432	1.00						NO		YES
70	40 PFDoS	$699>80$		28326.213	1.00						NO		YES
71	41 PFTeDA	713.0 > 669.0	53.048	28326.213	1.00	6.17	0.023				NO		YES
72	85 13C2-10:2 FTS-EIS	$632.9>80.0$	1627.563		1.00	5.71	1627.563	12.500	13.6	109.1	NO		
	Work Order 2001436											Page 397 of 873	

Dataset:

Untitled
Last Altered: Wednesday, July 15, 2020 08:45:05 Pacific Daylight Time Printed: Wednesday, July 15, 2020 08:45:14 Pacific Daylight Time

Name: 200714P1-15, Date: 14-Jul-2020, Time: 12:10:00, ID: IB, Description: IB

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
73	83 13C2-PFDoA-EIS	$614.9>569.9$	28920.432		1.00	5.73	28920.432	12.500	12.6	100.4	NO		
74	87 d3-N-MeFOSA-EIS	$515.2>168.9$	23015.049		1.00	5.73	23015.049	149.200	129	86.3	NO		
75	83 13C2-PFDoA-EIS	$614.9>569.9$	28920.432		1.00	5.73	28920.432	12.500	12.6	100.4	NO		
76	89 13C2-PFTeDA-EIS	$715.1>669.7$	28326.213		1.00	6.18	28326.213	12.500	12.6	101.1	NO		
77	89 13C2-PFTeDA-EIS	$715.1>669.7$	28326.213		1.00	6.18	28326.213	12.500	12.6	101.1	NO		
78	-1												
79	$42 \mathrm{~N}-\mathrm{EtFOSA}$	$526.1>168.9$	7.015	26932.115	1.00	6.10	0.039				NO		YES
80	43 PFHxDA	$813>769$	241.693	29006.180	1.00	6.49	0.104				NO	37.414	NO
81	44 PFODA	$913.1>868.8$	103.514	29006.180	1.00	6.72	0.045		0.0364		NO		
82	45 N-MeFOSE	$616.1>58.9$	28.298	23923.449	1.00	6.33	0.176				NO		
83	$46 \mathrm{~N}-\mathrm{EtFOSE}$	$630.1>58.9$	13.771	27124.117	1.00	6.63	0.076				NO		
84	48 13C3-PFBA-RSD	$216.1>171.8$	9513.212	107.341	1.00	1.44	1107.826	12.500	1190	9495.5	YES		
85	91 d5-N-ETFOSA-EIS	$531.1>168.9$	26932.115		1.00	6.14	26932.115	149.200	132	88.2	NO		
86	93 13C2-PFHxDA-EIS	$815>769.7$	29006.180		1.00	6.49	29006.180	12.500	11.8	94.5	NO		
87	93 13C2-PFHxDA-EIS	$815>769.7$	29006.180		1.00	6.49	29006.180	12.500	11.8	94.5	NO		
88	95 d7-N-MeFOSE-EIS	$623.1>58.9$	23923.449		1.00	6.31	23923.449	149.200	134	90.1	NO		
89	97 d9-N-EtFOSE-EIS	$639.2>58.8$	27124.117		1.00	6.45	27124.117	149.200	132	88.5	NO		
90	50 13C3-PFPeA-RSD	$266.0>221.8$			1.00			12.500			NO		
91	-1												
92	52 13C3-PFBS-RSD	$302.0>98.9$			1.00			12.500			NO		
93	54 13C3-HFPO-DA-RSD	$287.0>168.9$			1.00			12.500			NO		
94	56 13C2-4:2 FTS-RSD	$329.0>80.8$			1.00			12.500			NO		
95	58 13C2-PFHxA-RSD	$315.0>270.0$			1.00			12.500			NO		
96	60 13C4-PFHpA-RSD	$367.2>321.8$			1.00			12.500			NO		
97	62 13C3-PFHxS-RSD	$402>80$			1.00			12.500			NO		
98	64 13C2-6:2 FTS-RSD	$429.0>79.7$	2575.395	55.125	1.00	4.25	583.990	12.500	1080	8614.1	YES		
99	66 13C5-PFNA-RSD	$468.2>422.9$	20484.012	6.128	1.00	4.75	41783.641	12.500	44400	35505...	YES		
100	68 13C8-PFOSA-RSD	$506>78$	9497.403	17.706	1.00	4.80	6704.933	12.500	13600	10897...	YES		
101	70 13C2-PFOA-RSD	$414.9>369.7$			1.00			12.500			NO		
102	72 13C8-PFOS-RSD	$507.1>80$	3845.086	55.125	1.00	4.84	871.902	12.500	1100	8839.4	YES		
103	74 13C2-PFDA-RSD	$515.1>469.9$	25875.230	9.614	1.00	5.13	33642.644	12.500	30000	24015...	YES		
104	-1												
105	76 13C2-8:2 FTS-RSD	$529>80$	2048.711	55.125	1.00	5.10	464.560	12.500	1030	8237.2	YES		
106	78 d3-N-MeFOSAA-RSD	$573.1>419$	4908.206	17.706	1.00	5.27	3465.073	12.500	13200	10564...	YES		
107	80 13C2-PFUdA-RSD	$565>519.8$	24818.340	17.706	1.00	5.45	17521.137	12.500	13700	10959...	YES		
108	82 d5-N-EtFOSAA-RSD	$589.3>419$	4413.458	17.706	1.00	5.43	3115.793	12.500	14300	11406...	YES		
	Work Order 2001436											Page 398 of 873	

Dataset: Untitled
 Last Altered: Wednesday, July 15, 2020 08:45:05 Pacific Daylight Time Printed: Wednesday, July 15, 2020 08:45:14 Pacific Daylight Time

Name: 200714P1-15, Date: 14-Jul-2020, Time: 12:10:00, ID: IB, Description: IB

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery	Ion Ratio	Ratio Out?
109	84 13C2-PFDoA-RSD	614.9 > 569.9	28920.432	9.614	1.00	5.73	37601.976	12.500	29300	23413...	YES		
110	86 13C2-10:2 FTS-RSD	$632.9>80.0$	1627.563	55.125	1.00	5.71	369.062	12.500	1180	9414.1	YES		
111	88 d3-N-MeFOSA-RSD	$515.2>168.9$	23015.049	17.706	1.00	5.73	16248.058	149.200	140000	93738.9	YES		
112	90 13C2-PFTeDA-RSD	$715.1>669.7$	28326.213	17.706	1.00	6.18	19997.609	12.500	13200	10541...	YES		
113	92 d5-N-ETFOSA-RSD	$531.1>168.9$	26932.115	17.706	1.00	6.14	19013.410	149.200	139000	93447.5	YES		
114	94 13C2-PFHxDA-RSD	$815>769.7$	29006.180	17.706	1.00	6.49	20477.649	12.500	12200	97590.7	YES		
115	96 d7-N-MeFOSE-RSD	$623.1>58.9$	23923.449	17.706	1.00	6.31	16889.366	149.200	137000	92057.3	YES		
116	98 d9-N-EtFOSE-RSD	$639.2>58.8$	27124.117	17.706	1.00	6.45	19148.959	149.200	137000	91562.8	YES		
117	-1												
118	99 13C4-PFBA	$217.0>172.0$	107.341	107.341	1.00	1.44	12.500	12.500	12.5	100.0	NO		
119	1... 13C5-PFHxA	318.0 > 272.9			1.00			12.500			NO		
120	1... 13C8-PFOA	$420.9>376.0$			1.00			12.500			NO		
121	1... 18O2-PFHxS	$403.0>103$			1.00			12.500			NO		
122	1... 13C9-PFNA	$472.2>426.9$	6.128	6.128	1.00	4.75	12.500	12.500	12.5	100.0	NO		
123	1... 13C4-PFOS	$503>79.7$	55.125	55.125	1.00	4.84	12.500	12.500	12.5	100.0	NO		
124	1... 13C6-PFDA	$519.1>473.7$	9.614	9.614	1.00	5.13	12.500	12.500	12.5	100.0	NO		
125	1... 13C7-PFUdA	$570.1>524.8$	17.706	17.706	1.00	5.45	12.500	12.500	12.5	100.0	NO		

		tligh points		
Quantify Compound Summary Report MassLynx V4.2 SCN982 Vista Analytical Laboratory		$\begin{aligned} & 3: 3 \text { FTCA: } 100 \\ & 3: 3 \text { FTCA: } \\ & 7: 3 \text { FTCH: } \end{aligned}$	Page 1 of 13	
Dataset:	Z:IPFAS5.PRO\RESULTSI200715P1\200715P1-CRV.qld			
Last Altered:	Thursday, July 16, 2020 10:32:09 Pacific Daylight Time			
Printed:	Thursday, July 16, 2020 11:08:36 Pacific Daylight Time			

Method: D:\PFAS5.PRO\MethDBINEW_PFAS_80C_071520.mdb 16 Jul 2020 08:29:48
Calibration: Z:IPFAS5.PRO\CurveDBIC18_VAL-PFAS_Q5_07-15-20.cdb 16 Jul 2020 10:32:09

Compound name: PFBA

Correlation coefficient: $r=0.999639, r^{\wedge} 2=0.999278$
Calibration curve: $0.980185^{*} x+0.115891$
Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Typre	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$\mathrm{x}=$ excluded
1	1 200715P1-05	Standard	0.250	1.43	209.265	7806.605	0.335	0.2	-10.6	NO	0.999	NO	MM
2	2 200715P1-06	Standard	0.500	1.41	354.173	8077.563	0.548	0.4	-11.8	NO	0.999	NO	MM
3	3 200715P1-07	Standard	1.000	1.42	691.099	7777.376	1.111	1.0	1.5	NO	0.999	NO	MM
4	4 200715P1-08	Standard	2.000	1.42	1436.594	8496.101	2.114	2.0	1.9	NO	0.999	NO	MM
5	5 200715P1-09	Standard	5.000	1.42	3542.690	8430.298	5.253	5.2	4.8	NO	0.999	NO	MM
6	6 200715P1-10	Standard	10.000	1.42	6935.486	8307.313	10.436	10.5	5.3	NO	0.999	NO	MM
7	7 200715P1-11	Standard	50.000	1.42	34374.906	8312.727	51.690	52.6	5.2	NO	0.999	NO	MM
8	8 200715P1-12	Standard	100.000	1.42	70991.281	8540.275	103.907	105.9	5.9	NO	0.999	NO	MM
9	9 200715P1-13	Standard	250.000	1.42	163008.766	8380.282	243.143	247.9	-0.8	NO	0.999	NO	MM
10	10 200715P1-14	Standard	500.000	1.42	361299.438	9347.157	483.168	492.8	-1.4	NO	0.999	NO	MM

Compound name: PFPrs

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999657$
Calibration curve: $0.000167653{ }^{*} x^{\wedge} 2+1.28527^{*} x+-0.115337$
Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$\mathrm{x}=$ excluded
1	1 200715P1-05	Standard	0.250	1.76	30.573	1738.671	0.220	0.3	4.3	NO	1.000	NO	MM
2	2 200715P1-06	Standard	0.500	1.75	62.228	1667.350	0.467	0.5	-9.5	NO	1.000	NO	MM
3	3 200715P1-07	Standard	1.000	1.75	171.072	1738.769	1.230	1.0	4.6	NO	1.000	NO	MM
4	4 200715P1-08	Standard	2.000	1.74	344.020	1599.076	2.689	2.2	9.1	NO	1.000	NO	MM
5	5 200715P1-09	Standard	5.000	1.75	927.538	1845.682	6.282	5.0	-0.5	NO	1.000	NO	MM
6	6 200715P1-10	Standard	10.000	1.75	1687.590	1816.360	11.614	9.1	-8.9	NO	1.000	NO	MM
7	7 200715P1-11	Standard	50.000	1.75	9294.304	1839.425	63.160	48.9	-2.2	NO	1.000	NO	MM
8	8 200715P1-12	Standard	100.000	1.75	18892.416	1744.090	135.403	104.0	4.0	NO	1.000	NO	MM
9	9 200715P1-13	Standard	250.000	1.75	43142.551	1646.553	327.522	247.0	-1.2	NO	1.000	NO	MM
10	10 200715P1-14	Standard	500.000	1.75	88739.359	1617.881	685.614	500.8	0.2	NO	1.000	NO	MM

Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed: Thursday, July 16, 2020 08:19:25 Pacific Daylight Time

Compound name: 3:3 FTCA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999213$
Calibration curve: -0.000108646 * $x^{\wedge} 2+0.0776709$ * $x+-0.00369656$
Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	0.250	2.22	16.896	13826.016	0.015	0.2	-2.3	NO	0.999	NO	MM
2	2 200715P1-06	Standard	0.500	2.21	41.570	14065.802	0.037	0.5	4.7	NO	0.999	NO	MM
3	3 200715P1-07	Standard	1.000	2.22	77.302	13909.148	0.069	0.9	-5.7	NO	0.999	NO	bb
4	4 200715P1-08	Standard	2.000	2.22	145.611	13478.511	0.135	1.8	-10.5	NO	0.999	NO	MM
5	5 200715P1-09	Standard	5.000	2.22	437.020	15018.269	0.364	4.8	-4.8	NO	0.999	NO	bb
6	6200715 P 1 -10	Standard	10.000	2.22	832.712	14085.286	0.739	9.7	-3.1	NO	0.999	NO	bb
7	7 200715P1-11	Standard	50.000	2.22	4513.634	15158.109	3.722	51.7	3.4	NO	0.999	NO	bb
8	8 200715P1-12	Standard	100.000	2.22	7788.723	14698.876	6.624	99.0	-1.0	NO	0.999	NO	bb
9	9 200715P1-13	Standard	250.000	2.22	4374.361	14042.888	3.894	54.3	-78.3	YES	0.999	NO	$b b X$
10	10 200715P1-14	Standard	500.000	2.22	8259.125	14165.455	7.288	111.2	-77.8	YES	0.999	NO	$b b x$

Compound name: PFPeA

Coefficient of Determination: $R^{\wedge} 2=0.999950$
Calibration curve: -0.000166693 * $x^{\wedge} 2+0.936142 * x+0.0191783$
Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$\mathrm{x}=$ excluded
1	1 200715P1-05	Standard	0.250	2.36	265.423	13826.016	0.240	0.2	-5.7	NO	1.000	NO	MM
2	2 200715P1-06	Standard	0.500	2.36	579.970	14065.802	0.515	0.5	6.0	NO	1.000	NO	bb
3	3 200715P1-07	Standard	1.000	2.36	1082.506	13909.148	0.973	1.0	1.9	NO	1.000	NO	bb
4	4 200715P1-08	Standard	2.000	2.36	2048.591	13478.511	1.900	2.0	0.5	NO	1.000	NO	bb
5	5 200715P1-09	Standard	5.000	2.36	5881.572	15018.269	4.895	5.2	4.3	NO	1.000	NO	bb
6	6 200715P1-10	Standard	10.000	2.36	10669.291	14085.286	9.468	10.1	1.1	NO	1.000	NO	bb
7	7 200715P1-11	Standard	50.000	2.36	56169.977	15158.109	46.320	49.9	-0.2	NO	1.000	NO	bb
8	8 200715P1-12	Standard	100.000	2.36	109126.078	14698.876	92.801	100.9	0.9	NO	1.000	NO	bb
9	9 200715P1-13	Standard	250.000	2.36	249152.469	14042.888	221.778	247.8	-0.9	NO	1.000	NO	bb
10	$10200715 \mathrm{P} 1-14$	Standard	500.000	2.36	484100.281	14165.455	427.184	501.0	0.2	NO	1.000	NO	bb

Vista Analytical Laboratory

Dataset:	D:IPFAS5.PRO\RESULTSL200715P11200715P1-CRV.qld
Last Altered:	Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 08:19:25 Pacific Daylight Time

Compound name: PFBS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999766$
Calibration curve: -0.000471545 * $x^{\wedge} 2+2.52596$ * $x+-0.0069074$
Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	0.250	2.64	86.356	1738.671	0.621	0.2	-0.6	NO	1.000	NO	bb
2	2 200715P1-06	Standard	0.500	2.64	169.391	1667.350	1.270	0.5	1.1	NO	1.000	NO	bb
3	3 200715P1-07	Standard	1.000	2.64	345.926	1738.769	2.487	1.0	-1.3	NO	1.000	NO	bb
4	4 200715P1-08	Standard	2.000	2.64	654.522	1599.076	5.116	2.0	1.5	NO	1.000	NO	bb
5	5 200715P1-09	Standard	5.000	2.64	1922.760	1845.682	13.022	5.2	3.3	NO	1.000	NO	bb
6	6 200715P1-10	Standard	10.000	2.64	3511.424	1816.360	24.165	9.6	-4.1	NO	1.000	NO	bb
7	7 200715P1-11	Standard	50.000	2.64	17753.797	1839.425	120.648	48.2	-3.6	NO	1.000	NO	bb
8	$8200715 \mathrm{P} 1-12$	Standard	100.000	2.64	35663.453	1744.090	255.602	103.2	3.2	NO	1.000	NO	bb
9	9200715 P 1 -13	Standard	250.000	2.64	78877.070	1646.553	598.805	248.6	-0.6	NO	1.000	NO	bb
10	10 200715P1-14	Standard	500.000	2.64	148276.594	1617.881	1145.608	500.3	0.1	NO	1.000	NO	bb

Compound name: 4:2 FTS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999085$
Calibration curve: $-0.000777096^{*} x^{\wedge} 2+2.51837^{*} x+0.0713002$
Response type: Internal Std (Ref 55), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	0.250	3.07	99.580	1860.907	0.669	0.2	-5.1	NO	0.999	NO	bb
2	2 200715P1-06	Standard	0.500	3.08	205.323	1772.278	1.448	0.5	9.4	NO	0.999	NO	bb
3	3 200715P1-07	Standard	1.000	3.08	392.398	1924.178	2.549	1.0	-1.6	NO	0.999	NO	bb
4	4 200715P1-08	Standard	2.000	3.07	785.223	1898.710	5.169	2.0	1.3	NO	0.999	NO	bb
5	5 200715P1-09	Standard	5.000	3.08	2046.222	1914.402	13.361	5.3	5.7	NO	0.999	NO	bb
6	6 200715P1-10	Standard	10.000	3.08	3735.083	1906.392	24.491	9.7	-2.7	NO	0.999	NO	bb
7	7 200715P1-11	Standard	50.000	3.08	19669.475	1813.734	135.559	54.7	9.4	NO	0.999	NO	bb
8	8 200715P1-12	Standard	100.000	3.07	36811.188	1977.304	232.711	95.2	-4.8	NO	0.999	NO	bb
9	9 200715P1-13	Standard	250.000	3.08	74619.242	1612.728	578.362	248.7	-0.5	NO	0.999	NO	bb
10	10 200715P1-14	Standard	500.000	3.08	138701.766	1624.158	1067.490	501.4	0.3	NO	0.999	NO	bb

Vista Analytical Laboratory
Dataset: D:IPFAS5.PROIRESULTSL200715P1\200715P1-CRV.qld
Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed: Thursday, July 16, 2020 08:19:25 Pacific Daylight Time

Compound name: PFHxA

Correlation coefficient: $\mathrm{r}=0.998355, \mathrm{r}^{\wedge} 2=0.996713$
Calibration curve: 0.989028 * x + 0.093798
Response type: Internal Std (Ref 57), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Coinc. Flag	COD	CoD Flag	x=excluded
1	1 200715P1-05	Standard	0.250	3.16	331.189	15339.016	0.270	0.2	-28.8	NO	0.997	NO	bb
2	2 200715P1-06	Standard	0.500	3.16	753.281	15588.797	0.604	0.5	3.2	NO	0.997	NO	MM
3	3 200715P1-07	Standard	1.000	3.16	1416.958	14456.156	1.225	1.1	14.4	NO	0.997	NO	bb
4	4 200715P1-08	Standard	2.000	3.16	2550.491	14190.115	2.247	2.2	8.8	NO	0.997	NO	bb
5	5 200715P1-09	Standard	5.000	3.16	7470.837	16557.631	5.640	5.6	12.2	NO.	0.997	NO	bb
6	$6200715 \mathrm{P} 1-10$	Standard	10.000	3.16	13453.060	15333.919	10.967	11.0	9.9	NO	0.997	NO	bb
7	7 200715P1-11	Standard	50.000	3.16	68944.961	15465.936	55.723	56.2	12.5	NO	0.997	NO	bb
18	$8200715 \mathrm{P} 1-12$	Standard	100.000	3.16	135199.703	15965.140	105.855	106.9	6.9	NO	0.997	NO	bb
9	9 200715P1-13	Standard	250.000	3.16	302604.625	14763.244	256.215	259.0	3.6	NO	0.997	NO	bb
10	10 200715P1-14	Standard	500.000	3.17	572349.813	15194.222	470.861	476.0	-4.8	NO	0.997	NO	bb

Compound name: PFPeS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999528$
Calibration curve: -0.000776818 * $x^{\wedge} 2+2.0532$ * $x+0.045083$
Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$\mathrm{x}=$ excluded
11	1 200715P1-05	Standard	0.250	3.34	70.804	1738.671	0.509	0.2	-9.6	NO	1.000	NO	bb
2	2 200715P1-06	Standard	0.500	3.36	121.794	1667.350	0.913	0.4	-15.4	NO	1.000	NO	bb
3	3 200715P1-07	Standard	1.000	3.36	293.027	1738.769	2.107	1.0	0.4	NO	1.000	NO	bb
4	4 200715P1-08	Standard	2.000	3.36	649.530	1599.076	5.077	2.5	22.7	NO	1.000	NO	bb
5	5 200715P1-09	Standard	5.000	3.36	1549.416	1845.682	10.494	5.1	2.0	NO	1.000	NO	bb
6	6 200715P1-10	Standard	10.000	3.36	2956.720	1816.360	20.348	9.9	-0.7	NO	1.000	NO	bb
7	7 200715P1-11	Standard	50.000	3.36	14725.169	1839.425	100.066	49.6	-0.7	NO	1.000	NO	bb
8	$8200715 \mathrm{P} 1-12$	Standard	100.000	3.36	28440.760	1744.090	203.837	103.3	3.3	NO	1.000	NO	bb
9	$9200715 \mathrm{P} 1-13$	Standard	250.000	3.36	59869.996	1646.553	454.510	243.8	-2.5	NO	1.000	NO	bb
10	10 200715P1-14	Standard	500.000	3.36	108256.188	1617.881	836.404	503.1	0.6	NO	1.000	NO	bb

Dataset:	D:IPFAS5.PROIRESULTSL200715P11200715P1-CRV.qld
Last Altered:	Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 08:19:25 Pacific Daylight Time

Compound name: HFPO-DA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999863$
Calibration curve: $-0.000207197^{*} x^{\wedge} 2+0.9792$ * $x+0.0644029$
Response type: Internal Std (Ref 53), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	0.250	3.37	66.363	3054.830	0.272	0.2	-15.4	NO	1.000	NO	bb
2	2 200715P1-06	Standard	0.500	3.38	156.347	2970.628	0.658	0.6	21.2	NO	1.000	NO	bb
3	3 200715P1-07	Standard	1.000	3.38	257.741	2768.974	1.164	1.1	12.3	NO	1.000	NO	bb
4	4 200715P1-08	Standard	2.000	3.38	488.027	2801.989	2.177	2.2	7.9	NO	1.000	NO	bb
5	5 200715P1-09	Standard	5.000	3.38	1346.487	3238.469	5.197	5.2	5.0	NO	1.000	NO	bb
6	6 200715P1-10	Standard	10.000	3.38	2430.643	3233.451	9.396	9.5	-4.5	NO	1.000	NO	bb
7	7 200715P1-11	Standard	50.000	3.38	12482.712	3225.027	48.382	49.9	-0.3	NO	1.000	NO	bb
8	8 200715P1-12	Standard	100.000	3.38	25270.379	3287.801	96.076	100.2	0.2	NO	1.000	NO	bb
9	9 200715P1-13	Standard	250.000	3.38	57094.559	3081.841	231.577	249.6	-0.2	NO	1.000	NO	bb
10	10 200715P1-14	Standard	500.000	3.38	109837.281	3134.487	438.019	500.2	0.0	NO	1.000	NO	bb

Compound name: 5:3 FTCA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997857$
Calibration curve: $2.67699 \mathrm{e}-006$ * $\mathrm{x}^{\wedge} 2+0.150879$ * $x+-0.000564457$
Response type: Internal Std (Ref 59), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name)	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	$1200715 \mathrm{P} 1-05$	Standard	0.250	3.69	50.596	14141.860	0.045	0.3	20.1	NO	0.998	NO	bb
2	2 200715P1-06	Standard	0.500	3.70	91.264	14738.732	0.077	0.5	3.3	NO	0.998	NO	bb
3	3 200715P1-07	Standard	1.000	3.70	161.471	14201.896	0.142	0.9	-5.4	NO	0.998	NO	bb
4	4 200715P1-08	Standard	2.000	3.70	320.228	14172.102	0.282	1.9	-6.2	NO	0.998	NO	bb
5	5 200715P1-09	Standard	5.000	3.70	898.411	15900.185	0.706	4.7	-6.3	NO	0.998	NO	bb
6	6 200715P1-10	Standard	10.000	3.70	1698.282	15879.081	1.337	8.9	-11.4	NO	0.998	NO	bb
7	7 200715P1-11	Standard	50.000	3.70	8875.668	13898.979	7.982	52.9	5.7	NO	0.998	NO	bb
8	8 200715P1-12	Standard	100.000	3.70	15796.716	13236.320	14.918	98.7	-1.3	NO	0.998	NO	bb
9	9 200715P1-13	Standard	250.000	3.70	8877.041	13781.080	8.052	53.3	-78.7	YES	0.998	NO	$b b x$
10	10 200715P1-14	Standard	500.000	3.70	17122.254	13020.542	16.438	108.7	-78.3	YES	0.998	NO	bbx

Quantify Compound Summary Report MassLynx V4.2 SCN977
Vista Analytical Laboratory

Dataset:	D:IPFAS5.PROIRESULTSL200715P1\200715P1-CRV.qld
Last Altered:	Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 08:19:25 Pacific Daylight Time

ompound name: PFHpA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998154$
Calibration curve: - 0.000400669 * $x^{\wedge} 2+1.29457^{*} x+-0.0179516$
Response type: Internal Std (Ref 59), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	0.250	3.75	415.303	14141.860	0.367	0.3	19.0	NO	0.998	NO	bb
2	2 200715P1-06	Standard	0.500	3.76	855.347	14738.732	0.725	0.6	14.9	NO	0.998	NO	bb
3	3 200715P1-07	Standard	1.000	3.76	1535.167	14201.896	1.351	1.1	5.8	NO	0.998	NO	bb
4	4 200715P1-08	Standard	2.000	3.76	2173.251	14172.102	1.917	1.5	-25.2	NO	0.998	NO	bb
5	5 200715P1-09	Standard	5.000	3.76	7357.491	15900.185	5.784	4.5	-10.2	NO	0.998	NO	bb
6	6 200715P1-10	Standard	10.000	3.76	13942.688	15879.081	10.976	8.5	-14.9	NO	0.998	NO	bb
7	7 200715P1-11	Standard	50.000	3.76	70620.063	13898.979	63.512	49.8	-0.3	NO	0.998	NO	bb
8	8 200715P1-12	Standard	100.000	3.76	143832.344	13236.320	135.831	108.6	8.6	NO	0.998	NO	bb
9	9 200715P1-13	Standard	250.000	3.76	317724.188	13781.080	288.189	240.5	-3.8	NO	0.998	NO	bb
10	10 200715P1-14	Standard	500.000	3.76	573197.063	13020.542	550.281	503.6	0.7	NO	0.998	NO	bb

Compound name: ADONA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997677$
Calibration curve: $-0.000616138{ }^{*} x^{\wedge} 2+2.30427^{*} x+-0.0693606$
Response type: Internal Std (Ref 59), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ exclucied
1	1 200715P1-05	Standard	0.250	3.87	669.737	14141.860	0.592	0.3	14.8	NO	0.998	NO	bb
2	2 200715P1-06	Standard	0.500	3.87	1328.318	14738.732	1.127	0.5	3.8	NO	0.998	NO	bb
3	$3200715 \mathrm{P} 1-07$	Standard	1.000	3.87	2471.188	14201.896	2.175	1.0	-2.6	NO	0.998	NO	bb
4	4 200715P1-08	Standard	2.000	3.87	4826.819	14172.102	4.257	1.9	-6.1	NO	0.998	NO	bb
5	5 200715P1-09	Standard	5.000	3.87	13789.471	15900.185	10.841	4.7	-5.2	NO	0.998	NO	bb
6	6 200715P1-10	Standard	10.000	3.87	25719.617	15879.081	20.246	8.8	-11.6	NO	0.998	NO	bb
7	7 200715P1-11	Standard	50.000	3.87	129128.820	13898.979	116.132	51.1	2.3	NO	0.998	NO	bb
8	8 200715P1-12	Standard	100.000	3.87	259148.453	13236.320	244.732	109.4	9.4	NO	0.998	NO	bb
9	$9200715 \mathrm{P} 1-13$	Standard	250.000	3.87	558854.563	13781.080	506.904	234.7	-6.1	NO	0.998	NO	bb
10	10 200715P1-14	Standard	500.000	3.87	1051045.750	13020.542	1009.026	506.5	1.3	NO	0.998	NO	bb

Dataset: D:IPFAS5.PROIRESULTSL200715P11200715P1-CRV.qld
Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:
Thursday, July 16, 2020 08:19:25 Pacific Daylight Time

Compound name: L-PFHxS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999839$
Calibration curve: -0.000166876 * $x^{\wedge} 2+1.16221^{*} x+0.0219326$
Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$\mathrm{x}=$ excluded
1	1 200715P1-05	Standard	0.250	3.90	98.922	3286.932	0.376	0.3	21.9	NO	1.000	NO	MM
2	2 200715P1-06	Standard	0.500	3.91	136.501	3456.514	0.494	0.4	-18.8	NO	1.000	NO	MM
3	3 200715P1-07	Standard	1.000	3.91	312.872	3296.439	1.186	1.0	0.2	NO	1.000	NO	MM
4	4 200715P1-08	Standard	2.000	3.91	554.025	3275.624	2.114	1.8	-10.0	NO	1.000	NO	MM
5	5 200715P1-09	Standard	5.000	3.91	1768.111	3663.371	6.033	5.2	3.5	NO	1.000	NO	MM
6	6 200715P1-10	Standard	10.000	3.90	3207.511	3357.679	11.941	10.3	2.7	NO	1.000	NO	MM
7	7 200715P1-11	Standard	50.000	3.91	16479.568	3494.369	58.950	51.1	2.2	NO	1.000	NO	MM
8	$8200715 \mathrm{P} 1-12$	Standard	100.000	3.90	31483.596	3507.856	112.190	97.9	-2.1	NO	1.000	NO	MM
9	9 200715P1-13	Standard	250.000	3.90	70564.531	3136.063	281.262	251.0	0.4	NO	1.000	NO	MM
10	10 200715P1-14	Standard	500.000	3.91	129946.344	3012.524	539.192	499.8	-0.0	NO	1.000	NO	MM

Compound name: 6:2 FTS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999703$
Calibration curve: $-0.000429136^{*} x^{\wedge} 2+1.01207^{*} x+-0.0281069$
Response type: Internal Std (Ref 63), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response:	Conc.	\%Dev	Conc. Flag	COD	CoDFlag	$x=$ excluded
1	1 200715P1-05	Standard	0.250	4.22	40.578	2288.134	0.222	0.2	-1.3	NO	1.000	NO	bb
2	2 200715P1-06	Standard	0.500	4.22	93.582	2199.076	0.532	0.6	10.7	NO	1.000	NO	bb
3	3 200715P1-07	Standard	1.000	4.22	153.270	2229.958	0.859	0.9	-12.3	NO	1.000	NO	bb
4	4 200715P1-08	Standard	2.000	4.22	367.735	2106.058	2.183	2.2	9.3	NO	1.000	NO	bb
5	5 200715P1-09	Standard	5.000	4.22	893.897	2461.530	4.539	4.5	-9.6	NO	1.000	NO	bb
6	6 200715P1-10	Standard	10.000	4.22	1733.231	2370.508	9.140	9.1	-9.1	NO	1.000	NO	bb
7	7 200715P1-11	Standard	50.000	4.22	8970.587	2253.882	49.751	50.3	0.5	NO	1.000	NO	bb
8	8 200715P1-12	Standard	100.000	4.22	17424.672	2254.202	96.623	99.7	-0.3	NO	1.000	NO	bb
9	$9200715 \mathrm{P} 1-13$	Standard	250.000	4.22	37304.406	2039.324	228.657	253.1	1.2	NO	1.000	NO	bb
10	10 200715P1-14	Standard	500.000	4.22	68659.656	2158.935	397.532	498.0	-0.4	NO	1.000	NO	bb

Dataset:	D:IPFAS5.PROIRESULTSL200715P1L200715P1-CRV.qld
Last Altered:	Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 08:19:25 Pacific Daylight Time

Compound name: L-PFOA

Coefficient of Determination: $R^{\wedge} 2=0.999925$
Calibration curve: -0.000278493 * $x^{\wedge} 2+0.984998 * x+0.00651212$
Response type: Internal Std (Ref 69), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	0.250	4.27	386.220	18747.258	0.258	0.3	1.9	NO	1.000	NO	bb
2	2 200715P1-06	Standard	0.500	4.28	764.909	18013.293	0.531	0.5	6.5	NO	1.000	NO	bb
3	3 200715P1-07	Standard	1.000	4.28	1468.491	18092.994	1.015	1.0	2.4	NO	1.000	NO	bb
4	4 200715P1-08	Standard	2.000	4.28	2805.938	17356.375	2.021	2.0	2.3	NO	1.000	NO	bb
5	5 200715P1-09	Standard	5.000	4.28	7312.187	20100.508	4.547	4.6	-7.7	NO	1.000	NO	bb
6	6 200715P1-10	Standard	10.000	4.28	14541.508	18997.652	9.568	9.7	-2.7	NO	1.000	NO	bb
7	7 200715P1-11	Standard	50.000	4.28	71918.922	18724.668	48.011	49.4	-1.1	NO	1.000	NO	bb
8	$8200715 \mathrm{P} 1-12$	Standard	100.000	4.28	141860.125	18385.432	96.449	100.8	0.8	NO	1.000	NO	bb
9	$9200715 \mathrm{P} 1-13$	Standard	250.000	4.28	298805.969	16259.043	229.723	251.0	0.4	NO	1.000	NO	bb
10	10 200715P1-14	Standard	500.000	4.28	517858.719	15326.200	422.364	499.3	-0.1	NO	1.000	NO	bb

Compound name: PFechS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999832$
Calibration curve: $-1.00689 e-005$ * $x^{\wedge} 2+0.193418$ * $x+-0.00519347$
Response type: Internal Std (Ref 69), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area.	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=e x$ cluded
1	1 200715P1-05	Standard	0.250	4.30	66.564	18747.258	0.044	0.3	2.5	NO	1.000	NO	bb
2	2 200715P1-06	Standard	0.500	4.28	148.568	18013.293	0.103	0.6	12.0	NO	1.000	NO	bb
3	3 200715P1-07	Standard	1.000	4.29	245.055	18092.994	0.169	0.9	-9.8	NO	1.000	NO	bb
4	4 200715P1-08	Standard	2.000	4.30	461.520	17356.375	0.332	1.7	-12.7	NO	1.000	NO	bb
5	5 200715P1-09	Standard	5.000	4.29	1535.510	20100.508	0.955	5.0	-0.7	NO	1.000	NO	bb
6	6 200715P1-10	Standard	10.000	4.29	2896.756	18997.652	1.906	9.9	-1.1	NO	1.000	NO	bb
7	7 200715P1-11	Standard	50.000	4.29	13998.150	18724.668	9.345	48.5	-3.1	NO	1.000	NO	bb
8	8 200715P1-12	Standard	100.000	4.29	28906.139	18385.432	19.653	102.2	2.2	NO	1.000	NO	bb
9	9 200715P1-13	Standard	250.000	4.29	62112.363	16259.043	47.752	250.2	0.1	NO	1.000	NO	bb
10	10200715 P 1 -14	Standard	500.000	4.29	115397.273	15326.200	94.118	499.6	-0.1	NO	1.000	NO	bd

Vista Analytical Laboratory
Dataset:
D:IPFAS5.PROIRESULTSL200715P11200715P1-CRV.gld
Last Altered:
Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:
Thursday, July 16, 2020 08:19:25 Pacific Daylight Time

Compound name: PFHpS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999276$
Calibration curve: -0.000136149 * $x^{\wedge} 2+0.966385 * x+-0.0100863$
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	0.250	4.38	44.520	3339.633	0.167	0.2	-26.9	NO	0.999	NO	bb
2	2 200715P1-06	Standard	0.500	4.39	109.049	3464.958	0.393	0.4	-16.5	NO	0.999	NO	bb
3	3 200715P1-07	Standard	1.000	4.39	275.895	3207.886	1.075	1.1	12.3	NO	0.999	NO	bb
4	4 200715P1-08	Standard	2.000	4.39	514.012	3209.567	2.002	2.1	4.1	NO	0.999	NO	bb
5	5 200715P1-09	Standard	5.000	4.39	1529.380	3319.781	5.759	6.0	19.5	NO	0.999	NO	bb
6	$6200715 \mathrm{P} 1-10$	Standard	10.000	4.39	2840.143	3485.769	10.185	10.6	5.7	NO	0.999	NO	bb
7	7 200715P1-11	Standard	50.000	4.39	13445.822	3397.571	49.469	51.6	3.1	NO	0.999	NO	bb
8	$8200715 \mathrm{P} 1-12$	Standard	100.000	4.39	26984.529	3501.605	96.329	101.1	1.1	NO	0.999	NO	bb
9	$9200715 \mathrm{P} 1-13$	Standard	250.000	4.39	59139.055	3276.164	225.641	241.7	-3.3	NO	0.999	NO	bb
10	10 200715P1-14	Standard	500.000	4.39	105313.844	2909.353	452.480	504.0	0.8	NO	0.999	NO	bb

Compound name: 7:3 FTCA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999738$
Calibration curve: -0.000267529 * $x^{\wedge} 2+0.232502{ }^{*} x+-0.0230233$
Response type: Internal Std (Ref 65), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	0.250	4.70	63.024	18166.605	0.043	0.3	14.3	NO	1.000	NO	bb
2	2 200715P1-06	Standard	0.500	4.70	126.751	18475.305	0.086	0.5	-6.4	NO	1.000	NO	bb
3	3 200715P1-07	Standard	1.000	4.71	275.734	16942.672	0.203	1.0	-2.5	NO	1.000	NO	bb
4	4 200715P1-08	Standard	2.000	4.71	590.007	16943.467	0.435	2.0	-1.2	NO	1.000	NO	bb
5	5 200715P1-09	Standard	5.000	4.71	1672.349	18984.844	1.101	4.9	-2.8	NO	1.000	NO	bb
6	6 200715P1-10	Standard	10.000	4.71	3291.384	18605.793	2.211	9.7	-2.8	NO	1.000	NO	bb
7	7 200715P1-11	Standard	50.000	4.71	15861.765	17815.230	11.129	51.0	1.9	NO	1.000	NO	bb
8	8 200715P1-12	Standard	100.000	4.71	28910.637	17661.139	20.462	99.5	-0.5	NO	1.000	NO	bb
9	$9200715 \mathrm{P} 1-13$	Standard	250.000	4.71	15162.998	16655.285	11.380	52.2	-79.1	YES	1.000	NO	$b \mathrm{bx}$
10	10 200715P1-14	Standard	500.000	4.71	28538.283	15295.544	23.322	115.9	-76.8	YES	1.000	NO	bbX

Dataset:
Last Altered:
Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:
Thursday, July 16, 2020 08:19:25 Pacific Daylight Time

Compound name: PFNA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999634$
Calibration curve: $-0.0001019233^{*} x^{\wedge} 2+1.18112$ * $x+0.0147918$
Response type: Internal Std (Ref 65), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$\mathrm{x}=$ excluded
1	1 200715P1-05	Standard	0.250	4.72	413.564	18166.605	0.285	0.2	-8.6	NO	1.000	NO	MM
2	2 200715P1-06	Standard	0.500	4.72	880.181	18475.305	0.596	0.5	-1.7	NO	1.000	NO	bb
3	3 200715P1-07	Standard	1.000	4.72	1512.548	16942.672	1.116	0.9	-6.8	NO	1.000	NO	bb
4	4 200715P1-08	Standard	2.000	4.72	3413.570	16943.467	2.518	2.1	6.0	NO	1.000	NO	MM
5	5 200715P1-09	Standard	5.000	4.72	9579.593	18984.844	6.307	5.3	6.6	NO	1.000	NO	bb
6	6 200715P1-10	Standard	10.000	4.72	17799.180	18605.793	11.958	10.1	1.2	NO	1.000	NO	MM
7	7 200715P1-11	Standard	50.000	4.72	87441.578	17815.230	61.353	52.2	4.3	NO	1.000	NO	bb
8	$8200715 \mathrm{P} 1-12$	Standard	100.000	4.72	167018.047	17661.139	118.210	101.0	1.0	NO	1.000	NO	bb
9	$9200715 \mathrm{P} 1-13$	Standard	250.000	4.72	375064.469	16655.285	281.491	243.4	-2.6	NO	1.000	NO	bb
10	10 200715P1-14	Standard	500.000	4.72	695432.063	15295.544	568.329	503.0	0.6	NO	1.000	NO	bb

Compound name: PFOSA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999738$
Calibration curve: -7.63122e-005 * $x^{\wedge} 2+0.694419$ * $x+0.0219661$
Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=e x c l u d e d$
1	1 200715P1-05	Standard	0.250	4.76	116.570	7423.152	0.196	0.3	0.4	NO	1.000	NO	bb
2	2 200715P1-06	Standard	0.500	4.77	201.944	7301.197	0.346	0.5	-6.7	NO	1.000	NO	bb
3	3 200715P1-07	Standard	1.000	4.77	412.129	7447.246	0.692	1.0	-3.5	NO	1.000	NO	bb
4	4 200715P1-08	Standard	2.000	4.77	853.378	6848.962	1.557	2.2	10.6	NO	1.000	NO	bb
5	5 200715P1-09	Standard	5.000	4.77	2317.238	7848.611	3.691	5.3	5.7	NO	1.000	NO	MM
6	6 200715P1-10	Standard	10.000	4.77	4350.626	7434.802	7.315	10.5	5.1	NO	1.000	NO	bb
7	7 200715P1-11	Standard	50.000	4.77	21072.910	7334.455	35.914	52.0	4.0	NO	1.000	NO	bb
8	8 200715P1-12	Standard	100.000	4.77	40529.145	7561.286	67.001	97.5	-2.5	NO	1.000	NO	bb
9	$9200715 \mathrm{P} 1-13$	Standard	250.000	4.77	88396.961	6583.585	167.836	248.4	-0.6	NO	1.000	NO	bb
10	$10200715 \mathrm{P} 1-14$	Standard	500.000	4.77	170774.109	6491.171	328.858	501.1	0.2	NO	1.000	NO	bb

Quantify Compound Summary Report MassLynx V4.2 SCN977

Vista Analytical Laboratory
Dataset: D:IPFAS5.PROIRESULTSI200715P11200715P1-CRV.qld
Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:
Thursday, July 16, 2020 08:19:25 Pacific Daylight Time

Compound name: L-PFOS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998321$
Calibration curve: $-5.66898 e-005$ * $x^{\wedge} 2+1.21465$ * $x+0.0162657$
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

	\# Name	Type	Sta. Conc	RT	Area	IS Area	Fesponse	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	0.250	4.80	64.669	3339.633	0.242	0.2	-25.6	NO	0.998	NO	MM
2	2 200715P1-06	Standard	0.500	4.79	175.677	3464.958	0.634	0.5	1.7	NO	0.998	NO	MM
3	3 200715P1-07	Standard	1.000	4.80	320.598	3207.886	1.249	1.0	1.5	NO	0.998	NO	MM
4	4 200715P1-08	Standard	2.000	4.80	653.320	3209.567	2.544	2.1	4.1	NO	0.998	NO	MM
5	5 200715P1-09	Standard	5.000	4.80	1843.474	3319.781	6.941	5.7	14.1	NO	0.998	NO	MM
6	6 200715P1-10	Standard	10.000	4.80	3496.370	3485.769	12.538	10.3	3.1	NO	0.998	NO	MM
7	7 200715P1-11	Standard	50.000	4.80	17722.518	3397.571	65.203	53.8	7.6	NO	0.998	NO	MM
8	8 200715P1-12	Standard	100.000	4.80	35094.867	3501.605	125.281	103.6	3.6	NO	0.998	NO	MM
9	9 200715P1-13	Standard	250.000	4.80	73999.398	3276.164	282.340	235.0	-6.0	NO	0.998	NO	MM
10	10 200715P1-14	Standard	500.000	4.80	139815.500	2909.353	600.716	506.5	1.3	NO	0.998	NO	MM

Compound name: 9CI-PF30NS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999037$
Calibration curve: $-9.96094 \mathrm{e}-005^{*} x^{\wedge} 2+2.39352$ * $x+0.0272839$
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Cons	RT	Area	is Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	x=excluded
1	1 200715P1-05	Standard	0.250	5.01	144.374	3339.633	0.540	0.2	-14.3	NO	0.999	NO	bb
2	2 200715P1-06	Standard	0.500	5.01	329.993	3464.958	1.190	0.5	-2.8	NO	0.999	NO	bb
3	3 200715P1-07	Standard	1.000	5.01	509.340	3207.886	1.985	0.8	-18.2	NO	0.999	NO	bb
4	4 200715P1-08	Standard	2.000	5.02	1517.250	3209.567	5.909	2.5	22.9	NO	0.999	NO	bb
5	5 200715P1-09	Standard	5.000	5.02	3533.801	3319.781	13.306	5.5	11.0	NO	0.999	NO	bb
6	6 200715P1-10	Standard	10.000	5.02	6444.495	3485.769	23.110	9.6	-3.5	NO	0.999	NO	bb
7	7200715 P 1 -11	Standard	50.000	5.02	34283.121	3397.571	126.131	52.8	5.6	NO	0.999	NO	bb
8	8200715 P 1 -12	Standard	100.000	5.02	68417.602	3501.605	244.237	102.5	2.5	NO	0.999	NO	bb
9	9 200715P1-13	Standard	250.000	5.02	149071.953	3276.164	568.775	240.0	-4.0	NO	0.999	NO	bb
10	10 200715P1-14	Standard	500.000	5.02	275050.250	2909.353	1181.750	504.3	0.9	NO	0.999	NO	bb

Dataset:
D:IPFAS5.PROIRESULTSI200715P11200715P1-CRV.qld
Last Altered:
Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:
Thursday, July 16, 2020 08:19:25 Pacific Daylight Time

Compound name: PFDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999905$
Calibration curve: $-0.000201267^{*} x^{\wedge} 2+0.827978$ * $x+0.0201845$
Response type: Internal Std (Ref 73), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	$1200715 \mathrm{P} 1-05$	Standard	0.250	5.09	433.780	21139.320	0.257	0.3	14.2	NO	1.000	NO	MM
2	2 200715P1-06	Standard	0.500	5.09	669.625	21237.906	0.394	0.5	-9.7	NO	1.000	NO	bb
3	3 200715P1-07	Standard	1.000	5.09	1356.105	20143.082	0.842	1.0	-0.8	NO	1.000	NO	MM
4	4 200715P1-08	Standard	2.000	5.09	2636.082	20088.832	1.640	2.0	-2.1	NO	1.000	NO	bb
5	5 200715P1-09	Standard	5.000	5.09	7560.735	22234.100	4.251	5.1	2.3	NO	1.000	NO	bb
6	6 200715P1-10	Standard	10.000	5.09	14747.348	20973.631	8.789	10.6	6.2	NO	1.000	NO	bb
7	7 200715P1-11	Standard	50.000	5.10	70767.844	21425.146	41.288	50.5	0.9	NO	1.000	NO	bb
8	8 200715P1-12	Standard	100.000	5.09	136002.297	21301.400	79.808	98.7	-1.3	NO	1.000	NO	bb
9	9 200715P1-13	Standard	250.000	5.09	307421.406	19779.787	194.278	249.8	-0.1	NO	1.000	NO	bb
10	10 200715P1-14	Standard	500.000	5.10	565327.000	19417.826	363.923	500.4	0.1	NO	1.000	NO	bb

Compound name: 8:2 FTS

Coefficient of Determination: $R^{\wedge} 2=0.997655$
Calibration curve: $-0.00053721^{*} x^{\wedge} 2+1.21826^{*} x+0.0763701$
Response type: Internal Std (Ref 75), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$\mathrm{x}=$ excluded
$!$	1 200715P1-05	Standard	0.250	5.06	58.618	2272.706	0.322	0.2	-19.2	NO	0.998	NO	bb
2	2 200715P1-06	Standard	0.500	5.06	116.001	1834.680	0.790	0.6	17.2	NO	0.998	NO	bb
3	3 200715P1-07	Standard	1.000	5.06	240.277	1900.979	1.580	1.2	23.5	NO	0.998	NO	bb
4	4 200715P1-08	Standard	2.000	5.07	294.866	1863.108	1.978	1.6	-21.9	NO	0.998	NO	bb
5	5 200715P1-09	Standard	5.000	5.07	827.806	2057.675	5.029	4.1	-18.6	NO	0.998	NO	bb
6	6 200715P1-10	Standard	10.000	5.07	1961.545	1813.562	13.520	11.1	10.9	NO	0.998	NO	bb
7	7 200715P1-11	Standard	50.000	5.07	9822.263	1843.435	66.603	56.0	12.0	NO	0.998	NO	bb
18	8 200715P1-12	Standard	100.000	5.06	17718.611	1908.331	116.061	99.6	-0.4	NO	0.998	NO	bb
9	9 200715P1-13	Standard	250.000	5.06	37185.203	1792.268	259.345	237.7	-4.9	NO	0.998	NO	bb
10	10 200715P1-14	Standard	500.000	5.06	73817.852	1921.738	480.150	507.7	1.5	NO	0.998	NO	bb

Dataset:	D:IPFAS5.PROXRESULTS\200715P1L200715P1-CRV.qld
Last Altered:	Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 08:19:25 Pacific Daylight Time

Compound name: PFNS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998706$
Calibration curve: $-0.00023121^{*} x^{\wedge} 2+1.22365^{*} x+0.00033998$
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name:	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=e x c l u d e d$
1	1 200715P1-05	Standard	0.250	5.15	69.856	3339.633	0.261	0.2	-14.6	NO	0.999	NO	bb
2	2 200715P1-06	Standard	0.500	5.15	184.099	3464.958	0.664	0.5	8.5	NO	0.999	NO	bb
3	3 200715P1-07	Standard	1.000	5.16	286.282	3207.886	1.116	0.9	-8.8	NO	0.999	NO	bb
4	4 200715P1-08	Standard	2.000	5.15	587.596	3209.567	2.288	1.9	-6.5	NO	0.999	NO	bb
5	5 200715P1-09	Standard	5.000	5.15	1882.255	3319.781	7.087	5.8	16.0	NO	0.999	NO	bb
6	$6200715 \mathrm{P} 1-10$	Standard	10.000	5.16	3398.972	3485.769	12.189	10.0	-0.2	NO	0.999	NO	bb
7	$7200715 \mathrm{P} 1-11$	Standard	50.000	5.16	17602.125	3397.571	64.760	53.5	6.9	NO	0.999	NO	bb
8	8 200715P1-12	Standard	100.000	5.15	34540.637	3501.605	123.303	102.8	2.8	NO	0.999	NO	bb
9	$9200715 \mathrm{P} 1-13$	Standard	250.000	5.15	72709.813	3276.164	277.420	237.4	-5.1	NO	0.999	NO	bb
10	10 200715P1-14	Standard	500.000	5.15	130332.055	2909.353	559.970	506.0	1.2	NO	0.999	NO	bb

Compound name: L-MeFOSAA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999586$
Calibration curve: $-0.0003658^{*} x^{\wedge} 2+1.2249$ * $x+-0.0692446$
Response type: Internal Std (Ref 77), Area * (IS Conc. I IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	Col	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	0.250	5.25	85.118	4257.820	0.250	0.3	4.2	NO	1.000	NO	MM
2	2 200715P1-06	Standard	0.500	5.24	148.994	4776.380	0.390	0.4	-25.0	NO	1.000	NO	MM
3	3 200715P1-07	Standard	1.000	5.24	372.722	4202.767	1.109	1.0	-3.8	NO	1.000	NO	MM
4	4 200715P1-08	Standard	2.000	5.24	798.606	4219.502	2.366	2.0	-0.5	NO	1.000	NO	MM
5	5 200715P1-09	Standard	5.000	5.24	2417.612	5097.341	5.929	4.9	-1.9	NO	1.000	NO	MM
6	6 200715P1-10	Standard	10.000	5.24	4530.702	4649.107	12.182	10.0	0.3	NO	1.000	NO	MM
7	7 200715P1-11	Standard	50.000	5.24	23172.645	4569.278	63.393	52.6	5.3	NO	1.000	NO	MM
8	8 200715P1-12	Standard	100.000	5.24	43745.910	4572.478	119.590	100.7	0.7	NO	1.000	NO	MM
9	9200715 P 1 -13	Standard	250.000	5.24	94112.063	4248.579	276.893	243.9	-2.5	NO	1.000	NO	MM
10	10 200715P1-14	Standard	500.000	5.24	179126.328	4275.856	523.656	503.2	0.6	NO	1.000	NO	MM

Last Altered:	Thursday, July 16, 2020 10:32:09 Pacific Daylight Time Printed:

Method: D:IPFAS5.PROMethDBXNEW PFAS 80C 071520.mdb 16 Jul 2020 08:29:48

Calibration: Z:\PFAS5.PRO\CurveDBIC̄18_VAL-PFĀ_Q5_07-15-20.cdb 16 Jul 2020 10:32:09

Compound name: L-EtFOSAA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.996663$
Calibration curve: -0.000334065 * $x^{\wedge} 2+1.57877$ * $x+-0.0199931$
Response type: Internal Std (Ref 81), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 200715P1-05	Standard	0.250	5.40	131.627	3986.506	0.413	0.3	9.6	NO	0.997	NO	bb
2	2 200715P1-06	Standard	0.500	5.39	227.880	4282.189	0.665	0.4	-13.2	NO	0.997	NO	MM
3	3 200715P1-07	Standard	1.000	5.40	427.501	3868.556	1.381	0.9	-11.2	NO	0.997	NO	MM
4	4 200715P1-08	Standard	2.000	5.40	1020.746	3919.445	3.255	2.1	3.8	NO	0.997	NO	MM
5	$5200715 \mathrm{P} 1-09$	Standard	5.000	5.40	2870.599	4487.496	7.996	5.1	1.7	NO	0.997	NO	MM
6	$6200715 \mathrm{P} 1-10$	Standard	10.000	5.40	5508.482	4499.632	15.303	9.7	-2.7	NO	0.997	NO	MM
7	$7200715 \mathrm{P} 1-11$	Standard	50.000	5.40	27099.191	3799.720	89.149	57.2	14.3	NO	0.997	NO	MM
8	8 200715P1-12	Standard	100.000	5.40	50528.141	3935.188	160.501	104.0	4.0	NO	0.997	NO	MM
9	$9200715 \mathrm{P} 1-13$	Standard	250.000	5.40	105988.992	3838.678	345.135	229.8	-8.1	NO	0.997	NO	MM
10	10 200715P1-14	Standard	500.000	5.40	188881.781	3288.879	717.881	509.7	1.9	NO	0.997	NO	MM

Compound name: PFUdA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999624$
Calibration curve: -0.000198343 * $x^{\wedge} 2+0.951704$ * $x+0.0496106$
Response type: Internal Std (Ref 79), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	0.250	5.41	468.340	21431.557	0.273	0.2	-6.0	NO	1.000	NO	bd
2	2 200715P1-06	Standard	0.500	5.41	874.066	21511.854	0.508	0.5	-3.7	NO	1.000	NO	bb
3	3 200715P1-07	Standard	1.000	5.41	1651.168	20974.463	0.984	1.0	-1.8	NO	1.000	NO	bb
4	4 200715P1-08	Standard	2.000	5.41	3227.538	19514.449	2.067	2.1	6.1	NO	1.000	NO	bb
5	5 200715P1-09	Standard	5.000	5.41	8949.953	23148.672	4.833	5.0	0.6	NO	1.000	NO	bb
6	6200715 P 1 -10	Standard	10.000	5.41	16688.541	21499.816	9.703	10.2	1.6	NO	1.000	NO	bb
7	7 200715P1-11	Standard	50.000	5.41	82864.445	21237.574	48.772	51.8	3.5	NO	1.000	NO	bb
8	8 200715P1-12	Standard	100.000	5.41	160110.328	21069.113	94.991	101.9	1.9	NO	1.000	NO	bb
9	9 200715P1-13	Standard	250.000	5.41	342172.719	19500.521	219.336	242.7	-2.9	NO	1.000	NO	bb
10	10 200715P1-14	Standard	500.000	5.41	635211.938	18511.988	428.919	503.5	0.7	NO	1.000	NO	bb

Dataset: D:IPFAS5.PROIRESULTSI200715P11200715P1-CRV.qld
Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:
Thursday, July 16, 2020 08:24:58 Pacific Daylight Time

Compound name: PFDS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997646$
Calibration curve: -0.000203698 * $x^{\wedge} 2+1.19751^{*} x+0.0930634$
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x, A x i s$ trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ exclucted
1	1 200715P1-05	Standard	0.250	5.45	112.911	3339.633	0.423	0.3	10.1	NO	0.998	NO	bb
2	2 200715P1-06	Standard	0.500	5.46	154.994	3464.958	0.559	0.4	-22.2	NO	0.998	NO	bb
3	3 200715P1-07	Standard	1.000	5.46	348.536	3207.886	1.358	1.1	5.7	NO	0.998	NO	bb
4	4 200715P1-08	Standard	2.000	5.46	656.372	3209.567	2.556	2.1	2.9	NO	0.998	NO	bb
5	5 200715P1-09	Standard	5.000	5.46	1949.901	3319.781	7.342	6.1	21.2	NO	0.998	NO	bb
6	$6200715 \mathrm{P} 1-10$	Standard	10.000	5.46	3571.197	3485.769	12.806	10.6	6.4	NO	0.998	NO	bb
7	7 200715P1-11	Standard	50.000	5.46	17812.500	3397.571	65.534	55.2	10.3	NO	0.998	NO	bb
8	8 200715P1-12	Standard	100.000	5.46	33589.191	3501.605	119.906	101.8	1.8	NO	0.998	NO	bb
9	9 200715P1-13	Standard	250.000	5.46	70341.375	3276.164	268.383	233.3	-6.7	NO	0.998	NO	bb
10	$10200715 \mathrm{P} 1-14$	Standard	500.000	5.46	129418.617	2909.353	556.046	508.2	1.6	NO	0.998	NO	bb

Compound name: 11CI-PF30UdS

Correlation coefficient: $\mathrm{r}=0.999559, \mathrm{r}^{\wedge} 2=0.999118$
Calibration curve: 0.258298 * $x+0.00979795$
Response type: Internal Std (Ref 83), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=e x c l u d e d$
1	1 200715P1-05	Standard	0.250	5.62	112.861	23416.920	0.060	0.2	-21.9	NO	0.999	NO	bb
2	2 200715P1-06	Standard	0.500	5.62	292.274	24413.588	0.150	0.5	8.3	NO	0.999	NO	bb
3	3 200715P1-07	Standard	1.000	5.62	488.277	24811.789	0.246	0.9	-8.6	NO	0.999	NO	bb
4	4 200715P1-08	Standard	2.000	5.62	937.900	21661.838	0.541	2.1	2.9	NO	0.999	NO	bb
5	5 200715P1-09	Standard	5.000	5.62	2893.741	26248.602	1.378	5.3	5.9	NO	0.999	NO	bb
6	$6200715 \mathrm{P} 1-10$	Standard	10.000	5.62	5083.053	23602.262	2.692	10.4	3.8	NO	0.999	NO	bb
7	7 200715P1-11	Standard	50.000	5.62	26420.645	24305.359	13.588	52.6	5.1	NO	0.999	NO	bb
8	$8200715 \mathrm{P} 1-12$	Standard	100.000	5.62	50649.570	23221.037	27.265	105.5	5.5	NO	0.999	NO	bb
9	$9200715 \mathrm{P} 1-13$	Standard	250.000	5.62	108933.398	20839.002	65.342	252.9	1.2	NO	0.999	NO	bb
10	$10200715 \mathrm{P} 1-14$	Standard	500.000	5.62	202938.250	20109.285	126.147	488.3	-2.3	NO	0.999	NO	bb

Dataset:	D:IPFAS5.PRO\RESULTSL200715P1 1200715 P1-CRV.qld
Last Altered:	Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 08:24:58 Pacific Daylight Time

Compound name: 10:2 FTS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999872$
Calibration curve: -0.000771562 * $x^{\wedge} 2+1.93313$ * $x+0.0501835$
Response type: Internal Std (Ref 85), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	0.250	5.69	58.419	1420.543	0.514	0.2	-4.0	NO	1.000	NO	bb
2	2 200715P1-06	Standard	0.500	5.68	129.386	1362.904	1.187	0.6	17.6	NO	1.000	NO	bb
3	$3200715 \mathrm{P} 1-07$	Standard	1.000	5.68	225.255	1333.479	2.112	1.1	6.7	NO	1.000	NO	bb
4	4 200715P1-08	Standard	2.000	5.68	344.143	1283.837	3.351	1.7	-14.6	NO	1.000	NO	bb
5	5 200715P1-09	Standard	5.000	5.68	1134.910	1400.038	10.133	5.2	4.5	NO	1.000	NO	bb
6	$6200715 \mathrm{P} 1-10$	Standard	10.000	5.68	2017.579	1302.852	19.357	10.0	0.3	NO	1.000	NO	bb
7	$7200715 \mathrm{P} 1-11$	Standard	50.000	5.68	10025.633	1330.195	94.212	49.7	-0.6	NO	1.000	NO	bb
8	8 200715P1-12	Standard	100.000	5.68	17951.852	1199.234	187.118	100.8	0.8	NO	1.000	NO	bb
9	9 200715P1-13	Standard	250.000	5.68	34841.949	1004.974	433.369	248.9	-0.4	NO	1.000	NO	bb
10	10 200715P1-14	Standard	500.000	5.68	63713.176	1028.491	774.353	500.5	0.1	NO	1.000	NO	bb

Compound name: PFDoA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999564$
Calibration curve: -0.000226089 * $x^{\wedge} 2+0.890842$ * $x+0.100204$
Response type: Internal Std (Ref 83), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dov	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	0.250	5.69	710.037	23416.920	0.379	0.3	25.2	NO	1.000	NO	MM
2	2 200715P1-06	Standard	0.500	5.69	1191.504	24413.588	0.610	0.6	14.5	NO	1.000	NO	bb
3	3 200715P1-07	Standard	1.000	5.69	1932.240	24811.789	0.973	1.0	-2.0	NO	1.000	NO	bb
4	$4200715 \mathrm{P} 1-08$	Standard	2.000	5.69	3268.157	21661.838	1.886	2.0	0.3	NO	1.000	NO	bb
5	5 200715P1-09	Standard	5.000	5.69	9688.501	26248.602	4.614	5.1	1.5	NO	1.000	NO	bb
6	$6200715 \mathrm{P} 1-10$	Standard	10.000	5.69	17609.547	23602.262	9.326	10.4	3.8	NO	1.000	NO	bb
7	7 200715P1-11	Standard	50.000	5.69	86729.867	24305.359	44.604	50.6	1.2	NO	1.000	NO	bb
8	8 200715P1-12	Standard	100.000	5.69	165618.438	23221.037	89.153	102.6	2.6	NO	1.000	NO	bb
9	$9200715 \mathrm{P} 1-13$	Standard	250.000	5.69	338679.031	20839.002	203.152	242.9	-2.8	NO	1.000	NO	bb
10	10200715 P 1.14	Standard	500.000	5.69	629431.875	20109.285	391.257	503.4	0.7	NO	1.000	NO	bb

Dataset:	D:IPFAS5.PROIRESULTSL200715P11200715P1-CRV.qld
Last Altered:	Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 08:24:58 Pacific Daylight Time

Compound name: N-MeFOSA

Coefficient of Determination: R^2 $=0.999190$
Calibration curve: -0.000129273 * $x^{\wedge} 2+1.05734$ * $x+0.27278$
Response type: Internal Std (Ref 87), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name)	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	1.250	5.70	249.041	21841.283	1.701	1.4	8.1	NO	0.999	NO	bb
2	2 200715P1-06	Standard	2.500	5.70	459.993	23502.238	2.920	2.5	0.2	NO	0.999	NO	bb
3	3 200715P1-07	Standard	5.000	5.70	740.411	21928.951	5.038	4.5	-9.8	NO	0.999	NO	bb
4	4 200715P1-08	Standard	10.000	5.70	1602.713	21040.414	11.365	10.5	5.0	NO	0.999	NO	bb
5	5 200715P1-09	Standard	25.000	5.70	4599.471	23506.068	29.194	27.4	9.8	NO	0.999	NO	bb
6	6 200715P1-10	Standard	50.000	5.70	8422.188	22762.703	55.204	52.3	4.6	NO	0.999	NO	bb
7	7 200715P1-11	Standard	250.000	5.71	43301.352	24242.186	266.501	260.1	4.0	NO	0.999	NO	bb
8	8 200715P1-12	Standard	500.000	5.70	80660.758	23830.158	505.015	509.1	1.8	NO	0.999	NO	bb
9	9 200715P1-13	Standard	1250.000	5.70	166759.969	23068.273	1078.563	1194.2	-4.5	NO	0.999	NO	bb
10	10 200715P1-14	Standard	2500.000	5.70	290392.938	23374.256	1853.605	2544.3	1.8	NO	0.999	NO	bb

Compound name: PFTrDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999713$
Calibration curve: $-0.000380084^{*} x^{\wedge} 2+1.05341$ * $x+0.0381517$
Response type: Internal Std (Ref 83), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=e x c l u d \theta d$
1	1 200715P1-05	Standard	0.250	5.93	572.388	23416.920	0.306	0.3	1.5	NO	1.000	NO	bb
2	2 200715P1-06	Standard	0.500	5.93	1067.272	24413.588	0.546	0.5	-3.5	NO	1.000	NO	bb
3	3 200715P1-07	Standard	1.000	5.93	2152.266	24811.789	1.084	1.0	-0.7	NO	1.000	NO	bb
4	4 200715P1-08	Standard	2.000	5.94	3740.028	21661.838	2.158	2.0	0.7	NO	1.000	NO	bb
5	5 200715P1-09	Standard	5.000	5.93	11187.904	26248.602	5.328	5.0	0.6	NO	1.000	NO	bb
6	6 200715P1-10	Standard	10.000	5.93	19984.627	23602.262	10.584	10.0	0.5	NO	1.000	NO	bb
7	7 200715P1-11	Standard	50.000	5.94	99616.922	24305.359	51.232	49.5	-1.0	NO	1.000	NO	bb
8	8 200715P1-12	Standard	100.000	5.93	195091.750	23221.037	105.019	103.5	3.5	NO	1.000	NO	bb
9	9 200715P1-13	Standard	250.000	5.94	391657.625	20839.002	234.931	244.6	-2.2	NO	1.000	NO	bb
10	$10200715 \mathrm{P} 1-14$	Standard	500.000	5.93	697291.813	20109.285	433.439	502.6	0.5	NO	1.000	NO	bb

Dataset:	D:IPFAS5.PROIRESULTSL200715P11200715P1-CRV.qid
Last Altered:	Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 08:24:58 Pacific Daylight Time

Compound name: PFDoS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999750$
Calibration curve: -6.16511e-005* $x^{\wedge} 2+0.191239$ * $x+-0.000256267$
Response type: Internal Std (Ref 89), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	0.250	5.96	104.727	24885.520	0.053	0.3	10.6	NO	1.000	NO	bb
2	2 200715P1-06	Standard	0.500	5.96	169.514	24382.600	0.087	0.5	-8.8	NO	1.000	NO	bb
3	$3200715 \mathrm{P} 1-07$	Standard	1.000	5.96	353.472	24504.398	0.180	0.9	-5.6	NO	1.000	NO	bb
4	4 200715P1-08	Standard	2.000	5.96	684.205	23434.535	0.365	1.9	-4.5	NO	1.000	NO	bb
5	5 200715P1-09	Standard	5.000	5.95	2053.781	27046.730	0.949	5.0	-0.5	NO	1.000	NO	bb
6	6 200715P1-10	Standard	10.000	5.96	3855.758	23673.172	2.036	10.7	6.8	NO	1.000	NO	bb
7	$7200715 \mathrm{P} 1-11$	Standard	50.000	5.96	19223.158	24599.662	9.768	51.9	3.9	NO	1.000	NO	bb
8	$8200715 \mathrm{P} 1-12$	Standard	100.000	5.96	36401.352	24810.045	18.340	99.1	-0.9	NO	1.000	NO	bb
9	$9200715 \mathrm{P} 1-13$	Standard	250.000	5.96	76173.016	21943.178	43.392	246.5	-1.4	NO	1.000	NO	bb
10	10 200715P1-14	Standard	500.000	5.96	136127.438	21142.191	80.483	502.1	0.4	NO	1.000	NO	bb

Compound name: PFTeDA

Correlation coefficient: $\mathrm{r}=0.999012, \mathrm{r}^{\wedge} 2=0.998025$
Calibration curve: 0.566624 * $x+0.0868218$
Response type: Internal Std (Ref 89), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	0.250	6.15	402.921	24885.520	0.202	0.2	-18.4	NO	0.998	NO	bb
2	2 200715P1-06	Standard	0.500	6.15	641.972	24382.600	0.329	0.4	-14.5	NO	0.998	NO	MM
3	3 200715P1-07	Standard	1.000	6.14	1287.455	24504.398	0.657	1.0	0.6	NO	0.998	NO	bb
4	4 200715P1-08	Standard	2.000	6.14	2370.460	23434.535	1.264	2.1	3.9	NO	0.998	NO	bb
5	5 200715P1-09	Standard	5.000	6.15	6589.403	27046.730	3.045	5.2	4.4	NO	0.998	NO	bb
6	6 200715P1-10	Standard	10.000	6.14	11822.068	23673.172	6.242	10.9	8.6	NO	0.998	NO	MM
7	7 200715P1-11	Standard	50.000	6.15	61581.098	24599.662	31.292	55.1	10.1	NO	0.998	NO	MM
8	8 200715P1-12	Standard	100.000	6.15	120394.836	24810.045	60.658	106.9	6.9	NO	0.998	NO	MM
9	9 200715P1-13	Standard	250.000	6.15	253308.188	21943.178	144.298	254.5	1.8	NO	0.998	NO	MM
10	$10200715 \mathrm{P} 1-14$	Standard	500.000	6.15	462533.219	21142.191	273.466	482.5	-3.5	NO	0.998	NO	MM

Vista Analytical Laboratory
Dataset:
D:IPFAS5.PROIRESULTSI200715P11200715P1-CRV.qld
Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:
Thursday, July 16, 2020 08:24:58 Pacific Daylight Time

Compound name: N-EtFOSA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999721$
Calibration curve: $-8.20315 \mathrm{e}-005^{*} x^{\wedge} 2+1.16743^{*} x+0.168696$
Response type: Internal Std (Ref 91), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT ${ }^{-}$	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	ColD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	1.250	6.11	288.609	27398.318	1.572	1.2	-3.9	NO	1.000	NO	bb
2	2 200715P1-06	Standard	2.500	6.12	544.813	28358.557	2.866	2.3	-7.6	NO	1.000	NO	bb
3	3 200715P1-07	Standard	5.000	6.11	1171.463	27892.357	6.266	5.2	4.5	NO	1.000	NO	bb
4	4 200715P1-08	Standard	10.000	6.12	2153.836	26273.701	12.231	10.3	3.4	NO	1.000	NO	bb
5	5 200715P1-09	Standard	25.000	6.11	5904.786	30147.381	29.223	24.9	-0.3	NO	1.000	NO	bb
6	6 200715P1-10	Standard	50.000	6.11	11367.891	28474.869	59.564	51.1	2.1	NO	1.000	NO	bb
7	7 200715P1-11	Standard	250.000	6.12	57015.883	29372.900	289.613	252.4	1.0	NO	1.000	NO	bb
8	8 200715P1-12	Standard	500.000	6.11	105771.250	27323.699	577.560	513.1	2.6	NO	1.000	NO	bb
9	9 200715P1-13	Standard	1250.000	6.11	218266.484	25037.039	1300.687	1218.3	-2.5	NO	1.000	NO	bb
10	10 200715P1-14	Standard	2500.000	6.11	378527.219	23354.625	2418.205	2516.1	0.6	NO	1.000	NO	bb

Compound name: PFHxDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999849$
Calibration curve: $-0.000402925 * x^{\wedge} 2+0.976081^{*} x+0.0835205$
Response type: Internal Std (Ref 93), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

	\# Name	Type	Sta. Conc	RT	Area	is Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	x=excluded
1	$1200715 \mathrm{P} 1-05$	Standard	0.250	6.46	771.906	29059.072	0.332	0.3	1.9	NO	1.000	NO	bb
2	2 200715P1-06	Standard	0.500	6.46	1382.134	28296.508	0.611	0.5	8.0	NO	1.000	NO	bb
3	3 200715P1-07	Standard	1.000	6.46	2387.388	28548.980	1.045	1.0	-1.4	NO	1.000	NO	bb
4	4 200715P1-08	Standard	2.000	6.46	4402.578	26845.547	2.050	2.0	0.8	NO	1.000	NO	bb
5	5 200715P1-09	Standard	5.000	6.46	11945.094	31838.660	4.690	4.7	-5.4	NO	1.000	NO	bb
6	$6200715 \mathrm{P} 1-10$	Standard	10.000	6.46	21898.631	28631.020	9.561	9.7	-2.5	NO	1.000	NO	bb
7	7 200715P1-11	Standard	50.000	6.46	112753.984	30016.869	46.954	49.0	-2.0	NO	1.000	NO	bb
8	$8200715 \mathrm{P} 1-12$	Standard	100.000	6.46	211497.469	28390.104	93.121	99.4	-0.6	NO	1.000	NO	bb
9	9 200715P1-13	Standard	250.000	6.46	454277.656	25537.041	222.362	254.5	1.8	NO	1.000	NO	bb
10	10 200715P1-14	Standard	500.000	6.46	805205.250	26083.391	385.880	497.4	-0.5	NO	1.000	NO	bb

Dataset: D:IPFAS5.PRO\RESULTSI200715P11200715P1-CRV.qld
Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed: Thursday, July 16, 2020 08:24:58 Pacific Daylight Time

Compound name: PFODA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999959$
Calibration curve: -0.000226523 * $x^{\wedge} 2+0.792874$ * $x+-0.0169914$
Response type: Internal Std (Ref 93), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	FT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$\mathrm{x}=$ excluded
1	1 200715P1-05	Standard	0.250	6.69	419.173	29059.072	0.180	0.2	-0.5	NO	1.000	NO	bb
2	2 200715P1-06	Standard	0.500	6.69	864.419	28296.508	0.382	0.5	0.6	NO	1.000	NO	bb
3	3 200715P1-07	Standard	1.000	6.69	1680.293	28548.980	0.736	0.9	-5.0	NO	1.000	NO	bb
4	4 200715P1-08	Standard	2.000	6.69	3381.313	26845.547	1.574	2.0	0.4	NO	1.000	NO	bb
5	5 200715P1-09	Standard	5.000	6.69	9448.405	31838.660	3.709	4.7	-5.9	NO	1.000	NO	bb
6	$6200715 \mathrm{P} 1-10$	Standard	10.000	6.69	18288.852	28631.020	7.985	10.1	1.2	NO	1.000	NO	MM
7	7 200715P1-11	Standard	50.000	6.69	93904.891	30016.869	39.105	50.1	0.1	NO	1.000	NO	bb
8	8 200715P1-12	Standard	100.000	6.69	176125.734	28390.104	77.547	100.7	0.7	NO	1.000	NO	bb
9	9 200715P1-13	Standard	250.000	6.69	374745.625	25537.041	183.432	249.1	-0.4	NO	1.000	NO	bb
10	10 200715P1-14	Standard	500.000	6.69	709432.188	26083.391	339.983	500.3	0.1	NO	1.000	NO	bb

Compound name: N-MeFOSE

Correlation coefficient: $\mathrm{r}=0.998493, \mathrm{r}^{\wedge} 2=0.996988$
Calibration curve: 1.03662 * $x+0.326411$
Response type: Internal Std (Ref 95), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: $1 / \mathrm{x}$, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$\mathrm{x}=$ excluded
1	1 200715P1-05	Standard	1.250	6.29	191.783	22042.436	1.298	0.9	-25.0	NO	0.997	NO	bb
2	2 200715P1-06	Standard	2.500	6.29	497.276	22906.777	3.239	2.8	12.4	NO	0.997	NO	bb
3	3 200715P1-07	Standard	5.000	6.29	871.803	23014.031	5.652	5.1	2.7	NO	0.997	NO	bb
4	4 200715P1-08	Standard	10.000	6.29	1574.452	20678.135	11.360	10.6	6.4	NO	0.997	NO	bb
5	5 200715P1-09	Standard	25.000	6.29	4683.907	25029.580	27.921	26.6	6.5	NO	0.997	NO	bb
6	$6200715 \mathrm{P} 1-10$	Standard	50.000	6.29	8566.106	22782.658	56.098	53.8	7.6	NO	0.997	NO	bb
7	7 200715P1-11	Standard	250.000	6.30	45471.313	24770.096	273.892	263.9	5.6	NO	0.997	NO	bb
8	8 200715P1-12	Standard	500.000	6.29	88846.906	23290.061	569.168	548.7	9.7	NO	0.997	NO	bb
9	9 200715P1-13	Standard	1250.000	6.30	204808.953	22675.961	1347.572	1299.7	4.0	NO	0.997	NO	bb
10	10 200715P1-14	Standard	2500.000	6.30	401690.469	24273.727	2469.016	2381.5	-4.7	NO	0.997	NO	bb

Vista Analytical Laboratory
Dataset: D:IPFAS5.PROIRESULTSL200715P11200715P1-CRV.qld
Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed: Thursday, July 16, 2020 08:24:58 Pacific Daylight Time

Compound name: N-EtFOSE

Correlation coefficient: $\mathrm{r}=0.998790, \mathrm{r}^{\wedge} 2=0.997581$
Calibration curve: 0.94506 * $x+0.386549$
Response type: Internal Std (Ref 97), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: $1 / x$, Axis trans: None

	\# Narne	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	1.250	6.44	227.799	24906.385	1.365	1.0	-17.2	NO	0.998	NO	bb
2	2 200715P1-06	Standard	2.500	6.45	487.143	26213.271	2.773	2.5	1.0	NO	0.998	NO	MM
3	3 200715P1-07	Standard	5.000	6.44	908.112	25231.670	5.370	5.3	5.5	NO	0.998	NO	bb
4	4 200715P1-08	Standard	10.000	6.44	1747.612	24829.252	10.501	10.7	7.0	NO	0.998	NO	bb
5	$5200715 \mathrm{P} 1-09$	Standard	25.000	6.44	4976.437	27796.789	26.711	27.9	11.4	NO	0.998	NO	bb
6	6 200715P1-10	Standard	50.000	6.44	9296.296	26325.184	52.687	55.3	10.7	NO	0.998	NO	bb
7	7 200715P1-11	Standard	250.000	6.45	48084.113	28501.563	251.711	265.9	6.4	NO	0.998	NO	bb
8	8 200715P1-12	Standard	500.000	6.44	92497.383	26307.164	524.595	554.7	10.9	NO	0.998	NO	bb
9	9 200715P1-13	Standard	1250.000	6.45	210617.156	26478.449	1186.779	1255.4	0.4	NO	0.998	NO	bb
10	10 200715P1-14	Standard	2500.000	6.44	406837.031	26590.842	2282.744	2415.0	-3.4	NO	0.998	NO	bb

Compound name: 13C3-PFBA-EIS

Response Factor: 664.58

RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	is Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=e x c l u d e d$
1	1 200715P1-05	Standard	12.500	1.42	7806.605		7806.605	11.7	-6.0	NO		NO	bbX
2	2 200715P1-06	Standard	12.500	1.42	8077.563		8077.563	12.2	-2.8	NO		NO	MMX
3	3 200715P1-07	Standard	12.500	1.42	7777.376		7777.376	11.7	-6.4	NO		NO	MMX
4	4 200715P1-08	Standard	12.500	1.42	8496.101		8496.101	12.8	2.3	NO		NO	MMX
5	5 200715P1-09	Standard	12.500	1.42	8430.298		8430.298	12.7	1.5	NO		NO	bbX
6	6 200715P1-10	Standard	12.500	1.42	8307.313		8307.313	12.5	0.0	NO		NO	MM
7	7 200715P1-11	Standard	12.500	1.42	8312.727		8312.727	12.5	0.1	NO		NO	MMX
8	8 200715P1-12	Standard	12.500	1.42	8540.275		8540.275	12.9	2.8	NO		NO	bbX
9	9 200715P1-13	Standard	12.500	1.42	8380.282		8380.282	12.6	0.9	NO		NO	MMX
10	10 200715P1-14	Standard	12.500	1.42	9347.157		9347.157	14.1	12.5	NO		NO	MMX

Vista Analytical Laboratory

Dataset:	D:IPFAS5.PROIRESULTSL200715P11200715P1-CRV.qld
Last Altered:	Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 08:24:58 Pacific Daylight Time

Compound name: 13C3-PFBA-RSD

Response Factor: 0.918818
RRF SD: 0.0286318 , Relative SD: 3.11616
Response type: Internal Std (Ref 99), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	$1200715 \mathrm{P} 1-05$	Standard	12.500	1.42	7806.605	8065.804	12.098	13.2	5.3	NO		NO	bb
2	2 200715P1-06	Standard	12.500	1.42	8068.967	8879.700	11.359	12.4	-1.1	NO		NO	MM
3	$3200715 \mathrm{P} 1-07$	Standard	12.500	1.42	8026.422	8829.724	11.363	12.4	-1.1	NO		NO	MM
4	4 200715P1-08	Standard	12.500	1.42	8084.584	9003.292	11.224	12.2	-2.3	NO		NO	MM
5	5 200715P1-09	Standard	12.500	1.42	8430.298	9562.452	11.020	12.0	-4.1	NO		NO	bb
6	6 200715P1-10	Standard	12.500	1.42	8262.543	8705.206	11.864	12.9	3.3	NO		NO	MM
7	7 200715P1-11	Standard	12.500	1.42	8241.467	9065.156	11.364	12.4	-1.1	NO		NO	MM
8	8 200715P1-12	Standard	12.500	1.42	8540.275	9629.864	11.086	12.1	-3.5	NO		NO	bb
9	$9200715 \mathrm{P} 1-13$	Standard	12.500	1.42	8375.872	8851.127	11.829	12.9	3.0	NO		NO	MM
10	10 200715P1-14	Standard	12.500	1.42	9330.408	10015.587	11.645	12.7	1.4	NO		NO	MM

Compound name: 13C3-PFPeA-EIS

Response Factor: 1126.82
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	$1200715 \mathrm{P} 1-05$	Standard	12.500	2.36	13826.016		13826.016	12.3	-1.8	NO		NO	bbX
$?$	2 200715P1-06	Standard	12.500	2.36	14065.802		14065.802	12.5	-0.1	NO		NO	bbX
3	3 200715P1-07	Standard	12.500	2.36	13909.148		13909.148	12.3	-1.3	NO		NO	bbX
4	4 200715P1-08	Standard	12.500	2.36	13478.511		13478.511	12.0	-4.3	NO		NO	$b b X$
5	5 200715P1-09	Standard	12.500	2.36	15018.269		15018.269	13.3	6.6	NO		NO	
6	6 200715P1-10	Standard	12.500	2.36	14085.286		14085.286	12.5	0.0	NO		NO	bb
7	7 200715P1-11	Standard	12.500	2.36	15158.109		15158.109	13.5	7.6	NO		NO	bbX
8	8 200715P1-12	Standard	12.500	2.36	14698.876		14698.876	13.0	4.4	NO		NO	bbX
9	9 200715P1-13	Standard	12.500	2.36	14042.888		14042.888	12.5	-0.3	NO		NO	bbX
10	10200715 P 1 -14	Standard	12.500	2.36	14165.455		14165.455	12.6	0.6	NO		NO	bbX

Dataset:	D:IPFAS5.PROIRESULTSI200715P11200715P1-CRV.qld
Last Altered:	Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 08:24:58 Pacific Daylight Time

Compound name: 13C3-PFPeA-RSD

Response Factor: 0.767707
RRF SD: 0.0318764 , Relative SD: 4.15216
Response type: Internal Std (Ref 101), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name;	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$\mathrm{x}=$ excluded
1	1 200715P1-05	Standard	12.500	2.36	13826.016	17566.010	9.839	12.8	2.5	NO		NO	bb
2	2 200715P1-06	Standard	12.500	2.36	14065.802	19701.178	8.924	11.6	-7.0	NO		NO	bb
3	3 200715P1-07	Standard	12.500	2.36	13909.148	18014.391	9.651	12.6	0.6	NO		NO	bb
4	4 200715P1-08	Standard	12.500	2.36	13478.511	16962.791	9.932	12.9	3.5	NO		NO	bb
5	5 200715P1-09	Standard	12.500	2.36	15018.269	20454.236	9.178	12.0	-4.4	NO		NO	bb
6	6 200715P1-10	Standard	12.500	2.36	14085.286	19295.111	9.125	11.9	-4.9	NO		NO	bb
7	7 200715P1-11	Standard	12.500	2.36	15158.109	19661.080	9.637	12.6	0.4	NO		NO	bb
8	8 200715P1-12	Standard	12.500	2.36	14698.876	19048.023	9.646	12.6	0.5	NO		NO	bb
9	9 200715P1-13	Standard	12.500	2.36	14042.888	17808.982	9.857	12.8	2.7	NO		NO	bb
10	10 200715P1-14	Standard	12.500	2.36	14165.455	17404.020	10.174	13.3	6.0	NO		NO	bb

Compound name: 13C3-PFBS-EIS

Response Factor: 145.309
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$\mathrm{x}=$ excluded
1	1 200715P1-05	Standard	12.500	2.64	1738.671		1738.671	12.0	-4.3	NO		NO	bbX
2	2 200715P1-06	Standard	12.500	2.63	1667.350		1667.350	11.5	-8.2	NO		NO	$b b x$
3	3 200715P1-07	Standard	12.500	2.64	1738.769		1738.769	12.0	-4.3	NO		NO	$b b x$
4	$4200715 \mathrm{P} 1-08$	Standard	12.500	2.64	1599.076		1599.076	11.0	-12.0	NO		NO	bbX
5	5 200715P1-09	Standard	12.500	2.64	1845.682		1845.682	12.7	1.6	NO		NO	MMX
6	6 200715P1-10	Standard	12.500	2.64	1816.360		1816.360	12.5	0.0	NO		NO	bb
7	7 200715P1-11	Standard	12.500	2.64	1839.425		1839.425	12.7	1.3	NO		NO	$b b X$
8	8 200715P1-12	Standard	12.500	2.63	1744.090		1744.090	12.0	-4.0	NO		NO	$b b X$
9	9 200715P1-13	Standard	12.500	2.64	1646.553		1646.553	11.3	-9.3	NO		NO	$b b X$
10	$10200715 \mathrm{P} 1-14$	Standard	12.500	2.64	1617.881		1617.881	11.1	-10.9	NO		NO	bbX

Dataset:	D:IPFAS5.PROIRESULTSL200715P1L200715P1-CRV.qld
Last Altered:	Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 08:24:58 Pacific Daylight Time

Compound name: 13C3-PFBS-RSD

Response Factor: 1.23836
RRF SD: 0.0494305 , Relative SD: 3.99161
Response type: Internal Std (Ref 102), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Fag	CoD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	12.500	2.64	1738.671	1309.306	16.599	13.4	7.2	NO		NO	bb
2	2 200715P1-06	Standard	12.500	2.63	1667.350	1450.812	14.366	11.6	-7.2	NO		NO	bb
3	3 200715P1-07	Standard	12.500	2.64	1738.769	1394.800	15.583	12.6	0.7	NO		NO	bb
4	4 200715P1-08	Standard	12.500	2.64	1599.076	1333.273	14.992	12.1	-3.1	NO		NO	bb
5	5 200715P1-09	Standard	12.500	2.64	1842.397	1531.875	15.034	12.1	-2.9	NO		NO	MM
16	$6200715 \mathrm{P} 1-10$	Standard	12.500	2.64	1816.360	1411.437	16.086	13.0	3.9	NO		NO	bb
7	7 200715P1-11	Standard	12.500	2.64	1839.425	1478.114	15.556	12.6	0.5	NO		NO	bb
18	8 200715P1-12	Standard	12.500	2.63	1744.090	1428.318	15.263	12.3	-1.4	NO		NO	bb
9	9 200715P1-13	Standard	12.500	2.64	1646.553	1320.536	15.586	12.6	0.7	NO		NO	bb
10	10 200715P1-14	Standard	12.500	2.64	1617.881	1285.609	15.731	12.7	1.6	NO		NO	bb

Compound name: 13C3-HFPO-DA-EIS

Response Factor: 258.676
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dov	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	12.500	3.36	3054.830		3054.830	11.8	-5.5	NO		NO	bbX
2	2 200715P1-06	Standard	12.500	3.38	2970.628		2970.628	11.5	-8.1	NO		NO	$b b x$
3	$3200715 \mathrm{P} 1-07$	Standard	12.500	3.38	2768.974		2768.974	10.7	-14.4	NO		NO	$b b x$
4	4 200715P1-08	Standard	12.500	3.38	2801.989		2801.989	10.8	-13.3	NO		NO	$b b x$
5	5 200715P1-09	Standard	12.500	3.38	3238.469		3238.469	12.5	0.2	NO		NO	bbX
6	6 200715P1-10	Standard	12.500	3.38	3233.451		3233.451	12.5	0.0	NO		NO	bb
7	7 200715P1-11	Standard	12.500	3.38	3225.027		3225.027	12.5	-0.3	NO		NO	$b b X$
8	8 200715P1-12	Standard	12.500	3.38	3287.801		3287.801	12.7	1.7	NO		NO	$b b x$
9	9 200715P1-13	Standard	12.500	3.38	3081.841		3081.841	11.9	-4.7	NO		NO	$b b x$
10	10 200715P1-14	Standard	12.500	3.38	3134.487		3134.487	12.1	-3.1	NO		NO	bbX

Dataset:
D:IPFAS5.PROXRESULTSL200715P1L200715P1-CRV.qld
Last Altered:
Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:
Thursday, July 16, 2020 08:24:58 Pacific Daylight Time

Compound name: 13C3-HFPO-DA-RSD

Response Factor: 0.165928
RRF SD: 0.00944647 , Relative SD: 5.69312
Response type: Internal Std (Ref 101), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	12.500	3.36	3054.830	17566.010	2.174	13.1	4.8	NO		NO	bb
2	2 200715P1-06	Standard	12.500	3.38	2970.628	19701.178	1.885	11.4	-9.1	NO		NO	bb
3	3 200715P1-07	Standard	12.500	3.38	2768.974	18014.391	1.921	11.6	-7.4	NO		NO	bb
4	4 200715P1-08	Standard	12.500	3.38	2801.989	16962.791	2.065	12.4	-0.4	NO		NO	bb
5	5 200715P1-09	Standard	12.500	3.38	3238.469	20454.236	1.979	11.9	-4.6	NO		NO	bb
6	$6200715 \mathrm{P} 1-10$	Standard	12.500	3.38	3233.451	19295.111	2.095	12.6	1.0	NO		NO	bb
7	7 200715P1-11	Standard	12.500	3.38	3225.027	19661.080	2.050	12.4	-1.1	NO		NO	bb
8	$8200715 \mathrm{P} 1-12$	Standard	12.500	3.38	3287.801	19048.023	2.158	13.0	4.0	NO		NO	bb
9	$9200715 \mathrm{P} 1-13$	Standard	12.500	3.38	3081.841	17808.982	2.163	13.0	4.3	NO		NO	bb
10	$10200715 \mathrm{P} 1-14$	Standard	12.500	3.38	3134.487	17404.020	2.251	13.6	8.5	NO		NO	bb

Compound name: 13C2-4:2 FTS-EIS

Response Factor: 152.511
RRF SD: 0 , Relative SD: 0
Response type: External SId, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$\mathrm{x}=$ excluded
1	1200715 P 1.05	Standard	12.500	3.08	1860.907		1860.907	12.2	-2.4	NO		NO	bbX
2	2 200715P1-06	Standard	12.500	3.07	1772.278		1772.278	11.6	-7.0	NO		NO	bbX
3	3 200715P1-07	Standard	12.500	3.08	1924.178		1924.178	12.6	0.9	NO		NO	$b b x$
4	4 200715P1-08	Standard	12.500	3.08	1898.710		1898.710	12.4	-0.4	NO		NO	bbX
5	5 200715P1-09	Standard	12.500	3.08	1914.402		1914.402	12.6	0.4	NO		NO	bbX
6	6 200715P1-10	Standard	12.500	3.08	1906.392		1906.392	12.5	0.0	NO		NO	bb
7	7 200715P1-11	Standard	12.500	3.08	1813.734		1813.734	11.9	-4.9	NO		NO	$b b x$
8	$8200715 \mathrm{P} 1-12$	Standard	12.500	3.08	1977.304		1977.304	13.0	3.7	NO		NO	$b b x$
9	$9200715 \mathrm{P} 1-13$	Standard	12.500	3.08	1612.728		1612.728	10.6	-15.4	NO		NO	$b b x$
10	10 200715P1-14	Standard	12.500	3.08	1624.158		1624.158	10.6	-14.8	NO		NO	$b b x$

Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:
Thursday, July 16, 2020 08:24:58 Pacific Daylight Time

Compound name: 13C2-4:2 FTS-RSD
Response Factor: 1.31429
RRF SD: 0.0853895 , Relative SD: 6.497
Response type: Internal Std (Ref 102), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	COD Flag	$x=$ excluded
1	1 200715P1-05	Standard	12.500	3.08	1860.907	1309.306	17.766	13.5	8.1	NO		NO	bb
2	2 200715P1-06	Standard	12.500	3.07	1772.278	1450.812	15.270	11.6	-7.1	NO		NO	bb
3	3 200715P1-07	Standard	12.500	3.08	1924.178	1394.800	17.244	13.1	5.0	NO		NO	bb
4	4200715 P 1 -08	Standard	12.500	3.08	1898.710	1333.273	17.801	13.5	8.4	NO		NO	bb
5	5 200715P1-09	Standard	12.500	3.08	1914.402	1531.875	15.621	11.9	-4.9	NO		NO	bb
6	$6200715 \mathrm{P} 1-10$	Standard	12.500	3.08	1906.392	1411.437	16.883	12.8	2.8	NO		NO	bb
7	$7200715 \mathrm{P} 1-11$	Standard	12.500	3.08	1813.734	1478.114	15.338	11.7	-6.6	NO		NO	bb
8	8 200715P1-12	Standard	12.500	3.08	1977.304	1428.318	17.304	13.2	5.3	NO		NO	bb
9	9 200715P1-13	Standard	12.500	3.08	1612.728	1320.536	15.266	11.6	-7.1	NO		NO	bb
10	10 200715P1-14	Standard	12.500	3.08	1624.158	1285.609	15.792	12.0	-3.9	NO		NO	bb

Compound name: 13C2-PFHxA-EIS

Response Factor: 1226.71
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	Col	CoD Flag	$\mathrm{x}=$ excluded
1	$1200715 \mathrm{P} 1-05$	Standard	12.500	3.16	15339.016		15339.016	12.5	0.0	NO		NO	bbX
2	2 200715P1-06	Standard	12.500	3.16	15588.797		15588.797	12.7	1.7	NO		NO	bbX
3	$3200715 \mathrm{P} 1-07$	Standard	12.500	3.16	14456.156		14456.156	11.8	-5.7	NO		NO	bbx
4	4200715 P 1 -08	Standard	12.500	3.16	14190.115		14190.115	11.6	-7.5	NO		NO	$b b x$
5	5 200715P1-09	Standard	12.500	3.16	16557.631		16557.631	13.5	8.0	NO		NO	bbx
6	6 200715P1-10	Standard	12.500	3.16	15333.919		15333.919	12.5	0.0	NO		NO	bb
7	7 200715P1-11	Standard	12.500	3.16	15465.936		15465.936	12.6	0.9	NO		NO	$b \mathrm{bx}$
13	8 200715P1-12	Standard	12.500	3.16	15965.140		15965.140	13.0	4.1	NO		NO	$b b x$
9	9 200715P1-13	Standard	12.500	3.16	14763.244		14763.244	12.0	-3.7	NO		NO	bbX
10	10 200715P1-14	Standard	12.500	3.16	15194.222		15194.222	12.4	-0.9	NO		NO	bbx

Dataset:	Z:IPFAS5.PRO\RESULTS\200715P1 1200715 P1-CRV.qId
Last Altered:	Thursday, July 16, 2020 10:32:09 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 10:34:58 Pacific Daylight Time

Compound name: 13C2-PFHxA-RSD

Response Factor: 0.823449
RRF SD: 0.0319831 , Relative SD: 3.88404
Response type: Internal Std (Ref 101), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$\mathrm{x}=$ excluded
1	1 200715P1-05	Standard	12.500	3.16	15339.016	17566.010	10.915	13.3	6.0	NO		NO	bb
2	2 200715P1-06	Standard	12.500	3.16	15588.797	19701.178	9.891	12.0	-3.9	NO		NO	bb
3	3 200715P1-07	Standard	12.500	3.16	14456.156	18014.391	10.031	12.2	-2.5	NO		NO	bb
4	4 200715P1-08	Standard	12.500	3.16	14190.115	16962.791	10.457	12.7	1.6	NO		NO	bb
5	5 200715P1-09	Standard	12.500	3.16	16557.631	20454.236	10.119	12.3	-1.7	NO		NO	bb
6	6 200715P1-10	Standard	12.500	3.16	15333.919	19295.111	9.934	12.1	-3.5	NO		NO	bb
7	7 200715P1-11	Standard	12.500	3.16	15465.936	19661.080	9.833	11.9	-4.5	NO		NO	bb
8	8 200715P1-12	Standard	12.500	3.16	15965.140	19048.023	10.477	12.7	1.8	NO		NO	bb
9	9 200715P1-13	Standard	12.500	3.16	14763.244	17808.982	10.362	12.6	0.7	NO		NO	bb
10	10 200715P1-14	Standard	12.500	3.16	15194.222	17404.020	10.913	13.3	6.0	NO		NO	bb

Compound name: 13C4-PFHpA-EIS

Response Factor: 1270.33
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	12.500	3.75	14141.860		14141.860	11.1	-10.9	NO		NO	bbX
2	2 200715P1-06	Standard	12.500	3.76	14738.732		14738.732	11.6	-7.2	NO		NO	bbx
3	3 200715P1-07	Standard	12.500	3.76	14201.896		14201.896	11.2	-10.6	NO		NO	bbX
4	4 200715P1-08	Standard	12.500	3.76	14172.102		14172.102	11.2	-10.7	NO		NO	bbX
5	5 200715P1-09	Standard	12.500	3.76	15900.185		15900.185	12.5	0.1	NO		NO	bbX
6	$6200715 \mathrm{P} 1-10$	Standard	12.500	3.76	15879.081		15879.081	12.5	0.0	NO		NO	bb
7	7200715 P 1 -11	Standard	12.500	3.76	13898.979		13898.979	10.9	-12.5	NO		NO	bbX
8	8 200715P1-12	Standard	12.500	3.76	13236.320		13236.320	10.4	-16.6	NO		NO	bbX
9	$9200715 \mathrm{P} 1-13$	Standard	12.500	3.76	13781.080		13781.080	10.8	-13.2	NO		NO	bbX
10	10 200715P1-14	Standard	12.500	3.76	13020.542		13020.542	10.2	-18.0	NO		NO	bbX

Vista Analytical Laboratory

Dataset:	D:IPFAS5.PRO\RESULTSL200715P11200715P1-CRV.qld
Last Altered:	Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 08:24:58 Pacific Daylight Time

Compound name: 13C4-PFHPA-RSD

Response Factor: 0.770112
RRF SD: 0.0463136 , Relative SD: 6.01387
Response type: Internal Std (Ref 101), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	12.500	3.75	14141.860	17566.010	10.063	13.1	4.5	NO		NO	bb
2	2 200715P1-06	Standard	12.500	3.76	14738.732	19701.178	9.351	12.1	-2.9	NO		NO	bb
3	$3200715 \mathrm{P} 1-07$	Standard	12.500	3.76	14201.896	18014.391	9.855	12.8	2.4	NO		NO	bb
4	$4200715 \mathrm{P} 1-08$	Standard	12.500	3.76	14172.102	16962.791	10.444	13.6	8.5	NO		NO	bb
5	5 200715P1-09	Standard	12.500	3.76	15900.185	20454.236	9.717	12.6	0.9	NO		NO	bb
6	6 200715P1-10	Standard	12.500	3.76	15879.081	19295.111	10.287	13.4	6.9	NO		NO	bb
7	7 200715P1-11	Standard	12.500	3.76	13898.979	19661.080	8.837	11.5	-8.2	NO		NO	bb
8	8 200715P1-12	Standard	12.500	3.76	13236.320	19048.023	8.686	11.3	-9.8	NO		NO	bb
9	9 200715P1-13	Standard	12.500	3.76	13781.080	17808.982	9.673	12.6	0.5	NO		NO	bb
10	$10200715 \mathrm{P} 1-14$	Standard	12.500	3.76	13020.542	17404.020	9.352	12.1	-2.9	NO		NO	bb

Compound name: 13C3-PFHxS-EIS

Response Factor: 268.614
RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Sld. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CODFlag	$x=$ excluded
1	1 200715P1-05	Standard	12.500	3.90	3286.932		3286.932	12.2	-2.1	NO		NO	bbX
2	2 200715P1-06	Standard	12.500	3.90	3456.514		3456.514	12.9	2.9	NO		NO	$b b x$
3	$3200715 \mathrm{P} 1-07$	Standard	12.500	3.90	3296.439		3296.439	12.3	-1.8	NO		NO	$b b x$
4	4 200715P1-08	Standard	12.500	3.91	3275.624		3275.624	12.2	-2.4	NO		NO	$b b X$
5	5 200715P1-09	Standard	12.500	3.90	3663.371		3663.371	13.6	9.1	NO		NO	bbX
6	$6200715 \mathrm{P} 1-10$	Standard	12.500	3.90	3357.679		3357.679	12.5	0.0	NO		NO	bb
7	7 200715P1-11	Standard	12.500	3.91	3494.369		3494.369	13.0	4.1	NO		NO	bbX
8	8 200715P1-12	Standard	12.500	3.91	3507.856		3507.856	13.1	4.5	NO		NO	$b b X$
9	9 200715P1-13	Standard	12.500	3.91	3136.063		3136.063	11.7	-6.6	NO		NO	$b b X$
10	10 200715P1-14	Standard	12.500	3.91	3012.524		3012.524	11.2	-10.3	NO		NO	$b b X$

Dataset: D:IPFAS5.PROIRESULTSL200715P11200715P1-CRV.qld

Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:
Thursday, July 16, 2020 08:24:58 Pacific Daylight Time

Compound name: 13C3-PFHxS-RSD

Response Factor: 2.40216
RRF SD: 0.0535597, Relative SD: 2.22965
Response type: Internal Std (Ref 102), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flacg	$x=$ excluderd
1	1 200715P1-05	Standard	12.500	3.90	3286.932	1309.306	31.380	13.1	4.5	NO		NO	bb
2	2 200715P1-06	Standard	12.500	3.90	3456.514	1450.812	29.781	12.4	-0.8	NO		NO	bb
3	3 200715P1-07	Standard	12.500	3.90	3296.439	1394.800	29.542	12.3	-1.6	NO		NO	bb
4	$4200715 \mathrm{P} 1-08$	Standard	12.500	3.91	3275.624	1333.273	30.710	12.8	2.3	NO		NO	bb
5	5 200715P1-09	Standard	12.500	3.90	3663.371	1531.875	29.893	12.4	-0.4	NO		NO	bb
6	$6200715 \mathrm{P} 1-10$	Standard	12.500	3.90	3357.679	1411.437	29.736	12.4	-1.0	NO		NO	bb
7	$7200715 \mathrm{P} 1-11$	Standard	12.500	3.91	3494.369	1478.114	29.551	12.3	-1.6	NO		NO	bb
8	8 200715P1-12	Standard	12.500	3.91	3507.856	1428.318	30.699	12.8	2.2	NO		NO	bb
9	$9200715 \mathrm{P} 1-13$	Standard	12.500	3.91	3136.063	1320.536	29.686	12.4	-1.1	NO		NO	bb
10	10 200715P1-14	Standard	12.500	3.91	3012.524	1285.609	29.291	12.2	-2.5	NO		NO	bb

Compound name: 13C2-6:2 FTS-EIS

Response Factor: 189.641
RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	COD Flag	$\mathrm{x}=$ excluded
1	1 200715P1-05	Standard	12.500	4.22	2288.134		2288.134	12.1	-3.5	NO		NO	bbX
2	2 200715P1-06	Standard	12.500	4.22	2199.076		2199.076	11.6	-7.2	NO		NO	$b b X$
3	3 200715P1-07	Standard	12.500	4.22	2229.958		2229.958	11.8	-5.9	NO		NO	$b b X$
4	4 200715P1-08	Standard	12.500	4.22	2106.058		2106.058	11.1	-11.2	NO		NO	$b b X$
5	5 200715P1-09	Standard	12.500	4.22	2461.530		2461.530	13.0	3.8	NO		NO	$b b X$
6	6 200715P1-10	Standard	12.500	4.22	2370.508		2370.508	12.5	0.0	NO		NO	$b b$
7	7 200715P1-11	Standard	12.500	4.22	2253.882		2253.882	11.9	-4.9	NO		NO	bbX
8	$8200715 \mathrm{P} 1-12$	Standard	12.500	4.22	2254.202		2254.202	11.9	-4.9	NO		NO	$b b x$
9	9 200715P1-13	Standard	12.500	4.22	2039.324		2039.324	10.8	-14.0	NO		NO	$b b x$
10	10 200715P1-14	Standard	12.500	4.22	2158.935		2158.935	11.4	-8.9	NO		NO	bbX

Last Altered: Thursday, July 16, 2020 10:32:09 Pacific Daylight Time

Printed: Thursday, July 16, 2020 10:32:09 Pacific Daylight Time
Thursday, July 16, 2020 10:34:58 Pacific Daylight Time

Compound name: 13C2-6:2 FTS-RSD
Response Factor: 0.526333
RRF SD: 0.0265128 , Relative SD: 5.03726
Response type: Internal Std (Ref 105), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$\mathrm{x}=$ excluded
1	1 200715P1-05	Standard	12.500	4.22	2288.134	4219.512	6.778	12.9	3.0	NO		NO	bb
2	2 200715P1-06	Standard	12.500	4.22	2199.076	4605.905	5.968	11.3	-9.3	NO		NO	bb
3	$3200715 \mathrm{P} 1-07$	Standard	12.500	4.22	2229.958	4267.988	6.531	12.4	-0.7	NO		NO	bb
4	4 200715P1-08	Standard	12.500	4.22	2106.058	4133.559	6.369	12.1	-3.2	NO		NO	bo
5	5 200715P1-09	Standard	12.500	4.22	2461.530	4631.470	6.643	12.6	1.0	NO		NO	bb
6	6 200715P 1-10	Standard	12.500	4.22	2370.508	4210.171	7.038	13.4	7.0	NO		NO	bb
7	7 200715P1-11	Standard	12.500	4.22	2253.882	4449.938	6.331	12.0	-3.8	NO		NO	bb
8	8 200715P1-12	Standard	12.500	4.22	2254.202	4390.262	6.418	12.2	-2.4	NO		NO	bb
9	$9200715 \mathrm{P} 1-13$	Standard	12.500	4.22	2039.324	3823.365	6.667	12.7	1.3	NO		NO	bb
10	10 200715P1-14	Standard	12.500	4.22	2158.935	3829.495	7.047	13.4	7.1	NO		NO	bb

Compound name: 13C5-PFNA-EIS

Response Factor: 1488.46
RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	12.500	4.72	18166.605		18166.605	12.2	-2.4	NO		NO	bbX
2	2 200715P1-06	Standard	12.500	4.72	18475.305		18475.305	12.4	-0.7	NO		NO	$b b X$
3	3 200715P1-07	Standard	12.500	4.72	16942.672		16942.672	11.4	-8.9	NO		NO	$b b x$
4	4 200715P1-08	Standard	12.500	4.72	16943.467		16943.467	11.4	-8.9	NO		NO	$b b x$
5	5 200715P1-09	Standard	12.500	4.72	18984.844		18984.844	12.8	2.0	NO		NO	$b b x$
6	6 200715P1-10	Standard	12.500	4.72	18605.793		18605.793	12.5	0.0	NO		NO	bb
7	7 200715P1-11	Standard	12.500	4.72	17815.230		17815.230	12.0	-4.2	NO		NO	$b \mathrm{bx}$
8	8 200715P1-12	Standard	12.500	4.72	17661.139		17661.139	11.9	-5.1	NO		NO	$b b x$
9	9 200715P1-13	Standard	12.500	4.72	16655.285		16655.285	11.2	-10.5	NO		NO	$b b x$
10	10 200715P1-14	Standard	12.500	4.72	15295.544		15295.544	10.3	-17.8	NO		NO	$b \mathrm{bx}$

Dataset: D:IPFAS5.PROIRESULTSI200715P1\200715P1-CRV.qld

Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed: Thursday, July 16, 2020 08:24:58 Pacific Daylight Time

Compound name: 13C5-PFNA-RSD

Response Factor: 0.925392
RRF SD: 0.0287632 , Relative SD: 3.10822
Response type: Internal Std (Ref 104), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$\mathrm{x}=$ excluded
1	1 200715P1-05	Standard	12.500	4.72	18166.605	18321.781	12.394	13.4	7.1	NO		NO	bb
2	2 200715P1-06	Standard	12.500	4.72	18475.305	20475.734	11.279	12.2	-2.5	NO		NO	bb
3	3 200715P1-07	Standard	12.500	4.72	16942.672	18416.609	11.500	12.4	-0.6	NO		NO	bb
4	4 200715P1-08	Standard	12.500	4.72	16943.467	18333.438	11.552	12.5	-0.1	NO		NO	bb
5	5 200715P1-09	Standard	12.500	4.72	18984.844	20861.383	11.376	12.3	-1.7	NO		NO	bb
6	$6200715 \mathrm{P} 1-10$	Standard	12.500	4.72	18605.793	19774.121	11.761	12.7	1.7	NO		NO	bb
7	7 200715P1-11	Standard	12.500	4.72	17815.230	19769.285	11.264	12.2	-2.6	NO		NO	bb
8	8200715 P 1 -12	Standard	12.500	4.72	17661.139	19395.494	11.382	12.3	-1.6	NO		NO	bb
9	$9200715 \mathrm{P} 1-13$	Standard	12.500	4.72	16655.285	17507.348	11.892	12.9	2.8	NO		NO	bb
10	10 200715P1-14	Standard	12.500	4.72	15295.544	16959.104	11.274	12.2	-2.5	NO		NO	bb

Compound name: 13C8-PFOSA-EIS

Response Factor: 594.784
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=0 x$ cluded
1	1 200715P1-05	Standard	12.500	4.76	7423.152		7423.152	12.5	-0.2	NO		NO	bbX
2	2 200715P1-06	Standard	12.500	4.76	7301.197		7301.197	12.3	-1.8	NO		NO	$b b x$
3	3 200715P1-07	Standard	12.500	4.76	7447.246		7447.246	12.5	0.2	NO		NO	$b b x$
4	4 200715P1-08	Standard	12.500	4.77	6848.962		6848.962	11.5	-7.9	NO		NO	$b b X$
5	5 200715P1-09	Standard	12.500	4.77	7848.611		7848.611	13.2	5.6	NO		NO	$b b X$
6	6 200715P1-10	Standard	12.500	4.77	7434.802		7434.802	12.5	0.0	NO		NO	bb
7	7 200715P1-11	Standard	12.500	4.77	7334.455		7334.455	12.3	-1.3	NO		NO	bbX
8	8 200715P1-12	Standard	12.500	4.77	7561.286		7561.286	12.7	1.7	NO		NO	bbX
9	9 200715P1-13	Standard	12.500	4.77	6583.585		6583.585	11.1	-11.4	NO		NO	$b b X$
10	$10200715 \mathrm{P} 1-14$	Standard	12.500	4.77	6491.171		6491.171	10.9	-12.7	NO		NO	$b b X$

Dataset:
D:IPFAS5.PROIRESULTS\200715P1【200715P1-CRV.qld
Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed: Thursday, July 16, 2020 08:24:58 Pacific Daylight Time

Compound name: 13C8-PFOSA-RSD

Response Factor: 0.4475
RRF SD: 0.0170834 , Relative SD: 3.81753
Response type: Internal Std (Ref 107), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Cone	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	12.500	4.76	7423.152	15334.599	6.051	13.5	8.2	NO		NO	bb
2	2 200715P1-06	Standard	12.500	4.76	7301.197	17351.859	5.260	11.8	-6.0	NO		NO	bb
3	3 200715P1-07	Standard	12.500	4.76	7447.246	16905.795	5.506	12.3	-1.6	NO		NO	bb
4	$4200715 \mathrm{P} 1-08$	Standard	12.500	4.77	6848.962	15689.824	5.457	12.2	-2.5	NO		NO	bb
5	5 200715P1-09	Standard	12.500	4.77	7848.611	17768.025	5.522	12.3	-1.3	NO		NO	bb
6	$6200715 \mathrm{P} 1-10$	Standard	12.500	4.77	7434.802	16785.340	5.537	12.4	-1.0	NO		NO	bb
7	7 200715P1-11	Standard	12.500	4.77	7334.455	16712.057	5.486	12.3	-1.9	NO		NO	bb
8	8 200715P1-12	Standard	12.500	4.77	7561.286	16502.117	5.728	12.8	2.4	NO		NO	bb
9	9 200715P1-13	Standard	12.500	4.77	6583.585	14566.803	5.649	12.6	1.0	NO		NO	bb
10	$10200715 \mathrm{P} 1-14$	Standard	12.500	4.77	6491.171	14129.214	5.743	12.8	2.7	NO		NO	bb

Compound name: 13C2-PFOA-EIS

Response Factor: 1519.81
RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	12.500	4.27	18747.258		18747.258	12.3	-1.3	NO		NO	bbX
2	2 200715P1-06	Standard	12.500	4.28	18013.293		18013.293	11.9	-5.2	NO		NO	bbx
3	3 200715P1-07	Standard	12.500	4.28	18092.994		18092.994	11.9	-4.8	NO		NO	bbX
4	4 200715P1-08	Standard	12.500	4.28	17356.375		17356.375	11.4	-8.6	NO		NO	bbx
5	5 200715P1-09	Standard	12.500	4.28	20100.508		20100.508	13.2	5.8	NO		NO	bbX
16	6 200715P1-10	Standard	12.500	4.28	18997.652		18997.652	12.5	0.0	NO		NO	bb
7	$7200715 \mathrm{P} 1-11$	Standard	12.500	4.28	18724.668		18724.668	12.3	-1.4	NO		NO	bbx
8	8 200715P1-12	Standard	12.500	4.28	18385.432		18385.432	12.1	-3.2	NO		NO	bbX
9	$9200715 \mathrm{P} 1-13$	Standard	12.500	4.28	16259.043		16259.043	10.7	-14.4	NO		NO	$b b x$
10	10 200715P1-14	Standard	12.500	4.28	15326.200		15326.200	10.1	-19.3	NO		NO	bbX

Dataset:	D:IPFAS5.PROIRESULTSL200715P1 200715 P1-CRV.qld
Last Altered:	Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 08:24:58 Pacific Daylight Time

Compound name: 13C2-PFOA-RSD

Response Factor: 1.19415
RRF SD: 0.0525083 , Relative SD: 4.39712
Response type: Internal Std (Ref 103), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	15 Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$\mathrm{x}=$ excluded
1	$1200715 \mathrm{P} 1-05$	Standard	12.500	4.27	18747.258	14428.058	16.242	13.6	8.8	NO		NO	bb
2	2 200715P1-06	Standard	12.500	4.28	18013.293	16159.228	13.934	11.7	-6.7	NO		NO	bb
3	$3200715 \mathrm{P} 1-07$	Standard	12.500	4.28	18092.994	15326.044	14.757	12.4	-1.1	NO		NO	bb
4	4 200715P1-08	Standard	12.500	4.28	17356.375	14847.943	14.612	12.2	-2.1	NO		NO	bb
5	5 200715P1-09	Standard	12.500	4.28	20100.508	17270.594	14.548	12.2	-2.5	NO		NO	bb
6	$6200715 \mathrm{P} 1-10$	Standard	12.500	4.28	18997.652	15396.748	15.423	12.9	3.3	NO		NO	bb
7	7 200715P1-11	Standard	12.500	4.28	18724.668	15835.567	14.781	12.4	-1.0	NO		NO	bb
8	8 200715P1-12	Standard	12.500	4.28	18385.432	15850.188	14.499	12.1	-2.9	NO		NO	bb
9	$9200715 \mathrm{P} 1-13$	Standard	12.500	4.28	16259.043	13654.862	14.884	12.5	-0.3	NO		NO	bb
10	$10200715 \mathrm{P} 1-14$	Standard	12.500	4.28	15326.200	12289.493	15.589	13.1	4.4	NO		NO	bb

Compound name: 13C8-PFOS-EIS

Response Factor: 278.862
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	R.T	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=e x c l u d e d$
1	1 200715P1-05	Standard	12.500	4.80	3339.633		3339.633	12.0	-4.2	NO		NO	bbX
2	2 200715P1-06	Standard	12.500	4.80	3464.958		3464.958	12.4	-0.6	NO		NO	$b b X$
3	3 200715P1-07	Standard	12.500	4.80	3207.886		3207.886	11.5	-8.0	NO		NO	$b b X$
4	4 200715P1-08	Standard	12.500	4.80	3209.567		3209.567	11.5	-7.9	NO		NO	$b b X$
5	5 200715P1-09	Standard	12.500	4.80	3319.781		3319.781	11.9	-4.8	NO		NO	$b b X$
6	6 200715P1-10	Standard	12.500	4.80	3485.769		3485.769	12.5	0.0	NO		NO	bb
7	7 200715P1-11	Standard	12.500	4.80	3397.571		3397.571	12.2	-2.5	NO		NO	bbX
8	8 200715P1-12	Standard	12.500	4.80	3501.605		3501.605	12.6	0.5	NO		NO	$b b x$
9	9 200715P1-13	Standard	12.500	4.80	3276.164		3276.164	11.7	-6.0	NO		NO	$b b x$
10	10 200715P1-14	Standard	12.500	4.80	2909.353		2909.353	10.4	-16.5	NO		NO	$b b x$

Dataset:	D:IPFAS5.PROIRESULTSL200715P1L200715P1-CRV.qld
Last Altered:	Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 08:24:58 Pacific Daylight Time

Compound name: 13C8-PFOS-RSD

Response Factor: 0.779427
RRF SD: 0.0407041, Relative SD: 5.22232
Response type: Internal Std (Ref 105), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$\mathrm{x}=$ excluded
1	1 200715P1-05	Standard	12.500	4.80	3339.633	4219.512	9.893	12.7	1.5	NO		NO	bb
2	2 200715P1-06	Standard	12.500	4.80	3464.958	4605.905	9.404	12.1	-3.5	NO		NO	bb
3	3 200715P1-07	Standard	12.500	4.80	3207.886	4267.988	9.395	12.1	-3.6	NO		NO	bb
4	4 200715P1-08	Standard	12.500	4.80	3209.567	4133.559	9.706	12.5	-0.4	NO		NO	bb
5	5 200715P1-09	Standard	12.500	4.80	3319.781	4631.470	8.960	11.5	-8.0	NO		NO	bb
6	6 200715P1-10	Standard	12.500	4.80	3485.769	4210.171	10.349	13.3	6.2	NO		NO	bb
7	7 200715P1-11	Standard	12.500	4.80	3397.571	4449.938	9.544	12.2	-2.0	NO		NO	bb
18	$8200715 \mathrm{P} 1-12$	Standard	12.500	4.80	3501.605	4390.262	9.970	12.8	2.3	NO		NO	bb
9	9 200715P1-13	Standard	12.500	4.80	3276.164	3823.365	10.711	13.7	9.9	NO		NO	bb
10	10 200715P1-14	Standard	12.500	4.80	2909.353	3829.495	9.497	12.2	-2.5	NO		NO	bb

Compound name: 13C2-PFDA-EIS

Response Factor: 1677.89
RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%DeV	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	$1200715 \mathrm{P} 1-05$	Standard	12.500	5.09	21139.320		21139.320	12.6	0.8	NO		NO	bbX
2	2 200715P1-06	Standard	12.500	5.09	21237.906		21237.906	12.7	1.3	NO		NO	bbX
3	3 200715P1-07	Standard	12.500	5.09	20143.082		20143.082	12.0	-4.0	NO		NO	bbx
4	4 200715P1-08	Standard	12.500	5.09	20088.832		20088.832	12.0	-4.2	NO		NO	bbx
5	5 200715P1-09	Standard	12.500	5.09	22234.100		22234.100	13.3	6.0	NO		NO	$b b x$
6	6 200715P1-10	Standard	12.500	5.09	20973.631		20973.631	12.5	0.0	NO		NO	bb
7	7 200715P1-11	Standard	12.500	5.10	21425.146		21425.146	12.8	2.2	NO		NO	$b \mathrm{bx}$
8	8 200715P1-12	Standard	12.500	5.09	21301.400		21301.400	12.7	1.6	NO		NO	$b b x$
9	$9200715 \mathrm{P} 1-13$	Standard	12.500	5.09	19779.787		19779.787	11.8	-5.7	NO		NO	bbX
10	$10200715 \mathrm{P} 1-14$	Standard	12.500	5.10	19417.826		19417.826	11.6	-7.4	NO		NO	bbX

Dataset: D:IPFAS5.PRO\RESULTSL200715P11200715P1-CRV.qld
Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed: Thursday, July 16, 2020 08:24:58 Pacific Daylight Time

Compound name: 13C2-PFDA-RSD

Response Factor: 1.10289
RRF SD: 0.0427578, Relative SD: 3.87689
Response type: Internal Std (Ref 106), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 200715P1-05	Standard	12.500	5.09	21139.320	18067.412	14.625	13.3	6.1	NO		NO	bb
2	2 200715P1-06	Standard	12.500	5.09	21237.906	20148.336	13.176	11.9	-4.4	NO		NO	bb
3	3 200715P1-07	Standard	12.500	5.09	20143.082	18807.287	13.388	12.1	-2.9	NO		NO	bb
4	4 200715P1-08	Standard	12.500	5.09	20088.832	18401.150	13.646	12.4	-1.0	NO		NO	bb
5	5 200715P1-09	Standard	12.500	5.09	22234.100	21510.396	12.921	11.7	-6.3	NO		NO	bb
6	6 200715P1-10	Standard	12.500	5.09	20973.631	18755.420	13.978	12.7	1.4	NO		NO	bb
7	7 200715P1-11	Standard	12.500	5.10	21425.146	19409.744	13.798	12.5	0.1	NO		NO	bb
8	8 200715P1-12	Standard	12.500	5.09	21301.400	19378.539	13.740	12.5	-0.3	NO		NO	bb
9	9 200715P1-13	Standard	12.500	5.09	19779.787	17205.107	14.371	13.0	4.2	NO		NO	bb
10	10 200715P1-14	Standard	12.500	5.10	19417.826	17071.865	14.218	12.9	3.1	NO		NO	bb

Compound name: 13C2-8:2 FTS-EIS

Response Factor: 145.085
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$\mathrm{x}=$ excluded
1	1 200715P1-05	Standard	12.500	5.06	2272.706		2272.706	15.7	25.3	NO		NO	bbX
2	2 200715P1-06	Standard	12.500	5.06	1834.680		1834.680	12.6	1.2	NO		NO	$b b X$
3	$3200715 \mathrm{P} 1-07$	Standard	12.500	5.06	1900.979		1900.979	13.1	4.8	NO		NO	bbX
4	4 200715P1-08	Standard	12.500	5.06	1863.108		1863.108	12.8	2.7	NO		NO	bbX
5	5 200715P1-09	Standard	12.500	5.06	2057.675		2057.675	14.2	13.5	NO		NO	$b b x$
6	6 200715P1-10	Standard	12.500	5.07	1813.562		1813.562	12.5	0.0	NO		NO	bb
7	7 200715P1-11	Standard	12.500	5.07	1843.435		1843.435	12.7	1.6	NO		NO	bbX
8	8 200715P1-12	Standard	12.500	5.06	1908.331		1908.331	13.2	5.2	NO		NO	$b b x$
9	9 200715P1-13	Standard	12.500	5.06	1792.268		1792.268	12.4	-1.2	NO		NO	$b b x$
10	10200715 P 1.14	Standard	12.500	5.06	1921.738		1921.738	13.2	6.0	NO		NO	bbX

Quantify Compound Summary Report \quad MassLynx V4.2 SCN977
Vista Analytical Laboratory

Dataset:	D:IPFAS5.PRO\RESULTSI200715P1L200715P1-CRV.qld
Last Altered:	Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 08:24:58 Pacific Daylight Time

Compound name: 13C2-8:2 FTS-RSD

Response Factor: 0.452765
RRF SD: 0.0413941, Relative SD: 9.14251
Response type: Internal Std (Ref 105), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	$\overline{C O D}$	CoD Flag	x=excluded
1	1 200715P1-05	Standard	12.500	5.06	2272.706	4219.512	6.733	14.9	19.0	NO		NO	bb
2	2 200715P1-06	Standard	12.500	5.06	1834.680	4605.905	4.979	11.0	-12.0	NO		NO	bb
3	$3200715 \mathrm{P} 1-07$	Standard	12.500	5.06	1900.979	4267.988	5.568	12.3	-1.6	NO		NO	bb
4	4 200715P1-08	Standard	12.500	5.06	1863.108	4133.559	5.634	12.4	-0.4	NO		NO	bb
5	$5200715 \mathrm{P} 1-09$	Standard	12.500	5.06	2057.675	4631.470	5.554	12.3	-1.9	NO		NO	bb
6	$6200715 \mathrm{P} 1-10$	Standard	12.500	5.07	1813.562	4210.171	5.384	11.9	-4.9	NO		NO	bb
7	7 200715P1-11	Standard	12.500	5.07	1843.435	4449.938	5.178	11.4	-8.5	NO		NO	bb
8	8 200715P1-12	Standard	12.500	5.06	1908.331	4390.262	5.433	12.0	-4.0	NO		NO	bb
9	9 200715P1-13	Standard	12.500	5.06	1792.268	3823.365	5.860	12.9	3.5	NO		NO	bb
10	10 200715P1-14	Standard	12.500	5.06	1921.738	3829.495	6.273	13.9	10.8	NO		NO	bb

Compound name: d3-N-MeFOSAA-EIS

Response Factor: 371.929
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Stc. Conc	RT	Area	IS Area	Respense	Conc.	\%Dev	Conc. Flag	CoD	CoDFlag	$x=$ excluded
1	1 200715P1-05	Standard	12.500	5.23	4257.820		4257.820	11.4	-8.4	NO		NO	bbX
2	2 200715P1-06	Standard	12.500	5.24	4776.380		4776.380	12.8	2.7	NO		NO	bbX
3	3 200715P1-07	Standard	12.500	5.24	4202.767		4202.767	11.3	-9.6	NO		NO	bbX
4	4 200715P1-08	Standard	12.500	5.24	4219.502		4219.502	11.3	-9.2	NO		NO	bbX
5	5 200715P1-09	Standard	12.500	5.24	5097.341		5097.341	13.7	9.6	NO		NO	bbX
6	6 200715P1-10	Standard	12.500	5.24	4649.107		4649.107	12.5	0.0	NO		NO	bb
7	7 200715P1-11	Standard	12.500	5.24	4569.278		4569.278	12.3	-1.7	NO		NO	bbX
8	8 200715P1-12	Standard	12.500	5.24	4572.478		4572.478	12.3	-1.6	NO		NO	$b b x$
9	9 200715P1-13	Standard	12.500	5.24	4248.579		4248.579	11.4	-8.6	NO		NO	bbx
10	10 200715P1-14	Standard	12.500	5.24	4275.856		4275.856	11.5	-8.0	NO		NO	bbX

Last Altered:
Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:
Thursday, July 16, 2020 08:24:58 Pacific Daylight Time

Compound name: d3-N-MeFOSAA-RSD

Response Factor: 0.27791
RRF SD: 0.0143334 , Relative SD: 5.15758
Response type: Internal Std (Ref 107), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Sta. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	12.500	5.23	4257.820	15334.599	3.471	12.5	-0.1	NO		NO	bb
2	2 200715P1-06	Standard	12.500	5.24	4776.380	17351.859	3.441	12.4	-1.0	NO		NO	bb
3	3 200715P1-07	Standard	12.500	5.24	4202.767	16905.795	3.107	11.2	-10.5	NO		NO	bb
4	4 200715P1-08	Standard	12.500	5.24	4219.502	15689.824	3.362	12.1	-3.2	NO		NO	bb
5	5 200715P1-09	Standard	12.500	5.24	5097.341	17768.025	3.586	12.9	3.2	NO		NO	bb
6	$6200715 \mathrm{P} 1-10$	Standard	12.500	5.24	4649.107	16785.340	3.462	12.5	-0.3	NO		NO	bb
7	7 200715P1-11	Standard	12.500	5.24	4569.278	16712.057	3.418	12.3	-1.6	NO		NO	bb
8	8 200715P1-12	Standard	12.500	5.24	4572.478	16502.117	3.464	12.5	-0.3	NO		NO	bb
9	9 200715P1-13	Standard	12.500	5.24	4248.579	14566.803	3.646	13.1	4.9	NO		NO	bb
10	10 200715P1-14	Standard	12.500	5.24	4275.856	14129.214	3.783	13.6	8.9	NO		NO	bb

Compound name: 13C2-PFUdA-EIS

Response Factor: 1719.99
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	12.500	5.41	21431.557		21431.557	12.5	-0.3	NO		NO	bbX
2	2 200715P1-06	Standard	12.500	5.41	21511.854		21511.854	12.5	0.1	NO		NO	bbX
3	3 200715P1-07	Standard	12.500	5.41	20974.463		20974.463	12.2	-2.4	NO		NO	bbX
4	4 200715P1-08	Standard	12.500	5.41	19514.449		19514.449	11.3	-9.2	NO		NO	bbX
5	5 200715P1-09	Standard	12.500	5.41	23148.672		23148.672	13.5	7.7	NO		NO	$b b X$
6	6 200715P1-10	Standard	12.500	5.41	21499.816		21499.816	12.5	0.0	NO		NO	$b b$
7	7 200715P1-11	Standard	12.500	5.42	21237.574		21237.574	12.3	-1.2	NO		NO	$b b X$
8	8 200715P1-12	Standard	12.500	5.41	21069.113		21069.113	12.2	-2.0	NO		NO	$b b x$
9	9 200715P1-13	Standard	12.500	5.41	19500.521		19500.521	11.3	-9.3	NO		NO	bbX
10	10 200715P1-14	Standard	12.500	5.41	18511.988		18511.988	10.8	-13.9	NO		NO	bbX

Dataset:	D:IPFAS5.PRO\RESULTS\200715P1 $1200715 P 1$-CRV.qid
Last Altered:	Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 08:24:58 Pacific Daylight Time

Compound name: 13C2-PFUdA-RSD

Response Factor: 1.29019
RRF SD: 0.0497156, Relative SD: 3.85336
Response type: Internal Std (Ref 107), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	12.500	5.41	21431.557	15334.599	17.470	13.5	8.3	NO		NO	bb
2	2 200715P1-06	Standard	12.500	5.41	21511.854	17351.859	15.497	12.0	-3.9	NO		NO	bb
3	$3200715 \mathrm{P} 1-07$	Standard	12.500	5.41	20974.463	16905.795	15.508	12.0	-3.8	NO		NO	bo
4	4 200715P1-08	Standard	12.500	5.41	19514.449	15689.824	15.547	12.1	-3.6	NO		NO	bb
5	5 200715P1-09	Standard	12.500	5.41	23148.672	17768.025	16.285	12.6	1.0	NO		NO	bb
6	6 200715P1-10	Standard	12.500	5.41	21499.816	16785.340	16.011	12.4	-0.7	NO		NO	bb
7	7 200715P1-11	Standard	12.500	5.42	21237.574	16712.057	15.885	12.3	-1.5	NO		NO	bb
8	8 200715P1-12	Standard	12.500	5.41	21069.113	16502.117	15.959	12.4	-1.0	NO		NO	bb
9	9 200715P1-13	Standard	12.500	5.41	19500.521	14566.803	16.734	13.0	3.8	NO		NO	bb
10	10 200715P1-14	Standard	12.500	5.41	18511.988	14129.214	16.377	12.7	1.6	NO		NO	bb

Compound name: d5-N-EtFOSAA-EIS

Response Factor: 359.971
RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	12.500	5.39	3986.506		3986.506	11.1	-11.4	NO		NO	bbX
2	2 200715P1-06	Standard	12.500	5.39	4282.189		4282.189	11.9	-4.8	NO		NO	$b b x$
3	3 200715P1-07	Standard	12.500	5.39	3868.556		3868.556	10.7	-14.0	NO		NO	bbx
4	4 200715P1-08	Standard	12.500	5.39	3919.445		3919.445	10.9	-12.9	NO		NO	$b b x$
5	5 200715P1-09	Standard	12.500	5.39	4487.496		4487.496	12.5	-0.3	NO		NO	$b \mathrm{bx}$
6	6 200715P1-10	Standard	12.500	5.39	4499.632		4499.632	12.5	0.0	NO		NO	bb
7	$7200715 \mathrm{P} 1-11$	Standard	12.500	5.39	3799.720		3799.720	10.6	-15.6	NO		NO	bbx
8	8 200715P1-12	Standard	12.500	5.39	3935.188		3935.188	10.9	-12.5	NO		NO	$b b x$
9	9 200715P1-13	Standard	12.500	5.39	3838.678		3838.678	10.7	-14.7	NO		NO	MMX
10	10 200715P1-14	Standard	12.500	5.39	3288.879		3288.879	9.1	-26.9	NO		NO	bbX

Quantity Compound Summary Report MassLynx V4.2 SCN977
 Vista Analytical Laboratory

Dataset: D:IPFAS5.PROURESULTSL200715P11200715P1-CRV.qld
Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed: Thursday, July 16, 2020 08:24:58 Pacific Daylight Time

Compound name: d5-N-EtFOSAA-RSD

Response Factor: 0.246719
RRF SD: 0.014466, Relative SD: 5.86337
Response type: Internal Std (Ref 107), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	12.500	5.39	3986.506	15334.599	3.250	13.2	5.4	NO		NO	bb
2	2 200715P1-06	Standard	12.500	5.39	4282.189	17351.859	3.085	12.5	0.0	NO		NO	bb
3	3 200715P1-07	Standard	12.500	5.39	3868.556	16905.795	2.860	11.6	-7.3	NO		NO	bb
4	4 200715P1-08	Standard	12.500	5.39	3919.445	15689.824	3.123	12.7	1.3	NO		NO	bb
15	5 200715P1-09	Standard	12.500	5.39	4487.496	17768.025	3.157	12.8	2.4	NO		NO	bb
6	$6200715 \mathrm{P} 1-10$	Standard	12.500	5.39	4499.632	16785.340	3.351	13.6	8.7	NO		NO	bb
7	7 200715P1-11	Standard	12.500	5.39	3799.720	16712.057	2.842	11.5	-7.8	NO		NO	bb
8	8 200715P1-12	Standard	12.500	5.39	3935.188	16502.117	2.981	12.1	-3.3	NO		NO	bb
9	9 200715P1-13	Standard	12.500	5.39	3824.729	14566.803	3.282	13.3	6.4	NO		NO	bd
10	$10200715 \mathrm{P} 1-14$	Standard	12.500	5.39	3288.879	14129.214	2.910	11.8	-5.7	NO		NO	bb

Compound name: 13C2-PFDoA-EIS

Response Factor: 1888.18
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Stid. Conc	RT	Area	is Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	$1200715 \mathrm{P} 1-05$	Standard	12.500	5.69	23416.920		23416.920	12.4	-0.8	NO		NO	bbX
2	2 200715P1-06	Standard	12.500	5.69	24413.588		24413.588	12.9	3.4	NO		NO	$b b X$
3	3 200715P1-07	Standard	12.500	5.69	24811.789		24811.789	13.1	5.1	NO		NO	bbX
4	4 200715P1-08	Standard	12.500	5.69	21661.838		21661.838	11.5	-8.2	NO		NO	$b b x$
5	5 200715P1-09	Standard	12.500	5.69	26248.602		26248.602	13.9	11.2	NO		NO	bbX
6	$6200715 \mathrm{P} 1-10$	Standard	12.500	5.69	23602.262		23602.262	12.5	0.0	NO		NO	bb
7	7 200715P1-11	Standard	12.500	5.69	24305.359		24305.359	12.9	3.0	NO		NO	$b b x$
8	8200715 P 1 -12	Standard	12.500	5.69	23221.037		23221.037	12.3	-1.6	NO		NO	bbX
9	9 200715P1-13	Standard	12.500	5.69	20839.002		20839.002	11.0	-11.7	NO		NO	bbX
10	10 200715P1-14	Standard	12.500	5.69	20109.285		20109.285	10.7	-14.8	NO		NO	bbX

Dataset:	D:IPFAS5.PROIRESULTSL200715P11200715P1-CRV.qld
Last Altered:	Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 08:24:58 Pacific Daylight Time

Compound name: 13C2-PFDoA-RSD

Response Factor: 1.23226
RRF SD: 0.0481607, Relative SD: 3.90833
Response type: Internal Std (Ref 106), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Sid. Conc	AT	Area	ISj Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	12.500	5.69	23416.920	18067.412	16.201	13.1	5.2	NO		NO	bb
2	2 200715P1-06	Standard	12.500	5.69	24413.588	20148.336	15.146	12.3	-1.7	NO		NO	bb
3	3 200715P1-07	Standard	12.500	5.69	24811.789	18807.287	16.491	13.4	7.1	NO		NO	bb
4	4 200715P1-08	Standard	12.500	5.69	21661.838	18401.150	14.715	11.9	-4.5	NO		NO	bb
5	5 200715P1-09	Standard	12.500	5.69	26248.602	21510.396	15.253	12.4	-1.0	NO		NO	bb
6	$6200715 \mathrm{P} 1-10$	Standard	12.500	5.69	23602.262	18755.420	15.730	12.8	2.1	NO		NO	bb
7	7 200715P1-11	Standard	12.500	5.69	24305.359	19409.744	15.653	12.7	1.6	NO		NO	bb
8	$8200715 \mathrm{P} 1-12$	Standard	12.500	5.69	23221.037	19378.539	14.979	12.2	-2.8	NO		NO	bb
9	$9200715 \mathrm{P} 1-13$	Standard	12.500	5.69	20839.002	17205.107	15.140	12.3	-1.7	NO		NO	bb
10	10 200715P1-14	Standard	12.500	5.69	20109.285	17071.865	14.724	11.9	-4.4	NO		NO	bb

Compound name: 13C2-10:2 FTS-EIS

Response Factor: 104.228
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	ISi Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	12.500	5.68	1420.543		1420.543	13.6	9.0	NO		NO	bbX
2	2 200715P1-06	Standard	12.500	5.68	1362.904		1362.904	13.1	4.6	NO		NO	$b b X$
3	3 200715P1-07	Standard	12.500	5.68	1333.479		1333.479	12.8	2.4	NO		NO	$b b X$
4	4 200715P1-08	Standard	12.500	5.68	1283.837		1283.837	12.3	-1.5	NO		NO	$b b X$
5	5 200715P1-09	Standard	12.500	5.68	1400.038		1400.038	13.4	7.5	NO		NO	$b b X$
6	6 200715P1-10	Standard	12.500	5.68	1302.852		1302.852	12.5	0.0	NO		NO	bb
7	7 200715P1-11	Standard	12.500	5.68	1330.195		1330.195	12.8	2.1	NO		NO	MMX
8	8 200715P1-12	Standard	12.500	5.68	1199.234		1199.234	11.5	-8.0	NO		NO	MMX
9	9 200715P1-13	Standard	12.500	5.68	1004.974		1004.974	9.6	-22.9	NO		NO	MMX
10	$10200715 \mathrm{P} 1-14$	Standard	12.500	5.67	1028.491		1028.491	9.9	-21.1	NO		NO	MMX

Last Altered:	Thursday, July 16, 2020 08:15:46 Pacific Daylight Time Printed:

Compound name: 13C2-10:2 FTS-RSD

Response Factor: 0.296734
RRF SD: 0.0230901, Relative SD: 7.78142
Response type: Internal Std (Ref 105), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$\mathrm{x}=$ excluded
1	1 200715P1-05	Standard	12.500	5.68	1420.543	4219.512	4.208	14.2	13.5	NO		NO	bb
2	2 200715P1-06	Standard	12.500	5.68	1362.904	4605.905	3.699	12.5	-0.3	NO		NO	bb
3	3 200715P1-07	Standard	12.500	5.68	1333.479	4267.988	3.905	13.2	5.3	NO		NO	bb
4	4 200715P1-08	Standard	12.500	5.68	1283.837	4133.559	3.882	13.1	4.7	NO		NO	bb
5	5 200715P1-09	Standard	12.500	5.68	1400.038	4631.470	3.779	12.7	1.9	NO		NO	bb
6	6 200715P1-10	Standard	12.500	5.68	1302.852	4210.171	3.868	13.0	4.3	NO		NO	bb
7	7 200715P1-11	Standard	12.500	5.68	1320.766	4449.938	3.710	12.5	0.0	NO		NO	db
8	8 200715P1-12	Standard	12.500	5.68	1197.821	4390.262	3.410	11.5	-8.1	NO		NO	MM
9	9 200715P1-13	Standard	12.500	5.68	1005.131	3823.365	3.286	11.1	-11.4	NO		NO	MM
10	$10200715 \mathrm{P} 1-14$	Standard	12.500	5.67	1024.302	3829.495	3.343	11.3	-9.9	NO		NO	MM

Compound name: d3-N-MeFOSA-EIS

Response Factor: 152.565
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Sta. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	X=excluded
1	1 200715P1-05	Standard	149.200	5.72	21841.283		21841.283	143.2	-4.0	NO		NO	bbX
2	2 200715P1-06	Standard	149.200	5.72	23502.238		23502.238	154.0	3.2	NO		NO	$b b X$
3	3 200715P1-07	Standard	149.200	5.72	21928.951		21928.951	143.7	-3.7	NO		NO	$b b x$
4	4 200715P1-08	Standard	149.200	5.73	21040.414		21040.414	137.9	-7.6	NO		NO	$b b X$
5	5 200715P1-09	Standard	149.200	5.72	23506.068		23506.068	154.1	3.3	NO		NO	bbX
6	6 200715P1-10	Standard	149.200	5.72	22762.703		22762.703	149.2	0.0	NO		NO	bb
7	7 200715P1-11	Standard	149.200	5.73	24242.186		24242.186	158.9	6.5	NO		NO	bbX
8	8 200715P1-12	Standard	149.200	5.72	23830.158		23830.158	156.2	4.7	NO		NO	$b b x$
9	9 200715P1-13	Standard	149.200	5.72	23068.273		23068.273	151.2	1.3	NO		NO	$b b x$
10	10 200715P1-14	Standard	149.200	5.73	23374.256		23374.256	153.2	2.7	NO		NO	bbX

Dataset:	D:IPFAS5.PRO\RESULTSL200715P1\200715P1-CRV.qld
Last Altered:	Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 08:24:58 Pacific Daylight Time

Compound name: d3-N-MeFOSA-RSD

Response Factor: 0.119207
RRF SD: 0.00976493, Relative SD: 8.19157
Response type: Internal Std (Ref 107), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$\mathrm{x}=$ excludeci
1	1 200715P1-05	Standard	149.200	5.72	21841.283	15334.599	17.804	149.4	0.1	NO		NO	bb
2	2 200715P1-06	Standard	149.200	5.72	23502.238	17351.859	16.931	142.0	-4.8	NO		NO	bb
3	$3200715 \mathrm{P} 1-07$	Standard	149.200	5.72	21928.951	16905.795	16.214	136.0	-8.8	NO		NO	bb
4	$4200715 \mathrm{P} 1-08$	Standard	149.200	5.73	21040.414	15689.824	16.763	140.6	-5.8	NO		NO	bb
5	5 200715P1-09	Standard	149.200	5.72	23506.068	17768.025	16.537	138.7	-7.0	NO		NO	bb
6	6 200715P1-10	Standard	149.200	5.72	22762.703	16785.340	16.951	142.2	-4.7	NO		NO	bb
7	7 200715P1-11	Standard	149.200	5.73	24242.186	16712.057	18.132	152.1	1.9	NO		NO	bb
8	$8200715 \mathrm{P} 1-12$	Standard	149.200	5.72	23830.158	16502.117	18.051	151.4	1.5	NO		NO	bb
9	$9200715 \mathrm{P} 1-13$	Standard	149.200	5.72	23068.273	14566.803	19.795	166.1	11.3	NO		NO	bb
10	$10200715 \mathrm{P} 1-14$	Standard	149.200	5.73	23374.256	14129.214	20.679	173.5	16.3	NO		NO	bb

Compound name: 13C2-PFTeDA-EIS

Response Factor: 1893.85
RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	12.500	6.14	24885.520		24885.520	13.1	5.1	NO		NO	bbX
2	2 200715P1-06	Standard	12.500	6.15	24382.600		24382.600	12.9	3.0	NO		NO	$b b X$
3	3 200715P1-07	Standard	12.500	6.14	24504.398		24504.398	12.9	3.5	NO		NO	$b b X$
4	4 200715P1-08	Standard	12.500	6.14	23434.535		23434.535	12.4	-1.0	NO		NO	$b b X$
5	5 200715P1-09	Standard	12.500	6.14	27046.730		27046.730	14.3	14.3	NO		NO	
6	6 200715P1-10	Standard	12.500	6.14	23673.172		23673.172	12.5	0.0	NO		NO	bb
7	7 200715P1-11	Standard	12.500	6.15	24599.662		24599.662	13.0	3.9	NO		NO	$b b X$
8	8 200715P1-12	Standard	12.500	6.14	24810.045		24810.045	13.1	4.8	NO		NO	$b b X$
9	9200715 P 1 -13	Standard	12.500	6.15	21943.178		21943.178	11.6	-7.3	NO		NO	$b b X$
10	10 200715P1-14	Standard	12.500	6.15	21142.191		21142.191	11.2	-10.7	NO		NO	bbX

Quantify Compound Summary Report

Vista Analytical Laboratory
Dataset:
D:IPFAS5.PROIRESULTSL200715P11200715P1-CRV.qld
Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:
Thursday, July 16, 2020 08:24:58 Pacific Daylight Time

Compound name: 13C2-PFTeDA-RSD

Response Factor: 1.48818
RRF SD: 0.0620554, Relative SD: 4.16989
Response type: Internal Std (Ref 107), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	15 Area.	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	12.500	6.14	24885.520	15334.599	20.285	13.6	9.0	NO		NO	bb
2	2 200715P1-06	Standard	12.500	6.15	24382.600	17351.859	17.565	11.8	-5.6	NO		NO	bb
3	3 200715P1-07	Standard	12.500	6.14	24504.398	16905.795	18.118	12.2	-2.6	NO		NO	bb
4	4 200715P1-08	Standard	12.500	6.14	23434.535	15689.824	18.670	12.5	0.4	NO		NO	bb
5	5 200715P1-09	Standard	12.500	6.14	27046.730	17768.025	19.028	12.8	2.3	NO		NO	bb
6	6 200715P1-10	Standard	12.500	6.14	23673.172	16785.340	17.629	11.8	-5.2	NO		NO	bb
7	7 200715P1-11	Standard	12.500	6.15	24599.662	16712.057	18.400	12.4	-1.1	NO		NO	bb
8	8 200715P1-12	Standard	12.500	6.14	24810.045	16502.117	18.793	12.6	1.0	NO		NO	bb
9	9 200715P1-13	Standard	12.500	6.15	21943.178	14566.803	18.830	12.7	1.2	NO		NO	bb
10	10 200715P1-14	Standard	12.500	6.15	21142.191	14129.214	18.704	12.6	0.5	NO		NO	bb

Compound name: d5-N-ETFOSA-EIS

Response Factor: 190.85
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$x=$ exclud 9 d
1	1 200715P1-05	Standard	149.200	6.13	27398.318		27398.318	143.6	-3.8	NO		NO	bbX
2	2 200715P1-06	Standard	149.200	6.13	28358.557		28358.557	148.6	-0.4	NO		NO	
3	3 200715P1-07	Standard	149.200	6.13	27892.357		27892.357	146.1	-2.0	NO		NO	bbX
4	4 200715P1-08	Standard	149.200	6.13	26273.701		26273.701	137.7	-7.7	NO		NO	$b \mathrm{~b} \times$
5	5 200715P1-09	Standard	149.200	6.13	30147.381		30147.381	158.0	5.9	NO		NO	bbX
6	6 200715P1-10	Standard	149.200	6.13	28474.869		28474.869	149.2	0.0	NO		NO	bb
7	7 200715P1-11	Standard	149.200	6.13	29372.900		29372.900	153.9	3.2	NO		NO	bbX
8	8 200715P1-12	Standard	149.200	6.13	27323.699		27323.699	143.2	-4.0	NO		NO	bbX
9	9 200715P1-13	Standard	149.200	6.13	25037.039		25037.039	131.2	-12.1	NO		NO	$b \mathrm{bX}$
10	10 200715P1-14	Standard	149.200	6.13	23354.625		23354.625	122.4	-18.0	NO		NO	bbX

Vista Analytical Laboratory
Dataset: D:IPFAS5.PROIRESULTSI200715P11200715P1-CRV.qld
Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed: Thursday, July 16, 2020 08:24:58 Pacific Daylight Time

Compound name: d5-N-ETFOSA-RSD

Response Factor: 0.141787
RRF SD: 0.00416766, Relative SD: 2.93939
Response type: Internal Std (Ref 107), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Fiag	CoD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	149.200	6.13	27398.318	15334.599	22.334	157.5	5.6	NO		NO	bb
2	2 200715P1-06	Standard	149.200	6.13	28358.557	17351.859	20.429	144.1	-3.4	NO		NO	bb
3	$3200715 \mathrm{P} 1-07$	Standard	149.200	6.13	27892.357	16905.795	20.623	145.5	-2.5	NO		NO	bb
4	4 200715P1-08	Standard	149.200	6.13	26273.701	15689.824	20.932	147.6	-1.1	NO		NO	bb
5	5 200715P1-09	Standard	149.200	6.13	30147.381	17768.025	21.209	149.6	0.3	NO		NO	bb
6	6 200715P1-10	Standard	149.200	6.13	28474.869	16785.340	21.205	149.6	0.2	NO		NO	bb
7	7 200715P1-11	Standard	149.200	6.13	29372.900	16712.057	21.970	154.9	3.9	NO		NO	bb
8	8 200715P1-12	Standard	149.200	6.13	27323.699	16502.117	20.697	146.0	-2.2	NO		NO	bb
9	$9200715 \mathrm{P} 1-13$	Standard	149.200	6.13	25037.039	14566.803	21.485	151.5	1.6	NO		NO	bb
10	10 200715P1-14	Standard	149.200	6.13	23354.625	14129.214	20.662	145.7	-2.3	NO		NO	bb

Compound name: 13C2-PFHxDA-EIS

Response Factor: 2290.48
RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	FIT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	12.500	6.46	29059.072		29059.072	12.7	1.5	NO		NO	bbX
2	2 200715P1-06	Standard	12.500	6.46	28296.508		28296.508	12.4	-1.2	NO		NO	bbX
3	3 200715P1-07	Standard	12.500	6.46	28548.980		28548.980	12.5	-0.3	NO		NO	bbX
4	4 200715P1-08	Standard	12.500	6.46	26845.547		26845.547	11.7	-6.2	NO		NO	bbX
5	5 200715P1-09	Standard	12.500	6.46	31838.660		31838.660	13.9	11.2	NO		NO	bbX
6	6 200715P1-10	Standard	12.500	6.46	28631.020		28631.020	12.5	0.0	NO		NO	bb
7	7 200715P1-11	Standard	12.500	6.46	30016.869		30016.869	13.1	4.8	NO		NO	bbX
8	8 200715P1-12	Standard	12.500	6.46	28390.104		28390.104	12.4	-0.8	NO		NO	bbX
9	9 200715P1-13	Standard	12.500	6.46	25537.041		25537.041	11.1	-10.8	NO		NO	bbx
10	10 200715P1-14	Standard	12.500	6.46	26083.391		26083.391	11.4	-8.9	NO		NO	bbX

Vista Analytical Laboratory

Dataset:	D:IPFAS5.PRO\RESULTSL200715P1\200715P1-CRV.qld
Last Altered:	Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 08:24:58 Pacific Daylight Time

Compound name: 13C2-PFHxDA-RSD

Response Factor: 1.75388
RRF SD: 0.0791135 , Relative SD: 4.51078
Response type: Internal Std (Ref 107), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Types	Std. Conc	RT	Area	IS Area	Response	Cone.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	12.500	6.46	29059.072	15334.599	23.688	13.5	8.0	NO		NO	bb
2	2 200715P1-06	Standard	12.500	6.46	28296.508	17351.859	20.384	11.6	-7.0	NO		NO	bb
3	3 200715P1-07	Standard	12.500	6.46	28548.980	16905.795	21.109	12.0	-3.7	NO		NO	bb
4	4 200715P1-08	Standard	12.500	6.46	26845.547	15689.824	21.388	12.2	-2.4	NO		NO	bb
5	5 200715P1-09	Standard	12.500	6.46	31838.660	17768.025	22.399	12.8	2.2	NO		NO	bb
6	6 200715P1-10	Standard	12.500	6.46	28631.020	16785.340	21.321	12.2	-2.7	NO		NO	bb
7	7 200715P1-11	Standard	12.500	6.46	30016.869	16712.057	22.452	12.8	2.4	NO		NO	bb
18	8 200715P1-12	Standard	12.500	6.46	28390.104	16502.117	21.505	12.3	-1.9	NO		NO	bb
9	9 200715P1-13	Standard	12.500	6.46	25537.041	14566.803	21.914	12.5	-0.0	NO		NO	bb
10	10 200715P1-14	Standard	12.500	6.46	26083.391	14129.214	23.076	13.2	5.3	NO		NO	bb

Compound name: d7-N-MeFOSE-EIS

Response Factor: 152.699
RRF SD: 0 , Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	x=excluded
1	1 200715P1-05	Standard	149.200	6.29	22042.436		22042.436	144.4	-3.2	NO		NO	bbX
2	2 200715P1-06	Standard	149.200	6.29	22906.777		22906.777	150.0	0.5	NO		NO	$b b X$
3	3 200715P1-07	Standard	149.200	6.29	23014.031		23014.031	150.7	1.0	NO		NO	$b b X$
4	4 200715P1-08	Standard	149.200	6.29	20678.135		20678.135	135.4	-9.2	NO		NO	$b b X$
5	5 200715P1-09	Standard	149.200	6.29	25029.580		25029.580	163.9	9.9	NO		NO	bbX
6	6 200715P1-10	Standard	149.200	6.29	22782.658		22782.658	149.2	0.0	NO		NO	bb
7	7 200715P1-11	Standard	149.200	6.29	24770.096		24770.096	162.2	8.7	NO		NO	$b b X$
8	8 200715P1-12	Standard	149.200	6.29	23290.061		23290.061	152.5	2.2	NO		NO	$b b X$
9	9 200715P1-13	Standard	149.200	6.29	22675.961		22675.961	148.5	-0.5	NO		NO	$b b X$
10	10 200715P1-14	Standard	149.200	6.29	24273.727		24273.727	159.0	6.5	NO		NO	bbX

Vista Analytical Laboratory

Dataset:	D:IPFAS5.PROIRESULTSI200715P11200715P1-CRV.qld
Last Altered:	Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 08:24:58 Pacific Daylight Time

Compound name: d7-N-MeFOSE-RSD
Response Factor: 0.1204
RRF SD: 0.0103251, Relative SD: 8.57562
Response type: Internal Std (Ref 107), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Sta. Canc	RT	Area	IS Areai	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	149.200	6.29	22042.436	15334.599	17.968	149.2	0.0	NO		NO	bb
2	2 200715P1-06	Standard	149.200	6.29	22906.777	17351.859	16.502	137.1	-8.1	NO		NO	bb
3	3 200715P1-07	Standard	149.200	6.29	23014.031	16905.795	17.016	141.3	-5.3	NO		NO	bb
4	4 200715P1-08	Standard	149.200	6.29	20678.135	15689.824	16.474	136.8	-8.3	NO		NO	bb
5	5 200715P1-09	Standard	149.200	6.29	25029.580	17768.025	17.609	146.3	-2.0	NO		NO	bb
6	6 200715P1-10	Standard	149.200	6.29	22782.658	16785.340	16.966	140.9	-5.6	NO		NO	bb
7	7 200715P1-11	Standard	149.200	6.29	24770.096	16712.057	18.527	153.9	3.1	NO		NO	bb
8	8 200715P1-12	Standard	149.200	6.29	23290.061	16502.117	17.642	146.5	-1.8	NO		NO	bb
9	9 200715P1-13	Standard	149.200	6.29	22675.961	14566.803	19.459	161.6	8.3	NO		NO	bb
10	10 200715P1-14	Standard	149.200	6.29	24273.727	14129.214	21.475	178.4	19.5	NO		NO	bb

Compound name: d9-N-EtFOSE-EIS

Response Factor: 176.442
RRF SD: 0, Relative SD: 0
Response type: External Std, Area
Curve type: RF

	\# Namel	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=e x$ cluded
1	1 200715P1-05	Standard	149.200	6.43	24906.385		24906.385	141.2	-5.4	NO		NO	bbX
2	2 200715P1-06	Standard	149.200	6.43	26213.271		26213.271	148.6	-0.4	NO		NO	bbX
3	3 200715P1-07	Standard	149.200	6.43	25231.670		25231.670	143.0	-4.2	NO		NO	$b b X$
4	4 200715P1-08	Standard	149.200	6.43	24829.252		24829.252	140.7	-5.7	NO		NO	bbX
5	5 200715P1-09	Standard	149.200	6.43	27796.789		27796.789	157.5	5.6	NO		NO	bbX
6	6 200715P1-10	Standard	149.200	6.43	26325.184		26325.184	149.2	0.0	NO		NO	bb
7	7 200715P1-11	Standard	149.200	6.43	28501.563		28501.563	161.5	8.3	NO		NO	bbX
8	8 200715P1-12	Standard	149.200	6.43	26307.164		26307.164	149.1	-0.1	NO		NO	bbX
9	9 200715P1-13	Standard	149.200	6.43	26478.449		26478.449	150.1	0.6	NO		NO	bbX
10	10 200715P1-14	Standard	149.200	6.43	26590.842		26590.842	150.7	1.0	NO		NO	bbX

Vista Analytical Laboratory
Dataset: D:IPFAS5.PROIRESULTSI200715P1L200715P1-CRV.qld
Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed: Thursday, July 16, 2020 08:24:58 Pacific Daylight Time

Compound name: d9-N-EtFOSE-RSD

Response Factor: 0.136913
RRF SD: 0.0107823, Relative SD: 7.87531
Response type: Internal Std (Ref 107), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Stu. Conc:	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$\mathrm{x}=$ excluded
1	1 200715P1-05	Standard	149.200	6.43	24906.385	15334.599	20.302	148.3	-0.6	NO		NO	bb
2	2 200715P1-06	Standard	149.200	6.43	26213.271	17351.859	18.884	137.9	-7.6	NO		NO	bb
3	3 200715P1-07	Standard	149.200	6.43	25231.670	16905.795	18.656	136.3	-8.7	NO		NO	bb
4	4 200715P1-08	Standard	149.200	6.43	24829.252	15689.824	19.781	144.5	-3.2	NO		NO	bb
5	5 200715P1-09	Standard	149.200	6.43	27796.789	17768.025	19.555	142.8	-4.3	NO		NO	bb
6	$6200715 \mathrm{P} 1-10$	Standard	149.200	6.43	26325.184	16785.340	19.604	143.2	-4.0	NO		NO	bb
7	7 200715P1-11	Standard	149.200	6.43	28501.563	16712.057	21.318	155.7	4.4	NO		NO	bb
8	8 200715P1-12	Standard	149.200	6.43	26307.164	16502.117	19.927	145.5	-2,4	NO		NO	bb
9	9 200715P1-13	Standard	149.200	6.43	26478.449	14566.803	22.722	166.0	11.2	NO		NO	bb
10	10 200715P1-14	Standard	149.200	6.43	26590.842	14129.214	23.525	171.8	15.2	NO		NO	bb

Compound name: 13C4-PFBA

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 99), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 200715P1-05	Standard	12.500	1.42	8065.804	8065.804	12.500	12.5	0.0	NO		NO	MM
2	2 200715P1-06	Standard	12.500	1.41	8879.700	8879.700	12.500	12.5	0.0	NO		NO	MM
3	$3200715 \mathrm{P} 1-07$	Standard	12.500	1.42	8829.724	8829.724	12.500	12.5	0.0	NO		NO	MM
4	4 200715P1-08	Standard	12.500	1.42	9003.292	9003.292	12.500	12.5	0.0	NO		NO	MM
5	5 200715P1-09	Standard	12.500	1.42	9562.452	9562.452	12.500	12.5	0.0	NO		NO	bb
6	6 200715P1-10	Standard	12.500	1.42	8705.206	8705.206	12.500	12.5	0.0	NO		NO	bb
7	7 200715P1-11	Standard	12.500	1.42	9065.156	9065.156	12.500	12.5	0.0	NO		NO	bb
8	8 200715P1-12	Standard	12.500	1.41	9629.864	9629.864	12.500	12.5	0.0	NO		NO	bb
9	9200715 P 1 -13	Standard	12.500	1.42	8851.127	8851.127	12.500	12.5	0.0	NO		NO	bb
10	$10200715 \mathrm{P} 1-14$	Standard	12.500	1.42	10015.587	10015.587	12.500	12.5	0.0	NO		NO	MM

Compound name: 1802-PFHxS

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 102), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$\mathrm{x}=$ excluded
1	1 200715P1-05	Standard	12.500	3.90	1309.306	1309.306	12.500	12.5	0.0	NO		NO	bb
2	2 200715P1-06	Standard	12.500	3.90	1450.812	1450.812	12.500	12.5	0.0	NO		NO	bb
3	3 200715P1-07	Standard	12.500	3.90	1394.800	1394.800	12.500	12.5	0.0	NO		NO	bb
4	4 200715P1-08	Standard	12.500	3.90	1333.273	1333.273	12.500	12.5	0.0	NO		NO	bb
5	5 200715P1-09	Standard	12.500	3.90	1531.875	1531.875	12.500	12.5	0.0	NO		NO	bb
6	6 200715P1-10	Standard	12.500	3.90	1411.437	1411.437	12.500	12.5	0.0	NO		NO	bb
7	7200715 P 1 -11	Standard	12.500	3.91	1478.114	1478.114	12.500	12.5	0.0	NO		NO	bb
8	8 200715P1-12	Standard	12.500	3.90	1428.318	1428.318	12.500	12.5	0.0	NO		NO	bb
9	9 200715P1-13	Standard	12.500	3.91	1320.536	1320.536	12.500	12.5	0.0	NO		NO	bb
10	10200715 P1-14	Standard	12.500	3.91	1285.609	1285.609	12.500	12.5	0.0	NO		NO	bb

Dataset: D:IPFAS5.PROIRESULTSL200715P11200715P1-CRV.qld

Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed: Thursday, July 16, 2020 08:24:58 Pacific Daylight Time

Compound name: 13C8-PFOA

Response Factor: 1
RRF SD: 8.27511e-017, Relative SD: 8.27511e-015
Response type: Internal Std (Ref 103), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=e x c l u d e d$
1	1 200715P1-05	Standard	12.500	4.27	14428.058	14428.058	12.500	12.5	0.0	NO		NO	bb
2	2 200715P1-06	Standard	12.500	4.27	16159.228	16159.228	12.500	12.5	0.0	NO		NO	bb
3	3 200715P1-07	Standard	12.500	4.28	15326.044	15326.044	12.500	12.5	0.0	NO		NO	bb
4	4 200715P1-08	Standard	12.500	4.28	14847.943	14847.943	12.500	12.5	0.0	NO		NO	bb
5	5 200715P1-09	Standard	12.500	4.28	17270.594	17270.594	12.500	12.5	0.0	NO		NO	bb
6	$6200715 \mathrm{P} 1-10$	Standard	12.500	4.28	15396.748	15396.748	12.500	12.5	0.0	NO		NO	bb
7	7 200715P1-11	Standard	12.500	4.28	15835.567	15835.567	12.500	12.5	0.0	NO		NO	bb
13	8 200715P1-12	Standard	12.500	4.28	15850.188	15850.188	12.500	12.5	0.0	NO		NO	bb
9	9200715 P 1 -13	Standard	12.500	4.28	13654.862	13654.862	12.500	12.5	0.0	NO		NO	bb
10	10 200715P1-14	Standard	12.500	4.28	12289.493	12289.493	12.500	12.5	0.0	NO		NO	bb

Compound name: 13C9-PFNA

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ret 104), Area * (IS Conc. / IS Area)
Curve type: RF

	\# N Name	Type	Stid. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=e x$ cluded
1	$1200715 \mathrm{P} 1-05$	Standard	12.500	4.72	18321.781	18321.781	12.500	12.5	0.0	NO		NO	bb
2	2 200715P1-06	Standard	12.500	4.72	20475.734	20475.734	12.500	12.5	0.0	NO		NO	bb
3	3 200715P1-07	Standard	12.500	4.72	18416.609	18416.609	12.500	12.5	0.0	NO		NO	bb
4	4 200715P1-08	Standard	12.500	4.72	18333.438	18333.438	12.500	12.5	0.0	NO		NO	bb
5	5 200715P1-09	Standard	12.500	4.72	20861.383	20861.383	12.500	12.5	0.0	NO		NO	bb
6	$6200715 \mathrm{P} 1-10$	Standard	12.500	4.72	19774.121	19774.121	12.500	12.5	0.0	NO		NO	bb
7	7 200715P1-11	Standard	12.500	4.72	19769.285	19769.285	12.500	12.5	0.0	NO		NO	bb
8	$8200715 \mathrm{P} 1-12$	Standard	12.500	4.72	19395.494	19395.494	12.500	12.5	0.0	NO		NO	bb
9	$9200715 \mathrm{P} 1-13$	Standard	12.500	4.72	17507.348	17507.348	12.500	12.5	0.0	NO		NO	bb
10	10 200715P1-14	Standard	12.500	4.72	16959.104	16959.104	12.500	12.5	0.0	NO		NO	bb

Dataset:	D:IPFAS5.PRO\RESULTSL200715P11200715P1-CRV.qld
Last Altered:	Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 08:24:58 Pacific Daylight Time

Compound name: 13C4-PFOS

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 105), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Sid. Conc	RT	Area	IS Asea	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	1 200715P1-05	Standard	12.500	4.80	4219.512	4219.512	12.500	12.5	0.0	NO		NO	bb
2	2 200715P1-06	Standard	12.500	4.80	4605.905	4605.905	12.500	12.5	0.0	NO		NO	bb
3	3 200715P1-07	Standard	12.500	4.80	4267.988	4267.988	12.500	12.5	0.0	NO		NO	bb
4	4 200715P1-08	Standard	12.500	4.80	4133.559	4133.559	12.500	12.5	0.0	NO		NO	bb
5	5 200715P1-09	Standard	12.500	4.80	4631.470	4631.470	12.500	12.5	0.0	NO		NO	bb
6	6 200715P1-10	Standard	12.500	4.80	4210.171	4210.171	12.500	12.5	0.0	NO		NO	bb
7	7 200715P1-11	Standard	12.500	4.80	4449.938	4449.938	12.500	12.5	0.0	NO		NO	bb
8	8 200715P1-12	Standard	12.500	4.80	4390.262	4390.262	12.500	12.5	0.0	NO		NO	bb
9	$9200715 \mathrm{P} 1-13$	Standard	12.500	4.80	3823.365	3823.365	12.500	12.5	0.0	NO		NO	bb
10	$10200715 \mathrm{P} 1 \cdot 14$	Standard	12.500	4.80	3829.495	3829.495	12.500	12.5	0.0	NO		NO	bb

Compound name: 13C6-PFDA

Response Factor: 1
RRF SD: 3.70074e-017, Relative SD: 3.70074e-015
Response type: Internal Std (Ref 106), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	x=excluded
1	$1200715 \mathrm{P} 1-05$	Standard	12.500	5.09	18067.412	18067.412	12.500	12.5	0.0	NO		NO	bb
2	2 200715P1-06	Standard	12.500	5.09	20148.336	20148.336	12.500	12.5	0.0	NO		NO	bb
3	$3200715 \mathrm{P} 1-07$	Standard	12.500	5.09	18807.287	18807.287	12.500	12.5	0.0	NO		NO	bb
4	4 200715P1-08	Standard	12.500	5.09	18401.150	18401.150	12.500	12.5	0.0	NO		NO	bb
5	5 200715P1-09	Standard	12.500	5.09	21510.396	21510.396	12.500	12.5	0.0	NO		NO	bb
6	6 200715P1-10	Standard	12.500	5.09	18755.420	18755.420	12.500	12.5	0.0	NO		NO	bb
7	7 200715P1-11	Standard	12.500	5.09	19409.744	19409.744	12.500	12.5	0.0	NO		NO	bb
8	8 200715P1-12	Standard	12.500	5.09	19378.539	19378.539	12.500	12.5	0.0	NO		NO	bb
9	$9200715 \mathrm{P} 1-13$	Standard	12.500	5.09	17205.107	17205.107	12.500	12.5	0.0	NO		NO	bb
10	10 200715P1-14	Standard	12.500	5.10	17071.865	17071.865	12.500	12.5	0.0	NO		NO	bb

Dataset: D:IPFAS5.PRO\RESULTS\200715P1\200715P1-CRV.qld
Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed: Thursday, July 16, 2020 08:24:58 Pacific Daylight Time

Compound name: 13C7-PFUdA

Response Factor: 1
RRF SD: $1.33432 \mathrm{e}-016$, Relative SD: $1.33432 \mathrm{e}-014$
Response type: Internal Std (Ref 107), Area * (IS Conc. / IS Area)
Curve type: RF

	\#\# Name	Type	Sid. Conc	RT	Areal	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD	COD Flag	$\mathrm{x}=$ excluded
1	1 200715P1-05	Standard	12.500	5.41	15334.599	15334.599	12.500	12.5	0.0	NO		NO	bb
2	2 200715P1-06	Standard	12.500	5.41	17351.859	17351.859	12.500	12.5	0.0	NO		NO	bb
3	3 200715P1-07	Standard	12.500	5.41	16905.795	16905.795	12.500	12.5	0.0	NO		NO	bb
4	4 200715P1-08	Standard	12.500	5.42	15689.824	15689.824	12.500	12.5	0.0	NO		NO	bb
5	5 200715P1-09	Standard	12.500	5.41	17768.025	17768.025	12.500	12.5	0.0	NO		NO	bb
6	6 200715P1-10	Standard	12.500	5.42	16785.340	16785.340	12.500	12.5	0.0	NO		NO	bb
7	7 200715P1-11	Standard	12.500	5.42	16712.057	16712.057	12.500	12.5	0.0	NO		NO	bb
8	8 200715P1-12	Standard	12.500	5.41	16502.117	16502.117	12.500	12.5	0.0	NO		NO	bb
9	9 200715P1-13	Standard	12.500	5.41	14566.803	14566.803	12.500	12.5	0.0	NO		NO	bb
10	10 200715P1-14	Standard	12.500	5.41	14129.214	14129.214	12.500	12.5	0.0	NO		NO	bb

Dataset: Z:IPFAS5.PROURESULTSL200715P1\200715P1-CRV.qld
Last Altered: Thursday, July 16, 2020 10:32:09 Pacific Daylight Time
Printed: Thursday, July 16, 2020 11:08:36 Pacific Daylight Time

Method: D:IPFAS5.PROXMethDBXNEW_PFAS_80C_071520.mdb 16 Jul 2020 08:29:48 Calibration: Z:IPFAS5.PRO\CurveDB\C̄18_VAL-PFAS_Q5_07-15-20.cdb 16 Jul 2020 10:32:09

Name: 200715P1-05, Date: 15-Jul-2020, Time: 12:20:20, ID: ST200715P1-1 PFC CS-2 20F1901, Description: PFC CS-2 20F1901

	\# Name	IS\#	CoD	CoD Flag	\%RSD
1	1 PFBA	47	0.9993	NO	
2	2 PFPrS	51	0.9997	NO	
3	3 3:3 FTCA	49	0.9992	NO	
4	4 PFPeA	49	0.9999	NO	
5	5 PFBS	51	0.9998	NO	
6	6 4:2 FTS	55	0.9991	NO	
7	7 PFHxA	57	0.9967	NO	
8	8 PFPeS	51	0.9995	NO	
9	9 HFPO-DA	53	0.9999	NO	
10	10 5:3 FTCA	59	0.9979	NO	
11	11 PFHpA	59	0.9982	NO	
12	12 ADONA	59	0.9977	NO	
13	13 L-PFHxS	61	0.9998	NO	
14	15 6:2 FTS	63	0.9997	NO	
15	16 L-PFOA	69	0.9999	NO	
16	18 PFecHS	69	0.9998	NO	
17	19 PFHpS	71	0.9993	NO	
18	20 7:3 FTCA	65	0.9997	NO	
19	21 PFNA	65	0.9996	NO	
20	22 PFOSA	67	0.9997	NO	
21	23 L-PFOS	71	0.9983	NO	
22	25 9CI-PF30NS	71	0.9990	NO	
23	26 PFDA	73	0.9999	NO	
24	27 8:2 FTS	75	0.9977	NO	
25	28 PFNS	71	0.9987	NO	
26	29 L-MeFOSAA	77	0.9996	NO	

Dataset: Z:IPFAS5.PRO\RESULTSI200715P11200715P1-CRV.qld
Last Altered: Thursday, July 16, 2020 10:32:09 Pacific Daylight Time
Printed:
Thursday, July 16, 2020 10:34:58 Pacific Daylight Time

Name: 200715P1-06, Date: 15-Jul-2020, Time: 12:30:45, ID: ST200715P1-2 PFC CS-1 20F1902, Description: PFC CS-1 20F1902

	\# Name	IS\#	COD	CoD Flag	\%RSD
1	31 L-EIFOSAA	81	0.9967	NO	
2	33 PFUdA	79	0.9996	NO	
3	34 PFDS	71	0.9976	NO	
4	3511 Cl PF30UdS	83	0.9991	NO	
5	36 10:2 FTS	85	0.9999	NO	
6	37 PFDoA	83	0.9996	NO	
7	38 N-MeFOSA	87	0.9992	NO	
8	39 PFTrDA	83	0.9997	NO	
9	40 PFDoS	89	0.9998	NO	
10	41 PFTeDA	89	0.9980	NO	
11	42 N-EtFOSA	91	0.9997	NO	
12	43 PFHxDA	93	0.9998	NO	
13	44 PFODA	93	1.0000	NO	
14	45 N -MeFOSE	95	0.9970	NO	
15	46 N-EtFOSE	97	0.9976	NO	
16	47 13C3-PFBA-EIS			No	0.000
17	48 13C3-PFBA-RSD	99		NO	3.116
18	49 13C3-PFPeA-EIS			NO	0.000
19	50 13C3-PFPeA-RSD	101		NO	4.152
20	51 13C3-PFBS-EIS			NO	0.000
21	52 13C3-PFBS-RSD	102		NO	3.992
22	53 13C3-HFPO-DA-EIS			NO	0.000
23	54 13C3-HFPO-DA-RSD	101		NO	5.693
24	55 13C2-4:2 FTS-EIS			NO	0.000
25	56 13C2-4:2 FTS-RSD	102		NO	6.497
26	57 13C2-PFHxA-EIS			NO	0.000
27	58 13C2-PFHxA-RSD	101		NO	3.884
28	59 13C4-PFHPA-EIS			NO	0.000
29	60 13C4-PFHPA-RSD	101		NO	6.014
30	61 13C3-PFHxS-EIS			NO	0.000
31	62 13C3-PFHxS-RSD	102		NO	2.230
32.	63 13C2-6:2 FTS-EIS			No	0.000
33	64 13C2-6:2 FTS-RSD	105		NO	5.037
34	65 13C5-PFNA-EIS			NO	0.000
35	66 13C5-PFNA-RSD	104		NO	3.108
36	67 13C8-PFOSA-EIS			NO.	0.000

Dataset:	Z:IPFAS5.PROTRESULTSI200715P1\200715P1-CRV.qld
Last Altered:	Thursday, July 16, 2020 10:32:09 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 10:34:58 Pacific Daylight Time

Name: 200715P1-06, Date: 15-Jul-2020, Time: 12:30:45, ID: ST200715P1-2 PFC CS-1 20F1902, Description: PFC CS-1 20F1902

	\# Name	IS\#	CoD CoD Flag	\%RSD
37	68 13C8-PFOṠA-RSD	107	NO	3.818
38	69 13C2-PFOA-EIS		NO	0.000
39	70 13C2-PFOA-RSD	103	NO	4.397
40	71 13C8-PFOS-EIS		NO	0.000
41	72 13C8-PFOS-RSD	105	NO	5.222
42	73 13C2-PFDA-EIS		NO	0.000
43	74 13C2-PFDA-RSD	106	NO	3.877
44	75 13C2-8:2 FTS-EIS		NO	0.000
45	76 13C2-8:2 FTS-RSD	105	NO	9.143
46	77 d3-N-MeFOSAA-EIS		NO	0.000
47	78 d3-N-MeFOSAA-RSD	107	NO	5.158
48	79 13C2-PFUdA-EIS		NO	0.000
49	80 13C2-PFUdA-RSD	107	NO	3.853
50	$81 \mathrm{~d} 5-\mathrm{N}-\mathrm{EIFOSAA}$-EIS		NO	0.000
51	82 d5-N-EtFOSAA-RSD	107	NO	5.863
52	83 13C2-PFDoA-EIS		NO	0.000
53	84 13C2-PFDoA-RSD	106	NO	3.908
54	85 13C2-10:2 FTS-EIS		NO	0.000
55	86 13C2-10:2 FTS-RSD	105	NO	7.781
56	87 d3-N-MeFOSA-EIS		NO	0.000
57	88 d3-N-MeFOSA-RSD	107	NO	8.192
58	89 13C2-PFTeDA-EIS		NO	0.000
59	90 13C2-PFTeDA-RSD	107	NO	4.170
60	91 d5-N-ETFOSA-EIS		NO	0.000
61	$92 \mathrm{~d} 5-\mathrm{N}-\mathrm{ETFOSA}$-RSD	107	NO	2.939
62	93 13C2-PFHxDA-EIS		NO	0.000
63	94 13C2-PFHxDA-RSD	107	NO	4.511
64	95 d7-N-MeFOSE-EIS		NO	0.000
65	$96 \mathrm{d7}$-N-MeFOSE-RSD	107	NO	8.576
66	$97 \mathrm{d9}$-N-EtFOSE-EIS		NO	0.000
67	$98 \mathrm{d9}-\mathrm{N}-\mathrm{EtFOSE}-\mathrm{RSD}$	107	NO	7.875
68	99 13C4-PFBA	99	NO	0.000
69	1... 13C5-PFHxA	101	NO	0.000
70	1... 18O2-PFHxS	102	NO	0.000
71	1... 13C8-PFOA	103	NO	0.000
72	1... 13C9-PFNA	104	NO.	0.000

Vista Analytical Laboratory
Dataset:
Last Altered: Thursday, July 16, 2020 10:32:09 Pacific Daylight Time
Printed: Thursday, July 16, 2020 10:34:58 Pacific Daylight Time

Name: 200715P1-05, Date: 15-Jul-2020, Time: 12:20:20, ID: ST200715P1-1 PFC CS-2 20F1901, Description: PFC CS-2 20F1901

	\# Name	IS\#	CoD	CoD Flag	\%RSD
69	1... 13C5-PFHxA	101		NO	0.000
70	1... 1802-PFHxS	102		NO	0.000
71	1... 13C8-PFOA	103		NO	0.000
72	1... 13C9-PFNA	104		No	0.000
73	1... 13C4-PFOS	105		No	0.000
74	1... 13C6-PFDA	106		NO	0.000
75	1... 13C7-PFUdA	107		NO	0.000

Dataset: Z:IPFAS5.PROIRESULTSI200715P11200715P1-CRV.qld

Last Altered: Thursday, July 16, 2020 10:32:09 Pacific Daylight Time
Printed: \quad Thursday, July 16, 2020 11:16:06 Pacific Daylight Time

Method: D:\PFAS5.PRO\MethDB\NEW_PFAS_80C_071520.mdb 16 Jul 2020 08:29:48 Calibration: Z:|PFAS5.PRO\CurveDB\C18_VAL-PFAS_Q5_07-15-20.cdb 16 Jul 2020 10:32:09

Name: 200715P1-10, Date: 15-Jul-2020, Time: 13:13:09, ID: ST200715P1-6 PFC CS3 20F1906, Description: PFC CS3 20F1906

	\# Name	Pred.RT	RT	Pred. Ratio	Ion Ratio	Ratio Out?
1	31 L-EtFOSAA	5.39	5.40	1.341	1.341	NO
2	33 PFUdA	5.41	5.41	17.498	17.498	NO
3	34 PFDS	5.45	5.46	2.164	2.164	NO
4	$3511 \mathrm{Cl}-\mathrm{PF} 30 \mathrm{UdS}$	5.63	5.62	17.102	17.102	NO
5	36 10:2 FTS	5.68	5.68	0.905	0.905	NO
6	37 PFDoA	5.69	5.69	10.664	10.664	NO
7	38 N-MeFOSA	5.71	5.70	1.978	1.978	NO
8	39 PFTrDA	5.93	5.93	88.332	88.332	NO
9	40 PFDoS	5.95	5.96	2.298	2.298	NO
10	41 PFTeDA	6.14	6.14	14.205	14.205	NO
11	$42 \mathrm{~N}-\mathrm{EtFOSA}$	6.11	6.11	2.142	2.142	NO
12	43 PFHxDA	6.46	6.46	29.864	29.864	NO
13	44 PFODA	6.67	6.69			
14	45 N-MeFOSE	6.29	6.29			
15	46 N -EtFOSE	6.43	6.44			

Dataset:	Z:IPFAS5.PROURESULTS $200715 P 1 \backslash 200715 P 1-C R V . q l d$
Last Altered:	Thursday, July 16, 2020 10:32:09 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 11:16:33 Pacific Daylight Time

Method: D:IPFAS5.PROMMethDB\NEW_PFAS_80C_071520.mdb 16 Jul 2020 08:29:48 Calibration: Z:IPFAS5.PRO\CurveDBIC-18_VAL-PFAS_Q5_07-15-20.cdb 16 Jul 2020 10:32:09

Name: 200715P1-10, Date: 15-Jul-2020, Time: 13:13:09, ID: ST200715P1-6 PFC CS3 20F1906, Description: PFC CS3 20F1906

	\# Name	Pred.RT	RT	Pred. Ratio	Ion Ratio	Ratio Out?
1	1 PFBA	1.42	1.42			
2	2 PFPrS	1.77	1.75	2.716	2.716	NO
3	3 3:3 FTCA	2.21	2.22	3.526	3.526	NO
4	4 PFPeA	2.36	2.36			
5	5 PFBS	2.64	2.64	2.379	2.379	NO
6	6 4:2 FTS	3.08	3.08	9.810	9.810	NO
7	7 PFHxA	3.16	3.16	15.983	15.983	NO
8	8 PFPeS	3.34	3.36	2.265	2.265	NO
9	9 HFPO-DA	3.38	3.38	2.312	2.312	NO
10	10 5:3 FTCA	3.72	3.70	1.519	1.519	NO
11	11 PFHpA	3.76	3.76	24.926	24.926	NO
12	12 ADONA	3.85	3.87	3.751	3.751	NO
13	13 L-PFHxS	3.90	3.90	4.011	4.011	NO
14	15 6:2 FTS	4.22	4.22	0.661	0.661	NO
15	16 L-PFOA	4.28	4.28	2.969	2.969	NO
16	18 PFechS	4.29	4.29	0.496	0.496	NO
17	19 PFHpS	4.36	4.39	1.851	1.851	NO
18	20 7:3 FTCA	4.63	4.71	1.442	1.442	NO
19	21 PFNA	4.72	4.72	13.129	13.129	NO
20	22 PFOSA	4.77	4.77	21.305	21.305	NO
21	23 L-PFOS	4.80	4.80	2.505	2.505	NO
22	25 9CI-PF30NS	5.01	5.02	27.242	27.242	NO
23	26 PFDA	5.09	5.09	5.330	5.330	NO
24	27 8:2 FTS	5.07	5.07	0.815	0.815	NO
25	28 PFNS	5.15	5.16	2.306	2.306	NO
26	29 L-MeFOSAA	5.24	5.24	1.855	1.855	NO

Method: D:IPFAS5.PROMMethDBINEW PFAS 80C 071520.mdb 15 Jul 2020 14:50:21
Calibration: D:IPFAS5.PROICurveDBIC18_VAL-PFAS_Q5_07-15-20.cdb 16 Jul 2020 08:15:46

Compound name: PFBA

	\# Name	ID	Acq. Date	Acq. Time
1	1 200715P1-01	IPA	15-Jul-20	11:36:45
2	2 200715P1-02	IPA	15-Jul-20	11:47:32
3	3 200715P1-03	tester	15-Jul-20	11:58:08
4	4 200715P1-04	IPA	15-Jul-20	12:08:44
5	5 200715P1-05	ST200715P1-1 PFC CS-2 20F1901	15-Jul-20	12:20:20
6	6 200715P1-06	ST200715P1-2 PFC CS-1 20 F 1902	15-Jul-20	12:30:45
7	7 200715P1-07	ST200715P1-3 PFC CSO 20F1903	15-Jul-20	12:41:22
8	8 200715P1-08	ST200715P1-4 PFC CS1 20F1904	15-Jul-20	12:51:58
9	9 200715P1-09	ST200715P1-5 PFC CS2 20F1905	15-Jul-20	13:02:34
10	$10200715 \mathrm{P} 1-10$	ST200715P1-6 PFC CS3 20F1906	15-Jul-20	13:13:09
11	11 200715P1-11	ST200715P1-7 PFC CS4 20F1907	15-Jul-20	13:23:45
12	12 200715P1-12	ST200715P1-8 PFC CS5 20F1908	15-Jul-20	13:34:11
13	13 200715P1-13	ST200715P1-9 PFC CS6 20F1909	15-Jul-20	13:44:48
14	14 200715P1-14	ST200715P1-10 PFC CS7 20 F 1910	15-Jul-20	13:55:24
15	15 200715P1-15	IB	15-Jul-20	14:05:50

Last Altered: Thursday, July 16, 2020 10:32:09 Pacific Daylight Time
Printed:
Thursday, July 16, 2020 11:17:40 Pacific Daylight Time

Method: D:\PFAS5.PRO\MethDB\NEW_PFAS_80C_071520.mdb 16 Jul 2020 08:29:48 Calibration: Z:IPFAS5.PRO\CurveDB\C18_VAL-PFAS_Q5_07-15-20.cdb 16 Jul 2020 10:32:09

Compound name: PFBA
Correlation coefficient: $\mathrm{r}=0.999639, \mathrm{r}^{\wedge} 2=0.999278$
Calibration curve: 0.980185 * $x+0.115891$
Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFPrS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999657$
Calibration curve: 0.000167653 * $x^{\wedge} 2+1.28527^{*} x+-0.115337$
Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: D:IPFAS5.PROTRESULTS\200715P1【200715P1-CRV.qld
Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed: Thursday, July 16, 2020 08:28:32 Pacific Daylight Time

Compound name: 3:3 FTCA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999213$
Calibration curve: -0.000108646 * $x^{\wedge} 2+0.0776709$ * $x+-0.00369656$
Response type: Internal Std (Ref 49), Area * IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: PFPeA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999950$
Calibration curve: -0.000166693 * $x^{\wedge} 2+0.936142$ * $x+0.0191783$
Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Dataset: D:IPFAS5.PRO\RESULTSL200715P1L200715P1-CRV.qld

Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
 Printed: Thursday, July 16, 2020 08:28:32 Pacific Daylight Time

Compound name: PFBS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999766$
Calibration curve: -0.000471545 * $x^{\wedge} 2+2.52596$ * $x+-0.0069074$
Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: 4:2 FTS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999085$
Calibration curve: -0.000777096 * x^2 +2.51837 * $x+0.0713002$
Response type: Internal Std (Ref 55), Area * (IS Conc. / IS Area
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Dataset: D:IPFAS5.PROURESULTS\200715P1【200715P1-CRV.qld
Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:
Thursday, July 16, 2020 08:28:32 Pacific Daylight Time

Compound name: PFHxA

Correlation coefficient: $\mathrm{r}=0.998355, \mathrm{r}^{\wedge} 2=0.996713$
Calibration curve: 0.989028 * $x+0.093798$
Response type: Internal Std (Ref 57), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: $1 / x$, Axis trans: None

Compound name: PFPeS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999528$
Calibration curve: -0.000776818 * $x^{\wedge} 2+2.0532$ * $x+0.045083$
Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset:	D:IPFAS5.PROIRESULTSL200715P11200715P1-CRV.qld
Last Altered:	Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 08:28:32 Pacific Daylight Time

Compound name: HFPO-DA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999863$
Calibration curve: $-0.000207197^{*} x^{\wedge} 2+0.9792 * x+0.0644029$
Response type: Internal Std (Ref 53), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: 5:3 FTCA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997857$
Calibration curve: $2.67699 \mathrm{e}-006$ * $\mathrm{x}^{\wedge} 2+0.150879$ * $x+-0.000564457$
Response type: Internal Std (Ref 59), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed: Thursday, July 16, 2020 08:28:32 Pacific Daylight Time

Compound name: PFHpA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998154$
Calibration curve: -0.000400669 * $x^{\wedge} 2+1.29457^{*} x+-0.0179516$
Response type: Internal Std (Ref 59), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: ADONA
Coefficient of Determination: R^2 $=0.997677$
Calibration curve: -0.000616138 * $x^{\wedge} 2+2.30427$ * $x+-0.0693606$
Response type: Internal Std (Ref 59), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: D:IPFAS5.PROXRESULTSI200715P11200715P1-CRV.qld

Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed: Thursday, July 16, 2020 08:28:32 Pacific Daylight Time

Compound name: L-PFHxS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999839$
Calibration curve: -0.000166876 * $x^{\wedge} 2+1.16221$ * $x+0.0219326$
Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: 6:2 FTS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999703$
Calibration curve: $-0.000429136^{*} x^{\wedge} 2+1.01207$ * $x+-0.0281069$
Response type: Internal Sid (Ref 63), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Dataset: D:IPFAS5.PROIRESULTSL200715P11200715P1-CRV.qld

Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed Thursday, July 16, 2020 08:28:32 Pacific Daylight Time

Compound name: L-PFOA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999925$
Calibration curve: -0.000278493 * $x^{\wedge} 2+0.984998$ * $x+0.00651212$
Response type: Internal Std (Ref 69), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: PFecHS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999832$
Calibration curve: $-1.00689 \mathrm{e}-005$ * $x^{\wedge} 2+0.193418$ * $x+-0.00519347$
Response type: Internal Std (Ref 69), Area * IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Dataset: D:IPFAS5.PROIRESULTSL200715P11200715P1-CRV.qld

Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed: Thursday, July 16, 2020 08:28:32 Pacific Daylight Time

Compound name: PFHpS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999276$
Calibration curve: -0.000136149 * $x^{\wedge} 2+0.966385^{*} x+-0.0100863$
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: 7:3 FTCA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999738$
Calibration curve: -0.000267529 * ^^2 $^{\wedge}+0.232502$ * $x+-0.0230233$
Response type: Internal Std (Ref 65), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: D:IPFAS5.PROIRESULTSL200715P11200715P1-CRV.qld
Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed: Thursday, July 16, 2020 08:28:32 Pacific Daylight Time

Compound name: PFNA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999634$
Calibration curve: -0.000101923 * $x^{\wedge} 2+1.18112$ * $x+0.0147918$
Response type: Internal Std (Ref 65), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFOSA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999738$
Calibration curve: $-7.63122 e-005^{*} x^{\wedge} 2+0.694419$ * $x+0.0219661$
Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Dataset:

D:IPFAS5.PRO\RESULTS\200715P11200715P1-CRV.qld
Last Altered:
Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:
Thursday, July 16, 2020 08:28:32 Pacific Daylight Time

Compound name: L-PFOS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998321$
Calibration curve: $-5.66898 \mathrm{e}-005^{*} x^{\wedge} 2+1.21465^{*} x+0.0162657$
Response type: Internal Std (Ref 71), Area * IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: 9Cl-PF30NS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999037$
Calibration curve: -9.96094e-005 * x^2 + 2.39352 * x + 0.0272839
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: D:IPFAS5.PRO\RESULTSI200715P11200715P1-CRV.qld
Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed: Thursday, July 16, 2020 08:28:32 Pacific Daylight Time

Compound name: PFDA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999905$
Calibration curve: $-0.000201267^{*} x^{\wedge} 2+0.827978$ * $x+0.0201845$
Response type: Internal Std (Ref 73), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: 8:2 FTS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997655$
Calibration curve: $-0.00053721^{*} x^{\wedge} 2+1.21826{ }^{*} x+0.0763701$
Response type: Internal Std (Ref 75), Area * (IS Conc. / IS Area
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: D:IPFAS5.PROTRESULTSL200715P11200715P1-CRV.qld
Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed: Thursday, July 16, 2020 08:28:32 Pacific Daylight Time

Compound name: PFNS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998706$
Calibration curve: $-0.00023121^{*} x^{\wedge} 2+1.22365$ * $x+0.00033998$
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Compound name: L-MeFOSAA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999586$
Calibration curve: $-0.0003658^{*} x^{\wedge} 2+1.2249^{*} x+-0.0692446$
Response type: Internal Std (Ref 77), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Dataset:	Z:IPFAS5.PROIRESULTSI200715P1\200715P1-CRV.qld
Last Altered:	Thursday, July 16, 2020 10:32:09 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 11:18:05 Pacific Daylight Time

Method: D:\PFAS5.PRO\MethDB\NEW_PFAS_80C_071520.mdb 16 Jul 2020 08:29:48

 Calibration: Z:IPFAS5.PRO\CurveDB\C18_VAL-PFAS_Q5_07-15-20.cdb 16 Jul 2020 10:32:09Compound name: L-EtFOSAA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.996663$
Calibration curve: -0.000334065 * $x^{\wedge} 2+1.57877$ * $x+-0.0199931$
Response type: Internal Std (Ref 81), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFUdA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999624$
Calibration curve: -0.000198343 * $x^{\wedge} 2+0.951704$ * $x+0.0496106$
Response type: Internal Std (Ref 79), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed: Thursday, July 16, 2020 08:28:53 Pacific Daylight Time

Compound name: PFDS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997646$
Calibration curve: -0.000203698 * $x^{\wedge} 2+1.19751^{*} x+0.0930634$
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: $11 \mathrm{Cl}-\mathrm{PF} 30 \mathrm{UdS}$
Correlation coefficient: $r=0.999559, r^{\wedge} 2=0.999118$
Calibration curve: 0.258298 * $x+0.00979795$
Response type: Internal Std (Rel 83), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

Dataset: D:IPFAS5.PROIRESULTSL200715P11200715P1-CRV.qld
Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed: Thursday, July 16, 2020 08:28:53 Pacific Daylight Time

Compound name: 10:2 FTS
Coefficient of Determination: R^2 $^{\wedge}=0.999872$
Calibration curve: -0.000771562 * $x^{\wedge} 2+1.93313$ * $x+0.0501835$
Response type: Internal Std (Ref 85), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: PFDoA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999564$
Calibration curve: -0.000226089 * $x^{\wedge} 2+0.890842$ * x + 0.100204
Response type: Internal Std (Ref 83), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Dataset: D:IPFAS5.PROIRESULTSL200715P11200715P1-CRV.qld
Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed: Thursday, July 16, 2020 08:28:53 Pacific Daylight Time

Compound name: N-MeFOSA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999190$
Calibration curve: $-0.000129273^{*} x^{\wedge} 2+1.05734^{*} x+0.27278$
Response type: Internal Std (Ref 87), Area * (IS Conc. I IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: PFTrDA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999713$
Calibration curve: -0.000380084 * $x^{\wedge} 2+1.05341$ * $x+0.0381517$
Response type: Internal Std (Ref 83), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

Dataset: D:IPFAS5.PROIRESULTSI200715P1【200715P1-CRV.qld

Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed: Thursday, July 16, 2020 08:28:53 Pacific Daylight Time

Compound name: PFDoS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999750$
Calibration curve: $-6.16511 \mathrm{e}-005^{*} \mathrm{x}^{\wedge} 2+0.191239$ * $\mathrm{x}+-0.000256267$
Response type: Internal Std (Ref 89), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFTeDA
Correlation coefficient: $\mathrm{r}=0.999012, \mathrm{r}^{\wedge} 2=0.998025$
Calibration curve: 0.566624 * $x+0.0868218$
Response type: Internal Std (Ref 89), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: D:IPFAS5.PROXRESULTSL200715P11200715P1-CRV.qld
Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:
Thursday, July 16, 2020 08:28:53 Pacific Daylight Time

Compound name: N -EtFOSA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999721$
Calibration curve: $-8.20315 \mathrm{e}-005^{*} x^{\wedge} 2+1.16743^{*} x+0.168696$
Response type: Internal Std (Ref 91), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFHxDA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999849$
Calibration curve: -0.000402925 * $x^{\wedge} 2+0.976081$ * $x+0.0835205$
Response type: Internal Std (Ref 93), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1
Dataset: D:IPFAS5.PROIRESULTSI200715P1\200715P1-CRV.qld
Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed:
Thursday, July 16, 2020 08:28:53 Pacific Daylight Time

Compound name: PFODA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999959$
Calibration curve: -0.000226523 * $x^{\wedge} 2+0.792874^{*} x+-0.0169914$
Response type: Internal Std (Ref 93), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: N-MeFOSE
Correlation coefficient: $\mathrm{r}=0.998493, \mathrm{r}^{\wedge} 2=0.996988$
Calibration curve: 1.03662 * x +0.326411
Response type: Internal Std (Ref 95), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: $1 / x$, Axis trans: None

Dataset: D:IPFAS5.PROIRESULTSI200715P11200715P1-CRV.qid
Last Altered: Thursday, July 16, 2020 08:15:46 Pacific Daylight Time
Printed: Thursday, July 16, 2020 08:28:53 Pacific Daylight Time

Compound name: N-EtFOSE
Correlation coefficient: $\mathrm{r}=0.998790, \mathrm{r}^{\wedge} 2=0.997581$
Calibration curve: 0.94506 * $x+0.386549$
Response type: Internal Std (Ref 97), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: $1 / x$, Axis trans: None

Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Method: D:IPFAS5.PRO\MethDBINEW PFAS 80C 071520.mdb 15 Jul 2020 14:50:21

Calibration: D:IPFAS5.PROICurveDBIC̄18_VAL-PFĀAS_Q5_07-15-20.cdb 15 Jul 2020 15:31:31
Name: 200715P1-05, Date: 15-Jul-2020, Time: 12:20:20, ID: ST200715P1-1 PFC CS-2 20F1901, Description: PFC CS-2 20F1901

PFBA

13C3-PFBA-EIS
F3:MRM of 1 channel,ES$216.1>171.8$

PFPrS
F6:MRM of 2 channels, ES-

13C3-PFBS-EIS
F12:MRM of 1 channel,ES302.0 > 98.9 $3.592 \mathrm{e}+0.4$

PFPeA

F11:MRM of 2 channels,ES-

13C3-PFBS-EIS
F12:MRM of 1 channel,ES$302.0>98.9$ $3.592 \mathrm{e}+004$

F16:MRM of 2 channels,ES-

13C2-4:2 FTS-EIS
F17:MRM of 2 channels,ES$329.0>80.8$
$5.632 e+004$

Dataset:	D:IPFAS5.PROIRESULTSI200715P11200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-05, Date: 15-Jul-2020, Time: 12:20:20, ID: ST200715P1-1 PFC CS-2 20F1901, Description: PFC CS-2 20F1901

PFHxA

F13:MRM of 2 channels,ES-

13C3-PFBS-EIS
F12:MRM of 1 channel,ES $302.0>98.9$ $3.592 e+004$

13C3-HFPO-DA-EIS
F10:MRM of 2 channels,ES $287.0>168.9$ $8.142 e+004$

13C4-PFHpA-EIS F21:MRM of 1 channel,ES$367.2>321.8$

F20:MRM of 2 channels, ES

13C4-PFHpA-EIS
F21:MRM of 1 channel,ES-

13C4-PFHPA-EIS
F21:MRM of 1 channel,ES$367.2>321.8$

Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time Wrinted:
Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time	

Name: 200715P1-05, Date: 15-Jul-2020, Time: 12:20:20, ID: ST200715P1-1 PFC CS-2 20F1901, Description: PFC CS-2 $20 F 1901$

F23:MRM of 2 channels,ES-

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES$402>80$

13C2-6:2 FTS-EIS
F30:MRM of 1 channel,ES-

F26:MRM of 2 channels,ESF26:MRM of 2 channels, ES-
$413>169$
$4.647 \mathrm{e}+003$

13C2-PFOA-EIS
F27:MRM of 1 channel,ES

F34:MRM of 2 channels, ES-
$461>99$

13C2-PFOA-EIS
F27:MRM of 1 channel,ES-

13C8-PFOS-EIS
F43:MRM of 1 channel,ES$507.1>80$

Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time

Printed:

Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-05, Date: 15-Jul-2020, Time: 12:20:20, ID: ST200715P1-1 PFC CS-2 20F1901, Description: PFC CS-2 20F1901

F35:MRM of 2 channels,ES-

13C5-PFNA-EIS
F36:MRM of 1 channel,ES-

F38:MRM of 2 channels,ES-

13C8-PFOSA-EIS
F42:MRM of 1 channel, ES-
$506>78$

F40:MRM of 2 channels,ES-

13C8-PFOS-EIS
F43:MRM of 1 channel, ES-

F52:MRM of 2 channels,ES-

13C8-PFOS-EIS
F43:MRM of 1 channel,ES-
$507.1>80$

F45:MRM of 2 channels, ES-

13C2-PFDA-EIS
F46:MRM of 1 channel,ES-

13C2-8:2 FTS-EIS
F51:MRM of 1 channel,ES-

Dataset:
 D:IPFAS5.PROXRESULTS\200715P11200715P1-CRV.qld

Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:
Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-05, Date: 15-Jul-2020, Time: 12:20:20, ID: ST200715P1-1 PFC CS-2 20F1901, Description: PFC CS-2 20F1901

PFNS

	M of	$\begin{array}{r} \text { channels, ES- } \\ 549>80 \end{array}$
	PFNS	$2.310 \mathrm{e}+003$
100	5.15	
	6.99 e 1	
\%-	2305	
	bb	
	490.40	
	तोगm?	-пיTmi min

F54:MRM of 2 channels,ES-

13C8-PFOS-EIS

F57:MRM of 2 channels,ES

d3-N-MeFOSAA-EIS

F60:MRM of 2 channels,ES
(1007
d5-N-EtFOSAA-EIS
F61:MRM of 1 channel,ES$589.3>419$ $1.297 \mathrm{e}+005$

13C2-PFUdA-EIS
F56:MRM of 1 channel,ES$565>519.8$ $6.976 \mathrm{e}+0.05$

F62:MRM of 2 channels,ES-

13C8-PFOS-EIS
F43:MRM of 1 channel,ES $507.1>80$ $1.022 \mathrm{e}+005$

F69:MRM of 2 channels,ES-
$631>83$

13C2-PFDoA-EIS
F64:MRM of 1 channel,ES$614.9>569.9$ $7.061 e+005$

Dataset:	D:IPFAS5.PROIRESULTSI200715P1\200715P1-CRV.qid
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-05, Date: 15-Jul-2020, Time: 12:20:20, ID: ST200715P1-1 PFC CS-2 20F1901, Description: PFC CS-2 20F1901

13C2-10:2 FTS-EIS
F70:MRM of 1 channel,ES $632.9>80.0$ $4.226 e+004$

5.7506 .0006 .250

F44:MRM of 2 channels,ES

d3-N-MeFOSA-EIS
F47:MRM of 1 channel,ES

F72:MRM of 2 channels,ES-

13C2-PFTeDA-EIS

PFTeDA

F74:MRM of 2 channels,ES$5.783 \mathrm{e}+002$

13C2-PFTeDA-EIS

F75:MRM of 2 channels,ES$715.1>669.7$

Dataset:	D:IPFAS5.PRO\RESULTS\200715P1\200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-05, Date: 15-Jul-2020, Time: 12:20:20, ID: ST200715P1-1 PFC CS-2 20F1901, Description: PFC CS-2 20F1901

PFHxDA		
F76:MRM of 2 channels, ES-		
$813>769$		
	- PFHxDA	$2.867 \mathrm{e}+004$
	76.46	
	7.72 e 2	
	\%- 28366	
	bb	
F76:MRM of 2 channels,ES-		
$813>219$		
	- PFHxDA	$9.032 \mathrm{e}+002$
	Э 6.47	
	2.30 e 1	
	\%- 879	
		6.57
		, minin min
	6.2006 .400	6.600

13C2-PFHxDA-EIS
F77:MRM of 1 channel, ES

F66:MRM of 1 channel,ES-
$623.1>58.9$ $6.795 \mathrm{e}+005$

d9-N-EtFOSE-EIS
F71:MRM of 1 channel,ES
F71:MRM of 1 channel,ES-
$639.2>58.8$

13C3-PFBA-RSD

Dataset:	D:IPFAS5.PRO\RESULTS\200715P1\200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-05, Date: 15-Jul-2020, Time: 12:20:20, ID: ST200715P1-1 PFC CS-2 20F1901, Description: PFC CS-2 20F1901

13C5-PFNA-RSD

13C8-PFOSA-RSD
F42:MRM of 1 channel,ES

13C2-PFOA-RSD
F27:MRM of 1 channel,ES-
$414.9>369.7$ $6.094 \mathrm{e}+005$

13C8-PFOS-RSD

F43:MRM of 1 channel,ES $507.1>80$ $1.022 \mathrm{e}+005$

13C2-PFDA-RSD
F46:MRM of 1 channel,ES-
$515.1>469.9$ $5.867 e+005$

Dataset:
 D:IPFAS5.PROIRESULTS\200715P1\200715P1-CRV.qld

Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time Printed: Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-05, Date: 15-Jul-2020, Time: 12:20:20, ID: ST200715P1-1 PFC CS-2 20F1901, Description: PFC CS-2 20F1901

d3-N-MeFOSA-RSD
F47:MRM of 1 channel,ES515.2 > 168.9

d3-N-MeFOSAA-RSD

F59:MRM of 1 channel,ES

$$
4.7505 .000 \quad 5.250
$$

13C2-PFTeDA-RSD
F75:MRM of 2 channels, ES $715.1>669.7$ $6.858 \mathrm{e}+005$

d5-N-ETFOSA-RSD
F53:MRM of 1 channel,ES
531.1 > 168.
7.276 e+005

13C2-PFHxDA-RSD
F77:MRM of 1 channel,ES$815>769.7$ $.071 \mathrm{e}+006$

d9-N-EtFOSE-RSD
F71:MRM of 1 channel,ES
639.2 > 58.8 $9.185 \mathrm{e}+005$

d7-N-MeFOSE-RSD
F66:MRM of 1 channel,ES-
$623.1>58.9$
$6.795 \mathrm{e}+005$
Dataset: D:IPFAS5.PROIRESULTS\200715P11200715P1-CRV.qld

Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-05, Date: 15-Jul-2020, Time: 12:20:20, ID: ST200715P1-1 PFC CS-2 20F1901, Description: PFC CS-2 20F1901

13C6-PFDA
F48:MRM of 1 channel,ES$519.1>473.7$ $5.016 \mathrm{e}+005$

13C7-PFUdA
F58:MRM of 1 channel,ES-
$570.1>524.8$ $5.040 \mathrm{e}+0.05$

Dataset: D:IPFAS5.PROIRESULTS\200715P1\200715P1-CRV.qld

Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-06, Date: 15-Jul-2020, Time: 12:30:45, ID: ST200715P1-2 PFC CS-1 20F1902, Description: PFC CS-1 20F1902

13C3-PFBA-EIS
F3:MRM of 1 channel,ES$216.1>171.8$ $1.232 e+005$

13C3-PFBS-EIS
F12:MRM of 1 channel,ES-

3:3 FTCA

$\begin{aligned} & \text { F5:MRM of } 2 \text { channels,ES- } \\ & 240.9>176.9\end{aligned}$

13C3-PFPeA-EIS
F8:MRM of 1 channel,ES-

PFPeA

13C3-PFPeA-EIS 13C3-PFBS-EIS
F8:MRM of 1 channel,ES-

PFBS

F11:MRM of 2 channels,ES-

F12:MRM of 1 channel,ES

13C3-PFBS-EIS 13C2-4:2 FTS-EIS

F16:MRM of 2 channels, ES-

F17:MRM of 2 channels,ES$329.0>80.8$ $5.037 e+004$

Dataset:	D:IPFAS5.PROIRESULTSI200715P1\200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-06, Date: 15-Jul-2020, Time: 12:30:45, ID: ST200715P1-2 PFC CS-1 20F1902, Description: PFC CS-1 20F1902

13C2-PFHxA-EIS
F14-MRM of 1 chan

PFPeS

F19:MRM of 2 channels,ES-

13C3-PFBS-EIS
F12:MRM of 1 channel,ES$302.0>98.9$ $3.407 \mathrm{e}+004$

F9:MRM of 3 channels,ES$285.1>184.9$

13C3-HFPO-DA-EIS
F10:MRM of 2 channels,ES
$287.0>168.9$ $7.759 \mathrm{e}+004$

13C4-PFHpA-EIS
F21:MRM of 1 channel,ES-

PFHpA

F20:MRM of 2 channels, ES

F20:MRM of 2 channels,ES

13C4-PFHpA-EIS
F21:MRM of 1 channel,ES-

Dataset:

D:IPFAS5.PROURESULTS\200715P1\200715P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time

Name: 200715P1-06, Date: 15-Jul-2020, Time: 12:30:45, ID: ST200715P1-2 PFC CS-1 20F1902, Description: PFC CS-1 $20 F 1902$

F29:MRM of 2 channels,ES-

F26:MRM of 2 channels,ES$413>169$

13C2-PFOA-EIS
F27:MRM of 1 channel,ES-

F34:MRM of 2 channels,ES-

13C2-PFOA-EIS
F27:MRM of 1 channel,ES-

F32:MRM of 2 channels,ES
F32:MRM of 2 channels, ES-
$449>99$
$2.396 \mathrm{e}+003$

13C8-PFOS-EIS

F43:MRM of 1 channe

annel,ES $07.1>80$

Dataset: D:IPFAS5.PRO\RESULTS\200715P1\200715P1-CRV.qld

Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:
Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-06, Date: 15-Jul-2020, Time: 12:30:45, ID: ST200715P1-2 PFC CS-1 20F1902, Description: PFC CS-1 20F1902

13C8-PFOSA-EIS

13C8-PFOS-EIS

$$
\begin{array}{r}
\text { F52:MRM of } 2 \text { channels,ES- } \\
531>83
\end{array}
$$

13C8-PFOS-EIS
F43:MRM of 1 channel,ES-

13C2-PFDA-EIS
F46:MRM of 1 channel,ES
F46:MRM of 1 channel,ES-
$515.1>469.9$
$5.859 \mathrm{e}+005$

Dataset: D:IPFAS5.PROIRESULTS\200715P1\200715P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-06, Date: 15-Jul-2020, Time: 12:30:45, ID: ST200715P1-2 PFC CS-1 20F1902, Description: PFC CS-1 $20 F 1902$

d3-N-MeFOSAA-EIS
F59:MRM of 1 channel,ES-
$573.1>419$

F60:MRM of 2 channels,ES

$$
583.9>526
$$

d5-N-EtFOSAA-EIS
F61:MRM of 1 channel,ES-

F55:MRM of 2 channels,ES-

13C2-PFUdA-EIS

F56:MRM of 1 channel,ES-

F62:MRM of 2 channels,ES-

13C8-PFOS-EIS
F43:MRM of 1 channel,ES-

F69:MRM of 2 channels,ES-

13C2-PFDoA-EIS
F64:MRM of 1 channel,ES-
$614.9>569.9$
$7386 e+005$ $7.386 e+005$

Vista Analytical Laboratory

Dataset:	D:IPFAS5.PRO\RESULTS\200715P1\200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-06, Date: 15-Jul-2020, Time: 12:30:45, ID: ST200715P1-2 PFC CS-1 20F1902, Description: PFC CS-1 20F1902

13C2-10:2 FTS-EIS
F70:MRM of 1 channel,ES
$632.9>80.0$ $4.033 \mathrm{e}+004$

F44:MRM of 2 channels,ES

F72:MRM of 2 channels,ES-

13C2-PFDoA-EIS
F64:MRM of 1 channel,ES-

F73:MRM of 2 channels,ES-
$699>99$

13C2-PFTeDA-EIS
F75:MRM of 2 channels,ES-
$715.1>669.7$

PFTeDA

F74:MRM of 2 channels,ES-

13C2-PFTeDA-EIS

F75:MRM of 2 channels,ES-

Vista Analytical Laboratory
Dataset: D:IPFAS5.PROIRESULTS\200715P1\200715P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:
Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-06, Date: 15-Jul-2020, Time: 12:30:45, ID: ST200715P1-2 PFC CS-1 20F1902, Description: PFC CS-1 $20 F 1902$

6.0006 .2006 .400

PFHxDA		
F76:MRM of 2 channels,ES-		
$813>769$		
1007	PFHxDA	$5.296 e+004$
	6.46	
	1.38 e 3	
\%-	52506	
\%	bb	
	52506.00	
	+	

13C2-PFHxDA-EIS
F77:MRM of 1 channel,ES$815>769.7$

13C2-PFHxDA-EIS
F77:MRM of 1 channel,ES.

d7-N-MeFOSE-EIS
F66:MRM of 1 channel,ES-
F66:MRM of 1 channel,ES-

d9-N-EtFOSE-EIS
F71:MRM of 1 channel,ES-

13C3-PFBA-RSD
F3:MRM of 1 channeI,ES-
$216.1>171.8$
100

Dataset:	D:IPFAS5.PRO\RESULTS\200715P11200715P1-CRV.qid
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-06, Date: 15-Jul-2020, Time: 12:30:45, ID: ST200715P1-2 PFC CS-1 20F1902, Description: PFC CS-1 20F1902

13C2-6:2 FTS-RSD
F30:MRM of 1 channel,ES$429.0>79.7$ $6.790 \mathrm{e}+004$

13C2-PFOA-RSD

13C8-PFOS-RSD

F43:MRM of 1 channel,ES

13C2-PFDA-RSD
F46:MRM of 1 channel,ES$515.1>469.9$ $5.859 \mathrm{e}+005$

Dataset:	D:IPFAS5.PRO\RESULTS\200715P1\200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-06, Date: 15-Jul-2020, Time: 12:30:45, ID: ST200715P1-2 PFC CS-1 20F1902, Description: PFC CS-1 20F1902

d5-N-ETFOSA-RSD
F53:MRM of 1 channel,ES

13C2-PFHxDA-RSD

F77:MRM of 1 channel,ES-

Dataset:	D:IPFAS5.PROTRESULTSI200715P1\200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-06, Date: 15-Jul-2020, Time: 12:30:45, ID: ST200715P1-2 PFC CS-1 20F1902, Description: PFC CS-1 20F1902

13C7-PFUdA
F58:MRM of 1 channel,ES$570.1>524.8$ $5.802 \theta+005$

Dataset:	D:IPFAS5.PRO\RESULTS\200715P1\200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-07, Date: 15-Jul-2020, Time: 12:41:22, ID: ST200715P1-3 PFC CS0 20F1903, Description: PFC CS0 20F1903

13C3-PFBA-EIS
F3:MRM of 1 channel,ES$216.1>171.8$

F6:MRM of 2 channels, ES-

13C3-PFBS-EIS
F12:MRM of 1 channel,ES302.0 > 98.9 $3.711 \mathrm{e}+004$

13C3-PFPeA-EIS
F8:MRM of 1 channel,ES$266.0>221.8$ $2.665 \mathrm{e}+005$

13C3-PFPeA-EIS
F8:MRM of 1 channel,ES-

PFBS

F11:MRM of 2 channels,ES

	$299.0>80$
100 PFBS	$7.501 e+003$
10072.64	
3.46e2	
7473	
bb	
7346.84	
	Tr10

F11:MRM of 2 channels,ESF11.MRM $299.0>98.9$

13C3-PFBS-EIS
F12:MRM of 1 channel,ES $302.0>98.9$ $3.711 \mathrm{e}+004$

F16:MRM of 2 channels,ES$326.9>80.8$

13C2-4:2 FTS-EIS
F17:MRM of 2 channels,ES$329.0>80.8$ $5.104 \mathrm{e}+004$

Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-07, Date: 15-Jul-2020, Time: 12:41:22, ID: ST200715P1-3 PFC CS0 20F1903, Description: PFC CS0 20F1903

13C3-PFBS-EIS
F12:MRM of 1 channel,ES-
F12:MRM of 1 channel, ES-

13C3-HFPO-DA-EIS
F10:MRM of 2 channels,ES

13C4-PFHpA-EIS
F21:MRM of 1 channel,ES-
$367.2>321.8$

Dataset:	D:IPFAS5.PRO\RESULTS\200715P1\200715P1-CRV.qid
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-07, Date: 15-Jul-2020, Time: 12:41:22, ID: ST200715P1-3 PFC CS0 20F1903, Description: PFC CS0 $20 F 1903$

13C2-6:2 FTS-EIS
F30:MRM of 1 channel,ES-

F26:MRM of 2 channels,ES
$413>169$
$1.511 e+004$

13C2-PFOA-EIS
F27:MRM of 1 channel,ES

F34:MRM of 2 channels,ES-

13C2-PFOA-EIS
F27:MRM of 1 channel,ES-

13C8-PFOS-EIS
F43:MRM of 1 channel, ES-
$507.1>80$

Dataset:	D:IPFAS5.PROIRESULTS\200715P11200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-07, Date: 15-Jul-2020, Time: 12:41:22, ID: ST200715P1-3 PFC CSO 20F1903, Description: PFC CS0 20F1903

Abstract

PFNA

13C5-PFNA-EIS
F36:MRM of 1 channel,ES468.2 > 422.9 $5.151 e+005$

13C8-PFOSA-EIS

F40:MRM of 2 channels,ES-

13C8-PFOS-EIS

F43:MRM of 1 channl,

13C8-PFOS-EIS
F43:MRM of 1 channel,ES$507.1>80$ $9.495 \mathrm{e}+004$

F45:MRM of 2 channels,ES-
$513>219$
7.322e+003

13C2-PFDA-EIS
F46:MRM of 1 channel,ES$515.1>469.9$
$5.676 \mathrm{e}+005$

F50:MRM of 2 channels,ES-

13C2-8:2 FTS-EIS

F51:MRM of 1 channel,ES$529>80$
$5.109 e+004$

Dataset:	D:IPFAS5.PRO\RESULTSI200715P11200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-07, Date: 15-Jul-2020, Time: 12:41:22, ID: ST200715P1-3 PFC CSO 20F1903, Description: PFC CS0 20F1903

d5-N-EtFOSAA-EIS
F61:MRM of 1 channel,ES.

13C2-PFUdA-EIS
F56:MRM of 1 channel,ES-
$565>519.8$

F62:MRM of 2 channels,ES-

13C8-PFOS-EIS
F43:MRM of 1 channel,ES$507.1>80$ $495 \mathrm{e}+00$

F69:MRM of 2 channels,ES-
$631>83$
$810 e+002$

13C2-PFDoA-EIS
F64:MRM of 1 channel,ES$614.9>569.9$ $7.444 e+005$
Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time

Name: 200715P1-07, Date: 15-Jul-2020, Time: 12:41:22, ID: ST200715P1-3 PFC CS0 20F1903, Description: PFC CS0 20F1903

F67:MRM of 2 channels,ES-
$626.9>80.7$

13C2-10:2 FTS-EIS
F70:MRM of 1 channel,ES$632.9>80.0$ $3.965 e+004$

13C2-PFDoA-EIS F64:MRM of 1 channel,ES$614.9>569.9$

d3-N-MeFOSA-EIS

$$
\text { F47:MRM of } 1 \text { channel,ES- }
$$ $515.2>168.9$

13C2-PFDoA-EIS
F64:MRM of 1 channel,ES$614.9>569.9$ $7.444 \mathrm{e}+005$

F73:MRM of 2 channels, ESF73.MRM of 2 channels,
$699>99$

13C2-PFTeDA-EIS F75:MRM of 2 channels, ES $715.1>669.7$

PFTeDA

F74:MRM of 2 channels,ES-

$713.0>669.0$		
100	PFTeDA	$3.509 e+004$
	6.14	
	1.29e3	
$\%-$	34767	
	bb	
	4767.00	
	mmpmit	(1)TmTM

F74:MRM of 2 channels,ES-

13C2-PFTeDA-EIS
F75:MRM of 2 channels,ES$715.1>669.7$ $6.820 \mathrm{e}+005$

Dataset:	D:IPFAS5.PROIRESULTS\200715P11200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-07, Date: 15-Jul-2020, Time: 12:41:22, ID: ST200715P1-3 PFC CS0 20F1903, Description: PFC CS0 $20 F 1903$

Dataset:	D:IPFAS5.PRO\RESULTSI200715P11200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-07, Date: 15-Jul-2020, Time: 12:41:22, ID: ST200715P1-3 PFC CS0 20F1903, Description: PFC CS0 20F1903

13C3-PFBS-RSD
 F12:MRM of 1 channel,ES-

13C3-HFPO-DA-RSD
F10:MRM of 2 channels, ES$287.0>168.9$

F36:MRM of 1 channel,ES$468.2>422.9$ $5.151 e+005$

13C2-PFOA-RSD
F27:MRM of 1 channel,ES$414.9>369.7$
5.822 e +005

13C8-PFOS-RSD
F43:MRM of 1 channel,ES$507.1>80$ $9.495 \mathrm{e}+004$
13C3-PFHxS-RSD
F24:MRM of 1 channel,ES-
$402>80$
$100-149 e+005$

13C2-PFDA-RSD
F46:MRM of 1 channel,ES-

Vista Analytical Laboratory
Dataset: D:IPFAS5.PROIRESULTS\200715P1\200715P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-07, Date: 15-Jul-2020, Time: 12:41:22, ID: ST200715P1-3 PFC CS0 20F1903, Description: PFC CS0 20F1903

13C2-PFTeDA-RSD
F75:MRM of 2 channels,ES-

d5-N-ETFOSA-RSD
F53:MRM of 1 channel,ES-
$531.1>168.9$

13C2-PFHxDA-RSD
F77:MRM of 1 channel,ES-

6.2006 .4006 .600

d9-N-EtFOSE-RSD
F71:MRM of 1 channel,ES-
$639.2>58.8$
F71:MRM of 1 channel,ES-
$639.2>58.8$
$9.085 \mathrm{e}+005$

Dataset: D:IPFAS5.PROIRESULTS\200715P11200715P1-CRV.qld

Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-07, Date: 15-Jul-2020, Time: 12:41:22, ID: ST200715P1-3 PFC CS0 20F1903, Description: PFC CS0 20F1903

13C6-PFDA
F48:MRM of 1 channel,ES $519.1>473.7$ $5.305 \mathrm{e}+005$

13C7-PFUdA
F58:MRM of 1 channel,ES$570.1>524.8$ $5.507 e+005$

Dataset:	D:IPFAS5.PROIRESULTSI200715P1\200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-08, Date: 15-Jul-2020, Time: 12:51:58, ID: ST200715P1-4 PFC CS1 20F1904, Description: PFC CS1 20F1904

13C3-PFBS-EIS
F12:MRM of 1 channel,ES302.0 > 98.9 $3.552 \mathrm{e}+004$

13C3-PFPeA-EIS
F8:MRM of 1 channel,ES$266.0>221.8$ $2.727 \mathrm{e}+005$

F11:MRM of 2 channels,ES.

13C3-PFBS-EIS
F12:MRM of 1 channel,ES$302.0>98.9$ $3.552 e+004$

13C2-4:2 FTS-EIS
F17:MRM of 2 channels,ES$329.0>80.8$ $5.720 \mathrm{e}+004$

Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time Printed:

Name: 200715P1-08, Date: 15-Jul-2020, Time: 12:51:58, ID: ST200715P1-4 PFC CS1 20F1904, Description: PFC CS1 $20 F 1904$

PFHxA	
F13:MRM of 2 channels,ES-	
313.0 > 269.0	
$1007 \begin{gathered}\text { PFHXA } \\ 3.16\end{gathered} \quad 7.741 \mathrm{e}+004$	
2.55 e 3	
- 74290	
bb	
501.74	
0 ¢0mminminmin min	
F13:MRM of 2 channels,ES-	
$313>118.9$	
100 PFHxA $5.887 \mathrm{e}+003$	
$\left.\left.{ }^{100}\right] 3.16\right]$	
1.97 e 2	
\%- 5876	
bb	
- 1511.49	

13C3-PFBS-EIS

13C3-HFPO-DA-EIS
F10:MRM of 2 channels, ES-

F18:MRM of 2 channels,ES-

F20:MRM of 2 channels,ES$363.0>169.0$

13C4-PFHpA-EIS
F21:MRM of 1 channel,ES

F22:MRM of 2 channels,ES-
$376.8>85.0$
$4.061 \mathrm{e}+004$
100

13C4-PFHpA-EIS
F21:MRM of 1 channel,ES-
$367.2>321.8$

Dataset:	D:IPFAS5.PRO\RESULTSI200715P1\200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-08, Date: 15-Jul-2020, Time: 12:51:58, ID: ST200715P1-4 PFC CS1 20F1904, Description: PFC CS1 20F1904

13C2-6:2 FTS-EIS F30:MRM of 1 channel,ES-

L-PFOA

F26:MRM of 2 channels,ES
$413>169$ $3.050 e+004$

13C2-PFOA-EIS
F27:MRM of 1 channel,ES
F27:MRM of 1 channel,ES
$414.9>369.7$

F34:MRM of 2 channels, ES-
$461>99$

13C2-PFOA-EIS
F27:MRM of 1 channel,ES-

F32:MRM of 2 channels,ES
$449>99$ $8.839 e+003$

13C8-PFOS-EIS
F43:MRM of 1 channel,ES $507.1>80$ $9.711 \mathrm{e}+00$

3C5-PFNA-EIS
F36:MRM of 1 channel,ES$468.2>422.9$ $5.248 \mathrm{e}+005$

Dataset:	D:IPFAS5.PRO\RESULTSI200715P1 1200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-08, Date: 15-Jul-2020, Time: 12:51:58, ID: ST200715P1-4 PFC CS1 20F1904, Description: PFC CS1 20F1904

PFNA		
F35:MRM of 2 channels,ES-		
${ }^{100} 7{ }_{7}{ }^{\text {a }}$		
\%		
F35:MRM of 2 channels, ES-		
1007 - $6.147 e+003$		
\%		
	4.500	5.000

13C8-PFOSA-EIS

F40:MRM of 2 channels,ES-

13C8-PFOS-EIS
F43:MRM of 1 Chan

F52:MRM of 2 channels,ES-
$531>83$

13C8-PFOS-EIS
F43:MRM of 1 channel,ES$507.1>80$ $9.711 \mathrm{e}+004$

13C2-PFDA-EIS
F46:MRM of 1 channel,ES

Vista Analytical Laboratory

Dataset: D:IPFAS5.PROIRESULTS\200715P1\200715P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-08, Date: 15-Jul-2020, Time: 12:51:58, ID: ST200715P1-4 PFC CS1 20F1904, Description: PFC CS1 20F1904

F54:MRM of 2 channels,ES-

13C8-PFOS-EIS
F43:MRM of 1 channel,ES-

F57:MRM of 2 channels,ES-

d3-N-MeFOSAA-EIS
F59:MRM of 1 channel,ES-

F60:MRM of 2 channels,ES-

$$
\begin{array}{r}
583.9>526 \\
19050+004
\end{array}
$$

d5-N-EtFOSAA-EIS
F61:MRM of 1 channel,ES-

F55:MRM of 2 channels,ES$563.0>269$

13C2-PFUdA-EIS

F56:MRM of 1 channel,ES-

13C8-PFOS-EIS

F43:MRM of 1 channel,ES

11Cl-PF30UdS

F69:MRM of 2 channels,ES-

13C2-PFDoA-EIS
F64:MRM of 1 channel,ES-
$614.9>569.9$

Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-08, Date: 15-Jul-2020, Time: 12:51:58, ID: ST200715P1-4 PFC CS1 20F1904, Description: PFC CS1 $20 F 1904$

Dataset:	D:IPFAS5.PRO\RESULTSI200715P11200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-08, Date: 15-Jul-2020, Time: 12:51:58, ID: ST200715P1-4 PFC CS1 20F1904, Description: PFC CS1 20F1904

6.2006 .4006 .600

13C2-PFHxDA-EIS
F77:MRM of 1 channel,ES

d7-N-MeFOSE-EIS

F66:MRM of 1 channel,ES-
$623.1>58.9$

d9-N-EtFOSE-EIS
F71:MRM of 1 channel,ES-
$639.2>58.8$

13C3-PFPeA-RSD

Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time

Name: 200715P1-08, Date: 15-Jul-2020, Time: 12:51:58, ID: ST200715P1-4 PFC CS1 20F1904, Description: PFC CS1 20F1904

13C3-PFBS-RSD

13C2-6:2 FTS-RSD

13C3-HFPO-DA-RSD
F10:MRM of 2 channels,ES-
$287.0>168.9$
$7.350 \ominus+004$

13C5-PFNA-RSD
F36:MRM of 1 channel,ES-
$468.2>422.9$

13C8-PFOSA-RSD
F42:MRM of 1 channel,ES.
$506>78$
$506>78$
$2.120 \mathrm{e}+005$

13C2-PFOA-RSD
F27:MRM of 1 channel,ES-

$100-5.500 \mathrm{e}+005$

13C8-PFOS-RSD

F43:MRM of 1 channel,ES

Dataset:	D:IPFAS5.PRO\RESULTS\200715P1 $200715 P 1-C R V . q l d$
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-08, Date: 15-Jul-2020, Time: 12:51:58, ID: ST200715P1-4 PFC CS1 20F1904, Description: PFC CS1 20F1904

13C2-8:2 FTS-RSD
 F51:MRM of 1 channel,ES-

13C2-PFTeDA-RSD
F75:MRM of 2 channels,ES-

13C2-PFHxDA-RSD
F77:MRM of 1 channel,ES-

d9-N-EtFOSE-RSD
F71:MRM of 1 channel,ES-

Dataset:	D:IPFAS5.PRO\RESULTS\200715P1\200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-08, Date: 15-Jul-2020, Time: 12:51:58, ID: ST200715P1-4 PFC CS1 20F1904, Description: PFC CS1 20F1904

13C6-PFDA
F48:MRM of 1 channel ES $519.1>473.7$ $5.257 e+005$

13C7-PFUdA
F58:MRM of 1 channel,ES-

Dataset: D:IPFAS5.PROIRESULTS\200715P1【200715P1-CRV.qld

Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-09, Date: 15-Jul-2020, Time: 13:02:34, ID: ST200715P1-5 PFC CS2 20F1905, Description: PFC CS2 20F1905

Name: 200715P1-09, Date: 15-Jul-2020, Time: 13:02:34, ID: ST200715P1-5 PFC CS2 20F1905, Description: PFC CS2 20F1905

PFHxA	
F13:MRM of 2 channels,ES-	
$100 \mathrm{PFHxA} \quad 2.078 \mathrm{e}+005$	
10073.16	
- 7.47e3	
\%-205034	
- bb	
- 976.62	
F13:MRM of 2 channels,ES-	
$313>118.9$	
$100 \mathrm{PFHxA} \quad 1.265 \mathrm{e}+004$	
$100\rceil 3.16$	
4.59 e 2	
\%-12602	
- 2877.85	

13C3-PFBS-EIS

13C3-HFPO-DA-EIS
F10:MRM of 2 channels, ES-

F18:MRM of 2 channels,ES-

13C4-PFHpA-EIS
F21:MRM of 1 channel,ES-

F20:MRM of 2 channels,ES-
$363.0>169.0$ $363.0>169.0$
$1.769 e+003$

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES

Dataset:	D:IPFAS5.PROIRESULTS\200715P1\200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-09, Date: 15-Jul-2020, Time: 13:02:34, ID: ST200715P1-5 PFC CS2 20F1905, Description: PFC CS2 20F1905

F23:MRM of 2 channels,ES-

13C3-PFHxS-EIS

F29:MRM of 2 channels, ES-
$427 .>81$

13C2-6:2 FTS-EIS
F30:MRM of 1 channel,ES-

L-PFOA

F26:MRM of 2 channels,ES
$413>16$

13C2-PFOA-EIS
F27:MRM of 1 channel,ES

F34:MRM of 2 channels, ES-

13C2-PFOA-EIS
F27:MRM of 1 channel,ES-
$\begin{array}{rr} & 414.9>369.7 \\ 100- & 6.329 \mathrm{e}+005\end{array}$

F32:MRM of 2 channels,ES
$449>99$

13C8-PFOS-EIS
F43:MRM of 1 channel,ES

F31:MRM of 2 channels,ES$440.9>316.9$

13C5-PFNA-EIS
F36:MRM of 1 channel,ES$468.2>422.9$

Dataset:
 D:IPFAS5.PRO\RESULTS\200715P1\200715P1-CRV.qld

Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-09, Date: 15-Jul-2020, Time: 13:02:34, ID: ST200715P1-5 PFC CS2 20F1905, Description: PFC CS2 20F1905

Abstract

\section*{PFNA}

F35:MRM of 2 channels,ES 463.0 > 219.0 $2.212 e+004$

L-PFOS

F40:MRM of 2 channels,ES

13C8-PFOS-EIS

13C8-PFOS-EIS

F43:MRM of 1 channel,ES-
$507.1>80$
$1.018 \mathrm{e}+005$

F45:MRM of 2 channels,ES-
202e+004

13C2-PFDA-EIS

Dataset:	D:IPFAS5.PRO\RESULTS\200715P1\200715P1-CRV.gld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-09, Date: 15-Jul-2020, Time: 13:02:34, ID: ST200715P1-5 PFC CS2 20F1905, Description: PFC CS2 20F1905

PFNS		
F54:MRM of 2 channels,ES-		
1007	- PFNS	$6.318 \mathrm{e}+004$
] 5.15	
	1.88e3	
\%-	- 62961	
	bb	
	62961.00	

F54:MRM of 2 channels, ES-	
100	PFNS 2.617e+004
	5.15
	7.70e2
\%-	26110
	bb
	9341.49
	5.0005 .200

F57:MRM of 2 channels,ES-

$$
\begin{array}{r}
\text { F57:MRM of } 2 \text { channels,ES- } \\
570 .>512
\end{array}
$$

d3-N-MeFOSAA-EIS
F59:MRM of 1 channel,ES-
$573.1>419$ $1.604 \mathrm{e}+005$

F60:MRM of 2 channels, ES-

d5-N-EtFOSAA-EIS
F61:MRM of 1 channel,ES-

13C2-PFUdA-EIS

F56:MRM of 1 channel,ES-
$565>519.8$

F62:MRM of 2 channels,ES

13C8-PFOS-EIS
F43:MRM of 1 channel,ES

F69:MRM of 2 channels,ES-

$$
631>83
$$

13C2-PFDoA-EIS
F64:MRM of 1 channel,ES-
$614.9>569.9$

Vista Analytical Laboratory

Dataset:	D:IPFAS5.PRO\RESULTS\200715P1\200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-09, Date: 15-Jul-2020, Time: 13:02:34, ID: ST200715P1-5 PFC CS2 20F1905, Description: PFC CS2 20F1905

Abstract

F67:MRM of 2 channels,ES$626.9>80.7$ $3.415 e+004$

13C2-10:2 FTS-EIS

5.7506 .0006 .250

F63:MRM of 2 channels,ES-

13C2-PFDoA-EIS

F64:MRM of 1 channel,ES-

d3-N-MeFOSA-EIS
F47:MRM of 1 channel,ES

F72:MRM of 2 channels,ES-

13C2-PFDoA-EIS
F64:MRM of 1 channel,ES-

13C2-PFTeDA-EIS
F75:MRM of 2 channels,ES
$715.1>669.7$ $7.419 \mathrm{e}+005$

13C2-PFTeDA-EIS
F75:MRM of 2 channels,ES-
$715.1>669.7$ $7.419 \mathrm{e}+005$

Dataset: D:IPFAS5.PRO\RESULTS\200715P1\200715P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-09, Date: 15-Jul-2020, Time: 13:02:34, ID: ST200715P1-5 PFC CS2 20F1905, Description: PFC CS2 20F1905

d5-N-ETFOSA-EIS
F53:MRM of 1 channel,ES-

13C2-PFHxDA-EIS 13C2-PFHxDA-EIS F77:MRM of 1 channel,ES-

d7-N-MeFOSE-EIS

F66:MRM of 1 channel,ES-

Dataset:	D:IPFAS5.PROIRESULTSI200715P1\200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-09, Date: 15-Jul-2020, Time: 13:02:34, ID: ST200715P1-5 PFC CS2 20F1905, Description: PFC CS2 20F1905

13C3-PFBS-RSD F12:MRM of 1 channel,ES- $302.0>98.9$ $4.002 \mathrm{e}+004$

13C2-PFOA-RSD
F27:MRM of 1 channel,ES-

13C8-PFOS-RSD

F43:MRM of 1 channel,ES $507.1>80$ $1.018 e+005$

Dataset:	D:IPFAS5.PRO\RESULTS\200715P1 1200715 P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-09, Date: 15-Jul-2020, Time: 13:02:34, ID: ST200715P1-5 PFC CS2 20F1905, Description: PFC CS2 20F1905

13C2-PFTeDA-RSD
F75:MRM of 2 channels,ES$715.1>669.7$ $7.419 \mathrm{e}+005$

d5-N-ETFOSA-RSD
F53:MRM of 1 channel,ES-

13C2-PFHxDA-RSD
F77:MRM of 1 channel,ES-

6.2006 .4006 .600

d9-N-EtFOSE-RSD
F71:MRM of 1 channel, ES-

Dataset:
D:IPFAS5.PROIRESULTSI200715P11200715P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-09, Date: 15-Jul-2020, Time: 13:02:34, ID: ST200715P1-5 PFC CS2 20F1905, Description: PFC CS2 20F1905

13C7-PFUdA

F58:MRM of 1 channel,ES$570.1>524.8$ $5.807 \mathrm{e}+005$

Dataset:	D:IPFAS5.PROIRESULTSI200715P11200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-10, Date: 15-Jul-2020, Time: 13:13:09, ID: ST200715P1-6 PFC CS3 20F1906, Description: PFC CS3 $20 F 1906$

PFPrS

F6:MRM of 2 channels,ES

F6:MRM of 2 channels,ES$249>98.9$

13C3-PFBS-EIS

13C3-PFPeA-EIS

PFBS

F11:MRM of 2 channels,ES $299.0>98.9$

13C3-PFBS-EIS
F12:MRM of 1 channel,ES-
$302.0>98.9$

F16:MRM of 2 channels,ES$326.9>80.8$

13C2-4:2 FTS-EIS
F17:MRM of 2 channels, ES-
$329.0>80.8$
$329.0>80.8$
100 $\quad \begin{aligned} & 3.850+004\end{aligned}$

Vista Analytical Laboratory

Dataset: D:IPFAS5.PRO\RESULTS\200715P11200715P1-CRV.qld

Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:
Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-10, Date: 15-Jul-2020, Time: 13:13:09, ID: ST200715P1-6 PFC CS3 20F1906, Description: PFC CS3 20F1906

13C3-HFPO-DA-EIS
F10:MRM of 2 channels,ES-

13C4-PFHPA-EIS
F21:MRM of 1 channel,ES-

PFHpA
F20:MRM of 2 channels,ES-
$363.0>319$

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES

Dataset:	D:IPFAS5.PRO\RESULTSI200715P1\200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-10, Date: 15-Jul-2020, Time: 13:13:09, ID: ST200715P1-6 PFC CS3 20F1906, Description: PFC CS3 20F1906

13C3-PFHxS-EIS
F24:MRM of 1 channel, FS

13C2-6:2 FTS-EIS
F30:MRM of 1 channel,ES-

L-PFOA

F26:MRM of 2 channels,ES

13C2-PFOA-EIS
F27:MRM of 1 channel,ES.

F34:MRM of 2 channels,ES-

13C2-PFOA-EIS
F27:MRM of 1 channel,ES-

F32:MRM of 2 channels,ES
$449>99$

13C8-PFOS-EIS
F43:MRM of 1 channel,ES

7:3 FTCA

F31:MRM of 2 channels,ES440.9 > 316.9

13C5-PFNA-EIS
F36:MRM of 1 channel,ES468.2 > 422.9

Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-10, Date: 15-Jul-2020, Time: 13:13:09, ID: ST200715P1-6 PFC CS3 20F1906, Description: PFC CS3 20F1906

13C8-PFOSA-EIS

F40:MRM of 2 channels,ES-

13C8-PFOS-EIS

13C8-PFOS-EIS

F43:MRM of 1 channel,ES-
$507.1>80$ $.060 \mathrm{e}+005$

13C2-PFDA-EIS
F46:MRM of 1 channel,ES

Vista Analytical Laboratory

Dataset: D:IPFAS5.PROIRESULTS\200715P11200715P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-10, Date: 15-Jul-2020, Time: 13:13:09, ID: ST200715P1-6 PFC CS3 20F1906, Description: PFC CS3 $20 F 1906$

F57:MRM of 2 channels, ES-
L-MeFOSAA 570.>512

d3-N-MeFOSAA-EIS

L-EtFOSAA
 F60:MRM of 2 channels,ES $583.9>419$ $1.572 e+005$

F60:MRM of 2 channels,ES

d5-N-EtFOSAA-EIS
F61:MRM of 1 channel,ES

PFDS

F62:MRM of 2 channels,ES
$598.8>98.9$ $5.352 \mathrm{e}+004$

13C2-PFDoA-EIS
F64:MRM of 1 channel,ES$614.9>569.9$

Dataset: D:IPFAS5.PRO\RESULTS\200715P1\200715P1-CRV.qld

Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:
Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-10, Date: 15-Jul-2020, Time: 13:13:09, ID: ST200715P1-6 PFC CS3 20F1906, Description: PFC CS3 20F1906

13C2-10:2 FTS-EIS
F70:MRM of 1 channel

F44:MRM of 2 channels, ES-
$512.1>219$

F72:MRM of 2 channels,ES-

F73:MRM of 2 channels,ES

13C2-PFTeDA-EIS
F75:MRM of 2 channels,ES

Dataset: D:IPFAS5.PRO\RESULTS\200715P1\200715P1-CRV.qld

Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-10, Date: 15-Jul-2020, Time: 13:13:09, ID: ST200715P1-6 PFC CS3 20F1906, Description: PFC CS3 20F1906

d9-N-EtFOSE-EIS

13C3-PFBA-RSD

Dataset: D:IPFAS5.PRO\RESULTS\200715P1\200715P1-CRV.qld

Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:
Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-10, Date: 15-Jul-2020, Time: 13:13:09, ID: ST200715P1-6 PFC CS3 20F1906, Description: PFC CS3 20F1906

13C2-6:2 FTS-RSD
F30:MRM of 1 channe 5

13C2-PFOA-RSD
F27:MRM of 1 channel,ES-

13C8-PFOS-RSD
F43:MRM of 1 channel,ES

Dataset: D:IPFAS5.PRO\RESULTSI200715P1\200715P1-CRV.qld

Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-10, Date: 15-Jul-2020, Time: 13:13:09, ID: ST200715P1-6 PFC CS3 20F1906, Description: PFC CS3 20F1906

d3-N-MeFOSA-RSD
F47:MRM of 1 channel,ES$515.2>168.9$ $6.289 \mathrm{e}+005$

d3-N-MeFOSAA-RSD
 F59:MRM of 1 channel,ES

$573.1>419$
$573.1>419$
$1.524 e+005$

13C2-PFTeDA-RSD
F75:MRM of 2 channels,ES$715.1>669.7$

13C2-PFUdA-RSD F56:MRM of 1 channel,ES- $565>519.8$ $6.974 \mathrm{e}+005$

d5-N-ETFOSA-RSD

F53:MRM of 1 channel,ES-

13C2-PFHxDA-RSD
F77:MRM of 1 channel, ES$815>769.7$

d7-N-MeFOSE-RSD
F66:MRM of 1 channel,ES-
$623.1>58.9$ $623.1>58.9$
$7.056 \mathrm{e}+005$

Vista Analytical Laboratory

Dataset:	D:IPFAS5.PRO\RESULTS\200715P1\200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-10, Date: 15-Jul-2020, Time: 13:13:09, ID: ST200715P1-6 PFC CS3 20F1906, Description: PFC CS3 20F1906

13C6-PFDA
F48:MRM of 1 channel,ES$519.1>473.7$ $5.247 e+005$

4.7505 .0005 .250

13C7-PFUdA
F58:MRM of 1 channel,ES-

Dataset:
 D:IPFAS5.PRO\RESULTS\200715P1\200715P1-CRV.qld

Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:
Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-11, Date: 15-Jul-2020, Time: 13:23:45, ID: ST200715P1-7 PFC CS4 20F1907, Description: PFC CS4 $20 F 1907$

13C3-PFBA-EIS

F3:MRM of 1 channel, ES$216.1>171.8$

F6:MRM of 2 channels,ES-

13C3-PFBS-EIS
F12:MRM of 1 channel.ES$302.0>98.9$ $3.914 e+004$

13C3-PFPeA-EIS
F8:MRM of 1 channel,ES$266.0>221.8$ $2.931 \mathrm{e}+0.5$

13C3-PFPeA-EIS
F8:MRM of 1 channel,ES-

F11:MRM of 2 channels,ES-

$$
\begin{array}{r}
299.0>98.9
\end{array}
$$

13C3-PFBS-EIS
F12:MRM of 1 channel,ES-
100-

F16:MRM of 2 channels,ES$326.9>80.8$

13C2-4:2 FTS-EIS
F17:MRM of 2 channels,ES$329.0>80.8$

Dataset:	D:IPFAS5.PROIRESULTS\200715P1\200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-11, Date: 15-Jul-2020, Time: 13:23:45, ID: ST200715P1-7 PFC CS4 20F1907, Description: PFC CS4 $20 F 1907$

13C2-PFHxA-EIS
F14:MRM of 1 channel,ES-

13C3-PFBS-EIS

13C3-HFPO-DA-EIS
F10:MRM of 2 channels,ES

13C4-PFHpA-EIS

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES

Dataset:	D:IPFAS5.PRO\RESULTS\200715P1\200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-11, Date: 15-Jul-2020, Time: 13:23:45, ID: ST200715P1-7 PFC CS4 20F1907, Description: PFC CS4 20F1907

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES-

13C2-6:2 FTS-EIS F30:MRM of 1 channel,ES$429.0>79.7$ $6.828 e+004$

L-PFOA

F26:MRM of 2 channels,ES $413>169$
7.747 .

13C2-PFOA-EIS
F27-MRM of 1 an

F34:MRM of 2 channels, ES-
$461>99$

13C2-PFOA-EIS
F27:MRM of 1 channel,ES-

F32:MRM of 2 channels,ES

13C8-PFOS-EIS
F43:MRM of 1 channel,ES $507.1>80$ $9.699 \mathrm{e}+00$

13C5-PFNA-EIS
F36:MRM of 1 channel,ES$468.2>422.9$

Dataset:	D:IPFAS5.PRO\RESULTS\200715P1\200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-11, Date: 15-Jul-2020, Time: 13:23:45, ID: ST200715P1-7 PFC CS4 20F1907, Description: PFC CS4 20 F1907

PFNA

13C8-PFOSA-EIS

F40:MRM of 2 channels,ES

13C8-PFOS-EIS
F43:MRM of 1 ($507.1>80$

F52:MRM of 2 channels,ES-

$$
\begin{array}{r}
\text { F52:MRM of } 2 \text { channels, ES- } \\
531>83 \\
27060+004
\end{array}
$$

13C8-PFOS-EIS
F43:MRM of 1 channel,ES-

F45:MRM of 2 channels,ES-

13C2-PFDA-EIS
F46:MRM of 1 channel,ES.

13C2-8:2 FTS-EIS
F51:MRM of 1 channel,ES$529>80$ $4.838 \mathrm{e}+004$

Dataset: D:IPFAS5.PRO\RESULTS\200715P1\200715P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-11, Date: 15-Jul-2020, Time: 13:23:45, ID: ST200715P1-7 PFC CS4 20F1907, Description: PFC CS4 20F1907

F54:MRM of 2 channels,ES-

13C8-PFOS-EIS

F57:MRM of 2 channels, ES-

d3-N-MeFOSAA-EIS
F59:MRM of 1 channel,ES-

PFUdA

3C2-PFUdA-EIS F56:MRM of 1 channel,ES-

F56:MRM of 1 channel,ES-
$565>519.8$

F62:MRM of 2 channels,ES

13C8-PFOS-EIS
F43:MRM of 1 channel,ES

F69:MRM of 2 channels,ES-
$631>83$

13C2-PFDoA-EIS

F64:MRM of 1 channel,ES$614.9>569.9$

Dataset:	D:IPFAS5.PRO\RESULTS\200715P1\200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-11, Date: 15-Jul-2020, Time: 13:23:45, ID: ST200715P1-7 PFC CS4 20F1907, Description: PFC CS4 20F1907

5.7506 .000

F64:MRM of 1 channel,ES-
$614.9>569.9$
F47:MRM of 1 channel,ES-
F47:MRM of 1 channel,ES-

13C2-PFDoA-EIS
F64:MRM of 1 channel,ES-
$614.9>569.9$
$7.217 e+005$

F73:MRM of 2 channels,ES-

13C2-PFTeDA-EIS
F75:MRM of 2 channels,ES-
$715.1>669.7$
$715.1>669.7$ $6.675 \mathrm{e}+005$

F74:MRM of 2 channels,ES713. > 369.0

13C2-PFTeDA-EIS
F75:MRM of 2 channels,ES$715.1>669.7$ $6.675 \mathrm{e}+005$

Dataset:	D:IPFAS5.PRO\RESULTS\200715P1\200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-11, Date: 15-Jul-2020, Time: 13:23:45, ID: ST200715P1-7 PFC CS4 20F1907, Description: PFC CS4 $20 F 1907$

13C2-PFHxDA-EIS
F77:MRM of 1 channel, ES
$815>769.7$ $1.086 \mathrm{e}+006$

d7-N-MeFOSE-EIS

F66:MRM of 1 channel, ES-

d9-N-EtFOSE-EIS
F71:MRM of 1 channel,ES-
13C3-PFBA-RSD

13C3-PFPeA-RSD
F8:MRM of 1 channel,ES-
$266.0>221.8$

Name: 200715P1-11, Date: 15-Jul-2020, Time: 13:23:45, ID: ST200715P1-7 PFC CS4 20F1907, Description: PFC CS4 $20 F 1907$

13C3-PFBS-RSD
 F12:MRM of 1 channel,ES$302.0>98.9$

13C8-PFOSA-RSD
F42:MRM of 1 channel,ES-
$506>78$
$506>78$
$2.265 e+005$

13C8-PFOS-RSD
F43:MRM of 1 channel,ES $507.1>80$ $9.699 \mathrm{e}+004$

13C2-PFDA-RSD
F46:MRM of 1 channel,ES-
$515.1>469.9$

Dataset: D:IPFAS5.PROIRESULTS\200715P11200715P1-CRV.qld

Last Altered: Printed:

Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-11, Date: 15-Jul-2020, Time: 13:23:45, ID: ST200715P1-7 PFC CS4 20F1907, Description: PFC CS4 20F1907

13C2-PFTeDA-RSD
F75:MRM of 2 channels,ES-

d5-N-ETFOSA-RSD
F53:MRM of 1 channel,ES-

13C2-PFHxDA-RSD

F77:MRM of 1 channel,ES-

6.2006 .4006 .600

d9-N-EtFOSE-RSD
F71:MRM of 1 channel,ES-
$639.2>58.8$
$1.031 \mathrm{e}+006$

Dataset:	D:IPFAS5.PROXRESULTS\200715P1\200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-11, Date: 15-Jul-2020, Time: 13:23:45, ID: ST200715P1-7 PFC CS4 20F1907, Description: PFC CS4 $20 F 1907$

F48:MRM of 1 channel,ES $519.1>473.7$ $5.408 \mathrm{e}+005$

13C7-PFUdA
F58:MRM of 1 channel,ES$570.1>524.8$ $5.339 e+005$

Dataset:

D:IPFAS5.PRO\RESULTS\200715P11200715P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-12, Date: 15-Jul-2020, Time: 13:34:11, ID: ST200715P1-8 PFC CS5 20F1908, Description: PFC CS5 20F1908

F6:MRM of 2 channels,ES$249>98.9$ $9.547 \theta+004$

PFPeA

F7:MRM of 1 channel,ES- $\begin{array}{r}263.1>218.9 \\ 2.109 \mathrm{e}+006\end{array}$
13C3-PFPeA-EIS

F11:MRM of 2 channels,ES$299.0>98.9$

13C3-PFBS-EIS
F12:MRM of 1 channel,ES$302.0>98.9$

F16:MRM of 2 channels,ES$326.9>80.8$

13C2-4:2 FTS-EIS
F17:MRM of 2 channels,ES$329.0>80.8$ $5.220 \mathrm{e}+004$

Name: 200715P1-12, Date: 15-Jul-2020, Time: 13:34:11, ID: ST200715P1-8 PFC CS5 20F1908, Description: PFC CS5 20F1908

13C3-PFBS-EIS

13C3-HFPO-DA-EIS
F10:MRM of 2 channels,ES
F10:MRM of 2 channels,ES-
$287.0>168.9$
$8.741 \mathrm{e}+004$

F18:MRM of 2 channels,ES-

13C4-PFHpA-EIS

13C4-PFHpA-EIS

Dataset:	D:IPFAS5.PRO\RESULTS\200715P1\200715P1-CRV.ald
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-12, Date: 15-Jul-2020, Time: 13:34:11, ID: ST200715P1-8 PFC CS5 20F1908, Description: PFC CS5 20F1908

\section*{L-PFHxS

 F23:MRM of 2 channels,ES-
 | 399 > 98.9 | | |
| :---: | :---: | :---: |
| 100 | L-PFHxS 2.151e+005 | |
| | 3.90 | |
| | 6.71 e3 | |
| \%- | 214663 | |
| | db | |
| | 214663.00 | |
| | -1.r- | |
| | 500 | 4.000 |

F26:MRM of 2 channels,ES-

13C2-PFOA-EIS
F27:MRM of 1 channel,ES
$414.9>369.7$ $5.863 e+005$

F34:MRM of 2 channels,ES-

13C2-PFOA-EIS

F27:MRM of 1 channel,ES-

F32:MRM of 2 channels,ES $449>99$ $5.121 \mathrm{e}+005$

13C8-PFOS-EIS
F43:MRM of 1 channe

13C5-PFNA-EIS
F36:MRM of 1 channel,ES$468.2>422.9$ $5.369 \mathrm{e}+005$

Dataset:	D:IPFAS5.PROIRESULTS\200715P1\200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-12, Date: 15-Jul-2020, Time: 13:34:11, ID: ST200715P1-8 PFC CS5 20F1908, Description: PFC CS5 20F1908

Abstract

PFNA

F35:MRM of 2 channels,ES$463.0>219.0$ $3.813 \mathrm{e}+005$ (100

13C8-PFOSA-EIS

F40:MRM of 2 channels,ES-

	L-PFOS $3.524 \mathrm{e}+005$	$3.524 \mathrm{e}+005$
1007	4.80	
	1.24 e 4	
\%-	351375	
- db		
12389.21		
	TT	min
	4.500	5.000

13C8-PFOS-EIS

F52:MRM of 2 channels,ES-

13C8-PFOS-EIS

F45:MRM of 2 channels,ES
$513>219$
$8.015 e+005$

13C2-PFDA-EIS
F46:MRM of 1 channel,ES-

Dataset:	D:IPFAS5.PRO\RESULTS\200715P1\200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-12, Date: 15-Jul-2020, Time: 13:34:11, ID: ST200715P1-8 PFC CS5 20F1908, Description: PFC CS5 $20 F 1908$

13C8-PFOS-EIS
$\left.\begin{array}{rrr} \\ \text { F43:MRM of } 1 \text { channel,ES- } \\ 507.1>80 \\ 1.075 \mathrm{e}+005\end{array}\right)$

F57:MRM of 2 channels, ES-

$$
5.100 \quad 5.000 \quad 5.250
$$

F60:MRM of 2 channels,ES-

d5-N-EtFOSAA-EIS

13C8-PFOS-EIS

F43:MRM of 1 channel,ES

Dataset:	D:IPFAS5.PRO\RESULTS\200715P1\200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-12, Date: 15-Jul-2020, Time: 13:34:11, ID: ST200715P1-8 PFC CS5 20F1908, Description: PFC CS5 20F1908

13C2-10:2 FTS-EIS
F70:MRM of 1 channel,ES-
$632.9>80.0$ $3.594 e+004$

F44:MRM of 2 channels,ES
(100
d3-N-MeFOSA-EIS

13C2-PFDoA-EIS
F64:MRM of 1 channel,ES-
$614.9>569.9$

F73:MRM of 2 channels,ES-

$$
\begin{array}{r}
699>99 \\
4.767 \theta+005
\end{array}
$$

13C2-PFTeDA-EIS
F75:MRM of 2 channels,ES-

13C2-PFTeDA-EIS

F75:MRM of 2 channels,ES$715.1>669.7$

Dataset:	D:IPFAS5.PROXRESULTSL200715P1\200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-12, Date: 15-Jul-2020, Time: 13:34:11, ID: ST200715P1-8 PFC CS5 20F1908, Description: PFC CS5 20F1908

d5-N-ETFOSA-EIS
F53:MRM of 1 channel,ES

 6.2006 .4006 .600

13C2-PFHxDA-EIS

F77:MRM of 1 channel,ES-

13C2-PFHxDA-EIS
F77:MRM of 1 channel,ES

d9-N-EtFOSE-EIS
F71:MRM of 1 channel, ES

13C3-PFBA-RSD
F3:MRM of 1 channel,ES-
$216.1>171.8$
$1.273 \mathrm{e}+005$

Dataset:

Last Altered:

Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-12, Date: 15-Jul-2020, Time: 13:34:11, ID: ST200715P1-8 PFC CS5 20F1908, Description: PFC CS5 20F1908

13C2-6:2 FTS-RSD
F30:MRM of 1 channel,ES-

13C3-HFPO-DA-RSD

F10:MRM of 2 channels,ES$287.0>168.9$

13C5-PFNA-RSD
F36:MRM of 1 channel,ES$468.2>422.9$

F42:MRM of 1 channel,ES-
$506>78$
$23260+005$

13C2-PFOA-RSD
F27:MRM of 1 channel,ES-
$414.9>369.7$

13C4-PFHpA-RSD

F21:MRM of 1 channel,ES-
F21:MRM of 1 channel, ES-
$367.2>321.8$

13C8-PFOS-RSD
F43:MRM of 1 channel,ES$507.1>80$ $1.075 \mathrm{e}+005$

13C2-PFDA-RSD
F46:MRM of 1 channel,ES$515.1>469.9$ $5.998 \mathrm{e}+005$
Dataset: D:IPFAS5.PROIRESULTS\200715P11200715P1-CRV.qld

Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-12, Date: 15-Jul-2020, Time: 13:34:11, ID: ST200715P1-8 PFC CS5 20F1908, Description: PFC CS5 20F1908

13C2-PFTeDA-RSD
F75:MRM of 2 channels,ES-

d5-N-ETFOSA-RSD
F53:MRM of 1 channel,ES-

13C2-PFHxDA-RSD
F77:MRM of 1 channel,ES-

Dataset:	D:IPFAS5.PRO\RESULTSL200715P11200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-12, Date: 15-Jul-2020, Time: 13:34:11, ID: ST200715P1-8 PFC CS5 20F1908, Description: PFC CS5 20F1908

13C6-PFDA
F48:MRM of 1 channel,ES$519.1>473.7$ $5.452 \mathrm{e}+005$

13C7-PFUdA
F58:MRM of 1 channel,ES $570.1>524.8$ $5.380 \mathrm{e}+005$

Dataset: D:IPFAS5.PROIRESULTSI200715P1\200715P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-13, Date: 15-Jul-2020, Time: 13:44:48, ID: ST200715P1-9 PFC CS6 20F1909, Description: PFC CS6 $20 F 1909$

Dataset: D:IPFAS5.PRO\RESULTS\200715P1\200715P1-CRV.gld

Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-13, Date: 15-Jul-2020, Time: 13:44:48, ID: ST200715P1-9 PFC CS6 20F1909, Description: PFC CS6 20F1909

13C2-PFHxA-EIS
F14:MRM of 1 channel,ES-
$315.0>270$. $4.032 \mathrm{e}+005$

PFPeS

13C3-PFBS-EIS
F12:MRM of 1 channel,ES-

13C3-HFPO-DA-EIS
F10:MRM of 2 channels,ES-

F18:MRM of 2 channels,ES-
$340.9>216.9$
5:3 FTCA $1.531 e+005$

$$
3.4003 .6003 .800
$$

13C4-PFHpA-EIS
F21:MRM of 1 channel,ES-

F20:MRM of 2 channels,ES
$363.0>169.0$ $363.0>169$.

13C4-PFHpA-EIS
F21:MRM of 1 channel,ES

F22:MRM of 2 channels,ES$376.8>85.0$

13C4-PFHpA-EIS
F21:MRM of 1 channel,ES-

Dataset:	D:IPFAS5.PRO\RESULTS\200715P1\200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-13, Date: 15-Jul-2020, Time: 13:44:48, ID: ST200715P1-9 PFC CS6 20F1909, Description: PFC CS6 20F1909

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES$402>80$

F29:MRM of 2 channels,ES-

F26:MRM of 2 channels,ES $\begin{aligned} 413 & >169\end{aligned}$

F34:MRM of 2 channels,ES-

13C2-PFOA-EIS 13C8-PFOS-EIS
F27:MRM of 1 channel,ES$414.9>369.7$ $5.121 \mathrm{e}+005$

F32:MRM of 2 channels,ES-
$449>99$

F43:MRM of 1 channel,ES
$507.1>80$ $9.802 \mathrm{e}+004$

F31:MRM of 2 channeis,ES440.9 > 316.9

13C5-PFNA-EIS
F36:MRM of 1 channel,ES$468.2>422.9$ $5.086 e+005$

Dataset:	D:IPFAS5.PRO\RESULTS\200715P1\200715P1-CRV.qid
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-13, Date: 15-Jul-2020, Time: 13:44:48, ID: ST200715P1-9 PFC CS6 20F1909, Description: PFC CS6 20F1909

PFNA

F35:MRM of 2 channels,ES$463.0>219.0$
(1007

13C8-PFOSA-EIS

F40:MRM of 2 channels, ES

F43MRM-EIS

$$
\begin{array}{r}
\text { F43:MRM of } 1 \text { channel,ES- } \\
507.1>80
\end{array}
$$ $9.802 \mathrm{e}+004$

F52:MRM of 2 channels,ES-

13C8-PFOS-EIS

F45:MRM of 2 channels, ES-
$513>219$
$1.733 \theta+006$

13C2-PFDA-EIS

F50:MRM of 2 channels,ES$526.8>80.9$

13C2-8:2 FTS-EIS
F51:MRM of 1 channel,ES$529>80$
$4.705 \mathrm{e}+0.04$

Dataset: D:IPFAS5.PRO\RESULTS\200715P1\200715P1-CRV.qld

Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed.
Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-13, Date: 15-Jul-2020, Time: 13:44:48, ID: ST200715P1-9 PFC CS6 20F1909, Descriptlon: PFC CS6 20F1909

13C8-PFOS-EIS
F43:MRM of 1 channel,ES$507.1>80$

d3-N-MeFOSAA-EIS
F59:MRM of 1 channel,ES-
$573.1>419$
$1.345 \mathrm{e}+005$

F60:MRM of 2 channels,ES $583.9>526$

d5-N-EtFOSAA-EIS
F61:MRM of 1 channel,ES $589.3>419$ $1.241 \mathrm{e}+005$

F55:MRM of 2 channels,ES-
$563.0>269$

13C2-PFUdA-EIS
F56:MRM of 1 channel,ES-
$565>519.8$

F62:MRM of 2 channels,ES-
5.2005 .400

13C8-PFOS-EIS
F43:MRM of 1 channel,ES$507.1>80$ $9.802 \mathrm{e}+004$

F69:MRM of 2 channels,ES-
$631>83$

13C2-PFDoA-EIS
F64:MRM of 1 channel,ES-
$614.9>569.9$ $6.107 \mathrm{e}+005$

Vista Analytical Laboratory

Dataset:	D:IPFAS5.PRO\RESULTS\200715P1\200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-13, Date: 15-Jul-2020, Time: 13:44:48, ID: ST200715P1-9 PFC CS6 20F1909, Description: PFC CS6 20F1909

5.7506 .0006 .250

13C2-PFDOA-EIS
F64:MRM of 1 channel,ES-

F44:MRM of 2 channels,ES-

$$
512.1>219
$$

5.6005 .800

13C2-PFDoA-EIS
F64:MRM of 1 channel,ES-

13C2-PFTeDA-EIS F75:MRM of 2 channels,ES$715.1>669.7$ $5.915 \mathrm{e}+005$

Dataset:	D:IPFAS5.PRO\RESULTS\200715P11200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-13, Date: 15-Jul-2020, Time: 13:44:48, ID: ST200715P1-9 PFC CS6 20F1909, Description: PFC CS6 20F1909

6.0006 .2006 .400

PFHxDA		
F76:MRM of 2 channels,ES-		
$813>769$		
$\left.1007\right\|^{1.631 e+007}$		
\% -		
F76:MRM of 2 channels, ES-		
$813>219$		
$100 \mathrm{PFHxDA} 5.460 \mathrm{e}+005$		
${ }^{100} 76.46{ }^{7}{ }^{\text {¢ }}$		
1.52 e 4		
\%- 543831		
- bb		
$=45978.00$		
	6.2006 .400	6.600

d9-N-EtFOSE-EIS
F71:MRM of 1 channel,ES
$639.2>58.8$

Dataset:	D:IPFAS5.PRO\RESULTSI200715P1\200715P1-CRV.qid
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-13, Date: 15-Jul-2020, Time: 13:44:48, ID: ST200715P1-9 PFC CS6 20F1909, Description: PFC CS6 20F1909

13C5-PFNA-RSD
F36:MRM of 1 channel,ES-

13C8-PFOSA-RSD
F42:MRM of 1 channel, ES.
$506>78$

13C2-PFOA-RSD
F27:MRM of 1 channel,ES-
$414.9>369.7$ $5.121 e+005$

13C2-PFDA-RSD
F46:MRM of 1 channel,ES$515.1>469.9$ $5.502 \mathrm{e}+005$

Dataset: D:IPFAS5.PROIRESULTSI200715P11200715P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:
Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-13, Date: 15-Jul-2020, Time: 13:44:48, ID: ST200715P1-9 PFC CS6 20F1909, Description: PFC CS6 20F1909

13C2-PFTeDA-RSD
F75:MRM of 2 channels,ES-

d5-N-ETFOSA-RSD
F53:MRM of 1 channel,ES

13C2-PFHxDA-RSD
F77:MRM of 1 channel,ES-

d9-N-EtFOSE-RSD
F71:MRM of 1 channel,ES-

d7-N-MeFOSE-RSD
F66:MRM of 1 channel, ES-
$623.1>58.9$

Dataset:

D:IPFAS5.PROTRESULTS\200715P1\200715P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-13, Date: 15-Jul-2020, Time: 13:44:48, ID: ST200715P1-9 PFC CS6 20F1909, Description: PFC CS6 20F1909

13C6-PFDA

F48:MRM of 1 channel,ES$519.1>473.7$ $4.766 e+005$

13C5-PFHxA

F15:MRM of 1 channel,ES$318.0>272.9$ $4.861 e+005$

13C7-PFUdA

F58:MRM of 1 channel,ES
$570.1>524.8$ $4.648 \mathrm{e}+005$

Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time

Name: 200715P1-14, Date: 15-Jul-2020, Time: 13:55:24, ID: ST200715P1-10 PFC CS7 20F1910, Description: PFC CS7 20F1910

PFPrS

F6:MRM of 2 channels, ES

F6:MRM of 2 channels,ES$249>98.9$

13C3-PFPeA-EIS

F11:MRM of 2 channels,ES $299.0>98$.

13C3-PFBS-EIS
F12:MRM of 1 channel,ES

$$
\begin{array}{r}
302.0>98.9 \\
3.295 \mathrm{e}+004
\end{array}
$$

Dataset: D:IPFAS5.PRO\RESULTS\200715P11200715P1-CRV.qld

Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-14, Date: 15-Jul-2020, Time: 13:55:24, ID: ST200715P1-10 PFC CS7 20F1910, Description: PFC CS7 20F1910

13C3-PFBS-EIS
F12:MRM of 1 channel,ES-

13C3-HFPO-DA-EIS
F10:MRM of 2 channels,ES-
$287.0>168.9$
$7.765 \mathrm{e}+004$

F18:MRM of 2 channels, ES-

13C4-PFHpA-EIS
F21:MRM of 1 channel,ES-

F20:MRM of 2 channels,ES-
$363.0>169.0$

13C4-PFHpA-EIS

F21:MRM of 1 channel,ES

Dataset:	D:IPFAS5.PRO\RESULTS\200715P1\200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-14, Date: 15-Jul-2020, Time: 13:55:24, ID: ST200715P1-10 PFC CS7 20F1910, Description: PFC CS7 $20 F 1910$

F23:MRM of 2 channels, ES-

13C3-PFHxS-EIS
F24:MRM of 1 channel,ES-

F29:MRM of 2 channels, ES-

13C2-6:2 FTS-EIS F30:MRM of 1 channel,ES$429.0>79.7$ $6.459 e+004$

13C2-PFOA-EIS

F34:MRM of 2 channels,ES-

13C2-PFOA-EIS
F27:MRM of 1 channel,ES-
$414.9>369.7$

13C8-PFOS-EIS
F43:MRM of 1 channel, ES-
$507.1>80$

F32:MRM of 2 channels, ES-
$449>99$
$1.812 \mathrm{e}+006$

Dataset: D:IPFAS5.PROXRESULTS\200715P1\200715P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-14, Date: 15-Jul-2020, Time: 13:55:24, ID: ST200715P1-10 PFC CS7 20F1910, Description: PFC CS7 20F1910

F35:MRM of 2 channels,ES$463.0>219.0$ $1.574 \mathrm{e}+006$

PFOSA

F38:MRM of 2 channels,ES$498>169$ 2.390 e +005

13C8-PFOSA-EIS

F40:MRM of 2 channels,ES
$499>99$

13C8-PFOS-EIS
F43:MRM of 1 channel ES

F52:MRM of 2 channels,ES-

13C8-PFOS-EIS

F43:MRM of 1 channel,ES-
$507.1>80$
100
$8.174 \mathrm{e}+004$

13C2-PFDA-EIS
F46:MRM of 1 channel,ES

Vista Analytical Laboratory

Dataset:	D:IPFAS5.PRO\RESULTSI200715P11200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-14, Date: 15-Jul-2020, Time: 13:55:24, ID: ST200715P1-10 PFC CS7 20F1910, Description: PFC CS7 20F1910

13C8-PFOS-EIS

d3-N-MeFOSAA-EIS
F59:MRM of 1 channel,ES-

F60:MRM of 2 channels, ES$583.9>526$

d5-N-EtFOSAA-EIS

F55:MRM of 2 channels,ES-
$563.0>269$
$1.195 \mathrm{e}+006$

13C2-PFUdA-EIS
F56:MRM of 1 channel, ES-
$565>519.8$

13C8-PFOS-EIS

F69:MRM of 2 channels, ES-
$631>83$

13C2-PFDoA-EIS
F64:MRM of 1 channel,ES-
$614.9>569.9$

Dataset:	D:IPFAS5.PRO\RESULTS\200715P1 200715 P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-14, Date: 15-Jul-2020, Time: 13:55:24, ID: ST200715P1-10 PFC CS7 20F1910, Description: PFC CS7 20F1910

13C2-PFDoA-EIS
F64:MRM of 1 channel,ES-
$614.9>569.9$ $5.767 e+005$

F44:MRM of 2 channels, ES-

d3-N-MeFOSA-EIS
F47:MRM of 1 channel,ES$515.2>168.9$ $6.532 \mathrm{e}+005$

F72:MRM of 2 channels, ES-

5.8006 .000

13C2-PFDOA-EIS
F64:MRM of 1 channel,ES-
$614.9>569.9$ $614.9>569.9$
$5.767 \mathrm{e}+005$

F73:MRM of 2 channels,ES-
$699>99$

13C2-PFTeDA-EIS
F75:MRM of 2 channels,ES-
715.1 > 669.7

Dataset:
 D:IPFAS5.PRO\RESULTS\200715P1\200715P1-CRV.qld

Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-14, Date: 15-Jul-2020, Time: 13:55:24, ID: ST200715P1-10 PFC CS7 20F1910, Description: PFC CS7 $20 F 1910$

d5-N-ETFOSA-EIS
F53:MRM of 1 channel,ES-
$531.1>168.9$ $6.203 \mathrm{e}+005$

d9-N-EtFOSE-EIS
F71:MRM of 1 channel,ES-
$639.2>58.8$

Dataset:	D:IPFAS5.PROIRESULTS 200715 P1 1200715 P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-14, Date: 15-Jul-2020, Time: 13:55:24, ID: ST200715P1-10 PFC CS7 20F1910, Description: PFC CS7 $20 F 1910$

13C5-PFNA-RSD
F36:MRM of 1 channel,ES-

13C8-PFOSA-RSD
F42:MRM of 1 channel, ES-
$506>78$
$1.920 \mathrm{e}+005$

13C2-PFOA-RSD

F27:MRM of 1 d

13C8-PFOS-RSD

Dataset:	D:IPFAS5.PRO\RESULTSI200715P1\200715P1-CRV.qld
Last Altered:	Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed:	Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-14, Date: 15-Jul-2020, Time: 13:55:24, ID: ST200715P1-10 PFC CS7 20F1910, Description: PFC CS7 $20 F 1910$

13C2-PFTeDA-RSD
F75:MRM of 2 channels,ES-

d5-N-ETFOSA-RSD
F53:MRM of 1 channel,ES

13C2-PFHxDA-RSD

F77:MRM of 1 channel,ES-

13C2-PFDoA-RSD
F64:MRM of 1 channel,ES-
$614.9>569.9$
$5.767 e+005$

d9-N-EtFOSE-RSD

F71:MRM of 1 channel,ES-
$639.2>58.8$

d7-N-MeFOSE-RSD
F66:MRM of 1 channel,ES$623.1>58.9$

Dataset: D:IPFAS5.PRO\RESULTS\200715P1\200715P1-CRV.qld
Last Altered: Wednesday, July 15, 2020 15:31:31 Pacific Daylight Time
Printed: Wednesday, July 15, 2020 15:32:47 Pacific Daylight Time

Name: 200715P1-14, Date: 15-Jul-2020, Time: 13:55:24, ID: ST200715P1-10 PFC CS7 20F1910, Description: PFC CS7 $20 F 1910$

13C6-PFDA

13C7-PFUdA

Last Altered: Thursday, July 16, 2020 10:45:58 Pacific Daylight Time
Printed: \quad Thursday, July 16, 2020 10:46:55 Pacific Daylight Time

Name: 200715P1-16, Date: 15-Jul-2020, Time: 14:16:27, ID: ICV200715P1-1 PFC ICV 20F1911, Description: PFC ICV 20F1911

	\# Name	Trace	Area	IS Area	witvol	RT	Response	Std. Conc	Conc.	\%Fiec	Recovery...	Ion Ratio	Ratio Out?
1	1 PFBA	$213.0>168.8$	6516.935	8111.474	1.00	1.42	10.043	10.000	10.1	101.3	NO		
2	2 PFPrs	$249>80$		1746.936	1.00			10.000		6	NO		YES
3	3 3:3 FTCA	$240.9>176.9$		14271.676	1.00			10.000		\downarrow	NO		YES
4	4 PFPeA	$263.1>218.9$	10634.506	14271.676	1.00	2.36	9.314	10.000	9.95	99.5	NO		
5	5 PFBS	$299.0>80$	3108.885	1746.936	1.00	2.64	22.245	8.840	8.82	99.8	NO	2.519	NO
6	6 4:2 FTS	$326.9>306.9$	3629.962	1869.268	1.00	3.08	24.274	9.360	9.64	103.0	NO	10.769	YES
7	47 13C3-PFBA-EIS	$216.1>171.8$	8111.474		1.00	1.42	8111.474	12.500	12.2	97.6	NO		
8	51 13C3-PFBS-EIS	$302.0>98.9$	1746.936		1.00	2.64	1746.936	12.500	12.0	96.2	NO		
9	49 13C3-PFPeA-EIS	$266.0>221.8$	14271.676		1.00	2.36	14271.676	12.500	12.7	101.3	NO		
10	49 13C3-PFPeA-EIS	$266.0>221.8$	14271.676		1.00	2.36	14271.676	12.500	12.7	101.3	NO		
11	51 13C3-PFBS-EIS	$302.0>98.9$	1746.936		1.00	2.64	1746.936	12.500	12.0	96.2	NO		
12	55 13C2-4:2 FTS-EIS	$329.0>80.8$	1869.268		1.00	3.08	1869.268	12.500	12.3	98.1	NO		
13	-1												
14	7 PFHXA	$313.0>269.0$	13686.150	15417.667	1.00	3.16	11.096	10.000	11.1	111.2	No	15.563	NO
15	8 PFPeS	$349 .>80$	2558.882	1746.936	1.00	3.36	18.310	9.360	8.93	95.4	NO	2.258	NO
16	9 HFPO-DA	$285.1>168.9$	2339.570	3119.215	1.00	3.38	9.376	10.000	9.53	95.3	NO	2.181	NO
17	10 5:3 FTCA	$340.9>236.9$		14201.428	1.00			10.000		(4)	No		YES
18	11 PFHpA	$363.0>319$	13695.731	14201.428	1.00	3.76	12.055	10.000	9.35	93.5	NO	51.565	YES
19	12 ADONA	$376.8>250.9$	24444.570	14201.428	1.00	3.87	21.516	9.440	9.39	99.5	NO	3.782	NO
20	57 13C2-PFHxA-EIS	$315.0>270.0$	15417.667		1.00	3.16	15417.667	12.500	12.6	100.5	NO		
21	51 13C3-PFBS-EIS	$302.0>98.9$	1746.936		1.00	2.64	1746.936	12.500	12.0	96.2	No		
22	53 13C3-HFPO-DA-EIS	$287.0>168.9$	3119.215		1.00	3.38	3119.215	12.500	12.1	96.5	NO		
23	59 13C4-PFHpA-EIS	$367.2>321.8$	14201.428		1.00	3.76	14201.428	12.500	11.2	89.4	NO		
24	59 13C4-PFHPA-EIS	$367.2>321.8$	14201.428		1.00	3.76	14201.428	12.500	11.2	89.4	No		
25	59 13C4-PFHPA-EIS	$367.2>321.8$	14201.428		1.00	3.76	14201.428	12.500	11.2	89.4	NO		
26	-1												
27	13 L-PFHxS	$399>79.9$	2828.827	3497.200	1.00	3.91	10.111	9.120	8.69	95.3	NO	3.866	YES
28	15 6:2 FTS	$427.0>407$	1750.110	2356.959	1.00	4.22	9.282	9.480	9.23	97.4	NO	0.707	NO
29	16 L-PFOA	$413>369$	14042.050	19628.160	1.00	4.28	8.943	10.000	9.10	91.0	NO	2.974	NO
30	18 PFechS	$461>381.0$		19628.160	1.00			10.000		(A)	NO		YES
31	19 PFHpS	$449.0>80$	2571.877	3610.254	1.00	4.39	8.905	9.520	9.24	97.0	NO	1.759	NO
32	$207: 3 \mathrm{FTCA}$	$440.9>336.9$		18455.713	1.00			10.000		(A)	NO		YES
33	61 13C3-PFHxS-EIS	$402>80$	3497.200		1.00	3.90	3497.200	12.500	13.0	104.2	NO		
34.	63 13C2-6:2 FTS-EIS	$429.0>79.7$	2356.959		1.00	4.22	2356.959	12.500	12.4	99.4	NO		
35	69 13C2-PFOA-EIS	414.9 > 369.7	19628.160		1.00	4.28	19628.160	12.500	12.9	103.3	NO		
36	69 13C2-PFOA-EIS	$414.9>369.7$	19628.160		1.00	4.28	19628.160	12.500	12.9	103.3	NO		V 7

Last Altered: Thursday, July 16, 2020 10:45:58 Pacific Daylight Time
Printed: Thursday, July 16, 2020 10:46:55 Pacific Daylight Time

Name: 200715P1-16, Date: 15-Jul-2020, Time: 14:16:27, ID: ICV200715P1-1 PFC ICV 20F1911, Description: PFC ICV 20F1911

	\# Name	Trace	Area	IS Area	wivol	18 T	Response	Sid. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
37	71 13C8-PFOS-EIS	$507.1>80$	3610.254		1.00	4.80	3610.254	12.500	12.9	103.6	NO		
38	65 13C5-PFNA-EIS	$468.2>422.9$	18455.713		1.00	4.72	18455.713	12.500	12.4	99.2	NO		
39	-1												
40	21 PFNA	$463.0>418.8$	17190.543	18455.713	1.00	4.72	11.643	10.000	9.85	98.5	NO	12.868	YES
41	22 PFOSA	$498>78$	4178.458	7465.645	1.00	4.77	6.996	10.000	10.1	100.5	NO	22.323	NO
42	23 L-PFOS	$499>80$	3151.762	3610.254	1.00	4.80	10.913	9.280	8.97	96.7	NO	2.504	NO
43	$259 \mathrm{Cl}-\mathrm{PF} 30 \mathrm{NS}$	$531>351$	6421.060	3610.254	1.00	5.02	22.232	9.320	9.28	99.6	NO	28.405	YES
44	26 PFDA	$513>469$	13784.684	21000.865	1.00	5.09	8.205	10.000	9.91	99.1	NO	4.802	NO
45	27 8:2 FTS	$526.8>506.9$	1814.890	1968.452	1.00	5.07	11.525	9.600	9.44	98.3	NO	0.698	NO
46	65 13C5-PFNA-EIS	$468.2>422.9$	18455.713		1.00	4.72	18455.713	12.500	12.4	99.2	NO		
47	67 13C8-PFOSA-EIS	$506>78$	7465.645		1.00	4.77	7465.645	12.500	12.6	100.4	NO		
48	71 13C8-PFOS-EIS	$507.1>80$	3610.254		1.00	4.80	3610.254	12.500	12.9	103.6	NO		
49	71 13C8-PFOS-EIS	$507.1>80$	3610.254		1.00	4.80	3610.254	12.500	12.9	103.6	NO		
50	73 13C2-PFDA-EIS	$515.1>469.9$	21000.865		1.00	5.09	21000.865	12.500	12.5	100.1	NO		
51	75 13C2-8:2 FTS-EIS	$529>80$	1968.452		1.00	5.06	1968.452	12.500	13.6	108.5	NO		
52	-1												
53	28 PFNS	$549>80$	3190.839	3610.254	1.00	5.15	11.048	9.600	9.04	94.2	NO	2.453	NO
54	29 L-MeFOSAA	$570>419$	4585.037	4735.387	1.00	5.24	12.103	10.000	9.97	99.7	NO	1.825	NO
55	31 L-EtFOSAA	$583.9>419$	5407.196	4302.655	1.00	5.40	15.709	10.000	9.98	99.8	NO	1.417	NO
56	33 PFUdA	$563.0>519$	16620.105	21864.861	1.00	5.41	9.502	10.000	9.95	99.5	NO	17.141	NO
57	34 PFDS	$598.8>79.9$	3365.530	3610.254	1.00	5.46	11.653	9.640	9.67	100.3	NO	2.163	NO
58	3511 Cl -PF30UdS	$631>451$	4716.181	24389.789	1.00	5.62	2.417	9.440	9.32	98.7	NO	13.884	NO
59	71 13C8-PFOS-EIS	$507.1>80$	3610.254		1.00	4.80	3610.254	12.500	12.9	103.6	NO		
60	77 d3-N-MeFOSAA-EIS	$573.1>419$	4735.387		1.00	5.24	4735.387	12.500	12.7	101.9	NO		
61	81 d5-N-EtFOSAA-EIS	$589.3>419$	4302.655		1.00	5.39	4302.655	12.500	12.0	95.6	NO		
62	79 13C2-PFUdA-EIS	$565>519.8$	21864.861		1.00	5.41	21864.861	12.500	12.7	101.7	NO		
63	71 13C8-PFOS-EIS	$507.1>80$	3610.254		1.00	4.80	3610.254	12.500	12.9	103.6	NO		
64	83 13C2-PFDOA-EIS	$614.9>569.9$	24389.789		1.00	5.69	24389.789	12.500	12.9	103.3	NO		
65	-1												
66	36 10:2 FTS	$626.9>607$		1263.112	1.00			10.000		(d)	NO		YES
67	37 PFDoA	$612.9>569.0$	16664.564	24389.789	1.00	5.69	8.541	10.000	9.50	95.0	NO	10.261	NO
68	$38 \mathrm{~N}-\mathrm{MeFOSA}$	$512.1>168.9$		22943.932	1.00			9.600		(1)	NO		YES
69	39 PFTrDA	$662.9>618.9$	20393.447	24389.789	1.00	5.94	10.452	10.000	9.92	99.2	NO	114.941	YES
70	40 PFDoS	$699>80$		26374.061	1.00			10.000		(D)	NO		YES
71	41 PFTeDA	$713.0>669.0$	12292.354	26374.061	1.00	6.14	5.826	10.000	10.1	101.3	NO	13.891	NO
72	85 13C2-10:2 FTS-EIS	$632.9>80.0$	1263.112		1.00	5.68	1263.112	12.500	12.1	96.9	NO		

Last Altered: Thursday, July 16, 2020 10:45:58 Pacific Daylight Time
Printed: Thursday, July 16, 2020 10:46:55 Pacific Daylight Time

Name: 200715P1-16, Date: 15-Jul-2020, Time: 14:16:27, ID: ICV200715P1-1 PFC ICV 20F1911, Description: PFC ICV $20 F 1911$

Last Altered: Thursday, July 16, 2020 10:45:58 Pacific Daylight Time
Printed: Thursday, July 16, 2020 10:46:55 Pacific Daylight Time

Name: 200715P1-16, Date: 15-Jul-2020, Time: 14:16:27, ID: ICV200715P1-1 PFC ICV 20F1911, Description: PFC ICV 20F1911

	\# Name	Trace	Area	IS Area	witvol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
109	84 13C2-PFDoA-RSD	$614.9>569.9$	24389.789	20792.721	1.00	5.69	14.662	12.500	11.9	95.2	NO		
110	86 13C2-10:2 FTS-RSD	$632.9>80.0$	1263.112	4391.438	1.00	5.68	3.595	12.500	12.1	96.9	NO		
111	$88 \mathrm{d3}$-N-MeFOSA-RSD	$515.2>168.9$	22943.932	16878.475	1.00	5.72	16.992	149.200	143	95.5	NO		
112	90 13C2-PFTeDA-RSD	$715.1>669.7$	26374.061	16878.475	1.00	6.14	19.532	12.500	13.1	105.0	NO		
113	$92 \mathrm{~d} 5-\mathrm{N}-\mathrm{ETFOSA}-\mathrm{RSD}$	$531.1>168.9$	29189.348	16878.475	1.00	6.13	21.617	149.200	152	102.2	NO		
114	94 13C2-PFHxDA-RSD	$815>769.7$	29436.680	16878.475	1.00	6.46	21.800	12.500	12.4	99.4	NO		
115	$96 \mathrm{d7}$-N-MeFOSE-RSD	$623.1>58.9$	23597.609	16878.475	1.00	6.29	17.476	149.200	145	97.3	NO		
116	98 d9-N-EtFOSE-RSD	$639.2>58.8$	26533.391	16878.475	1.00	6.43	19.650	149.200	144	96.2	NO		
117	-1												
118	99 13C4-PFBA	$217.0>172.0$	8954.581	8954.581	1.00	1.42	12.500	12.500	12.5	100.0	NO		
119	1... 13C5-PFHxA	$318.0>272.9$	18826.773	18826.773	1.00	3.16	12.500	12.500	12.5	100.0	NO		
120	1... 13C8-PFOA	$420.9>376.0$	15557.563	15557.563	1.00	4.28	12.500	12.500	12.5	100.0	NO		
121	1... 1802-PFHxS	$403.0>103$	1468.157	1468.157	1.00	3.91	12.500	12.500	12.5	100.0	NO		
122	1... 13C9-PFNA	472.2 > 426.9	20433.566	20433.566	1.00	4.72	12.500	12.500	12.5	100.0	NO		
123	1... 13C4-PFOS	$503>79.7$	4391.438	4391.438	1.00	4.80	12.500	12.500	12.5	100.0	NO		
124	1... 13C6-PFDA	$519.1>473.7$	20792.721	20792.721	1.00	5.09	12.500	12.500	12.5	100.0	NO		
125	1... 13C7-PFUdA	$570.1>524.8$	16878.475	16878.475	1.00	5.41	12.500	12.500			NO		

Dataset:	Z:IPFAS5.PROIRESULTSI200715P1 $200715 P 1-I C V . q l d$
Last Altered:	Thursday, July 16, 2020 10:45:58 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 10:46:55 Pacific Daylight Time

Method: Z:\PFAS5.PRO\MethDB\NEW_PFAS_80C_071420_ICV.mdb 15 Jul 2020 08:49:27
Calibration: Z:\PFAS5.PROICurveDBIC̄18_VAL-PFAS_Q5_07-15-20.cdb 16 Jul 2020 10:32:09
Name: 200715P1-16, Date: 15-Jul-2020, Time: 14:16:27, ID: ICV200715P1-1 PFC ICV 20F1911, Description: PFC ICV $20 F 1911$

13C3-PFBA-EIS

F3:MRM of 1 channel,ES$216.1>171.8$

13C3-PFBS-EIS

2.2002 .4002 .600

13C3-PFPeA-EIS
F8:MRM of 1 channel,ES-
$266.0>221.8$

 F11:MRM of 2 channels, ES-
$299.0>98.9$
$2.594 \mathrm{e}+004$

2.5002 .750

F16:MRM of 2 channels,ES$326.9>80.8$

13C2-4:2 FTS-EIS
F17:MRM of 2 channels,ES$329.0>80.8$

Vista Analytical Laboratory

Dataset:	Z:IPFAS5.PROIRESUILTS\200715P1L200715P1-ICV.qld
Last Altered:	Thursday, July 16, 2020 10:45:58 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 10:46:55 Pacific Daylight Time

Name: 200715P1-16, Date: 15-Jul-2020, Time: 14:16:27, ID: ICV200715P1-1 PFC ICV 20F1911, Description: PFC ICV 20F1911

F13:MRM of 2 channels,ES-

13C2-PFHxA-EIS

F14:MRM of 1 channel,ES-
$315.0>270.0$
$4.300 \mathrm{e}+005$

F19:MRM of 2 channels,ES-
349. > 98.9

13C3-PFBS-EIS

F18:MRM of 2 channels,ES.

$$
\begin{array}{r}
340.9>216.9 \\
3.69, ~ 9.157 \mathrm{e}+001
\end{array}
$$

$$
{ }^{100}
$$

F20:MRM of 2 channels,ESF20:MRM of 2 channels, $363.0>169.0$

Vista Analytical Laboratory

Dataset:	Z:IPFAS5.PROURESULTSI200715P11200715P1-ICV.qld
Last Altered:	Thursday, July 16, 2020 10:45:58 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 10:46:55 Pacific Daylight Time

Name: 200715P1-16, Date: 15-Jul-2020, Time: 14:16:27, ID: ICV200715P1-1 PFC ICV 20F1911, Description: PFC ICV 20F1911

F29:MRM of 2 channels,ES-

F26:MRM of 2 channels,ES-
F26:MRM of 2 channels, ES-
$413>169$

F34:MRM of 2 channels, ES-

7:3 FTCA

F31:MRM of 2 channels,ES$440.9>316.9$

13C5-PFNA-EIS

Dataset:	Z:IPFAS5.PROIRESULTSI200715P1I200715P1-ICV.qld
Last Altered:	Thursday, July 16, 2020 10:45:58 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 10:46:55 Pacific Daylight Time

Name: 200715P1-16, Date: 15-Jul-2020, Time: 14:16:27, ID: ICV200715P1-1 PFC ICV 20F1911, Description: PFC ICV 20F1911

13C5-PFNA-EIS

F38:MRM of 2 channels,ES498 > 169

13C8-PFOSA-EIS
F42:MRM of 1 channel,ES-
$506>78$
$2.295 e+005$

F40:MRM of 2 channels,ES
F40:MRM of 2 channeis,ES
$499>99$

13C8-PFOS-EIS
F43:MRM of 1 channel,ES-
$507.1>80$
$1.113 e^{2}+005$

F52:MRM of 2 channels,ES-

13C8-PFOS-EIS
F43:MRM of 1 channel,ES-
$507.1>80$
$1.113 e+005$

PFDA

F45:MRM of 2 channels,ES.
$513>469$
$513>469$
$3.876 e+005$

F45:MRM of 2 channels,ES-
$513>219$
$8.086 e+004$

13C2-PFDA-EIS
F46:MRM of 1 channel,ES-
$515.1>469.9$

13C2-8:2 FTS-EIS
F51:MRM of 1 channel,ES-
$529>80$
$5.232 e+004$

Name: 200715P1-16, Date: 15-Jul-2020, Time: 14:16:27, ID: ICV200715P1-1 PFC ICV 20F1911, Description: PFC ICV $20 F 1911$

F54:MRM of 2 channels,ES-

F57:MRM of 2 channels,ES-

F60:MRM of 2 channels,ES-
$583.9>526$
$9.832 \mathrm{e}+004$

13C2-PFUdA-EIS
F56:MRM of 1 channel,ES-
$565>519.8$
$7.1030+005$

13C8-PFOS-EIS
F43:MRM of 1 channel,ES-
$507.1>80$
$1.1130+005$

F62:MRM of 2 channels,ESF62:MRM of 2 channels,ES-
$598.8>98.9$

13C2-PFDoA-EIS
F64:MRM of 1 channel,ES-
$614.9>569.9$

Dataset:	Z:IPFAS5.PRO\RESULTSI200715P11200715P1-ICV.qld
Last Altered:	Thursday, July 16, 2020 10:45:58 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 10:46:55 Pacific Daylight Time

Name: 200715P1-16, Date: 15-Jul-2020, Time: 14:16:27, ID: ICV200715P1-1 PFC ICV 20F1911, Description: PFC ICV $20 F 1911$
10:2 FTS
F67:MRM of 2 channels,ES-
$626.9>607$
$100-5.70 \quad 4.255 \mathrm{e}+001$

F67:MRM of 2 channels,ES-

F44:MRM of 2 channels, ES-

F72:MRM of 2 channels, ES-

F73:MRM of 2 channels,ESF73:MRM of 2 channels,ES-
$699>99$

13C2-PFTeDA-EIS
F75:MRM of 2 channels,ES-
$715.1>669.7$

F74:MRM of 2 channels,ES-

13C2-PFTeDA-EIS
F75:MRM of 2 channels,ES-

Last Altered:
Thursday, July 16, 2020 10:45:58 Pacific Daylight Time
Printed: Thursday, July 16, 2020 10:46:55 Pacific Daylight Time

Name: 200715P1-16, Date: 15-Jul-2020, Time: 14:16:27, ID: ICV200715P1-1 PFC ICV 20F1911, Description: PFC ICV 20F1911

F49:MRM of 2 channels, ESF49:MRM of 2 channels, ES-
$526.1>219$
$6.15 \quad 8.629 \mathrm{e}+001$
200
6.0006 .2006 .400

PFODA
F78:MRM of 1 channel,ES-

6.2006 .4006 .600

Dataset:	Z:IPFAS5.PROIRESULTSI200715P11200715P1-ICV.qld
Last Altered:	Thursday, July 16, 2020 10:45:58 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 10:46:55 Pacific Daylight Time

Name: 200715P1-16, Date: 15-Jul-2020, Time: 14:16:27, ID: ICV200715P1-1 PFC ICV 20F1911, Description: PFC ICV $20 F 1911$

13C3-PFBS-RSD
 F12:MRM of 1 channel,ES$302.0>98.9$

13C5-PFNA-RSD
F36:MRM of 1 channel, ES-
$468.2>422.9$

13C8-PFOSA-RSD
F42:MRM of 1 channel,ES-
$506>78$
$2,295 e+005$

13C2-PFOA-RSD
F27:MRM of 1 channel,ES.
$414.9>369.7$

F43:MRM of 1 channel, ES
$507.1>80$ $1.113 \mathrm{e}+005$

Dataset:	Z:IPFAS5.PROIRESULTSI200715P11200715P1-ICV.qld
Last Altered:	Thursday, July 16, 2020 10:45:58 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 10:46:55 Pacific Daylight Time

Name: 200715P1-16, Date: 15-Jul-2020, Time: 14:16:27, ID: ICV200715P1-1 PFC ICV 20F1911, Description: PFC ICV 20F1911

13C2-PFTeDA-RSD
F75:MRM of 2 channels,ES-
$715.1>669.7$
$7.251 \mathrm{e}+005$

d5-N-ETFOSA-RSD
F53:MRM of 1 channel,ES-
$531.1>168.9$
$7.722 e+005$

Dataset: Z:IPFAS5.PRO\RESULTSI200715P1200715P1-ICV.qld

Last Altered: Thursday, July 16, 2020 10:45:58 Pacific Daylight Time
Printed: Thursday, July 16, 2020 10:46:55 Pacific Daylight Time

Name: 200715P1-16, Date: 15-Jul-2020, Time: 14:16:27, ID: ICV200715P1-1 PFC ICV 20F1911, Description: PFC ICV 20F1911

13C6-PFDA

F48:MRM of 1 channel,ES$519.1>473.7$ $5.892 \mathrm{e}+005$

Dataset:
 Untitled

Last Altered: Printed:

Thursday, July 16, 2020 08:33:14 Pacific Daylight Time Thursday, July 16, 2020 08:33:20 Pacific Daylight Time

Method: D:\PFAS5.PRO\MethDB\NEW_PFAS_80C_071520.mdb 15 Jul 2020 14:50:21

Calibration: D:|PFAS5.PRO\CurveDB|C̄18_VAL-PFAS_Q5_07-15-20.cdb 16 Jul 2020 08:15:46

Name: 200715P1-15, Date: 15-Jul-2020, Time: 14:05:50, ID: IB, Description: IB

F6:MRM of 2 channels,ES-

13C3-PFBS-EIS
F12:MRM of 1 channel,ES302.0 > 98.9 $4.258 \mathrm{e}+004$

13C3-PFPeA-EIS
IB IBF8:MRM of 1 channel,ES-

PFPeA

13C3-PFPeA-EIS

IB IBF8:MRM of 1 channel,ES-

F11:MRM of 2 channels,ES-

13C3-PFBS-EIS
F12:MRM of 1 channel,ES-

F16:MRM of 2 channels,ES-

13C2-4:2 FTS-EIS

F17:MRM of 2 channels,ES$329.0>80.8$

Dataset:
 Untitled

Last Altered:
Thursday, July 16, 2020 08:33:14 Pacific Daylight Time Printed: Thursday, July 16, 2020 08:33:20 Pacific Daylight Time

Name: 200715P1-15, Date: 15-Jul-2020, Time: 14:05:50, ID: IB, Description: IB

PFHxA
 F13:MRM of 2 channels,ES-

F13:MRM of 2 channels,ESFi3.MRM of 2 channels,ES
(100)

13C2-PFHxA-EIS

F14:MRM of 1 channel,ES-

13C3-PFBS-EIS

13C4-PFHpA-EIS

13C4-PFHPA-EIS

Dataset:
 Untitled

Last Altered: Thursday, July 16, 2020 08:33:14 Pacific Daylight Time Printed: Thursday, July 16, 2020 08:33:20 Pacific Daylight Time

Name: 200715P1-15, Date: 15-Jul-2020, Time: 14:05:50, ID: IB, Description: IB

L-PFHxS
F23:MRM of 2 channels,ES-

3.86 | $399>79.9$ |
| :--- |
| $1.281 \mathrm{e}+002$ |

F23:MRM of 2 channels,ES

13C3-PFHxS-EIS

F24:MRM of 1 channel,ES-

13C2-6:2 FTS-EIS

F29:MRM of 2 channels,ES-

S

13C2-PFOA-EIS

F32:MRM of 2 channels,ES-

13C8-PFOS-EIS

F43:MRM of 1 channel,ES$507.1>80$ $507.1>80$
$1.168 e+005$

Dataset:
 Untitled

Last Altered: Printed:

Thursday, July 16, 2020 08:33:14 Pacific Daylight Time

Name: 200715P1-15, Date: 15-Jul-2020, Time: 14:05:50, ID: IB, Description: IB
PFNA
F35:MRM of 2 channels,ES-
$463.0>418.8$
$1.820 \mathrm{e}+003$

F35:MRM of 2 channels,ES-

13C5-PFNA-EIS

F36:MRM of 1 channel,ES$468.2>422.9$
$100-6.259 \mathrm{e}+005$

F38:MRM of 2 channels,ES-

13C8-PFOSA-EIS

$$
\begin{array}{r}
\text { 9CI-PF30NS } \\
\text { F52:MRM of } 2 \text { channels,ES- } \\
531>351 \\
2.788 \mathrm{e}+002
\end{array}
$$

F52:MRM of 2 channels,ES- F45:MRM of 2 channels,ES-

13C8-PFOS-EIS

F43:MRM of 1 channel,ES-
nannel,ES-
$507.1>80$ $507.1>80$
$168 e+005$

Dataset:
 Untitled

Last Altered: Printed:

Thursday, July 16, 2020 08:33:14 Pacific Daylight Time Thursday, July 16, 2020 08:33:20 Pacific Daylight Time
PFNS
F54:MRM of 2 channels,ES-
$549>80$
$1.907 \mathrm{e}+002$

F54:MRM of 2 channels,ES-
100

13C8-PFOS-EIS

F43:MRM of 1 channel,ES-

L-MeFOSAA F57:MRM of 2 channels,ES- $570>419$ 100

d3-N-MeFOSAA-EIS
F59-MRM of 1 channel ES

d5-N-EtFOSAA-EIS

F61:MRM of 1 channel,ES-
F61:MRM of 1 channel,ES-
$589.3>419$

F55:MRM of 2 channels,ES-
563.0>269
100
$5.25017 \mathrm{e}+001$

13C2-PFUdA-EIS

F62:MRM of 2 channels,ES-

13C8-PFOS-EIS

F69:MRM of 2 channels,ES-

13C2-PFDoA-EIS

Dataset:
 Untitled

Last Altered: Printed:

Thursday, July 16, 2020 08:33:14 Pacific Daylight Time Thursday, July 16, 2020 08:33:20 Pacific Daylight Time

Name: 200715P1-15, Date: 15-Jul-2020, Time: 14:05:50, ID: IB, Description: IB

10:2 FTS
 F67:MRM of 2 channels,ES- $626.9>607$ $6.231 \mathrm{e}+001$

F67:MRM of 2 channels,ES-

13C2-10:2 FTS-EIS

F70:MRM of 1 channel,ES$32.9>80.0$ $4.091 e+004$

13C2-PFDoA-EIS

F72:MRM of 2 channels,ES-

Dataset:
 Untitled

Last Altered:
Thursday, July 16, 2020 08:33:14 Pacific Daylight Time Printed: Thursday, July 16, 2020 08:33:20 Pacific Daylight Time

Name: 200715P1-15, Date: 15-Jul-2020, Time: 14:05:50, ID: IB, Description: IB

N-EtFOSA
F49:MRM of 2 channels,ES-
$526.1>168.9$
$7.785 \mathrm{e}+002$

Dataset:
 Untitled

Last Altered:
Thursday, July 16, 2020 08:33:14 Pacific Daylight Time Printed: Thursday, July 16, 2020 08:33:20 Pacific Daylight Time

Name: 200715P1-15, Date: 15-Jul-2020, Time: 14:05:50, ID: IB, Description: IB

13C2-6:2 FTS-RSD

F30:MRM of 1 channel,ES429.0 > 79.7 $7.608 \mathrm{e}+004$

13C5-PFNA-RSD

13C2-PFOA-RSD

F27:MRM of 1 channel,ES$414.9>369.7$ $6.415 \mathrm{e}+005$

13C8-PFOS-RSD

F43:MRM of 1 channel,ES$507.1>80$ $1.168 \mathrm{e}+005$

Dataset:
 Untitled

Last Altered:
Thursday, July 16, 2020 08:33:14 Pacific Daylight Time Printed: Thursday, July 16, 2020 08:33:20 Pacific Daylight Time

Name: 200715P1-15, Date: 15-Jul-2020, Time: 14:05:50, ID: IB, Description: IB

13C2-8:2 FTS-RSD

d3-N-MeFOSA-RSD

F47:MRM of 1 channel,ES $515.2>168.9$

13C2-PFTeDA-RSD
F75:MRM of 2 channels,ES-

d5-N-ETFOSA-RSD
F53:MRM of 1 channel,ES$531.1>168.9$ $6.743 \mathrm{e}+005$

13C2-PFHxDA-RSD
F77:MRM of 1 channel,ES$815>769.7$ $1.058 \mathrm{e}+006$

d9-N-EtFOSE-RSD
F71:MRM of 1 channel,ES$639.2>58.8$ $8.889 \mathrm{e}+005$

Dataset:
 Untitled

Thursday, July 16, 2020 08:33:14 Pacific Daylight Time Printed: Thursday, July 16, 2020 08:33:20 Pacific Daylight Time

Name: 200715P1-15, Date: 15-Jul-2020, Time: 14:05:50, ID: IB, Description: IB

13C4-PFBA
 IB IBF4:MRM of 1 channel,ES$217.0>172.0$ $1.673 \mathrm{e}+003$
 100

13C6-PFDA

F48:MRM of 1 channel,ES$519.1>473.7$ $100 \quad 1.685 \mathrm{e}+002$

13C7-PFUdA

1802-PFHxS

Dataset:	Untitled
Last Altered:	Thursday, July 16, 2020 08:33:14 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 08:33:20 Pacific Daylight Time

Name: 200715P1-15, Date: 15-Jul-2020, Time: 14:05:50, ID: IB, Description: IB

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
1	1 PFBA	$213.0>168.8$	12.119	10778.824	1.00	1.31	0.014				NO		
2	2 PFPrs	$249>80$		1813.848	1.00						NO		YES
3	3 3:3 FTCA	$240.9>176.9$		15224.953	1.00						NO		YES
4	4 PFPeA	$263.1>218.9$	8.944	15224.953	1.00	2.22	0.007				NO		
5	5 PFBS	$299.0>80$		1813.848	1.00						NO		YES
6	6 4:2 FTS	$326.9>306.9$		2010.718	1.00						NO		YES
7	47 13C3-PFBA-EIS	$216.1>171.8$	10778.824		1.00	1.42	10778.824	12.500	16.2	129.8	NO		
8	51 13C3-PFBS-EIS	$302.0>98.9$	1813.848		1.00	2.64	1813.848	12.500	12.5	99.9	NO		
9	49 13C3-PFPeA-EIS	266.0 > 221.8	15224.953		1.00	2.36	15224.953	12.500	13.5	108.1	NO		
10	49 13C3-PFPeA-EIS	266.0 > 221.8	15224.953		1.00	2.36	15224.953	12.500	13.5	108.1	NO		
11	51 13C3-PFBS-EIS	$302.0>98.9$	1813.848		1.00	2.64	1813.848	12.500	12.5	99.9	NO		
12	55 13C2-4:2 FTS-EIS	$329.0>80.8$	2010.718		1.00	3.08	2010.718	12.500	13.2	105.5	NO		
13	-1												
14	7 PFHxA	313.0 > 269.0	52.881	16232.079	1.00	3.19	0.041				NO		YES
15	8 PFPeS	349.>80		1813.848	1.00						NO		YES
16	9 HFPO-DA	$285.1>168.9$		3081.270	1.00						NO		YES
17	10 5:3 FTCA	$340.9>236.9$		14878.547	1.00						NO		YES
18	11 PFHpA	$363.0>319$		14878.547	1.00						NO		YES
19	12 ADONA	$376.8>250.9$	108.036	14878.547	1.00	3.81	0.091		0.0695		NO	14.687	YES
20	57 13C2-PFHxA-EIS	$315.0>270.0$	16232.079		1.00	3.16	16232.079	12.500	13.2	105.9	NO		
21	51 13C3-PFBS-EIS	$302.0>98.9$	1813.848		1.00	2.64	1813.848	12.500	12.5	99.9	NO		
22	53 13C3-HFPO-DA-EIS	$287.0>168.9$	3081.270		1.00	3.39	3081.270	12.500	11.9	95.3	NO		
23	59 13C4-PFHpA-EIS	$367.2>321.8$	14878.547		1.00	3.76	14878.547	12.500	11.7	93.7	NO		
24	59 13C4-PFHpA-EIS	367.2 > 321.8	14878.547		1.00	3.76	14878.547	12.500	11.7	93.7	NO		
25	59 13C4-PFHpA-EIS	367.2 > 321.8	14878.547		1.00	3.76	14878.547	12.500	11.7	93.7	NO		
26	-1												
27	13 L-PFHxS	$399>79.9$		3888.677	1.00						NO		YES
28	15 6:2 FTS	$427.0>407$	14.528	2437.521	1.00	4.17	0.075		0.101		NO	1.658	YES
29	16 L-PFOA	$413>369$	60.749	19905.926	1.00	4.28	0.038		0.0321		NO	6.815	YES
30	18 PFechS	$461>381.0$	9.962	19905.926	1.00	4.24	0.006		0.0592		NO	0.527	NO
31	19 PFHpS	$449.0>80$		3934.740	1.00						NO		YES
32	20 7:3 FTCA	$440.9>336.9$		20104.855	1.00						NO		YES
33	61 13C3-PFHxS-EIS	$402>80$	3888.677		1.00	3.91	3888.677	12.500	14.5	115.8	NO		
34	63 13C2-6:2 FTS-EIS	$429.0>79.7$	2437.521		1.00	4.22	2437.521	12.500	12.9	102.8	NO		
35	69 13C2-PFOA-EIS	414.9 > 369.7	19905.926		1.00	4.28	19905.926	12.500	13.1	104.8	NO		
36	69 13C2-PFOA-EIS	414.9 > 369.7	19905.926		1.00	4.28	19905.926	12.500	13.1	104.8	NO		
	Work Order 2001436											Page 603 of 873	

Dataset:	Untitled
Last Altered:	Thursday, July 16, 2020 08:33:14 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 08:33:20 Pacific Daylight Time

Name: 200715P1-15, Date: 15-Jul-2020, Time: 14:05:50, ID: IB, Description: IB

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery	Ion Ratio	Ratio Out?
37	71 13C8-PFOS-EIS	$507.1>80$	3934.740		1.00	4.80	3934.740	12.500	14.1	112.9	NO		
38	65 13C5-PFNA-EIS	468.2 > 422.9	20104.855		1.00	4.72	20104.855	12.500	13.5	108.1	NO		
39	-1												
40	21 PFNA	$463.0>418.8$	84.844	20104.855	1.00	4.68	0.053		0.0321		NO		YES
41	22 PFOSA	$498>78$	14.863	8009.700	1.00	4.73	0.023		0.00177		NO		YES
42	23 L-PFOS	$499>80$	5.432	3934.740	1.00	4.81	0.017		0.0008...		NO		YES
43	259 Cl -PF30NS	$531>351$	5.270	3934.740	1.00	4.97	0.017				NO		YES
44	26 PFDA	$513>469$	14.619	23947.822	1.00	5.07	0.008				NO		YES
45	27 8:2 FTS	$526.8>506.9$		2023.324	1.00						NO		YES
46	65 13C5-PFNA-EIS	$468.2>422.9$	20104.855		1.00	4.72	20104.855	12.500	13.5	108.1	NO		
47	67 13C8-PFOSA-EIS	$506>78$	8009.700		1.00	4.77	8009.700	12.500	13.5	107.7	NO		
48	71 13C8-PFOS-EIS	$507.1>80$	3934.740		1.00	4.80	3934.740	12.500	14.1	112.9	NO		
49	71 13C8-PFOS-EIS	$507.1>80$	3934.740		1.00	4.80	3934.740	12.500	14.1	112.9	NO		
50	73 13C2-PFDA-EIS	$515.1>469.9$	23947.822		1.00	5.10	23947.822	12.500	14.3	114.2	NO		
51	75 13C2-8:2 FTS-EIS	$529>80$	2023.324		1.00	5.07	2023.324	12.500	13.9	111.6	NO		
52	-1												
53	28 PFNS	$549>80$		3934.740	1.00						NO		YES
54	29 L-MeFOSAA	$570>419$	22.608	4814.739	1.00	5.20	0.059		0.104		NO	3.117	YES
55	$31 \mathrm{~L}-\mathrm{EtFOSAA}$	$583.9>419$	21.482	4313.271	1.00	5.37	0.062		0.0521		NO	1.701	NO
56	33 PFUdA	$563.0>519$	66.650	22660.191	1.00	5.41	0.037				NO		YES
57	34 PFDS	$598.8>79.9$	6.290	3934.740	1.00	5.42	0.020				NO		YES
58	3511 Cl -PF30UdS	$631>451$	12.852	25573.779	1.00	5.60	0.006				NO		YES
59	71 13C8-PFOS-EIS	$507.1>80$	3934.740		1.00	4.80	3934.740	12.500	14.1	112.9	NO		
60	77 d3-N-MeFOSAA-EIS	$573.1>419$	4814.739		1.00	5.24	4814.739	12.500	12.9	103.6	NO		
61	81 d5-N-EtFOSAA-EIS	$589.3>419$	4313.271		1.00	5.40	4313.271	12.500	12.0	95.9	NO		
62	79 13C2-PFUdA-EIS	$565>519.8$	22660.191		1.00	5.42	22660.191	12.500	13.2	105.4	NO		
63	71 13C8-PFOS-EIS	$507.1>80$	3934.740		1.00	4.80	3934.740	12.500	14.1	112.9	NO		
64	83 13C2-PFDoA-EIS	$614.9>569.9$	25573.779		1.00	5.69	25573.779	12.500	13.5	108.4	NO		
65	-1												
66	36 10:2 FTS	$626.9>607$		1392.512	1.00						NO		YES
67	37 PFDoA	$612.9>569.0$	231.340	25573.779	1.00	5.73	0.113		0.0144		NO		YES
68	38 N-MeFOSA	$512.1>168.9$	24.931	20233.803	1.00	5.65	0.184				NO		YES
69	39 PFTrDA	$662.9>618.9$	53.053	25573.779	1.00	5.90	0.026				NO		YES
70	40 PFDoS	$699>80$	6.107	25175.213	1.00	5.91	0.003		0.0172		NO		YES
71	41 PFTeDA	713.0 > 669.0		25175.213	1.00						NO		YES
72	85 13C2-10:2 FTS-EIS	$632.9>80.0$	1392.512		1.00	5.68	1392.512	12.500	13.4	106.9	NO	Page 604 of 873	
	Work Order 2001436												

Dataset:	Untitled
Last Altered:	Thursday, July 16, 2020 08:33:14 Pacific Daylight Time
Printed:	Thursday, July 16, 2020 08:33:20 Pacific Daylight Time

Name: 200715P1-15, Date: 15-Jul-2020, Time: 14:05:50, ID: IB, Description: IB

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
73	83 13C2-PFDoA-EIS	$614.9>569.9$	25573.779		1.00	5.69	25573.779	12.500	13.5	108.4	NO		
74	87 d3-N-MeFOSA-EIS	$515.2>168.9$	20233.803		1.00	5.73	20233.803	149.200	133	88.9	NO		
75	83 13C2-PFDoA-EIS	$614.9>569.9$	25573.779		1.00	5.69	25573.779	12.500	13.5	108.4	NO		
76	89 13C2-PFTeDA-EIS	715.1 > 669.7	25175.213		1.00	6.15	25175.213	12.500	13.3	106.3	NO		
77	89 13C2-PFTeDA-EIS	715.1 > 669.7	25175.213		1.00	6.15	25175.213	12.500	13.3	106.3	NO		
78	-1												
79	$42 \mathrm{~N}-\mathrm{EtFOSA}$	$526.1>168.9$	32.519	25671.865	1.00	6.07	0.189		0.0174		NO	2.212	NO
80	43 PFHxDA	$813>769$	263.047	28307.994	1.00	6.47	0.116		0.0334		NO		YES
81	44 PFODA	$913.1>868.8$	141.381	28307.994	1.00	6.69	0.062		0.100		NO		
82	45 N -MeFOSE	$616.1>58.9$		20843.137	1.00						NO		
83	46 N -EtFOSE	$630.1>58.9$		23969.789	1.00						NO		
84	48 13C3-PFBA-RSD	$216.1>171.8$	10778.824	89.973	1.00	1.42	1497.508	12.500	1630	13038.6	YES		
85	91 d5-N-ETFOSA-EIS	$531.1>168.9$	25671.865		1.00	6.13	25671.865	149.200	135	90.2	NO		
86	93 13C2-PFHxDA-EIS	$815>769.7$	28307.994		1.00	6.47	28307.994	12.500	12.4	98.9	NO		
87	93 13C2-PFHxDA-EIS	$815>769.7$	28307.994		1.00	6.47	28307.994	12.500	12.4	98.9	NO		
88	95 d7-N-MeFOSE-EIS	$623.1>58.9$	20843.137		1.00	6.29	20843.137	149.200	136	91.5	NO		
89	97 d9-N-EtFOSE-EIS	$639.2>58.8$	23969.789		1.00	6.44	23969.789	149.200	136	91.1	NO		
90	50 13C3-PFPeA-RSD	266.0 > 221.8			1.00			12.500			NO		
91	-1												
92	52 13C3-PFBS-RSD	$302.0>98.9$			1.00			12.500			NO		
93	54 13C3-HFPO-DA-RSD	287.0 > 168.9	3081.270		1.00	3.39		12.500			NO		
94	56 13C2-4:2 FTS-RSD	$329.0>80.8$			1.00			12.500			NO		
95	58 13C2-PFHxA-RSD	$315.0>270.0$			1.00			12.500			NO		
96	60 13C4-PFHpA-RSD	$367.2>321.8$	14878.547		1.00	3.76		12.500			NO		
97	62 13C3-PFHxS-RSD	$402>80$			1.00			12.500			NO		
98	64 13C2-6:2 FTS-RSD	$429.0>79.7$	2437.521	44.122	1.00	4.22	690.563	12.500	1230	9811.9	YES		
99	66 13C5-PFNA-RSD	$468.2>422.9$	20104.855	8.771	1.00	4.72	28652.456	12.500	31000	24770...	YES		
100	68 13C8-PFOSA-RSD	$506>78$	8009.700	8.442	1.00	4.77	11859.897	12.500	26500	21202.	YES		
101	70 13C2-PFOA-RSD	$414.9>369.7$	19905.926	6.776	1.00	4.28	36721.381	12.500	30800	24600...	YES		
102	72 13C8-PFOS-RSD	$507.1>80$	3934.740	44.122	1.00	4.80	1114.733	12.500	1430	11441.6	YES		
103	74 13C2-PFDA-RSD	$515.1>469.9$	23947.822	6.025	1.00	5.10	49684.278	12.500	45000	36039...	YES		
104	-1												
105	76 13C2-8:2 FTS-RSD	$529>80$	2023.324	44.122	1.00	5.07	573.219	12.500	1270	10128.3	YES		
106	78 d3-N-MeFOSAA-RSD	$573.1>419$	4814.739	8.442	1.00	5.24	7129.144	12.500	25700	20522...	YES		
107	80 13C2-PFUdA-RSD	$565>519.8$	22660.191	8.442	1.00	5.42	33552.759	12.500	26000	20804...	YES		
108	82 d5-N-EtFOSAA-RSD	$589.3>419$	4313.271	8.442	1.00	5.40	6386.625	12.500	25900	20709..	YES		
	Work Order 2001436											Page	05 of 873

Dataset: Untitled
 Last Altered: Thursday, July 16, 2020 08:33:14 Pacific Daylight Time Printed:
 Thursday, July 16, 2020 08:33:20 Pacific Daylight Time

Name: 200715P1-15, Date: 15-Jul-2020, Time: 14:05:50, ID: IB, Description: IB

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Std. Conc	Conc.	\%Rec	Recovery	Ion Ratio	Ratio Out?
109	84 13C2-PFDoA-RSD	614.9 > 569.9	25573.779	6.025	1.00	5.69	53057.633	12.500	43100	34445...	YES		
110	86 13C2-10:2 FTS-RSD	$632.9>80.0$	1392.512	44.122	1.00	5.68	394.506	12.500	1330	10635.9	YES		
111	88 d3-N-MeFOSA-RSD	$515.2>168.9$	20233.803	8.442	1.00	5.73	29960.026	149.200	251000	16845...	YES		
112	90 13C2-PFTeDA-RSD	$715.1>669.7$	25175.213	8.442	1.00	6.15	37276.731	12.500	25000	20038...	YES		
113	92 d5-N-ETFOSA-RSD	$531.1>168.9$	25671.865	8.442	1.00	6.13	38012.119	149.200	268000	17968...	YES		
114	94 13C2-PFHxDA-RSD	$815>769.7$	28307.994	8.442	1.00	6.47	41915.414	12.500	23900	19118...	YES		
115	96 d7-N-MeFOSE-RSD	$623.1>58.9$	20843.137	8.442	1.00	6.29	30862.262	149.200	256000	17180...	YES		
116	98 d9-N-EtFOSE-RSD	$639.2>58.8$	23969.789	8.442	1.00	6.44	35491.870	149.200	259000	17374...	YES		
117	-1												
118	99 13C4-PFBA	$217.0>172.0$	89.973	89.973	1.00	1.42	12.500	12.500	12.5	100.0	NO		
119	1... 13C5-PFHxA	318.0 > 272.9			1.00			12.500			NO		
120	1... 13C8-PFOA	$420.9>376.0$	6.776	6.776	1.00	4.28	12.500	12.500	12.5	100.0	NO		
121	1... 1802-PFHxS	$403.0>103$			1.00			12.500			NO		
122	1... 13C9-PFNA	$472.2>426.9$	8.771	8.771	1.00	4.72	12.500	12.500	12.5	100.0	NO		
123	1... 13C4-PFOS	$503>79.7$	44.122	44.122	1.00	4.81	12.500	12.500	12.5	100.0	NO		
124	1... 13C6-PFDA	$519.1>473.7$	6.025	6.025	1.00	5.10	12.500	12.500	12.5	100.0	NO		
125	1... 13C7-PFUdA	$570.1>524.8$	8.442	8.442	1.00	5.42	12.500	12.500	12.5	100.0	NO		

TUNE CHECKS

$Q s(p)$
The chile o7/14/20
Calibration Verification Report - MS1 Static
Printed: \quad Tue Jul 14 08:33:47 2020

Printed:
Tue Jul 14 08:34:55 2020

Data file: SCNMS1V - Calibrated

Calibration Verification Report - MS1 Scan Speed Compensation
Printed:
Tue Jul 14 08:36:07 2020

Data file: FASTMS1V - Calibrated

Reference: c:Imasslynx\refIESI Calibration TQ ResCal.ref
Mean residual $=0.058 \mathrm{amu}$

Calibration Verification Report - MS2 Static

Printed: \quad Tue Jul 14 08:37:15 2020

Reference: c:ImasslynxIrefiESI Calibration TQ ResCal.ref
Mean residual $=0.0513 \mathrm{amu}$

Printed:
Tue Jul 14 08:38:24 2020

Reference: c:ImasslynxIrefIESI Calibration TQ ResCal.ref
Mean residual $=0.0761 \mathrm{amu}$

Printed: \quad Tue Jul 14 08:39:49 2020

Data file: FASTMS2V - Calibrated

Reference: c:ImasslynxlreflESI Calibration TQ ResCal.ref
Mean residual $=0.066 \mathrm{amu}$

Calibration Verification Report - MS1 Static

Printed: Wed Jul 15 09:19:05 2020

Reference: c:Imasslynx\reflESI Calibration TQ ResCal.ref Mean residual $=0.0821 \mathrm{amu}$

Printed:
Wed Jul 15 09:20:13 2020

Data file: SCNMS1V - Calibrated
23 matches of 23 tested references

Reference: c:Imasslynx\refIESI Calibration TQ ResCal.ref
Mean residual $=0.0753 \mathrm{amu}$

Printed: Wed Jul 15 09:21:25 2020

Reference: c:Imasslynx\refIESI Calibration TQ ResCal.ref
Mean residual $=0.036 \mathrm{amu}$

Printed:
 Wed Jul 15 09:22:34 2020

Data file: STATMS2V - Calibrated
23 matches of 23 tested references

Reference: c:Imasslynx\reflESI Calibration TQ ResCal.ref

$$
\text { Mean residual }=0.0496 \mathrm{amu}
$$

Printed: Wed Jul 15 09:23:42 2020

Data file: SCNMS2V - Calibrated
23 matches of 23 tested references

Reference: c:ImasslynxIreflESI Calibration TQ ResCal.ref Mean residual $=0.0725 \mathrm{amu}$

Printed:
Wed Jul 15 09:25:07 2020

Data file: FASTMS2V - Calibrated
23 matches of 23 tested references

 2017.91

Reference: c:Imasslynx|reflESI Calibration TQ ResCal.ref
Mean residual $=0.0908 \mathrm{amu}$

STANDARDS

Analytical Standard Record

Vista Analytical Laboratory

Parent Standards used in this standard:					
Standard	Description	Prepared	Prepared By	Expires	(mls)
19H2706	13C2-10:2 FTS	21-Aug-19	** Vendor **	21-Aug-24	1
19L0601	13C2-4:2 FTS	06-Dec-19	** Vendor **	29-Oct-24	1.07
19L0602	13C2-6:2 FTS	06-Dec-19	** Vendor **	21-Nov-24	1.05
19L0603	13C2-8:2 FTS	06-Dec-19	** Vendor **	11-Oct-24	1.04
19L0604	13 C 3 -PFBA	06-Dec-19	** Vendor **	14-Dec-22	1
19L0605	13C2-PFDA	06-Dec-19	** Vendor **	05-Sep-24	1
19L0606	13C2-PFUdA	06-Dec-19	** Vendor **	04-Jul-24	1
19L0607	13C2-PFTeDA	06-Dec-19	** Vendor **	11-Dec-23	1
19L0608	13C5-PFNA	06-Dec-19	** Vendor **	05-Dec-23	1
19L0609	13C2-PFDoA	06-Dec-19	** Vendor **	11-Dec-23	1
19L0610	13C4-PFHpA	06-Dec-19	** Vendor **	06-May-24	1
19L0611	13C2-PFOA	06-Dec-19	** Vendor **	21-Jun-24	1
19L0612	13C3-PFPeA	06-Dec-19	** Vendor **	08-Mar-24	1
19L0613	13C8-FOSA-I	06-Dec-19	** Vendor **	19-Jun-24	1
19L0614	d3-N-Me-FOSAA	06-Dec-19	** Vendor **	24-Jul-24	1
19L0615	d5-N-EtFOSAA	06-Dec-19	** Vendor **	25-Jul-24	1
19L0616	13C3-PFBS	06-Dec-19	** Vendor **	29-Oct-24	1.075
19L0617	13C8-PFOS	06-Dec-19	** Vendor **	06-May-24	1.045
19L0618	13C3-PFHxS	06-Dec-19	** Vendor **	15-Oct-24	1.06
19L0619	13C2-PFHxA	06-Dec-19	** Vendor **	11-Oct-24	1
19L0620	13C2-PFHxDA	06-Dec-19	** Vendor **	11-Oct-24	1
19L0621	13C3-HFPO-DA	06-Dec-19	** Vendor **	20-Sep-22	1

Description:	PFC - IS	Expires:	12-May-21
Standard Type:	Reagent	Prepared:	12-May-20
Solvent:	MeOH	Prepared By:	Brittany M. Lamb
Final Volume $(\mathrm{mls}):$	40	Department:	LCMS
Vials:	1	Last Edit:	12-May-20 10:53 by BML

10:2 added
10 uL spike

10 uL spike

13C3-HFPO-DA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-4:2 FTS	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-6:2 FTS	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-8:2 FTS	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFDA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFDoA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFHxA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFHxDA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFOA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-10:2 FTS	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFUnA	1.25	$\mathrm{ug} / \mathrm{mL}$
d5-EtFOSAA	1.25	$\mathrm{ug} / \mathrm{mL}$

Analytical Standard Record

Vista Analytical Laboratory
20E1201

Description:	PFC - IS	Expires:	12-May-21	
Standard Type:	Reagent	Prepared:	12-May-20	
Solvent:	MeOH	Prepared By:	Brittany M. Lamb	
Final Volume (mls):	40	Department:	LCMS	
Vials:	1	Last Edit:	12-May-20 10:53	y BML
$\begin{aligned} & \text { 10:2 added } \\ & \text { 10 ua spike } \end{aligned}$		CAS Number	Concentration	Units
13C3-PFBA			1.25	$\mathrm{ug} / \mathrm{mL}$
13C3-PFBS			1.25	$\mathrm{ug} / \mathrm{mL}$
13C3-PFHxS			1.25	$\mathrm{ug} / \mathrm{mL}$
13C3-PFPeA			1.25	$\mathrm{ug} / \mathrm{mL}$
13C4-PFHpA			1.25	$\mathrm{ug} / \mathrm{mL}$
13C5-PFNA			1.25	$\mathrm{ug} / \mathrm{mL}$
13C8-PFOS			1.25	$\mathrm{ug} / \mathrm{mL}$
13C8-PFOSA			1.25	$\mathrm{ug} / \mathrm{mL}$
d3-MeFOSAA			1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFTeDA			1.25	ug/mL

Cambridge Isotope Laboratories, Inc.

Product Name:

(Isotopic Label \& Enrichment Specification)

Lot Number:

Catalog Number:

1H,1H,2H,2H-PERFLUORODODECANE SULFONATE(10:2 FTS), SODIUM SALT (13C2, 99\%; D4, 98\%) 50 UG/ML IN MEOH

SDIJ-019A
CDLM-10750-S

Product Information

Chemical Purity Specification:
MW*:

* For isotopically labeled compounds, MW listed is for the fully enriched prochuct.
Labeled CAS Number:
Unlabeled CAS Number:
Chemical Formula:
Storage:
Stability:
$\geq 98 \%$
656.19

NA
108026-35-3

C10*C2D4F21NaO3S

Store at room temperature away from light and moisture.
See storage and expiration date.

Certification

Cambridge Isotope Laboratories, Inc. guarantees that this material meets or exceeds the specifications stated. Absolute identity as well as chemical and isotopic purities are assured by the use of unambiguous synthetic routes and multiple chemical analyses whenever possible. Results are representative of QC testing at time of release from Quality Control unless otherwise stated. CIL Certificates of Analysis are occasionally updated with new data following recertification. We recommend checking the website for the latest version.

Volumetric measurements were made with Class A glassware. Gravimetry is traceable to the NIST through calibrated balances and certified, calibrated, standard weights. The calibrations are traceable to the NIST under Test No. 822/270236-04. The calibrations also meet specifications outlined in ISO 9001, ISO/IEC 17025, ANSI/NSCL Z540-1-1994, NCR Document 10CFR50 Appendix B, and applicable subdocuments.

This COA references the bulk catalog number before packaging. The COA also applies to the CIL finished good catalog number. Some possible packaging sizes and their corresponding suffix are $-1.2,-1,-0.5,-10$, or -0.1 .

Approved by: Sashi Sivendran-Barak

Sashi Sivendran-Basak, Ph.D., Quality Review

Quality Control Tests and Results

QC Release Date	$8 / 21 / 2019$
Expiration Date	$8 / 21 / 2024$
Concentration Based on Gravimetry	$50.0 \pm 0.5 \mu \mathrm{~g} / \mathrm{mL} \mathrm{(k=2)}$
Chemical Purity of Neat Material(s)	100.0%

CIL subscribes to the following standards for different products: ISO Guide 34, ISO/IEC 17025, ISO 13485 and cGMP as appropriate.

Fiqure 2: M2-4:2FTS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: On-column (M2-4:2FTS)
Mobile phase: Same as Figure 1
Flow: $\quad 300 \mu / / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.51 \mathrm{e}-3$
Collision Energy (eV) $=18$
-
Figure 1: M2-4:2FTS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Fiqure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (250-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 40% ($80: 20 \mathrm{MeOH}: A C N$) $/ 60 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH OAc buffer)	Capillary Voltage (kV) $=0.50$ Cone Voltage (V) $=25.00$
	Ramp to 90% organic over 8 min and hold for	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
	2 min before returning to initial conditions in 0.75 min . Time: 12 min	Desolvation Gas Flow (/7rr) $=1000$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UVIMSIMS, x-ray crystallography, and meiting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS andior LC/MSIMS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{i}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/ECC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

CALA
Tusing
Atreontion matata

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www,well-labs,com or contact us directly at info@well-labs.com

PRODUCT CODE: COMPOUND:

M2-4:2FTS
Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluoro- $\left[1,2-{ }^{13} \mathrm{C}_{2}\right]$ hexane sulfonate

STRUCTURE:

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mwodrm)
EXPIRY DATE: (mmudtisw)
RECOMMENDED STORAGE: Refrigerate ampoule

CAS \#: \quad Not available

MOLECULAR WEIGHT: 352.12
SOLVENT(S): Methanol

ISOTOPIC PURITY:
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- The native $4: 2 \mathrm{FTS}$ contains 4.22% of ${ }^{34} \mathrm{~S}$ (due to natural isotopic abundance) therefore both native 4:2FTS and M2-4:2FTS will produce signals in the $\mathrm{m} / \mathrm{z} 329$ to $\mathrm{m} / \mathrm{z} 309$ channel during SRM analysis. We recommend using the $\mathrm{m} / \mathrm{z} 329$ to $\mathrm{m} / \mathrm{z} 81$ transition to monitor for M2-4:2FTS during quantitative analysis as it will be free of any native contribution (see Figure 2).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mmodrmo

Wellington Laboratories inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
 519-822-2436 • Fax: 519-822-2849 • info@well-fabs.com

Fiqure 2: M2-6:2FTS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:
Injection: On-column (M2-6:2FTS)
Mobile phase: Same as Figure 1

MS Parameters

Collision Gas (mbar) $=3.31 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=20$

Figure 1:
M2-6:2FTS; LC/MS Data (TIC and Mass Spectrum)

21nov2019_M262FTS_001										

Conditions for Figure 1:

LC:	Waters Acquity Ulitra Performance LC
MS:	Waters Xevo TQ-S micro MS

MS: \quad Waters Xevo TQ-S micro MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: 60\% ($80: 20 \mathrm{MeOH}: A C N$) $/ 40 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH} \mathrm{OAC}_{4}$ buffer)
Ramp to 90% organic over 7 min and hold for 3 min before returning to initial conditions in 0.75 min . Time: 12 min

Flow: $300 \mu 1 / m i n$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=0.50$
Cone Voltage $(\mathrm{V})=25.00$
Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
Desolvation Gas Flow ($/ \mathrm{hr}$) $=1000$

1910002

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE/PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc. please visit our website at uww,well-labs.com or contact us directly at info@well-labs.com

PRODUCT CODE: COMPOUND:

M2-6:2FTS
Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluoro-[1,2- ${ }^{13} \mathrm{C}_{2}$ loctane sulfonate
STRUCTURE:

CAS \#: \quad Not available

MOLECULAR FORMULA:

 CONCENTRATION:CHEMICAL PURITY:
LAST TESTED: (mridarm)
EXPIRY DATE: (mnddumy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{13} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \quad$ (Na salt)
$47.5 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml} \quad$ (M2-6:2FTS anion)
>98\%
11/21/2019
11/21/2024
Refrigerate ampoule

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- The native $6: 2$ FTS contains 4.22% of ${ }^{34} S$ (due to natural isotopic abundance) therefore both native 6:2FTS and M2-6:2FTS will produce signals in the $\mathrm{m} / \mathrm{z} 429$ to $\mathrm{m} / \mathrm{z} 409$ channel during SRM analysis. We recommend using the $\mathrm{m} / \mathrm{z} 429$ to $\mathrm{m} / \mathrm{z} 81$ transition to monitor for M2-6:2FTS during quantitative analysis as it will be free of any native contribution (see Figure 2).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mmiddyyy)

[^1]Figure 2: M2-8:2FTS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiaure 2:

Injection: On-column (M2-8:2FTS)
Mobile phase: Same as Figure 1
Flow: $\quad 300 \mu / / m i n$

MS Parameters

Collision Gas (mbar) $=3.87 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=26$

1920603

Fiqure 1: \quad M2-8:2FTS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ulitra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=0.50$
	(both with $10 \mathrm{mM} \mathrm{NH} \mathrm{H}_{4} \mathrm{OAC}$ buffer)	Cone Voltage (V) $=25.00$
	Ramp to 90% organic over 8 min and hold for	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
	2 min before returning to initial conditions in 0.75 min . Time: 12 min	Desolvation Gas Flow (l/hr) $=1000$
Flow:	$300 \mu 1 / \mathrm{min}$	

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UVIMS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned values), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{4}, x_{2^{*}} \ldots x_{n}$ on which it depends is:

$$
u_{t}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAl Global, ISOIIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

${ }^{* *}$ For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs,com or contact us directly at info@well-labs,com**

PRODUCT CODE: COMPOUND:

M2-8:2FTS
Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluoro-[1,2- ${ }^{13} \mathrm{C}_{2}$]decane sulfonate

STRUCTURE:

 Not available

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- The native $8: 2 \mathrm{FTS}$ contains 4.22% of ${ }^{34} \mathrm{~S}$ (due to natural isotopic abundance) therefore both native 8:2FTS and M2-8:2FTS will produce signals in the $\mathrm{m} / \mathrm{z} 529$ to $\mathrm{m} / \mathrm{z} 509$ channel during SRM analysis. We recommend using the $\mathrm{m} / \mathrm{z} 529$ to $\mathrm{m} / \mathrm{z} 81$ transition to monitor for M2-8:2FTS during quantitative analysis as it will be free of any native contribution (see Figure 2).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

Figure 2: M3PFBA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu /(500 \mathrm{ng} / \mathrm{ml} \mathrm{M} 3 \mathrm{PFBA})$
Mobile phase:	Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH
Flow: buffer)	$300 \mu l / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.39 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=10$

- Fiqure 1: M3PFBA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Fiqure 1:

LC: \quad Waters Acquity Ultra Performance LC
 MS: Micromass Quattro micro API MS

Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan ($150-850 \mathrm{amu}$)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 30\% (80:20 MeOH:ACN) / 70\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with 10 mM NH	Cone Voltage (V) $=10.00$
	Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min	Cone Gas Flow (l/hr) $=100$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu / / \mathrm{min}$	

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company, In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).
For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

PRODUCT CODE:
 COMPOUND:

M3PFBA
Perfluoro-n- $\left[2,3,4-{ }^{13} \mathrm{C}_{3}\right]$ butanoic acid

STRUCTURE:

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mrisadym)
EXPIRY DATE: (mmodism)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{3}{ }^{12} \mathrm{CHF}_{7} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
12/14/2017
12/14/2022

LOT NUMBER: M3PFBA1217

CAS \#: \quad Not available

MOLECULAR WEIGHT: 217.02
SOLVENT(S): Methanol
Water ($<1 \%$)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
(2,3,4- ${ }^{13} \mathrm{C}_{3}$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.2 \%$ of perfluoro-n $\left[{ }^{3}{ }_{3} \mathrm{C}_{3}\right]$ propanoic acid and also contains $\sim 1.0 \%$ of perfluoro-n- $\left[1,2,3,4-{ }^{13} \mathrm{C}_{4}\right]$ butanoic acid due to the naturally occurring isotopic abundance of ${ }^{13} \mathrm{C}$ in the unlabelled carbon atom.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mmiodryy

Figure 2: MPFDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure. 2:

Injection: \quad On-column (MPFDA)	MS Parameters	
Mobile phase:	Same as Figure 1	Collision Gas (mbar) $=3.45 \mathrm{e}-3$
	Collision Energy $(\mathrm{eV})=10$	

Figure 1: MPFDA; LC/MS Data (TIC and Mass Spectrum)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS /CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{t}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{i}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE:

COMPOUND:

MPFDA
Perfluoro-n $-\left[1,2-^{13} \mathrm{C}_{2}\right]$ decanoic acid

STRUCTURE:

MOLECULAR FORMULA:	${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{8} \mathrm{HF}_{18} \mathrm{O}_{2}$	MOLECULAR WEIGHT:	516.07
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT(S):	Methanol
			Water (<1\%)
CHEMICAL PURITY:	>98\%	ISOTOPIC PURITY:	$\geq 99 \%{ }^{13} \mathrm{C}$
LAST TESTED: (mmodurw)	09/05/2019		$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$
EXPIRY DATE: (mmodimy)	09/05/2024		
RECOMMENDED STORAGE:	Sto		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Figure 2: \quad MPFUdA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 2:

Injection: On-column (MPFUdA)
Mobile phase: Same as Figure 1
MS Parameters
Collision Gas (mbar) $=3.39 \mathrm{e}-3$
Collision Energy (eV) $=12$

Flow: $\quad 300 \mu / / \mathrm{min}$

INTENDED USE:

The products prepared by Wellington Laboratories inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be < 5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(\vartheta\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has aiso been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAl Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

PRODUCT CODE:

COMPOUND:

MPFUdA
Perfluoro-n-[1,2- ${ }^{33} \mathrm{C}_{2}$]undecanoic acid

STRUCTURE:

LOT NUMBER: MPFUdA0619

CAS \#: \quad Not available

MOLECULAR FORMULA: CONCENTRATION:	$\begin{aligned} & { }^{13} \mathrm{C}_{2}{ }_{2} \mathrm{C}_{9} \mathrm{HF}_{2} \mathrm{O}_{2} \\ & 50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \end{aligned}$
CHEMICAL PURITY:	>98\%
LAST TESTED; (mmodimm)	07/04/2019
EXPIRY DATE: (mmbudrm)	07/04/2024
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 566.08
SOLVENT(S): Methanol Water (<1\%)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
($1,2-{ }^{13} \mathrm{C}_{2}$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Presence of $1{ }^{13} \mathrm{C}_{1}-$ PFUdA ($\sim 1 \%$; see Figure 2), $2{ }^{-13} \mathrm{C}_{1}-\mathrm{PF}$ UdA ($\sim 1 \%$), and PFUdA ($\sim 0.2 \%$; see Figure 2) are due to the isotopic purity of the ${ }^{13} \mathrm{C}$-precursor.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G $3 M 5$ CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

Figure 2: M2PFTeDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 2:

Injection: On-column (M2PFTeDA)
Mobile phase: Same as Figure 1
Flow: $\quad 300 \mu / / m i n$

MS Parameters

Collision Gas $(\mathrm{mbar})=3.16 \mathrm{e}-3$
Collision Energy (eV) $=14$

- Fiqure 1: M2PFTeDA; LC/MS Data (TIC and Mass Spectrum)

Condilions for Fiqure 1:

LC: \quad Waters Acquity Ultra Performance LC
MS: \quad Waters Xevo TQ-S micro MS

Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{1 s}$	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60\% (80:20 MeOH:ACN) / $40 \% \mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with 10 mM NH	Cone Voltage (V) $=10.00$
	Ramp to 90% organic over 7 min and hold for 3 min before returning to initial conditions in 0.75 min . Time: 12 min	Desolvation Temperature ($\left.{ }^{\circ} \mathrm{C}\right)=500$ Desolvation Gas Flow $(l / h r)=1000$
Flow:	$300 \mu / / m i n$	

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be < 5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{e}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{z^{2}} \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/EC 17025 accredited laboratory. All volumetnc glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAl Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

CALA

For additional information or assistance concerning this or any other products from Wellington Laboratories inc., please visit our website at www, well-labs,com or contact us directly at inforwell-labs,com

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE:	M2PFTeDA
COMPOUND:	Perfluoro-n- $\left[1,2-{ }^{13} \mathrm{C}_{2}\right]$ tetradecanoic acid

STRUCTURE:
CAS \#:
Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmoddrmy) EXPIRY DATE: (mmodum) RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{12} \mathrm{HF}_{27} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
12/11/2018
12/11/2023
Store ampoule in a cool, dark place

LOT NUMBER: M2PFTeDA1218

```
COMPOUND:
Perfluoro- \(n-\left[1,2-{ }^{13} \mathrm{C}_{2}\right]\) tetradecanoic acid
```


DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: 12/20/2018
(mmodyyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

Conditions for Figure 2:

Injection: On-column (MPFNA)
$\begin{array}{ll}\text { Mobile phase: Same as Figure } 1 & \text { Collision Gas (mbar) }=2.88 \mathrm{e}-3 \\ & \text { Collision Energy }(\mathrm{eV})=10\end{array}$
Flow: $\quad 300 \mu / \mathrm{min}$

MS Parameters

Figure 1: MPFNA; LC/MS Data (TIC and Mass Spectrum)

| 05dec2018_MPFNA_001 |
| :--- | :--- |
| MPFNA1218 $250 \mathrm{ng} / \mathrm{ml}$ |
| 100 |

Conditions for Figure 1:
 LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Waters Xevo TQ-S micro MS

Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{48}$	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50\% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAC}$ buffer)	Cone Voltage (V) $=10.00$
	Ramp to 90% organic over 8 min and hold for	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
	2 min before returning to initial conditions in 0.75 min .	Desolvation Gas Flow (1/hr) $=1000$
	Time: 12 min	

Flow:
$300 \mu / / m i n$

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MSMS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2} \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an extemal ISO/EC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com WELLINGTON LABORATORIES

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE:	MPFNA
COMPOUND:	Perfluoro-n-[1,2,3,4,5- $\left.{ }^{13} \mathrm{C}_{5}\right]$ nonanoic acid

STRUCTURE:

Perfluoro-n-[1,2,3,4,5- ${ }^{3} \mathrm{C}_{5}$]nonanoic acid
LOT NUMBER: MPFNA1218

CAS \#: Not available

MOLECULAR FORMULA:	${ }^{13} \mathrm{C}_{5}{ }^{12} \mathrm{C}_{4} \mathrm{HF}_{17} \mathrm{O}_{2}$	MOLECULAR WEIGHT:	469.04
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT(S):	Methanol
			Water ($<1 \%$)
CHEMICAL PURITY:	>98\%	ISOTOPIC PURITY:	$\geq 99 \%{ }^{13} \mathrm{C}$
LAST TESTED: (mmdd/ww)	12/05/2018		(1,2,3,4,5- ${ }^{13} \mathrm{C}_{5}$)
EXPIRY DATE: (mmddymy)	12/05/2023		
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

PRODUCT CODE: COMPOUND:

MPFDoA
Perfluoro- $\mathrm{n}-\left[1,2{ }^{-13} \mathrm{C}_{2}\right.$]dodecanoic acid

LOT NUMBER: MPFDoA1218

CAS \#: Not available

MOLECULAR FORMULA:	${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{10} \mathrm{HF}_{23} \mathrm{O}_{2}$	MOLECULAR WEIGHT:	616.08
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT(S):	Methanol
			Water ($<1 \%$)
CHEMICAL PURITY:	>98\%	ISOTOPIC PURITY:	$\geq 99 \%{ }^{13} \mathrm{C}$
LAST TESTED: (mmidurw)	12/11/2018		(1,2- ${ }^{13} \mathrm{C}_{2}$)
EXPIRY DATE: (mmddusm)	12/11/2023		
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: $\frac{12 / 18 / 2018}{(\text { mndodmm })}$

19 LO609

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{n}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are reguiarly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAl Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

1 Figure 1: MPFDoA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Fiqure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60\% (80:20 MeOH:ACN) / 40\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH} 4_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=10.00$
	Ramp to 90% organic over 7 min and hold for 3 min before returning to initial conditions in 0.75 min . Time: 12 min	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$ Desolvation Gas Flow (l/hr) $=1000$
Flow:	$300 \mu / / m i n$	

Figure 2: MPFDoA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: On-column (MPFDoA
Mobile phase: Same as Figure 1

MS Parameters

Collision Gas (mbar) $=3.16 \mathrm{e}-3$
Collision Energy (eV) $=12$

Figure 2: M4PFHpA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiaure 2:		
Injection:	On-column (M4PFHpA)	MS Parameters
Mobile phase:	Same as Figure 1	Collision Gas $(\mathrm{mbar})=2.87 \mathrm{e}-3$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	Collision Energy $(\mathrm{eV})=8$

Fiqure 1: M4PFHPA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Waters Xevo TQ-S micro MS

Chromatographic Conditions

Column: \quad Acquity UPLC BEH Shield RP ${ }_{\text {va }}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: 50\% (80:20 MeOH:ACN) / $50 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH} 4_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 8 min and hold for
2 min before returning to initial conditions in 0.75 min . Time: 11 min

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=10.00$
Desolvation Temperature $\left({ }^{\circ} \mathrm{C}\right)=500$
Desolvation Gas Flow (t/hr) $=1000$

Flow:
$300 \mu / / m i n$

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and sultable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5\% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoning for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www,well-labs.com or contact us directly at infowwell-labs.com

PRODUCT CODE:
COMPOUND:

M4PFHpA

Perfluoro-n-[1,2,3,4- ${ }^{3} \mathrm{C}_{4}$]heptanoic acid

LOT NUMBER: M4PFHpA0519

CAS\#: Not available

STRUCTURE:

MOLECULAR FORMULA:	${ }^{13} \mathrm{C}_{4}{ }^{12} \mathrm{C}_{3} \mathrm{HF}_{13} \mathrm{O}_{2}$
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
CHEMICAL PURITY:	$>98 \%$
LAST TESTED: (mmddedmy)	$05 / 06 / 2019$
EXPIRY DATE: (mmddemm)	$05 / 06 / 2024$
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 368.03
SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY:
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2,3,4-{ }^{13} \mathrm{C}_{4}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Figure 2: M2PFOA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 2:

Injection: On-column (M2PFOA)
Mobile phase: Same as Figure 1

MS Parameters

Collision Gas (mbar) $=2.88 \mathrm{e}-3$
Collision Energy (eV) $=8$

Flow: $\quad 300 \mu / / \mathrm{min}$
; Figure 1: M2PFOA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatograp	hic Conditions	MS Parameters
Column:	$\begin{aligned} & \text { Acquity UPLC BEH Shield RP } \\ & 1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm} \end{aligned}$	Experiment: Full Scan (250-850 amu)
Mobile phase:	Gradient Start: 55% ($80: 20 \mathrm{MeOH}: A C N$) / 45\% $\mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH} \mathrm{NA}_{4} \mathrm{OAc}$ buffer) Ramp to 80% organic over 8 min and hold for 2 min before returning to initial conditions in 0.75 min . Time: 12 min	Source: Electrospray (negative) Capillary Voltage (kV) $=2.00$ Cone Voltage $(\mathrm{V})=10.00$ Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$ Desolvation Gas Flow ($/ / \mathrm{hr}$) $=1000$
Flow:	$300 \mu / 1 / \mathrm{min}$	

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{s}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/EC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

PRODUCT CODE:
 COMPOUND:

STRUCTURE:

M2PFOA
Perfluoro-n-[1,2- ${ }^{13} \mathrm{C}_{2}$]octanoic acid

LOT NUMBER: M2PFOA0619

CAS\#: Not available

MOLECULAR FORMULA:
CONCENTRATION: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mnodurm) EXPIRY DATE: (mmidermy) RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{6} \mathrm{HF}_{15} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
06/21/2019
06/21/2024
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 416.05
SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
(1,2- ${ }^{13} \mathrm{C}_{2}$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $<0.1 \%$ of perfluoro-n- $\left[{ }^{3} \mathrm{C}_{1}\right]$ heptanoic acid (${ }^{13} \mathrm{C}_{1}$-PFHpA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yw)

Fiqure 2: M3PFPeA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	On-column (M3PFPeA)	MS Parameters
Mobile phase:	Same as Figure 1	Collision Gas $(\mathrm{mbar})=2.84 \mathrm{e}-3$ Collision Energy $(\mathrm{eV})=8$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Conditions for Figure 1:

$\frac{\text { LC: }}{\text { MS: }}$	Waters Acquity Ultra Performance LC Waters Xevo TQ-S micro MS	
Chromatographic Condilions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{19}$	
	$1.7 \mu \mathrm{~m}, ~ 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 40% (80:20 MeOH:ACN)/ $60 \% \mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH} \mathrm{O}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=10.00$
	Ramp to 90% organic over 8 min and hold for 2 min before returning to initial conditions in 0.75 min . Time: 12 min	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$ Desolvation Gas Flow $(1 / \mathrm{hr})=1000$
Flow:	$300 \mu 1 / \mathrm{min}$	

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was
designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned values), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2} \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY;

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

PRODUCT CODE:

COMPOUND:

STRUCTURE:

M3PFPeA
Perfluoro-n-[3,4,5- $\left.{ }^{13} \mathrm{C}_{3}\right]$ pentanoic acid

LOT NUMBER: M3PFPeA0219

CAS\#: Not available

MOLECULAR FORMULA:	${ }^{13} \mathrm{C}_{3}{ }^{12} \mathrm{C}_{2} \mathrm{HF}_{9} \mathrm{O}_{2}$	MOLECULAR WEIGHT:	267.02
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT(S):	Methanol
			Water (<1\%)
CHEMICAL PURITY:	>98\%	ISOTOPIC PURITY:	$\geq 99 \%{ }^{13} \mathrm{C}$
LAST TESTED; (mmdarm)	03/08/2019		(3,4,5- ${ }^{1{ }^{\text {C }} \mathrm{C}_{3} \text {) }{ }^{\text {a }} \text { (}}$
EXPIRY DATE: (mmddumy	03/08/2024		
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.95 \%$ of perfluoro-n- $\left[{ }^{33} \mathrm{C}_{3}\right.$ butanoic acid and 0.05% of perfluoro-1-pentanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Figure 2: M8FOSA-I; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 2:

Injection: On-column (M8FOSA-1)
Mobile phase: Same as Figure 1
Flow: $\quad 300 \mu / / m i n$

MS Parameters

Collision Gas (mbar) $=2.94 e-3$
Collision Energy $(\mathrm{eV})=30$

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50\% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=0.50$
	(both with 10 mM NH	Cone Voltage (V) $=20.00$
	Ramp to 90% organic over 8 min and hold for	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
	2 min before returning to initial conditions in 0.75 min . Time: 12 min	Desolvation Gas Flow (l/hr) $=1000$
Flow:	$300 \mu / 2 \mathrm{~min}$	

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{e}(y)$, of a value y and the uncertainty of the independent parameters
$x_{7}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/EC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at whw, well-labs,com or contact us directly at info@well-jabs.com

PRODOCT CODE: COMPOUND:

STRUCTURE:

M8FOSA-I
Perfluoro-1-[${ }^{3} \mathrm{C}_{8}$ loctanesulfonamide

LOT NUMBER: M8FOSA0619

CAS \#: 1365803-60-6

MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mmoditmy)
EXPIRY DATE: (mmudodm)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{8} \mathrm{H}_{2} \mathrm{~F}_{10} \mathrm{NO}_{2} \mathrm{~S}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
$>98 \%$
06/19/2019
06/19/2024
Refrigerate ampoule

MOLECULAR WEIGHT: 507.09
SOLVENT(S): Isopropanol ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
$\left({ }^{33} \mathrm{C}_{8}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 1.2 \%$ of perfluoro- $1-\left[{ }^{3} \mathrm{C}_{4}\right.$ loctanesulfonamide and $\sim 0.02 \%$ of perfluoro-1-[${ }^{3} \mathrm{C}_{7}$ heptanesulfonamide.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: $\quad 0$
(mm/ddywy)

CERTIFICATE OF ANALYSIS
 DOCUMENTATION

PRODUCT CODE: COMPOUND:

d3-N-MeFOSAA

LOT NUMBER: d3NMeFOSAA0719
N -methyl-d3-perfluoro-1-octanesulfonamidoacetic acid
STRUCTURE:
CAS \#:
1400690-70-1

MOLECULAR FORMULA:	$\mathrm{C}_{11} \mathrm{D}_{3} \mathrm{H}_{3} \mathrm{~F}_{17} \mathrm{NO}_{4} \mathrm{~S}$	MOLECULAR WEIGHT:	574.23
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT(S):	Methanol
			Water ($<1 \%$)
CHEMICAL PURITY:	>98\%	ISOTOPIC PURITY:	$\geq 98 \%{ }^{2} H_{3}$
LAST TESTED: (mnudurym)	07/24/2019		
EXPIRY DATE: (mmidarym)	07/24/2024		
RECOMMENDED STORAGE:	Refrigerate ampoule		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LCIMS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent the conversion of the acetic acid moiety to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: 0
($\mathrm{mm} / \mathrm{dd} / \mathrm{yyyy})$

[^2]
INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UVIMSIMS. The relative response factors of the analyte of interest in each solution are required to be <5\% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

Taxime

For additional information or assistance conceming this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: d3-N-MeFOSAA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (250-850
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60\% (80:20 MeOH:ACN) / 40\% H2O	Capillary Voltage (kV) $=2.00$
	(both with 10 mM NH	Cone Voltage (V) $=20.00$
	Ramp to 90% organic over 7 min and hold for	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
	3 min before returning to initial conditions in 0.75 min . Time: 12 min	Desolvation Gas Flow (l/hr) $=1000$
Flow:	$300 \mu / / \mathrm{min}$	

Figure 2: d3-N-MeFOSAA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	On-colum
Mobile phase:	Same as
Flow:	$300 \mu / / \mathrm{min}$
Form\#:27, issued 20	2004-11-10

MS Parameters

Collision Gas (mbar) $=3.33 e-3$
Collision Energy (eV) $=18$

Figure 2: d5-N-EtFOSAA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Eigure 2:	
Injection: \quad On-column (d5-N-EtFOSAA)	MS Parameters
Mobile phase: Same as Figure 1	Collision Gas (mbar) $=3.29 \mathrm{e}-3$ Flow: $300 \mu / \mathrm{min}$

Figure 1: d5-N-EtFOSAA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{15}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60\% (80:20 MeOH:ACN)/40\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH} \mathrm{H}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=20.00$
	Ramp to 90% organic over 7 min and hold for	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
	3 min before returning to initial conditions in 0.75 min . Time: 12 min	Desolvation Gas Flow (l/hr) $=1000$
Flow:	$300 \mu / / \mathrm{min}$	

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x -ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{e}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{i}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric giassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories inc., please visit our website at wow well-labs.com or contact us directly at info@well-labs,com

PRODUCT CODE: COMPOUND:

d5-N-EtFOSAA
N -ethyl-d5-perfluoro-1-octanesulfonamidoacetic acid
d5NEtFOSAA0719
LOT NUMBER:

GAS\#: Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmoderm)
EXPIRY DATE: (midedrm)
RECOMMENDED STORAGE:
$\mathrm{C}_{12} \mathrm{D}_{5} \mathrm{H}_{3} \mathrm{~F}_{17} \mathrm{NO}_{4} \mathrm{~S}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
07/25/2019
07/25/2024
Refrigerate ampoule

MOLECULAR WEIGHT: 590.26
SOLVENT (S): Methanol Water (<1\%)
ISOTOPIC PURITY: $\geq 98 \%{ }^{2} H_{5}$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LCIMS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent the conversion of the acetic acid moiety to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad (matidiyyy)

Figure 2: \quad M3PFBS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: On-column (M3PFBS)
Mobile phase: Same as Figure 1
Flow: $\quad 300 \mu / \mathrm{min}$

MS. Parameters

$$
\begin{aligned}
& \text { Collision Gas }(\mathrm{mbar})=3.57 \mathrm{e}-3 \\
& \text { Collision Energy }(\mathrm{eV})=30
\end{aligned}
$$

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{t}(y)$, of a value y and the uncertainty of the independent parameters
$x_{7^{*}}, x_{z}, \ldots x_{n}$ on which it depends is:

$$
u_{r}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/EC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

CALA
For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE: COMPOUND:
M3PFBS
LOT NUMBER: M3PFBS1019
Sodium perfluoro-1-[2,3,4- $\left.{ }^{13} \mathrm{C}_{3}\right]$ butanesulfonate
\section*{STRUCTURE:}

CAS \#: \quad Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmadrmp)
EXPIRY DATE: (mmddomm)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{3}{ }^{12} \mathrm{CF}_{9} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt) $46.5 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}$ (M3PFBS anion)
>98\% ISOTOPIC PURITY:
10/29/2019
10/29/2024
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 325.06
SOLVENT(S): Methanol

ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{33} \mathrm{C}$
(2,3,4- ${ }^{13} \mathrm{C}_{3}$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $<0.1 \%$ of perfluoro-1-butanesulfonate.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad $\frac{11 / 08 / 2019}{(\mathrm{~mm} / \mathrm{d} / \mathrm{y} y \mathrm{~m})}$

Figure 2: M8PFOS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: On-column (MBPFOS)

MS Parameters

```
Mobile phase: Same as Figure 1
    Collision Gas (mbar)=2.85e-3
    Collision Energy (eV)=42
```

Flow: $\quad 300 \mu / / \mathrm{min}$

Conditions for Fiqure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatoaraphic Conditions		MS Parameters
Column:		
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50% (80:20 MeOH:ACN)/ $50 \% \mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=10.00$
	Ramp to 90% organic over 8 min and hold for 2 min	Desolvation Temperature (${ }^{(} \mathrm{C}$) $=500$
	before returning to initial conditions in 0.75 min . Time: 11 min	Desolvation Gas Flow (l/hr) $=1000$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handing of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using singie-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystallire lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \% \mathrm{RSD}$. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{t}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

*For additional information or assistance concerning this or any other products from Wellington Laboratories Inc. please visit our website at www.well-labs.com or contact us directly at inforowell-labs.com**

19LO6T

WELLINGTON
LA B ORATORIES

PRODUCT CODE: COMPOUND:

M8PFOS
Sodium perfluoro-1-[$\left.{ }^{13} \mathrm{C}_{\mathrm{a}}\right]$ octanesulfonate

LOT NUMBER: M8PFOS0519

CAS \#: \quad Not available

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/didme)
EXPIRY DATE: (mmeddymy)
RECOMMENDED STORAGE:

$$
{ }^{13} \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}
$$

$$
50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \text { (Na salt) }
$$

$$
47.8 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml} \text { (M8PFOS anion) }
$$

$$
>98 \%
$$

$$
05 / 06 / 2019
$$

$$
05 / 06 / 2024
$$

MOLECULAR WEIGHT: 530.05
SOLVENT(S): Methanol

ISOTOPIC PURITY: $\quad>99 \%{ }^{13} \mathrm{C}$
$\left({ }^{13} \mathrm{C}_{8}\right)$

Store ampoule in a cool, dark place

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.2 \%$ of sodium perfluoro- $1-\left[{ }^{13} \mathrm{C}_{7}\right]$ heptanesulfonate $\left({ }^{13} \mathrm{C}_{7}-\mathrm{PFHpS}\right)$ and $\sim 1.0 \%$ of sodium perfluoro-1-[${ }^{3} \mathrm{C}_{4}$]octanesulfonate (MPFOS).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: 05/23/2019
(mamdd/yyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

Figure 2: M3PFHxS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: On-column (M3PFHxS)

MS Parameters

| Mobile phase: Same as Figure 1 | Collision Gas (mbar) $=3.91 \mathrm{e}-3$ |
| :--- | :--- | :--- |
| Flow: | Collision Energy $(\mathrm{eV})=32$ |

Figure 1: M3PFHxS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Waters Xevo TQ-S micro MS

Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient Start: 60% ($80: 20 \mathrm{MeOH}: \mathrm{ACN}$) $/ 40 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}, \mathrm{OAC}$ buffer) Ramp to 90% organic over 7 min and hold for 3 min before returning to initial conditions in 0.75 min . Time: 12 min	Source: Electrospray (negative) Capillary Voltage (kV) $=2.50$ Cone Voltage $(V)=10.00$ Desolvation Temperature $\left({ }^{\circ} \mathrm{C}\right)=500$ Desolvation Gas Flow (/hr) $=1000$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

$19 L 0618$

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

PRODUCT CODE: COMPOUND:

STRUCTURE:

M3PFHxS

LOT NUMBER: M3PFHxS1019
Sodium perfluoro-1-[1,2,3- $\left.{ }^{13} \mathrm{C}_{3}\right]$ hexanesulfonate
GAS\#: \quad Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED; (nvodurm)
EXPIRY DATE: (mmudarms)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{3}{ }^{12} \mathrm{C}_{3} \mathrm{~F}_{13} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$47.3 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (M3PFHxS anion)
$>98 \%$ ISOTOPIC PURITY:
10/15/2019
10/15/2024
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 425.07
SOLVENTIS): Methanol

ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2,3-{ }^{13} \mathrm{C}_{3}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.1 \%$ perfluoro-1-[1,2- ${ }^{13} \mathrm{C}_{2}$]pentanesulfonate, $\sim 0.1 \%$ perfluoro-1-octanesulfonate, and $\sim 0.05 \%$ of perfluoro-1-hexanesulfonate.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: $\frac{10 / 16 / 2019}{(\mathrm{mmid} / \mathrm{d} m \mathrm{~m})}$

Figure 2: MPFHXA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 2:		
Injection:	On-column (MPFHxA)	MS Parameters
Mobile phase:	Same as Figure 1	$\begin{aligned} & \text { Collision Gas }(\mathrm{mbar})=3.80 \mathrm{e}-3 \\ & \text { Collision Energy }(\mathrm{eV})=8 \end{aligned}$
Flow:	$300 \mu / \mathrm{min}$	

Figure 1: MPFHxA; LCIMS Data (TIC and Mass Spectrum)

| 110ct2019_MPFHXA_001 |
| :--- | :--- | :--- |
| MPFHXA1019 $250 \mathrm{ng} / \mathrm{ml}$ |
| 100 |

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatograp	phic Conditions	MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient Start: 50\% (80:20 MeOH:ACN) / $50 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer) Ramp to 90% organic over 8 min and hold for 2 min before returning to initial conditions in 0.75 min . Time: 12 min	Source: Electrospray (negative) Capillary Voltage (kV) $=2.50$ Cone Voltage $(\mathrm{V})=10.00$ Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$ Desolvation Gas Flow $(/ \mathrm{hr})=1000$
Flow:	$300 \mu / / \mathrm{min}$	

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are avallable upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystaline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{e}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/EC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOREC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

CALA
ANAB
ACCAEDITED

*For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

PRODUCT CODE:

COMPOUND:

MPFHXA
Perfluoro-n-[1,2- ${ }^{-13} \mathrm{C}_{2}$]hexanoic acid

LOT NUMBER: MPFHXA1019

STRUCTURE:

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodurym)
EXPIRY DATE: (mmodrmm)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{4} \mathrm{HF}_{11} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
10/11/2019
10/11/2024
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 316.04
SOLVENT(S): Methanol
Water ($<1 \%$)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2 \cdot{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
1012212019

Figure 2: M2PFHxDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: On-column (M2PFHxDA)
$\begin{array}{ll}\text { Mobile phase: } & \text { Same as Figure } 1 \\ \text { Flow: } & 300 \mu \mathrm{l} / \mathrm{min}\end{array}$

MS Parameters

Collision Gas $(\mathrm{mbar})=2.97 \mathrm{e}-3$
Collision Energy (aV) $=15$

Figure 1: M2PFHxDA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{13}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (250-1200 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60\% (80:20 MeOH:ACN) / $40 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH OAc buffer)	Capillary Voltage (kV) $=2.00$ Cone Voltage (V) $=10.00$
	Ramp to 90% organic over 7 min and hold for	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
	3 min before returning to initial conditions in 0.75 min . Time: 12 min	Desolvation Gas Flow ($/ \mathrm{hrr}$) $=1000$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

$19 L 0620$

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFCIUV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MSMS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{i}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE: COMPOUND:

M2PFHxDA
Perfluoro-n-[1,2- ${ }^{13} \mathrm{C}_{2}$ hexadecanoic acid

LOT NUMBER: M2PFHxDA1018

STRUCTURE:

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mprodum) EXPIRY DATE: (mmodrm) RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{2} \mathrm{C}_{14} \mathrm{HF}_{31} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
10/11/2018
10/11/2023
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 816.11
SOLVENT(S): Methanol Water (<1\%)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2-^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.3 \%$ of native perfluoro-n-hexadecanoic acid and -0.2% of perfluoro-n$\left[{ }^{3} \mathrm{C}\right.$,]pentadecanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: $10 / 19 / 2018$
(mmddiyyy)

Figure 2: M3HFPO-DA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	On-column (M3HFPO-DA)	MS Parameters
Mobile phase:	Same as Figure 1	Collision Gas (mbar) $=3.60 \mathrm{e}-3$
Flow:	$300 \mu / \mathrm{min}$	Colision Energy (eV) $=8$

, Figure 1: M3HFPO-DA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Fiqure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Waters Xevo TQ-S micro MS

Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP $_{16}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	nt: Full
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start 50\% (80:20 MeOH:ACN) / $50 \% \mathrm{~Hz}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=15.00$
	Ramp to 90% organic over 8 min and hold for	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=325$
	2 min before returning to initial conditions in 0.75 min . Time: 12 min	Desolvation Gas Flow (//hr) $=1000$
Flow:	$300 \mu / / m i n$	

INTENDED USE：

The products prepared by Wellington Laboratories Inc．are for laboratory use only．This certified reference material（CRM）was designed to be used as a standard for the identification and／or quantification of the specific chemical compound it contains．

HANDLING：
This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals．Due care should be exercised to prevent unnecessary human contact or ingestion．All procedures should be carried out in a well－functioning fume hood and suitable gloves，eye protection，and clothing should be worn at all times．Waste should be disposed of according to national and regional regulations．Safety Data Sheets（SDSs）are available upon request．

SYNTHESIS／CHARACTERIZATION：

Our products are synthesized using single－product unambiguous routes whenever possible．They are then characterized，and their structures and purities confirmed，using a combination of the most relevant techniques，such as NMR，GC／MS，LC／MS／MS， SFC／UV／MS／MS，x－ray crystallography，and melting point．Isotopic purities of mass－labelled compounds are also confirmed using HRGC／HRMS and／or LC／MS／MS．

HOMOGENEITY：

Prior to solution preparation，crystalline material is tested for homogeneity using a variety of techniques（as stated above）and its solubility in a given diluent is taken into consideration．Duplicate solutions of a new product are prepared from the same crystalline lot and，after the addition of an appropriate internal standard，they are compared by GC／MS，LC／MS／MS，and／or SFC／UV／MS／MS． The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD．New solution lots of existing products are compared to older lots in the same manner，which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers．In order to maintain the integrity of the assigned value（s），and associated uncertainty，the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment．

UNCERTAINTY：

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation：

The combined relative standard uncertainty，$u_{c}(y)$ ，of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter．
The individual uncertaintes taken into account include those associated with weights（calibration of the balance）and volumes （calibration of the volumetric glassware）．An expanded maximum combined percent relative uncertainty of $\pm 5 \%$（calculated with a coverage factor of 2 and a level of confidence of 95% ）is stated on the Certificate of Analysis for all of our products．

TRACEABILITY：

All reference standard solutions are traceable to specific crystalline lots．The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory．In addition，their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO／IEC 17025 accredited laboratory．All volumetric glassware used is calibrated，of Class A tolerance，and traceable to an ISO／IEC 17025 accredited laboratory．For certain products，traceability to international interlaboratory studies has also been established．

EXPIRY DATE／PERIOD OF VALIDITY：

Ongoing stability studies of this product have demonstrated stability in its composition and concentration，until the specified expiry date，in the unopened ampoule．Monitoring for any degradation or change in concentration of the listed analyte（s）is performed on a routine basis．

LIMITED WARRANTY：

At the time of shipment，all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications．

QUALITY MANAGEMENT：

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global， ISO／ECC 17025 by the Canadian Association for Laboratory Accreditation Inc．（CALA；A 1226），and ISO 17034 by ANSI－ASQ National Accreditation Board（ANAB；AR－1523）．

＊＊For additional information or assistance concerning this or any other products from Wellington Laboratories Inc．， please visit our website at wow，well－labs．com or contact us directly at info＠well－labs．com＊＊

PRODUCT CODE: COMPOUND:

STRUCTURE:

MOLECULAR FORMULA: CONCENTRATION: CHEMICAL PURITY: LAST TESTED: (mmudrm) EXPIRY DATE: (mmdumm) RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{3}{ }^{12} \mathrm{C}_{3} \mathrm{HF}_{11} \mathrm{O}_{3}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
$>98 \%$
09/20/2019
09/20/2022

Refrigerate ampoule

LOT NUMBER: M3HFPODA0919
2,3,3,3-Tetrafluoro-2-(1,1,2,2,3,3,3-heptafluoropropoxy) ${ }^{-13} \mathrm{C}_{3}$-propanoic acid
CAS \#: Not available

MOLECULAR WEIGHT:
333.03

SOLVENT(S): Methanol
ISOTOPIC PURITY; $\quad \geq 99 \%{ }^{13} \mathrm{C}$
$\left({ }^{3} \mathrm{C}_{3}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 1.9 \%$ of the linear M3HFPO-DA isomer.
- Product is commercially known as GenX.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
$0130 / 2019$
($\mathrm{mm} / \mathrm{ddyyy}$)

Parent Standards used in this standard:					
Standard	Description	Prepared	Prepared By	Expires	(mls)
19L0635	PFDoA	06-Dec-19	** Vendor **	23-Jan-24	0.4
19L0636	PFBA	06-Dec-19	** Vendor **	10-Jul-24	0.4
19L0637	PFPeA	06-Dec-19	** Vendor **	04-Sep-24	0.4
19L0638	PFHxA	06-Dec-19	** Vendor **	08-Aug-24	0.4
19L0639	PFDA	06-Dec-19	** Vendor **	01-May-24	0.4
19L0640	PFUdA	06-Dec-19	** Vendor **	19-Mar-24	0.4
19L0641	PFTrDA	06-Dec-19	** Vendor **	26-Sep-24	0.4
19L0642	PFHpA	06-Dec-19	** Vendor **	05-Mar-24	0.4
19L0643	PFOA	06-Dec-19	** Vendor **	06-Sep-24	0.4
19L0644	PFNA	06-Dec-19	** Vendor **	08-Jul-24	0.4
19L0645	PFTeDA	06-Dec-19	** Vendor **	11-Mar-24	0.4
19L0646	PFHxDA	06-Dec-19	** Vendor **	03-Nov-24	0.4
19L0647	PFODA	06-Dec-19	** Vendor **	02-May-24	0.4
19L0648	L-PFBS	06-Dec-19	** Vendor **	10-Jul-24	0.454
19L0649	L-PFPeS	06-Dec-19	** Vendor **	08-Jul-24	0.428
19L0650	L-PFHpS	06-Dec-19	** Vendor **	16-Aug-24	0.42
19L0651	L-PFNS	06-Dec-19	** Vendor **	06-Aug-24	0.418
19L0652	L-PFDS	06-Dec-19	** Vendor **	04-Apr-24	0.415
19L0653	br-PFHxSK	06-Dec-19	** Vendor **	02-Oct-23	0.44
19L0654	br-PFOSK anion	06-Dec-19	** Vendor **	07-Jun-24	0.431
19L0655	4:2 FTS	06-Dec-19	** Vendor **	08-May-24	0.43
19L0656	6:2FTS	06-Dec-19	** Vendor **	09-Sep-24	0.422
19L0657	8:2FTS	06-Dec-19	** Vendor **	11-Sep-24	0.418
19L0658	FOSA-I	06-Dec-19	** Vendor **	12-Sep-24	0.4
19L0659	br-NMeFOSAA	06-Dec-19	** Vendor **	08-Jan-24	0.4
19L0660	br-NEtFOSAA	06-Dec-19	** Vendor **	20-Aug-24	0.4
19L0661	N-MeFOSA-M	06-Dec-19	** Vendor **	07-May-24	2
19L0662	N-EtFOSA-M	06-Dec-19	** Vendor **	07-May-24	2
19L0663	N-MeFOSE-M	06-Dec-19	** Vendor **	08-Apr-24	2
19L0664	N-EtFOSE-M	06-Dec-19	** Vendor **	08-Apr-24	2
19L0665	10:2FTS	06-Dec-19	** Vendor **	11-Jun-22	0.415
19L0666	HFPO-DA	06-Dec-19	** Vendor **	20-Sep-22	0.4
19L0667	11Cl-PF3OUdS	06-Dec-19	** Vendor **	23-Nov-24	0.425
19L0668	9Cl-PF3ONS	06-Dec-19	** Vendor **	30-Oct-24	0.43
19L0669	NaDONA	06-Dec-19	** Vendor **	15-Jul-24	0.425
19L0670	PFECHS	06-Dec-19	** Vendor **	04-Apr-24	0.435
19L0671	L-PFPrS	06-Dec-19	** Vendor **	14-Dec-24	0.438
19L1707	L-PFDoS	17-Dec-19	** Vendor **	06-Dec-23	0.415

Analytical Standard Record
Vista Analytical Laboratory
20 E1202

Description:	PFC NS Stock	Expires:	12-May-21	
Standard Type:	Analyte Spike	Prepared:	12-May-20	
Solvent:	MeOH	Prepared By:	Brittany M. Lamb	
Final Volume (mls):	20	Department:	LCMS	
Vials:	1	Last Edit:	12-May-20 10:53	y BML
Analyte		CAS Number	Concentration	Units
L-PFHpA			1	$\mathrm{ug} / \mathrm{mL}$
10:2 FTS		120226-60-0	1	$\mathrm{ug} / \mathrm{mL}$
L-MeFOSA		31506-32-8	5	$\mathrm{ug} / \mathrm{mL}$
L-MeFOSAA		2355-31-9	0.76	$\mathrm{ug} / \mathrm{mL}$
L-MeFOSE		24448-09-7	5	$\mathrm{ug} / \mathrm{mL}$
L-PFBA			1	$\mathrm{ug} / \mathrm{mL}$
L-PFBS			1	$\mathrm{ug} / \mathrm{mL}$
L-PFDA			1	$\mathrm{ug} / \mathrm{mL}$
L-PFDoA			1	$\mathrm{ug} / \mathrm{mL}$
L-EtFOSAA		2991-50-6	0.776	$\mathrm{ug} / \mathrm{mL}$
L-PFDS			1	$\mathrm{ug} / \mathrm{mL}$
L-EtFOSA		4151-50-2	5	$\mathrm{ug} / \mathrm{mL}$
L-PFHpS			1	$\mathrm{ug} / \mathrm{mL}$
L-PFHxA			1	$\mathrm{ug} / \mathrm{mL}$
L-PFHxDA			1	$\mathrm{ug} / \mathrm{mL}$
L-PFHxS			0.812	$\mathrm{ug} / \mathrm{mL}$
L-PFNA			1	$\mathrm{ug} / \mathrm{mL}$
L-PFNS		68259-12-1	1	$\mathrm{ug} / \mathrm{mL}$
L-PFOA			1	$\mathrm{ug} / \mathrm{mL}$
L-PFODA			1	$\mathrm{ug} / \mathrm{mL}$
L-PFDoS			1	$\mathrm{ug} / \mathrm{mL}$
cis-PFECHS			0.668	$\mathrm{ug} / \mathrm{mL}$
11Cl-PF3OUdS		763051-92-9	1	$\mathrm{ug} / \mathrm{mL}$
4:2 FTS		757124-72-4	1	$\mathrm{ug} / \mathrm{mL}$
6:2 FTS		27619-97-2	1	$\mathrm{ug} / \mathrm{mL}$
8:2 FTS		39108-34-4	1	$\mathrm{ug} / \mathrm{mL}$
9Cl-PF3ONS		756426-58-1	1	$\mathrm{ug} / \mathrm{mL}$
ADONA		919005-14-4	1	$\mathrm{ug} / \mathrm{mL}$
Br-EtFOSAA			0.224	$\mathrm{ug} / \mathrm{mL}$
Br-MeFOSAA			0.24	$\mathrm{ug} / \mathrm{mL}$
L-EtFOSE		1691-99-2	5	$\mathrm{ug} / \mathrm{mL}$
Br-PFOS		2795-39-3	0.211	$\mathrm{ug} / \mathrm{mL}$
L-PFPeA			1	$\mathrm{ug} / \mathrm{mL}$
EtFOSA		4151-50-2	5	$\mathrm{ug} / \mathrm{mL}$

Analytical Standard Record
Vista Analytical Laboratory
20 E1202

Description:	PFC NS Stock	Expires:	12-May-21
Standard Type:	Analyte Spike	Prepared:	12-May-20
Solvent:	MeOH	Prepared By:	Brittany M. Lamb
Final Volume $(\mathrm{mls}):$	20	Department:	LCMS
Vials:	1	Last Edit:	12-May-20 10:53 by BML

Analyte	CAS Number	Concentration	Units
EtFOSAA	2991-50-6	1	$\mathrm{ug} / \mathrm{mL}$
EtFOSE	1691-99-2	5	$\mathrm{ug} / \mathrm{mL}$
F-53B Total		2	$\mathrm{ug} / \mathrm{mL}$
HFPO-DA	13252-13-6	1	$\mathrm{ug} / \mathrm{mL}$
L-4:2 FTS	75124-72-4	1	$\mathrm{ug} / \mathrm{mL}$
L-6:2 FTS		1	$\mathrm{ug} / \mathrm{mL}$
L-8:2FTS		1	$\mathrm{ug} / \mathrm{mL}$
Br -PFHxS	3871-99-6	0.189	$\mathrm{ug} / \mathrm{mL}$
Total 6:2 FTS		1	$\mathrm{ug} / \mathrm{mL}$
PFOA	335-67-1	1	$\mathrm{ug} / \mathrm{mL}$
PFODA	16517-11-6	1	$\mathrm{ug} / \mathrm{mL}$
PFOS	1763-23-1	1	$\mathrm{ug} / \mathrm{mL}$
PFOSA	754-91-6	1	$\mathrm{ug} / \mathrm{mL}$
PFPeA	2706-90-3	1	$\mathrm{ug} / \mathrm{mL}$
PFPeS	2706-91-4	1	$\mathrm{ug} / \mathrm{mL}$
PFPrS	423-41-6	1	$\mathrm{ug} / \mathrm{mL}$
PFTeDA	376-06-7	1	$\mathrm{ug} / \mathrm{mL}$
L-PFOS		0.789	$\mathrm{ug} / \mathrm{mL}$
PFUnA	2058-94-8	1	$\mathrm{ug} / \mathrm{mL}$
PFHxS	355-46-4	1	$\mathrm{ug} / \mathrm{mL}$
Total EtFOSAA		1	ug/mL
Total MeFOSAA		1	$\mathrm{ug} / \mathrm{mL}$
Total PFDS		1	$\mathrm{ug} / \mathrm{mL}$
Total PFHpS		1	$\mathrm{ug} / \mathrm{mL}$
Total PFHxS		1	$\mathrm{ug} / \mathrm{mL}$
Total PFOA		1	ug/mL
Total PFOS		1	$\mathrm{ug} / \mathrm{mL}$
Total PFUnA		1	$\mathrm{ug} / \mathrm{mL}$
PFTrDA	72629-94-8	1	$\mathrm{ug} / \mathrm{mL}$
PFDA	335-76-2	1	$\mathrm{ug} / \mathrm{mL}$
trans-PFECHS		0.335	$\mathrm{ug} / \mathrm{mL}$
L-PFPeS	2706-91-4	1	ug/mL
L-PFTeDA		1	$\mathrm{ug} / \mathrm{mL}$
L-PFTrDA		1	$\mathrm{ug} / \mathrm{mL}$

Analytical Standard Record

Vista Analytical Laboratory
20 E1202

Description:	PFC NS Stock	Expires:	12-May-21	
Standard Type:	Analyte Spike	Prepared:	12-May-20	
Solvent:	MeOH	Prepared By:	Brittany M. Lamb	
Final Volume (mls):	20	Department:	LCMS	
Vials:	1	Last Edit:	12-May-20 10:53	BML
Analyte		CAS Number	Concentration	Units
L-PFUnA			1	$\mathrm{ug} / \mathrm{mL}$
MeFOSA		31506-32-8	5	$\mathrm{ug} / \mathrm{mL}$
MeFOSAA		2355-31-9	1	$\mathrm{ug} / \mathrm{mL}$
MeFOSE		24448-09-7	5	$\mathrm{ug} / \mathrm{mL}$
PFNS		68259-12-1	1	$\mathrm{ug} / \mathrm{mL}$
PFBS		375-73-5	1	$\mathrm{ug} / \mathrm{mL}$
PFNA		375-95-1	1	$\mathrm{ug} / \mathrm{mL}$
PFDoA		307-55-1	1	$\mathrm{ug} / \mathrm{mL}$
PFDoS		79780-39-5	1	$\mathrm{ug} / \mathrm{mL}$
PFDS		335-77-3	1	$\mathrm{ug} / \mathrm{mL}$
PFecHS		646-83-3	1	$\mathrm{ug} / \mathrm{mL}$
PFHpA		375-85-9	1	$\mathrm{ug} / \mathrm{mL}$
PFHpS		375-92-8	1	$\mathrm{ug} / \mathrm{mL}$
PFHxA		307-24-4	1	$\mathrm{ug} / \mathrm{mL}$
PFHxDA		67905-19-5	1	$\mathrm{ug} / \mathrm{mL}$
L-PFOSA			1	$\mathrm{ug} / \mathrm{mL}$
PFBA		375-22-4	1	$\mathrm{ug} / \mathrm{mL}$

PRODUCT CODE: COMPOUND:

PFDoA
Perfluoro-n-dodecanoic acid

LOT NUMBER: PFDoA0119

CAS:
307-55-1

MOLECULAR FORMULA:	$\mathrm{C}_{12} \mathrm{HF}_{23} \mathrm{O}_{2}$	MOLECULAR WEIGHT:	614.10
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT(S):	Methanol
			Water ($<1 \%$)
CHEMICAL PURITY:	>98\%		
LAST TESTED: (mmodumm)	01/23/2019		
EXPIRY DATE: (mmudshm)	01/23/2024		
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mmidayyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyse of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned values), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{0}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{i}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE /PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAl Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www,well-labs.com or contact us directly at info@well-labs.com ${ }^{* *}$

- Figure 1: PFDoA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60\% (80:20 MeOH:ACN)/40\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH} \mathrm{C}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=10.00$
	Ramp to 90\% organic over 7 min and hold for 3 min	Cone Gas Flow ($/ 7 \mathrm{hr)}$) $=500$
	before returning to initial conditions in 0.75 min .	Desolvation Gas Flow (//hr) $=1000$
	Time: 12 min	
Flow:	$300 \mu / / \mathrm{min}$	

Fiqure 2: PFDoA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	On-column (PFDOA)	MS Parameters
Mobile phase:	Same as Figure 1	Collision Gas (mbar) $=2.72 \mathrm{e}-3$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	Collision Energy $(\mathrm{eV})=12$

Fiqure 2: PFBA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 2; Injection: On-column (PFBA)		MS Parameters
Mobile phase: Same as Figure 1	Collision Gas (mbar) $=3.43 \theta-3$	
Flow:	$300 \mu / / \mathrm{min}$	Collision Energy (eV) $=8$

Figure 1: PFBA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Waters Xevo TQ-S micro MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: 40% ($80: 20 \mathrm{MeOH}: A C N) / 60 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer) Ramp to 70% organic over 7 min .
Ramp to 90% organic over 2 min and hold for 1.5 min before returning to initial conditions in 0.75 min . Time: 12 min
Flow: $300 \mu / / \mathrm{min}$

MS Parameters

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.50$
Cone Voltage (V) $=10.00$
Desolvation Temperature $\left({ }^{\circ} \mathrm{C}\right)=500$
Desolvation Gas Flow $(/ / \mathrm{hr})=1000$

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MSIMS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{0}(y)$, of a value y and the uncertainty of the independent parameters
$x_{i}, x_{2} \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOAEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs,com

PRODUCT CODE: COMPOUND:

STRUCTURE:

PABA
Perfluoro-n-butanoic acid

LOT NUMBER: PFBA0619

GAS \#:
375-22-4

MOLECULAR FORMULA:

 CONCENTRATION:
CHEMICAL PURITY:

LAST TESTED: (nmudrms) EXPIRY DATE: (mmodedmy) RECOMMENDED STORAGE:
$\mathrm{C}_{4} \mathrm{HF}_{7} \mathrm{O}_{2}$ $50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$

MOLECULAR WEIGHT: SOLVENTS):
>98\%
07/10/2019
07/10/2024

Store ampoule in a cool, dark place
214.04

Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: 07/22/2019
(mmiddyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

Figure 2: PFPeA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 2:
Injection: On-column (PFPeA)
Mobile phase: Same as Figure 1
MS Parameters
Collision Gas (mbar) $=3.51 \mathrm{e}-3$
Collision Energy (eV) $=8$

Figure 1: PFPeA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC: Waters Acquity Ultra Performance LC
MS: \quad Waters Xevo TQ-S micro MS

Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50\% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.50$
	(both with 10 mM NH	Cone Voltage (V) $=10.00$
	Ramp to 90% organic over 8 min and hold for 2 min before returning to initial conditions in 0.75 min . Time: 12 min	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$ Desolvation Gas Flow (lhr) $=1000$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{r}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{i}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an extemal ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

CERTIFICATE OF ANALYSIS

PRODUCT CODE:

COMPOUND:

STRUCTURE:

PFPeA
Perfluoro-n-pentanoic acid

LOT NUMBER: PFPeA0919

GAS\#: 2706-90-3

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.3 \%$ of Perfluoro-n-heptanoic acid (PFHpA) and $\sim 0.2 \%$ of $\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{~F}_{8} \mathrm{O}_{2}$ (hydrido - derivative) as measured by ${ }^{19} \mathrm{~F}$ NMR.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

Figure 2: PFHXA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: On-column (PFHxA)

| Mobile phase: Same as Figure 1 | Collision Gas (mbar) $=3,49 \mathrm{e}-3$ |
| :--- | :--- | :--- |
| Flow: | Collision Energy $(\mathrm{eV})=8$ |

Flow: $\quad 300 \mu / / \mathrm{min}$

- Fiqure 1: PFHXA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Fiqure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP $_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60\% (80:20 MeOH:ACN) / $40 \% \mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.50$
	(both with 10 mM NH	Cone Voltage (V) $=10.00$
	Ramp to 90% organic over 7 min and hold for	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
	3 min before returning to initial conditions in 0.75 min .	Desolvation Gas Flow ($/ 7 \mathrm{hr}$) $=1000$
	Time: 12 min	
Flow:	$300 \mu 1 / \mathrm{min}$	

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{e}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/EC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

CALA
Aswataxam Na,

For additional information or assistance concerning this or any other products from Wellington Laboratories inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

PRODUCT CODE:

COMPOUND:

PFHXA
Perfluoro-n-hexanoic acid

STRUCTURE:

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodym)
EXPIRY DATE: (mmudswy)
RECOMMENDED STORAGE:
$\mathrm{C}_{6} \mathrm{HF}_{11} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
08/08/2019
08/08/2024

Store ampoule in a cool, dark place

LOT NUMBER: PFHxA0719

CAS \#:

307-24-4

MOLECULAR WEIGHT: 314.05
SOLVENT(S): Methanol
Water ($<1 \%$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains -1.0% of branched isomers.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

PRODUCT CODE: COMPOUND:

PFDA
Perfluoro-n-decanoic acid

LOT NUMBER: PFDA0419

CAS \#:
335-76-2

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (nmadymp)
EXPIRY DATE: (mmodumy)
$\mathrm{C}_{10} \mathrm{HF}_{19} \mathrm{O}_{2}$ $50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
05/01/2019
05/01/2024

RECOMMENDED STORAGE: Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S): Methanol
Water ($<1 \%$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.2 \%$ of perfluoro-n-nonanoic acid (PFNA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: 05/02/2019
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic punties of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LCMS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{i}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/EC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc. please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFDA; LC/MS Data (TIC and Mass Spectrum)

Condlitions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	periment: Fuil Scan (250-850 am
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50\% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH} H_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=10.00$
	Ramp to 90% organic over 8 min and hold for	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
	2 min before returning to initial conditions in 0.75 min . Time: 11 min	Desolvation Gas Flow (1/hr) $=1000$
Flow:	$300 \mu / \mathrm{min}$	

Figure 2: PFDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	On-column (PFDA)	MS Parameters
Mobile phase:	Same as Figure 1	Collision Gas (mbar) $=2.88 \mathrm{e}-3$
Flow:	$300 \mu / / \mathrm{min}$	Collision Energy $(\mathrm{eV})=10$

Fiqure 2: \quad PFUdA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 2:

Injection:	On-column (PFUdA)	MS Parameters
Mobile phase:	Same as Figure 1	Collision Gas (mbar) $=3.04 \mathrm{e}-3$ Collision Energy $(\mathrm{eV})=12$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Fiqure 1: PFUdA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:	
LC:	Waters Acquity Ultra Performance LC
MS:	Waters Xevo TQ-S micro MS

Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP ${ }_{18}$
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: 55% ($80: 20 \mathrm{MeOH}: A C N) / 45 \% \mathrm{H}_{2} \mathrm{O}$
(both with 10 mM NH OAc buffer)
Ramp to 90% organic over 8 min and hold for 2 min before returning to initial conditions in 0.75 min . Time: 12 min

Flow:
$300 \mu 1 / \mathrm{min}$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=10.00$
Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
Desolvation Gas Flow ($/ \mathrm{hr}$) $=1000$

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFCUV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{s}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{i}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is callbrated, of Class A tolerance, and traceable to an ISOIIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

PRODUCT CODE:	PFUdA	LOT NUMBER:	PFUdA0319
COMPOUND:	Perfluoro		
STRUCTURE:		CAS \#:	2058-94-8

MOLECULAR FORMULA:	$\mathrm{C}_{11} \mathrm{HF}_{21} \mathrm{O}_{2}$	MOLECULAR WEIGHT:	564.09
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT(S):	Methanol
			Water (<1\%)
CHEMICAL PURITY:	>98\%		
LAST TESTED: (mmudorw)	03/19/2019		
EXPIRY DATE: (mmddesm)	03/19/2024		
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.1 \%$ of pefluoro-n-dodecanoic acid (PFDoA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Fiqure 2: PFTrDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	On-column (PFTrDA)	MS Parameters
Mobile phase:	Same as Figure 1	$\begin{aligned} & \text { Collision Gas }(\mathrm{mbar})=3.73 \mathrm{e}-3 \\ & \text { Collision Energy }(\mathrm{eV})=12 \end{aligned}$
Flow:	$300 \mu / \mathrm{min}$	

1920641

Fiqure 1: PFTrDA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Fiqure 1:

LC: \quad Waters Acquity Ultra Performance LC
MS: \quad Waters Xevo TQ-S micro MS

Chromatoaraphic Conditions
 Column: Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: 60\% (80:20 MeOH:ACN)/40\% $\mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}, \mathrm{OAc}$ buffer)
Ramp to 90\% organic over 7 min and hold for 3 min before returning to initial conditions in 0.75 min . Time: 12 min

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.50$
Cone Voltage $(\mathrm{V})=10.00$
Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
Desolvation Gas Flow (l/hr) $=1000$

Flow: $300 \mu \mathrm{l} / \mathrm{min}$

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystaliography, and melting point. Isotopic punties of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an extemal ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAl Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

PRODUCT CODE:	PFTrDA
COMPOUND:	Perfluoro-n-tridecanoic acid

Perfluoro-n-tridecanoic acid
LOT NUMBER: PFTrDA0919

STRUCTURE:
CAS\#:
72629-94-8

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED; (mmodirm)
EXPIRY DATE: (mmbuthmy)
RECOMMENDED STORAGE:
$\mathrm{C}_{13} \mathrm{HF}_{25} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
09/26/2019
09/26/2024
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
664.11

SOLVENT(S):
Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.1 \%$ of PFUdA ($\mathrm{C}_{11} \mathrm{HF}_{21} \mathrm{O}_{2}$), ~0.4\% of PFDoA ($\mathrm{C}_{12} \mathrm{HF}_{23} \mathrm{O}_{2}$), and $\sim 0.1 \%$ of PFTeDA $\left(\mathrm{C}_{14} \mathrm{HF}_{27} \mathrm{O}_{2}\right.$).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Figure 2: PFHPA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 2:

Injection: On-column (PFHpA)
Mobile phase: Same as Figure 1
Flow: $\quad 300 \mu 1 / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=2.74 e-3$
Collision Energy $(\mathrm{eV})=8$

/ Figure 1: PFHpA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mathrm{~mm}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50\% (80:20 MeOH:ACN) / $50 \% \mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH}, \mathrm{OAc}$ buffer)	Cone Voltage (V) $=10.00$
	Ramp to 90% organic over 8 min and hold for	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
	2 min before returning to initial conditions in 0.75 min . Time: 12 min	Desolvation Gas Flow (l/hr) $=1000$
Flow:	$300 \mu / 1 / \mathrm{min}$	

The products prepared by Wellington Laboratories inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handing of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variely of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFCIUV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be < 5% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE /PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAl Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

WELLINGTON LA B ORATORIES

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE:

COMPOUND:

STRUCTURE:

PFHpA
Perfluoro-n-heptanoic acid

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mviduryw)
EXPIRY DATE: (mmbarmy)
RECOMMENDED STORAGE:
$\mathrm{C}_{7} \mathrm{HF}_{13} \mathrm{O}_{2}$ $50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
03/05/2019
03/05/2024
Store ampoule in a cool, dark place

LOT NUMBER: PFHpA0219

CAS 㷣:
375-85-9

MOLECULAR WEIGHT: 364.06
SOLVENT(S): Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad $\frac{3 / 18 / 2019}{\text { (mmarymy) }}$

[^3]Figure 2: PFOA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 2:

Injection: On-column (PFOA)
Mobile phase: Same as Figure 1
Flow: $\quad 300 \mu / \mathrm{min}^{2}$

MS Parameters

Collision Gas (mbar) $=3.49 \mathrm{e}-3$
Collision Energy (eV) $=8$

Figure 1: PFOA; LC/MS Data (TIC and Mass Spectrum)

| 06sep2019_PFOA_001 |
| :--- | :--- | :--- |
| PFOA0919 $250 \mathrm{ng} / \mathrm{ml}$ |
| 100 |

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{13}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 55\% (80:20 MeOH:ACN)/45\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.50$
	(both with $10 \mathrm{mM} \mathrm{NH} \mathrm{s}^{\text {OAc buffer) }}$	Cone Voltage (V) $=10.00$
	Ramp to 90% organic over 8 min and hold for	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
	2 min before returning to initial conditions in 0.75 min . Time: 12 min	Desolvation Gas Flow ($/ \mathrm{hr}$) $=1000$
Flow:	$300 \mu / / \mathrm{min}$	

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS andfor LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware), An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

IRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc.; please visit our website at www,well-labs.com or contact us directly at info@well-labs.com

WELLINGTON LA B OR ATORIES

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE:
COMPOUND:

STRUCTURE:

PFOA
Perfluoro-n-octanoic acid

LOT NUMBER: PFOA0919

CAS\#:
335-67-1

MOLECULAR WEIGHT: 414.07

SOLVENT/S): Methanol
Water (<1\%)

CHEMICAL PURITY:
LAST TESTED: (mmodrym)
EXPIRY DATE: (modourw)
$\mathrm{C}_{8} \mathrm{HF}_{15} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
09/06/2019
09/06/2024
Store ampoule in a cool, dark place

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Conditions for Figure 2:

injection: On-column (PFNA)
Mobile phase: Same as Figure 1
MS Parameters
Collision Gas $(\mathrm{mbar})=3.35 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=10$

Flow: $\quad 300 \mu / / \mathrm{min}$

Figure 1: PFNA; LC/MS Data (TIC and Mass Spectrum)

| 08jul2019_PFNA_001 |
| :--- | :--- | :--- |
| PFNA0619 $250 \mathrm{ng} / \mathrm{ml}$ |
| 100 |

Conditions for Fiaure 1:

LC: Waters Acquity Ultra Performance LC
 MS: \quad Waters Xevo TQ-S micro MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm} \quad$ Experiment: Full Scan (150-850 amu)

Mobile phase: Gradient
Start: 60% ($80: 20 \mathrm{MeOH}: A C N$) $/ 40 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 3 min before returning to initial conditions in 0.75 min .
Time: 12 min

MS Parameters

Source: Electrospray (negative)
Capillary Voltage (kV) $=2.50$
Cone Voltage $(\mathrm{V})=10.00$
Desolvation Temperature $\left({ }^{\circ} \mathrm{C}\right)=500$
Desolvation Gas Flow (//hr) $=1000$

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic punties of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{k}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an extemal ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to intemational interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of 1509001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www,well-labs.com or contact us directly at inforowell-labs.com

PRODUCT CODE:
PFNA
COMPOUND:

STRUCTURE:

LOT NUMBER: PFNA0619

> CAS\#:

375-95-1

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:

LAST TESTED; (mvidedm) EXPIRY DATE: (muddums) RECOMMENDED STORAGE:
$\mathrm{C}_{9} \mathrm{HF}_{17} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
07/08/2019
07/08/2024
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 464.08
SOLVENT(S): Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.2 \%$ of perfluoro-n-octanoic acid (PFOA) $<0.1 \%$ of perfluoro-n-heptanoic acid (PFHpA), and $<0.1 \%$ of perfluoro-n-undecanoic acid (PFUdA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
(mm/dayyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

Figure 2: PFTeDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure $2:$

Injection: On-column (PFTeDA)
Mobile phase: Same as Figure 1
Flow: $\quad 300 \mu /$ min

MS Parameters

Collision Gas (mbar) $=3.03 \mathrm{e}-3$
Collision Energy (eV) $=14$

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Waters Xevo TQ-S micro MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: 60\% (80:20 MeOH:ACN) / 40\% H $\mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAC}$ buffer)
Ramp to 90% organic over 7 min and hold for 3 min before returning to initial conditions in 0.75 min . Time: 12 min

MS Parameters

Experiment: Full Scan (250-1200 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=10.00$
Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
Desolvation Gas Flow $(\mathrm{l} / \mathrm{hr})=1000$

Flow: $\quad 300 \mu / / m i n$

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care shouid be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MSMS, SFCIUV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UN/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Origoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

Al the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of iSO 9001 by SAl Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com
PRODUCT CODE:
COMPOUND:
STRUCTURE:

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.3 \%$ of PFDoA $\left(\mathrm{C}_{12} \mathrm{HF}_{23} \mathrm{O}_{2}\right), \sim 0.1 \%$ of PFTrDA $\left(\mathrm{C}_{13} \mathrm{HF}_{25} \mathrm{O}_{2}\right)$,
and $\sim 0.1 \%$ of $\mathrm{PFH} \times D A\left(\mathrm{C}_{16} \mathrm{HF}_{31} \mathrm{O}_{2}\right)$.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
$\frac{(\mathrm{mm} / \mathrm{dd} / \mathrm{yyy})}{}$

[^4]Figure 2: \quad PFHxDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 2:

Injection: On-column (PFHxDA)
Mobile phase: Same as Figure 1
Flow: $\quad 300 \mu / / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.03 e-3$
Collision Energy $(\mathrm{eV})=15$

Figure 1: \quad PFHxDA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Fiqure 1:

LC: \quad Waters Acquity Ultra Performance LC
MS: \quad Waters Xevo TQ-S micro MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP $_{1 \text { 1 }}$
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm} \quad$ Experiment: Full Scan (250-1200 amu)
Mobile phase: Gradient
Start: 60\% (80:20 MeOH:ACN) / $40 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH} \mathrm{OAc}_{4}$ buffer)
Ramp to 90% organic over 7 min and hold for 3 min before returning to initial conditions in 0.75 min . Time: 12 min

Flow: $\quad 300 \mu / / m i n$

MS Parameters

Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=10.00$
Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
Desolvation Gas Flow (l/hr) $=1000$

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS, The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2} \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY;

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to intemational interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Weltington Laboratories Inc., please visit our website at www,well-labs.com or contact us directly at inforowell-labs.com

PRODUCT CODE:
COMPOUND:

PFHxDA
Perfluoro-n-hexadecanoic acid

STRUCTURE:
CAS \#:
67905-19-5

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodrym) EXPIRY DATE: (mmddrmm) RECOMMENDED STORAGE:
$\mathrm{C}_{16} \mathrm{HF}_{31} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
$>98 \%$
03/11/2019
03/11/2024
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S):
814.13

Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Fiqure 2: PFODA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure.2:

Injection:	On-column (PFODA)	MS Parameters
Mobile phase:	Same as Figure 1	Collision Gas (mbar) $=2.92 \mathrm{e}-3$
	300	Collision Energy $(\mathrm{eV})=15$

Flow: $\quad 300 \mu / / m i n$
Collision Energy (eV) $=15$
Fiqure 1: PFODA; LC/MS Data (TIC and Mass Spectrum)

| 02may2019_PFODA_003 |
| :--- | :--- |
| PFODA0419 $5 \mathrm{ug} / \mathrm{ml}$ |
| 100 |

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatoaraphic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{88}$	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (250-1200 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 55\% (80:20 MeOH:ACN) / 45\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with 10 mM NH	Cone Voltage (V) $=10.00$
	Ramp to 90% organic over 8 min and hold for 2 min before returning to initial conditions in 0.75 min . Time: 11 min	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$ Desolvation Gas Flow (l/hr) $=1000$
Flow:	$300 \mu / / m i n$	

INTENDED USE:

The products prepared by Wellington Laboratories inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relaive response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{s}(y)$, of a value y and the uncertainty of the independent parameters
$x_{i}, x_{2} \ldots x_{n}$ on which it depends is:

$$
u_{t}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

CALA

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

PRODUCT CODE:	PFODA		
COMPOUND:	Perfluoro-n-octadecanoic acid	LOT NUMBER: PFODA0419	
		CAS \#:	$16517-11-6$

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:

LAST TESTED: (mmduyw
EXPIRY DATE: (mmodimy)
RECOMMENDED STORAGE: Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S):
914.14

Methanol Water ($<1 \%$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains -0.2% of $\operatorname{PFHxDA}\left(\mathrm{C}_{16} \mathrm{HF}_{31} \mathrm{O}_{2}\right)$ and $\sim 0.1 \%$ of $\mathrm{PFHpDA}\left(\mathrm{C}_{17} \mathrm{HF}_{33} \mathrm{O}_{2}\right)$

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3 M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

Fiqure 2: L-PFBS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	On-column (L-PFBS)
Mobile phase:	Same as Figure 1
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas $(\mathrm{mbar})=3.25 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=30$
, Figure 1: L-PFBS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Waters Xevo TQ-S micro MS

Chromatoaraphic Conditions

Column: Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: 50\% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH} \mathrm{OAc}_{4}$ buffer) Ramp to 70% organic over 7 min , then ramp to 90% organic over 2 min and hold for 1.5 min before returning to initial conditions in 0.75 min . Time: 12 min
Flow: $300 \mu \mathrm{l} / \mathrm{min}$

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS/CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melling point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS andior LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate intemal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{e}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{i}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOAEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc, please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE:
 COMPOUND:

L-PFBS
Potassium perfluoro-1-butanesulfonate

STRUCTURE:

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mnodirm) EXPIRY DATE: (mindidmm
RECOMMENDED STORAGE:
$\mathrm{C}_{4} \mathrm{~F}_{9} \mathrm{SO}_{3} \mathrm{~K}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (K salt)
$44.2 \pm 2.2 \mu \mathrm{~g} / \mathrm{ml}$ (PFBS anion)
>98\%
07/10/2019
07/10/2024
Store ampoule in a cool, dark place

LOT NUMBER: LPFBS0719

CAS \#: 29420-49-3

MOLECULAR WEIGHT: 338.19
SOLVENTIS): Methanol

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MSIMS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.2 \%$ of sodium perfluoro-1-nonanesulfonate (L-PFNS).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad (midddymy)

Figure 2: L-PFPeS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 2:

Injection: On-column (L-PFPeS)
Mobile phase: Same as Figure 1
Flow: $\quad 300 \mu / / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.37 \mathrm{e}-3$
Collision Energy (eV) $=32$

Figure 1: L-PFPeS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Fiqure 1:

LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Waters Xevo TQ-S micro MS

Chromatographic Conditions

$\begin{array}{ll}\text { Column: } & \text { Acquity UPLC BEH Shield RP }{ }_{18} \\ & 1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\end{array}$

MS Parameters

Experiment: Full Scan (225-850 amu)
Mobile phase: Gradient
Start: 60\% (80:20 MeOH:ACN) / $40 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH} H_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for
3 min before returning to initial conditions in 0.75 min .
Time: 12 min
Flow: $\quad 300 \mu / / \mathrm{min}$

Source: Electrospray (negative)
Capillary Voltage (kV) $=2.50$
Cone Voltage $(\mathrm{V})=10.00$
Desolvation Temperature $\left({ }^{\circ} \mathrm{C}\right)=500$
Desolvation Gas Flow $(\mathrm{l} / \mathrm{hr})=1000$

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should oniy be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \% \mathrm{RSD}$. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{\varepsilon}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE/PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and 15017034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at wwwoll-labs.com or contact us directly at info@well-labs.com

PRODUCT CODE:
COMPOUND:

L-PFPeS

Sodium perfluoro-1-pentanesulfonate

LOT NUMBER: LPFPeS0619

STRUCTURE:

$\mathrm{C}_{5} \mathrm{~F}_{11} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$46.9 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}$ (PFPeS anion)
$>98 \%$
07/08/2019
07/08/2024
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 372.09
SOLVENT(S):
Methanol

CHEMICAL PURITY:
LAST TESTED: (mmedd/yyy)
EXPIRY DATE: (mmodisyyy)
RECOMMENDED STORAGE:

CAS \#:
630402-22-1

MOLECULAR FORMULA:	$\mathrm{C}_{5} \mathrm{~F}_{11} \mathrm{SO}_{3} \mathrm{Na}$	MOLECULAR WEIGHT:	372.09
CONCENTRATION:	$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)	SOLVENT(S):	Methanol
	$46.9 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}$ (PFPeS anion)		
CHEMICAL PURITY:	>98\%		
LAST TESTED: (mmedd/my)	07/08/2019		
EXPIRY DATE: (mmodisyy)	07/08/2024		
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.3 \%$ of sodium perfluoro-1-nonanesulfonate (L-PFNS).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad $\frac{07 / 11 / 2019}{(m \mathrm{mvdahm})}$

Figure 2: L-PFHpS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: On-column (L-PFHpS)
Mobile phase: Same as Figure 1
Flow: $\quad 300 \mu / 7 m i n$

MS Parameters

Collision Gas (mbar) $=3.61 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=42$

Figure 1: L-PFHpS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{16}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60\% (80:20 MeOH:ACN) / 40\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.50$
	(both with $10 \mathrm{mM} \mathrm{NH} \mathrm{S}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=10.00$
	Ramp to 90% organic over 7 min and hold for	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
	3 min before returning to initial conditions in 0.75 min . Time: 12 min	Desolvation Gas Flow (l/hr) $=1000$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualifed personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS/CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{i}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an extemal ISOIIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE LPERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of iSO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE:	L-PFHpS
COMPOUND:	Sodium perfluoro-1-heptanesulfonate

STRUCTURE:

LOT NUMBER: LPFHpS0819

CAS \#:
21934-50-9

MOLECULAR WEIGHT: 472.10
SOLVENT(S): Methanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Fiqure.2: L-PFNS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 2;			
Injection:	On-column (L-PFNS)		
Mobile phase:	Same as Figure 1		
Flow:	$300 \mu / \mathrm{min}$		MS Parameters
:---			

Figure 1: L-PFNS; LC/MS Data (TIC and Mass Spectrum)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS /CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystaline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF YALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www,well-labs.com or contact us directly at info@well-labs.com

WELLINGTON LABORATORIES

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE:

COMPOUND:

STRUCTURE:

L-PFNS
Sodium perfluoro-1-nonanesulfonate

MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED; (nnmudmm)
EXPIRY DATE: (mmodrymy)
RECOMMENDED STORAGE:
$\mathrm{C}_{9} \mathrm{~F}_{19} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$48.0 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (PFNS anion)
>98\%
09/06/2019
09/06/2024
Store ampoule in a cool, dark place

LOT NUMBER: LPFNS0919

CAS \#: 98789-57-2

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

MOLECULAR WEIGHT: 572.12
SOLVENT(S): Methanol

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Figure 2: L-PFDS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiaure 2:

Injection: On-column (L-PFDS)

Mobile phase: Same as Figure 1	Collision Gas (mbar) $=2.99 \mathrm{e}-3$
	Collision Energy $(\mathrm{eV})=56$

Conditions for Fiqure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient Start: 55\% (80:20 MeOH:ACN) / 45\% $\mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer) Ramp to 90% organic over 8 min and hold for 2 min before returning to initial conditions in 0.75 min . Time: 12 min	Source: Electrospray (negative) Capillary Voltage (kV) $=2.00$ Cone Voltage (V) $=10.00$ Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$ Desolvation Gas Flow ($/ \mathrm{hr} \mathrm{r})=1000$
Flow:	$300 \mu / / m i n$	

1910652

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SUSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned values), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY;

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of 1509001 by SAl Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

PRODUCT CODE: COMPOUND:

L-PFDS
Sodium perfluoro-1-decanesulfonate

LOT NUMBER: LPFDS0419

CAS\#:
2806-15-7

MOLECULAR FORMULA:	$\mathrm{C}_{10} \mathrm{~F}_{24} \mathrm{SO}_{3} \mathrm{Na}$	MOLECULAR WEIGHT	622.13
CONCENTRATION:	$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)	SOLVENT(S):	Methanol
	$48.2 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (PFDS anion)		
CHEMICAL PURITY:	>98\%		
LAST TESTED: (nmodrm)	04/04/2019		
EXPIRY DATE: (mmddelm)	04/04/2024		
RECOMMENDED STORAG	Store ampoule in a cool		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- \quad See page 2 for further details.
- Contains $\sim 0.9 \%$ of sodium perfluoro-1-dodecanesulfonate (L-PFDoS).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mmadryyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

Figure 3: br-PFHxSK; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 3:

Injection:	On-column (br-PFHxSK)	MS Parameters
Mobile phase:	Same as Figures 1 and 2	Collision Gas (mbar) $=2.87 e-3$

Flow: $\quad 300 \mu / / m i n$

$$
\text { Collision Energy }(\mathrm{eV})=42
$$

Fiqure 2: br-PFHxSK; LC/MS Data (SIR)

Figure 1: \quad br-PFHxSK; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
LC: \quad Waters Acquity Ultra Performance LC
MS: \quad Waters Xevo TQ-S micro MS

Chromatoaraphic Conditions

Column: Acquity UPLC BEH Shield RP ${ }_{16}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: 50% ($80: 20 \mathrm{MeOH}: A C N$) / $50 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 8 min . Hold for 2 min before returning to initial conditions in 0.75 min . Time: 12 min

Flow: $\quad 300 \mu / / \mathrm{min}$

MS Parameters

Experiment: Full Scan (250-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=10.00$
Desolvation Temperature ($\left.{ }^{\circ} \mathrm{C}\right)=500$
Desolvation Gas Flow ($/ \mathrm{hr} \mathrm{r})=1000$

Table A: br-PFHxSK; Isomeric Components and Percent Composition (by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$)*

Isomer	Name	Structure	Percent Composition by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$
1	Potassium perfluoro-1-hexanesulfonate	$\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{SO}_{3} \mathrm{~K}^{+}$	81.1
2	Potassium 1-trifluoromethylperfluoropentanesulfonate**		2.9
3	Potassium 2-trifluoromethylperfluoropentanesulfonate		1.4
4	Potassium 3-trifluoromethylperfluoropentanesulfonate		5.0
5	Potassium 4-trifluoromethylperfluoropentanesulfonate		8.9
6	Potassium 3,3-di(trifluoromethyl)perfluorobutanesulfonate		0.2
7	Other Unidentified Isomers		0.5

* Percent of total perfluorohexanesulfonate isomers only.
** Systematic Name: Potassium perfluorohexane-2-sulfonate.

Date: \qquad
$10105 / 2018$ (mivddyyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFCIUV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products, as well as mixtures and calibration solutions, are compared to older lots in a similar manner. This further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{i}, x_{2}, \ldots x_{n}$ on which it depends is: $\quad u_{v}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}$
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

br-PFHxSK

Potassium Perfluorohexanesulfonate Solution/Mixture of Linear and Branched Isomers

PRODUCT CODE:

LOT NUMBER:
CONCENTRATION:
SOLVENTIS:
DATE PREPARED: (nmudury)
LAST TESTED: (mmudurm)
EXPIRY DATE: (mmodum)
RECOMMENDED STORAGE:
br-PFHxSK
brPFHxSK1018
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (total potassium salt)
$45.5 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}$ (total PFHxS anion)
Methanol
10/01/2018
10/02/2018
10/02/2023
Store ampoule in a cool, dark place

DESCRIPTION:

The chemical purity has been determined to be $\geq 98 \%$ perfluorohexanesulfonate linear and branched isomers. The full name, structure and percent composition for each of the identified isomeric components are given in Table A.

DOCUMENTATION/ DATA ATTACHED:

Table A: Isomeric Components and Percent Composition by ${ }^{19} \mathrm{~F}$-NMR
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (SIR)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.3 \%$ of perfluoro-n-hexanoic acid and $\sim 0.15 \%$ of perfluoro- 1 -pentanesulfonate.
- CAS\#: 3871-99-6 (for linear isomer; potassium salt).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

[^5]Figure 3： br－PFOSK；LC／MS／MS Data（Selected MRM Transitions）

Conditions for Fiaure 3；

Injection：On－colurnn（br－PFOSK）
Mobile phase：Same as Figure 2

MS Parameters

Collision Gas $($ mbar $)=2.97 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=64$

Flow：$\quad 300 \mu / / \mathrm{min}$

Figure 2: br-PFOSK; LC/MS Data (SIR)

07jun2019_brPFOSK_005
brPFOSK0619 $50 \mathrm{ng} / \mathrm{ml}$
100 (17:24:10

Conditions for Figure 2:

LC: Waters Acquity Ultra Performance LC
MS: \quad Waters Xevo TQ-S micro MS
Chromatographic Conditions:

Column:	Acquity UPLC BEH Shield $\mathrm{RP}_{48}(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm})$
Injection:	$50 \mathrm{ng} / \mathrm{ml}$ of br-PFOSK
Mobile Phase:	Gradient $50 \% ~(80: 20 ~ M e O H: A C N) ~$ $50 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}, \mathrm{OAc}$ buffer)
	Ramp to 90% organic over 8 min and hold for 2 min. Return to initial conditions over 0.75 min. Time: 12 min
	$300 \mu / / \mathrm{min}$

MS Conditians:

SIR (ES')
Source $=120^{\circ} \mathrm{C}$
Desolvation $=500^{\circ} \mathrm{C}$
Cone Voltage $=2.00 \mathrm{~V}$

Fiqure 1: br-PFOSK; LC/MS Data (TIC and Mass Spectrum)

| 07jun2019_brPFOSK_001 |
| :--- | :--- | :--- |
| brPFOSK0619 $250 \mathrm{ng} / \mathrm{ml}$ |
| 100 |

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50% ($80: 20 \mathrm{MeOH}: \mathrm{ACN}$)/50\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH} \mathrm{O}_{4} \mathrm{OAC}$ buffer)	Cone Voltage (V) $=10.00$
	Ramp to 90% organic over 8 min and hold for 2 min .	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
	Return to initial conditions over 0.75 min .	Desolvation Gas Flow (1/hr) $=1000$
	Time: 12 min	
Flow:	$300 \mu / / m i n$	

Table A:
br-PFOSK; Isomeric Components and Percent Composition (by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$) ${ }^{\star}$

Isomer	Name	Structure	Percent Composition by ${ }^{19}$ F-NMR
1	Potassium perfluoro-1-octanesulfonate	$\mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{CF}_{2} \mathrm{SO}_{3} \mathrm{~K}^{+}$	78.8
2	Potassium 1-trifluoromethylperfluoroheptanesulfonate**		1.2
3	Potassium 2-trifluoromethylperfluoroheptanesulfonate		0.6
4	Potassium 3-trifluoromethylperfluoroheptanesulfonate		1.9
5	Potassium 4-trifluoromethylperfluoroheptanesulfonate		2.2
6	Potassium 5-trifluoromethylperfluoroheptanesulfonate		4.5
7	Potassium 6-trifluoromethylperfluoroheptanesulfonate		10.0
8	Potassium 5,5-di(trifluoromethyl)perfluorohexanesulfonate		0.2
9	Potassium 4,4-di(trifluoromethyl)perfluorohexanesulfonate		0.03
10	Potassium 4,5-di(trifluoromethyl)perfluorohexanesulfonate		0.4
11	Potassium 3,5-di(trifluoromethyl)perfluorohexanesulfonate		0.07

* Percent of total perfluorooctanesulfonate isomers only. Isomers are labelled in Figure 2.
** Systematic Name: Potassium perfluorooctane-2-sulfonate.

Certified By:

Date:

06/17/2019

 (mmvadyyy)The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic punties of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products, as well as mixtures and calibration solutions, are compared to older lots in a similar manner. This further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE /PERIOD OF VALIDITY:
Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

CALA

For additional information or assistance conceming this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

br-PFOSK

Potassium Perfluorooctanesulfonate Solution/Mixture of Linear and Branched Isomers

PRODUCT CODE:
 LOT NUMBER: CONCENTRATION:

SOLVENT(S):
DATE PREPARED: (mmodumy)
LAST TESTED: (mmoduryw)
EXPIRY DATE: (mmodomy)
RECOMMENDED STORAGE:
br-PFOSK
brPFOSK0619
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (total potassium salt)
$46.4 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}$ (total PFOS anion)
Methanol
06/03/2019
06/07/2019
06/07/2024
Store ampoule in a cool, dark place

DESCRIPTION:

The chemical purity has been determined to be $\geq 98 \%$ perfluorooctanesulfonate linear and branched isomers. The full name, structure and percent composition for each of the isomeric components are given in Table A.

DOCUMENTATION/ DATA ATTACHED:

Table A: Isomeric Components and Percent Composition by ${ }^{19} \mathrm{~F}$-NMR
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (SIR)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- A 5-point calibration curve was generated using linear PFOS (potassium salt) and mass-labelled PFOS as an internal standard to enable quantitation of br-PFOSK using isotopic dilution.
- CAS\#: 2795-39-3 (for linear isomer; potassium salt).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G $3 M 5$ CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

Fiqure 2: \quad 4:2FTS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 2:

Injection: On-column (4:2FTS)
Mobile phase: Same as Figure 1
Flow: $\quad 300 \mu / / \mathrm{min}$

MS Parameters
Collision Gas (mbar) $=3.07 \mathrm{e}-3$
Collision Energy (eV) $=18$

| Fiqure 1: | 4:2FTS; LC/MS Data (TIC and Mass Spectrum) | |
| :--- | :--- | :--- | :--- |
| $08 \mathrm{may2019}$ 42FTS_001 | 08-May-2019 | 14:05:50 |

42FTS0519 $250 \mathrm{ng} / \mathrm{ml}$

Conditions for Figure 1:

LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Waters Xevo TQ-S micro MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: 40% ($80: 20$ MeOH:ACN) / $60 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 8 min and hold for 2 min before returning to initial conditions in 0.75 min . Time: 11 min

Flow: $\quad 300 \mu / / \mathrm{min}$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=0.50$
Cone Voltage $(V)=25.00$
Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
Desolvation Gas Flow $(\mathrm{lhr})=1000$

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{n}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{\varepsilon}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an extemal ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOAEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

PRODUCT CODE: COMPOUND:

STRUCTURE:

LOT NUMBER: 42FTS0519
Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluorohexane sulfonate

GAS \#:
27619-93-8

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodrym)
EXPIRY DATE: (mmbdury)
RECOMMENDED STORAGE:
$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{9} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \quad$ (Na salt)
$46.7 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml} \quad$ (4:2FTS anion)
>98\%
05/08/2019
05/08/2024
Refrigerate ampoule

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mme

Figure 2: $\quad 6: 2 \mathrm{FTS}$; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: On-column (6:2FTS)
Mobile phase: Same as Figure 1
Flow: $\quad 300 \mu / / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.61 e-3$
Collision Energy $(\mathrm{eV})=20$

Fiqure 1:
 6:2FTS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Waters Xevo TQ-S micro MS

Chromatoaraphic Conditions

Column: \quad	Acquity UPLC BEH Shield RP ${ }_{18}$
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase:
Gradient
Start: 50\% (80:20 MeOH:ACN)/50\% $\mathrm{H}_{2} \mathrm{O}$
(both with 10 mM NH
Ramp to 90% organic over 8 min and hold for 2 min before returning to initial conditions in 0.75 min . Time: 12 min

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage $(\mathrm{kV})=0.50$
Cone Voltage (V) $=25.00$
Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
Desolvation Gas Flow (l/hr) $=1000$

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integnity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAl Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

CERTIFICATE OF ANALYSIS

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LCIMS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
fmoldiyger

Figure 2: \quad 8:2FTS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 2:

Injection: On-column (8:2FTS)
Mobile phase: Same as Figure 1
Flow: $\quad 300 \mu / m i n$

MS Parameters

Collision Gas (mbar) $=3.49 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=26$

Conditions for Fiqure 1:	
LC: Waters Acquity Ultra Performance LC	
MS: \quad Waters Xevo TQ-S micro MS	
Chromatographic Conditions	MS Parameters
Column: Acquity UPLC BEH Shield $R P_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase: Gradient Start: $60 \%(80: 20 \mathrm{MeOH}: A C N) / 40 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH Ramp to 90% organic over 7 min and hold for 3 min before returning to initial conditions in 0.75 min . Time: 12 min	Source: Electrospray (negative) Capillary Voltage (kV) $=0.50$ Cone Voltage (V) $=25.00$ Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$ Desolvation Gas Flow (l/hr) $=1000$
Flow: $\quad 300 \mu / \mathrm{min}$	

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techriques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or irjection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

CERTIFICATE OF ANALYSIS

PRODUCT CODE:	8:2FTS LOT NU	82FTS0919
COMPOUND:	Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluorodecane sulfonate	
STRUCTURE:	CAS \#:	27619-96-1

MOLECULAR FORMULA:	$\mathrm{C}_{10} \mathrm{H}_{4} \mathrm{~F}_{7} \mathrm{SO}_{3} \mathrm{Na}$		MOLECULAR WEIGHT:	550.16
CONCENTRATION:	$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	(Na salt)	SOLVENT(S):	Methanol
	$47.9 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$	(8:2FTS anion)		
CHEMICAL PURITY:	>98\%			
LAST TESTED: (mmidarmm)	09/11/2019			
EXPIRY DATE: (mruddrm)	09/11/2024			
RECOMMENDED STORAGE:	Refrigerate ampo			

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyy)

Figure 2: FOSA-1; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 2:
Injection: On-column (FOSA-I)
Mobile phase: Same as Figure 1
Flow: $\quad 300 \mu / / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.57 \mathrm{e}-3$
Collision Energy (0 V) $=30$

Fiqure 1: FOSA-I; LC/MS Data (TIC and Mass Spectrum)

Conditions for Fiqure 1:
LC: Waters Acquity Ultra Performance LC
MS: \quad Waters Xevo TQ-S micro MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP ${ }_{\text {is }}$
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: 60\% (80:20 MeOH:ACN) / $40 \% \mathrm{H}_{2} \mathrm{O}$
(both with 10 mM NH ©Ac buffer)
Ramp to 90% organic over 7 min and hold for 3 min
before returning to initial conditions in 0.75 min .
Time: 12 min

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage $(\mathrm{kV})=0.50$
Cone Voltage (V) $=20.00$
Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
Desolvation Gas Flow $(1 / \mathrm{hr})=1000$

Flow:
$300 \mu 1 /$ min

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be <5\% RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance conceming this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs,com or contact us directly at info@well-labs,com

CERTIFICATE OF ANALYSIS

PRODUCT CODE:

COMPOUND:

STRUCTURE:

FOSA-I
Perfluoro-1-octanesulfonamide

LOT NUMBER: FOSA0919|

CAS \#:
754-91-6

MOLECULAR FORMULA:
$\mathrm{C}_{8} \mathrm{H}_{2} \mathrm{~F}_{17} \mathrm{NO}_{2} \mathrm{~S}$
CONCENTRATION:
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
CHEMICAL PURITY:
LAST TESTED; (mmodrywn)
$>98 \%$

EXPIRY DATE: (mmodmy 09/12/2019

RECOMMENDED STORAGE: Refrigerate ampoule

MOLECULAR WEIGHT:
SOLVENT(S):
499.14

Isopropanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-fabs.com

Figure 3: br-NMeFOSAA; LC/MS/MS Data (Selected MRM Transitions)

*Note: N -MeFOSA is formed by in-source fragmentation.

Conditions for Figure 3:

Injection: On-column (br-NMeFOSAA
Mobile phase: Same as Figure 1
Flow: $\quad 300 \mu / / m i n$

MS Parameters
Collision Gas (mbar) $=2.79 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=16$

$19 L 0659$

Figure 2: br-NMeFOSAA; LC/MS Data (SIR)

| 09jan2019_brNMeFOSAA_003 |
| :--- | :--- | :--- |
| brNMeFOSAAO119 $50 \mathrm{ng} / \mathrm{ml}$ |
| 100 |

Conditions for Figure 2:		
$\frac{\text { LC: }}{M S}$	Waters Acquity Ultra Performance LC Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{\text {s }}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: SIR (8 channels)
Mobile phase:	Gradient Start: 60% ($80: 20 \mathrm{MeOH}: A C N$) $/ 40 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}, \mathrm{OAC}$ buffer) Ramp to 90% organic over 7 min and hold for 3 min before returning to initial conditions in 0.75 min . Time: 12 min	Source: Electrospray (negative) Capillary Voltage (kV) $=2.00$ Cone Voltage (V) $=2-64$ Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$ Desolvation Gas Flow $(1 / \mathrm{hr})=1000$
Flow:	$300 \mu 1 / m i n$	

Figure 1: br-NMeFOSAA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Fiqure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Waters Xevo TQ-S micro MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: 60% ($80: 20 \mathrm{MeOH}: A C N) / 40 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for
3 min before returning to initial conditions in 0.75 min .
Time: 12 min
Flow: $\quad 300 \mu / / m i n$

MS Parameters

Experiment: Full Scan (250-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=20.00$
Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
Desolvation Gas Flow $(\mathrm{l} / \mathrm{hr})=1000$

Table A: br-NMeFOSAA; Isomeric Components and Percent Composition (by ${ }^{18} \mathrm{~F}-\mathrm{NMR}$)*

Isomer	Name	Structure	Percent Composition by ${ }^{19}$ F-NMR
1	N -methylperfluoro-1-octanesulfonamidoacetic acid		76.0
2	N -methylperfluoro-3-methylheptanesulfonamidoacetic acid		0.7
3	N -methylperfluoro-4-methylheptanesulfonamidoacetic acid		2.0
4	N -methylperfluoro-5-methylheptanesulfonamidoacetic acid		6.0
5	N -methylperfluoro-6-methylheptanesulfonamidoacetic acid		14.0
6	N -methylperfluoro-5,5-dimethylhexanesulfonamidoacetic acid		0.2
7	Other Unidentified Isomers		1.1

* Percent of total N-methylperfluorooctanesulfonamidoacetic acid isomers only.

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste shoutd be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS /CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS; SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products, as well as mixtures and calibration solutions, are compared to older lots in a similar manner. This further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an extemal ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in matenal and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of 1509001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

CALA

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www,well-labs,com or contact us directly at inforowell-labs.com

CERTIFICATE OF ANALYSIS

br-NMeFOSAA

N-Methylperfluorooctanesulfonamidoacetic
 Acid Solution/Mixture of Linear and
 Branched Isomers

```
PRODUCT CODE:
LOT NUMBER:
CONCENTRATION:
SOLVENT(S):
DATE PREPARED;
(mundudrym)
LAST TESTED: (mmodurm)
EXPIRY DATE: (mmaduryw)
RECOMMENDED STORAGE;
```

```
br-NMeFOSAA
brNMeFOSAA0119
50.0\pm2.5 \mug/ml
MethanolWater (<1%)
01/02/2019
01/09/2019
01/09/2024
Refrigerate ampoule
```


DESCRIPTION:

The chemical purity has been determined to be $\geq 98 \% \mathrm{~N}$-methylperfluorooctanesulfonamidoacetic acid (linear and branched isomers). The full name, structure and percent composition for each of the identified isomeric components are given in Table A.

DOCUMENTATION/ DATA ATTACHED:

Table A: Isomeric Components and Percent Composition by ${ }^{99} \mathrm{~F}$-NMR
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (SIR)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the acetic acid moiety to its respective methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

[^6]Figure 3: br-NEtFOSAA; LC/MS/MS Data (Selected MRM Transitions)

*Note: N-EtFOSA is formed by in-source fragmentation.

Conditions for Figure 3:	
Injection: \quad On-column (br-NEtFOSAA)	MS Parameters
Mobile phase: Same as Figure 1	Collision Gas (mbar) $=3.53 \mathrm{e}-3$
Flow: $\quad 300 \mu / \mathrm{min}$	

Figure 2: \quad br-NEtFOSAA; LC/MS Data (SIR)

Conditions for Fiqure 2 :		
$\begin{aligned} & \text { LC: } \\ & \text { MS: } \end{aligned}$	Waters Acquity Ultra Performance LC Waters Xevo TQ-S micro MS	
Chromatograp	phic Conditions	MS Parameters
Column:	Acquity UPLC BEH Shield RP $_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: SIR (8 channels)
Mobile phase:	Gradient Start: 50% ($80: 20 \mathrm{MeOH}: A C N$) $/ 50 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer) Ramp to 90% organic over 8 min and hold for 2 min before returning to initial conditions in 0.75 min . Time: 12 min	Source: Electrospray (negative) Capillary Voltage (kV) $=2.00$ Cone Voltage (V) $=$ variable (2-64) Desolvation Temperature $\left({ }^{\circ} \mathrm{C}\right)=500$ Desolvation Gas Flow $(/ / \mathrm{hr})=1000$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Fiqure 1: \quad br-NEtFOSAA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Fiqure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatoaraphic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{\text {\% }}$	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (250-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: $50 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 50 \% \mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2,00$
	(both with 10 mM NH , OAc buffer)	Cone Voltage (V) $=20$
	Ramp to 90% organic over 8 min and hold for	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
	2 min before returning to initial conditions in 0.75 min . Time: 12 min	Desolvation Gas Flow (/hr) $=1000$
Flow:	$300 \mu / / \mathrm{min}$	

Isomer	Name	Structure	Percent Composition by ${ }^{19}$ F-NMR
1	N -ethylperfluoro-1-octanesulfonamidoacetic acid	$\begin{gathered} \mathrm{CF}_{3}\left(\mathrm{CF}_{2}\right)_{7} \mathrm{SO}_{2} \mathrm{NCH}_{2} \mathrm{CO}_{2} \mathrm{H} \\ \mathrm{C}_{2} \mathrm{H}_{5} \end{gathered}$	77.5
2	N-ethylperfluoro-3-methylheptanesulfonamidoacetic acid		2.3
3	N-ethylperfluoro-4-methylheptanesulfonamidoacetic acid		2.2
4	N-ethylperfluoro-5-methylheptanesulfonamidoacetic acid		5.4
5	N-ethylperfluoro-6-methylheptanesulfonamidoacetic acid		10.4
6	N -ethylperfluoro-5,5-dimethylhexanesulfonamidoacetic acid		0.3
7	N -ethylperfluoro-4,5-dimethylhexanesulfonamidoacetic acid		0.3
8	N -ethylperfluoro-3,5-dimethylhexanesulfonamidoacetic acid		0.3
9	Other Unidentified Isomers		1.3

* Percent of total N -ethylperfluorooctanesulfonamidoacetic acid isomers only.

Certified By:

Date: 08/29/2019 (mivddyyy)

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystaline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products, as well as mixtures and calibration solutions, are compared to older lots in a similar manner. This further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{i}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly callbrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www,well-labs.com or contact us directly at info@well-labs.com

br-NEtFOSAA
 N-EthyIperfluorooctanesulfonamidoacetic Acid Solution/Mixture of Linear and Branched Isomers

PRODUCT CODE:
 LOT NUMBER:
 CONCENTRATION:
 SOLVENT(S):
 DATE PREPARED:
 mundadyyw
 LAST TESTED: (mmidaym)
 EXPIRY DATE: (mmddaymy)
 RECOMMENDED STORAGE:

br-NEtFOSAA
brNEtFOSAA0819
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
Methanol Water (<1\%)
08/20/2019
08/20/2019
08/20/2024
Refrigerate ampoule

DESCRIPTION:

The chemical purity has been determined to be $\geq 98 \% \mathrm{~N}$-ethylperfluorooctanesulfonamidoacetic acid (linear and branched isomers). The full name, structure and percent composition for each of the identified isomeric components are given in Table A.

DOCUMENTATION/ DATA ATTACHED:

Table A: Isomeric Components and Percent Composition by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (SIR)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the acetic acid moiety to its respective methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Figure 2: N-MeFOSA-M; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure.2:

Injection:	On-column (N-MeFOSA-M)	MS Parameters
Mobile phase:	Same as Figure 1	Collision Gas (mbar) $=2.99 \mathrm{e}-3$ Collision Energy $(\mathrm{VV})=24$
Fiow:	$300 \mu /$ min	

: Figure 1: N-MeFOSA-M; LC/MS Data (TIC and Mass Spectrum)
\downarrow

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	5
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60\% (80:20 MeOH:ACN) / $40 \% \mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=0.50$
	(both with 10 mM NH	Cone Voltage (V) $=20.00$
	Ramp to 90% organic over 7 min and hold for	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
	3 min before returning to initial conditions in 0.75 min .	Desolvation Gas Flow (1/hr) $=1000$
	Time: 11 min	
Flow:	$300 \mu / / m i n$	

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS /CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFCIUV/MS/MS, x-ray crystallography, and melting point. Isotopic punties of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{i}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{v}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y_{1} x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interiaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

CERTIFICATE OF ANALYSIS

 DOCUMENTATION
PRODUCT CODE:
 COMPOUND:

STRUCTURE:

MOLECULAR FORMULA:	$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{17} \mathrm{NO}_{2} \mathrm{~S}$
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
CHEMICAL PURITY:	$>98 \%$
LAST TESTED: (mmuddrw)	$05 / 07 / 2019$
EXPIRY DATE: (mmmadyw)	$05 / 07 / 2024$
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place

LOT NUMBER: NMeFOSA0519M

CAS \#:
31506-32-8

MOLECULAR WEIGHT: 513.17
SOLVENT(S):
Methanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
$19 L 0662$

Figure 2: N-EtFOSA-M; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: On-column (N-EtFOSA-M)
Mobile phase: Same as Figure 1
Flow: $\quad 300 \mu / / m i n$

MS Parameters

$$
\begin{aligned}
& \text { Collision Gas }(\mathrm{mbar})=3.00 \mathrm{e}-3 \\
& \text { Collision Energy }(\mathrm{eV})=24
\end{aligned}
$$

2 Figure 1: N-EtFOSA-M; LC/MS Data (TIC and Mass Spectrum)

| 07may2019_NEtFOSA_001 |
| :--- | :--- | :--- |
| NEtFOSA0519M $250 \mathrm{ng} / \mathrm{ml}$ |
| 100 |

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60\% (80:20 MeOH:ACN) / 40\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=0.50$
	(both with $10 \mathrm{mM} \mathrm{NH} H_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=20.00$
	Ramp to 90% organic over 7 min and hold for	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
	3 min before returning to initial conditions in 0.75 min .	Desolvation Gas Flow (l/hr) $=1000$
	Time: 11 min	
Flow:	$300 \mu / / \mathrm{min}$	

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2} \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, untl the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

PRODUCT CODE:
 COMPOUND:

N-EtFOSA-M
N -ethylperfluoro-1-octanesulfonamide

LOT NUMBER: NEtFOSA0519M

CAS \#:

4151-50-2

MOLECULAR FORMULA:	$\mathrm{C}_{10} \mathrm{H}_{5} \mathrm{~F}_{17} \mathrm{NO}_{2} \mathrm{~S}$	MOLECULAR WEIGHT:	527.20
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT(S):	Methanol
CHEMICAL PURITY:	>98\%		
LAST TESTED; (mmderm)	05/07/2019		
EXPIRY DATE: (mmbdusm)	05/07/2024		
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.5 \%$ branched isomers of N -ethylperfluorooctanesulfonamide.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

> Certified By:

Date: \qquad (mmddyyy)
;
Figure 3: N-MeFOSE-M; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 3:

Injection: On-column (N-MeFOSE-M
Mobile phase: Same as Figure 2
Flow: $\quad 300 \mu / / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=2.94 \mathrm{e}-3$
Collision Energy (eV) $=36$

Fiqure 2: \quad N-MeFOSE-M; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 2:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (250-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: $65 \% \mathrm{MeOH} / 35 \% \mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	Ramp to 90% organic over 8 min and hold for	Cone Voltage (V) $=65.00$
	2 min before returning to initial conditions in 0.75 min .	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=450$
	Time: 12 min	Desolvation Gas Flow (1/hr) $=1000$
Flow:	$300 \mu / / m i n$	

- Figure 1: N-MeFOSE-M; HRGC/LRMS Data (TIC and Mass Spectrum)

HRGC/LRMS:

Agilent 7890A (HRGC)
Agilent 5975C (LRMS)

Chromatographic Conditions:

Column: $\quad 30 \mathrm{~m}$ DB-5 (0.25 mm id, $0.25 \mu \mathrm{~m}$ film thickness) Agilent J\&W
Injector: $\quad 250^{\circ} \mathrm{C}$ (Splitless Injection)
Oven: $\quad 100^{\circ} \mathrm{C}(5 \mathrm{~min})$
$10^{\circ} \mathrm{C} / \mathrm{min}$ to $325^{\circ} \mathrm{C}$
$325^{\circ} \mathrm{C}$ (20 min)
Ionization: El+
Detector:
$250^{\circ} \mathrm{C}$ Full Scan (50-1000 amu)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handing of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times, Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{a}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{i}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

IRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/EC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

DOCUMENTATION/ DATA ATTACHED:

Figure 1: HRGC/LRMS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (TIC and Mass Spectrum)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- In order to see the molecular ion (adduct free), the LC mobile phase should be free of ammonium acetate buffer.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Figure 3: N-EtFOSE-M; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 3:

Injection: On-column (N-EtFOSE-M)
Mobile phase: Same as Figure 2
Flow:
$300 \mu / / m i n$

19L0664

Figure 2: N-EtFOSE-M; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 2:

LC:	Waters Acquity Ultra Performance LC
MS:	Waters Xevo TQ-S micro MS

Chromatographic Conditions

Column: \quad Acquity UPLC BEH Shield $R P_{1}$
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: $65 \% \mathrm{MeOH} / 35 \% \mathrm{H}_{2} \mathrm{O}$
Ramp to 90% organic over 8 min and hold for 2 min before returning to initial conditions in 0.75 min . Time: 12 min

MS Parameters

Experiment: Full Scan (250-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=65.00$
Desolvation Temperature $\left({ }^{\circ} \mathrm{C}\right)=450$
Desolvation Gas Flow (l/hr) $=1000$

```
Flow: }\quad300\mul/mi
```

Figure 1: N-EtFOSE-M; HRGC/LRMS Data (TIC and Mass Spectrum)

HRGCILRMS:

Agilent 7890A (HRGC)
Agilent 5975C (LRMS)

Chromatographic Conditions:

Column: $\quad 30 \mathrm{~m} \mathrm{DB}-5(0.25 \mathrm{~mm}$ id, $0.25 \mu \mathrm{~m}$ film thickness) Agilent J\&W
Injector: $\quad 250^{\circ} \mathrm{C}$ (Splitless Injection)
Oven: $\quad 100^{\circ} \mathrm{C}(5 \mathrm{~min})$
$10^{\circ} \mathrm{C} / \mathrm{min}$ to $325^{\circ} \mathrm{C}$
$325^{\circ} \mathrm{C}(20 \mathrm{~min})$
Ionization:
El+
Detector: $\quad 250^{\circ} \mathrm{C}$
Full Scan (50-1000 amu)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS/CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

IRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

CALA

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

PRODUCT CODE:	N-EtFOSE-M	LOT NUMBER: NEtFO	E0419M
COMPOUND: 2-(N-ethylperfluoro-1-octanesulfonam			
STRUCTURE:		CAS\#: 1691-	
MOLECULAR FORMULA:	$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~F}_{17} \mathrm{NO}_{3} \mathrm{~S}$	MOLECULAR WEIGHT:	571.25
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT(S):	Methanol
CHEMICAL PURITY:	>98\%		
LAST TESTED: (mm/d $/$ /ww)	04/08/2019 (HR		
	04/05/2019 (L		
EXPIRY DATE: (mmuddymy	04/08/2024		
RECOMMENDED STORAGE	: Store ampoule in a cool, dark place		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: HRGC/LRMS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (TIC and Mass Spectrum)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- In order to see the molecular ion (adduct free), the LC mobile phase should be free of ammonium acetate buffer.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Fiqure 2:
10:2FTS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: On-column (10:2FTS)
Mobile phase: Same as Figure 1
Flow: $\quad 300 \mu l / m i n$

MS Parameters

Collision Gas (mbar) $=2.92 \mathrm{e}-3$
Collision Energy (eV) $=25$

Figure 1: 10:2FTS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Fiqure 1:

LC: Waters Acquity Ultra Performance LC
MS: \quad Waters Xevo TQ-S micro MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP ${ }_{18}$
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: 60% ($80: 20 \mathrm{MeOH}: A C N$) $/ 40 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}, \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for
3 min before returning to initial conditions in 0.75 min .
Time: 12 min
Flow: $\quad 300 \mu / /$ min

MS Parameters

Experiment: Full Scan (250-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=0.50$
Cone Voltage (V) $=25.00$
Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
Desolvation Gas Flow $(1 / \mathrm{hr})=1000$

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS. SFCIUVIMS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned values), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{i}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

CERTIFICATE OF ANALYSIS

PRODUCT CODE:
 COMPOUND:

10:2FTS
Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluorododecane sulfonate

CAS \#:
Not available

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodirmm EXPIRY DATE: (mmodrsm)
$\mathrm{C}_{12} \mathrm{H}_{4} \mathrm{~F}_{21} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \quad$ (Na salt)
$48.2 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml} \quad$ (10:2FTS anion)
>98\%
06/11/2019
06/11/2022
Refrigerate ampoule

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad $\frac{06 / 18 / 2019}{(\mathrm{mmad} / \mathrm{d} / \mathrm{yyy})}$

Figure 2: HFPO-DA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:	
Injection: \quad On-column (HFPO-DA)	MS Parameters
Mobile phase:	Same as Figure 1
Flow: $\quad 300 \mu / / \mathrm{min}$	Collision Gas (mbar) $=3.60 \mathrm{e}-3$

Conditions for Figure 1:

LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Waters Xevo TQ-S micro MS

Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50\% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH} \mathrm{H}_{4} \mathrm{OAC}$ buffer)	Cone Voltage (V) $=15.00$
	Ramp to 90% organic over 8 min and hold for	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=325$
	2 min before returning to initial conditions in 0.75 min . Time: 12 min	Desolvation Gas Flow (l/hr) = 1000
	Tme. 12 min	
Flow:	$300 \mu / / m i n$	

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use orly. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handing of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{e}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{i}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{s}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMIIED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and 18017034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

PRODUCT CODE: COMPOUND:

STRUCTURE:

MOLECULAR FORMULA:	$\mathrm{C}_{6} \mathrm{HF}_{\mathrm{n}} \mathrm{O}_{3}$	MOLECULAR WEIGHT:	330.05
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT(S):	Methanol
CHEMICAL PURITY:	>98\%		
LAST TESTED: (mvidumm)	09/20/2019		
EXPIRY DATE: (mmidury)	09/20/2022		
RECOMMENDED STORAGE:	Refrigerate ampoule		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Product is commercially known as GenX.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad N1301201 (mmdd/yyy)

Fiqure 2: $\quad 11 \mathrm{Cl}-\mathrm{PF} 30 \mathrm{UdS}$; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: On-column (11CI-PF3OUdS)
Mobile phase: Same as Figure 1

MS Parameters

Collision Gas (mbar) $=2.84 \mathrm{e}-3$
Collision Energy (eV) $=24$

Figure 1: $\quad 11 \mathrm{Cl}-\mathrm{PF} 30 \mathrm{UdS}$; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatograp	ohic Conditions	MS Parameters
Column:	$\begin{aligned} & \text { Acquity UPLC BEH Shield RP }{ }_{18} \\ & 1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm} \end{aligned}$	Experiment: Full Scan (250-850 amu)
Mobile phase:	Gradient Start: 50\% (80:20 MeOH:ACN) / $50 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH} \mathrm{H}_{4} \mathrm{OAC}$ buffer) Ramp to 90% organic over 8 min and hold for 2 min before returning to initial conditions in 0.75 min . Time: 12 min	Source: Electrospray (negative) Capillary Voltage (kV) $=2.00$ Cone Voltage (V) $=70.00$ Desolvation Temperature $\left({ }^{\circ} \mathrm{C}\right)=500$ Desolvation Gas Flow ($/ \mathrm{hr}$) $=750$
Flow:	$300 \mu / / \mathrm{min}$	

INTENDED USE

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS. SFC/UV/MS/MS, x-ray crystallography, and meiting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{v}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using callbrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

CALA
Twateman

For additional information or assistance conceming this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs,com

PRODUCT CODE: COMPOUND:

11Cl-PF3OUdS
LOT NUMBER:
11CIPF3OUdS1118
Potassium 11-chloroeicosafluoro-3-oxaundecane-1-sulfonate

STRUCTURE:
CAS \#:
83329-89-9

MOLECULAR FORMULA:	$\mathrm{C}_{10} \mathrm{~F}_{20} \mathrm{ClSO}_{4} \mathrm{~K}$	MOLECULAR WEIGHT:	670.69
CONCENTRATION:	$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (K Salt)	SOLVENT(S):	Methanol
	$47.1 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (11Cl-PF3OUdS anion)		
CHEMICAL PURITY:	>98\%		
LAST TESTED: (mmdarm)	11/23/2018		
EXPIRY DATE: (mmdadysy)	11/23/2023		
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- This compound is a minor component of the commercial formulation known as F-53B.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
($\mathrm{mm} / \mathrm{dd} / \mathrm{y} \% \mathrm{y}$)

Figure 2: 9CI-PF3ONS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure.2:

Injection: On-column (9Cl-PF3ONS)
Mobile phase: Same as Figure 1
Flow: $\quad 300 \mu / / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.25 \mathrm{e}-3$
Collision Energy $(e \mathrm{~V})=20$

Fiqure 1: $\quad 9 C I-P F 3 O N S ;$ LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (250-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60\% (80:20 MeOH:ACN)/40\% $\mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH OAc buffer)	Capillary Voltage (kV) $=2.00$ Cone Voltage (V) $=70.00$
	Ramp to 90% organic over 7 min and hold for	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
	3 min before returning to initial conditions in 0.75 min . Time: 12 min	Desolvation Gas Flow (1/hr) $=750$
Flow:	$300 \mu / / m i n$	

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate intemal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{q}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{i}, x_{2^{\prime}} \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOAEC 17025 accredited laboratory. For certain products, traceability to international interfaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:
Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global ISOIIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc. please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE:	9CI-PF3ONS Potassium 9-chlorohexadecafluoro-3-oxanonane-1-sulfonate
COMPOUND:	COTNUMBER:
STRUCTURE:	

MOLECULAR FORMULA:	$\mathrm{C}_{6} \mathrm{~F}_{15} \mathrm{ClSO}_{4} \mathrm{~K}$	MOLECULAR WEIGHT:	570.67
CONCENTRATION:	$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (K Salt)	SOLVENT(S):	Methanol
	$46.6 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}$ (9Cl-PF3ONS anion)		
CHEMICAL PURITY:	>98\%		
LAST TESTED: (mmodirm)	10/30/2019		
EXPIRY DATE: (mmidarm)	10/30/2024		
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- This compound is the major component of the commercial formulation known as F-53B.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Fiqure 2: NaDONA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	On-column (NaDONA)	MS Parameters
Mobile phase:	Same as Figure 1	Collision Gas (mbar) $=3.37 e-3$ Collision Energy $(\mathrm{eV})=10$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 1: NaDONA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Fiqure 1:

LC: \quad Waters Acquity Ultra Performance LC
MS: \quad Waters Xevo TQ-S micro MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP fo $_{\text {f }}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: 55% ($80: 20 \mathrm{MeOH}: A C N$) / $45 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{+} \mathrm{OAC}$ buffer)
Ramp to 90% organic over 8 min and hold for
2 min before returning to initial conditions in 0.75 min .
Time: 12 min

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.70$
Cone Voltage (V) $=20.00$
Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
Desolvation Gas Flow (l/hr) $=1000$

Flow:
$300 \mu / / m i n$

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{i}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISOIEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories inc., please visit our website at www,well-labs.com or contact us directly at info@well-labs.com

WELLINGTON
LABORATORIES

CERTIFICATE OF ANALYSIS

PRODUCT CODE:

 COMPOUND:STRUCTURE:

NaDONA
Sodium dodecafluoro-3H-4,8-dioxanonanoate

LOT NUMBER: NaDONA0719

GAS \#:
958445-44-8
(ammonium salt)

MOLECULAR FORMULA:

CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmididym)

EXPIRY DATE: (mmodurm)

RECOMMENDED STORAGE: Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 400.05
SOLVENT (S): Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Product is commercially known as ADONA.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: $\frac{07 / 25 / 2019}{(\mathrm{~mm} / \mathrm{di} / \mathrm{yyy})}$

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

Fiqure 2: PFECHS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 2:

Injection: On-column (PFECHS)
Mobile phase: Same as Figure 1

MS Parameters

Collision Gas (mbar) $=3.37 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=24$

Figure 1: PFECHS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity CSH Fluoro-Phenyl	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (350-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 25\% (80:20 MeOH:ACN) / 75\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with 10 mM NH , OAc buffer)	Cone Voltage (V) $=45.00$
	Ramp to 60\% organic over 13 min .	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
	Ramp to 80% organic over 2 min and hold for	Desolvation Gas Flow (1/hr) $=750$
	2 min before returning to initial conditions in 1 min .	
	Time: 20 min	
Flow:	$300 \mu 1 / \mathrm{min}$	

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{0}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{\epsilon}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{1}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter,
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISOIEC 17025 accredited laboratory. In addition, their callbration is verified prior to each weighing using calibrated external weights traceable to an ISOIEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of 1509001 by SAI Global, ISO/ECC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

CERTIFICATE OF ANALYSIS

PRODUCT CODE: COMPOUND:

PFECHS
Potassium perfluoro-4-ethylcyclohexanesulfonate (isomeric mixture)

STRUCTURE:

cis-isomer

trans-isomer

MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mmsuthwo)
EXPIRY DATE: (mmadum)
RECOMMENDED STORAGE:
$\mathrm{C}_{8} \mathrm{~F}_{15} \mathrm{SO}_{3} \mathrm{~K}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (K salt)
$46.1 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}$ (PFECHS anion)
$>98 \%$
04/04/2018
04/04/2023
Store ampoule in a cool, dark place

MOLECULAR WEIGHI: 500.22 SOLVENT(S): Methanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains a mixture of the cis/trans isomers of PFECHS at a ratio of 2:3 (cis:trans).
- Contains $\sim 1.5 \%$ of other isomeric impurities.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Figure 2: L-PFPrS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:
Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ L-PFPrS)

Mobile phase: Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)

Flow:
$300 \mu \mathrm{l} / \mathrm{min}$

Figure 1: L-PFPrS; LC/MS Data (TIC and Mass Spectrum)

| 14dec2017 LPFPrs_001 |
| :--- | :--- | :--- |
| LPFPrS1217 $10 \mathrm{ug} / \mathrm{ml}$ |
| 100 |

Conditions for Figure 1 :		
$\frac{L C:}{\text { MS: }}$	Waters Acquity Ultra Performance LC Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 30% ($80: 20 \mathrm{MeOH}: A C N$) $/ 70 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH OAc buffer)	Capillary Voltage (KV) $=3.00$ Cone Voltage (V) $=40.00$
	Ramp to 90% organic over 7 min and hold for 1.5 min	Cone Gas Flow ($/ \mathrm{h} \mathrm{hr}$) $=50$
	before returning to initial conditions over 0.5 min . Time: 10 min	Desolvation Gas Flow (1/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{i}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{i}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{t}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISOIEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

PRODUCT CODE:

COMPOUND:

L-PFPrS
Sodium perfluoro-1-propanesulfonate

STRUCTURE:

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY: LAST TESTED: (mudarmm) EXPIRY DATE ${ }^{\text {(mmudarmy })}$ RECOMMENDED STORAGE:
$\mathrm{C}_{3} \mathrm{~F}_{7} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$45.8 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}$ (PFPrS anion)
>98\%
12/14/2017
12/14/2022
Store ampoule in a cool, dark place

LOT NUMBER: LPFPrS1217

CAS\#: Not available

MOLECULAR WEIGHT:
 272.07
 SOLVENT(S):
 Methanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dolyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE: COMPOUND:

L-PFDoS
Sodium perfluoro-1-dodecanesulfonate

LOT NUMBER: LPFDoS1218

CAS \#:
1260224-54-1

MOLECULAR FORMULA:	$\mathrm{C}_{12} \mathrm{~F}_{25} \mathrm{SO}_{3} \mathrm{Na}$	MOLECULAR WEIGHT:	722.14
CONCENTRATION:	$50.0 \pm 2.5 \mathrm{\mu g} / \mathrm{ml}$ (Na salt)	SOLVENT(S):	Methanol
	$48.4 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (PFDoS anion)		
CHEMICAL PURITY:	$>98 \%$		
LAST TESTED: (mmoddrmy)	$12 / 06 / 2018$		
EXPIRY DATE: (mmddarm)	$12 / 06 / 2023$		
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.2 \%$ of perfluoro-n-dodecanoic acid (PFDoA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: $\frac{12 / 20 / 2018}{(\text { mndddyyy })}$

Figure 2: L-PFDoS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: On-column (L-PFDoS)
$\begin{array}{lll}\text { Mobile phase: } & \text { Same as Figure } 1 & \text { Collision Gas (mbar) }=3.27 \mathrm{e}-3 \\ \text { Flow: } & 300 \text { (} & \text { Collision Energy }(\mathrm{eV})=60\end{array}$
Flow: $\quad 300 \mu 1 / \mathrm{min}$

MS Parameters

Figure 1: L-PFDoS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Waters Xevo TQ-S micro MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP 18 $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: $60 \%(80: 20 \mathrm{MeOH}: A C N) / 40 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 3 min before returning to initial conditions in 0.75 min .
Time: 12 min

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage $(\mathrm{V})=10.00$
Desolvation Temperature $\left({ }^{\circ} \mathrm{C}\right)=500$
Desolvation Gas Flow (l/hr) $=1000$

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{t}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline iots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

CALA
Terting
Accreditation Nion, A 126

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com
"sys_sample_code","lab_anl_method_name","analysis_date","analysis_time","total_or_dissolved","column_number","t est_type","cas_rn","chemical_name",","result_value","result_error_delta","result_type_code","reportable_result","detect_ flag","lab_qualifiers","organic_yn","method_detection_limit","reporting_detection_limit","quantatation_limit","result_u nit","detection_limit_unit","tic_retention_time","result_comment","qc_original_conc","qc_spike_added","qc_spike_me asured","qc_spike_recovery","qc_dup_original_conc","qc_dup_spike_added","qc_dup_spike_measured","qc_dup_spik e_recovery","qc_rpd","qc_spike_lcl","qc_spike_ucl","qc_rpd_cl","qc_spike_status","qc_dup_spike_status","qc_rpd_sta tus"
"EB05-20200707","537_MOD","07/14/20","18:52","N","NA","000","375-73-
5","PFBS","","","TRG","Yes","N","U","Y","0.00136","0.00198","0.00397","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"EB05-20200707","537 MOD","07/14/20","18:52","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID (PFHXA)","","","TRG","Yes","N","U","Y","0.00136","0.00198","0.00397","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"EB05-20200707","537_MOD","07/14/20","18:52","N","NA","000","13252-13-6","HEXAFLUOROPROPYLENE OXIDE DIMER ACID (HFPO-
DA)","","","TRG","Yes","N","U","Y","0.00239","0.00298","0.00397","UG_L","UG_L","","","","","","","","","","",""," " "" "" "" "" ""
"EB05-20200707","537_MOD","07/14/20","18:52","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID (PFHPA)","","","TRG","Yes","N","U","Y","0.00136","0.00198","0.00397","UG_L","UG_L","","","","","","","","","","" "" "" "" "" "" "" ""
"EB05-20200707","537_MOD","07/14/20","18:52","N","NA","000","919005-14-4","4,8-DIOXA-3H-
PERFLUORONONANŌIC ACID
(ADONA)","","","TRG","Yes","N","U","Y","0.00136","0.00198","0.00397","UG_L","UG_L","","","","","","","","","", "" "" "" "" "" "" " "" ""
"EB05-20200707","537_MOD","07/14/20","18:52","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC ACID
(PFHXS)","","","TRG","Yes","N","U","Y","0.00136","0.00198","0.00397","UG_L","UG_L","","","","","","","","","","" "" "" "" "" "" "" ""
"EB05-20200707","537_MOD","07/14/20","18:52","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID (PFOA)","","","TRG","Yes","N","U","Y","0.00136","0.00198","0.00397","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" "" """
"EB05-20200707","537_MOD","07/14/20","18:52","N","NA","000","375-95-1","PERFLUORONONANOIC ACID (PFNA)","","","TRG","Yes","N","U","Y","0.00136","0.00198","0.00397","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" "" ""
"EB05-20200707","537_MOD","07/14/20","18:52","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","","","TRG","Yes","N","U","Y","0.00136","0.00198","0.00397","UG_L","UG_L","","","","","","","","","","","","",""," " "" "" ""
"EB05-20200707","537_MOD","07/14/20","18:52","N","NA","000","756426-58-1","9-
CHLOROHEXADECAFLUORO-3-OXANONE-1-SULFONIC ACID (9Cl-
PF3ONS)","","","TRG","Yes","N","U","Y","0.00136","0.00198","0.00397","UG_L","UG_L","","","","","","","",",""," " "" "" "" "" "" "" ""
"EB05-20200707","537_MOD","07/14/20","18:52","N","NA","000","335-76-2","PERFLUORODECANOIC ACID (PFDA)","","","TRG","Yes","N","U","Y","0.00136","0.00198","0.00397","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" " "" ""
"EB05-20200707","537_MOD","07/14/20","18:52","N","NA","000","2355-31-
9","MeFOSAA","","","TRG","Yes","N","U","Y","0.00136","0.00198","0.00397","UG_L","UG_L","","","","","","",""," " "" "" "" "" "" "" "" "" ""
"EB05-20200707","537_MOD","07/14/20","18:52","N","NA","000","2991-50-
6","EtFOSAA","","","TR̄G","Yes","N","U","Y","0.00136","0.00198","0.00397","UG_L","UG_L","","","","","","","","", "","","","","","","","","
"EB05-20200707","537_MOD","07/14/20","18:52","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID
(PFUNA)","","","TRG","Yes","N","U","Y","0.00136","0.00198","0.00397","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"EB05-20200707","537_MOD","07/14/20","18:52","N","NA","000","763051-92-9","11-CHLOROEICOSAFLUORO-3-OXAUNDECANE-1-SULFONIC ACID (11Cl-
PF3OUdS)","","","TRG","Yes","N","U","Y","0.00136","0.00198","0.00397","UG_L","UG_L","","","","","","","","","", "" "" "" "" " " " "" "" ""
"EB05-20200707","537_MOD","07/14/20","18:52","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID (PFDOA)","","","TRG","Yes","N","U","Y","0.00136","0.00198","0.00397","UG_L","UG_L","","","","","","","","",""," ","","" "" "" "" "" ""
"EB05-20200707","537_MOD","07/14/20","18:52","N","NA","000","72629-94-
8","PFTrDA","","","TRG","Yes","N","U","Y","0.00136","0.00198","0.00397","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"EB05-20200707","537_MOD","07/14/20","18:52","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.00136","0.00198","0.00397","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"EB05-20200707","537_MOD","07/14/20","18:52","N","NA","000","13C3-PFBS","13C3-
PFBS","67.2","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","67.2","67.2","","","","","","50","150","", "" "" ""
"EB05-20200707","537 MOD","07/14/20","18:52","N","NA","000","13C3-HFPO-DA","13C3-HFPO-
DA","57.9","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","57.9","57.9","","","","","","50","150","","" "" ""
"EB05-20200707","537_MOD","07/14/20","18:52","N","NA","000","13C2-PFHxA","13C2-
PFHxA","63.0","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","63.0","63.0","","","","","","50","150"," " "" "" ""
"EB05-20200707","537 MOD","07/14/20","18:52","N","NA","000","13C4-PFHpA","13C4-
PFHpA","63.0","","IS","Yes","Y","","Y","","","","PCT REC","","","","","100","63.0","63.0","","","","","","50","150"," " "" "" ""
"EB05-20200707","537_MOD","07/14/20","18:52","N","NA","000","13C3-PFHxS","13C3-
PFHxS","72.2","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","72.2","72.2","","","","","","50","150"," " "" "" ""
"EB05-20200707","537_MOD","07/14/20","18:52","N","NA","000","13C5-PFNA","13C5-
PFNA","61.8","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","61.8","61.8","","","","","","50","150","" "" "" ""
"EB05-20200707","537_MOD","07/14/20","18:52","N","NA","000","13C2-PFOA","13C2-
PFOA","68.2","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","68.2","68.2","","","","","","50","150","" "" "" ""
"EB05-20200707","537_MOD","07/14/20","18:52","N","NA","000","13C8-PFOS","13C8-
PFOS","66.9","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","66.9","66.9","","","","","","50","150","", "" "" ""
"EB05-20200707","537_MOD","07/14/20","18:52","N","NA","000","13C2-PFDA","13C2-
PFDA","63.4","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","63.4","63.4","","","",","","50","150","" "" "" ""
"EB05-20200707","537 MOD","07/14/20","18:52","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","53.2","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","53.2","53.2","","","","","","50","15 0","","","","
"EB05-20200707","537_MOD","07/14/20","18:52","N","NA","000","13C2-PFUnA","13C2-
PFUnA","63.7","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","63.7","63.7","","","","","","50","150"," " "" "" ""
"EB05-20200707","537_MOD","07/14/20","18:52","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","56.3","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","56.3","56.3","","","","","","50","150 ","","" "" ""
"EB05-20200707","537_MOD","07/14/20","18:52","N","NA","000","13C2-PFDoA","13C2-
PFDoA","59.1","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","59.1","59.1","","","","","","50","150"," " " $\|$ " " " $"$
"EB05-20200707","537 MOD","07/14/20","18:52","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","57.5","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","57.5","57.5","","","","","","50","150" "" "" "" ""
"TW21D-20200707","537_MOD","07/14/20","19:02","N","NA","000","375-73-
5","PFBS","0.00455","","TRG","Yes","Y","","Y","0.00139","0.00202","0.00405","UG_L","UG_L","","","","","","","", "" "" "" "" " "" "" "" "" "" ""
"TW21D-20200707","537 MOD","07/14/20","19:02","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID (PFHXA)","0.00920","","TRG","Yes","Y","","Y","0.00139","0.00202","0.00405","UG_L","UG_L","","","","","","","", "" "" "" "" "" "" "" "" "" ""
"TW21D-20200707","537_MOD","07/14/20","19:02","N","NA","000","13252-13-6","HEXAFLUOROPROPYLENE OXIDE DIMER ACID (HFPO-
DA)","",",",TRG","Yes","N","U","Y","0.00244","0.00304","0.00405","UG L","UG L","","",","","","","","","","",""," " "" "" "" "" ""
"TW21D-20200707","537_MOD","07/14/20","19:02","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID (PFHPA)","0.00212","","TRG","Yes","Y","J","Y","0.00139","0.00202","0.00405","UG_L","UG_L","",","","","",","", "" "" "" "" "" "" "" "" "" ""
"TW21D-20200707","537_MOD","07/14/20","19:02","N","NA","000","919005-14-4","4,8-DIOXA-3H-
PERFLUORONONANOIC̄ ACID
(ADONA)","",",",TRG","Yes","N","U","Y","0.00139","0.00202","0.00405","UG_L","UG_L","","",","","","",","","", "" "" "" "" "" "" "" ""
"TW21D-20200707","537_MOD","07/14/20","19:02","N","NA","000","355-46-

4","PERFLUOROHEXANESULFONIC ACID

(PFHXS)","0.00969","","TRG","Yes","Y","","Y","0.00139","0.00202","0.00405","UG L","UG L","","","",","","","","

"TW21D-20200707","537_MOD","07/14/20","19:02","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID (PFOA)","0.0157","","TRḠ","Yes","Y","","Y","0.00139","0.00202","0.00405","UG_L","UG_L","",","","","",","",""," " "" "" "" "" "" "" "" ""
"TW21D-20200707","537_MOD","07/14/20","19:02","N","NA","000","375-95-1","PERFLUORONONANOIC ACID (PFNA)","","","TRG","Yes","N","U","Y","0.00139","0.00202","0.00405","UG_L","UG_L","","","",","","","",","","",

"TW21D-20200707","537_MOD","07/14/20","19:02","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","0.00245","","TRG","Yes","Y","J","Y","0.00139","0.00202","0.00405","UG_L","UG_L","",","","",","","","",",""," " "" "" "" "" "" ""
"TW21D-20200707","537_MOD","07/14/20","19:02","N","NA","000","756426-58-1","9-
CHLOROHEXADECAFLUORO-3-OXANONE-1-SULFONIC ACID (9Cl-
PF3ONS)","",",","TRG","Yes","N","U","Y","0.00139","0.00202","0.00405","UG_L","UG_L","","",","","","",","",""," " "" "" "" "" "" "" ""
"TW21D-20200707","537_MOD","07/14/20","19:02","N","NA","000","335-76-2","PERFLUORODECANOIC ACID (PFDA)","",",","TRG","Yes","N","U","Y","0.00139","0.00202","0.00405","UG_L","UG_L","","","",","",","","",","", "" "" "" "" "" "" ""
"TW21D-20200707","537_MOD","07/14/20","19:02","N","NA","000","2355-31-
9","MeFOSAA",","","TRG","Yes","N","U","Y","0.00139","0.00202","0.00405","UG_L","UG_L","",","","","","",""," " "" "" "" "" "" "" "" "" ""
"TW21D-20200707","537_MOD","07/14/20","19:02","N","NA","000","2991-50-
6","EtFOSAA","",","TRG","Yes","N","U","Y","0.00139","0.00202","0.00405","UG_L","UG_L","","","",","","","","", "" "" "" "" "" "" "" "" ""
"TW21D-20200707","537_MOD","07/14/20","19:02","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC
ACID
(PFUNA)","","","TRG","Yes","N","U","Y","0.00139","0.00202","0.00405","UG_L","UG_L","","","",","","","",","","

"'TW21D-20200707","537_MOD","07/14/20","19:02","N","NA","000","763051-92-9","11-
CHLOROEICOSAFLUORO-3-OXAUNDECANE-1-SULFONIC ACID (11Cl-
PF3OUdS)","",",",TRG","Yes","N","U","Y","0.00139","0.00202","0.00405","UG_L","UG_L","",","","","",","","","",
"TW21D-20200707","537_MOD","07/14/20","19:02","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
(PFDOA)","","","TRG","Yes","N","U","Y","0.00139","0.00202","0.00405","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"TW21D-20200707","537_MOD","07/14/20","19:02","N","NA","000","72629-94-
8","PFTrDA","","","TRG","Yes","N","U","Y","0.00139","0.00202","0.00405","UG_L","UG_L","","","","","","","",""," ","" "" "" "" "" "" " "" ""
"TW21D-20200707","537_MOD","07/14/20","19:02","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.00139","0.00202","0.00405","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"TW21D-20200707","537_MOD","07/14/20","19:02","N","NA","000","13C3-PFBS","13C3-
PFBS","73.1","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","73.1","73.1","","","","","","50","150","", "" "" ""
"TW21D-20200707","537_MOD","07/14/20","19:02","N","NA","000","13C3-HFPO-DA","13C3-HFPO-
DA","73.1","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","73.1","73.1","","","","","","50","150","","" "" ""
"TW21D-20200707","537_MOD","07/14/20","19:02","N","NA","000","13C2-PFHxA","13C2-
PFHxA","69.3","","IS","Yes","Y","","Y","","","","PCT REC","","","","","100","69.3","69.3","","","","","","50","150"," " "" "" ""
"TW21D-20200707","537_MOD","07/14/20","19:02","N","NA","000","13C4-PFHpA","13C4-
PFHpA","69.5","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","69.5","69.5","","","","","","50","150"," " "" "" ""
"TW21D-20200707","537 MOD","07/14/20","19:02","N","NA","000","13C3-PFHxS","13C3-
PFHxS","76.8","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","76.8","76.8","","","","","","50","150"," " "" "" ""
"TW21D-20200707","537_MOD","07/14/20","19:02","N","NA","000","13C5-PFNA","13C5-
PFNA","68.1","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","68.1","68.1","","","","","","50","150","" "" "" ""
"TW21D-20200707","537 MOD","07/14/20","19:02","N","NA","000","13C2-PFOA","13C2-
PFOA","73.6","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","73.6","73.6","","","","","","50","150","" "" "" ""
"TW21D-20200707","537_MOD","07/14/20","19:02","N","NA","000","13C8-PFOS","13C8-
PFOS","67.1","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","67.1","67.1","","","","","","50","150","", "" "" ""
"TW21D-20200707","537 MOD","07/14/20","19:02","N","NA","000","13C2-PFDA","13C2-
PFDA","63.9","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","63.9","63.9","","","","","","50","150","" "" "" ""
"TW21D-20200707","537_MOD","07/14/20","19:02","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","59.8","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","59.8","59.8","","","","","","50","15 0","","","",""
"TW21D-20200707","537 MOD","07/14/20","19:02","N","NA","000","13C2-PFUnA","13C2-
PFUnA","59.3","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","59.3","59.3","","","","","","50","150","

"TW21D-20200707","537_MOD","07/14/20","19:02","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","56.1","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","56.1","56.1","","","","","","50","150 " "" "" " "" ""
"TW21D-20200707","537_MOD","07/14/20","19:02","N","NA","000","13C2-PFDoA","13C2-
PFDoA","51.9","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","51.9","51.9","","","","","","50","150"," " "" "" ""
"TW21D-20200707","537_MOD","07/14/20","19:02","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","32.1","","IS","Yes","Y","H","Y","","","","PCT_REC","","","","","100","32.1","32.1","","","","","","50","15 0","","*","",""
"TW09D-20200707","537_MOD","07/14/20","19:13","N","NA","000","375-73-

5","PFBS","0.0693","","TRG","Yes","Y","","Y","0.00131","0.00191","0.00382","UG L","UG L","","","","","","","","'"
 , , , , , , , ,
"TW09D-20200707","537_MOD","07/14/20","19:13","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID (PFHXA)","0.192","","TRG","Yes","Y","","Y","0.00131","0.00191","0.00382","UG_L","UG_L","",","","",","","","",

"TW09D-20200707","537_MOD","07/14/20","19:13","N","NA","000","13252-13-6","HEXAFLUOROPROPYLENE OXIDE DIMER ACID (HFPO-
DA)","","","TRG","Yes","N","U","Y","0.00230","0.00286","0.00382","UG_L","UG_L","","",","","","",","","","","," " "" "" "" "" ""
"TW09D-20200707","537_MOD","07/14/20","19:13","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID (PFHPA)","0.0511","","TRG","Yes","Y","","Y","0.00131","0.00191","0.00382","UG_L","UG_L","","",","","",","","" "" "" "" "" "" "" "" "" ""
"TW09D-20200707","537 MOD","07/14/20","19:13","N","NA","000","919005-14-4","4,8-DIOXA-3H-
PERFLUORONONANOIC ACID
(ADONA)","",",","TRG","Yes","N","U","Y","0.00131","0.00191","0.00382","UG_L","UG_L","","",","","","",","","", "" "" "" "" "" "" "" ""
"TW09D-20200707","537_MOD","07/14/20","19:13","N","NA","000","355-46-
4","PERFLUOROHEXANESULFONIC ACID
(PFHXS)","0.387","","TRG","Yes","Y","","Y","0.00131","0.00191","0.00382","UG_L","UG_L","","","",","","","","","

"TW09D-20200707","537_MOD","07/14/20","19:13","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID (PFOA)","0.463","","TRG","Yes","Y","","Y","0.00131","0.00191","0.00382","UG_L","UG_L",","","","",","","","","" "" "" "" "" "" "" "" ""
"TW09D-20200707","537_MOD","07/14/20","19:13","N","NA","000","375-95-1","PERFLUORONONANOIC ACID (PFNA)","0.00524","","TRG","Yes","Y","","Y","0.00131","0.00191","0.00382","UG_L","UG_L","","",","","","","","" "" "" "" "" "" "" "" "" ""
"TW09D-20200707","537_MOD","07/14/20","19:13","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","0.349","","TRG","Yes","Y","","Y","0.00131","0.00191","0.00382","UG_L","UG_L","",","","","",","","","","","",""

"TW09D-20200707","537 MOD","07/14/20","19:13","N","NA","000","756426-58-1","9-
CHLOROHEXADECAFLUORO-3-OXANONE-1-SULFONIC ACID (9C1-
PF3ONS)","","","TRG","Yes","N","U","Y","0.00131","0.00191","0.00382","UG_L","UG_L","","","",","","","","",""," " "" "" "" "" "" "" ""
"TW09D-20200707","537_MOD","07/14/20","19:13","N","NA","000","335-76-2","PERFLUORODECANOIC ACID (PFDA)","0.00377","","TRG","Yes","Y","J","Y","0.00131","0.00191","0.00382","UG_L","UG_L",","","","",","",""," " "" "" "" "" "" """ "" "" ""
"TW09D-20200707","537_MOD","07/14/20","19:13","N","NA","000","2355-31-
9","MeFOSAA","",",","TRG","Yes","N","U","Y","0.00131","0.00191","0.00382","UG_L","UG_L",","","","",","",""," """" "" "" "" "" "" "" "" ""
"TW09D-20200707","537_MOD","07/14/20","19:13","N","NA","000","2991-50-
6","EtFOSAA","",",",TRG","Yes","N","U","Y","0.00131","0.00191","0.00382","UG_L","UG_L","","",","","","",","", "" "" "" "" "" "" "" "" ""
"TW09D-20200707","537_MOD","07/14/20","19:13","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC
ACID
(PFUNA)","",",","TRG","Yes","N","U","Y","0.00131","0.00191","0.00382","UG_L","UG_L",","","",","","","","","," ","" "" "" "" "" "" ""
"TW09D-20200707","537 MOD","07/14/20","19:13","N","NA","000","763051-92-9","11-
CHLOROEICOSAFLUORO-3-OXAUNDECANE-1-SULFONIC ACID (11Cl-
PF3OUdS)","",",","TRG","Yes","N","U","Y","0.00131","0.00191","0.00382","UG_L","UG_L","",","","","",","","","",

"TW09D-20200707","537_MOD","07/14/20","19:13","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
(PFDOA)","",",""TRG","Yes","N","U","Y","0.00131","0.00191","0.00382","UG_L","UG_L",","","","",","","","","","

8","PFTrDA","",",",TRG","Yes","N","U","Y","0.00131","0.00191","0.00382","UG_L","UG_L","",","","","",","","","

"TW09D-20200707","537 MOD","07/14/20","19:13","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.00131","0.00191","0.00382","UG_L","UG_L","","","",","","","","","

"TW09D-20200707","537_MOD","07/14/20","19:13","N","NA","000","13C3-PFBS","13C3-
PFBS","75.0","","IS","Yes","Y","","Y",","","","PCT_REC","","",","","100","75.0","75.0","","",","","","50","150","", " 11 ll " ll
"TW09D-20200707","537_MOD","07/14/20","19:13","N","NA","000","13C3-HFPO-DA","13C3-HFPO-
DA","64.6","","IS","Yes","Y","","Y","","","","PCT_REC",","","",","100","64.6","64.6","",","","",","50","150","","" "'" "'"
"TW09D-20200707","537_MOD","07/14/20","19:13","N","NA","000","13C2-PFHxA","13C2-
PFHxA","69.8","","IS","Yes","Y",","Y","",","","PCT_REC","","",","","100","69.8","69.8","",","","",","50","150"," " "" "" ""
"TW09D-20200707","537_MOD","07/14/20","19:13","N","NA","000","13C4-PFHpA","13C4-
PFHpA","69.1","","IS","Yes","Y",","Y","",","","PCT_REC","","",","","100","69.1","69.1","",","","","","50","150"," " "" "" ""
"TW09D-20200707","537_MOD","07/14/20","19:13","N","NA","000","13C3-PFHxS","13C3-
PFHxS","75.4","","IS","Yes","Y","","Y","",","","PCT_REC",","","","","100","75.4","75.4",","","",","","50","150"," " "" "" ""
"TW09D-20200707","537_MOD","07/14/20","19:13","N","NA","000","13C5-PFNA","13C5-
PFNA","62.9","","IS","Yes","Y","","Y","","",","PCT_REC","","",","","100","62.9","62.9","","","",","","50","150","" "" "" ""
"TW09D-20200707","537_MOD","07/14/20","19:13","N","NA","000","13C2-PFOA","13C2-
PFOA","69.9","","IS","Yes","Y","","Y","","",","PCT_REC","","","","","100","69.9","69.9",","","",","","50","150","" "" "" ""
"TW09D-20200707","537_MOD","07/14/20","19:13","N","NA","000","13C8-PFOS","13C8-
PFOS","68.1","","IS","Yes","Y",","Y","",","","PCT_REC","","",","","100","68.1","68.1","","",","","","50","150","", "" "" ""
"TW09D-20200707","537_MOD","07/14/20","19:13","N","NA","000","13C2-PFDA","13C2-
PFDA","64.8","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","64.8","64.8","","","",","","50","150","" "" "" ""
"TW09D-20200707","537_MOD","07/14/20","19:13","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","53.8","","IS","Yes","Y","","Y","",","","PCT_REC","",","","","100","53.8","53.8","","",","","","50","15 0","",","",""
"TW09D-20200707","537_MOD","07/14/20","19:13","N","NA","000","13C2-PFUnA","13C2-
PFUnA","56.6","","IS","Yes","Y",",""Y","",","","PCT_REC","","",","","100","56.6","56.6","",","","","","50","150"," ","" "" ""
"TW09D-20200707","537_MOD","07/14/20","19:13","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","42.0","","IS","Yes","Y","H","Y","",","","PCT_REC","",","","","100","42.0","42.0","","",","","","50","1 50","","*","",""
"TW09D-20200707","537_MOD","07/14/20","19:13","N","NA","000","13C2-PFDoA","13C2-
PFDoA","38.5","","IS","Yes","Y","H","Y","",","","PCT_REC","","",","","100","38.5","38.5","",","","","","50","150" "" "*" "" ""
"TW09D-20200707","537_MOD","07/14/20","19:13","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","11.4","","IS","Yes","Y","H","Y","",","","PCT_REC","","",","","100","11.4","11.4","",","","","","50","15 0","","*","",""
"TW22D-20200707","537_MOD","07/14/20","19:23","N","NA","000","375-73-
5","PFBS","0.209","","TRG","Yes","Y","","Y","0.00127","0.00186","0.00372","UG_L","UG_L","",","","","",","","", "" "" "" "" "" "" "" "" ""
"TW22D-20200707","537_MOD","07/14/20","19:23","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID (PFHXA)","1.00","","TRG","Yes","Y","","Y","0.00127","0.00186","0.00372","UG_L","UG_L","","",","","","",","","
"TW22D-20200707","537 MOD","07/14/20","19:23","N","NA","000","13252-13-6","HEXAFLUOROPROPYLENE OXIDE DIMER ACID (HFPPO-
DA)","",",",TRG","Yes","N","U","Y","0.00224","0.00279","0.00372","UG_L","UG_L","",","","","",","","","",",""," " "" "" "" "" ""
"TW22D-20200707","537 MOD","07/14/20","19:23","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID (PFHPA)","0.363","","TRG","Yes","Y","","Y","0.00127","0.00186","0.00372","UG_L","UG_L","","","","",","","","","

"TW22D-20200707","537 MOD","07/14/20","19:23","N","NA","000","919005-14-4","4,8-DIOXA-3H-
PERFLUORONONANOIC ACID
(ADONA)","",","TRG","Yes","N","U","Y","0.00127","0.00186","0.00372","UG_L","UG_L","","","",","","","","","", "" "" "" "" "" "" "" ""
"TW22D-20200707","537_MOD","07/14/20","19:23","N","NA","000","355-46-
4","PERFLUOROHEXANESULFONIC ACID
(PFHXS)","0.886","","TRG","Yes","Y","","Y","0.00127","0.00186","0.00372","UG_L","UG_L","","","",","","","",""," " "" "" "" "" "" "" "" ""
"TW22D-20200707","537_MOD","07/14/20","19:23","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID (PFOA)","0.961","","TRG","Yes","Y","","Y","0.00127","0.00186","0.00372","UG_L","UG_L","","",","","","","","","" "" "", "","" "" "", "" ""
"TW22D-20200707","537_MOD","07/14/20","19:23","N","NA","000","375-95-1","PERFLUORONONANOIC ACID (PFNA)","0.00496","","TR̄G","Yes","Y","","Y","0.00127","0.00186","0.00372","UG_L","UG_L","",","","","","","","" ""
"TW22D-20200707","537_MOD","07/14/20","19:23","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","0.444","","TRG","Yes","Y","","Y","0.00127","0.00186","0.00372","UG_L","UG_L","",","","","",","","","",","",""

"TW22D-20200707","537_MOD","07/14/20","19:23","N","NA","000","756426-58-1","9-
CHLOROHEXADECAFLUORO-3-OXANONE-1-SULFONIC ACID (9Cl-
PF3ONS)","","","TRG","Yes","N","U","Y","0.00127","0.00186","0.00372","UG_L","UG_L","","","",","","","",","","

"TW22D-20200707","537 MOD","07/14/20","19:23","N","NA","000","335-76-2","PERFLUORODECANOIC ACID (PFDA)","0.00303","","TRG","Yes","Y","J","Y","0.00127","0.00186","0.00372","UG_L","UG_L",","","","","","",""," " "" "" "" "" "" "" "" "" ""
"TW22D-20200707","537_MOD","07/14/20","19:23","N","NA","000","2355-31-
9","MeFOSAA","",",",TRG","Yes","N","U","Y","0.00127","0.00186","0.00372","UG_L","UG_L","",","","","","","","

"TW22D-20200707","537 MOD","07/14/20","19:23","N","NA","000","2991-50-
6","EtFOSAA","",",",TRG","Yes","N","U","Y","0.00127","0.00186","0.00372","UG_L","UG_L","","",","","","",","", "" "" "" "" "" "" "" "" ""
"TW22D-20200707","537_MOD","07/14/20","19:23","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID
(PFUNA)","",",","TRG","Yes","N","U","Y","0.00127","0.00186","0.00372","UG_L","UG_L","","",","","","","",",""," " "" "" "" "" "" "" ""
"TW22D-20200707","537_MOD","07/14/20","19:23","N","NA","000","763051-92-9","11-
CHLOROEICOSAFLUORO-3-OXAUNDECANE-1-SULFONIC ACID (11Cl-
PF3OUdS)","",",",TRG","Yes","N","U","Y","0.00127","0.00186","0.00372","UG_L","UG_L","",","","","",","","","", "" "" "" "" "" "" "" ""
"TW22D-20200707","537_MOD","07/14/20","19:23","N","NA","000","307-55-1","PERFLUORODODECANOIC

ACID

(PFDOA)","",",","TRG","Yes","N","U","Y","0.00127","0.00186","0.00372","UG_L","UG_L","","","",","","","","","","

"TW22D-20200707","537_MOD","07/14/20","19:23","N","NA","000","72629-94-
8","PFTrDA","",",","TRG","Yes","N","U","Y","0.00127","0.00186","0.00372","UG_L","UG_L","",","","","",","","","

"TW22D-20200707","537_MOD","07/14/20","19:23","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.00127","0.00186","0.00372","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" " " "" ""
"TW22D-20200707","537_MOD","07/14/20","19:23","N","NA","000","13C3-PFBS","13C3-
PFBS","72.4","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","72.4","72.4","","","","","","50","150","", "" "" ""
"TW22D-20200707","537_MOD","07/14/20","19:23","N","NA","000","13C3-HFPO-DA","13C3-HFPO-
DA","65.4","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","65.4","65.4","","","","","","50","150","","" "" ""
"TW22D-20200707","537_MOD","07/14/20","19:23","N","NA","000","13C2-PFHxA","13C2-
PFHxA","68.6","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","68.6","68.6","","","","","","50","150"," " "" "" ""
"TW22D-20200707","537_MOD","07/14/20","19:23","N","NA","000","13C4-PFHpA","13C4-
PFHpA","70.2","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","70.2","70.2","","","","",","50","150"," " "" "" ""
"TW22D-20200707","537_MOD","07/14/20","19:23","N","NA","000","13C3-PFHxS","13C3-
PFHxS","70.5","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","70.5","70.5","","","","","","50","150"," " "" "" ""
"TW22D-20200707","537_MOD","07/14/20","19:23","N","NA","000","13C5-PFNA","13C5-
PFNA","64.5","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","64.5","64.5","","","",","","50","150","" "" "" ""
"TW22D-20200707","537_MOD","07/14/20","19:23","N","NA","000","13C2-PFOA","13C2-
PFOA","70.7","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","70.7","70.7","","","","","","50","150","" "" "" ""
"TW22D-20200707","537_MOD","07/14/20","19:23","N","NA","000","13C8-PFOS","13C8-
PFOS","64.2","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","64.2","64.2","","","","","","50","150","", " " " " ""
"TW22D-20200707","537_MOD","07/14/20","19:23","N","NA","000","13C2-PFDA","13C2-
PFDA","57.3","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","57.3","57.3","","","",","","50","150","" "" "" ""
"TW22D-20200707","537_MOD","07/14/20","19:23","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","30.9","","IS","Yes","Y","H","Y","","","","PCT_REC","","","","","100","30.9","30.9","","","","","","50"," 150","","*","",""
"TW22D-20200707","537_MOD","07/14/20","19:23","N","NA","000","13C2-PFUnA","13C2-
PFUnA","35.7","","IS","Yes","Y","H","Y","","","","PCT_REC","","","","","100","35.7","35.7","","","","","","50","150" "" "*" "" ""
"TW22D-20200707","537_MOD","07/14/20","19:23","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","23.3","","IS","Yes","Y","H","Y","","","","PCT_REC","","","","","100","23.3","23.3","","","","","","50","1
50","","*","",""
"TW22D-20200707","537_MOD","07/14/20","19:23","N","NA","000","13C2-PFDoA","13C2-
PFDoA","13.5","","IS","Yes","Y","H","Y","","","","PCT_REC","","","","","100","13.5","13.5","","","","","","50","150" "" "*" "" ""
"TW22D-20200707","537 MOD","07/14/20","19:23","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","6.30","","IS","Yes","Y","H","Y","","","","PCT_REC","","","","","100","6.30","6.30","","","","","","50","15 0","","*","",""
"EB06-20200708","537_MOD","07/14/20","19:45","N","NA","000","375-73-
5","PFBS","","","TRG","Yes","N","U","Y","0.00134","0.00196","0.00392","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"EB06-20200708","537_MOD","07/14/20","19:45","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID (PFHXA)","","","TRG","Yes","N","U","Y","0.00134","0.00196","0.00392","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"EB06-20200708","537_MOD","07/14/20","19:45","N","NA","000","13252-13-6","HEXAFLUOROPROPYLENE OXIDE DIMER ACID (HFPO-
DA)","","","TRG","Yes","N","U","Y","0.00236","0.00294","0.00392","UG_L","UG_L","","","","","","","","","","","","
"EB06-20200708","537_MOD","07/14/20","19:45","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID (PFHPA)","","","TRG","Yes","N","U","Y","0.00134","0.00196","0.00392","UG_L","UG_L","","","","","","","","","","" "" "" "" "" "" "" ""
"EB06-20200708","537_MOD","07/14/20","19:45","N","NA","000","919005-14-4","4,8-DIOXA-3H-
PERFLUORONONANOIC ACID
(ADONA)","","","TRG","Yes","N","U","Y","0.00134","0.00196","0.00392","UG_L","UG_L","","","","","","","","","", " " " " " "" "" " "" "" ""
"EB06-20200708","537_MOD","07/14/20","19:45","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC ACID
(PFHXS)","","","TRG","Yes","N","U","Y","0.00134","0.00196","0.00392","UG_L","UG_L","","","","","","","","","","" "" "" "" "" "" "" ""
"EB06-20200708","537_MOD","07/14/20","19:45","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID (PFOA)","","","TRG","Yes","N","U","Y","0.00134","0.00196","0.00392","UG_L","UG_L","","","","","","","","","","", " " "" "" "" "" "" ""
"EB06-20200708","537_MOD","07/14/20","19:45","N","NA","000","375-95-1","PERFLUORONONANOIC ACID (PFNA)","","","TRG","Yes","N","U","Y","0.00134","0.00196","0.00392","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" " "" ""
"EB06-20200708","537 MOD","07/14/20","19:45","N","NA","000","1763-23-
1","HEPTADECAFLUŌROACTANESULFONIC ACID SOLUTION
","","","TRG","Yes","N","U","Y","0.00134","0.00196","0.00392","UG_L","UG_L","","","","","","","","","","","","",""," " "" " " " ""
"EB06-20200708","537_MOD","07/14/20","19:45","N","NA","000","756426-58-1","9-
CHLOROHEXADECAFLUORO-3-OXANONE-1-SULFONIC ACID (9Cl-
PF3ONS)","","","TRG","Yes","N","U","Y","0.00134","0.00196","0.00392","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"EB06-20200708","537_MOD","07/14/20","19:45","N","NA","000","335-76-2","PERFLUORODECANOIC ACID (PFDA)","","","TRG","Yes","N","U","Y","0.00134","0.00196","0.00392","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" " "" ""
"EB06-20200708","537_MOD","07/14/20","19:45","N","NA","000","2355-31-
9","MeFOSAA","","","TRG","Yes","N","U","Y","0.00134","0.00196","0.00392","UG_L","UG_L","","","","","","",""," " "" "" "" "" "" "" "" "" ""
"EB06-20200708","537_MOD","07/14/20","19:45","N","NA","000","2991-50-
6","EtFOSAA","","","TR̄","Yes","N","U","Y","0.00134","0.00196","0.00392","UG_L","UG_L","","","","","","","","", "","" "" "" "" " "" "" "" ""
"EB06-20200708","537_MOD","07/14/20","19:45","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC
ACID
(PFUNA)","","","TRG","Yes","N","U","Y","0.00134","0.00196","0.00392","UG_L","UG_L","","","","","","","","",""," ","",""," "" " "","","
"EB06-20200708","537_MOD","07/14/20","19:45","N","NA","000","763051-92-9","11-CHLOROEICOSAFLUORO-3-OXAUNDECANE-1-SULFONIC ACID (11Cl-
PF3OUdS)","","","TRG","Yes","N","U","Y","0.00134","0.00196","0.00392","UG_L","UG_L","","","","","","","","","", " " " " " "" " " " "" "" ""
"EB06-20200708","537_MOD","07/14/20","19:45","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID (PFDOA)","","","TRG","Yes","N","U","Y","0.00134","0.00196","0.00392","UG_L","UG_L","","","","","","","","",""," ","",","","","","","
"EB06-20200708","537_MOD","07/14/20","19:45","N","NA","000","72629-94-
8","PFTrDA","","","TRG","Yes","N","U","Y","0.00134","0.00196","0.00392","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"EB06-20200708","537_MOD","07/14/20","19:45","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.00134","0.00196","0.00392","UG_L","UG_L","","","","","","","",""," ","","","","","","","" ""
"EB06-20200708","537_MOD","07/14/20","19:45","N","NA","000","13C3-PFBS","13C3-
PFBS","71.2","","IS","Yes","Y","","Y","",","","PCT_REC","",","","","100","71.2","71.2","",","",","","50","150","",
"EB06-20200708","537_MOD","07/14/20","19:45","N","NA","000","13C3-HFPO-DA","13C3-HFPO-
DA","70.4","","IS","Yes","Y","","Y","","",","PCT_REC","","","",","100","70.4","70.4","","","","","","50","150","","" "" ""
"EB06-20200708","537 MOD","07/14/20","19:45","N","NA","000","13C2-PFHxA","13C2-
PFHxA","66.5","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","66.5","66.5","","","","","","50","150"," " "" "" ""
"EB06-20200708","537_MOD","07/14/20","19:45","N","NA","000","13C4-PFHpA","13C4-
PFHpA","68.8","","IS","Yes","Y","","Y","","","","PCT_REC","",","","","100","68.8","68.8","","","","",","50","150"," " "" "" ""
"EB06-20200708","537 MOD","07/14/20","19:45","N","NA","000","13C3-PFHxS","13C3-
PFHxS","74.1","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","74.1","74.1","","","","","","50","150","
" "" "" ""
"EB06-20200708","537_MOD","07/14/20","19:45","N","NA","000","13C5-PFNA","13C5-
PFNA","65.3","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","65.3","65.3","","","","","","50","150","" "" "" ""
"EB06-20200708","537_MOD","07/14/20","19:45","N","NA","000","13C2-PFOA","13C2-
PFOA","71.3","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","71.3","71.3","","","","","","50","150","" "'" "t" ""
"EB06-20200708","537_MOD","07/14/20","19:45","N","NA","000","13C8-PFOS","13C8-
PFOS","72.0","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","72.0","72.0","","","","","","50","150","", "" "" ""
"EB06-20200708","537_MOD","07/14/20","19:45","N","NA","000","13C2-PFDA","13C2-
PFDA","65.4","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","65.4","65.4","","","","","","50","150","" "" "" ""
"EB06-20200708","537_MOD","07/14/20","19:45","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","58.9","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","58.9","58.9","","","","","","50","15 0","","","",""
"EB06-20200708","537_MOD","07/14/20","19:45","N","NA","000","13C2-PFUnA","13C2-
PFUnA","66.2","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","66.2","66.2","","","","","","50","150"," " "" "" ""
"EB06-20200708","537_MOD","07/14/20","19:45","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","51.8","","IS","Yes","Y","","Y","","",","PCT_REC","","",","","100","51.8","51.8","","","","",","50","150
" "" "" "" " ""
"EB06-20200708","537_MOD","07/14/20","19:45","N","NA","000","13C2-PFDoA","13C2-
PFDoA","59.4","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","59.4","59.4","","","","","","50","150"," " "" "" ""
"EB06-20200708","537_MOD","07/14/20","19:45","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","59.6","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","59.6","59.6","","","","","","50","150" "" "" "" ""
"TW23D-20200708","537_MOD","07/14/20","19:55","N","NA","000","375-73-
5","PFBS","0.711","","TRG","Yes","Y","","Y","0.00123","0.00180","0.00360","UG_L","UG_L","","","","","","","","", "" "" "" "" "" "" "" "" ""
"TW23D-20200708","537_MOD","07/15/20","15:20","N","NA","DL1","307-24-4","PERFLUOROHEXANOIC ACID (PFHXA)","2.98","","TRG","Yes","Y","D","Y","0.0123","0.0180","0.0360","UG_L","UG_L","","","","","","","","",""," ","","","","","","",""
"TW23D-20200708","537_MOD","07/14/20","19:55","N","NA","000","13252-13-6","HEXAFLUOROPROPYLENE OXIDE DIMER ACID (HFPO-
DA)","",",",TRG","Yes","N","U","Y","0.00217","0.00270","0.00360","UG_L","UG_L","",","","","",","","","",",""," " "r" "t" "'r "'" ""
"TW23D-20200708","537 MOD","07/14/20","19:55","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID (PFHPA)","0.772","","TRḠ","Yes","Y","","Y","0.00123","0.00180","0.00360","UG_L","UG_L","",","","",","","","","

"TW23D-20200708","537_MOD","07/14/20","19:55","N","NA","000","919005-14-4","4,8-DIOXA-3H-

PERFLUORONONANOIC ACID

(ADONA)","","","TRG","Yes","N","U","Y","0.00123","0.00180","0.00360","UG_L","UG_L","","","","","","","","","", "" "" "" "" " " " " " "" ""
"TW23D-20200708","537_MOD","07/15/20","15:20","N","NA","DL1","355-46-
4","PERFLUOROHEXANESULFONIC ACID
(PFHXS)","3.87","","TRG","Yes","Y","D","Y","0.0123","0.0180","0.0360","UG_L","UG_L","","","","","","","","","","

"TW23D-20200708","537_MOD","07/15/20","15:20","N","NA","DL1","335-67-1","PERFLUOROOCTANOIC ACID (PFOA)","10.8","","TRG","Yes","Y","D","Y","0.0123","0.0180","0.0360","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" " "" ""
"TW23D-20200708","537_MOD","07/14/20","19:55","N","NA","000","375-95-1","PERFLUORONONANOIC ACID (PFNA)","0.00760","","TRG","Yes","Y","","Y","0.00123","0.00180","0.00360","UG_L","UG_L","","","","","","","",""

"TW23D-20200708","537_MOD","07/14/20","19:55","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","1.32","","TRG","Yes","Y","","Y","0.00123","0.00180","0.00360","UG_L","UG_L","","","","","","","","","","","",""," " "" "" "" ""
"TW23D-20200708","537_MOD","07/14/20","19:55","N","NA","000","756426-58-1","9-
CHLOROHEXADECAFLUORO-3-OXANONE-1-SULFONIC ACID (9Cl-
PF3ONS)","","","TRG","Yes","N","U","Y","0.00123","0.00180","0.00360","UG L","UG L","","","","","","","","",""," " "" "" "" "" "" "" ""
"TW23D-20200708","537_MOD","07/14/20","19:55","N","NA","000","335-76-2","PERFLUORODECANOIC ACID (PFDA)","","","TRG","Yes","N","U","Y","0.00123","0.00180","0.00360","UG_L","UG_L","","","","","","","","","","",

"TW23D-20200708","537 MOD","07/14/20","19:55","N","NA","000","2355-31-
9","MeFOSAA","","","TRG","Yes","N","U","Y","0.00123","0.00180","0.00360","UG_L","UG_L","","","","","","","","

"TW23D-20200708","537_MOD","07/14/20","19:55","N","NA","000","2991-50-
6","EtFOSAA","","","TRG","Yes","N","U","Y","0.00123","0.00180","0.00360","UG_L","UG_L","","","","","","","","",

"TW23D-20200708","537_MOD","07/14/20","19:55","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC
ACID
(PFUNA)","","","TRG","Yes","N","U","Y","0.00123","0.00180","0.00360","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"TW23D-20200708","537_MOD","07/14/20","19:55","N","NA","000","763051-92-9","11-
CHLOROEICOSAFLUORO-3-OXAUNDECANE-1-SULFONIC ACID (11Cl-
PF3OUdS)","","","TRG","Yes","N","U","Y","0.00123","0.00180","0.00360","UG_L","UG_L","","","","","","","","","",

"TW23D-20200708","537_MOD","07/14/20","19:55","N","NA","000","307-55-1","PERFLUORODODECANOIC
ACID
(PFDOA)","","","TRG","Yes","N","U","Y","0.00123","0.00180","0.00360","UG_L","UG_L","","","","","","","","","","

"TW23D-20200708","537_MOD","07/14/20","19:55","N","NA","000","72629-94-
8","PFTrDA","","","TRG","Yes","N","U","Y","0.00123","0.00180","0.00360","UG_L","UG_L","","","","","","","","","

"TW23D-20200708","537_MOD","07/14/20","19:55","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.00123","0.00180","0.00360","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"TW23D-20200708","537 MOD","07/14/20","19:55","N","NA","000","13C3-PFBS","13C3-
PFBS","62.6","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","62.6","62.6","","","","","","50","150","", "t" "t" "t"
"TWُ33D-20200708","537_MOD","07/14/20","19:55","N","NA","000","13C3-HFPO-DA","13C3-HFPO-
DA","64.7","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","64.7","64.7","","","","","","50","150","","" "'"' "'"
"TW23D-20200708","537_MOD","07/15/20","15:20","N","NA","DL1","13C2-PFHxA","13C2-
PFHxA","71.5","","IS","Yes","Y","D","Y","","",","PCT_REC","","",","","100","71.5","71.5","","","","","","50","150" "" "" "" ""
"TW23D-20200708","537_MOD","07/14/20","19:55","N","NA","000","13C4-PFHpA","13C4-
PFHpA","60.8","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","60.8","60.8","","","","","","50","150"," " "" "" ""
"TW23D-20200708","537_MOD","07/15/20","15:20","N","NA","DL1","13C3-PFHxS","13C3-
PFHxS","66.8","","IS","Yes","Y","D","Y","","","","PCT_REC","","",","","100","66.8","66.8","","","","","","50","150" "" "" "" ""
"TW23D-20200708","537_MOD","07/14/20","19:55","N","NA","000","13C5-PFNA","13C5-
PFNA","61.0","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","61.0","61.0","","","","","","50","150","" "" "" ""
"TW23D-20200708","537_MOD","07/15/20","15:20","N","NA","DL1","13C2-PFOA","13C2-
PFOA","77.0","","IS","Yes","Y","D","Y","","","","PCT_REC","","","","","100","77.0","77.0","","","","","","50","150", "" "" "" ""
"TW23D-20200708","537_MOD","07/14/20","19:55","N","NA","000","13C8-PFOS","13C8-
PFOS","64.0","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","64.0","64.0","","","","","","50","150","", "" "" ""
"TW23D-20200708","537_MOD","07/14/20","19:55","N","NA","000","13C2-PFDA","13C2-
PFDA","59.5","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","59.5","59.5","","","",","","50","150","" "" "" ""
"TW23D-20200708","537_MOD","07/14/20","19:55","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","53.2","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","53.2","53.2","","","","","","50","15 0","","","",""
"TW23D-20200708","537_MOD","07/14/20","19:55","N","NA","000","13C2-PFUnA","13C2-
PFUnA","50.7","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","50.7","50.7","","","","","","50","150"," " "" "" ""
"TW23D-20200708","537_MOD","07/14/20","19:55","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","48.0","","IS","Yes","Y","H","Y","","","","PCT_REC","","","","","100","48.0","48.0","","","","","","50","1 50","","*","",""
"TW23D-20200708","537_MOD","07/14/20","19:55","N","NA","000","13C2-PFDoA","13C2-
PFDoA","35.0","","IS","Yes","Y","H","Y","","","","PCT_REC","","","","","100","35.0","35.0","","","","","","50","150" "" " "*" "" ""
"TW23D-20200708","537_MOD","07/14/20","19:55","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","5.40","","IS","Yes","Y","H","Y","","","","PCT_REC","","","","","100","5.40","5.40","","","","","","50","15 0","","*","",""
"TW24D-20200708","537_MOD","07/15/20","15:41","N","NA","000","375-73-
5","PFBS","0.0448","","TR̄G","Yes","Y","","Y","0.00122","0.00177","0.00355","UG_L","UG_L","","","","","","","","" "" "" "" "" "" "" "" "" ""
"TW24D-20200708","537_MOD","07/15/20","15:41","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID (PFHXA)","0.332","","TRG","Yes","Y","","Y","0.00122","0.00177","0.00355","UG_L","UG_L","","","","","","","","", "" "" "" "" "" "" " "" "" ""
"TW24D-20200708","537_MOD","07/15/20","15:41","N","NA","000","13252-13-6","HEXAFLUOROPROPYLENE OXIDE DIMER ACID (HFPO-
DA)","","","TRG","Yes","N","U","Y","0.00214","0.00266","0.00355","UG_L","UG_L","","","","","","","","",","",""," ","","" "" "" ""
"TW24D-20200708","537_MOD","07/15/20","15:41","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID (PFHPA)","0.0561","","TRG","Yes","Y","","Y","0.00122","0.00177","0.00355","UG_L","UG_L","","","","","","","","" "" "" "" "" "" " "" "" "" ""
"TW24D-20200708","537_MOD","07/15/20","15:41","N","NA","000","919005-14-4","4,8-DIOXA-3H-
PERFLUORONONANOIC ACID
(ADONA)","","","TRG","Yes","N","U","Y","0.00122","0.00177","0.00355","UG_L","UG_L","","","","","","","","","", "" "" "" "" "" "" "" ""
"TW24D-20200708","537_MOD","07/15/20","15:41","N","NA","000","355-46-

4","PERFLUOROHEXANESULFONIC ACID

(PFHXS)","0.248","","TRG","Yes","Y","","Y","0.00122","0.00177","0.00355","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"TW24D-20200708","537_MOD","07/15/20","15:41","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID (PFOA)","1.55","","TRG","Yes","Y","","Y","0.00122","0.00177","0.00355","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"TW24D-20200708","537 MOD","07/15/20","15:41","N","NA","000","375-95-1","PERFLUORONONANOIC ACID (PFNA)","","","TRG","Yes","N","U","Y","0.00122","0.00177","0.00355","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" "" ""
"TW24D-20200708","537_MOD","07/15/20","15:41","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","0.0326","","TRG","Yes","Y","","Y","0.00122","0.00177","0.00355","UG_L","UG_L","","","","","","","","","","",""," " "" "" "" "" ""
"TW24D-20200708","537_MOD","07/15/20","15:41","N","NA","000","756426-58-1","9-
CHLOROHEXADECAFLUORO-3-OXANONE-1-SULFONIC ACID (9Cl-
PF3ONS)","","","TRG","Yes","N","U","Y","0.00122","0.00177","0.00355","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"TW24D-20200708","537_MOD","07/15/20","15:41","N","NA","000","335-76-2","PERFLUORODECANOIC ACID (PFDA)","","","TRG","Yes","N","U","Y","0.00122","0.00177","0.00355","UG_L","UG_L","","","","",","","","",","",

"TW24D-20200708","537_MOD","07/15/20","15:41","N","NA","000","2355-31-
9","MeFOSAA","","","TRG","Yes","N","U","Y","0.00122","0.00177","0.00355","UG_L","UG_L","","","","","","",""," ","","","", "", "", "", "", "", ""
"TW24D-20200708","537_MOD","07/15/20","15:41","N","NA","000","2991-50-
6","EtFOSAA","","","TRG","Yes","N","U","Y","0.00122","0.00177","0.00355","UG_L","UG_L","","","","","","","","", "" "" "" "" "" "" "" "" ""
"TW24D-20200708","537_MOD","07/15/20","15:41","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC
ACID
(PFUNA)","","","TRG","Yes","N","U","Y","0.00122","0.00177","0.00355","UG_L","UG_L","","","","","","","","",""," " "'" "'" "'" "'" "'" "" "'"
"TW24D-20200708","537_MOD","07/15/20","15:41","N","NA","000","763051-92-9","11-
CHLOROEICOSAFLUORO-3-OXAUNDECANE-1-SULFONIC ACID (11Cl-
PF3OUdS)","","","TRG","Yes","N","U","Y","0.00122","0.00177","0.00355","UG_L","UG_L","","","","","","","","","", "" "" "" "" "" "" "" ""
"TW24D-20200708","537_MOD","07/15/20","15:41","N","NA","000","307-55-1","PERFLUORODODECANOIC
ACID
(PFDOA)","","","TRG","Yes","N","U","Y","0.00122","0.00177","0.00355","UG_L","UG_L","","","","","","","","","","

"TW24D-20200708","537_MOD","07/15/20","15:41","N","NA","000","72629-94-
8","PFTrDA","","","TRG","Yes","N","U","Y","0.00122","0.00177","0.00355","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"TW24D-20200708","537_MOD","07/15/20","15:41","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.00122","0.00177","0.00355","UG_L","UG_L","","","","","","","",""," " "" "" "" "" "" "" "" ""
"TW24D-20200708","537_MOD","07/15/20","15:41","N","NA","000","13C3-PFBS","13C3-
PFBS","70.5","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","70.5","70.5","","","","","","50","150","", "" "" ""
"TW24D-20200708","537_MOD","07/15/20","15:41","N","NA","000","13C3-HFPO-DA","13C3-HFPO-
DA","66.9","","IS","Yes","Y","","Y","","",","PCT_REC","","","","","100","66.9","66.9","","","",","","50","150","","" "" ""
"TW24D-20200708","537_MOD","07/15/20","15:41","N","NA","000","13C2-PFHxA","13C2-
PFHxA","66.7","","IS","Yes","Y","","Y","","","","PCT REC","","","","","100","66.7","66.7","","","","","","50","150"," ","","","
"TW24D-20200708","537_MOD","07/15/20","15:41","N","NA","000","13C4-PFHpA","13C4-

PFHpA","63.0","","IS","Yes","Y","","Y","",","","PCT_REC","",","","","100","63.0","63.0","","",","","","50","150"," " "" "" ""
"TW24D-20200708","537_MOD","07/15/20","15:41","N","NA","000","13C3-PFHxS","13C3-
PFHxS","73.2","","IS","Yes","Y","","Y","",","","PCT_REC","",","","","100","73.2","73.2","",","","",","50","150"," " "" "" ""
"TW24D-20200708","537_MOD","07/15/20","15:41","N","NA","000","13C5-PFNA","13C5-
PFNA","65.5","","IS","Yes","Y","","Y","","",",",PCT_REC","","","","","100","65.5","65.5","","","",","","50","150","" "" "" ""
"TW24D-20200708","537_MOD","07/15/20","15:41","N","NA","000","13C2-PFOA","13C2-
PFOA","64.6","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","64.6","64.6","","",","","","50","150","" "" "" ""
"TW24D-20200708","537_MOD","07/15/20","15:41","N","NA","000","13C8-PFOS","13C8-
PFOS","70.8","","IS","Yes","Y",","Y","",","","PCT_REC","","",","","100","70.8","70.8","",","","","","50","150","", "" "" ""
"TW24D-20200708","537_MOD","07/15/20","15:41","N","NA","000","13C2-PFDA","13C2-
PFDA","67.3","","IS","Yes","Y","","Y","","",","PCT_REC","","",","","100","67.3","67.3","","","","",","50","150","" "" "" ""
"TW24D-20200708","537_MOD","07/15/20","15:41","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","63.6","","IS","Yes","Y","","Y","","",","PCT_REC","","",","","100","63.6","63.6","",","","",","50","15 0","","","",""
"TW24D-20200708","537_MOD","07/15/20","15:41","N","NA","000","13C2-PFUnA","13C2-
PFUnA","59.3","","IS","Yes","Y","","Y","",","","PCT_REC",","","","","100","59.3","59.3","","",","","","50","150"," " "" "" ""
"TW24D-20200708","537_MOD","07/15/20","15:41","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","50.2","","IS","Yes","Y","","Y","","","","PCT_REC",","","",","100","50.2","50.2","",","","","","50","150 " "" "" "" ""
"TW24D-20200708","537_MOD","07/15/20","15:41","N","NA","000","13C2-PFDoA","13C2-
PFDoA","45.9","","IS","Yes","Y","H","Y","",","","PCT_REC","",","","","100","45.9","45.9","","",","","","50","150" "" "*" "" ""
"TW24D-20200708","537 MOD","07/15/20","15:41","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","7.80","","IS","Yes","Y","H","Y","",","","PCT_REC","","",","","100","7.80","7.80","",","","","","50","15 0","","*",",""
"TW17D-20200708","537_MOD","07/14/20","20:16","N","NA","000","375-73-
5","PFBS","0.169","","TRG","Yes","Y","","Y","0.000844","0.00123","0.00246","UG_L","UG_L","",","","","","","",""

"TW17D-20200708","537_MOD","07/14/20","20:16","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID (PFHXA)","0.987","","TRG","Yes","Y","","Y","0.000844","0.00123","0.00246","UG_L","UG_L","","","",","","","",""

"TW17D-20200708","537_MOD","07/14/20","20:16","N","NA","000","13252-13-6","HEXAFLUOROPROPYLENE OXIDE DIMER ACID (HFPO-
DA)","",",",TRG","Yes","N","U","Y","0.00148","0.00185","0.00246","UG_L","UG_L","",","","","",","","","",",""," " "" "" "" "" ""
"TW17D-20200708","537_MOD","07/14/20","20:16","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID (PFHPA)","0.196","","TRG","Yes","Y","","Y","0.000844","0.00123","0.00246","UG_L","UG_L","",","","","",","","" "" "","","" "" "","","",""
"TW17D-20200708","537_MOD","07/14/20","20:16","N","NA","000","919005-14-4","4,8-DIOXA-3H-
PERFLUORONONANOIC̄ ACID
(ADONA)","",","TRG","Yes","N","U","Y","0.000844","0.00123","0.00246","UG_L","UG_L","",","","","",","","","" """,","","","","","",""
"TW17D-20200708","537_MOD","07/14/20","20:16","N","NA","000","355-46-
4","PERFLUOROHEXANESULFONIC ACID
(PFHXS)","0.990","","TRG","Yes","Y","","Y","0.000844","0.00123","0.00246","UG_L","UG_L","",","","","",","","" "" "" "" "" "" "" "" "" ""
"TW17D-20200708","537_MOD","07/15/20","15:51","N","NA","DL1","335-67-1","PERFLUOROOCTANOIC ACID
(PFOA)","3.87","","TRG","Yes","Y","D","Y","0.00422","0.00616","0.0123","UG_L","UG_L","",","","","",","","","",

"TW17D-20200708","537_MOD","07/14/20","20:16","N","NA","000","375-95-1","PERFLUORONONANOIC ACID (PFNA)","0.00194",",",TRG","Yes","Y","J","Y","0.000844","0.00123","0.00246","UG_L","UG_L","","","",","","","",

"TW17D-20200708","537 MOD","07/14/20","20:16","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","0.334","","TRG","Yes","Y","","Y","0.000844","0.00123","0.00246","UG_L","UG_L","","","","",","","","",","",""," " "" "" "" "" ""
"TW17D-20200708","537_MOD","07/14/20","20:16","N","NA","000","756426-58-1","9-
CHLOROHEXADECAFLUORO-3-OXANONE-1-SULFONIC ACID (9Cl-
PF3ONS)","","","TRG","Yes","N","U","Y","0.000844","0.00123","0.00246","UG_L","UG_L","","",","","","","","","", "" "" "" "" "" "" "" ""
"TW17D-20200708","537_MOD","07/14/20","20:16","N","NA","000","335-76-2","PERFLUORODECANOIC ACID (PFDA)","",",","TRG","Yes","N","U","Y","0.000844","0.00123","0.00246","UG_L","UG_L","","",","","","",","","","" "" "" "" "" "" "" ""
"TW17D-20200708","537_MOD","07/14/20","20:16","N","NA","000","2355-31-
9","MeFOSAA","","","TRG","Yes","N","U","Y","0.000844","0.00123","0.00246","UG_L","UG_L","","","",","","","", "" "" "" "" "", "", "" "","",""
"TW17D-20200708","537_MOD","07/14/20","20:16","N","NA","000","2991-50-
6","EtFOSAA","",",",TRḠ","Yes","N","U","Y","0.000844","0.00123","0.00246","UG_L","UG_L","","","",","","",""," " "" "" "" "" "" "" "" "" ""
"TW17D-20200708","537_MOD","07/14/20","20:16","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID
(PFUNA)","","","TRG","Yes","N","U","Y","0.000844","0.00123","0.00246","UG_L","UG_L","","",","","",","","","",

"TW17D-20200708","537_MOD","07/14/20","20:16","N","NA","000","763051-92-9","11-
CHLOROEICOSAFLUORO-3-OXAUNDECANE-1-SULFONIC ACID (11Cl-
PF3OUdS)","",",",TRG","Yes","N","U","Y","0.000844","0.00123","0.00246","UG_L","UG_L","","","",","","","",","

"TW17D-20200708","537_MOD","07/14/20","20:16","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID
(PFDOA)","","","TRG","Yes","N","U","Y","0.000844","0.00123","0.00246","UG_L","UG_L","",","","","",","","","", "" "" "" "" "" "" "" ""
"TW17D-20200708","537_MOD","07/14/20","20:16","N","NA","000","72629-94-
8","PFTrDA","",",",TRG","Yes","N","U","Y","0.000844","0.00123","0.00246","UG_L","UG_L","",","","","","","","", "" "" "" "" "" "" "" "" ""
"TW17D-20200708","537_MOD","07/14/20","20:16","N","NA","000","376-06-
7","PFTeDA","",",","TRG","Yes","N","U","Y","0.000844","0.00123","0.00246","UG_L","UG_L","",","","","","",","", "" "" "" "" "" "" "" "" ""
"TW17D-20200708","537_MOD","07/14/20","20:16","N","NA","000","13C3-PFBS","13C3-
PFBS","44.4","","IS","Yes","Y","H","Y","",","","PCT_REC","",","","","100","44.4","44.4","","",","","","50","150"," " "*" "" ""
"TW17D-20200708","537_MOD","07/14/20","20:16","N","NA","000","13C3-HFPO-DA","13C3-HFPO-
DA","39.6","","IS","Yes","Y","H","Y","","",","PCT_REC","",","","","100","39.6","39.6","",","","",","50","150","", "*" "" ""
"TW17D-20200708","537_MOD","07/14/20","20:16","N","NA","000","13C2-PFHxA","13C2-
PFHxA","42.2","","IS","Yes","Y","H","Y","",","","PCT_REC","",","","","100","42.2","42.2","","",","","","50","150" "" "*" "" ""
"TW17D-20200708","537_MOD","07/14/20","20:16","N","NA","000","13C4-PFHpA","13C4-
PFHpA","45.2","","IS","Yes","Y","H","Y","",","","PCT_REC","","",","","100","45.2","45.2","","",","","","50","150" "" "*" "" ""
"TW17D-20200708","537_MOD","07/14/20","20:16","N","NA","000","13C3-PFHxS","13C3-
PFHxS","44.2","","IS","Yes","Y","H","Y","",","","PCT_REC","",","","","100","44.2","44.2","","",","","","50","150"
"TW17D-20200708","537_MOD","07/14/20","20:16","N","NA","000","13C5-PFNA","13C5-
PFNA","41.9","","IS","Yes","Y","H","Y","","","","PCT_REC","","","","","100","41.9","41.9","","","","","","50","150", "" "*" "" ""
"TW17D-20200708","537_MOD","07/15/20","15:51","N","NA","DL1","13C2-PFOA","13C2-
PFOA","47.8","","IS","Yes","Y","D,
H","Y","","","","PCT_REC","","","","","100","47.8","47.8","","","","",","50","150","","*","",""
"TW17D-20200708","537_MOD","07/14/20","20:16","N","NA","000","13C8-PFOS","13C8-
PFOS","45.5","","IS","Yes","Y","H","Y","","","","PCT_REC","","","",","100","45.5","45.5","","","","","","50","150"," " "*" "" ""
"TW17D-20200708","537 MOD","07/14/20","20:16","N","NA","000","13C2-PFDA","13C2-
PFDA","39.0","","IS","Yes","Y","H","Y","","","","PCT_REC","","","","","100","39.0","39.0","","","","","","50","150", "" "*" "" ""
"TW17D-20200708","537_MOD","07/14/20","20:16","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","27.8","","IS","Yes","Y","H","Y","","","","PCT_REC","","","","","100","27.8","27.8","","","","",","50"," 150","","*","",""
"TW17D-20200708","537_MOD","07/14/20","20:16","N","NA","000","13C2-PFUnA","13C2-
PFUnA","28.3","","IS","Yes","Y","H","Y","","","","PCT_REC","","","","","100","28.3","28.3","","","","","","50","150" "" "*" "" ""
"TW17D-20200708","537_MOD","07/14/20","20:16","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","22.3","","IS","Yes","Y","H","Y","","","","PCT_REC","","","","","100","22.3","22.3","","","","","","50","1
50","","*","",""
"TW17D-20200708","537_MOD","07/14/20","20:16","N","NA","000","13C2-PFDoA","13C2-
PFDoA","15.3","","IS","Yes","Y","H","Y","","","","PCT_REC","","","","","100","15.3","15.3","","","","","","50","150" "" "*" "" ""
"TW17D-20200708","537_MOD","07/14/20","20:16","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","3.30","","IS","Yes","Y","H","Y","","","","PCT_REC","","","","","100","3.30","3.30","","","","","","50","15 0","","*","",""
"B0G0058-BLK1","537_MOD","07/14/20","18:20","N","NA","000","375-73-
5","PFBS","","","TRG","Yes","N","U","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"B0G0058-BLK1","537_MOD","07/14/20","18:20","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID (PFHXA)","","","TRG","Yes","N","U","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","","",","","",""," " "" "" " "" "" "" "" ""
"B0G0058-BLK1","537_MOD","07/14/20","18:20","N","NA","000","13252-13-6","HEXAFLUOROPROPYLENE OXIDE DIMER ACID (HFPO-
DA)","","","TRG","Yes","N","U","Y","0.00241","0.00300","0.00400","UG_L","UG_L","","","","","","","","","","","","

, , , , ,
"B0G0058-BLK1","537_MOD","07/14/20","18:20","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID (PFHPA)","",",",TRG","Yes","N","U","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","",","","","","","",""

"B0G0058-BLK1","537_MOD","07/14/20","18:20","N","NA","000","919005-14-4","4,8-DIOXA-3H-
PERFLUORONONANOIC ACID
(ADONA)","","","TRG","Yes","N","U","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","","","","","","", "" "" "" "" "" "" "" ""
"BOGOO058-BLK1","537_MOD","07/14/20","18:20","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC ACID
(PFHXS)","",",",TRG","Yes","N","U","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","",","","","",","","","" "" "" "" "" "" "" ""
"B0G0058-BLK1","537_MOD","07/14/20","18:20","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID (PFOA)","",",","TRG","Ȳes","N","U","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","",","",","","",","", "" "" "" "" "" "" ""
"B0G0058-BLK1","537_MOD","07/14/20","18:20","N","NA","000","375-95-1","PERFLUORONONANOIC ACID (PFNA)","","","TRG","Yes","N","U","Y","0.00137","0.00200","0.00400","UG_L","UG_L","",","","","",","","","","",

"B0G0058-BLK1","537_MOD","07/14/20","18:20","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","","","TRG","Yes","N","U","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","","","","","","","","","",""," " "" "" ""
"B0G0058-BLK1","537_MOD","07/14/20","18:20","N","NA","000","756426-58-1","9-
CHLOROHEXADECAFLUORO-3-OXANONE-1-SULFONIC ACID (9Cl-
PF3ONS)","","","TRG","Yes","N","U","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","","","","","",""," " "" "" "" " " "" "" ""
"B0G0058-BLK1","537_MOD","07/14/20","18:20","N","NA","000","335-76-2","PERFLUORODECANOIC ACID (PFDA)","","","TRG","Yes","N","U","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","","","","","","","", "" "" "" "" "" "" ""
"B0G0058-BLK1","537_MOD","07/14/20","18:20","N","NA","000","2355-31-
9","MeFOSAA","","","TRG","Yes","N","U","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","","","",""," " "" "" "" "" "" " " " " " " " ""
"B0G0058-BLK1","537_MOD","07/14/20","18:20","N","NA","000","2991-50-
6","EtFOSAA","","","TRG","Yes","N","U","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","","","","","",

"B0G0058-BLK1","537_MOD","07/14/20","18:20","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID
(PFUNA)","","","TRG","Yes","N","U","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","","","","","",""," " "" "" "" "" "" "" ""
"B0G0058-BLK1","537_MOD","07/14/20","18:20","N","NA","000","763051-92-9","11-CHLOROEICOSAFLUORO-3-OXAUNDECANE-1-SULFONIC ACID (11Cl-
PF3OUdS)","","","TRG","Yes","N","U","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","","","","","","",

"B0G0058-BLK1","537_MOD","07/14/20","18:20","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID (PFDOA)","","","TRG","Yes","N","U","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","",","","","",""," " "" "" "" "" "" "" ""
"B0G0058-BLK1","537_MOD","07/14/20","18:20","N","NA","000","72629-94-
8","PFTrDA",",",","TRG","Yes","N","U","Y","0.00137","0.00200","0.00400","UG_L","UG_L","",","","","",","",""," " "" "" "" "" "" "" "" ""
"B0G0058-BLK1","537_MOD","07/14/20","18:20","N","NA","000","376-06-
7","PFTeDA","","","TRG","Yes","N","U","Y","0.00137","0.00200","0.00400","UG_L","UG_L","",","","",","","",""," " "" "" "" "" "" "" "" ""
"B0G0058-BLK1","537_MOD","07/14/20","18:20","N","NA","000","13C3-PFBS","13C3-
PFBS","69.5","","IS","Yes","Y","","Y","",","","PCT_REC","",","","","100","69.5","69.5","","",","","","50","150","", "" "" ""
"B0G0058-BLK1","537_MOD","07/14/20","18:20","N","NA","000","13C3-HFPO-DA","13C3-HFPO-
DA","65.4","","IS","Yes","Y","","Y","","",","PCT_REC","","",","","100","65.4","65.4",","","","",","50","150","","" """""
"B0G0058-BLK1","537_MOD","07/14/20","18:20","N","NA","000","13C2-PFHxA","13C2-
PFHxA","67.9","","IS","Yes","Y",","Y","",","","PCT_REC","","",","","100","67.9","67.9","",","","","","50","150"," " "" "" ""
"B0G0058-BLK1","537_MOD","07/14/20","18:20","N","NA","000","13C4-PFHpA","13C4-
PFHpA","66.1","","IS","Yes","Y",","Y","",","","PCT_REC","","",","","100","66.1","66.1","",","","",","50","150"," ","" "" ""
"B0G0058-BLK1","537_MOD","07/14/20","18:20","N","NA","000","13C3-PFHxS","13C3-
PFHxS","74.9","","IS","Yes","Y","","Y","",","","PCT_REC",","","","","100","74.9","74.9",","","",","","50","150"," " "" "" ""
"B0G0058-BLK1","537_MOD","07/14/20","18:20","N","NA","000","13C5-PFNA","13C5-
PFNA","64.3","","IS","Ȳes","Y","","Y","","",","PCT_REC","","",","","100","64.3","64.3","","","",","","50","150","" "" "" ""
"B0G0058-BLK1","537_MOD","07/14/20","18:20","N","NA","000","13C2-PFOA","13C2-

PFOA","72.0","","IS","Yes","Y","","Y","","",","PCT_REC","","",","","100","72.0","72.0","","","",","","50","150","" "'" "t" "'"
"B0G0058-BLK1","537_MOD","07/14/20","18:20","N","NA","000","13C8-PFOS","13C8-
PFOS","63.4","","IS","Yes","Y",","Y","",","","PCT_REC","","",","","100","63.4","63.4","",","","","","50","150","", "" "" ""
"B0G0058-BLK1","537 MOD","07/14/20","18:20","N","NA","000","13C2-PFDA","13C2-
PFDA","60.3","","IS","Ȳes","Y","","Y","","",",",PCT_REC","","","","","100","60.3","60.3","","","",","","50","150","" "" "" ""
"B0G0058-BLK1","537_MOD","07/14/20","18:20","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","56.5","","IS","Yes","Y","","Y","",","","PCT_REC","","",","","100","56.5","56.5","",","","","","50","15 0","","","",""
"B0G0058-BLK1","537_MOD","07/14/20","18:20","N","NA","000","13C2-PFUnA","13C2-
PFUnA","57.4","","IS","Yes","Y","","Y","",","","PCT_REC","",","","","100","57.4","57.4","","",","","","50","150"," " "" "" ""
"B0G0058-BLK1","537_MOD","07/14/20","18:20","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","54.6","","IS","Yes","Y","","Y","","",","PCT_REC","","",","","100","54.6","54.6","",","","","","50","150 " "" "" "" ""
"B0G0058-BLK1","537_MOD","07/14/20","18:20","N","NA","000","13C2-PFDoA","13C2-
PFDoA","55.5","","IS","Yes","Y","","Y","",","","PCT REC","",","","","100","55.5","55.5","","",","","","50","150"," " "", "" ""
"B0G0058-BLK1","537_MOD","07/14/20","18:20","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","59.0","","IS","Yes","Y","","Y","",","","PCT_REC","",","","","100","59.0","59.0","","",","","","50","150"

"B0G0058-BS1","537_MOD","07/14/20","18:31","N","NA","000","375-73-
5","PFBS","0.0413","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","0.0400","0. 0413","103","","","","",","72","130","","","",""
"B0G0058-BS1","537_MOD","07/14/20","18:31","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID (PFHXA)","0.0434","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","",","0.0400","0. 0434","108","","","","","","72","129","","","",""
"B0G0058-BS1","537_MOD","07/14/20","18:31","N","NA","000","13252-13-6","HEXAFLUOROPROPYLENE OXIDE DIMER ACID (HFPO-
DA)","0.0413","","TRG","Yes","Y","","Y","0.00241","0.00300","0.00400","UG_L","UG_L","",","","0.0400","0.0413 ","103","","","",",",","70","130","","","",""
"B0G0058-BS1","537_MOD","07/14/20","18:31","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID (PFHPA)","0.0406","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","",","","0.0400","0. 0406","101","","","","","","72","130","","","",""
"B0G0058-BS1","537_MOD","07/14/20","18:31","N","NA","000","919005-14-4","4,8-DIOXA-3H-
PERFLUORONONANOIC ACID
(ADONA)","0.0397","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L",","","","0.0400","0 .0397","99.3","","","",","","70","130","",","",""
"B0G0058-BS1","537_MOD","07/14/20","18:31","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC ACID
(PFHXS)","0.0397","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","",","0.0400","0. 0397","99.1","","","","","","68","131","","","",""
"B0G0058-BS1","537_MOD","07/14/20","18:31","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID (PFOA)","0.0380","",""TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","",","0.0400","0.0 380","95.1","","","","","","71","133","","","",""
"B0G0058-BS1","537_MOD","07/14/20","18:31","N","NA","000","375-95-1","PERFLUORONONANOIC ACID (PFNA)","0.0410","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","",","0.0400","0.0 410","103","","","","","","69","130","","","",""
"B0G0058-BS1","537_MOD","07/14/20","18:31","N","NA","000","1763-23-
1","HEPTADECAFLŪOROACTANESULFONIC ACID SOLUTION
","0.0365","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","",","0.0400","0.0365","91 .2","","","","","","65","140","","","",""
"B0G0058-BS1","537_MOD","07/14/20","18:31","N","NA","000","756426-58-1","9-
CHLOROHEXADECĀFLUORO-3-OXANONE-1-SULFONIC ACID (9Cl-
PF3ONS)","0.0338","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","0.0400","0. 0338","84.5","","","","","","70","130","","","",""
"B0G0058-BS1","537_MOD","07/14/20","18:31","N","NA","000","335-76-2","PERFLUORODECANOIC ACID (PFDA)","0.0413","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","0.0400","0.0 413","103","","","","","","71","129","","","",""
"B0G0058-BS1","537_MOD","07/14/20","18:31","N","NA","000","2355-31-
9","MeFOSAA","0.0428","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","0.040 0","0.0428","107","","","","","","65","136","","","",""
"B0G0058-BS1","537_MOD","07/14/20","18:31","N","NA","000","2991-50-
6","EtFOSAA","0.0422","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","0.0400 ","0.0422","106","","","","","","61","135","","","",""
"B0G0058-BS1","537_MOD","07/14/20","18:31","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC ACID (PFUNA)","0.0396","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","0.0400","0. 0396","99.1","","","","","","69","133","","","",""
"B0G0058-BS1","537_MOD","07/14/20","18:31","N","NA","000","763051-92-9","11-CHLOROEICOSAFLUORO-3-OXAUNDECANE-1-SULFONIC ACID (11Cl-
PF3OUdS)","0.0393","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","0.0400"," 0.0393","98.1","","","","","","70","130","","","",""
"B0G0058-BS1","537_MOD","07/14/20","18:31","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID (PFDOA)","0.0431","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","0.0400","0. 0431","108","","","","","","72","134","","","",""
"B0G0058-BS1","537_MOD","07/14/20","18:31","N","NA","000","72629-94-
8","PFTrDA","0.0382","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","0.0400", "0.0382","95.6","","","","","","65","144","","","",""
"B0G0058-BS1","537_MOD","07/14/20","18:31","N","NA","000","376-06-
7","PFTeDA","0.0406","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","0.0400", "0.0406","102","","","","","","71","132","","","",""
"B0G0058-BS1","537_MOD","07/14/20","18:31","N","NA","000","13C3-PFBS","13C3-
PFBS","66.5","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","66.5","66.5","","","","","","50","150","", "" "" ""
"B0G0058-BS1","537_MOD","07/14/20","18:31","N","NA","000","13C3-HFPO-DA","13C3-HFPO-
DA","59.5","","IS","Yes","Y","","Y","","",","PCT_REC","","",","","100","59.5","59.5","","","",","","50","150","","" "" ""
"B0G0058-BS1","537_MOD","07/14/20","18:31","N","NA","000","13C2-PFHxA","13C2-
PFHxA","59.7","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","59.7","59.7","","","","","","50","150"," " "" "" ""
"B0G0058-BS1","537_MOD","07/14/20","18:31","N","NA","000","13C4-PFHpA","13C4-
PFHpA","60.0","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","60.0","60.0","","","","","","50","150"," " "" "" ""
"B0G0058-BS1","537 MOD","07/14/20","18:31","N","NA","000","13C3-PFHxS","13C3-
PFHxS","71.1","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","71.1","71.1","","","","","","50","150"," " "" "" ""
"B0G0058-BS1","537_MOD","07/14/20","18:31","N","NA","000","13C5-PFNA","13C5-
PFNA","57.9","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","57.9","57.9","","","","","","50","150","" "" "" ""
"B0G0058-BS1","537_MOD","07/14/20","18:31","N","NA","000","13C2-PFOA","13C2-
PFOA","66.0","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","66.0","66.0","","","","","","50","150","" "" "" ""
"B0G0058-BS1","537_MOD","07/14/20","18:31","N","NA","000","13C8-PFOS","13C8-
PFOS","69.6","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","69.6","69.6","","","","","","50","150","", "" "" ""
"B0G0058-BS1","537_MOD","07/14/20","18:31","N","NA","000","13C2-PFDA","13C2-

PFDA","57.2","","IS","Yes","Y","","Y","","",","PCT_REC","","",","","100","57.2","57.2","",","","","","50","150","" "" "" ""
"B0G0058-BS1","537_MOD","07/14/20","18:31","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","47.0",","IS","Yes","Y","H","Y","","","","PCT_REC",","","",","100","47.0","47.0","",","","","","50"," 150","","+","",""
"B0G0058-BS1","537_MOD","07/14/20","18:31","N","NA","000","13C2-PFUnA","13C2-
PFUnA","55.9","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","55.9","55.9","","",","","","50","150"," " "" "" ""
"B0G0058-BS1","537_MOD","07/14/20","18:31","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","44.2","","IS","Yes","Y","H","Y","",","","PCT_REC","",","","","100","44.2","44.2",","","",","","50","1 50","","+","",""
"B0G0058-BS1","537_MOD","07/14/20","18:31","N","NA","000","13C2-PFDoA","13C2-
PFDoA","46.9","","IS","Yes","Y","H","Y","",","","PCT REC","","","","","100","46.9","46.9","","",","","","50","150" ""","+","","
"B0G0058-BS1","537_MOD","07/14/20","18:31","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","51.5","","IS̄","Yes","Y","","Y","",","","PCT_REC","",","","","100","51.5","51.5","","","",","","50","150"

"B0G0058-BSD1","537_MOD","07/14/20","18:41","N","NA","000","375-73-
5","PFBS","0.0425","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","0.0400","0. 0425","106","","","","","2.83","72","130","","","",""
"B0G0058-BSD1","537_MOD","07/14/20","18:41","N","NA","000","307-24-4","PERFLUOROHEXANOIC ACID (PFHXA)","0.0441","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","0.0400","0. 0441","110","",","","","1.64","72","129","",","",""
"B0G0058-BSD1","537_MOD","07/14/20","18:41","N","NA","000","13252-13-6","HEXAFLUOROPROPYLENE OXIDE DIMER ACID (HFPO-
DA)","0.0437","","TRG","Yes","Y",","Y","0.00241","0.00300","0.00400","UG_L","UG_L","",","","0.0400","0.0437 ","109","","","",","5.60","70","130","",","",""
"B0G0058-BSD1","537_MOD","07/14/20","18:41","N","NA","000","375-85-9","PERFLUOROHEPTANOIC ACID (PFHPA)","0.0399","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","",","0.0400","0. 0399","99.6","","","","","1.77","72","130","","","",""
"B0G0058-BSD1","537_MOD","07/14/20","18:41","N","NA","000","919005-14-4","4,8-DIOXA-3H-
PERFLUORONONANŌIC ACID
(ADONA)","0.0423","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L",","","","0.0400","0 .0423","106","","","","","6.30","70","130","","","",""
"B0G0058-BSD1","537_MOD","07/14/20","18:41","N","NA","000","355-46-4","PERFLUOROHEXANESULFONIC ACID
(PFHXS)","0.0430","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","0.0400","0. 0430","107","","","","","8.07","68","131","","","",""
"B0G0058-BSD1","537_MOD","07/14/20","18:41","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID (PFOA)","0.0422","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","",","0.0400","0.0 422","105","","","",","10.4","71","133","","","",""
"B0G0058-BSD1","537 MOD","07/14/20","18:41","N","NA","000","375-95-1","PERFLUORONONANOIC ACID (PFNA)","0.0446","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","",","0.0400","0.0 446","111","",","","","8.27","69","130","","","",""
"B0G0058-BSD1","537_MOD","07/14/20","18:41","N","NA","000","1763-23-
1","HEPTADECAFLUŌROACTANESULFONIC ACID SOLUTION
","0.0485","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","",","","0.0400","0.0485","12 1","",","","","28.4","65","140","","","",""
"B0G0058-BSD1","537_MOD","07/14/20","18:41","N","NA","000","756426-58-1","9-
CHLOROHEXADECAFLUORO-3-OXANONE-1-SULFONIC ACID (9Cl-
PF3ONS)","0.0456","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","0.0400","0. 0456","114","","","","","29.7","70","130","","","",""
"B0G0058-BSD1","537_MOD","07/14/20","18:41","N","NA","000","335-76-2","PERFLUORODECANOIC ACID (PFDA)","0.0432","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","",","0.0400","0.0

432","108","","","","","4.51","71","129","","","",""
"B0G0058-BSD1","537_MOD","07/14/20","18:41","N","NA","000","2355-31-
9","MeFOSAA","0.0368","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","0.040 0","0.0368","91.9","","","","","15.1","65","136","","","",""
"B0G0058-BSD1","537_MOD","07/14/20","18:41","N","NA","000","2991-50-
6","EtFOSAA","0.0412","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","0.0400 ","0.0412","103","","","","","2.39","61","135","","","",""
"B0G0058-BSD1","537_MOD","07/14/20","18:41","N","NA","000","2058-94-8","PERFLUOROUNDECANOIC
ACID
(PFUNA)","0.0405","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","0.0400","0. 0405","101","","","","","2.23","69","133","","","",""
"B0G0058-BSD1","537_MOD","07/14/20","18:41","N","NA","000","763051-92-9","11-CHLOROEICOSAFLUORO-3-OXAUNDECANE-1-SULFONIC ACID (11Cl-
PF3OUdS)","0.0432","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","0.0400"," 0.0432","108","","","","","9.63","70","130","","","",""
"B0G0058-BSD1","537_MOD","07/14/20","18:41","N","NA","000","307-55-1","PERFLUORODODECANOIC ACID (PFDOA)","0.0401","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","0.0400","0. 0401","100","","","","","7.17","72","134","","","",""
"B0G0058-BSD1","537_MOD","07/14/20","18:41","N","NA","000","72629-94-
8","PFTrDA","0.0402","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","0.0400", "0.0402","100","","","","","4.93","65","144","","","",""
"B0G0058-BSD1","537_MOD","07/14/20","18:41","N","NA","000","376-06-
7","PFTeDA","0.0425","","TRG","Yes","Y","","Y","0.00137","0.00200","0.00400","UG_L","UG_L","","","","0.0400", "0.0425","106","","","","","4.62","71","132","","","",""
"B0G0058-BSD1","537_MOD","07/14/20","18:41","N","NA","000","13C3-PFBS","13C3-
PFBS","74.2","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","74.2","74.2","","","","","","50","150","", "" "" ""
"B0G0058-BSD1","537_MOD","07/14/20","18:41","N","NA","000","13C3-HFPO-DA","13C3-HFPO-
DA","72.0","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","72.0","72.0","","","","","","50","150","","" "" ""
"B0G0058-BSD1","537_MOD","07/14/20","18:41","N","NA","000","13C2-PFHxA","13C2-
PFHxA","72.8","","IS","Yes","Y","","Y","","","","PCT REC","","","","","100","72.8","72.8","","","","","","50","150"," "," "" ""
"B0G0058-BSD1","537_MOD","07/14/20","18:41","N","NA","000","13C4-PFHpA","13C4-
PFHpA","74.0","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","74.0","74.0","","","","","","50","150"," " "" "" ""
"B0G0058-BSD1","537 MOD","07/14/20","18:41","N","NA","000","13C3-PFHxS","13C3-
PFHxS","77.4","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","77.4","77.4","","","","","","50","150","
" "" "" ""
"B0G0058-BSD1","537_MOD","07/14/20","18:41","N","NA","000","13C5-PFNA","13C5-
PFNA","67.2","","IS","Yes","Y","","Y","","",","PCT_REC","","","",","100","67.2","67.2","","","","",","50","150","" "" "" ""
"B0G0058-BSD1","537_MOD","07/14/20","18:41","N","NA","000","13C2-PFOA","13C2-
PFOA","75.3","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","75.3","75.3","","","","","","50","150","" "" "" ""
"B0G0058-BSD1","537_MOD","07/14/20","18:41","N","NA","000","13C8-PFOS","13C8-
PFOS","63.6","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","63.6","63.6","","","","","","50","150","", "" "" ""
"B0G0058-BSD1","537 MOD","07/14/20","18:41","N","NA","000","13C2-PFDA","13C2-
PFDA","64.5","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","64.5","64.5","","","","","","50","150","" "" "" ""
"B0G0058-BSD1","537_MOD","07/14/20","18:41","N","NA","000","d3-MeFOSAA","d3-
MeFOSAA","63.0","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","63.0","63.0","","","","","","50","15 0","","","",""
"B0G0058-BSD1","537_MOD","07/14/20","18:41","N","NA","000","13C2-PFUnA","13C2-
PFUnA","62.0","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","62.0","62.0","","","","","","50","150"," ","","",""
"B0G0058-BSD1","537_MOD","07/14/20","18:41","N","NA","000","d5-EtFOSAA","d5-
EtFOSAA","57.3","","IS","Yes","Y","","Y","","","","PCT_REC","","",","","100","57.3","57.3","","","","","","50","150
" "" "" "" ""
"B0G0058-BSD1","537_MOD","07/14/20","18:41","N","NA","000","13C2-PFDoA","13C2-
PFDoA","56.6","","IS","Yes","Y","","Y","","","","PCT_REC","",","","","100","56.6","56.6","","","","",","50","150"," ","","",""
"B0G0058-BSD1","537_MOD","07/14/20","18:41","N","NA","000","13C2-PFTeDA","13C2-
PFTeDA","63.7","","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","63.7","63.7","","","","","","50","150" """ "" "" ""
,"","',"',

Wood Environment \& Infrastructure Solutions, Inc.
September 3, 2020
7376 SW Durham Road
Portland, OR 97224
Attn: Ms. Kimberly Shiroodi
Kimberly.Shiroodi@woodplc.com
SUBJECT: Revised MCAS EI Toro \& Tustin PFAs, Data Validation

Dear Ms. Shiroodi,
Enclosed are the revised validation reports for the fraction listed below. These SDGs were received on August $4^{\text {th }}$ and $19^{\text {th }}, 2020$. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project \#48792_RV2:

SDG \#

2001357, 2001409, 2001417
2001436, 2001444, 2001472

Fraction

Perfluoroalkyl \& Polyfluoroalkyl Substances

The data validation was performed under Stage 4 guidelines. The analyses were validated using the following documents, as applicable to each method:

- Final Sampling and Analysis Plan for Per- and Polyfluoroalkyl Substances in Groundwater in Carve-Outs 2,5,6 and 9 and Groundwater and Surface Water Near Operable Unit 3, Former Marine Corps Air Station Tustin, Tustin, California with Addendum \#02 to Final Sampling and Analysis Plan for Per- and Polyfluoroalkyl Substances Sampling for Groundwater Remedial Action at Operable Unit 3, Installation Restoration Program Site 1; February 2020
- U.S. Department of Defense Quality Systems Manual for Environmental Laboratories, Version 5.3, 2019
- DoD General Validation Guidelines, February 2018

Please feel free to contact us if you have any questions.
Sincerely,

Pei Geng
Pgeng@lab-data.com
Project Manager/Senior Chemist

LDC	SDG\#	DATE REC'D	(2) DATE DUE	$\begin{gathered} \text { PFAs } \\ \text { (537M/ } \\ \text { QSM 5.3) } \end{gathered}$																															
Matrix	ater/Soil			W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S
A	2001357	08/04/20	08/18/20	2	0																														
B	2001409	08/04/20	08/18/20	12	0																														
C	2001417	08/04/20	08/18/20	4	0																														
D	2001436	08/04/20	08/18/20	6	0																														
E	2001444	08/04/20	08/18/20	7	0																														
F	2001472	08/19/20	09/02/20	4	0																														
Total	J/PG			35	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	35

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	MCAS El Toro and Tustin PFAS
LDC Report Date:	August 25,2020
Parameters:	Perfluoroalkyl \& Polyfluoroalkyl Substances
Validation Level:	Stage 4
Laboratory:	Vista Analytical Laboratory

Sample Delivery Group (SDG): 2001357

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
IO06MW06S-20200624	$2001357-03$	Water	$06 / 24 / 20$
DUP01-20200624	$2001357-04$	Water	$06 / 24 / 20$

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Per- and Polyfluoroalkyl Substances in Groundwater in Carve-Outs 2, 5, 6, and 9 and Groundwater and Surface Water Near Operable Unit 3, Former Marine Corps Air Station Tustin, Tustin, California, with Addendum \#02 to Final Sampling and Analysis Plan for Per- and Polyfluoroalkyl Substances Sampling for Groundwater Remedial Action at Operable Unit 3, Installation Restoration Program Site 1 (February 2020), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (February 2018). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:
Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) by Environmental Protection Agency (EPA) Method 537 Modified and LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
$\mathrm{J} \quad$ (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. LC/MS Instrument Performance Check

Instrument performance was checked and the requirements were met.

III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the methods.
A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination $\left(r^{2}\right)$ was greater than or equal to 0.990 .

For each calibration standard, all compounds were within 70-130\% of their true value.
The signal to noise $(\mathrm{S} / \mathrm{N})$ ratio was within validation criteria for all compounds.
Retention time windows were established as required by the methods.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration and Instrument Sensitivity Check

Continuing calibration was performed at required frequencies.
The percent differences (\%D) were less than or equal to 30.0% for all compounds.
The signal to noise $(\mathrm{S} / \mathrm{N})$ ratio was within validation criteria for all compounds.
The percent differences (\%D) of the instrument sensitivity check (ISC) were less than or equal to 30.0% for all compounds.

Retention times of all compounds in the calibration standards were within the established retention time windows.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample EB01-20200624 was identified as an equipment blank. No contaminants were found.

Sample SB01-20200624 was identified as a source blank. No contaminants were found.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples I006MW06S-20200624 and DUP01-20200624 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

Compound	Concentration (ug/L)		$\begin{gathered} \text { RPD } \\ \text { (Limits) } \\ \hline \end{gathered}$	Difference (Limits)	Flag	A or P
	222MW09D-20200701	DUP02-20200701				
PFBS	0.0819	0.0824	1 (≤ 30)	-	-	-
PFHxA	0.6050	0.5880	3 (≤ 30)	-	-	-
PFHpA	0.3370	0.339	$1(\leq 30)$	-	-	-
PFHxS	0.5150	0.5350	$4(\leq 30)$	-	-	-
PFOA	0.2680	0.3150	16 (≤ 30)	-	-	-
PFNA	0.0044	0.0049	-	0.00049 (50.00394)	-	-
PFOS	0.0906	0.1060	16 (≤ 30)	-	-	-

X. Labeled Compounds

All percent recoveries (\%R) for labeled compounds used to quantitate target compounds were within QC limits.

XI. Compound Quantitation

All compound quantitations met validation criteria.

XII. Target Compound Identifications

All target compound identifications met validation criteria.

XIII. System Performance

The system performance was acceptable.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

MCAS EI Toro and Tustin PFAS
Perfluoroalkyl \& Polyfluoroalkyl Substances - Data Qualification Summary - SDG 2001357

No Sample Data Qualified in this SDG
MCAS El Toro and Tustin PFAS
Perfluoroalkyl \& Polyfluoroalkyl Substances - Laboratory Blank Data Qualification Summary - SDG 2001357

No Sample Data Qualified in this SDG
MCAS El Toro and Tustin PFAS
Perfluoroalkyl \& Polyfluoroalkyl Substances - Field Blank Data Qualification Summary - SDG 2001357

No Sample Data Qualified in this SDG

LDC \#: 48792A96
VALIDATION COMPLETENESS WORKSHEET
SDG \#: 2001357
Stage 4

METHOD: LC/MS Perfluoroalkyl \& Polyfluoroalkyl Substances (EPA Method 537M/QSM 5.3 Table B-15)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note:	$A=$ Acceptable	$N D=$ No compounds detected	$D=$ Duplicate	SB=Source blank
	$N=$ Not provided/applicable	$R=$ Rinsate	TB $=$ Trip blank	OTHER:
	$S W=$ See worksheet	PB $=$ Field blank	BB $=$ Equipment blank	

Page: 1 of 2 Reviewer: 2nd Reviewer: \qquad

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

Validation Area	Yes	No	NA	Findings/Comments
1. Technical holding times				
Were all technical holding times met?	,			
Were cooler temperature criteria met?	\checkmark			
II. LCIMS Instrument performance check				
Were the instrument performance reviewed and found to be within the validation criteria?				
III. Initial calibration and Initial calibration verification				
Did the laboratory perform a 5-point calibration prior to sample analysis?				
Were all percent relative standard deviations (\%RSD) $\leq 20 \%$?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the coefficient of determination (r^{2}) criteria of ≥ 0.990 ?				
Were all analytes within $70-130 \%$ or percent differences (\%D) $\leq 30 \%$ of their true value for each calibration standard?				
Was the signal to noise (S/N) ratio for all compounds within the validation criteria?				
Were the retention time windows properly established?				
Was an initial calibration verification (ICV) standard analyzed after each initial calibration for each instrument?	1			
Were all ICV percent differences (\%D) of the initial calibration verification $\leq 30 \%$?				
IV. Continuing calibration and Instrument sensitivity check				
Was a continuing calibration analyzed prior to sample analysis, after every 10 samples and at the end of the analytical sequence?				
Were all percent differences (\%D) of the continuing calibration $\leq 30 \%$?				
Were all the retention times within the acceptance windows?				
Was the signal to noise (S / N) ratio for all compounds within the validation criteria?				
Were all percent differences (\%D) of the Instrument Sensitivity Check $\leq 30 \%$?				
V . Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed for each matrix and concentration?				
Was there contamination in the laboratory blanks?				
VI. Field blanks				
Were field blanks identified in this SDG?				
Were target compounds detected in the field blanks?		/		

VALIDATION FINDINGS CHECKLIST
Page \qquad
Reviewer:
2nd Reviewer:

TARGET COMPOUND WORKSHEET

LDC \#: 48192496

VALIDATION FINDINGS WORKSHEET
Field Duplicates

Page: _1 of 1
Reviewer:

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

Calibration Date	Instrument	Compound	Standard	(Y) Response ratio	(X) Conc. Ratio	$\left(\mathrm{X}^{\wedge} 2\right)$ Conc. Ratio
7/6/2020	SCN977	PFOA	1	0.0283	0.02	0.00040
			2	0.0513	0.04	0.0016
			3	0.0937	0.08	0.0064
			4	0.1952	0.16	0.0256
			5	0.4739	0.40	0.1600
			6	0.8828	0.80	0.6400
			7	4.5622	4.00	16.0000
			8	9.3191	8.00	64.0000
			9	20.7411	20.00	400.0000
			10	41.4806	40.00	1600.0000

Regression Output	Calculated		Reported	
Constant	c	0.09230	c	0.0543225
Std Err of Y Est				.
Degrees of Freedom				
	b	a	b	a
X Coefficient(s)	1.09128	-0.0014190	1.13013	-0.000202972
Std Err of Coef.				
Correlation Coefficient		0.999825		
Coefficient of Determination (${ }^{\wedge} 2$)		0.999651		0.999173

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

Calibration Date	Instrument	Compound	Standard	(Y) Response ratio	(X) Conc. Ratio	$\left(X^{\wedge} 2\right)$ Conc. Ratio
7/6/2020	SCN977	PFOS	1	0.0184	0.02	0.00040
			2	0.0397	0.04	0.0016
			3	0.0806	0.08	0.0064
			4	0.1980	0.16	0.0256
			5	0.4633	0.40	0.1600
			6	1.0057	0.80	0.6400
			7	4.8637	4.00	16.0000
			8	10.3716	8.00	64.0000
			9	24.6679	20.00	400.0000
			10	47.3616	40.00	1600.0000

Regression Output	Calculated		Reported	
Constant	c	-0.03049	c	-0.0944633
Std Err of Y Est				
Degrees of Freedom				
	b	a	b	a
X Coefficient(s)	1.28839	-0.0026132	1.27905	-0.0001870130
Std Err of Coef.				
Correlation Coefficient		0.999980		
Coefficient of Determination ($\mathrm{r}^{\wedge} 2$)		0.999959		0.999703

\qquad

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3
The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:
\% Difference $=100^{*}($ aveRRF - RRF $) /$ aveRRF
$R R F=(A x)($ Cis $) /($ Ais $)(C x)$

Where:
aveRRF = initial calib average RRF $\mathrm{Cx}=$ Concentration of compound,
RRF = continuing calib RRF
Ax = Area of compound

Ais = Area of associated internal standard
Cis = Concentration of internal standard

\#	Standard ID	Calibration Date	Compound (IS)		Conc	Reported Conc	Recalculated Conc	Reported \%R	Recalculated \%R
1	200706P1_48	6/30/2020	PFOA	(13C2-PFOA)	10.0	9.81	9.81	98.1	98.1
			PFOS	(13C8-PFOS)	10.0	9.91	9.89	99.1	98.9
2			PFOA	(13C2-PFOA)					
			PFOS	(13C8-PFOS)					
3			PFOA	(13C2-PFOA)					
			PFOS	(13C8-PFOS)					
4			PFOA	(13C2-PFOA)					
			PFOS	(13C8-PFOS)					
5			PFOA	(13C2-PFOA)					
			PFOS	(13C8-PFOS)					
6			PFOA	(13C2-PFOA)					
			PFOS	(13C8-PFOS)					

VALIDATION FINDINGS WORKSHEET
LCS Results Verification

Page: 1 of 1
Reviewer \qquad

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

The percent recoveries (\%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control duplicate were recalculated for the compounds identified below using the following calculation:

SSC = (Area spike) (Conc IS) / (Area IS) (average RRF spike)
\%Recovery $=100$ * SSC/SA Where:

SSC = Spiked concentration	LCS = Laboratory control spike recovery
SA = Spike added	LCSD = Laboratory control spike duplicate recovery

RPD = | LCS - LCSD | * 2/(LCS + LCSD)

LCS/LCSD ID: \qquad

Compound	$\begin{gathered} \hline \mathrm{SA} \\ (\mathrm{ug} / \mathrm{L}) \end{gathered}$		$\begin{gathered} \hline \mathrm{SSC} \\ (\mathrm{ug} / \mathrm{L}) \\ \hline \end{gathered}$		LCS		LCSD		LCS/LCSD			
			Percent Recovery	Percent Recovery		RPD						
3	LCS	LCSD			LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
PFOA	0.0400	0.0400	0.0391	0.0393	97.7	97.8	98.2	98.3	0.463	0.510		
PFOS	0.0400	0.0400	0.0386	0.0384	96.5	96.5	96.1	96.0	0.435	0.519		

VALIDATION FINDINGS WORKSHEET

Sample Results Verification

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3
Compound results for all Level IV samples reported with a positive detect were recalculated and verified using the following equation:

```
Concentration = (Ax) (Cis) (Vt) (DF)
(Ais) (RRF) (Vo)
Where:
    Ax = Area or height of the peak for the compound to be measured
    Ais = Area or height of the peak for the internal standard
    Cis = Concentration of the internal standard
    DF = Dilution factor
    Vt = Volume of extract in milliters (mL)
    RRF = Average relative response factor
    Vo = Volume of sample in liters (L)
```

$\begin{array}{\|c} \substack{\text { Sample } \\ \# \\ \hline} \\ \hline \end{array}$	Compound	Ax	Ais	Cis	DF	RRF	$\begin{gathered} \mathrm{Vt} \\ (\mathrm{~mL}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{V}_{0} \\ (\mathrm{~mL}) \\ \hline \end{gathered}$	Calculated Concentration (ug/L)	$\begin{gathered} \text { Reported } \\ \text { Concentration } \\ (\mathrm{ug} / \mathrm{L}) \\ \hline \hline \end{gathered}$	\% Diff
1	PFOS	$5.670 \mathrm{E}+03$	$2.408 \mathrm{E}+03$	12.5	1	curve	1	255.63	0.0906	0.0906	0

RV1

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

LDC Report Date:

Parameters:

Validation Level:
Laboratory:

MCAS EI Toro and Tustin PFAS
August 25, 2020
Perfluoroalkyl \& Polyfluoroalkyl Substances
Stage 4
Vista Analytical Laboratory

Sample Delivery Group (SDG): 2001409

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
IS72MW16DR-20200701	$2001409-02$	Water	$07 / 01 / 20$
IS72MW15D-20200701	$2001409-03$	Water	$07 / 01 / 20$
222MW09D-20200701	$2001409-04$	Water	$07 / 01 / 20$
DUP02-20200701	$2001409-05$	Water	$07 / 01 / 20$
IS72MW17D-20200701	$2001409-06$	Water	$07 / 01 / 20$
DUP03-20200701	$2001409-07$	Water	$07 / 01 / 20$
IO03MW01D-20200701	$2001409-08$	Water	$07 / 01 / 20$
I003MWW02D-20200701	$2001409-09$	Water	$07 / 01 / 20$
DUP04-20200701	$2001409-10$	Water	$07 / 01 / 20$
I003MW05D-20200701	$2001409-11$	Water	$07 / 01 / 20$
TW07D-20200702	$2001409-13$	Water	$07 / 02 / 20$
TW05D-20200702	$2001409-14$	Water	$07 / 02 / 20$
IS72MW16DR-20200701MS	$2001409-02 M S$	Water	$07 / 01 / 20$
IS72MW16DR-20200701MSD	$2001409-02 M S D$	Water	$07 / 01 / 20$
I003MW01D-20200701MS	$2001409-08 M S$	Water	$07 / 01 / 20$
I003MW01D-20200701MSD	$2001409-08 M S D$	Water	$07 / 01 / 20$

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Per- and Polyfluoroalkyl Substances in Groundwater in Carve-Outs 2, 5, 6, and 9 and Groundwater and Surface Water Near Operable Unit 3, Former Marine Corps Air Station Tustin, Tustin, California, with Addendum \#02 to Final Sampling and Analysis Plan for Per- and Polyfluoroalkyl Substances Sampling for Groundwater Remedial Action at Operable Unit 3, Installation Restoration Program Site 1 (February 2020), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (February 2018). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:
Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) by Environmental Protection Agency (EPA) Method 537 Modified and LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. LC/MS Instrument Performance Check

Instrument performance was checked and the requirements were met.

III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the methods.
A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^{2}) was greater than or equal to 0.990 .

For each calibration standard, all compounds were within 70-130\% of their true value.
The signal to noise $(\mathrm{S} / \mathrm{N})$ ratio was within validation criteria for all compounds.
Retention time windows were established as required by the methods.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration and Instrument Sensitivity Check

Continuing calibration was performed at required frequencies.
The percent differences (\%D) were less than or equal to 30.0% for all compounds.
The signal to noise $(\mathrm{S} / \mathrm{N})$ ratio was within validation criteria for all compounds.
The percent differences (\%D) of the instrument sensitivity check (ISC) were less than or equal to 30.0% for all compounds.

Retention times of all compounds in the calibration standards were within the established retention time windows.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Samples EB02-20200701 and EB03-20200702 were identified as equipment blanks. No contaminants were found.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (\%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (\%R) (Limits)	MSD (\%R) (Limits)	Flag	A or P
(003MW01D-20200701MS/MSD (1003MW01D-20200701)	PFNA	$133(69-130)$	-	J (all detects)	A

For I003MW01D-20200701MS/MSD, no data were qualified for PFBS and PFHpA percent recoveries (\%R) outside the QC limits since the parent sample results were greater than $4 X$ the spike concentration.

PFHxA, PFHxS, PFOA, and PFOS percent recoveries (\%R) and PFHxA, PFHxS, and PFOS relative percent differences (RPD) were not within the QC limits for I003MW01D20200701MS/MSD. No data were qualified for MS/MSD samples analyzed greater than or equal to a 5 X dilution.

Relative percent differences (RPD) were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the methods. Percent recoveries (\%R) were within QC limits.

IX. Field Duplicates

Samples 222MW09D-20200701 and DUP02-20200701, samples IS72MW17D20200701 and DUP03-20200701, and samples I003MW02D-20200701 and DUP0420200701 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

Compound	Concentration (ug/L)		$\begin{gathered} \text { RPD } \\ \text { (Limits) } \end{gathered}$	Difference (Limits)	Flag	A or P
	222MW09D-20200701	DUP02-20200701				
PFBS	0.0105	0.0105	-	0 (≤ 0.00405)	-	-
PFHxA	0.0207	0.0226	$9(\leq 30)$	-	-	-

Compound	Concentration (ug/L)		$\underset{(\text { Limits) }}{\mathrm{RPD}}$	Difference (Limits)	Flag	A or P
	222MW09D-20200701	DUP02-20200701				
PFHpA	0.00555	0.00521	-	$0.0003(\leq 0.00405)$	-	-
PFHxS	0.0702	0.0610	$14(\leq 30)$	-	-	-
PFOA	0.0839	0.0822	$2(\leq 30)$	-	-	-
PFOS	0.0150	0.0154	-	$0.0004(\leq 0.00405)$	-	-

Compound	Concentration (ug/L)		RPD (Limits)	Difference (Limits)	Flag	A or P
	IS72MW17D-20200701	DUP03-20200701				
PFBS	0.0262	0.0285	$8(\leq 30)$	-	-	-
PFHXA	0.185	0.189	$2(\leq 30)$	-	-	-
PFHpA	0.0980	0.0945	$4(\leq 30)$	-	-	-
PFHxS	0.0788	0.0737	$7(\leq 30)$	-	-	-
PFOA	0.781	0.755	$3(\leq 30)$	-	-	-
PFNA	0.00477	0.00546	-	$0.00069(\leq 0.00409)$	-	-
PFOS	0.0432	0.0418	$3(\leq 30)$	-	-	-

Compound	Concentration (ug/L)		$\begin{gathered} \text { RPD } \\ \text { (Limits) } \\ \hline \end{gathered}$	Difference (Limits)	Flag	A or P
	1003MW02D-20200701	DUP04-20200701				
PFBS	0.364	0.397	$9(\leq 30)$	-	-	-
PFHxA	2.59	2.57	$1(\leq 30)$	-	-	-
PFHpA	0.537	0.529	2 (530)	-	-	-
PFHxS	2.49	2.59	$4(\leq 30)$	-	-	-
PFOA	11.1	11.0	$1(\leq 30)$	-	-	-
PFNA	0.00392	0.00425	-	0.00033 (≤ 0.00400)	-	-
PFOS	0.879	0.972	$10(\leq 30)$	-	-	-

X. Labeled Compounds

All percent recoveries (\%R) for labeled compounds used to quantitate target compounds were within QC limits with the following exceptions:

Sample	Labeled Compound	\%R (Limits)	Affected Compound	Flag	A or P
TW07D-20200702	13C2-PFDoA				
13C2-PFTeDA	$46.2(50-150)$ $12.6(50-150)$	PFDoA PFTrDA 11CI-PF30UdS PFTeDA	NA	-	
TW05D-20200702	13C2-PFTeDA	$28.0(50-150)$	PFTeDA	NA	-

XI. Compound Quantitation

All compound quantitations met validation criteria.

XII. Target Compound Identifications

All target compound identifications met validation criteria with the following exceptions:

Sample	Compound	lon Abundance Ratio (Limits)	Flag	A or P
222MW09D-20200701	PFOS	$3.506(1.003-3.008)$	J (all detects)	P
DUP02-20200701	PFOS	$3.255(1.003-3.008)$	J (all detects)	P

XIII. System Performance

The system performance was acceptable.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to MS/MSD \%R and ion abundance ratio, data were qualified as estimated in three samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

MCAS EI Toro and Tustin PFAS
Perfluoroalkyl \& Polyfluoroalkyl Substances - Data Qualification Summary - SDG 2001409

Sample	Compound	Flag	A or P	Reason
I003MW01D-20200701	PFNA	J (all detects)	A	Matrix spike/Matrix spike duplicate (\%R)
222MW09D-20200701 DUP02-20200701	PFOS	J (all detects)	P	Target compound identification (ion abundance ratio)

MCAS EI Toro and Tustin PFAS

Perfluoroalkyl \& Polyfluoroalkyl Substances - Laboratory Blank Data Qualification Summary - SDG 2001409

No Sample Data Qualified in this SDG

MCAS EI Toro and Tustin PFAS

Perfluoroalkyl \& Polyfluoroalkyl Substances - Field Blank Data Qualification Summary - SDG 2001409

No Sample Data Qualified in this SDG

METHOD: LC/MS Perfluoroalkyl \& Polyfluoroalkyl Substances (EPA Method 537M/QSM 5.3 Table B-15)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note:	$A=$ Acceptable	$N D=$ No compounds detected	$D=$ Duplicate	SB=Source blank
	$N=$ Not provided/applicable	$R=$ Rinsate	TB $=$ Trip blank	OTHER:
	SW $=$ See worksheet	PB $=$ Field blank	ED $=$ Equipment blank	

	Client ID	Lab ID	Matrix	Date
1	IS72MW16DR-20200701	$2001409-02$	Water	$07 / 01 / 20$
2	IS72MW15D-20200701	$2001409-03$	Water	$07 / 01 / 20$
3	$222 M W 09 D-20200701$	$2001409-04$	Water	$07 / 01 / 20$
4	DUP02-20200701	$2001409-05$	Water	$07 / 01 / 20$
5	IS72MW17D-20200701	$2001409-06$	Water	$07 / 01 / 20$
6	DUP03-20200701	$2001409-07$	Water	$07 / 01 / 20$
7	I003MW01D-20200701	$2001409-08$	Water	$07 / 01 / 20$
8	I003MW02D-20200701	$2001409-09$	Water	$07 / 01 / 20$
9	DUP04-20200701	$2001409-10$	Water	$07 / 01 / 20$
10	I003MW05D-20200701	$2001409-11$	Water	$07 / 01 / 20$
11	TW07D-20200702	$2001409-13$	Water	$07 / 02 / 20$
12	TW05D-20200702	$2001409-14$	Water	$07 / 02 / 20$
13	IS72MW16DR-20200701MS	$2001409-02 M S$	Water	$07 / 01 / 20$
14	IS72MW16DR-20200701MSD	$2001409-02 M S D$	Water	$07 / 01 / 20$
15	I003MW01D-20200701MS	$2001409-08 M S$	Water	$07 / 01 / 20$

METHOD: LC/MS Perfluoroalkyl \& Polyfluoroalkyl Substances (EPA Method 537M/QSM 5.3 Table B-15)

16	1003MW01D-20200701MSD	$2001409-08 \mathrm{MSD}$	Water	$07 / 01 / 20$
17				
18				
19				

Notes:

\#: $4879-396$

VALIDATION FINDINGS CHECKLIST

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

VALIDATION FINDINGS CHECKLIST

Page: \qquad

TARGET COMPOUND WORKSHEET

METHOD: PFAS		
A. PFBS		
B. PFHHA		
C. PFHPA		
D. PFHXS		
E. PFOA		
F. PFNA		
G. PFOS		
H. PFDA		
1. MeFOSAA		
J. EtFOSAA		
K. PFUnA		
L. PFDDA		
M. PFTTDA		
N. PFTTeDA		
O. HFPO-DA		
P. ADONA		
Q. PCIPF30NS		
R. 11CI-PF3OUdS		

$$
\text { LDC \# } 48792396
$$

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results

METHOD: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DOD QSM 5.1
(y) N N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) or duplicate sample analyzed for each matrix in this SDG?

Y' N N/A Was a MS/MSD analyzed every 20 samples of each matrix?

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page: 1 of 1
Reviewer: \qquad

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.1

Compound	Concentration (ug/L)		RPD ≤ 30	Difference (<5XLOQ)	Difference (<LOQ)	Qualification
	$\mathbf{1}$	$\mathbf{2}$		0	0.00405	
A	0.0105	0.0105				
B	0.0207	0.0226	9		0.00405	
C	0.00555	0.00521		0.0003		
D	0.0702	0.0610	14			
E	0.0839	0.0822	2			
G	0.0150	0.0154		0.0004	0.00405	

Compound	Concentration (ug/L)		RPD ≤ 30	$\begin{aligned} & \text { Difference } \\ & \text { (<5XLOQ) } \\ & \hline \end{aligned}$	Difference (<LOQ)	Qualification
	5	6				
A	0.0262	0.0285	8			
B	0.185	0.189	2			
C	0.0980	0.0945	4			
D	0.0788	0.0737	7			
E	0.781	0.755	3			
F	0.00477	0.00546		0.00069	0.00409	
G	0.0432	0.0418	3			

Compound	Concentration (ug/L)		RPD ≤ 30	Difference (<5XLOQ)	Difference(<LOQ)	Qualification
	8	9				
A	0.364	0.397	9			
B	2.59	2.57	1			
C	0.537	0.529	2			
D	2.49	2.59	4			
E	11.1	11.0	1			
F	0.00392	0.00425		0.00033	0.00400y	
G	0.879	0.972	10			

VALIDATION FINDINGS WORKSHEET Labeled Compounds

Page: \qquad 1 of
Reviewer: \qquad

METHOD: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3
Please see qualifications below for all questions answered " N ". Not applicable questions are identified as "N/A".
Y N/A Were all labeled compound recoveries within the QC criteria?

METHOD: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3
Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".
(Y) N N/A Was the signal to noise (S/N) ratio for all compounds within the validation criteria?

K N N/A Were two transitions and the ion transition ratio per analyse monitored and documented with the exception of PFBA and PFPeA? Y N N/A Were ion ratios within QC limits and between $50-150 \%$?

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

Calibration Date	Instrument	Compound	Standard	(Y) Response ratio	(X) Conc. Ratio	$\left(X^{\wedge} 2\right)$ Conc. Ratio
7/14/2020	SCN945/960	PFOA	1	0.0391	0.02	0.00040
			2	0.0607	0.04	0.0016
			3	0.1111	0.08	0.0064
			4	0.2362	0.16	0.0256
			5	0.6220	0.40	0.1600
			6	1.1520	0.80	0.6400
			7	6.2166	4.00	16.0000
			8	11.3946	8.00	64.0000
			9	26.3657	20.00	400.0000
			10	53.5565	40.00	1600.0000

Regression Output	Calculated		Reported	
Constant	c	0.15850	c	0.1102520
Std Err of Y Est				
Degrees of Freedom				
	b	a	b	a
X Coefficient(s)	1.36351	-0.0006947	1.42944	-0.000207503
Std Err of Coef.				
Correlation Coefficient		0.999826		
Coefficient of Determination ($\mathrm{r}^{\wedge} 2$)		0.999652		0.99882

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: 2 of 2
Reviewer: 2nd Reviewer: \qquad

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

Calibration Date	Instrument	Compound	Standard	(Y) Response ratio	(X) Conc. Ratio	$\left(\mathrm{X}^{\wedge} 2\right)$ Conc. Ratio
7/14/2020	SCN945/960	PFOS	1	0.0227	0.02	0.00040
			2	0.0317	0.04	0.0016
			3	0.0814	0.08	0.0064
			4	0.1498	0.16	0.0256
			5	0.4309	0.40	0.1600
			6	0.7906	0.80	0.6400
			7	4.2751	4.00	16.0000
			8	8.1452	8.00	64.0000
			9	19.0425	20.00	400.0000
			10	38.9489	40.00	1600.0000

Regression Output	Calculated		Reported	
Constant	C	0.08248	c	-0.0037090
Std Err of Y Est				
Degrees of Freedom				
	b	a	b	a
X Coefficient(s)	0.970908	0.0000222	1.008000	-0.0000832828
Std Err of Coef.				
Correlation Coefficient		0.999885		
Coefficient of Determination ($\mathrm{r}^{\wedge} 2$)		0.999771		0.998246

\qquad
\qquad

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

Calibration Date	Instrument	Compound	Standard	(Y) Response ratio	(X) Conc. Ratio	$\left(\mathrm{X}^{\wedge} 2\right)$ Conc. Ratio
7/15/2020	SCN945/960	PFOA	1	0.0339	0.02	0.00040
			2	0.0701	0.04	0.0016
			3	0.1254	0.08	0.0064
			4	0.2383	0.16	0.0256
			5	0.6010	0.40	0.1600
			6	1.2023	0.80	0.6400
			7	6.0452	4.00	16.0000
			8	11.7530	8.00	64.0000
			9	27.7324	20.00	400.0000
			10	51.9259	40.00	1600.0000

Regression Output	Calculated		Reported	
Constant	c	0.03546	c	0.0669438
Std Err of Y Est				.
Degrees of Freedom				
	b	a	b	a
X Coefficient(s)	1.49055	-0.0048287	1.50337	-0.000416136
Std Err of Coef.				
Correlation Coefficient		0.999991		
Coefficient of Determination ($\mathrm{r}^{\wedge} 2$)		0.999981		0.999939

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

Calibration Date	Instrument	Compound	Standard	(Y) Response ratio	(X) Conc. Ratio	$\left(X^{\wedge} 2\right)$ Conc. Ratio
7/15/2020	SCN945/960	PFOS	1	0.0161	0.02	0.00040
			2	0.0303	0.04	0.0016
			3	0.0746	0.08	0.0064
			4	0.1589	0.16	0.0256
			5	0.4236	0.40	0.1600
			6	0.8187	0.80	0.6400
			7	4.1694	4.00	16.0000
			8	7.9315	8.00	64.0000
			9	20.4718	20.00	400.0000
			10	38.8811	40.00	1600.0000

Regression Output Calculated	Reported		
Constant	c	-0.03613	c
Std Err of Y Est			
Degrees of Freedom		-0.0860112	
	b	a	b
X Coefficient (s)	1.051162	-0.0019514	1.03891
Std Err of Coef.		-0.0001274520	
Correlation Coefficient			
Coefficient of Determination $\left(\mathrm{r}^{\wedge} 2\right)$	0.999955		

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

Calibration Date	Instrument	Compound	Standard	(Y) Response ratio	(X) Conc. Ratio	$\left(X^{\wedge} 2\right)$ Conc. Ratio
7/16/2020	SCN945/960	PFOA	1	0.0305	0.02	0.00040
			2	0.0521	0.04	0.0016
			3	0.1192	0.08	0.0064
			4	0.2380	0.16	0.0256
			5	0.5742	0.40	0.1600
			6	1.1541	0.80	0.6400
			7	5.8217	4.00	16.0000
			8	11.3244	8.00	64.0000
			9	26.9039	20.00	400.0000
			10	49.4671	40.00	1600.0000

Regression Output	Calculated		Reported	
Constant	c	0.00837	c	-0.0054419
Std Err of Y Est				
Degrees of Freedom				
	b	a	b	a
X Coefficient(s)	1.45774	-0.0055315	1.46173	-0.000451650
Std Err of Coef.				
Correlation Coefficient		0.999999		
Coefficient of Determination ($\wedge^{\wedge} 2$)		0.999998		0.999976

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

Calibration Date	Instrument	Compound	Standard	(Y) Response ratio	(X) Conc. Ratio	$\left(X^{\wedge} 2\right)$ Conc. Ratio
7/16/2020	SCN945/960	PFOS	1	0.0152	0.02	0.00040
			2	0.0407	0.04	0.0016
			3	0.0966	0.08	0.0064
			4	0.1510	0.16	0.0256
			5	0.4276	0.40	0.1600
			6	0.7511	0.80	0.6400
			7	4.2366	4.00	16.0000
			8	7.8487	8.00	64.0000
			9	18.9035	20.00	400.0000
			10	38.4993	40.00	1600.0000

Regression Output	Calculated	
Constant	c	0.06995
Std Err of Y Est	c	
Degrees of Freedom		
	b	
X Coefficient(s)	0.0058948	
Std Err of Coef.	0.95629	a
Correlation Coefficient		
Coefficient of Determination $\left(\mathrm{r}^{\wedge} 2\right)$	0.0001198	

\qquad

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3
The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:
\% Difference $=100^{*}$ (aveRRF - RRF)/aveRRF RRF $=($ Ax $)($ Cis $) /($ Ais $)(C x)$

Where:

aveRRF $=$ initial calib average RRF $\quad \mathrm{Cx}=$ Concentration of compound,
RRF = continuing calib RRF
$A x=A r e a$ of compound

Ais = Area of associated internal standard
Cis = Concentration of internal standard

\#	Standard ID	Calibration Date	Compound (IS)		Conc	Reported Conc	Recalculated Conc	$\begin{gathered} \hline \hline \text { Reported } \\ \% R \end{gathered}$	Recalculated \%R
1	200714M1_63	7/15/2020	PFOA	(13C2-PFOA)	1.00	0.997	0.997	99.4	99.7
			PFOS	(13C8-PFOS)	1.00	1.160	1.159	115.9	115.9
2	200714M1_83	7/15/2020	PFOA	(13C2-PFOA)	10.00	9.23	9.23	92.3	92.3
			PFOS	(13C8-PFOS)	10.00	11.6	11.6	116.3	116.2
3	200716M1_27	7/16/2020	PFOA	(13C2-PFOA)	10.00	10.50	10.49	104.9	104.9
			PFOS	(13C8-PFOS)	10.00	10.20	10.20	102.1	102.0
4			PFOA	(13C2-PFOA)					
			PFOS	(13C8-PFOS)					
5			PFOA	(13C2-PFOA)					
			PFOS	(13C8-PFOS)					
6			PFOA	(13C2-PFOA)					
			PFOS	(13C8-PFOS)					

\qquad

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

The percent recoveries (\%R) and relative percent differences (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

SSC $=($ Area spike $)($ Conc IS) $/($ Area IS) (average RRF spike) \%Recovery $=100$ * (SSC - SC)/SA

Where: SSC = Spiked concentration
SA = Spike added
$M S=$ Matrix spike recovery

SC = Sample concentration

MSD = Matrix spike duplicate recovery

MS/MSD ID: \qquad
\qquad

Compound	$\begin{gathered} \hline \mathrm{SA} \\ (\mathrm{ug} / \mathrm{L}) \\ \hline \end{gathered}$		$\begin{gathered} \mathrm{SC} \\ (\mathrm{ug} / \mathrm{L}) \\ \hline \end{gathered}$	$\begin{gathered} \text { SSC } \\ (\mathrm{ug} / \mathrm{L}) \\ \hline \end{gathered}$		MS		MSD		MS/MSD		
			Percent Recovery			Percent Recovery		RPD				
myer mox	MS	MSD		MS	MSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.	
PFOA	0.0414	0.0409		0.1670	0.2120	0.2060	109	109	95.0	95.4	13.7	2.87
PFOS	0.0414	0.0409	0.0650	0.1150	0.1070	121	121	102	103	17.0	7.21	

VALIDATION FINDINGS WORKSHEET
LCS Results Verification

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3
The percent recoveries (\%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control duplicate were recalculated for the compounds identified below using the following calculation:

SSC = (Area spike) (Conc IS) / (Area IS) (average RRF spike)
\%Recovery $=100$ *SSC/SA Where:

$$
\begin{array}{ll}
\text { SSC }=\text { Spiked concentration } & \text { LCS }=\text { Laboratory control spike recovery } \\
\text { SA }=\text { Spike added } & \text { LCSD }=\text { Laboratory control spike duplicate recovery }
\end{array}
$$

RPD $=\mid$ LCS - LCSD $\left.\right|^{*} 2 /(L C S+L C S D)$
LCS/LCSD ID: B0G0034-BS1

Compound	$\begin{aligned} & \hline u^{\text {SA }} \\ & \text { (ng/L) } \end{aligned}$		$\begin{aligned} & \hline \hline \mathrm{SSC} \\ & \text { (} \mathrm{g} / \mathrm{L} \mathrm{~L}) \end{aligned}$		LCS		LCSD		LCS/LCSD			
			Percent Recovery	Percent Recovery		RPD						
-	LCS	LCSD			LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
PFOA	0.0400		0.0414		104	104						
PFOS	0.0400		0.0355		88.7	88.8						

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3
Compound results for all Level IV samples reported with a positive detect were recalculated and verified using the following equation:

$$
\text { Concentration }=\frac{(\mathrm{Ax})(\mathrm{Cis})(\mathrm{Vt})(\mathrm{DF})}{(\mathrm{Ais})(\mathrm{RRF})(\mathrm{Vo})}
$$

Where:
$A x=$ Area or height of the peak for the compound to be measured
Ais $=$ Area or height of the peak for the internal standard
Cis = Concentration of the internal standard
DF = Dilution factor
$\mathrm{Vt}=$ Volume of extract in milliters (mL)
RRF = Average relative response factor
Vo = Volume of sample in liters (L)

Sample $\#$	Compound	Ax	Ais	Cis	DF	RRF	Vt (mL)	Vo (L)	Calculated Concentration (ug/L)	Reported Concentration (ng/L)	\% Diff
1	PFOA	$6.129 \mathrm{E}+04$	$1.362 \mathrm{E}+04$	12.5	1	curve	1	236.45	0.167	0.167	0

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:
LDC Report Date:

Parameters:

Validation Level:
Laboratory:

MCAS El Toro and Tustin PFAS
August 25, 2020
Perfluoroalkyl \& Polyfluoroalkyl Substances
Stage 4
Vista Analytical Laboratory

Sample Delivery Group (SDG): 2001417

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
TW06D-20200706	$2001417-02$	Water	$07 / 06 / 20$
TW25D-20200706	$2001417-03$	Water	$07 / 06 / 20$
TW26D-20200706	$2001417-04$	Water	$07 / 06 / 20$
TW08D-20200706	$2001417-05$	Water	$07 / 06 / 20$

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Per- and Polyfluoroalkyl Substances in Groundwater in Carve-Outs 2, 5, 6, and 9 and Groundwater and Surface Water Near Operable Unit 3, Former Marine Corps Air Station Tustin, Tustin, California, with Addendum \#02 to Final Sampling and Analysis Plan for Per- and Polyfluoroalkyl Substances Sampling for Groundwater Remedial Action at Operable Unit 3, Installation Restoration Program Site 1 (February 2020), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (February 2018). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:
Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) by Environmental Protection Agency (EPA) Method 537 Modified and LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. LC/MS Instrument Performance Check

Instrument performance was checked and the requirements were met.

III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the methods.
A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination (r^{2}) was greater than or equal to 0.990 .

For each calibration standard, all compounds were within 70-130\% of their true value.
The signal to noise $(\mathrm{S} / \mathrm{N})$ ratio was within validation criteria for all compounds.
Retention time windows were established as required by the methods.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration and Instrument Sensitivity Check

Continuing calibration was performed at required frequencies.
The percent differences (\%D) were less than or equal to 30.0% for all compounds.
The signal to noise $(\mathrm{S} / \mathrm{N})$ ratio was within validation criteria for all compounds.
The percent differences (\%D) of the instrument sensitivity check (ISC) were less than or equal to 30.0% for all compounds.

Retention times of all compounds in the calibration standards were within the established retention time windows.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample EB04-20200706 was identified as an equipment blank. No contaminants were found.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (\%R) were within QC limits.

Relative percent differences (RPD) were within QC limits with the following exceptions:

LCS ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
BOG0039-BS1/BSD1 (All samples in SDG 2001417)	PFTeDA	$35.7(\leq 30)$	NA	

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Labeled Compounds

All percent recoveries (\%R) for labeled compounds used to quantitate target compounds were within QC limits with the following exceptions:

Sample	Labeled Compound	\%R (Limits)	Affected Compound	Flag	A or P
TW06D-20200706	13C2-PFTeDA	$27.0(50-150)$	PFTeDA	NA	-
TW25D-20200706	d5-EtFOSAA				
13C2-PFDoA					
13C2-PFTeDA	$46.4(50-150)$ $42.7(50-150)$ $17.3(50-150)$	EtFOSAA PFDoA PFTrDA 11 Cl-PF30UdS PFTeDA	NA	-	
TW26D-20200706	13C2-PFTeDA	$24.3(50-150)$	PFTeDA	NA	-

XI. Compound Quantitation

All compound quantitations met validation criteria.

XII. Target Compound Identifications

All target compound identifications met validation criteria.

XIII. System Performance

The system performance was acceptable.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

MCAS EI Toro and Tustin PFAS
Perfluoroalkyl \& Polyfluoroalkyl Substances - Data Qualification Summary - SDG 2001417

No Sample Data Qualified in this SDG
MCAS EI Toro and Tustin PFAS
Perfluoroalkyl \& Polyfluoroalkyl Substances - Laboratory Blank Data Qualification Summary - SDG 2001417

No Sample Data Qualified in this SDG
MCAS El Toro and Tustin PFAS
Perfluoroalkyl \& Polyfluoroalkyl Substances - Field Blank Data Qualification Summary - SDG 2001417

No Sample Data Qualified in this SDG

LDC \#: 48792C $\$ 96$
SD \#: 2001417
VALIDATION COMPLETENESS WORKSHEET
Laboratory: Vista Analytical Laboratory
Stage 4
Date
3/14/20

METHOD: LC/MS Perfluoroalkyl \& Polyfluoroalkyl Substances (EPA Method 537M/QSM 5.3 Table B-15)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note:	A = Acceptable			SD = No compounds detected
$N=$ Not provided/applicable	$R=$ Rinsate	$D=$ Duplicate	SB= Source blank	
	$S W=$ See worksheet	TB $=$ Field blank	KB $=$ Equip blank	OTHER:

VALIDATION FINDINGS CHECKLIST
Page: \qquad
Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

TARGET COMPOUND WORKSHEET

METHOD: PFAS		
A. PFBS		
B. PFHXA		
C. PFHpA		
D. PFHxS		
E. PFOA		
F. Pfna		
G. PFos		
H. PFDA		
1. MeFosas		
J. EtifosAA		
K. PFUnA		
L. PFDoA		
M. PFTTIA		
N. PFFTeDA		
O. HFPO-DA		
P. ADONA		
Q. 9C1-PF30NS		
R. 11C1-PF30Uds		

METHOD: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DOD QSM 5.3
Prease see qualifications below for all questions answered " N ". Not applicable questions are identified as "N/A".
Y N/A Was a LCS required?
Y (N) N/A Were the LCS percent recoveries (\%R) and relative percent difference (RPD) within the QC limits?

\#	Lcs/lcso io	Compound	$\begin{gathered} \text { LCS } \\ \% \mathrm{R} \text { (Limits) } \end{gathered}$	$\begin{gathered} \text { \%RSD (Limits) } \\ \hline \end{gathered}$	RPD (Limits)	Associated Samples	Qualifications
	130G0039-BS/4s	N			$35.7(\leq 30)$	He (Nb)	Jhets/P

VALIDATION FINDINGS WORKSHEET Labeled Compounds

Page:

METHOD: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3
Please see qualifications below for all questions answered " N ". Not applicable questions are identified as "N/A".
Y N/A Were all labeled compound recoveries within the QC criteria?

$$
\begin{array}{lllll}
\mathrm{BS}=13 C 3-\mathrm{PFBS} & H X S=13 C 3-\mathrm{PFHxS} & O S=13 C 8-\mathrm{PFOS} & \text { TDA }=13 \mathrm{C} 2-\mathrm{PFTeDA} & \text { UFOS }=\mathrm{d} 5-\mathrm{EtFOSAA} \\
H X A=13 C 2-\mathrm{PFHXA} & \text { NA }=13 C 5-\mathrm{PFNA} & \text { DA }=13 \mathrm{C} 2-\mathrm{PFDA} & \text { DOA }=13 \mathrm{C} 2-\mathrm{PFDOA} & \\
\text { HPA }=13 C 4-\mathrm{PFHPA} & O A=13 C 2-\mathrm{PFOA} & \text { UDA }=13 \mathrm{C} 2-\mathrm{PFUnA} & \text { MFOS }=\mathrm{d} 3-\mathrm{MeFOSAA} &
\end{array}
$$

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

Calibration Date	Instrument	Compound	Standard	(Y) Response ratio	(X) Conc. Ratio	$\left(\mathrm{X}^{\wedge} 2\right)$ Conc. Ratio
7/10/2020	SCN982	PFOA	1	0.0371	0.02	0.00040
			2	0.0615	0.04	0.0016
			3	0.1197	0.08	0.0064
			4	0.2327	0.16	0.0256
			5	0.6277	0.40	0.1600
			6	1.1434	0.80	0.6400
			7	5.5884	4.00	16.0000
			8	11.6240	8.00	64.0000
			9	26.4062	20.00	400.0000
			10	51.9666	40.00	1600.0000

Regression Output Calculated	Reported	
Constant	c	0.08117
Std Err of Y Est		c
Degrees of Freedom		
	b	a
X Coefficient(s)	1.38891	b
Std Err of Coef.		-0.0022976
Correlation Coefficient		1.42034
Coefficient of Determination $\left(\mathrm{r}^{\wedge} 2\right)$	0.999908	

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

Calibration Date	Instrument	Compound	Standard	(Y) Response ratio	(X) Conc. Ratio	$\overline{\left(X^{\wedge} 2\right)}$ Conc. Ratio
7/10/2020	SCN982	PFOS	1	0.0181	0.02	0.00040
			2	0.0367	0.04	0.0016
			3	0.0751	0.08	0.0064
			4	0.1287	0.16	0.0256
			5	0.4089	0.40	0.1600
			6	0.8490	0.80	0.6400
			7	4.3716	4.00	16.0000
			8	8.7038	8.00	64.0000
			9	21.4254	20.00	400.0000
			10	38.6788	40.00	1600.0000

Regression Output	Calculated		Reported	
Constant	c	-0.06963	c	-0.0940027
Std Err of Y Est				
Degrees of Freedom				
	b	a	b	a
X Coefficient(s)	1.153191	-0.0046289	1.126310	-0.0003080400
Std Err of Coef.				
Correlation Coefficient		0.999967		
Coefficient of Determination ($\mathrm{r}^{\wedge} 2$)		0.999933		0.999556

\qquad

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3
The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

\% Difference $=100^{*}($ aveRRF - RRF $) /$ aveRRF	Where:	
RRF $=(\mathrm{Ax})(\mathrm{Cis}) /(\mathrm{Ais})(\mathrm{Cx})$	aveRRF $=$ initial calib average RRF	Cx $=$ Concentration of compound,
	RRF = continuing calib RRF	Ais = Area of associated internal standard
	Ax = Area of compound	Cis = Concentration of internal standard

\#	Standard ID	Calibration Date	Compound (IS)		Conc	Reported Conc	Recalculated Conc	Reported \%R	Recalculated \%R
1	200710M1_109	7/11/2020	PFOA	(13C2-PFOA)	10.00	10.7	10.7	106.5	106.5
			PFOS	(13C8-PFOS)	10.00	8.57	8.55	85.7	85.5
2			PFOA	(13C2-PFOA)					
			PFOS	(13C8-PFOS)					
3			PFOA	(13C2-PFOA)					
			PFOS	(13C8-PFOS)					
4			PFOA	(13C2-PFOA)					
			PFOS	(13C8-PFOS)					
5			PFOA	(13C2-PFOA)					
			PFOS	(13C8-PFOS)					
6			PFOA	(13C2-PFOA)					
			PFOS	(13C8-PFOS)					

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

Calibration Date	Instrument	Compound	Standard	(Y) Response ratio	(X) Conc. Ratio	$\left(X^{\wedge} 2\right)$ Conc. Ratio
7/16/2020	SCN945/960	PFOA	1	0.0307	0.02	0.00040
			2	0.0628	0.04	0.0016
			3	0.1341	0.08	0.0064
			4	0.2594	0.16	0.0256
			5	0.5827	0.40	0.1600
			6	1.2264	0.80	0.6400
			7	6.2227	4.00	16.0000
			8	11.8314	8.00	64.0000
			9	27.9818	20.00	400.0000
			10	55.1083	40.00	1600.0000

Regression Output	Calculated		Reported	
Constant	c	0.09022	c	0.0619264
Std Err of Y Est				
Degrees of Freedom				
	b	a	b	a
X Coefficient(s)	1.45746	-0.0020386	1.49503	-0.000249651
Std Err of Coef.				
Correlation Coefficient		0.999949		
Coefficient of Determination ($\mathrm{r}^{\wedge} 2$)		0.999898		0.99964

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

Calibration Date	Instrument	Compound	Standard	(Y) Response ratio	(X) Conc. Ratio	$\left(\mathrm{X}^{\wedge} 2\right)$ Conc. Ratio
7/16/2020	SCN982	PFOS	1	0.0183	0.02	0.00040
			2	0.0368	0.04	0.0016
			3	0.0855	0.08	0.0064
			4	0.1639	0.16	0.0256
			5	0.4212	0.40	0.1600
			6	0.8879	0.80	0.6400
			7	4.2126	4.00	16.0000
			8	8.8898	8.00	64.0000
			9	20.8350	20.00	400.0000
			10	37.5574	40.00	1600.0000

Regression Output	Calculated	Reported
Constant	c	c
Std Err of Y Est		-0.03856
Degrees of Freedom		-0.0882230
	b	a
X Coefficient(s)	1.14010	b
Std Err of Coef.		-0.0050221
Correlation Coefficient		1.12687
Coefficient of Determination $\left(\mathrm{r}^{\wedge} 2\right)$	0.999978	

VALIDATION FINDINGS WORKSHEET
 LCS Results Verification

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

The percent recoveries (\%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control duplicate were recalculated for the compounds identified below using the following calculation:

SSC = (Area spike) (Conc IS) / (Area IS) (average RRF spike)
\%Recovery $=100$ *SSC/SA Where:

$$
\begin{array}{ll}
\text { SSC }=\text { Spiked concentration } & \text { LCS }=\text { Laboratory control spike recovery } \\
\text { SA }=\text { Spike added } & \text { LCSD }=\text { Laboratory control spike duplicate recovery }
\end{array}
$$

$R P D=|L C S-L C S D| * 2 /(L C S+L C S D)$

LCS/LCSD ID: \qquad B0G0039-BS/D

Compound	$\begin{gathered} \hline \text { SA } \\ (\mathrm{ug} / \mathrm{L}) \end{gathered}$		$\begin{aligned} & \hline \text { SSC } \\ & (\mathrm{ug} / \mathrm{L}) \end{aligned}$		LCS		LCSD		LCS/LCSD			
			Percent Recovery	Percent Recovery		RPD						
x	LCS	LCSD			LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
PFOA	0.0400	0.0400	0.0431	0.0411	108	108	103	103	4.76	4.75		
PFOS	0.0400	0.0400	0.0397	0.0398	99.1	99.3	99.4	99.5	0.260	0.252		

VALIDATION FINDINGS WORKSHEET
 Sample Results Verification

\qquad

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3
Compound results for all Level IV samples reported with a positive detect were recalculated and verified using the following equation:

$$
\text { Concentration }=\frac{(\mathrm{Ax})(\mathrm{Cis})(\mathrm{Vt})(\mathrm{DF})}{(\mathrm{Ais})(\mathrm{RRF})(\mathrm{Vo})}
$$

Where:
$A x=$ Area or height of the peak for the compound to be measured
Ais = Area or height of the peak for the internal standard
Cis = Concentration of the internal standard
DF = Dilution factor
$\mathrm{Vt}=$ Volume of extract in milliters (mL)
$R R F=$ Average relative response factor
Vo $=$ Volume of sample in liters (L)

$\left[\begin{array}{c} \text { Sample } \\ \# \end{array}\right.$	Compound	Ax	Ais	Cis	DF	RRF	$\begin{gathered} \mathrm{Vt} \\ (\mathrm{~mL}) \end{gathered}$	$\begin{aligned} & V_{0} \\ & \text { (L) } \end{aligned}$	Calculated Concentration (ug/L)	Reported Concentration (ug/L)	\% Diff
1	PFOS	4.907E+02	$3.402 \mathrm{E}+03$	12.5	1	curve	1	261.96	0.00643	0.00643	0

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:
LDC Report Date:
Parameters:
Validation Level:
Laboratory:
MCAS El Toro and Tustin PFAS
September 3, 2020
Perfluoroalkyl \& Polyfluoroalkyl Substances
Stage 4
Vista Analytical Laboratory

Sample Delivery Group (SDG): 2001436

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
TW21D-20200707	$2001436-02$	Water	$07 / 07 / 20$
TW09D-20200707	$2001436-03$	Water	$07 / 07 / 20$
TW22D-20200707	$2001436-04$	Water	$07 / 07 / 20$
TW23D-20200708	$2001436-06$	Water	$07 / 08 / 20$
TW24D-20200708	$2001436-07$	Water	$07 / 08 / 20$
TW17D-20200708	$2001436-08$	Water	$07 / 08 / 20$

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Per- and Polyfluoroalkyl Substances in Groundwater in Carve-Outs 2, 5, 6, and 9 and Groundwater and Surface Water Near Operable Unit 3, Former Marine Corps Air Station Tustin, Tustin, California, with Addendum \#02 to Final Sampling and Analysis Plan for Per- and Polyfluoroalkyl Substances Sampling for Groundwater Remedial Action at Operable Unit 3, Installation Restoration Program Site 1 (February 2020), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (February 2018). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:
Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) by Environmental Protection Agency (EPA) Method 537 Modified and LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

X The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team, but exclusion of the data is recommended.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. LC/MS Instrument Performance Check

Instrument performance was checked and the requirements were met.

III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the methods.
A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination $\left(r^{2}\right)$ was greater than or equal to 0.990 .

For each calibration standard, all compounds were within 70-130\% of their true value.
The signal to noise $(\mathrm{S} / \mathrm{N})$ ratio was within validation criteria for all compounds.
Retention time windows were established as required by the methods.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration and Instrument Sensitivity Check

Continuing calibration was performed at required frequencies.
The percent differences (\%D) were less than or equal to 30.0% for all compounds.
The signal to noise (S/N) ratio was within validation criteria for all compounds.
The percent differences (\%D) of the instrument sensitivity check (ISC) were less than or equal to 30.0% for all compounds.

Retention times of all compounds in the calibration standards were within the established retention time windows.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Samples EB05-20200707 and EB06-20200708 were identified as equipment blanks. No contaminants were found.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Labeled Compounds

All percent recoveries (\%R) for labeled compounds used to quantitate target compounds were within QC limits with the following exceptions:

Sample	Labeled Compound	\%R (Limits)	Affected Compound	Flag	A or P
TW21D-20200707	13C2-PFTeDA	32.1 (50-150)	PFTeDA	NA	-
TW09D-20200707	d5-EtFOSAA 13C2-PFDoA 13C2-PFTeDA	$\begin{aligned} & 42.0(50-150) \\ & 38.5(50-150) \\ & 11.4(50-150) \end{aligned}$	EtFOSAA PFDoA PFTrDA 11CI-PF30UdS PFTeDA	NA	-
TW22D-20200707	d3-MeFOSAA 13C2-PFUnA d5-EtFOSAA 13C2-PFDoA	$\begin{aligned} & 30.9(50-150) \\ & 35.7(50-150) \\ & 23.3(50-150) \\ & 13.5(50-150) \end{aligned}$	MeFOSAA PFUnA EtFOSAA PFDoA PFTrDA 11CI-PF30UdS	NA	-
TW22D-20200707	13C2-PFTeDA	6.30 (50-150)	PFTeDA	X	P
TW23D-20200708	d5-EtFOSAA 13C2-PFDoA	$\begin{aligned} & 48.0(50-150) \\ & 35.0(50-150) \end{aligned}$	EtFOSAA PFDoA PFTrDA 11CI-PF30UdS	NA	-
TW23D-20200708	13C2-PFTeDA	5.40 (50-150)	PFTeDA	X	P

Sample	Labeled Compound	\%R (Limits)	Affected Compound	Flag	A or P
TW24D-20200708	13C2-PFDoA	45.9 (50-150)	$\begin{aligned} & \text { PFDoA } \\ & \text { PFTrDA } \\ & \text { 11CI-PF30UdS } \end{aligned}$	NA	-
TW24D-20200708	13C2-PFTeDA	7.80 (50-150)	PFTeDA	x	P
TW17D-20200708	13C3-PFBS 13C2-PFHxA 13C4-PFHpA 13C3-PFHxS 13C5-PFNA 13C8-PFOS	$\begin{aligned} & 44.4(50-150) \\ & 42.2(50-150) \\ & 45.2(50-150) \\ & 44.2(50-150) \\ & 41.9(50-150) \\ & 45.5(50-150) \end{aligned}$	PFBS PFHxA PFHpA PFHxS PFNA PFOS	J (all detects) J (all detects)	P
TW17D-20200708	$\begin{aligned} & \text { 13C3-HFPO-DA } \\ & \text { 13C4-PFHpA } \\ & \text { 13C8-PFOS } \\ & \text { 13C2-PFDA } \\ & \text { D3-MeFOSAA } \\ & \text { 13C2-PFUnA } \\ & \text { D5-EtFOSAA } \\ & \text { 13C2-PFDoA } \end{aligned}$	$\begin{aligned} & 39.6(50-150) \\ & 45.2(50-150) \\ & 45.5(50-150) \\ & 39.0(50-150) \\ & 27.8(50-150) \\ & 28.3(50-150) \\ & 22.3(50-150) \\ & 15.3(50-150) \end{aligned}$	HFPO-DA ADONA 9CI-PF30NS PFDA MeFOSAA PFUnA EtFOSAA PFDoA PFTrDA 11CI-PF30UdS	NA	-
TW17D-20200708	13C2-PFTeDA	3.30 (50-150)	PFTeDA	X	P

XI. Compound Quantitation

All compound quantitations met validation criteria.

XII. Target Compound Identifications

All target compound identifications met validation criteria.

XIII. System Performance

The system performance was acceptable.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to labeled compound $\%$ R, data were qualified for recommended exclusion in four samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

MCAS EI Toro and Tustin PFAS
Perfluoroalkyl \& Polyfluoroalkyl Substances - Data Qualification Summary - SDG 2001436

Sample	Compound	Flag	A or P	Reason
TW22D-20200707 TW23D-20200708 TW24D-20200708 TW17D-20200708	PFTeDA	X	P	Labeled compounds (\%R)
TW17D-20200708	PFBS PFHxA PFHpA PFHxS PFNA PFOS	J (all detects) J (all detects)	P	Labeled compounds (\%R)

MCAS El Toro and Tustin PFAS
Perfluoroalkyl \& Polyfluoroalkyl Substances - Laboratory Blank Data Qualification Summary - SDG 2001436

No Sample Data Qualified in this SDG
MCAS EI Toro and Tustin PFAS
Perfluoroalkyl \& Polyfluoroalkyl Substances - Field Blank Data Qualification Summary - SDG 2001436

No Sample Data Qualified in this SDG

LDC \#: 48792 D \$ 96
VALIDATION COMPLETENESS WORKSHEET
SD \#: 2001436
Stage 4

Laboratory: Vista Analytical Laboratory
Laboratory: Vista Analytical Laboratory
Reviewer \qquad and Reviewer
METHOD: LC/MS Perfluoroalkyl \& Polyfluoroalkyl Substances (EPA Method 537M/QSM 5.3 Table B-15)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note: $\quad \mathrm{A}=$ Acceptable
$\mathrm{N}=$ Not provided/applicable
SW = See worksheet
ND = No compounds detected
R = Rinsate

D = Duplicate
TB = Trip blank
EB = Equipment blank
SB=Source blank

	Client ID	Lab ID	Matrix	Date
1	TW21D-20200707	$2001436-02$	Water	$07 / 07 / 20$
2	TW09D-20200707	$2001436-03$	Water	$07 / 07 / 20$
3	TW22D-20200707	$2001436-04$	Water	$07 / 07 / 20$
4	TW23D-20200708	$2001436-06$	Water	$07 / 08 / 20$
5	TW24D-20200708	$2001436-07$	Water	$07 / 08 / 20$
6	TW17D-20200708	$2001436-08$	Water	$07 / 08 / 20$
7				
8				
9				
10				

Notes:

	B0Q0058						

VALIDATION FINDINGS CHECKLIST
Page: 1 of 2 Reviewer: 2nd Reviewer:

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

VALIDATION FINDINGS CHECKLIST
Page \qquad

TARGET COMPOUND WORKSHEET
METHOD: PFAS

A. PFBS		
B. PFHxA		
C. PFHPA		
D. PFHxS		
E. PFOA		
F. PrNA		
G. PFos		
H. PFDA		
1. MeFosas		
J. Etifosa		
K. PFUnA		
L. PFDoA		
M. PFTTDA		
N. PFTedA		
O. HFPO-DA		
P. ADONA		
Q. 9Cl-PF30Ns		
R. 11CIPFF30UdS		

LDC \#: 48792196

VALIDATION FINDINGS WORKSHEET
Labeled Compounds

Page: \qquad
Reviewer:

METHOD: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3
Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".
Y N N/A Were all labeled compound recoveries within the QC criteria?

$$
\begin{array}{lllll}
\mathrm{BS}=13 \mathrm{C} 3-\mathrm{PFBS} & H X S=13 \mathrm{C} 3-\mathrm{PFHxS} & \mathrm{OS}=13 \mathrm{C} 8-\mathrm{PFOS} & \text { TDA }=13 \mathrm{C} 2-\mathrm{PFTeDA} & \mathrm{EFOS}=\mathrm{d} 5-\mathrm{EtFOSAA} \\
H X A=13 C 2-\mathrm{PFHXA} & \mathrm{NA}=13 C 5-\mathrm{PFNA} & \text { DA }=13 \mathrm{C} 2-\mathrm{PFDA} & \text { DDA }=13 \mathrm{C} 2-\mathrm{PFDOA} & \\
H P A=13 C 4-\mathrm{PFHpA} & O A=13 \mathrm{C} 2-\mathrm{PFOA} & \text { UDA }=13 \mathrm{C} 2-\mathrm{PFUnA} & \text { MFOS }=\mathrm{d} 3-\mathrm{MeFOSAA} &
\end{array}
$$

VALIDATION FINDINGS WORKSHEET
Labeled Compounds

Page: \qquad
Reviewer: \qquad
METHOD: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3
Please see qualifications below for all questions answered " N ". Not applicable questions are identified as "N/A".
Y (N) N/A Were all labeled compound recoveries within the QC criteria?

$$
\begin{array}{lllll}
\mathrm{BS}=13 \mathrm{C} 3-\mathrm{PFBS} & \mathrm{HXS}=13 \mathrm{C} 3-\mathrm{PFHxS} & \mathrm{OS}=13 \mathrm{C} 8-\mathrm{PFOS} & \text { TDA }=13 \mathrm{C} 2-\mathrm{PFTeDA} & \mathrm{EFOS}=\mathrm{d} 5-\mathrm{EtFOSAA} \\
\mathrm{HXA}=13 \mathrm{C} 2-\mathrm{PFH} A & \text { NA }=13 \mathrm{C} 5-\mathrm{PFNA} & \text { DA }=13 \mathrm{C} 2-\mathrm{PFDA} & \text { DDA }=13 \mathrm{C} 2-\mathrm{PFDOA} & \\
\text { HPA = 13C4-PFHpA } & \text { OA }=13 \mathrm{C} 2-\mathrm{PFOA} & \text { UDA }=13 \mathrm{C} 2-\mathrm{PFUnA} & \text { MFOS }=13-\mathrm{MeFOSAA} &
\end{array}
$$

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

Calibration Date	Instrument	Compound	Standard	(Y) Response ratio	(X) Conc. Ratio	$\left(\mathrm{X}^{\wedge} 2\right)$ Conc. Ratio
7/14/2020	SCN977	PFOA	1	0.0152	0.02	0.00040
			2	0.0354	0.04	0.0016
			3	0.0774	0.08	0.0064
			4	0.1611	0.16	0.0256
			5	0.3921	0.40	0.1600
			6	0.7570	0.80	0.6400
			7	3.7452	4.00	16.0000
			8	7.3709	8.00	64.0000
			9	18.0513	20.00	400.0000
			10	35.0945	40.00	1600.0000

Regression Output	Calculated		Reported	
Constant	c	0.01292	c	-0.0058451
Std Err of Y Est				
Degrees of Freedom				
	b	a	b	a
X Coefficient(s)	0.93049	-0.0013317	0.93654	-0.000120375
Std Err of Coef.				
Correlation Coefficient		0.999999		
Coefficient of Determination ($\wedge^{\wedge} 2$)		0.999998		0.999948

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

Calibration Date	Instrument	Compound	Standard	(Y) Response ratio	(X) Conc. Ratio	$\left(\mathrm{X}^{\wedge} 2\right)$ Conc. Ratio
7/14/2020	SCN977	PFOS	1	0.0189	0.02	0.00040
			2	0.0436	0.04	0.0016
			3	0.0960	0.08	0.0064
			4	0.2164	0.16	0.0256
			5	0.4446	0.40	0.1600
			6	1.0272	0.80	0.6400
			7	5.1463	4.00	16.0000
			8	9.7792	8.00	64.0000
			9	23.9122	20.00	400.0000
			10	52.3992	40.00	1600.0000

Regression Output	Calculated		Reported	
Constant	c	0.11969	c	-0.0060877
Std Err of Y Est				
Degrees of Freedom				
	b	a	b	a
X Coefficient(s)	1.132454	0.0043764	1.186310	0.0002266170
Std Err of Coef.				
Correlation Coefficient		0.999890		
Coefficient of Determination ($\mathrm{r}^{\wedge} 2$)		0.999781		0.999166

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

Calibration Date	Instrument	Compound	Standard	(Y) Response ratio	(X) Conc. Ratio	$\left(X^{\wedge} 2\right)$ Conc. Ratio
7/15/2020	SCN977	PFOA	1	0.0206	0.02	0.00040
			2	0.0425	0.04	0.0016
			3	0.0812	0.08	0.0064
			4	0.1617	0.16	0.0256
			5	0.3638	0.40	0.1600
			6	0.7654	0.80	0.6400
			7	3.8409	4.00	16.0000
			8	7.7159	8.00	64.0000
			9	18.3778	20.00	400.0000
			10	33.7891	40.00	1600.0000

Regression Output	Calculated		Reported	
Constant	c	-0.01377	c	0.0065121
Std Err of Y Est				
Degrees of Freedom				
	b	a	b	a
X Coefficient(s)	0.99146	-0.0036659	0.98500	-0.000278493
Std Err of Coef.				
Correlation Coefficient		0.999998		
Coefficient of Determination (${ }^{\wedge} 2$)		0.999996		0.999925

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

Calibration Date	Instrument	Compound	Standard	(Y) Response ratio	(X) Conc. Ratio	$\left(\mathrm{X}^{\wedge} 2\right)$ Conc. Ratio
7/15/2020	SCN977	PFOS	1	0.0194	0.02	0.00040
			2	0.0507	0.04	0.0016
			3	0.0999	0.08	0.0064
			4	0.2036	0.16	0.0256
			5	0.5553	0.40	0.1600
			6	1.0030	0.80	0.6400
			7	5.2162	4.00	16.0000
			8	10.0225	8.00	64.0000
			9	22.5872	20.00	400.0000
			10	48.0572	40.00	1600.0000

Regression Output	Calculated		Reported	
Constant	c	0.17286	c	0.0162657
Std Err of Y Est				
Degrees of Freedom				
	b	a	b	a
X Coefficient(s)	1.138001	0.0014902	1.214650	-0.0000566898
Std Err of Coef.				
Correlation Coefficient		0.999708		
Coefficient of Determination ($\wedge^{\wedge} 2$)		0.999416		0.998321

\qquad

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3
The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:
\% Difference $=100$ * (aveRRF - RRF $) /$ aveRRF
RRF $=($ Ax $)($ Cis $) /($ (Ais $)(C x)$

Where:
aveRRF $=$ initial calib average $R R F \quad C x=$ Concentration of compound,
RRF = continuing calib RRF
Ax = Area of compound

Ais = Area of associated internal standard
Cis = Concentration of internal standard

\#	Standard ID	Calibration Date	Compound (IS)		Conc	Reported Conc	Recalculated Conc	$\begin{gathered} \text { Reported } \\ \% R \\ \hline \end{gathered}$	Recalculated \%R
1	200714P1_42	7/15/2020	PFOA	(13C2-PFOA)	10.00	9.99	9.99	99.9	99.9
			PFOS	(13C8-PFOS)	10.00	10.70	10.75	107.2	107.5
2			PFOA	(13C2-PFOA)					
			PFOS	(13C8-PFOS)					
3			PFOA	(13C2-PFOA)					
			PFOS	(13C8-PFOS)					
4			PFOA	(13C2-PFOA)					
			PFOS	(13C8-PFOS)					
5			PFOA	(13C2-PFOA)					
			PFOS	(13C8-PFOS)					
6			PFOA	(13C2-PFOA)					
			PFOS	(13C8-PFOS)					

VALIDATION FINDINGS WORKSHEET

LCS Results Verification
Page: \qquad
Reviewer: SC 2nd Reviewer: \qquad

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3
The percent recoveries (\%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control duplicate were recalculated for the compounds identified below using the following calculation:

SSC = (Area spike) (Conc IS) / (Area IS) (average RRF spike)

\%Recovery $=100 *$ SSC/SA	Where:	
	SSC = Spiked concentration	LCS = Laboratory control spike recovery
	SA $=$ Spike added	LCSD $=$ Laboratory control spike duplicate recovery

LCS/LCSD ID: BOG0058-BS/D

Compound	$\begin{gathered} \hline \mathrm{SA} \\ (\mathrm{ug} / \mathrm{L}) \\ \hline \end{gathered}$		$\begin{aligned} & \hline \hline \mathrm{SSC} \\ & (\mathrm{ug} / \mathrm{L}) \end{aligned}$		LCS		LCSD		LCS/LCSD			
			Percent Recovery	Percent Recovery		RPD						
-	LCS	LCSD			LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
PFOA	0.0400	0.0400	0.0380	0.0422	95.1	95.0	105	106	10.4	10.5		
PFOS	0.0400	0.0400	0.0365	0.0485	91.2	91.3	121.0	121	28.4	28.2		

VALIDATION FINDINGS WORKSHEET

Sample Results Verification \qquad

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3
Compound results for all Level IV samples reported with a positive detect were recalculated and verified using the following equation:

```
Concentration=(Ax)(Cis) (Vt) (DF)
(Ais) (RRF) (Vo)
```

Where:
Ax = Area or height of the peak for the compound to be measured
Ais = Area or height of the peak for the internal standard
Cis = Concentration of the internal standard
DF = Dilution factor
$\mathrm{Vt}=$ Volume of extract in milliters (mL)
RRF = Average relative response factor
Vo $=$ Volume of sample in liters (L)

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	MCAS El Toro and Tustin PFAS
LDC Report Date:	September 3, 2020
Parameters:	Perfluoroalkyl \& Polyfluoroalkyl Substances
Validation Level:	Stage 4
Laboratory:	Vista Analytical Laboratory

Sample Delivery Group (SDG): 2001444

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
TW27S-20200709	$2001444-02$	Water	$07 / 09 / 20$
TW22S-20200709	$2001444-03$	Water	$07 / 09 / 20$
TW10D-20200709	$2001444-04$	Water	$07 / 09 / 20$
TW11D-20200709	$2001444-05$	Water	$07 / 09 / 20$
TW12D-20200709	$2001444-06$	Water	$07 / 09 / 20$
TW13D-20200709	$2001444-07$	Water	$07 / 09 / 20$
TW14D-20200709	$2001444-08$	Water	$07 / 09 / 20$

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Per- and Polyfluoroalkyl Substances in Groundwater in Carve-Outs 2, 5, 6, and 9 and Groundwater and Surface Water Near Operable Unit 3, Former Marine Corps Air Station Tustin, Tustin, California, with Addendum \#02 to Final Sampling and Analysis Plan for Per- and Polyfluoroalkyl Substances Sampling for Groundwater Remedial Action at Operable Unit 3, Installation Restoration Program Site 1 (February 2020), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (February 2018). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:
Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) by Environmental Protection Agency (EPA) Method 537 Modified and LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

X The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team, but exclusion of the data is recommended.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. LC/MS Instrument Performance Check

Instrument performance was checked and the requirements were met.

III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the methods.
A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination $\left(r^{2}\right)$ was greater than or equal to 0.990 .

For each calibration standard, all compounds were within $70-130 \%$ of their true value.
The signal to noise $(\mathrm{S} / \mathrm{N})$ ratio was within validation criteria for all compounds.
Retention time windows were established as required by the methods.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration and Instrument Sensitivity Check

Continuing calibration was performed at required frequencies.
The percent differences (\%D) were less than or equal to 30.0% for all compounds.
The signal to noise $(\mathrm{S} / \mathrm{N})$ ratio was within validation criteria for all compounds.
The percent differences (\%D) of the instrument sensitivity check (ISC) were less than or equal to 30.0% for all compounds.

Retention times of all compounds in the calibration standards were within the established retention time windows.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample EB07-20200709 was identified as an equipment blank. No contaminants were found.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Labeled Compounds

All percent recoveries (\%R) for labeled compounds used to quantitate target compounds were within QC limits with the following exceptions:

Sample	Labeled Compound	\%R (Limits)	Affected Compound	Flag	A or P
TW10D-20200709	13C2-PFTeDA	14.5 (50-150)	PFTeDA	NA	-
TW11D-20200709	d3-MeFOSAA 13C2-PFUnA d5-EtFOSAA 13C2-PFDoA	$\begin{aligned} & 40.0(50-150) \\ & 43.6(50-150) \\ & 42.9(50-150) \\ & 27.5(50-150) \end{aligned}$	MeFOSAA EtFOSAA PFUnA PFDoA PFTrDA 11CI-PF30UdS	NA	-
TW11D-20200709	13C2-PFTeDA	6.00 (50-150)	PFTeDA	x	P
TW12D-20200709	d3-MeFOSAA 13C2-PFUnA d5-EtFOSAA 13C2-PFDoA	$\begin{aligned} & 44.9(50-150) \\ & 42.9(50-150) \\ & 41.2(50-150) \\ & 24.1(50-150) \end{aligned}$	MeFOSAA EtFOSAA PFUnA PFDoA PFTrDA 11Cl-PF30UdS	NA	-
TW12D-20200709	13C2-PFTeDA	5.20 (50-150)	PFTeDA	X	P
TW13D-20200709	13C2-PFTeDA	10.8 (50-150)	PFTeDA	NA	-

XI. Compound Quantitation

All compound quantitations met validation criteria.

XII. Target Compound Identifications

All target compound identifications met validation criteria with the following exceptions:

Sample	Compound	Ion Abundance Ratio (Limits)	Flag	A or P
TW13D-20200709	PFNA	$26.223(6.217-18.651)$	J (all detects)	P

XIII. System Performance

The system performance was acceptable.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to labeled compound \%R, data were qualified for recommended exclusion in two samples.

Due to labeled compounds $\% R$ and ion abundance ratio, data were qualified as estimated in one sample.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

MCAS El Toro and Tustin PFAS
Perfluoroalkyl \& Polyfluoroalkyl Substances - Data Qualification Summary - SDG 2001444

Sample	Compound	Flag	A or P	Reason
TW11D-20200709				
TW12D-20200709	PFTeDA	X	P	Labeled compounds (\%R)
TW13D-20200709	PFNA	J (all detects)	P	Target compound identification (ion abundance ratio)

MCAS EI Toro and Tustin PFAS
Perfluoroalkyl \& Polyfluoroalkyl Substances - Laboratory Blank Data Qualification Summary - SDG 2001444

No Sample Data Qualified in this SDG
MCAS EI Toro and Tustin PFAS
Perfluoroalkyl \& Polyfluoroalkyl Substances - Field Blank Data Qualification Summary - SDG 2001444

No Sample Data Qualified in this SDG

LDC \#: 48792Eф96 VALIDATION COMPLETENESS WORKSHEET

METHOD: LC/MS Perfluoroalkyl \& Polyfluoroalkyl Substances (EPA Method 537M/QSM 5.3 Table B-15)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

$\begin{array}{ll}\text { Note: } & \\ & A=\text { Acceptable } \\ & N=\text { Not provided/applicable } \\ & \text { SW }=\text { See worksheet }\end{array}$

ND = No compounds detected $\mathrm{R}=$ Rinsate FB = Field blank

D = Duplicate TB = Trip blank $\mathrm{EB}=$ Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	TW27S-20200709	$2001444-02$	Water	$07 / 09 / 20$
2	TW22S-20200709	$2001444-03$	Water	$07 / 09 / 20$
3	TW10D-20200709	$2001444-04$	Water	$07 / 09 / 20$
4	TW11D-20200709	$2001444-05$	Water	$07 / 09 / 20$
5	TW12D-20200709	$2001444-06$	Water	$07 / 09 / 20$
6	TW13D-20200709	$2001444-07$	Water	$07 / 09 / 20$
7	TW14D-20200709	$2001444-08$	Water	$07 / 09 / 20$
8				
9				
10				

Notes:

	BoG 0090					

VALIDATION FINDINGS CHECKLIST

Page: 1 of 2
Reviewer:
2nd Reviewer
\qquad

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

VALIDATION FINDINGS CHECKLIST

TARGET COMPOUND WORKSHEET

VALIDATION FINDINGS WORKSHEET Labeled Compounds
\qquad

METHOD: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3
Please see qualifications below for all questions answered " N ". Not applicable questions are identified as "N/A".
Y N N/A Were all labeled compound recoveries within the QC criteria?

$\begin{array}{lllll}\mathrm{BS}=13 \mathrm{C} 3-\mathrm{PFBS} & H X S=13 \mathrm{C} 3-\mathrm{PFHxS} & \mathrm{OS}=13 \mathrm{C} 8-\mathrm{PFOS} & \text { TVA }=13 \mathrm{C} 2-\mathrm{PFTeDA} & \mathrm{EFOS}=\mathrm{d} 5-\mathrm{EtFOSAA}\end{array}$
$\begin{array}{llll}H X A=13 C 2-\mathrm{PFHXA} & \mathrm{NA}=13 C 5-\mathrm{PFNA} & \mathrm{DA}=13 \mathrm{C} 2-\mathrm{PFDA} & \mathrm{DDA}=13 \mathrm{C} 2-\mathrm{PFDOA} \\ \mathrm{HPA}=13 \mathrm{C} 4-\mathrm{PFHPA} & \mathrm{OA}=13 \mathrm{C} 2-\mathrm{PFOA} & \mathrm{UDA}=13 \mathrm{C} 2-\mathrm{PFUnA} & \mathrm{MFOS}=\mathrm{d} 3-\mathrm{MeFOSAA}\end{array}$
V:IVALIDATION WORKSHEETSIPFAS-537MITABLE B15ILC_INTST_VISTA.DOCX

VALIDATION FINDINGS WORKSHEET Target Compound Identification

METHOD: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3
Please see qualifications below for all questions answered " N ". Not applicable questions are identified as "N/A".
(f) N N/A Was the signal to noise (S/N) ratio for all compounds within the validation criteria?

Y N N/A Were two transitions and the ion transition ratio per analyte monitored and documented with the exception of PFBA and PFPeA? Y N/A Were ion ratios within QC limits and between $50-150 \%$?

\bigcirc	\%	${ }_{\text {a }}$		$\xrightarrow{\text { a }}$
-				
-				

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

Calibration Date	Instrument	Compound	Standard	(Y) Response ratio	(X) Conc. Ratio	$\left(\mathrm{X}^{\wedge} 2\right)$ Conc. Ratio
7/21/2020	SCN977	PFOA	1	0.0278	0.02	0.00040
			2	0.0469	0.04	0.0016
			3	0.0823	0.08	0.0064
			4	0.1593	0.16	0.0256
			5	0.3971	0.40	0.1600
			6	0.7486	0.80	0.6400
			7	3.7233	4.00	16.0000
			8	7.8135	8.00	64.0000
			9	18.9803	20.00	400.0000
			10	36.5156	40.00	1600.0000

Regression Output	Calculated		Reported	
Constant	c	-0.01706	c	0.0565111
Std Err of Y Est				
Degrees of Freedom				
	b	a	b	a
X Coefficient(s)	0.98243	-0.0017341	0.972216	-0.000115660
Std Err of Coef.				
Correlation Coefficient		0.999989		
Coefficient of Determination ($\wedge^{\wedge} 2$)		0.999978		0.999818

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

Calibration Date	Instrument	Compound	Standard	(Y) Response ratio	(X) Conc. Ratio	$\left(\mathrm{X}^{\wedge} 2\right)$ Conc. Ratio
7/21/2020	SCN977	PFOS	1	0.0210	0.02	0.00040
			2	0.0340	0.04	0.0016
			3	0.1120	0.08	0.0064
			4	0.1911	0.16	0.0256
			5	0.5292	0.40	0.1600
			6	0.9517	0.80	0.6400
			7	5.0005	4.00	16.0000
			8	10.7860	8.00	64.0000
			9	25.6408	20.00	400.0000
			10	52.0437	40.00	1600.0000

Regression Output	Calculated		Reported	
Constant	c	0.00376	c	-0.0631930
Std Err of Y Est				
Degrees of Freedom				
	b	a	b	a
X Coefficient(s)	1.287640	0.0003101	1.292200	0.0000147461
Std Err of Coef.				
Correlation Coefficient		0.999957		
Coefficient of Determination ($\mathrm{r}^{\wedge} 2$)		0.999913		0.99958

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

Calibration Date	Instrument	Compound	Standard	(Y) Response ratio	(X) Conc. Ratio	$\left(\mathrm{X}^{\wedge} 2\right)$ Conc. Ratio
7/23/2020	SCN977	PFOA	1	0.0232	0.02	0.00040
			2	0.0463	0.04	0.0016
			3	0.0863	0.08	0.0064
			4	0.1615	0.16	0.0256
			5	0.3900	0.40	0.1600
			6	0.7723	0.80	0.6400
			7	3.8020	4.00	16.0000
			8	7.3944	8.00	64.0000
			9	19.1260	20.00	400.0000
			10	36.7968	40.00	1600.0000

Regression Output	Calculated		Reported	
Constant	c	-0.02577	c	0.0499833
Std Err of Y Est				
Degrees of Freedom				
	b	a	b	a
X Coefficient(s)	0.97078	-0.0012466	0.956964	-0.0000683589
Std Err of Coef.				
Correlation Coefficient		0.999962		
Coefficient of Determination ($\wedge^{\wedge} 2$)		0.999925		0.999795

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

Calibration Date	Instrument	Compound	Standard	(Y) Response ratio	(X) Conc. Ratio	$\left(\mathrm{X}^{\wedge} 2\right)$ Conc. Ratio
7/23/2020	SCN977	PFOS	1	0.0175	0.02	0.00040
			2	0.0388	0.04	0.0016
			3	0.1035	0.08	0.0064
			4	0.2072	0.16	0.0256
			5	0.5466	0.40	0.1600
			6	0.8809	0.80	0.6400
			7	5.1093	4.00	16.0000
			8	9.5918	8.00	64.0000
			9	25.5339	20.00	400.0000
			10	60.0403	40.00	1600.0000

Regression Output	Calculated		Reported	
Constant	c	0.10878	c	0.0102665
Std Err of Y Est				
Degrees of Freedom				
	b	a	b	a
X Coefficient(s)	1.089828	0.0102330	1.138060	0.0007079480
Std Err of Coef.				
Correlation Coefficient		0.999939		
Coefficient of Determination ($\mathrm{r}^{\wedge} 2$)		0.999877		0.999249

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

Calibration Date	Instrument	Compound	Standard	(Y) Response ratio	(X) Conc. Ratio	$\left(X^{\wedge} 2\right)$ Conc. Ratio
7/24/2020	SCN977	PFOA	1	0.0257	0.02	0.00040
			2	0.0357	0.04	0.0016
			3	0.0821	0.08	0.0064
			4	0.1614	0.16	0.0256
			5	0.4081	0.40	0.1600
			6	0.7089	0.80	0.6400
			7	3.6827	4.00	16.0000
			8	7.6180	8.00	64.0000
			9	19.7474	20.00	400.0000
			10	38.9385	40.00	1600.0000

Regression Output	Calculated		Reported	
Constant	C	-0.04915	c	0.0306828
Std Err of Y Est				
Degrees of Freedom				
	b	a	b	a
X Coefficient(s)	0.97842	-0.0000964	0.955014	0.0000457658
Std Err of Coef.				
Correlation Coefficient		0.999962		
Coefficient of Determination ($\mathrm{r}^{\wedge} 2$)		0.999925		0.999663

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

Calibration Date	Instrument	Compound	Standard	(Y) Response ratio	(X) Conc. Ratio	$\left(X^{\wedge} 2\right)$ Conc. Ratio
7/24/2020	SCN977	PFOS	1	0.0154	0.02	0.00040
			2	0.0500	0.04	0.0016
			3	0.0828	0.08	0.0064
			4	0.2236	0.16	0.0256
			5	0.4951	0.40	0.1600
			6	0.9308	0.80	0.6400
			7	4.7375	4.00	16.0000
			8	9.4045	8.00	64.0000
			9	27.8957	20.00	400.0000
			10	50.8200	40.00	1600.0000

Regression Output	Calculated		Reported	
Constant	c	-0.24946	c	-0.0790602
Std Err of Y Est				
Degrees of Freedom				
	b	a	b	a
X Coefficient(s)	1.386808	-0.0027533	1.278740	0.0000281280
Std Err of Coef.				
Correlation Coefficient		0.999343		
Coefficient of Determination ($\mathrm{r}^{\wedge} 2$)		0.998686		0.996689

VALIDATION FINDINGS WORKSHEET Continuing Calibration Calculation Verification

Page: 1 of 1 Reviewer: \qquad

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:
\% Difference $=100$ * (aveRRF - RRF)/aveRRF RRF $=(\mathrm{Ax})(\mathrm{Cis}) /($ Ais $)(\mathrm{Cx})$

Where:

aveRRF = initial calib average RRF $\quad \mathrm{Cx}=$ Concentration of compound,
RRF = continuing calib RRF
Ax = Area of compound

Ais = Area of associated internal standard
Cis $=$ Concentration of internal standard

\#	Standard ID	Calibration Date	Compound (IS)		Conc	Reported Conc	Recalculated Conc	Reported \%R	Recalculated \%R
1	200721P1_38	7/21/2020	PFOA	(13C2-PFOA)	10.00	9.17	9.17	91.7	91.7
			PFOS	(13C8-PFOS)	10.00	9.15	9.16	91.5	91.6
2	200724P1_48	7/24/2020	PFOA	(13C2-PFOA)	10.00	9.37	9.35	93.7	93.5
			PFOS	(13C8-PFOS)	10.00	9.19	9.19	91.9	91.9
3			PFOA	(13C2-PFOA)					
			PFOS	(13C8-PFOS)					
4			PFOA	(13C2-PFOA)					
			PFOS	(13C8-PFOS)					
5			PFOA	(13C2-PFOA)					
			PFOS	(13C8-PFOS)					
6			PFOA	(13C2-PFOA)					
			PFOS	(13C8-PFOS)					

VALIDATION FINDINGS WORKSHEET
 LCS Results Verification

Page: _1_of_1 Reviewer: \qquad SC 2nd Reviewer: \qquad

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

The percent recoveries (\%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control duplicate were recalculated for the compounds identified below using the following calculation:

SSC = (Area spike) (Conc IS) / (Area IS) (average RRF spike)
\%Recovery $=100$ *SSC/SA Where:
SSC $=$ Spiked concentration \quad LCS $=$ Laboratory control spike recovery
SA = Spike added
LCSD = Laboratory control spike duplicate recovery
$R P D=|L C S-L C S D| * 2 /(L C S+L C S D)$
LCS/LCSD ID: BOG0090-BS/D \qquad

Compound	$\begin{gathered} \mathrm{SA} \\ (\mathrm{ug} / \mathrm{L}) \\ \hline \end{gathered}$		$\begin{aligned} & \hline \text { SSC } \\ & (\mathrm{ug} / \mathrm{L}) \end{aligned}$		LCS		LCSD		LCS/LCSD			
			Percent Recovery	Percent Recovery		RPD						
-	LCS	LCSD			LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
PFOA	0.0400	0.0400	0.0381	0.0380	95.3	95.3	94.9	95.0	0.339	0.263		
PFOS	0.0400	0.0400	0.0417	0.0357	104	104	89.2	89.3	15.6	15.5		

VALIDATION FINDINGS WORKSHEET Sample Results Verification

Page: 1 of 1 Reviewer \qquad 2nd Reviewer:

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3
Compound results for all Level IV samples reported with a positive detect were recalculated and verified using the following equation:

```
Concentration = (Ax)(Cis) (Vt)(DF)
(Ais) (RRF) (Vo)
    Where:
        Ax = Area or height of the peak for the compound to be measured
        Ais = Area or height of the peak for the internal standard
        Cis = Concentration of the internal standard
    DF = Dilution factor
    Vt = Volume of extract in milliters (mL)
    RRF = Average relative response factor
    Vo = Volume of sample in liters (L)
```

$\begin{array}{\|c} \substack{\text { Sample } \\ \#} \\ \hline \end{array}$	Compound	Ax	Ais	Cis	DF	RRF	$\begin{gathered} \mathrm{vt}^{\mathrm{ct}}\left(\begin{array}{l} \text { (} \\ \hline \end{array}\right. \\ \hline \end{gathered}$	$\begin{array}{r} \mathrm{Vo}_{0} \\ (\mathrm{~m}(\mathrm{~L}) \\ \hline \end{array}$	$\begin{gathered} \hline \text { Calculated } \\ \text { Concentration } \end{gathered}$ $(\mathrm{ug} / \mathrm{L})$	$\begin{gathered} \text { Reported } \\ \text { Concentration } \end{gathered}$ $(\mathrm{ug} / \mathrm{L})$	\% Diff
1	PFOS	5.300E+04	$1.611 \mathrm{E}+02$	12.5	15	curve	1	247.75	12.2	12.2	0

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	MCAS El Toro and Tustin PFAS
LDC Report Date:	September 3, 2020
Parameters:	Perfluoroalkyl \& Polyfluoroalkyl Substances
Validation Level:	Stage 4
Laboratory:	Vista Analytical Laboratory

Sample Delivery Group (SDG): 2001472

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
TW23S-20200710	$2001472-02$	Water	$07 / 10 / 20$
TW24S-20200710	$2001472-03$	Water	$07 / 10 / 20$
TW15D-20200710	$2001472-04$	Water	$07 / 10 / 20$
TW16D-20200710	$2001472-05$	Water	$07 / 10 / 20$

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Per- and Polyfluoroalkyl Substances in Groundwater in Carve-Outs 2, 5, 6, and 9 and Groundwater and Surface Water Near Operable Unit 3, Former Marine Corps Air Station Tustin, Tustin, California, with Addendum \#02 to Final Sampling and Analysis Plan for Per- and Polyfluoroalkyl Substances Sampling for Groundwater Remedial Action at Operable Unit 3, Installation Restoration Program Site 1 (February 2020), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.3 (2019), and the DoD General Validation Guidelines (February 2018). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:
Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) by Environmental Protection Agency (EPA) Method 537 Modified and LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

X The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and to meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team, but exclusion of the data is recommended.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. LC/MS Instrument Performance Check

Instrument performance was checked and the requirements were met.

III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the methods.
A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination $\left(r^{2}\right)$ was greater than or equal to 0.990 .

For each calibration standard, all compounds were within 70-130\% of their true value.
The signal to noise (S / N) ratio was within validation criteria for all compounds.
Retention time windows were established as required by the methods.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration and Instrument Sensitivity Check

Continuing calibration was performed at required frequencies.
The percent differences (\%D) were less than or equal to 30.0% for all compounds.
The signal to noise (S / N) ratio was within validation criteria for all compounds.
The percent differences (\%D) of the instrument sensitivity check (ISC) were less than or equal to 30.0% for all compounds.

Retention times of all compounds in the calibration standards were within the established retention time windows.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample 08-2020710 was identified as an equipment blank. No contaminants were found.

VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Labeled Compounds

All percent recoveries (\%R) for labeled compounds used to quantitate target compounds were within QC limits with the following exceptions:

Sample	Labeled Compound	\%R (Limits)	Affected Compound	Flag	A or P
TW24S-20200710	13C2-PFTeDA	36.1 (50-150)	PFTeDA	NA	-
TW15D-20200710	13C2-PFDoA	46.9 (50-150)	PFDoA PFTrDA 11CI-PF30UdS	NA	-
TW15D-20200710	13C2-PFTeDA	6.90 (50-150)	PFTEDA	X	P
TW16D-20200710	d3-MeFOSAA 13C2-PFUnA d5-EtFOSAA 13C2-PFDoA	$\begin{aligned} & 49.9(50-150) \\ & 44.2(50-150) \\ & 46.5(50-150) \\ & 28.8(50-150) \end{aligned}$	MeFOSAA PFUnA EtFOSAA PFDoA PFTrDA 11CI-PF30UdS	NA	-
TW16D-20200710	13C2-PFTeDA	5.50 (50-150)	PFTeDA	x	P

XI. Compound Quantitation

All compound quantitations met validation criteria.

XII. Target Compound Identifications

All target compound identifications met validation criteria.

XIII. System Performance

The system performance was acceptable.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to labeled compounds $\%$ R, data were qualified for recommended exclusion in two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable

MCAS EI Toro and Tustin PFAS
Perfluoroalkyl \& Polyfluoroalkyl Substances - Data Qualification Summary - SDG 2001472

Sample				
TW15D-20200710				
TW16D-20200710				

MCAS EI Toro and Tustin PFAS
Perfluoroalkyl \& Polyfluoroalkyl Substances - Laboratory Blank Data Qualification Summary - SDG 2001472

No Sample Data Qualified in this SDG
MCAS EI Toro and Tustin PFAS
Perfluoroalkyl \& Polyfluoroalkyl Substances - Field Blank Data Qualification Summary - SDG 2001472

No Sample Data Qualified in this SDG

LDC \#: 48792F 696
VALIDATION COMPLETENESS WORKSHEET
Laboratory: Vista Analytical Laboratory
METHOD: LC/MS Perfluoroalkyl \& Polyfluoroalkyl Substances (EPA Method 537M/QSM 5.3 Table B-15)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note: $\quad \mathrm{A}=$ Acceptable
$\mathrm{N}=$ Not provided/applicable
SW = See worksheet

ND = No compounds detected
$\mathrm{D}=$ Duplicate
SB=Source blank
$\mathrm{R}=$ Rinsate
FB = Field blank

TB = Trip blank $E B=$ Equipment blank

OTHER:

	Client ID	Lab ID	Matrix	Date
1	TW23S-20200710	$2001472-02$	Water	$07 / 10 / 20$
2	TW24S-20200710	$2001472-03$	Water	$07 / 10 / 20$
3	TW15D-20200710	$2001472-04$	Water	$07 / 10 / 20$
4	TW16D-20200710	$2001472-05$	Water	$07 / 10 / 20$
5				
6				
7				
8				
9				
10				

	BoG0090						

Reviewer: \qquad 2nd Reviewer:

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

TARGET COMPOUND WORKSHEET

A. PFBS		
B. PFHxA		
C. PFHPA		
D. PFHxS		
E. PFOA		
F. PFNA		
G. PFOS		
H. PFDA		
1. MeFOSAA		
J. EtFOSAA		
K. PFUnA		
L. PFDoA		
M. PFTrDA		
N. PFTeDA		
O. HFPO-DA		
P. ADONA		
Q. 9CI-PF30Ns		
R. 11CI-PF30UdS		

LDC \#: $48792 F 96$
\qquad

VALIDATION FINDINGS WORKSHEET Labeled Compounds

Page: \qquad
Reviewer: 2nd Reviewer:

METHOD: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3
Please see qualifications below for all questions answered " N ". Not applicable questions are identified as "N/A".
Y N N/A Were all labeled compound recoveries within the QC criteria?

\qquad

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

Calibration Date	Instrument	Compound	Standard	(Y) Response ratio	(X) Conc. Ratio	$\left(\mathrm{X}^{\wedge} 2\right)$ Conc. Ratio
7/21/2020	SCN977	PFOA	1	0.0278	0.02	0.00040
			2	0.0469	0.04	0.0016
			3	0.0823	0.08	0.0064
			4	0.1593	0.16	0.0256
			5	0.3971	0.40	0.1600
			6	0.7486	0.80	0.6400
			7	3.7233	4.00	16.0000
			8	7.8135	8.00	64.0000
			9	18.9803	20.00	400.0000
			10	36.5156	40.00	1600.0000

Regression Output	Calculated		Reported	
Constant	c	-0.01706	c	0.0565111
Std Err of Y Est				
Degrees of Freedom				
	b	a	b	a
X Coefficient(s)	0.98243	-0.0017341	0.972216	-0.000115660
Std Err of Coef.				
Correlation Coefficient		0.999989		
Coefficient of Determination ($\mathrm{r}^{\wedge} 2$)		0.999978		0.999818

\qquad

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

Calibration Date	Instrument	Compound	Standard	(Y) Response ratio	(X) Conc. Ratio	$\left(X^{\wedge} 2\right)$ Conc. Ratio
7/21/2020	SCN977	PFOS	1	0.0210	0.02	0.00040
			2	0.0340	0.04	0.0016
			3	0.1120	0.08	0.0064
			4	0.1911	0.16	0.0256
			5	0.5292	0.40	0.1600
			6	0.9517	0.80	0.6400
			7	5.0005	4.00	16.0000
			8	10.7860	8.00	64.0000
			9	25.6408	20.00	400.0000
			10	52.0437	40.00	1600.0000

Regression Output	Calculated		Reported	
Constant	c	0.00376	c	-0.0631930
Std Err of Y Est				
Degrees of Freedom				
	b	a	b	a
X Coefficient(s)	1.287640	0.0003101	1.292200	0.0000147461
Std Err of Coef.				
Correlation Coefficient		0.999957		
Coefficient of Determination ($\wedge^{\wedge} 2$)		0.999913		0.99958

\qquad

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

Calibration Date	Instrument	Compound	Standard	(Y) Response ratio	(X) Conc. Ratio	$\left(\mathrm{X}^{\wedge} 2\right)$ Conc. Ratio
7/23/2020	SCN977	PFOA	1	0.0232	0.02	0.00040
			2	0.0463	0.04	0.0016
			3	0.0863	0.08	0.0064
			4	0.1615	0.16	0.0256
			5	0.3900	0.40	0.1600
			6	0.7723	0.80	0.6400
			7	3.8020	4.00	16.0000
			8	7.3944	8.00	64.0000
			9	19.1260	20.00	400.0000
			10	36.7968	40.00	1600.0000

Regression Output	Calculated		Reported	
Constant	c	-0.02577	c	0.0499833
Std Err of Y Est				
Degrees of Freedom				
	b	a	b	a
X Coefficient(s)	0.97078	-0.0012466	0.956964	-0.0000683589
Std Err of Coef.				
Correlation Coefficient		0.999962		
Coefficient of Determination ($\mathrm{r}^{\wedge} 2$)		0.999925		0.999795

\qquad

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

Calibration Date	Instrument	Compound	Standard	(Y) Response ratio	(X) Conc. Ratio	$\left(\mathbf{X}^{\wedge} 2\right)$ Conc. Ratio
7/23/2020	SCN977	PFOS	1	0.0175	0.02	0.00040
			2	0.0388	0.04	0.0016
			3	0.1035	0.08	0.0064
			4	0.2072	0.16	0.0256
			5	0.5466	0.40	0.1600
			6	0.8809	0.80	0.6400
			7	5.1093	4.00	16.0000
			8	9.5918	8.00	64.0000
			9	25.5339	20.00	400.0000
			10	60.0403	40.00	1600.0000

Regression Output	Calculated		Reported	
Constant	c	0.10878	c	0.0102665
Std Err of Y Est				
Degrees of Freedom				
	b	a	b	a
X Coefficient(s)	1.089828	0.0102330	1.138060	0.0007079480
Std Err of Coef.				
Correlation Coefficient		0.999939		
Coefficient of Determination ($\mathrm{r}^{\wedge} 2$)		0.999877		0.999249

\qquad

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3
The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

\% Difference $=100^{*}($ aveRRF - RRF $) /$ aveRRF	Where:	
RRF $=(\mathrm{Ax})(\mathrm{Cis}) /($ Ais $)(\mathrm{Cx})$	aveRRF = initial calib average RRF	Cx = Concentration of compound,
	RRF = continuing calib RRF	Ais = Area of associated internal standard
	Ax = Area of compound	Cis = Concentration of internal standard

VALIDATION FINDINGS WORKSHEET
 LCS Results Verification

Page: 1 of 1
Reviewer: SC
2nd Reviewer:

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3

The percent recoveries (\%R) and relative percent differences (RPD) of the laboratory control sample and laboratory control duplicate were recalculated for the compounds identified below using the following calculation:

SSC = (Area spike) (Conc IS) / (Area IS) (average RRF spike)
\%Recovery $=100$ *SSC/SA Where:

SSC = Spiked concentration LCS = Laboratory control spike recovery
SA = Spike added
LCSD = Laboratory control spike duplicate recovery
RPD $=\mid$ LCS - LCSD | $2 /(L C S+$ LCSD $)$
LCS/LCSD ID: B0G0090-BS/D

Compound	$\begin{gathered} \hline \text { SA } \\ (\mathrm{ug} / \mathrm{L}) \\ \hline \end{gathered}$		$\begin{aligned} & \hline \text { SSC } \\ & (\mathrm{ug} / \mathrm{L}) \end{aligned}$		LCS		LCSD		LCS/LCSD			
			Percent Recovery	Percent Recovery		RPD						
-	LCS	LCSD			LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
PFOA	0.0400	0.0400	0.0381	0.0380	95.3	95.3	94.9	95.0	0.339	0.263		
PFOS	0.0400	0.0400	0.0417	0.0357	104	104	89.2	89.3	15.6	15.5		

VALIDATION FINDINGS WORKSHEET
Sample Results Verification

2nd Reviewer: \qquad

Method: LC/MS/MS and Isotope Dilution Compliant with Table B-15 of DoD QSM 5.3
Compound results for all Level IV samples reported with a positive detect were recalculated and verified using the following equation:

```
Concentration=
    (Ais) (RRF) (Vo)
    Where:
        Ax = Area or height of the peak for the compound to be measured
        Ais = Area or height of the peak for the internal standard
        Cis = Concentration of the internal standard
        DF = Dilution factor
        Vt = Volume of extract in milliters (mL)
    RRF = Average relative response factor
    Vo = Volume of sample in liters (L)
```

$\begin{gathered} \text { Sample } \\ \# \end{gathered}$	Compound	Ax	Ais	Cis	DF	RRF	$\begin{gathered} \mathrm{Vt} \\ (\mathrm{~mL}) \end{gathered}$	$\begin{gathered} \text { Vo } \\ (\mathrm{mL}) \\ \hline \end{gathered}$	Calculated Concentration (ug/L)	Reported Concentration (ug/L)	\% Diff
1	PFOA	$3.013 \mathrm{E}+05$	$1.304 \mathrm{E}+03$	12.5	10	curve	1	241.84	18.2	18.2	0

INSTALLATION_ID	SITE_NAME	LOCATION_NAME	LOCATION_TYPE_DESC	COORD_X	COORD_Y	SAMPLE_NAME	SAMPLE_MATRIX_DESC	COLLECT_DATE	ANALYTICAL_METHOD_GRP_DESC	SDG
TUSTIN_MCAS	OU 0000001B SOUTH	TW17D	Temporary well point	6083373.988	2202403.097	TW17D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW22D	Temporary well point	6082601.688	2203498.64	TW22D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	SITE 00001	TW21D	Temporary well point	6087513.086	2202367.331	TW21D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001A	TW09D	Temporary well point	6080905.075	2205225.73	TW09D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW17D	Temporary well point	6083373.988	2202403.097	TW17D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW17D	Temporary well point	6083373.988	2202403.097	TW17D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001A	TW09D	Temporary well point	6080905.075	2205225.73	TW09D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	SITE 00001	TW21D	Temporary well point	6087513.086	2202367.331	TW21D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW23D	Temporary well point	6083085.315	2203475.97	TW23D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW23D	Temporary well point	6083085.315	2203475.97	TW23D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW24D	Temporary well point	6083508.489	2203234.156	TW24D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW23D	Temporary well point	6083085.315	2203475.97	TW23D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW24D	Temporary well point	6083508.489	2203234.156	TW24D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001A	TW09D	Temporary well point	6080905.075	2205225.73	TW09D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW24D	Temporary well point	6083508.489	2203234.156	TW24D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW23D	Temporary well point	6083085.315	2203475.97	TW23D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW23D	Temporary well point	6083085.315	2203475.97	TW23D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	SITE 00001	TW21D	Temporary well point	6087513.086	2202367.331	TW21D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW23D	Temporary well point	6083085.315	2203475.97	TW23D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001A	TW09D	Temporary well point	6080905.075	2205225.73	TW09D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	SITE 00001	TW21D	Temporary well point	6087513.086	2202367.331	TW21D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW23D	Temporary well point	6083085.315	2203475.97	TW23D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	SITE 00001	TW21D	Temporary well point	6087513.086	2202367.331	TW21D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW17D	Temporary well point	6083373.988	2202403.097	TW17D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW24D	Temporary well point	6083508.489	2203234.156	TW24D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW24D	Temporary well point	6083508.489	2203234.156	TW24D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	SITE 00001	TW21D	Temporary well point	6087513.086	2202367.331	TW21D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW23D	Temporary well point	6083085.315	2203475.97	TW23D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW24D	Temporary well point	6083508.489	2203234.156	TW24D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001A	TW09D	Temporary well point	6080905.075	2205225.73	TW09D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW22D	Temporary well point	6082601.688	2203498.64	TW22D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	SITE 00001	TW21D	Temporary well point	6087513.086	2202367.331	TW21D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001A	TW09D	Temporary well point	6080905.075	2205225.73	TW09D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW17D	Temporary well point	6083373.988	2202403.097	TW17D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001A	TW09D	Temporary well point	6080905.075	2205225.73	TW09D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	SITE 00001	TW21D	Temporary well point	6087513.086	2202367.331	TW21D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW22D	Temporary well point	6082601.688	2203498.64	TW22D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001A	TW09D	Temporary well point	6080905.075	2205225.73	TW09D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW22D	Temporary well point	6082601.688	2203498.64	TW22D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW24D	Temporary well point	6083508.489	2203234.156	TW24D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	SITE 00001	TW21D	Temporary well point	6087513.086	2202367.331	TW21D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	SITE 00001	TW21D	Temporary well point	6087513.086	2202367.331	TW21D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW17D	Temporary well point	6083373.988	2202403.097	TW17D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW17D	Temporary well point	6083373.988	2202403.097	TW17D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW22D	Temporary well point	6082601.688	2203498.64	TW22D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW23D	Temporary well point	6083085.315	2203475.97	TW23D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW17D	Temporary well point	6083373.988	2202403.097	TW17D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW24D	Temporary well point	6083508.489	2203234.156	TW24D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW24D	Temporary well point	6083508.489	2203234.156	TW24D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW23D	Temporary well point	6083085.315	2203475.97	TW23D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001A	TW09D	Temporary well point	6080905.075	2205225.73	TW09D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001A	TW09D	Temporary well point	6080905.075	2205225.73	TW09D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436

INSTALLATION_ID	SITE_NAME	LOCATION_NAME	LOCATION_TYPE_DESC	COORD_X	COORD_Y	SAMPLE_NAME	SAMPLE_MATRIX_DESC	COLLECT_DATE	ANALYTICAL_METHOD_GRP_DESC	SDG
TUSTIN_MCAS	SITE 00001	TW21D	Temporary well point	6087513.086	2202367.331	TW21D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW22D	Temporary well point	6082601.688	2203498.64	TW22D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW24D	Temporary well point	6083508.489	2203234.156	TW24D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW24D	Temporary well point	6083508.489	2203234.156	TW24D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW24D	Temporary well point	6083508.489	2203234.156	TW24D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW24D	Temporary well point	6083508.489	2203234.156	TW24D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW22D	Temporary well point	6082601.688	2203498.64	TW22D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW22D	Temporary well point	6082601.688	2203498.64	TW22D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW22D	Temporary well point	6082601.688	2203498.64	TW22D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW17D	Temporary well point	6083373.988	2202403.097	TW17D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW22D	Temporary well point	6082601.688	2203498.64	TW22D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW17D	Temporary well point	6083373.988	2202403.097	TW17D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001A	TW09D	Temporary well point	6080905.075	2205225.73	TW09D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001A	TW09D	Temporary well point	6080905.075	2205225.73	TW09D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	SITE 00001	TW21D	Temporary well point	6087513.086	2202367.331	TW21D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW23D	Temporary well point	6083085.315	2203475.97	TW23D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW23D	Temporary well point	6083085.315	2203475.97	TW23D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW23D	Temporary well point	6083085.315	2203475.97	TW23D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW22D	Temporary well point	6082601.688	2203498.64	TW22D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001A	TW09D	Temporary well point	6080905.075	2205225.73	TW09D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW17D	Temporary well point	6083373.988	2202403.097	TW17D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001A	TW09D	Temporary well point	6080905.075	2205225.73	TW09D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW22D	Temporary well point	6082601.688	2203498.64	TW22D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW23D	Temporary well point	6083085.315	2203475.97	TW23D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001A	TW09D	Temporary well point	6080905.075	2205225.73	TW09D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW17D	Temporary well point	6083373.988	2202403.097	TW17D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW17D	Temporary well point	6083373.988	2202403.097	TW17D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	SITE 00001	TW21D	Temporary well point	6087513.086	2202367.331	TW21D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	SITE 00001	TW21D	Temporary well point	6087513.086	2202367.331	TW21D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW24D	Temporary well point	6083508.489	2203234.156	TW24D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW17D	Temporary well point	6083373.988	2202403.097	TW17D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW22D	Temporary well point	6082601.688	2203498.64	TW22D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001A	TW09D	Temporary well point	6080905.075	2205225.73	TW09D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW17D	Temporary well point	6083373.988	2202403.097	TW17D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW22D	Temporary well point	6082601.688	2203498.64	TW22D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW24D	Temporary well point	6083508.489	2203234.156	TW24D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW23D	Temporary well point	6083085.315	2203475.97	TW23D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	SITE 00001	TW21D	Temporary well point	6087513.086	2202367.331	TW21D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW17D	Temporary well point	6083373.988	2202403.097	TW17D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001A	TW09D	Temporary well point	6080905.075	2205225.73	TW09D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001A	TW09D	Temporary well point	6080905.075	2205225.73	TW09D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	SITE 00001	TW21D	Temporary well point	6087513.086	2202367.331	TW21D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW23D	Temporary well point	6083085.315	2203475.97	TW23D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW17D	Temporary well point	6083373.988	2202403.097	TW17D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW24D	Temporary well point	6083508.489	2203234.156	TW24D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	SITE 00001	TW21D	Temporary well point	6087513.086	2202367.331	TW21D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW24D	Temporary well point	6083508.489	2203234.156	TW24D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW23D	Temporary well point	6083085.315	2203475.97	TW23D-20200708	Ground water	8-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW22D	Temporary well point	6082601.688	2203498.64	TW22D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW22D	Temporary well point	6082601.688	2203498.64	TW22D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	OU 0000001B SOUTH	TW22D	Temporary well point	6082601.688	2203498.64	TW22D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436
TUSTIN_MCAS	SITE 00001	TW21D	Temporary well point	6087513.086	2202367.331	TW21D-20200707	Ground water	7-Jul-20	Perfluoroalkyl Compounds	2001436

[^0]: Work Order 2001436

[^1]: Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 . Fax: 519-822-2849 • info@well-labs.com

[^2]: Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

[^3]: Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G $3 M 5$ CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

[^4]: Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

[^5]: Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

[^6]: Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

