Groundwater Sample Results,
Level 2 Laboratory Report, Level 4 Laboratory Report, Electronic Data Deliverable, Data Validation Report, and the Sample Location Report, SDG 1700893
Marine Corps Air Station Yuma
Yuma, Arizona

November 2019

August 01, 2017

Vista Work Order No. 1700893

Mr. Curtis Moss
AMEC Foster Wheeler

9210 Sky Park Court Suite 200
San Diego, CA 92123
Dear Mr. Moss,
Enclosed are the results for the sample set received at Vista Analytical Laboratory on July 18, 2017. This sample set was analyzed on a rush turn-around time, under your Project Name 'MCAS Yuma, AZ TO 105'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maier
Laboratory Director

Vista Work Order No. 1700893

Case Narrative

Sample Condition on Receipt:

Two blank water samples and three groundwater samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

Modified EPA Method 537

Samples "OUA1-MW08-20170717" and "OUA1-HS03A-20170717" contained particulate and were centrifuged prior to extraction.

The samples were extracted and analyzed for PFOA, PFOS, and PFBS using Modified EPA Method 537.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above $1 / 2$ the LOQ. The OPR recoveries were within the method acceptance criteria

The labeled standard recoveries outside the acceptance criteria are listed in the table below.

As requested, an MS/MSD was performed on sample "OUA1-HS03-20170717". The percent recovery for PFBS was outside of the method acceptance criteria and is qualified with an " H " flag.

TABLE OF CONTENTS

Case Narrative 1
Table of Contents 3
Sample Inventory 4
Analytical Results 5
Qualifiers 14
Certifications 15
Sample Receipt 18

Sample Inventory Report

Vista Sample ID	Client			
	Sample ID		Sampled	Received
1700893-01	SB01-20170717		17-Jul-17 11:00	18-Jul-17 09:23
1700893-02	EB01-20170717		17-Jul-17 11:10	18-Jul-17 09:23
1700893-03	OUA1-MW08-20170717		17-Jul-17 10:15	18-Jul-17 09:23
1700893-04	OUA1-HS03-20170717	MS/MSD	17-Jul-17 11:15	18-Jul-17 09:23
		MS/MSD		
1700893-05	OUA1-HS03A-20170717		17-Jul-17 11:20	18-Jul-17 09:23

Components/Containers

HDPE Bottle, 125 mL HDPE Bottle, 125 mL

ANALYTICAL RESULTS

Analytical Laboratory

Sample ID: OPR

Modified EPA Method 537

LCL-UCL - Lower control limit - upper control limit

DL - Detection limit
LCL-UCL - Lower control limit - upper control limit
Results reported to DL
When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

Sample ID: OUA1-MW08-20170717

Modified EPA Method 537

DL - Detection limit
LCL-UCL - Lower control limit - upper control limit
Results reported to DL
When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers
Only the linear isomer is reported for all other analytes.

Sample ID: OUA1-HS03-20170717

Modified EPA Method 537

Name:	AMEC Foster Wheeler		Matrix:	Groundwater	Laboratory Data							
										10:19		
Project:	MCAS Yuma, AZ TO 105			Sample Size:	0.118 L	QC Batch:			B7G0106		Date Extracted:	25-Jul-2017
Date Collected:	17-Jul-2017 11:15				Date Analyzed:			01-Aug-17 02:09 Column: BEH C18				
Location:								31-Jul-17 23	BEH C18			
Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Lab	led Standard	\%R	LCL-UCL	Qualifiers	
PFBS	745	9.51	26.5	42.5	D	IS	13 C	-PFBS	128	50-150	D	
PFOA	25.6	0.692	5.30	8.50		IS	13C	-PFOA	125	50-150		
PFOS	2.80	0.858	5.30	8.50	J	IS	13 C	-PFOS	87.4	50-150		

DL - Detection limit
LCL-UCL - Lower control limit - upper control limit
Results reported to DL
When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

Matrix Spike Results

Source Client ID: Source LabNumber: Matrix: Sample Size:	OUA1-HS03- 1700893-04 Aqueous 0.117/0.125 L	20170717			QC Batch: Date Extracted:		$\begin{aligned} & \text { B7G0106 } \\ & \text { 25-Jul-2017 } \end{aligned}$		10:19		Lab Sample: Date Analyzed:		B7G0106-MS2/B7G0106-MSD2 27-Jul-17 22:52 Column: BEH C18 27-Jul-17 23:04 Column: BEH C18				
Analyte		$\begin{gathered} \text { Spike-MS } \\ (\mathrm{ng} / \mathrm{L}) \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{MS} \\ & \mathrm{\% R} \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { MS } \\ \text { Qual. } \\ \hline \end{gathered}$	$\begin{gathered} \text { Spike-MSD } \\ (\mathrm{ng} / \mathrm{L}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { MSD } \\ \% \mathrm{R} \\ \hline \end{gathered}$	RPD	$\begin{aligned} & \hline \text { MSD } \\ & \text { Qual. } \end{aligned}$	$\begin{gathered} \text { \%R } \\ \text { Limit } \end{gathered}$	$\begin{aligned} & \hline \text { \%RPD } \\ & \text { Limit } \\ & \hline \end{aligned}$	Labeled Standard			$\begin{aligned} & \hline \text { MS } \\ & \% \mathrm{R} \end{aligned}$	$\begin{gathered} \text { MS } \\ \text { Qualifiers } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { MSD } \\ \% \mathrm{R} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { MS } \\ \text { Qual. } \end{gathered}$
PFBS		85.8	322	D, H	80.0	351	8.62	D, H	70-130	25	IS	13C3-P		123	D	113	D
PFOA		85.8	111		80.0	107	3.67		70-130	25	IS	13C2-P	OA	113		111	
PFOS		85.8	119		80.0	107	10.6		70-130	25	IS	13C8-P		90.1		95.0	

Only the linear isomer is reported for all other analytes.

Sample ID: OUA1-HS03A-20170717

Modified EPA Method 537

Client Data			Sample Data		Laboratory Data						
		AMEC Foster Wheeler	Matrix:	Groundwater	Lab Sample:			1700893-05	Date Received:	18-Jul-2017	9:23
Project:	MCAS Yuma, AZ TO 105		Sample Size:	0.120 L		Batc		B7G0106	Date Extracted:		10:19
Date Collected:	17-Jul-2017 11:20					Ana	zzed:	01-Aug-17 0	: BEH C18		
Location:								31-Jul-17 23	BEH C18		
Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Lab	led Standard	\%R	LCL-UCL	Qualifiers
PFBS	915	9.32	26.0	41.6	D	IS	13C	-PFBS	111	50-150	D
PFOA	22.3	0.678	5.21	8.33		IS	13C	-PFOA	127	50-150	
PFOS	2.41	0.840	5.21	8.33	J	IS	13 C	-PFOS	96.7	50-150	

DL - Detection limit
LCL-UCL - Lower control limit - upper control limit
Results reported to DL
When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers
Only the linear isomer is reported for all other analytes.

DATA QUALIFIERS \& ABBREVIATIONS

B This compound was also detected in the method blank.
D Dilution

E The associated compound concentration exceeded the calibration range of the instrument.

H Recovery and/or RPD was outside laboratory acceptance limits.
I Chemical Interference
J The amount detected is below the Reporting Limit/LOQ.
M Estimated Maximum Possible Concentration. (CA Region 2 projects only)

* See Cover Letter

Conc. Concentration
NA Not applicable
ND Not Detected
TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
Arkansas Department of Environmental Quality	$17-015-0$
California Department of Health - ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-18
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2016026
Minnesota Department of Health	1175673
Nevada Division of Environmental Protection	CA004132017-1
New Hampshire Environmental Accreditation Program	207716
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Oregon Laboratory Accreditation Program	$4042-008$
Pennsylvania Department of Environmental Protection	013
Texas Commission on Environmental Quality	T104704189-17-8
Virginia Department of General Services	8621
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins \& Polychlorinated Dibenzofurans	EPA 23

MATRIX: Biological Tissue	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	EPA $8290 / 8290 A$

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA 1613
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537

MATRIX: Non-Potable Water	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Dioxin by GC/HRMS	EPA 613
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	EPA

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B

Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	EPA

1700893 Vista PM: Karen Volpendesta

CHAIN OF CUSTODY RECORD
DATE: $7 / 17 / 2017$ - B
PAGE: \qquad OF \qquad

Vista Work Order \#:

TAT

Comments:

August 01, 2017

Vista Work Order No. 1700893

Mr. Curtis Moss
AMEC Foster Wheeler

9210 Sky Park Court Suite 200
San Diego, CA 92123
Dear Mr. Moss,
Enclosed are the results for the sample set received at Vista Analytical Laboratory on July 18, 2017. This sample set was analyzed on a rush turn-around time, under your Project Name 'MCAS Yuma, AZ TO 105'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,
Kanus: Roopenepta
Martha Maier
Laboratory Director

Vista Work Order No. 1700893

Case Narrative

Sample Condition on Receipt:

Two blank water samples and three groundwater samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

Modified EPA Method 537

Samples "OUA1-MW08-20170717" and "OUA1-HS03A-20170717" contained particulate and were centrifuged prior to extraction.

The samples were extracted and analyzed for PFOA, PFOS, and PFBS using Modified EPA Method 537.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Ongoing Precision and Recovery (OPR) sample were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above $1 / 2$ the LOQ. The OPR recoveries were within the method acceptance criteria

The labeled standard recoveries outside the acceptance criteria are listed in the table below.

As requested, an MS/MSD was performed on sample "OUA1-HS03-20170717". The percent recovery for PFBS was outside of the method acceptance criteria and is qualified with an "H" flag.

TABLE OF CONTENTS

Case Narrative 1
Table of Contents 3
Sample Inventory 4
Analytical Results. 5
Qualifiers 14
Certifications 15
Sample Receipt 18
Extraction Information 20
Sample Data - Modified EPA Method 537. 25
Continuing Calibration. 90
Initial Calibration 150

Sample Inventory Report

Vista Sample ID	Client			
	Sample ID		Sampled	Received
1700893-01	SB01-20170717		17-Jul-17 11:00	18-Jul-17 09:23
1700893-02	EB01-20170717		17-Jul-17 11:10	18-Jul-17 09:23
1700893-03	OUA1-MW08-20170717		17-Jul-17 10:15	18-Jul-17 09:23
1700893-04	OUA1-HS03-20170717	MS/MSD	17-Jul-17 11:15	18-Jul-17 09:23
		MS/MSD		
1700893-05	OUA1-HS03A-20170717		17-Jul-17 11:20	18-Jul-17 09:23

Components/Containers

HDPE Bottle, 125 mL HDPE Bottle, 125 mL

ANALYTICAL RESULTS

Analytical Laboratory

Vista
Analytical Laboratory

Sample ID: OPR

Modified EPA Method 537

LCL-UCL - Lower control limit - upper control limit

DL - Detection limit
RL - Reporting limit
LCL-UCL - Lower control limit - upper control limit
Results reported to DL
When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers.
Only the linear isomer is reported for all other analytes.

Sample ID: OUA1-MW08-20170717

Modified EPA Method 537

DL - Detection limit
LCL-UCL - Lower control limit - upper control limit
Results reported to DL
When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers
Only the linear isomer is reported for all other analytes.

Sample ID: OUA1-HS03-20170717

Modified EPA Method 537

Name:	AMEC Foster Wheeler		Matrix:	Groundwater	Laboratory Data							
										10:19		
Project:	MCAS Yuma, AZ TO 105			Sample Size:	0.118 L	QC Batch:			B7G0106		Date Extracted:	25-Jul-2017
Date Collected:	17-Jul-2017 11:15				Date Analyzed:			01-Aug-17 02:09 Column: BEH C18				
Location:								31-Jul-17 23	BEH C18			
Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Lab	led Standard	\%R	LCL-UCL	Qualifiers	
PFBS	745	9.51	26.5	42.5	D	IS	13 C	-PFBS	128	50-150	D	
PFOA	25.6	0.692	5.30	8.50		IS	13C	-PFOA	125	50-150		
PFOS	2.80	0.858	5.30	8.50	J	IS	13 C	-PFOS	87.4	50-150		

DL - Detection limit
LCL-UCL - Lower control limit - upper control limit
Results reported to DL
When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers
Only the linear isomer is reported for all other analytes.

Matrix Spike Results

Source Client ID: Source LabNumber: Matrix: Sample Size:	OUA1-HS03- 1700893-04 Aqueous 0.117/0.125 L	20170717			QC Batch: Date Extracted:		$\begin{aligned} & \text { B7G0106 } \\ & \text { 25-Jul-2017 } \end{aligned}$		10:19		Lab Sample: Date Analyzed:		B7G0106-MS2/B7G0106-MSD2 27-Jul-17 22:52 Column: BEH C18 27-Jul-17 23:04 Column: BEH C18				
Analyte		$\begin{gathered} \text { Spike-MS } \\ (\mathrm{ng} / \mathrm{L}) \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{MS} \\ & \mathrm{\% R} \\ & \hline \end{aligned}$	$\begin{gathered} \hline \text { MS } \\ \text { Qual. } \\ \hline \end{gathered}$	$\begin{gathered} \text { Spike-MSD } \\ (\mathrm{ng} / \mathrm{L}) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { MSD } \\ \% \mathrm{R} \\ \hline \end{gathered}$	RPD	$\begin{aligned} & \hline \text { MSD } \\ & \text { Qual. } \end{aligned}$	$\begin{gathered} \text { \%R } \\ \text { Limit } \end{gathered}$	$\begin{aligned} & \hline \text { \%RPD } \\ & \text { Limit } \\ & \hline \end{aligned}$	Labeled Standard			$\begin{aligned} & \hline \text { MS } \\ & \% \mathrm{R} \end{aligned}$	$\begin{gathered} \text { MS } \\ \text { Qualifiers } \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { MSD } \\ \% \mathrm{R} \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { MS } \\ \text { Qual. } \end{gathered}$
PFBS		85.8	322	D, H	80.0	351	8.62	D, H	70-130	25	IS	13C3-P		123	D	113	D
PFOA		85.8	111		80.0	107	3.67		70-130	25	IS	13C2-P	OA	113		111	
PFOS		85.8	119		80.0	107	10.6		70-130	25	IS	13C8-P		90.1		95.0	

Only the linear isomer is reported for all other analytes.

Sample ID: OUA1-HS03A-20170717

Modified EPA Method 537

Client Data			Sample Data		Laboratory Data						
		AMEC Foster Wheeler	Matrix:	Groundwater	Lab Sample:			1700893-05	Date Received:	18-Jul-2017	9:23
Project:	MCAS Yuma, AZ TO 105		Sample Size:	0.120 L		Batc		B7G0106	Date Extracted:		10:19
Date Collected:	17-Jul-2017 11:20					Ana	zzed:	01-Aug-17 0	: BEH C18		
Location:								31-Jul-17 23	BEH C18		
Analyte	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers		Lab	led Standard	\%R	LCL-UCL	Qualifiers
PFBS	915	9.32	26.0	41.6	D	IS	13C	-PFBS	111	50-150	D
PFOA	22.3	0.678	5.21	8.33		IS	13C	-PFOA	127	50-150	
PFOS	2.41	0.840	5.21	8.33	J	IS	13 C	-PFOS	96.7	50-150	

DL - Detection limit
LCL-UCL - Lower control limit - upper control limit
Results reported to DL
When reported, PFBS, PFHxS, PFOA and PFOS include both linear and branched isomers
Only the linear isomer is reported for all other analytes.

DATA QUALIFIERS \& ABBREVIATIONS

B This compound was also detected in the method blank.
D Dilution

E The associated compound concentration exceeded the calibration range of the instrument.

H Recovery and/or RPD was outside laboratory acceptance limits.
I Chemical Interference
J The amount detected is below the Reporting Limit/LOQ.
M Estimated Maximum Possible Concentration. (CA Region 2 projects only)

* See Cover Letter

Conc. Concentration
NA Not applicable
ND Not Detected

TEQ Toxic Equivalency

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
Arkansas Department of Environmental Quality	$17-015-0$
California Department of Health - ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-18
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2016026
Minnesota Department of Health	1175673
Nevada Division of Environmental Protection	CA004132017-1
New Hampshire Environmental Accreditation Program	207716
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Oregon Laboratory Accreditation Program	$4042-008$
Pennsylvania Department of Environmental Protection	013
Texas Commission on Environmental Quality	T104704189-17-8
Virginia Department of General Services	8621
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

Current certificates and lists of licensed parameters are located in the Quality Assurance office and are available upon request.

NELAP Accredited Test Methods

MATRIX: Air	
Description of Test	Method
Determination of Polychlorinated p-Dioxins \& Polychlorinated Dibenzofurans	EPA 23

MATRIX: Biological Tissue	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	EPA $8290 / 8290 A$

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA 1613
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537

MATRIX: Non-Potable Water	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Dioxin by GC/HRMS	EPA 613
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	EPA

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope	EPA 1613B

Dilution GC/HRMS	
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	EPA

AMEC F Vista PM: Karen Volpendesta

CHAIN OF CUSTODY RECORD
DATE: $7 / 17 / 2017$ - B
PAGE: \qquad OF \qquad

Vista Work Order \#:

TAT

Comments:

EXTRACTION INFORMATION

Prep Expiration: 2017-Jul-31
Client: AMEC Foster Wheeler

Method: 537M PFAS DOD (LOQ as mR) Matrix: Aqueous

Version: PFOA, PFOS, and PFBS only

Workorder Due:01-Aug-17 00:00
TAT: 14
Prep Batch: B760106

Prep Data Entered:

Initial Sequence: \qquad

Vista PM: Martha Meier
Vial Box ID: Sofishticated

Batch: B7G0106

Matrix: Aqueous

PREPARATION BENCH SHEET

Method: 537M PFAS DOD (LOO as mRL)

B7G0106

Chemist: BI
Prep Date/Time: $\begin{gathered}\mathbf{2 5} \\ 725\end{gathered}$
gi $7.25 \cdot 17$

Prepared using: LCMS - SPE Extraction-LCMS

Comments: Assume $1 \mathrm{~g}=1 \mathrm{~mL}$ (A)sampes were contontuged to remove paitialate. 727124117
(B) Insufficient volume for MS/MSD BP 7.25.17

Matrix: Aqueous

Method: 537M PFAS DOD (LOO as mRL)

PREPARATION BENCH SHEET
B7G0106

Chemist: BT
Prep Date/Time: 25 $_{77^{2}} \mathrm{Jul}-17$ 10:19
$897.25 \cdot 17$

Prepared using: LCMS - SPE Extraction-LCMS

IS Name $\frac{1761307,106}{(5)}$	NS Name $1702705,10.6$ (v)	RS Name $\frac{7-303 x 104}{v 2}$		Check Out: ChemistDate: 7B 7124117 Check In: Chemist/Date: \qquad $4137 / 24117$ Balance ID: \qquad HRNS-8 pH Adjusted: Chemist/Date: \qquad $H 137124$

Comments: Assume $1 \mathrm{~g}=1 \mathrm{~mL}$

$$
\text { SAMPLE DATA - MODIFIED EPA METHOD } 537
$$

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\170727G5\170727G5-20.qld

Last Altered: Monday, July 31, 2017 10:44:21 Pacific Daylight Time Printed: Monday, July 31, 2017 10:44:34 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:|G1.pro\CurveDB\C18 VAL-PFC Q1 7-27-17 L16 2Trans A NEW.cdb 27 Jul 2017 14:48:06

ID: B7G0106-BLK1 Method Blank 0.125, Description: Method Blank, Name: 170727G5_20, Date: 27-Jul-2017, Time: 20:34:22

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT	Conc.	\%Rec
1	3 PFBS	$299.0>79.7$		4.275 e 3		0.125			
2	7 PFOA	413.0 > 368.7	1.297 e 2	1.830 e 4		0.125	4.24		
3	9 PFOS	$499.0>79.9$		8.257 e 3		0.125			
4	12 13C3-PFBS	$302.0>98.8$	4.275 e 3	1.913 e 4	0.263	0.125	2.92	85.0	85.0
5	17 13C2-PFOA	$414.9>369.7$	1.830 e 4	5.996 e 3	2.843	0.125	4.24	107	107
6	20 13C8-PFOS	$507.0>79.9$	8.257 e 3	8.852 e 3	0.927	0.125	4.65	101	101
7	22 13C5-PFHxA	$318>272.9$	1.913 e 4	1.913 e 4	1.000	0.125	3.29	100	100
8	24 13C8-PFOA	$421.3>376$	5.996 e 3	5.996 e 3	1.000	0.125	4.24	100	100
9	26 13C4-PFOS	$503.0>79.9$	8.852e3	8.852e3	1.000	0.125	4.65	100	100

Dataset: U:\G1.PRO\Results\2017\170727G5\170727G5-20.qld
Last Altered: Monday, July 31, 2017 10:44:21 Pacific Daylight Time
Printed: Monday, July 31, 2017 10:44:50 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A NEW.cdb 27 Jul 2017 14:48:06

ID: B7G0106-BLK1 Method Blank 0.125, Description: Method Blank, Name: 170727G5_20, Date: 27-Jul-2017, Time: 20:34:22

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT
1	28 Total PFBS	$299.0>79.7$		$4.275 e 3$	0.125	Conc.	\%Rec
2	$30 ~ T o t a l ~ P F O A ~$	$413.0>368.7$		1.8304	0.125		
3	31 Total PFOS	$499.0>79.9$		$8.257 e 3$	0.125		

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\170727G5\170727G5-20.qld
Last Altered: Monday, July 31, 2017 10:44:21 Pacific Daylight Time Printed: Monday, July 31, 2017 10:44:34 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS 14or16 2trans 0712.mdb 12 Jul 2017 13:38:17

Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
ID: B7G0106-BLK1 Method Blank 0.125, Description: Method Blank, Name: 170727G5 20, Date: 27-Jul-2017, Time: 20:34:22, Instrument: , Lab: , User:

Total PFBS

Dataset:	U:IG1.PRO\Results\2017\170727G5\170727G5-20.qld
Last Altered:	Monday, July 31, 2017 10:44:21 Pacific Daylight Time
Printed:	Monday, July 31, 2017 10:44:34 Pacific Daylight Time

ID: B7G0106-BLK1 Method Blank 0.125, Description: Method Blank, Name: 170727G5_20, Date: 27-Jul-2017, Time: 20:34:22, Instrument: , Lab: , User:

13C8-PFOS

Vista Analytical Laboratory Q1

Method: U:\G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

ID: B7G0106-BS1 OPR 0.125, Description: OPR, Name: 170727G5_5, Date: 27-Jul-2017, Time: 17:26:02

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT	Conc.	\%Rec
1	3 PFBS	$299.0>79.7$	5.917e3	4.559 e 3		0.125	2.91	77.8	97.2
2	7 PFOA	$413.0>368.7$	1.128 e 4	1.661 e 4		0.125	4.24	84.3	105
3	9 PFOS	$499.0>79.9$	2.025 e 3	5.599 e 3		0.125	4.65	76.5	95.6
4	12 13C3-PFBS	$302.0>98.8$	4.559 e 3	1.743 e 4	0.263	0.125	2.91	99.6	99.6
5	17 13C2-PFOA	$414.9>369.7$	1.661 e 4	5.307e3	2.843	0.125	4.24	110	110
6	20 13C8-PFOS	$507.0>79.9$	5.599 e 3	5.676 e 3	0.927	0.125	4.64	106	106
7	22 13C5-PFHxA	$318>272.9$	1.743 e 4	1.743 e 4	1.000	0.125	3.28	100	100
8	24 13C8-PFOA	$421.3>376$	5.307 e 3	5.307 e 3	1.000	0.125	4.24	100	100
9	26 13C4-PFOS	$503.0>79.9$	5.676 e 3	5.676 e 3	1.000	0.125	4.64	100	100

Dataset: U:\G1.PRO\Results\2017\170727G5\170727G5-5.qld
Last Altered: Monday, July 31, 2017 10:29:51 Pacific Daylight Time Printed: Monday, July 31, 2017 10:34:25 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

ID: B7G0106-BS1 OPR 0.125, Description: OPR, Name: 170727G5_5, Date: 27-Jul-2017, Time: 17:26:02

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT
1	28 Total PFBS	$299.0>79.7$		$4.559 e 3$	0.125	Conc.	\%Rec
2	30 Total PFOA	$413.0>368.7$		$1.661 e 4$	0.125	77.8	84.3
3	31 Total PFOS	$499.0>79.9$		$5.599 e 3$	0.125		

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\170727G5\170727G5-5.qld
Last Altered: Monday, July 31, 2017 10:29:51 Pacific Daylight Time Printed: Monday, July 31, 2017 10:34:13 Pacific Daylight Time

Method: U:|G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
ID: B7G0106-BS1 OPR 0.125, Description: OPR, Name: 170727G5_5, Date: 27-Jul-2017, Time: 17:26:02, Instrument: , Lab: , User:

ID: B7G0106-BS1 OPR 0.125, Description: OPR, Name: 170727G5_5, Date: 27-Jul-2017, Time: 17:26:02, Instrument: , Lab: , User:

13C8-PFOS

Quantify Sample Summary Report MassLynx 4.1 SCN815
Vista Analytical Laboratory Q1
Dataset: \quad U:\G1.PRO\Results\2017\170727G5\170727G5-27.qld
Last Altered:
Monday, July 31, 2017 10:47:15 Pacific Daylight Time
Printed:

Method: U:\G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17 Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

ID: 1700893-01RE1 SB01-20170717 0.12046, Description: SB01-20170717, Name: 170727G5_27, Date: 27-Jul-2017, Time: 22:02:11

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT	Conc.	\%Rec
1	3 PFBS	$299.0>79.7$		4.287e3		0.120			
2	7 PFOA	$413.0>368.7$	1.210 e 2	1.698 e 4		0.120	4.25		
3	9 PFOS	$499.0>79.9$		6.883 e 3		0.120			
4	12 13C3-PFBS	$302.0>98.8$	4.287 e 3	1.685 e 4	0.263	0.120	2.92	101	96.8
5	17 13C2-PFOA	$414.9>369.7$	1.698 e 4	5.148 e 3	2.843	0.120	4.24	121	116
6	20 13C8-PFOS	$507.0>79.9$	6.883 e 3	7.639 e 3	0.927	0.120	4.65	101	97.2
7	22 13C5-PFHxA	$318>272.9$	1.685 e 4	1.685 e 4	1.000	0.120	3.29	104	100
8	24 13C8-PFOA	$421.3>376$	5.148 e 3	5.148 e 3	1.000	0.120	4.24	104	100
9	26 13C4-PFOS	$503.0>79.9$	7.639 e 3	7.639 e 3	1.000	0.120	4.65	104	100

Dataset: U:\G1.PRO\Results\2017\170727G5\170727G5-27.qld
Last Altered: Monday, July 31, 2017 10:47:15 Pacific Daylight Time Printed: Monday, July 31, 2017 10:48:07 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

ID: 1700893-01RE1 SB01-20170717 0.12046, Description: SB01-20170717, Name: 170727G5_27, Date: 27-Jul-2017, Time: 22:02:11

| | \# Name | Trace | Peak Area | IS Resp | RRF Mean | wt/vol |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | RT \quad Conc. | \%Rec |
| :--- |
| 1 |

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\170727G5\170727G5-27.qld
Last Altered: Monday, July 31, 2017 10:47:15 Pacific Daylight Time Printed: Monday, July 31, 2017 10:47:52 Pacific Daylight Time

Method: U:|G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
ID: 1700893-01RE1 SB01-20170717 0.12046, Description: SB01-20170717, Name: 170727G5_27, Date: 27-Jul-2017, Time: 22:02:11, Instrument: , Lab: , User:

Dataset:	U:IG1.PRO\Results\2017\170727G5\170727G5-27.qld
Last Altered:	Monday, July 31, 2017 10:47:15 Pacific Daylight Time
Printed:	Monday, July 31, 2017 10:47:52 Pacific Daylight Time

ID: 1700893-01RE1 SB01-20170717 0.12046, Description: SB01-20170717, Name: 170727G5_27, Date: 27-Jul-2017, Time: 22:02:11, Instrument: , Lab: , User:

13C8-PFOS

Vista Analytical Laboratory Q1

Method: U:|G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:|G1.pro\CurveDB\C18 VAL-PFC Q1 7-27-17 L16 2Trans A NEW.cdb 27 Jul 2017 14:48:06

ID: 1700893-02RE1 EB01-20170717 0.11139, Description: EB01-20170717, Name: 170727G5_28, Date: 27-Jul-2017, Time: 22:14:45

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT	Conc.	\%Rec
1	3 PFBS	$299.0>79.7$		4.212 e 3		0.0975			
2	7 PFOA	413.0 > 368.7	1.284 e 2	1.718 e 4		0.0975	4.24	0.0120	
3	9 PFOS	$499.0>79.9$		6.985 e 3		0.0975			
4	12 13C3-PFBS	$302.0>98.8$	4.212 e 3	1.729 e 4	0.263	0.0975	2.92	119	92.7
5	17 13C2-PFOA	$414.9>369.7$	1.718 e 4	4.812 e 3	2.843	0.0975	4.24	161	126
6	20 13C8-PFOS	$507.0>79.9$	6.985 e 3	7.350 e 3	0.927	0.0975	4.65	131	103
7	22 13C5-PFHxA	$318>272.9$	1.729 e 4	1.729 e 4	1.000	0.0975	3.29	128	100
8	24 13C8-PFOA	$421.3>376$	4.812 e 3	4.812 e 3	1.000	0.0975	4.24	128	100
9	26 13C4-PFOS	$503.0>79.9$	7.350 e 3	7.350e3	1.000	0.0975	4.65	128	100

Dataset: U:\G1.PRO\Results\2017\170727G5\170727G5-28.qld
Last Altered: Monday, July 31, 2017 10:51:16 Pacific Daylight Time Printed: Monday, July 31, 2017 10:51:59 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17 L16 2Trans A NEW.cdb 27 Jul 2017 14:48:06

ID: 1700893-02RE1 EB01-20170717 0.11139, Description: EB01-20170717, Name: 170727G5_28, Date: 27-Jul-2017, Time: 22:14:45

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\170727G5\170727G5-28.qld
Last Altered: Monday, July 31, 2017 10:51:16 Pacific Daylight Time
Printed: Monday, July 31, 2017 10:51:39 Pacific Daylight Time

Method: U:|G1.pro\MethDB\PFAS 14or16 2trans 0712.mdb 12 Jul 2017 13:38:17

Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
ID: 1700893-02RE1 EB01-20170717 0.11139, Description: EB01-20170717, Name: 170727G5_28, Date: 27-Jul-2017, Time: 22:14:45, Instrument: , Lab: , User:

Total PFBS

Dataset:	U:\G1.PRO\Results\2017\170727G5\170727G5-28.qld
Last Altered:	Monday, July 31, 2017 10:51:16 Pacific Daylight Time
Printed:	Monday, July 31, 2017 10:51:39 Pacific Daylight Time

ID: 1700893-02RE1 EB01-20170717 0.11139, Description: EB01-20170717, Name: 170727G5_28, Date: 27-Jul-2017, Time: 22:14:45, Instrument: , Lab: , User:

13C8-PFOS

Vista Analytical Laboratory Q1

Method: U:\G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

ID: 1700893-03RE1 OUA1-MW08-20170717 0.11436, Description: OUA1-MW08-20170717, Name: 170727G5_29, Date: 27-Jul-2017, Time: 22:27:35

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT	Conc.	\%Rec
1	3 PFBS	299.0 > 79.7	8.269e4	3.091 e 3		0.118	2.92	1760 *	
2	7 PFOA	$413.0>368.7$	8.923 e 3	1.839 e 4		0.118	4.24	63.5	
3	9 PFOS	$499.0>79.9$	4.884 e 2	7.544 e 3		0.118	4.65	14.1	
4	12 13C3-PFBS	$302.0>98.8$	3.091 e 3	9.601 e 3	0.263	0.118	2.92	130	123
5	17 13C2-PFOA	$414.9>369.7$	1.839 e 4	5.039 e 3	2.843	0.118	4.24	136	128
6	20 13C8-PFOS	$507.0>79.9$	7.544 e 3	7.565 e 3	0.927	0.118	4.65	114	108
7	22 13C5-PFHxA	$318>272.9$	9.601 e 3	9.601 e 3	1.000	0.118	3.28	106	100
8	24 13C8-PFOA	$421.3>376$	5.039 e 3	5.039 e 3	1.000	0.118	4.24	106	100
9	26 13C4-PFOS	$503.0>79.9$	7.565 e 3	7.565 e 3	1.000	0.118	4.65	106	100

Dataset: U:\G1.PRO\Results\2017\170727G5\170727G5-29.qld
Last Altered: Monday, July 31, 2017 10:55:36 Pacific Daylight Time
Printed: Monday, July 31, 2017 10:56:25 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

ID: 1700893-03RE1 OUA1-MW08-20170717 0.11436, Description: OUA1-MW08-20170717, Name: 170727G5_29, Date: 27-Jul-2017, Time: 22:27:35

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT

 User:

13C8-PFOA

13C8-PFOS

Quantify Sample Summary Report MassLynx 4.1 SCN815		
Vista Analytical Laboratory Q1		
Pataset:	U:\G1.PRO\Results\2017\170731G4\170731G4-28.qld 1	
Last Altered:	Tuesday, August 01, 2017 10:40:16 Pacific Daylight Time	
Printed:	Tuesday, August 01, 2017 10:40:48 Pacific Daylight Time	Reviewed: CT 08/01/2017

Method: U:\G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17 Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

ID: 1700893-03RE1@5X OUA1-MW08-20170717 0.11436, Description: OUA1-MW08-20170717, Name: 170731G4_28, Date: 01-Aug-2017, Time: 01:57:03

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT	Conc.	\%Rec
1	3 PFBS	$299.0>79.7$	2.113 e 4	7.205 e 2		0.118	2.91	1930	
2	12 13C3-PFBS	$302.0>98.8$	7.205 e 2	2.788 e 3	0.263	0.118	2.91	104	98.4
3	22 13C5-PFHxA	$318>272.9$	2.788 e 3	2.788 e 3	1.000	0.118	3.28	106	100
4	28 Total PFBS	$299.0>79.7$		7.205 e 2		0.118		1930	

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\170731G4\170731G4-28.qld
Last Altered: Tuesday, August 01, 2017 10:40:16 Pacific Daylight Time
Printed: \quad Tuesday, August 01, 2017 10:40:48 Pacific Daylight Time

Method: U:|G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
ID: 1700893-03RE1@5X OUA1-MW08-20170717 0.11436, Description: OUA1-MW08-20170717, Name: 170731G4_28, Date: 01-Aug-2017, Time: 01:57:03, Instrument: , Lab: , User:

Quantify Sample Summary Report \quad MassLynx 4.1 SCN815
Vista Analytical Laboratory Q1
Dataset: \quad U:\G1.PRO\Results\2017\170731G4\170731G4-17.qld 1
Last Altered: Tuesday, August 01, 2017 10:14:48 Pacific Daylight Time Printed: Tuesday, August 01, 2017

Method: U:\G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17 Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

ID: 1700893-04RE1 OUA1-HS03-20170717 0.10516, Description: OUA1-HS03-20170717, Name: 170731G4_17, Date: 31-Jul-2017, Time: 23:38:46

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT	Conc.	\%Rec
1	3 PFBS	$299.0>79.7$	4.268 e 4	3.850e3		0.118	2.91	730	
2	7 PFOA	$413.0>368.7$	2.693 e 3	1.704 e 4		0.118	4.24	20.1	
3	9 PFOS	$499.0>79.9$	9.946 e 1	6.773 e 3		0.118	4.65	2.80	
4	12 13C3-PFBS	$302.0>98.8$	3.850 e 3	7.420 e 3	0.263	0.118	2.90	210	197
5	17 13C2-PFOA	$414.9>369.7$	1.704 e 4	4.804 e 3	2.843	0.118	4.24	133	125
6	20 13C8-PFOS	$507.0>79.9$	6.773 e 3	8.355 e 3	0.927	0.118	4.65	92.9	87.4
7	22 13C5-PFHxA	$318>272.9$	7.420 e 3	7.420 e 3	1.000	0.118	3.27	106	100
8	24 13C8-PFOA	$421.3>376$	4.804 e 3	4.804 e 3	1.000	0.118	4.24	106	100
9	26 13C4-PFOS	$503.0>79.9$	8.355e3	8.355e3	1.000	0.118	4.65	106	100

Printed: \quad Tuesday, August 01, 2017 14:34:38 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

ID: 1700893-04RE1 OUA1-HS03-20170717 0.10516, Description: OUA1-HS03-20170717, Name: 170731G4_17, Date: 31-Jul-2017, Time: 23:38:46

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT	Conc.	\%Rec
1	28 Total PFBS	$299.0>79.7$		3.850e3		0.118		730	
2	30 Total PFOA	$413.0>368.7$		1.704 e 4		0.118		25.6	
3	31 Total PFOS	$499.0>79.9$		6.773 e 3		0.118		2.80	

Printed: Tuesday, August 01, 2017 14:34:23 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
ID: 1700893-04RE1 OUA1-HS03-20170717 0.10516, Description: OUA1-HS03-20170717, Name: 170731G4_17, Date: 31-Jul-2017, Time: 23:38:46, Instrument: , Lab: , User:

Dataset:	U:\G1.PRO\Results\2017\170731G4\170731G4-17.qld
Last Altered:	Tuesday, August 01, 2017 10:14:48 Pacific Daylight Time
Printed:	Tuesday, August 01, 2017 14:34:23 Pacific Daylight Time

ID: 1700893-04RE1 OUA1-HS03-20170717 0.10516, Description: OUA1-HS03-20170717, Name: 170731G4_17, Date: 31-Jul-2017, Time: 23:38:46, Instrument: , Lab: , User:

13C8-PFOS

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170731G4\170731G4-29.qld

Last Altered: Tuesday, August 01, 2017 10:20:38 Pacific Daylight Time
Printed: \quad Tuesday, August 01, 2017 10:25:22 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

ID: 1700893-04RE1@5X OUA1-HS03-20170717 0.10516, Description: OUA1-HS03-20170717, Name: 170731G4_29, Date: 01-Aug-2017, Time: 02:09:24

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT	Conc.	\%Rec
1	3 PFBS	$299.0>79.7$	$9.472 e 3$	8.373 e 2		0.118	2.91	745	
2	12 13C3-PFBS	$302.0>98.8$	8.373 e 2	2.484 e 3	0.263	0.118	2.91	136	128
3	22 13C5-PFHxA	$318>272.9$	2.484 e 3	2.484 e 3	1.000	0.118	3.28	106	100
4	28 Total PFBS	$299.0>79.7$		8.373 e 2		0.118		745	

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\170731G4\170731G4-29.qld
Last Altered: Tuesday, August 01, 2017 10:20:38 Pacific Daylight Time
Printed: \quad Tuesday, August 01, 2017 10:25:22 Pacific Daylight Time

Method: U:|G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
 User:

Vista Analytical Laboratory Q1

Method: U:\G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A NEW.cdb 27 Jul 2017 14:48:06

ID: B7G0106-MS2 Matrix Spike 0.125, Description: Matrix Spike, Name: 170727G5_31, Date: 27-Jul-2017, Time: 22:52:20

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT	Conc.	\%Rec
1	3 PFBS	$299.0>79.7$	4.238 e 4	3.325 e 3		0.117	2.92	847	
2	7 PFOA	$413.0>368.7$	1.153 e 4	1.359 e 4		0.117	4.24	113	
3	9 PFOS	$499.0>79.9$	2.728 e3	5.916 e 3		0.117	4.65	105	
4	12 13C3-PFBS	$302.0>98.8$	3.325 e 3	7.753 e 3	0.263	0.117	2.92	175	163
5	17 13C2-PFOA	$414.9>369.7$	1.359 e 4	4.216 e 3	2.843	0.117	4.24	122	113
6	20 13C8-PFOS	$507.0>79.9$	5.916 e 3	7.082 e 3	0.927	0.117	4.65	96.6	90.1
7	22 13C5-PFHxA	$318>272.9$	7.753 e 3	7.753 e 3	1.000	0.117	3.29	107	100
8	24 13C8-PFOA	$421.3>376$	4.216 e 3	4.216 e 3	1.000	0.117	4.24	107	100
9	26 13C4-PFOS	$503.0>79.9$	7.082 e 3	7.082 e 3	1.000	0.117	4.65	107	100

Quantify Sample Summary Report MassLynx 4.1 SCN815	
Vista Analytical Laboratory Q1	
Pataset: \quad U:\G1.PRO\Results\2017\170727G5\170727G5-31.qld	
Last Altered:	Monday, July 31, 2017 11:26:07 Pacific Daylight Time
Printed:	Monday, July 31, 2017 11:28:48 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17 Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

ID: B7G0106-MS2 Matrix Spike 0.125, Description: Matrix Spike, Name: 170727G5_31, Date: 27-Jul-2017, Time: 22:52:20

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT	Conc.	\%Rec
1	28 Total PFBS	$299.0>79.7$		3.325 e 3		0.117		847	
2	30 Total PFOA	$413.0>368.7$		1.359 e 4		0.117		121	
3	31 Total PFOS	$499.0>79.9$		5.916 e 3		0.117		105	

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\170727G5\170727G5-31.qld
Last Altered: Monday, July 31, 2017 11:26:07 Pacific Daylight Time
Printed: Monday, July 31, 2017 11:28:24 Pacific Daylight Time

Method: U:|G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
ID: B7G0106-MS2 Matrix Spike 0.125, Description: Matrix Spike, Name: 170727G5_31, Date: 27-Jul-2017, Time: 22:52:20, Instrument: , Lab: , User:

Dataset:	U:IG1.PRO\Results\2017\170727G5\170727G5-31.qld
Last Altered:	Monday, July 31, 2017 11:26:07 Pacific Daylight Time
Printed:	Monday, July 31, 2017 11:28:24 Pacific Daylight Time

ID: B7G0106-MS2 Matrix Spike 0.125, Description: Matrix Spike, Name: 170727G5_31, Date: 27-Jul-2017, Time: 22:52:20, Instrument: , Lab: , User:

13C8-PFOS

Method: U:\G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A NEW.cdb 27 Jul 2017 14:48:06

ID: B7G0106-MS2@5X Matrix Spike 0.125, Description: Matrix Spike, Name: 170731G4_30, Date: 01-Aug-2017, Time: 02:21:59

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT	Conc.
1	3 PFBS	$299.0>79.7$	$1.246 e 4$	8.119 e 2		0.117	2.91	1020
2	$12 ~ 13 C 3-P F B S$	$302.0>98.8$	8.119 e 2	2.509 e 3	0.263	0.117	2.91	132
3	$2213 C 5-$ PFHxA	$318>272.9$	2.509 e 3	2.509 e 3	1.000	0.117	3.28	123
4	28 Total PFBS	$299.0>79.7$		8.119 e 2		0.117		107

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\170731G4\170731G4-30.qld
Last Altered: Tuesday, August 01, 2017 10:44:57 Pacific Daylight Time
Printed: \quad Tuesday, August 01, 2017 10:45:18 Pacific Daylight Time

Method: U:|G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
ID: B7G0106-MS2@5X Matrix Spike 0.125, Description: Matrix Spike, Name: 170731G4_30, Date: 01-Aug-2017, Time: 02:21:59, Instrument: , Lab: , User:

Work Order 1700893

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\170727G5\170727G5-32.qld

Last Altered: Monday, July 31, 2017 11:34:33 Pacific Daylight Time Printed: Monday, July 31, 2017 11:35:25 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:|G1.pro\CurveDB\C18 VAL-PFC Q1 7-27-17 L16 2Trans A NEW.cdb 27 Jul 2017 14:48:06

ID: B7G0106-MSD2 Matrix Spike Dup 0.125, Description: Matrix Spike Dup, Name: 170727G5_32, Date: 27-Jul-2017, Time: 23:04:53

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT	Conc.	\%Rec
1	3 PFBS	299.0 > 79.7	4.277e4	3.239e3		0.120	2.92	853*	
2	7 PFOA	$413.0>368.7$	1.110 e 4	1.361 e 4		0.120	4.24	106	
3	9 PFOS	$499.0>79.9$	2.572 e 3	6.399 e 3		0.120	4.65	88.6	
4	12 13C3-PFBS	$302.0>98.8$	3.239 e 3	7.616 e 3	0.263	0.120	2.92	169	162
5	17 13C2-PFOA	$414.9>369.7$	1.361 e 4	4.317 e 3	2.843	0.120	4.24	116	111
6	20 13C8-PFOS	$507.0>79.9$	6.399e3	7.264e3	0.927	0.120	4.65	99.1	95.0
7	22 13C5-PFHxA	$318>272.9$	7.616 e 3	7.616 e 3	1.000	0.120	3.29	104	100
8	24 13C8-PFOA	$421.3>376$	4.317 e 3	4.317 e 3	1.000	0.120	4.24	104	100
9	26 13C4-PFOS	$503.0>79.9$	7.264e3	7.264e3	1.000	0.120	4.65	104	100

Dataset: U:IG1.PRO\Results\2017\170727G5\170727G5-32.qld
Last Altered: Monday, July 31, 2017 11:34:33 Pacific Daylight Time
Printed: Monday, July 31, 2017 11:35:36 Pacific Daylight Time

Method: U:\G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A NEW.cdb 27 Jul 2017 14:48:06

ID: B7G0106-MSD2 Matrix Spike Dup 0.125, Description: Matrix Spike Dup, Name: 170727G5_32, Date: 27-Jul-2017, Time: 23:04:53

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT	Conc.	\%Rec
1	28 Total PFBS	$299.0>79.7$		3.239 e 3		0.120		853	
2	30 Total PFOA	$413.0>368.7$		1.361 e 4		0.120		111	
3	31 Total PFOS	$499.0>79.9$		6.399 e 3		0.120		88.6	

Vista Analytical Laboratory Q1

Method: U:\G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
ID: B7G0106-MSD2 Matrix Spike Dup 0.125, Description: Matrix Spike Dup, Name: 170727G5_32, Date: 27-Jul-2017, Time: 23:04:53, Instrument: , Lab: , User:

Dataset:	U:IG1.PRO\Results\2017\170727G5\170727G5-32.qld
Last Altered:	Monday, July 31, 2017 11:34:33 Pacific Daylight Time
Printed:	Monday, July 31, 2017 11:35:25 Pacific Daylight Time

ID: B7G0106-MSD2 Matrix Spike Dup 0.125, Description: Matrix Spike Dup, Name: 170727G5_32, Date: 27-Jul-2017, Time: 23:04:53, Instrument: , Lab: , User:

13C8-PFOS

Method: U:\G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

ID: B7G0106-MSD2@5X Matrix Spike Dup 0.125, Description: Matrix Spike Dup, Name: 170731G4_31, Date: 01-Aug-2017, Time: 02:34:34

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT	Conc.	\%Rec
1	3 PFBS	$299.0>79.7$	1.093 e 4	6.892 e 2		0.120	2.91	1030	
2	12 13C3-PFBS	$302.0>98.8$	6.892 e 2	2.323 e 3	0.263	0.120	2.90	118	113
3	22 13C5-PFHxA	$318>272.9$	2.323 e 3	2.323 e 3	1.000	0.120	3.28	104	100
4	28 Total PFBS	$299.0>79.7$		6.892 e 2		0.120		1030	

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\170731G4\170731G4-31.qld
Last Altered: Tuesday, August 01, 2017 10:46:23 Pacific Daylight Time
Printed: \quad Tuesday, August 01, 2017 10:47:04 Pacific Daylight Time

Method: U:|G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
ID: B7G0106-MSD2@5X Matrix Spike Dup 0.125, Description: Matrix Spike Dup, Name: 170731G4_31, Date: 01-Aug-2017, Time: 02:34:34, Instrument: , Lab: , User:

Total PFBS

Quantify Sample Summary Report MassLynx 4.1 SCN815
Vista Analytical Laboratory Q1
Dataset: \quad U:\G1.PRO\Results\2017\170731G4\170731G4-18.qld

Last Altered:	Tuesday, August 01, 2017 10:30:10 Pacific Daylight Time	
Printed:	Tuesday, August 01, 2017 10:32:03 Pacific Daylight Time	Reviewed: CT 08/01/2017

Method: U:\G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17 Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

ID: 1700893-05RE1 OUA1-HS03A-20170717 0.1187, Description: OUA1-HS03A-20170717, Name: 170731G4_18, Date: 31-Jul-2017, Time: 23:51:19

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT	Conc.	\%Rec	E*	*SEE DILUTION
1	3 PFBS	$299.0>79.7$	3.891 e 4	3.050e3		0.120	2.91	823			
2	7 PFOA	$413.0>368.7$	2.046 e 3	1.502 e 4		0.120	4.24	16.8			
3	9 PFOS	$499.0>79.9$	8.003 e 1	6.083e3		0.120	4.65	2.41			
4	12 13C3-PFBS	$302.0>98.8$	3.050 e 3	7.047e3	0.263	0.120	2.91	172	165		
5	17 13C2-PFOA	$414.9>369.7$	1.502 e 4	4.161 e 3	2.843	0.120	4.23	132	127		
6	20 13C8-PFOS	$507.0>79.9$	6.083 e 3	6.782e3	0.927	0.120	4.65	101	96.7		
7	22 13C5-PFHxA	$318>272.9$	7.047 e 3	7.047e3	1.000	0.120	3.27	104	100		
8	24 13C8-PFOA	$421.3>376$	4.161 e 3	4.161 e 3	1.000	0.120	4.23	104	100		
9	26 13C4-PFOS	$503.0>79.9$	6.782 e 3	6.782e3	1.000	0.120	4.65	104	100		

Method: U:\G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:\G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

ID: 1700893-05RE1 OUA1-HS03A-20170717 0.1187, Description: OUA1-HS03A-20170717, Name: 170731G4_18, Date: 31-Jul-2017, Time: 23:51:19

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT

Method: U:|G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
 User:

 User:

13C8-PFOA

13C8-PFOS

LA 8/1/2017

Quantify Sample Summary Report MassLynx 4.1 SCN815		
Vista Analytical Laboratory Q1		
Page 1 of 1		
Dataset: \quad U:\G1.PRO\Results\2017\170731G4\170731G4-32.qld		
Last Altered:	Tuesday, August 01, 2017 10:34:41 Pacific Daylight Time	
Printed:	Tuesday, August 01, 2017 10:35:48 Pacific Daylight Time	Reviewed: CT 08/01/2017

Method: U:|G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17 Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

ID: 1700893-05RE1@5X OUA1-HS03A-20170717 0.1187, Description: OUA1-HS03A-20170717, Name: 170731G4_32, Date: 01-Aug-2017, Time: 02:47:03

	\# Name	Trace	Peak Area	IS Resp	RRF Mean	wt/vol	RT	Conc.
1	3 PFBS	$299.0>79.7$	9.775 e 3	6.901 e 2		0.120	2.91	915
2	$12 ~ 13 C 3-P F B S$	$302.0>98.8$	6.901 e 2	2.375 e 3	0.263	0.120	2.91	115
3	$2213 C 5-$ PFHxA	$318>272.9$	2.375 e 3	2.375 e 3	1.000	0.120	3.28	111
4	28 Total PFBS		$299.0>79.7$		6.901 e 2		0.120	

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\170731G4\170731G4-32.qld
Last Altered: Tuesday, August 01, 2017 10:34:41 Pacific Daylight Time
Printed: \quad Tuesday, August 01, 2017 10:35:48 Pacific Daylight Time

Method: U:|G1.pro\MethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:|G1.pro\CurveDB\C18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
 User:

CONTINUING CALIBRATION

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
Name: 170727G5_2, Date: 27-Jul-2017, Time: 16:48:22, ID: ST170727G5-1 PFC CS3 17G2719, Description: PFC CS3 17 G2719 A

Ye 7128117
\checkmark AC $7|3| 17$

Dataset:	Untitled
Last Altered:	Friday, July 28, 2017 10:21:47 Pacific Daylight Time
Printed:	Friday, July 28, 2017 10:23:54 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17 Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

Compound name: PFBA

Vista Analytical Laboratory VG-11

Dataset:	Untitled
Last Altered:	Friday, July 28, 2017 10:21:47 Pacific Daylight Time
Printed:	Friday, July 28, 2017 10:23:54 Pacific Daylight Time

Compound name: PFBA

Run Log Present: \square
\# of Samples per Sequence Checked: \quad -
Reviewed By: $\frac{A C-1 / 31 \mid 17}{\text { Initials/Date }}$

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170727G5\170727G5-2.qld
Last Altered: Friday, July 28, 2017 08:56:32 Pacific Daylight Time
Printed: \quad Friday, July 28, 2017 10:19:40 Pacific Daylight Time

Method: U:IG1.prolMethDB\PFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
ID: ST170727G5-1 PFC CS3 17G2719, Description: PFC CS3 17G2719 A, Name: 170727G5_2, Date: 27-Jul-2017, Time: 16:48:22, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\170727G5\170727G5-2.qld
Last Altered: Friday, July 28, 2017 08:56:32 Pacific Daylight Time
Printed: Friday, July 28, 2017 10:19:40 Pacific Daylight Time

ID: ST170727G5-1 PFC CS3 17G2719, Description: PFC CS3 17G2719 A, Name: 170727G5_2, Date: 27-Jul-2017, Time: 16:48:22, Instrument: , Lab: , User:

PFHpA

$\begin{aligned} & \text { PFHpA } \\ & \text { 170727G5_2 } \end{aligned}$		
		F4:MRM of 7 channels,ES-
100	PFHpA	363 > 318.9
	3.82]	$6.358 \mathrm{e}+005$
	1.81 e 4	
	bb	
\%-	5943.61	
	*	
-	-	
-	\%	
1	14	Trmm min

13C4-PFHpA

Total PFHxS

1802-PFHxS

Dataset: U:\G1.PRO\Results\2017\170727G5\170727G5-2.qld
Last Altered: Friday, July 28, 2017 08:56:32 Pacific Daylight Time
Printed: Friday, July 28, 2017 10:19:40 Pacific Daylight Time

ID: ST170727G5-1 PFC CS3 17G2719, Description: PFC CS3 17G2719 A, Name: 170727G5_2, Date: 27-Jul-2017, Time: 16:48:22, Instrument: , Lab: , User:

Dataset: U:IG1.PRO\ResultsL2017\170727G5\170727G5-2.qld
Last Altered: Friday, July 28, 2017 08:56:32 Pacific Daylight Time
Printed: \quad Friday, July 28, 2017 10:19:40 Pacific Daylight Time

ID: ST170727G5-1 PFC CS3 17G2719, Description: PFC CS3 17G2719 A, Name: 170727G5_2, Date: 27-Jul-2017, Time: 16:48:22, Instrument: , Lab: , User:

PFNA
170727G5_2
100
PFNA

13C5-PFNA

PFDA

F6:MRM of 4 channels,ES-
$512.7>219.0$
$8.533 \mathrm{e}+004$
100

13C2-PFDA

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170727G5\170727G5-2.qld
Last Altered: Friday, July 28, 2017 08:56:32 Pacific Daylight Time
Printed: Friday, July 28, 2017 10:19:40 Pacific Daylight Time

ID: ST170727G5-1 PFC CS3 17G2719, Description: PFC CS3 17G2719 A, Name: 170727G5_2, Date: 27-Jul-2017, Time: 16:48:22, Instrument: , Lab: , User:

Dataset: U:IG1.PRO\Results\20171170727G5\170727G5-2.qld
Last Altered: Friday, July 28, 2017 08:56:32 Pacific Daylight Time
Printed: Friday, July 28, 2017 10:19:40 Pacific Daylight Time

ID: ST170727G5-1 PFC CS3 17G2719, Description: PFC CS3 17G2719 A, Name: 170727G5_2, Date: 27-Jul-2017, Time: 16:48:22, Instrument: , Lab: , User:

Last Altered: Friday, July 28, 2017 09:35:44 Pacific Daylight Time
Printed: Friday, July 28, 2017 10:18:58 Pacific Daylight Time

Method: U:IG1.PRO\MethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:IG1.PROICurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

Name: 170727G5_18, Date: 27-Jul-2017, Time: 20:09:21, ID: ST170727G5-2 PFC CS3 17G2719, Description: PFC CS3 17G2719 A

Dataset：	Untitled
Last Altered：	Friday，July 28，2017 10：21：47 Pacific Daylight Time
Printed：	Friday，July 28，2017 10：23：54 Pacific Daylight Time

Method：U：IG1．prolMethDBIPFAS＿14or16＿2trans＿0712．mdb 12 Jul 2017 13：38：17
Calibration：U：IG1．prolCurveDBIC̄18＿VAL－PFC＿Q1＿7－27－17＿L16＿2Trans＿A＿NEW．cdb 27 Jul 2017 14：48：06
Compound name：PFBA

数綡Na		Acg：Date	ne
170727G5_1	IPA	27－Jul－17	16：36：08
	ST170727G5－1 PFC CS3 17G2719	27－Jul－17	16：48：22
	IPA	27－Jul－17	17：00：57
	（A）B7G0079－BS1 OPR 0.125	27－Jul－17	17：13：30
170727G5_5	B7G0106－BS1 OPR 0.125	27－Jul－17	17：26：02
易170727G5＿6	IPA	27－Jul－17	17：38：35
170727G5_7	1700875－01＠5X MW－42S－20170713 0.11821	27－Jul－17	17：51：09
170727G5_8	1700875－02 MW－14BR－20170713 0.11912	27－Jul－17	18：03：42
170727G5_9	1700875－03＠5X MW－51BR－20170713 0.11822	27－Jul－17	18：16：15
170727G5＿10	1700875－04＠5X DUP－06－20170713 0.11793	27－Jul－17	18：28：49
170727G5＿11	1700875－05＠30X MW－11S－20170713 0.11994	27－Jul－17	18：41：17
170727G5＿12	1700884－01 MW－37BR－20170714 0.11935	27－Jul－17	18：53：50
170727G5＿13	1700884－04 FRB－02－20170714 0.11984	27－Jul－17	19：06：24
G5_14	1700887－01 IRPSite 6－GW－06GW01－2017071．	7－Jui－17	19：19：25
170727G5_15	1700887－05＠5X Building 110－GW－110GW01－	27－Jul－17	19：31：37
727G5＿16	1700887－06 IRPSite 6－GW－06FD01－20170712	27－Jul－17	19：44：12
G5＿17	IPA	27－Jul－17	19：56：45
18	ST170727G5－2 PFC CS3 17G2719	27－Jul－17	20：09：21
170727G5_19	IPA	27－Jul－17	20：21：49
170727G5＿20	B7G0106－BLK1 Method Blank 0.125	27－Jul－17	20：34：22
27G5＿21	1700888－12RE1 HARRI－02－GW－TW01－01000．．．	27－Jul－17	20：46：56
170727G5_22	1700889－08RE1 EWTU07－01000 0.12104	27－Jul－17	20：59：32
170727G5＿23	1700889－09RE1 HARRI－03－GW－Dup01－01000．．	27－Jul－17	21：11：59
G5＿24	1700889－10RE1 HARRI－GW－TW02－010000 0．．．	27－Jul－17	21：24：31
727G5＿25	1700889－11RE1 HARRI－GW－TW03－010000 0．．．．	27－Jul－17	21：37：05
170727G5＿26	1700889－12RE1 HARRI－EB－01 0.11746	27－Jul－17	21：49：39
170727G5_27	1700893－01RE1 SB01－20170717 0.12046	27－Jul－17	22：02：11
170727G5＿28	1700893－02RE1 EB01－20170717 0.11139	27－Jul－17	22：14：45
170727G5＿29	1700893－03RE1 OUA1－MW08－20170717 0．11．．．	27－Jul－17	22：27：35
W蜀170727G5	1700893－04RE1 OUA1－HS03－20170717 0．105．．	27－Jul－17	22：39：52
	B7G0106－MS2 Matrix Spike 0.125	27－Jul－17	22：52：20

Vista Analytical Laboratory VG-11

Dataset:	Untitled
Last Altered:	Friday, July 28, 2017 10:21:47 Pacific Daylight Time
Printed:	Friday, July 28, 2017 10:23:54 Pacific Daylight Time

Compound name: PFBA

Wh wiverw Name		Acq Date	Acq. Time
327tukivtu $170727 \mathrm{G5} 32$	B7G0106-MSD2 Matrix Spike Dup 0.125	27-Jul-17	23:04:53
836	1700893-05RE1 OUA1-HS03A-20170717 0.11...	27-Jul-17	23:17:45
3494WStuk	IPA	27-Jul-17	23:30:36
	ST170727G5-3 PFC CS3 17G2719	27-Jul-17	23:43:15
3605	IPA	27-Jul-17	23:55:44
170727G5_37	1700907-10RE1 AT028-DUP-01-071717-1200...	28-Jul-17	00:08:41
	IPA	28-Jul-17	00:20:54
	ST170727G5-4 PFC CS3 17G2719	28-Jul-17	00:33:28
	IPA	28-Jul-17	00:46:15

Dataset: U:IG1.PRO\Results\20171170727G5\170727G5-18.qld
Last Altered: Friday, July 28, 2017 09:35:44 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:59:05 Pacific Daylight Time

Method: U:IG1.PROIMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:IG1.PROICurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
ID: ST170727G5-2 PFC CS3 17G2719, Description: PFC CS3 17G2719 A, Name: 170727G5_18, Date: 27-Jul-2017, Time: 20:09:21, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170727G5\170727G5-18.qld
Last Altered: Friday, July 28, 2017 09:35:44 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:59:05 Pacific Daylight Time

ID: ST170727G5-2 PFC CS3 17G2719, Description: PFC CS3 17G2719 A, Name: 170727G5_18, Date: 27-Jul-2017, Time: 20:09:21, Instrument: , Lab: , User:

PFHpA

PFHPA
170727G5_18
100
F4:MRM of 7 channels,ES-
$363>318.9$
$6.934 \mathrm{e}+005$

13C4-PFHpA

Total PFHxS

1802-PFHxS

Dataset: U:IG1.PRO\Results\2017\170727G5\170727G5-18.qld
Last Altered: Friday, July 28, 2017 09:35:44 Pacific Daylight Time
Printed: \quad Friday, July 28, 2017 09:59:05 Pacific Daylight Time

ID: ST170727G5-2 PFC CS3 17G2719, Description: PFC CS3 17G2719 A, Name: 170727G5_18, Date: 27-Jul-2017, Time: 20:09:21, Instrument: , Lab: , User:

Total PFOA
$\begin{aligned} & \text { 170727G5_18 } \text { F5:MRM of } 12 \text { channels,ES- } \\ & 413.0>368.7 \\ & 6.360 e+005\end{aligned}$

13C2-PFOA

Total PFOS

13C8-PFOS
170727G5_18 13C8-PFOS F5:MRM of 12 channels,ES-

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170727G5\170727G5-18.qld
Last Altered: Friday, July 28, 2017 09:35:44 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:59:05 Pacific Daylight Time

ID: ST170727G5-2 PFC CS3 17G2719, Description: PFC CS3 17G2719 A, Name: 170727G5_18, Date: 27-Jul-2017, Time: 20:09:21, Instrument: , Lab: , User:

Dataset: U:IG1.PRO\Results\2017\170727G5\170727G5-18.qld
Last Altered: Friday, July 28, 2017 09:35:44 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:59:05 Pacific Daylight Time

ID: ST170727G5-2 PFC CS3 17G2719, Description: PFC CS3 17G2719 A, Name: 170727G5_18, Date: 27-Jul-2017, Time: 20:09:21, Instrument: , Lab: , User:

13C5-PFHxA

13C8-PFOA

13C3-PFHxS

13C4-PFOS

170727G5_18 F5:MRM of 12 channels,ES

Dataset: U:\G1.PRO\Results\2017\170727G5\170727G5-18.qld
Last Altered: Friday, July 28, 2017 09:35:44 Pacific Daylight Time
Printed: Friday, July 28, 2017 09:59:05 Pacific Daylight Time

ID: ST170727G5-2 PFC CS3 17G2719, Description: PFC CS3 17G2719 A, Name: 170727G5_18, Date: 27-Jul-2017, Time: 20:09:21, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170727G5\170727G5-35.qld
Last Altered: Friday, July 28, 2017 10:06:30 Pacific Daylight Time
Printed: \quad Friday, July 28, 2017 10:19:09 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
Name: 170727G5_35, Date: 27-Jul-2017, Time: 23:43:15, ID: ST170727G5-3 PFC CS3 17G2719, Description: PFC CS3 17 G2719 A

Quantify Compound Summary Report Vista Analytical Laboratory VG-11
Dataset: Untitled Last Altered: Friday, July 28, 2017 10:21:47 Pacific Daylight Time 4.1 SCN815 Printed: Friday, July 28, 2017 10:23:54 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
Compound name: PFBA

		Acq. Date	Acq Time
170727G5_1	IPA	27-Jul-17	16:36:08
3WMJut 170727G5	ST170727G5-1 PFC CS3 17G2719	27-Jul-17	16:48:22
	IPA	27-Jul-17	17:00:57
Sty	(a)B7G0079-BS1 OPR 0.125	27-Jul-17	17:13:30
	B7G0106-BS1 OPR 0.125	27-Jul-17	17:26:02
170727G5_6	IPA	27-Jul-17	17:38:35
343 Wid 170727G5_7	(A)1700875-01@5X MW-42S-201707130.11821	27-Jul-17	17:51:09
	1700875-02 MW-14BR-20170713 0.11912	27-Jul-17	18:03:42
施170727G5_9	1700875-03@5X MW-51BR-20170713 0.11822	27-Jul-17	18:16:15
170727G5_10	1700875-04@5X DUP-06-20170713 0.11793	27-Jul-17	18:28:49
$170727 \mathrm{G} 5$	1700875-05@30X MW-11S-201707130.11994	27-Jul-17	18:41:17
170727G5_12	1700884-01 MW-37BR-20170714 0.11935	27-Jul-17	18:53:50
18\% 170727G5_13	1700884-04 FRB-02-20170714 0.11984	27-Jul-17	19:06:24
170727G5_14	1700887-01 IRPSite 6-GW-06GW01-2017071...	27-Jul-17	19:19:25
170727G5_15	1700887-05@5X Building 110-GW-110GW01-	27-Jul-17	19:31:37
	, 1700887-06 IRPSite 6-GW-06FD01-20170712.	27-Jul-17	19:44:12
G5 17	IPA	27-Jul-17	19:56:45
170727G5_18	ST170727G5-2 PFC CS3 17G2719	27-Jul-17	20:09:21
5	IPA	27-Jul-17	20:21:49
170727G5_20	B7G0106-BLK1 Method Blank 0.125	27-Jul-17	20:34:22
27G5_21	1700888-12RE1 HARRI-02-GW-TW01-01000...	27-Jul-17	20:46:56
170727G5_22	1700889-08RE1 EWTU07-01000 0.12104	27-Jul-17	20:59:32
170727G5_23	1700889-09RE1 HARRI-03-GW-Dup01-01000..	27-Jul-17	21:11:59
170727G5_24	1700889-10RE1 HARRI-GW-TW02-010000 $0 .$.	27-Jul-17	21:24:31
27G5	1700889-11RE1 HARRI-GW-TW03-010000 0...	27-Jul-17	21:37:05
170727G5_26	1700889-12RE1 HARRI-EB-01 0.11746	27-Jul-17	21:49:39
170727G5_27	1700893-01RE1 SB01-20170717 0.12046	27-Jul-17	22:02:11
170727G5_28	1700893-02RE1 EB01-20170717 0.11139	27-Jul-17	22:14:45
170727G5_29	1700893-03RE1 OUA1-MW08-20170717 0.11...	27-Jul-17	22:27:35
	1700893-04RE1 OUA1-HS03-20170717 0.105...	27-Jul-17	22:39:52
	B7G0106-MS2 Matrix Spike 0.125	27-Jul-17	22:52:20

Quantify Compound Summary Report Vista Analytical Laboratory VG-11
Dataset: Untitled Last Altered: Friday, July 28, 2017 10:21:47 Pacific Daylight Time Printed: Friday, July 28, 2017 10:23:54 Pacific Daylight Time

Compound name: PFBA

Withtix 170727G5_32	B7G0106-MSD2 Matrix Spike Dup 0.125	27-Jul-17	23:04:53
git kdry $170727 G 5$ 33	1700893-05RE1 OUA1-HS03A-20170717 0.11.	27-Jul-17	23:17:45
Whrimity 170727G5_34	IPA	27-Jul-17	23:30:36
1. ㅈ⽊ㅐ/ 170727G5_35	ST170727G5-3 PFC CS3 17G2719	27-Jul-17	23:43:15
	IPA	27-Jul-17	23:55:44
WHEMtsty 170727G5_37	1700907-10RE1 AT028-DUP-01-071717-1200...	28-Jul-17	00:08:41
敉170727G5_38	IPA	28-Jul-17	00:20:54
39, ${ }^{\text {a }}$ (xex* 170727G5_39	ST170727G5-4 PFC CS3 17G2719	28-Jul-17	00:33:28
	IPA	28-Jul-17	00:46:15

Dataset: U:IG1.PRO\Results\2017\170727G5\170727G5-35.qld
Last Altered: Friday, July 28, 2017 10:06:30 Pacific Daylight Time
Printed: Friday, July 28, 2017 10:07:42 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
ID: ST170727G5-3 PFC CS3 17G2719, Description: PFC CS3 17G2719 A, Name: 170727G5_35, Date: 27-Jul-2017, Time: 23:43:15, Instrument: , Lab: , User:

Total PFBS

PFHxA

13C3-PFBS
170727G5_35

13C2-PFHxA

Dataset: U:IG1.PRO\Results\2017\170727G5\170727G5-35.qld
Last Altered: Friday, July 28, 2017 10:06:30 Pacific Daylight Time
Printed:
Friday, July 28, 2017 10:07:42 Pacific Daylight Time

ID: ST170727G5-3 PFC CS3 17G2719, Description: PFC CS3 17G2719 A, Name: 170727G5_35, Date: 27-Jul-2017, Time: 23:43:15, Instrument: , Lab: , User:

Dataset: U:IG1.PRO\Results\2017\170727G5\170727G5-35.qld
Last Altered: Friday, July 28, 2017 10:06:30 Pacific Daylight Time
Printed: \quad Friday, July 28, 2017 10:07:42 Pacific Daylight Time

ID: ST170727G5-3 PFC CS3 17G2719, Description: PFC CS3 17G2719 A, Name: 170727G5_35, Date: 27-Jul-2017, Time: 23:43:15, Instrument: , Lab: , User:

Total PFOA

13C2-PFOA

Total PFOS

13C8-PFOS

Vista Analytical Laboratory Q1

Dataset:
 U:\G1.PRO\Results\2017\170727G5\170727G5-35.qld

$\begin{array}{ll}\text { Last Altered: } & \text { Friday, July 28, } 2017 \text { 10:06:30 Pacific Daylight Time } \\ \text { Printed: } & \text { Friday, July 28, } 2017 \text { 10:07:42 Pacific Daylight Time }\end{array}$

ID: ST170727G5-3 PFC CS3 17G2719, Description: PFC CS3 17G2719 A, Name: 170727G5_35, Date: 27-Jul-2017, Time: 23:43:15, Instrument: , Lab: , User:

13C5-PFNA

PFDA

13C2-PFDA

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\170727G5\170727G5-35.qld
Last Altered: Friday, July 28, 2017 10:06:30 Pacific Daylight Time
Printed: Friday, July 28, 2017 10:07:42 Pacific Daylight Time

ID: ST170727G5-3 PFC CS3 17G2719, Description: PFC CS3 17G2719 A, Name: 170727G5_35, Date: 27-Jul-2017, Time: 23:43:15, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170727G5\170727G5-35.qld
Last Altered: Friday, July 28, 2017 10:06:30 Pacific Daylight Time Printed: Friday, July 28, 2017 10:07:42 Pacific Daylight Time

ID: ST170727G5-3 PFC CS3 17G2719, Description: PFC CS3 17G2719 A, Name: 170727G5_35, Date: 27-Jul-2017, Time: 23:43:15, Instrument: , Lab: , User:

Dataset: U:IG1.PRO\ResultsL2017\170731G4\170731G4-2.qld

Last Altered: Tuesday, August 01, 2017 08:24:24 Pacific Daylight Time
Printed: \quad Tuesday, August 01, 2017 08:32:15 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17 Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

Name: 170731G4_2, Date: 31-Jul-2017, Time: 20:30:39, ID: ST170731G4-1 PFC CS3 17G3104, Description: PFC CS3 17 G 3104 A

3	5-	\# Name	Trace	Response	IS Resp	RRF	WIVol	RT	Conc.	\%Rec	70-130	foer 8/1/17
1.	- ${ }^{3}$	1 PFBA	$212.9>168.9$	1.49 e 4	3.00 e4		1.000	1.65	8.23	82.3		
2.		2 PFPeA	$263.0>218.8$	8.53 e 3	1.05 e 4		1.000	2.61	9.19	91.9		
3.4	-	3 PFBS	$299.0>79.7$	7.56 e 3	6.15 e3		1.000	2.90	9.19	91.9		
4 W	-	4 PFHxA	$312.9>268.9$	1.24 e 4	8.50 e 3		1.000	3.28	9.55	95.5		
5	- 3	5 PFHpA	$363>318.9$	1.78 e 4	1.13 e 4		1.000	3.81	9.95	99.5		
6.4		6 PFHxS	$398.9>79.6$	8.01 e3	6.01 e 3		1.000	3.94	9.31	93.1		
7.	20	7 PFOA	$413.0>368.7$	1.59 e 4	2.51 e 4		1.000	4.24	9.80	98.0		
8.	$5^{2} \times 2$	8 PFNA	$463.0>418.8$	1.69 e 4	9.05 e 3		1.000	4.58	10.1	101.0		
9 -		9 PFOS	$499.0>79.9$	4.41 e 3	1.15 e 4		1.000	4.64	10.2	101.7		
10	45	10 PFDA	$512.7>219.0$	2.91e3	2.14 e 4		1.000	4.87	8.53	85.3		
11.	- 3	11 13C3-PFBA	$215.9>171.8$	3.00 e 4	1.90 e 4	1.183	1.000	1.65	16.7	133.8	50-150	
12	\% $0^{\text {a }}$	12 13C3-PFBS	$302.0>98.8$	6.15 e 3	1.94 e 4	0.263	1.000	2.90	15.0	120.3		
13.	4:318	13 13C3-PFPeA	$266.0>221.8$	1.05 e 4	1.94 e 4	0.446	1.000	2.61	15.1	120.7		
14	1	14 13C2-PFHxA	$315.0>269.8$	8.50 e 3	1.94 e 4	0.361	1.000	3.28	15.2	121.2		
15.	- ${ }^{2}$	15 13C4-PFHpA	$367.2>321.8$	1.13 e 4	1.94 e 4	0.475	1.000	3.81	15.3	122.3		
16.		16 1802-PFHxS	$403>102.6$	6.01 e 3	1.18 e 4	0.411	1.000	3.94	15.5	123.8		
17 -		17 13C2-PFOA	414.9 > 369.7	2.51 e 4	6.05 e 3	2.843	1.000	4.24	18.3	146.0		
18		18 13C5-PFNA	$468.2>422.9$	9.05 e 3	9.20 e 3	0.854	1.000	4.58	14.4	115.2		
19		19 13C2-PFDA	$514.8>469.7$	2.14 e 4	1.00 e 4	1.742	1.000	4.87	15.3	122.5		
20		20 13C8-PFOS	$507.0>79.9$	1.15 e 4	1.01 e 4	0.927	1.000	4.64	15.4	122.8	\downarrow	
21	4	21 13C4-PFBA	$216.9>171.8$	1.90 e4	1.90 e 4	1.000	1.000	1.64	12.5	100.0		
22	-	22 13C5-PFHxA	$318>272.9$	1.94 e 4	1.94 e 4	1.000	1.000	3.28	12.5	100.0		
23	-	23 13C3-PFHxS	$401.9>79.9$	1.18 e 4	1.18 e 4	1.000	1.000	3.94	12.5	100.0		
24		24 13C8-PFOA	$421.3>376$	6.05 e 3	6.05 e 3	1.000	1.000	4.24	12.5	100.0		
25		25 13C9-PFNA	$472.2>426.9$	9.20 e 3	9.20 e 3	1.000	1.000	4.58	12.5	100.0		
26		26 13C4-PFOS	$503.0>79.9$	1.01 e 4	1.01e4	1.000	1.000	4.64	12.5	100.0		
27	1\%	27 13C6-PFDA	$519.10>47 . .$.	1.00 e 4	1.00 e 4	1.000	1.000	4.87	12.5	100.0		

Dataset:	Untitled
Last Altered:	Tuesday, August 01, 2017 10:54:29 Pacific Daylight Time
Printed:	Tuesday, August 01, 2017 10:55:12 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17 Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

Compound name: PFBA

	Name	\%	Acq Date	Acq Time
\%	170731G4_1	IPA	31-Jul-17	20:18:27
2 \% ${ }^{\text {a }}$	170731G4_2	ST170731G4-1 PFC CS3 17G3104	31-Jul-17	20:30:39
3.	170731G4_3	IPA	31-Jul-17	20:43:08
4	170731G4_4	1700875-01 MW-42S-20170713 0.11821	31-Jul-17	20:55:44
5	170731G4 5	IPA	31-Jul-17	21:08:14
6	170731G4_6	1700875-02 MW-14BR-20170713 0.11912	31-Jul-17	21:20:49
+	170731G4_7	1700875-03 MW-51BR-20170713 0.11822	31-Jul-17	21:33:19
8 8.	170731G4_8	IPA	31-Jul-17	21:45:53
9.4.	170731G4_9	1700875-04 DUP-06-20170713 0.11793	31-Jul-17	21:58:27
10 \%	170731G4_10	IPA	31-Jul-17	22:11:00
114	170731G4_11	1700875-05 MW-11S-20170713 0.11994	31-Jul-17	22:23:32
12 mw	170731G4_12	IPA	31-Jul-17	22:36:12
13	170731G4_13	1700884-01 MW-37BR-20170714 0.11935	31-Jul-17	22:48:39
14 :	170731G4_14	1700884-02 MW-32BR-20170714 0.11989	31-Jul-17	23:01:11
15	170731G4_15	1700884-03 MW-35S-20170714 0.11984	31-Jul-17	23:13:44
16 :	170731G4_16	1700884-04 FRB-02-20170714 0.11984	31-Jul-17	23:26:13
17.	170731G4_17	1700893-04RE1 OUA1-HS03-20170717 0.105...	31-Jul-17	23:38:46
18. ${ }^{\text {a }}$	170731G4_18	1700893-05RE1 OUA1-HS03A-20170717 0.11.	31-Jul-17	23:51:19
19	170731G4_19	IPA	01-Aug-17	00:03:53
20.4 ate	170731G4_20	ST170731G4-2 PFC CS3 17G3104	01-Aug-17	00:16:27
21	170731G4_21	IPA	01-Aug-17	00:28:57
22	170731G4_22	1700889-08RE1 EWTU07-01000 0.12104	01-Aug-17	00:41:39
23	170731G4_23	1700875-01@5X MW-42S-20170713 0.11821	01-Aug-17	00:54:06
24.	170731G4_24	1700875-03@5X MW-51BR-20170713 0.11822	01-Aug-17	01:06:41
25.	170731G4_25	1700875-04@5X DUP-06-20170713 0.11793	01-Aug-17	01:19:15
26	170731G4_26	1700875-05@30X MW-11S-201707130.11994	01-Aug-17	01:31:48
27	170731G4_27	1700888-12RE1@10X HARRI-02-GW-TW01-...	01-Aug-17	01:44:16
28.3\%	170731G4_28	1700893-03RE1@5X OUA1-MW08-20170717...	01-Aug-17	01:57:03
29.	170731G4_29	1700893-04RE1@5X OUA1-HS03-20170717 ...	01-Aug-17	02:09:24
30 -	170731G4_30	B7G0106-MS2@5X Matrix Spike 0.125	01-Aug-17	02:21:59
31	170731G4.312	B7G0106-MSD2@5X Matrix Spike Dup 0.125	01-Aug-17	02:34:34

Dataset:	Untitled
Last Altered:	Tuesday, August 01, 2017 10:54:29 Pacific Daylight Time
Printed:	Tuesday, August 01, 2017 10:55:12 Pacific Daylight Time

Compound name: PFBA

LCC Calibration Standards Review Checklist Ql

Run Log Present:

\# of Samples per Sequence Checked:
Reviewed By: $\quad O / M \quad 8 / 1117$ Initials/Date

Comments:
A
L16 2trans
(A) $13 C 2$-PFOA out of limit eriteria. Yea slilia

Dataset: U:\G1.PRO\Results\2017\170731G4\170731G4-2.qld
Last Altered: Tuesday, August 01, 2017 08:24:24 Pacific Daylight Time
Printed:
Tuesday, August 01, 2017 08:31:55 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

ID: ST170731G4-1 PFC CS3 17G3104, Description: PFC CS3 17G3104 A, Name: 170731G4_2, Date: 31-Jul-2017, Time: 20:30:39, Instrument: , Lab: , User:

PFBA

13C3-PFBA

170731G4_2

PFPeA

13C3-PFPeA
170731G4_2
100

F3:MRM of 9 channels,ES-
$266.0>221.8$
$3.569 \mathrm{e}+005$

Dataset: U:IG1.PRO\Results\2017\170731G4\170731G4-2.qld
Last Altered: Tuesday, August 01, 2017 08:24:24 Pacific Daylight Time
Printed:
Tuesday, August 01, 2017 08:31:55 Pacific Daylight Time

ID: ST170731G4-1 PFC CS3 17G3104, Description: PFC CS3 17G3104 A, Name: 170731G4_2, Date: 31-Jul-2017, Time: 20:30:39, Instrument: , Lab: , User:

Total PFBS

PFHxA

13C2-PFHxA

Dataset:

U:IG1.PRO\Results\2017\170731G41170731G4-2.qld

Last Altered: Tuesday, August 01, 2017 08:24:24 Pacific Daylight Time
Printed:
Tuesday, August 01, 2017 08:31:55 Pacific Daylight Time

ID: ST170731G4-1 PFC CS3 17G3104, Description: PFC CS3 17G3104 A, Name: 170731G4_2, Date: 31-Jul-2017, Time: 20:30:39, Instrument: , Lab: , User:

PFHpA

PFHPA
170731G4_2
100

13C4-PFHpA
170731G4_2

1802-PFHxS

Vista Analytical Laboratory Q1
Dataset: U:IG1.PROIResultsL2017\170731G4I170731G4-2.qld
Last Altered: Tuesday, August 01, 2017 08:24:24 Pacific Daylight Time
Printed: \quad Tuesday, August 01, 2017 08:31:55 Pacific Daylight Time

D: ST170731G4-1 PFC CS3 17G3104, Description: PFC CS3 17G3104 A, Name: 170731G4_2, Date: 31-Jul-2017, Time: 20:30:39, Instrument: , Lab: , User:

Total PFOA

13C2-PFOA

170731G4_2

Total PFOS

13C8-PFOS

Vista Analytical Laboratory Q1
Dataset:
U:\G1.PROIResults\2017\170731G4l170731G4-2.qld
Last Altered:
Tuesday, August 01, 2017 08:24:24 Pacific Daylight Time
Printed: Tuesday, August 01, 2017 08:31:55 Pacific Daylight Time

ID: ST170731G4-1 PFC CS3 17G3104, Description: PFC CS3 17G3104 A, Name: 170731G4_2, Date: 31-Jul-2017, Time: 20:30:39, Instrument: , Lab: , User:

PFNA
 PFNA 170731G4_2 100 FFNA F5:MRM of 12 channels,ES- 463.08418 .8 $6.237 e+005$

13C5-PFNA

170731G4_2
100

PFDA

13C2-PFDA
F6:MRM of 4 channels,ES-

Dataset:
U:\G1.PRO\Resultsl2017\170731G41170731G4-2.qld
Last Altered: Tuesday, August 01, 2017 08:24:24 Pacific Daylight Time
Printed:
Tuesday, August 01, 2017 08:31:55 Pacific Daylight Time

ID: ST170731G4-1 PFC CS3 17G3104, Description: PFC CS3 17G3104 A, Name: 170731G4_2, Date: 31-Jul-2017, Time: 20:30:39, Instrument: , Lab: , User:

[^0]

13C4-PFOS

Quantify Sample Report

MassLynx 4.1 SCN815
Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170731G4\170731G4-2.qld
Last Altered: Tuesday, August 01, 2017 08:24:24 Pacific Daylight Time
Printed: Tuesday, August 01, 2017 08:31:55 Pacific Daylight Time

ID: ST170731G4-1 PFC CS3 17G3104, Description: PFC CS3 17G3104 A, Name: 170731G4_2, Date: 31-Jul-2017, Time: 20:30:39, Instrument: , Lab: , User:

13C6-PFDA
170731G4_2
$100-$

Last Altered: Tuesday, August 01, 2017 08:32:52 Pacific Daylight Time
Printed: Tuesday, August 01, 2017 08:33:37 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

Name: 170731G4_20, Date: 01-Aug-2017, Time: 00:16:27, ID: ST170731G4-2 PFC CS3 17G3104, Description: PFC CS3 17G3104 A

Dataset:	Untitled
Last Altered:	Tuesday, August 01, 2017 10:54:29 Pacific Daylight Time
Printed:	Tuesday, August 01, 2017 10:55:12 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17 Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

Compound name: PFBA

	IPA	31-Jul-17	20:18:27
36akskid 170731G4_2	ST170731G4-1 PFC CS3 17G3104	31-Jul-17	20:30:39
	IPA	31-Jul-17	20:43:08
	1700875-01 MW-42S-20170713 0.11821	31-Jul-17	20:55:44
36)纝170731G4_5	IPA	31-Jul-17	21:08:14
	1700875-02 MW-14BR-20170713 0.11912	31-Jul-17	21:20:49
	1700875-03 MW-51BR-201707130.11822	31-Jul-17	21:33:19
170731G4_8	IPA	31-Jul-17	21:45:53
170731G4_9	1700875-04 DUP-06-20170713 0.11793	31-Jul-17	21:58:27
170731G4_10	IPA	31-Jul-17	22:11:00
170731G4_11	1700875-05 MW-11S-20170713 0.11994	31-Jul-17	22:23:32
170731G4_12	IPA	31-Jul-17	22:36:12
170731G4_13	1700884-01 MW-37BR-20170714 0.11935	31-Jul-17	22:48:39
170731G4_14	1700884-02 MW-32BR-20170714 0.11989	31-Jul-17	23:01:11
170731G4_15	1700884-03 MW-35S-201707140.11984	31-Jul-17	23:13:44
170731G4_16	1700884-04 FRB-02-20170714 0.11984	31-Jul-17	23:26:13
170731G4_17	1700893-04RE1 OUA1-HS03-20170717 0.105.	31-Jul-17	23:38:46
170731G4_1	1700893-05RE1 OUA1-HS03A-20170717 0.1	31-Jul-17	23:51:19
17	IPA	01-Aug-17	00:03:53
170731G4_20	ST170731G4-2 PFC CS3 17G3104	01-Aug-17	00:16:27
170731G4_21	IPA	01-Aug-17	00:28:57
170731G4_22	1700889-08RE1 EWTU07-01000 0.12104	01-Aug-17	00:41:39
170731G4_2	1700875-01@5X MW-42S-20170713 0.11821	01-Aug-17	00:54:06
170731G4_24	1700875-03@5X MW-51BR-201707130.11822	01-Aug-17	01:06:41
170731G4_25	1700875-04@5X DUP-06-20170713 0.11793	01-Aug-17	01:19:15
170731G4_26	1700875-05@30X MW-11S-201707130.11994	01-Aug-17	01:31:48
170731G4_27	1700888-12RE1@10X HARRI-02-GW-TW01-.	01-Aug-17	01:44:16
170731G4_28	1700893-03RE1@5X OUA1-MW08-20170717.	01-Aug-17	01:57:03
170731G4_29	1700893-04RE1@5X OUA1-HS03-20170717 ...	01-Aug-17	02:09:24
170731G4_30	B7G0106-MS2@5X Matrix Spike 0.125	01-Aug-17	02:21:59
	B7G0106-MSD2@5X Matrix Spike Dup 0.125	01-Aug-17	02:34:34

Untitled
Last Altered: Tuesday, August 01, 2017 10:54:29 Pacific Daylight Time
Printed: Tuesday, August 01, 2017 10:55:12 Pacific Daylight Time

Compound name: PFBA

Dataset
U:IG1.PRO\Results\2017\170731G4\170731G4-20.qld
Last Altered: Tuesday, August 01, 2017 08:32:52 Pacific Daylight Time
Printed: Tuesday, August 01, 2017 08:33:47 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
ID: ST170731G4-2 PFC CS3 17G3104, Description: PFC CS3 17G3104 A, Name: 170731G4_20, Date: 01-Aug-2017, Time: 00:16:27, Instrument: , Lab: , User:

13C3-PFBA
 170731G4_20

$100-$

PFPeA

170731G4_20 PFPeA F3:MRM of 9 channels,ES-
$263.0>218.8$ $2.882 \mathrm{e}+005$

13C3-PFPeA
170731G4 $20 \quad$ F3:MRM of 9 channels,ES-

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170731G4\170731G4-20.qld
Last Altered: Tuesday, August 01, 2017 08:32:52 Pacific Daylight Time
Printed: Tuesday, August 01, 2017 08:33:47 Pacific Daylight Time

ID: ST170731G4-2 PFC CS3 17G3104, Description: PFC CS3 17G3104 A, Name: 170731G4_20, Date: 01-Aug-2017, Time: 00:16:27, Instrument: , Lab: , User:

Total PFBS

PFHxA

13C2-PFHxA

Dataset:
 U:IG1.PRO\Results\2017\170731G4\170731G4-20.qld

Last Altered:
Tuesday, August 01, 2017 08:32:52 Pacific Daylight Time
Printed: Tuesday, August 01, 2017 08:33:47 Pacific Daylight Time

ID: ST170731G4-2 PFC CS3 17G3104, Description: PFC CS3 17G3104 A, Name: 170731G4_20, Date: 01-Aug-2017, Time: 00:16:27, Instrument: , Lab: , User:

PFHpA

13C4-PFHpA

1802-PFHxS

Dataset: U:IG1.PROIResults\2017\170731G4\170731G4-20.qld
Last Altered: Tuesday, August 01, 2017 08:32:52 Pacific Daylight Time
Printed: Tuesday, August 01, 2017 08:33:47 Pacific Daylight Time

ID: ST170731G4-2 PFC CS3 17G3104, Description: PFC CS3 17G3104 A, Name: 170731G4_20, Date: 01-Aug-2017, Time: 00:16:27, Instrument: , Lab: , User:

13C2-PFOA

170731G4_20

Total PFOS

13C8-PFOS

Dataset: U:\G1.PRO\Results\2017\170731G4\170731G4-20.qld

Last Altered: Tuesday, August 01, 2017 08:32:52 Pacific Daylight Time
Printed: Tuesday, August 01, 2017 08:33:47 Pacific Daylight Time

ID: ST170731G4-2 PFC CS3 17G3104, Description: PFC CS3 17G3104 A, Name: 170731G4_20, Date: 01-Aug-2017, Time: 00:16:27, Instrument: , Lab: , User:

PFNA

13C5-PFNA

170731G4_20

PFDA

170731G4_20
100

Dataset: U:\G1.PRO\Results\2017\170731G4\170731G4-20.qld
Last Altered: Tuesday, August 01, 2017 08:32:52 Pacific Daylight Time
Printed: Tuesday, August 01, 2017 08:33:47 Pacific Daylight Time

ID: ST170731G4-2 PFC CS3 17G3104, Description: PFC CS3 17G3104 A, Name: 170731G4_20, Date: 01-Aug-2017, Time: 00:16:27, Instrument: , Lab: , User:

13C8-PFOA

170731G4_20

13C3-PFHxS

13C4-PFOS

Dataset: U:IG1.PRO\Results\2017\170731G4\170731G4-20.qld
Last Altered: Tuesday, August 01, 2017 08:32:52 Pacific Daylight Time
Printed:
Tuesday, August 01, 2017 08:33:47 Pacific Daylight Time

ID: ST170731G4-2 PFC CS3 17G3104, Description: PFC CS3 17G3104 A, Name: 170731G4_20, Date: 01-Aug-2017, Time: 00:16:27, Instrument: , Lab: , User:

13C6-PFDA

Last Altered: Tuesday, August 01, 2017 08:34:35 Pacific Daylight Time
Printed: Tuesday, August 01, 2017 08:42:27 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
Name: 170731G4_35, Date: 01-Aug-2017, Time: 03:24:41, ID: ST170731G4-3 PFC CS3 17G3104, Description: PFC CS3 17G3104 A

Quantify Compound Summary Report
Vista Analytical Laboratory VG-11

Dass Laset:	Untitled
Last Altered:	Tuesday, August 01, 2017
10:54:29 Pacific Daylight Time	
Printed:	Tuesday, August 01, 2017 10:55:12 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
Compound name: PFBA

	170731G4_1	IPA	31-Jul-17	20:18:27
	170731G4_2	ST170731G4-1 PFC CS3 17G3104	31-Jul-17	20:30:39
	170731G4_3	IPA	31-Jul-17	20:43:08
	170731G4_4	1700875-01 MW-42S-20170713 0.11821	31-Jul-17	20:55:44
		IPA	31-Jul-17	21:08:14
	170731G4_6	1700875-02 MW-14BR-20170713 0.11912	31-Jul-17	21:20:49
	170731G4_7	1700875-03 MW-51BR-20170713 0.11822	31-Jul-17	21:33:19
		IPA	31-Jul-17	21:45:53
		1700875-04 DUP-06-20170713 0.11793	31-Jul-17	21:58:27
		IPA	31-Jul-17	22:11:00
	170731G4_11	1700875-05 MW-11S-20170713 0.11994	31-Jul-17	22:23:32
		IPA	31-Jul-17	22:36:12
	170731G4_13	1700884-01 MW-37BR-20170714 0.11935	31-Jul-17	22:48:39
	170731G4_14	1700884-02 MW-32BR-20170714 0.11989	31-Jul-17	23:01:11
	170731G4_15	1700884-03 MW-35S-20170714 0.11984	31-Jul-17	23:13:44
	170731G4_1	1700884-04 FRB-02-20170714 0.11984	31-Jul-17	23:26:13
	170731G4_1	1700893-04RE1 OUA1-HS03-20170717 0.10	31-Jul-17	23:38:46
	170731G4_18	1700893-05RE1 OUA1-HS03A-201707	31-Jul-17	23:51:19
	170731G4_19	IPA	01-Aug-17	00:03:53
		ST170731G4-2 PFC CS3 17G3104	01-Aug-17	00:16:27
	1	IP	01-Aug-17	00:28:57
		1700889-08RE1 EWTU07-01000 0.12104	01-Aug-17	00:41:39
	17	1700875-01@5X MW-42S-20170713 0.11821	01-Aug-17	00:54:06
		1700875-03@5X MW-51BR-201707130.11822	01-Aug-17	01:06:41
	170731G4_2	1700875-04@5X DUP-06-201707130.11793	01-Aug-17	01:19:15
	170731G4_2	1700875-05@30X MW-11S-201707130.11994	01-Aug-17	01:31:48
	170731G4_27	1700888-12RE1@10X HARRI-02-GW-TW01-	01-Aug-17	01:44:16
	170731G4_28	1700893-03RE1@5X OUA1-MW08-20170717...	1-Aug-17	01:57:03
	170731G4_2	1700893-04RE1@5X OUA1-HS03-20170717...	01-Aug-17	02:09:24
		B7G0106-MS2@5X Matrix Spike 0.125	01-Aug-17	02:21:59
	r 4×073709893	B7G0106-MSD2@5X Matrix Spike Dup 0.125	01-Aug-17	02:34:34

Vista Analytical Laboratory VG-11

Dataset: Untitled
Last Altered: Tuesday, August 01, 2017 10:54:29 Pacific Daylight Time
Printed: \quad Tuesday, August 01, 2017 10:55:12 Pacific Daylight Time

Compound name: PFBA

	D	Acq.Date	AcgTime
	1700893-05RE1@5X OUA1-HS03	01-Aug-17	02:47:03
	1700907-10RE1@20X AT028-DUP	01-Aug-17	02:59:36
	IPA	01-Aug-17	03:12:10
	ST170731G4-3 PFC CS3 17G3104	01-Aug-17	03:24:41
	IPA	01-Aug-17	03:37:12

Dataset
U:IG1.PRO\Results\2017\170731G4\170731G4-35.qld
Last Altered: Tuesday, August 01, 2017 08:34:35 Pacific Daylight Time
Printed:
Tuesday, August 01, 2017 08:42:00 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
ID: ST170731G4-3 PFC CS3 17G3104, Description: PFC CS3 17G3104 A, Name: 170731G4_35, Date: 01-Aug-2017, Time: 03:24:41, Instrument: , Lab: , User:

13C3-PFBA

PFPeA

13C3-PFPeA

Dataset:
 U:IG1.PROIResults\2017\170731G4\170731G4-35.qld

Last Altered: Tuesday, August 01, 2017 08:34:35 Pacific Daylight Time
Printed: Tuesday, August 01, 2017 08:42:00 Pacific Daylight Time

ID: ST170731G4-3 PFC CS3 17G3104, Description: PFC CS3 17 G3104 A, Name: 170731G4_35, Date: 01-Aug-2017, Time: 03:24:41, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:IG1.PROIResults\20171170731G41170731G4-35.qId
Last Altered: Tuesday, August 01, 2017 08:34:35 Pacific Daylight Time
Printed: \quad Tuesday, August 01, 2017 08:42:00 Pacific Daylight Time

ID: ST170731G4-3 PFC CS3 17G3104, Description: PFC CS3 17G3104 A, Name: 170731G4_35, Date: 01-Aug-2017, Time: 03:24:41, Instrument: , Lab: , User:

PFHpA

F4:MRM of 7 channels,ES-
$363>318.9$
$6.300 \mathrm{e}+005$$\quad \begin{array}{r}\text { PFHpA } \\ \text { 170731G4_35 } \\ \text { 100 } \\ \hline\end{array}$

13C4-PFHpA

Total PFHxS

Total PFHxS
170731G4_35
100
$\begin{array}{lrr}\text { 1802-PFHxS } & \\ \text { 170731G4_35 } & \text { F4:MRM of } 7 \text { channels,ES- } \\ 100- & 403>102.6\end{array}$

Dataset:	U:IG1.PRO\Results\2017\170731G4\170731G4-35.qld
Last Altered:	Tuesday, August 01, 2017 08:34:35 Pacific Daylight Time
Printed:	Tuesday, August 01, 2017 08:42:00 Pacific Daylight Time

ID: ST170731G4-3 PFC CS3 17G3104, Description: PFC CS3 17G3104 A, Name: 170731G4_35, Date: 01-Aug-2017, Time: 03:24:41, Instrument: , Lab: , User:

Quantify Sample Report
Vista Analytical Laboratory Q1
Dataset
U:IG1.PROIResults\2017\170731G4\170731G4-35.qld
Last Altered: Tuesday, August 01, 2017 08:34:35 Pacific Daylight Time
Printed: Tuesday, August 01, 2017 08:42:00 Pacific Daylight Time

ID: ST170731G4-3 PFC CS3 17G3104, Description: PFC CS3 17G3104 A, Name: 170731G4_35, Date: 01-Aug-2017, Time: 03:24:41, Instrument: , Lab: , User:

PFNA

$\begin{aligned} & \text { PFNA } \\ & \text { 170731G4_35 } \end{aligned}$		
		F5:MRM of 12 channels, ES-
100	PFNA	$463.0>418.8$
	4.587	$5.932 \mathrm{e}+005$
	1.63 e 4	
	4095.64	

13C5-PFNA

PFDA

PFA
170731G4_35
100

13C2-PFDA

Dataset: U:IG1.PRO\Results\2017\170731G4\170731G4-35.qld
Last Altered: Tuesday, August 01, 2017 08:34:35 Pacific Daylight Time
Printed: Tuesday, August 01, 2017 08:42:00 Pacific Daylight Time

ID: ST170731G4-3 PFC CS3 17G3104, Description: PFC CS3 17G3104 A, Name: 170731G4_35, Date: 01-Aug-2017, Time: 03:24:41, Instrument: , Lab: , User:

13C8-PFOA

170731G4_35

13C3-PFHxS

13C4-PFOS

Dataset: U:\G1.PRO\Results\2017\170731G4\170731G4-35.qld
Last Altered: Tuesday, August 01, 2017 08:34:35 Pacific Daylight Time
Printed: Tuesday, August 01, 2017 08:42:00 Pacific Daylight Time

ID: ST170731G4-3 PFC CS3 17G3104, Description: PFC CS3 17G3104 A, Name: 170731G4_35, Date: 01-Aug-2017, Time: 03:24:41, Instrument: , Lab: , User:

13C6-PFDA

INITIAL CALIBRATION

Dataset:
U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed:
Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:IG1.PROICurveDBIC18_VAL-PFC_-Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

Compound name: PFBA

Correlation coefficient: $\mathrm{r}=0.999824, \mathrm{r}^{\wedge} 2=0.999647$
Calibration curve: 0.747533 * $x+0.048007$
Response type: Internal Std (Ref 11), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFPeA

Correlation coefficient: $\mathrm{r}=0.999667, \mathrm{r}^{\wedge} 2=0.999334$
Calibration curve: 1.10054 * $x+0.0486908$
Response type: Internal Std (Ref 13), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	-4.4	Sta. Conc	RT	Resp	IS Resp	Conc,	\%Dev	RRF
1	1 170727G1_2		0.250	2.62	1.86 e 2	7.64e3	0.233	-6.8	1.22
2 2-2xtut	2 170727G1_3		0.500	2.63	3.85 e 2	8.33 e 3	0.481	-3.8	1.16
3 \% ${ }^{\text {dem}}$	3 170727G1_4		1.00	2.63	7.66 e 2	7.75e3	1.08	7.8	1.23
4 , mum	4 170727G1_5		2.00	2.63	1.54 e 3	8.54 e3	2.01	0.5	1.13
5×4	5 170727G1_6		5.00	2.63	3.71 e 3	7.82e3	5.34	6.8	1.18
6	6 170727G1_7		10.0	2.63	7.58 e 3	9.10 e3	9.42	-5.8	1.04
7 \% ${ }^{\text {a }}$	7 170727G1_8		50.0	2.63	3.27 e 4	7.23 e 3	51.2	2.5	1.13
8 -	$8170727 \mathrm{G1}$-9		100	2.62	6.37e4	7.31e3	98.9	-1.1	1.09

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: PFBS

Correlation coefficient: $\mathrm{r}=0.999365, \mathrm{r}^{\wedge} 2=0.998731$
Calibration curve: 1.60766 * $x+0.593256$
Response type: Internal Std (Ref 12), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

,	\# Name		RT	Resp 15 Resp		onc.	\%Dev	RRF
1	1 170727G1_2	0.250	2.91	1.56 e 2	4.70 e 3			1.66
2	2 170727G1_3	0.500	2.91	5.18 e 2	4.48 e 3	0.531	6.1	2.89
3×4	3 170727G1_4	1.00	2.91	7.48e2	4.63 e 3	0.886	-11.4	2.02
4 Hitute	4 170727G1_5	2.00	2.91	1.51 e 3	5.33 e 3	1.83	-8.6	1.77
5 2mber	5 170727G1_6	5.00	2.91	3.40 e 3	4.48 e 3	5.53	10.7	1.90
	6 170727G1_7	10.0	2.91	7.34 e 3	5.40 e 3	10.2	1.9	1.70
7 W.	7 170727G1_8	50.0	2.91	2.94 e 4	4.38 e 3	51.7	3.4	1.67
8 .	$8170727 \mathrm{G1}$-9	100	2.91	5.18 e 4	4.10 e 3	97.8	-2.2	1.58

Compound name: PFHxA

Correlation coefficient: $\mathrm{r}=0.999065, \mathrm{r}^{\wedge} 2=0.998131$
Calibration curve: 1.89981 * x + 0.153363
Response type: Internal Std (Ref 14), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset:
U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered:
Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: PFHpA

Correlation coefficient: $\mathrm{r}=0.999666, \mathrm{r}^{\wedge} 2=0.999332$
Calibration curve: 1.94658 * x + 0.2548
Response type: Internal Std (Ref 15), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

23-3	\# Name	- Std Conc	RT	Resp	IS Resp	Conc.	\%Dev	RRF
1 .	1 170727G1_2	0.250	3.81	3.78 e 2	7.45 e 3	0.195	-22.1	2.54
2	2 170727G1_3	0.500	3.82	8.08 e 2	8.06 e 3	0.513	2.6	2.51
3×4	3 170727G1_4	1.00	3.81	1.65 e3	8.77 e 3	1.08	7.5	2.35
$4{ }^{3} \mathrm{~s}$	4 170727G1_5	2.00	3.81	3.13 e 3	8.92 e 3	2.13	6.3	$2: 20$
5.4	5 170727G1_6	5.00	3.81	7.12e3	8.20 e 3	5.45	9.0	2.17
6 crem	6 170727G1_7	10.0	3.81	1.60 e 4	1.05 e 4	9.60	-4.0	1.89
$7{ }^{2}$	7 170727G1_8	50.0	3.81	6.42 e 4	8.09 e 3	50.8	1.7	1.98
8.	8 170727G1_9	100	3.81	1.21e5	7.84e3	99.0	-1.0	1.93

Compound name: PFHxS

Correlation coefficient: $\mathrm{r}=0.999617, \mathrm{r}^{\wedge} 2=0.999233$
Calibration curve: 1.77848 * x + 0.109682
Response type: Internal Std (Ref 16), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Con	Resp		IS Resp			
$1-4$	1 170727G1_2	0.250	3.94	1.62 e 2	3.88 e 3	0.232	-7.1	2.09
2 , ymat.	2 170727G1_3	0.500	3.95	4.30 e 2	4.68 e 3	0.584	16.7	2.30
3 -	$3170727 \mathrm{G1}$ _4	1.00	3.94	6.02 e 2	4.35 e 3	0.911	-8.9	1.73
4	4 170727G1_5	2.00	3.94	1.37 e 3	4.63 e 3	2.02	1.2	1.85
5	5 170727G1_6	5.00	3.94	3.35 e 3	4.52 e 3	5.15	3.0	1.85
6	$6170727 \mathrm{G1}$-7	10.0	3.94	7.31e3	5.48 e 3	9.31	-6.9	1.67
	7 170727G1_8	50.0	3.94	3.04e4	4.15 e 3	51.4	2.8	1.83
$8 \times$	$8170727 \mathrm{G1}$ _9	100	3.94	5.94e4	4.21 e3	99.1	-0.9	1.76

Quantify Compound Summary Report MassLynx 4.1 SCN815

Vista Analytical Laboratory Q2
Dataset:
U:\G1.PROXResults\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: PFOA

Correlation coefficient: $\mathrm{r}=0.998786, \mathrm{r}^{\wedge} 2=0.997574$
Calibration curve: $0.797511^{*} x+0.0924786$
Response type: Internal Std (Ref 17), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name - amat	Std Cone	RT	Resp	\%. IS Resp	- 3 Conc.	\%Dev	RRF
$1^{-4 .}$	1 170727G1_2	0.250	4.24	3.42 e 2	1.63 e 4	0.213	-15.0	1.05
2 .	2 170727G1_3	0.500	4.24	7.66e2	1.67 e 4	0.602	20.4	1.14
3 la	3 170727G1_4	1.00	4.23	1.34 e 3	1.73 e 4	1.10	10.0	0.969
4 (x)	4 170727G1_5	2.00	4.24	2.75 e 3	1.86 e 4	2.21	10.3	0.926
5	5 170727G1_6	5.00	4.24	7.23e3	1.80 e4	6.16	23.3	1.00
6 .	6 170727G1_7	10.0	4.24	1.44e4	2.24 e 4	9.96	-0.4	0.804
7 Cl W	7 170727G1_8	50.0	4.24	5.59e4	1.77 e 4	49.4	-1.3	0.789
8 . ${ }^{\text {a }}$ -	8 170727G1_9	100	4.24	1.14e5	1.80 e4	99.2	-0.8	0.792

Compound name: PFNA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999639$
Calibration curve: $-0.00237877^{*} x^{\wedge} 2+2.32641^{*} x+0.0752635$
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Exam	\# Name	Std Cone	RT	Resp	IS Resp	Conc.	\%Dev	RRF
$1-2$	1 170727G1_2	0.250	4.58	2.70 e 2	4.96 e 3	0.260	4.1	2.72
2, met	2 170727G1_3	0.500	4.58	6.08e2	6.55 e 3	0.466	-6.7	2.32
	3 170727G1_4	1.00	4.58	1.08 e 3	5.92e3	0.954	-4.6	2.29
4 L -	4 170727G1_5	2.00	4.58	2.72 e 3	6.93 e 3	2.08	4.0	2.45
5 tert	5 170727G1_6	5.00	4.58	6.11 e 3	6.11 e3	5.37	7.3	2.50
\%	$6170727 \mathrm{G1} 1$ 7	10.0	4.58	1.31e4	7.36 e 3	9.60	-4.0	2.22
7×14	7 170727G1_8	50.0	4.58	6.15 e 4	6.96 e3	50.0	-0.0	2.21
8 -	8 170727G1_9	100	4.58	1.22 e 5	7.32e3	100	0.0	2.09

Vista Analytical Laboratory Q2

Dataset:
U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: PFOS

Correlation coefficient: $\mathbf{r}=0.999145, \mathrm{r}^{\wedge} 2=0.998292$
Calibration curve: 0.470087 * x + 0.0287104
Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Na	Std. Conc	RT	Resp	1S Resp	Conc.	,	RRF
1.	1 170727G1_2	0.250	4.64	6.12 e 1	5.46 e 3	0.237	-5.3	0.560
2	2 170727G1_3	0.500	4.64	1.27 e 2	6.34 e 3	0.472	-5.5	0.502
3 -	3 170727G1_4	1.00	4.64	2.59 e 2	6.56 e 3	0.990	-1.0	0.494
	4 170727G1_5	2.00	4.64	5.73 e 2	7.61 e 3	1.94	-2.9	0.471
5 .	5 170727G1_6	5.00	4.64	1.51 e 3	7.06 e 3	5.61	12.2	0.533
6 - ${ }^{\text {a }}$	6 170727G1_7	10.0	4.64	3.08 e 3	8.09 e 3	10.1	0.6	0.476
7	7 170727G1_8	50.0	4.64	1.54 e 4	7.84 e 3	52.4	4.7	0.493
8. ${ }^{\text {a }}$ +	8 170727G1_9	100	4.64	3.11e4	8.50 e 3	97.1	-2.9	0.457

Compound name: PFDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999346$
Calibration curve: $-0.000179878{ }^{*} x^{\wedge} 2+0.198072$ * $x+0.02746$
Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

54.	\# Name	Std Conc	RT	Resp	IS Resp	Conc.	\%Dev	RRF
1	1 170727G1_2	0.250	4.87	4.13 e 1	8.28 e 3	0.176	-29.6	0.249
2×4	2 170727G1_3	0.500	4.87	1.24 e 2	1.08 e 4	0.592	18.3	0.289
3	$3170727 \mathrm{G1} 4$	1.00	4.87	1.85e2	1.06 e 4	0.967	-3.3	0.219
4 -	4 170727G1_5	2.00	4.87	4.71 e 2	1.25 e 4	2.24	11.8	0.235
$5-4$.	$5170727 \mathrm{G1}$ _6	5.00	4.87	9.70 e 2	1.15 e 4	5.23	4.5	0.212
6 W	$6170727 \mathrm{G1}$-7	10.0	4.87	1.93 e 3	1.22 e 4	9.95	-0.5	0.198
7	7 170727G1_8	50.0	4.87	1.03 e 4	1.38 e 4	49.2	-1.7	0.187
8 - tas ${ }^{\text {a }}$	$8170727 \mathrm{G1}$ _9	100	4.87	2.06 e 4	1.42 e 4	100	0.5	0.181

Dataset:
U:|G1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: 13C3-PFBA

Response Factor: 1.18261
RRF SD: 0.0351574 , Relative SD: 2.97286
Response type: Internal Std (Ref 21), Area * (IS Conc. / IS Area)
Curve type: RF

War	\# Name	, Std. Conc	RT	Resp	IS Resp	Conc.	\%Dev	RRF
1.	1 170727G1_2	12.5	1.67	2.10e4	1.77e4	12.5	0.2	1.18
2 L	2 170727G1_3	12.5	1.67	2.27e4	1.84 e 4	13.1	4.6	1.24
3 -	3 170727G1_4	12.5	1.67	2.13e4	1.76 e4	12.8	2.6	1.21
4×4	4.170727G1_5	12.5	1.67	2.25 e 4	1.91 e4	12.5	-0.2	1.18
	$5170727 \mathrm{G1}$ ¢ 6	12.5	1.67	2.07 e 4	1.79 e 4	12.3	-1.9	1.16
6.	6 170727G1_7	12.5	1.67	2.55e4	2,11e4	12.8	2.0	1.21
7	$7170727 \mathrm{G1}$ _8	12.5	1.67	2.11e4	1.85 e 4	12.1	-3.5	1.14
8 \%	$8170727 \mathrm{G1}$-9	12.5	1.67	2.19e4	1.93 e 4	12.0	-3.8	1.14

Compound name: 13C3-PFBS

Response Factor: 0.262761
RRF SD: 0.0164175, Relative SD: 6.24805
Response type: Internal Std (Ref 22), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name - Std Conc		RT	Resp IS Resp		Conc. $\%$ Rev		
1 -	1 170727G1_2	12.5	2.91	4.70 e 3	1.73 e 4	12.9	3.2	0.271
2	2 170727G1_3	12.5	2.91	4.48 e 3	1.90 e 4	11.2	-10.1	0.236
3	3 170727G1_4	12.5	2.91	4.63 e 3	1.62 e 4	13.6	8.6	0.285
4. ${ }^{\text {a }}$	4 170727G1_5	12.5	2.91	5.33 e 3	1.95 e 4	13.0	4.2	0.274
	5 170727G1_6	12.5	2.91	4.48 e 3	1.70 e 4	12.5	0.1	0.263
6 \% ${ }^{3}$	$6170727 \mathrm{G1}$ _7	12.5	2.91	5.40 e 3	2.04 e 4	12.6	0.8	0.265
7	7 170727G1_8	12.5	2.91	4.38 e 3	1.64 e 4	12.7	1.4	0.266
8	8 170727G1_9	12.5	2.91	4.10e3	1.70e4	11.5	-8.1	0.241

Quantify Compound Summary Report	MassLynx 4.1 SCN815
Vista Analytical Laboratory Q2	
Dataset:	U:IG1.PROIResults\|2017\170727G11170727G1-CRV.qld
Last Altered:	Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: 13C3-PFPeA

Response Factor: 0.446443

RRF SD: 0.0151073, Relative SD: 3.38392
Response type: Internal Std (Ref 22), Area * (IS Conc. / IS Area)
Curve type: RF

Whas	\# Name	Std. Conc	RT Resp		IS Resp	Conc.	W, \%Dev"	M RRF
$1{ }^{\text {anew }}$	1 170727G1_2	12.5	2.63	7.64e3	1.73 e 4	12.3	-1.2	0.441
2 2	2 170727G1_3	12.5	2.63	8.33e3	1.90 e 4	12.3	-1.6	0.439
3. ${ }^{\text {a }}$,	3 170727G1_4	12.5	2.63	7.75 e 3	1.62 e 4	13.4	7.0	0.478
4. ${ }^{\text {ar }}$, ,	4 170727G1_5	12.5	2.63	8.54e3	1.95 e 4	12.3	-1.6	0.439
5	5 170727G1_6	12.5	2.63	7.82e3	1.70 e 4	12.9	2.9	0.459
6 \%rys	6 170727G1_7	12.5	2.63	9.10 e 3	2.04 e 4	12.5	-0.1	0.446
7 - ${ }^{\text {d }}$	7 170727G1_8	12.5	2.63	7.23e3	1.64 e 4	12.3	-1.5	0.440
8 -	8 170727G1_9	12.5	2.62	7.31e3	1.70 e 4	12.0	-3.7	0.430

Compound name: 13C2-PFHxA

Response Factor: 0.360561
RRF SD: 0.0226683, Relative SD: 6.28695
Response type: Internal Std (Ref 22), Area * (IS Conc. / IS Area)
Curve type: RF

5 ${ }^{2}$	\#Name	Std Conc	RT	Resp	IS Resp	Conc	\%Dev	RRF
1 ,	1 170727G1_2	12.5	3.28	5.77e3	1.73 e 4	11.5	-7.6	0.333
2 -	2 170727G1_3	12.5	3.28	7.04e3	1.90e4	12.9	3.0	0.372
3.	3 170727G1_4	12.5	3.28	6.35 e 3	1.62 e 4	13.6	8.6	0.391
+12	4 170727G1_5	12.5	3.28	6.86e3	1.95 e 4	12.2	-2.2	0.353
5 + ${ }^{2}$	5 170727G1_6	12.5	3.28	5.84e3	1.70 e4	11.9	-5.0	0.343
6 \%	6 170727G1_7	12.5	3.28	7.89e3	2.04 e 4	13.4	7.3	0.387
7×2	7 170727G1_8	12.5	3.28	6.09e3	1.64 e 4	12.8	2.7	0.370
8 8, +	8 170727G1_9	12.5	3.28	5.71 e 3	1.70 e4	11.6	-6.8	0.336

Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: 13C4-PFHpA

Response Factor: 0.475457
RRF SD: 0.0400935, Relative SD: 8.43262
Response type: Internal Std (Ref 22), Area * (IS Conc. / IS Area)
Curve type: RF

-	\# Name	Std Conc	RT	Resp	IS Resp	Conc.	\%Dev	RRF
1 120	1 170727G1_2	12.5	3.81	7.45 e 3	1.73 e 4	11.3	-9.6	0.430
2 2-x	2 170727G1_3	12.5	3.81	8.06e3	1.90 e 4	11.2	-10.6	0.425
$3-n t y$	3 170727G1_4	12.5	3.81	8.77 e 3	1.62 e 4	14.2	13.6	0.540
4 - titht	$4170727 \mathrm{G1}$-5	12.5	3.81	8.92e3	1.95 e 4	12.0	-3.6	0.458
5	5 170727G1_6	12.5	3.81	8.20 e 3	1.70 e4	12.7	1.2	0.481
2	$6170727 \mathrm{G1}$-7	12.5	3.81	1.05 e 4	2.04e4	13.6	8.5	0.516
7 , 6 ce	7 170727G1_8	12.5	3.81	8.09 e 3	1.64 e 4	12.9	3.4	0.492
8 +	8 170727G1_9	12.5	3.81	7.84e3	1.70 e 4	12.1	-3.0	0.461

Compound name: 1802-PFHxS

Response Factor: 0.41062
RRF SD: 0.0152633, Relative SD: 3.71715
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: RF

		Std. Conc	RT	Resp	IS Resp	Conc.	\% \% Dev	- RRF
1.	1 170727G1_2	12.5	3.94	3.88 e 3	9.33 e 3	12.7	1.3	0.416
2	2 170727G1_3	12.5	3.94	4.68 e 3	1.09 e 4	13.1	4.9	0.431
$3-2$	3 170727G1_4	12.5	3.94	4.35 e 3	1.09 e 4	12.1	-3.3	0.397
4 Ca	4 170727G1_5	12.5	3.94	4.63 e 3	1.19 e 4	11.8	-5.4	0.388
$5 \times$	5 170727G1_6	12.5	3.94	4.52e3	1.07 e 4	12.8	2.7	0.422
6 6 ${ }^{\text {a }}$	6 170727G1_7	12.5	3.94	5.48 e 3	1.30 e 4	12.8	2.5	0.421
7 \% 4 ter	7 170727G1_8	12.5	3.94	4.15 e 3	1.05 e 4	12.0	-3.9	0.395
8 -	8 170727G1_9	12.5	3.94	4.21 e 3	1.01 e 4	12.6	1.1	0.415

Dataset: U:|G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: 13C2-PFOA

Response Factor: 2.84292
RRF SD: 0.169045, Relative SD: 5.94617
Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area)
Curve type: RF

Werwis	\# Name	Std Conc	RT Resp		IS Resp	Conc.	\% Dev	RRF
1 Remer	1 170727G1_2	12.5	4.23	1.63 e 4	5.56 e 3	12.9	3.2	2.94
$2{ }^{2}+$	2 170727G1_3	12.5	4.24	1.67 e 4	6.24 e 3	11.8	-5.6	2.68
3	3 170727G1_4	12.5	4.24	1.73 e 4	6.06 e 3	12.5	0.3	2.85
$5 \square$	4 170727G1_5	12.5	4.24	1.86e4	6.19 e 3	13.2	5.6	3.00
5	5 170727G1_6	12.5	4.23	1.80 e 4	5.76 e 3	13.8	10.1	3.13
6	6 170727G1_7	12.5	4.24	2.24 e 4	8.45 e3	11.6	-7.0	2.64
7 \%	$7170727 \mathrm{G1} 18$	12.5	4.24	1.77 e 4	6.39 e 3	12.2	-2.5	2.77
8 -	8 170727G1_9	12.5	4.24	1.80e4	6.59 e 3	12.0	-4.1	2.73

Compound name: 13C5-PFNA

Response Factor: 0.853546
RRF SD: 0.0383372, Relative SD: 4.49152
Response type: Internal Std (Ref 25), Area * (IS Conc. / IS Area)
Curve type: RF

-	\# Name	Std Conc		Resp	IS Resp	Conc.	\%Dev	RRF
1 -	1 170727G1_2	12.5	4.58	4.96 e 3	5.69e3	12.8	2.1	0.872
$2 \times$	2 170727G1_3	12.5	4.58	6.55 e 3	7.13 e 3	13.5	7.6	0.919
3 , +	3 170727G1_4	12.5	4.58	5.92e3	7.07e3	12.3	-1.9	0.838
4 - 4	4 170727G1_5	12.5	4.58	6.93e3	8.26 e 3	12.3	-1.7	0.839
5	5 170727G1_6	12.5	4.57	6.11 e 3	6.89 e 3	13.0	3.8	0.886
6 - ${ }^{2}$	6 170727G1_7	12.5	4.58	7.36 e 3	9.28 e 3	11.6	-7.0	0.794
7 \%	$7170727 \mathrm{G1}$-8	12.5	4.58	6.96e3	8.18 e 3	12.5	-0.3	0.851
8 ,	8 170727G1_9	12.5	4.58	7.32e3	8.82e3	12.2	-2.8	0.830

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: 13C2-PFDA

Response Factor: 1.74189

RRF SD: 0.0344803 , Relative SD: 1.97948
Response type: Internal Std (Ref 27), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Std. Conc	RT	Resp	IS Resp	Conc.	\%Dev	RRF
	1 170727G1_2	12.5	4.87	8.28 e 3	4.70e3	12.6	1.0	1.76
2 2	2 170727G1_3	12.5	4.87	1.08 e 4	6.26 e 3	12.3	-1.4	1.72
3.	3 170727G1_4	12.5	4.87	1.06e4	6.00 e 3	12.7	1.3	1.76
4.5	4 170727G1_5	12.5	4.87	1.25 e 4	7.21 e 3	12.5	-0.1	1.74
5	$5170727 \mathrm{G1}$-6	12.5	4.87	1.15 e 4	6.64 e 3	12.4	-0.8	1.73
6 r ${ }^{\text {a }}$	$6170727 \mathrm{G1}$-7	12.5	4.87	1.22e4	7.25 e 3	12.0	-3.7	1.68
	7 170727G1_8	12.5	4.87	1.38 e 4	7.73 e 3	12.8	2.8	1.79
8 ,	$8170727 \mathrm{G1}$-9	12.5	4.87	1.42e4	8.08e3	12.6	0.9	1.76

Compound name: 13C8-PFOS

Response Factor: 0.927146
RRF SD: 0.0309514 , Relative SD: 3.33836
Response type: Internal Std (Ref 26), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Std. Conc	RT	Resp	IS Resp	Conc.	Dev	RRE
1 \% M	1 170727G1_2	12.5	4.64	5.46e3	6.02 e 3	12.2	-2.1	0.907
2	2 170727G1_3	12.5	4.64	6.34e3	6.85 e 3	12.5	-0.1	0.927
3 3 ${ }^{2}+$	3 170727G1_4	12.5	4.64	6.56e3	7.35 e 3	12.0	-3.7	0.893
4	4 170727G1_5	12.5	4.64	7.61e3	8.50 e 3	12.1	-3.4	0.895
5 5	5 170727G1_6	12.5	4.64	7.06 e 3	7.46e3	12.8	2.1	0.947
$6 \mathrm{c} / \mathrm{c}$ +	$6170727 \mathrm{G1}$-7	12.5	4.64	8.09 e 3	8.74 e 3	12.5	-0.2	0.925
$7{ }^{2}+5$	7 170727G1_8	12.5	4.64	7.84e3	8.39 e 3	12.6	0.7	0.934
8	$8170727 \mathrm{G1}$ 9	12.5	4.64	8.50e3	8.61e3	13.3	6.6	0.988

Vista Analytical Laboratory Q2

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed:
Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: 13C4-PFBA

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 21), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Std Conc	RT	Resp	IS Resp	Conc.	\%Dev	RRF
1 .	1 170727G1_2	12.5	1.66	1.77 e 4	1.77 e 4	12.5	0.0	1.00
2.	2 170727G1_3	12.5	1.67	1.84 e 4	1.84 e 4	12.5	0.0	1.00
3.	3 170727G1_4	12.5	1.67	1.76 e 4	1.76 e 4	12.5	0.0	1.00
4	4 170727G1_5	12.5	1.67	1.91 e 4	1.91 e 4	12.5	0.0	1.00
5.	5 170727G1_6	12.5	1.68	1.79 e 4	1.79 e 4	12.5	0.0	1.00
6 W	6 170727G1_7	12.5	1.67	2.11 e 4	2.11 e 4	12.5	0.0	1.00
7 T	7 170727G1_8	12.5	1.67	1.85 e 4	1.85 e 4	12.5	0.0	1.00
8 8, \%	8 170727G1_9	12.5	1.67	1.93 e 4	1.93 e 4	12.5	0.0	1.00

Compound name: 13C5-PFHxA

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 22), Area * (IS Conc. / IS Area)
Curve type: RF

\cdots	\# Name	Std Conc ${ }^{\text {as }}$	RT	Resp	IS Resp	Conc.	\%Dev	RRF
1 . ${ }^{\text {anem }}$	1 170727G1_2	12.5	3.28	1.73 e 4	1.73 e 4	12.5	0.0	1.00
2 2-	2 170727G1_3	12.5	3.28	1.90e 4	1.90 e 4	12.5	0.0	1.00
text	3 170727G1_4	12.5	3.28	1.62 e 4	1.62 e 4	12.5	0.0	1.00
4.	4 170727G1_5	12.5	3.28	1.95 e 4	1.95 e 4	12.5	0.0	1.00
5 .	5 170727G1_6	12.5	3.28	1.70 e 4	1.70 e 4	12.5	0.0	1.00
6 -	6 170727G1_7	12.5	3.28	2.04 e 4	2.04 e 4	12.5	0.0	1.00
7.2	7 170727G1_8	12.5	3.28	1.64 e 4	1.64 e4	12.5	0.0	1.00
8×4	8 170727G1_9	12.5	3.28	1.70e4	1.70 e 4	12.5	0.0	1.00

Dataset:
U:IG1.PROIResults\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: 13C3-PFHxS

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 23), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Std Conc	R RT	Resp	IS Resp	Conc:	\%Dev \%	RRF
1, matam	1 170727G1_2	12.5	3.94	9.33 e 3	9.33 e 3	12.5	0.0	1.00
2 2,	2 170727G1_3	12.5	3.94	1.09 e 4	1.09 e 4	12.5	0.0	1.00
3	$3170727 \mathrm{G1}$-4	12.5	3.94	1.09 e 4	1.09 e 4	12.5	0.0	1.00
4 4, ymay	4 170727G1_5	1.2 .5	3.94	1.19 e 4	1.19 e 4	12.5	0.0	1.00
5 \% ${ }^{3}$	5 170727G1_6	12.5	3.94	1.07 e 4	1.07 e 4	12.5	0.0	1.00
6	6170727 G 1 -7	12.5	3.94	1.30 e 4	1.30 e 4	12.5	0.0	1.00
	7 170727G1_8	12.5	3.94	1.05 e 4	1.05 e 4	12.5	0.0	1.00
8 8,	8 170727G1_9	12.5	3.94	1.01 e 4	1.01 e 4	12.5	0.0	1.00

Compound name: 13C8-PFOA

Response Factor: 1

RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 24), Area * (IS Conc. / IS Area)
Curve type: RF

-	\# Name	- Std. Conc	RT	Resp	IS Resp	Conc.	\%Dev	RRF
	1 170727G1_2	12.5	4.23	5.56e3	5.56e3	12.5	0.0	1.00
2	$2170727 \mathrm{G1}$ _3	12.5	4.24	6.24 e 3	6.24 e3	12.5	0.0	1.00
3 -	3 170727G1_4	12.5	4.23	6.06e3	6.06 e 3	12.5	0.0	1.00
4 -	4 170727G1_5	12.5	4.23	6.19 e 3	6.19 e 3	12.5	0.0	1.00
5	$5170727 \mathrm{G1}$ 6	12.5	4.23	5.76 e 3	5.76 e 3	12.5	0.0	1.00
6 m W	6 170727G1_7	12.5	4.24	8.45e3	8.45 e 3	12.5	0.0	1.00
	7 170727G1_8	12.5	4.24	6.39 e 3	6.39 e 3	12.5	0.0	1.00
8 ctat	$8170727 \mathrm{G1}$-9	12.5	4.24	6.59e3	6.59 e 3	12.5	0.0	1.00

Dataset:
U:IG1.PRO\Resultsi2017\170727G11170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: 13C9-PFNA

Response Factor: 1
RRF SD: 4.19625e-017, Relative SD: $4.19625 \mathrm{e}-015$
Response type: Internal Std (Ref 25), Area* (IS Conc. / IS Area)
Curve type: RF

	\# Name	Std Conc	RT	Resp	IS Resp	Conc.	\%Dev -	RRF
1.	1 170727G1_2	12.5	4.57	5.69 e 3	5.69 e 3	12.5	0.0	1.00
2	2 170727G1_3	12.5	4.58	7.13e3	7.13 e 3	12.5	0.0	1.00
3×4	3 170727G1_4	12.5	4.58	7.07e3	7.07 e 3	12.5	0.0	1.00
4 -	$4170727 \mathrm{G1} 5$.	12.5	4.58	8.26 e 3	8.26 e 3	12.5	0.0	1.00
5 +4xter	5 170727G1_6	12.5	4.57	6.89e3	6.89 e 3	12.5	-0.0	1.00
6 \%twer	6 170727G1_7	12.5	4.58	9.28 e 3	9.28 e 3	12.5	0.0	1.00
7 - ${ }^{\text {atere}}$	7 170727G1_8	12.5	4.58	8.18e3	8.18 e 3	12.5	0.0	1.00
8	$8170727 \mathrm{G1}$ _9	12.5	4.57	8.82e3	8.82e3	12.5	0.0	1.00

Compound name: 13C4-PFOS

Response Factor: 1
RRF SD: 5.93439e-017, Relative SD: $5.93439 \mathrm{e}-015$
Response type: Internal Std (Ref 26), Area * (IS Conc. / IS Area)
Curve type: RF

Vista Analytical Laboratory Q2
Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:25 Pacific Daylight Time

Compound name: 13C6-PFDA

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 27), Area * (IS Conc. / IS Area)
Curve type: RF

Sumer	\# Name	Std. Conc	RT	Resp	IS Resp	Conc.	\%Dev	RRE
1.	1 170727G1_2	12.5	4.87	4.70e3	4.70 e 3	12.5	0.0	1.00
2 Le	2 170727G1_3	12.5	4.87	6.26 e3	6.26 e 3	12.5	0.0	1.00
3 Cm	3 170727G1_4	12.5	4.87	6.00 e 3	6.00 e 3	12.5	0.0	1.00
4 4	4 170727G1_5	12.5	4.87	7.21e3	7.21 e 3	12.5	0.0	1.00
5 .	5 170727G1_6	12.5	4.87	6.64 e 3	6.64 e 3	12.5	0.0	1.00
6	6 170727G1_7	12.5	4.87	7.25e3	7.25 e 3	12.5	0.0	1.00
$7{ }^{2}$	7 170727G1_8	12.5	4.87	7.73 e 3	7.73 e 3	12.5	0.0	1.00
88	8 170727G1_9	12.5	4.87	8.08 e 3	8.08 e 3	12.5	0.0	1.00

Vista Analytical Laboratory VG-11

Dataset:	Untitled
Last Altered:	Thursday, July 27, 2017 15:00:56 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 15:01:11 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
Compound name: PFBA

		Acq.Date	Acq.Time
-xtal170727G1_1	IPA	27-Jul-17	11:32:09
$2.170727 \mathrm{G1}$ 2	ST170727G1-1 PFC CS-2 17G2714	27-Jul-17	11:44:22
3 - - 170727G1_3	ST170727G1-2 PFC CS-1 17G2715	27-Jul-17	11:56:54
	ST170727G1-3 PFC CS0 17G2716	27-Jul-17	12:09:31
5 W	ST170727G1-4 PFC CS1 17G2717	27-Jul-17	12:21:58
$6.4170727 \mathrm{G1}$ 6	ST170727G1-5 PFC CS2 17G2718	27-Jul-17	12:34:32
14: ${ }^{\text {b }}$ 170727G1_7	ST170727G1-6 PFC CS3 17G2719	27-Jul-17	12:47:11
-170727G1_8	ST170727G1-7 PFC CS4 17G2720	27-Jul-17	12:59:35
-170727G1_9	ST170727G1-8 PFC CS5 17G2721	27-Jul-17	13:12:08
10 -	IPA	27-Jul-17	13:24:41
11 - 170727G1_11	SS170727G1-1 PFC SSS 17G2713	27-Jul-17	13:37:14
$12 \times 170727 \mathrm{G} 1$ _12	IPA	27-Jul-17	13:49:43

Dataset:
 U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered:
Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:38 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

 Calibration: U:IG1.PROICurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06Compound name: PFBA
Correlation coefficient: $\mathrm{r}=0.999824, \mathrm{r}^{\wedge} 2=0.999647$
Calibration curve: 0.747533 * $x+0.048007$
Response type: Internal Std (Ref 11), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered:
Thursday, July 27, 2017 14:48:06 Pacific Daylight Time

Printed: Thursday, July 27, 2017 14:52:38 Pacific Daylight Time

Compound name: PFPeA

Correlation coefficient: $\mathrm{r}=0.999667, \mathrm{r}^{\wedge} 2=0.999334$
Calibration curve: 1.10054 * $x+0.0486908$
Response type: Internal Std (Ref 13), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:38 Pacific Daylight Time

Compound name: PFBS
Correlation coefficient: $\mathrm{r}=0.999365, \mathrm{r}^{\wedge} 2=0.998731$
Calibration curve: 1.60766 * x + 0.593256
Response type: Internal Std (Ref 12), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed Thursday, July 27, 2017 14:52:38 Pacific Daylight Time

Compound name: PFHxA
Correlation coefficient: $r=0.999065, r^{\wedge} 2=0.998131$
Calibration curve: 1.89981 * x + 0.153363
Response type: Internal Std (Ref 14), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Quantify Calibration Report

Vista Analytical Laboratory Q1
Dataset:
U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:38 Pacific Daylight Time

Compound name: PFHpA
Correlation coefficient: $\mathrm{r}=0.999666, \mathrm{r}^{\wedge} 2=0.999332$
Calibration curve: 1.94658 * $x+0.2548$
Response type: Internal Std (Ref 15), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Quantify Calibration Report MassLynx 4.1 SCN815

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered:
Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed:
Thursday, July 27, 2017 14:52:38 Pacific Daylight Time

Compound name: PFHxS

Correlation coefficient: $\mathrm{r}=0.999617, \mathrm{r}^{\wedge} 2=0.999233$
Calibration curve: 1.77848 * x + 0.109682
Response type: Internal Std (Ref 16), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered:
Thursday, July 27, 2017 14:48:06 Pacific Daylight Time

Printed:
Thursday, July 27, 2017 14:52:38 Pacific Daylight Time

Compound name: PFOA

Correlation coefficient: $\mathrm{r}=0.998786, \mathrm{r}^{\wedge} 2=0.997574$
Calibration curve: 0.797511 * $x+0.0924786$
Response type: Internal Std (Ref 17), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:38 Pacific Daylight Time

Compound name: PFNA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999639$
Calibration curve: $-0.00237877^{*} x^{\wedge} 2+2.32641^{*} x+0.0752635$
Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Quantify Calibration Report
 Vista Analytical Laboratory Q1

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:38 Pacific Daylight Time

Compound name: PFOS

Correlation coefficient: $\mathrm{r}=0.999145, \mathrm{r}^{\wedge} 2=0.998292$
Calibration curve: 0.470087 * x + 0.0287104
Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:38 Pacific Daylight Time

Compound name: PFDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999346$
Calibration curve: -0.000179878 * $x^{\wedge} 2+0.198072$ * $x+0.02746$
Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17
Calibration: U:IG1.PROICurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
ID: ST170727G1-1 PFC CS-2 17G2714, Description: PFC CS-2 17G2714 A, Name: 170727G1_2, Date: 27-Jul-2017, Time: 11:44:22, Instrument: , Lab: , User:

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-1 PFC CS-2 17G2714, Description: PFC CS-2 17G2714 A, Name: 170727G1_2, Date: 27-Jul-2017, Time: 11:44:22, Instrument: , Lab: , User:

Total PFBS

Total PFBS
170727G1_2
100

13C3-PFBS

PFHxA

170727G1_2
100

13 C 2 -PFHXA
$170727 \mathrm{G} 1 _2$
100

Dataset:

U:IG1.PROIResults\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-1 PFC CS-2 17G2714, Description: PFC CS-2 17G2714 A, Name: 170727G1_2, Date: 27-Jul-2017, Time: 11:44:22, Instrument: , Lab: , User:

PFHpA

13C4-PFHpA

Total PFHxS

1802-PFHxS
$170727 \mathrm{G} 1 _2$
100

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered:
Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-1 PFC CS-2 17G2714, Description: PFC CS-2 17G2714 A, Name: 170727G1_2, Date: 27-Jul-2017, Time: 11:44:22, Instrument: , Lab: , User:

Dataset:
U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-1 PFC CS-2 17G2714, Description: PFC CS-2 17G2714 A, Name: 170727G1_2, Date: 27-Jul-2017, Time: 11:44:22, Instrument: , Lab: , User:

13C2-PFDA

Dataset:
 U:IG1.PRO\Resultsi2017\170727G1\170727G1-CRV.qld

Last Altered:
Printed:
Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-1 PFC CS-2 17G2714, Description: PFC CS-2 17G2714 A, Name: 170727G1_2, Date: 27-Jul-2017, Time: 11:44:22, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:IG1.PROIResults\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-1 PFC CS-2 17G2714, Description: PFC CS-2 17G2714 A, Name: 170727G1_2, Date: 27-Jul-2017, Time: 11:44:22, Instrument: , Lab: , User:

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-2 PFC CS-1 17G2715, Description: PFC CS-1 17G2715 A, Name: 170727G1_3, Date: 27-Jul-2017, Time: 11:56:54, Instrument: , Lab: , User:

Datase
U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-2 PFC CS-1 17G2715, Description: PFC CS-1 17G2715 A, Name: 170727G1_3, Date: 27-Jul-2017, Time: 11:56:54, Instrument: , Lab: , User:

13C3-PFBS

PFHxA

13C2-PFHxA

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-2 PFC CS-1 17G2715, Description: PFC CS-1 17G2715 A, Name: 170727G1_3, Date: 27-Jul-2017, Time: 11:56:54, Instrument: , Lab: , User:

PFHpA

13C4-PFHpA

1802-PFHxS

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-2 PFC CS-1 17G2715, Description: PFC CS-1 17G2715 A, Name: 170727G1_3, Date: 27-Jul-2017, Time: 11:56:54, Instrument: , Lab: , User:

13C2-PFOA

Total PFOS

13C8-PFOS

Vista Analytical Laboratory Q1
Dataset: U:IG1.PROIResultsl2017\170727G11170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-2 PFC CS-1 17G2715, Description: PFC CS-1 17 G2715 A, Name: 170727G1_3, Date: 27-Jul-2017, Time: 11:56:54, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170727G11170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-2 PFC CS-1 17G2715, Description: PFC CS-1 17G2715 A, Name: 170727G1_3, Date: 27-Jul-2017, Time: 11:56:54, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\20171170727G11170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-2 PFC CS-1 17G2715, Description: PFC CS-1 17G2715 A, Name: 170727G1_3, Date: 27-Jul-2017, Time: 11:56:54, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
$\begin{array}{ll}\text { Last Altered: } & \text { Thursday, July 27, } 2017 \text { 14:48:06 Pacific Daylight Time } \\ \text { Printed: } & \text { Thursday, July 27, } 2017 \text { 14:52.56 Pacific Daylight Time }\end{array}$
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-3 PFC CS0 17G2716, Description: PFC CS0 17G2716 A, Name: 170727G1_4, Date: 27-Jul-2017, Time: 12:09:31, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-3 PFC CS0 17G2716, Description: PFC CS0 17G2716 A, Name: 170727G1_4, Date: 27-Jul-2017, Time: 12:09:31, Instrument: , Lab: , User:

Total PFBS

 13C3-PFBS

PFHxA

13C2-PFHxA

Dataset:
 U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-3 PFC CS0 17G2716, Description: PFC CS0 17G2716 A, Name: 170727G1_4, Date: 27-Jul-2017, Time: 12:09:31, Instrument: , Lab: , User:

13C4-PFHpA
170727G1_4

Total PFHxS

1802-PFHxS

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-3 PFC CS0 17G2716, Description: PFC CS0 17G2716 A, Name: 170727G1_4, Date: 27-Jul-2017, Time: 12:09:31, Instrument: , Lab: , User:

Total PFOA
170727G1_4

13C8-PFOS

Last Altered:
Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-3 PFC CS0 17G2716, Description: PFC CS0 17G2716 A, Name: 170727G1_4, Date: 27-Jul-2017, Time: 12:09:31, Instrument: , Lab: , User:

13C5-PFNA

13C2-PFDA

170727G1_4		F6:MRM of 4 channels,ES-
100	13C2-PFDA	$514.8>469.7$
	4.87	$3.804 \mathrm{e}+005$

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-3 PFC CS0 17G2716, Description: PFC CS0 17G2716 A, Name: 170727G1_4, Date: 27-Jul-2017, Time: 12:09:31, Instrument: , Lab: , User:

13C3-PFHxS

13C4-PFOS

| $170727 G 1 _4$ | F5:MRM of 12 channels,ES- |
| :--- | :---: | :---: |
| 100 | $503.0>79.9$ |
| | 4.64 |
| | 7.35 e 3 |

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-3 PFC CS0 17G2716, Description: PFC CS0 17G2716 A, Name: 170727G1_4, Date: 27-Jul-2017, Time: 12:09:31, Instrument: , Lab: , User:

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-4 PFC CS1 17G2717, Description: PFC CS1 17G2717 A, Name: 170727G1_5, Date: 27-Jul-2017, Time: 12:21:58, Instrument: , Lab: , User:

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed:
Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-4 PFC CS1 17G2717, Description: PFC CS1 17 G2717 A, Name: 170727G1_5, Date: 27-Jul-2017, Time: 12:21:58, Instrument: , Lab: , User:

Total PFBS

13C3-PFBS
170727G1_5

PFHxA

13C2-PFHxA

Vista Analytical Laboratory Q1
Dataset:
U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered:
Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-4 PFC CS1 17G2717, Description: PFC CS1 17G2717 A, Name: 170727G1_5, Date: 27-Jul-2017, Time: 12:21:58, Instrument: , Lab: , User:

PFHpA

13C4-PFHpA
170727G1_5

Total PFHxS

1802-PFHxS

Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-4 PFC CS1 17G2717, Description: PFC CS1 17G2717 A, Name: 170727G1_5, Date: 27-Jul-2017, Time: 12:21:58, Instrument: , Lab: , User:

Total PFOA

13C2-PFOA

170727G1_5

Total PFOS

13C8-PFOS
\(\left.\begin{array}{lcr}170727 \mathrm{G} 1 _5 \& 13C8-PFOS \& F5:MRM of 12 channels,ES-

100 \& 4.64\end{array}\right] \quad\)| $507.0>79.9$ | |
| ---: | :--- |
| | $2.753 \mathrm{e}+005$ |

Vista Analytical Laboratory Q1
Dataset:
U:IG1.PROIResults\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-4 PFC CS1 17G2717, Description: PFC CS1 17G2717 A, Name: 170727G1_5, Date: 27-Jul-2017, Time: 12:21:58, Instrument: , Lab: , User:

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered:
Thursday, July 27, 2017 14:48:06 Pacific Daylight Time

Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-4 PFC CS1 17G2717, Description: PFC CS1 17G2717 A, Name: 170727G1_5, Date: 27-Jul-2017, Time: 12:21:58, Instrument: , Lab: , User:

13C8-PFOA
170727G1_5

| 100 |
| :--- | :--- |

13C3-PFHxS

13C4-PFOS

170727G1_5
100
$\begin{array}{r}100 \\ \\ \\ \hline \\ \hline\end{array}$

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-4 PFC CS1 17G2717, Description: PFC CS1 17G2717 A, Name: 170727G1_5, Date: 27-Jul-2017, Time: 12:21:58, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-5 PFC CS2 17G2718, Description: PFC CS2 17G2718 A, Name: 170727G1_6, Date: 27-Jul-2017, Time: 12:34:32, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-5 PFC CS2 17G2718, Description: PFC CS2 17G2718 A, Name: 170727G1_6, Date: 27-Jul-2017, Time: 12:34:32, Instrument: , Lab: , User:

Total PFBS

 13C3-PFBS

\section*{PFHxA

13C2-PFHxA

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed:
Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-5 PFC CS2 17G2718, Description: PFC CS2 17G2718 A, Name: 170727G1_6, Date: 27-Jul-2017, Time: 12:34:32, Instrument: , Lab: , User:

13C4-PFHpA

170727G1_6

1802-PFHxS

Vista Analytical Laboratory Q1
Dataset: U:\G1.PROIResults\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-5 PFC CS2 17G2718, Description: PFC CS2 17G2718 A, Name: 170727G1_6, Date: 27-Jul-2017, Time: 12:34:32, Instrument: , Lab: , User:

Total PFOA

 13C2-PFOA

Total PFOS

13C8-PFOS

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-5 PFC CS2 17G2718, Description: PFC CS2 17G2718 A, Name: 170727G1_6, Date: 27-Jul-2017, Time: 12:34:32, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1

Dataset:
 U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-5 PFC CS2 17G2718, Description: PFC CS2 17G2718 A, Name: 170727G1_6, Date: 27-Jul-2017, Time: 12:34:32, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-5 PFC CS2 17G2718, Description: PFC CS2 17G2718 A, Name: 170727G1_6, Date: 27-Jul-2017, Time: 12:34:32, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-6 PFC CS3 17G2719, Description: PFC CS3 17G2719 A, Name: 170727G1_7, Date: 27-Jul-2017, Time: 12:47:11, Instrument: , Lab: , User:

Dataset:
 U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered:
Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-6 PFC CS3 17G2719, Description: PFC CS3 17G2719 A, Name: 170727G1_7, Date: 27-Jul-2017, Time: 12:47:11, Instrument: , Lab: , User:

Total PFBS

13C3-PFBS

| $170727 \mathrm{G} 1 _7$ |
| :--- | :--- | :--- |
| 100 |

PFHxA

170727G1_7 | F3:MRM of 9 channels,ES- |
| ---: |
| $312.9>268.9$ |
| $4.232 e+005$ |

13C2-PFHxA

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-6 PFC CS3 17G2719, Description: PFC CS3 17G2719 A, Name: 170727G1_7, Date: 27-Jul-2017, Time: 12:47:11, Instrument: , Lab: , User:

PFHpA

13C4-PFHpA

Total PFHxS

1802-PFHxS

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\ResultsL2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-6 PFC CS3 17G2719, Description: PFC CS3 17 G2719 A, Name: 170727G1_7, Date: 27-Jul-2017, Time: 12:47:11, Instrument: , Lab: , User:

Total PFOA
170727 G 1 _7
100

13C2-PFOA

13C8-PFOS

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-6 PFC CS3 17G2719, Description: PFC CS3 17G2719 A, Name: 170727G1_7, Date: 27-Jul-2017, Time: 12:47:11, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-6 PFC CS3 17G2719, Description: PFC CS3 17G2719 A, Name: 170727G1_7, Date: 27-Jul-2017, Time: 12:47:11, Instrument: , Lab: , User:

13C5-PFHxA

 13C8-PFOA

13C3-PFHxS

13C4-PFOS

170727G1_7	13C4-PFOS	F5:MRM of 12 channels,ES-
100	4.64	$503.0>79.9$
	$3.141 \mathrm{e}+005$	

| Quantify Sample Report
 Vista Analytical Laboratory Q1 | MassLynx 4.1 SCN815 |
| :--- | :--- | :--- |
| Dataset: | U:IG1.PROIResults\|20171170727G11170727G1-CRV.qld |
| Last Altered: | Thursday, July 27, 2017 14:48:06 Pacific Daylight Time |
| Printed: | Thursday, July 27, 2017 14:52:56 Pacific Daylight Time |

ID: ST170727G1-6 PFC CS3 17G2719, Description: PFC CS3 17G2719 A, Name: 170727G1_7, Date: 27-Jul-2017, Time: 12:47:11, Instrument: , Lab: , User:

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered:
Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-7 PFC CS4 17G2720, Description: PFC CS4 17G2720 A, Name: 170727G1_8, Date: 27-Jul-2017, Time: 12:59:35, Instrument: , Lab: , User:

Thursday, July 27, 2017 14:48:06 Pacific Daylight Time

ID: ST170727G1-7 PFC CS4 17G2720, Description: PFC CS4 17G2720 A, Name: 170727G1_8, Date: 27-Jul-2017, Time: 12:59:35, Instrument: , Lab: , User:

13C3-PFBS

PFHxA

13C2-PFHxA

$170727 \mathrm{G} 1 _8$		F3:MRM of 9 channels,ES-
100	13C2-PFHxA	$315.0>269.8$
	3.28	$2.232 \mathrm{e}+005$

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed:
Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-7 PFC CS4 17G2720, Description: PFC CS4 17G2720 A, Name: 170727G1_8, Date: 27-Jul-2017, Time: 12:59:35, Instrument: , Lab: , User:

PFHpA

13C4-PFHpA
170727G1_8

Total PFHxS

1802-PFHxS

Dataset: U:IG1.PROIResults\2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time

Printed:

 Thursday, July 27, 2017 14:52:56 Pacific Daylight TimeID: ST170727G1-7 PFC CS4 17G2720, Description: PFC CS4 17G2720 A, Name: 170727G1_8, Date: 27-Jul-2017, Time: 12:59:35, Instrument: , Lab: , User:

Total PFOA

Total PFOA
170727G1_8
100

13C2-PFOA

170727G1_8
100

Total PFOS

13C8-PFOS

| Quantify Sample Report |
| :--- | :--- |
| Vista Analytical Laboratory Q1 |

Dataset:	U:IG1.PROIResults\|20171170727G11170727G1-CRV.qld
Last Altered:	Thursday, July 27, 2017
14:48:06 Pacific Daylight Time	
Printed:	Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-7 PFC CS4 17G2720, Description: PFC CS4 17G2720 A, Name: 170727G1_8, Date: 27-Jul-2017, Time: 12:59:35, Instrument: , Lab: , User:

Dataset:	U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered:	Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-7 PFC CS4 17G2720, Description: PFC CS4 17G2720 A, Name: 170727G1_8, Date: 27-Jul-2017, Time: 12:59:35, Instrument: , Lab: , User:

Last Altered:	Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed:	Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-7 PFC CS4 17G2720, Description: PFC CS4 17G2720 A, Name: 170727G1_8, Date: 27-Jul-2017, Time: 12:59:35, Instrument: , Lab: , User:

Dataset:
U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld
Last Altered:
Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-8 PFC CS5 17G2721, Description: PFC CS5 17G2721 A, Name: 170727G1_9, Date: 27-Jul-2017, Time: 13:12:08, Instrument: , Lab: , User:

13C3-PFBA

170727G1_9

PFPeA

13C3-PFPeA

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time

Printed:

 Thursday, July 27, 2017 14:52:56 Pacific Daylight TimeID: ST170727G1-8 PFC CS5 17G2721, Description: PFC CS5 17G2721 A, Name: 170727G1_9, Date: 27-Jul-2017, Time: 13:12:08, Instrument: , Lab: , User:

13C3-PFBS

170727G1_9

PFHxA

F3:MRM of 9 channels,ES-
$312.9>268.9$

$3.080 e^{2}+006$$\quad$| FFHxA |
| ---: |
| $170727 \mathrm{G} 1 _9$ |
| 100 |

13C2-PFHxA

$170727 G 1 _9$	F3:MRM of 9 channels,ES:	
$100-$	$315.0>269.8$	
	3.28	$2.004 \mathrm{e}+005$

ID: ST170727G1-8 PFC CS5 17G2721, Description: PFC CS5 17G2721 A, Name: 170727G1_9, Date: 27-Jul-2017, Time: 13:12:08, Instrument: , Lab: , User:

Dataset:
 U:IG1.PRO\Results\2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-8 PFC CS5 17G2721, Description: PFC CS5 17G2721 A, Name: 170727G1_9, Date: 27-Jul-2017, Time: 13:12:08, Instrument: , Lab: , User:

Total PFOA

13C2-PFOA

170727G1_9

Total PFOS

13C8-PFOS

Vista Analytical Laboratory Q1
Dataset: U:IG1.PROIResults\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-8 PFC CS5 17G2721, Description: PFC CS5 17G2721 A, Name: 170727G1_9, Date: 27-Jul-2017, Time: 13:12:08, Instrument: , Lab: , User:
PFNA
170727G1_9
100
F5:MRM of 12 channels,ES-
$463.0>418.8$

$4.292 \mathrm{e}+006$$\quad$| PFNA |
| ---: |

PFDA

13C2-PFDA

Vista Analytical Laboratory Q1
Dataset: U:IG1.PROIResults\2017\170727G1\170727G1-CRV.qld
Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST170727G1-8 PFC CS5 17G2721, Description: PFC CS5 17G2721 A, Name: 170727G1_9, Date: 27-Jul-2017, Time: 13:12:08, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1

Dataset: U:IG1.PRO\Resultsi2017\170727G1\170727G1-CRV.qld

Last Altered: Thursday, July 27, 2017 14:48:06 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:52:56 Pacific Daylight Time

ID: ST'170727G1-8 PFC CS5 17G2721, Description: PFC CS5 17G2721 A, Name: 170727G1_9, Date: 27-Jul-2017, Time: 13:12:08, Instrument: , Lab: , User:

Last Altered: Thursday, July 27, 2017 14:54:17 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:55:09 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06
Name: 170727G1_11, Date: 27-Jul-2017, Time: 13:37:14, ID: SS170727G1-1 PFC SSS 17G2713, Description: PFC SSS 17G2713

Last Altered: Thursday, July 27, 2017 14:54:17 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:54:55 Pacific Daylight Time

Method: U:IG1.prolMethDBIPFAS_14or16_2trans_0712.mdb 12 Jul 2017 13:38:17

Calibration: U:IG1.prolCurveDBIC18_VAL-PFC_Q1_7-27-17_L16_2Trans_A_NEW.cdb 27 Jul 2017 14:48:06

ID: SS170727G1-1 PFC SSS 17G2713, Description: PFC SSS 17G2713, Name: 170727G1_11, Date: 27-Jul-2017, Time: 13:37:14, Instrument: , Lab: , User:

13C3-PFBA

PFPeA

13C3-PFPeA

| 170727G1_11 | F3:MRM of 9 channels, ES- |
| :--- | :---: | ---: |
| 100 | $266.0>221.8$ |
| | 2.63 |

Dataset: U:IG1.PRO\Results\2017\170727G11170727G1-11.qld
Last Altered: Thursday, July 27, 2017 14:54:17 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:54:55 Pacific Daylight Time

ID: SS170727G1-1 PFC SSS 17G2713, Description: PFC SSS 17G2713, Name: 170727G1_11, Date: 27-Jul-2017, Time: 13:37:14, Instrument: , Lab: , User:

Total PFBS

Total PFBS
170727G1_11
100

13C3-PFBS

PFHxA

13C2-PFHxA

$170727 \mathrm{G} 1 _11$		F3:MRM of 9 channels, ES-
100	13C2-PFHxA	$315.0>269.8$
	3.29	$2.404 \mathrm{e}+005$

Dataset:

U:IG1.PROIResults\2017\170727G1\170727G1-11.qld
Last Altered:
Thursday, July 27, 2017 14:54:17 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:54:55 Pacific Daylight Time

ID: SS170727G1-1 PFC SSS 17G2713, Description: PFC SSS 17G2713, Name: 170727G1_11, Date: 27-Jul-2017, Time: 13:37:14, Instrument: , Lab: , User:

13C4-PFHpA

Total PFHxS

1802-PFHxS

$170727 \mathrm{G} 1 _11$	$18 \mathrm{O} 2-\mathrm{PFHxS}$		
100	3.95		
	4.53 e 3	\quad	F4:MRM of 7 channels, ES-
---:			

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-11.qld
Last Altered: Thursday, July 27, 2017 14:54:17 Pacific Daylight Time
Printed: \quad Thursday, July 27, 2017 14:54:55 Pacific Daylight Time

ID: SS170727G1-1 PFC SSS 17G2713, Description: PFC SSS 17G2713, Name: 170727G1_11, Date: 27-Jul-2017, Time: 13:37:14, Instrument: , Lab: , User:

Total PFOA

13C2-PFOA

Total PFOS

13C8-PFOS

Last Altered: Thursday, July 27, 2017 14:54:17 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:54:55 Pacific Daylight Time

ID: SS170727G1-1 PFC SSS 17G2713, Description: PFC SSS 17G2713, Name: 170727G1_11, Date: 27-Jul-2017, Time: 13:37:14, Instrument: , Lab: , User:

Vista Analytical Laboratory Q1
Dataset: U:\G1.PRO\Results\2017\170727G1\170727G1-11.qld
Last Altered: Thursday, July 27, 2017 14:54:17 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:54:55 Pacific Daylight Time

ID: SS170727G1-1 PFC SSS 17G2713, Description: PFC SSS 17G2713, Name: 170727G1_11, Date: 27-Jul-2017, Time: 13:37:14, Instrument: , Lab: , User:

13C8-PFOA

13C4-PFOS

170727G1_11	13C4-PFOS
100	4.64
	$7.78:$ MRM of 12 channels,ES-
	$503.0>79.9$
$2.822 \mathrm{e}+005$	

Dataset: U:IG1.PRO\Results\2017\170727G1\170727G1-11.qld
Last Altered: Thursday, July 27, 2017 14:54:17 Pacific Daylight Time
Printed: Thursday, July 27, 2017 14:54:55 Pacific Daylight Time

ID: SS170727G1-1 PFC SSS 17G2713, Description: PFC SSS 17G2713, Name: 170727G1_11, Date: 27-Jul-2017, Time: 13:37:14, Instrument: , Lab: , User:

"sys_sample_code","lab_anl_method_name","analysis_date","analysis_time","total_or_dissolved","column_number","t est_type","cas_rn","chemical_name",","result_value","result_error_delta","result_type_code","reportable_result","detect_ flag","lab_qualifiers","organic_yn","method_detection_limit","reporting_detection_limit","quantatation_limit","result_u nit","detection_limit_unit","tic_retention_time","result_comment","qc_original_conc","qc_spike_added","qc_spike_me asured","qc_spike_recovery","qc_dup_original_conc","qc_dup_spike_added","qc_dup_spike_measured","qc_dup_spik e_recovery","qc_rpd","qc_spike_lcl","qc_spike_ucl","qc_rpd_cl","qc_spike_status","qc_dup_spike_status","qc_rpd_sta tus"
"SB01-20170717","537_MOD","07/27/17","22:02","N","NA","000","375-73-
5","PFBS","","","TRG","Yes","N","U","Y","1.87","5.21","8.35","NG_L","NG_L","","","","","","","","","","","","","","" "" "" ""
"SB01-20170717","537_MOD","07/27/17","22:02","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID (PFOA)","","","TRG","Yes","N","U","Y","0.679","5.21","8.35","NG_L","NG_L","","","","","","","","","","","","","","", "" "" ""
"SB01-20170717","537_MOD","07/27/17","22:02","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","","","TRG","Yes","N","U","Y","0.842","5.21","8.35","NG_L","NG_L","","","","","","","","","","","","","","","","","" "SB01-20170717","537_MOD","07/27/17","22:02","N","NA","000","13C3-PFBS","13C3-
PFBS","96.8","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","96.8","96.8","","","","","","50","150","", "" "" ""
"SB01-20170717","537_MOD","07/27/17","22:02","N","NA","000","13C2-PFOA","13C2-
PFOA","116","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","116","116","","","","","","50","150",""," ","","
"SB01-20170717","537_MOD","07/27/17","22:02","N","NA","000","13C8-PFOS","13C8-
PFOS","97.2","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","97.2","97.2","","","","","","50","150","", "" "" ""
"EB01-20170717","537 MOD","07/27/17","22:14","N","NA","000","375-73-
5","PFBS","","","TRG","Yes","N","U","Y","2.29","6.41","10.3","NG_L","NG_L","","","","","","","","","","","","","","" "" "" ""
"EB01-20170717","537_MOD","07/27/17","22:14","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID (PFOA)","","","TRG","Yes","N","U","Y","0.835","6.41","10.3","NG_L","NG_L","","","","","","","","","","","","","","", "" "" ""
"EB01-20170717","537_MOD","07/27/17","22:14","N","NA","000","1763-23-
1","HEPTADECAFLUÖROACTANESULFONIC ACID SOLUTION
","","","TRG","Yes","N","U","Y","1.03","6.41","10.3","NG_L","NG_L","","","","","","","","","","","","","","","","","" "EB01-20170717","537_MOD","07/27/17","22:14","N","NA","000","13C3-PFBS","13C3-
PFBS","92.7","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","92.7","92.7","","","","","","50","150","", "" "" ""
"EB01-20170717","537_MOD","07/27/17","22:14","N","NA","000","13C2-PFOA","13C2-
PFOA","126","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","126","126","","","","","","50","150",""," ","",""
"EB01-20170717","537_MOD","07/27/17","22:14","N","NA","000","13C8-PFOS","13C8-
PFOS","103","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","103","103","","","",","","50","150","","" ,"",""
"OUA1-MW08-20170717","537_MOD","08/01/17","01:57","N","NA","DL1","375-73-
5","PFBS","1930","","TRG","Yes","Y","D","Y","9.49","26.5","42.4","NG_L","NG_L","","","","","","","","","","","","", "" "" "" "" ""
"OUA1-MW08-20170717","537_MOD","07/27/17","22:27","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
(PFOA)","71.5","","TRG","Yes","Y","","Y","0.690","5.30","8.48","NG_L","NG_L","","","","","","","","","","","","","", "" "" "" ""
"OUA1-MW08-20170717","537_MOD","07/27/17","22:27","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","14.1","","TRG","Yes","Y",",",Y","0.856","5.30","8.48","NG_L","NG_L",","","","",","","","",","","","",","","","",
"OUA1-MW08-20170717","537_MOD","08/01/17","01:57","N","NA","DL1","13C3-PFBS","13C3-
PFBS","98.4","","IS","Yes","Y","D","Y","",","","PCT_REC","",","","","100","98.4","98.4","","",","","","50","150"," ","","","
"OUA1-MW08-20170717","537 MOD","07/27/17","22:27","N","NA","000","13C2-PFOA","13C2-
PFOA","128","","IS","Yes","Y","","Y","",","","PCT_REC","",","","","100","128","128","","",","","","50","150",""," " "" ""
"OUA1-MW08-20170717","537_MOD","07/27/17","22:27","N","NA","000","13C8-PFOS","13C8-
PFOS","108","","IS","Yes","Y","","Y","","",","PCT_REC","",","","","100","108","108","","","",","","50","150","","" "" ""
"OUA1-HS03-20170717","537_MOD","08/01/17","02:09","N","NA","DL1","375-73-
5","PFBS","745","","TRG","Yes","Y","D","Y","9.51","26.5","42.5","NG_L","NG_L","",","","","",","","","",","",""," " "" "" "" ""
"OUA1-HS03-20170717","537_MOD","07/31/17","23:38","N","NA","000","335-67-1","PERFLUOROOCTANOIC
ACID
(PFOA)","25.6","","TRG","Yes","Y","","Y","0.692","5.30","8.50","NG_L","NG_L","",","","","",","","","",","","","",

"OUA1-HS03-20170717","537_MOD","07/31/17","23:38","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","2.80","","TRG","Yes","Y","J","Y","0.858","5.30","8.50","NG_L","NG_L","","",","","",","","","","","","",","","","" ""
"OUA1-HS03-20170717","537_MOD","08/01/17","02:09","N","NA","DL1","13C3-PFBS","13C3-
PFBS","128","","IS","Yes","Y","D","Y","",","","PCT_REC","",","","","100","128","128","","","",","","50","150","", "" "" ""
"OUA1-HS03-20170717","537 MOD","07/31/17","23:38","N","NA","000","13C2-PFOA","13C2-
PFOA","125","","IS","Yes","Y","","Y","",","","PCT_REC","",","","","100","125","125","","",","","","50","150",""," ","",""
"OUA1-HS03-20170717","537_MOD","07/31/17","23:38","N","NA","000","13C8-PFOS","13C8-
PFOS","87.4","","IS","Yes","Y","","Y","",","","PCT_REC","",","","","100","87.4","87.4","",","","","","50","150","", "" "" ""
"OUA1-HS03A-20170717","537_MOD","08/01/17","02:47","N","NA","DL1","375-73-
5","PFBS","915","","TRG","Yes","Y","D","Y","9.32","26.0","41.6","NG_L","NG_L","",","","",","","","",","","",""," ","","","""
"OUA1-HS03A-20170717","537_MOD","07/31/17","23:51","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
(PFOA)","22.3","","TRG","Yes","Y","","Y","0.678","5.21","8.33","NG_L","NG_L","",","","","",","","","",","","","", "" "" "" ""
"OUA1-HS03A-20170717","537_MOD","07/31/17","23:51","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","2.41","","TRG","Yes","Y","J","Y","0.840","5.21","8.33","NG_L","NG_L","","",","","",","","",","","","",","","","" ""
"OUA1-HS03A-20170717","537 MOD","08/01/17","02:47","N","NA","DL1","13C3-PFBS","13C3-
PFBS","111","","IS","Yes","Y","D","Y",","","","PCT_REC","",","",",",100","111","111","","",","","","50","150","", "" "" ""
"OUA1-HS03A-20170717","537_MOD","07/31/17","23:51","N","NA","000","13C2-PFOA","13C2-
PFOA","127","","IS","Yes","Y","","Y",","","","PCT_REC","","",","","100","127","127","","",","",","50","150",""," " "" ""
"OUA1-HS03A-20170717","537 MOD","07/31/17","23:51","N","NA","000","13C8-PFOS","13C8-
PFOS","96.7","","IS","Yes","Y",","Y","",","","PCT_REC","","",","","100","96.7","96.7","",","","","","50","150","", "'" "'" "'"
"B7G0106-BLK1","537_MOD","07/27/17","20:34","N","NA","000","375-73-
5","PFBS","","","TRG","Yes","N","U","Y","1.79","5.00","8.00","NG_L","NG_L","","",","","","",","","","",","","","" "","",""
"B7G0106-BLK1","537_MOD","07/27/17","20:34","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
(PFOA)",","","TRG","Yes","N","U","Y","0.651","5.00","8.00","NG_L","NG_L","","",","","",","","","",","","","","", "" "" ""
"B7G0106-BLK1","537_MOD","07/27/17","20:34","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","","","TRG","Yes","N","U","Y","0.807","5.00","8.00","NG L","NG L","","","",","","","","",","","","","","","","","" "B7G0106-BLK1","537 MOD","07/27/17","20:34","N","NA","000","13C3-PFBS","13C3-
PFBS","85.0","","IS","Yes","Y","","Y","",","","PCT_REC","","",","","100","85.0","85.0","","",","","","50","150","", " 17 " " " 17
"B7G0106-BLK1","537_MOD","07/27/17","20:34","N","NA","000","13C2-PFOA","13C2-
PFOA","107","","IS","Yes","Y","","Y","",","","PCT_REC",","","","","100","107","107","",","","",","50","150",""," ","",""
"B7G0106-BLK1","537_MOD","07/27/17","20:34","N","NA","000","13C8-PFOS","13C8-
PFOS","101",","IS","Yes","Y","","Y","","",",",PCT_REC","","","",","100","101","101","",","","",","50","150","","" "" ""
"B7G0106-BS1","537_MOD","07/27/17","17:26","N","NA","000","375-73-
5","PFBS","77.8","","TRG","Yes","Y","","Y","1.79","5.00","8.00","NG_L","NG_L","",","","80.0","77.8","97.2","","", "","","","70","130","","","",""
"B7G0106-BS1","537_MOD","07/27/17","17:26","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID (PFOA)","84.3","","TRG","Yes","Y","","Y","0.651","5.00","8.00","NG_L","NG_L","",","","80.0","84.3","105","",""," ","","","70","130","","","",""
"B7G0106-BS1","537_MOD","07/27/17","17:26","N","NA","000","1763-23-

1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION

","76.5","","TRG","Yes","Y",",""Y","0.807","5.00","8.00","NG_L","NG_L","",","","80.0","76.5","95.6","",","","","", "70","130","","","",""
"B7G0106-BS1","537_MOD","07/27/17","17:26","N","NA","000","13C3-PFBS","13C3-
PFBS","99.6","","IS","Yes","Y","","Y",","","","PCT_REC","",","","","100","99.6","99.6","",","","","","50","150","", "" "" ""
"B7G0106-BS1","537_MOD","07/27/17","17:26","N","NA","000","13C2-PFOA","13C2-
PFOA","110","","IS","Yes","Y","","Y",","","","PCT_REC","",","","","100","110","110","","","",","","50","150",""," " "" ""
"B7G0106-BS1","537_MOD","07/27/17","17:26","N","NA","000","13C8-PFOS","13C8-
PFOS","106",","IS","Yes","Y","","Y","","","","PCT_REC","","","",","100","106","106","",","","","","50","150","","" """"
"B7G0106-MS2","537_MOD","08/01/17","02:21","N","NA","DL1","375-73-
5","PFBS","1020","","TRG","Yes","Y","D,
H","Y","9.60","26.7","42.9","NG_L","NG_L","",","745","85.8","1020","322","","","",","","70","130","","+","",""
"B7G0106-MS2","537_MOD","07/27/17","22:52","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID
(PFOA)","121","","TRG","Yes","Y","","Y","0.698","5.34","8.58","NG_L","NG_L","","","25.6","85.8","121","111","", "","","","","70","130","","","",""
"B7G0106-MS2","537_MOD","07/27/17","22:52","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","105","","TRG","Yes","Y","","Y","0.865","5.34","8.58","NG_L","NG_L","","","2.80","85.8","105","119","",","","", "","70","130","","","",""
"B7G0106-MS2","537_MOD","08/01/17","02:21","N","NA","DL1","13C3-PFBS","13C3-
PFBS","123","","IS","Yes","Y","D","Y",","","","PCT_REC","",","",",",100","123","123","","",","","","50","150","", "" "" ""
"B7G0106-MS2","537_MOD","07/27/17","22:52","N","NA","000","13C2-PFOA","13C2-
PFOA","113","","IS","Yes","Y","","Y",","","","PCT_REC","",","","","100","113","113","",","","",","50","150",""," ","" ""
"B7G0106-MS2","537_MOD","07/27/17","22:52","N","NA","000","13C8-PFOS","13C8-
PFOS","90.1","","IS","Yes","Y",","Y","",","","PCT_REC","","",","","100","90.1","90.1","",","","","","50","150","", "" "" ""
"B7G0106-MSD2","537_MOD","08/01/17","02:34","N","NA","DL1","375-73-
5","PFBS","1030","","TRG","Yes","Y","D,

H","Y","8.95","25.0","40.0","NG_L","NG_L","","","745","80.0","1030","351","1020","80.0","1030","351","8.62","70" ,"130","25","","*",""
"B7G0106-MSD2","537_MOD","07/27/17","23:04","N","NA","000","335-67-1","PERFLUOROOCTANOIC ACID (PFOA)","111","","TRG","Yes","Y","","Y","0.651","5.00","8.00","NG_L","NG_L","","","25.6","80.0","111","107","1 21","80.0","111","107","3.67","70","130","25","","",""
"B7G0106-MSD2","537_MOD","07/27/17","23:04","N","NA","000","1763-23-
1","HEPTADECAFLUOROACTANESULFONIC ACID SOLUTION
","88.6","","TRG","Yes","Y","","Y","0.807","5.00","8.00","NG_L","NG_L","","","2.80","80.0","88.6","107","105","80 .0","88.6","107","10.6","70","130","25","","",""
"B7G0106-MSD2","537_MOD","08/01/17","02:34","N","NA","DL1","13C3-PFBS","13C3-
PFBS","113","","IS","Yes","Y","D","Y","","","","PCT_REC","","","","","100","113","113","","","","","","50","150","", "" "" ""
"B7Gُ $0106-M S D 2 ", " 537 _M O D ", " 07 / 27 / 17 ", " 23: 04 ", " N ", " N A ", " 000 ", " 13 C 2-P F O A ", " 13 C 2-$
PFOA","111","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","111","111","","","","","","50","150",""," ","",""
"B7G0106-MSD2","537_MOD","07/27/17","23:04","N","NA","000","13C8-PFOS","13C8-
PFOS","95.0","","IS","Yes","Y","","Y","","","","PCT_REC","","","","","100","95.0","95.0","","","","","","50","150","", "" "" ""
","","

LABORATORY DATA CONSULTANTS, INC.
2701 Loker Ave. West, Suite 220, Carlsbad, CA 92010 Bus: 760-827-1100 Fax: 760-827-1099

AMEC Foster Wheeler, Inc.
August 28, 2017
7376 SW Durham Road
Portland, OR 97224
Attn: Ms. Marie Bevier
SUBJECT: MCAS Yuma, Data Validation
Dear Ms. Bevier,
Enclosed are the final validation reports for the fractions listed below. These SDGs were received on August 15, 2017. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project \#39266:

SDG \#

280-99297-1, 280-99297-2/17G121, 1700893

Fraction

Volatiles, 1,4-Dioxane, Perfluorinated Alkyl Acids, Bromate, Wet Chemistry

The data validation was performed under Stage 2B \& 4 guidelines. The analyses were validated using the following documents, as applicable to each method:

- Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona, September 2015
- Final Addendum 1 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona, May 2013
- Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona, May 2013
- U.S. Department of Defense Quality Systems Manual for Environmental Laboratories, Version 5.0, July 2013
- USEPA, Contract Laboratory Program National Functional Guidelines for Superfund Organic Methods Data Review, August 2014
- USEPA, Contract Laboratory Program National Functional Guidelines for Inorganic Superfund Data Review, August 2014
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014

Please feel free to contact us if you have any questions.
Sincerely,

Pei Geng
Project Manager/Senior Chemist

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

LDC Report Date:
Parameters:
Validation Level:
Laboratory:

MCAS Yuma
August 21, 2017
Volatiles
Stage 2B \& 4
TestAmerica, Inc.

Sample Delivery Group (SDG): 280-99297-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
OUA1-MW08-20170717**	$280-99297-5^{* *}$	Water	$07 / 17 / 17$
OUA1-HS03-20170717	$280-99297-6$	Water	$07 / 17 / 17$
OUA1-HS03A-20170717	$280-99297-7$	Water	$07 / 17 / 17$
OUA1-HS03-20170717MS	$280-99297-6 M S$	Water	$07 / 17 / 17$
OUA1-HS03-20170717MSD	$280-99297-6 M S D$	Water	$07 / 17 / 17$

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.
All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.
The percent relative standard deviations (\%RSD) were less than or equal to 15.0% for all compounds.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.
The percent differences (\%D) were less than or equal to 20.0% for all compounds.
The percent differences (\%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Samples TB01-20170717 and TB02-20170717 were identified as trip blanks. No contaminants were found.

Sample EB01-20170717 was identified as an equipment blank. No contaminants were found.

Sample SB01-20170717 was identified as a source blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (\%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (\%R) were within QC limits.

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
OUA1-HS03-20170717MS/MSD (OUA1-HS03-20170717)	1,1-Dichloroethene	$27(\leq 20)$	NA	-

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits.

X. Field Duplicates

Samples OUA1-HS03-20170717 and OUA1-HS03A-20170717 were identified as field duplicates. No results were detected in any of the samples.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

All compound quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

All target compound identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

MCAS Yuma
Volatiles - Data Qualification Summary - SDG 280-99297-1
No Sample Data Qualified in this SDG
MCAS Yuma
Volatiles - Laboratory Blank Data Qualification Summary - SDG 280-99297-1
No Sample Data Qualified in this SDG
MCAS Yuma
Volatiles - Field Blank Data Qualification Summary - SDG 280-99297-1 No Sample Data Qualified in this SDG

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

$$
(H, Q Q Q, A A, S, C o n l y)
$$

Method: Volatiles (EPA SW 846 Method 8260B)

Validation Area	Yes	No	NA	Findings/Comments
1.Technical holding times :				
Were all technical holding times met?	,			
Was cooler temperature criteria met?				
1 GCMS instrument performance check				
Were the BFB performance results reviewed and found to be within the specified criteria?	7			
Were all samples analyzed within the 12 hour clock criteria?				
Ma. initial calibration				
Were all percent relative standard deviations (\%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990 ?				
Were all percent relative standard deviations (\%RSD) $\leq 30 \% / 15 \%$ and relative response factors (RRF) ≥ 0.05 ?				
IIIb. Intial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (\%D) $\leq 20 \%$ or percent recoveries (\%R) $80-120 \%$?				
V. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?				
Were all percent differences (\%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?				
Were all percent differences (\%D) $\leq 20 \%$ and relative response factors (RRF) \geq 0.05?				
V. Laboraton Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?				
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.				
VI Eield blanks				
Were field blanks were identified in this SDG?				
Were target compounds detected in the field blanks?				
VII. Surrogate spikes Were all surrogate percent recovery (\%R) within QC limits? If the percent recovery (\%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with $\%$ R outside of criteria?				

Validation Area	Yes	No	NA	Findings/Comments
VIII. Matrix spike/Matrix spike duplicatest				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water	/			
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (\%R) and the relative percent differences (RPD) within the QC limits?		7		
1X. Laboratory control samples				
Was an LCS analyzed for this SDG?	7			
Was an LCS analyzed per analytical batch?				
Were the LCS percent recoveries (\%R) and relative percent difference (RPD) within the QC limits?		\triangle		
Were field duplicate pairs identified in this SDG?	7			
Were target compounds detected in the field duplicates?		7		
X IHinternalstandards:				
Were internal standard area counts within -50% to $+100 \%$ of the associated calibration standard?	7			
Were retention times within ± 30 seconds of the associated calibration standard?				
XII Compound quantitation:				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
Xill. Target compound identification				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
XIV System perfermance				
System performance was found to be acceptable.				
XV: Overall assessment of ata				
Overall assessment of data was found to be acceptable.	7			

TARGET COMPOUND WORKSHEET
METHOD: VOA

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene	A2.
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane	B2.
C. Vinyl choride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane	C 2.
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene	D2.
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11	E2.
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFFF. Acrolein	F1. Freon 12	F2.
G. Carbon disulfide	GG. Xylenes, total	GGG. p-Isopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113	G2.
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114	H2.
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	11. 2-Nitropropane	12.
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide	J2.
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane	K2.
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane	L2.
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane	M2.
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane	N2.
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	000. 1,3,5-Trichlorobenzene	0000.1,1-Difluoroethane	O1. 3-Methylpentane	02.
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane	P2.
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane	Q2.
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3-Trimethylbutane	R2.
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane	S2.
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methylcyclohexane	T1. 2-Methylhexane	T2.
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal	U2.
V. Benzene	VV. Isopropylbenzene	WV. 4-Ethyltoluene	WVV. Methyl methacrylate	V1. 2-Methylnaphthalene	V2.
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWW. Ethyl methacrylate	W1. Methanol	W2.
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene	X2.
Y. 4-Methyl-2-pentanone	YY. n-Propyibenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1.	Y2.
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	Z777. Pentachloroethane	Z1.	Z2.

VALIDATION FINDINGS WORKSHEET Page: 1 of 1 Matrix Spike/Matrix Spike Duplicates

Reviewer: JVG 2nd Reviewer:

METHOD : GC/MS VOA (EPA SW 846 Method 8260B)
Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".
YN N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.
Was a MS/MSD analyzed every 20 samples of each matrix?
Were the MS/MSD percent recoveries (\%R) and the relative percent differences (RPD) within the QC limits?

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: 1 of 1
Reviewer: \qquad 2nd Reviewer: \qquad

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (\%RSD) were recalculated for the compounds identified below using the following calculations:

$R R F=\left(A_{x}\right)\left(C_{i s}\right) /\left(A_{i s}\right)\left(C_{x}\right)$	$A_{x}=$ Area of Compound	$A_{i s}=$ Area of associated internal standard
average $R R F=$ sum of the RRFs/number of standards	$C_{x}=$ Concentration of compound	$C_{\text {is }}=$ Concentration of internal standard
$\% R S D=100^{*}(S / X)$	$S=$ Standard deviation of the RRFs	$X=$ Mean of the RRFs

\#	Standard ID	Calibration Date	Compound (IS)		Recalculated RRF (RRF 10 std)	Reported Average RRF (Initial)	Recalculated Average RRF (Initial)	Reported \%RSD	Recalculated \%RSD
1	$\begin{gathered} \text { ICAL } \\ \text { GC MS9 } \end{gathered}$	6/29/2017	Trichloroethene (FB)	0.3768	0.3768	0.3789	0.3789	13.8	13.8
			Tetrachloroethene (CBZ)	1.5531	1.5531	1.5766	1.5767	14.2	14.2

VALIDATION FINDINGS WORKSHEET
Continuing Calibration Calculation Verification

Page: 1 of 1
Reviewer: JyG
2nd Reviewer: \qquad

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:
\% Difference $=100$ * (ave. RRF - RRF)/ave. RRF RRF $=(\mathrm{Ax})(\mathrm{Cis}) /(\mathrm{Ais})(\mathrm{Cx})$

Where:
ave. $R R F=$ initial calibration average RRF
RRF = continuing calibration RRF
$A x=$ Area of compound

Cx = Concentration of compound,
Ais = Area of associated internal standard Cis = Concentration of internal standard

\#	Standard ID	Calibration Date	Compound (IS)	Average RRF (Initial)	Reported RRF (CCV)	$\begin{gathered} \hline \text { Recalculated } \\ \text { RRF } \\ \text { (CCV) } \end{gathered}$	Reported \% D	$\begin{gathered} \text { Recalculated } \\ \% \mathrm{D} \end{gathered}$
1	MS9_8639	7/20/2017	Trichloroethene (FB)	0.3789	0.3660	0.3660	3.4	3.4
			Tetrachloroethene (CBZ)	1.577	1.424	1.424	9.7	9.7

Reviewer: JVG 2nd reviewer: \qquad

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent recoveries (\%R) of surrogates were recalculated for the compounds identified below using the following calculation:
\% Recovery: SF/SS * 100
Where: $S F=$ Surrogate Found SS = Surrogate Spiked

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane	11.0	11.2	102	102	0
1,2-Dichloroethane-d4			11.7	106	106
Toluene-d8			11.0	100	100
Bromofluorobenzene	γ	10.3	94	94	

Sample ID:

| | Surrogate
 Spiked | Surrogate
 Found | Percent
 Recovery
 Reported | Percent
 Recovery
 Recalculated |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Dibromofluoromethane | | | | |
| 1,2-Dichloroethane-d4 | | | | |
| Toluene-d8 | | | | |
| Bromofluorobenzene | | | | |

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane :					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

Sample ID:

| | Surrogate
 Spiked | Surrogate
 Found | Percent
 Recovery
 Reported | Percent
 Recovery
 Recalculated |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Dibromofluoromethane | | | | |
| 1,2-Dichloroethane-d4 | | | | |
| Toluene-d8 | | | | |
| Bromofluorobenzene | | | | |

Sample ID:

| | Surrogate
 Spiked | Surrogate
 Found | Percent
 Recovery
 Reported | Percent
 Recovery
 Recalculated | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Dibromofluoromethane | | | | | |
| Pe2-Dichloroethane-d4 | | | | | |
| Toluene-d8 | | | | | |
| Bromofluorobenzene | | | | | |

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification
\qquad

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)
The percent recoveries (\%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

\% Recovery $=100$ * (SSC - SC)/SA	Where:	SSC = Spiked sample concentration SA = Spike added	SC = Sample concentration
		MSC $=$ Matrix spike concentration	SDC $=$ Matrix spik

MS/MSD sample: \qquad

Compound	$\begin{gathered} \text { Spike } \\ \text { Added } \\ \text { (ug /L) } \end{gathered}$		$\begin{array}{\|c\|} \hline \text { Sample } \\ \text { concentration } \\ \text { (14) } / 4 \end{array}$	Spiked Sample Concentration (ug $/ \mathrm{L})$		Matrix Spike Percent Recovery		Matrix Spike Duplicate Percent Recovery		$\underset{\text { RPD }}{\text { MSIMSD }}$	
	ms	msn		Ms	MsD	Reported	Recalc	Renortad	Recale.	Reported	Recalculated
1,1-Dichloroethene	5.00	5.00	0	3.76	2.87	75	75	57	57	27	27
Trichloroethene	1	1	1	4.36	4.24	87	87	85	85	3	3
Benzene											
Toluene											
Chlorobenzene											

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification
\qquad JVG

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)
The percent recoveries (\%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

\% Recovery $=100 *$ SSC/SA	Where:SSC = Spiked sample concentration SA = Spike added
RPD = I LCSC - LCSDC $1 * 2 /($ LCSC + LCSDC $)$	LCSC = Laboraotry control sample concentration LCSDC = Laboratory control sample duplicate concentration

$$
\text { LCS ID: } \quad \text { LCS } 280-3815 T 8 / 4
$$

Compound	$\begin{gathered} \text { Spike } \\ \text { Added } \\ (U G / L) \end{gathered}$		Spiked Sample Concentration $1 \mathrm{ng} / 4$		Percent Recovery		1 CsD		LCs/ Csn			
			Percent Recovery	RPD								
	LCS	LCSD			LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
1,1-Dichloroethene	5.0	N	4.32	NA			86	86				-
Trichloroethene	\downarrow	1	4.54		91	91						
Benzene												
Toluene												
Chlorobenzene												

Comments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET
Sample Calculation Verification

Page: 1 of 1 Reviewer: JVG and reviewer:~

Example:
sample 10. 5 TEE

Conc. $=\frac{(39928)(12.5)(1139135)(0.378(9))}{(1)}$
$=11.57$
$\approx 212 \mathrm{ug} / \mathrm{L}$

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

LDC Report Date:
Parameters:
Validation Level:
Laboratory:

MCAS Yuma
August 21, 2017
1,4-Dioxane
Stage 2B \& 4
TestAmerica, Inc.

Sample Delivery Group (SDG): 280-99297-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
OUA1-MW08-20170717**	$280-99297-5^{* *}$	Water	$07 / 17 / 17$
OUA1-HS03-20170717	$280-99297-6$	Water	$07 / 17 / 17$
OUA1-HS03A-20170717	$280-99297-7$	Water	$07 / 17 / 17$
OUA1-HS03-20170717MS	$280-99297-6 M S$	Water	$07 / 17 / 17$
OUA1-HS03-20170717MSD	$280-99297-6 M S D$	Water	$07 / 17 / 17$

[^1]
Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
1,4-Dioxane by Environmental Protection Agency (EPA) SW 846 Method 8270C Low Level

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered not detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.
All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.
The percent relative standard deviations (\%RSD) were less than or equal to 15.0%.
Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.
The percent differences (\%D) were less than or equal to 20.0%.
The percent differences (\%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0%.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample EB01-20170717 was identified as an equipment blank. No contaminants were found.

Sample SB01-20170717 was identified as a source blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (\%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits.

X. Field Duplicates

Samples S1111111 and S2222222 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

Compound	Concentration (ug/L)		RPD (Limits)	Difference (Limits)	Flag	A or P
	OUA1-HS03-20170717	OUA1-HS03A-20170717				
1,4-Dioxane	0.78	0.25 U	-	0.53 (≤ 1.0)	-	-

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

All compound quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

All target compound identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

MCAS Yuma
1,4-Dioxane - Data Qualification Summary - SDG 280-99297-1
No Sample Data Qualified in this SDG
MCAS Yuma
1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG 280-99297-1 No Sample Data Qualified in this SDG

MCAS Yuma
1,4-Dioxane - Field Blank Data Qualification Summary - SDG 280-99297-1 No Sample Data Qualified in this SDG

LDC \#: 39266A2b
VALIDATION COMPLETENESS WORKSHEET
SDG \#: 280-99297-1
Stage 2B/4
Laboratory: Test America, Inc.
METHOD: GC/MS 1,4-Dioxane (EPA SW 846 Method 8270CLL)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Notes:

	MP 280-381173/1-A					

Method: Semivolatiles (EPA SW 846 Method 8270C)

Validation Area	Yes	No	NA	Findings/Comments
1. Technical holding times				
Were all technical holding times met?				
Was cooler temperature criteria met?.				
H. GCMM Instrument performance check 1 .				
Were the DFTPP performance results reviewed and found to be within the specified criteria?	,			
Were all samples analyzed within the 12 hour clock criteria?				
Mlla. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (\%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990 ?				
Were all percent relative standard deviations (\%RSD) $\leq 30 \% 15 \%$ and relative response factors (RRF) ≥ 0.05 ?				
Mlib. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each ICAL for each instrument?	7			
Were all percent difference (\%D) $\leq 20 \%$ or percent recoveries (\%R) 80-120\%?				
IV. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?				
Were all percent differences (\%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?				
Were all percent differences (\%D) $\leq 20 \%$ and relative response factors (RRF) ≥ 0.05 ?				
V. Laboratory Blanks				
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?				
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.				
V. Field blanks				
Were field blanks identified in this SDG?				
Were target compounds detected in the field blanks? VII. Surrogate spikes				
Were all surrogate \%R within QC limits?				
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm \%R?				
If any percent recoveries (\%R) was less than 10 percent, was a reanalysis performed to confirm $\%$ R?				

VALIDATION FINDINGS WORKSHEET

Field Duplicates
METHOD: GC MS 1,4-Dioxane (EPA SW 846 Method 8270C LL)
Y N NA Were field duplicate pairs identified in this SDG?
Y N NA Were target analytes detected in the field duplicate pairs?

Compound	Concentration (ug/L)		$\begin{aligned} & \text { RPD } \\ & (\leq 20 \%) \end{aligned}$	Difference (ug/L)	$\begin{aligned} & \text { Limits } \\ & \text { (sLOQ) } \end{aligned}$	Qualifications (Parent Only)
	4	5				
1,4-Dioxane	0.78	0.25 U		0.53	≤ 1.0	

V:IJosephinelFIELD DUPLICATESI39266A2b amec yuma.wpd

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: 1 of 1
Reviewer: JVG 2nd Reviewer: \qquad

METHOD: GC/MS1,4-Dioxane (EPA SW 846 Method 8270C-LL)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (\%RSD) were recalculated for the compounds identified below using the following calculations:

RRF $=(\mathrm{Ax})(\mathrm{Cis}) /(\mathrm{Ais})(\mathrm{Cx})$	Ax = Area of Compound	Ais = Area of associated internal standard
average $\mathrm{RRF}=$ sum of the RRFs/number of standards	$C x=$ Concentration of compound	Cis $=$ Concentration of internal standard
$\% R S D=100^{*}(\mathrm{~S} / \mathrm{X})$	$\mathrm{S}=$ Standard deviation of the RRFs	X $=$ Mean of the RRFs

$\left.\begin{array}{|c|c|c|c|c|c|c|c|c|c|}\hline & & & & \begin{array}{c}\text { Reported } \\ \text { RRF } \\ \#\end{array} & \text { Standard ID } & \begin{array}{c}\text { Calibration } \\ \text { Date }\end{array} & \text { Compound (IS) } & \begin{array}{c}\text { Recalculated } \\ \text { RRF } \\ \text { (RRF 1000 std) }\end{array} & \begin{array}{c}\text { Reported } \\ \text { (RRF 1000 std) }\end{array}\end{array} \begin{array}{c}\text { Recalculated } \\ \text { (Initial) }\end{array}\right)$

VALIDATION FINDINGS WORKSHEET Continuing Calibration Calculation Verification

Page: 1 of 1
Reviewer: JVG 2nd Reviewer: \qquad $\xrightarrow{\text { JVG }}$

METHOD: GC/MS1,4-Dioxane (EPA SW 846 Method 8270C-LL)
The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:
\% Difference $=100$ * (ave. RRF - RRF)/ave. RRF RRF = (Ax)(Cis)/(Ais)(Cx)

Where:
ave. $R R F=$ initial calibration average RRF RRF = continuing calibration RRF Ax = Area of compound

Cx = Concentration of compound,
Ais = Area of associated internal standard
Cis = Concentration of internal standard

\#	Standard ID	Calibration Date	Compound (IS)		Ave RRF	Reported RRF	Recalculated RRF	Reported \% D	$\begin{gathered} \text { Recalculated } \\ \% \mathrm{D} \end{gathered}$
1	G4_5635	7/21/2017	1,4-Dioxane	(1,4-DCB-d4)	0.5653	0.5091	0.5091	9.9	9.9
	SMS_G4								

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

\qquad

METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C)
The percent recoveries (\%R) of surrogates were recalculated for the compounds identified below using the following calculation:
\% Recovery: SF/SS * 100
Sample ID: \# 3

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl	2500	2144,3	86	86	
Terphenyl-d14					0
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					
Phenol-d5					
2-Fluorophenol					
2,4,6-Tribromophenol					
2-Chlorophenol-d4					
1,2-Dichlorobenzene-d4					

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates Results Verification

Page: 1 of 1
Reviewer: 2nd Reviewer \qquad $=\frac{\text { JVG }}{\text { a }}$

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

The percent recoveries (\%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:
$\%$ Recovery $=100$ * (SSC - SC)/SA

Where: \quad SSC = Spiked sample concentration SA = Spike added

MSC = Matrix spike concentration

SC = Sample concentation

MSDC = Matrix spike duplicate concentration

RPD $=1$ MSC - MSC $\left.\right|^{*}$ 2/(MSC + MSDC) MS/MSD samples: \qquad $6 / 7$

[^2] 10.0% of the recalculated results.

METHOD: GC/MS BNA (EPA SW 846 Method 8270C)

The percent recoveries (\%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

\% Recovery $=100$ * (SC/SA	Where: SSC = Spike concentration SA = Spike added	
RPD $=1$ LCSC - LCSDC $1 * 2 /($ LCSC + LCSDC $)$	LCSC = Laboratory control sample concentration	LCSDC = Laboratory control sample duplicate concentration
LCS/LCSD samples: LCS	280-381175/2-A	

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC \#:
VALIDATION FINDINGS WORKSHEET
Sample Calculation Verification
Page: 1 df_1
Reviewer: \qquad 2nd reviewer:
METHOD: GC/MS RNA (EPA SW 846 Method 8270C)

Were all reported results recalculated and verified for all level IV samples?
Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentration $=\left(A_{2}\right)\left(I_{S}\right)\left(V_{t}\right)(D F)(2.0)$
$\left(A_{i s}\right)($ RF $)\left(V_{0}\right)\left(V_{i}\right)(\% S)$
$A_{x}=$ Area of the characteristic ion (EICP) for the compound to be measured
$\mathrm{A}_{\text {is }} \quad=\quad$ Area of the characteristic ion (EICP) for the specific internal standard
$\mathrm{I}_{\mathrm{s}}=$ Amount of internal standard added in nanograms (ing)
$V_{0} \quad=\quad$ Volume or weight of sample extract in milliliters (ml) or grams (g).
$V_{1}=$ Volume of extract injected in microliters (ul)
$V_{t}=$ Volume of the concentrated extract in microliters (ul)
Vf $=$ Dilution Factor.
$\% \mathrm{~S}=$ Percent solids, applicable to soil and solid matrices only.
$2.0=$ Factor of 2 to account for GPC cleanup

Example:
Sample I.D. \qquad 19.Dioxme

$=11.14 \mathrm{ug} / \mathrm{L}$

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

LDC Report Date:
Parameters:
Validation Level:
Laboratory:

MCAS Yuma
August 23, 2017
Wet Chemistry
Stage 2B \& 4
TestAmerica, Inc.

Sample Delivery Group (SDG): 280-99297-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
OUA1-MW08-20170717**	$280-99297-5^{* *}$	Water	$07 / 17 / 17$
OUA1-HS03-20170717	$280-99297-6$	Water	$07 / 17 / 17$
OUA1-HS03A-20170717	$280-99297-7$	Water	$07 / 17 / 17$
OUA1-HS03-20170717MS	$280-99297-6 M S$	Water	$07 / 17 / 17$
OUA1-HS03-20170717MSD	$280-99297-6 M S D$	Water	$07 / 17 / 17$
OUA1-HS03-20170717DUP	$280-99297-6 D U P$	Water	$07 / 17 / 17$

[^3]
Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Inorganic Superfund Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:
Chloride, Nitrate as Nitrogen, and Sulfate by Environmental Protection Agency (EPA) SW 846 Method 9056
Ferrous Iron by Standard Method 3500-FE D
Hexavalent Chromium by EPA SW 846 Method 7196A
pH by EPA SW 846 Method 9040C
All sample results were subjected to Stage $2 B$ data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.
All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Time From Sample Collection Until Analysis	Required Holding Time From Sample Collection Until Analysis	Flag	A or P
OUA1-MW08-20170717**	Ferrous iron Hexavalent chromium pH	155.58 hours 24.75 hours 54.88 hours	48 hours 24 hours 48 hours	J (all detects) J (all detects) J (all detects)	P
OUA1-HS03-20170717	Ferrous iron pH	154.58 hours 54.18 hours	48 hours 48 hours	J (all detects) J (all detects)	P
OUA1-HS03A-20170717	Ferrous iron pH	154.60 hours 54.03 hours	48 hours 48 hours	J (all detects) J (all detects)	P

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration	Associated Samples
PB (prep blank)	Ferrous iron	$0.0259 \mathrm{mg} / \mathrm{L}$	All samples in SDG 280-99297-1
ICB/CCB	Ferrous iron	$0.0259 \mathrm{mg} / \mathrm{L}$	All samples in SDG 280-99297-1
ICB/CCB	Sulfate	$0.323 \mathrm{mg} / \mathrm{L}$	OUA1-HS03-20170717
ICB/CCB	Sulfate	$0.617 \mathrm{mg} / \mathrm{L}$	OUA1-HS03A-20170717

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater ($>5 \mathrm{X}$ blank contaminants) than the concentrations found in the associated laboratory blanks with
the following exceptions:

Sample	Analyte	Reported Concentration	Modified Final Concentration
OUA1-MW08-20170717**	Ferrous iron	$0.035 \mathrm{mg} / \mathrm{L}$	$0.050 \mathrm{U} \mathrm{mg} / \mathrm{L}$
OUA1-HS03-20170717	Ferrous iron	$0.069 \mathrm{mg} / \mathrm{L}$	$0.069 \mathrm{~m} \mathrm{mg} / \mathrm{L}$
OUA1-HS03A-20170717	Ferrous iron	$0.088 \mathrm{mg} / \mathrm{L}$	$0.088 \mathrm{U} \mathrm{mg} / \mathrm{L}$

V. Field Blanks

Sample EB01-20170717 was identified as an equipment blank. No contaminants were found.

Sample SB01-20170717 was identified as a source blank. No contaminants were found.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (\%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (\%R) (Limits)	MSD (\%R) (Limits)		Flag

Relative percent differences (RPD) were within QC limits.

VII. Duplicates

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples OUA1-HS03-20170717 and OUA1-HS03A-20170717 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

Compound	Concentration		$\begin{gathered} \text { RPD } \\ \text { (Limits) } \end{gathered}$	Difference (Limits)	Flag	A or P
	OUA1-HS03-20170717	OUA1-HS03A-20170717				
pH	9.3 SU	9.3 SU	$0(\leq 20)$	-	-	-
Chloride	$310 \mathrm{mg} / \mathrm{L}$	$310 \mathrm{mg} / \mathrm{L}$	$0(\leq 20)$	-	-	-
Ferrous iron	$0.069 \mathrm{mg} / \mathrm{L}$	$0.088 \mathrm{mg} / \mathrm{L}$	-	0.019 (≤ 0.20)	-	-
Hexavalent chromium	$0.022 \mathrm{mg} / \mathrm{L}$	$0.024 \mathrm{mg} / \mathrm{L}$	$9(\leq 20)$	-	-	-
Nitrate as N	7.0 mg/L	6.6 mg/L	-	0.4 (525)	-	-
Sulfate	$1900 \mathrm{mg} / \mathrm{L}$	$1700 \mathrm{mg} / \mathrm{L}$	11 (520)	-	-	-

X. Sample Result Verification

All sample result verifications were acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods. No results were rejected in this SDG.

Due to technical holding time and MS/MSD \%R, data were qualified as estimated in three samples.

Due to laboratory blank contamination, data were qualified as not detected in three samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Sample results that were found to be estimated (J) are usable for limited purposes only. Based upon the data validation all other results are considered valid and usable for all purposes.

MCAS Yuma
Wet Chemistry - Data Qualification Summary - SDG 280-99297-1

Sample	Analyte	Flag	A or P	Reason
OUA1-MW08-20170717**	Ferrous iron Hexavalent chromium pH	J (all detects) J (all detects) J (all detects)	P	Technical holding times
OUA1-HS03-20170717 OUA1-HS03A-20170717	Ferrous iron pH	J (all detects) J (all detects)	P	Technical holding times
OUA1-HS03-20170717	Ferrous iron Hexavalent chromium	J (all detects) J (all detects)	A	Matrix Spike/Matrix Spike Duplicate (\%R)

MCAS Yuma
Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 280-99297-1

Sample	Analyte	Modified Final Concentration	A or P
OUA1-MW08-20170717**	Ferrous iron	$0.050 \mathrm{U} \mathrm{mg} / \mathrm{L}$	A
OUA1-HS03-20170717	Ferrous iron	$0.069 \mathrm{U} \mathrm{mg} / \mathrm{L}$	A
OUA1-HS03A-20170717	Ferrous iron	$0.088 \mathrm{Umg} / \mathrm{L}$	A

MCAS Yuma

Wet Chemistry - Field Blank Data Qualification Summary - SDG 280-99297-1
No Sample Data Qualified in this SDG

METHOD: (Analyte) Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056), Ferrous Iron (SM3500-FE D), Hexavalent Chromium (EPA SW846 Method 7196A), pH, (EPA SW846 Method 9040C), Temper
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A.sU0	
11	Initial calibration	A	
III.	Calibration verification	A	
IV	Laboratory Blanks	SW	
V	Field blanks	ND	$1=S B+2=E B$
VI.	Matrix Spike/Matrix Spike Duplicates	St	
VII.	Duplicate sample analysis	A	
VIII.	Laboratory control samples	A	$\operatorname{CS} / 105]$
IX.	Field duplicates	SW	$4,5$
X.	Sample result verification	A	Not reviewed for Stage 2B validation.
XI	Overall_assessment_of_data.		

Notes:

Method:Inorganics (EPA Method See cover)

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.		\checkmark		
II. Calibration				
Were all instruments calibrated daily, each set-up time?		\checkmark		
Were the proper number of standards used?	\checkmark			
Were all initial calibration correlation coefficients ≥ 0.995 ?	\checkmark			
Were all initial and continuing calibration verification \%Rs within the $90-110 \%$ QC limits?	\checkmark			
Were titrant checks performed as required? (Level IV only)			\checkmark	
Were balance checks performed as required? (Level IV only)			\checkmark	
III. Blanks				
Was a method blank associated with every sample in this SDG?	\checkmark			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.	\checkmark			
IV. Matrix spike/Matrix spike duplicates and Duplicates				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.	\checkmark			
Were the MS/MSD percent recoveries (\%R) and the relative percent differences (RPD) within the $75-125$ QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.	\checkmark			
Were the MS/MSD or duplicate relative percent differences (RPD) $\leq 20 \%$ for waters and $\leq 35 \%$ for soil samples? A control limit of $\leq \operatorname{CRDL}(\leq 2 X C R D L$ for soil) was used for samples that were $\leq 5 \mathrm{X}$ the CRDL, including when only one of the duplicate sample values were $\leq 5 \mathrm{X}$ the CRDL .	$\sqrt{ }$			
V. Laboratory control samples				
Was an LCS anaylzed for this SDG?	\checkmark			
Was an LCS analyzed per extraction batch?	\checkmark			
Were the LCS percent recoveries (\%R) and relative percent difference (RPD) within the $80-120 \%$ ($85-115 \%$ for Method 300.0) QC limits?	\checkmark			
VI. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?		\checkmark		
Were the performance evaluation (PE) samples within the acceptance limits?		\checkmark		

Validation Area	Yes	No	NA	Findings/Comments
VII. Sample Result Verification				
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	\checkmark			
Were detection limits < RL?	\checkmark			
VIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.	\checkmark			
IX. Field duplicates				
Field duplicate pairs were identified in this SDG.	\checkmark			
Target analytes were detected in the field duplicates.	\checkmark			
X. Field blanks				
Field blanks were identified in this SDG.	\checkmark			
Target analytes were detected in the field blanks.		\checkmark		

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page: 1 of 1
Reviewer: ATL 2nd reviewer: β

All circled methods are applicable to each sample.

Sample ID	Parameter
$3,4,5$	
	pH TDS Cl F NO
	pH TDS Cl F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{O}-\mathrm{PO}_{4}$ Alk CN NH3 ${ }_{3}$ TKN TOC Cr6+ ClO_{4}
QC	pH TDS Cl F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{O}-\mathrm{PO}_{4} \mathrm{Alk} \mathrm{CN} \mathrm{NH}_{3}$ TKN TOC Cr6+ ClO_{4}
6,7,8	$\mathrm{pH} \text { TDS (Cl) } \mathrm{F} \text { (NO, } \mathrm{NO}_{2} \text { (} \mathrm{SO}, \mathrm{O}-\mathrm{PO}_{4} \mathrm{Alk} \mathrm{CN} \mathrm{NH}_{3} \text { TKN TOC(Cr6) } \mathrm{ClO}_{4} Q \text { (Ferrous Inon) }$
	pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{O}-\mathrm{PO}_{4}$ Alk CN NH3 ${ }^{\text {TKN TOC Cr6+ }} \mathrm{ClO}_{4}$
	pH TDS Cl F NO $3 \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{O}-\mathrm{PO}_{4}$ Alk CN NH3 ${ }^{\text {TKN TOC Cr6+ }}$ ClO 4
	pH TDS Cl F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{O}-\mathrm{PO}_{4}$ Alk CN NH 33 TKN TOC Cr6+ ClO_{4}
	pH TDS CI F NO $3-\mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{O}-\mathrm{PO}_{4} \mathrm{Alk} \mathrm{CN} \mathrm{NH}_{3} \mathrm{TKN} \mathrm{TOC} \mathrm{Cr6+} \mathrm{ClO}_{4}$
	pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{O}-\mathrm{PO}_{4}$ Alk CN NH3 ${ }^{\text {TKN TOC Cr6+ }} \mathrm{ClO}_{4}$
	pH TDS Cl F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{O}-\mathrm{PO}_{4}$ Alk CN NH3 ${ }_{3}$ TKN TOC Cr6+ ClO_{4}
	pH TDS CIF NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{O}-\mathrm{PO}_{4}$ Alk CN NH 33 TKN TOC Cr6+ ClO_{4}
	pH TDS Cl F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{O}-\mathrm{PO}_{4}$ Alk CN NH3 ${ }^{\text {TKN TOC Cr6+ }} \mathrm{ClO}_{4}$
	pH TDS Cl F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{O}-\mathrm{PO}_{4}$ Alk CN NH 3 - TKN TOC Cr6+ ClO_{4}
	pH TDS Cl F NO $3 \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{O}-\mathrm{PO}_{4}$ Alk CN NH3 ${ }^{\text {TKN TOC Cr6+ }} \mathrm{ClO}_{4}$
	pH TDS Cl F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{O}-\mathrm{PO}_{4}$ Alk CN NH3 3 TKN TOC Cr6+ ClO_{4}
	pH TDS Cl F NO $3 \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{O}-\mathrm{PO}_{4}$ Alk CN NH3 ${ }_{3}$ TKN TOC Cr6+ ClO_{4}
	pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{O}-\mathrm{PO}_{4}$ Alk CN NH3 3 TKN TOC Cr6+ ClO_{4}
	pH TDS Cl F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{O}-\mathrm{PO}_{4}$ Alk CN NH 33 TKN TOC Cr6+ ClO_{4}
	pH TDS Cl F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{O}-\mathrm{PO}_{4}$ Alk CN NH 33 TKN TOC Cr6+ ClO_{4}
	pH TDS CIF NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{O}-\mathrm{PO}_{4}$ Alk CN NH 33 TKN TOC Cr6+ ClO_{4}
	pH TDS CI F NO $3 \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{O}-\mathrm{PO}_{4} \mathrm{Alk} \mathrm{CN} \mathrm{NH} 33$ TKN TOC Cr6+ ClO_{4}
	pH TDS CIF NO $3 \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{O}-\mathrm{PO}_{4} \mathrm{Alk} \mathrm{CN} \mathrm{NH}_{3}$ TKN TOC Cr6+ ClO_{4}
	pH TDS CIF NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{O}-\mathrm{PO}_{4}$ Alk CN NH3 ${ }^{\text {TKN TOC Cr6+ }} \mathrm{ClO}_{4}$
	pH TDS Cl F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{O}-\mathrm{PO}_{4}$ Alk CN NH 33 TKN TOC Cr6+ ClO_{4}
	pH TDS Cl F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{O}-\mathrm{PO}_{4}$ Alk CN NH 33 TKN TOC Cr6+ ClO_{4}
	pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{O}-\mathrm{PO}_{4}$ Alk CN NH 3 TKN TOC Cr6+ ClO_{4}
	pH TDS Cl F NO $3 \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{O}-\mathrm{PO}_{4}$ Alk CN NH 3 TKN TOC Cr6+ ClO_{4}
	pH TRS Cl F NO, $\mathrm{NO}, \mathrm{SO}, \mathrm{O}-\mathrm{PO}$, Alk CN NH, TKN TOC Cr6+ ClO.

All circled dates have exceeded the technical holding time.
Y N N/A Were all samples preserved as applicable to each method?
Y N N/A Were all cooler temperatures within validation criteria?

Method:		Ferrous Iron (SM3500-FED)			Cr^{6+} (7196A)		
Parameters:		water			water		
Sechnical holding time:		48 hrs .			24 hrs		
Sample ID	Sampling date	Analysis date	Total Time	Qualifier	Analysis date	Total Time	Qualifier
3	$\begin{gathered} 10: 15 \\ 07 / 17117 \\ \hline \end{gathered}$	$\frac{21: 50}{2150}$	155.58 hrs	J/טJ\|P(detect) 071181100		24,75 hrs	JUJJP
4	$0111: 17$	07123: 2117	154.58 hrs				
5	-717ic	$07127^{21 / 56}$	154.60 hrs	$\downarrow \downarrow$			
							Γ

All circled dates have exceeded the technical holding time.
Y N N/A Were all samples preserved as applicable to each method?
Y N N/A Were all cooler temperatures within validation criteria?

VALIDATION FINDINGS WORKSHEET Blanks

Page: 1 of 1 Reviewer: ATL 2nd Reviewer: $\sqrt{13}$

METHOD:Inorganics, Method See Cover
Conc. units: $\quad \mathrm{mg} / \mathrm{L}$
Associated Samples:
All

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:
All contaminants within five times the method blank concentration were qualified as not detected, "U".

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".
Y) N N/A Was a matrix spike analyzed for each matrix in this SDG?
$\bar{Y}(N) N / A \quad$ Were matrix spike percent recoveries (\%R) within the control limits of $75-125$? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.
Y) N N/A Were all duplicate sample relative percent differences (RPD) $\leq 20 \%$ for water samples and $\leq 35 \%$ for soil samples?

LEVEL IV ONLY:

Y N N/A Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

\#	MS/MSD ID	Matrix	Analyte	MS \%Recovery	$\begin{gathered} \hline \hline \text { MSD } \\ \text { \%Recovery } \end{gathered}$	RPD (Limits)	Associated Samples	Qualifications
	6/7	W	Ferrous Iron	2 (85-113)	3 (85-113)		4	J/R/A (detect)
	6/7	W	Cr6	8 (90-111)	4 (90-111)		4	J/R/A (detect)

Comments:

Field Duplicates

Page:_1_of _1_ Reviewer:_ATL 2nd Reviewer: 1 B

Analyte	Concentration (mg/L)		$\begin{aligned} & \text { RPD } \\ & (\leq 20) \end{aligned}$	Diff.	Diff. Limits	Qualifiers (Parents Only)
	4	5				
pH	9.3 SV	9.3 SU	0			
Temporature	24.9-0C	$24.6{ }^{\circ} \mathrm{C}$	1			
Chloride	310	310	0			
Ferrous Iron	0.069	0.088		0.019	(≤ 0.20)	
Hexavalent Chromium	0.022	0.024	9			
Nitrate as N	7.0	6.6		0.4	(≤ 25)	
Sulfate	1900	1700	11			

Validation Findings Worksheet Initial and Continuing Calibration Calculation Verification

Method: Inorganics, Method

\qquad See Cover

The correlation coefficient (r) for the calibration of $\mathrm{NO}_{3}-\mathrm{N}$ was recalculated.Calibration date: \qquad $05 / 10117$

An initial or continuing calibration verification percent recovery (\%R) was recalculated for each type of analysis using the following formula:

$\% R=\frac{\text { Found } \times 100}{\text { True }} \quad$ Where,	Found $=$ concentration of each analyte measured in the analysis of True $=$ concentration of each analyte in the ICV or CCV source

Type of analysis	Analyte	Standard	Conc. (mg/L)	Area	Recalculated	Reported	Acceptable (Y/N)
					r or r^{2}	r or ${ }^{2}$	
Initial calibration	$\mathrm{NO}_{3} \ldots \mathrm{~N}$	s1	0.2	9065243	0.99999	0.99986	y
		s2	0.5	22548818			
		s3	1	45231075			
		s4	4	186689082			
		s5	8	373793994			
		s6	10	466847276			
$\begin{aligned} & \text { CCV (07/18C 20:06) } \\ & \text { Calibration verification } \\ & \hline \hline \end{aligned}$	Cl^{-}	FOUND 105	$\begin{aligned} & \text { TRUE } \\ & 100 \end{aligned}$		105	105.	Y
CCV (07/19e 15:06) Calibration verification	504	102	100		102	102	y
$\begin{aligned} & \mathrm{CCN}(280-381158119) \\ & \text { Calibration verification } \end{aligned}$	Cr $6+$	0.108	0.100		108	108	y

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results. \qquad

METHOD: Inorganics, Method see cover
Percent recoveries (\%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

$\% R=\frac{\text { Found }}{\text { True }} \times 100 \quad$ Where, \quad| Found $=\quad$concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation,
 Found $=S S R$ (spiked sample result) $-S R$ (sample result). |
| :--- |
| True $=$ concentration of each analyte in the source. |

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:
$R P D=$

$(S+D) / 2$$\quad$| $\|S-D\|$ | |
| :--- | :--- |
| | |\quad| Where, |
| :--- |
| $D=$ |\quad| Original sample concentration |
| :--- |
| Duplicate sample concentration |

Samplo ${ }^{\text {d }}$	Typeo A Anaysis	Eleme	(mgic)		Reoaterated	\%R1/PPD	$\xrightarrow{\text { Acoepatable }}$
lcs	Laboatay contol sample	Ferrous Inon	1.97	2.00	98	98	y
6	Matix sphe smmpe	$\mathrm{NO}_{3}-\mathrm{N}$	(SSR-SR) 252	250	101	101	y
617	Dupicate sample	NO3-N	259.5	259	0	0	y

Comments: \qquad

VALIDATION FINDINGS WORKSHEET
Sample Calculation Verification

Page: 1 of 1
Reviewer: \qquad and reviewer:

METHOD: Inorganics, Method \qquad see cover

Please see qualifications below for all questions answered " N ". Not applicable questions are identified as "N/A".
Y N N/A Have results been reported and calculated correctly?
Y N N/A Are results within the calibrated range of the instruments?
Y N N/A Are all detection limits below the CRQL?
Compound (analyte) results for Ferrous Iron
reported with a positive detect were
recalculated and verified using the following equation:
concentration $=(0.02586)+(4.794)(\mathrm{Abs})$ Recalculation:

$$
(0.02586)+(4.794)(0.002)=0.035
$$

Note: \qquad

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:
 LDC Report Date:

Parameters:
Validation Level:
Laboratory:

MCAS Yuma
August 23, 2017
Bromate
Stage 2B \& 4
TestAmerica, Inc./EMAX Laboratories, Inc.

Sample Delivery Group (SDG): 280-99297-2/17G121

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
OUA1-MW08-20170717**	$280-99297-5 / G 121-03^{* *}$	Water	$07 / 17 / 17$
OUA1-HS03-20170717	$280-99297-6 / \mathrm{G} 121-041$	Water	$07 / 17 / 17$
OUA1-HS03A-20170717	$280-99297-7 / \mathrm{G} 121-051$	Water	$07 / 17 / 17$
OUA1-HS03-20170717MS	$280-99297-6 / \mathrm{G} 121-041$ MS	Water	$07 / 17 / 17$
OUA1-HS03-20170717MSD	$280-99297-6 / \mathrm{G} 121-04$ IMSD	Water	$07 / 17 / 17$

**Indicates sample underwent Stage 4 validation

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Inorganic Superfund Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
Bromate by Environmental Protection Agency (EPA) Method 300.0
All sample results were subjected to Stage $2 B$ data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
$\mathrm{J} \quad$ (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.
All technical holding time requirements were met.

II. Initial Calibration

All criteria for the initial calibration were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

V. Field Blanks

Sample EB01-20170717 was identified as an equipment blank. No contaminants were found.

Sample SB01-20170717 was identified as a source blank. No contaminants were found.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (\%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (\%R) (Limits)	MSD (\%R) (Limits)	Flag	A or P
OUA1-HS03-20170717MS/MSD (OUA1-HS03-20170717)	Bromate	$112(90-110)$	111 (90-111)	NA	-

Relative percent differences (RPD) were within QC limits.

VII. Duplicates

The laboratory has indicated that there were no duplicate (DUP) analyses specified for the samples in this SDG, and therefore duplicate analyses were not performed for this SDG.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

Samples OUA1-HS03-20170717 and OUA1-HS03A-20170717 were identified as field duplicates. No results were detected in any of the samples.

X. Sample Result Verification

All sample result verifications were acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

MCAS Yuma
Bromate - Data Qualification Summary - SDG 280-99297-2/17G121
No Sample Data Qualified in this SDG
MCAS Yuma
Bromate - Laboratory Blank Data Qualification Summary - SDG 280-992972/17G121

No Sample Data Qualified in this SDG
MCAS Yuma
Bromate - Field Blank Data Qualification Summary - SDG 280-99297-2/17G121
No Sample Data Qualified in this SDG

METHOD: (Analyte) Bromate (EPA Method 300.0)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	$A 1 A$	
11	Initial calibration	A	
III.	Calibration verification	A	
IV	Laboratory Blanks	A	
V	Field blanks	ND	$1=S B ; 2=E B$
VI.	Matrix Spike/Matrix Spike Duplicates	SW	
VII.	Duplicate sample analysis	N	
VIII.	Laboratory control samples	A	$\angle C S / L O D$
IX.	Field duplicates	ND	4,5
X.	Sample result verification	A	Not reviewed for Stage 2B validation.
XI	Overall assessment of data	A	

Note:	
	$A=$ Acceptable
	$N=$ Not provided/applicable
	SW $=$ See worksheet

ND = No compounds detected
$\mathrm{D}=$ Duplicate
SB=Source blank
$\mathrm{N}=$ Not provided/applicable
SW = See worksheet
TB $=$ Trip blank OTHER:
** Indicates sample underwent Stage 4 validation

Notes: \qquad
-

Method:Inorganics (EPA Method see cover ')

Validation Area	Yes	No	NA	Findings/Comments
I. Technical holding times				
All technical holding times were met.	\checkmark			
II. Calibration				
Were all instruments calibrated daily, each set-up time?		\checkmark		
Were the proper number of standards used?	\checkmark			
Were all initial calibration correlation coefficients ≥ 0.995 ?	\checkmark			
Were all initial and continuing calibration verification \%Rs within the 90-110\% QC limits?	\checkmark			
Were titrant checks performed as required? (Level IV only)			\checkmark	
Were balance checks performed as required? (Level IV only)			\checkmark	
III. Blanks				
Was a method blank associated with every sample in this SDG?	\checkmark			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.		\checkmark		
IV. Matrix spike/Matrix spike duplicates and Duplicates				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.	\checkmark			
Were the MS/MSD percent recoveries (\%R) and the relative percent differences concentration by a factor of 4 or more, no action was taken.		\checkmark		
Were the MS/MSD or duplicate relative percent differences (RPD) $\leq 20 \%$ for waters and $\leq 35 \%$ for soil samples? A control limit of \leq CRDL ($\leq 2 X$ CRDL for soil) was used for samples that were $\leq 5 \mathrm{X}$ the CRDL, including when only one of the duplicate sample values were $\leq 5 \mathrm{X}$ the CRDL.	\checkmark			
V. Laboratory control samples				
Was an LCS anayized for this SDG?	\checkmark			
Was an LCS analyzed per extraction batch?	\checkmark			
Were the LCS percent recoveries (\%R) and relative percent difference (RPD) within the $80-120 \%$ ($85-115 \%$ for Method 300.0) QC limits?	\checkmark			
VI. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?		\checkmark		
Were the performance evaluation (PE) samples within the acceptance limits?		\checkmark		

\qquad

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".
Y) N N/A Was a matrix spike analyzed for each matrix in this SDG? 90-110
$Y(N) N / A \quad$ Were matrix spike percent recoveries (\%R) within the control limits of $75-125$? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.
Y N N/A Were all duplicate sample relative percent differences (RPD) $\leq 20 \%$ for water samples and $\leq 35 \%$ for soil samples?

LEVEL IV ONLY:

Y) N N/A Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

\#	MS/MSD ID	Matrix	Analyte	MS \%Recovery	MSD \%Recovery	RPD (Limits)	Associated Samples	Qualifications
	6/7	W	Bromate	112 (90-110)	111 (90-110)		레 4	Jdet/A (all non-detect)

[^4]
Validation Findings Worksheet Initial and Continuing Calibration Calculation Verification

Page:
 \qquad of $\frac{1}{1}$

Reviewer: ATV
2nd Reviewer:

Method: Inorganics, Method

\qquad see cover \qquad
The correlation coefficient (r) for the calibration of Bromate was recalculated.Calibration date: 08104117

An initial or continuing calibration verification percent recovery (\%R) was recalculated for each type of analysis using the following formula:

| $\% R=\frac{\text { Found } \times 100}{\text { True }}$ | Where, |
| :---: | :--- | | Found $=$ concentration of each analyse measured in the analysis of the ICV or CCV solution |
| :--- |
| True $=$ concentration of each analyze in the ICV or CCV source |

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Level IV Recalculation Worksheet

METHOD: Inorganics, Method \qquad
Percent recoveries (\%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

$\% R=\frac{\text { Found }}{\text { True }} \times 100 \quad$ Where, \quad| Found $=\quad$concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation,
 Found $=S S R$ (spiked sample result) $-S R$ (sample result). |
| :--- |
| |
| True $=$ concentration of each analyte in the source. |

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:
$R P D=\underset{(S+D) / 2}{|S-D|} \times 100 \quad$ Where,
$S=$
$D=$
Original sample concentration Duplicate sample concentration

Sample 10	Typoof Anaysis	Element		$\overline{\substack{\text { MgIL } \\ \text { Thet } \\ \text { (unis) }}}$	\%R/RPDO	\%R/RPPD	
lcs	Latoratoy contro sanjle	Bromate	104	100	104	104	y
6	Matix spke smmpe	Bromate	(SSR-SR) 559	500	112	112	y
617	Dupiliate sample	Bromate	557	559	0	0	y

Comments: \qquad

Page: 1 of 1
Reviewer: ATL
and reviewer: V? 1

METHOD: Inorganics, Method see cover
Please see qualifications below for all questions answered " N ". Not applicable questions are identified as "N/A".
Y N N/A Have results been reported and calculated correctly?
Y N N/A Are results within the calibrated range of the instruments?
Y N N/A Are all detection limits below the CRQL?
Compound (analyte) results for \qquad Bromate reported with a positive detect were recalculated and verified using the following equation:

Concentration $=\quad$ Recalculation:
$1.87880+17858.5 \times$ Area

$$
\begin{aligned}
1.87880+17858.5 \times 0 & \\
& =1.87880 \approx N D
\end{aligned}
$$

Note: \qquad

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

LDC Report Date:
Parameters:
Validation Level:
Laboratory:

MCAS Yuma
August 21, 2017
Perfluorinated Alkyl Acids
Stage 2B \& 4
Vista Analytical Laboratory

Sample Delivery Group (SDG): 1700893

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
OUA1-MW08-20170717**	$1700893-03^{* *}$	Water	$07 / 17 / 17$
OUA1-HS03-20170717	$1700893-04$	Water	$07 / 17 / 17$
OUA1-HS03A-20170717	$1700893-05$	Water	$07 / 17 / 17$
OUA1-HS03-20170717MS	$1700893-04 M S$	Water	$07 / 17 / 17$
OUA1-HS03-20170717MSD	$1700893-04 M S D$	Water	$07 / 17 / 17$

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Addendum 3 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (February 2017), the Final Addendum 2 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (September 2015), the Final Addendum 1 to the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the Final Sampling and Analysis Plan, Field Sampling Plan and Quality Assurance Project Plan, for Groundwater Long Term Monitoring and System Operation at Marine Corps Air Station Yuma, Yuma, Arizona (May 2013), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.0 (July 2013), and a modified outline of the USEPA Contract Laboratory Program National Functional Guidelines (CLPNFG) for Superfund Organic Methods Data Review (August 2014). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:

Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NJ (Presumptive and Estimated): The analysis indicates the presence of a compound or analyte that has been "tentatively identified" and the associated numerical value represents its approximate concentration.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. LC/MS Instrument Performance Check

Instrument performance was checked as applicable.
All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.
A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination $\left(r^{2}\right)$ was greater than or equal to 0.990 .

The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.
The percent differences (\%D) were less than or equal to 30.0% for all compounds.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample EB01-20170717 was identified as an equipment blank. No contaminants were found.

Sample SB01-20170717 was identified as a source blank. No contaminants were found.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (\%R) were not within the QC limits for OUA1-HS03-20170717MS/MSD. No data were qualified since the parent sample results were greater than $4 X$ the spiked concentration. Relative percent differences (RPD) were within QC limits.

VIII. Ongoing Precision Recovery Samples

Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (\%R) were within QC limits.

IX. Field Duplicates

Samples OUA1-HS03-20170717 and OUA1-HS03A-20170717 were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

Compound	Concentration (ng/L)		$\begin{gathered} \text { RPD } \\ \text { (Limits) } \end{gathered}$	$\begin{gathered} \text { Differences } \\ \text { (Limits) } \end{gathered}$	Flag	A or P
	OUA1-HS03-20170717	OUA1-HS03A-20170717				
PFBS	745	915	20	-	-	-
PFOA	25.6	22.3	-	3.3 (58.50)	-	-
PFOS	2.80	2.41	-	0.39 (58.50)	-	-

X. Internal Standards

All internal standard areas and retention times were within QC limits.

XI. Compound Quantitation

All compound quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XII. Target Compound Identifications

All target compound identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIII. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage $2 B$ validation.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable. Based upon the data validation all results are considered valid and usable for all purposes.

MCAS Yuma
Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1700893
No Sample Data Qualified in this SDG
MCAS Yuma
Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1700893

No Sample Data Qualified in this SDG
MCAS Yuma
Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG 1700893

No Sample Data Qualified in this SDG

Laboratory: Vista Analytical Laboratory
METHOD: LC/MS Perfluorinated Alkyl Acids (EPA Method 537)

Reviewer: 2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note: $\quad \mathrm{A}=$ Acceptable
$\mathrm{N}=$ Not provided/applicable
SW = See worksheet

ND = No compounds detected
$\mathrm{R}=$ Rinsate
FB = Field blank
w
$\mathrm{D}=$ Duplicate
TB = Trip blank
$E B=$ Equipment blank

SB=Source blank OTHER
** Indicates sample was underwent Stage 4 review

Notes:

	$\beta 7 G 0106-\beta 1 K 1$					

(PFBS, PFOA, PFOS only)
L:VAMEC FWYYumal39266B96W.wpd

LDC \#: $39266 \mathrm{c96}$

Page: 1 of 2
Reviewer: 2nd Reviewer: JVG

Method: LC/MS PFCs (EPA Method 537M)

Validation Area	Yes	No	NA	Findings/Comments
1. Technical holding times				
All technical holding times were met.				
Cooler temperature criteria was met.				
II. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (\%RSD) $\leq 20 \% ?$				
Was a curve fit used for evaluation?				
Did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990 ?				
Were the RT windows properly established?				
III. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
V. Continuing calibration				
Was a continuing calibration analyzed daily?				
Were all percent differences (\%D) $\leq 30 \%$				
Were all the retention times within the acceptance windows?				
V. Blanks				
Was a method blank associated with every sample in this SDG?				
Was a method blank analyzed for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.				
VI. Field blanks				
Field blanks were identified in this SDG.	7			
Target compounds were detected in the field blanks.				
VII. Surrogate spikes				
Were all surrogate \%R within the QC limits?				
If the percent recovery (\%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with \%R outside of criteria?				
VII. Matrix spike Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (\%R) and the relative percent differences (RPD) within the QC limits?		\square		

VALIDATION FINDINGS CHECKLIST
Page: 2 of 2
Reviewer:

\qquad 2nd Reviewer: $\xrightarrow{\text { JVG }}$
METHOD: LC/MS PFCs (EPA Method 537M)
Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".

$$
\begin{array}{ll}
\text { WN N/A } & \text { Were a matrix spike (MS) and matrix spike duplicate (MSD) or duplicate sample analyzed for each matrix in this SDG? } \\
X N \text { N/A } & \text { Was a MS/MSD analyzed every } 20 \text { samples of each matrix? } \\
Y N \text { N/A } & \text { Were the MS/MSD percent recoveries (\%R) and the relative percent differences (RPD) within the QC limits? } \\
Y N \text { N/A } & \text { Were all duplicate sample relative percent differences (RPD) or differences within QC limits? }
\end{array}
$$

\#	Date	MS/MSD ID	Compound	$\begin{gathered} \text { MS } \\ \% R \text { (Limits) } \end{gathered}$	$\begin{gathered} \text { MSD } \\ \% \text { (Limits) } \end{gathered}$	RPD (Limits)	Associated Samples	Qualifications
		6%	PFBS	$322(70-130)$	351 (70-130)	()	4	No pual
		1		()	()	()		Pporent ume
				()	(\quad)	()		$74 x$ spike
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		
				()	()	()		

VALIDATION FINDINGS WORKSHEET
Field Duplicates
\qquad
METHOD: LCMS PFCs (EPA Method 537Mod)
Y N NA Were field duplicate pairs identified in this SDG?
Y N NA Were target analytes detected in the field duplicate pairs?

Compound	Concentration (ng/L)		$\begin{aligned} & \text { RPD } \\ & (\leq 20 \%) \end{aligned}$	Difference (ng / L)	$\begin{aligned} & \text { Limits } \\ & \text { (sLOQ) } \end{aligned}$	Qualifications (Parent Only)
	4	5				
PFBS	745	915	20			
PFOA	25.6	22.3		3.3	≤ 8.50	
PFOS	2.80	2.41		0.39	<8.50	

METHOD: LC/MS PFCs (EPA Method 537Mod)

Calibration Date	System			(Y) Area ratio	(X) Conc ratio
$7 / 27 / 2017$					
	SCN815	Compound	Standard	0.03319	0.020

Regression Output	Calculated	Reported WLR
Constant	0.079423	0.593256
Std Err of Y Est		
R Squared	0.999270	0.998731
Degrees of Freedom		
X Coefficient(s)	1.58728973	1.060766
Std Err of Coef.		
Correlation Coefficient	0.999635	
Coefficient of Determination ($\mathrm{r}^{\wedge} 2$)	0.999270	0.998731

VALIDATION FINDINGS WORKSHEET Continuing Calibration Calculation Verification

Page: 1 of 1 Reviewer: \qquad C 2nd Reviewer \qquad

METHOD: LC/MS PFCs (EPA Method 537Mod)

The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

Where:
\% Difference $=100$ * (ave. RRF - RRF)/ave. RRF RRF = (Ax)(Cis)/(Ais)(Cx)
ave. $R R F=$ initial calibration average RRF
RRF = continuing calibration RRF
Ax = Area of compound

Cx = Concentration of compound,
Ais = Area of associated internal standard
Cis = Concentration of internal standard

\#	Standard ID	Calibration Date	Compound (IS)		Conc	Reported	Recalculated	Reported \% R	Recalculated \% R
1	170727G5_18	7/27/2017	PFBS	(13PFBS)	10.00	9.59	9.60	95.9	96.0
2	170731G4_20	8/1/2017	PFBS	(13PFBS)	10.00	9.16	9.16	91.6	91.6

VALIDATION FINDINGS WORKSHEET
Page: $10 f$)
Reviewer: 2nd Reviewer
\qquad JV Matrix Spike/Matrix Spike Duplicates Results Verification
\qquad

METHOD: LC/MS/MS PFCs (EPA Method 537Mod)
The percent recoveries (\%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:
\% Recovery $=100$ * (SSS - SC)/SA

RFD $=1$ MSS - MS ${ }^{*}$ 2/(MSC + MSDC $)$
MS/MSD samples: \qquad
6/7

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET
Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification
Reviewer:
2nd Reviewer

METHOD: LC/MS/MS PFCs (EPA Method 537Mod)

The percent recoveries (\%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET
Sample Calculation Verification

Page: 1 of 1
Reviewer: \qquad

METHOD: LC/MS/MS PFCs (EPA Method 537Mod)

$\frac{y}{y}$ N N/A	Were all reported results recalculated and verified for all level IV samples? W N N/A
Were all recalculated results for detected target compounds agree within 10.0% of the reported results?	

The LDC job number listed above was entered by \qquad
\qquad

Notes: \qquad *see discrepancy sheet

INSTALLATION_ID	SDG	LOCATION-NAME	SITE_NAME	INSTALLATION_ID	LOCATION_TYPE	LOCATION_TYPE_DESC	COORD_X	COORD	SAMPLE_NAME	SAMPLE_MATRIX	SAMPLE_MATRIC_DESC	COLLECT_DATE
MCAS YUMA	700893	16-HS-03	SITE 00019	YUMA_MCAS	WLM	MONITORING WELL	441712.6895	605539.6474	OUA1-HS03-20170717	WG	GROUNDWATER	17-Jul-17
MCAS YUMA	1700893	16-HS-03	SITE 00019	YUMA_MCAS	WLM	MONITORING WELL	441712.6895	605539.6474	OUA1-HS03-20170717	WG	GROUNDWATER	17-Jul-17
MCAS YUMA	1700893	16-HS-03	SITE 00019	YUMA_MCAS	WLM	MONITORING WELL	441712.6895	605539.6474	OUA1-HS03-20170717	WG	GROUNDWATER	17-Jul-17
MCAS YUMA	1700893	16-HS-03	SITE 00019	YUMA_MCAS	WLM	MONITORING WELL	441712.6895	605539.6474	OUA1-HS03A-20170717	WG	GROUNDWATER	17-Jul-17
MCAS YUMA	1700893	16-HS-03	SITE 00019	YUMA_MCAS	WLM	MONITORING WELL	441712.6895	605539.6474	OUA1-HS03A-20170717	WG	GROUNDWATER	17-Jul-17
MCAS YUMA	1700893	16-HS-03	SITE 00019	YUMA_MCAS	WLM	MONITORING WELL	441712.6895	605539.6474	OUA1-HS03A-20170717	WG	GROUNDWATER	17-Jul-17
MCAS YUMA	1700893	16-MW-08	SITE 00019	YUMA_MCAS	WLM	MONITORING WELL	442128.793	605331.0117	OUA1-MW08-20170717	WG	GROUNDWATER	17-Jul-17
MCAS YUMA	1700893	16-MW-08	SITE 00019	YUMA_MCAS	WLM	MONITORING WELL	442128.793	605331.0117	OUA1-MW08-20170717	WG	GROUNDWATER	17-Jul-17
MCAS YUMA	1700893	16-MW-08	SITE 00019	YUMA_MCAS	WLM	MONITORING WELL	442128.793	605331.0117	UA1-MW08-20170717	NG	GROUNDWATER	17-Jul-17

[^0]: 13C8-PFOA
 170731G4_2
 100
 F5:MRM of 12 channels,ES-
 $421.3>376$ $2.072 \mathrm{e}+005$

[^1]: **Indicates sample underwent Stage 4 validation

[^2]: Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within

[^3]: **Indicates sample underwent Stage 4 validation

[^4]: Comments:

