Off-Base Drinking Water Sample Results,
 Electronic Data Deliverable, Data Validation Report, and the Sample Location Figure, SDG 320-45868-1

Naval Air Warfare Center Warminster
Warminster, Pennsylvania

August 2019
"NAWC-120418-RW-098","537","RES","320-45868-1","TALSAC","1763-23-1","Perfluorooctanesulfonic acid (PFOS)","10.0","ng/L","","0.862","DL","","TRG","","","4.54","LOQ","YES","-99","","275.5","10.00","1.81","" "NAWC-120418-RW-098","537","RES","320-45868-1","TALSAC","335-67-1","Perfluorooctanoic acid (PFOA)","11.7","ng/L","M","2.45","DL","","TRG","","","6.35","LOQ","YES","-99","","275.5","10.00","5.44","" "NAWC-120418-RW-098","537","RES","320-45868-1","TALSAC","355-46-4","Perfluorohexanesulfonic acid (PFHxS)","4.28","ng/L","J","0.581","DL","","TRG","","","4.54","LOQ","YES","-99","","275.5","10.00","1.81","" "NAWC-120418-RW-098","537","RES","320-45868-1","TALSAC","375-73-5","Perfluorobutanesulfonic acid (PFBS)","4.68","ng/L","","0.726","DL","","TRG","","","4.54","LOQ","YES","-99","","275.5","10.00","1.81","" "NAWC-120418-RW-098","537","RES","320-45868-1","TALSAC","375-85-9","Perfluoroheptanoic acid (PFHpA)","3.48","ng/L","J","1.18","DL","","TRG","","","4.54","LOQ","YES","-99","","275.5","10.00","2.72","" "NAWC-120418-RW-098","537","RES","320-45868-1","TALSAC","375-95-1","Perfluorononanoic acid (PFNA)","1.28","ng/L","J","0.426","DL","","TRG","","","4.54","LOQ","YES","-99","","275.5","10.00","0.907","" "NAWC-120418-RW-098","537","RES","320-45868-1","TALSAC","STL00993","13C2
PFHxA","90.6","ng/L","","-99","DL","","SURR","100","","-99","LOQ","YES","90.7","","275.5","10.00","0","" "NAWC-120418-RW-098","537","RES","320-45868-1","TALSAC","STL00996","13C2 PFDA","87.2","ng/L","","-99","DL","","SURR","96","","-99","LOQ","YES","90.7","","275.5","10.00","0","" "NAWC-120418-FRB-098","537","RES","320-45868-2","TALSAC","1763-23-1","Perfluorooctanesulfonic acid (PFOS)","1.73","ng/L","U","0.821","DL","","TRG","","","4.32","LOQ","YES","-99","","289.3","10.00","1.73","" "NAWC-120418-FRB-098","537","RES","320-45868-2","TALSAC","335-67-1","Perfluorooctanoic acid (PFOA)","5.18","ng/L","U M","2.33","DL","","TRG","","","6.05","LOQ","YES","-99","","289.3","10.00","5.18","" "NAWC-120418-FRB-098","537","RES","320-45868-2","TALSAC","355-46-4","Perfluorohexanesulfonic acid (PFHxS)","1.73","ng/L","U","0.553","DL","","TRG","","","4.32","LOQ","YES","-99","","289.3","10.00","1.73","" "NAWC-120418-FRB-098","537","RES","320-45868-2","TALSAC","375-73-5","Perfluorobutanesulfonic acid (PFBS)","1.73","ng/L","U","0.691","DL","","TRG","","","4.32","LOQ","YES","-99","","289.3","10.00","1.73","" "NAWC-120418-FRB-098","537","RES","320-45868-2","TALSAC","375-85-9","Perfluoroheptanoic acid (PFHpA)","2.59","ng/L","U","1.12","DL","","TRG","","","4.32","LOQ","YES","-99","","289.3","10.00","2.59","" "NAWC-120418-FRB-098","537","RES","320-45868-2","TALSAC","375-95-1","Perfluorononanoic acid (PFNA)","0.864","ng/L","U","0.406","DL","","TRG","","","4.32","LOQ","YES","-99","","289.3","10.00","0.864","" "NAWC-120418-FRB-098","537","RES","320-45868-2","TALSAC","STL00993","13C2 PFHxA","72.8","ng/L","","-99","DL","","SURR","84","","-99","LOQ","YES","86.4","","289.3","10.00","0","" "NAWC-120418-FRB-098","537","RES","320-45868-2","TALSAC","STL00996","13C2 PFDA","76.6","ng/L","","-99","DL","","SURR","89","","-99","LOQ","YES","86.4","","289.3","10.00","0","" "LCS 320-264464/2-A","537","RES","LCS 320-264464/2-A","TALSAC","1763-23-1","Perfluorooctanesulfonic acid (PFOS)","82.21","ng/L","","0.950","DL","","SPK","89","","5.00","LOQ","YES","92.8","","250","10.00","2.00","" "LCS 320-264464/2-A","537","RES","LCS 320-264464/2-A","TALSAC","335-67-1","Perfluorooctanoic acid (PFOA)","93.64","ng/L","","2.70","DL","","SPK","94","","7.00","LOQ","YES","100","","250","10.00","6.00","" "LCS 320-264464/2-A","537","RES","LCS 320-264464/2-A","TALSAC","355-46-4","Perfluorohexanesulfonic acid (PFHxS)","87.50","ng/L","","0.640","DL","","SPK","96","","5.00","LOQ","YES","91.0","","250","10.00","2.00","" "LCS 320-264464/2-A","537","RES","LCS 320-264464/2-A","TALSAC","375-73-5","Perfluorobutanesulfonic acid (PFBS)","89.14","ng/L","","0.800","DL","","SPK","101","","5.00","LOQ","YES","88.4","","250","10.00","2.00","" "LCS 320-264464/2-A","537","RES","LCS 320-264464/2-A","TALSAC","375-85-9","Perfluoroheptanoic acid (PFHpA)","91.44","ng/L","","1.30","DL","","SPK","91","","5.00","LOQ","YES","100","","250","10.00","3.00","" "LCS 320-264464/2-A","537","RES","LCS 320-264464/2-A","TALSAC","375-95-1","Perfluorononanoic acid (PFNA)","88.85","ng/L","","0.470","DL","","SPK","89","","5.00","LOQ","YES","100","","250","10.00","1.00","" "LCS 320-264464/2-A","537","RES","LCS 320-264464/2-A","TALSAC","STL00993","13C2 PFHxA","100.6","ng/L","","-99","DL","","SURR","101","","-99","LOQ","YES","100","","250","10.00","0","" "LCS 320-264464/2-A","537","RES","LCS 320-264464/2-A","TALSAC","STL00996","13C2 PFDA","91.45","ng/L","","-99","DL","","SURR","91","","-99","LOQ","YES","100","","250","10.00","0","" "LCSD 320-264464/3-A","537","RES","LCSD 320-264464/3-A","TALSAC","1763-23-1","Perfluorooctanesulfonic acid (PFOS)","86.94","ng/L","","0.950","DL","","SPK","94","6","5.00","LOQ","YES","92.8","LCS 320-264464/2A","250","10.00","2.00",""
"LCSD 320-264464/3-A","537","RES","LCSD 320-264464/3-A","TALSAC","335-67-1","Perfluorooctanoic acid (PFOA)","90.24","ng/L","","2.70","DL","","SPK","90","4","7.00","LOQ","YES","100","LCS 320-264464/2-

A","250","10.00","6.00",""
"LCSD 320-264464/3-A","537","RES","LCSD 320-264464/3-A","TALSAC","355-46-4","Perfluorohexanesulfonic acid (PFHxS)","93.58","ng/L","","0.640","DL","","SPK","103","7","5.00","LOQ","YES","91.0","LCS 320-264464/2A","250","10.00","2.00",""
"LCSD 320-264464/3-A","537","RES","LCSD 320-264464/3-A","TALSAC","375-73-5","Perfluorobutanesulfonic acid (PFBS)","88.28","ng/L","","0.800","DL","","SPK","100","1","5.00","LOQ","YES","88.4","LCS 320-264464/2A","250","10.00","2.00",""
"LCSD 320-264464/3-A","537","RES","LCSD 320-264464/3-A","TALSAC","375-85-9","Perfluoroheptanoic acid (PFHpA)","95.06","ng/L","","1.30","DL","","SPK","95","4","5.00","LOQ","YES","100","LCS 320-264464/2A","250","10.00","3.00",""
"LCSD 320-264464/3-A","537","RES","LCSD 320-264464/3-A","TALSAC","375-95-1","Perfluorononanoic acid (PFNA)","85.73","ng/L","","0.470","DL","","SPK","86","4","5.00","LOQ","YES","100","LCS 320-264464/2A","250","10.00","1.00",""
"LCSD 320-264464/3-A","537","RES","LCSD 320-264464/3-A","TALSAC","STL00993","13C2
PFHxA","89.45","ng/L","","-99","DL","","SURR","89","","-99","LOQ","YES","100","LCS 320-264464/2-
A","250","10.00","0",""
"LCSD 320-264464/3-A","537","RES","LCSD 320-264464/3-A","TALSAC","STL00996","13C2
PFDA","91.57","ng/L","","-99","DL","","SURR","92","","-99","LOQ","YES","100","LCS 320-264464/2A","250","10.00","0","'
"MB 320-264464/1-A","537","RES","MB 320-264464/1-A","TALSAC","1763-23-1","Perfluorooctanesulfonic acid (PFOS)","2.00","ng/L","U","0.950","DL","","TRG","","","5.00","LOQ","YES","-99","","250","10.00","2.00","" "MB 320-264464/1-A","537","RES","MB 320-264464/1-A","TALSAC","335-67-1","Perfluorooctanoic acid (PFOA)","6.00","ng/L","U M","2.70","DL","","TRG","","","7.00","LOQ","YES","-99","","250","10.00","6.00","" "MB 320-264464/1-A","537","RES","MB 320-264464/1-A","TALSAC","355-46-4","Perfluorohexanesulfonic acid (PFHxS)","2.00","ng/L","U","0.640","DL","","TRG","","","5.00","LOQ","YES","-99","","250","10.00","2.00","" "MB 320-264464/1-A","537","RES","MB 320-264464/1-A","TALSAC","375-73-5","Perfluorobutanesulfonic acid (PFBS)","2.00","ng/L","U","0.800","DL","","TRG","","","5.00","LOQ","YES","-99","","250","10.00","2.00","" "MB 320-264464/1-A","537","RES","MB 320-264464/1-A","TALSAC","375-85-9","Perfluoroheptanoic acid (PFHpA)","3.00","ng/L","U M","1.30","DL","","TRG","","","5.00","LOQ","YES","-99","","250","10.00","3.00","" "MB 320-264464/1-A","537","RES","MB 320-264464/1-A","TALSAC","375-95-1","Perfluorononanoic acid (PFNA)","1.00","ng/L","U","0.470","DL","","TRG","","","5.00","LOQ","YES","-99","","250","10.00","1.00","" "MB 320-264464/1-A","537","RES","MB 320-264464/1-A","TALSAC","STL00993","13C2
PFHxA","76.02","ng/L","","-99","DL","","SURR","76","","-99","LOQ","YES","100","","250","10.00","0",""
"MB 320-264464/1-A","537","RES","MB 320-264464/1-A","TALSAC","STL00996","13C2
PFDA","73.56","ng/L","","-99","DL","","SURR","74","","-99","LOQ","YES","100","","250","10.00","0",""
"Unknown","Unknown","NAWC-120418-RW-098","12/04/2018 10:10","AQ","320-45868-
1","NM","","5.10","537","METHOD","RES","12/11/2018 10:06","12/13/2018
00:40","TALSAC","COA","WET","NA","1","NA","NA","","100","320-264464","320-264464","NA","320-264881","320-45868-1","12/05/2018 10:05","12/07/2018 09:45",""
"Unknown","Unknown","NAWC-120418-FRB-098","12/04/2018 10:05","AQ","320-45868-
2","FB","","5.10","537","METHOD","RES","12/11/2018 10:06","12/13/2018 00:47","TALSAC","COA","WET","NA","1","NA","NA","","100","320-264464","320-264464","NA","320-264881","320-45868-1","12/05/2018 10:05","12/07/2018 09:45",""
"Unknown","Unknown","LCS 320-264464/2-A","","AQ","LCS 320-264464/2-
A","LCS","","-99","537","METHOD","RES","12/11/2018 10:06","12/13/2018
00:25","TALSAC","COA","WET","NA","1","NA","NA","","100","320-264464","320-264464","NA","320-264881","320-45868-1","12/11/2018 10:06","12/07/2018 09:45",""
"Unknown","Unknown","LCSD 320-264464/3-A","","AQ","LCSD 320-264464/3-
A","LCSD","","-99","537","METHOD","RES","12/11/2018 10:06","12/13/2018
00:32","TALSAC","COA","WET","NA","1","NA","NA","","100","320-264464","320-264464","NA","320-264881","320-45868-1","12/11/2018 10:06","12/07/2018 09:45",""
"Unknown","Unknown","MB 320-264464/1-A","","AQ","MB 320-264464/1-
A","MB","","-99","537","METHOD","RES","12/11/2018 10:06","12/13/2018
00:17","TALSAC","COA","WET","NA","1","NA","NA","","100","320-264464","320-264464","NA","320-

то:	A. FREBOWITZ	DATE:	JANUARY 7, 2019
FROM:	TERRI L. SOLOMON	COPIES:	DV FILE
SUBJECT:	ORGANIC DATA VALIDATION -POLYFLUOROALKYL SUBSTANCES (PFAS NAS JRB WILLOW GROVE SAMPLE DELIVERY GROUP (SDG) 320-45868-1		
SAMPLES:	1/Field Reagent Blank (FRB) NAWC-120418-FRB-098		
	1/Drinking Water NAWC-120418-RW-098		

Overview

The sample set for NAS JRB Willow Grove, SDG 320-45868-1, consisted of one (1) drinking water sample and one (1) FRB sample. All samples were analyzed for select perfluorinated alkyl acids including pentadecafluorooctanoic acid (PFOA), perfluorobutane sulfonic acid (PFBS), perfluoroheptanoic acid (PFHpA), perfluorohexanesulfonic acid (PFHxS), perfluorononanoic acid (PFNA) and perfluorooctane sulfonic acid (PFOS). No field duplicate pairs were included in this SDG.

The samples were collected by Tetra Tech on December 4, 2018 and analyzed by Test America-Sacramento. All sample analyses were conducted in accordance with EPA Method 537 version 1.1 analytical and reporting protocols.

The data contained in this SDG was validated with regard to the following parameters: data completeness, holding times, mass calibration, mass spectral acquisition rate, instrument sensitivity check, peak asymmetry factor, initial/continuing calibrations, ion transitions, laboratory method/FRB results, surrogate spike recoveries, laboratory control sample / laboratory control sample duplicate results, injected internal standard areas and recoveries, chromatographic resolution, analyte identification, analyte quantitation, and detection limits. Areas of concern are listed below.

Major

No issues.

Minor

Detected results reported below the limit of quantitation (LOQ) but above the detection limit (DL) were qualified as estimated (J).

Notes

It was noted that a preservative was indicated on the chain of custody. However, Trizma was not listed as the preservative.

The sample with detections and its associated FRB are summarized below. No detected results were present in the FRB.

Sample

NAWC-120418-RW-098

Associated FRB

NAWC-120418-FRB-098

TO: A. FREBOWITZ
PAGE 2
SDG: 320-45014-1

Non-detected results were reported to the Limit of Detection (LOD).
The buffering agent Trizma was added to all drinking water samples.

Executive Summary

Laboratory Performance: No issues.
Other Factors Affecting Data Quality: Results below the RL were estimated.

The data for these analyses were reviewed with reference to the Environmental Protection Agency document EPA/600/R-08/092, Method 537, "Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS)", (September 2009), US EPA National Functional Guidelines for Organic Data Review (January 2017), and the Department of Defense (DoD) document entitled "Quality Systems Manual (QSM) for Environmental Laboratories" (July 2013) as applicable. The text of this report has been formulated to address only those areas affecting data quality.

Tetra Tech, Inc.
Terri L. Solomon
Chemist/Data Validator

Tetra Tech, Inc.
Joseph A. Samchuck
Data Validation Manager

Attachments:
Appendix A - Qualified Analytical Results
Appendix B - Results as Reported by the Laboratory
Appendix C - Support Documentation

Data Qualifier Definitions

The following definitions provide brief explanations of the validation qualifiers assigned to results in the data review process.

\mathbf{U}	The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the adjusted detection limit.				
\mathbf{J}	The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample (due either to the quality of the data generated because certain quality control criteria were not met, or the concentration of the analyte was below the reporting limit).				
$\mathbf{J +}$	The result is an estimated quantity, but the result may be biased high.	$	$	$\mathbf{J -}$	The result is an estimated quantity, but the result may be biased low.
:---:	:---				

Appendix A
Qualified Analytical Results

Qualifier Codes:

A = Lab Blank Contamination
B = Field Blank Contamination
C = Calibration Noncompliance (i.e., \% RSDs, \%Ds, ICVs, CCVs, RRFs, etc.)
C01 = GC/MS Tuning Noncompliance
D = MS/MSD Recovery Noncompliance
E = LCS/LCSD Recovery Noncompliance
F = Lab Duplicate Imprecision
$\mathrm{G}=$ Field Duplicate Imprecision
H = Holding Time Exceedance
I = ICP Serial Dilution Noncompliance
$J=$ ICP PDS Recovery Noncompliance; MSA's $r<0.995$
$\mathrm{K}=$ ICP Interference - includes ICS \% R Noncompliance
L = Instrument Calibration Range Exceedance
$\mathrm{M}=$ Sample Preservation Noncompliance
$\mathrm{N}=$ Internal Standard Noncompliance
N01 = Internal Standard Recovery Noncompliance Dioxins
N02 = Recovery Standard Noncompliance Dioxins
N03 = Clean-up Standard Noncompliance Dioxins
O = Poor Instrument Performance (i.e., base-time drifting)
$P=$ Uncertainty near detection limit (<2 x IDL for inorganics and <CRQL for organics)
$\mathrm{Q}=$ Other problems (can encompass a number of issues; i.e.chromatography,interferences, etc.)
R = Surrogates Recovery Noncompliance
$\mathrm{S}=$ Pesticide/PCB Resolution
T = \% Breakdown Noncompliance for DDT and Endrin
$\mathrm{U}=$ RPD between columns/detectors $>40 \%$ for positive results determined via GC/HPLC
$\mathrm{V}=$ Non-linear calibrations; correlation coefficient $\mathrm{r}<0.995$
$\mathrm{W}=$ EMPC result
$\mathrm{X}=$ Signal to noise response drop
$Y=$ Percent solids $<30 \%$
$Z \quad=$ Uncertainty at 2 standard deviations is greater than sample activity
Z1 = Tentatively Identified Compound considered presumptively present
Z2 = Tentatively Identified Compound column bleed
Z3 = Tentatively Identified Compound aldol condensate
Z4 = Sample activity is less than the at uncertainty at 3 standard deviations and greater than the MDC
Z5 = Sample activity is less than the at uncertainty at 3 standard deviations and less than the MDC

Lab Name: TestAmerica Sacramento
SDG No.:
Client Sample ID: NAWC-120418-RW-098
Matrix: Water
Analysis Method: 537
Extraction Method: 537
Sample wt/vol: 275.5(mL)
Con. Extract Vol.: $10.00(\mathrm{~mL})$
Injection Volume: $10(u \mathrm{~L})$
\% Moisture:
Analysis Batch No.: 264881

Job No.: 320-45868-1

Lab Sample ID: 320-45868-1
Lab File ID: 2018.12.12_537A_047.d
Date Collected: 12/04/2018 10:10
Date Extracted: 12/11/2018 10:06
Date Analyzed: 12/13/2018 00:40
Dilution Factor: 1
GC Column: GeminiC18 3x100 ID: 3 (mm)
GPC Cleanup: (Y/N) N
Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	LOD	DL
$1763-23-1$	Perfluorooctanesulfonic acid (PFOS)	10.0		4.54	1.81	0.862
$335-67-1$	Perfluorooctanoic acid (PFOA)	11.7	M	6.35	5.44	2.45
$375-95-1$	Perfluorononanoic acid (PFNA)	4.28	J	4.54	0.907	0.426
$355-46-4$	Perffluorohexanesulfonic acid (PFHxS)	3.48	J	4.54	1.81	0.581
$375-85-9$	Perfluoroheptanoic acid (PFHpA)	4.68	4.54	2.72	1.18	
$375-73-5$	Perfluorobutanesulfonic acid (PFBS)	4.54	1.81	0.726		

CAS NO.	SURROGATE	\%REC	Q	LIMITS
STL00993	13C2 PFHXA	100		$70-130$
STL00996	13C2 PFDA	96	$70-130$	

Lab Name: TestAmerica Sacramento
SDG No.:
Client Sample ID: NAWC-120418-FRB-098
Matrix: Water
Analysis Method: 537
Extraction Method: 537
Sample wt/vol: 289.3(mL)
Con. Extract Vol.: $10.00(\mathrm{~mL})$
Injection Volume: $10(u L)$
\% Moisture:
Analysis Batch No.: 264881

Job No.: 320-45868-1

La.b Sample ID: 320-45868-2
Lab File ID: 2018.12.12_537A_048.d
Date Collected: 12/04/2018 10:05
Date Extracted: 12/11/2018 10:06
Date Analyzed: 12/13/2018 00:47
Dilution Factor: 1
GC Column: GeminiC18 3x100 ID: 3 (mm)
GPC Cleanup: (Y/N) N
Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	LOD	DL
$1763-23-1$	1.73	U	4.32	1.73	0.821	
$335-67-1$	Perfluorooctanesulfonic acid (PFOS)	Perfluorooctanoic acid (PFOA)	0.18	U M	6.05	5.18
$375-95-1$	Perfluorononanoic acid (PFNA)	1.73	U	4.32	0.864	0.406
$355-46-4$	Perffluorohexanesulfonic acid (PFHxS)	2.59	U	4.32	1.73	0.553
$375-85-9$	Perfluoroheptanoic acid (PFHpA)	1.73	U	4.32	2.59	1.12
$375-73-5$	Perfluorobutanesulfonic acid (PFBS)		0.32	1.73	0.691	

CAS NO.	SURROGATE	\%REC	Q	LIMITS
STL00993	13C2 PFHxA	84		$70-130$
STL00996	13C2 PFDA	89		$70-130$

Appendix B

Results as Reported by the Laboratory

Lab Name: TestAmerica Sacramento
SDG No.:
Client Sample ID: NAWC-120418-RW-098
Matrix: Water
Analysis Method: 537
Extraction Method: 537
Sample wt/vol: 275.5(mL)
Con. Extract Vol.: $10.00(\mathrm{~mL})$
Injection Volume: $10(u \mathrm{~L})$
\% Moisture:
Analysis Batch No.: 264881

Job No.: 320-45868-1

Lab Sample ID: 320-45868-1
Lab File ID: 2018.12.12_537A_047.d
Date Collected: 12/04/2018 10:10
Date Extracted: 12/11/2018 10:06
Date Analyzed: 12/13/2018 00:40
Dilution Factor: 1
GC Column: GeminiC18 3x100 ID: 3 (mm)
GPC Cleanup: (Y/N) N
Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	LOD	DL
$1763-23-1$	10.0		4.54	1.81	0.862	
$335-67-1$	Perfluorooctanesulfonic acid (PFOS)	Perfluorooctanoic acid (PFOA)	11.7	M	6.35	5.44
$375-95-1$	Perffluorononanoic acid (PFNA)	4.28	J	4.54	0.907	0.426
$355-46-4$	Perffluorohexanesulfonic acid (PFHxS)	3.48	J	4.54	1.81	0.581
$375-85-9$	Perfluoroheptanoic acid (PFHpA)	4.68	4.54	2.72	1.18	
$375-73-5$	Perfluorobutanesulfonic acid (PFBS)	4.54	1.81	0.726		

CAS NO.	SURROGATE	\%REC	Q	LIMITS
STL00993	13C2 PFHxA	100		$70-130$
STL00996	13C2 PFDA	96		$70-130$

Lab Name: TestAmerica Sacramento
SDG No.:
Client Sample ID: NAWC-120418-FRB-098
Matrix: Water
Analysis Method: 537
Extraction Method: 537
Sample wt/vol: 289.3(mL)
Con. Extract Vol.: $10.00(\mathrm{~mL})$
Injection Volume: $10(u L)$
\% Moisture: \qquad
Analysis Batch No.: 264881

Job No.: 320-45868-1

La.b Sample ID: 320-45868-2
Lab File ID: 2018.12.12_537A_048.d
Date Collected: 12/04/2018 10:05
Date Extracted: 12/11/2018 10:06
Date Analyzed: 12/13/2018 00:47
Dilution Factor: 1
GC Column: GeminiC18 3x100 ID: 3 (mm)
GPC Cleanup: (Y/N) N
Units: ng/L

CAS NO.	COMPOUND NAME	RESULT	Q	LOQ	LOD	DL
$1763-23-1$	1.73	U	4.32	1.73	0.821	
$335-67-1$	Perfluorooctanesulfonic acid (PFOS)	Perfluorooctanoic acid (PFOA)	0.18	U M	6.05	5.18
$375-95-1$	Perfluorononanoic acid (PFNA)	U	4.32	0.864	0.406	
$355-46-4$	Perffluorohexanesulfonic acid (PFHxS)	U	4.32	1.73	0.553	
$375-85-9$	Perfluoroheptanoic acid (PFHpA)	1.73	U	4.32	2.59	1.12
$375-73-5$	Perfluorobutanesulfonic acid (PFBS)	4.32	1.73	0.691		

CAS NO.	SURROGATE	\%REC	Q	LIMITS
STL00993	13C2 PFHXA	84		$70-130$
STL00996	13C2 PFDA	89		$70-130$

Appendix C

Support Documentation

TestAmerica Sacramento
880 Riverside Parkway
West Sacramento, CA 95605-1500

phone 916.373 .5600 fax 303.467.7248 Contact	
TetraTech	Tre
234 Mall Boulevard Suite 260	
King of Prussia. PA 19406	\square

610-382-2924
610-491-9688
Project Name: WE04
Site: WE04
PO \# 1132358 (through EarthToxics)

Sample Identification
NAWC-120418-RW-098
NAWC-120418-FRB-098

NAWC-120418-FRB-098

Job Narrative
 320-45868-1

Receipt

The samples were received on 12/5/2018 10:05 AM; the samples arrived in good condition, properly preserved and, where required, on ice. The temperature of the cooler at receipt was $5.1^{\circ} \mathrm{C}$.

LCMS

Method(s) 537: The first level standard from the initial calibration curve is used to evaluate the tune criteria. The instrument mass windows are set at $+/-0.5 \mathrm{amu}$; therefore, detection of the analyte serves as verification that the assigned mass is within $+/-0.5 \mathrm{amu}$ of the true value, which meets the DoD/DOE QSM tune criterion.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Organic Prep

Method(s) 537: Insufficient sample volume was available to perform a matrix spike/matrix spike duplicate (MS/MSD) associated with preparation batch 320-264464.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Qualifiers

LCMS

Qualifier	Qualifier Description
J	Estimated: The analyte was positively identified; the quantitation is an estimation
M	Manual integrated compound.
U	Undetected at the Limit of Detection.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
$\bar{\square}$	Listed under the "D" column to designate that the result is reported on a dry weight basis
\%R	Percent Recovery
CFL	Contains Free Liquid
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit
ML	Minimum Level (Dioxin)
NC	Not Calculated
ND	Not Detected at the reporting limit (or MDL or EDL if shown)
PQL	Practical Quantitation Limit
QC	Quality Control
RER	Relative Error Ratio (Radiochemistry)
RL	Reporting Limit or Requested Limit (Radiochemistry)
RPD	Relative Percent Difference, a measure of the relative difference between two points
TEF	Toxicity Equivalent Factor (Dioxin)
TEQ	Toxicity Equivalent Quotient (Dioxin)

Project/Site: Warminster: PFAS, NAS JRB Willow Grove

Method	Method Description	Protocol	Laboratory
	Perfluorinated Alkyl Acids (LC/MS)	EPA	TAL SAC
537	Extraction of Perfluorinated Alkyl Acids	EPA	TAL SAC

Protocol References:

EPA = US Environmental Protection Agency

Laboratory References:

TAL SAC = TestAmerica Sacramento, 880 Riverside Parkway, West Sacramento, CA 95605, TEL (916)373-5600

Sample Summary

Client: Tetra Tech, Inc.
Project/Site: Warminster: PFAS, NAS JRB Willow Grove

Lab Sample ID	Client Sample ID	Matrix		Collected
NAWC-120418-RW-098	Water	Received		
$320-45868-1$	NAWC-120418-FRB-098	Water	$12 / 04 / 18$	$10: 10$
$12 / 05 / 18$	$10: 05$	$12 / 05 / 18$	$10: 05$	

Lab Name: TestAmerica Sacramento
Job No.: 320-45868-1
SDG No.:
Matrix: Water
Level: Low
GC Column (1): GeminiC18 3 ID: 3 (mm)

Client Sample ID	Lab Sample ID	PFHxA \#	PFDA \#
NAWC-120418-RW-098	$320-45868-1$	100	96
NAWC-120418-FRB-09 8	$320-45868-2$	84	89
	MB $320-264464 / 1-A$	76	74
	LCS $320-264464 / 2-A$	101	91
	LCSD $320-264464 / 3-A$	89	92

PFHxA $=13 \mathrm{C} 2 \mathrm{PFHxA}$
PFDA $=13 C 2$ PFDA
\# Column to be used to flag recovery values
FORM II 537

```
QC LIMITS
    70-130

Lab Name: TestAmerica Sacramento Job No.: 320-45868-1

SDG No.:
Matrix: Water Level: Low Lab File ID: 2018.12.12_537A_045.d

Lab ID: LCS 320-264464/2-A Client ID:

\begin{tabular}{|l|r|r|r|c|c|}
\hline \multicolumn{1}{c|}{\begin{tabular}{l} 
COMPOUND
\end{tabular}} & \begin{tabular}{c} 
SPIKE \\
ADDED \\
(ng/L)
\end{tabular} & \begin{tabular}{c} 
LCS \\
CONCENTRATION \\
(ng/L)
\end{tabular} & \begin{tabular}{c} 
LCS \\
\% \\
REC
\end{tabular} & \begin{tabular}{c} 
QC \\
LIMITS \\
REC
\end{tabular} \\
\hline \begin{tabular}{l} 
Perfluorooctanesulfonic acid \\
(PFOS)
\end{tabular} & 92.8 & 82.21 & 89 & \(70-130\) \\
\hline Perfluorooctanoic acid (PFOA) & 100 & 93.64 & 94 & \(70-130\) \\
\hline Perfluorononanoic acid (PFNA) & 100 & 88.85 & 89 & \(70-130\) \\
\hline \begin{tabular}{l} 
Perfluorohexanesulfonic acid \\
(PFHxS)
\end{tabular} & 91.0 & 87.50 & 96 & \(70-130\) \\
\hline \begin{tabular}{l} 
Perfluoroheptanoic acid \\
(PFHpA)
\end{tabular} & 100 & 91.44 & 91 & \(70-130\) \\
\hline \begin{tabular}{l} 
Perfluorobutanesulfonic acid \\
(PFBS)
\end{tabular} & 88.4 & 89.14 & 101 & \(70-130\) \\
\hline
\end{tabular}
\# Column to be used to flag recovery and RPD values FORM III 537

LCMS LAB CONTROL SAMPLE DUPLICATE RECOVERY

Lab Name: TestAmerica Sacramento Job No.: 320-45868-1

SDG No.:
Matrix: Water Level: Low Lab File ID: 2018.12.12_537A_046.d
Lab ID: LCSD 320-264464/3-A
Client ID:
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{COMPOUND} & \multirow[t]{2}{*}{\begin{tabular}{l}
SPIKE \\
ADDED \\
( \(\mathrm{ng} / \mathrm{L}\) )
\end{tabular}} & \multirow[t]{2}{*}{LCSD CONCENTRATION (ng/L)} & \multirow[t]{2}{*}{\[
\begin{aligned}
& \text { LCSD } \\
& \% \\
& \text { \%EC }
\end{aligned}
\]} & \multirow[b]{2}{*}{\[
\begin{gathered}
\% \\
\text { RPD }
\end{gathered}
\]} & \multicolumn{2}{|l|}{QC LIMITS} & \multirow{2}{*}{\#} \\
\hline & & & & & RPD & REC & \\
\hline Perfluorooctanesulfonic acid (PFOS) & \[
92.8
\] & \[
86.94
\] & 94 & 6 & 30 & 70-130 & \\
\hline Perfluorooctanoic acid (PFOA) & 100 & 90.24 & 90 & 4 & 30 & 70-130 & \\
\hline Perfluorononanoic acid (PFNA) & 100 & 85.73 & 86 & 4 & 30 & 70-130 & \\
\hline Perfluorohexanesulfonic acid (PFHxS) & 91.0 & 93.58 & 103 & 7 & 30 & 70-130 & \\
\hline Perfluoroheptanoic acid (PFHpA) & 100 & 95.06 & 95 & 4 & 30 & 70-130 & \\
\hline Perfluorobutanesulfonic acid (PFBS) & 88.4 & 88.28 & 100 & 1 & 30 & 70-130 & \\
\hline
\end{tabular}
\# Column to be used to flag recovery and RPD values
FORM III 537

Lab Name: TestAmerica Sacramento Job No.: 320-45868-1

SDG No.: \(\qquad\)
Lab File ID: 2018.12.12_537A_044.d
Lab Sample ID: MB 320-264464/1-A
Matrix: Water
Date Extracted: 12/11/2018 10:06
Instrument ID: A8_N
Date Analyzed: 12/13/2018 00:17
Level:(Low/Med) Low
THIS METHOD BLANK APPLIES TO THE FOLLOWING SAMPLES:
\begin{tabular}{|c|c|c|c|c|}
\hline CLIENT SAMPLE ID & LAB SAMPLE ID & \[
\begin{aligned}
& \text { LAB } \\
& \text { FILE ID }
\end{aligned}
\] & \multicolumn{2}{|l|}{DATE ANALYZED} \\
\hline & LCS 320-264464/2-A & \[
\begin{aligned}
& 2018.12 .12 \\
& 537 \mathrm{~A} \quad 045 . \mathrm{d}
\end{aligned}
\] & 12/13/2018 & 00:25 \\
\hline & LCSD 320-264464/3-A & \[
\begin{aligned}
& 2018.12 .12 \\
& 537 \mathrm{~A} \quad 046 . \mathrm{d}^{-}
\end{aligned}
\] & 12/13/2018 & 00:32 \\
\hline NAWC-120418-RW-098 & 320-45868-1 & \[
\begin{aligned}
& 2018.12 .12 \\
& 537 \mathrm{~A} \\
& 047 . \mathrm{d}^{-}
\end{aligned}
\] & 12/13/2018 & 00:40 \\
\hline NAWC-120418-FRB-098 & 320-45868-2 & \[
\begin{aligned}
& 2018.12 .12 \\
& 537 \mathrm{~A} \quad 048 . \mathrm{d}^{-}
\end{aligned}
\] & 12/13/2018 & 00:47 \\
\hline
\end{tabular}

Lab Name: TestAmerica Sacramento
SDG No.:
Client Sample ID:
Matrix: Water
Analysis Method: 537
Extraction Method: 537
Sample wt/vol: 250 (mL)
Con. Extract Vol.: \(10.00(\mathrm{~mL})\)
Injection Volume: \(10(u L)\)
\% Moisture:
Analysis Batch No.: 264881

\(\qquad\)

Job No.: 320-45868-1
Job No.: 320-45868-1

Lab Sample ID: MB 320-264464/1-A
Lab File ID: 2018.12.12_537A_044.d
Date Collected:
Date Extracted: 12/11/2018 10:06
Date Analyzed: 12/13/2018 00:17
Dilution Factor: 1
GC Column: GeminiC18 3x100 ID: 3 (mm)
GPC Cleanup: (Y/N) N
Units: ng/L
\begin{tabular}{|l|l|l|l|l|l|l|}
\hline \multicolumn{1}{|c|}{ CAS NO. } & \multicolumn{1}{|c|}{ COMPOUND NAME } & RESULT & Q & LOQ & LOD & DL \\
\hline \hline \(1763-23-1\) & 2.00 & U & 5.00 & 2.00 & 0.950 \\
\hline \(335-67-1\) & \begin{tabular}{l} 
Perfluorooctanesulfonic \\
acid (PFOS)
\end{tabular} & \begin{tabular}{l} 
Perfluorooctanoic acid \\
(PFOA)
\end{tabular} & 6.00 & U & 7.00 & 6.00 \\
\hline \(375-95-1\) & \begin{tabular}{l} 
Perfluorononanoic acid \\
(PFNA)
\end{tabular} & 2.00 & U & 5.00 & 1.00 & 0.470 \\
\hline \(355-46-4\) & \begin{tabular}{l} 
Perfluorohexanesulfonic \\
acid (PFHxS)
\end{tabular} & 3.00 & U & 5.00 & 2.00 & 0.640 \\
\hline \(375-85-9\) & \begin{tabular}{l} 
Perffuoroheptanoic acid \\
(PFHpA)
\end{tabular} & 2.00 & U & 5.00 & 3.00 & 1.30 \\
\hline \(375-73-5\) & \begin{tabular}{l} 
Perfluorobutanesulfonic \\
acid (PFBS)
\end{tabular} & 5.00 & 2.00 & 0.800 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|c|c|}
\hline \multicolumn{1}{|c|}{ CAS NO. } & SURROGATE & \%REC & Q & LIMITS \\
\hline STL00993 & 13C2 PFHxA & 76 & & \(70-130\) \\
\hline STL00996 & 13C2 PFDA & 74 & & \(70-130\) \\
\hline
\end{tabular}

Lab Name: TestAmerica Sacramento Job No.: 320-45868-1 SDG No.:
\(\qquad\) Calibration Start Date: 12/07/2018 15:06
—C - Calibration End Date: 12/07/2018 15:50 Calibration ID: 42659
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{2}{|l|}{13PFOA} & \multicolumn{2}{|l|}{PFOS} & \multirow[b]{2}{*}{AREA \#} & \multirow[b]{2}{*}{RT \#} \\
\hline & & AREA \# & RT \# & AREA \# & RT \# & & \\
\hline \multicolumn{2}{|l|}{INITIAL CALIBRATION MEAN AREA AND MEAN RT} & 3528472 & 3.19 & 2654650 & 3.59 & & \\
\hline \multicolumn{2}{|l|}{UPPER LIMIT} & 5292708 & 3.69 & 3981975 & 4.09 & & \\
\hline \multicolumn{2}{|l|}{LOWER LIMIT} & 1764236 & 2.69 & 1327325 & 3.09 & & \\
\hline LAB SAMPLE ID & CLIENT SAMPLE ID & & & & & & \\
\hline CCVL 320-263818/10 & & 3854163 & 3.20 & 2764360 & 3.59 & & \\
\hline ICV 320-263818/12 & & 3693184 & 3.19 & 2637299 & 3.57 & & \\
\hline CCVL 320-264873/1 & & 4054695 & 3.19 & 2861418 & 3.57 & & \\
\hline CCV 320-264881/39 CCVIS & & 3533826 & 3.17 & 2640883 & 3.57 & & \\
\hline MB 320-264464/1-A & & 4107455 & 3.17 & 2936150 & 3.56 & & \\
\hline LCS 320-264464/2-A & & 3762705 & 3.17 & 2848346 & 3.56 & & \\
\hline LCSD 320-264464/3-A & & 3920807 & 3.17 & 2767790 & 3.56 & & \\
\hline 320-45868-1 & NAWC-120418-RW-098 & 3715088 & 3.19 & 2999960 & 3.57 & & \\
\hline 320-45868-2 & NAWC-120418-FRB-098 & 4024732 & 3.17 & 2732047 & 3.56 & & \\
\hline \[
\begin{aligned}
& \text { CCV 320-264881/51 } \\
& \text { CCVIS }
\end{aligned}
\] & & 3493319 & 3.17 & 2638815 & 3.56 & & \\
\hline
\end{tabular}
```

13PFOA = 13C2 PFOA
PFOS = 13C4 PFOS

```
Area Limit \(=50 \%-150 \%\) of internal standard area
RT Limit \(= \pm 0.5\) minutes of internal standard RT
\# Column used to flag values outside QC limits
FORM VIII 537

Lab Name: TestAmerica Sacramento Job No.: 320-45868-1

SDG No.:
\(\qquad\)
```

Sample No.: CCV 320-264881/39

```
Date Analyzed: 12/13/2018 00:02

Instrument ID: A8_N
Lab File ID (Standard): 2018.12.12_537A_042
GC Column: GeminiC18 3x100 ID: 3 (mm)
Heated Purge: (Y/N) N
Calibration ID: 42659
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{2}{|l|}{13PFOA} & \multicolumn{2}{|l|}{PFOS} & \multirow[b]{2}{*}{AREA \#} & \multirow[b]{2}{*}{RT \#} \\
\hline & & AREA \# & RT \# & AREA \# & RT \# & & \\
\hline \multicolumn{2}{|l|}{\(12 / 24\) HOUR STD} & 3533826 & 3.17 & 2640883 & 3.57 & & \\
\hline \multicolumn{2}{|l|}{UPPER LIMIT} & 4947356 & 3.67 & 3697236 & 4.07 & & \\
\hline \multicolumn{2}{|l|}{LOWER LIMIT} & 2473678 & 2.67 & 1848618 & 3.07 & & \\
\hline LAB SAMPLE ID & CLIENT SAMPLE ID & & & & & & \\
\hline MB 320-264464/1-A & & 4107455 & 3.17 & 2936150 & 3.56 & & \\
\hline LCS 320-264464/2-A & & 3762705 & 3.17 & 2848346 & 3.56 & & \\
\hline LCSD 320-264464/3-A & & 3920807 & 3.17 & 2767790 & 3.56 & & \\
\hline 320-45868-1 & NAWC-120418-RW-098 & 3715088 & 3.19 & 2999960 & 3.57 & & \\
\hline 320-45868-2 & NAWC-120418-FRB-098 & 4024732 & 3.17 & 2732047 & 3.56 & & \\
\hline
\end{tabular}
```

13PFOA = 13C2 PFOA
PFOS = 13C4 PFOS
Area Limit = 70%-140% of internal standard area
RT Limit = \pm 0.5 minutes of internal standard RT

Column used to flag values outside QC limits

FORM VIII 537

```

Lab Name: TestAmerica Sacramento Job No.: 320-45868-1
SDG No.:
\(\qquad\)

Sample No.: CCV 320-264881/51
Date Analyzed: 12/13/2018 01:32
Instrument ID: A8_N
GC Column: GeminiC18 \(3 \times 100\) ID: 3 (mm)
Lab File ID (Standard): 2018.12.12_537A_054 Heated Purge: (Y/N) N
Calibration ID: 42659
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{}} & \multicolumn{2}{|l|}{13PFOA} & \multicolumn{2}{|l|}{PFOS} & \multirow[b]{2}{*}{AREA \#} & \multirow[b]{2}{*}{RT \#} \\
\hline & & AREA \# & RT \# & AREA \# & RT \# & & \\
\hline \(12 / 24\) HOUR STD & & 3493319 & 3.17 & 2638815 & 3.56 & & \\
\hline UPPER LIMIT & & 4890647 & 3.67 & 3694341 & 4.06 & & \\
\hline LOWER LIMIT & & 2445323 & 2.67 & 1847171 & 3.06 & & \\
\hline LAB SAMPLE ID & CLIENT SAMPLE ID & & & & & & \\
\hline MB 320-264464/1-A & & 4107455 & 3.17 & 2936150 & 3.56 & & \\
\hline LCS 320-264464/2-A & & 3762705 & 3.17 & 2848346 & 3.56 & & \\
\hline LCSD 320-264464/3-A & & 3920807 & 3.17 & 2767790 & 3.56 & & \\
\hline 320-45868-1 & NAWC-120418-RW-098 & 3715088 & 3.19 & 2999960 & 3.57 & & \\
\hline 320-45868-2 & NAWC-120418-FRB-098 & 4024732 & 3.17 & 2732047 & 3.56 & & \\
\hline
\end{tabular}
```

13PFOA = 13C2 PFOA
PFOS = 13C4 PFOS
Area Limit = 70%-140% of internal standard area
RT Limit = \pm 0.5 minutes of internal standard RT

Column used to flag values outside QC limits

FORM VIII 537

```

\title{
LCMS BY INTERNAL STANDARD - INITIAL CALIBRATION DATA
}

CURVE EVALUATION

Lab Name: TestAmerica Sacramento

Job No.: 320-45868-1
Analy Batch No.: 263818
SDG No.: GC Column: GeminiC18 3 ID: 3 (mm)

Heated Purge: (Y/N) N
Instrument ID: A8_N \(\qquad\) Calibration ID: 42659
Calibration Start Date: 12/07/2018 15:06 Calibration End Date: 12/07/2018 15:50

Calibration Files:
\begin{tabular}{|lll|}
\hline LEVEL: & LAB SAMPLE ID: & LAB FILE ID: \\
Level 1 & IC \(320-263818 / 2\) & 2018.12 .07 537ICAL_003.d \\
Level 2 & IC \(320-263818 / 3\) & \(2018.12 .07-537\) ICAL_004.d \\
Level 3 & IC \(320-263818 / 4\) & \(2018.12 .07-537\) ICAL_005.d \\
Level 4 & IC \(320-263818 / 5\) & \(2018.12 .07-537\) ICAL_006.d \\
Level 5 & IC \(320-263818 / 6\) & \(2018.12 .07-537\) ICAL_007.d \\
Level 6 & IC \(320-263818 / 7\) & \(2018.12 .07-537\) ICAL_008.d \\
Level 7 & IC \(320-263818 / 8\) & \(2018.12 .07-537\) ICAL_009.d \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{ANALYTE} & \multirow[t]{2}{*}{\[
\begin{gathered}
\text { IS } \\
\text { REF }
\end{gathered}
\]} & \multirow[t]{2}{*}{\[
\begin{array}{|l|l}
\hline \text { CURVE } \\
\text { TYPE }
\end{array}
\]} & \multicolumn{5}{|c|}{RESPONSE} & \multicolumn{5}{|c|}{CONCENTRATION (NG/ML)} \\
\hline & & & \[
\begin{array}{ll}
\text { LVL } & 1 \\
\text { LVL } & 6
\end{array}
\] & \[
\begin{array}{ll}
\text { LVL } 2 \\
\text { LVL } 7
\end{array}
\] & LVL 3 & LVL 4 & LVL 5 & \[
\begin{array}{ll}
\text { LVL } & 1 \\
\text { LVL } & 6
\end{array}
\] & \begin{tabular}{l}
LVL 2 \\
LVL 7
\end{tabular} & LVL 3 & LVL 4 & LVL 5 \\
\hline Perfluorobutanesulfonic acid (PFBS) & PFOS & Ave & \[
\begin{array}{r}
27320 \\
5447804
\end{array}
\] & \[
\begin{array}{r}
62153 \\
10829607
\end{array}
\] & 265789 & 1062646 & 2667621 & \[
\begin{array}{r}
0.0221 \\
4.42
\end{array}
\] & \[
\begin{array}{r}
\hline 0.0442 \\
8.84
\end{array}
\] & 0.221 & 0.884 & 2.21 \\
\hline Perfluoroheptanoic acid (PFHpA) & \[
\begin{aligned}
& \text { 13PF } \\
& \text { OA }
\end{aligned}
\] & Ave & \[
\begin{array}{r}
43264 \\
7185923
\end{array}
\] & \[
\begin{array}{r}
80008 \\
14333785
\end{array}
\] & 365716 & 1393593 & 3642688 & \[
\begin{array}{r}
0.0250 \\
5.00
\end{array}
\] & \[
\begin{array}{r}
0.0500 \\
10.0
\end{array}
\] & 0.250 & 1.00 & 2.50 \\
\hline Perfluorohexanesulfonic acid (PFHxS) & PFOS & Ave & \[
\begin{array}{r}
36374 \\
7535367
\end{array}
\] & \[
\begin{array}{r}
79188 \\
14686493
\end{array}
\] & 361859 & 1499172 & 3675806 & \[
\begin{array}{r}
0.0228 \\
4.55 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
0.0455 \\
9.10
\end{array}
\] & 0.228 & 0.910 & 2.28 \\
\hline Perfluorooctanoic acid (PFOA) & \[
\begin{aligned}
& \text { 13PF } \\
& \text { OA }
\end{aligned}
\] & Ave & \[
\begin{array}{r}
44364 \\
7357085
\end{array}
\] & \[
\begin{array}{r}
81675 \\
14227009 \\
\hline
\end{array}
\] & 382620 & 1461416 & 3684632 & \[
\begin{array}{r}
0.0250 \\
5.01
\end{array}
\] & \[
\begin{array}{r}
0.0501 \\
10.0 \\
\hline
\end{array}
\] & 0.250 & 1.00 & 2.50 \\
\hline Perfluorooctanesulfonic acid (PFOS) & PFOS & Ave & \[
\begin{array}{r}
33250 \\
5261445 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
60183 \\
10890349 \\
\hline
\end{array}
\] & 270284 & 1082696 & 2790009 & \[
\begin{array}{r}
0.0232 \\
4.64 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
0.0464 \\
9.28 \\
\hline
\end{array}
\] & 0.232 & 0.928 & 2.32 \\
\hline Perfluorononanoic acid (PFNA) & \[
\begin{aligned}
& \text { 13PF } \\
& \text { OA }
\end{aligned}
\] & Ave & \[
\begin{array}{r}
31332 \\
5548381
\end{array}
\] & \[
\begin{array}{r}
62765 \\
11200160
\end{array}
\] & 286352 & 1135323 & 2985342 & \[
\begin{array}{r}
0.0250 \\
5.00 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
0.0500 \\
10.0
\end{array}
\] & 0.250 & 1.00 & 2.50 \\
\hline 13C2 PFHxA & \[
\begin{aligned}
& \text { 13PF } \\
& \text { OA }
\end{aligned}
\] & Ave & \[
\begin{aligned}
& 3372926 \\
& 3264066
\end{aligned}
\] & \[
\begin{aligned}
& 3720908 \\
& 3379961
\end{aligned}
\] & 3306344 & 3272924 & 3246608 & \[
\begin{aligned}
& 2.50 \\
& 2.50
\end{aligned}
\] & \[
\begin{aligned}
& 2.50 \\
& 2.50
\end{aligned}
\] & 2.50 & 2.50 & 2.50 \\
\hline 13 C 2 PFDA & \[
\begin{aligned}
& \text { 13PF } \\
& \text { OA }
\end{aligned}
\] & Ave & \[
\begin{aligned}
& 2532483 \\
& 2457743 \\
& \hline
\end{aligned}
\] & \[
\begin{aligned}
& 2728445 \\
& 2428151
\end{aligned}
\] & 2488961 & 2499615 & 2604411 & \[
\begin{aligned}
& 2.50 \\
& 2.50
\end{aligned}
\] & \[
\begin{aligned}
& 2.50 \\
& 2.50 \\
& \hline
\end{aligned}
\] & 2.50 & 2.50 & 2.50 \\
\hline
\end{tabular}

\footnotetext{
Curve Type Legend:
}

Ave = Average ISTD
Lab Name: TestAmerica Sacramento

Job No.: 320-45868-1
Analy Batch No.: 263818
SDG No.:
\(\qquad\)

GC Column: GeminiC18 3 ID: 3 (mm)
Heated Purge: (Y/N) N
Instrument ID: A8_N
Calibration ID: 42659
Calibration Start Date: 12/07/2018 15:06
Calibration End Date: 12/07/2018 15:50

Calibration Files:
\begin{tabular}{|lll|}
\hline LEVEL: & LAB SAMPLE ID: & LAB FILE ID: \\
Level 1 & IC \(320-263818 / 2\) & 2018.12 .07 537ICAL_003.d \\
Level 2 & IC \(320-263818 / 3\) & 2018.12 .07 537ICAL_004.d \\
Level 3 & IC \(320-263818 / 4\) & 2018.12 .07 _537ICAL_005.d \\
Level 4 & IC \(320-263818 / 5\) & 2018.12 .07 -537ICAL_006.d \\
Level 5 & IC \(320-263818 / 6\) & 2018.12 .07 -537ICAL_007.d \\
Level 6 & IC \(320-263818 / 7\) & 2018.12 .07 -537ICAL_008.d \\
Level 7 & IC \(320-263818 / 8\) & 2018.12 .07 _537ICAL_009.d \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[t]{2}{*}{ANALYTE} & \multicolumn{6}{|c|}{PERCENT ERROR} & \multicolumn{6}{|c|}{PERCENT ERROR LIMIT} \\
\hline & \[
\begin{array}{lll}
\text { LVL } & 1 & \# \\
\text { LVL } & 7 & \# \\
\hline
\end{array}
\] & LVL 2 \# & LVL 3 \# & LVL 4 \# & LVL 5 \# & LVL 6 \# & \[
\begin{array}{ll}
\text { LVL } & 1 \\
\text { LVL } & 7 \\
\hline
\end{array}
\] & LVL 2 & LVL 3 & LVL 4 & LVL 5 & LVL 6 \\
\hline Perfluorobutanesulfonic acid (PFBS) & \[
\begin{array}{r}
-2.0 \\
0.8
\end{array}
\] & 7.8 & -6.6 & -0.4 & -4.8 & 5.0 & \[
\begin{aligned}
& 50 \\
& 30
\end{aligned}
\] & 30 & 30 & 30 & 30 & 30 \\
\hline Perfluoroheptanoic acid (PFHpA) & \[
\begin{array}{r}
15.0 \\
-0.7 \\
\hline
\end{array}
\] & 0.6 & -2.7 & -4.0 & -8.3 & 0.1 & \[
\begin{aligned}
& 50 \\
& 30
\end{aligned}
\] & 30 & 30 & 30 & 30 & 30 \\
\hline Perfluorohexanesulfonic acid (PFHxS) & \[
\begin{array}{r}
-3.7 \\
0.9
\end{array}
\] & 1.3 & -6.1 & 3.7 & \(-3.2\) & 7.1 & \[
\begin{aligned}
& 50 \\
& 30
\end{aligned}
\] & 30 & 30 & 30 & 30 & 30 \\
\hline Perfluorooctanoic acid (PFOA) & \[
\begin{aligned}
& 15.1 \\
& -3.8
\end{aligned}
\] & 0.2 & -0.6 & -1.7 & -9.4 & 0.1 & \[
\begin{aligned}
& 50 \\
& 30 \\
& \hline
\end{aligned}
\] & 30 & 30 & 30 & 30 & 30 \\
\hline Perfluorooctanesulfonic acid (PFOS) & \[
\begin{aligned}
& 15.6 \\
& -1.8
\end{aligned}
\] & 1.1 & -8.0 & -1.7 & -3.5 & -1.8 & \[
\begin{aligned}
& 50 \\
& 30
\end{aligned}
\] & 30 & 30 & 30 & 30 & 30 \\
\hline Perfluorononanoic acid (PFNA) & \[
\begin{array}{r}
6.6 \\
-0.6
\end{array}
\] & 1.0 & -2.4 & 0.2 & -3.7 & -1.0 & \[
\begin{aligned}
& 50 \\
& 30 \\
& \hline
\end{aligned}
\] & 30 & 30 & 30 & 30 & 30 \\
\hline 13C2 PFHxA & \[
\begin{array}{r}
-0.1 \\
4.5
\end{array}
\] & 4.3 & -1.9 & 0.6 & -8.8 & 1.4 & \[
\begin{aligned}
& 30 \\
& 30
\end{aligned}
\] & 30 & 30 & 30 & 30 & 30 \\
\hline 13C2 PFDA & \[
\begin{aligned}
& -0.3 \\
& -0.3
\end{aligned}
\] & 1.6 & -1.9 & 2.1 & \(-2.8\) & 1.5 & \[
\begin{aligned}
& 30 \\
& 30
\end{aligned}
\] & 30 & 30 & 30 & 30 & 30 \\
\hline
\end{tabular}



\section*{LCMS CONTINUING CALIBRATION DATA}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{SDG No.:} \\
\hline \multicolumn{3}{|l|}{Lab Sample ID: CCVL 320-263818/10} & \multicolumn{6}{|l|}{Calibration Date: 12/07/2018 16:05} \\
\hline \multicolumn{3}{|l|}{Instrument ID: A8_N} & \multicolumn{6}{|l|}{Calib Start Date: \(\underline{\text { 12/07/2018 15:06 }}\)} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{GC Column: GeminiC18 3x100 ID: \(3.00(\mathrm{~mm})\) Lab File ID: 2018.12.07_537ICAL_011.d}} & \multicolumn{6}{|l|}{Calib End Date: 12/07/2018 15:50} \\
\hline & & & \multicolumn{6}{|l|}{Conc. Units: \(\mathrm{ng} / \mathrm{mL}\)} \\
\hline ANALYTE & \[
\begin{aligned}
& \text { CURVE } \\
& \text { TYPE }
\end{aligned}
\] & AVE RRF & RRF & MIN RRF & \begin{tabular}{l}
CALC \\
AMOUNT
\end{tabular} & \begin{tabular}{l}
SPIKE \\
AMOUNT
\end{tabular} & \% D & \[
\begin{gathered}
\text { MAX } \\
\% \mathrm{D}
\end{gathered}
\] \\
\hline Perfluorobutanesulfonic acid (PFBS) & Ave & 1.121 & 1.084 & & 9.00 & 0.0442 & -3.3 & 50.0 \\
\hline \[
\begin{aligned}
& \text { Perfluoroheptanoic acid } \\
& \text { (PFHPA) }
\end{aligned}
\] & Ave & 1.065 & 1.081 & & 1.00 & 0.0500 & 1.5 & 50.0 \\
\hline Perfluorohexanesulfonic acid (PFHxS) & Ave & 1.476 & 1.539 & & 3.00 & 0.0455 & 4.2 & 50.0 \\
\hline Perfluorooctanoic acid (PFOA) & Ave & 1.089 & 1.107 & & 2.00 & 0.0501 & 1.6 & 50.0 \\
\hline Perfluorononanoic acid (PFNA) & Ave & 0.8314 & 0.8012 & & 5.00 & 0.0500 & -3.6 & 50.0 \\
\hline Perfluorooctanesulfonic acid (PFOS) & Ave & 1.102 & 1.251 & & 4.00 & 0.0464 & 13.5 & 50.0 \\
\hline 13C2 PFHxA & Ave & 0.9547 & 0.9343 & & 2.45 & 2.50 & -2.1 & 30.0 \\
\hline 13C2 PFDA & Ave & 0.7184 & 0.6646 & & 2.31 & 2.50 & -7.5 & 30.0 \\
\hline d5-NEtFOSAA & Ave & 1.065 & 1.074 & & 2.52 & 2.50 & 0.8 & 30.0 \\
\hline
\end{tabular}

\section*{LCMS CONTINUING CALIBRATION DATA}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{SDG No.:} \\
\hline \multicolumn{3}{|l|}{Lab Sample ID: ICV 320-263818/12} & \multicolumn{6}{|l|}{Calibration Date: \(\underline{\text { 12/07/2018 16:20 }}\)} \\
\hline \multicolumn{3}{|l|}{Instrument ID: A8_N} & \multicolumn{6}{|l|}{Calib Start Date: 12/07/2018 15:06} \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { GC Column: GeminiC18 3x100 ID: } 3.00(\mathrm{~mm}) \\
& \text { Lab File ID: 2018.12.07_537ICAL_013.d }
\end{aligned}
\]}} & \multicolumn{6}{|l|}{\multirow[t]{2}{*}{Calib End Date: 12/07/2018 15:50 Conc. Units: ng/mL}} \\
\hline & & & & & & & & \\
\hline ANALYTE & \[
\begin{aligned}
& \text { CURVE } \\
& \text { TYPE }
\end{aligned}
\] & AVE RRF & RRF & MIN RRF & \begin{tabular}{l}
CALC \\
AMOUNT
\end{tabular} & \begin{tabular}{l}
SPIKE \\
AMOUNT
\end{tabular} & \% D & \[
\begin{gathered}
\text { MAX } \\
\circ D
\end{gathered}
\] \\
\hline Perfluorobutanesulfonic acid (PFBS) & Ave & 1.121 & 1.102 & & 9.00 & 1.77 & -1.7 & 30.0 \\
\hline Perfluoroheptanoic acid
(PFHpA) & Ave & 1.065 & 1.021 & & 1.92 & 2.00 & -4.1 & 30.0 \\
\hline Perfluorohexanesulfonic acid (PFHxS) & Ave & 1.476 & 1.548 & & 1.91 & 1.82 & 4.9 & 30.0 \\
\hline Perfluorooctanoic acid (PFOA) & Ave & 1.089 & 1.035 & & 1.90 & 2.00 & -4.9 & 30.0 \\
\hline Perfluorooctanesulfonic acid (PFOS) & Ave & 1.102 & 1.058 & & 1.78 & 1.85 & -4.0 & 30.0 \\
\hline Perfluorononanoic acid (PFNA) & Ave & 0.8314 & 0.7865 & & 5.00 & 2.00 & -5.4 & 30.0 \\
\hline 13C2 PFHxA & Ave & 0.9547 & 0.9303 & & 2.44 & 2.50 & -2.6 & 30.0 \\
\hline 13C2 PFDA & Ave & 0.7184 & 0.6774 & & 2.36 & 2.50 & -5.7 & 30.0 \\
\hline d5-NEtFOSAA & Ave & 1.065 & 1.097 & & 2.57 & 2.50 & 2.9 & 30.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{9}{|l|}{SDG No.:} \\
\hline \multicolumn{3}{|l|}{Lab Sample ID: CCVL 320-264873/1} & \multicolumn{6}{|l|}{Calibration Date: 12/12/2018 19:19} \\
\hline \multicolumn{3}{|l|}{Instrument ID: A8_N} & \multicolumn{6}{|l|}{Calib Start Date: \(\underline{\text { 12/07/2018 15:06 }}\)} \\
\hline \multicolumn{2}{|l|}{GC Column: GeminiC18 3x100} & ID: 3.00 (mm) & \multicolumn{6}{|l|}{Calib End Date: 12/07/2018 15:50} \\
\hline \multicolumn{3}{|l|}{Lab File ID: 2018.12.12_537A_004.d} & \multicolumn{6}{|l|}{Conc. Units: \(\mathrm{ng} / \mathrm{mL}\)} \\
\hline ANALYTE & \begin{tabular}{l}
CURVE \\
TYPE
\end{tabular} & AVE RRF & RRF & MIN RRF & \begin{tabular}{l}
CALC \\
AMOUNT
\end{tabular} & \begin{tabular}{l}
SPIKE \\
AMOUNT
\end{tabular} & \% D & \[
\begin{gathered}
\text { MAX } \\
\circ D
\end{gathered}
\] \\
\hline Perfluorobutanesulfonic acid (PFBS) & Ave & 1.121 & 1.087 & & 9.00 & 0.044 & -3.0 & 50.0 \\
\hline Perfluoroheptanoic acid (PFHPA) & Ave & 1.065 & 1.099 & & 1.00 & 0.0500 & 3.2 & 50.0 \\
\hline Perfluorohexanesulfonic acid (PFHxS) & Ave & 1.476 & 1.524 & & 3.00 & 0.0455 & 3.2 & 50.0 \\
\hline Perfluorooctanoic acid (PFOA) & Ave & 1.089 & 1.027 & & 2.00 & 0.0501 & -5.7 & 50.0 \\
\hline Perfluorooctanesulfonic acid (PFOS) & Ave & 1.102 & 1.107 & & 4.00 & 0.0464 & 0.4 & 50.0 \\
\hline Perfluorononanoic acid (PFNA) & Ave & 0.8314 & 0.7375 & & 5.00 & 0.0500 & -11.3 & 50.0 \\
\hline 13C2 PFHxA & Ave & 0.9547 & 0.8436 & & 2.21 & 2.50 & -11.6 & 30.0 \\
\hline 13C2 PFDA & Ave & 0.7184 & 0.6600 & & 2.30 & 2.50 & -8.1 & 30.0 \\
\hline d5-NEtFOSAA & Ave & 1.065 & 0.9818 & & 2.30 & 2.50 & -7.9 & 30.0 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|}
\hline Lab Name: TestAmerica Sacramento & Job No.: 320-45868-1 \\
\hline \multicolumn{2}{|l|}{SDG No.:} \\
\hline Lab Sample ID: CCV 320-264881/39 & Calibration Date: 12/13/2018 00:02 \\
\hline Instrument ID: A8_N & Calib Start Date: 12/07/2018 15:06 \\
\hline GC Column: GeminiC18 3x100 ID: 3.00 (mm) & Calib End Date: 12/07/2018 15:50 \\
\hline Lab File ID: 2018.12.12_537A_042.d & Conc. Units: ng/mL \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline ANALYTE & CURVE TYPE & AVE RRF & RRF & MIN RRF & CALC AMOUNT & \begin{tabular}{l}
SPIKE \\
AMOUNT
\end{tabular} & \% D & \[
\begin{gathered}
\text { MAX } \\
\% D
\end{gathered}
\] \\
\hline ```
Perfluorobutanesulfonic acid
(PFBS)
``` & Ave & 1.121 & 1.155 & & 9.00 & 0.884 & 3.1 & 30.0 \\
\hline Perfluoroheptanoic acid (PFHpA) & Ave & 1.065 & 1.047 & & 0.983 & 1.00 & -1.7 & 30.0 \\
\hline Perfluorohexanesulfonic acid (PFHxS) & Ave & 1.476 & 1.471 & & 3.00 & 0.910 & -0.4 & 30.0 \\
\hline ```
Perfluorooctanoic acid
(PFOA)
``` & Ave & 1.089 & 1.078 & & 0.991 & 1.00 & -1.0 & 30.0 \\
\hline Perfluorononanoic acid (PFNA) & Ave & 0.8314 & 0.8273 & & 5.00 & 1.00 & -0.5 & 30.0 \\
\hline ```
Perfluorooctanesulfonic acid
```

(PFOS) \& Ave \& 1.102 \& 1.094 \& \& 4.00 \& 0.928 \& -0.7 \& 30.0

\hline 13C2 PFHxA \& Ave \& 0.9547 \& 0.9413 \& \& 2.47 \& 2.50 \& -1.4 \& 30.0

\hline 13C2 PFDA \& Ave \& 0.7184 \& 0.7183 \& \& 2.50 \& 2.50 \& -0.0 \& 30.0

\hline d5-NEtFOSAA \& Ave \& 1.065 \& 1.099 \& \& 2.58 \& 2.50 \& 3.2 \& 30.0

\hline
\end{tabular}

LCMS CONTINUING CALIBRATION DATA

SDG No.:								
Lab Sample ID: CCV 320-264881/51			Calibration Date: $12 / 13 / 2018$ 01:32					
Instrument ID: A8_N			Calib Start Date: $12 / 07 / 2018$ 15:06					
GC Column: GeminiC18 3x100		3.00 (mm)	Calib End Date: 12/07/2018 15:50					
Lab File ID: 2018.12.12_537A_054.d			Conc. Units: ng/mL					
ANALYTE	$\begin{aligned} & \text { CURVE } \\ & \text { TYPE } \end{aligned}$	AVE RRF	RRF	MIN RRF	CALC AMOUNT	SPIKE AMOUNT	$\bigcirc D$	$\begin{gathered} \text { MAX } \\ \% \mathrm{D} \end{gathered}$
Perfluorobutanesulfonic acid (PFBS)	Ave	1.121	1.210		4.77	4.42	8.0	30.0
Perfluoroheptanoic acid (PFHPA)	Ave	1.065	1.073		5.04	5.00	0.8	30.0
Perfluorohexanesulfonic acid (PFHzS)	Ave	1.476	1.523		4.69	4.55	3.2	30.0
Perfluorooctanoic acid (PFOA)	Ave	1.089	1.068		4.91	5.01	-2.0	30.0
Perfluorooctanesulfonic acid (PFOS)	Ave	1.102	1.060		4.46	4.64	-3.8	30.0
Perfluorononanoic acid (PFNA)	Ave	0.8314	0.8005		4.81	5.00	-3.7	30.0
13C2 PFHxA	Ave	0.9547	0.9572		2.51	2.50	0.3	30.0
13C2 PFDA	Ave	0.7184	0.7209		2.51	2.50	0.3	30.0
d5-NEtFOSAA	Ave	1.065	1.036		2.43	2.50	-2.7	30.0

Lab Name: TestAmerica Sacramento Job No.: 320-45868-1
SDG No.:
Instrument ID: A8_N
Start Date: 12/07/2018 15:06
Analysis Batch Number: 263818
End Date: 12/07/2018 16:20

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED	DILUTION FACTOR	LAB FILE ID	COLUMN ID
IC 320-263818/2		12/07/2018 15:06	1	$\begin{aligned} & 2018.12 .07 _537 \mathrm{I} \\ & \text { CAL_003.d } \end{aligned}$	GeminiC18 3x100 3(mm)
IC 320-263818/3		12/07/2018 15:13	1	$\begin{aligned} & 2018.12 .07 _537 I \\ & \text { CAL_004.d } \\ & \hline \end{aligned}$	GeminiC18 3x100 3(mm)
IC 320-263818/4		12/07/2018 15:21	1	$\begin{aligned} & 2018.12 .07 _537 I \\ & \text { CAL_005.d } \\ & \hline \end{aligned}$	GeminiC18 3x100 3(mm)
$\begin{aligned} & \text { IC } 320-263818 / 5 \\ & \text { ICISAV } \end{aligned}$		12/07/2018 15:28	1	$\begin{aligned} & 2018.12 .07 _537 I \\ & \text { CAL_006.d } \\ & \hline \end{aligned}$	GeminiC18 3x100 3(mm)
IC 320-263818/6		12/07/2018 15:36	1	$\begin{aligned} & 2018.12 .07 _537 I \\ & \text { CAL_007.d } \\ & \hline \end{aligned}$	GeminiC18 3x100 3(mm)
IC 320-263818/7		12/07/2018 15:43	1	$\begin{aligned} & 2018.12 .07 _537 I \\ & \text { CAL_008.d } \end{aligned}$	GeminiC18 3x100 3(mm)
IC 320-263818/8		12/07/2018 15:50	1	$\begin{aligned} & 2018.12 .07 _537 I \\ & \text { CAL_009.d } \\ & \hline \end{aligned}$	GeminiC18 3x100 3(mm)
CCVL 320-263818/10		12/07/2018 16:05	1	$\begin{aligned} & 2018.12 .07 _537 I \\ & \text { CAL_011.d } \\ & \hline \end{aligned}$	GeminiC18 3x100 3(mm)
ICB 320-263818/11		12/07/2018 16:13	1		GeminiC18 3x100 3(mm)
ICV 320-263818/12		12/07/2018 16:20	1	$\begin{aligned} & 2018.12 .07 _537 I \\ & \text { CAL } 013 . \mathrm{d}^{2} \\ & \hline \end{aligned}$	GeminiC18 3x100 3(mm)

Lab Name: TestAmerica Sacramento Job No.: 320-45868-1
SDG No.:
Instrument ID: A8_N
Analysis Batch Number: 264881
Start Date: 12/13/2018 00:02
-
End Date: 12/13/2018 01:32

LAB SAMPLE ID	CLIENT SAMPLE ID	DATE ANALYZED		DILUTION	LAB FILE ID	COLUMN ID		
$\begin{aligned} & \text { CCV 320-264881/39 } \\ & \text { CCVIS } \end{aligned}$		12/13/2018	00:02	1	$\begin{aligned} & 2018.12 .12 _537 \mathrm{~A} \\ & \text { 042.d } \end{aligned}$	GeminiC18	3x100	3 (mm)
ZZZZZ		12/13/2018	00:10	1		GeminiC18	3×100	3 (mm)
MB 320-264464/1-A		12/13/2018	00:17	1	$\begin{aligned} & 2018.12 .12 \text { _537A } \\ & 044 . d \end{aligned}$	GeminiC18	3x100	3 (mm)
LCS 320-264464/2-A		12/13/2018	00:25	1	$\begin{aligned} & 2018.12 .12 _537 \mathrm{~A} \\ & 045 . \mathrm{d} \end{aligned}$	GeminiC18	3x100	3 (mm)
LCSD 320-264464/3-A		12/13/2018	00:32	1	$\begin{aligned} & 2018.12 .12 _537 \mathrm{~A} \\ & 046 . d \end{aligned}$	GeminiC18	3x100	3 (mm)
320-45868-1		12/13/2018	00:40	1	$\begin{aligned} & \text { 2018.12.12_537A } \\ & 047 . d \end{aligned}$	GeminiC18	3×100	3 (mm)
320-45868-2		12/13/2018	00:47	1	$\begin{aligned} & 2018.12 .12 _537 \mathrm{~A} \\ & 048 . \mathrm{d} \end{aligned}$	GeminiC18	3×100	3 (mm)
ZZZZZ		12/13/2018	00:55	1		GeminiC18	3×100	3 (mm)
ZZZZZ		12/13/2018	01:02	1		GeminiC18	3x100	3 (mm)
ZZZZZ		12/13/2018	01:09	1		GeminiC18	3x100	3 (mm)
ZZZZZ		12/13/2018	01:17	1		Geminic18	3x100	3 (mm)
ZZZZZ		12/13/2018	01:24	1		GeminiC18	3x100	3 (mm)
CCV 320-264881/51 CCVIS		12/13/2018	01:32	1	$\begin{aligned} & 2018.12 .12 _537 \mathrm{~A} \\ & 054 . \mathrm{d} \end{aligned}$	Geminic18	3x100	3 (mm)

Batch Number:	264464		Batch Start Date: 12/11/18 10:05				Batch Analyst: Long, Tyrel W		
Batch Method:	537		Batch End Date: 12/11/18 14:00						
Lab Sample ID	Client Sample ID	Method Chain	Basis	GrossWeight	TareWeight	InitialAmount	FinalAmount	ReceivedpH	LC537-IS 00091
MB 320-264464/1		537, 537				250 mL	10.00 mL	7 SU	500 uL
$\begin{aligned} & \hline \text { LCS } \\ & 320-264464 / 2 \\ & \hline \end{aligned}$		537, 537				250 mL	10.00 mL	7 SU	500 uL
$\begin{aligned} & \text { LCSD } \\ & 320-264464 / 3 \\ & \hline \end{aligned}$		537, 537				250 mL	10.00 mL	7 SU	500 uL
320-45868-A-1	$\begin{array}{\|l\|} \hline \text { NAWC-120418-RW-0 } \\ 98 \\ \hline \end{array}$	537, 537	T	303.75 g	28.24 g	275.5 mL	10.00 mL	7 SU	500 uL
320-45868-A-2	$\begin{aligned} & \text { NAWC-120418-FRB- } \\ & 098 \\ & \hline \end{aligned}$	537, 537	T	317.43 g	28.15 g	289.3 mL	10.00 mL	7 SU	500 uL
Lab Sample ID	Client Sample ID	Method Chain	Basis	LC537-SU 00088	LC537MSP 00001	AnalysisComment			
MB 320-264464/1		537, 537		500 uL		Chlorine ND			
$\begin{aligned} & \hline \text { LCS } \\ & 320-264464 / 2 \\ & \hline \end{aligned}$		537, 537		500 uL	500 uL	Chlorine ND			
LCSD $320-264464 / 3$		537, 537		500 uL	500 uL	Chlorine ND			
320-45868-A-1	$\begin{array}{\|l\|} \hline \text { NAWC-120418-RW-0 } \\ 98 \end{array}$	537, 537	T	500 uL		Chlorine ND			
320-45868-A-2	$\begin{aligned} & \text { NAWC-120418-FRB- } \\ & 098 \\ & \hline \end{aligned}$	537, 537	T	500 uL		Chlorine ND			

Lab Name: TestAmerica Sacramen	Job No.: 320-45868-1	
SDG No.:		
Batch Number: 264464	Batch Start Date: 12/11/18 10:05	Batch Analyst: Long, Tyrel W
Batch Method: 537	Batch End Date: 12/11/18 14:00	
Batch Notes		
Analyst ID - Aliquot Step	TWL	
Batch Comment	Client labels match TA labels, TWL 12-11-18	
Analyst ID - Final Volume Step	TWL	
Internal Standard ID\#	1451881	
Manifold ID	Q, C	
Methanol ID	1454398	
pH Indicator ID	3718	
Pipette ID	I46162G	
Analyst ID - IS Reagent Drop	TWL	
Analyst ID - IS Reagent Drop Witness	MYV	
Analyst ID - SU Reagent Drop	TWL	
Analyst ID - SU Reagent Drop Witness	MYV	
Analyst ID - TA Reagent Drop	TWL	
Analyst ID - TA Reagent Drop Witness	MYV	
SPE Cartridge Lot ID	6413968-05	
Trizma ID	SLBR5241V	
Reagent Water ID	12-06-18	
Basis Basis Description		
T Total/NA		

PFAS Calibration Calculations:
Initial Calibration
Instrument A8_N
PFOA

	Analyte	Internal Standard	Internal Standard		Reported
Analyte Concentration	Response	Response	Amount	RRF	RRF
0.025	44364	3534903	2.5	1.25503	1.2538
0.0501	81675	3736172	2.5	1.09085	1.0919
0.25	382620	3530447	2.5	1.08377	1.0827
1	1461416	3407730	2.5	1.07213	1.0711
2.5	3684632	3730120	2.5	0.98781	0.9868
5.01	7357085	3370676	2.5	1.08916	1.0902
10	14227009	3389257	2.5	1.04942	1.0484
			Average	1.08974	1.0893
			Standard Deviation	0.0813	
			RSD	0.0746	
			\%RSD	7.46290	7.5

Continuing Calibration
 PFOA

Analyte Concentration
0.0501

2/12/2018 @ 19:19
Internal Standard
$\begin{array}{ccc}\begin{array}{c}\text { Analyte } \\ \text { Response }\end{array} & \begin{array}{l}\text { Internal Standard } \\ 83394\end{array} & \text { Response }\end{array} \quad \begin{gathered}\text { Internal Sta } \\ \text { Amount }\end{gathered}$
$\begin{array}{lll} & \text { RRF } & \text { \% } \\ & 1.0263 & \text { (5.78254 }\end{array}$
Reported Reported $\begin{array}{ll}1.0263 & -5.78254\end{array}$ R \%

Sample Identification Compound

NAWC-120418-RW-098 PFOA
Compound Area
Internal Standard Amount (ng)
Dilution Factor
Internal Standard Area

Concentration
Reported Result
521573
2.5
1
3715088

$11.6954 \mathrm{ng} /$
$11.7 \mathrm{ng} /$

Surrogate PFHxA

Compound Area	3540908	
Internal Standard Amount (ng)	10	
Dilution Factor	1	
Internal Standard Area	3715088	
Average RRF	0.9547	
Concentration	9.9834	
Surrogate \%R	99.83	Spike amount
320-264464/2-A		
PFOA	Spike amount	LCS concentration
93.64	100	93.64
320-264464/3-A	Spike amount	LCS concentration
PFOA	100	90.24
90.24		

MS/MSD RPD

