Groundwater Sample Results,
 Level 4 Laboratory Report, Electronic Data Deliverable, Data Validation Report, and the Sample Location Report, SDG 1803659

Marine Corps Air Station Yuma
Yuma, Arizona

November 2019

November 29, 2018

Vista Work Order No. 1803659

Ms. Sabina Sudoku
Tetra Tech EC, Inc.
17885 Yon Karman Avenue, Suite 500
Irvine, CA 92614
Dear Ms. Sudoko,
Enclosed are the results for the sample set received at Vista Analytical Laboratory on November 15, 2018 under your Project Name '4663.3803'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.

Sincerely,

Martha Maser
Laboratory Director

Vista Work Order No. 1803659
 Case Narrative

Sample Condition on Receipt:

Seven water samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology

Analytical Notes:

PFAS Isotope Dilution Method

The samples were extracted and analyzed for a selected list of PFAS using the PFAS Isotope Dilution Method (Modified EPA Method 537). The results for PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Results for all other analytes include the linear isomers only.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD) were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above $1 / 2$ of the LOQ concentrations. The LCS/LCSD recoveries were within the acceptance criteria.

The extracts of samples "A1-MW-07-SA2", "A1-MW-23-SA2" and "A1-MW-25-SA2" were re-injected because one or more Injection Internal Standard Analyte response areas were outside of criteria. The results for "A1-MW-07-SA2" and "A1-MW-25-SA2" were similar in the second injection and the results from the original injections have been reported. The area criteria passed for the second injection for "A1-MW-23-SA2" and the results from the re-injection have been reported.

The labeled standard recoveries for all QC and field samples were within the acceptance criteria.

TABLE OF CONTENTS

Case Narrative 1
Table of Contents 3
Sample Inventory 4
Analytical Results. 5
Qualifiers 15
Certifications 16
Sample Receipt 19
Receiving Airbill 21
Extraction Information 22
Sample Data - PFAS Isotope Dilution Method 28
IIS Areas, IBs and CCVs. 89
ICAL with ICV and IB 205
Tune Checks. 349
Standards.pdf 362

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
1803659-01	A1-MW-07-SA2	14-Nov-18 09:07	15-Nov-18 13:29	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1803659-02	A1-MW-23-SA2	14-Nov-18 10:03	15-Nov-18 13:29	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1803659-03	A1-MW-25-SA2	14-Nov-18 12:15	15-Nov-18 13:29	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1803659-04	A1-MW-27-SA2	14-Nov-18 13:03	15-Nov-18 13:29	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1803659-05	A1-MW-55-SA2	14-Nov-18 11:02	15-Nov-18 13:29	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1803659-06	A1-MW-54-SA2	14-Nov-18 15:17	15-Nov-18 13:29	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL
1803659-07	FRB-20181114	14-Nov-18 14:20	15-Nov-18 13:29	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL

ANALYTICAL RESULTS

Sample ID: A1-MW-07-SA2					PFAS Isotope Dilution Method						
Client Data Name: Tetra Tech EC, Inc. Project: 4663.3803 Location: YUMA, AZ		Matrix: Date Collected:		Water 14-Nov-18 09:07	Laboratory Data Lab Sample: Date Received:		$\begin{aligned} & \text { 1803659-01 } \\ & \text { 15-Nov-18 13:29 } \end{aligned}$		Column:	BEH C18	Dilution
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	
PFBS	375-73-5	0.114	0.00293	0.00427	0.00854		B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:02	1
PFHxA	307-24-4	0.366	0.00293	0.00427	0.00854		B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:02	1
PFHpA	375-85-9	0.0448	0.00293	0.00427	0.00854		B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:02	1
PFHxS	355-46-4	0.234	0.00293	0.00427	0.00854		B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:02	1
PFOA	335-67-1	0.0488	0.00293	0.00427	0.00854		B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:02	1
PFNA	375-95-1	ND	0.00293	0.00427	0.00854	U	B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:02	1
PFOS	1763-23-1	0.0403	0.00293	0.00427	0.00854		B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:02	1
PFDA	335-76-2	ND	0.00293	0.00427	0.00854	U	B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:02	1
MeFOSAA	2355-31-9	ND	0.00293	0.00427	0.00854	U	B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:02	1
EtFOSAA	2991-50-6	ND	0.00293	0.00427	0.00854	U	B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:02	1
PFUnA	2058-94-8	ND	0.00293	0.00427	0.00854	U	B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:02	1
PFDoA	307-55-1	ND	0.00293	0.00427	0.00854	U	B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:02	1
PFTrDA	72629-94-8	ND	0.00293	0.00427	0.00854	U	B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:02	1
PFTeDA	376-06-7	ND	0.00293	0.00427	0.00854	U	B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:02	1
Labeled Standards	Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	94.7		50-150			B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:02	1
13C2-PFHxA	IS	88.8		50-150			B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:02	1
13C4-PFHpA	IS	87.5		50-150			B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:02	1
1802-PFHxS	IS	97.5		50-150			B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:02	1
13C2-PFOA	IS	84.9		50-150			B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:02	1
13C5-PFNA	IS	82.6		50-150			B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:02	1
13C8-PFOS	IS	90.7		50-150			B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:02	1
13C2-PFDA	IS	77.4		50-150			B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:02	1
d3-MeFOSAA	IS	100		50-150			B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:02	1
d5-EtFOSAA	IS	107		50-150			B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:02	1
13C2-PFUnA	IS	80.7		50-150			B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:02	1
13C2-PFDoA	IS	90.3		50-150			B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:02	1
13C2-PFTeDA	IS	57.9		50-150			B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:02	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results r	ed to the DL			When re linear an analytes	orted, PFHxS, branched isom	PFOA, PFOS, M ers. Only the lin	eFOSAA and EtF ear isomer is rep	OSAA include both orted for all other	

Sample ID: A1-MW-25-SA2					PFAS Isotope Dilution Method						
Client Data Name: Tetra Tech EC, Inc. Project: 4663.3803 Location: YUMA, AZ		Matrix: Water Date Collected: 14-Nov-18 12:15			Laboratory Data Lab Sample: Date Received:		$\begin{aligned} & \text { 1803659-03 } \\ & \text { 15-Nov-18 13:29 } \end{aligned}$		Column:	BEH C18	Dilution
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	
PFBS	375-73-5	0.299	0.00300	0.00439	0.00875		B8K0144	22-Nov-18	0.114 L	26-Nov-18 16:23	1
PFHxA	307-24-4	1.20	0.00300	0.00439	0.00875		B8K0144	22-Nov-18	0.114 L	26-Nov-18 16:23	1
PFHpA	375-85-9	0.0780	0.00300	0.00439	0.00875		B8K0144	22-Nov-18	0.114 L	26-Nov-18 16:23	1
PFHxS	355-46-4	0.453	0.00300	0.00439	0.00875		B8K0144	22-Nov-18	0.114 L	26-Nov-18 16:23	1
PFOA	335-67-1	0.0612	0.00300	0.00439	0.00875		B8K0144	22-Nov-18	0.114 L	26-Nov-18 16:23	1
PFNA	375-95-1	ND	0.00300	0.00439	0.00875	U	B8K0144	22-Nov-18	0.114 L	26-Nov-18 16:23	1
PFOS	1763-23-1	0.0195	0.00300	0.00439	0.00875	Q	B8K0144	22-Nov-18	0.114 L	26-Nov-18 16:23	1
PFDA	335-76-2	ND	0.00300	0.00439	0.00875	U	B8K0144	22-Nov-18	0.114 L	26-Nov-18 16:23	1
MeFOSAA	2355-31-9	ND	0.00300	0.00439	0.00875	U	B8K0144	22-Nov-18	0.114 L	26-Nov-18 16:23	1
EtFOSAA	2991-50-6	ND	0.00300	0.00439	0.00875	U	B8K0144	22-Nov-18	0.114 L	26-Nov-18 16:23	1
PFUnA	2058-94-8	ND	0.00300	0.00439	0.00875	U	B8K0144	22-Nov-18	0.114 L	26-Nov-18 16:23	1
PFDoA	307-55-1	ND	0.00300	0.00439	0.00875	U	B8K0144	22-Nov-18	0.114 L	26-Nov-18 16:23	1
PFTrDA	72629-94-8	ND	0.00300	0.00439	0.00875	U	B8K0144	22-Nov-18	0.114 L	26-Nov-18 16:23	1
PFTeDA	376-06-7	ND	0.00300	0.00439	0.00875	U	B8K0144	22-Nov-18	0.114 L	26-Nov-18 16:23	1
Labeled Standards	Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	89.2		50-150			B8K0144	22-Nov-18	0.114 L	26-Nov-18 16:23	1
13C2-PFHxA	IS	93.4		50-150			B8K0144	22-Nov-18	0.114 L	26-Nov-18 16:23	1
13C4-PFHpA	IS	79.4		50-150			B8K0144	22-Nov-18	0.114 L	26-Nov-18 16:23	1
18O2-PFHxS	IS	87.0		50-150			B8K0144	22-Nov-18	0.114 L	26-Nov-18 16:23	1
13C2-PFOA	IS	88.1		50-150			B8K0144	22-Nov-18	0.114 L	26-Nov-18 16:23	1
13C5-PFNA	IS	87.8		50-150			B8K0144	22-Nov-18	0.114 L	26-Nov-18 16:23	1
13C8-PFOS	IS	92.4		50-150			B8K0144	22-Nov-18	0.114 L	26-Nov-18 16:23	1
13C2-PFDA	IS	72.6		50-150			B8K0144	22-Nov-18	0.114 L	26-Nov-18 16:23	1
d3-MeFOSAA	IS	107		50-150			B8K0144	22-Nov-18	0.114 L	26-Nov-18 16:23	1
d5-EtFOSAA	IS	114		50-150			B8K0144	22-Nov-18	0.114 L	26-Nov-18 16:23	1
13C2-PFUnA	IS	77.2		50-150			B8K0144	22-Nov-18	0.114 L	26-Nov-18 16:23	1
13C2-PFDoA	IS	94.7		50-150			B8K0144	22-Nov-18	0.114 L	26-Nov-18 16:23	1
13C2-PFTeDA	IS	85.8		50-150			B8K0144	22-Nov-18	0.114 L	26-Nov-18 16:23	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results r	ed to the DL			When r linear an analytes	orted, PFHxS, branched ison	FOA, PFOS, M rs. Only the li	FOSAA and EtF ear isomer is rep	OSAA include both orted for all other	

Sample ID: A1-MW-27-SA2					PFAS Isotope Dilution Method						
Client Data Name: Tetra Tech EC, Inc. Project: 4663.3803 Location: YUMA, AZ		Matrix: Date Collected:		$8 \text { 13:03 }$	Laboratory Data Lab Sample: Date Received:		$\begin{aligned} & \text { 1803659-04 } \\ & \text { 15-Nov-18 13:29 } \end{aligned}$		Column:	BEH C18	Dilution
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	
PFBS	375-73-5	0.0730	0.00292	0.00427	0.00852		B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:34	1
PFHxA	307-24-4	0.255	0.00292	0.00427	0.00852		B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:34	1
PFHpA	375-85-9	0.0256	0.00292	0.00427	0.00852		B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:34	1
PFHxS	355-46-4	0.136	0.00292	0.00427	0.00852		B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:34	1
PFOA	335-67-1	0.0329	0.00292	0.00427	0.00852		B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:34	1
PFNA	375-95-1	ND	0.00292	0.00427	0.00852	U	B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:34	1
PFOS	1763-23-1	0.0136	0.00292	0.00427	0.00852		B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:34	1
PFDA	335-76-2	ND	0.00292	0.00427	0.00852	U	B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:34	1
MeFOSAA	2355-31-9	ND	0.00292	0.00427	0.00852	U	B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:34	1
EtFOSAA	2991-50-6	ND	0.00292	0.00427	0.00852	U	B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:34	1
PFUnA	2058-94-8	ND	0.00292	0.00427	0.00852	U	B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:34	1
PFDoA	307-55-1	ND	0.00292	0.00427	0.00852	U	B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:34	1
PFTrDA	72629-94-8	ND	0.00292	0.00427	0.00852	U	B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:34	1
PFTeDA	376-06-7	ND	0.00292	0.00427	0.00852	U	B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:34	1
Labeled Standards	Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	93.3		50-150			B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:34	1
13C2-PFHxA	IS	93.1		50-150			B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:34	1
13C4-PFHpA	IS	87.2		50-150			B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:34	1
18O2-PFHxS	IS	90.8		50-150			B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:34	1
13C2-PFOA	IS	87.9		50-150			B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:34	1
13C5-PFNA	IS	90.1		50-150			B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:34	1
13C8-PFOS	IS	96.3		50-150			B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:34	1
13C2-PFDA	IS	76.9		50-150			B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:34	1
d3-MeFOSAA	IS	87.0		50-150			B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:34	1
d5-EtFOSAA	IS	90.3		50-150			B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:34	1
13C2-PFUnA	IS	78.1		50-150			B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:34	1
13C2-PFDoA	IS	91.5		50-150			B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:34	1
13C2-PFTeDA	IS	74.4		50-150			B8K0144	22-Nov-18	0.117 L	26-Nov-18 16:34	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results r	ed to the DL			When r linear an analytes	orted, PFHxS, branched isom	FOA, PFOS, M rs. Only the li	FOSAA and EtF ear isomer is rep	OSAA include both orted for all other	

Sample ID: FRB-20181114					PFAS Isotope Dilution Method						
Client Data Name: Tetra Tech EC, Inc. Project: 4663.3803 Location: YUMA, AZ		Matrix: Date Collected:		Water 14-Nov-18 14:20	Laboratory Data Lab Sample: Date Received:		$\begin{aligned} & \text { 1803659-07 } \\ & \text { 15-Nov-18 13:29 } \end{aligned}$		Column:	BEH C18	Dilution
Analyte	CAS Number	Conc. (ug/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	
PFBS	375-73-5	ND	0.00297	0.00435	0.00866	U	B8K0144	22-Nov-18	0.115 L	26-Nov-18 17:27	1
PFHxA	307-24-4	ND	0.00297	0.00435	0.00866	U	B8K0144	22-Nov-18	0.115 L	26-Nov-18 17:27	1
PFHpA	375-85-9	ND	0.00297	0.00435	0.00866	U	B8K0144	22-Nov-18	0.115 L	26-Nov-18 17:27	1
PFHxS	355-46-4	ND	0.00297	0.00435	0.00866	U	B8K0144	22-Nov-18	0.115 L	26-Nov-18 17:27	1
PFOA	335-67-1	ND	0.00297	0.00435	0.00866	U	B8K0144	22-Nov-18	0.115 L	26-Nov-18 17:27	1
PFNA	375-95-1	ND	0.00297	0.00435	0.00866	U	B8K0144	22-Nov-18	0.115 L	26-Nov-18 17:27	1
PFOS	1763-23-1	ND	0.00297	0.00435	0.00866	U	B8K0144	22-Nov-18	0.115 L	26-Nov-18 17:27	1
PFDA	335-76-2	ND	0.00297	0.00435	0.00866	U	B8K0144	22-Nov-18	0.115 L	26-Nov-18 17:27	1
MeFOSAA	2355-31-9	ND	0.00297	0.00435	0.00866	U	B8K0144	22-Nov-18	0.115 L	26-Nov-18 17:27	1
EtFOSAA	2991-50-6	ND	0.00297	0.00435	0.00866	U	B8K0144	22-Nov-18	0.115 L	26-Nov-18 17:27	1
PFUnA	2058-94-8	ND	0.00297	0.00435	0.00866	U	B8K0144	22-Nov-18	0.115 L	26-Nov-18 17:27	1
PFDoA	307-55-1	ND	0.00297	0.00435	0.00866	U	B8K0144	22-Nov-18	0.115 L	26-Nov-18 17:27	1
PFTrDA	72629-94-8	ND	0.00297	0.00435	0.00866	U	B8K0144	22-Nov-18	0.115 L	26-Nov-18 17:27	1
PFTeDA	376-06-7	ND	0.00297	0.00435	0.00866	U	B8K0144	22-Nov-18	0.115 L	26-Nov-18 17:27	1
Labeled Standards	Type	\% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C3-PFBS	IS	101		50-150			B8K0144	22-Nov-18	0.115 L	26-Nov-18 17:27	1
13C2-PFHxA	IS	92.4		50-150			B8K0144	22-Nov-18	0.115 L	26-Nov-18 17:27	1
13C4-PFHpA	IS	88.3		50-150			B8K0144	22-Nov-18	0.115 L	26-Nov-18 17:27	1
1802-PFHxS	IS	97.0		50-150			B8K0144	22-Nov-18	0.115 L	26-Nov-18 17:27	1
13C2-PFOA	IS	94.0		50-150			B8K0144	22-Nov-18	0.115 L	26-Nov-18 17:27	1
13C5-PFNA	IS	88.6		50-150			B8K0144	22-Nov-18	0.115 L	26-Nov-18 17:27	1
13C8-PFOS	IS	100		50-150			B8K0144	22-Nov-18	0.115 L	26-Nov-18 17:27	1
13C2-PFDA	IS	80.7		50-150			B8K0144	22-Nov-18	0.115 L	26-Nov-18 17:27	1
d3-MeFOSAA	IS	84.4		50-150			B8K0144	22-Nov-18	0.115 L	26-Nov-18 17:27	1
d5-EtFOSAA	IS	86.7		50-150			B8K0144	22-Nov-18	0.115 L	26-Nov-18 17:27	1
13C2-PFUnA	IS	80.4		50-150			B8K0144	22-Nov-18	0.115 L	26-Nov-18 17:27	1
13C2-PFDoA	IS	82.1		50-150			B8K0144	22-Nov-18	0.115 L	26-Nov-18 17:27	1
13C2-PFTeDA	IS	82.2		50-150			B8K0144	22-Nov-18	0.115 L	26-Nov-18 17:27	1
DL - Detection Limit	LOD - Limit of Detection LOQ - Limit of quantitation	Results r	ed to the DL.			When re linear an analytes	orted, PFHxS, branched isom	PFOA, PFOS, M ers. Only the lin	eFOSAA and EtF ear isomer is rep	OSAA include both orted for all other	

DATA QUALIFIERS \& ABBREVIATIONS

B	This compound was also detected in the method blank
Conc.	Concentration
D	Dilution
DL	Detection limit
E	The associated compound concentration exceeded the calibration range of the instrument
H	Recovery and/or RPD was outside laboratory acceptance limits
I	Chemical Interference
J	The amount detected is below the Reporting Limit/LOQ
LOD	Limits of Detection
LOQ	Limits of Quantitation
M	Estimated Maximum Possible Concentration (CA Region 2 projects only)
NA	Not applicable
ND	Not Detected
Q	Ion ratio outside of 70-130\% of Standard Ratio. (DOD PFAS projects only)
TEQ	Toxic Equivalency
U	Not Detected (specific projects only)
*	See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

CERTIFICATIONS

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	$17-013$
Arkansas Department of Environmental Quality	$18-008-0$
California Department of Health - ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-18
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2018017
Minnesota Department of Health	1322288
New Hampshire Environmental Accreditation Program	207717
New Jersey Department of Environmental Protection	CA003
New York Department of Health	11411
Oregon Laboratory Accreditation Program	$4042-009$
Pennsylvania Department of Environmental Protection	014
Texas Commission on Environmental Quality	T104704189-18-8
Virginia Department of General Services	9077
Washington Department of Ecology	C584
Wisconsin Department of Natural Resources	998036160

NELAP Accredited Test Methods

MATRIX: Air	Method
Description of Test	EPA 23
Determination of Polychlorinated p-Dioxins \& Polychlorinated Dibenzofurans	

MATRIX: Biological Tissue	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	EPA $8290 / 8290 A$

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	EPA 1613
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537

MATRIX: Non-Potable Water	
Description of Test	Method
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Dioxin by GC/HRMS	EPA 613
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	EPA 8290/8290A

MATRIX: Solids	
Description of Test	Method
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613B
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1614A
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1668A/C
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	EPA 8290/8290A

Analytical Laboratory
CHAIN OF CUSTODY

For Laboratory Use Only
Work Order \#: 180369
Work Order \#: $\frac{10}{M 2-2}$
Storage ID: Storage Secured: Yes \square^{\prime} No \square
\qquad -
Project ID: $\underline{4663.3803}$

PO\#: 1152405
Sampler: Spencer Doolittle
Invoice to: Name
Accts Payable
Relinquished by (printed name and sign
Relinquished by (printed name and sign

SHIP TO: Vista Analytical Laboratory	
	1104 Windfield Way
	EI Dorado Hills, CA 95762
	(916) $673-1520$ * Fax (916) 673-0106
ATTN:	SAMPLE RECEIVING

Sample Log-In Checklist

EXTRACTION INFORMATION

Workorder Due:30-Nov-18 00:00

Client: Tetra Tech EC, Inc.
 Prep Expiration: 2018-Nov-28

Method: 537M PFAS DOD (LOQ as mRL) Matrix: Aqueous

Version: 537 (14 Analyte)
DoD: DoD QSM 5.1

LabSampID	A/B	Prep Rec	Spike Rec	ClientSamplelD	Comments	Location	Container
1803659-01	A	\square	\square	A1-MW-07-SA2		WR-2 A-3	HDPE Bottle, 125 mL
1803659-02	T	\square	\square	A1-MW-23-SA2		WR-2 A-3	HDPE Bottle, 125 mL
1803659-03		\square	\square	A1-MW-25-SA2		WR-2 A-3	HDPE Bottle, 125 mL
1803659-04		¢	\square	A1-MW-27-SA2		WR-2 A-3	HDPE Bottle, 125 mL
1803659-05		\square	\square	A1-MW-55-SA2		WR-2 A-3	HDPE Bottle, 125 mL
1803659-06		\checkmark	\square	A1-MW-54-SA2		WR-2 A-3	HDPE Bottle, 125 mL
1803659-07	\downarrow	\square	\square	FRB-20181114		WR-2 A-3	HDPE Bottle, 125 mL

NO Comments: Internal COC

Pre-Prep Check Out: LT $1 / 21 / 18$	Prep Check Out: Wy 11122118 \qquad
Pre-Prep Check In: LT $11 / 21 / 18$	Prep Check In: NA

Internal Chain of Custody 1803659

Analytical Laboratory
Client: Tetra Tech EC, Inc.
Project Number: 4663.3803
Received: 15-Nov-18 13:29
Received By: Bettina Benedict

		Sample				Extract		
Vista Sample ID	Bottle	Initials Date/Time New Location						
		New Location						
1803659-01	A / B	KE $1116 / 181105$ $A: A_{3} B: F 3$ WF2	LT 11/21/18 1102 Prep	LT $11 / 21 / 181212$ WR-2 Prepshelf	uy $11 / 2218$ 10:22	and 11/wi10 1315		
1803659-02	A / B		LT $11 / 211181102$	LT 11/21/18 1212		-		
		W2-2 A:A3 $8: 73$	Prep	WR-2 Prep Shelf				
1803659-03	A / B	14.1116181105	G 11/21/18 1102	LT $11 / 21 / 18 \quad 1212$				
		WR-2 A:A3 B:F3	Prep	WR-2 Prep Svelf				
1803659-04	A / B	KC 11161181105	LT 11/21/18 1102	LT $11 / 21 / 181212$				
		WR-2 A:A3 B:F3	Prep	We-2 Prepshelf				
1803659-05	A / B	KC $11116 \mid 181105$	LT 11/21 1181102					
		WR.2 A:A3 B:F3	Prep	wr-2 Prep suelf				
1803659-06	A / B	WC w116 181105	LT 11/21181102	LT $11 / 21 / 18 \quad 1212$ WR-2 Prep Shelf				
		WR-2 A:A3 B: F3	Pres					
1803659-07	A / B	$1<\varepsilon \quad \\| 16 \mid 181105$	LT 11/21/18 1102	LT $11 / 21 / 181212$ WR-2 Prep Shelf		V		
		WR-2 A:A3 B:F3	Prep		\downarrow			

* Samples placed in $F-7$ at 13:32 by $7 R$ 7R $11 / 22 / 18$
* Samples placed on Nevap $\$ 1$ by as at 09:00 aع $11 / 23 / 18$
* Scmples placed in R-7 ar 17:5S vy $11 / 23 / 18$
- Method: 537M PFAS DOD (LOQ as meL)

Prepared using:SonicationShaker \triangle SPE ExtractionCentrifuge ID:

Chemist: wy Prep Date: $11 / 22118$
Prep Time: 10.31

Chemist: \qquad
Prep Date: \qquad
Prepared using:Sonication Shaker \square SPE Extraction \square Centrifuge ID:

Prep Time: \qquad

		Date/nitals: LT 11/21/18				BalancelD: HRMS - 10						
Cen	VISTA Sample ID	$\underset{\text { Before }}{\mathrm{pH}}$	$\underset{\text { After }}{ }$	Chlorine (Cl)	Drops HCl Added	Bottle + Sample (g)	Bottle Only (g)	Sample Amt. (L)	IS/NS CHEM/WIT DATE	SPE	ENVI-Carb	$\begin{gathered} \hline \text { RS } \\ \text { CHEM/WIT } \\ \text { DATE } \end{gathered}$
\square	B8K0144-BLK1	5	2	0	1	N^{\prime}	N/A	0.125				
\square	B8K0144-BSI	5	2	0	1	I	I	0.125				
\square	1803659-01	5	2	0	3	144.06						
\square	1803659-02	5	2	0	3	144.83				K		
\square	1803659-03	5	2	0	3	141.17						
\square	1803659-04	5	2	0	3	144.25						
\square	1803659-05	5	2	0	2	145.38						
\square	1803659-06	5	2	0	3	143.78						
\square	1803659-07	5	2	0	1	142.43						

IS: \qquad IS SUP: \qquad NS: \qquad NS SUP: \qquad RS: \qquad		
Comments: Assume $1 \mathrm{~g}=1 \mathrm{~mL}$ Cen = Centrifuged	1 = Sample centrifuged twice $2=$ Sample deeply colored after centrifuge 3 = Cartridge sorbent discolored after SPE 4 = Sample clogged cartridge, additioanl cartridge(s) used $5=$ Sample recombined at final volume	6 = Sample took longer to SPE, required stronger vacuum $7=$ Required Nitrogen line to finish SPE $8=$ Required Nitrogen line to finish elution $9=$ Sample arrived with low volume $10=$ Trizma added to QC (5g/L)

LabNumber	WetWeight (Initial)	$\begin{gathered} \text { \% Solids } \\ \text { (Extraction Solids) } \end{gathered}$	DryWeight	Final	Extracted	Ext By	Spike	SpikeAmount	ClientMatrix	Analysis
1803659-01	$0.11704 \sqrt{ }$	N / A	N / A	1000	22-Nov-18 10:31	NY			Water	537M PFAS DOD (LOQ as
1803659-02	0.1178 V		T	1000	22-Nov-18 10:31	NY			Water	537M PFAS DOD (LOQ as
1803659-03	0.11426 J			1000	22-Nov-18 10:31	NY			Water	537M PFAS DOD (LOQ as
1803659-04	$0.11731 \sqrt{ }$			1000	22-Nov-18 10:31	NY			Water	537M PFAS DOD (LOQ as
1803659-05	0.11846 V			1000	22-Nov-18 10:31	NY			Water	537M PFAS DOD (LOQ as
1803659-06	0.11683 V			1000	22-Nov-18 10:31	NY			Water	537M PFAS DOD (LOQ as
1803659-07	0.11549 V			1000	22-Nov-18 10:31	NY			Water	537M PFAS DOD (LOQ as
B8K0144-BLK1	0.125 V			1000	22-Nov-18 10:31	NY				QC
B8K0144-BS1	$0.125 \checkmark$			1000	22-Nov-18 10:31	NY	18 J 1505	710 V		QC
B8K0144-BSD1	0.125 V	\downarrow	\downarrow	1000	22-Nov-18 10:31	NY	18J1505	10 J		QC
					$\begin{aligned} & 23 / 18 \\ & a E \end{aligned}$					

Sample Data - PFAS Isotope Dilution Method

Quantify Sample Report

Dataset: Z:|Projects\PFAS.PRO\Results\181126M1\181126M1-25.qld

Last Altered: Wednesday, November 28, 2018 09:58:09 Pacific Standard Time
GM 11/29/2018 Printed: Wednesday, November 28, 2018 09:59:05 Pacific Standard Time

Name: 181126M1_25, Date: 26-Nov-2018, Time: 15:51:53, ID: B8K0144-BLK1 Method Blank 0.125, Description: Method Blank

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	3 PFBS	$299.0>79.7$		1.29e3	0.125		2.82						
2	5 PFHxA	$313>269$	2.60 e 1	6.35 e 3	0.125		3.38	3.38	0.0204			14.001	NO
3	7 PFHpA	363.0 > 318.9		8.81 e 3	0.125		4.03						
4	8 L-PFHxS	$398.9>79.6$	1.07 e 1	1.01 e 3	0.125		4.17	4.17	0.132	0.5491		39.807	YES
5	68 Total PFHxS	$398.9>79.6$	1.07 e 1	1.01 e 3	0.125		4.28		0.132	0.5491			
6	11 L-PFOA	412.8 > 368.9	5.93 e 1	1.49e4	0.125		4.47	4.52	0.0498			2.482	NO
7	69 Total PFOA	412.8 > 368.9	5.93 e 1	1.49e4	0.125		4.62		0.000				
8	38 13C3-PFBS	302. > 98.8	1.29 e 3	2.56 e 3	0.125	0.537	2.72	2.82	6.29	93.7598	93.8		
9	40 13C2-PFHxA	$315>270$	6.35 e 3	1.71e4	0.125	0.988	3.30	3.38	4.65	37.6638	94.2		
10	41 13C4-PFHpA	$367.2>321.8$	8.81 e 3	1.71e4	0.125	0.537	3.97	4.03	6.45	96.2092	96.2		
11	42 18O2-PFHxS	$403.0>102.6$	1.01 e 3	2.56 e 3	0.125	0.448	4.11	4.17	4.93	88.0639	88.1		
12	42 18O2-PFHxS	403.0 > 102.6	1.01 e 3	2.56 e 3	0.125	0.448	4.11	4.17	4.93	88.0639	88.1		
13	44 13C2-PFOA	414.9 > 369.7	1.49 e 4	2.10 e 4	0.125	0.755	4.46	4.52	8.86	93.9473	93.9		
14	44 13C2-PFOA	414.9 > 369.7	1.49 e 4	2.10e4	0.125	0.755	4.46	4.52	8.86	93.9473	93.9		
15	-1												
16	14 PFNA	463.0 > 418.8		1.30e4	0.125		4.90						
17	16 L-PFOS	$498.9>79.9$		2.32 e 3	0.125		5.02						
18	70 Total PFOS	$498.9>79.9$	0.00 e 0	2.32 e 3	0.125		5.13		0.000				
19	18 PFDA	$513>468.8$	3.28 e 1	1.14e4	0.125		5.28	5.33	0.0358	0.0548		21.961	YES
20	21 L-MeFOSAA	$570>419$		2.07 e 3	0.125		5.43						
21	71 Total N-MeFOSAA	570. > 419	0.00e0	2.07 e 3	0.125		5.57		0.000				
22	25 PFUdA	$563.0>518.9$	4.74 e 1	1.45 e 4	0.125		5.61	5.65	0.0407			43.931	YES
23	45 13C5-PFNA	468.2 > 422.9	1.30 e 4	1.55 e 4	0.125	0.991	4.90	4.95	10.5	84.8385	84.8		
24	47 13C8-PFOS	$507.0>79.9$	2.32 e 3	2.45 e 3	0.125	1.042	4.98	5.03	11.8	90.9706	91.0		
25	47 13C8-PFOS	$507.0>79.9$	2.32 e 3	2.45 e 3	0.125	1.042	4.98	5.03	11.8	90.9706	91.0		
26	48 13C2-PFDA	$515.1>469.9$	1.14 e 4	1.70 e 4	0.125	0.902	5.28	5.33	8.44	74.8367	74.8		
27	$50 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.3>419$	2.07 e 3	2.00 e 4	0.125	0.135	5.43	5.48	1.29	76.7450	76.7		
28	$50 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.3>419$	2.07 e 3	2.00 e 4	0.125	0.135	5.43	5.48	1.29	76.7450	76.7		
29	51 13C2-PFUdA	$565>519.8$	1.45 e 4	2.00 e 4	0.125	0.957	5.61	5.65	9.09	75.9756	76.0		
30	-1												
31	23 L-EtFOSAA	$584.1>419$	4.64 e 0	3.10 e 3	0.125		5.51	5.64	0.0187			0.365	YES
32	72 Total N-EtFOSAA	$584.1>419$	4.64 e 0	3.10 e 3	0.125		5.72		0.000				
33	29 PFTrDA	$662.9>618.9$		1.48 e 4	0.125		6.15						
34	27 PFDoA	612.9 > 569.0		1.48 e 4	0.125		5.90						
35	30 PFTeDA	713.0 > 669.0		9.53 e 3	0.125		6.37						
36	73 TCDA	$498.3>106.9$			0.125		5.15						

Work Order 1803659

Dataset: Z:\Projects\PFAS.PRO\Results\181126M1\181126M1-25.qld

Last Altered: Wednesday, November 28, 2018 09:58:09 Pacific Standard Time
GM 11/29/2018
Printed: Wednesday, November 28, 2018 09:59:05 Pacific Standard Time

Name: 181126M1_25, Date: 26-Nov-2018, Time: 15:51:53, ID: B8K0144-BLK1 Method Blank 0.125, Description: Method Blank

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	61 13C5-PFHxA	318 > 272.9	1.71e4	1.71 e 4	0.125	1.000	3.30	3.38	12.5	100.0000	100.0		
38	$52 \mathrm{d5}-\mathrm{N}-\mathrm{EtFOSAA}$	$589.3>419$	3.10 e 3	2.00 e 4	0.125	0.185	5.59	5.63	1.94	83.5997	83.6		
39	52 d5-N-EtFOSAA	$589.3>419$	3.10 e 3	2.00 e 4	0.125	0.185	5.59	5.63	1.94	83.5997	83.6		
40	53 13C2-PFDoA	$615.0>569.7$	1.48 e 4	1.70 e 4	0.125	1.047	5.90	5.93	10.9	83.2955	83.3		
41	53 13C2-PFDoA	$615.0>569.7$	1.48 e 4	1.70 e 4	0.125	1.047	5.90	5.93	10.9	83.2955	83.3		
42	55 13C2-PFTeDA	$715.1>669.7$	9.53 e 3	2.00 e 4	0.125	0.567	6.37	6.40	5.96	84.0771	84.1		
43	47 13C8-PFOS	$507.0>79.9$	2.32 e 3	2.45 e 3	0.125	1.042	4.98	5.03	11.8	90.9706	91.0		
44	63 13C8-PFOA	$420.9>376$	2.10 e 4	2.10 e 4	0.125	1.000	4.46	4.52	12.5	100.0000	100.0		
45	-1												
46	62 13C3-PFHxS	$401.8>79.9$	2.56 e 3	2.56 e 3	0.125	1.000	4.11	4.17	12.5	100.0000	100.0		
47	64 13C9-PFNA	$472.2>426.9$	1.55 e 4	1.55 e 4	0.125	1.000	4.90	4.95	12.5	100.0000	100.0		
48	65 13C4-PFOS	$503>79.9$	2.45 e3	2.45 e 3	0.125	1.000	4.98	5.03	12.5	100.0000	100.0		
49	66 13C6-PFDA	$519.1>473.7$	1.70 e 4	1.70 e 4	0.125	1.000	5.28	5.33	12.5	100.0000	100.0		
50	67 13C7-PFUdA	$570.1>524.8$	2.00 e 4	2.00 e 4	0.125	1.000	5.61	5.65	12.5	100.0000	100.0		

Method: Z:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_112618.mdb 26 Nov 2018 13:53:04

Calibration: Z:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFĀS_Q4_11-26-18.cdb 26 Nov 2018 14:29:06

Name: 181126M1_25, Date: 26-Nov-2018, Time: 15:51:53, ID: B8K0144-BLK1 Method Blank 0.125, Description: Method Blank

F7:MRM of 2 channels,ES-

13C3-PFBS

L-PFOA
F21:MRM of 2 channels,ES412.8 > 368.9 $1.434 e+003$
?

13C2-PFHxA
F10:MRM of 1 channel,ES-

F16:MRM of 2 channels,ES-

13C4-PFHpA
F17:MRM of 1 channel,ES-

1802-PFHxS
F20:MRM of 1 channel,ES-

$$
\begin{array}{r}
\text { F20:MRM of } 1 \text { channel,ES- } \\
403.0>102.6 \\
2.468 \mathrm{e}+004
\end{array}
$$

1802-PFHxS
F20:MRM of 1 channel,ES-

13C2-PFOA

F22:MRM of 1 channel,ES-

$$
414.9>369.7
$$

Total PFOA
F21:MRM of 2 channels,ES- $\begin{array}{r}412.8>368.9 \\ 430 \\ 100\end{array}$

F21:MRM of 2 channels,ES-

13C2-PFOA

F22:MRM of 1 channel,ES-

$$
414.9>369.7
$$

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:
 Z:\Projects\PFAS.PRO\Results\181126M1\181126M1-25.qld

Last Altered: Wednesday, November 28, 2018 09:58:09 Pacific Standard Time
GM 11/29/2018
Printed:
Wednesday, November 28, 2018 09:59:05 Pacific Standard Time

Name: 181126M1_25, Date: 26-Nov-2018, Time: 15:51:53, ID: B8K0144-BLK1 Method Blank 0.125, Description: Method Blank
PFNA
F27:MRM of 2 channels,ES-
$463.0>418.8$
$3.881 \mathrm{e}+002$

F27:MRM of 2 channels, ES-

13C5-PFNA

L-PFOS

F32:MRM of 2 channels, ES- $\begin{array}{r}498.9>79.9 \\ 1.000 \mathrm{e}-003\end{array}$

Total PFOS

PFDA
F37:MRM of 2 channels,ES- $\begin{array}{r}513>468.8 \\ 5.860 \mathrm{e}+002\end{array}$

L-MeFOSAA

F48:MRM of 2 channels,ES- F48:MRM of 2 chand

5.48
$2.524 \mathrm{e}+001$
100

Total N-MeFOSAA

F48:MRM of 2 channels,ES- | $546: M R M$ of 2 channels,ES- |
| ---: |
| $563.0>518.9$ |
| 5.48 |
| $2.524 \mathrm{e}+001$ |

F32:MRM of 2 channels,ES-

F32:MRM of 2 channels,ES-

13C8-PFOS

F35:MRM of 1 channel,ES-
$507.0>79.9$

F37:MRM of 2 channels,ES-
$513>219$

13C2-PFDA

F38:MRM of 1 channel,ES-

F48:MRM of 2 channels,ES-

F48:MRM of 2 channels,ES-

d3-N-MeFOSAA

F50:MRM of 1 channel,ES-

F46:MRM of 2 channels,ES-

13C2-PFUdA
F47:MRM of 1 channel,ES-

Quantify Sample Report

Dataset:
 Z:\Projects\PFAS.PRO\Results\181126M1\181126M1-25.qld

Last Altered: Wednesday, November 28, 2018 09:58:09 Pacific Standard Time
GM 11/29/2018
Printed:
Wednesday, November 28, 2018 09:59:05 Pacific Standard Time

Name: 181126M1_25, Date: 26-Nov-2018, Time: 15:51:53, ID: B8K0144-BLK1 Method Blank 0.125, Description: Method Blank

L-EtFOSAA
F51:MRM of 2 channels,ES-
$584.1>419$
100

F51:MRM of 2 channels,ES-

d5-N-EtFOSAA
F52:MRM of 1 channel, ES-
$589.3>419$

Total N-EtFOSAA
F51:MRM of 2 channels,ES-
$584.1>419$

PFTrDA

F60:MRM of 2 channels,ES-

PFTeDA

F61:MRM of 2 channels,ES-

TCDA

F31:MRM of 3 channels,ES-

$498.3>106.9$
100
1.000e-003

F51:MRM of 2 channels,ES- F60:MRM of 2 channels,ES-

d5-N-EtFOSAA

F54:MRM of 4 channels,ES-

13C2-PFDoA
F55:MRM of 2 channels,ES-

13C2-PFTeDA
F62:MRM of 2 channels,ES-

13C5-PFHxA
F11:MRM of 1 channel,ES$318>272.9$

13C8-PFOA
F23:MRM of 1 channel,ES-

Dataset:
 Z:IProjects\PFAS.PRO\Results\181126M1\181126M1-25.qld

Last Altered: Wednesday, November 28, 2018 09:58:09 Pacific Standard Time
Printed: Wednesday, November 28, 2018 09:59:05 Pacific Standard Time

Name: 181126M1_25, Date: 26-Nov-2018, Time: 15:51:53, ID: B8K0144-BLK1 Method Blank 0.125, Description: Method Blank

13C4-PFOS
F33:MRM of 1 channel,ES- $\begin{array}{r}503>79.9 \\ 100\end{array}$

13C6-PFDA

F40:MRM of 1 channel,ES $519.1>473.7$ $3.902 \mathrm{e}+005$

13C7-PFUdA

F49:MRM of 1 channel,ES$570.1>524.8$ $4.349 e+005$

Quantify Sample Report

Dataset:	Z:IProjects\PFAS.PRO\Results\181126M1\181126M1-23.qld
Last Altered:	Wednesday, November 28, 2018 09:46:01 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 09:47:32 Pacific Standard Time

Name: 181126M1_23, Date: 26-Nov-2018, Time: 15:29:49, ID: B8K0144-BS1 OPR 0.125, Description: OPR

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	3 PFBS	$299.0>79.7$	2.17 e 3	1.34 e 3	0.125		2.82	2.83	20.3	78.5232	98.2	2.647	NO
2	5 PFHxA	$313>269$	1.32 e 4	6.81e3	0.125		3.39	3.39	9.69	81.8514	102.3	14.548	NO
3	7 PFHpA	363.0 > 318.9	9.77 e 3	9.01 e 3	0.125		4.02	4.02	13.6	82.3816	103.0	13.287	NO
4	8 L-PFHxS	$398.9>79.6$	1.79 e 3	1.10e3	0.125		4.16	4.16	20.3	83.6564	104.6	1.699	NO
5	68 Total PFHxS	$398.9>79.6$	1.79 e 3	1.10e3	0.125		4.28		20.3	83.6564			
6	11 L-PFOA	412.8 > 368.9	1.70 e 4	1.49e4	0.125		4.47	4.52	14.2	82.8508	103.6	3.170	NO
7	69 Total PFOA	412.8 > 368.9	1.70 e 4	1.49e4	0.125		4.62		14.2	82.8508			
8	38 13C3-PFBS	302. > 98.8	1.34 e 3	2.61 e 3	0.125	0.537	2.72	2.82	6.42	95.7033	95.7		
9	40 13C2-PFHxA	$315>270$	6.81 e 3	1.87e4	0.125	0.988	3.30	3.39	4.55	36.8400	92.1		
10	41 13C4-PFHpA	$367.2>321.8$	9.01 e 3	1.87e4	0.125	0.537	3.97	4.03	6.02	89.7593	89.8		
11	42 18O2-PFHxS	$403.0>102.6$	1.10 e 3	2.61 e 3	0.125	0.448	4.11	4.16	5.26	93.9115	93.9		
12	42 18O2-PFHxS	403.0 > 102.6	1.10 e 3	2.61 e 3	0.125	0.448	4.11	4.16	5.26	93.9115	93.9		
13	44 13C2-PFOA	414.9 > 369.7	1.49 e 4	2.23 e 4	0.125	0.755	4.46	4.52	8.37	88.6619	88.7		
14	44 13C2-PFOA	414.9 > 369.7	1.49 e 4	2.23 e 4	0.125	0.755	4.46	4.52	8.37	88.6619	88.7		
15	-1												
16	14 PFNA	463.0 > 418.8	1.34 e 4	1.32 e 4	0.125		4.90	4.95	12.7	81.0344	101.3	4.323	NO
17	16 L-PFOS	$498.9>79.9$	2.32 e 3	2.39 e 3	0.125		5.02	5.03	12.1	87.9862	110.0	2.014	NO
18	70 Total PFOS	$498.9>79.9$	2.32 e 3	2.39 e 3	0.125		5.13		12.1	87.9862			
19	18 PFDA	$513>468.8$	1.40 e 4	1.20 e 4	0.125		5.28	5.33	14.6	88.7436	110.9	5.573	NO
20	21 L-MeFOSAA	$570>419$	5.07 e 3	2.10 e 3	0.125		5.43	5.48	30.1	82.8197	103.5	2.488	NO
21	71 Total N-MeFOSAA	570. > 419	5.07 e 3	2.10 e 3	0.125		5.57		30.1	82.8197			
22	25 PFUdA	$563.0>518.9$	1.15 e 4	1.44e4	0.125		5.61	5.65	9.99	82.0130	102.5	9.333	NO
23	45 13C5-PFNA	$468.2>422.9$	1.32 e 4	1.56 e 4	0.125	0.991	4.90	4.95	10.6	85.3006	85.3		
24	47 13C8-PFOS	$507.0>79.9$	2.39 e 3	2.63 e3	0.125	1.042	4.98	5.03	11.4	87.3338	87.3		
25	47 13C8-PFOS	$507.0>79.9$	2.39 e 3	2.63 e3	0.125	1.042	4.98	5.03	11.4	87.3338	87.3		
26	48 13C2-PFDA	$515.1>469.9$	1.20 e 4	1.80 e 4	0.125	0.902	5.28	5.33	8.30	73.5682	73.6		
27	50 d3-N-MeFOSAA	$573.3>419$	2.10 e 3	2.03 e 4	0.125	0.135	5.43	5.48	1.30	77.0963	77.1		
28	$50 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.3>419$	2.10 e 3	2.03 e 4	0.125	0.135	5.43	5.48	1.30	77.0963	77.1		
29	51 13C2-PFUdA	$565>519.8$	1.44e4	2.03 e 4	0.125	0.957	5.61	5.65	8.90	74.3432	74.3		
30	-1												
31	23 L-EtFOSAA	$584.1>419$	4.44e3	3.18 e 3	0.125		5.51	5.64	17.4	86.0353	107.5	1.440	NO
32	72 Total N-EtFOSAA	$584.1>419$	4.44 e 3	3.18 e 3	0.125		5.72		17.4	86.0353			
33	29 PFTrDA	$662.9>618.9$	1.24 e 4	1.40 e 4	0.125		6.15	6.18	11.1	76.1902	95.2	24.695	NO
34	27 PFDoA	612.9 > 569.0	1.30 e 4	1.40e4	0.125		5.90	5.93	11.6	79.6603	99.6	8.257	NO
35	30 PFTeDA	713.0 > 669.0	1.04 e 4	7.54 e 3	0.125		6.37	6.40	17.3	84.6077	105.8	12.920	NO
36	73 TCDA	$498.3>106.9$			0.125		5.15						

Work Order 1803659

Dataset:	Z:\Projects\PFAS.PRO\Results\181126M1\181126M1-23.qld
Last Altered:	Wednesday, November 28, 2018 09:46:01 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 09:47:32 Pacific Standard Time

Name: 181126M1_23, Date: 26-Nov-2018, Time: 15:29:49, ID: B8K0144-BS1 OPR 0.125, Description: OPR

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	61 13C5-PFHxA	318 > 272.9	1.87e4	1.87e4	0.125	1.000	3.30	3.39	12.5	100.0000	100.0		
38	$52 \mathrm{~d} 5-\mathrm{N}$-EtFOSAA	$589.3>419$	3.18 e 3	2.03 e4	0.125	0.185	5.59	5.63	1.96	84.7026	84.7		
39	$52 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	3.18 e 3	2.03 e4	0.125	0.185	5.59	5.63	1.96	84.7026	84.7		
40	53 13C2-PFDoA	$615.0>569.7$	1.40 e 4	1.80 e 4	0.125	1.047	5.90	5.93	9.69	74.0865	74.1		
41	53 13C2-PFDoA	$615.0>569.7$	1.40e4	1.80 e 4	0.125	1.047	5.90	5.93	9.69	74.0865	74.1		
42	55 13C2-PFTeDA	$715.1>669.7$	7.54 e 3	2.03 e 4	0.125	0.567	6.37	6.40	4.64	65.5363	65.5		
43	47 13C8-PFOS	$507.0>79.9$	2.39 e 3	2.63 e3	0.125	1.042	4.98	5.03	11.4	87.3338	87.3		
44	63 13C8-PFOA	$420.9>376$	2.23 e 4	2.23 e 4	0.125	1.000	4.46	4.52	12.5	100.0000	100.0		
45	-1												
46	62 13C3-PFHxS	$401.8>79.9$	2.61 e3	2.61 e3	0.125	1.000	4.11	4.16	12.5	100.0000	100.0		
47	64 13C9-PFNA	$472.2>426.9$	1.56 e 4	1.56 e 4	0.125	1.000	4.90	4.95	12.5	100.0000	100.0		
48	65 13C4-PFOS	$503>79.9$	2.63 e3	2.63 e3	0.125	1.000	4.98	5.03	12.5	100.0000	100.0		
49	66 13C6-PFDA	$519.1>473.7$	1.80 e 4	1.80 e 4	0.125	1.000	5.28	5.33	12.5	100.0000	100.0		
50	67 13C7-PFUdA	$570.1>524.8$	2.03 e 4	2.03 e 4	0.125	1.000	5.61	5.65	12.5	100.0000	100.0		

Quantify Sample Report

Dataset:	Z:\Projects\PFAS.PRO\Results\181126M1\181126M1-23.qld
Last Altered:	Wednesday, November 28, 2018 09:46:01 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 09:47:32 Pacific Standard Time

Method: Z:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_112618.mdb 26 Nov 2018 13:53:04

Calibration: Z:|Projects\PFAS.PRO\CurveDB\C̄18_VAL-PFĀS_Q4_11-26-18.cdb 26 Nov 2018 14:29:06

Name: 181126M1_23, Date: 26-Nov-2018, Time: 15:29:49, ID: B8K0144-BS1 OPR 0.125, Description: OPR

PFBS
F7:MRM of 2 channels,ES-
$299.0>79.7$
100

F7:MRM of 2 channels,ES-

13C3-PFBS

Total PFHxS

F18:MRM of 2 channels,ES- $\begin{array}{r}398.9>79.6 \\ 3.542 \mathrm{e}+004\end{array}$

L-PFOA

F21:MRM of 2 channels,ES- $\begin{array}{r}412.8>368.9 \\ 4.033 \mathrm{e}+005\end{array}$

Total PFOA

F21:MRM of 2 channels, ES- | $412.8>368.9$ |
| ---: |
| $4.033 \mathrm{e}+005$ |

13C2-PFHxA

F10:MRM of 1 channel,ES-

13C4-PFHpA
F17:MRM of 1 channel,ES-

$$
367.2>321.8
$$

1802-PFHxS
F20:MRM of 1 channel,ES-

13C2-PFOA

F22:MRM of 1 channel,ES-

13C2-PFOA
F22:MRM of 1 channel,ES414.9 > 369.7

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:IProjects\PFAS.PRO\Results\181126M11181126M1-23.qld
Last Altered:	Wednesday, November 28, 2018 09:46:01 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 09:47:32 Pacific Standard Time

Name: 181126M1_23, Date: 26-Nov-2018, Time: 15:29:49, ID: B8K0144-BS1 OPR 0.125, Description: OPR
PFNA
F27:MRM of 2 channels,ES-
$463.0>418.8$
$3.345 \mathrm{e}+005$

F27:MRM of 2 channels,ES-

L-PFOS

F32:MRM of 2 channels,ES- $\begin{array}{r}498.9>79.9 \\ 4.016 \mathrm{e}+004\end{array}$

Total PFOS

PFDA
F37:MRM of 2 channels,ES-
$513>468.8$
$3.229 \mathrm{e}+005$

L-MeFOSAA

F48:MRM of 2 channels,ES-

Total N-MeFOSAA
F48:MRM of 2 channels,ES- $\begin{array}{r}\text { F46:MRM of } 2 \text { channels,ES- } \\ 570>419 \\ 563.0>518.9 \\ 2.487 \mathrm{e}+005\end{array}$

F32:MRM of 2 channels,ES- F32:MRM of 2 channels,ES-

13C8-PFOS

F32:MRM of 2 channels,ES
$498.9>99$

13C8-PFOS

F35:MRM of 1 channel,ES-
$507.0>79.9$

F37:MRM of 2 channels,ES-

13C2-PFDA

F38:MRM of 1 channel,ES-

F48:MRM of 2 channels,ES-

F48:MRM of 2 channels,ES-

d3-N-MeFOSAA

F50:MRM of 1 channel,ES-

F46:MRM of 2 channels,ES-

13C2-PFUdA
F47:MRM of 1 channel,ES-

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:\Projects\PFAS.PRO\Results\181126M1\181126M1-23.qld
Last Altered:	Wednesday, November 28, 2018 09:46:01 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 09:47:32 Pacific Standard Time

Name: 181126M1_23, Date: 26-Nov-2018, Time: 15:29:49, ID: B8K0144-BS1 OPR 0.125, Description: OPR

F51:MRM of 2 channels,ES-

Total N-EtFOSAA
F51:MRM of 2 channels,ES-
$584.1>419$

PFTrDA
F60:MRM of 2 channels,ES$662.9>618.9$ $2.644 \mathrm{e}+005$

PFDoA
F54:MRM of 4 channels,ES-

PFTeDA

F61:MRM of 2 channels,ES-

TCDA

F31:MRM of 3 channels,ES-
$498.3>106.9$
$1.000 \mathrm{e}-003$

F51:MRM of 2 channels,ES- F60:MRM of 2 channels,ES-

d5-N-EtFOSAA
F52:MRM of 1 channel,ES-

F54:MRM of 4 channels,ES-
$612.9>318.8$
$3.429 e+004$
100
6.000

13C2-PFDoA
F55:MRM of 2 channels,ES-

13C2-PFTeDA
F62:MRM of 2 channels,ES-

13C5-PFHxA
F11:MRM of 1 channel,ES$318>272.9$

13C8-PFOA
F23:MRM of 1 channel,ES-

Dataset: Z:\Projects\PFAS.PRO\Results\181126M1\181126M1-23.qld
 Last Altered: Wednesday, November 28, 2018 09:46:01 Pacific Standard Time Printed: \quad Wednesday, November 28, 2018 09:47:32 Pacific Standard Time

Name: 181126M1_23, Date: 26-Nov-2018, Time: 15:29:49, ID: B8K0144-BS1 OPR 0.125, Description: OPR

13C6-PFDA

F40:MRM of 1 channel,ES$519.1>473.7$ $4.142 \mathrm{e}+005$

13C7-PFUdA

F49:MRM of 1 channel,ES$570.1>524.8$ $0.1>524.8$
$4.364 \mathrm{e}+005$

Quantify Sample Report

Dataset:	Z:IProjects\PFAS.PRO\Results\181126M1\181126M1-24.qld
Last Altered:	Wednesday, November 28, 2018 09:53:29 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 09:54:15 Pacific Standard Time

Name: 181126M1_24, Date: 26-Nov-2018, Time: 15:41:20, ID: B8K0144-BSD1 LCSD 0.125, Description: LCSD

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	3 PFBS	$299.0>79.7$	2.10 e 3	1.22 e 3	0.125		2.83	2.83	21.5	83.3725	104.2	2.809	NO
2	5 PFHxA	$313>269$	1.25 e 4	6.03 e 3	0.125		3.39	3.39	10.3	87.3630	109.2	16.000	NO
3	7 PFHpA	$363.0>318.9$	9.41 e 3	8.41 e 3	0.125		4.03	4.03	14.0	84.9462	106.2	12.778	NO
4	8 L-PFHxS	$398.9>79.6$	1.70 e 3	1.01 e 3	0.125		4.17	4.17	21.0	86.5666	108.2	1.708	NO
5	68 Total PFHxS	$398.9>79.6$	1.70 e 3	1.01 e 3	0.125		4.28		21.0	86.5666			
6	11 L-PFOA	$412.8>368.9$	1.59 e 4	1.34 e 4	0.125		4.47	4.52	14.8	86.3345	107.9	3.251	NO
7	69 Total PFOA	$412.8>368.9$	1.59 e 4	1.34 e 4	0.125		4.62		14.8	86.3345			
8	38 13C3-PFBS	302. > 98.8	1.22 e 3	2.39 e 3	0.125	0.537	2.72	2.83	6.39	95.2003	95.2		
9	40 13C2-PFHxA	$315>270$	6.03 e 3	1.66 e 4	0.125	0.988	3.30	3.39	4.53	36.6506	91.6		
10	41 13C4-PFHpA	$367.2>321.8$	8.41 e 3	1.66 e 4	0.125	0.537	3.97	4.03	6.32	94.2587	94.3		
11	42 1802-PFHxS	$403.0>102.6$	1.01e3	2.39 e 3	0.125	0.448	4.11	4.17	5.28	94.3541	94.4		
12	42 1802-PFHxS	$403.0>102.6$	1.01e3	2.39 e 3	0.125	0.448	4.11	4.17	5.28	94.3541	94.4		
13	44 13C2-PFOA	$414.9>369.7$	1.34 e 4	1.88 e 4	0.125	0.755	4.46	4.52	8.93	94.6086	94.6		
14	44 13C2-PFOA	$414.9>369.7$	1.34 e 4	1.88 e 4	0.125	0.755	4.46	4.52	8.93	94.6086	94.6		
15	-1												
16	14 PFNA	$463.0>418.8$	1.14 e 4	1.08 e 4	0.125		4.90	4.95	13.2	84.2926	105.4	4.477	NO
17	16 L-PFOS	$498.9>79.9$	2.27 e 3	2.39 e 3	0.125		5.02	5.03	11.9	86.5825	108.2	2.003	NO
18	70 Total PFOS	$498.9>79.9$	2.27 e 3	2.39 e 3	0.125		5.13		11.9	86.5825			
19	18 PFDA	$513>468.8$	1.13 e 4	1.06 e 4	0.125		5.28	5.32	13.3	81.1641	101.5	5.517	NO
20	21 L-MeFOSAA	$570>419$	5.52 e 3	2.08 e 3	0.125		5.43	5.48	33.2	91.5068	114.4	2.759	NO
21	71 Total N-MeFOSAA	570. > 419	5.52e3	2.08 e 3	0.125		5.57		33.2	91.5068			
22	25 PFUdA	$563.0>518.9$	1.11e4	1.38 e 4	0.125		5.61	5.65	10.0	82.3869	103.0	9.725	NO
23	45 13C5-PFNA	$468.2>422.9$	1.08 e 4	1.33 e 4	0.125	0.991	4.90	4.95	10.2	82.3064	82.3		
24	47 13C8-PFOS	$507.0>79.9$	2.39 e 3	2.43 e 3	0.125	1.042	4.98	5.03	12.3	94.3971	94.4		
25	47 13C8-PFOS	$507.0>79.9$	2.39 e 3	2.43 e 3	0.125	1.042	4.98	5.03	12.3	94.3971	94.4		
26	48 13C2-PFDA	$515.1>469.9$	1.06 e 4	1.50 e 4	0.125	0.902	5.28	5.32	8.85	78.4499	78.4		
27	$50 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.3>419$	2.08 e 3	1.84 e 4	0.125	0.135	5.43	5.47	1.41	83.7654	83.8		
28	$50 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.3>419$	2.08 e 3	1.84 e 4	0.125	0.135	5.43	5.47	1.41	83.7654	83.8		
29	51 13C2-PFUdA	$565>519.8$	1.38 e 4	1.84 e 4	0.125	0.957	5.61	5.65	9.37	78.3375	78.3		
30	-1												
31	23 L-EtFOSAA	$584.1>419$	4.57e3	3.05 e 3	0.125		5.51	5.63	18.7	92.3146	115.4	1.545	NO
32	72 Total N-EtFOSAA	$584.1>419$	4.57 e 3	3.05 e 3	0.125		5.72		18.7	92.3146			
33	29 PFTrDA	$662.9>618.9$	1.45 e 4	1.45 e 4	0.125		6.15	6.18	12.6	86.4964	108.1	25.192	NO
34	27 PFDoA	$612.9>569.0$	1.33 e 4	1.45 e 4	0.125		5.90	5.93	11.5	78.9850	98.7	7.703	NO
35	30 PFTeDA	$713.0>669.0$	1.24 e 4	8.95 e 3	0.125		6.37	6.40	17.4	84.9875	106.2	12.484	NO
36	73 TCDA	$498.3>106.9$			0.125		5.15						

Work Order 1803659

Dataset:	Z:\Projects\PFAS.PRO\Results\181126M1\181126M1-24.qld
Last Altered:	Wednesday, November 28, 2018 09:53:29 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 09:54:15 Pacific Standard Time

Name: 181126M1_24, Date: 26-Nov-2018, Time: 15:41:20, ID: B8K0144-BSD1 LCSD 0.125, Description: LCSD

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	61 13C5-PFHxA	318 > 272.9	1.66 e 4	1.66 e 4	0.125	1.000	3.30	3.39	12.5	100.0000	100.0		
38	$52 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	3.05 e 3	1.84 e 4	0.125	0.185	5.59	5.63	2.07	89.5246	89.5		
39	$52 \mathrm{d5}$-N-EtFOSAA	$589.3>419$	3.05 e 3	1.84 e 4	0.125	0.185	5.59	5.63	2.07	89.5246	89.5		
40	53 13C2-PFDoA	$615.0>569.7$	1.45 e 4	1.50 e 4	0.125	1.047	5.90	5.93	12.1	92.4820	92.5		
41	53 13C2-PFDoA	$615.0>569.7$	1.45 e 4	1.50 e 4	0.125	1.047	5.90	5.93	12.1	92.4820	92.5		
42	55 13C2-PFTeDA	$715.1>669.7$	8.95 e 3	1.84 e 4	0.125	0.567	6.37	6.40	6.08	85.7489	85.7		
43	47 13C8-PFOS	$507.0>79.9$	2.39 e 3	2.43 e 3	0.125	1.042	4.98	5.03	12.3	94.3971	94.4		
44	63 13C8-PFOA	$420.9>376$	1.88 e 4	1.88 e 4	0.125	1.000	4.46	4.52	12.5	100.0000	100.0		
45	-1												
46	62 13C3-PFHxS	401.8 > 79.9	2.39 e 3	2.39 e 3	0.125	1.000	4.11	4.17	12.5	100.0000	100.0		
47	64 13C9-PFNA	472.2 > 426.9	1.33 e 4	1.33 e 4	0.125	1.000	4.90	4.95	12.5	100.0000	100.0		
48	65 13C4-PFOS	$503>79.9$	2.43 e 3	2.43 e 3	0.125	1.000	4.98	5.03	12.5	100.0000	100.0		
49	66 13C6-PFDA	$519.1>473.7$	1.50 e 4	1.50e4	0.125	1.000	5.28	5.32	12.5	100.0000	100.0		
50	67 13C7-PFUdA	$570.1>524.8$	1.84 e 4	1.84 e 4	0.125	1.000	5.61	5.65	12.5	100.0000	100.0		

Quantify Sample Report

Dataset:	Z:\Projects\PFAS.PRO\Results\181126M1\181126M1-24.qld
Last Altered:	Wednesday, November 28, 2018 09:53:29 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 09:54:15 Pacific Standard Time

Method: Z:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_112618.mdb 26 Nov 2018 13:53:04

Calibration: Z:|Projects\PFAS.PRO\CurveDB\C̄18_VAL-PFĀS_Q4_11-26-18.cdb 26 Nov 2018 14:29:06

Name: 181126M1_24, Date: 26-Nov-2018, Time: 15:41:20, ID: B8K0144-BSD1 LCSD 0.125, Description: LCSD
PFBS
F7:MRM of 2 channels,ES-
$299.0>79.7$
100
$5.314 \mathrm{e}+004$

F7:MRM of 2 channels,ES-

13C3-PFBS

Total PFHxS
F18:MRM of 2 channels,ES- $\begin{array}{r}398.9>79.6 \\ 3.468 \mathrm{e}+004\end{array}$

L-PFOA

F21:MRM of 2 channels,ES- $\begin{array}{r}312.8>368.9 \\ 3.730 \mathrm{e}+005\end{array}$

Total PFOA

F21:MRM of 2 channels,ES- | $412.8>368.9$ |
| ---: |
| $3.730 \mathrm{e}+005$ |

13C2-PFHxA

F10:MRM of 1 channel,ES-

13C4-PFHpA
F17:MRM of 1 channel,ES-

1802-PFHxS
F20:MRM of 1 channel,ES-

$$
\begin{array}{rrr}
\text { F20:MRM of } 1 \text { channel,ES- } & \text { F20:MRM of } 1 \text { channel,ES- } \\
403.0>102.6 \\
2.447 \mathrm{e}+004
\end{array}
$$

13C2-PFOA

F22:MRM of 1 channel,ES-

$$
414.9>369.7
$$

13C2-PFOA
F22:MRM of 1 channel,ES-

$$
414.9>369.7
$$

(100_

Quantify Sample Report

Dataset:	Z:IProjects\PFAS.PRO\Results\181126M11181126M1-24.qld
Last Altered:	Wednesday, November 28, 2018 09:53:29 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 09:54:15 Pacific Standard Time

Name: 181126M1_24, Date: 26-Nov-2018, Time: 15:41:20, ID: B8K0144-BSD1 LCSD 0.125, Description: LCSD
PFNA
F27:MRM of 2 channels,ES-
$463.0>418.8$
$2.877 \mathrm{e}+005$

F27:MRM of 2 channels,ES-

L-PFOS

F32:MRM of 2 channels,ES-

Total N-MeFOSAA
F48:MRM of 2 channels,ES-

PFUdA
F46:MRM of 2 channels,ES- $\begin{array}{r}563.0>518.9 \\ 2.355 \mathrm{e}+005\end{array}$

F32:MRM of 2 channels,ES-

13C8-PFOS

F32:MRM of 2 channels,ES-

13C8-PFOS

F35:MRM of 1 channel,ES-
$507.0>79.9$

PFDA

F37:MRM of 2 channels,ES-

F37:MRM of 2 channels,ES- | $513>468.8$ |
| ---: |
| $2.577 \mathrm{e}+005$ |

L-MeFOSAA

F37:MRM of 2 channels,ES-

13C2-PFDA

F38:MRM of 1 channel,ES-

F48:MRM of 2 channels,ES-

d3-N-MeFOSAA

F50:MRM of 1 channel,ES-

F48:MRM of 2 channels,ES-

d3-N-MeFOSAA

F50:MRM of 1 channel,ES-

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:\Projects\PFAS.PRO\Results\181126M1\181126M1-24.qld
Last Altered:	Wednesday, November 28, 2018 09:53:29 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 09:54:15 Pacific Standard Time

Name: 181126M1_24, Date: 26-Nov-2018, Time: 15:41:20, ID: B8K0144-BSD1 LCSD 0.125, Description: LCSD

F51:MRM of 2 channels,ES-

Total N-EtFOSAA
F51:MRM of 2 channels,ES-

d5-N-EtFOSAA

F52:MRM of 1 channel,ES-

$584.1>419$

F51:MRM of 2 channels, ES-
$584.1>526$

d5-N-EtFOSAA

F52:MRM of 1 channel,ES-

PFTrDA

F60:MRM of 2 channels,ES-

PFDoA
F54:MRM of 4 channels,ES- $\begin{array}{r}612.9>569.0 \\ 2.874 \mathrm{e}+005\end{array}$

13C2-PFDoA
55:MRM of 2 channels,ES

PFTeDA

F61:MRM of 2 channels,ES- $\begin{array}{rl}713.0>669.0 & \text { F31:MRM of } 3 \text { channels,ES- } \\ 798.3>106.9 \\ 2.800 \mathrm{e}+005 & 7.341 \mathrm{e}+001\end{array}$

TCDA

13C2-PFDoA
F55:MRM of 2 channels,ES-

F54:MRM of 4 channels,ES-

13C2-PFTeDA

F62:MRM of 2 channels,ES-

13C5-PFHxA
F11:MRM of 1 channel,ES$318>272.9$

13C8-PFOA
F23:MRM of 1 channel,ES-

Dataset:
 Z:|Projects\PFAS.PRO\Results\181126M1\181126M1-24.qId
 Last Altered: Wednesday, November 28, 2018 09:53:29 Pacific Standard Time Printed: \quad Wednesday, November 28, 2018 09:54:15 Pacific Standard Time

Name: 181126M1_24, Date: 26-Nov-2018, Time: 15:41:20, ID: B8K0144-BSD1 LCSD 0.125, Description: LCSD

13C4-PFOS
F33:MRM of 1 channel,ES-

13C6-PFDA

F40:MRM of 1 channel,ES $519.1>473.7$ $3.425 \mathrm{e}+005$

13C7-PFUdA
F49:MRM of 1 channel,ES$570.1>524.8$ $3.939 \mathrm{e}+005$

Quantify Sample Report

Dataset:	Z:IProjects\PFAS.PRO\Results\181126M11181126M1-26.qld
Last Altered:	Wednesday, November 28, 2018 10:03:01 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 10:03:51 Pacific Standard Time

Name: 181126M1_26, Date: 26-Nov-2018, Time: 16:02:31, ID: 1803659-01 A1-MW-07-SA2 0.11704, Description: A1-MW-07-SA2

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	3 PFBS	$299.0>79.7$	2.68 e 3	1.22 e 3	0.117		2.82	2.82	27.4	113.6809		2.714	NO
2	5 PFHxA	$313>269$	3.64 e 4	4.52 e 3	0.117		3.38	3.38	40.3	366.3834		14.421	NO
3	7 PFHpA	$363.0>318.9$	3.36 e 3	6.04 e 3	0.117		4.03	4.03	6.95	44.7683		15.357	NO
4	8 L-PFHxS	$398.9>79.6$	4.48 e 3	1.05 e 3	0.117		4.17	4.17	53.3	234.0039		1.811	NO
5	68 Total PFHxS	$398.9>79.6$	4.48 e 3	1.05 e 3	0.117		4.28		53.3	234.0039			
6	11 L-PFOA	$412.8>368.9$	5.93 e 3	9.37 e 3	0.117		4.47	4.52	7.91	48.8243		2.942	NO
7	69 Total PFOA	$412.8>368.9$	5.93e3	9.37 e 3	0.117		4.62		7.91	48.8243			
8	38 13C3-PFBS	302. > 98.8	1.22 e 3	2.40 e 3	0.117	0.537	2.72	2.82	6.36	101.1453	94.7		
9	40 13C2-PFHxA	$315>270$	4.52 e 3	1.29 e 4	0.117	0.988	3.30	3.38	4.39	37.9470	88.8		
10	41 13C4-PFHpA	$367.2>321.8$	6.04 e 3	1.29 e 4	0.117	0.537	3.97	4.03	5.87	93.3995	87.5		
11	42 18O2-PFHxS	$403.0>102.6$	1.05 e 3	2.40 e 3	0.117	0.448	4.11	4.17	5.46	104.1496	97.5		
12	42 18O2-PFHxS	$403.0>102.6$	1.05 e 3	2.40 e 3	0.117	0.448	4.11	4.17	5.46	104.1496	97.5		
13	44 13C2-PFOA	$414.9>369.7$	9.37 e 3	1.46 e 4	0.117	0.755	4.46	4.52	8.01	90.6377	84.9		
14	44 13C2-PFOA	$414.9>369.7$	9.37 e 3	1.46 e 4	0.117	0.755	4.46	4.52	8.01	90.6377	84.9		
15	-1												
16	14 PFNA	$463.0>418.8$	8.37 e 1	7.51 e 3	0.117		4.90	4.95	0.139	0.6544		7.049	YES
17	16 L-PFOS	$498.9>79.9$	9.00 e 2	2.16 e 3	0.117		5.02	5.04	5.20	40.2541		1.975	NO
18	70 Total PFOS	$498.9>79.9$	9.00 e 2	2.16 e 3	0.117		5.13		5.20	40.2541			
19	18 PFDA	$513>468.8$		6.91 e 3	0.117		5.28						
20	21 L-MeFOSAA	$570>419$		1.72 e 3	0.117		5.43						
21	71 Total N-MeFOSAA	570. >419	0.00e0	1.72 e 3	0.117		5.57		0.000				
22	25 PFUdA	$563.0>518.9$		9.83 e 3	0.117		5.61						
23	45 13C5-PFNA	$468.2>422.9$	7.51 e 3	9.17 e 3	0.117	0.991	4.90	4.95	10.2	88.2286	82.6		
24	47 13C8-PFOS	$507.0>79.9$	2.16 e 3	2.29 e 3	0.117	1.042	4.98	5.03	11.8	96.8917	90.7		
25	47 13C8-PFOS	$507.0>79.9$	2.16 e 3	2.29 e 3	0.117	1.042	4.98	5.03	11.8	96.8917	90.7		
26	48 13C2-PFDA	$515.1>469.9$	6.91 e 3	9.90 e 3	0.117	0.902	5.28	5.33	8.73	82.6287	77.4		
27	50 d3-N-MeFOSAA	$573.3>419$	1.72 e 3	1.27 e 4	0.117	0.135	5.43	5.48	1.69	107.2014	100.4		
28	50 d3-N-MeFOSAA	$573.3>419$	1.72 e 3	1.27 e 4	0.117	0.135	5.43	5.48	1.69	107.2014	100.4		
29	51 13C2-PFUdA	$565>519.8$	9.83 e 3	1.27 e 4	0.117	0.957	5.61	5.65	9.66	86.2037	80.7		
30	-1												
31	23 L-EtFOSAA	$584.1>419$		2.52 e 3	0.117		5.51						
32	72 Total N -EtFOSAA	$584.1>419$	0.00e0	2.52 e 3	0.117		5.72		0.000				
33	29 PFTrDA	$662.9>618.9$		9.36 e 3	0.117		6.15						
34	27 PFDoA	$612.9>569.0$		9.36 e 3	0.117		5.90						
35	30 PFTeDA	$713.0>669.0$		4.17 e 3	0.117		6.37						
36	73 TCDA	498.3>106.9			0.117		5.15						

Work Order 1803659

Dataset:	Z:\Projects\PFAS.PRO\Results\181126M1\181126M1-26.qld
Last Altered:	Wednesday, November 28, 2018 10:03:01 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 10:03:51 Pacific Standard Time

Name: 181126M1_26, Date: 26-Nov-2018, Time: 16:02:31, ID: 1803659-01 A1-MW-07-SA2 0.11704, Description: A1-MW-07-SA2

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	61 13C5-PFHxA	318 > 272.9	1.29 e 4	1.29 e 4	0.117	1.000	3.30	3.38	12.5	106.8011	100.0		
38	$52 \mathrm{~d} 5-\mathrm{N}$-EtFOSAA	$589.3>419$	2.52 e 3	1.27 e 4	0.117	0.185	5.59	5.63	2.47	114.1340	106.9		
39	$52 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	2.52 e 3	1.27 e 4	0.117	0.185	5.59	5.63	2.47	114.1340	106.9		
40	53 13C2-PFDoA	$615.0>569.7$	9.36 e 3	9.90 e 3	0.117	1.047	5.90	5.93	11.8	96.4671	90.3		
41	53 13C2-PFDoA	$615.0>569.7$	9.36 e 3	9.90 e 3	0.117	1.047	5.90	5.93	11.8	96.4671	90.3		
42	55 13C2-PFTeDA	$715.1>669.7$	4.17 e 3	1.27 e 4	0.117	0.567	6.37	6.40	4.10	61.7965	57.9		
43	47 13C8-PFOS	$507.0>79.9$	2.16 e 3	2.29 e 3	0.117	1.042	4.98	5.03	11.8	96.8917	90.7		
44	63 13C8-PFOA	$420.9>376$	1.46e4	1.46e4	0.117	1.000	4.46	4.52	12.5	106.8011	100.0		
45	-1												
46	62 13C3-PFHxS	$401.8>79.9$	2.40 e 3	2.40 e 3	0.117	1.000	4.11	4.17	12.5	106.8011	100.0		
47	64 13C9-PFNA	$472.2>426.9$	9.17 e 3	9.17 e 3	0.117	1.000	4.90	4.95	12.5	106.8011	100.0		
48	65 13C4-PFOS	$503>79.9$	2.29 e 3	2.29 e 3	0.117	1.000	4.98	5.04	12.5	106.8011	100.0		
49	66 13C6-PFDA	$519.1>473.7$	9.90 e 3	9.90 e 3	0.117	1.000	5.28	5.33	12.5	106.8011	100.0		
50	67 13C7-PFUdA	$570.1>524.8$	1.27 e 4	1.27 e 4	0.117	1.000	5.61	5.65	12.5	106.8011	100.0		

Quantify Sample Report

Dataset:	Z:\Projects\PFAS.PRO\Results\181126M1\181126M1-26.qld
Last Altered:	Wednesday, November 28, 2018 10:03:01 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 10:03:51 Pacific Standard Time

Method: Z:|Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_112618.mdb 26 Nov 2018 13:53:04

Calibration: Z:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFĀS_Q4_11-26-18.cdb 26 Nov 2018 14:29:06

Name: 181126M1_26, Date: 26-Nov-2018, Time: 16:02:31, ID: 1803659-01 A1-MW-07-SA2 0.11704, Description: A1-MW-07-SA2
PFBS
F7:MRM of 2 channels,ES-
$299.0>79.7$

F7:MRM of 2 channels,ES-

13C3-PFBS

PFHpA
F16:MRM of 2 channels,ES-
$363.0>318.9$
$9.161 \mathrm{e}+004$

Total PFHxS

L-PFOA

F21:MRM of 2 channels,ES-

Total PFOA

F21:MRM of 2 channels, ES-

13C4-PFHpA
F17:MRM of 1 channel,ES$367.2>321.8$

1802-PFHxS
F20:MRM of 1 channel,ES-

13C2-PFOA
F22:MRM of 1 channel,ES-
$414.9>369.7$

13C2-PFOA
F22:MRM of 1 channel,ES414.9 > 369.7

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:IProjects\PFAS.PRO\Results\181126M11181126M1-26.qld
Last Altered:	Wednesday, November 28, 2018 10:03:01 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 10:03:51 Pacific Standard Time

Name: 181126M1_26, Date: 26-Nov-2018, Time: 16:02:31, ID: 1803659-01 A1-MW-07-SA2 0.11704, Description: A1-MW-07-SA2

\section*{PFNA
 F27:MRM of 2 channels,ES-
 (| $463.0>418.8$ |
| ---: |
| $2.159 \mathrm{e}+003$ |}

L-PFOS

Total PFOS

F32:MRM of 2 channels,ES-

PFDA

L-MeFOSAA

F48:MRM of 2 channels,ES$570>419$ $1.000 \mathrm{e}-003$

Total N-MeFOSAA

F48:MRM of 2 channels, ES-	F46:MRM of 2 channels,ES-	
$570>419$		$563.0>518.9$
$6.114 \mathrm{e}+002$		

F27:MRM of 2 channels,ES-
$463.0>219.0$
$2.870 \mathrm{e}+002$

13C5-PFNA

F32:MRM of 2 channels, ES-
$498.9>99$

13C8-PFOS

F32:MRM of 2 channels,ES-

F37:MRM of 2 channels,ES-

13C2-PFDA

F38:MRM of 1 channel,ES-
$515.1>4699$

F48:MRM of 2 channels,ES-

F48:MRM of 2 channels,ES-
d3-N-MeFOSAA
F50:MRM of 1 channel,ES-

F46:MRM of 2 channels,ES-

13C2-PFUdA
F47:MRM of 1 channel,ES-

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:\Projects\PFAS.PRO\Results\181126M1\181126M1-26.qld
Last Altered:	Wednesday, November 28, 2018 10:03:01 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 10:03:51 Pacific Standard Time

Name: 181126M1_26, Date: 26-Nov-2018, Time: 16:02:31, ID: 1803659-01 A1-MW-07-SA2 0.11704, Description: A1-MW-07-SA2
L-EtFOSAA
F51:MRM of 2 channels,ES-
$584.1>419$
100
$1.000 \mathrm{e}-003$

F51:MRM of 2 channels,ES-

	$584.1>526$ $7.142 e+000$

d5-N-EtFOSAA
F52:MRM of 1 channel,ES-
100

Total N-EtFOSAA
F51:MRM of 2 channels,ES-
$584.1>419$

PFTrDA

F60:MRM of 2 channels,ES-

PFDoA

F54:MRM of 4 channels,ES-
$612.9>569.0$
$2.755 \mathrm{e}+002$

PFTeDA

F61:MRM of 2 channels,ES-

F54:MRM of 4 channels,ES- $\begin{array}{r}612.9>318.8 \\ 1.000 \mathrm{e}-003 \\ \\ \hline\end{array}$
13C2-PFDoA
F55:MRM of 2 channels,ES-

F61:MRM of 2 channels,ES-
13C2-PFTeDA
F62:MRM of 2 channels,ES-
$715.1>669.7$
9.547e+004

TCDA

F31:MRM of 3 channels,ES-

d5-N-EtFOSAA
F52:MRM of 1 channel,ES-

F51:MRM of 2 channels,ES- F60:MRM of 2 channels,ES

13C2-PFDoA

55:MRM of 2 channels,ES

13C5-PFHxA
F11:MRM of 1 channel,ES$318>272.9$

13C8-PFOA
F23:MRM of 1 channel,ES-

Dataset:
 Z:|Projects\PFAS.PRO\Results\181126M1\181126M1-26.qId
 Last Altered: Wednesday, November 28, 2018 10:03:01 Pacific Standard Time Printed: Wednesday, November 28, 2018 10:03:51 Pacific Standard Time

Name: 181126M1_26, Date: 26-Nov-2018, Time: 16:02:31, ID: 1803659-01 A1-MW-07-SA2 0.11704, Description: A1-MW-07-SA2

13C4-PFOS
F33:MRM of 1 channel,ES- $\begin{array}{r}503>79.9 \\ 100 \\ \hline\end{array}$

13C6-PFDA

F40:MRM of 1 channel,ES $519.1>473.7$ $2.254 \mathrm{e}+005$

13C7-PFUdA

F49:MRM of 1 channel,ES$570.1>524.8$ $2.750 \mathrm{e}+005$

Quantify Sample Report

Dataset:	Z:IProjects\PFAS.PRO\Results\181127M1\181127M1-6.qld
Last Altered:	Wednesday, November 28, 2018 09:38:59 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 09:40:05 Pacific Standard Time

Name: 181127M1_6, Date: 27-Nov-2018, Time: 13:04:43, ID: 1803659-02 A1-MW-23-SA2 0.1178, Description: A1-MW-23-SA2

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	3 PFBS	$299.0>79.7$	1.80e1	1.13 e 3	0.118		2.76	2.76	0.198	0.6970		3.302	NO
2	5 PFHxA	$313>269$		5.07 e 3	0.118		3.33						
3	7 PFHpA	$363.0>318.9$		6.44 e 3	0.118		4.00						
4	8 L-PFHxS	$398.9>79.6$	1.09 e 2	9.99 e 2	0.118		4.14	4.14	1.36	5.9396		1.831	NO
5	68 Total PFHxS	$398.9>79.6$	1.09 e 2	9.99 e 2	0.118		4.28		1.36	5.9396			
6	11 L-PFOA	412.8 > 368.9	4.52 e 1	1.06 e 4	0.118		4.47	4.49	0.0534			15.639	YES
7	69 Total PFOA	412.8 > 368.9	4.52 e 1	1.06 e 4	0.118		4.62		0.000				
8	38 13C3-PFBS	302. >98.8	1.13 e 3	2.38 e 3	0.118	0.537	2.72	2.77	5.93	93.7623	88.4		
9	40 13C2-PFHxA	$315>270$	5.07e3	1.41 e 4	0.118	0.988	3.30	3.33	4.49	38.5368	90.8		
10	41 13C4-PFHpA	$367.2>321.8$	6.44 e 3	1.41 e 4	0.118	0.537	3.97	4.00	5.70	90.1800	85.0		
11	42 1802-PFHxS	$403.0>102.6$	9.99 e 2	2.38 e 3	0.118	0.448	4.11	4.14	5.24	99.2132	93.5		
12	42 1802-PFHxS	403.0 > 102.6	9.99 e 2	2.38 e 3	0.118	0.448	4.11	4.14	5.24	99.2132	93.5		
13	44 13C2-PFOA	414.9 > 369.7	1.06 e 4	1.70 e 4	0.118	0.755	4.46	4.49	7.76	87.3033	82.3		
14	44 13C2-PFOA	414.9 > 369.7	1.06 e 4	1.70 e 4	0.118	0.755	4.46	4.49	7.76	87.3033	82.3		
15	-1												
16	14 PFNA	$463.0>418.8$	2.67 e 1	8.95 e 3	0.118		4.90	4.92	0.0373			52.231	YES
17	16 L-PFOS	$498.9>79.9$		2.33 e 3	0.118		5.02						
18	70 Total PFOS	$498.9>79.9$	0.00 e 0	2.33 e 3	0.118		5.13		0.000				
19	18 PFDA	$513>468.8$		7.80 e 3	0.118		5.28						
20	21 L-MeFOSAA	$570>419$		1.98 e 3	0.118		5.43						
21	71 Total N-MeFOSAA	570. >419	0.00 eO	1.98 e 3	0.118		5.57		0.000				
22	25 PFUdA	$563.0>518.9$	3.93 e 1	1.14 e 4	0.118		5.61	5.63	0.0429			10.529	NO
23	45 13C5-PFNA	$468.2>422.9$	8.95 e 3	1.10 e 4	0.118	0.991	4.90	4.92	10.2	86.9789	82.0		
24	47 13C8-PFOS	$507.0>79.9$	2.33 e 3	2.29 e 3	0.118	1.042	4.98	5.01	12.7	103.5679	97.6		
25	47 13C8-PFOS	$507.0>79.9$	2.33 e 3	2.29 e 3	0.118	1.042	4.98	5.01	12.7	103.5679	97.6		
26	48 13C2-PFDA	$515.1>469.9$	7.80e3	1.18 e 4	0.118	0.902	5.28	5.30	8.28	77.8635	73.4		
27	$50 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.3>419$	1.98 e 3	1.51 e 4	0.118	0.135	5.43	5.45	1.64	103.2504	97.3		
28	$50 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.3>419$	1.98 e 3	1.51e4	0.118	0.135	5.43	5.45	1.64	103.2504	97.3		
29	51 13C2-PFUdA	$565>519.8$	1.14 e 4	1.51e4	0.118	0.957	5.61	5.63	9.45	83.7646	78.9		
30	-1												
31	23 L-EtFOSAA	$584.1>419$		2.80 e 3	0.118		5.51						
32	72 Total N-EtFOSAA	$584.1>419$	0.00 e 0	2.80 e 3	0.118		5.72		0.000				
33	29 PFTrDA	$662.9>618.9$		1.17 e 4	0.118		6.15						
34	27 PFDoA	$612.9>569.0$		1.17e4	0.118		5.90						
35	30 PFTeDA	713.0 > 669.0		7.22 e 3	0.118		6.37						
36	73 TCDA	498.3>106.9			0.118		5.15						

Work Order 1803659

Dataset:	Z:\Projects\PFAS.PRO\Results\181127M1\181127M1-6.qld
Last Altered:	Wednesday, November 28, 2018 09:38:59 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 09:40:05 Pacific Standard Time

Name: 181127M1_6, Date: 27-Nov-2018, Time: 13:04:43, ID: 1803659-02 A1-MW-23-SA2 0.1178, Description: A1-MW-23-SA2

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	61 13C5-PFHxA	318 > 272.9	1.41e4	1.41e4	0.118	1.000	3.30	3.33	12.5	106.1121	100.0		
38	$52 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	2.80 e 3	1.51e4	0.118	0.185	5.59	5.61	2.31	105.9686	99.9		
39	$52 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	2.80 e 3	1.51 e 4	0.118	0.185	5.59	5.61	2.31	105.9686	99.9		
40	53 13C2-PFDoA	$615.0>569.7$	1.17e4	1.18 e 4	0.118	1.047	5.90	5.91	12.4	100.2860	94.5		
41	53 13C2-PFDoA	$615.0>569.7$	1.17e4	1.18 e 4	0.118	1.047	5.90	5.91	12.4	100.2860	94.5		
42	55 13C2-PFTeDA	$715.1>669.7$	7.22 e 3	1.51 e 4	0.118	0.567	6.37	6.38	5.96	89.1860	84.0		
43	47 13C8-PFOS	$507.0>79.9$	2.33 e 3	2.29 e 3	0.118	1.042	4.98	5.01	12.7	103.5679	97.6		
44	63 13C8-PFOA	$420.9>376$	1.70e4	1.70 e 4	0.118	1.000	4.46	4.49	12.5	106.1121	100.0		
45	-1												
46	62 13C3-PFHxS	$401.8>79.9$	2.38 e 3	2.38 e 3	0.118	1.000	4.11	4.14	12.5	106.1121	100.0		
47	64 13C9-PFNA	$472.2>426.9$	1.10 e 4	1.10 e 4	0.118	1.000	4.90	4.92	12.5	106.1121	100.0		
48	65 13C4-PFOS	$503>79.9$	2.29 e 3	2.29 e 3	0.118	1.000	4.98	5.01	12.5	106.1121	100.0		
49	66 13C6-PFDA	$519.1>473.7$	1.18 e 4	1.18 e 4	0.118	1.000	5.28	5.30	12.5	106.1121	100.0		
50	67 13C7-PFUdA	$570.1>524.8$	1.51 e 4	1.51 e 4	0.118	1.000	5.61	5.63	12.5	106.1121	100.0		

Quantify Sample Report

Dataset:	Z:\Projects\PFAS.PRO\Results\181127M1\181127M1-6.qld
Last Altered:	Wednesday, November 28, 2018 09:38:59 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 09:40:05 Pacific Standard Time

Method: Z:\Projects\PFAS.PRO\MethDB\PFAS_FULL 80C_112718.mdb 28 Nov 2018 07:06:35

Calibration: Z:|Projects\PFAS.PRO\CurveDB\C18_VAL-PFĀS_Q4_11-26-18.cdb 26 Nov 2018 14:29:06

Name: 181127M1_6, Date: 27-Nov-2018, Time: 13:04:43, ID: 1803659-02 A1-MW-23-SA2 0.1178, Description: A1-MW-23-SA2
PFBS
F7:MRM of 2 channels,ES-
$299.0>79.7$
100

F7:MRM of 2 channels,ES-

13C3-PFBS

Total PFHxS

L-PFOA

F21:MRM of 2 channels,ES-

13C2-PFHxA

F10:MRM of 1 channel,ES-

13C4-PFHpA
F17:MRM of 1 channel,ES$367.2>321.8$

1802-PFHxS

$$
\begin{array}{r}
\text { F20:MRM of } 1 \text { channel,ES- } \\
403.0>102.6 \\
2.513 \mathrm{e}+004
\end{array}
$$

1802-PFHxS
F20:MRM of 1 channel,ES-

13C2-PFOA

F22:MRM of 1 channel,ES-
$414.9>369.7$

13C2-PFOA
F22:MRM of 1 channel,ES414.9 > 369.7

Quantify Sample Report

Dataset:	Z:IProjects\PFAS.PRO\Results\181127M11181127M1-6.qld
Last Altered:	Wednesday, November 28, 2018 09:38:59 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 09:40:05 Pacific Standard Time

Name: 181127M1_6, Date: 27-Nov-2018, Time: 13:04:43, ID: 1803659-02 A1-MW-23-SA2 0.1178, Description: A1-MW-23-SA2

PFNA

F27:MRM of 2 channels,ES-

L-PFOS

F32:MRM of 2 channels,ES-

Total PFOS

PFDA
F37:MRM of 2 channels,ES- $\begin{array}{r}513>468.8 \\ 3.394 \mathrm{e}+002\end{array}$

L-MeFOSAA

F48:MRM of 2 channels,ES$570>419$ $1.000 \mathrm{e}-003$

Total N-MeFOSAA

F48:MRM of 2 channels,ES- | $570>419$ |
| ---: |
| $1.000 \mathrm{e}-003$ |

F27:MRM of 2 channels,ES-
$463.0>219.0$

13C5-PFNA

F32:MRM of 2 channels,ES-

13C8-PFOS

F35:MRM of 1 channel,ES-
$507.0>79.9$

F37:MRM of 2 channels,ES-

13C2-PFDA

F38:MRM of 1 channel,ES-
$515.1>469.9$

d3-N-MeFOSAA

F50:MRM of 1 channel,ES-

F46:MRM of 2 channels,ES-

13C2-PFUdA
F47:MRM of 1 channel,ES-

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:IProjects\|PFAS.PRO\Results\181127M11181127M1-6.qld
Last Altered:	Wednesday, November 28, 2018 09:38:59 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 09:40:05 Pacific Standard Time

Name: 181127M1_6, Date: 27-Nov-2018, Time: 13:04:43, ID: 1803659-02 A1-MW-23-SA2 0.1178, Description: A1-MW-23-SA2
L-EtFOSAA
F51:MRM of 2 channels,ES-
$584.1>419$
$6.464 \mathrm{e}+001$

F51:MRM of 2 channels,ES-

$584.1>526$
$1.000 \mathrm{e}-003$
100

d5-N-EtFOSAA
F52:MRM of 1 channel,ES-

Total N-EtFOSAA
F51:MRM of 2 channels,ES-

PFTrDA
F60:MRM of 2 channels,ES-

PFDoA

F54:MRM of 4 channels,ES-

PFTeDA

F61:MRM of 2 channels,ES$713.0>669.0$

TCDA

F31:MRM of 3 channels,ES-
4.00
$3.454 \mathrm{e}+001$

F61:MRM of 2 channels,ES-

13C2-PFTeDA

F62:MRM of 2 channels,ES-

13C5-PFHxA
F11:MRM of 1 channel,ES$318>272.9$

13C8-PFOA
F23:MRM of 1 channel,ES-

Dataset: $\quad Z: \mid P r o j e c t s \backslash P F A S . P R O \backslash R e s u l t s \backslash 181127 M 1 \backslash 181127 M 1-6 . q$ Id
 Last Altered: Wednesday, November 28, 2018 09:38:59 Pacific Standard Time Printed: Wednesday, November 28, 2018 09:40:05 Pacific Standard Time

Name: 181127M1_6, Date: 27-Nov-2018, Time: 13:04:43, ID: 1803659-02 A1-MW-23-SA2 0.1178, Description: A1-MW-23-SA2

13C4-PFOS
F33:MRM of 1 channel,ES- $\begin{array}{r}503>79.9 \\ 100\end{array}$

13C6-PFDA

F40:MRM of 1 channel, ES

13C7-PFUdA

F49:MRM of 1 channel, ES

Quantify Sample Report

Dataset:	Z:IProjects\PFAS.PRO\Results\181126M11181126M1-28.qld
Last Altered:	Wednesday, November 28, 2018 16:32:36 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 16:35:30 Pacific Standard Time

Name: 181126M1_28, Date: 26-Nov-2018, Time: 16:23:43, ID: 1803659-03 A1-MW-25-SA2 0.11426, Description: A1-MW-25-SA2

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	3 PFBS	$299.0>79.7$	6.81 e 3	1.21 e 3	0.114		2.76	2.76	70.2	298.7773		2.572	NO
2	5 PFHxA	$313>269$	1.13 e 5	4.42e3	0.114		3.33	3.33	127	1200.4435		15.649	NO
3	7 PFHpA	363.0 > 318.9	4.80 e 3	5.10e3	0.114		4.00	4.00	11.8	78.0399		14.656	NO
4	8 L-PFHxS	$398.9>79.6$	7.96 e 3	9.86 e 2	0.114		4.14	4.14	101	453.4633		1.785	NO
5	68 Total PFHxS	$398.9>79.6$	7.96 e 3	9.86 e 2	0.114		4.28		101	453.4633			
6	11 L-PFOA	412.8 > 368.9	6.63 e3	8.58e3	0.114		4.47	4.49	9.66	61.2482		3.086	NO
7	69 Total PFOA	412.8 > 368.9	6.63 e3	8.58 e 3	0.114		4.62		9.66	61.2482			
8	38 13C3-PFBS	302. > 98.8	1.21 e 3	2.53 e 3	0.114	0.537	2.72	2.77	5.99	97.5591	89.2		
9	40 13C2-PFHxA	$315>270$	4.42 e 3	1.20e4	0.114	0.988	3.30	3.33	4.61	40.8560	93.4		
10	41 13C4-PFHpA	$367.2>321.8$	5.10 e 3	1.20 e 4	0.114	0.537	3.97	4.00	5.33	86.8734	79.4		
11	42 18O2-PFHxS	$403.0>102.6$	9.86 e 2	2.53 e 3	0.114	0.448	4.11	4.14	4.87	95.1546	87.0		
12	42 18O2-PFHxS	403.0 > 102.6	9.86 e 2	2.53 e 3	0.114	0.448	4.11	4.14	4.87	95.1546	87.0		
13	44 13C2-PFOA	414.9 > 369.7	8.58 e 3	1.29e4	0.114	0.755	4.46	4.49	8.31	96.3627	88.1		
14	44 13C2-PFOA	414.9 > 369.7	8.58 e 3	1.29 e 4	0.114	0.755	4.46	4.49	8.31	96.3627	88.1		
15	-1												
16	14 PFNA	463.0 > 418.8	3.86e1	7.35e3	0.114		4.90	4.91	0.0656	0.1535		33.120	YES
17	16 L-PFOS	498.9 > 79.9	4.78 e 2	2.41 e 3	0.114		5.02	5.01	2.48	19.4910		2.868	YES
18	70 Total PFOS	$498.9>79.9$	4.78 e 2	2.41 e 3	0.114		5.13		2.48	19.4910			
19	18 PFDA	$513>468.8$		7.08e3	0.114		5.28						
20	21 L-MeFOSAA	$570>419$		2.02 e 3	0.114		5.43						
21	71 Total N-MeFOSAA	570. > 419	0.00e0	2.02 e 3	0.114		5.57		0.000				
22	25 PFUdA	$563.0>518.9$		1.04 e 4	0.114		5.61						
23	45 13C5-PFNA	$468.2>422.9$	7.35 e 3	8.45 e 3	0.114	0.991	4.90	4.92	10.9	96.0608	87.8		
24	47 13C8-PFOS	$507.0>79.9$	2.41 e 3	2.50 e 3	0.114	1.042	4.98	5.00	12.0	101.0898	92.4		
25	47 13C8-PFOS	$507.0>79.9$	2.41 e 3	2.50 e 3	0.114	1.042	4.98	5.00	12.0	101.0898	92.4		
26	48 13C2-PFDA	$515.1>469.9$	7.08 e 3	1.08 e 4	0.114	0.902	5.28	5.30	8.18	79.3803	72.6		
27	$50 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.3>419$	2.02 e 3	1.41e4	0.114	0.135	5.43	5.45	1.80	116.7858	106.8		
28	50 d3-N-MeFOSAA	$573.3>419$	2.02 e 3	1.41e4	0.114	0.135	5.43	5.45	1.80	116.7858	106.8		
29	51 13C2-PFUdA	$565>519.8$	1.04 e 4	1.41e4	0.114	0.957	5.61	5.63	9.24	84.4626	77.2		
30	-1												
31	23 L-EtFOSAA	$584.1>419$		2.98 e 3	0.114		5.51						
32	72 Total N-EtFOSAA	$584.1>419$	0.00e0	2.98 e 3	0.114		5.72		0.000				
33	29 PFTrDA	$662.9>618.9$		1.07e4	0.114		6.15						
34	27 PFDoA	612.9 > 569.0		1.07e4	0.114		5.90						
35	30 PFTeDA	713.0 > 669.0		6.84 e 3	0.114		6.37						
36	73 TCDA	$498.3>106.9$			0.114		5.15						

Work Order 1803659

Dataset:	Z:\Projects\PFAS.PRO\Results\181126M1\181126M1-28.qld
	Last Altered:
Wednesday, November 28, 2018 16:32:36 Pacific Standard Time	
Printed:	Wednesday, November 28, 2018 16:35:30 Pacific Standard Time

Name: 181126M1_28, Date: 26-Nov-2018, Time: 16:23:43, ID: 1803659-03 A1-MW-25-SA2 0.11426, Description: A1-MW-25-SA2

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	61 13C5-PFHxA	318 > 272.9	1.20 e 4	1.20 e 4	0.114	1.000	3.30	3.33	12.5	109.3996	100.0		
38	$52 \mathrm{~d} 5-\mathrm{N}$-EtFOSAA	$589.3>419$	2.98 e 3	1.41 e 4	0.114	0.185	5.59	5.61	2.65	125.1096	114.4		
39	$52 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	2.98 e 3	1.41 e 4	0.114	0.185	5.59	5.61	2.65	125.1096	114.4		
40	53 13C2-PFDoA	$615.0>569.7$	1.07 e 4	1.08 e 4	0.114	1.047	5.90	5.91	12.4	103.5624	94.7		
41	53 13C2-PFDoA	$615.0>569.7$	1.07 e 4	1.08 e 4	0.114	1.047	5.90	5.91	12.4	103.5624	94.7		
42	55 13C2-PFTeDA	$715.1>669.7$	6.84 e 3	1.41 e 4	0.114	0.567	6.37	6.38	6.08	93.8392	85.8		
43	47 13C8-PFOS	$507.0>79.9$	2.41 e 3	2.50 e 3	0.114	1.042	4.98	5.00	12.0	101.0898	92.4		
44	63 13C8-PFOA	$420.9>376$	1.29 e 4	1.29e4	0.114	1.000	4.46	4.49	12.5	109.3996	100.0		
45	-1												
46	62 13C3-PFHxS	$401.8>79.9$	2.53 e 3	2.53 e 3	0.114	1.000	4.11	4.14	12.5	109.3996	100.0		
47	64 13C9-PFNA	$472.2>426.9$	8.45 e 3	8.45 e 3	0.114	1.000	4.90	4.92	12.5	109.3996	100.0		
48	65 13C4-PFOS	$503>79.9$	2.50 e 3	2.50 e 3	0.114	1.000	4.98	5.00	12.5	109.3996	100.0		
49	66 13C6-PFDA	$519.1>473.7$	1.08 e 4	1.08 e 4	0.114	1.000	5.28	5.30	12.5	109.3996	100.0		
50	67 13C7-PFUdA	$570.1>524.8$	1.41 e 4	1.41 e 4	0.114	1.000	5.61	5.63	12.5	109.3996	100.0		

Quantify Sample Report

Dataset:	Z:\Projects\PFAS.PRO\Results\181126M1\181126M1-28.qld
Last Altered:	Wednesday, November 28, 2018 16:32:36 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 16:35:30 Pacific Standard Time

Method: Z:|Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_112618.mdb 26 Nov 2018 13:53:04

Calibration: Z:|Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_11-26-18.cdb 26 Nov 2018 14:29:06

Name: 181126M1_28, Date: 26-Nov-2018, Time: 16:23:43, ID: 1803659-03 A1-MW-25-SA2 0.11426, Description: A1-MW-25-SA2
PFBS
F7:MRM of 2 channels,ES-
$299.0>79.7$
$1.750 \mathrm{e}+005$

F7:MRM of 2 channels,ES-

Total PFHxS
F18:MRM of 2 channels,ES- $\begin{array}{r}398.9>79.6 \\ 100\end{array}$

L-PFOA

F21:MRM of 2 channels,ES- $\begin{array}{r}412.8>368.9 \\ 1.287 \mathrm{e}+005\end{array}$

Total PFOA

F21:MRM of 2 channels,ES- $\begin{array}{r}412.8>368.9 \\ 1.287 \mathrm{e}+005\end{array}$

13C2-PFHxA

F10:MRM of 1 channel,ES-

13C4-PFHpA
F17:MRM of 1 channel,ES$367.2>321.8$

1802-PFHxS
F20:MRM of 1 channel,ES-

13C2-PFOA
F22:MRM of 1 channel,ES-
$414.9>369.7$

13C2-PFOA
F22:MRM of 1 channel,ES414.9 > 369.7

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:IProjects\PFAS.PRO\Results\181126M11181126M1-28.qld
Last Altered:	Wednesday, November 28, 2018 16:32:36 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 16:35:30 Pacific Standard Time

Name: 181126M1_28, Date: 26-Nov-2018, Time: 16:23:43, ID: 1803659-03 A1-MW-25-SA2 0.11426, Description: A1-MW-25-SA2
PFNA
F27:MRM of 2 channels, ES-
$463.0>418.8$
$1.076 \mathrm{e}+003$

F27:MRM of 2 channels,ES-

L-PFOS

Total PFOS

PFDA

F37:MRM of 2 channels,ES- $\begin{array}{r}513>468.8 \\ 3.413 \mathrm{e}+002\end{array}$

F32:MRM of 2 channels,ES-

L-MeFOSAA

F48:MRM of 2 channels,ES$1.000 \mathrm{e}-003$

Total N-MeFOSAA

F32:MRM of 2 channels,ES- F32:MRM of 2 channels,ES-

13C8-PFOS

13C8-PFOS

$\begin{array}{rr}\text { F35:MRM of } 1 \text { channel,ES- } & \text { F38:MRM of } 1 \text { channel,ES- } \\ 507.0>79.9 & 515.1>469.9 \\ 5.583 \mathrm{e}+004 & 1.624 \mathrm{e}+005\end{array}$

d3-N-MeFOSAA

F50:MRM of 1 channel,ES-

13C2-PFUdA
F47:MRM of 1 channel,ES-

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:IProjects\PFAS.PRO\Results\181126M1\181126M1-28.qld
Last Altered:	Wednesday, November 28, 2018 16:32:36 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 16:35:30 Pacific Standard Time

Name: 181126M1_28, Date: 26-Nov-2018, Time: 16:23:43, ID: 1803659-03 A1-MW-25-SA2 0.11426, Description: A1-MW-25-SA2

L-EtFOSAA
F51:MRM of 2 channels,ES-
$584.1>419$
$1.182 \mathrm{e}+002$

F51:MRM of 2 channels,ES-

Total N-EtFOSAA
F51:MRM of 2 channels,ES-

F51:MRM of 2 channels,ES-

d5-N-EtFOSAA

F60:MRM of 2 channels,ES- $\begin{array}{r}662.9>319 \\ 1.000 \mathrm{e}-003\end{array}$

13C2-PFDoA

PFDoA

F54:MRM of 4 channels,ES

PFTeDA

F55:MRM of 2 channels,ES-
2 channels,ES-
$615.0>569.7$
$2.314 e+005$

F54:MRM of 4 channels,ES- $\begin{array}{r}612.9>318.8 \\ 1.000 \mathrm{e}-003 \\ \hline\end{array}$

13C2-PFTeDA

F62:MRM of 2 channels,ES-

F31:MRM of 3 channels,ES-

13C8-PFOA
F23:MRM of 1 channel,ES-

Dataset:
 Z:\Projects\PFAS.PRO\Results\181126M1\181126M1-28.qld
 Last Altered: Wednesday, November 28, 2018 16:32:36 Pacific Standard Time Printed: Wednesday, November 28, 2018 16:35:30 Pacific Standard Time

Name: 181126M1_28, Date: 26-Nov-2018, Time: 16:23:43, ID: 1803659-03 A1-MW-25-SA2 0.11426, Description: A1-MW-25-SA2

13C4-PFOS
F33:MRM of 1 channel,ES $503>79.9$ $503>79.9$
$5.685 \mathrm{e}+004$

13C6-PFDA

F40:MRM of 1 channel,ES $519.1>473.7$ $2.452 \mathrm{e}+005$

13C7-PFUdA

F49:MRM of 1 channel,ES-

Quantify Sample Report

Dataset:	Z:IProjects\PFAS.PRO\Results\181126M1\181126M1-29.qld
Last Altered:	Wednesday, November 28, 2018 10:26:52 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 10:28:39 Pacific Standard Time

Name: 181126M1_29, Date: 26-Nov-2018, Time: 16:34:21, ID: 1803659-04 A1-MW-27-SA2 0.11731, Description: A1-MW-27-SA2

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	3 PFBS	$299.0>79.7$	1.78 e 3	1.26 e 3	0.117		2.76	2.76	17.7	73.0095		2.569	NO
2	5 PFHxA	$313>269$	2.80 e4	4.97 e 3	0.117		3.33	3.33	28.2	254.9698		15.188	NO
3	7 PFHpA	$363.0>318.9$	2.03 e 3	6.32 e 3	0.117		4.00	3.99	4.02	25.5949		12.023	NO
4	8 L-PFHxS	$398.9>79.6$	2.54 e 3	1.02 e 3	0.117		4.14	4.14	31.1	136.1710		1.799	NO
5	68 Total PFHxS	$398.9>79.6$	2.54 e 3	1.02 e 3	0.117		4.28		31.1	136.1710			
6	11 L-PFOA	$412.8>368.9$	4.72 e 3	1.09 e 4	0.117		4.47	4.49	5.39	32.8784		2.879	NO
7	69 Total PFOA	$412.8>368.9$	4.72 e 3	1.09 e 4	0.117		4.62		5.39	32.8784			
8	38 13C3-PFBS	302. > 98.8	1.26 e 3	2.51 e 3	0.117	0.537	2.72	2.76	6.26	99.4335	93.3		
9	40 13C2-PFHxA	$315>270$	4.97 e 3	1.35 e 4	0.117	0.988	3.30	3.33	4.60	39.6650	93.1		
10	41 13C4-PFHpA	$367.2>321.8$	6.32 e 3	1.35 e 4	0.117	0.537	3.97	4.00	5.85	92.9435	87.2		
11	42 18O2-PFHxS	$403.0>102.6$	1.02 e 3	2.51 e 3	0.117	0.448	4.11	4.14	5.08	96.7040	90.8		
12	42 1802-PFHxS	$403.0>102.6$	1.02 e 3	2.51 e 3	0.117	0.448	4.11	4.14	5.08	96.7040	90.8		
13	44 13C2-PFOA	$414.9>369.7$	1.09 e 4	1.65 e 4	0.117	0.755	4.46	4.49	8.30	93.7002	87.9		
14	44 13C2-PFOA	414.9 > 369.7	1.09 e 4	1.65 e4	0.117	0.755	4.46	4.49	8.30	93.7002	87.9		
15	-1												
16	14 PFNA	$463.0>418.8$	2.10e1	9.77 e 3	0.117		4.90	4.92	0.0269			6.082	NO
17	16 L-PFOS	$498.9>79.9$	3.37 e 2	2.36 e 3	0.117		5.02	5.00	1.79	13.5669		2.783	NO
18	70 Total PFOS	$498.9>79.9$	3.37 e 2	2.36 e 3	0.117		5.13		1.79	13.5669			
19	18 PFDA	$513>468.8$		9.23 e 3	0.117		5.28						
20	21 L-MeFOSAA	$570>419$		1.95 e 3	0.117		5.43						
21	71 Total N-MeFOSAA	570. > 419	0.00e0	1.95 e 3	0.117		5.57		0.000				
22	25 PFUdA	$563.0>518.9$	3.94 e 1	1.25 e 4	0.117		5.61	5.62	0.0396			11.006	NO
23	45 13C5-PFNA	$468.2>422.9$	9.77 e 3	1.09 e 4	0.117	0.991	4.90	4.92	11.2	96.0515	90.1		
24	47 13C8-PFOS	$507.0>79.9$	2.36 e 3	2.35 e 3	0.117	1.042	4.98	5.01	12.5	102.6054	96.3		
25	47 13C8-PFOS	$507.0>79.9$	2.36 e 3	2.35 e 3	0.117	1.042	4.98	5.01	12.5	102.6054	96.3		
26	48 13C2-PFDA	$515.1>469.9$	9.23 e 3	1.33 e 4	0.117	0.902	5.28	5.30	8.67	81.9467	76.9		
27	$50 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.3>419$	1.95 e 3	1.67 e 4	0.117	0.135	5.43	5.45	1.46	92.6507	87.0		
28	$50 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.3>419$	1.95 e 3	1.67 e 4	0.117	0.135	5.43	5.45	1.46	92.6507	87.0		
29	51 13C2-PFUdA	$565>519.8$	1.25 e 4	1.67 e 4	0.117	0.957	5.61	5.63	9.35	83.2430	78.1		
30	-1												
31	23 L-EtFOSAA	$584.1>419$		2.79 e 3	0.117		5.51						
32	72 Total N-EtFOSAA	$584.1>419$	0.00e0	2.79 e 3	0.117		5.72		0.000				
33	29 PFTrDA	$662.9>618.9$		1.27e4	0.117		6.15						
34	27 PFDoA	$612.9>569.0$		1.27 e 4	0.117		5.90						
35	30 PFTeDA	$713.0>669.0$		7.02 e 3	0.117		6.37						
36	73 TCDA	$498.3>106.9$			0.117		5.15						

Work Order 1803659

Dataset:	Z:\Projects\PFAS.PRO\Results\181126M1\181126M1-29.qld
	Last Altered:
Wednesday, November 28, 2018 10:26:52 Pacific Standard Time	
Printed:	Wednesday, November 28, 2018 10:28:39 Pacific Standard Time

Name: 181126M1_29, Date: 26-Nov-2018, Time: 16:34:21, ID: 1803659-04 A1-MW-27-SA2 0.11731, Description: A1-MW-27-SA2

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	61 13C5-PFHxA	318 > 272.9	1.35 e 4	1.35 e 4	0.117	1.000	3.30	3.33	12.5	106.5553	100.0		
38	$52 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	2.79 e 3	1.67 e 4	0.117	0.185	5.59	5.61	2.09	96.2090	90.3		
39	$52 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	2.79 e 3	1.67 e 4	0.117	0.185	5.59	5.61	2.09	96.2090	90.3		
40	53 13C2-PFDoA	$615.0>569.7$	1.27 e 4	1.33 e 4	0.117	1.047	5.90	5.91	12.0	97.5194	91.5		
41	53 13C2-PFDoA	$615.0>569.7$	1.27 e 4	1.33 e 4	0.117	1.047	5.90	5.91	12.0	97.5194	91.5		
42	55 13C2-PFTeDA	$715.1>669.7$	7.02 e 3	1.67 e 4	0.117	0.567	6.37	6.38	5.27	79.2300	74.4		
43	47 13C8-PFOS	$507.0>79.9$	2.36 e 3	2.35 e 3	0.117	1.042	4.98	5.01	12.5	102.6054	96.3		
44	63 13C8-PFOA	$420.9>376$	1.65 e 4	1.65 e 4	0.117	1.000	4.46	4.49	12.5	106.5553	100.0		
45	-1												
46	62 13C3-PFHxS	$401.8>79.9$	2.51 e 3	2.51 e 3	0.117	1.000	4.11	4.14	12.5	106.5553	100.0		
47	64 13C9-PFNA	$472.2>426.9$	1.09 e 4	1.09 e 4	0.117	1.000	4.90	4.92	12.5	106.5553	100.0		
48	65 13C4-PFOS	$503>79.9$	2.35 e 3	2.35 e 3	0.117	1.000	4.98	5.01	12.5	106.5553	100.0		
49	66 13C6-PFDA	$519.1>473.7$	1.33 e 4	1.33 e 4	0.117	1.000	5.28	5.30	12.5	106.5553	100.0		
50	67 13C7-PFUdA	$570.1>524.8$	1.67 e 4	1.67 e 4	0.117	1.000	5.61	5.63	12.5	106.5553	100.0		

Quantify Sample Report

Dataset:	Z:\Projects\PFAS.PRO\Results\181126M1\181126M1-29.qld
Last Altered:	Wednesday, November 28, 2018 10:26:52 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 10:28:39 Pacific Standard Time

Method: Z:|Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_112618.mdb 26 Nov 2018 13:53:04

Calibration: Z:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFĀS_Q4_11-26-18.cdb 26 Nov 2018 14:29:06

Name: 181126M1_29, Date: 26-Nov-2018, Time: 16:34:21, ID: 1803659-04 A1-MW-27-SA2 0.11731, Description: A1-MW-27-SA2
PFBS
F7:MRM of 2 channels,ES-
$299.0>79.7$
100

F7:MRM of 2 channels,ES-

Total PFHxS

L-PFOA

F21:MRM of 2 channels,ES-

| $412.8>368.9$ | F21:MRM of 2 channels,ES- |
| ---: | ---: | ---: |
| $412.8>368.9$ | |
| $9.717 \mathrm{e}+004$ | |

Total PFOA

F21:MRM of 2 channels,ES- $\begin{array}{r}912.8>368.9 \\ 9.717 \mathrm{e}+004\end{array}$

13C4-PFHpA
F17:MRM of 1 channel,ES$367.2>321.8$

1802-PFHxS
F20:MRM of 1 channel,ES-

13C2-PFOA

F22:MRM of 1 channel,ES-
$414.9>369.7$

13C2-PFOA
F22:MRM of 1 channel,ES414.9 > 369.7

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:IProjects\PFAS.PRO\Results\181126M11181126M1-29.qId
Last Altered:	Wednesday, November 28, 2018 10:26:52 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 10:28:39 Pacific Standard Time

Name: 181126M1_29, Date: 26-Nov-2018, Time: 16:34:21, ID: 1803659-04 A1-MW-27-SA2 0.11731, Description: A1-MW-27-SA2

PFNA

F27:MRM of 2 channels,ES-

(| $463.0>418.8$ |
| ---: |
| $4.551 \mathrm{e}+002$ |

L-PFOS

F32:MRM of 2 channels,ES- $\begin{array}{r}498.9>79.9 \\ 3.936 \mathrm{e}+003\end{array}$

Total PFOS

PFDA

F37:MRM of 2 channels,ES- $\begin{array}{r}513>468.8 \\ 5.131 \mathrm{e}+002\end{array}$

L-MeFOSAA

Total N-MeFOSAA
F48:MRM of 2 channels,ES-

F48:MRM of 2 channels,ES- | $570>419$ |
| ---: |
| $1.220 \mathrm{e}+001$ |

PFUdA

F27:MRM of 2 channels,ES463.0 > 219.0

13C5-PFNA
F28:MRM of 1 channel,ES-
$468.2>422.9$
2.498 +

F32:MRM of 2 channels, ES-
$498.9>99$

13C8-PFOS

F35:MRM of 1 channel,ES-
$507.0>79.9$

F32:MRM of 2 channels,ES-

13C8-PFOS

$\begin{array}{rr}\text { F35:MRM of } 1 \text { channel,ES- } & \text { F38:MRM of } 1 \text { channel,ES- } \\ 507.0>79.9 & 515.1>469.9\end{array}$

F37:MRM of 2 channels,ES-

13C2-PFDA
F38:MRM of 1 channel,ES-
$515.1>469.9$

F48:MRM of 2 channels,ES-
$570 .>512$

d3-N-MeFOSAA

F50:MRM of 1 channel,ES-

d3-N-MeFOSAA
F50:MRM of 1 channel,ES-

F46:MRM of 2 channels,ES-

13C2-PFUdA
F47:MRM of 1 channel,ES-

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:IProjects\PFAS.PRO\Results\181126M11181126M1-29.qld
Last Altered:	Wednesday, November 28, 2018 10:26:52 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 10:28:39 Pacific Standard Time

Name: 181126M1_29, Date: 26-Nov-2018, Time: 16:34:21, ID: 1803659-04 A1-MW-27-SA2 0.11731, Description: A1-MW-27-SA2

L-EtFOSAA

Total N-EtFOSAA

F51:MRM of 2 channels,ES-

F51:MRM of 2 channels,ES-

F51:MRM of 2 channels, ES- $\begin{array}{r}584.1>526\end{array}$

d5-N-EtFOSAA
F52:MRM of 1 channel,ES-

d5-N-EtFOSAA

F52:MRM of 1 channel,ES-

F60:MRM of 2 channels,ES-

F54:MRM of 4 channels,ES-

13C2-PFDoA
F55:MRM of 2 channels,ES-

PFTeDA

F61:MRM of 2 channels,ES- $\begin{array}{rlr}713.0>669.0 & \text { F31:MRM of } 3 \text { channels,ES- } \\ 798.3>106.9 \\ 6.642 \mathrm{e}+002 & 100 & 1.000 \mathrm{e}-003\end{array}$

F61:MRM of 2 channels,ES- $\begin{array}{r}713 .>369.0 \\ 1.757 \mathrm{e}+001\end{array}$
13C2-PFTeDA
F62:MRM of 2 channels,ES-
$715.1>669.7$
$1.546 \mathrm{e}+005$

13C5-PFHxA
F11:MRM of 1 channel,ES$318>272.9$

13C8-PFOA
F23:MRM of 1 channel,ES-

Dataset:
 Z:|Projects\PFAS.PRO\Results\181126M1\181126M1-29.qId
 Last Altered: Wednesday, November 28, 2018 10:26:52 Pacific Standard Time Printed: Wednesday, November 28, 2018 10:28:39 Pacific Standard Time

Name: 181126M1_29, Date: 26-Nov-2018, Time: 16:34:21, ID: 1803659-04 A1-MW-27-SA2 0.11731, Description: A1-MW-27-SA2

13C4-PFOS
F33:MRM of 1 channel,ES$503>79.9$ $503>79.9$
$5.372 e+004$

13C6-PFDA

F40:MRM of 1 channel,ES $519.1>473.7$ $3.013 \mathrm{e}+005$

13C7-PFUdA

F49:MRM of 1 channel,ES-

Quantify Sample Report

Dataset:	Z:IProjects\PFAS.PRO\Results\181126M1\181126M1-30.qld
Last Altered:	Wednesday, November 28, 2018 10:32:04 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 10:33:04 Pacific Standard Time

Name: 181126M1_30, Date: 26-Nov-2018, Time: 16:44:53, ID: 1803659-05 A1-MW-55-SA2 0.11846, Description: A1-MW-55-SA2

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	3 PFBS	$299.0>79.7$		1.14 e 3	0.118		2.76						
2	5 PFHxA	$313>269$	4.01e1	6.18 e 3	0.118		3.33	3.33	0.0325			361.703	YES
3	7 PFHpA	$363.0>318.9$		8.25 e 3	0.118		3.99						
4	8 L-PFHxS	$398.9>79.6$	6.30 e 0	9.47 e 2	0.118		4.13	4.13	0.0832	0.3655		8.302	YES
5	68 Total PFHxS	$398.9>79.6$	6.30 e 0	9.47 e 2	0.118		4.28		0.0832	0.3655			
6	11 L-PFOA	$412.8>368.9$	6.08 e 1	1.42 e 4	0.118		4.47	4.49	0.0537			2.373	NO
7	69 Total PFOA	$412.8>368.9$	6.08 e 1	1.42 e 4	0.118		4.62		0.000				
8	38 13C3-PFBS	302. > 98.8	1.14 e 3	2.36 e 3	0.118	0.537	2.72	2.76	6.03	94.7763	89.8		
9	40 13C2-PFHxA	$315>270$	6.18 e 3	1.71 e 4	0.118	0.988	3.30	3.33	4.53	38.6553	91.6		
10	41 13C4-PFHpA	$367.2>321.8$	8.25 e 3	1.71 e 4	0.118	0.537	3.97	3.99	6.04	95.0902	90.1		
11	42 1802-PFHxS	$403.0>102.6$	9.47 e 2	2.36 e 3	0.118	0.448	4.11	4.13	5.01	94.3173	89.4		
12	42 1802-PFHxS	$403.0>102.6$	9.47 e 2	2.36 e 3	0.118	0.448	4.11	4.13	5.01	94.3173	89.4		
13	44 13C2-PFOA	$414.9>369.7$	1.42 e 4	2.08 e 4	0.118	0.755	4.46	4.48	8.52	95.2297	90.2		
14	44 13C2-PFOA	$414.9>369.7$	1.42 e 4	2.08 e 4	0.118	0.755	4.46	4.48	8.52	95.2297	90.2		
15	-1												
16	14 PFNA	$463.0>418.8$	2.23 e 1	1.19e4	0.118		4.90	4.91	0.0235			22.031	YES
17	16 L-PFOS	$498.9>79.9$		2.14 e 3	0.118		5.02						
18	70 Total PFOS	$498.9>79.9$	0.00e0	2.14 e 3	0.118		5.13		0.000				
19	18 PFDA	$513>468.8$		1.16 e 4	0.118		5.28						
20	21 L-MeFOSAA	$570>419$		1.92 e 3	0.118		5.43						
21	71 Total N-MeFOSAA	$570 .>419$	0.00e0	1.92 e3	0.118		5.57		0.000				
22	25 PFUdA	$563.0>518.9$	5.00 e 1	1.47 e 4	0.118		5.61	5.62	0.0425			19.386	YES
23	45 13C5-PFNA	$468.2>422.9$	1.19e4	1.41 e 4	0.118	0.991	4.90	4.91	10.5	89.4389	84.8		
24	47 13C8-PFOS	$507.0>79.9$	2.14 e 3	2.49 e 3	0.118	1.042	4.98	5.00	10.8	87.1541	82.6		
25	47 13C8-PFOS	$507.0>79.9$	2.14 e 3	2.49 e 3	0.118	1.042	4.98	5.00	10.8	87.1541	82.6		
26	48 13C2-PFDA	$515.1>469.9$	1.16 e 4	1.58 e 4	0.118	0.902	5.28	5.30	9.15	85.6452	81.2		
27	$50 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.3>419$	1.92 e 3	1.80 e 4	0.118	0.135	5.43	5.44	1.33	83.2789	78.9		
28	$50 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.3>419$	1.92 e 3	1.80 e 4	0.118	0.135	5.43	5.44	1.33	83.2789	78.9		
29	51 13C2-PFUdA	$565>519.8$	1.47e4	1.80 e 4	0.118	0.957	5.61	5.63	10.2	89.9577	85.3		
30	-1												
31	23 L-EtFOSAA	$584.1>419$		2.94 e 3	0.118		5.51						
32	72 Total N-EtFOSAA	$584.1>419$	0.00e0	2.94 e 3	0.118		5.72		0.000				
33	29 PFTrDA	$662.9>618.9$		1.43 e 4	0.118		6.15						
34	27 PFDoA	$612.9>569.0$		1.43 e 4	0.118		5.90						
35	30 PFTeDA	$713.0>669.0$	2.27 e 1	8.51 e 3	0.118		6.37	6.38	0.0333			11.167	NO
36	73 TCDA	$498.3>106.9$			0.118		5.15						

Work Order 1803659

Dataset:	Z:\Projects\PFAS.PRO\Results\181126M1\181126M1-30.qld
Last Altered:	Wednesday, November 28, 2018 10:32:04 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 10:33:04 Pacific Standard Time

Name: 181126M1_30, Date: 26-Nov-2018, Time: 16:44:53, ID: 1803659-05 A1-MW-55-SA2 0.11846, Description: A1-MW-55-SA2

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	61 13C5-PFHxA	318 > 272.9	1.71e4	1.71 e 4	0.118	1.000	3.30	3.33	12.5	105.5209	100.0		
38	$52 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	2.94 e 3	1.80 e 4	0.118	0.185	5.59	5.61	2.04	92.8535	88.0		
39	$52 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	2.94 e 3	1.80 e 4	0.118	0.185	5.59	5.61	2.04	92.8535	88.0		
40	53 13C2-PFDoA	$615.0>569.7$	1.43 e 4	1.58 e 4	0.118	1.047	5.90	5.91	11.3	91.1241	86.4		
41	53 13C2-PFDoA	$615.0>569.7$	1.43 e 4	1.58 e 4	0.118	1.047	5.90	5.91	11.3	91.1241	86.4		
42	55 13C2-PFTeDA	$715.1>669.7$	8.51 e 3	1.80 e 4	0.118	0.567	6.37	6.38	5.89	87.7483	83.2		
43	47 13C8-PFOS	$507.0>79.9$	2.14 e 3	2.49 e 3	0.118	1.042	4.98	5.00	10.8	87.1541	82.6		
44	63 13C8-PFOA	$420.9>376$	2.08 e 4	2.08 e 4	0.118	1.000	4.46	4.48	12.5	105.5209	100.0		
45	-1												
46	62 13C3-PFHxS	$401.8>79.9$	2.36 e 3	2.36 e 3	0.118	1.000	4.11	4.14	12.5	105.5209	100.0		
47	64 13C9-PFNA	$472.2>426.9$	1.41 e 4	1.41 e 4	0.118	1.000	4.90	4.91	12.5	105.5209	100.0		
48	65 13C4-PFOS	$503>79.9$	2.49 e 3	2.49 e 3	0.118	1.000	4.98	5.00	12.5	105.5209	100.0		
49	66 13C6-PFDA	$519.1>473.7$	1.58 e 4	1.58 e 4	0.118	1.000	5.28	5.30	12.5	105.5209	100.0		
50	67 13C7-PFUdA	$570.1>524.8$	1.80 e 4	1.80 e 4	0.118	1.000	5.61	5.63	12.5	105.5209	100.0		

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:\Projects\PFAS.PRO\Results\181126M1\181126M1-30.qld
Last Altered:	Wednesday, November 28, 2018 10:32:04 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 10:33:04 Pacific Standard Time

Method: Z:|Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_112618.mdb 26 Nov 2018 13:53:04

Calibration: Z:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFĀS_Q4_11-26-18.cdb 26 Nov 2018 14:29:06

Name: 181126M1_30, Date: 26-Nov-2018, Time: 16:44:53, ID: 1803659-05 A1-MW-55-SA2 0.11846, Description: A1-MW-55-SA2
PFBS
F7:MRM of 2 channels,ES-
100 2.87 299.0 > 79.7
$1.022 \mathrm{e}+002$

F7:MRM of 2 channels,ES-

13C3-PFBS

L-PFHxS

F18:MRM of 2 channels,ES-

Total PFHxS

F18:MRM of 2 channels,ES- $\begin{array}{r}398.9>79.6 \\ 1.364 \mathrm{e}+002\end{array}$

L-PFOA

13C2-PFHxA

F10:MRM of 1 channel,ES-

13C4-PFHpA
F17:MRM of 1 channel,ES-

1802-PFHxS
F20:MRM of 1 channel,ES-

13C2-PFOA

$$
\begin{array}{r}
\text { F22:MRM of } 1 \text { channel,ES- } \\
414.9>369.7
\end{array}
$$

13C2-PFOA
F22:MRM of 1 channel,ES414.9 > 369.7

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:IProjects\PFAS.PRO\Results\181126M11181126M1-30.qId
Last Altered:	Wednesday, November 28, 2018 10:32:04 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 10:33:04 Pacific Standard Time

Name: 181126M1_30, Date: 26-Nov-2018, Time: 16:44:53, ID: 1803659-05 A1-MW-55-SA2 0.11846, Description: A1-MW-55-SA2

PFNA

F27:MRM of 2 channels,ES-
$463.0>418.8$

L-PFOS

F32:MRM of 2 channels,ES- $\begin{array}{r}498.9>79.9 \\ 100\end{array}$

Total PFOS
F32:MRM of 2 channels,ES- $\begin{array}{r}498.9>79.9 \\ 1.458 \mathrm{e}+002\end{array}$

PFDA
F37:MRM of 2 channels,ES-
L-MeFOSAA
F48:MRM of 2 channels,ES$1.000 \mathrm{e}-003$

Total N-MeFOSAA

F48:MRM of 2 channels, ES-	F46:MRM of 2 channels,ES-	
$570>419$		$863.0>518.9$
$1.000 \mathrm{e}-003$	100	$8.642 \mathrm{e}+002$

F27:MRM of 2 channels,ES-

13C5-PFNA

F32:MRM of 2 channels,ES-

13C8-PFOS

F32:MRM of 2 channels, ES-
$498.9>99$

	$498.9>99$$1.000 \mathrm{e}-003$
100	
\%-	
0	
	TTוTTM min
	5.00

d3-N-MeFOSAA
F50:MRM of 1 channel,ES-

F46:MRM of 2 channels,ES-

13C2-PFUdA
F47:MRM of 1 channel,ES-

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:IProjects\PFAS.PRO\Results\181126M1\181126M1-30.qld
Last Altered:	Wednesday, November 28, 2018 10:32:04 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 10:33:04 Pacific Standard Time

Name: 181126M1_30, Date: 26-Nov-2018, Time: 16:44:53, ID: 1803659-05 A1-MW-55-SA2 0.11846, Description: A1-MW-55-SA2

F51:MRM of 2 channels,ES-

$584.1>526$
$1.000 e^{-}-003$

d5-N-EtFOSAA

F52:MRM of 1 channel,ES-
$589.3>419$

Total N-EtFOSAA

F51:MRM of 2 channels,ES-

d5-N-EtFOSAA
F52:MRM of 1 channel,ES-

PFDoA
F54:MRM of 4 channels,ES-
$612.9>569.0$
100
$3.926 \mathrm{e}+002$

F60:MRM of 2 channels,ES- $\begin{array}{r}662.9>319 \\ 1.000 \mathrm{e}-003\end{array}$

13C2-PFDoA

55:MRM of 2 channels,ES

13C2-PFDoA
F55:MRM of 2 channels,ES-

PFTeDA

13C5-PFHxA

F11:MRM of 1 channel,ES$318>272.9$

13C8-PFOA
F23:MRM of 1 channel,ES-

Dataset: Z:\Projects\PFAS.PRO\Results\181126M1\181126M1-30.qld

Last Altered: Wednesday, November 28, 2018 10:32:04 Pacific Standard Time Printed: Wednesday, November 28, 2018 10:33:04 Pacific Standard Time

Name: 181126M1_30, Date: 26-Nov-2018, Time: 16:44:53, ID: 1803659-05 A1-MW-55-SA2 0.11846, Description: A1-MW-55-SA2

13C4-PFOS
F33:MRM of 1 channel,ES- $\begin{array}{r}503>79.9 \\ 100\end{array}$

13C6-PFDA

F40:MRM of 1 channel,ES $519.1>473.7$ $3.651 \mathrm{e}+005$

13C7-PFUdA

F49:MRM of 1 channel,ES-

Quantify Sample Report

Dataset:	Z:IProjects\PFAS.PRO\Results\181126M1\181126M1-33.qld
Last Altered:	Wednesday, November 28, 2018 10:46:47 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 10:47:45 Pacific Standard Time

Name: 181126M1_33, Date: 26-Nov-2018, Time: 17:16:44, ID: 1803659-06 A1-MW-54-SA2 0.11683, Description: A1-MW-54-SA2

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	3 PFBS	$299.0>79.7$	9.79e3	1.10 e 3	0.117		2.76	2.76	111	461.5011		2.667	NO
2	5 PFHxA	$313>269$	1.82 e 5	5.56 e 3	0.117		3.33	3.33	163	1512.2950		15.036	NO
3	7 PFHpA	$363.0>318.9$	9.71 e 3	7.36 e 3	0.117		4.00	4.00	16.5	107.2289		13.693	NO
4	8 L-PFHxS	$398.9>79.6$	1.57 e 4	9.57 e 2	0.117		4.13	4.14	205	898.5251		1.824	NO
5	68 Total PFHxS	$398.9>79.6$	1.57 e 4	9.57 e 2	0.117		4.28		205	898.5251			
6	11 L-PFOA	$412.8>368.9$	3.97 e 4	1.35 e 4	0.117		4.47	4.49	36.6	229.9503		2.957	NO
7	69 Total PFOA	$412.8>368.9$	3.97 e 4	1.35 e 4	0.117		4.62		36.6	229.9503			
8	38 13C3-PFBS	302. > 98.8	1.10 e 3	2.16 e 3	0.117	0.537	2.72	2.76	6.39	101.8697	95.2		
9	40 13C2-PFHxA	$315>270$	5.56 e 3	1.54 e 4	0.117	0.988	3.30	3.33	4.52	39.1312	91.4		
10	41 13C4-PFHpA	$367.2>321.8$	7.36 e 3	1.54 e 4	0.117	0.537	3.97	4.00	5.99	95.4828	89.2		
11	42 1802-PFHxS	$403.0>102.6$	9.57 e 2	2.16 e 3	0.117	0.448	4.11	4.13	5.54	105.7613	98.8		
12	42 1802-PFHxS	403.0 > 102.6	9.57 e 2	2.16 e 3	0.117	0.448	4.11	4.13	5.54	105.7613	98.8		
13	44 13C2-PFOA	414.9 > 369.7	1.35 e 4	1.90e4	0.117	0.755	4.46	4.48	8.92	101.1554	94.5		
14	44 13C2-PFOA	414.9 > 369.7	1.35 e 4	1.90 e 4	0.117	0.755	4.46	4.48	8.92	101.1554	94.5		
15	-1												
16	14 PFNA	$463.0>418.8$		1.09 e 4	0.117		4.90						
17	16 L-PFOS	$498.9>79.9$	3.58 e 2	2.29 e 3	0.117		5.02	4.86	1.96	14.9506		3.094	YES
18	70 Total PFOS	498.9 > 79.9	3.58 e 2	2.29 e 3	0.117		5.13		1.96	14.9506			
19	18 PFDA	$513>468.8$		9.88 e 3	0.117		5.28						
20	21 L-MeFOSAA	$570>419$		1.46 e 3	0.117		5.43						
21	71 Total N-MeFOSAA	570. >419	0.00e0	1.46 e 3	0.117		5.57		0.000				
22	25 PFUdA	$563.0>518.9$	3.70 e 1	1.07 e 4	0.117		5.61	5.62	0.0430			23.910	YES
23	45 13C5-PFNA	468.2 > 422.9	1.09 e 4	1.33 e 4	0.117	0.991	4.90	4.92	10.2	88.4234	82.6		
24	47 13C8-PFOS	$507.0>79.9$	2.29 e 3	2.45 e 3	0.117	1.042	4.98	5.00	11.7	95.7873	89.5		
25	47 13C8-PFOS	$507.0>79.9$	2.29 e 3	2.45 e 3	0.117	1.042	4.98	5.00	11.7	95.7873	89.5		
26	48 13C2-PFDA	$515.1>469.9$	9.88 e 3	1.46 e 4	0.117	0.902	5.28	5.30	8.46	80.2470	75.0		
27	$50 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.3>419$	1.46 e 3	1.66 e 4	0.117	0.135	5.43	5.45	1.10	69.8869	65.3		
28	$50 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.3>419$	1.46 e 3	1.66 e4	0.117	0.135	5.43	5.45	1.10	69.8869	65.3		
29	51 13C2-PFUdA	$565>519.8$	1.07 e 4	1.66 e 4	0.117	0.957	5.61	5.63	8.09	72.3063	67.6		
30	-1												
31	23 L-EtFOSAA	$584.1>419$		2.20 e 3	0.117		5.51						
32	72 Total N-EtFOSAA	$584.1>419$	0.00e0	2.20 e 3	0.117		5.72		0.000				
33	29 PFTrDA	$662.9>618.9$		9.35 e 3	0.117		6.15						
34	27 PFDoA	$612.9>569.0$		9.35 e 3	0.117		5.90						
35	30 PFTeDA	713.0 > 669.0	1.44 e 1	5.46e3	0.117		6.37	6.40	0.0329			38.616	YES
36	73 TCDA	498.3>106.9			0.117		5.15						

Dataset:	Z:\Projects\PFAS.PRO\Results\181126M1\181126M1-33.qld
	Last Altered:
Wednesday, November 28, 2018 10:46:47 Pacific Standard Time	
Printed:	Wednesday, November 28, 2018 10:47:45 Pacific Standard Time

Name: 181126M1_33, Date: 26-Nov-2018, Time: 17:16:44, ID: 1803659-06 A1-MW-54-SA2 0.11683, Description: A1-MW-54-SA2

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	61 13C5-PFHxA	$318>272.9$	1.54 e 4	1.54e4	0.117	1.000	3.30	3.33	12.5	106.9931	100.0		
38	$52 \mathrm{d5-N-EtFOSAA}$	$589.3>419$	2.20 e 3	1.66 e 4	0.117	0.185	5.59	5.61	1.66	76.6137	71.6		
39	$52 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	2.20 e 3	1.66 e 4	0.117	0.185	5.59	5.61	1.66	76.6137	71.6		
40	53 13C2-PFDoA	$615.0>569.7$	9.35 e 3	1.46 e 4	0.117	1.047	5.90	5.91	8.01	65.4870	61.2		
41	53 13C2-PFDoA	$615.0>569.7$	9.35 e 3	1.46 e 4	0.117	1.047	5.90	5.91	8.01	65.4870	61.2		
42	55 13C2-PFTeDA	$715.1>669.7$	5.46 e 3	1.66 e 4	0.117	0.567	6.37	6.38	4.11	62.0178	58.0		
43	47 13C8-PFOS	$507.0>79.9$	2.29 e 3	2.45 e 3	0.117	1.042	4.98	5.00	11.7	95.7873	89.5		
44	63 13C8-PFOA	$420.9>376$	1.90 e 4	1.90 e 4	0.117	1.000	4.46	4.48	12.5	106.9931	100.0		
45	-1												
46	62 13C3-PFHxS	$401.8>79.9$	2.16 e 3	2.16 e 3	0.117	1.000	4.11	4.13	12.5	106.9931	100.0		
47	64 13C9-PFNA	$472.2>426.9$	1.33 e 4	1.33 e 4	0.117	1.000	4.90	4.91	12.5	106.9931	100.0		
48	65 13C4-PFOS	$503>79.9$	2.45 e 3	2.45 e 3	0.117	1.000	4.98	5.00	12.5	106.9931	100.0		
49	66 13C6-PFDA	$519.1>473.7$	1.46 e 4	1.46e4	0.117	1.000	5.28	5.30	12.5	106.9931	100.0		
50	67 13C7-PFUdA	$570.1>524.8$	1.66 e 4	1.66 e 4	0.117	1.000	5.61	5.63	12.5	106.9931	100.0		

Quantify Sample Report

Dataset:	Z:\Projects\PFAS.PRO\Results\181126M1\181126M1-33.qld
Last Altered:	Wednesday, November 28, 2018 10:46:47 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 10:47:45 Pacific Standard Time

Method: Z:|Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_112618.mdb 26 Nov 2018 13:53:04

Calibration: Z:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFĀS_Q4_11-26-18.cdb 26 Nov 2018 14:29:06

Name: 181126M1_33, Date: 26-Nov-2018, Time: 17:16:44, ID: 1803659-06 A1-MW-54-SA2 0.11683, Description: A1-MW-54-SA2
PFBS
F7:MRM of 2 channels,ES-
299.0 79.7
$2.488 \mathrm{e}+005$

F7:MRM of 2 channels,ES-

Total PFHxS
F18:MRM of 2 channels,ES- $\begin{array}{r}398.9>79.6 \\ 2.815 \mathrm{e}+005\end{array}$
L-PFOA

F21:MRM of 2 channels,ES- $\begin{array}{r}7.8>368.9 \\ 412.86 \mathrm{e}+005\end{array}$
F18:MRM of 2 channels,ES-
$398.9>99.0$

1802-PFHxS
F20:MRM of 1 channel,ES-
F20:MRM of 1 channel,ES-
$403.0>102.6$

13C2-PFOA

F22:MRM of 1 channel,ES-
F22:MRM of 1 channel,ES-
$414.9>369.7$

Total PFOA

F21:MRM of 2 channels,ES- $\begin{array}{r}412.8>368.9 \\ 7.666 \mathrm{e}+005\end{array}$

13C2-PFOA
F22:MRM of 1 channel,ES414.9 > 369.7

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:\Projects\PFAS.PRO\Results\181126M1\181126M1-33.qld
Last Altered:	Wednesday, November 28, 2018 10:46:47 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 10:47:45 Pacific Standard Time

Name: 181126M1_33, Date: 26-Nov-2018, Time: 17:16:44, ID: 1803659-06 A1-MW-54-SA2 0.11683, Description: A1-MW-54-SA2

$$
\begin{aligned}
& \text { PFNA } \\
& \text { F27:MRM of } 2 \text { channels,ES- } \\
& 463.0>418.8 \\
& 100
\end{aligned}
$$

L-PFOS

Total PFOS

PFDA

F37:MRM of 2 channels,ES- $\begin{array}{r}513>468.8 \\ 4.035 \mathrm{e}+002\end{array}$

L-MeFOSAA

F48:MRM of 2 channels,ES-
$570>419$ $570>419$
$1.000 \mathrm{e}-003$

Total N-MeFOSAA

PFUdA

F46:MRM of 2 channels,ES- | $563.0>518.9$ |
| ---: |
| $4.623 \mathrm{e}+002$ |

F27:MRM of 2 channels,ES-
$463.0>219.0$

13C5-PFNA

F32:MRM of 2 channels, ES-
$498.9>99$

F32:MRM of 2 channels, ES-
$498.9>99$

13C8-PFOS

F35:MRM of 1 channel,ES-
$507.0>79.9$

F37:MRM of 2 channels,ES-

13C2-PFDA

d3-N-MeFOSAA

F50:MRM of 1 channel,ES-

F46:MRM of 2 channels,ES-

13C2-PFUdA
F47:MRM of 1 channel,ES-

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:\Projects\PFAS.PRO\Results\181126M1\181126M1-33.qld
Last Altered:	Wednesday, November 28, 2018 10:46:47 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 10:47:45 Pacific Standard Time

Name: 181126M1_33, Date: 26-Nov-2018, Time: 17:16:44, ID: 1803659-06 A1-MW-54-SA2 0.11683, Description: A1-MW-54-SA2

L-EtFOSAA
F51:MRM of 2 channels,ES-
$584.1>419$
100
5.69
$3.891 \mathrm{e}+001$

F51:MRM of 2 channels,ES-

	$584.1>526$ $1.000 e-003$
100	

Total N-EtFOSAA
F51:MRM of 2 channels,ES-
$584.1>419$

PFTrDA
F60:MRM of 2 channels,ES-

PFDoA

F54:MRM of 4 channels,ES-

F51:MRM of 2 channels, ES-
$584.1>526$

d5-N-EtFOSAA

F52:MRM of 1 channel,ES-

F60:MRM of 2 channels,ES- $\begin{array}{r}662.9>319 \\ 1.000 \mathrm{e}-003\end{array}$

13C2-PFDoA

55:MRM of 2 channels,ES-
F55:MRM of 2 channels,ES-
$615.0>569.7$
1.998 +

PFTeDA

F61:MRM of 2 channels,ES-

TCDA

F31:MRM of 3 channels,ES-
$498.3>106.9$
100
5.001.777e+001

F55:MRM of 2 channels,ES-
F54:MRM of 4 channels,ES-

$612.9>318.8$
$1.000 \mathrm{e}-003$
100

13C2-PFTeDA

F62:MRM of 2 channels,ES-

13C5-PFHxA
F11:MRM of 1 channel,ES$318>272.9$

13C8-PFOA
F23:MRM of 1 channel,ES-

Dataset:
 Z:|Projects\PFAS.PRO\Results\181126M1\181126M1-33.qld
 Last Altered: Wednesday, November 28, 2018 10:46:47 Pacific Standard Time Printed: Wednesday, November 28, 2018 10:47:45 Pacific Standard Time

Name: 181126M1_33, Date: 26-Nov-2018, Time: 17:16:44, ID: 1803659-06 A1-MW-54-SA2 0.11683, Description: A1-MW-54-SA2

13C4-PFOS
F33:MRM of 1 channel,ES- $\begin{array}{r}503>79.9 \\ 100\end{array}$

13C6-PFDA

F40:MRM of 1 channel,ES $519.1>473.7$ $3.329 \mathrm{e}+005$

13C7-PFUdA

F49:MRM of 1 channel,ES-

Quantify Sample Report

Dataset:	Z:IProjects\PFAS.PRO\Results\181126M1\181126M1-34.qld
Last Altered:	Wednesday, November 28, 2018 10:54:08 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 10:56:07 Pacific Standard Time

Name: 181126M1_34, Date: 26-Nov-2018, Time: 17:27:17, ID: 1803659-07 FRB-20181114 0.11549, Description: FRB-20181114

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	3 PFBS	$299.0>79.7$	1.84 e 0	1.36 e 3	0.115		2.76	2.75	0.0169			0.423	YES
2	5 PFHxA	$313>269$	2.63 e 1	7.06 e 3	0.115		3.33	3.33	0.0186			5.739	YES
3	7 PFHpA	$363.0>318.9$		9.15 e 3	0.115		4.00						
4	8 L-PFHxS	$398.9>79.6$	7.66 e 0	1.10 e 3	0.115		4.14	4.14	0.0873	0.3934		20.542	YES
5	68 Total PFHxS	$398.9>79.6$	7.66 e 0	1.10 e 3	0.115		4.28		0.0873	0.3934			
6	11 L-PFOA	$412.8>368.9$	7.15 e 1	1.53 e 4	0.115		4.47	4.49	0.0584			12.222	YES
7	69 Total PFOA	$412.8>368.9$	7.15 e 1	1.53 e 4	0.115		4.62		0.000				
8	38 13C3-PFBS	302. > 98.8	1.36 e 3	2.52 e 3	0.115	0.537	2.72	2.76	6.75	108.7729	100.5		
9	40 13C2-PFHxA	$315>270$	7.06 e 3	1.93 e 4	0.115	0.988	3.30	3.33	4.57	40.0231	92.4		
10	41 13C4-PFHpA	$367.2>321.8$	9.15 e 3	1.93 e 4	0.115	0.537	3.97	4.00	5.92	95.5270	88.3		
11	42 1802-PFHxS	$403.0>102.6$	1.10 e 3	2.52 e 3	0.115	0.448	4.11	4.14	5.43	104.9919	97.0		
12	42 1802-PFHxS	403.0 > 102.6	1.10 e 3	2.52 e 3	0.115	0.448	4.11	4.14	5.43	104.9919	97.0		
13	44 13C2-PFOA	414.9 > 369.7	1.53 e 4	2.16 e 4	0.115	0.755	4.46	4.49	8.87	101.7685	94.0		
14	44 13C2-PFOA	414.9 > 369.7	1.53 e 4	2.16 e 4	0.115	0.755	4.46	4.49	8.87	101.7685	94.0		
15	-1												
16	14 PFNA	$463.0>418.8$	1.66 e 1	1.28 e 4	0.115		4.90	4.91	0.0162			59.586	YES
17	16 L-PFOS	$498.9>79.9$		2.64 e3	0.115		5.02						
18	70 Total PFOS	$498.9>79.9$	0.00e0	2.64 e 3	0.115		5.13		0.000				
19	18 PFDA	$513>468.8$	2.73 e 1	1.21 e 4	0.115		5.28	5.30	0.0283	0.0098		14.076	YES
20	21 L-MeFOSAA	$570>419$		2.21 e 3	0.115		5.43						
21	71 Total N-MeFOSAA	570. >419	0.00e0	2.21 e 3	0.115		5.57		0.000				
22	25 PFUdA	$563.0>518.9$	2.54 e 1	1.50 e 4	0.115		5.61	5.63	0.0212			22.739	YES
23	45 13C5-PFNA	$468.2>422.9$	1.28 e 4	1.46 e 4	0.115	0.991	4.90	4.92	11.0	95.8654	88.6		
24	47 13C8-PFOS	$507.0>79.9$	2.64 e 3	2.53 e 3	0.115	1.042	4.98	5.00	13.1	108.6177	100.4		
25	47 13C8-PFOS	$507.0>79.9$	2.64 e 3	2.53 e 3	0.115	1.042	4.98	5.00	13.1	108.6177	100.4		
26	48 13C2-PFDA	$515.1>469.9$	1.21 e 4	1.66 e 4	0.115	0.902	5.28	5.30	9.10	87.3446	80.7		
27	$50 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.3>419$	2.21 e 3	1.95 e 4	0.115	0.135	5.43	5.45	1.42	91.3610	84.4		
28	$50 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.3>419$	2.21 e 3	1.95 e 4	0.115	0.135	5.43	5.45	1.42	91.3610	84.4		
29	51 13C2-PFUdA	$565>519.8$	1.50 e 4	1.95 e 4	0.115	0.957	5.61	5.63	9.62	86.9839	80.4		
30	-1												
31	23 L-EtFOSAA	$584.1>419$		3.13 e 3	0.115		5.51						
32	72 Total N-EtFOSAA	$584.1>419$	0.00e0	3.13 e 3	0.115		5.72		0.000				
33	29 PFTrDA	$662.9>618.9$		1.43 e 4	0.115		6.15						
34	27 PFDoA	$612.9>569.0$		1.43 e 4	0.115		5.90						
35	30 PFTeDA	713.0 > 669.0	2.81 e 1	9.07 e 3	0.115		6.37	6.37	0.0387			9.049	NO
36	73 TCDA	498.3>106.9			0.115		5.15						

Work Order 1803659

Dataset:	Z:\Projects\PFAS.PRO\Results\181126M1\181126M1-34.qld
Last Altered:	Wednesday, November 28, 2018 10:54:08 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 10:56:07 Pacific Standard Time

Name: 181126M1_34, Date: 26-Nov-2018, Time: 17:27:17, ID: 1803659-07 FRB-20181114 0.11549, Description: FRB-20181114

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	61 13C5-PFHxA	318 > 272.9	1.93 e 4	1.93 e 4	0.115	1.000	3.30	3.33	12.5	108.2345	100.0		
38	$52 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	3.13 e 3	1.95 e4	0.115	0.185	5.59	5.61	2.01	93.8823	86.7		
39	$52 \mathrm{d5}-\mathrm{N}$-EtFOSAA	$589.3>419$	3.13 e 3	1.95 e4	0.115	0.185	5.59	5.61	2.01	93.8823	86.7		
40	53 13C2-PFDoA	$615.0>569.7$	1.43 e 4	1.66 e 4	0.115	1.047	5.90	5.91	10.7	88.9141	82.1		
41	53 13C2-PFDoA	$615.0>569.7$	1.43 e 4	1.66 e 4	0.115	1.047	5.90	5.91	10.7	88.9141	82.1		
42	55 13C2-PFTeDA	$715.1>669.7$	9.07 e 3	1.95 e 4	0.115	0.567	6.37	6.38	5.82	88.9237	82.2		
43	47 13C8-PFOS	$507.0>79.9$	2.64 e 3	2.53 e 3	0.115	1.042	4.98	5.00	13.1	108.6177	100.4		
44	63 13C8-PFOA	$420.9>376$	2.16 e 4	2.16 e 4	0.115	1.000	4.46	4.49	12.5	108.2345	100.0		
45	-1												
46	62 13C3-PFHxS	$401.8>79.9$	2.52 e 3	2.52 e 3	0.115	1.000	4.11	4.14	12.5	108.2345	100.0		
47	64 13C9-PFNA	$472.2>426.9$	1.46 e 4	1.46 e 4	0.115	1.000	4.90	4.92	12.5	108.2345	100.0		
48	65 13C4-PFOS	$503>79.9$	2.53 e 3	2.53 e 3	0.115	1.000	4.98	5.00	12.5	108.2345	100.0		
49	66 13C6-PFDA	$519.1>473.7$	1.66 e 4	1.66 e 4	0.115	1.000	5.28	5.30	12.5	108.2345	100.0		
50	67 13C7-PFUdA	$570.1>524.8$	1.95 e 4	1.95 e 4	0.115	1.000	5.61	5.63	12.5	108.2345	100.0		

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:\Projects\PFAS.PRO\Results\181126M1\181126M1-34.qld
Last Altered:	Wednesday, November 28, 2018 10:54:08 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 10:56:07 Pacific Standard Time

Method: Z:|Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_112618.mdb 26 Nov 2018 13:53:04

Calibration: Z:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFĀS_Q4_11-26-18.cdb 26 Nov 2018 14:29:06

Name: 181126M1_34, Date: 26-Nov-2018, Time: 17:27:17, ID: 1803659-07 FRB-20181114 0.11549, Description: FRB-20181114

F7:MRM of 2 channels,ES-

13C3-PFBS

L-PFOA

F21:MRM of 2 channels,ES-

Total PFOA
F21:MRM of 2 channels,ES- $\begin{array}{r}412.8>368.9 \\ 2.025 \mathrm{e}+003\end{array}$

13C2-PFHxA
F10:MRM of 1 channel,ES-

13C4-PFHpA
F17:MRM of 1 channel,ES-

$$
367.2>321.8
$$

Total PFHxS

1802-PFHxS
F20:MRM of 1 channel,ES403.0 > 102.6

13C2-PFOA

$$
\begin{array}{r}
\text { F22:MRM of } 1 \text { channel,ES- } \\
414.9>369.7
\end{array}
$$

13C2-PFOA
F22:MRM of 1 channel,ES-
414.9 > 369.7

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:IProjects\PFAS.PRO\Results\181126M11181126M1-34.qld
Last Altered:	Wednesday, November 28, 2018 10:54:08 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 10:56:07 Pacific Standard Time

Name: 181126M1_34, Date: 26-Nov-2018, Time: 17:27:17, ID: 1803659-07 FRB-20181114 0.11549, Description: FRB-20181114

PFNA

F27:MRM of 2 channels,ES-

L-PFOS

F32:MRM of 2 channels,ES-

Total PFOS
F32:MRM of 2 channels,ES- $\begin{array}{r}498.9>79.9 \\ 4.851 \mathrm{e}+001\end{array}$

PFDA

F37:MRM of 2 channels,ES- $\begin{array}{r}513>468.8 \\ 6.229 \mathrm{e}+002\end{array}$

L-MeFOSAA

F48:MRM of 2 channels,ES$570>419$ $1.000 \mathrm{e}-003$

Total N-MeFOSAA

F48:MRM of 2 channels,ES- | $570>419$ | F46:MRM of 2 channels,ES- | |
| ---: | ---: | ---: |
| $563.0>518.9$ | | |
| $1.000 \mathrm{e}-003$ | | $6.082 \mathrm{e}+002$ |

F27:MRM of 2 channels,ES-

13C5-PFNA

F32:MRM of 2 channels, ES-
$498.9>99$

F32:MRM of 2 channels,ES-
$498.9>99$
(100

13C2-PFDA

F46:MRM of 2 channels,ES-
F48:MRM of 2 channels, ES-
$570 .>512$

d3-N-MeFOSAA

d3-N-MeFOSAA

F50:MRM of 1 channel,ES-

13C2-PFUdA
F47:MRM of 1 channel,ES-

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:\Projects\PFAS.PRO\Results\181126M1\181126M1-34.qld
Last Altered:	Wednesday, November 28, 2018 10:54:08 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 10:56:07 Pacific Standard Time

Name: 181126M1_34, Date: 26-Nov-2018, Time: 17:27:17, ID: 1803659-07 FRB-20181114 0.11549, Description: FRB-20181114

L-EtFOSAA
F51:MRM of 2 channels,ES-
$584.1>419$
100
$5.42 \quad 1.787 \mathrm{e}+001$

F51:MRM of 2 channels,ES-

Total N-EtFOSAA
F51:MRM of 2 channels,ES-
$584.1>419$

PFTrDA
F60:MRM of 2 channels,ES-

PFDoA

F54:MRM of 4 channels,ES-

PFTeDA

F61:MRM of 2 channels,ES$713.0>669.0$

TCDA

F31:MRM of 3 channels,ES-

100 | $498.3>106.9$ |
| ---: |
| $3.143 \mathrm{e}+001$ |

F51:MRM of 2 channels, ES-
$584.1>526$

d5-N-EtFOSAA

F52:MRM of 1 channel,ES-

F60:MRM of 2 channels,ES- $\begin{array}{r}662.9>319 \\ 1.000 \mathrm{e}-003\end{array}$

13C2-PFDoA

555:MRM of 2 channels,ES

F55:MRM of 2 channels,ES-

13C2-PFTeDA

F62:MRM of 2 channels,ES-

13C5-PFHxA
F11:MRM of 1 channel,ES$318>272.9$

13C8-PFOA
F23:MRM of 1 channel,ES-

Dataset:
 Z:IProjects\PFAS.PRO\Results\181126M1\181126M1-34.qld

Last Altered: Wednesday, November 28, 2018 10:54:08 Pacific Standard Time
Printed: Wednesday, November 28, 2018 10:56:07 Pacific Standard Time

Name: 181126M1_34, Date: 26-Nov-2018, Time: 17:27:17, ID: 1803659-07 FRB-20181114 0.11549, Description: FRB-20181114

13C4-PFOS
F33:MRM of 1 channel,ES- $\begin{array}{r}503>79.9 \\ 5.817 \mathrm{e}+004\end{array}$

13C6-PFDA

F40:MRM of 1 channel,ES $519.1>473.7$ $3.802 \mathrm{e}+005$

13C7-PFUdA
F49:MRM of 1 channel,ES$570.1>524.8$ $4.236 \mathrm{e}+005$

INJECTION INTERNAL STANDARD (IIS) AREAS,

INSTRUMENT BLANKS (IB)

AND

CONTINUTING CALIBRATION VERIFICATIONS CCV)

Quantify Sample Summary Report

Method: F:|Projects\PFAS.PRO\MethDB\PFAS_RS-11-14-18.mdb 14 Nov 2018 11:37:25 Calibration: 27 Nov 2018 08:53:34

Name: 181126M1_7, Date: 26-Nov-2018, Time: 12:38:59, ID: ST181126M2-6 PFC CS3 18K1906, Description: PFC CS3 $18 K 1906$

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	ST181126M2-6 PFC CS3 18K1906	8.41 e 3	98.4	NO
2	$213 C 5-P F H x A$	ST181126M2-6 PFC CS3 18K1906	2.53 e 4	100.0	NO
3	$313 C 3-P F H x S$	ST181126M2-6 PFC CS3 18K1906	3.33 e 3	100.0	NO
4	$413 C 8-P F O A$	ST181126M2-6 PFC CS3 18K1906	3.06 e 4	100.5	NO
5	$513 C 9-P F N A$	ST181126M2-6 PFC CS3 18K1906	2.16 e 4	99.0	NO
6	$613 C 4-P F O S$	ST181126M2-6 PFC CS3 18K1906	3.39 e 3	100.6	NO
7	$713 C 6-P F D A$	ST181126M2-6 PFC CS3 18K1906	2.38 e 4	101.3	NO
8	$813 C 7-P F U d A$	ST181126M2-6 PFC CS3 18K1906	$2.72 e 4$	101.8	NO

Name: 181126M1_8, Date: 26-Nov-2018, Time: 12:49:38, ID: ST181126M2-7 PFC CS4 1810907, Description: PFC CS4 $18 K 1907$

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	ST181126M2-7 PFC CS4 1810907	8.78 e 3	102.7	NO
2	2 13C5-PFHxA	ST181126M2-7 PFC CS4 1810907	2.65 e 4	104.7	NO
3	3 13C3-PFHxS	ST181126M2-7 PFC CS4 1810907	3.60 e 3	108.3	NO
4	4 13C8-PFOA	ST181126M2-7 PFC CS4 1810907	3.30 e 4	108.4	NO
5	5 13C9-PFNA	ST181126M2-7 PFC CS4 1810907	2.27 e 4	104.2	NO
6	6 13C4-PFOS	ST181126M2-7 PFC CS4 1810907	3.54 e 3	104.8	NO
7	7 13C6-PFDA	ST181126M2-7 PFC CS4 1810907	2.48 e 4	105.4	NO
8	8 13C7-PFUdA	ST181126M2-7 PFC CS4 1810907	2.83 e 4	106.1	NO

Name: 181126M1_9, Date: 26-Nov-2018, Time: 13:00:11, ID: ST181126M2-8 PFC CS5 18K1908, Description: PFC CS5 $18 K 1908$

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	ST181126M2-8 PFC CS5 18K1908	8.53 e 3	99.8	NO
2	2 13C5-PFHxA	ST181126M2-8 PFC CS5 18K1908	2.56 e 4	100.9	NO
3	3 13C3-PFHxS	ST181126M2-8 PFC CS5 18K1908	3.32 e 3	99.7	NO
4	4 13C8-PFOA	ST181126M2-8 PFC CS5 18K1908	3.00 e 4	98.5	NO
5	5 13C9-PFNA	ST181126M2-8 PFC CS5 18K1908	2.25 e 4	103.3	NO
6	6 13C4-PFOS	ST181126M2-8 PFC CS5 18K1908	3.35 e 3	99.2	NO
7	7 13C6-PFDA	ST181126M2-8 PFC CS5 18K1908	2.36 e 4	100.3	NO
8	8 13C7-PFUdA	ST181126M2-8 PFC CS5 18K1908	2.67 e 4	99.9	NO

Name: 181126M1_10, Date: 26-Nov-2018, Time: 13:10:49, ID: ST181126M2-9 PFC CS6 18K1909, Description: PFC CS6 18K1909

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	ST181126M2-9 PFC CS6 18K1909	8.47 e 3	99.1	NO
2	$213 C 5-P F H x A$	ST181126M2-9 PFC CS6 18K1909	2.39 e 4	94.4	NO
3	$313 C 3-P F H x S$	ST181126M2-9 PFC CS6 18K1909	3.06 e 3	92.1	NO
4	$413 C 8-P F O A$	ST181126M2-9 PFC CS6 18K1909	$2.82 e 4$	92.6	NO
5	$513 C 9-P F N A$	ST181126M2-9 PFC CS6 18K1909	2.04 e 4	93.4	NO
6	$613 C 4-P F O S$	ST181126M2-9 PFC CS6 18K1909	$3.22 e 3$	95.4	NO
7	$713 C 6-P F D A$	ST181126M2-9 PFC CS6 18K1909	$2.19 e 4$	93.0	NO
8	$813 C 7-P F U d A$	ST181126M2-9 PFC CS6 18K1909	$2.46 e 4$	92.2	NO

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: F:\Projects\PFAS.PRO\Results\181126M1\181126M1-IIS AREA.qld
Last Altered: Tuesday, November 27, 2018 08:53:34 Pacific Standard Time
Printed: Tuesday, November 27, 2018 08:57:24 Pacific Standard Time

Name: 181126M1_11, Date: 26-Nov-2018, Time: 13:21:23, ID: ST181126M2-10 PFC CS7 18K1910, Description: PFC CS7 $18 K 1910$

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	ST181126M2-10 PFC CS7 18K1910	9.09e3	106.3	NO
2	2 13C5-PFHxA	ST181126M2-10 PFC CS7 18K1910	2.23 e 4	88.1	NO
3	3 13C3-PFHxS	ST181126M2-10 PFC CS7 18K1910	2.56 e 3	76.9	NO
4	4 13C8-PFOA	ST181126M2-10 PFC CS7 18K1910	2.57 e 4	84.5	NO
5	5 13C9-PFNA	ST181126M2-10 PFC CS7 18K1910	1.85 e 4	85.0	NO
6	6 13C4-PFOS	ST181126M2-10 PFC CS7 18K1910	2.86 e 3	84.7	NO
7	7 13C6-PFDA	ST181126M2-10 PFC CS7 18K1910	1.89 e 4	80.4	NO
8	8 13C7-PFUdA	ST181126M2-10 PFC CS7 18K1910	2.13 e 4	79.8	NO

Name: 181126M1_12, Date: 26-Nov-2018, Time: 13:32:01, ID: IPA, Description: IPA

	\# Name	ID	Area
1	$113 C 4-P F B A$	IPA	\%Rec
2	$213 C 5-P F H x A$	IPA	Area Out
3	$313 C 3-P F H x S$	IPA	NO
4	$413 C 8-P F O A$	IPA	NO
5	$513 C 9-P F N A$	IPA	NO
6	$613 C 4-P F O S$	IPA	NO
7	$713 C 6-P F D A$	IPA	NO
8	$813 C 7-P F U d A$	IPA	NO

Name: 181126M1_13, Date: 26-Nov-2018, Time: 13:42:34, ID: ICV181126M2-1 PFC ICV 18K1911, Description: PFC ICV 18K1911

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	ICV181126M2-1 PFC ICV 18K1911	9.00 e 3	105.3	NO
2	$213 C 5-P F H x A$	ICV181126M2-1 PFC ICV 18K1911	2.51 e 4	98.9	NO
3	$313 C 3-P F H x S$	ICV181126M2-1 PFC ICV 18K1911	3.19 e 3	95.9	NO
4	$413 C 8-P F O A$	ICV181126M2-1 PFC ICV 18K1911	2.94 e 4	96.5	NO
5	$513 C 9-P F N A$	ICV181126M2-1 PFC ICV 18K1911	2.13 e 4	97.6	NO
6	$613 C 4-P F O S$	ICV181126M2-1 PFC ICV 18K1911	3.20 e 3	94.9	NO
7	$713 C 6-P F D A$	ICV181126M2-1 PFC ICV 18K1911	2.29 e 4	97.2	NO
8	$813 C 7-P F U d A$	ICV181126M2-1 PFC ICV 18K1911	2.72 e 4	102.0	NO

Name: 181126M1_14, Date: 26-Nov-2018, Time: 13:53:12, ID: IPA, Description: IPA

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	IPA			NO
2	2 13C5-PFHxA	IPA			NO
3	3 13C3-PFHxS	IPA			NO
4	4 13C8-PFOA	IPA			NO
5	5 13C9-PFNA	IPA			NO
6	6 13C4-PFOS	IPA			NO
7	7 13C6-PFDA	IPA			NO
8	8 13C7-PFUdA	IPA			NO

Quantify Sample Summary Report

Last Altered: Tuesday, November 27, 2018 08:53:34 Pacific Standard Time
Printed: Tuesday, November 27, 2018 08:57:24 Pacific Standard Time

Name: 181126M1_15, Date: 26-Nov-2018, Time: 14:03:48, ID: B8K0097-BSD1 LCSD 0.125, Description: LCSD

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	B8K0097-BSD1 LCSD 0.125	1.44 e 4	168.3	YES
2	2 13C5-PFHxA	B8K0097-BSD1 LCSD 0.125	2.64 e 4	104.2	NO
3	$313 C 3-P F H x S$	B8K0097-BSD1 LCSD 0.125	3.49 e 3	104.8	NO
4	$413 C 8-P F O A$	B8K0097-BSD1 LCSD 0.125	3.11 e 4	102.2	NO
5	$513 C 9-P F N A$	B8K0097-BSD1 LCSD 0.125	2.25 e 4	103.1	NO
6	$613 C 4-P F O S$	B8K0097-BSD1 LCSD 0.125	3.46 e 3	102.6	NO
7	$713 C 6-P F D A$	B8K0097-BSD1 LCSD 0.125	2.43 e 4	103.1	NO
8	$813 C 7-P F U d A$	B8K0097-BSD1 LCSD 0.125	2.82 e 4	105.6	NO

Name: 181126M1_16, Date: 26-Nov-2018, Time: 14:14:24, ID: 1803629-06 REEPDW585 0.11471, Description: REEPDW585

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803629-06 REEPDW585 0.11471	1.39 e 4	163.0	YES
2	2 13C5-PFHxA	1803629-06 REEPDW585 0.11471	2.58 e 4	101.7	NO
3	3 13C3-PFHxS	1803629-06 REEPDW585 0.11471	3.33 e 3	100.0	NO
4	4 13C8-PFOA	1803629-06 REEPDW585 0.11471	3.10 e 4	101.9	NO
5	5 13C9-PFNA	1803629-06 REEPDW585 0.11471	2.05 e 4	94.2	NO
6	6 13C4-PFOS	1803629-06 REEPDW585 0.11471	3.51 e 3	104.0	NO
7	7 13C6-PFDA	1803629-06 REEPDW585 0.11471	2.22 e 4	94.5	NO
8	8 13C7-PFUdA	1803629-06 REEPDW585 0.11471	2.70 e 4	101.1	NO

Name: 181126M1_17, Date: 26-Nov-2018, Time: 14:25:02, ID: B8K0152-BS1 OPR 0.25, Description: OPR

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	B8K0152-BS1 OPR 0.25	7.60 e 3	88.8	NO
2	$213 C 5-P F H x A$	B8K0152-BS1 OPR 0.25	1.74 e 4	68.8	NO
3	$313 C 3-P F H x S$	B8K0152-BS1 OPR 0.25	2.84 e 3	85.4	NO
4	$413 C 8-P F O A$	B8K0152-BS1 OPR 0.25	2.46 e 4	80.8	NO
5	$513 C 9-P F N A$	B8K0152-BS1 OPR 0.25	1.81 e 4	83.0	NO
6	$613 C 4-P F O S$	B8K0152-BS1 OPR 0.25	2.95 e 3	87.3	NO
7	$713 C 6-P F D A$	B8K0152-BS1 OPR 0.25	2.02 e 4	85.7	NO
8	$813 C 7-P F U d A$	B8K0152-BS1 OPR 0.25	2.39 e 4	89.6	NO

Name: 181126M1_18, Date: 26-Nov-2018, Time: 14:35:34, ID: B8K0152-BLK1 Method Blank 0.25, Description: Method Blank

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	B8K0152-BLK1 Method Blank 0.25	6.96 e 3	81.4	NO
2	$213 C 5-P F H x A$	B8K0152-BLK1 Method Blank 0.25	1.74 e 4	68.5	NO
3	$313 C 3-P F H x S$	B8K0152-BLK1 Method Blank 0.25	2.94 e 3	88.4	NO
4	$413 C 8-P F O A$	B8K0152-BLK1 Method Blank 0.25	2.42 e 4	79.5	NO
5	$513 C 9-P F N A$	B8K0152-BLK1 Method Blank 0.25	1.76 e 4	80.7	NO
6	$613 C 4-P F O S$	B8K0152-BLK1 Method Blank 0.25	3.05 e 3	90.4	NO
7	$713 C 6-P F D A$	B8K0152-BLK1 Method Blank 0.25	2.07 e 4	88.0	NO
8	$813 C 7-P F U d A$	B8K0152-BLK1 Method Blank 0.25	2.37 e 4	89.0	NO

Quantify Sample Summary Report

Vista Analytical Laboratory
Dataset: F:\Projects\PFAS.PRO\Results\181126M1\181126M1-IIS AREA.qld
Last Altered: Tuesday, November 27, 2018 08:53:34 Pacific Standard Time
Printed: \quad Tuesday, November 27, 2018 08:57:24 Pacific Standard Time

Name: 181126M1_19, Date: 26-Nov-2018, Time: 14:46:12, ID: 1803729-01 WMP1811191026JSJ 0.23788, Description: WMP1811191026JSJ

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803729-01 WMP1811191026JSJ 0.23...	6.48 e 3	75.7	NO
2	2 13C5-PFHxA	1803729-01 WMP1811191026JSJ 0.23...	1.38 e 4	54.4	NO
3	3 13C3-PFHxS	1803729-01 WMP1811191026JSJ 0.23...	2.81 e 3	84.4	NO
4	4 13C8-PFOA	1803729-01 WMP1811191026JSJ 0.23...	1.64 e 4	54.0	NO
5	5 13C9-PFNA	1803729-01 WMP1811191026JSJ 0.23...	1.44 e 4	66.2	NO
6	6 13C4-PFOS	1803729-01 WMP1811191026JSJ 0.23...	2.70 e 3	80.1	NO
7	7 13C6-PFDA	1803729-01 WMP1811191026JSJ 0.23...	1.71 e 4	72.7	NO
8	8 13C7-PFUdA	1803729-01 WMP1811191026JSJ 0.23...	2.06 e 4	77.1	NO

Name: 181126M1_20, Date: 26-Nov-2018, Time: 14:56:45, ID: 1803729-02 WMP1811191035JSJ 0.23637, Description: WMP1811191035JSJ

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803729-02 WMP1811191035JSJ 0.23...	6.72 e 3	78.6	NO
2	2 13C5-PFHxA	1803729-02 WMP1811191035JSJ 0.23...	1.44 e 4	56.8	NO
3	3 13C3-PFHxS	1803729-02 WMP1811191035JSJ 0.23...	2.70 e 3	81.2	NO
4	4 13C8-PFOA	1803729-02 WMP1811191035JSJ 0.23...	1.95 e 4	64.3	NO
5	5 13C9-PFNA	1803729-02 WMP1811191035JSJ 0.23...	1.49 e 4	68.5	NO
6	6 13C4-PFOS	1803729-02 WMP1811191035JSJ 0.23...	2.70 e 3	80.0	NO
7	7 13C6-PFDA	1803729-02 WMP1811191035JSJ 0.23...	1.68 e 4	71.2	NO
8	8 13C7-PFUdA	1803729-02 WMP1811191035JSJ 0.23...	1.97 e 4	73.9	NO

Name: 181126M1_21, Date: 26-Nov-2018, Time: 15:07:48, ID: 1803729-03 WMP1811191043JSJ 0.23365, Description: WMP1811191043JSJ

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803729-03 WMP1811191043JSJ 0.23...	5.91e3	69.1	NO
2	2 13C5-PFHxA	1803729-03 WMP1811191043JSJ 0.23...	1.21 e 4	47.8	YES
3	3 13C3-PFHxS	1803729-03 WMP1811191043JSJ 0.23...	2.82 e 3	84.7	NO
4	4 13C8-PFOA	1803729-03 WMP1811191043JSJ 0.23...	1.91 e 4	62.7	NO
5	5 13C9-PFNA	1803729-03 WMP1811191043JSJ 0.23...	1.46 e 4	67.1	NO
6	6 13C4-PFOS	1803729-03 WMP1811191043JSJ 0.23...	2.87 e 3	85.2	NO
7	7 13C6-PFDA	1803729-03 WMP1811191043JSJ 0.23...	1.65 e 4	70.2	NO
8	8 13C7-PFUdA	1803729-03 WMP1811191043JSJ 0.23...	1.98 e 4	74.1	NO

Name: 181126M1_22, Date: 26-Nov-2018, Time: 15:18:26, ID: 1803730-01 WEF1811191106JSJ 0.24116, Description: WEF1811191106JSJ

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1803730-01$ WEF1811191106JSJ $0.241 \ldots$	7.64 e 3	89.4	NO
2	2 13C5-PFHxA	$1803730-01$ WEF1811191106JSJ $0.241 \ldots$	1.62 e 4	63.8	NO
3	$313 C 3-P F H x S$	$1803730-01$ WEF1811191106JSJ $0.241 \ldots$	2.71 e 3	81.6	NO
4	$413 C 8-P F O A$	$1803730-01$ WEF1811191106JSJ $0.241 \ldots$	2.17 e 4	71.5	NO
5	$513 C 9-P F N A$	$1803730-01$ WEF1811191106JSJ $0.241 \ldots$	1.53 e 4	70.0	NO
6	$613 C 4-P F O S$	$1803730-01$ WEF1811191106JSJ $0.241 \ldots$	2.85 e 3	84.5	NO
7	7 13C6-PFDA	$1803730-01$ WEF1811191106JSJ $0.241 \ldots$	1.84 e 4	78.0	NO
8	$813 C 7-P F U d A$	$1803730-01$ WEF1811191106JSJ $0.241 \ldots$	$2.10 e 4$	78.7	NO

Quantify Sample Summary Report

Last Altered: Tuesday, November 27, 2018 08:53:34 Pacific Standard Time
Printed: Tuesday, November 27, 2018 08:57:24 Pacific Standard Time

Name: 181126M1_23, Date: 26-Nov-2018, Time: 15:29:49, ID: B8K0144-BS1 OPR 0.125, Description: OPR

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	B8K0144-BS1 OPR 0.125	9.68 e 3	113.2	NO
2	$213 C 5-P F H x A$	B8K0144-BS1 OPR 0.125	1.87 e 4	73.8	NO
3	$313 C 3-P F H x S$	B8K0144-BS1 OPR 0.125	2.61 e 3	78.4	NO
4	$413 C 8-P F O A$	B8K0144-BS1 OPR 0.125	2.23 e 4	73.3	NO
5	$513 C 9-P F N A$	B8K0144-BS1 OPR 0.125	1.56 e 4	71.4	NO
6	$613 C 4-P F O S$	B8K0144-BS1 OPR 0.125	2.63 e 3	78.0	NO
7	$713 C 6-P F D A$	B8K0144-BS1 OPR 0.125	1.80 e 4	76.6	NO
8	$813 C 7-P F U d A$	B8K0144-BS1 OPR 0.125	2.03 e 4	76.0	NO

Name: 181126M1_24, Date: 26-Nov-2018, Time: 15:41:20, ID: B8K0144-BSD1 LCSD 0.125, Description: LCSD

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	B8K0144-BSD1 LCSD 0.125	8.02 e 3	93.8	NO
2	$213 C 5-P F H x A$	B8K0144-BSD1 LCSD 0.125	1.66 e 4	65.7	NO
3	$313 C 3-P F H x S$	B8K0144-BSD1 LCSD 0.125	2.39 e 3	71.8	NO
4	$413 C 8-P F O A$	B8K0144-BSD1 LCSD 0.125	1.88 e 4	61.8	NO
5	$513 C 9-P F N A$	B8K0144-BSD1 LCSD 0.125	1.33 e 4	60.8	NO
6	$613 C 4-P F O S$	B8K0144-BSD1 LCSD 0.125	2.43 e 3	72.0	NO
7	$713 C 6-P F D A$	B8K0144-BSD1 LCSD 0.125	1.50 e 4	63.6	NO
8	$813 C 7-P F U d A$	B8K0144-BSD1 LCSD 0.125	1.84 e 4	69.0	NO

Name: 181126M1_25, Date: 26-Nov-2018, Time: 15:51:53, ID: B8K0144-BLK1 Method Blank 0.125, Description: Method Blank

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	B8K0144-BLK1 Method Blank 0.125	8.24 e 3	96.4	NO
2	$213 C 5-P F H x A$	B8K0144-BLK1 Method Blank 0.125	1.71 e 4	67.4	NO
3	$313 C 3-P F H x S$	B8K0144-BLK1 Method Blank 0.125	2.56 e 3	77.0	NO
4	$413 C 8-P F O A$	B8K0144-BLK1 Method Blank 0.125	2.10 e 4	69.1	NO
5	$513 C 9-P F N A$	B8K0144-BLK1 Method Blank 0.125	1.55 e 4	70.8	NO
6	$613 C 4-P F O S$	B8K0144-BLK1 Method Blank 0.125	2.45 e 3	72.6	NO
7	$713 C 6-P F D A$	B8K0144-BLK1 Method Blank 0.125	1.70 e 4	72.1	NO
8	$813 C 7-P F U d A$	B8K0144-BLK1 Method Blank 0.125	2.00 e 4	74.9	NO

Name: 181126M1_26, Date: 26-Nov-2018, Time: 16:02:31, ID: 1803659-01 A1-MW-07-SA2 0.11704, Description: A1-MW-07-SA2

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803659-01 A1-MW-07-SA2 0.11704	6.88 e 3	80.5	NO
2	2 13C5-PFHxA	1803659-01 A1-MW-07-SA2 0.11704	1.29 e 4	50.8	NO
3	3 13C3-PFHxS	1803659-01 A1-MW-07-SA2 0.11704	2.40 e 3	72.2	NO
4	4 13C8-PFOA	1803659-01 A1-MW-07-SA2 0.11704	1.46 e 4	48.1	YES
5	5 13C9-PFNA	1803659-01 A1-MW-07-SA2 0.11704	9.17 e 3	42.0	YES
6	6 13C4-PFOS	1803659-01 A1-MW-07-SA2 0.11704	2.29 e 3	67.8	NO
7	7 13C6-PFDA	1803659-01 A1-MW-07-SA2 0.11704	9.90 e 3	42.1	YES
8	8 13C7-PFUdA	1803659-01 A1-MW-07-SA2 0.11704	1.27 e 4	47.7	YES

Quantify Sample Summary Report

Last Altered: Tuesday, November 27, 2018 08:53:34 Pacific Standard Time
Printed: Tuesday, November 27, 2018 08:57:24 Pacific Standard Time

Name: 181126M1_27, Date: 26-Nov-2018, Time: 16:13:04, ID: 1803659-02 A1-MW-23-SA2 0.1178, Description: A1-MW-23-SA2

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803659-02 A1-MW-23-SA2 0.1178	7.36 e 3	86.1	NO
2	2 13C5-PFHxA	1803659-02 A1-MW-23-SA2 0.1178	1.45 e 4	57.3	NO
3	3 13C3-PFHxS	1803659-02 A1-MW-23-SA2 0.1178	2.39 e 3	71.9	NO
4	4 13C8-PFOA	1803659-02 A1-MW-23-SA2 0.1178	1.68 e 4	55.1	NO
5	5 13C9-PFNA	1803659-02 A1-MW-23-SA2 0.1178	1.07 e 4	49.2	YES
6	6 13C4-PFOS	1803659-02 A1-MW-23-SA2 0.1178	2.46 e 3	72.8	NO
7	7 13C6-PFDA	1803659-02 A1-MW-23-SA2 0.1178	1.17 e 4	49.9	YES
8	8 13C7-PFUdA	1803659-02 A1-MW-23-SA2 0.1178	1.48 e 4	55.4	NO

Name: 181126M1_28, Date: 26-Nov-2018, Time: 16:23:43, ID: 1803659-03 A1-MW-25-SA2 0.11426, Description: A1-MW-25-SA2

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803659-03 A1-MW-25-SA2 0.11426	7.16 e 3	83.7	NO
2	2 13C5-PFHxA	1803659-03 A1-MW-25-SA2 0.11426	1.20 e 4	47.2	YES
3	3 13C3-PFHxS	1803659-03 A1-MW-25-SA2 0.11426	2.53 e 3	76.0	NO
4	4 13C8-PFOA	1803659-03 A1-MW-25-SA2 0.11426	1.29 e 4	42.4	YES
5	5 13C9-PFNA	1803659-03 A1-MW-25-SA2 0.11426	8.45 e 3	38.8	YES
6	6 13C4-PFOS	1803659-03 A1-MW-25-SA2 0.11426	2.50 e 3	74.1	NO
7	7 13C6-PFDA	1803659-03 A1-MW-25-SA2 0.11426	1.08 e 4	46.0	YES
8	8 13C7-PFUdA	1803659-03 A1-MW-25-SA2 0.11426	1.41 e 4	52.7	NO

Name: 181126M1_29, Date: 26-Nov-2018, Time: 16:34:21, ID: 1803659-04 A1-MW-27-SA2 0.11731, Description: A1-MW-27-SA2

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803659-04 A1-MW-27-SA2 0.11731	7.98 e 3	93.3	NO
2	2 13C5-PFHxA	1803659-04 A1-MW-27-SA2 0.11731	1.35 e 4	53.3	NO
3	3 13C3-PFHxS	1803659-04 A1-MW-27-SA2 0.11731	2.51 e 3	75.6	NO
4	4 13C8-PFOA	1803659-04 A1-MW-27-SA2 0.11731	1.65 e 4	54.2	NO
5	5 13C9-PFNA	1803659-04 A1-MW-27-SA2 0.11731	1.09 e 4	50.1	NO
6	6 13C4-PFOS	1803659-04 A1-MW-27-SA2 0.11731	2.35 e 3	69.7	NO
7	7 13C6-PFDA	1803659-04 A1-MW-27-SA2 0.11731	1.33 e 4	56.5	NO
8	8 13C7-PFUdA	1803659-04 A1-MW-27-SA2 0.11731	1.67 e 4	62.4	NO

Name: 181126M1_30, Date: 26-Nov-2018, Time: 16:44:53, ID: 1803659-05 A1-MW-55-SA2 0.11846, Description: A1-MW-55-SA2

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	$1803659-05$ A1-MW-55-SA2 0.11846	9.35 e 3	109.3	NO
2	2 13C5-PFHxA	$1803659-05$ A1-MW-55-SA2 0.11846	1.71 e 4	67.3	NO
3	$313 C 3-P F H x S$	$1803659-05$ A1-MW-55-SA2 0.11846	2.36 e 3	71.1	NO
4	$413 C 8-P F O A$	$1803659-05$ A1-MW-55-SA2 0.11846	2.08 e 4	68.3	NO
5	$513 C 9-P F N A$	$1803659-05$ A1-MW-55-SA2 0.11846	1.39 e 4	63.8	NO
6	$613 C 4-P F O S$	$1803659-05$ A1-MW-55-SA2 0.11846	2.49 e 3	73.9	NO
7	$713 C 6-P F D A$	$1803659-05$ A1-MW-55-SA2 0.11846	1.58 e 4	67.3	NO
8	$813 C 7-P F U d A$	$1803659-05$ A1-MW-55-SA2 0.11846	1.80 e 4	67.6	NO

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: F:IProjects|PFAS.PROXResults|181126M1\181126M1-IIS AREA.qld
Last Altered: Tuesday, November 27, 2018 08:53:34 Pacific Standard Time
Printed: Tuesday, November 27, 2018 08:57:24 Pacific Standard Time

Name: 181126M1_31, Date: 26-Nov-2018, Time: 16:55:32, ID: IPA, Description: IPA

	\# Name	ID	Area
1	$113 C 4-P F B A$	IPA	\%Rec
2	$213 C 5-P F H x A$	IPA	Area Out
3	$313 C 3-P F H x S$	IPA	NO
4	$413 C 8-P F O A$	IPA	NO
5	$513 C 9-P F N A$	IPA	NO
6	$613 C 4-P F O S$	IPA	NO
7	$713 C 6-P F D A$	IPA	NO
8	$813 C 7-P F U d A$	IPA	NO

Name: 181126M1_32, Date: 26-Nov-2018, Time: 17:06:06, ID: ST181126M1-11 PFC CS3 18K1906, Description: PFC CS3 18K1906

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	ST181126M1-11 PFC CS3 18K1906	8.81 e 3	103.0	NO
2	2 13C5-PFHxA	ST181126M1-11 PFC CS3 18K1906	2.71 e 4	107.1	NO
3	$313 C 3-P F H x S$	ST181126M1-11 PFC CS3 18K1906	3.64 e 3	109.5	NO
4	$413 C 8-P F O A$	ST181126M1-11 PFC CS3 18K1906	3.26 e 4	107.2	NO
5	$513 C 9-P F N A$	ST181126M1-11 PFC CS3 18K1906	2.24 e 4	102.6	NO
6	$613 C 4-P F O S$	ST181126M1-11 PFC CS3 18K1906	3.51 e 3	103.9	NO
7	$713 C 6-P F D A$	ST181126M1-11 PFC CS3 18K1906	2.53 e 4	107.4	NO
8	$813 C 7-P F U d A$	ST181126M1-11 PFC CS3 18K1906	2.86 e 4	107.0	NO

Name: 181126M1_33, Date: 26-Nov-2018, Time: 17:16:44, ID: 1803659-06 A1-MW-54-SA2 0.11683, Description: A1-MW-54-SA2

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803659-06 A1-MW-54-SA2 0.11683	8.84 e 3	103.4	NO
2	2 13C5-PFHxA	1803659-06 A1-MW-54-SA2 0.11683	1.54 e 4	60.7	NO
3	3 13C3-PFHxS	1803659-06 A1-MW-54-SA2 0.11683	2.16 e 3	64.9	NO
4	4 13C8-PFOA	1803659-06 A1-MW-54-SA2 0.11683	1.90 e 4	62.3	NO
5	5 13C9-PFNA	1803659-06 A1-MW-54-SA2 0.11683	1.33 e 4	60.8	NO
6	6 13C4-PFOS	1803659-06 A1-MW-54-SA2 0.11683	2.45 e 3	72.7	NO
7	7 13C6-PFDA	1803659-06 A1-MW-54-SA2 0.11683	1.46 e 4	62.0	NO
8	8 13C7-PFUdA	1803659-06 A1-MW-54-SA2 0.11683	1.66 e 4	62.2	NO

Name: 181126M1_34, Date: 26-Nov-2018, Time: 17:27:17, ID: 1803659-07 FRB-20181114 0.11549, Description: FRB-20181114

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803659-07 FRB-20181114 0.11549	1.03 e 4	119.9	NO
2	2 13C5-PFHxA	1803659-07 FRB-20181114 0.11549	1.93 e 4	76.3	NO
3	3 13C3-PFHxS	1803659-07 FRB-20181114 0.11549	2.52e3	75.8	NO
4	4 13C8-PFOA	1803659-07 FRB-20181114 0.11549	2.16 e 4	70.8	NO
5	5 13C9-PFNA	1803659-07 FRB-20181114 0.11549	1.46 e 4	67.0	NO
6	6 13C4-PFOS	1803659-07 FRB-20181114 0.11549	2.53 e 3	74.9	NO
7	7 13C6-PFDA	1803659-07 FRB-20181114 0.11549	1.66 e 4	70.5	NO
8	8 13C7-PFUdA	1803659-07 FRB-20181114 0.11549	1.95 e 4	73.0	NO

Quantify Sample Summary Report

Last Altered: Tuesday, November 27, 2018 08:53:34 Pacific Standard Time
Printed: \quad Tuesday, November 27, 2018 08:57:24 Pacific Standard Time

Name: 181126M1_35, Date: 26-Nov-2018, Time: 17:37:55, ID: B8K0135-BS1 OPR 1, Description: OPR

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	B8K0135-BS1 OPR 1	1.02 e 4	119.0	NO
2	$213 C 5-P F H x A$	B8K0135-BS1 OPR 1	1.85 e 4	72.9	NO
3	$313 C 3-P F H x S$	B8K0135-BS1 OPR 1	2.47 e 3	74.2	NO
4	$413 C 8-P F O A$	B8K0135-BS1 OPR 1	2.32 e 4	76.2	NO
5	$513 C 9-P F N A$	B8K0135-BS1 OPR 1	1.57 e 4	72.0	NO
6	$613 C 4-P F O S$	B8K0135-BS1 OPR 1	2.59 e 3	76.9	NO
7	$713 C 6-P F D A$	B8K0135-BS1 OPR 1	1.80 e 4	76.4	NO
8	$813 C 7-P F U d A$	B8K0135-BS1 OPR 1	2.04 e 4	76.4	NO

Name: 181126M1_36, Date: 26-Nov-2018, Time: 17:48:34, ID: B8K0135-BLK1 Method Blank 1, Description: Method Blank

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	B8K0135-BLK1 Method Blank 1	1.04 e 4	121.9	NO
2	$213 C 5-P F H x A$	B8K0135-BLK1 Method Blank 1	1.90 e 4	75.1	NO
3	$313 C 3-P F H x S$	B8K0135-BLK1 Method Blank 1	2.41 e 3	72.5	NO
4	$413 C 8-P F O A$	B8K0135-BLK1 Method Blank 1	2.24 e 4	73.6	NO
5	$513 C 9-P F N A$	B8K0135-BLK1 Method Blank 1	1.61 e 4	73.6	NO
6	$613 C 4-P F O S$	B8K0135-BLK1 Method Blank 1	2.56 e 3	75.8	NO
7	$713 C 6-P F D A$	B8K0135-BLK1 Method Blank 1	1.80 e 4	76.5	NO
8	$813 C 7-P F U d A$	B8K0135-BLK1 Method Blank 1	1.99 e 4	74.6	NO

Name: 181126M1_37, Date: 26-Nov-2018, Time: 17:59:07, ID: 1803551-03 BS1810290940GC 5, Description: BS1810290940GC

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803551-03 BS1810290940GC 5	9.63 e 3	112.6	NO
2	2 13C5-PFHxA	1803551-03 BS1810290940GC 5	1.76 e 4	69.5	NO
3	3 13C3-PFHxS	1803551-03 BS1810290940GC 5	2.36 e 3	70.9	NO
4	4 13C8-PFOA	1803551-03 BS1810290940GC 5	2.16 e 4	71.0	NO
5	5 13C9-PFNA	1803551-03 BS1810290940GC 5	1.48 e 4	68.0	NO
6	6 13C4-PFOS	1803551-03 BS1810290940GC 5	2.39 e 3	70.8	NO
7	7 13C6-PFDA	1803551-03 BS1810290940GC 5	1.65 e 4	69.9	NO
8	8 13C7-PFUdA	1803551-03 BS1810290940GC 5	1.88 e 4	70.3	NO

Name: 181126M1_38, Date: 26-Nov-2018, Time: 18:09:45, ID: 1803581-03 BS1810311220GC 5.1, Description: BS1810311220GC

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1803581-03$ BS1810311220GC 5.1	1.06 e 4	123.4	NO
2	$213 C 5-P F H x A$	$1803581-03$ BS1810311220GC 5.1	1.42 e 4	56.1	NO
3	$313 C 3-P F H x S$	$1803581-03$ BS1810311220GC 5.1	2.39 e 3	71.8	NO
4	$413 C 8-P F O A$	$1803581-03$ BS1810311220GC 5.1	2.36 e 4	77.6	NO
5	$513 C 9-P F N A$	$1803581-03$ BS1810311220GC 5.1	1.58 e 4	72.5	NO
6	$613 C 4-P F O S$	$1803581-03$ BS1810311220GC 5.1	2.85 e 3	84.3	NO
7	$713 C 6-P F D A$	$1803581-03$ BS1810311220GC 5.1	1.68 e 4	71.4	NO
8	$813 C 7-P F U d A$	$1803581-03$ BS1810311220GC 5.1	$1.61 e 4$	60.2	NO

Quantify Sample Summary Report

Last Altered: Tuesday, November 27, 2018 08:53:34 Pacific Standard Time
Printed: Tuesday, November 27, 2018 08:57:24 Pacific Standard Time

Name: 181126M1_39, Date: 26-Nov-2018, Time: 18:20:24, ID: 1803581-04 BS1810311230GC 5.08, Description: BS1810311230GC

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1803581-04$ BS1810311230GC 5.08	1.07 e 4	125.0	NO
2	$213 C 5-P F H x A$	$1803581-04$ BS1810311230GC 5.08	$1.92 e 4$	75.6	NO
3	$313 C 3-P F H x S$	$1803581-04$ BS1810311230GC 5.08	2.59 e 3	77.9	NO
4	$413 C 8-P F O A$	$1803581-04$ BS1810311230GC 5.08	$2.27 e 4$	74.6	NO
5	$513 C 9-P F N A$	$1803581-04$ BS1810311230GC 5.08	$1.52 e 4$	69.7	NO
6	$613 C 4-P F O S$	$1803581-04$ BS1810311230GC 5.08	$2.76 e 3$	81.8	NO
7	$713 C 6-P F D A$	$1803581-04$ BS1810311230GC 5.08	$1.67 e 4$	71.0	NO
8	$813 C 7-P F U A A$	$1803581-04$ BS1810311230GC 5.08	$1.71 e 4$	63.9	NO

Name: 181126M1_40, Date: 26-Nov-2018, Time: 18:30:57, ID: B8K0049-BS1 OPR 1, Description: OPR

\# Name	ID	Area	\%Rec	Area Out	
1	$113 C 4-P F B A$	B8K0049-BS1 OPR 1	1.27 e 4	148.0	NO
2	$213 C 5-P F H x A$	B8K0049-BS1 OPR 1	2.29 e 4	90.3	NO
3	$313 C 3-P F H x S$	B8K0049-BS1 OPR 1	3.27 e 3	98.1	NO
4	$413 C 8-P F O A$	B8K0049-BS1 OPR 1	2.76 e 4	90.7	NO
5	$513 C 9-P F N A$	B8K0049-BS1 OPR 1	2.00 e 4	91.7	NO
6	$613 C 4-P F O S$	B8K0049-BS1 OPR 1	3.50 e 3	103.8	NO
7	$713 C 6-P F D A$	B8K0049-BS1 OPR 1	2.17 e 4	92.3	NO
8	$813 C 7-P F U d A$	B8K0049-BS1 OPR 1	2.61 e 4	97.7	NO

Name: 181126M1_41, Date: 26-Nov-2018, Time: 18:41:36, ID: B8K0049-BLK1 Method Blank 1, Description: Method Blank

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	B8K0049-BLK1 Method Blank 1	1.18 e 4	137.7	NO
2	$213 C 5-P F H x A$	B8K0049-BLK1 Method Blank 1	2.18 e 4	86.1	NO
3	$313 C 3-P F H x S$	B8K0049-BLK1 Method Blank 1	3.10 e 3	93.1	NO
4	$413 C 8-P F O A$	B8K0049-BLK1 Method Blank 1	2.61 e 4	85.9	NO
5	$513 C 9-P F N A$	B8K0049-BLK1 Method Blank 1	1.78 e 4	81.6	NO
6	$613 C 4-P F O S$	B8K0049-BLK1 Method Blank 1	2.98 e 3	88.2	NO
7	$713 C 6-P F D A$	B8K0049-BLK1 Method Blank 1	1.98 e 4	84.2	NO
8	$813 C 7-P F U d A$	B8K0049-BLK1 Method Blank 1	2.13 e 4	79.8	NO

Name: 181126M1_42, Date: 26-Nov-2018, Time: 18:52:09, ID: 1803520-01 HS-SB-939 (3-5)-EPA 1.51, Description: HS-SB-939 (3-5)-EPA

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803520-01 HS-SB-939 (3-5)-EPA 1.51	1.46 e 4	170.8	YES
2	2 13C5-PFHxA	1803520-01 HS-SB-939 (3-5)-EPA 1.51	2.30 e 4	91.0	NO
3	3 13C3-PFHxS	1803520-01 HS-SB-939 (3-5)-EPA 1.51	2.62 e 3	78.8	NO
4	4 13C8-PFOA	1803520-01 HS-SB-939 (3-5)-EPA 1.51	1.58 e 4	51.9	NO
5	5 13C9-PFNA	1803520-01 HS-SB-939 (3-5)-EPA 1.51	5.13 e 3	23.5	YES
6	6 13C4-PFOS	1803520-01 HS-SB-939 (3-5)-EPA 1.51	4.18 e 2	12.4	YES
7	7 13C6-PFDA	1803520-01 HS-SB-939 (3-5)-EPA 1.51	3.57 e 3	15.2	YES
8	8 13C7-PFUdA	1803520-01 HS-SB-939 (3-5)-EPA 1.51	1.60 e 3	6.0	YES

Quantify Sample Summary Report

Last Altered: Tuesday, November 27, 2018 08:53:34 Pacific Standard Time
Printed: Tuesday, November 27, 2018 08:57:24 Pacific Standard Time

Name: 181126M1_43, Date: 26-Nov-2018, Time: 19:02:47, ID: 1803553-04 BS1810291445GC 3.51, Description: BS1810291445GC

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	$1803553-04$ BS1810291445GC 3.51	1.27 e 4	148.6	NO
2	$213 C 5-P F H x A$	$1803553-04$ BS1810291445GC 3.51	3.04 e 4	120.2	NO
3	$313 C 3-P F H x S$	$1803553-04$ BS1810291445GC 3.51	4.25 e 3	127.7	NO
4	$413 C 8-P F O A$	$1803553-04$ BS1810291445GC 3.51	3.61 e 4	118.8	NO
5	$513 C 9-P F N A$	$1803553-04$ BS1810291445GC 3.51	2.37 e 4	108.4	NO
6	$613 C 4-P F O S$	$1803553-04$ BS1810291445GC 3.51	7.80 e 3	231.3	YES
7	$713 C 6-P F D A$	$1803553-04$ BS1810291445GC 3.51	2.45 e 4	104.0	NO
8	$813 C 7-P F U d A$	$1803553-04$ BS1810291445GC 3.51	1.76 e 4	66.1	NO

Name: 181126M1_44, Date: 26-Nov-2018, Time: 19:13:20, ID: 1803575-06 BS1810301040GC 1.48, Description: BS1810301040GC

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1803575-06$ BS1810301040GC 1.48	9.65 e 3	112.8	NO
2	$213 C 5-P F H x A$	$1803575-06$ BS1810301040GC 1.48	1.74 e 4	68.6	NO
3	$313 C 3-P F H x S$	$1803575-06$ BS1810301040GC 1.48	2.23 e 3	67.0	NO
4	$413 C 8-P F O A$	$1803575-06$ BS1810301040GC 1.48	2.01 e 4	66.1	NO
5	$513 C 9-P F N A$	$1803575-06$ BS1810301040GC 1.48	1.33 e 4	61.1	NO
6	$613 C 4-P F O S$	$1803575-06$ BS1810301040GC 1.48	2.13 e 3	63.1	NO
7	$713 C 6-P F D A$	$1803575-06$ BS1810301040GC 1.48	$1.41 e 4$	60.1	NO
8	$813 C 7-P F U A A$	$1803575-06$ BS1810301040GC 1.48	$1.46 e 4$	54.8	NO

Name: 181126M1_45, Date: 26-Nov-2018, Time: 19:23:58, ID: 1803577-05 BS1810301620GC 5.94, Description: BS1810301620GC

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	$1803577-05$ BS1810301620GC 5.94	9.16 e 3	107.1	NO
2	$213 C 5-P F H x A$	$1803577-05$ BS1810301620GC 5.94	1.60 e 4	63.2	NO
3	$313 C 3-P F H x S$	$1803577-05$ BS1810301620GC 5.94	2.11 e 3	63.3	NO
4	$413 C 8-P F O A$	$1803577-05$ BS1810301620GC 5.94	1.79 e 4	58.9	NO
5	$513 C 9-P F N A$	$1803577-05$ BS1810301620GC 5.94	1.25 e 4	57.1	NO
6	$613 C 4-P F O S$	$1803577-05$ BS1810301620GC 5.94	2.07 e 3	61.3	NO
7	$713 C 6-P F D A$	$1803577-05$ BS1810301620GC 5.94	1.25 e 4	53.0	NO
8	$813 C 7-P F U d A$	$1803577-05$ BS1810301620GC 5.94	1.35 e 4	50.6	NO

Name: 181126M1_46, Date: 26-Nov-2018, Time: 19:34:37, ID: B8K0118-BS1 OPR 0.125, Description: OPR

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	B8K0118-BS1 OPR 0.125	1.52 e 4	177.9	YES
2	2 13C5-PFHxA	B8K0118-BS1 OPR 0.125	2.78 e 4	109.7	NO
3	3 13C3-PFHxS	B8K0118-BS1 OPR 0.125	3.32 e 3	99.7	NO
4	4 13C8-PFOA	B8K0118-BS1 OPR 0.125	2.97 e 4	97.7	NO
5	5 13C9-PFNA	B8K0118-BS1 OPR 0.125	1.61 e 4	74.0	NO
6	6 13C4-PFOS	B8K0118-BS1 OPR 0.125	1.10 e 3	32.7	YES
7	7 13C6-PFDA	B8K0118-BS1 OPR 0.125	6.67 e 3	28.4	YES
8	8 13C7-PFUdA	B8K0118-BS1 OPR 0.125	2.14 e 3	8.0	YES

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: \quad F:\Projects\PFAS.PRO\Results\181126M1\181126M1-IIS AREA.qld
Last Altered: Tuesday, November 27, 2018 08:53:34 Pacific Standard Time
Printed: Tuesday, November 27, 2018 08:57:24 Pacific Standard Time

Name: 181126M1_47, Date: 26-Nov-2018, Time: 19:45:09, ID: B8K0118-BLK1 Method Blank 0.125, Description: Method Blank

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	B8K0118-BLK1 Method Blank 0.125	1.50 e 4	175.7	YES
2	$213 C 5-P F H x A$	B8K0118-BLK1 Method Blank 0.125	2.76 e 4	109.0	NO
3	$313 C 3-P F H x S$	B8K0118-BLK1 Method Blank 0.125	3.42 e 3	102.8	NO
4	$413 C 8-P F O A$	B8K0118-BLK1 Method Blank 0.125	3.08 e 4	101.2	NO
5	$513 C 9-P F N A$	B8K0118-BLK1 Method Blank 0.125	1.84 e 4	84.4	NO
6	$613 C 4-P F O S$	B8K0118-BLK1 Method Blank 0.125	$1.82 e 3$	53.9	NO
7	$713 C 6-P F D A$	B8K0118-BLK1 Method Blank 0.125	1.09 e 4	46.3	YES
8	$813 C 7-P F U d A$	B8K0118-BLK1 Method Blank 0.125	3.61 e 3	13.5	YES

Name: 181126M1_48, Date: 26-Nov-2018, Time: 19:55:48, ID: 1803640-01 MW-2A 0.11056, Description: MW-2A

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803640-01 MW-2A 0.11056	1.29 e 4	150.4	YES
2	2 13C5-PFHxA	1803640-01 MW-2A 0.11056	2.44 e 4	96.2	NO
3	3 13C3-PFHxS	1803640-01 MW-2A 0.11056	3.02 e 3	90.9	NO
4	4 13C8-PFOA	1803640-01 MW-2A 0.11056	2.69 e 4	88.3	NO
5	5 13C9-PFNA	1803640-01 MW-2A 0.11056	1.59 e 4	73.0	NO
6	6 13C4-PFOS	1803640-01 MW-2A 0.11056	1.82 e 3	53.9	NO
7	7 13C6-PFDA	1803640-01 MW-2A 0.11056	1.01 e 4	42.9	YES
8	8 13C7-PFUdA	1803640-01 MW-2A 0.11056	2.50 e 3	9.4	YES

Name: 181126M1_49, Date: 26-Nov-2018, Time: 20:06:21, ID: 1803640-02 MW-3 0.1163, Description: MW-3

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803640-02 MW-3 0.1163	1.35 e 4	157.4	YES
2	2 13C5-PFHxA	1803640-02 MW-3 0.1163	2.43 e 4	95.8	NO
3	3 13C3-PFHxS	1803640-02 MW-3 0.1163	3.02 e 3	90.8	NO
4	4 13C8-PFOA	1803640-02 MW-3 0.1163	2.70 e 4	88.6	NO
5	5 13C9-PFNA	1803640-02 MW-3 0.1163	1.67 e 4	76.5	NO
6	6 13C4-PFOS	1803640-02 MW-3 0.1163	2.05 e 3	60.9	NO
7	7 13C6-PFDA	1803640-02 MW-3 0.1163	1.06 e 4	45.2	YES
8	8 13C7-PFUdA	1803640-02 MW-3 0.1163	6.35 e 3	23.8	YES

Name: 181126M1_50, Date: 26-Nov-2018, Time: 20:16:59, ID: IPA, Description: IPA

	\# Name	ID	Area	\%Rec
1	$113 C 4-P F B A$	IPA		Area Out
2	$213 C 5-P F H x A$	IPA		NO
3	$313 C 3-P F H x S$	IPA		NO
4	$413 C 8-P F O A$	IPA		NO
5	$513 C 9-P F N A$	IPA		NO
6	$613 C 4-P F O S$	IPA	$5.11 e 0$	0.0
7	$713 C 6-P F D A$	IPA	6.16 e 0	0.0
8	$813 C 7-P F U d A$	IPA		NO

Quantify Sample Summary Report

Last Altered: Tuesday, November 27, 2018 08:53:34 Pacific Standard Time
Printed: Tuesday, November 27, 2018 08:57:24 Pacific Standard Time

Name: 181126M1_51, Date: 26-Nov-2018, Time: 20:27:33, ID: ST181126M1-12 PFC CS3 18K1906, Description: PFC CS3 $18 K 1906$

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	ST181126M1-12 PFC CS3 18K1906	9.00 e 3	105.3	NO
2	2 13C5-PFHxA	ST181126M1-12 PFC CS3 18K1906	2.77 e 4	109.2	NO
3	$313 C 3-P F H x S$	ST181126M1-12 PFC CS3 18K1906	3.48 e 3	104.4	NO
4	$413 C 8-P F O A$	ST181126M1-12 PFC CS3 18K1906	3.29 e 4	108.2	NO
5	$513 C 9-P F N A$	ST181126M1-12 PFC CS3 18K1906	2.27 e 4	104.2	NO
6	$613 C 4-P F O S$	ST181126M1-12 PFC CS3 18K1906	3.59 e 3	106.5	NO
7	$713 C 6-P F D A$	ST181126M1-12 PFC CS3 18K1906	2.50 e 4	106.2	NO
8	$813 C 7-P F U d A$	ST181126M1-12 PFC CS3 18K1906	2.93 e 4	109.7	NO

Name: 181126M1_52, Date: 26-Nov-2018, Time: 20:38:11, ID: 1803640-03 MW-4 0.11182, Description: MW-4

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	$1803640-03 ~ M W-40.11182$	1.30 e 4	152.1	YES
2	$213 C 5-P F H x A$	$1803640-03 \mathrm{MW}-40.11182$	2.39 e 4	94.2	NO
3	$313 C 3-P F H x S$	$1803640-03 \mathrm{MW}-40.11182$	3.37 e 3	101.3	NO
4	$413 C 8-P F O A$	$1803640-03 \mathrm{MW}-40.11182$	2.66 e 4	87.6	NO
5	$513 C 9-P F N A$	$1803640-03 \mathrm{MW}-40.11182$	1.77 e 4	81.0	NO
6	$613 C 4-P F O S$	$1803640-03 \mathrm{MW}-40.11182$	2.69 e 3	79.8	NO
7	$713 C 6-P F D A$	$1803640-03 \mathrm{MW}-40.11182$	1.49 e 4	63.5	NO
8	$813 C 7-P F U d A$	$1803640-03 \mathrm{MW}-40.11182$	7.77 e 3	29.1	YES

Name: 181126M1_53, Date: 26-Nov-2018, Time: 20:48:44, ID: 1803640-04 TS Well 0.11479, Description: TS Well

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803640-04 TS Well 0.11479	1.33 e 4	155.8	YES
2	2 13C5-PFHxA	1803640-04 TS Well 0.11479	2.52 e 4	99.3	NO
3	3 13C3-PFHxS	1803640-04 TS Well 0.11479	3.40 e 3	102.2	NO
4	4 13C8-PFOA	1803640-04 TS Well 0.11479	3.02e4	99.2	NO
5	5 13C9-PFNA	1803640-04 TS Well 0.11479	1.97 e 4	90.2	NO
6	6 13C4-PFOS	1803640-04 TS Well 0.11479	2.90 e 3	86.1	NO
7	7 13C6-PFDA	1803640-04 TS Well 0.11479	1.55 e 4	65.8	NO
8	8 13C7-PFUdA	1803640-04 TS Well 0.11479	9.09e3	34.1	YES

Name: 181126M1_54, Date: 26-Nov-2018, Time: 20:59:22, ID: 1803641-01 MW3S 0.11429, Description: MW3S

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803641-01 MW3S 0.11429	1.42 e 4	166.3	YES
2	2 13C5-PFHxA	1803641-01 MW3S 0.11429	2.49 e 4	98.2	NO
3	3 13C3-PFHxS	1803641-01 MW3S 0.11429	3.52 e 3	105.7	NO
4	4 13C8-PFOA	1803641-01 MW3S 0.11429	2.60 e 4	85.3	NO
5	5 13C9-PFNA	1803641-01 MW3S 0.11429	1.64 e 4	75.3	NO
6	6 13C4-PFOS	1803641-01 MW3S 0.11429	2.86 e 3	84.8	NO
7	7 13C6-PFDA	1803641-01 MW3S 0.11429	1.39 e 4	59.0	NO
8	8 13C7-PFUdA	1803641-01 MW3S 0.11429	8.46 e 3	31.7	YES

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-IIS AREA.qld
Last Altered: Tuesday, November 27, 2018 08:53:34 Pacific Standard Time
Printed: Tuesday, November 27, 2018 08:57:24 Pacific Standard Time

Name: 181126M1_55, Date: 26-Nov-2018, Time: 21:09:56, ID: 1803641-02 MW6 0.11494, Description: MW6

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1803641-02$ MW6 0.11494	1.40 e 4	163.4	YES
2	2 13C5-PFHxA	$1803641-02$ MW6 0.11494	2.45 e 4	96.9	NO
3	$313 C 3-P F H x S$	$1803641-02$ MW6 0.11494	3.50 e 3	105.3	NO
4	$413 C 8-P F O A$	$1803641-02$ MW6 0.11494	2.66 e 4	87.5	NO
5	$513 C 9-P F N A$	$1803641-02$ MW6 0.11494	1.71 e 4	78.2	NO
6	$613 C 4-P F O S$	$1803641-02$ MW6 0.11494	3.07 e 3	91.1	NO
7	$713 C 6-P F D A$	$1803641-02$ MW6 0.11494	1.58 e 4	67.2	NO
8	$813 C 7-P F U d A$	$1803641-02$ MW6 0.11494	1.20 e 4	44.9	YES

Name: 181126M1_56, Date: 26-Nov-2018, Time: $21: 20: 34$, ID: 1803641-03 MW7 0.11164, Description: MW7

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803641-03 MW7 0.11164	1.37 e 4	160.7	YES
2	2 13C5-PFHxA	1803641-03 MW7 0.11164	2.42 e 4	95.5	NO
3	3 13C3-PFHxS	1803641-03 MW7 0.11164	3.48 e 3	104.5	NO
4	4 13C8-PFOA	1803641-03 MW7 0.11164	2.67e4	87.6	NO
5	5 13C9-PFNA	1803641-03 MW7 0.11164	1.82 e 4	83.5	NO
6	6 13C4-PFOS	1803641-03 MW7 0.11164	3.24 e 3	96.1	NO
7	7 13C6-PFDA	1803641-03 MW7 0.11164	1.69 e 4	71.8	NO
8	8 13C7-PFUdA	1803641-03 MW7 0.11164	1.46 e 4	54.7	NO

Name: 181126M1_57, Date: 26-Nov-2018, Time: 21:31:07, ID: 1803641-04 SW2 0.11314, Description: SW2

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803641-04 SW2 0.11314	1.37 e 4	160.7	YES
2	2 13C5-PFHxA	1803641-04 SW2 0.11314	2.56 e 4	101.1	NO
3	3 13C3-PFHxS	1803641-04 SW2 0.11314	3.26 e 3	97.9	NO
4	4 13C8-PFOA	1803641-04 SW2 0.11314	2.80 e 4	91.9	NO
5	5 13C9-PFNA	1803641-04 SW2 0.11314	1.83 e 4	84.0	NO
6	6 13C4-PFOS	1803641-04 SW2 0.11314	2.81 e 3	83.3	NO
7	7 13C6-PFDA	1803641-04 SW2 0.11314	1.61 e 4	68.4	NO
8	8 13C7-PFUdA	1803641-04 SW2 0.11314	1.19 e 4	44.8	YES

Name: 181126M1_58, Date: 26-Nov-2018, Time: 21:41:46, ID: 1803646-01 MW-1 0.11872, Description: MW-1

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803646-01 MW-1 0.11872	1.31 e 4	153.0	YES
2	2 13C5-PFHxA	1803646-01 MW-1 0.11872	2.37 e 4	93.7	NO
3	3 13C3-PFHxS	1803646-01 MW-1 0.11872	3.06 e 3	92.0	NO
4	4 13C8-PFOA	1803646-01 MW-1 0.11872	2.74 e 4	90.2	NO
5	5 13C9-PFNA	1803646-01 MW-1 0.11872	1.75 e 4	80.3	NO
6	6 13C4-PFOS	1803646-01 MW-1 0.11872	2.31 e 3	68.5	NO
7	7 13C6-PFDA	1803646-01 MW-1 0.11872	1.53 e 4	65.0	NO
8	8 13C7-PFUdA	1803646-01 MW-1 0.11872	8.64 e 3	32.4	YES

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: F:IProjects|PFAS.PRO\Results\181126M1\181126M1-IIS AREA.qld
Last Altered: Tuesday, November 27, 2018 08:53:34 Pacific Standard Time
Printed: Tuesday, November 27, 2018 08:57:24 Pacific Standard Time

Name: 181126M1_59, Date: 26-Nov-2018, Time: 21:52:19, ID: 1803646-02 MW-4S 0.11549, Description: MW-4S

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803646-02 MW-4S 0.11549	1.34 e 4	156.6	YES
2	2 13C5-PFHxA	1803646-02 MW-4S 0.11549	2.50 e 4	98.5	NO
3	3 13C3-PFHxS	1803646-02 MW-4S 0.11549	3.08 e 3	92.6	NO
4	4 13C8-PFOA	1803646-02 MW-4S 0.11549	2.81 e 4	92.5	NO
5	5 13C9-PFNA	1803646-02 MW-4S 0.11549	1.77 e 4	81.4	NO
6	6 13C4-PFOS	1803646-02 MW-4S 0.11549	2.05 e 3	60.8	NO
7	7 13C6-PFDA	1803646-02 MW-4S 0.11549	1.11 e 4	47.2	YES
8	8 13C7-PFUdA	1803646-02 MW-4S 0.11549	2.97 e 3	11.1	YES

Name: 181126M1_60, Date: 26-Nov-2018, Time: 22:02:57, ID: 1803646-03 Thorne 0.11815, Description: Thorne

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	$1803646-03$ Thorne 0.11815	1.37 e 4	160.2	YES
2	$213 C 5-P F H x A$	$1803646-03$ Thorne 0.11815	2.36 e 4	93.3	NO
3	$313 C 3-P F H x S$	$1803646-03$ Thorne 0.11815	3.25 e 3	97.8	NO
4	$413 C 8-P F O A$	$1803646-03$ Thorne 0.11815	2.71 e 4	89.2	NO
5	$513 C 9-P F N A$	$1803646-03$ Thorne 0.11815	1.71 e 4	78.5	NO
6	$613 C 4-P F O S$	$1803646-03$ Thorne 0.11815	2.48 e 3	73.6	NO
7	$713 C 6-P F D A$	$1803646-03$ Thorne 0.11815	1.40 e 4	59.6	NO
8	$813 C 7-P F U d A$	$1803646-03$ Thorne 0.11815	7.77 e 3	29.1	YES

Name: 181126M1_61, Date: 26-Nov-2018, Time: 22:13:30, ID: 1803647-01 MW-1 0.11071, Description: MW-1

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803647-01 MW-1 0.11071	1.20 e 4	140.5	NO
2	2 13C5-PFHxA	1803647-01 MW-1 0.11071	2.13 e 4	84.0	NO
3	3 13C3-PFHxS	1803647-01 MW-1 0.11071	2.99 e 3	89.9	NO
4	4 13C8-PFOA	1803647-01 MW-1 0.11071	2.30 e 4	75.6	NO
5	5 13C9-PFNA	1803647-01 MW-1 0.11071	1.52 e 4	69.5	NO
6	6 13C4-PFOS	1803647-01 MW-1 0.11071	2.54 e 3	75.2	NO
7	7 13C6-PFDA	1803647-01 MW-1 0.11071	1.36 e 4	57.9	NO
8	8 13C7-PFUdA	1803647-01 MW-1 0.11071	1.22 e 4	45.7	YES

Name: 181126M1_62, Date: 26-Nov-2018, Time: 22:24:08, ID: IPA, Description: IPA

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	IPA			NO
2	2 13C5-PFHxA	IPA			NO
3	3 13C3-PFHxS	IPA			NO
4	4 13C8-PFOA	IPA			NO
5	5 13C9-PFNA	IPA			NO
6	6 13C4-PFOS	IPA			NO
7	7 13C6-PFDA	IPA			NO
8	8 13C7-PFUdA	IPA			NO

Quantify Sample Summary Report

Last Altered: Tuesday, November 27, 2018 08:53:34 Pacific Standard Time
Printed: Tuesday, November 27, 2018 08:57:24 Pacific Standard Time

Name: 181126M1_63, Date: 26-Nov-2018, Time: 22:34:41, ID: ST181126M1-13 PFC CS3 18K1906, Description: PFC CS3 $18 K 1906$

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	ST181126M1-13 PFC CS3 18K1906	9.26 e 3	108.3	NO
2	$213 C 5-P F H x A$	ST181126M1-13 PFC CS3 18K1906	2.79 e 4	110.3	NO
3	$313 C 3-P F H x S$	ST181126M1-13 PFC CS3 18K1906	3.55 e 3	106.7	NO
4	$413 C 8-P F O A$	ST181126M1-13 PFC CS3 18K1906	3.20 e 4	105.3	NO
5	$513 C 9-P F N A$	ST181126M1-13 PFC CS3 18K1906	$2.22 e 4$	101.9	NO
6	$613 C 4-P F O S$	ST181126M1-13 PFC CS3 18K1906	3.76 e 3	111.4	NO
7	$713 C 6-P F D A$	ST181126M1-13 PFC CS3 18K1906	2.56 e 4	108.9	NO
8	$813 C 7-P F U d A$	ST181126M1-13 PFC CS3 18K1906	2.86 e 4	107.0	NO

Name: 181126M1_64, Date: 26-Nov-2018, Time: 22:45:19, ID: 1803647-02 MW-3 0.11209, Description: MW-3

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803647-02 MW-3 0.11209	1.25 e 4	145.8	NO
2	2 13C5-PFHxA	1803647-02 MW-3 0.11209	2.29 e 4	90.2	NO
3	3 13C3-PFHxS	1803647-02 MW-3 0.11209	3.09 e 3	92.8	NO
4	4 13C8-PFOA	1803647-02 MW-3 0.11209	2.64 e 4	86.8	NO
5	5 13C9-PFNA	1803647-02 MW-3 0.11209	1.71 e 4	78.2	NO
6	6 13C4-PFOS	1803647-02 MW-3 0.11209	2.50 e 3	74.2	NO
7	7 13C6-PFDA	1803647-02 MW-3 0.11209	1.54 e 4	65.6	NO
8	8 13C7-PFUdA	1803647-02 MW-3 0.11209	1.28 e 4	48.0	YES

Name: 181126M1_65, Date: 26-Nov-2018, Time: 22:55:52, ID: 1803651-01 MW-1 0.11903, Description: MW-1

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803651-01 MW-1 0.11903	1.40 e 4	163.9	YES
2	2 13C5-PFHxA	1803651-01 MW-1 0.11903	2.57 e 4	101.6	NO
3	3 13C3-PFHxS	1803651-01 MW-1 0.11903	3.30 e 3	99.1	NO
4	4 13C8-PFOA	1803651-01 MW-1 0.11903	2.80 e 4	92.2	NO
5	5 13C9-PFNA	1803651-01 MW-1 0.11903	1.72 e 4	78.7	NO
6	6 13C4-PFOS	1803651-01 MW-1 0.11903	2.21 e 3	65.5	NO
7	7 13C6-PFDA	1803651-01 MW-1 0.11903	1.17 e 4	49.6	YES
8	8 13C7-PFUdA	1803651-01 MW-1 0.11903	4.73 e 3	17.7	YES

Name: 181126M1_66, Date: 26-Nov-2018, Time: 23:06:31, ID: 1803651-02 MW-4 0.11498, Description: MW-4

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	$1803651-02 ~ M W-40.11498$	1.08 e 4	126.2	NO
2	$213 C 5-P F H x A$	$1803651-02 ~ M W-40.11498$	1.95 e 4	76.9	NO
3	$313 C 3-P F H x S$	$1803651-02 \mathrm{MW}-40.11498$	2.61 e 3	78.5	NO
4	$413 C 8-P F O A$	$1803651-02 \mathrm{MW}-40.11498$	2.18 e 4	71.8	NO
5	$513 C 9-P F N A$	$1803651-02 \mathrm{MW}-40.11498$	1.47 e 4	67.2	NO
6	$613 C 4-P F O S$	$1803651-02 \mathrm{MW}-40.11498$	1.91 e 3	56.7	NO
7	$713 C 6-P F D A$	$1803651-02 \mathrm{MW}-40.11498$	1.15 e 4	49.0	YES
8	$813 C 7-P F U d A$	$1803651-02 \mathrm{MW}-40.11498$	6.20 e 3	23.2	YES

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: F:IProjects|PFAS.PRO\Results\181126M11181126M1-IIS AREA.qld
Last Altered: Tuesday, November 27, 2018 08:53:34 Pacific Standard Time
Printed: Tuesday, November 27, 2018 08:57:24 Pacific Standard Time

Name: 181126M1_67, Date: 26-Nov-2018, Time: 23:17:03, ID: 1803651-03 MW-3 0.11883, Description: MW-3

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803651-03 MW-3 0.11883	1.36 e 4	158.8	YES
2	2 13C5-PFHxA	1803651-03 MW-3 0.11883	2.37 e 4	93.4	NO
3	3 13C3-PFHxS	1803651-03 MW-3 0.11883	3.42 e 3	102.6	NO
4	4 13C8-PFOA	1803651-03 MW-3 0.11883	2.56 e 4	84.0	NO
5	5 13C9-PFNA	1803651-03 MW-3 0.11883	1.75 e 4	80.0	NO
6	6 13C4-PFOS	1803651-03 MW-3 0.11883	3.14 e 3	92.9	NO
7	7 13C6-PFDA	1803651-03 MW-3 0.11883	1.89 e 4	80.4	NO
8	8 13C7-PFUdA	1803651-03 MW-3 0.11883	1.90 e 4	71.4	NO

Name: 181126M1_68, Date: 26-Nov-2018, Time: 23:27:42, ID: 1803652-01 MW-1 0.11504, Description: MW-1

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1803652-01 \mathrm{MW}-10.11504$	1.41 e 4	164.7	YES
2	2 13C5-PFHxA	$1803652-01 \mathrm{MW}-10.11504$	2.61 e 4	103.2	NO
3	$313 C 3-P F H x S$	$1803652-01 \mathrm{MW}-10.11504$	3.40 e 3	102.1	NO
4	$413 C 8-P F O A$	$1803652-01 \mathrm{MW}-10.11504$	2.90 e 4	95.2	NO
5	$513 C 9-P F N A$	$1803652-01 \mathrm{MW}-10.11504$	1.97 e 4	90.3	NO
6	$613 C 4-P F O S$	$1803652-01 \mathrm{MW}-10.11504$	2.96 e 3	87.6	NO
7	$713 C 6-P F D A$	$1803652-01 \mathrm{MW}-10.11504$	1.86 e 4	79.0	NO
8	$813 C 7-P F U d A$	$1803652-01 \mathrm{MW}-10.11504$	1.30 e 4	48.7	YES

Name: 181126M1_69, Date: 26-Nov-2018, Time: 23:38:20, ID: 1803652-02 MW-2 0.11316, Description: MW-2

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803652-02 MW-2 0.11316	1.46 e 4	170.7	YES
2	2 13C5-PFHxA	1803652-02 MW-2 0.11316	2.73 e 4	107.9	NO
3	3 13C3-PFHxS	1803652-02 MW-2 0.11316	3.51 e 3	105.4	NO
4	4 13C8-PFOA	1803652-02 MW-2 0.11316	3.03 e 4	99.7	NO
5	5 13C9-PFNA	1803652-02 MW-2 0.11316	2.04 e 4	93.4	NO
6	6 13C4-PFOS	1803652-02 MW-2 0.11316	2.95 e 3	87.5	NO
7	7 13C6-PFDA	1803652-02 MW-2 0.11316	1.94 e 4	82.5	NO
8	8 13C7-PFUdA	1803652-02 MW-2 0.11316	1.45 e 4	54.3	NO

Name: 181126M1_70, Date: 26-Nov-2018, Time: 23:48:53, ID: B8K0134-BS1 OPR 1, Description: OPR

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	B8K0134-BS1 OPR 1	1.24 e 4	144.6	NO
2	$213 C 5-P F H x A$	B8K0134-BS1 OPR 1	2.20 e 4	87.0	NO
3	$313 C 3-P F H x S$	B8K0134-BS1 OPR 1	2.49 e 3	74.8	NO
4	$413 C 8-P F O A$	B8K0134-BS1 OPR 1	2.07 e 4	68.1	NO
5	$513 C 9-P F N A$	B8K0134-BS1 OPR 1	9.25 e 3	42.4	YES
6	$613 C 4-P F O S$	B8K0134-BS1 OPR 1	8.77 e 2	26.0	YES
7	$713 C 6-P F D A$	B8K0134-BS1 OPR 1	3.49 e 3	14.8	YES
8	$813 C 7-P F U d A$	B8K0134-BS1 OPR 1	9.60 e 2	3.6	YES

Quantify Sample Summary Report

Last Altered: Tuesday, November 27, 2018 08:53:34 Pacific Standard Time
Printed: Tuesday, November 27, 2018 08:57:24 Pacific Standard Time

Name: 181126M1_71, Date: 26-Nov-2018, Time: 23:59:32, ID: B8K0134-BLK1 Method Blank 1, Description: Method Blank

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	B8K0134-BLK1 Method Blank 1	1.27 e 4	148.1	NO
2	$213 C 5-P F H x A$	B8K0134-BLK1 Method Blank 1	2.34 e 4	92.5	NO
3	$313 C 3-P F H x S$	B8K0134-BLK1 Method Blank 1	3.14 e 3	94.3	NO
4	$413 C 8-P F O A$	B8K0134-BLK1 Method Blank 1	2.76 e 4	90.6	NO
5	$513 C 9-P F N A$	B8K0134-BLK1 Method Blank 1	1.94 e 4	89.1	NO
6	$613 C 4-P F O S$	B8K0134-BLK1 Method Blank 1	3.13 e 3	92.7	NO
7	$713 C 6-P F D A$	B8K0134-BLK1 Method Blank 1	2.18 e 4	92.6	NO
8	$813 C 7-P F U d A$	B8K0134-BLK1 Method Blank 1	2.47 e 4	92.7	NO

Name: 181126M1_72, Date: 27-Nov-2018, Time: 00:10:06, ID: 1803552-01 BS1810291030GC 19.2, Description: BS1810291030GC

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803552-01 BS1810291030GC 19.2	1.14 e 4	133.3	NO
2	2 13C5-PFHxA	1803552-01 BS1810291030GC 19.2	1.71 e 4	67.6	NO
3	3 13C3-PFHxS	1803552-01 BS1810291030GC 19.2	2.64 e 3	79.4	NO
4	4 13C8-PFOA	1803552-01 BS1810291030GC 19.2	2.48 e 4	81.5	NO
5	5 13C9-PFNA	1803552-01 BS1810291030GC 19.2	1.49 e 4	68.4	NO
6	6 13C4-PFOS	1803552-01 BS1810291030GC 19.2	3.30 e 3	97.9	NO
7	7 13C6-PFDA	1803552-01 BS1810291030GC 19.2	1.84 e 4	78.4	NO
8	8 13C7-PFUdA	1803552-01 BS1810291030GC 19.2	1.80 e 4	67.5	NO

Name: 181126M1_73, Date: 27-Nov-2018, Time: 00:20:44, ID: 1803553-05 BS1810291600GC 21.65, Description: BS1810291600GC

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803553-05 BS1810291600GC 21.65	1.19 e 4	139.5	NO
2	2 13C5-PFHxA	1803553-05 BS1810291600GC 21.65	2.19 e 4	86.5	NO
3	3 13C3-PFHxS	1803553-05 BS1810291600GC 21.65	3.00 e 3	90.1	NO
4	4 13C8-PFOA	1803553-05 BS1810291600GC 21.65	2.70 e 4	88.8	NO
5	5 13C9-PFNA	1803553-05 BS1810291600GC 21.65	1.92 e 4	88.0	NO
6	6 13C4-PFOS	1803553-05 BS1810291600GC 21.65	3.22 e 3	95.5	NO
7	7 13C6-PFDA	1803553-05 BS1810291600GC 21.65	2.06 e 4	87.7	NO
8	8 13C7-PFUdA	1803553-05 BS1810291600GC 21.65	2.44 e 4	91.4	NO

Name: 181126M1_74, Date: 27-Nov-2018, Time: 00:31:22, ID: 1803553-06 SL1810291530GC 44.03, Description: SL1810291530GC

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803553-06 SL1810291530GC 44.03	1.31 e 4	153.5	YES
2	2 13C5-PFHxA	1803553-06 SL1810291530GC 44.03	2.31 e 4	91.2	NO
3	3 13C3-PFHxS	1803553-06 SL1810291530GC 44.03	3.22 e 3	96.8	NO
4	4 13C8-PFOA	1803553-06 SL1810291530GC 44.03	2.90 e 4	95.3	NO
5	5 13C9-PFNA	1803553-06 SL1810291530GC 44.03	1.88 e 4	86.1	NO
6	6 13C4-PFOS	1803553-06 SL1810291530GC 44.03	3.33 e 3	98.7	NO
7	7 13C6-PFDA	1803553-06 SL1810291530GC 44.03	2.07 e 4	87.9	NO
8	8 13C7-PFUdA	1803553-06 SL1810291530GC 44.03	1.99 e 4	74.5	NO

Quantify Sample Summary Report

Last Altered: Tuesday, November 27, 2018 08:53:34 Pacific Standard Time
Printed: Tuesday, November 27, 2018 08:57:24 Pacific Standard Time

Name: 181126M1_75, Date: 27-Nov-2018, Time: 00:41:55, ID: 1803576-03 BS1810311445GC 30.23, Description: BS1810311445GC

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803576-03 BS1810311445GC 30.23	1.23 e 4	143.3	NO
2	2 13C5-PFHxA	1803576-03 BS1810311445GC 30.23	2.13 e 4	83.9	NO
3	3 13C3-PFHxS	1803576-03 BS1810311445GC 30.23	2.89 e 3	86.8	NO
4	4 13C8-PFOA	1803576-03 BS1810311445GC 30.23	2.64 e 4	86.7	NO
5	5 13C9-PFNA	1803576-03 BS1810311445GC 30.23	1.89 e 4	86.8	NO
6	6 13C4-PFOS	1803576-03 BS1810311445GC 30.23	2.18 e 3	64.7	NO
7	7 13C6-PFDA	1803576-03 BS1810311445GC 30.23	2.07 e 4	88.2	NO
8	8 13C7-PFUdA	1803576-03 BS1810311445GC 30.23	2.32 e 4	87.0	NO

Name: 181126M1_76, Date: 27-Nov-2018, Time: 00:52:33, ID: IPA, Description: IPA

	\# Name	ID	Area
1	$113 C 4-P F B A$	IPA	\%Rec
2	$213 C 5-P F H x A$	IPA	Area Out
3	$313 C 3-P F H x S$	IPA	NO
4	$413 C 8-P F O A$	IPA	NO
5	$513 C 9-P F N A$	IPA	NO
6	$613 C 4-P F O S$	IPA	NO
7	$713 C 6-P F D A$	IPA	NO
8	$813 C 7-P F U d A$	IPA	NO

Name: 181126M1_77, Date: 27-Nov-2018, Time: 01:03:06, ID: ST181126M1-14 PFC CS3 18K1906, Description: PFC CS3 $18 K 1906$

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	ST181126M1-14 PFC CS3 18K1906	9.46 e 3	110.7	NO
2	$213 C 5-P F H x A$	ST181126M1-14 PFC CS3 18K1906	2.77 e 4	109.2	NO
3	$313 C 3-P F H x S$	ST181126M1-14 PFC CS3 18K1906	3.62 e 3	108.8	NO
4	$413 C 8-P F O A$	ST181126M1-14 PFC CS3 18K1906	3.35 e 4	110.1	NO
5	$513 C 9-P F N A$	ST181126M1-14 PFC CS3 18K1906	2.35 e 4	107.8	NO
6	$613 C 4-P F O S$	ST181126M1-14 PFC CS3 18K1906	3.60 e 3	106.6	NO
7	$713 C 6-P F D A$	ST181126M1-14 PFC CS3 18K1906	2.47 e 4	105.1	NO
8	$813 C 7-P F U d A$	ST181126M1-14 PFC CS3 18K1906	2.94 e 4	110.3	NO

Name: 181126M1_78, Date: 27-Nov-2018, Time: 01:13:44, ID: 1803577-03 WW1810301640GC 29, Description: WW1810301640GC

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803577-03 WW1810301640GC 29	1.25 e 4	146.7	NO
2	2 13C5-PFHxA	1803577-03 WW1810301640GC 29	2.11 e 4	83.3	NO
3	3 13C3-PFHxS	1803577-03 WW1810301640GC 29	3.06 e 3	91.9	NO
4	4 13C8-PFOA	1803577-03 WW1810301640GC 29	2.50 e 4	82.2	NO
5	5 13C9-PFNA	1803577-03 WW1810301640GC 29	1.73 e 4	79.3	NO
6	6 13C4-PFOS	1803577-03 WW1810301640GC 29	2.81 e 3	83.3	NO
7	7 13C6-PFDA	1803577-03 WW1810301640GC 29	1.82 e 4	77.4	NO
8	8 13C7-PFUdA	1803577-03 WW1810301640GC 29	1.46 e 4	54.8	NO

Quantify Sample Summary Report

Last Altered: Tuesday, November 27, 2018 08:53:34 Pacific Standard Time
Printed: Tuesday, November 27, 2018 08:57:24 Pacific Standard Time

Name: 181126M1_79, Date: 27-Nov-2018, Time: 01:24:18, ID: 1803577-04 WW1810301650GC 27.95, Description: WW1810301650GC

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1803577-04$ WW1810301650GC 27.95	1.20 e 4	139.9	NO
2	$213 C 5-P F H x A$	$1803577-04$ WW1810301650GC 27.95	2.20 e 4	86.9	NO
3	$313 C 3-P F H x S$	$1803577-04$ WW1810301650GC 27.95	2.84 e 3	85.2	NO
4	$413 C 8-P F O A$	$1803577-04$ WW1810301650GC 27.95	2.70 e 4	88.7	NO
5	$513 C 9-P F N A$	$1803577-04$ WW1810301650GC 27.95	1.91 e 4	87.5	NO
6	$613 C 4-P F O S$	$1803577-04$ WW1810301650GC 27.95	3.12 e 3	92.4	NO
7	$713 C 6-P F D A$	$1803577-04$ WW1810301650GC 27.95	2.06 e 4	87.6	NO
8	$813 C 7-P F U A A$	$1803577-04$ WW1810301650GC 27.95	2.32 e 4	87.0	NO

Name: 181126M1_80, Date: 27-Nov-2018, Time: $01: 34: 57$, ID: 1803578-04 BS1810301350GC 20.67, Description: BS1810301350GC

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	$1803578-04$ BS1810301350GC 20.67	1.28 e 4	149.6	NO
2	$213 C 5-P F H x A$	$1803578-04$ BS1810301350GC 20.67	2.13 e 4	84.0	NO
3	$313 C 3-P F H x S$	$1803578-04$ BS1810301350GC 20.67	3.03 e 3	90.9	NO
4	$413 C 8-P F O A$	$1803578-04$ BS1810301350GC 20.67	2.70 e 4	88.6	NO
5	$513 C 9-P F N A$	$1803578-04$ BS1810301350GC 20.67	1.74 e 4	79.6	NO
6	$613 C 4-P F O S$	$1803578-04$ BS1810301350GC 20.67	3.02 e 3	89.4	NO
7	$713 C 6-P F D A$	$1803578-04$ BS1810301350GC 20.67	2.00 e 4	85.2	NO
8	$813 C 7-P F U d A$	$1803578-04$ BS1810301350GC 20.67	2.18 e 4	81.8	NO

Name: 181126M1_81, Date: 27-Nov-2018, Time: 01:45:35, ID: B8K0120-BS1 OPR 0.25, Description: OPR

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	B8K0120-BS1 OPR 0.25	1.17 e 4	137.1	NO
2	$213 C 5-P F H x A$	B8K0120-BS1 OPR 0.25	2.16 e 4	85.3	NO
3	$313 C 3-P F H x S$	B8K0120-BS1 OPR 0.25	2.98 e 3	89.7	NO
4	$413 C 8-P F O A$	B8K0120-BS1 OPR 0.25	2.60 e 4	85.4	NO
5	$513 C 9-P F N A$	B8K0120-BS1 OPR 0.25	1.87 e 4	85.5	NO
6	$613 C 4-P F O S$	B8K0120-BS1 OPR 0.25	3.04 e 3	90.2	NO
7	$713 C 6-P F D A$	B8K0120-BS1 OPR 0.25	1.97 e 4	83.9	NO
8	$813 C 7-P F U d A$	B8K0120-BS1 OPR 0.25	2.38 e 4	89.1	NO

Name: 181126M1_82, Date: 27-Nov-2018, Time: 01:56:08, ID: B8K0120-BLK1 Method Blank 0.25, Description: Method Blank

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	B8K0120-BLK1 Method Blank 0.25	3.57 e 2	4.2	YES
2	$213 C 5-P F H x A$	B8K0120-BLK1 Method Blank 0.25	1.89 e 3	7.4	YES
3	$313 C 3-P F H x S$	B8K0120-BLK1 Method Blank 0.25	2.57 e 3	77.2	NO
4	$413 C 8-P F O A$	B8K0120-BLK1 Method Blank 0.25	4.01 e 3	13.2	YES
5	$513 C 9-P F N A$	B8K0120-BLK1 Method Blank 0.25	3.85 e 3	17.7	YES
6	$613 C 4-P F O S$	B8K0120-BLK1 Method Blank 0.25	2.82 e 3	83.5	NO
7	$713 C 6-P F D A$	B8K0120-BLK1 Method Blank 0.25	$6.15 e 3$	26.1	YES
8	$813 C 7-P F U d A$	B8K0120-BLK1 Method Blank 0.25	$1.03 e 4$	38.8	YES

Quantify Sample Summary Report

Last Altered: Tuesday, November 27, 2018 08:53:34 Pacific Standard Time
Printed: \quad Tuesday, November 27, 2018 08:57:24 Pacific Standard Time

Name: 181126M1_83, Date: 27-Nov-2018, Time: 02:06:46, ID: 1803616-01 1811351-01A 0.24367, Description: 1811351-01A

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1803616-011811351-01 A 0.24367$	8.97 e 3	104.9	NO
2	2 13C5-PFHxA	$1803616-011811351-01 A 0.24367$	1.73 e 4	68.4	NO
3	$313 C 3-P F H x S$	$1803616-011811351-01 A 0.24367$	2.91 e 3	87.5	NO
4	$413 C 8-P F O A$	$1803616-011811351-01 A 0.24367$	2.25 e 4	74.1	NO
5	$513 C 9-P F N A$	$1803616-011811351-01 A 0.24367$	1.68 e 4	76.9	NO
6	$613 C 4-P F O S$	$1803616-011811351-01 A 0.24367$	2.98 e 3	88.3	NO
7	$713 C 6-P F D A$	$1803616-011811351-01 A 0.24367$	1.81 e 4	76.9	NO
8	$813 C 7-P F U A A$	$1803616-011811351-01 A 0.24367$	$2.19 e 4$	82.2	NO

Name: 181126M1_84, Date: 27-Nov-2018, Time: 02:17:19, ID: 1803616-02 1811351-02A 0.24367, Description: 1811351-02A

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803616-02 1811351-02A 0.24367	1.12 e 4	130.5	NO
2	2 13C5-PFHxA	1803616-02 1811351-02A 0.24367	2.03 e 4	80.0	NO
3	3 13C3-PFHxS	1803616-02 1811351-02A 0.24367	2.74 e 3	82.4	NO
4	4 13C8-PFOA	1803616-02 1811351-02A 0.24367	2.45 e 4	80.7	NO
5	5 13C9-PFNA	1803616-02 1811351-02A 0.24367	1.74 e 4	79.6	NO
6	6 13C4-PFOS	1803616-02 1811351-02A 0.24367	2.77 e 3	82.2	NO
7	7 13C6-PFDA	1803616-02 1811351-02A 0.24367	1.80 e 4	76.4	NO
8	8 13C7-PFUdA	1803616-02 1811351-02A 0.24367	2.25 e 4	84.3	NO

Name: 181126M1_85, Date: $27-$ Nov-2018, Time: 02:27:57, ID: 1803616-03 1811351-03A 0.23891, Description: 1811351-03A

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803616-03 1811351-03A 0.23891	1.30 e 4	152.1	YES
2	2 13C5-PFHxA	1803616-03 1811351-03A 0.23891	2.29 e 4	90.4	NO
3	3 13C3-PFHxS	1803616-03 1811351-03A 0.23891	2.90 e 3	87.3	NO
4	4 13C8-PFOA	1803616-03 1811351-03A 0.23891	1.05 e 4	34.6	YES
5	5 13C9-PFNA	1803616-03 1811351-03A 0.23891	1.39 e 4	63.7	NO
6	6 13C4-PFOS	1803616-03 1811351-03A 0.23891	2.77 e 3	82.1	NO
7	7 13C6-PFDA	1803616-03 1811351-03A 0.23891	2.16 e 4	91.6	NO
8	8 13C7-PFUdA	1803616-03 1811351-03A 0.23891	2.36 e 4	88.3	NO

Name: 181126M1_86, Date: 27-Nov-2018, Time: 02:38:29, ID: 1803616-04 1811351-04A 0.23803, Description: 1811351-04A

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1803616-041811351-04 A 0.23803$	1.07 e 4	124.8	NO
2	2 13C5-PFHxA	$1803616-041811351-04 A 0.23803$	1.71 e 4	67.7	NO
3	$313 C 3-P F H x S$	$1803616-041811351-04 A 0.23803$	3.05 e 3	91.7	NO
4	$413 C 8-P F O A$	$1803616-041811351-04 A 0.23803$	2.42 e 4	79.4	NO
5	$513 C 9-P F N A$	$1803616-041811351-04 A 0.23803$	1.45 e 4	66.5	NO
6	$613 C 4-P F O S$	$1803616-041811351-04 A 0.23803$	2.77 e 3	82.1	NO
7	$713 C 6-P F D A$	$1803616-041811351-04 A 0.23803$	1.69 e 4	71.7	NO
8	$813 C 7-P F U d A$	$1803616-041811351-04 A 0.23803$	1.57 e 4	58.9	NO

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-IIS AREA.qld
Last Altered: Tuesday, November 27, 2018 08:53:34 Pacific Standard Time
Printed: Tuesday, November 27, 2018 08:57:24 Pacific Standard Time

Name: 181126M1_87, Date: 27-Nov-2018, Time: 02:49:08, ID: 1803616-05 1811351-05A 0.2442, Description: 1811351-05A

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1803616-051811351-05 A 0.2442$	1.17 e 4	137.1	NO
2	2 13C5-PFHxA	$1803616-051811351-05 A 0.2442$	2.13 e 4	84.1	NO
3	$313 C 3-P F H x S$	$1803616-051811351-05 A 0.2442$	2.86 e 3	86.0	NO
4	$413 C 8-P F O A$	$1803616-051811351-05 A 0.2442$	2.53 e 4	83.0	NO
5	$513 C 9-P F N A$	$1803616-051811351-05 A 0.2442$	1.84 e 4	84.2	NO
6	$613 C 4-P F O S$	$1803616-051811351-05 A 0.2442$	2.95 e 3	87.6	NO
7	$713 C 6-P F D A$	$1803616-051811351-05 A 0.2442$	1.95 e 4	82.9	NO
8	$813 C 7-P F U A A$	$1803616-051811351-05 A 0.2442$	2.28 e 4	85.3	NO

Name: 181126M1_88, Date: 27-Nov-2018, Time: 02:59:40, ID: 1803617-01 1811352-01A 0.23776, Description: 1811352-01A

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	$1803617-011811352-01 \mathrm{~A} 0.23776$	7.66 e 2	9.0	YES
2	2 13C5-PFHxA	$1803617-011811352-01 \mathrm{~A} 0.23776$	1.51 e 3	6.0	YES
3	$313 C 3-P F H x S$	$1803617-011811352-01 \mathrm{~A} 0.23776$	1.82 e 2	5.5	YES
4	$413 C 8-P F O A$	$1803617-011811352-01 \mathrm{~A} 0.23776$	1.68 e 3	5.5	YES
5	$513 C 9-P F N A$	$1803617-011811352-01 \mathrm{~A} 0.23776$	1.34 e 3	6.1	YES
6	$613 C 4-P F O S$	$1803617-011811352-01 \mathrm{~A} 0.23776$	1.76 e 2	5.2	YES
7	$713 C 6-P F D A$	$1803617-011811352-01 \mathrm{~A} 0.23776$	1.39 e 3	5.9	YES
8	$813 C 7-P F U d A$	$1803617-011811352-01 \mathrm{~A} 0.23776$	1.57 e 3	5.9	YES

Name: 181126M1_89, Date: 27-Nov-2018, Time: 03:10:19, ID: 1803617-02 1811352-02A 0.24714, Description: 1811352-02A

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1803617-021811352-02 A 0.24714$	1.23 e 4	144.2	NO
2	$213 C 5-P F H x A$	$1803617-021811352-02 A 0.24714$	2.30 e 4	90.6	NO
3	$313 C 3-P F H x S$	$1803617-021811352-02 A 0.24714$	3.01 e 3	90.4	NO
4	$413 C 8-P F O A$	$1803617-021811352-02 A 0.24714$	2.53 e 4	83.2	NO
5	$513 C 9-P F N A$	$1803617-021811352-02 A 0.24714$	1.92 e 4	88.0	NO
6	$613 C 4-P F O S$	$1803617-021811352-02 A 0.24714$	3.10 e 3	92.0	NO
7	$713 C 6-P F D A$	$1803617-021811352-02 A 0.24714$	2.04 e 4	86.6	NO
8	$813 C 7-P F U d A$	$1803617-021811352-02 A 0.24714$	2.24 e 4	83.8	NO

Name: 181126M1_90, Date: 27-Nov-2018, Time: 03:20:52, ID: IPA, Description: IPA

	\# Name	ID	Area	\%Rec
1	$113 C 4-P F B A$	IPA	Area Out	
2	$213 C 5-P F H x A$	IPA	NO	
3	$313 C 3-P F H x S$	IPA	NO	
4	$413 C 8-P F O A$	IPA	NO	
5	$513 C 9-P F N A$	IPA	NO	NO
6	$613 C 4-P F O S$	IPA	NO	
7	$713 C 6-P F D A$	IPA	NO	NO
8	$813 C 7-P F U d A$	IPA		

Quantify Sample Summary Report

Last Altered: Tuesday, November 27, 2018 08:53:34 Pacific Standard Time
Printed: Tuesday, November 27, 2018 08:57:24 Pacific Standard Time

Name: 181126M1_91, Date: 27-Nov-2018, Time: 03:31:30, ID: ST181126M1-15 PFC CS3 18K1906, Description: PFC CS3 $18 K 1906$

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	ST181126M1-15 PFC CS3 18K1906	8.57 e 3	100.2	NO
2	$213 C 5-P F H x A$	ST181126M1-15 PFC CS3 18K1906	3.06 e 4	120.6	NO
3	$313 C 3-P F H x S$	ST181126M1-15 PFC CS3 18K1906	3.89 e 3	116.9	NO
4	$413 C 8-P F O A$	ST181126M1-15 PFC CS3 18K1906	3.59 e 4	118.0	NO
5	$513 C 9-P F N A$	ST181126M1-15 PFC CS3 18K1906	2.49 e 4	114.3	NO
6	$613 C 4-P F O S$	ST181126M1-15 PFC CS3 18K1906	$4.12 e 3$	122.0	NO
7	$713 C 6-P F D A$	ST181126M1-15 PFC CS3 18K1906	$2.66 e 4$	113.0	NO
8	$813 C 7-P F U d A$	ST181126M1-15 PFC CS3 18K1906	$3.10 e 4$	116.2	NO

Name: 181126M1_92, Date: 27-Nov-2018, Time: 03:42:04, ID: 1803618-01 1811353-01A 0.23448, Description: 1811353-01A

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1803618-011811353-01 A 0.23448$	3.42 e 3	39.9	YES
2	2 13C5-PFHxA	$1803618-011811353-01 A 0.23448$	1.37 e 4	54.2	NO
3	$313 C 3-P F H x S$	$1803618-011811353-01 A 0.23448$	2.71 e 3	81.5	NO
4	$413 C 8-P F O A$	$1803618-011811353-01 A 0.23448$	2.15 e 4	70.7	NO
5	$513 C 9-P F N A$	$1803618-011811353-01 A 0.23448$	1.79 e 4	81.8	NO
6	$613 C 4-P F O S$	$1803618-011811353-01 A 0.23448$	3.00 e 3	88.9	NO
7	$713 C 6-P F D A$	$1803618-011811353-01 A 0.23448$	1.93 e 4	82.0	NO
8	$813 C 7-P F U A A$	$1803618-011811353-01 A 0.23448$	2.28 e 4	85.6	NO

Name: 181126M1_93, Date: 27-Nov-2018, Time: 03:52:42, ID: 1803618-02 1811353-02A 0.2386, Description: 1811353-02A

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	$1803618-021811353-02 A 0.2386$	1.02 e 4	119.5	NO
2	$213 C 5-P F H x A$	$1803618-021811353-02 A 0.2386$	2.00 e 4	79.1	NO
3	$313 C 3-P F H x S$	$1803618-021811353-02 A 0.2386$	2.75 e 3	82.7	NO
4	$413 C 8-P F O A$	$1803618-021811353-02 A 0.2386$	2.42 e 4	79.6	NO
5	$513 C 9-P F N A$	$1803618-021811353-02 A 0.2386$	1.66 e 4	76.0	NO
6	$613 C 4-P F O S$	$1803618-021811353-02 A 0.2386$	2.98 e 3	88.4	NO
7	$713 C 6-P F D A$	$1803618-021811353-02 A 0.2386$	1.85 e 4	78.7	NO
8	$813 C 7-P F U d A$	$1803618-021811353-02 A 0.2386$	2.08 e 4	78.0	NO

Name: 181126M1_94, Date: 27-Nov-2018, Time: 04:03:16, ID: 1803618-03 1811353-03A 0.23967, Description: 1811353-03A

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1803618-031811353-03 A 0.23967$	7.23 e 3	84.6	NO
2	2 13C5-PFHxA	$1803618-031811353-03 A 0.23967$	1.51 e 4	59.4	NO
3	$313 C 3-P F H x S$	$1803618-031811353-03 A 0.23967$	2.26 e 3	67.9	NO
4	$413 C 8-P F O A$	$1803618-031811353-03 A 0.23967$	1.93 e 4	63.3	NO
5	$513 C 9-P F N A$	$1803618-031811353-03 A 0.23967$	1.41 e 4	64.8	NO
6	$613 C 4-P F O S$	$1803618-031811353-03 A 0.23967$	2.39 e 3	70.7	NO
7	$713 C 6-P F D A$	$1803618-031811353-03 A 0.23967$	1.54 e 4	65.4	NO
8	$813 C 7-P F U d A$	$1803618-031811353-03 A 0.23967$	$1.82 e 4$	68.2	NO

Quantify Sample Summary Report

Last Altered: Tuesday, November 27, 2018 08:53:34 Pacific Standard Time
Printed: Tuesday, November 27, 2018 08:57:24 Pacific Standard Time

Name: 181126M1_95, Date: 27-Nov-2018, Time: 04:13:54, ID: 1803618-04 1811353-04A 0.24522, Description: 1811353-04A

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1803618-041811353-04 A 0.24522$	1.20 e 4	140.0	NO
2	2 13C5-PFHxA	$1803618-041811353-04 A 0.24522$	2.21 e 4	87.3	NO
3	$313 C 3-P F H x S$	$1803618-041811353-04 A 0.24522$	2.92 e 3	87.7	NO
4	$413 C 8-P F O A$	$1803618-041811353-04 A 0.24522$	2.61 e 4	85.7	NO
5	$513 C 9-P F N A$	$1803618-041811353-04 A 0.24522$	1.71 e 4	78.4	NO
6	$613 C 4-P F O S$	$1803618-041811353-04 A 0.24522$	2.99 e 3	88.5	NO
7	$713 C 6-P F D A$	$1803618-041811353-04 A 0.24522$	$1.92 e 4$	81.7	NO
8	$813 C 7-P F U d A$	$1803618-041811353-04 A 0.24522$	$2.33 e 4$	87.5	NO

Name: 181126M1_96, Date: 27-Nov-2018, Time: 04:24:26, ID: 1803620-01 1811354-01A 0.23589, Description: 1811354-01A

\# Name	ID	Area	\%Rec	Area Out	
1	1 13C4-PFBA	$1803620-011811354-01 \mathrm{~A} 0.23589$	7.15 e 3	83.6	NO
2	2 13C5-PFHxA	$1803620-011811354-01 \mathrm{~A} 0.23589$	1.26 e 4	49.7	YES
3	$313 C 3-P F H x S$	$1803620-011811354-01 \mathrm{~A} 0.23589$	2.30 e 3	69.0	NO
4	$413 C 8-P F O A$	$1803620-011811354-01 \mathrm{~A} 0.23589$	1.46 e 4	47.9	YES
5	$513 C 9-P F N A$	$1803620-011811354-01 \mathrm{~A} 0.23589$	1.05 e 4	48.0	YES
6	$613 C 4-P F O S$	$1803620-011811354-01 \mathrm{~A} 0.23589$	2.26 e 3	66.9	NO
7	$713 C 6-P F D A$	$1803620-011811354-01 \mathrm{~A} 0.23589$	1.17 e 4	49.7	YES
8	$813 C 7-P F U d A$	$1803620-011811354-01 \mathrm{~A} 0.23589$	1.42 e 4	53.3	NO

Name: 181126M1_97, Date: $27-$ Nov-2018, Time: 04:35:05, ID: 1803620-02 1811354-02A 0.22278, Description: 1811354-02A

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803620-02 1811354-02A 0.22278	8.53 e 3	99.8	NO
2	2 13C5-PFHxA	1803620-02 1811354-02A 0.22278	1.61 e 4	63.4	NO
3	3 13C3-PFHxS	1803620-02 1811354-02A 0.22278	2.10 e 3	63.2	NO
4	4 13C8-PFOA	1803620-02 1811354-02A 0.22278	1.87 e 4	61.5	NO
5	5 13C9-PFNA	1803620-02 1811354-02A 0.22278	1.32 e 4	60.7	NO
6	6 13C4-PFOS	1803620-02 1811354-02A 0.22278	2.16 e 3	64.2	NO
7	7 13C6-PFDA	1803620-02 1811354-02A 0.22278	1.44 e 4	61.2	NO
8	8 13C7-PFUdA	1803620-02 1811354-02A 0.22278	1.53 e 4	57.4	NO

Name: 181126M1_98, Date: 27-Nov-2018, Time: 04:45:37, ID: 1803626-02 16-MW-06-SA2 0.1197, Description: 16-MW-06-SA2

\# Name	ID	Area	\%Rec	Area Out	
1	1 13C4-PFBA	$1803626-0216-M W-06-S A 20.1197$	1.45 e 4	169.9	YES
2	2 13C5-PFHxA	$1803626-0216-M W-06-S A 20.1197$	$2.61 e 4$	103.0	NO
3	$313 C 3-P F H x S$	$1803626-0216-M W-06-S A 20.1197$	$3.36 e 3$	101.1	NO
4	$413 C 8-P F O A$	$1803626-0216-M W-06-S A 20.1197$	$2.80 e 4$	92.0	NO
5	$513 C 9-P F N A$	$1803626-0216-M W-06-S A 20.1197$	$2.01 e 4$	92.3	NO
6	$613 C 4-P F O S$	$1803626-0216-M W-06-S A 20.1197$	$3.78 e 3$	111.9	NO
7	$713 C 6-P F D A$	$1803626-0216-M W-06-S A 20.1197$	$2.19 e 4$	92.9	NO
8	$813 C 7-P F U d A$	$1803626-0216-M W-06-S A 20.1197$	$2.49 e 4$	93.1	NO

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: \quad F:\Projects\PFAS.PRO\Results\181126M1\181126M1-IIS AREA.qld
Last Altered: Tuesday, November 27, 2018 08:53:34 Pacific Standard Time
Printed: \quad Tuesday, November 27, 2018 08:57:24 Pacific Standard Time

Name: 181126M1_99, Date: 27-Nov-2018, Time: 04:56:15, ID: 1803626-01@5X 16-HS-03-SA2 0.11792, Description: 16-HS-03-SA2

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803626-01@5X 16-HS-03-SA2 0.11792	2.60 e3	30.4	YES
2	2 13C5-PFHxA	1803626-01@5X 16-HS-03-SA2 0.11792	4.19 e 3	16.5	YES
3	3 13C3-PFHxS	1803626-01@5X 16-HS-03-SA2 0.11792	6.78 e 2	20.4	YES
4	4 13C8-PFOA	1803626-01@5X 16-HS-03-SA2 0.11792	5.01 e 3	16.5	YES
5	5 13C9-PFNA	1803626-01@5X 16-HS-03-SA2 0.11792	3.39 e 3	15.5	YES
6	6 13C4-PFOS	1803626-01@5X 16-HS-03-SA2 0.11792	7.05 e 2	20.9	YES
7	7 13C6-PFDA	1803626-01@5X 16-HS-03-SA2 0.11792	3.73 e3	15.9	YES
8	8 13C7-PFUdA	1803626-01@5X 16-HS-03-SA2 0.11792	4.35 e 3	16.3	YES

Name: 181126M1_100, Date: 27-Nov-2018, Time: 05:06:54, ID: IPA, Description: IPA

	\# Name	ID	Area	\%Rec
1	$113 C 4-$ Area Out			
2	$213 C 5-P F H x A$	IPA	IPA	
3	$313 C 3-$ PFHxS	IPA		NO
4	$413 C 8-$-PFOA	IPA		NO
5	$513 C 9-P F N A$	IPA		NO
6	$613 C 4-$ PFOS	IPA		NO
7	$713 C 6-P F D A$	IPA		NO
8	$813 C 7-P F U d A$	IPA		NO

Name: 181126M1_101, Date: 27-Nov-2018, Time: 05:17:27, ID: ST181126M1-16 PFC CS3 18K1906, Description: PFC CS3 $18 K 1906$

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	ST181126M1-16 PFC CS3 18K1906	7.87 e 3	92.1	NO
2	$213 C 5-P F H x A$	ST181126M1-16 PFC CS3 18K1906	2.37 e 4	93.6	NO
3	$313 C 3-P F H x S$	ST181126M1-16 PFC CS3 18K1906	2.89 e 3	87.0	NO
4	$413 C 8-P F O A$	ST181126M1-16 PFC CS3 18K1906	2.67 e 4	87.8	NO
5	$513 C 9-P F N A$	ST181126M1-16 PFC CS3 18K1906	1.99 e 4	91.2	NO
6	$613 C 4-P F O S$	ST181126M1-16 PFC CS3 18K1906	3.11 e 3	92.1	NO
7	$713 C 6-P F D A$	ST181126M1-16 PFC CS3 18K1906	2.15 e 4	91.2	NO
8	$813 C 7-P F U d A$	ST181126M1-16 PFC CS3 18K1906	2.56 e 4	96.1	NO

Dataset:	F:\Projects\PFAS.PRO\Results\181126M1\181126M1-IB.qld
Last Altered:	Monday, November 26, 2018 14:38:52 Pacific Standard Time
Printed:	Monday, November 26, 2018 14:39:16 Pacific Standard Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_112618.mdb 26 Nov 2018 13:53:04

Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_11-26-18.cdb 26 Nov 2018 14:29:06

Name: 181126M1_12, Date: 26-Nov-2018, Time: 13:32:01, ID: IPA, Description: IPA
PFBA
F2:MRM of 1 channel,ES-
$21300-168.8$
$6.353 \mathrm{e}+003$

13C3-PFBA

F3:MRM of 1 channel,ES$216.1>171.8$
$2.388 \mathrm{e}+002$

13C3-PFPeA

F6:MRM of 1 channel,ES-

13C3-PFBS

4:2 FTS

13C2-4:2 FTS

13C2-PFHxA

PFPeS

13C3-PFBS

Dataset:	F:\Projects\PFAS.PRO\Results\181126M1\181126M1-IB.qld
Last Altered:	Monday, November 26, 2018 14:38:52 Pacific Standard Time
Printed:	Monday, November 26, 2018 14:39:16 Pacific Standard Time

Name: 181126M1_12, Date: 26-Nov-2018, Time: 13:32:01, ID: IPA, Description: IPA

F24:MRM of 2 channels,ES-

L-PFHxS

F18:MRM of 2 channels,ES-

F18:MRM of 2 channels,ES-

1802-PFHxS

13C2-PFOA

Dataset:	F:\Projects\PFAS.PRO\Results\181126M1\181126M1-IB.qld
Last Altered:	Monday, November 26, 2018 14:38:52 Pacific Standard Time
Printed:	Monday, November 26, 2018 14:39:16 Pacific Standard Time

Name: 181126M1_12, Date: $26-$ Nov-2018, Time: 13:32:01, ID: IPA, Description: IPA

PFOSA
 F30:MRM of 2 channels,ES-

F30:MRM of 2 channels,ES$497.9>169$ $1.000 \mathrm{e}-003$

13C8-PFOSA

F34:MRM of 1 channel,ES506.1 > 77.7

F32:MRM of 2 channels,ES-

13C8-PFOS
F35:MRM of 1 channel,ES-

F37:MRM of 2 channels,ES-

13C2-PFDA

F38:MRM of 1 channel,ES-

13C2-8:2 FTS

F45:MRM of 2 channels,ES-

13C8-PFOS

F35:MRM of 1 channel,ES

d3-N-MeFOSAA
F50:MRM of 1 channel,ES$573.3>419$
$1.000 \mathrm{e}-003$

Dataset:	F:\Projects\PFAS.PRO\Results\181126M1\181126M1-IB.qld
Last Altered:	Monday, November 26, 2018 14:38:52 Pacific Standard Time
Printed:	Monday, November 26, 2018 14:39:16 Pacific Standard Time

Name: 181126M1_12, Date: 26-Nov-2018, Time: 13:32:01, ID: IPA, Description: IPA

d5-N-EtFOSAA

13C2-PFDoA

PFDS

F53:MRM of 2 channels,ES- $\begin{array}{r}598.8>79.9 \\ 1.187 \mathrm{e}+002\end{array}$

13C8-PFOS
F35:MRM of 1 channel,ES-
$507.0>79.9$

d3-N-MeFOSA

F60:MRM of 2 channels,ES$662.9>319$

13C2-PFDoA

Dataset:	F:\Projects\PFAS.PRO\Results\181126M1\181126M1-IB.qld
Last Altered:	Monday, November 26, 2018 14:38:52 Pacific Standard Time
Printed:	Monday, November 26, 2018 14:39:16 Pacific Standard Time

Name: 181126M1_12, Date: $26-$ Nov-2018, Time: 13:32:01, ID: IPA, Description: IPA

F61:MRM of 2 channels,ES-
713. > 369.0

13C2-PFTeDA

F62:MRM of 2 channels,ES-
$715.1>669.7$

F41:MRM of 2 channels,ES$526.1>219$
$1.372 e+002$

d5-N-ETFOSA

13C2-PFHxDA

13C2-PFHxDA

Dataset:	F:\Projects\PFAS.PRO\Results\181126M1\181126M1-IB.qld
Last Altered:	Monday, November 26, 2018 14:38:52 Pacific Standard Time
Printed:	Monday, November 26, 2018 14:39:16 Pacific Standard Time

Name: 181126M1_12, Date: 26-Nov-2018, Time: 13:32:01, ID: IPA, Description: IPA

13C6-PFDA

13C7-PFUdA

LC Callbratlon Standards Review Checklist

Dataset:

Z:IProjectsIPFAS.PRO\Results1181126M11181126M1-32.qld
Last Altered: Tuesday, November 27, 2018 14:01:57 Pacific Standard Time
Printed:
Tuesday, November 27, 2018 14:02:49 Pacific Standard Time

Name: 181126M1_32, Date: 26-Nov-2018, Time: 17:06:06, ID: ST181126M1-11 PFC CS3 18K1906, Description: PFC CS3 18K1906

Dataset:

Z:\Projects\PFAS.PRO\Results\181126M1\181126M1-32.qld
Last Altered: Tuesday, November 27, 2018 14:01:57 Pacific Standard Time
Printed:
Tuesday, November 27, 2018 14:02:49 Pacific Standard Time

Name: 181126M1_32, Date: 26-Nov-2018, Time: 17:06:06, ID: ST181126M1-11 PFC CS3 18K1906, Description: PFC CS3 18 K 1906

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Conc.	\%Rec	Recovery -	Ion Ratio	Ratio Oút 3
37	47 13C8-PFOS	$507.0>79.9$	3692.837	3506.858	1.00	5.00	13.163	12.6	101.1	NO		
38	50 d 3 -N-MeFOSAA	$573.3>419$	3698.784	28556.748	1.00	5.45	1.619	12.0	96.2	NO		
39	-1											
40	23 L-EtFOSAA	$584.1>419$	7404.324	5280.511	1.00	5.61	17.527	10.8	108.2	NO	1.432	NO
41.	27 PFDoA	$612.9>569.0$	23449.475	25779.438	1.00	5.91	11.370	9.7	97.4	NO	8.241	NO
42	26 PFDS	$598.8>79.9$	2844.874	3692.837	1.00	5.67	9.630	9.2	91.8	NO	1.700	NO
43	25 PFUdA	$563.0>518.9$	20633.477	27061.512	1.00	5.62	9.531	9.8	97.7	NO	9.235	NO
44	28 N-MeFOSA	$512.1>168.9$	4122.458	12424.194	1.00	5.89	49.771	51.8	103.6	NO	1.437	NO
45	29 PFTrDA	$662.9>618.9$	24281.201	25779.438	1.00	6.16	11.774	10.1	101.3	NO	25.389	NO
46	$52 \mathrm{d5-N-EtFOSAA}$	$589.3>419$	5280.511	28556.748	1.00	5.61	2.311	12.5	99.8	NO		
47	53 13C2-PFDoA	$615.0>569.7$	25779.438	25260.830	1.00	5.91	12.757	12.2	97.5	NO		
48	47 13C8-PFOS	$507.0>79.9$	3692.837	3506.858	1.00	5.00	13.163	12.6	101.1	NO		
49	51 13C2-PFUdA	$565>519.8$	27061.512	28556.748	1.00	5.63	11.845	12.4	99.0	NO		
50	54 d3-N-MeFOSA	$515.2>168.9$	12424.194	28556.748	1.00	5.92	5.438	148.2	98.8	NO		
51.	53 13C2-PFDoA	$615.0>569.7$	25779.438	25260.830	1.00	5.91	12.757	12.2	97.5	NO		
52	-1											
53	30 PFTeDA	$713.0>669.0$	20583.383	15845.762	1.00	6.38	16.237	9.9	99.3	NO	12.770	NO
54	31 N-EtFOSA	$526.1>168.9$	6015.029	21639.605	1.00	6.39	41.695	47.5	94.9	NO	1.631	NO
55 - :	32 PFHxDA	$813.1>768.6$	7486.576	8629.297	1.00	6.72	4.338	10.8	108.2	NO	17.427	NO
56	33 PFODA	$913.1>868.8$	12776.631	8629.297	1.00	6.96	7.403	10.5	104.9	NO		
57.	34 N -MeFOSE	$616.1>58.9$	3104.770	10626.706	1.00	6.69	43.825	48.3	96.7	NO		
58 :	35 N-EtFOSE	$630.1>58.9$	3914.298	10263.792	1.00	6.84	57.205	49.8	99.6	NO		
59	55 13C2-PFTeDA	$715.1>669.7$	15845.762	28556.748	1.00	6.38	6.936	12.2	97.9	NO		
60	$56 \mathrm{~d} 5-\mathrm{N}$-ETFOSA	$531.1>168.9$	21639.605	28556.748	1.00	6.42	9.472	162.4	108.3	NO		
61	57 13C2-PFHxDA	$815>769.7$	8629.297	28556.748	1.00	6.72	3.777	5.1	101.3	NO		
62	57 13C2-PFHxDA	$815>769.7$	8629.297	28556.748	1.00	6.72	3.777	5.1	101.3	NO		
63	58 d7-N-MeFOSE	$623.1>58.9$	10626.706	28556.748	1.00	6.68	4.652	147.0	98.0	NO		
64	59 d9-N-EtFOSE	$639.2>58.8$	10263.792	28556.748	1.00	6.83	4.493	150.6	100.4	NO		
65	-1											
66	60 13C4-PFBA	217. >172	8809.497	8809.497	1.00	1.19	12.500	12.5	100.0	NO		
67	61 13C5-PFHXA	$318>272.9$	27131.221	27131.221	1.00	3.32	12.500	12.5	100.0	NO		
68 - ${ }^{\text {a }}$	62 13C3-PFHxS	$401.8>79.9$	3644.961	3644.961	1.00	4.13	12.500	12.5	100.0	NO		
69	63 13C8-PFOA	$420.9>376$	32606.566	32606.566	1.00	4.48	12.500	12.5	100.0	NO		
70	64 13C9-PFNA	$472.2>426.9$	22385.721	22385.721	1.00	4.91	12.500	12.5	100.0	NO		
71.	65 13C4-PFOS	$503>79.9$	3506.858	3506.858	1.00	5.00	12.500	12.5	100.0	NO		
72 :	66 13C6-PFDA	$519.1>473.7$	25260.830	25260.830	1.00	5.30	12.500	12.5	100.0	NO		

Dataset: Z:IProjects\PFAS.PRO\Results\181126M1\181126M1-32.qld
Last Altered: Tuesday, November 27, 2018 14:01:57 Pacific Standard Time
Printed: Tuesday, November 27, 2018 14:02:49 Pacific Standard Time

Name: 181126M1_32, Date: 26-Nov-2018, Time: 17:06:06, ID: ST181126M1-11 PFC CS3 18K1906, Description: PFC CS3 18 K1906

Last Altered: Tuesday, November 27, 2018 08:29:26 Pacific Standard Time
Printed: Tuesday, November 27, 2018 08:29:38 Pacific Standard Time

Method: F:IProjects\PFAS.PRO\MethDB\PFAS_FULL_80C_112618.mdb 26 Nov 2018 13:53:04 Calibration: F:IProjects\PFAS.PROICurveDBIC18_VAL-PFAS_Q4_11-26-18.cdb 26 Nov 2018 14:29:06

Compound name: PFBA

Compound name: PFBA

33, whtiskuk 33 181126M1_33	1803659-06 A1-MW-54-SA2 0.11683	26-Nov-18	17:16:44
34	1803659-07 FRB-201811140.11549	26-Nov-18	17:27:17
35watakitudy 35 181126M1_35	B8K0135-BS 1 OPR 1	26-Nov-18	17:37:55
36 W	B8K0135-BLK1 Method Blank 1	26-Nov-18	17:48:34
	1803551-03 BS1810290940GC 5	26-Nov-18	17:59:07
	1803581-03 BS1810311220GC 5.1	26-Nov-18	18:09:45
94twetext 39 181126M1_39	1803581-04 BS1810311230GC 5.08	26-Nov-18	18:20:24
402deazykx 40 181126M1_40	B8K0049-ES1 OPR 1	26-Nov-18	18:30:57
	B8K0049-BLK1 Method Blank 1	26-Nov-18	18:41:36
	1803520-01 HS-SB-939 (3-5)-EPA 1.51	26-Nov-18	18:52:09
	1.803553-04 BS1810291445GC 3.51	26-Nov-18	19:02:47
4xtyxity 44 181126M1_44	1803575-06 BS1810301040GC 1.48	26-Nov-18	19:13:20
51tikyex 45 181126M1_45	1803577-05 BS1810301620GC 5.94	26-Nov-18	19:23:58
$6{ }^{2}$ (utysty 46 181126M1_46	B8K0118-BS1 OPR 0.125	26-Nov-18	19:34:37
	B8K0118-BLK1 Method Blank 0.125	26-Nov-18	19:45:09
	1803640-01 MW-2A 0.11056	26-Nov-18	19:55:48
499 Wht Kixi 49 181126M1_49	1803640-02 MW-3 0.1163	26-Nov-18	20:06:21
	IPA	26-Nov-18	20:16:59
	ST181126M1-12 PFC CS3 18K1906	26-Nov-18	20:27:33
	1803640-03 MW-4 0.11182	26-Nov-18	20:38:11
3ukxtuk 53 181126M1_53	1803640-04 TS Well 0.11479	26-Nov-18	20:48:44
47tatrguk 54 181126M1_54	1803641-01 MW3S 0.11429	26-Nov-18	20:59:22
55.6xtrikuti 55 181126M1_55	1803641-02 MW6 0.11494	26-Nov-18	21:09:56
56\%kwhwh 56 181126M1_56	1803641-03 MW7 0.11164	26-Nov-18	21:20:34
57. Kixdyex 57 181126M1_57	1803641-04 SW2 0.11314	26-Nov-18	21:31:07
58\%	1803646-01 MW-1 0.11872	26-Nov-18	21:41:46
59,whytuth 59 181126M1_59	1803646-02 MW-4S 0.11549	26-Nov-18	21:52:19
60.KWh.3xta $60181126 \mathrm{M1}$ _60	1803646-03 Thome 0.11815	26-Nov-18	22:02:57
	1803647-01 MW-1 0.11071	26-Nov-18	22:13:30
	IPA	26-Nov-18	22:24:08
63 ¢twrya 63 181126M1_63	ST181126M1-13 PFC CS3 18K1906	26-Nov-18	22:34:41
	1803647-02 MW-3 0.11209	26-Nov-18	22:45:19
65 ., Wh \% 65 181126M1_65	1803651-01 MW-1 0.11903	26-Nov-18	22:55:52
66.	1803651-02 MW-4 0.11498	26-Nov-18	23:06:31
67.	1803651-03 MW-3 0.11883	26-Nov-18	23:17:03
$68.4 \times \quad 68$ 181126M1_68	1803652-01 MW-1 0.11504	26-Nov-18	23:27:42

Work Order 1803659
Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN945 SCN960
Vista Analytical Laboratory
Data
Dataset:
Untitled
Last Altered: Tuesday, November 27, 2018 08:29:26 Pacific Standard Time
Printed: Tuesday, November 27, 2018 08:29:38 Pacific Standard Time

Compound name: PFBA

69 Wix	1803652-02 MW-2 0.11316	26-Nov-18	23:38:20
	B8K0134-BS1 OPR 1	26-Nov-18	23:48:53
71 hthex 71 1811.26M1_71	B8K0134-BLK1 Method Blank 1	26-Nov-18	23:59:32
72.0	1803552-01 BS1810291030GC 19.2	27-Nov-18	00:10:06
73.15	1803553-05 BS1810291600GC 21.65	27-Nov-18	00:20:44
74.	1803553-06 SL1810291530GC 44.03	27-Nov-18	00:31:22
75.	1803576-03 BS1810311445GC 30.23	27-Nov-18	00:41:55
76.W3: 1	IPA	27-Nov-18	00:52:33
Whtwe 77 181126M1_77	ST181126M1-14 PFC CS3 18K1906	27-Nov-18	01:03:06
	1803577-03 WW1810301640GC 29	27-Nov-18	01:33:44
	1803577-04 WW 1810301650GC 27.95	27-Nov-18	01:24:18
80.	1803578-04 BS1810301350GC 20.67	27-Nov-48	01:34:57
	B8K0120-BS1 OPR 0.25	27-Nov-18	01:45:35
	B8K0120-BLK1 Method Blank 0.25	27-Nov-18	01:56:08
18364.	1803616-01 1811351-01A 0.24367	27-Nov-18	02:06:46
842thu.hd 84 181126M1_84	1803616-02 1811351-02A 0.24367	27-Nov-18	02:17:19
	1803616-03 1811351-03A 0.23891	27-Nov-18	02:27:57
	1803616-04 1811351-04A 0.23803	27-Nov-18	02:38:29
	1803616-05 1811351-05A 0.2442	27-Nov-18	02:49:08
	1803617-01 1811352-01A 0.23776	27-Nov-18	02:59:40
	1803617-02 1811352-02A 0.24714	27-Nov-18	03:10:19
90\% ite ${ }^{\text {a }} 90$ 181126M1_90	IPA	27-Nov-18	03:20:52
	ST181126M1-15 PFC CS3 18 K 1906	27-Nov-18	03:31:30
92 2 L W W (92 181126M1_92	1803618-01 1811353-01A 0.23448	27-Nov-18	03:42:04
	1803618-02 1811353-02A 0.2386	27-Nov-18	03:52:42
94:	1803618-03 1811353-03A 0.23967	27-Nov-18	04:03:16
95. ${ }^{\text {a }}$ (951126 M 1 _95	1803618-04 1811353-04A 0.24522	27-Nov-18	04:13:54
96.	1803620-01 1811354-01A 0.23589	27-Nov-18	04:24:26
97. Wx ku 97 181126M1_97	1803620-02 1811354-02A 0.22278	27-Nov-18	04:35:05
498 181126M1_98	1803626-02 16-MW-06-SA2 0.1197	27-Nov-18	04:45:37
99 181126M1_99	1803626-01@5X 16-HS-03-SA2 0.11792	27-Nov-18	04:56:15
100	IPA	27-Nov-18	05:06:54
	ST181126M1-16 PFC CS3 18K1906	27-Nov-18	05:17:27

Method: Z:|Projects\PFAS.PRO\MethDB\PFAS FULL 80C 112618.mdb 26 Nov 2018 13:53:04
Calibration: Z:|Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_11-26-18.cdb 26 Nov 2018 14:29:06
Name: 181126M1_32, Date: 26-Nov-2018, Time: 17:06:06, ID: ST181126M1-11 PFC CS3 18K1906, Description: PFC CS3 18K1906

$299.0>99.0$

Dataset: Z:\Projects\PFAS.PRO\Results\181126M1\181126M1-32.qld

Last Altered: Tuesday, November 27, 2018 14:01:57 Pacific Standard Time
Printed:
Tuesday, November 27, 2018 14:02:49 Pacific Standard Time

Name: 181126M1_32, Date: 26-Nov-2018, Time: 17:06:06, ID: ST181126M1-11 PFC CS3 18K1906, Description: PFC CS3 $18 K 1906$

13C2-6:2 FTS

F16:MRM of 2 channels,ES$363.0>169.0$

PFNA

13C5-PFNA
F28:MRM of 1 channel,ES$468.2>422.9$

Dataset: Z:\Projects\PFAS.PRO\Results\181126M1\181126M1-32.qld
Last Altered: Tuesday, November 27, 2018 14:01:57 Pacific Standard Time
Printed: \quad Tuesday, November 27, 2018 14:02:49 Pacific Standard Time

Name: 181126M1_32, Date: 26-Nov-2018, Time: 17:06:06, ID: ST181126M1-11 PFC CS3 18K1906, Description: PFC CS3 18 K1906

L-PFOS

F32:MRM of 2 channels,ES-

13C8-PFOS

F35:MRM of 1 channel,ES-

PFNS

F45:MRM of 2 channels,ES

13C8-PFOS
F35:MRM of 1 channel,ES-

Printed: \quad Tuesday, November 27, 2018 14:02:49 Pacific Standard Time

Name: 181126M1_32, Date: 26-Nov-2018, Time: 17:06:06, ID: ST181126M1-11 PFC CS3 18K1906, Description: PFC CS3 18 K1906

Dataset:
Z:\Projects\PFAS.PRO\Results\181126M11181126M1-32.qld
Last Altered: Tuesday, November 27, 2018 14:01:57 Pacific Standard Time
Printed:
Tuesday, November 27, 2018 14:02:49 Pacific Standard Time

Name: 181126M1_32, Date: 26-Nov-2018, Time: 17:06:06, ID: ST181126M1-11 PFC CS3 18K1906, Description: PFC CS3 18 K1906

Dataset: Z:\Projects\PFAS.PRO\Results\181126M1\181126M1-32.qld
Last Altered: Tuesday, November 27, 2018 14:01:57 Pacific Standard Time
Printed: Tuesday, November 27, 2018 14:02:49 Pacific Standard Time

Name: 181126M1_32, Date: 26-Nov-2018, Time: 17:06:06, ID: ST181126M1-11 PFC CS3 18K1906, Description: PFC CS3 18K1906

LC Callbration Standards Review Checklist
QU

ID: LR-LCSRC

Last Altered: Tuesday, November 27, 2018 07:47:21 Pacific Standard Time
Printed: Tuesday, November 27, 2018 07:49:52 Pacific Standard Time

Name: 181126M1_51, Date: 26-Nov-2018, Time: 20:27:33, ID: ST181126M1-12 PFC CS3 18K1906, Description: PFC CS3 18K1906

Last Altered: Tuesday, November 27, 2018 07:47:21 Pacific Standard Time
Printed:
Tuesday, November 27, 2018 07:49:52 Pacific Standard Time

Name: 181126M1_51, Date: 26-Nov-2018, Time: 20:27:33, ID: ST181126M1-12 PFC CS3 18K1906, Description: PFC CS3 18K1906

Last Altered: Tuesday, November 27, 2018 07:47:21 Pacific Standard Time
Printed: Tuesday, November 27, 2018 07:49:52 Pacific Standard Time

Name: 181126M1_51, Date: 26-Nov-2018, Time: 20:27:33, ID: ST181126M1-12 PFC CS3 18K1906, Description: PFC CS3 18K1906

-	\# Name		Trace	Area	IS Area	witvol	RT	Response	Conc.	\%Rec Recovery..	Ion Ratio	Ratio Out?
73.	67 13C7-PFUdA		$570.1>524.8$	29270.285	29270.285	1.00	5.63	12.500	12.5			

Dataset:	Untitled
Last Altered:	Tuesday, November 27, 2018 08:29:26 Pacific Standard Time
Printed:	Tuesday, November 27, 2018 08:29:38 Pacific Standard Time

Method: F:|Projects|PFAS.PROIMethDBIPFAS_FULL_80C_112618.mdb 26 Nov 2018 13:53:04 Calibration: F:IProjects|PFAS.PRO\CurveDBIC18_VAL-PFĀS_Q4_11-26-18.cdb 26 Nov 2018 14:29:06

Compound name: PFBA

Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN94	
Vista Analytical Laboratory	
Dataset:	Untitled
Last Altered:	Tuesday, November 27, 2018 08:29:26 Paciific Standard Time
Printed:	Tuesday, November 27, 2018 08:29:38 Pacific Standard Time

$\begin{array}{ll}\text { Last Altered: } & \text { Tuesday, November 27, 2018 08:29:26 Pacific Standard Time } \\ \text { Printed: } & \text { Tuesday, November 27, } 2018 \text { 08:29:38 Pacific Standard Time }\end{array}$

Compound name: PFBA

	\# Name	1 D	cq. Date	Acq Time
33	33 181126M1_33	1803659-06 A1-MW-54-SA2 0.11683	26-Nov-18	17:16:44
34.	34 181126M1_34	1803659-07 FRB-20181114 0.11549	26-Nov-18	17:27:17
35	35 181126M1_35	B8K0135-BS1 OPR 1	26-Nov-18	17:37:55
36	36 181126M1_36	B8K0135-BLK1 Method Blank 1	26-Nov-18	17:48:34
37	37 181126M1_37	1803551-03 BS1810290940GC 5	26-Nov-18	17:59:07
$38-5$	38 181126M1_38	1803581-03 BS 1810311220 GC 5.1	26-Nov-18	18:09:45
39	39 181126M1_39	1803581-04 BS 1810311230 GC 5.08	26-Nov-18	18:20:24
40	40 181126M1_40	B8K0049-BS 1 OPR 1	26-Nov-18	18:30:57
41	41 181126M1_41	B8K0049-BLK1 Method Blank 1	26-Nov-18	18:41:36
42	42 181126M1_42	1803520-01 HS-SB-939 (3-5)-EPA 1.51	26-Nov-18	18:52:09
43	43 181126M1_43	1803553-04 BS $1810291445 G C 3.51$	26-Nov-18	19:02:47
44.	44 181126M1_44	1803575-06 BS 1810301040GC 1.48	26-Nov-18	19:13:20
45:	45 181126M1_45	1803577-05 BS 1810301620GC 5.94	26-Nov-18	19:23:58
46 \% $=$	46 181126M1_46	B8K0118-BS1 OPR 0.125	26-Nov-18	19:34:37
47.	47 181126M1_47	B8K0118-BLK1 Method Blank 0.125	26-Nov-18	19:45:09
48\%)	48 181126M1_48	$1803640-01 \mathrm{MW}-2 \mathrm{~A} 0.11056$	26-Nov-18	19:55:48
49	49 181126M1_49	1803640-02 MW-3 0.1163	26-Nov-18	20:06:21
50.	50 181126M1_50	IPA	26-Nov-18	20:16:59
51	51 181126M1_51	ST 181126M1-12 PFC CS3 18K1906	26-Nov-18	20:27:33
	52 181126M1_52	1803640-03 MW-4 0.11182	26-Nov-18	20:38:11
53	53 181126M1_53	1803640-04 TS Well 0.11479	26-Nov-18	20:48:44
	54 181126M1_54	4803641-01 MW3S 0.11429	26-Nov-18	20:59:22
55.4	55 181126M1_55	$1803641-02$ MW6 0.11494	26-Nov-18	21:09:56
56	56 181126M1_56	1803641-03 MW7 0.11164	26-Nov-18	21:20:34
57	57 181126M1_57	1803641-04 SW2 0.11314	26-Nov-18	21:31:07
58	58 181126M1_58	1803646-01 MW-1 0.11872	26-Nov-18	21:41:46
59	59 181126M1_59	1803646-02 MW-4S 0.11549	26-Nov-18	21:52:19
60	60 181126M1_60	1803646-03 Thorne 0.11815	26-Nov-18	22:02:57
61	61 181126M1_61	1803647-01 MW-1 0.11071	26-Nov-18	22:13:30
62	62 181126M1_62	IPA	26-Nov-18	22:24:08
	63 181126M1_63	ST181126M1-13 PFC CS3 18K1906	26-Nov-18	22:34:41
64	64 181126M1_64	1803647-02 MW-3 0.11209	26-Nov-18	22:45:19
65	65 181126M1_65	1803651-01 MW-1 0.11903	26-Nov-18	22:55:52
66.	66 181126M1_66	1803651-02 MW-4 0.11498	26-Nov-18	23:06:31
67.	67 181126M1_67	1803651-03 MW-3 0.11883	26-Nov-18	23:17:03
68 W ${ }^{\text {a }}$	68 181126M1_68	1803652-01 MW-1 0.11504	26-Nov-18	23:27:42

Dataset:	Untitled
Last Altered:	Tuesday, November 27, 2018 08:29:26 Pacific Standard Time
Printed:	Tuesday, November 27, 2018 08:29:38 Pacific Standard Time

Compound name: PFBA

69.1	69 181126M1_69	1803652-02 MW-2 0.11316	26-Nov-18	23:38:20
70 明	70 181126M1_70	B8K0134-BS1 OPR 1	26-Nov-18	23:48:53
71.	71 181126M1_71	B8K0134-BLK1 Method Blank 1	26-Nov-18	23:59:32
72.	72 181126M1_72	1803552-01 BS1810291030GC 19.2	27-Nov-18	00:10:06
73. ${ }^{\text {ater }}$	73 181126M1_73	1803553-05 BS1810291600GC 21.65	27-Nov-18	00:20:44
74.	74 181126M1_74	1803553-06 SL1810291530GC 44.03	27-Nov-18	00:31:22
75.	75 181126M1_75	1803576-03 BS1810311445GC 30.23	27-Nov-18	00:41:55
76	76 181126M1_76	IPA	27-Nov-18	00:52:33
\%1:	77 181126M1_77	ST181126M1-14 PFC CS3 18K1906	27-Nov-18	01:03:06
78.	78 181126M1_78	1803577-03 WW1810301640GC 29	27-Nov-18	01:13:44
79 7\%	79 181126M1_79	1803577-04 WW1810301650GC 27.95	27-Nov-18	01:24:18
80.	80 181126M1_80	1803578-04 BS1810301350GC 20.67	27-Nov-18	01:34:57
81 We	81 181126M1_81	B8K0120-BS1 OPR 0.25	27-Nov-18	01:45:35
82 \% ${ }^{3}$	82 181126M1_82	B8K0120-BLK1 Method Blank 0.25	27-Nov-18	01:56:08
83.	83 181126M1_83	1803616-01 1811351-01A 0.24367	27-Nov-18	02:06:46
	84 181126M1_84	1803616-02 1811351-02A 0.24367	27-Nov-18	02:17:19
85 W	85 181126M1_85	1803616-03 1811351-03A 0.23891	27-Nov-18	02:27:57
86 :	86 181126M1_86	1803616-04 1811351-04A 0.23803	27-Nov-18	02:38:29
87 W Wi	87 \{81126M1_87	1803616-05 1811351-05A 0.2442	27-Nov-18	02:49:08
88×1 (tew	88 181126M1_88	1803617-01 1811352-01A 0.23776	27-Nov-18	02:59:40
	89 181126M1_89	1803617-02 1811352-02A 0.24714	27-Nov-18	03:10:19
$90.4{ }^{\text {a }}$	90 181126M1_90	IPA	27-Nov-18	03:20:52
91. ${ }^{\text {atem }}$	91 181126M1_91	ST181126M1-15 PFC CS3 18K1906	27-Nov-18	03:31:30
92.	92 181126M1_92	1803618-01 1811353-01A 0.23448	27-Nov-18	03:42:04
93.	[93 181126M1_93	1803618-02 181 1353-02A 0.2386	27-Nov-18	03:52:42
94 :	94 181126M1_94	1803618-03 1811353-03A 0.23967	27-Nov-18	04:03:16
95 Wext	95 181126M1_95	1803618-04 1811353-04A 0.24522	27-Nov-18	04:13:54
96	96 181126M1_96	1803620-01 1811354-01A 0.23589	27-Nov-18	04:24:26
7.	97 181126M1_97	1803620-02 1811354-02A 0.22278	27-Nov-18	04:35:05
98	98 181126M1_98	1803626-02 16-MW-06-SA2 0.1197	27-Nov-18	04:45:37
99	99 181126M1_99	1803626-01@5X 16-HS-03-SA2 0.11792	27-Nov-18	04:56:15
	1... 181126M1_100	IPA	27-Nov-18	05:06:54
1014	1... 181126M1_101	ST181126M1-16 PFC CS3 18K1906	27-Nov-18	05:17:27

Dataset: Z:\Projects\PFAS.PRO\Results\181126M1\181126M1-51.qld
Last Altered: Tuesday, November 27, 2018 07:47:21 Pacific Standard Time
Printed: Tuesday, November 27, 2018 07:49:52 Pacific Standard Time

Method: Z:IProjects\PFAS.PRO\MethDB\PFAS_FULL_80C_112618.mdb 26 Nov 2018 13:53:04 Calibration: Z:|Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_11-26-18.cdb 26 Nov 2018 14:29:06

Name: 181126M1_51, Date: 26-Nov-2018, Time: 20:27:33, ID: ST181126M1-12 PFC CS3 18K1906, Description: PFC CS3 $18 K 1906$
PFBA
F2:MRM of 1 channel,ES-
$213.0>168.8$
$8.922 e^{2}+004$

13C3-PFPeA

13C3-PFBS

F12:MRM of 2 channels,ES-
$327.2>81.1$
$5.223 e+004$

13C2-4:2 FTS

13C2-PFHxA

Last Altered: Tuesday, November 27, 2018 07:47:21 Pacific Standard Time
Printed: \quad Tuesday, November 27, 2018 07:49:52 Pacific Standard Time

Name: 181126M1_51, Date: 26-Nov-2018, Time: 20:27:33, ID: ST181126M1-12 PFC CS3 18K1906, Description: PFC CS3 $18 K 1906$

F18:MRM of 2 channels,ES-

1802-PFHxS

F20:MRM of 1 channel,ES-
$403.0>102.6$

F26:MRM of 2 channels,ES-
$449>98.7$

F27:MRM of 2 channels,ES$463.0>219.0$

Dataset:
Z:IProjects\PFAS.PRO\Resultsi181126M1\181126M1-51.qld
Last Altered: Tuesday, November 27, 2018 07:47:21 Pacific Standard Time
Printed: \quad Tuesday, November 27, 2018 07:49:52 Pacific Standard Time

Name: 181126M1_51, Date: 26-Nov-2018, Time: 20:27:33, ID: ST181126M1-12 PFC CS3 18K1906, Description: PFC CS3 18 K 1906

F53:MRM of 2 channels,ES
$598.8>98.9$

13C8-PFOS
F35:MRM of 1 channel,ES- $\begin{array}{r}507.0>79.9\end{array}$

PFUdA
F46:MRM of 2 channels,ES$563.0>518.9$ $4.436 \mathrm{e}+005$

13C2-PFUdA
F47:MRM of 1 channel,ES.
channel, ES-
$565>519.8$ $5.842 \mathrm{e}+005$

F36:MRM of 2 channels,ES $512.1>21$

d3-N-MeFOSA
F39:MRM of 1 channel,ES $515.2>168.9$

F60:MRM of 2 channels,ES$662.9>319$ $2.173 e+004$

13C2-PFDoA
F55:MRM of 2 channels,ES-
$615.0>569.7$

Dataset: \quad Z:IProjects\PFAS.PRO\Results\181126M1\181126M1-51.qld
Last Altered: Tuesday, November 27, 2018 07:47:21 Pacific Standard Time
Printed: Tuesday, November 27, 2018 07:49:52 Pacific Standard Time

Name: 181126M1_51, Date: 26-Nov-2018, Time: 20:27:33, ID: ST181126M1-12 PFC CS3 18K1906, Description: PFC CS3 18 K1906

Dataset: $\quad Z:$ Projects\PFAS.PRO\Results\181126M1\181126M1-51.qld

Last Altered: Tuesday, November 27, 2018 07:47:21 Pacific Standard Time
Printed: \quad Tuesday, November 27, 2018 07:49:52 Pacific Standard Time

Name: 181126M1_51, Date: 26-Nov-2018, Time: 20:27:33, ID: ST181126M1-12 PFC CS3 18K1906, Description: PFC CS3 18 K1906

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: F:\Projects\PFAS.PRO\Results\181127M1\181127M1-IIS AREA.qld
Last Altered: Wednesday, November 28, 2018 08:10:24 Pacific Standard Time
Printed: \quad Wednesday, November 28, 2018 08:10:42 Pacific Standard Time

Method: F:|Projects\PFAS.PRO\MethDB\PFAS_RS-11-14-18.mdb 28 Nov 2018 08:08:38 Calibration: 28 Nov 2018 08:08:10

Name: 181127M1_2, Date: 27-Nov-2018, Time: 12:22:15, ID: ST181127M1-1 PFC CS0 18K1903, Description: PFC CS0 $18 K 1903$

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	ST181127M1-1 PFC CS0 18K1903	7.26 e 3	100.0	NO
2	$213 C 5-P F H x A$	ST181127M1-1 PFC CS0 18K1903	2.24 e 4	100.0	NO
3	$313 C 3-P F H x S$	ST181127M1-1 PFC CS0 18K1903	2.73 e 3	100.0	NO
4	$413 C 8-P F O A$	ST181127M1-1 PFC CS0 18K1903	2.68 e 4	100.0	NO
5	$513 C 9-P F N A$	ST181127M1-1 PFC CS0 18K1903	1.85 e 4	100.0	NO
6	$613 C 4-P F O S$	ST181127M1-1 PFC CS0 18K1903	2.94 e 3	100.0	NO
7	$713 C 6-P F D A$	ST181127M1-1 PFC CS0 18K1903	$2.12 e 4$	100.0	NO
8	$813 C 7-P F U d A$	ST181127M1-1 PFC CS0 18K1903	$2.27 e 4$	100.0	NO

Name: 181127M1_3, Date: 27-Nov-2018, Time: 12:32:54, ID: QC MEOH LOT JB072509, Description: QC MEOH LOT JB072509

| | \# Name | ID | Area | \%Rec | Area Out |
| :--- | :--- | :--- | :--- | ---: | ---: | ---: |
| 1 | $113 C 4-P F B A$ | QC MEOH LOT JB072509 | 5.63 e 1 | 0.8 | YES |
| 2 | $213 C 5-P F H x A$ | QC MEOH LOT JB072509 | | | NO |
| 3 | $313 C 3-P F H x S$ | QC MEOH LOT JB072509 | | NO | |
| 4 | $413 C 8-P F O A$ | QC MEOH LOT JB072509 | $1.08 e 1$ | 0.0 | YES |
| 5 | $513 C 9-P F N A$ | QC MEOH LOT JB072509 | | | NO |
| 6 | $613 C 4-P F O S$ | QC MEOH LOT JB072509 | $2.82 e 1$ | 1.0 | YES |
| 7 | $713 C 6-P F D A$ | QC MEOH LOT JB072509 | | NO | |
| 8 | $813 C 7-P F U d A$ | QC MEOH LOT JB072509 | | NO | |

Name: 181127M1_4, Date: 27-Nov-2018, Time: 12:43:32, ID: IPA, Description: IPA

	\# Name	ID	Area
1	$113 C 4-P F B A$	IPA	\%Rec
2	$213 C 5-P F H x A$	IPA	NO
3	$313 C 3-P F H x S$	IPA	NO
4	$413 C 8-P F O A$	IPA	NO
5	$513 C 9-P F N A$	IPA	NO
6	$613 C 4-P F O S$	IPA	NO
7	$713 C 6-P F D A$	IPA	NO
8	$813 C 7-P F U d A$	IPA	NO

Name: 181127M1_5, Date: 27-Nov-2018, Time: 12:54:05, ID: 1803659-01 A1-MW-07-SA2 0.11704, Description: A1-MW-07-SA2

\# Name	ID	Area	\%Rec	Area Out
1 13C4-PFBA	1803659-01 A1-MW-07-SA2 0.11704	5.41 e 3	74.5	NO
2 13C5-PFHxA	1803659-01 A1-MW-07-SA2 0.11704	1.02 e 4	45.6	YES
3 13C3-PFHxS	1803659-01 A1-MW-07-SA2 0.11704	1.74 e 3	63.9	NO
4 13C8-PFOA	$1803659-01$ A1-MW-07-SA2 0.11704	1.11 e 4	41.4	YES
5 13C9-PFNA	$1803659-01$ A1-MW-07-SA2 0.11704	7.15 e 3	38.6	YES
6 13C4-PFOS	$1803659-01$ A1-MW-07-SA2 0.11704	1.80 e 3	61.2	NO
7 13C6-PFDA	$1803659-01$ A1-MW-07-SA2 0.11704	7.84 e 3	37.0	YES
8 13C7-PFUdA	$1803659-01$ A1-MW-07-SA2 0.11704	9.15 e 3	40.3	YES

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: \quad F:\Projects\PFAS.PRO\Results\181127M1\181127M1-IIS AREA.qld
Last Altered: Wednesday, November 28, 2018 08:10:24 Pacific Standard Time
Printed: Wednesday, November 28, 2018 08:10:42 Pacific Standard Time

Name: 181127M1_6, Date: 27-Nov-2018, Time: 13:04:43, ID: 1803659-02 A1-MW-23-SA2 0.1178, Description: A1-MW-23-SA2

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803659-02 A1-MW-23-SA2 0.1178	7.35 e 3	101.3	NO
2	2 13C5-PFHxA	1803659-02 A1-MW-23-SA2 0.1178	1.41 e 4	63.1	NO
3	3 13C3-PFHxS	1803659-02 A1-MW-23-SA2 0.1178	2.38 e 3	87.3	NO
4	4 13C8-PFOA	1803659-02 A1-MW-23-SA2 0.1178	1.70 e 4	63.5	NO
5	5 13C9-PFNA	1803659-02 A1-MW-23-SA2 0.1178	1.10 e 4	59.5	NO
6	6 13C4-PFOS	1803659-02 A1-MW-23-SA2 0.1178	2.29 e 3	77.9	NO
7	7 13C6-PFDA	1803659-02 A1-MW-23-SA2 0.1178	1.18 e 4	55.7	NO
8	8 13C7-PFUdA	1803659-02 A1-MW-23-SA2 0.1178	1.51 e 4	66.6	NO

Name: 181127M1_7, Date: 27-Nov-2018, Time: 13:15:22, ID: 1803659-03 A1-MW-25-SA2 0.11426, Description: A1-MW-25-SA2

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1803659-03$ A1-MW-25-SA2 0.11426	7.13 e 3	98.2	NO
2	2 13C5-PFHxA	$1803659-03$ A1-MW-25-SA2 0.11426	1.24 e 4	55.2	NO
3	3 13C3-PFHxS	$1803659-03$ A1-MW-25-SA2 0.11426	2.55 e 3	93.5	NO
4	4 13C8-PFOA	$1803659-03$ A1-MW-25-SA2 0.11426	1.30 e 4	48.6	YES
5	$513 C 9-P F N A$	$1803659-03$ A1-MW-25-SA2 0.11426	8.83 e 3	47.6	YES
6	$613 C 4-P F O S$	$1803659-03$ A1-MW-25-SA2 0.11426	2.68 e 3	91.1	NO
7	$713 C 6-P F D A$	$1803659-03$ A1-MW-25-SA2 0.11426	1.05 e 4	49.6	YES
8	$813 C 7-P F U d A$	$1803659-03$ A1-MW-25-SA2 0.11426	$1.42 e 4$	62.4	NO

Name: 181127M1_8, Date: 27-Nov-2018, Time: 13:25:54, ID: IPA, Description: IPA

\# Name	ID	Area	\%Rec
1	$113 C 4-P F B A$	IPA	Area Out
2	$213 C 5-P F H x A$	IPA	NO
3	$313 C 3-P F H x S$	IPA	NO
4	$413 C 8-P F O A$	IPA	NO
5	$513 C 9-P F N A$	IPA	NO
6	$613 C 4-P F O S$	IPA	NO
7	$713 C 6-P F D A$	IPA	NO
8	$813 C 7-P F U d A$	IPA	NO

Name: 181127M1_9, Date: 27-Nov-2018, Time: 13:36:33, ID: ST181127M1-2 PFC CS3 18K1906, Description: PFC CS3 $18 K 1906$

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	ST181127M1-2 PFC CS3 18K1906	7.53 e 3	103.8	NO
2	$213 C 5-P F H x A$	ST181127M1-2 PFC CS3 18K1906	2.65 e 4	118.4	NO
3	$313 C 3-P F H x S$	ST181127M1-2 PFC CS3 18K1906	3.19 e 3	117.0	NO
4	$413 C 8-P F O A$	ST181127M1-2 PFC CS3 18K1906	3.02 e 4	112.7	NO
5	$513 C 9-P F N A$	ST181127M1-2 PFC CS3 18K1906	2.10 e 4	113.4	NO
6	$613 C 4-P F O S$	ST181127M1-2 PFC CS3 18K1906	3.20 e 3	108.8	NO
7	$713 C 6-P F D A$	ST181127M1-2 PFC CS3 18K1906	2.35 e 4	111.0	NO
8	$813 C 7-P F U d A$	ST181127M1-2 PFC CS3 18K1906	2.75 e 4	120.9	NO

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: \quad F:\Projects\PFAS.PRO\Results\181127M1\181127M1-IIS AREA.qld
Last Altered: Wednesday, November 28, 2018 08:10:24 Pacific Standard Time
Printed: \quad Wednesday, November 28, 2018 08:10:42 Pacific Standard Time

Name: 181127M1_10, Date: 27-Nov-2018, Time: 13:47:11, ID: IPA, Description: IPA

	\# Name	ID	Area
1	$113 C 4-P F B A$	IPA	\%Rec
2	$213 C 5-P F H x A$	IPA	Area Out
3	$313 C 3-P F H x S$	IPA	NO
4	$413 C 8-P F O A$	IPA	NO
5	$513 C 9-P F N A$	IPA	NO
6	$613 C 4-P F O S$	IPA	NO
7	$713 C 6-P F D A$	IPA	NO
8	$813 C 7-P F U d A$	IPA	NO

Name: 181127M1_11, Date: 27-Nov-2018, Time: 15:12:40, ID: 1803553-04 BS1810291445GC 3.51, Description: BS1810291445GC

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1803553-04$ BS1810291445GC 3.51	1.37 e 4	189.0	YES
2	2 13C5-PFHxA	$1803553-04$ BS1810291445GC 3.51	2.61 e 4	116.4	NO
3	$313 C 3-P F H x S$	$1803553-04$ BS1810291445GC 3.51	3.87 e 3	141.6	NO
4	$413 C 8-P F O A$	$1803553-04$ BS1810291445GC 3.51	3.19 e 4	119.0	NO
5	$513 C 9-P F N A$	$1803553-04$ BS1810291445GC 3.51	2.10 e 4	113.3	NO
6	$613 C 4-P F O S$	$1803553-04$ BS1810291445GC 3.51	6.68 e 3	227.5	YES
7	$713 C 6-P F D A$	$1803553-04$ BS1810291445GC 3.51	2.17 e 4	102.6	NO
8	$813 C 7-P F U A A$	$1803553-04$ BS1810291445GC 3.51	$1.83 e 4$	80.4	NO

Name: 181127M1_12, Date: 27-Nov-2018, Time: 15:23:15, ID: IPA, Description: IPA

	\# Name	ID	Area
1	$113 C 4-P F B A$	IPA	
2	$213 C 5-P F H x A$	IPA	Area Out
3	$313 C 3-P F H x S$	IPA	NO
4	$413 C 8-P F O A$	IPA	NO
5	$513 C 9-P F N A$	IPA	NO
6	$613 C 4-P F O S$	IPA	NO
7	$713 C 6-P F D A$	IPA	NO
8	$813 C 7-P F U d A$	IPA	NO

Name: 181127M1_13, Date: 27-Nov-2018, Time: 15:33:53, ID: B8K0162-MS1 Matrix Spike 0.11696, Description: Matrix Spike

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	B8K0162-MS1 Matrix Spike 0.11696	1.39 e 4	191.0	YES
2	2 13C5-PFHxA	B8K0162-MS1 Matrix Spike 0.11696	2.55 e 4	114.0	NO
3	$313 C 3-P F H x S$	B8K0162-MS1 Matrix Spike 0.11696	3.22 e 3	118.1	NO
4	$413 C 8-P F O A$	B8K0162-MS1 Matrix Spike 0.11696	3.04 e 4	113.3	NO
5	$513 C 9-P F N A$	B8K0162-MS1 Matrix Spike 0.11696	1.96 e 4	105.9	NO
6	$613 C 4-P F O S$	B8K0162-MS1 Matrix Spike 0.11696	2.77 e 3	94.4	NO
7	$713 C 6-P F D A$	B8K0162-MS1 Matrix Spike 0.11696	1.65 e 4	77.7	NO
8	$813 C 7-P F U d A$	B8K0162-MS1 Matrix Spike 0.11696	9.80 e 3	43.1	YES

Quantify Sample Summary Report

Vista Analytical Laboratory
Dataset: \quad F:\Projects\PFAS.PRO\Results\181127M1\181127M1-IIS AREA.qld
Last Altered: Wednesday, November 28, 2018 08:10:24 Pacific Standard Time
Printed: Wednesday, November 28, 2018 08:10:42 Pacific Standard Time

Name: 181127M1_14, Date: 27-Nov-2018, Time: 15:44:27, ID: B8K0162-MSD1 Matrix Spike Dup 0.11463, Description: Matrix Spike Dup

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	B8K0162-MSD1 Matrix Spike Dup 0.114...	1.54 e 4	211.7	YES
2	2 13C5-PFHxA	B8K0162-MSD1 Matrix Spike Dup 0.114...	2.84 e 4	126.6	NO
3	3 13C3-PFHxS	B8K0162-MSD1 Matrix Spike Dup 0.114...	3.61 e 3	132.1	NO
4	4 13C8-PFOA	B8K0162-MSD1 Matrix Spike Dup 0.114...	3.23 e 4	120.4	NO
5	5 13C9-PFNA	B8K0162-MSD1 Matrix Spike Dup 0.114...	2.04 e 4	110.1	NO
6	6 13C4-PFOS	B8K0162-MSD1 Matrix Spike Dup 0.114...	3.04 e 3	103.6	NO
7	7 13C6-PFDA	B8K0162-MSD1 Matrix Spike Dup 0.114...	1.60 e 4	75.6	NO
8	8 13C7-PFUdA	B8K0162-MSD1 Matrix Spike Dup 0.114...	8.85e3	39.0	YES

Name: 181127M1_15, Date: 27-Nov-2018, Time: 15:55:05, ID: B8K0162-BS1 OPR 0.125, Description: OPR

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	B8K0162-BS1 OPR 0.125	1.31 e 4	181.2	YES
2	2 13C5-PFHxA	B8K0162-BS1 OPR 0.125	2.47 e 4	110.2	NO
3	3 13C3-PFHxS	B8K0162-BS1 OPR 0.125	3.03 e 3	110.9	NO
4	4 13C8-PFOA	B8K0162-BS1 OPR 0.125	2.61 e 4	97.4	NO
5	5 13C9-PFNA	B8K0162-BS1 OPR 0.125	1.42 e 4	76.4	NO
6	6 13C4-PFOS	B8K0162-BS1 OPR 0.125	1.77 e 3	60.4	NO
7	7 13C6-PFDA	B8K0162-BS1 OPR 0.125	7.53 e 3	35.6	YES
8	8 13C7-PFUdA	B8K0162-BS1 OPR 0.125	2.79 e 3	12.3	YES

Name: 181127M1_16, Date: 27-Nov-2018, Time: 16:05:38, ID: B8K0162-BLK1 Method Blank 0.125, Description: Method Blank

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	B8K0162-BLK1 Method Blank 0.125	1.36 e 4	187.2	YES
2	$213 C 5-P F H x A$	B8K0162-BLK1 Method Blank 0.125	2.54 e 4	113.5	NO
3	$313 C 3-P F H x S$	B8K0162-BLK1 Method Blank 0.125	3.19 e 3	117.1	NO
4	$413 C 8-P F O A$	B8K0162-BLK1 Method Blank 0.125	2.83 e 4	105.7	NO
5	$513 C 9-P F N A$	B8K0162-BLK1 Method Blank 0.125	1.55 e 4	83.7	NO
6	$613 C 4-P F O S$	B8K0162-BLK1 Method Blank 0.125	1.72 e 3	58.4	NO
7	$713 C 6-P F D A$	B8K0162-BLK1 Method Blank 0.125	8.15 e 3	38.5	YES
8	$813 C 7-P F U d A$	B8K0162-BLK1 Method Blank 0.125	2.75 e 3	12.1	YES

Name: 181127M1_17, Date: 27-Nov-2018, Time: 16:16:16, ID: 1803677-01 OC-RW05-1118 0.1159, Description: OC-RW05-1118

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803677-01 OC-RW05-1118 0.1159	1.41 e 4	194.1	YES
2	2 13C5-PFHxA	1803677-01 OC-RW05-1118 0.1159	2.62 e 4	117.1	NO
3	3 13C3-PFHxS	1803677-01 OC-RW05-1118 0.1159	3.05 e 3	111.8	NO
4	4 13C8-PFOA	1803677-01 OC-RW05-1118 0.1159	2.81e4	104.8	NO
5	5 13C9-PFNA	1803677-01 OC-RW05-1118 0.1159	1.48 e 4	80.1	NO
6	6 13C4-PFOS	1803677-01 OC-RW05-1118 0.1159	1.52 e 3	51.9	NO
7	7 13C6-PFDA	1803677-01 OC-RW05-1118 0.1159	7.74 e 3	36.5	YES
8	8 13C7-PFUdA	1803677-01 OC-RW05-1118 0.1159	3.18 e 3	14.0	YES

Quantify Sample Summary Report

Vista Analytical Laboratory
Dataset: \quad F:\Projects\PFAS.PRO\Results\181127M1\181127M1-IIS AREA.qld
Last Altered: Wednesday, November 28, 2018 08:10:24 Pacific Standard Time
Printed: Wednesday, November 28, 2018 08:10:42 Pacific Standard Time

Name: 181127M1_18, Date: 27-Nov-2018, Time: 16:26:49, ID: 1803677-02 OC-RW05P-1118 0.11752, Description: OC-RW05P-1118

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803677-02 OC-RW05P-1118 0.11752	1.40 e 4	193.5	YES
2	2 13C5-PFHxA	1803677-02 OC-RW05P-1118 0.11752	2.61 e 4	116.7	NO
3	3 13C3-PFHxS	1803677-02 OC-RW05P-1118 0.11752	3.16 e 3	115.9	NO
4	4 13C8-PFOA	1803677-02 OC-RW05P-1118 0.11752	3.04 e 4	113.3	NO
5	5 13C9-PFNA	1803677-02 OC-RW05P-1118 0.11752	1.84 e 4	99.2	NO
6	6 13C4-PFOS	1803677-02 OC-RW05P-1118 0.11752	2.06 e 3	70.1	NO
7	7 13C6-PFDA	1803677-02 OC-RW05P-1118 0.11752	1.34 e 4	63.2	NO
8	8 13C7-PFUdA	1803677-02 OC-RW05P-1118 0.11752	6.05 e 3	26.6	YES

Name: 181127M1_19, Date: 27-Nov-2018, Time: 16:37:27, ID: 1803677-03 OC-FB05-1118 0.12187, Description: OC-FB05-1118

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803677-03 OC-FB05-1118 0.12187	1.53 e 4	210.4	YES
2	2 13C5-PFHxA	1803677-03 OC-FB05-1118 0.12187	2.86 e 4	127.5	NO
3	3 13C3-PFHxS	1803677-03 OC-FB05-1118 0.12187	3.33 e 3	121.9	NO
4	4 13C8-PFOA	1803677-03 OC-FB05-1118 0.12187	3.10 e 4	115.5	NO
5	5 13C9-PFNA	1803677-03 OC-FB05-1118 0.12187	1.99 e 4	107.5	NO
6	6 13C4-PFOS	1803677-03 OC-FB05-1118 0.12187	2.48 e 3	84.4	NO
7	7 13C6-PFDA	1803677-03 OC-FB05-1118 0.12187	1.49 e 4	70.4	NO
8	8 13C7-PFUdA	1803677-03 OC-FB05-1118 0.12187	7.06e3	31.0	YES

Name: 181127M1_20, Date: 27-Nov-2018, Time: 16:48:00, ID: B8K0098-BS1 OPR 0.125, Description: OPR

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	B8K0098-BS1 OPR 0.125	1.02 e 4	140.1	NO
2	$213 C 5-P F H x A$	B8K0098-BS1 OPR 0.125	1.97 e 4	87.8	NO
3	$313 C 3-P F H x S$	B8K0098-BS1 OPR 0.125	2.65 e 3	96.9	NO
4	$413 C 8-P F O A$	B8K0098-BS1 OPR 0.125	2.27 e 4	84.7	NO
5	$513 C 9-P F N A$	B8K0098-BS1 OPR 0.125	1.70 e 4	91.6	NO
6	$613 C 4-P F O S$	B8K0098-BS1 OPR 0.125	2.58 e 3	87.9	NO
7	$713 C 6-P F D A$	B8K0098-BS1 OPR 0.125	1.94 e 4	91.5	NO
8	$813 C 7-P F U d A$	B8K0098-BS1 OPR 0.125	2.22 e 4	97.8	NO

Name: 181127M1_21, Date: 27-Nov-2018, Time: 16:58:38, ID: B8K0098-BLK1 Method Blank 0.125, Description: Method Blank

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	B8K0098-BLK1 Method Blank 0.125	9.79 e 3	135.0	NO
2	$213 C 5-P F H x A$	B8K0098-BLK1 Method Blank 0.125	1.87 e 4	83.3	NO
3	$313 C 3-P F H x S$	B8K0098-BLK1 Method Blank 0.125	2.44 e 3	89.5	NO
4	$413 C 8-P F O A$	B8K0098-BLK1 Method Blank 0.125	2.27 e 4	84.6	NO
5	$513 C 9-P F N A$	B8K0098-BLK1 Method Blank 0.125	1.57 e 4	84.7	NO
6	$613 C 4-P F O S$	B8K0098-BLK1 Method Blank 0.125	2.50 e 3	85.1	NO
7	$713 C 6-P F D A$	B8K0098-BLK1 Method Blank 0.125	1.84 e 4	87.0	NO
8	$813 C 7-P F U d A$	B8K0098-BLK1 Method Blank 0.125	2.08 e 4	91.4	NO

Quantify Sample Summary Report

Last Altered: Wednesday, November 28, 2018 08:10:24 Pacific Standard Time Printed: Wednesday, November 28, 2018 08:10:42 Pacific Standard Time

Name: 181127M1_22, Date: 27-Nov-2018, Time: 17:09:12, ID: 1803630-01 277 Bond Rd 0.10443, Description: 277 Bond Rd

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1803630-01277$ Bond Rd 0.10443	7.43 e 3	102.4	NO
2	2 13C5-PFHxA	$1803630-01277$ Bond Rd 0.10443	1.44 e 4	64.1	NO
3	$313 C 3-P F H x S$	$1803630-01277$ Bond Rd 0.10443	2.01 e 3	73.7	NO
4	$413 C 8-P F O A$	$1803630-01277$ Bond Rd 0.10443	1.75 e 4	65.3	NO
5	$513 C 9-P F N A$	$1803630-01277$ Bond Rd 0.10443	1.26 e 4	67.9	NO
6	$613 C 4-P F O S$	$1803630-01277$ Bond Rd 0.10443	2.04 e 3	69.6	NO
7	$713 C 6-P F D A$	$1803630-01277$ Bond Rd 0.10443	1.40 e 4	66.1	NO
8	$813 C 7-P F U d A$	$1803630-01277$ Bond Rd 0.10443	1.67 e 4	73.7	NO

Name: 181127M1_23, Date: 27-Nov-2018, Time: 17:19:51, ID: 1803630-02 292 Bond Rd 0.11197, Description: 292 Bond Rd

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	$1803630-02292$ Bond Rd 0.11197	7.13 e 3	98.2	NO
2	$213 C 5-P F H x A$	$1803630-02292$ Bond Rd 0.11197	1.34 e 4	59.9	NO
3	$313 C 3-P F H x S$	$1803630-02292$ Bond Rd 0.11197	1.89 e 3	69.3	NO
4	$413 C 8-P F O A$	$1803630-02292$ Bond Rd 0.11197	1.58 e 4	59.1	NO
5	$513 C 9-P F N A$	$1803630-02292$ Bond Rd 0.11197	1.13 e 4	61.2	NO
6	$613 C 4-P F O S$	$1803630-02292$ Bond Rd 0.11197	1.80 e 3	61.2	NO
7	$713 C 6-P F D A$	$1803630-02292$ Bond Rd 0.11197	1.30 e 4	61.5	NO
8	$813 C 7-P F U d A$	$1803630-02292$ Bond Rd 0.11197	1.52 e 4	66.8	NO

Name: 181127M1_24, Date: 27-Nov-2018, Time: 17:30:29, ID: 1803630-03 110 Phinney Rd 0.10702, Description: 110 Phinney Rd

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	$1803630-03110$ Phinney Rd 0.10702	6.46 e 3	89.0	NO
2	$213 C 5-P F H x A$	$1803630-03110$ Phinney Rd 0.10702	1.28 e 4	57.2	NO
3	$313 C 3-P F H x S$	$1803630-03110$ Phinney Rd 0.10702	1.67 e 3	61.3	NO
4	$413 C 8-P F O A$	$1803630-03110$ Phinney Rd 0.10702	1.58 e 4	58.7	NO
5	$513 C 9-P F N A$	$1803630-03110$ Phinney Rd 0.10702	1.14 e 4	61.7	NO
6	$613 C 4-P F O S$	$1803630-03110$ Phinney Rd 0.10702	1.82 e 3	62.1	NO
7	$713 C 6-P F D A$	$1803630-03110$ Phinney Rd 0.10702	1.23 e 4	57.9	NO
8	$813 C 7-P F U d A$	$1803630-03110$ Phinney Rd 0.10702	1.46 e 4	64.3	NO

Name: 181127M1_25, Date: 27-Nov-2018, Time: 17:41:02, ID: 1803630-04 305 Bond Rd 0.10908, Description: 305 Bond Rd

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	$1803630-04305$ Bond Rd 0.10908	6.75 e 3	93.1	NO
2	$213 C 5-P F H x A$	$1803630-04305$ Bond Rd 0.10908	1.30 e 4	58.1	NO
3	$313 C 3-P F H x S$	$1803630-04305$ Bond Rd 0.10908	1.68 e 3	61.6	NO
4	$413 C 8-P F O A$	$1803630-04305$ Bond Rd 0.10908	1.52 e 4	56.8	NO
5	$513 C 9-P F N A$	$1803630-04305$ Bond Rd 0.10908	1.09 e 4	58.8	NO
6	$613 C 4-P F O S$	$1803630-04305$ Bond Rd 0.10908	1.76 e 3	60.0	NO
7	$713 C 6-P F D A$	$1803630-04305$ Bond Rd 0.10908	1.25 e 4	59.1	NO
8	$813 C 7-P F U d A$	$1803630-04305$ Bond Rd 0.10908	1.48 e 4	65.0	NO

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: \quad F:\Projects\PFAS.PRO\Results\181127M1\181127M1-IIS AREA.qld
Last Altered: Wednesday, November 28, 2018 08:10:24 Pacific Standard Time
Printed: Wednesday, November 28, 2018 08:10:42 Pacific Standard Time

Name: 181127M1_26, Date: 27-Nov-2018, Time: 17:51:40, ID: 1803630-05 122 Phinney Rd 0.11013, Description: 122 Phinney Rd

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1803630-05122$ Phinney Rd 0.11013	7.18 e 3	98.9	NO
2	$213 C 5-P F H x A$	$1803630-05122$ Phinney Rd 0.11013	1.33 e 4	59.5	NO
3	$313 C 3-P F H x S$	$1803630-05122$ Phinney Rd 0.11013	1.81 e 3	66.2	NO
4	$413 C 8-P F O A$	$1803630-05122$ Phinney Rd 0.11013	1.66 e 4	62.0	NO
5	$513 C 9-P F N A$	$1803630-05122$ Phinney Rd 0.11013	$1.10 e 4$	59.1	NO
6	$613 C 4-P F O S$	$1803630-05122$ Phinney Rd 0.11013	$1.90 e 3$	64.7	NO
7	$713 C 6-P F D A$	$1803630-05122$ Phinney Rd 0.11013	$1.25 e 4$	59.2	NO
8	$813 C 7-P F U d A$	$1803630-05122$ Phinney Rd 0.11013	$1.51 e 4$	66.4	NO

Name: 181127M1_27, Date: 27-Nov-2018, Time: 18:02:13, ID: 1803630-06 123 Phinney Rd 0.09851, Description: 123 Phinney Rd

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1803630-06123$ Phinney Rd 0.09851	8.58 e 3	118.3	NO
2	2 13C5-PFHxA	$1803630-06123$ Phinney Rd 0.09851	1.69 e 4	75.4	NO
3	$313 C 3-P F H x S$	$1803630-06123$ Phinney Rd 0.09851	2.25 e 3	82.5	NO
4	$413 C 8-P F O A$	$1803630-06123$ Phinney Rd 0.09851	2.03 e 4	75.7	NO
5	$513 C 9-P F N A$	$1803630-06123$ Phinney Rd 0.09851	1.44 e 4	77.9	NO
6	$613 C 4-P F O S$	$1803630-06123$ Phinney Rd 0.09851	2.35 e 3	79.9	NO
7	$713 C 6-P F D A$	$1803630-06123$ Phinney Rd 0.09851	1.48 e 4	70.0	NO
8	$813 C 7-P F U d A$	$1803630-06123$ Phinney Rd 0.09851	1.83 e 4	80.5	NO

Name: 181127M1_28, Date: 27-Nov-2018, Time: 18:12:52, ID: IPA, Description: IPA

	\# Name	ID	Area	\%Rec
1	$113 C 4-P F B A$	IPA		Area Out
2	$213 C 5-P F H x A$	IPA		NO
3	$313 C 3-P F H x S$	IPA		NO
4	$413 C 8-P F O A$	IPA		NO
5	$513 C 9-P F N A$	IPA		NO
6	$613 C 4-P F O S$	IPA		NO
7	$713 C 6-P F D A$	IPA	1.04 e 1	0.0
8	$813 C 7-P F U d A$	IPA		NO

Name: 181127M1_29, Date: 27-Nov-2018, Time: 18:23:26, ID: ST181127M1-3 PFC CS3 18K1906, Description: PFC CS3 18 K 1906

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	ST181127M1-3 PFC CS3 18K1906	8.69 e 3	119.8	NO
2	$213 C 5-P F H x A$	ST181127M1-3 PFC CS3 18K1906	2.86 e 4	127.8	NO
3	$313 C 3-P F H x S$	ST181127M1-3 PFC CS3 18K1906	3.47 e 3	127.0	NO
4	$413 C 8-P F O A$	ST181127M1-3 PFC CS3 18K1906	3.25 e 4	121.3	NO
5	$513 C 9-P F N A$	ST181127M1-3 PFC CS3 18K1906	2.32 e 4	125.1	NO
6	$613 C 4-P F O S$	ST181127M1-3 PFC CS3 18K1906	3.58 e 3	121.8	NO
7	$713 C 6-P F D A$	ST181127M1-3 PFC CS3 18K1906	2.70 e 4	127.5	NO
8	$813 C 7-P F U d A$	ST181127M1-3 PFC CS3 18K1906	3.06 e 4	134.6	NO

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: \quad F:\Projects\PFAS.PRO\Results\181127M1\181127M1-IIS AREA.qld
Last Altered: Wednesday, November 28, 2018 08:10:24 Pacific Standard Time
Printed: Wednesday, November 28, 2018 08:10:42 Pacific Standard Time

Name: 181127M1_30, Date: 27-Nov-2018, Time: 18:34:04, ID: IPA, Description: IPA

	\# Name	ID	Area
1	$113 C 4-P F B A$	IPA	\%Rec
2	$213 C 5-P F H x A$	IPA	Area Out
3	$313 C 3-P F H x S$	IPA	NO
4	$413 C 8-P F O A$	IPA	NO
5	$513 C 9-P F N A$	IPA	NO
6	$613 C 4-P F O S$	IPA	NO
7	$713 C 6-P F D A$	IPA	NO
8	$813 C 7-P F U d A$	IPA	NO

Name: 181127M1_31, Date: 27-Nov-2018, Time: 18:44:37, ID: 1803630-07 277 Bond Rd FRB 0.11327, Description: 277 Bond Rd FRB

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1803630-07277$ Bond Rd FRB 0.11327	9.13 e 3	125.9	NO
2	2 13C5-PFHxA	$1803630-07277$ Bond Rd FRB 0.11327	1.77 e 4	79.2	NO
3	$313 C 3-P F H x S$	$1803630-07277$ Bond Rd FRB 0.11327	2.34 e 3	85.8	NO
4	4 13C8-PFOA	$1803630-07277$ Bond Rd FRB 0.11327	2.11 e 4	78.5	NO
5	$513 C 9-P F N A$	$1803630-07277$ Bond Rd FRB 0.11327	1.46 e 4	78.7	NO
6	$613 C 4-P F O S$	$1803630-07277$ Bond Rd FRB 0.11327	2.28 e 3	77.6	NO
7	$713 C 6-P F D A$	$1803630-07277$ Bond Rd FRB 0.11327	1.70 e 4	80.2	NO
8	$813 C 7-P F U d A$	$1803630-07277$ Bond Rd FRB 0.11327	1.99 e 4	87.6	NO

Name: 181127M1_32, Date: 27-Nov-2018, Time: 18:55:15, ID: B8K0105-BS1 OPR 0.125, Description: OPR

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	B8K0105-BS1 OPR 0.125	1.03 e 4	142.2	NO
2	$213 C 5-P F H x A$	B8K0105-BS1 OPR 0.125	1.96 e 4	87.4	NO
3	$313 C 3-P F H x S$	B8K0105-BS1 OPR 0.125	2.48 e 3	91.0	NO
4	$413 C 8-P F O A$	B8K0105-BS1 OPR 0.125	2.32 e 4	86.4	NO
5	$513 C 9-P F N A$	B8K0105-BS1 OPR 0.125	1.63 e 4	88.2	NO
6	$613 C 4-P F O S$	B8K0105-BS1 OPR 0.125	2.46 e 3	83.7	NO
7	$713 C 6-P F D A$	B8K0105-BS1 OPR 0.125	1.84 e 4	86.7	NO
8	$813 C 7-P F U d A$	B8K0105-BS1 OPR 0.125	2.20 e 4	96.6	NO

Name: 181127M1_33, Date: 27-Nov-2018, Time: 19:05:49, ID: B8K0105-BLK1 Method Blank 0.125, Description: Method Blank

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	B8K0105-BLK1 Method Blank 0.125	9.95e3	137.1	NO
2	2 13C5-PFHxA	B8K0105-BLK1 Method Blank 0.125	1.91 e 4	85.5	NO
3	3 13C3-PFHxS	B8K0105-BLK1 Method Blank 0.125	2.35 e 3	86.0	NO
4	4 13C8-PFOA	B8K0105-BLK1 Method Blank 0.125	2.32 e 4	86.5	NO
5	5 13C9-PFNA	B8K0105-BLK1 Method Blank 0.125	1.66 e 4	89.4	NO
6	6 13C4-PFOS	B8K0105-BLK1 Method Blank 0.125	2.49 e 3	84.6	NO
7	7 13C6-PFDA	B8K0105-BLK1 Method Blank 0.125	1.89 e 4	89.4	NO
8	8 13C7-PFUdA	B8K0105-BLK1 Method Blank 0.125	2.10 e 4	92.3	NO

Quantify Sample Summary Report

Last Altered: Wednesday, November 28, 2018 08:10:24 Pacific Standard Time
Printed: Wednesday, November 28, 2018 08:10:42 Pacific Standard Time

Name: 181127M1_34, Date: 27-Nov-2018, Time: 19:16:27, ID: 1803643-01 DPH-MW10-17 0.11455, Description: DPH-MW10-17

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803643-01 DPH-MW10-17 0.11455	1.09 e 4	150.6	YES
2	2 13C5-PFHxA	1803643-01 DPH-MW10-17 0.11455	2.13 e 4	95.0	NO
3	3 13C3-PFHxS	1803643-01 DPH-MW10-17 0.11455	2.76 e 3	101.0	NO
4	4 13C8-PFOA	1803643-01 DPH-MW10-17 0.11455	2.57 e 4	96.0	NO
5	5 13C9-PFNA	1803643-01 DPH-MW10-17 0.11455	1.94 e 4	104.6	NO
6	6 13C4-PFOS	1803643-01 DPH-MW10-17 0.11455	2.97 e 3	101.0	NO
7	7 13C6-PFDA	1803643-01 DPH-MW 10-17 0.11455	2.13 e 4	100.8	NO
8	8 13C7-PFUdA	1803643-01 DPH-MW10-17 0.11455	2.46 e 4	108.4	NO

Name: 181127M1_35, Date: 27-Nov-2018, Time: 19:27:05, ID: 1803643-02 DPH-MW8-17 0.11432, Description: DPH-MW8-17

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803643-02 DPH-MW8-17 0.11432	1.01 e 4	139.1	NO
2	2 13C5-PFHxA	1803643-02 DPH-MW8-17 0.11432	2.00 e 4	89.1	NO
3	3 13C3-PFHxS	1803643-02 DPH-MW8-17 0.11432	2.59 e 3	94.8	NO
4	4 13C8-PFOA	1803643-02 DPH-MW8-17 0.11432	2.49 e 4	92.7	NO
5	5 13C9-PFNA	1803643-02 DPH-MW8-17 0.11432	1.80 e 4	97.4	NO
6	6 13C4-PFOS	1803643-02 DPH-MW8-17 0.11432	2.60 e 3	88.4	NO
7	7 13C6-PFDA	1803643-02 DPH-MW8-17 0.11432	2.03 e 4	95.9	NO
8	8 13C7-PFUdA	1803643-02 DPH-MW8-17 0.11432	2.35 e 4	103.3	NO

Name: 181127M1_36, Date: 27-Nov-2018, Time: 19:37:44, ID: 1803643-03 DPH-MW5-17 0.11778, Description: DPH-MW5-17

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803643-03 DPH-MW5-17 0.11778	1.05 e 4	145.3	NO
2	2 13C5-PFHxA	1803643-03 DPH-MW5-17 0.11778	2.04 e 4	91.0	NO
3	3 13C3-PFHxS	1803643-03 DPH-MW5-17 0.11778	2.62 e 3	95.8	NO
4	4 13C8-PFOA	1803643-03 DPH-MW5-17 0.11778	2.39 e 4	89.2	NO
5	5 13C9-PFNA	1803643-03 DPH-MW5-17 0.11778	1.69 e 4	91.3	NO
6	6 13C4-PFOS	1803643-03 DPH-MW5-17 0.11778	2.61 e 3	88.9	NO
7	7 13C6-PFDA	1803643-03 DPH-MW5-17 0.11778	1.92 e 4	90.9	NO
8	8 13C7-PFUdA	1803643-03 DPH-MW5-17 0.11778	2.22 e 4	97.5	NO

Name: 181127M1_37, Date: 27-Nov-2018, Time: 19:48:16, ID: 1803643-04 DPH-MW9-17 0.11197, Description: DPH-MW9-17

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1803643-04$ DPH-MW9-17 0.11197	9.78 e 3	134.8	NO
2	2 13C5-PFHxA	$1803643-04$ DPH-MW9-17 0.11197	1.82 e 4	81.5	NO
3	$313 C 3-P F H x S$	$1803643-04$ DPH-MW9-17 0.11197	2.38 e 3	87.4	NO
4	$413 C 8-P F O A$	$1803643-04$ DPH-MW9-17 0.11197	2.20 e 4	82.1	NO
5	$513 C 9-P F N A$	$1803643-04$ DPH-MW9-17 0.11197	1.53 e 4	82.6	NO
6	$613 C 4-P F O S$	$1803643-04$ DPH-MW9-17 0.11197	2.30 e 3	78.2	NO
7	$713 C 6-P F D A$	$1803643-04$ DPH-MW9-17 0.11197	1.74 e 4	82.3	NO
8	$813 C 7-P F U d A$	$1803643-04$ DPH-MW9-17 0.11197	2.03 e 4	89.5	NO

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: \quad F:\Projects\PFAS.PRO\Results\181127M1\181127M1-IIS AREA.qld
Last Altered: Wednesday, November 28, 2018 08:10:24 Pacific Standard Time
Printed: Wednesday, November 28, 2018 08:10:42 Pacific Standard Time

Name: 181127M1_38, Date: 27-Nov-2018, Time: 19:58:55, ID: 1803643-05 DPH-MW4-17 0.11305, Description: DPH-MW4-17

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803643-05 DPH-MW4-17 0.11305	1.00 e 4	138.0	NO
2	2 13C5-PFHxA	1803643-05 DPH-MW4-17 0.11305	1.97 e 4	88.0	NO
3	3 13C3-PFHxS	1803643-05 DPH-MW4-17 0.11305	2.54 e 3	93.0	NO
4	4 13C8-PFOA	1803643-05 DPH-MW4-17 0.11305	2.42 e 4	90.2	NO
5	5 13C9-PFNA	1803643-05 DPH-MW4-17 0.11305	1.76 e 4	94.8	NO
6	6 13C4-PFOS	1803643-05 DPH-MW4-17 0.11305	2.73 e 3	92.8	NO
7	7 13C6-PFDA	1803643-05 DPH-MW4-17 0.11305	2.01 e 4	94.9	NO
8	8 13C7-PFUdA	1803643-05 DPH-MW4-17 0.11305	2.25 e 4	99.2	NO

Name: 181127M1_39, Date: 27-Nov-2018, Time: 20:09:28, ID: 1803643-06 DPH-MW2-17 0.11423, Description: DPH-MW2-17

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803643-06 DPH-MW2-17 0.11423	1.03 e 4	142.3	NO
2	2 13C5-PFHxA	1803643-06 DPH-MW2-17 0.11423	2.03 e 4	90.8	NO
3	3 13C3-PFHxS	1803643-06 DPH-MW2-17 0.11423	2.76 e 3	101.1	NO
4	4 13C8-PFOA	1803643-06 DPH-MW2-17 0.11423	2.43 e 4	90.8	NO
5	5 13C9-PFNA	1803643-06 DPH-MW2-17 0.11423	1.84 e 4	99.1	NO
6	6 13C4-PFOS	1803643-06 DPH-MW2-17 0.11423	2.92 e 3	99.5	NO
7	7 13C6-PFDA	1803643-06 DPH-MW2-17 0.11423	2.06 e 4	97.1	NO
8	8 13C7-PFUdA	1803643-06 DPH-MW2-17 0.11423	2.47 e 4	108.8	NO

Name: 181127M1_40, Date: 27-Nov-2018, Time: 20:20:06, ID: 1803643-07 DPH-B5 0.11397, Description: DPH-B5

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	$1803643-07 ~ D P H-B 50.11397$	9.50 e 3	130.9	NO
2	$213 C 5-P F H x A$	$1803643-07$ DPH-B5 0.11397	1.90 e 4	84.6	NO
3	$313 C 3-P F H x S$	$1803643-07$ DPH-B5 0.11397	2.42 e 3	88.6	NO
4	$413 C 8-P F O A$	$1803643-07$ DPH-B5 0.11397	2.29 e 4	85.5	NO
5	$513 C 9-P F N A$	$1803643-07$ DPH-B5 0.11397	1.59 e 4	85.7	NO
6	$613 C 4-P F O S$	$1803643-07$ DPH-B5 0.11397	2.46 e 3	83.6	NO
7	$713 C 6-P F D A$	$1803643-07$ DPH-B5 0.11397	1.84 e 4	86.8	NO
8	$813 C 7-P F U d A$	$1803643-07$ DPH-B5 0.11397	2.15 e 4	94.5	NO

Name: 181127M1_41, Date: 27-Nov-2018, Time: 20:30:44, ID: 1803643-08 DPH-MW1-17 0.1163, Description: DPH-MW1-17

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803643-08 DPH-MW1-17 0.1163	1.05 e 4	144.6	NO
2	2 13C5-PFHxA	1803643-08 DPH-MW1-17 0.1163	2.05 e 4	91.3	NO
3	3 13C3-PFHxS	1803643-08 DPH-MW1-17 0.1163	2.57 e 3	94.2	NO
4	4 13C8-PFOA	1803643-08 DPH-MW1-17 0.1163	2.47 e 4	92.1	NO
5	5 13C9-PFNA	1803643-08 DPH-MW1-17 0.1163	1.73 e 4	93.1	NO
6	6 13C4-PFOS	1803643-08 DPH-MW1-17 0.1163	2.62 e 3	89.1	NO
7	7 13C6-PFDA	1803643-08 DPH-MW1-17 0.1163	1.99 e 4	93.9	NO
8	8 13C7-PFUdA	1803643-08 DPH-MW1-17 0.1163	2.25 e 4	99.1	NO

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: F:\Projects\PFAS.PRO\Results\181127M1\181127M1-IIS AREA.qld
Last Altered: Wednesday, November 28, 2018 08:10:24 Pacific Standard Time
Printed: \quad Wednesday, November 28, 2018 08:10:42 Pacific Standard Time

Name: 181127M1_42, Date: 27-Nov-2018, Time: 20:41:18, ID: 1803643-09 DPH-EX4 0.11442, Description: DPH-EX4

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803643-09 DPH-EX4 0.11442	9.80 e 3	135.0	NO
2	2 13C5-PFHxA	1803643-09 DPH-EX4 0.11442	1.88 e 4	83.9	NO
3	3 13C3-PFHxS	1803643-09 DPH-EX4 0.11442	2.44 e 3	89.5	NO
4	4 13C8-PFOA	1803643-09 DPH-EX4 0.11442	2.25 e 4	83.7	NO
5	5 13C9-PFNA	1803643-09 DPH-EX4 0.11442	1.58 e 4	85.3	NO
6	6 13C4-PFOS	1803643-09 DPH-EX4 0.11442	2.48 e 3	84.5	NO
7	7 13C6-PFDA	1803643-09 DPH-EX4 0.11442	1.87 e 4	88.5	NO
8	8 13C7-PFUdA	1803643-09 DPH-EX4 0.11442	2.12 e 4	93.5	NO

Name: 181127M1_43, Date: 27-Nov-2018, Time: 20:51:56, ID: IPA, Description: IPA

	\# Name	ID	Area
1	$113 C 4-P F B A$	IPA	\%Rec
2	$213 C 5-P F H x A$	IPA	NO
3	$313 C 3-P F H x S$	IPA	NO
4	$413 C 8-P F O A$	IPA	NO
5	$513 C 9-P F N A$	IPA	NO
6	$613 C 4-P F O S$	IPA	NO
7	$713 C 6-P F D A$	IPA	NO
8	$813 C 7-P F U d A$	IPA	NO

Name: 181127M1_44, Date: 27-Nov-2018, Time: $21: 02: 28$, ID: ST181127M1-4 PFC CS3 18K1906, Description: PFC CS3 18K1906

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	ST181127M1-4 PFC CS3 18K1906	8.73 e 3	120.2	NO
2	$213 C 5-P F H x A$	ST181127M1-4 PFC CS3 18K1906	2.86 e 4	127.8	NO
3	$313 C 3-P F H x S$	ST181127M1-4 PFC CS3 18K1906	3.55 e 3	130.2	NO
4	$413 C 8-P F O A$	ST181127M1-4 PFC CS3 18K1906	3.37 e 4	125.8	NO
5	$513 C 9-P F N A$	ST181127M1-4 PFC CS3 18K1906	2.36 e 4	127.1	NO
6	$613 C 4-P F O S$	ST181127M1-4 PFC CS3 18K1906	3.67 e 3	124.9	NO
7	$713 C 6-P F D A$	ST181127M1-4 PFC CS3 18K1906	2.73 e 4	129.2	NO
8	$813 C 7-P F U d A$	ST181127M1-4 PFC CS3 18K1906	$3.10 e 4$	136.6	NO

Name: 181127M1_45, Date: 27-Nov-2018, Time: 21:13:06, ID: IPA, Description: IPA

	\# Name	ID	Area	\%Rec
1	$113 C 4-P F B A$	IPA		Area Out
2	$213 C 5-P F H x A$	IPA		NO
3	$313 C 3-P F H x S$	IPA		NO
4	$413 C 8-P F O A$	IPA		NO
5	$513 C 9-P F N A$	IPA		NO
6	$613 C 4-P F O S$	IPA	$6.03 e 0$	NO
7	$713 C 6-P F D A$	IPA		NO
8	$813 C 7-P F U d A$	IPA		YES

Quantify Sample Summary Report

Last Altered: Wednesday, November 28, 2018 08:10:24 Pacific Standard Time Printed: Wednesday, November 28, 2018 08:10:42 Pacific Standard Time

Name: 181127M1_46, Date: 27-Nov-2018, Time: $21: 23: 39$, ID: 1803645-01 DPH-MW6 0.11548, Description: DPH-MW6

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1803645-01$ DPH-MW6 0.11548	1.07 e 4	147.1	NO
2	2 13C5-PFHxA	$1803645-01$ DPH-MW6 0.11548	2.03 e 4	90.4	NO
3	$313 C 3-P F H x S$	$1803645-01$ DPH-MW6 0.11548	2.54 e 3	93.2	NO
4	$413 C 8-P F O A$	$1803645-01$ DPH-MW6 0.11548	2.49 e 4	92.8	NO
5	$513 C 9-P F N A$	$1803645-01$ DPH-MW6 0.11548	1.71 e 4	92.2	NO
6	$613 C 4-P F O S$	$1803645-01$ DPH-MW6 0.11548	2.63 e 3	89.5	NO
7	$713 C 6-P F D A$	$1803645-01$ DPH-MW6 0.11548	2.00 e 4	94.6	NO
8	$813 C 7-P F U d A$	$1803645-01$ DPH-MW6 0.11548	2.29 e 4	100.7	NO

Name: 181127M1_47, Date: 27-Nov-2018, Time: 21:34:18, ID: 1803645-02 DPH-MW21 0.11562, Description: DPH-MW21

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1803645-02$ DPH-MW21 0.11562	$1.01 e 4$	139.8	NO
2	2 13C5-PFHxA	$1803645-02$ DPH-MW21 0.11562	1.99 e 4	88.7	NO
3	$313 C 3-P F H x S$	$1803645-02$ DPH-MW21 0.11562	2.56 e 3	93.7	NO
4	$413 C 8-P F O A$	$1803645-02$ DPH-MW21 0.11562	2.43 e 4	90.5	NO
5	$513 C 9-P F N A$	$1803645-02$ DPH-MW21 0.11562	1.66 e 4	89.3	NO
6	$613 C 4-P F O S$	$1803645-02$ DPH-MW21 0.11562	2.62 e 3	89.1	NO
7	$713 C 6-P F D A$	$1803645-02$ DPH-MW21 0.11562	1.93 e 4	91.1	NO
8	$813 C 7-P F U d A$	$1803645-02$ DPH-MW21 0.11562	2.23 e 4	98.3	NO

Name: 181127M1_48, Date: 27-Nov-2018, Time: 21:44:56, ID: 1803645-03 DPH-MW15D 0.11807, Description: DPH-MW15D

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803645-03 DPH-MW15D 0.11807	9.26 e 3	127.7	NO
2	2 13C5-PFHxA	1803645-03 DPH-MW15D 0.11807	1.81 e 4	80.8	NO
3	3 13C3-PFHxS	1803645-03 DPH-MW15D 0.11807	2.55 e 3	93.5	NO
4	4 13C8-PFOA	1803645-03 DPH-MW15D 0.11807	2.21 e 4	82.2	NO
5	5 13C9-PFNA	1803645-03 DPH-MW15D 0.11807	1.59 e 4	85.7	NO
6	6 13C4-PFOS	1803645-03 DPH-MW15D 0.11807	2.62 e 3	89.3	NO
7	7 13C6-PFDA	1803645-03 DPH-MW15D 0.11807	1.91 e 4	90.4	NO
8	8 13C7-PFUdA	1803645-03 DPH-MW15D 0.11807	2.24 e 4	98.6	NO

Name: 181127M1_49, Date: 27-Nov-2018, Time: 21:55:28, ID: 1803645-04 DPH-MW22 0.11748, Description: DPH-MW22

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	$1803645-04$ DPH-MW22 0.11748	9.76 e 3	134.5	NO
2	$213 C 5-P F H x A$	$1803645-04$ DPH-MW22 0.11748	1.89 e 4	84.5	NO
3	$313 C 3-P F H x S$	$1803645-04$ DPH-MW22 0.11748	2.55 e 3	93.6	NO
4	$413 C 8-P F O A$	$1803645-04$ DPH-MW22 0.11748	2.25 e 4	84.0	NO
5	$513 C 9-P F N A$	$1803645-04$ DPH-MW22 0.11748	1.64 e 4	88.6	NO
6	$613 C 4-P F O S$	$1803645-04$ DPH-MW22 0.11748	2.70 e 3	91.8	NO
7	$713 C 6-P F D A$	$1803645-04$ DPH-MW22 0.11748	1.81 e 4	85.4	NO
8	$813 C 7-P F U d A$	$1803645-04$ DPH-MW22 0.11748	2.13 e 4	93.6	NO

Quantify Sample Summary Report

Last Altered: Wednesday, November 28, 2018 08:10:24 Pacific Standard Time Printed: Wednesday, November 28, 2018 08:10:42 Pacific Standard Time

Name: 181127M1_50, Date: 27-Nov-2018, Time: 22:06:07, ID: 1803649-01 DPH-MW18 0.11992, Description: DPH-MW18

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1803649-01$ DPH-MW18 0.11992	9.76 e 3	134.6	NO
2	2 13C5-PFHxA	$1803649-01$ DPH-MW18 0.11992	1.92 e 4	85.5	NO
3	$313 C 3-P F H x S$	$1803649-01$ DPH-MW18 0.11992	2.59 e 3	95.0	NO
4	$413 C 8-P F O A$	$1803649-01$ DPH-MW18 0.11992	2.28 e 4	84.9	NO
5	$513 C 9-P F N A$	$1803649-01$ DPH-MW18 0.11992	1.60 e 4	86.2	NO
6	$613 C 4-P F O S$	$1803649-01$ DPH-MW18 0.11992	2.44 e 3	82.9	NO
7	$713 C 6-P F D A$	$1803649-01$ DPH-MW18 0.11992	$1.82 e 4$	85.8	NO
8	$813 C 7-P F U d A$	$1803649-01$ DPH-MW18 0.11992	$2.13 e 4$	93.7	NO

Name: 181127M1_51, Date: 27-Nov-2018, Time: 22:16:45, ID: 1803649-02 DPH-MW19 0.11728, Description: DPH-MW19

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803649-02 DPH-MW19 0.11728	1.03 e 4	142.4	NO
2	2 13C5-PFHxA	1803649-02 DPH-MW19 0.11728	2.03 e 4	90.8	NO
3	3 13C3-PFHxS	1803649-02 DPH-MW19 0.11728	2.81 e 3	102.8	NO
4	4 13C8-PFOA	1803649-02 DPH-MW19 0.11728	2.50 e 4	93.4	NO
5	5 13C9-PFNA	1803649-02 DPH-MW19 0.11728	1.82 e 4	98.2	NO
6	6 13C4-PFOS	1803649-02 DPH-MW19 0.11728	2.86 e 3	97.4	NO
7	7 13C6-PFDA	1803649-02 DPH-MW19 0.11728	2.04 e 4	96.3	NO
8	8 13C7-PFUdA	1803649-02 DPH-MW19 0.11728	2.36 e 4	103.8	NO

Name: 181127M1_52, Date: 27-Nov-2018, Time: 22:27:18, ID: 1803649-03 DPH-SW1 0.1142, Description: DPH-SW1

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	$1803649-03$ DPH-SW1 0.1142	9.68 e 3	133.4	NO
2	$213 C 5-P F H x A$	$1803649-03$ DPH-SW1 0.1142	1.88 e 4	84.1	NO
3	$313 C 3-P F H x S$	$1803649-03$ DPH-SW1 0.1142	2.22 e 3	81.4	NO
4	$413 C 8-P F O A$	$1803649-03$ DPH-SW1 0.1142	2.24 e 4	83.4	NO
5	$513 C 9-P F N A$	$1803649-03$ DPH-SW1 0.1142	1.45 e 4	78.1	NO
6	$613 C 4-P F O S$	$1803649-03$ DPH-SW1 0.1142	2.37 e 3	80.7	NO
7	$713 C 6-P F D A$	$1803649-03$ DPH-SW1 0.1142	1.76 e 4	82.9	NO
8	$813 C 7-P F U d A$	$1803649-03$ DPH-SW1 0.1142	1.99 e 4	87.7	NO

Name: 181127M1_53, Date: 27-Nov-2018, Time: 22:37:57, ID: 1803649-04 DPH-SW3 0.11432, Description: DPH-SW3

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	$1803649-04$ DPH-SW3 0.11432	1.07 e 4	147.6	NO
2	$213 C 5-P F H x A$	$1803649-04$ DPH-SW3 0.11432	2.06 e 4	91.9	NO
3	$313 C 3-P F H x S$	$1803649-04$ DPH-SW3 0.11432	2.58 e 3	94.6	NO
4	$413 C 8-P F O A$	$1803649-04$ DPH-SW3 0.11432	2.41 e 4	89.8	NO
5	$513 C 9-P F N A$	$1803649-04$ DPH-SW3 0.11432	1.73 e 4	93.1	NO
6	$613 C 4-P F O S$	$1803649-04$ DPH-SW3 0.11432	2.64 e 3	89.9	NO
7	$713 C 6-P F D A$	$1803649-04$ DPH-SW3 0.11432	1.93 e 4	91.3	NO
8	$813 C 7-P F U d A$	$1803649-04$ DPH-SW3 0.11432	2.20 e 4	96.7	NO

Quantify Sample Summary Report

Last Altered: Wednesday, November 28, 2018 08:10:24 Pacific Standard Time Printed: Wednesday, November 28, 2018 08:10:42 Pacific Standard Time

Name: 181127M1_54, Date: 27-Nov-2018, Time: 22:48:35, ID: 1803649-05 DPH-SW4 0.11082, Description: DPH-SW4

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1803649-05$ DPH-SW4 0.11082	9.73 e 3	134.0	NO
2	$213 C 5-P F H x A$	$1803649-05$ DPH-SW4 0.11082	1.86 e 4	83.1	NO
3	$313 C 3-P F H x S$	$1803649-05$ DPH-SW4 0.11082	2.32 e 3	85.1	NO
4	$413 C 8-P F O A$	$1803649-05$ DPH-SW4 0.11082	2.28 e 4	84.9	NO
5	$513 C 9-P F N A$	$1803649-05$ DPH-SW4 0.11082	1.51 e 4	81.7	NO
6	$613 C 4-P F O S$	$1803649-05$ DPH-SW4 0.11082	$2.47 e 3$	84.0	NO
7	$713 C 6-P F D A$	$1803649-05$ DPH-SW4 0.11082	1.84 e 4	86.7	NO
8	$813 C 7-P F U d A$	$1803649-05$ DPH-SW4 0.11082	$2.12 e 4$	93.2	NO

Name: 181127M1_55, Date: 27-Nov-2018, Time: 22:59:07, ID: B8K0133-BS1 OPR 0.125, Description: OPR

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	B8K0133-BS1 OPR 0.125	1.03 e 4	141.9	NO
2	$213 C 5-P F H x A$	B8K0133-BS1 OPR 0.125	1.98 e 4	88.3	NO
3	$313 C 3-P F H x S$	B8K0133-BS1 OPR 0.125	2.82 e 3	103.4	NO
4	$413 C 8-P F O A$	B8K0133-BS1 OPR 0.125	2.47 e 4	92.1	NO
5	$513 C 9-P F N A$	B8K0133-BS1 OPR 0.125	1.84 e 4	99.1	NO
6	$613 C 4-P F O S$	B8K0133-BS1 OPR 0.125	2.91 e 3	98.9	NO
7	$713 C 6-P F D A$	B8K0133-BS1 OPR 0.125	2.16 e 4	102.0	NO
8	$813 C 7-P F U d A$	B8K0133-BS1 OPR 0.125	2.53 e 4	111.2	NO

Name: 181127M1_56, Date: 27-Nov-2018, Time: 23:09:45, ID: B8K0133-BLK1 Method Blank 0.125, Description: Method Blank

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	B8K0133-BLK1 Method Blank 0.125	1.19 e 4	164.0	YES
2	2 13C5-PFHxA	B8K0133-BLK1 Method Blank 0.125	2.25 e 4	100.6	NO
3	3 13C3-PFHxS	B8K0133-BLK1 Method Blank 0.125	2.80 e 3	102.7	NO
4	4 13C8-PFOA	B8K0133-BLK1 Method Blank 0.125	2.69 e 4	100.4	NO
5	5 13C9-PFNA	B8K0133-BLK1 Method Blank 0.125	1.88 e 4	101.5	NO
6	6 13C4-PFOS	B8K0133-BLK1 Method Blank 0.125	2.85 e 3	97.0	NO
7	7 13C6-PFDA	B8K0133-BLK1 Method Blank 0.125	2.17 e 4	102.4	NO
8	8 13C7-PFUdA	B8K0133-BLK1 Method Blank 0.125	2.42 e 4	106.6	NO

Name: 181127M1_57, Date: 27-Nov-2018, Time: 23:20:24, ID: 1803638-01 Ireland 0.11664, Description: Ireland

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	$1803638-01$ Ireland 0.11664	9.13 e 3	125.8	NO
2	$213 C 5-P F H x A$	$1803638-01$ Ireland 0.11664	1.75 e 4	78.0	NO
3	$313 C 3-P F H x S$	$1803638-01$ Ireland 0.11664	2.88 e 3	105.6	NO
4	$413 C 8-P F O A$	$1803638-01$ Ireland 0.11664	2.02 e 4	75.3	NO
5	$513 C 9-P F N A$	$1803638-01$ Ireland 0.11664	1.44 e 4	77.6	NO
6	$613 C 4-P F O S$	$1803638-01$ Ireland 0.11664	2.90 e 3	98.8	NO
7	$713 C 6-P F D A$	$1803638-01$ Ireland 0.11664	1.74 e 4	82.4	NO
8	$813 C 7-P F U d A$	$1803638-01$ Ireland 0.11664	2.07 e 4	90.9	NO

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: F:\Projects\PFAS.PRO\Results\181127M1\181127M1-IIS AREA.qld
Last Altered: Wednesday, November 28, 2018 08:10:24 Pacific Standard Time
Printed: \quad Wednesday, November 28, 2018 08:10:42 Pacific Standard Time

Name: 181127M1_58, Date: 27-Nov-2018, Time: 23:30:57, ID: IPA, Description: IPA

	\# Name	ID	Area
1	$113 C 4-P F B A$	IPA	\%Rec
2	$213 C 5-P F H x A$	IPA	NO
3	$313 C 3-P F H x S$	IPA	NO
4	$413 C 8-P F O A$	IPA	NO
5	$513 C 9-P F N A$	IPA	NO
6	$613 C 4-P F O S$	IPA	NO
7	$713 C 6-P F D A$	IPA	NO
8	$813 C 7-P F U d A$	IPA	NO

Name: 181127M1_59, Date: 27-Nov-2018, Time: 23:41:36, ID: ST181127M1-5 PFC CS3 18K1906, Description: PFC CS3 18K1906

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	ST181127M1-5 PFC CS3 18K1906	8.82 e 3	121.5	NO
2	2 13C5-PFHxA	ST181127M1-5 PFC CS3 18K1906	2.92 e 4	130.4	NO
3	$313 C 3-P F H x S$	ST181127M1-5 PFC CS3 18K1906	3.60 e 3	132.0	NO
4	$413 C 8-P F O A$	ST181127M1-5 PFC CS3 18K1906	3.31 e 4	123.3	NO
5	$513 C 9-P F N A$	ST181127M1-5 PFC CS3 18K1906	2.36 e 4	127.3	NO
6	$613 C 4-P F O S$	ST181127M1-5 PFC CS3 18K1906	3.55 e 3	121.0	NO
7	$713 C 6-P F D A$	ST181127M1-5 PFC CS3 18K1906	2.70 e 4	127.6	NO
8	$813 C 7-P F U d A$	ST181127M1-5 PFC CS3 18K1906	3.03 e 4	133.2	NO

Name: 181127M1_60, Date: 27-Nov-2018, Time: 23:52:09, ID: IPA, Description: IPA

	\# Name	ID	Area
1	$113 C 4-P F B A$	IPA	
2	$213 C 5-P F H x A$	IPA	Area Out
3	$313 C 3-P F H x S$	IPA	NO
4	$413 C 8-P F O A$	IPA	NO
5	$513 C 9-P F N A$	IPA	NO
6	$613 C 4-P F O S$	IPA	NO
7	$713 C 6-P F D A$	IPA	NO
8	$813 C 7-P F U d A$	IPA	NO

Name: 181127M1_61, Date: 28-Nov-2018, Time: 00:02:47, ID: 1803639-01 MW-1 0.11477, Description: MW-1

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803639-01 MW-1 0.11477	1.03 e 4	141.7	NO
2	2 13C5-PFHxA	1803639-01 MW-1 0.11477	1.90 e 4	84.8	NO
3	3 13C3-PFHxS	1803639-01 MW-1 0.11477	2.77 e 3	101.5	NO
4	4 13C8-PFOA	1803639-01 MW-1 0.11477	2.20 e 4	82.1	NO
5	5 13C9-PFNA	1803639-01 MW-1 0.11477	1.57 e 4	84.6	NO
6	6 13C4-PFOS	1803639-01 MW-1 0.11477	2.85 e 3	97.1	NO
7	7 13C6-PFDA	1803639-01 MW-1 0.11477	1.80 e 4	84.9	NO
8	8 13C7-PFUdA	1803639-01 MW-1 0.11477	2.14 e 4	94.3	NO

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: \quad F:\Projects\PFAS.PRO\Results\181127M1\181127M1-IIS AREA.qld
Last Altered: Wednesday, November 28, 2018 08:10:24 Pacific Standard Time
Printed: \quad Wednesday, November 28, 2018 08:10:42 Pacific Standard Time

Name: 181127M1_62, Date: 28-Nov-2018, Time: 00:13:20, ID: 1803639-02 MW-3 0.11437, Description: MW-3

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1803639-02 ~ M W-30.11437$	1.02 e 4	140.8	NO
2	2 13C5-PFHxA	$1803639-02 \mathrm{MW}-30.11437$	2.00 e 4	89.3	NO
3	$313 C 3-P F H x S$	$1803639-02 \mathrm{MW}-30.11437$	2.59 e 3	94.8	NO
4	$413 C 8-P F O A$	$1803639-02 \mathrm{MW}-30.11437$	2.23 e 4	83.2	NO
5	$513 C 9-P F N A$	$1803639-02 \mathrm{MW}-30.11437$	1.60 e 4	86.4	NO
6	$613 C 4-P F O S$	$1803639-02 \mathrm{MW}-30.11437$	2.67 e 3	90.8	NO
7	$713 C 6-P F D A$	$1803639-02 \mathrm{MW}-30.11437$	1.90 e 4	89.6	NO
8	$813 C 7-P F U d A$	$1803639-02 \mathrm{MW}-30.11437$	2.25 e 4	98.9	NO

Name: 181127M1_63, Date: 28-Nov-2018, Time: 00:23:58, ID: 1803650-01 RFW-3 0.113, Description: RFW-3

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1803650-01$ RFW-3 0.113	1.11 e 4	152.4	YES
2	2 13C5-PFHxA	$1803650-01$ RFW-3 0.113	2.15 e 4	96.0	NO
3	$313 C 3-P F H x S$	$1803650-01$ RFW-3 0.113	2.85 e 3	104.4	NO
4	$413 C 8-P F O A$	$1803650-01$ RFW-3 0.113	$2.32 e 4$	86.7	NO
5	$513 C 9-P F N A$	$1803650-01$ RFW-3 0.113	1.65 e 4	88.9	NO
6	$613 C 4-P F O S$	$1803650-01$ RFW-3 0.113	3.12 e 3	106.1	NO
7	$713 C 6-P F D A$	$1803650-01$ RFW-3 0.113	2.01 e 4	94.9	NO
8	$813 C 7-P F U d A$	$1803650-01$ RFW-3 0.113	2.41 e 4	106.0	NO

Name: 181127M1_64, Date: 28-Nov-2018, Time: 00:34:30, ID: 1803650-02 RFW-4 0.11224, Description: RFW-4

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1803650-02$ RFW-4 0.11224	1.20 e 4	165.2	YES
2	$213 C 5-P F H x A$	$1803650-02$ RFW-4 0.11224	2.25 e 4	100.4	NO
3	$313 C 3-P F H x S$	$1803650-02$ RFW-4 0.11224	2.99 e 3	109.7	NO
4	$413 C 8-P F O A$	$1803650-02$ RFW-4 0.11224	2.74 e 4	102.1	NO
5	$513 C 9-P F N A$	$1803650-02$ RFW-4 0.11224	1.97 e 4	106.0	NO
6	$613 C 4-P F O S$	$1803650-02$ RFW-4 0.11224	3.19 e 3	108.7	NO
7	$713 C 6-P F D A$	$1803650-02$ RFW-4 0.11224	2.26 e 4	106.8	NO
8	$813 C 7-P F U d A$	$1803650-02$ RFW-4 0.11224	2.50 e 4	109.9	NO

Name: 181127M1_65, Date: 28-Nov-2018, Time: 00:45:09, ID: 1803650-03 GZ-202A 0.11317, Description: GZ-202A

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803650-03 GZ-202A 0.11317	1.10 e 4	151.0	YES
2	2 13C5-PFHxA	1803650-03 GZ-202A 0.11317	2.13 e 4	94.9	NO
3	3 13C3-PFHxS	1803650-03 GZ-202A 0.11317	2.77 e 3	101.4	NO
4	4 13C8-PFOA	1803650-03 GZ-202A 0.11317	2.66 e 4	99.3	NO
5	5 13C9-PFNA	1803650-03 GZ-202A 0.11317	1.83 e 4	98.7	NO
6	6 13C4-PFOS	1803650-03 GZ-202A 0.11317	2.64 e 3	89.8	NO
7	7 13C6-PFDA	1803650-03 GZ-202A 0.11317	2.09 e 4	98.7	NO
8	8 13C7-PFUdA	1803650-03 GZ-202A 0.11317	2.41 e 4	106.0	NO

Quantify Sample Summary Report

Vista Analytical Laboratory
Dataset: F:\Projects\PFAS.PRO\Results\181127M1\181127M1-IIS AREA.qld
Last Altered: Wednesday, November 28, 2018 08:10:24 Pacific Standard Time
Printed: Wednesday, November 28, 2018 08:10:42 Pacific Standard Time

Name: 181127M1_66, Date: 28-Nov-2018, Time: 00:55:47, ID: 1803650-04 P-2R (South Spring) 0.11552, Description: P-2R (South Spring)

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803650-04 P-2R (South Spring) 0.11552	9.07e3	124.9	NO
2	2 13C5-PFHxA	1803650-04 P-2R (South Spring) 0.11552	1.82 e 4	81.2	NO
3	3 13C3-PFHxS	1803650-04 P-2R (South Spring) 0.11552	2.39 e 3	87.5	NO
4	4 13C8-PFOA	1803650-04 P-2R (South Spring) 0.11552	2.13 e 4	79.5	NO
5	5 13C9-PFNA	1803650-04 P-2R (South Spring) 0.11552	1.53 e 4	82.4	NO
6	6 13C4-PFOS	1803650-04 P-2R (South Spring) 0.11552	2.50 e 3	85.1	NO
7	7 13C6-PFDA	1803650-04 P-2R (South Spring) 0.11552	1.86 e 4	87.7	NO
8	8 13C7-PFUdA	1803650-04 P-2R (South Spring) 0.11552	2.10 e 4	92.5	NO

Name: 181127M1_67, Date: 28-Nov-2018, Time: $01: 06: 20$, ID: 1803653-01 SEA-1 0.11267, Description: SEA-1

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803653-01 SEA-1 0.11267	1.14 e 4	157.7	YES
2	2 13C5-PFHxA	1803653-01 SEA-1 0.11267	2.21 e 4	98.5	NO
3	3 13C3-PFHxS	1803653-01 SEA-1 0.11267	2.96 e 3	108.5	NO
4	4 13C8-PFOA	1803653-01 SEA-1 0.11267	2.68 e 4	99.8	NO
5	5 13C9-PFNA	1803653-01 SEA-1 0.11267	1.91 e 4	103.0	NO
6	6 13C4-PFOS	1803653-01 SEA-1 0.11267	3.04 e 3	103.3	NO
7	7 13C6-PFDA	1803653-01 SEA-1 0.11267	2.19 e 4	103.6	NO
8	8 13C7-PFUdA	1803653-01 SEA-1 0.11267	2.57 e 4	113.0	NO

Name: 181127M1_68, Date: 28-Nov-2018, Time: 01:16:59, ID: 1803653-02 SEA-2 0.1142, Description: SEA-2

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	$1803653-02$ SEA-2 0.1142	1.03 e 4	141.9	NO
2	2 13C5-PFHxA	$1803653-02$ SEA-2 0.1142	2.03 e 4	90.5	NO
3	$313 C 3-P F H x S$	$1803653-02$ SEA-2 0.1142	2.86 e 3	104.7	NO
4	$413 C 8-P F O A$	$1803653-02$ SEA-2 0.1142	2.42 e 4	90.1	NO
5	$513 C 9-P F N A$	$1803653-02$ SEA-2 0.1142	1.79 e 4	96.6	NO
6	$613 C 4-P F O S$	$1803653-02$ SEA-2 0.1142	2.83 e 3	96.3	NO
7	$713 C 6-P F D A$	$1803653-02$ SEA-2 0.1142	2.04 e 4	96.3	NO
8	$813 C 7-P F U d A$	$1803653-02$ SEA-2 0.1142	2.34 e 4	103.1	NO

Name: 181127M1_69, Date: 28-Nov-2018, Time: $01: 27: 32$, ID: 1803653-03 DH-1A 0.11294, Description: DH-1A

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803653-03 DH-1A 0.11294	1.12 e 4	154.5	YES
2	2 13C5-PFHxA	1803653-03 DH-1A 0.11294	2.15 e 4	96.0	NO
3	3 13C3-PFHxS	1803653-03 DH-1A 0.11294	3.00 e 3	110.0	NO
4	4 13C8-PFOA	1803653-03 DH-1A 0.11294	2.65 e 4	98.6	NO
5	5 13C9-PFNA	1803653-03 DH-1A 0.11294	1.88 e 4	101.6	NO
6	6 13C4-PFOS	1803653-03 DH-1A 0.11294	2.94 e 3	100.1	NO
7	7 13C6-PFDA	1803653-03 DH-1A 0.11294	2.16 e 4	101.8	NO
8	8 13C7-PFUdA	1803653-03 DH-1A 0.11294	2.59 e 4	114.0	NO

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: F:\Projects\PFAS.PRO\Results\181127M1\181127M1-IIS AREA.qld
Last Altered: Wednesday, November 28, 2018 08:10:24 Pacific Standard Time
Printed: \quad Wednesday, November 28, 2018 08:10:42 Pacific Standard Time

Name: 181127M1_70, Date: 28-Nov-2018, Time: 01:38:10, ID: 1803653-04 SW-2 0.11723, Description: SW-2

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803653-04 SW-2 0.11723	1.19 e 4	163.8	YES
2	2 13C5-PFHxA	1803653-04 SW-2 0.11723	2.30 e 4	102.8	NO
3	3 13C3-PFHxS	1803653-04 SW-2 0.11723	2.97 e 3	108.8	NO
4	4 13C8-PFOA	1803653-04 SW-2 0.11723	2.73 e 4	101.7	NO
5	5 13C9-PFNA	1803653-04 SW-2 0.11723	1.92 e 4	103.6	NO
6	6 13C4-PFOS	1803653-04 SW-2 0.11723	2.99 e 3	101.6	NO
7	7 13C6-PFDA	1803653-04 SW-2 0.11723	2.22 e 4	104.8	NO
8	8 13C7-PFUdA	1803653-04 SW-2 0.11723	2.59 e 4	113.8	NO

Name: 181127M1_71, Date: 28-Nov-2018, Time: 01:48:43, ID: IPA, Description: IPA

	\# Name	ID	Area
1	$113 C 4-P F B A$	IPA	
2	$213 C 5-P F H x A$	IPA	Area Out
3	$313 C 3-P F H x S$	IPA	NO
4	$413 C 8-P F O A$	IPA	NO
5	$513 C 9-P F N A$	IPA	NO
6	$613 C 4-P F O S$	IPA	NO
7	$713 C 6-P F D A$	IPA	NO
8	$813 C 7-P F U d A$	IPA	NO
			NO

Name: 181127M1_72, Date: 28-Nov-2018, Time: 01:59:21, ID: ST181127M1-6 PFC CS3 18K1906, Description: PFC CS3 18K1906

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	ST181127M1-6 PFC CS3 18K1906	8.91 e 3	122.7	NO
2	$213 C 5-P F H x A$	ST181127M1-6 PFC CS3 18K1906	2.98 e 4	133.0	NO
3	$313 C 3-P F H x S$	ST181127M1-6 PFC CS3 18K1906	3.60 e 3	131.8	NO
4	$413 C 8-P F O A$	ST181127M1-6 PFC CS3 18K1906	3.49 e 4	130.2	NO
5	$513 C 9-P F N A$	ST181127M1-6 PFC CS3 18K1906	2.41 e 4	130.3	NO
6	$613 C 4-P F O S$	ST181127M1-6 PFC CS3 18K1906	3.45 e 3	117.5	NO
7	$713 C 6-P F D A$	ST181127M1-6 PFC CS3 18K1906	2.73 e 4	128.8	NO
8	$813 C 7-P F U d A$	ST181127M1-6 PFC CS3 18K1906	3.20 e 4	140.6	NO

Name: 181127M1_73, Date: 28-Nov-2018, Time: 02:10:00, ID: IPA, Description: IPA

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	IPA			NO
2	2 13C5-PFHxA	IPA			NO
3	3 13C3-PFHxS	IPA			NO
4	4 13C8-PFOA	IPA			NO
5	5 13C9-PFNA	IPA			NO
6	6 13C4-PFOS	IPA			NO
7	7 13C6-PFDA	IPA			NO
8	8 13C7-PFUdA	IPA			NO

Quantify Sample Summary Report

Last Altered: Wednesday, November 28, 2018 08:10:24 Pacific Standard Time Printed: Wednesday, November 28, 2018 08:10:42 Pacific Standard Time

Name: 181127M1_74, Date: 28-Nov-2018, Time: 02:20:31, ID: 1803653-05 Seep 0.11658, Description: Seep

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1803653-05$ Seep 0.11658	1.04 e 4	143.9	NO
2	2 13C5-PFHxA	$1803653-05$ Seep 0.11658	2.03 e 4	90.5	NO
3	3 13C3-PFHxS	$1803653-05$ Seep 0.11658	3.05 e 3	111.6	NO
4	$413 C 8-P F O A$	$1803653-05$ Seep 0.11658	2.37 e 4	88.4	NO
5	$513 C 9-P F N A$	$1803653-05$ Seep 0.11658	1.72 e 4	92.9	NO
6	$613 C 4-P F O S$	$1803653-05$ Seep 0.11658	3.14 e 3	107.0	NO
7	$713 C 6-P F D A$	$1803653-05$ Seep 0.11658	2.00 e 4	94.3	NO
8	$813 C 7-P F U d A$	$1803653-05$ Seep 0.11658	2.45 e 4	107.7	NO

Name: 181127M1_75, Date: 28-Nov-2018, Time: 02:31:10, ID: B8K0146-BS1 OPR 0.25, Description: OPR

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	B8K0146-BS1 OPR 0.25	1.08 e 4	148.6	NO
2	$213 C 5-P F H x A$	B8K0146-BS1 OPR 0.25	2.06 e 4	91.9	NO
3	$313 C 3-P F H x S$	B8K0146-BS1 OPR 0.25	2.65 e 3	96.9	NO
4	$413 C 8-P F O A$	B8K0146-BS1 OPR 0.25	2.39 e 4	89.0	NO
5	$513 C 9-P F N A$	B8K0146-BS1 OPR 0.25	1.64 e 4	88.5	NO
6	$613 C 4-P F O S$	B8K0146-BS1 OPR 0.25	2.79 e 3	95.0	NO
7	$713 C 6-P F D A$	B8K0146-BS1 OPR 0.25	1.85 e 4	87.4	NO
8	$813 C 7-P F U d A$	B8K0146-BS1 OPR 0.25	2.07 e 4	90.9	NO

Name: 181127M1_76, Date: 28-Nov-2018, Time: 02:41:43, ID: B8K0146-BLK1 Method Blank 0.25, Description: Method Blank

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	B8K0146-BLK1 Method Blank 0.25	1.19 e 4	163.8	YES
2	$213 C 5-P F H x A$	B8K0146-BLK1 Method Blank 0.25	2.27 e 4	101.5	NO
3	$313 C 3-P F H x S$	B8K0146-BLK1 Method Blank 0.25	2.68 e 3	98.4	NO
4	$413 C 8-P F O A$	B8K0146-BLK1 Method Blank 0.25	2.56 e 4	95.5	NO
5	$513 C 9-P F N A$	B8K0146-BLK1 Method Blank 0.25	1.74 e 4	94.0	NO
6	$613 C 4-P F O S$	B8K0146-BLK1 Method Blank 0.25	2.63 e 3	89.6	NO
7	$713 C 6-P F D A$	B8K0146-BLK1 Method Blank 0.25	1.89 e 4	89.4	NO
8	$813 C 7-P F U d A$	B8K0146-BLK1 Method Blank 0.25	1.91 e 4	84.1	NO

Name: 181127M1_77, Date: $28-$ Nov-2018, Time: 02:52:22, ID: 1803692-01 SWIN1811071400GGA 0.22883,
Description: SWIN1811071400GGA Description: SWIN1811071400GGA

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803692-01 SWIN1811071400GGA 0.2...	1.10 e 4	151.5	YES
2	2 13C5-PFHxA	1803692-01 SWIN1811071400GGA 0.2...	2.15 e 4	96.1	NO
3	3 13C3-PFHxS	1803692-01 SWIN1811071400GGA 0.2...	3.04 e 3	111.5	NO
4	4 13C8-PFOA	1803692-01 SWIN1811071400GGA 0.2...	2.52 e 4	94.0	NO
5	5 13C9-PFNA	1803692-01 SWIN1811071400GGA 0.2...	1.76 e 4	95.0	NO
6	6 13C4-PFOS	1803692-01 SWIN1811071400GGA 0.2...	2.99 e 3	101.7	NO
7	7 13C6-PFDA	1803692-01 SWIN1811071400GGA 0.2...	2.00 e 4	94.6	NO
8	8 13C7-PFUdA	1803692-01 SWIN1811071400GGA 0.2...	2.36 e 4	103.7	NO

Quantify Sample Summary Report

Vista Analytical Laboratory
Dataset: \quad F:\Projects\PFAS.PRO\Results\181127M1\181127M1-IIS AREA.qld
Last Altered: Wednesday, November 28, 2018 08:10:24 Pacific Standard Time
Printed: Wednesday, November 28, 2018 08:10:42 Pacific Standard Time

Name: 181127M1_78, Date: 28-Nov-2018, Time: 03:02:54, ID: 1803692-02 SWEF1811071430GGA 0.24623, Description: SWEF1811071430GGA

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803692-02 SWEF1811071430GGA 0...	1.05 e 4	145.0	NO
2	2 13C5-PFHxA	1803692-02 SWEF1811071430GGA 0...	2.03 e 4	90.5	NO
3	3 13C3-PFHxS	1803692-02 SWEF1811071430GGA 0...	2.62 e 3	96.1	NO
4	4 13C8-PFOA	1803692-02 SWEF1811071430GGA 0...	2.40 e 4	89.7	NO
5	5 13C9-PFNA	1803692-02 SWEF1811071430GGA 0....	1.61 e 4	87.1	NO
6	6 13C4-PFOS	1803692-02 SWEF1811071430GGA 0...	2.59 e 3	88.3	NO
7	7 13C6-PFDA	1803692-02 SWEF1811071430GGA 0...	1.80 e 4	85.0	NO
8	8 13C7-PFUdA	1803692-02 SWEF1811071430GGA 0...	1.85 e 4	81.4	NO

Name: 181127M1_79, Date: 28-Nov-2018, Time: 03:13:33, ID: B8K0140-BS1 OPR 0.25, Description: OPR

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	B8K0140-BS1 OPR 0.25	9.00 e 3	124.1	NO
2	$213 C 5-P F H x A$	B8K0140-BS1 OPR 0.25	1.73 e 4	77.4	NO
3	$313 C 3-P F H x S$	B8K0140-BS1 OPR 0.25	2.56 e 3	93.7	NO
4	$413 C 8-P F O A$	B8K0140-BS1 OPR 0.25	1.97 e 4	73.4	NO
5	$513 C 9-P F N A$	B8K0140-BS1 OPR 0.25	1.37 e 4	73.8	NO
6	$613 C 4-P F O S$	B8K0140-BS1 OPR 0.25	2.59 e 3	88.2	NO
7	$713 C 6-P F D A$	B8K0140-BS1 OPR 0.25	1.65 e 4	78.1	NO
8	$813 C 7-P F U d A$	B8K0140-BS1 OPR 0.25	1.94 e 4	85.2	NO

Name: 181127M1_80, Date: 28-Nov-2018, Time: 03:24:11, ID: B8K0140-BLK1 Method Blank 0.25, Description: Method Blank

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	B8K0140-BLK1 Method Blank 0.25	8.62 e 3	118.7	NO
2	$213 C 5-P F H x A$	B8K0140-BLK1 Method Blank 0.25	1.61 e 4	72.1	NO
3	$313 C 3-P F H x S$	B8K0140-BLK1 Method Blank 0.25	2.40 e 3	88.0	NO
4	$413 C 8-P F O A$	B8K0140-BLK1 Method Blank 0.25	1.87 e 4	69.7	NO
5	$513 C 9-P F N A$	B8K0140-BLK1 Method Blank 0.25	1.32 e 4	71.3	NO
6	$613 C 4-P F O S$	B8K0140-BLK1 Method Blank 0.25	2.45 e 3	83.6	NO
7	$713 C 6-P F D A$	B8K0140-BLK1 Method Blank 0.25	1.56 e 4	73.7	NO
8	$813 C 7-P F U d A$	B8K0140-BLK1 Method Blank 0.25	1.86 e 4	81.8	NO

Name: 181127M1_81, Date: 28-Nov-2018, Time: 03:34:45, ID: 1803675-01 GW0110161811150925KER 0.2531, Description: GW0110161811150925KER

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1803675-01$ GW0110161811150925KE...	9.70 e 3	133.7	NO
2	2 13C5-PFHxA	$1803675-01$ GW0110161811150925KE...	1.90 e 4	84.7	NO
3	$313 C 3-P F H x S$	$1803675-01$ GW0110161811150925KE...	2.52 e 3	92.3	NO
4	$413 C 8-P F O A$	$1803675-01$ GW0110161811150925KE...	2.20 e 4	81.9	NO
5	$513 C 9-P F N A$	$1803675-01$ GW0110161811150925KE...	1.59 e 4	85.8	NO
6	$613 C 4-P F O S$	$1803675-01$ GW0110161811150925KE...	2.53 e 3	86.1	NO
7	$713 C 6-P F D A$	$1803675-01$ GW0110161811150925KE...	1.84 e 4	86.7	NO
8	8	$13 C 7-P F U d A$	$1803675-01$ GW0110161811150925KE...	2.06 e 4	90.6

Quantify Sample Summary Report

Vista Analytical Laboratory
Dataset: \quad F:\Projects\PFAS.PRO\Results\181127M1\181127M1-IIS AREA.qld
Last Altered: Wednesday, November 28, 2018 08:10:24 Pacific Standard Time
Printed: Wednesday, November 28, 2018 08:10:42 Pacific Standard Time

Name: 181127M1_82, Date: 28-Nov-2018, Time: 03:45:23, ID: 1803675-02 GW0480531811151025KER 0.25333, Description: GW0480531811151025KER

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803675-02 GW0480531811151025KE...	8.32e3	114.7	NO
2	2 13C5-PFHxA	1803675-02 GW0480531811151025KE...	1.62 e 4	72.1	NO
3	3 13C3-PFHxS	1803675-02 GW0480531811151025KE...	2.37 e 3	86.8	NO
4	4 13C8-PFOA	1803675-02 GW0480531811151025KE...	1.99 e 4	74.4	NO
5	5 13C9-PFNA	1803675-02 GW0480531811151025KE...	1.42 e 4	76.8	NO
6	6 13C4-PFOS	1803675-02 GW0480531811151025KE...	2.30 e 3	78.2	NO
7	7 13C6-PFDA	1803675-02 GW0480531811151025KE...	1.62 e 4	76.4	NO
8	8 13C7-PFUdA	1803675-02 GW0480531811151025KE...	1.90 e 4	83.7	NO

Name: 181127M1_83, Date: 28-Nov-2018, Time: 03:56:01, ID: 1803675-03 EB11811151030MK 0.2493, Description: EB11811151030MK

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803675-03 EB11811151030MK 0.2493	9.28e3	127.9	NO
2	2 13C5-PFHxA	1803675-03 EB11811151030MK 0.2493	1.73 e 4	77.4	NO
3	3 13C3-PFHxS	1803675-03 EB11811151030MK 0.2493	2.64 e 3	96.6	NO
4	4 13C8-PFOA	1803675-03 EB11811151030MK 0.2493	2.06 e 4	76.6	NO
5	5 13C9-PFNA	1803675-03 EB11811151030MK 0.2493	1.44 e 4	77.9	NO
6	6 13C4-PFOS	1803675-03 EB11811151030MK 0.2493	2.77 e 3	94.2	NO
7	7 13C6-PFDA	1803675-03 EB11811151030MK 0.2493	1.80 e 4	85.2	NO
8	8 13C7-PFUdA	1803675-03 EB11811151030MK 0.2493	2.10 e 4	92.6	NO

Name: 181127M1_84, Date: 28-Nov-2018, Time: 04:06:34, ID: 1803675-04 GW0750801811151140KER 0.25044, Description: GW0750801811151140KER

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1803675-04$ GW0750801811151140KE...	8.86 e 3	122.1	NO
2	2 13C5-PFHxA	$1803675-04$ GW0750801811151140KE...	1.75 e 4	78.0	NO
3	$313 C 3-P F H x S$	$1803675-04$ GW0750801811151140KE...	2.43 e 3	88.9	NO
4	$413 C 8-P F O A$	$1803675-04$ GW0750801811151140KE...	2.04 e 4	75.9	NO
5	5 13C9-PFNA	$1803675-04$ GW0750801811151140KE...	1.46 e 4	78.6	NO
6	$613 C 4-P F O S$	$1803675-04$ GW0750801811151140KE...	2.62 e 3	89.3	NO
7	7 13C6-PFDA	$1803675-04$ GW0750801811151140KE...	1.72 e 4	81.4	NO
8	$8 ~ 13 C 7-P F U d A$	$1803675-04$ GW0750801811151140KE...	2.02 e 4	89.1	NO

Name: 181127M1_85, Date: 28-Nov-2018, Time: 04:17:12, ID: 1803675-05 GW0800851811151255KER 0.25087, Description: GW0800851811151255KER

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803675-05 GW0800851811151255KE...	9.60 e 3	132.3	NO
2	2 13C5-PFHxA	1803675-05 GW0800851811151255KE...	1.91 e 4	85.1	NO
3	3 13C3-PFHxS	1803675-05 GW0800851811151255KE...	2.63 e 3	96.5	NO
4	4 13C8-PFOA	1803675-05 GW0800851811151255KE...	2.13 e 4	79.6	NO
5	5 13C9-PFNA	1803675-05 GW0800851811151255KE...	1.57 e 4	84.9	NO
6	6 13C4-PFOS	1803675-05 GW0800851811151255KE...	2.63 e 3	89.4	NO
7	7 13C6-PFDA	1803675-05 GW0800851811151255KE...	1.85 e 4	87.4	NO
8	8 13C7-PFUdA	1803675-05 GW0800851811151255KE...	2.13 e 4	93.6	NO

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: \quad F:\Projects\PFAS.PRO\Results\181127M1\181127M1-IIS AREA.qld
Last Altered: Wednesday, November 28, 2018 08:10:24 Pacific Standard Time Printed: Wednesday, November 28, 2018 08:10:42 Pacific Standard Time

Name: 181127M1_86, Date: 28-Nov-2018, Time: 04:27:51, ID: 1803675-06 GW0850901811151405KER 0.24759, Description: GW0850901811151405KER

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803675-06 GW0850901811151405KE...	1.03 e 4	141.3	NO
2	2 13C5-PFHxA	1803675-06 GW0850901811151405KE...	1.95 e 4	86.9	NO
3	3 13C3-PFHxS	1803675-06 GW0850901811151405KE...	2.80 e 3	102.5	NO
4	4 13C8-PFOA	1803675-06 GW0850901811151405KE...	2.36 e 4	87.8	NO
5	5 13C9-PFNA	1803675-06 GW0850901811151405KE...	1.61 e 4	86.9	NO
6	6 13C4-PFOS	1803675-06 GW0850901811151405KE...	2.72 e 3	92.6	NO
7	7 13C6-PFDA	1803675-06 GW0850901811151405KE...	2.00 e 4	94.4	NO
8	8 13C7-PFUdA	1803675-06 GW0850901811151405KE...	2.21 e 4	97.2	NO

Name: 181127M1_87, Date: 28-Nov-2018, Time: 04:38:24, ID: 1803675-07 GW0920971811151535KER 0.24638, Description: GW0920971811151535KER

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803675-07 GW0920971811151535KE...	7.79 e 3	107.4	NO
2	2 13C5-PFHxA	1803675-07 GW0920971811151535KE...	1.57 e 4	69.9	NO
3	3 13C3-PFHxS	1803675-07 GW0920971811151535KE...	2.30 e 3	84.1	NO
4	4 13C8-PFOA	1803675-07 GW0920971811151535KE...	1.91 e 4	71.3	NO
5	5 13C9-PFNA	1803675-07 GW0920971811151535KE...	1.31 e 4	70.9	NO
6	6 13C4-PFOS	1803675-07 GW0920971811151535KE...	2.36 e 3	80.4	NO
7	7 13C6-PFDA	1803675-07 GW0920971811151535KE...	1.63 e 4	77.1	NO
8	8 13C7-PFUdA	1803675-07 GW0920971811151535KE...	1.81 e 4	79.8	NO

Name: 181127M1_88, Date: 28-Nov-2018, Time: 04:49:03, ID: IPA, Description: IPA

	\# Name	ID	Area	\%Rec
1	$113 C 4-P F B A$	IPA		Area Out
2	$213 C 5-P F H x A$	IPA		NO
3	$313 C 3-P F H x S$	IPA		NO
4	$413 C 8-P F O A$	IPA		NO
5	$513 C 9-P F N A$	IPA		NO
6	$613 C 4-P F O S$	IPA	$7.14 e 0$	NO
7	$713 C 6-P F D A$	IPA		NO
8	$813 C 7-P F U d A$	IPA		YES

Name: 181127M1_89, Date: 28-Nov-2018, Time: 04:59:41, ID: ST181127M1-7 PFC CS3 18K1906, Description: PFC CS3 18K1906

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	ST181127M1-7 PFC CS3 18K1906	8.96 e 3	123.5	NO
2	2 13C5-PFHxA	ST181127M1-7 PFC CS3 18K1906	2.87 e 4	128.3	NO
3	3 13C3-PFHxS	ST181127M1-7 PFC CS3 18K1906	3.46 e 3	126.7	NO
4	4 13C8-PFOA	ST181127M1-7 PFC CS3 18K1906	3.24 e 4	120.7	NO
5	5 13C9-PFNA	ST181127M1-7 PFC CS3 18K1906	2.37 e 4	127.6	NO
6	6 13C4-PFOS	ST181127M1-7 PFC CS3 18K1906	3.67 e 3	124.8	NO
7	7 13C6-PFDA	ST181127M1-7 PFC CS3 18K1906	2.66 e 4	125.5	NO
8	8 13C7-PFUdA	ST181127M1-7 PFC CS3 18K1906	3.16 e 4	138.8	NO

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: \quad F:\Projects\PFAS.PRO\Results\181127M1\181127M1-IIS AREA.qld
Last Altered: Wednesday, November 28, 2018 08:10:24 Pacific Standard Time
Printed: Wednesday, November 28, 2018 08:10:42 Pacific Standard Time

Name: 181127M1_90, Date: 28-Nov-2018, Time: 05:10:15, ID: IPA, Description: IPA

	\# Name	ID	Area
1	$113 C 4-P F B A$	IPA	\%Rec
2	$213 C 5-P F H x A$	IPA	Area Out
3	$313 C 3-P F H x S$	IPA	NO
4	$413 C 8-P F O A$	IPA	NO
5	$513 C 9-P F N A$	IPA	NO
6	$613 C 4-P F O S$	IPA	NO
7	$713 C 6-P F D A$	IPA	NO
8	$813 C 7-P F U d A$	IPA	NO

Name: 181127M1_91, Date: 28-Nov-2018, Time: 05:20:53, ID: 1803675-08 GW0971021811151650KER 0.24641, Description: GW0971021811151650KER

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	$1803675-08$ GW0971021811151650KE...	8.99 e 3	123.9	NO
2	$213 C 5-P F H x A$	$1803675-08$ GW0971021811151650KE...	1.74 e 4	77.9	NO
3	$313 C 3-P F H x S$	$1803675-08$ GW0971021811151650KE...	2.52 e 3	92.3	NO
4	$413 C 8-P F O A$	$1803675-08$ GW0971021811151650KE...	2.13 e 4	79.3	NO
5	$513 C 9-P F N A$	$1803675-08$ GW0971021811151650KE...	1.51 e 4	81.3	NO
6	$613 C 4-P F O S$	$1803675-08$ GW0971021811151650KE...	2.75 e 3	93.5	NO
7	$713 C 6-P F D A$	$1803675-08$ GW0971021811151650KE...	1.78 e 4	84.3	NO
8	$813 C 7-P F U d A$	$1803675-08$ GW0971021811151650KE...	2.03 e 4	89.4	NO

Name: 181127M1_92, Date: 28-Nov-2018, Time: 05:31:26, ID: 1803675-09 GW0230281811121610MK 0.25313, Description: GW0230281811121610MK

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803675-09 GW0230281811121610MK...	9.73 e 3	134.1	NO
2	2 13C5-PFHxA	1803675-09 GW0230281811121610MK...	1.91 e 4	85.3	NO
3	3 13C3-PFHxS	1803675-09 GW0230281811121610MK...	2.53 e 3	92.7	NO
4	4 13C8-PFOA	1803675-09 GW0230281811121610MK...	2.26 e 4	84.3	NO
5	5 13C9-PFNA	1803675-09 GW0230281811121610MK...	1.60 e 4	86.2	NO
6	6 13C4-PFOS	1803675-09 GW0230281811121610MK...	2.55 e 3	86.9	NO
7	7 13C6-PFDA	1803675-09 GW0230281811121610MK...	1.90 e 4	89.5	NO
8	8 13C7-PFUdA	1803675-09 GW0230281811121610MK...	2.11 e 4	92.7	NO

Name: 181127M1_93, Date: 28-Nov-2018, Time: 05:42:04, ID: 1803675-10 GW0280331811131655KER 0.24856, Description: GW0280331811131655KER

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803675-10 GW0280331811131655KE...	9.36 e 3	129.0	NO
2	2 13C5-PFHxA	1803675-10 GW0280331811131655KE...	1.86 e 4	83.1	NO
3	3 13C3-PFHxS	1803675-10 GW0280331811131655KE...	2.66 e 3	97.6	NO
4	4 13C8-PFOA	1803675-10 GW0280331811131655KE...	2.26 e 4	84.4	NO
5	5 13C9-PFNA	1803675-10 GW0280331811131655KE...	1.54 e 4	82.9	NO
6	6 13C4-PFOS	1803675-10 GW0280331811131655KE...	2.78 e 3	94.5	NO
7	7 13C6-PFDA	1803675-10 GW0280331811131655KE...	1.84 e 4	86.7	NO
8	8 13C7-PFUdA	1803675-10 GW0280331811131655KE...	2.23 e 4	98.0	NO

Quantify Sample Summary Report

Vista Analytical Laboratory
Dataset: F:IProjects\PFAS.PRO\Results\181127M1\181127M1-IIS AREA.qld
Last Altered: Wednesday, November 28, 2018 08:10:24 Pacific Standard Time
Printed: Wednesday, November 28, 2018 08:10:42 Pacific Standard Time

Name: 181127M1_94, Date: 28-Nov-2018, Time: 05:52:42, ID: 1803675-11 GW0820871811141045KER 0.24842, Description: GW0820871811141045KER

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803675-11 GW0820871811141045KE...	8.58e3	118.3	NO
2	2 13C5-PFHxA	1803675-11 GW0820871811141045KE...	1.68 e 4	75.2	NO
3	3 13C3-PFHxS	1803675-11 GW0820871811141045KE...	2.47 e 3	90.5	NO
4	4 13C8-PFOA	1803675-11 GW0820871811141045KE...	2.06 e 4	77.0	NO
5	5 13C9-PFNA	1803675-11 GW0820871811141045KE...	1.52 e 4	82.3	NO
6	6 13C4-PFOS	1803675-11 GW0820871811141045KE...	2.50 e 3	84.9	NO
7	7 13C6-PFDA	1803675-11 GW0820871811141045KE...	1.72 e 4	81.0	NO
8	8 13C7-PFUdA	1803675-11 GW0820871811141045KE...	1.99 e 4	87.7	NO

Name: 181127M1_95, Date: 28-Nov-2018, Time: 06:03:15, ID: 1803675-12 FB1811141050KER 0.24655, Description: FB1811141050KER

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1803675-12$ FB1811141050KER 0.24655	9.89 e 3	136.2	NO
2	2 13C5-PFHxA	$1803675-12$ FB1811141050KER 0.24655	1.88 e 4	83.8	NO
3	$313 C 3-P F H x S$	$1803675-12$ FB1811141050KER 0.24655	2.67 e 3	97.7	NO
4	$413 C 8-P F O A$	$1803675-12$ FB1811141050KER 0.24655	$2.22 e 4$	82.7	NO
5	$513 C 9-P F N A$	$1803675-12$ FB1811141050KER 0.24655	1.57 e 4	84.9	NO
6	$613 C 4-P F O S$	$1803675-12$ FB1811141050KER 0.24655	2.76 e 3	94.0	NO
7	$713 C 6-P F D A$	$1803675-12$ FB1811141050KER 0.24655	1.88 e 4	88.9	NO
8	$813 C 7-P F U d A$	$1803675-12$ FB1811141050KER 0.24655	$2.22 e 4$	97.7	NO

Name: 181127M1_96, Date: 28-Nov-2018, Time: 06:13:53, ID: 1803675-13 GW0971021811141145KER 0.2461, Description: GW0971021811141145KER

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803675-13 GW0971021811141145KE...	8.07e3	111.2	NO
2	2 13C5-PFHxA	1803675-13 GW0971021811141145KE...	1.56 e 4	69.8	NO
3	3 13C3-PFHxS	1803675-13 GW0971021811141145KE...	2.36 e 3	86.4	NO
4	4 13C8-PFOA	1803675-13 GW0971021811141145KE...	1.93 e 4	71.9	NO
5	5 13C9-PFNA	1803675-13 GW0971021811141145KE...	1.37 e 4	74.2	NO
6	6 13C4-PFOS	1803675-13 GW0971021811141145KE...	2.40 e 3	81.8	NO
7	7 13C6-PFDA	1803675-13 GW0971021811141145KE...	1.65 e 4	77.7	NO
8	8 13C7-PFUdA	1803675-13 GW0971021811141145KE...	1.84 e 4	81.0	NO

Name: 181127M1_97, Date: 28-Nov-2018, Time: 06:24:32, ID: 1803675-14 GW0280331811141310KER 0.24685, Description: GW0280331811141310KER

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803675-14 GW0280331811141310KE...	8.58 e 3	118.2	NO
2	2 13C5-PFHxA	1803675-14 GW0280331811141310KE...	1.69 e 4	75.4	NO
3	3 13C3-PFHxS	1803675-14 GW0280331811141310KE...	2.24 e 3	82.2	NO
4	4 13C8-PFOA	1803675-14 GW0280331811141310KE...	1.97 e 4	73.6	NO
5	5 13C9-PFNA	1803675-14 GW0280331811141310KE...	1.42 e 4	76.7	NO
6	6 13C4-PFOS	1803675-14 GW0280331811141310KE...	2.37 e 3	80.7	NO
7	7 13C6-PFDA	1803675-14 GW0280331811141310KE...	1.66 e 4	78.5	NO
8	8 13C7-PFUdA	1803675-14 GW0280331811141310KE...	1.91 e 4	84.1	NO

Quantify Sample Summary Report

Vista Analytical Laboratory
Dataset: \quad F:\Projects\PFAS.PRO\Results\181127M1\181127M1-IIS AREA.qld
Last Altered: Wednesday, November 28, 2018 08:10:24 Pacific Standard Time
Printed: Wednesday, November 28, 2018 08:10:42 Pacific Standard Time

Name: 181127M1_98, Date: 28-Nov-2018, Time: 06:35:05, ID: 1803675-15 GW0890941811141415KER 0.24549, Description: GW0890941811141415KER

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803675-15 GW0890941811141415KE...	8.55 e 3	117.8	NO
2	2 13C5-PFHxA	1803675-15 GW0890941811141415KE...	1.69 e 4	75.5	NO
3	3 13C3-PFHxS	1803675-15 GW0890941811141415KE...	2.43 e 3	88.9	NO
4	4 13C8-PFOA	1803675-15 GW0890941811141415KE...	1.99 e 4	74.3	NO
5	5 13C9-PFNA	1803675-15 GW0890941811141415KE...	1.29 e 4	69.8	NO
6	6 13C4-PFOS	1803675-15 GW0890941811141415KE...	2.33 e 3	79.3	NO
7	7 13C6-PFDA	1803675-15 GW0890941811141415KE...	1.52 e 4	71.8	NO
8	8 13C7-PFUdA	1803675-15 GW0890941811141415KE...	1.73 e 4	76.2	NO

Name: 181127M1_99, Date: 28-Nov-2018, Time: 06:45:43, ID: 1803675-16 GW0991041811141615KER 0.24811, Description: GW0991041811141615KER

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1803675-16$ GW09910418111141615KE \ldots	8.86 e 3	122.1	NO
2	2 13C5-PFHxA	$1803675-16$ GW0991041811141615KE...	1.73 e 4	77.1	NO
3	$313 C 3-P F H x S$	$1803675-16$ GW0991041811141615KE...	2.33 e 3	85.2	NO
4	$413 C 8-P F O A$	$1803675-16$ GW0991041811141615KE...	2.14 e 4	79.9	NO
5	$513 C 9-P F N A$	$1803675-16$ GW0991041811141615KE...	1.42 e 4	76.7	NO
6	$613 C 4-P F O S$	$1803675-16$ GW0991041811141615KE...	2.25 e 3	76.7	NO
7	$713 C 6-P F D A$	$1803675-16$ GW0991041811141615KE...	1.65 e 4	77.9	NO
8	$813 C 7-P F U d A$	$1803675-16$ GW0991041811141615KE...	1.93 e 4	85.1	NO

Name: 181127M1_100, Date: 28-Nov-2018, Time: 06:56:16, ID: 1803675-17 GW0991041811141620KER-FD 0.24325, Description: GW0991041811141620KER-FD

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1803675-17 GW0991041811141620KE...	9.76 e 3	134.5	NO
2	2 13C5-PFHxA	1803675-17 GW0991041811141620KE...	1.92 e 4	85.9	NO
3	3 13C3-PFHxS	1803675-17 GW0991041811141620KE...	2.57 e 3	94.3	NO
4	4 13C8-PFOA	1803675-17 GW0991041811141620KE...	2.31 e 4	86.1	NO
5	5 13C9-PFNA	1803675-17 GW0991041811141620KE...	1.61 e 4	87.1	NO
6	6 13C4-PFOS	1803675-17 GW0991041811141620KE...	2.49 e 3	84.9	NO
7	7 13C6-PFDA	1803675-17 GW0991041811141620KE...	1.85 e 4	87.4	NO
8	8 13C7-PFUdA	1803675-17 GW0991041811141620KE...	2.06 e 4	90.8	NO

Name: 181127M1_101, Date: 28-Nov-2018, Time: 07:06:55, ID: QC MEOH LOT JB072509, Description: QC MEOH LOT JB072509

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	QC MEOH LOT JB072509	5.10 e 3	70.3	NO
2	$213 C 5-P F H x A$	QC MEOH LOT JB072509	2.34 e 4	104.5	NO
3	$313 C 3-P F H x S$	QC MEOH LOT JB072509	2.87 e 3	105.3	NO
4	$413 C 8-P F O A$	QC MEOH LOT JB072509	2.74 e 4	102.2	NO
5	$513 C 9-P F N A$	QC MEOH LOT JB072509	1.95 e 4	105.4	NO
6	$613 C 4-P F O S$	QC MEOH LOT JB072509	3.04 e 3	103.4	NO
7	$713 C 6-P F D A$	QC MEOH LOT JB072509	2.26 e 4	106.8	NO
8	$813 C 7-P F U d A$	QC MEOH LOT JB072509	2.46 e 4	108.4	NO

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: F:IProjects|PFAS.PRO\Results1181127M1\181127M1-IIS AREA.qld
Last Altered: Wednesday, November 28, 2018 08:10:24 Pacific Standard Time
Printed: Wednesday, November 28, 2018 08:10:42 Pacific Standard Time

Name: 181127M1_102, Date: 28-Nov-2018, Time: 07:17:28, ID: IPA, Description: IPA

	\# Name	ID	Area	\%Rec
1	$113 C 4-$ Area Out			
2	$213 C 5-P F H x A$	IPA		NO
3	$313 C 3-P F H x S$	IPA		NO
4	$413 C 8-P F O A$	IPA		NO
5	$513 C 9-P F N A$	IPA		NO
6	$613 C 4-P F O S$	IPA		NO
7	$713 C 6-P F D A$	IPA		NO
8	$813 C 7-P F U d A$	IPA		NO

Name: 181127M1_103, Date: 28-Nov-2018, Time: 07:28:06, ID: ST181127M1-8 PFC CS3 18K1906, Description: PFC CS3 18K1906

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	ST181127M1-8 PFC CS3 18K1906	8.73 e 3	120.2	NO
2	2 13C5-PFHxA	ST181127M1-8 PFC CS3 18K1906	2.97e4	132.4	NO
3	3 13C3-PFHxS	ST181127M1-8 PFC CS3 18K1906	3.65 e 3	133.8	NO
4	4 13C8-PFOA	ST181127M1-8 PFC CS3 18K1906	3.39 e 4	126.2	NO
5	5 13C9-PFNA	ST181127M1-8 PFC CS3 18K1906	2.32 e 4	125.2	NO
6	6 13C4-PFOS	ST181127M1-8 PFC CS3 18K1906	3.61e3	122.8	NO
7	7 13C6-PFDA	ST181127M1-8 PFC CS3 18K1906	2.84 e 4	134.0	NO
8	8 13C7-PFUdA	ST181127M1-8 PFC CS3 18K1906	2.99 e 4	131.6	NO.

Name: 181127M1_104, Date: 28-Nov-2018, Time: 07:38:39, ID: IPA, Description: IPA

	\# Name	ID	Area	\%Rec
1	$113 C 4-$ Area Out			
1	$213 C 5-P F H x A$	IPA		NO
2	$313 C 3-P F H x S$	IPA		NO
3	$413 C 8-P F O A$	IPA		NO
4	$513 C 9-P F N A$	IPA		NO
5	$613 C 4-P F O S$	IPA		NO
6	$713 C 6-P F D A$	IPA		NO
7	$813 C 7-P F U d A$	IPA		NO
8				NO

Dataset: F:\Projects\PFAS.PRO\Results\181127M1\181127M1-4.qld

Last Altered: Wednesday, November 28, 2018 08:04:22 Pacific Standard Time Printed: Wednesday, November 28, 2018 08:04:51 Pacific Standard Time

\section*{Method: F:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_112718.mdb 28 Nov 2018 07:06:35}
 Calibration: F:|Projects\PFAS.PRO\CurveDBIC18_VAL-PFĀ_Q4_11-26-18.cdb 26 Nov 2018 14:29:06

Name: 181127M1_4, Date: 27-Nov-2018, Time: 12:43:32, ID: IPA, Description: IPA

13C3-PFBA

13C3-PFBS

4:2 FTS

13C2-4:2 FTS

PFHxA

13C2-PFHxA

PFPeS

13C3-PFBS
F8:MRM of 1 channel,ES-
$302 .>98.8$

Dataset: F:\Projects\PFAS.PRO\Results\181127M1\181127M1-4.qld

Last Altered: Wednesday, November 28, 2018 08:04:22 Pacific Standard Time Printed: Wednesday, November 28, 2018 08:04:51 Pacific Standard Time

Name: 181127M1_4, Date: 27-Nov-2018, Time: 12:43:32, ID: IPA, Description: IPA

F24:MRM of 2 channels,ES-
$427.1>80$ $1.000 \mathrm{e}-003$
100

13C2-6:2 FTS

F16:MRM of 2 channels,ES-

13C4-PFHpA

F18:MRM of 2 channels,ES-

1802-PFHxS

L-PFOA

F21:MRM of 2 channels,ES-

13C2-PFOA

Dataset: F:\Projects\PFAS.PRO\Results\181127M1\181127M1-4.qld

Last Altered: Wednesday, November 28, 2018 08:04:22 Pacific Standard Time Printed: Wednesday, November 28, 2018 08:04:51 Pacific Standard Time

Name: 181127M1_4, Date: 27-Nov-2018, Time: 12:43:32, ID: IPA, Description: IPA

PFOSA
 F30:MRM of 2 channels,ES-
 $497.9>77.9$ $1.000 \mathrm{e}-003$
 F30:MRM of 2 channels,ES- $497.9>169$ $1.000 \mathrm{e}-003$

13C8-PFOSA

F34:MRM of 1 channel,ES-

L-PFOS
 F32:MRM of 2 channels,ES-

13C8-PFOS

F35:MRM of 1 channel,ES-
$-\quad 507.0>79.9$

PFDA
F37:MRM of 2 channels,ES-

F37:MRM of 2 channels,ES

13C2-PFDA

F38:MRM of 1 channel,ES
$-\quad 515.1>469.9$

13C2-8:2 FTS

PFNS

13C8-PFOS

Dataset:
 F:\Projects\PFAS.PRO\Results\181127M1\181127M1-4.qld
 Last Altered: Wednesday, November 28, 2018 08:04:22 Pacific Standard Time Printed: Wednesday, November 28, 2018 08:04:51 Pacific Standard Time

Name: 181127M1_4, Date: 27-Nov-2018, Time: 12:43:32, ID: IPA, Description: IPA

d5-N-EtFOSAA

F54:MRM of 4 channels,ES-

13C2-PFDoA

PFDS

13C8-PFOS

F36:MRM of 2 channels,ES-

d3-N-MeFOSA

F60:MRM of 2 channels,ES$662.9>319$

13C2-PFDoA

Dataset: F:\Projects\PFAS.PRO\Results\181127M1\181127M1-4.qld

Last Altered: Wednesday, November 28, 2018 08:04:22 Pacific Standard Time Printed: Wednesday, November 28, 2018 08:04:51 Pacific Standard Time

Name: 181127M1_4, Date: 27-Nov-2018, Time: 12:43:32, ID: IPA, Description: IPA

13C2-PFTeDA

d5-N-ETFOSA

13C2-PFHxDA

PFODA

13C2-PFHxDA

Dataset:	F:\Projects\PFAS.PRO\Results\181127M1\181127M1-4.qld
Last Altered:	Wednesday, November 28, 2018 08:04:22 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 08:04:51 Pacific Standard Time

Name: 181127M1_4, Date: 27-Nov-2018, Time: 12:43:32, ID: IPA, Description: IPA

13C6-PFDA

13C7-PFUdA

LC Calibration Standards Review Checklist Q 4

Name: 181127M1_2, Date: 27-Nov-2018, Time: 12:22:15, ID: ST181127M1-1 PFC CS0 18K1903, Description: PFC CSO $18 K 1903$

		\# Name	Trace	Area	IS Area	wtvol	RT	Response	Conc.	\%REC	Recovery	lon Ratio	Ralio Out?	
1		1 PFBA	$213.0>168.8$	577.334	5788.080	1.00	1.20	1.247	1.0	101.2	NO			
2	4	2 PFPeA	$263.1>218.9$	978.693	12099.848	1.00	2.41	1.011	1.0	100.0	NO			
3		3 PFBS	$299.0>79.7$	242.985	1498.232	1.00	2.76	2.027	1.0	96.9	NO	2.465	NO	
4		4 4:2 FTS	$327.2>307.2$	341.344	4049.204	1.00	3.24	1.054	1.0	95.5	NO	1.501	NO	
5	S	5 PFHXA	$313>269$	1703.856	8806.086	1.00	3.32	0.967	1.0	97.3	NO	14.041	NO	
6		6 PFPeS	$349.1>80.1$	169.081	1498.232	1.00	3.55	1.411	0.8	82.6	NO	1.400	NO	
7		$3613 \mathrm{C}-\mathrm{PFBA}$	$216.1>171.8$	5788.080	7256.258	1.00	1.20	9.971	12.7	101.3	NO			
8		37 13C3-PFPeA	266. >221.8	12099.848	22400.566	1.00	2.41	6.752	12.1	97.2	NO			
9	\%	38 13C3-PFBS	302. >98.8	1498.232	2729.253	1.00	2.76	6.862	12.8	102.2	NO			
10	\#\#	39 13C2-4:2 FTS	$329.2>308.9$	4049.204	2729.253	1.00	3.24	18.545	12.5	100.4	NO			
11		40 13C2-PFHxA	$315>270$	8806.086	22400.566	1.00	3.32	4.914	5.0	99.4	NO			
12	-	38 13C3-PFBS	$302 .>98.8$	1498.232	2729.253	1.00	2.76	6.862	12.8	102.2	NO			
13	2t:	-1												
14		10 6:2 FTS	$427.1>407$	439.597	4411.112	1.00	4.43	1.246	0.9	94.4	NO	2.966	NO	
15	4tim	7 PFHpA	$363.0>318.9$	1270.390	11376.847	1.00	4.00	1.396	1.0	99.9	NO	14.880	NO	
16		8 L-PFHxS	$398.9>79.6$	178.184	1197.294	1.00	4.13	1.860	1.0	95.7	NO	2.034	NO	
17	\pm	11 L-PFOA	$412.8>368.9$	2294.727	20417.268	1.00	4.48	1.405	0.9	91.9	NO	3.184	NO	
18	\%	13 PFHpS	$449>80.0$	220.475	3007.491	1.00	4.59	0.916	0.9	91.9	NO	1.865	NO	
19	\%	14 PFNA	$463.0>418.8$	1992.297	18353.252	1.00	4.91	1.357	1.1	105.0	NO	5.316	NO	
20		43 13C2-6:2 FTS	$429.1>408.9$	4411.11¢	2937.737	1.00	4.43	18.769	12.0	96.1	NO			
21		41 13C4-PFHpA	$367.2>321.8$	11376.847	22400.566	1.00	3.99	6.349	11.8	94.7	NO			
22		42 1802-PFHxS	$403.0>102.6$	1197.294	2729.253	1.00	4.13	5.484	12.2	97.9	NO			
23		44 13C2-PFOA	$414.9>369.7$	20417.268	26824.303	1.00	4.48	9.514	12.6	100.8	NO			
24		47 13C8-PFOS	$507.0>79.9$	3007.491	2937.737	1.00	5.00	12.797	12.3	98.3	NO			
25	\%	45 13C5-PFNA	$468.2>422.9$	18353.252	18532.588	1.00	4.91	12.379	12.5	100.0	NO			
26	3-4	-1												
27	4	15 PFOSA	497.9 > 77.9	197.764	2245.646	1.00	4.96	1.101	1.0	98.7	NO	32.304	NO	
28		16 L-PFOS	$498.9>79.9$	286.087	3007.491	1.00	5.00	1.189	1.0	104.4	NO	2.556	NO	
29	W\%	18 PFDA	$513>468.8$	2062.660	18489.143	1.00	5.30	1.395	1.0	104.1	NO	7.395	NO	
30	\%	19 8:2 FTS	$527>506.9$	432.934	3574.510	1.00	5.26	1.514	0.9	93.6	NO	2.559	NO	
31	4	20 PFNS	$549.1>80.1$	195.700	3007.491	1.00	5.36	0.813	1.0	99.7	NO	1.755	NO	
32	!	21 L-MeFOSAA	$570>419$	704.380	2988.858	1.00	5.45	2.946	1.0	98.4	NO	2.879	NO	
33	+5\%	46 13C8-PFOSA	$506.1>77.7$	2245.646	22725.342	1.00	4.96	1.235	12.7	101.7	NO			
34		47 13C8-PFOS	$507.0>79.9$	3007.491	2937.737	1.00	5.00	12.797	12.3	98.3	NO			
35	+	48 13C2-PFDA	$515.1>469.9$	18489.143	21171.957	1.00	5.30	10.916	12.1	96.8	NO			MJT 11/28/2018
36	4.titis	49 13C2-8:2 FTS	$529.1>508.7$	3574.510	2937.737	1.00	5.26	15.209	12.9	103.3	NO			

Dataset:	F:\Projects\PFAS.PRO\Results\181127M1\181127M1-2.qld
Last Altered:	Wednesday, November 28, 2018 07:31:25 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 07:32:02 Pacific Standard Time

Name: 181127M1_2, Date: 27-Nov-2018, Time: 12:22:15, ID: ST181127M1-1 PFC CS0 18K1903, Description: PFC CS0 18 K 1903

Dataset: \quad F:IProjects\PFAS.PRO\Results\181127M1\181127M1-2.qld
Last Altered: Wednesday, November 28, 2018 07:31:25 Pacific Standard Time
Printed: Wednesday, November 28, 2018 07:32:02 Pacific Standard Time

Name: 181127M1_2, Date: 27-Nov-2018, Time: 12:22:15, ID: ST181127M1-1 PFC CS0 18K1903, Description: PFC CS0 18 K 1903

Dataset: \quad F:IProjects\PFAS.PRO\Results\181127M1\181127M1-9.qld
Last Altered: Wednesday, November 28, 2018 07:06:39 Pacific Standard Time
Printed: Wednesday, November 28, 2018 07:07:59 Pacific Standard Time

Method: F:|Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_112718.mdb 28 Nov 2018 07:06:35 Calibration: F:\Projects\PFAS.PRO\CurveDBIC18_VAL-PFAS_Q4_11-26-18.cdb 26 Nov 2018 14:29:06

Name: 181127M1_9, Date: 27-Nov-2018, Time: 13:36:33, ID: ST181127M1-2 PFC CS3 18K1906, Description: PFC CS3 18K1906

Dataset: F:IProjects\PFAS.PRO\Results\181127M1\181127M1-9.qld

Last Altered: Wednesday, November 28, 2018 07:06:39 Pacific Standard Time
Printed:
Wednesday, November 28, 2018 07:08:14 Pacific Standard Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_112718.mdb 28 Nov 2018 07:06:35 Calibration: F:\Projects\PFAS.PRO\CurveDBIC18_VAL-PFAS_Q4_11-26-18.cdb 26 Nov 2018 14:29:06

Name: 181127M1_9, Date: 27-Nov-2018, Time: 13:36:33, ID: ST181127M1-2 PFC CS3 18K1906, Description: PFC CS3 18 K1906

Method: F:|ProjectsIPFAS.PROMMethDBIPFAS_FULL_80C_112718.mdb 28 Nov 2018 07:06:35 Calibration: F:\Projects\PFAS.PROICurveDBIC18_VAL-PFĀS_Q4_11-26-18.cdb 26 Nov 2018 14:29:06

Compound name: PFBA

Dataset:

Untitled
Last Altered: Wednesday, November 28, 2018 08:06:15 Pacific Standard Time
Printed:
Wednesday, November 28, 2018 08:06:22 Pacific Standard Time

Compound name: PFBA

Compound name: PFBA

		\# Name	10	Acg, Date	Acg Time
69		69 181127M1_69	1803653-03 DH-1A 0.11294	28-Nov-18	01:27:32
70		70 181127M1_70	1803653-04 SW-2 0.11723	28-Nov-18	01:38:10
71		71 181127M1_71	IPA	28-Nov-18	01:48:43
72		72 181127M1_72	ST181127M1-6 PFC CS3 18K1906	28-Nov-18	01:59:21
73).1.	73 181127M1_73	IPA	28-Nov-18	02:10:00
74		74 181127M1_74	1803653-05 Seep 0.11658	28-Nov-18	02:20:31
75		75 181127M1_75	B8K0146-BS1 OPR 0.25	28-Nov-18	02:31:10
76		76 181127M1_76	B8K0146-BLK1 Method Blank 0.25	28-Nov-18	02:41:43
71		77 181127M1_77	1803692-01 SWIN1811071400GGA 0.22883	28-Nov-18	02:52:22
78		78 181127M1_78	1803692-02 SWEF1811071430GGA 0.24623	28-Nov-18	03:02:54
79		79 181127M1_79	B8K0140-BS1 OPR 0.25	28-Nov-18	03:13:33
80		80 181127M1_80	B8K0140-BLK1 Method Blank 0.25	28-Nov-18	03:24:11
81		81 181127M1_81	1803675-01 GW0110161811150925KER 0.2531	28-Nov-18	03:34:45
82		82 181127M1_82	1803675-02 GW0480531811151025KER 0.25333	28-Nov-18	03:45:23
83		83 181127M1_83	1803675-03 EB11811151030MK 0.2493	28-Nov-18	03:56:01
84		84 181127M1_84	1803675-04 GW0750801811151140KER 0.25044	28-Nov-18	04:06:34
85		85 181127M1_85	1803675-05 GW0800851811151255KER 0.25087	28-Nov-18	04:17:12
86		86 181127M1_86	1803675-06 GW0850901811151405KER 0.24759	28-Nov-18	04:27:51
87	Ti	87 181127M1_87	1803675-07 GW0920971811151535KER 0.24638	28-Nov-18	04:38:24
88		88 181127M1_88	IPA	28-Nov-18	04:49:03
89		89 181127M1_89	ST181127M1-7 PFC CS3 18K1906	28-Nov-18	04:59:41
90		90 181127M1_90	IPA	28-Nov-18	05:10:15
91	\%	91 181127M1_91	1803675-08 GW0971021811151650KER 0.24641	28-Nov-18	05:20:53
92		92 181127M1_92	1803675-09 GW0230281811121610MK 0.25313	28-Nov-18	05:31:26
93		93 181127M1_.93	1803675-10 GW0280331811131655KER 0.24856	28-Nov-18	05:42:04
94		94 181127M1_94	1803675-11 GW0820871811141045KER 0.24842	28-Nov-18	05:52:42
95		95 181127M1_95	1803675-12 FB1811141050KER 0.24655	28-Nov-18	06:03:15
96		96 181127M1_96	1803675-13 GW0971021811141145KER 0.2461	28-Nov-18	06:13:53
97	T ${ }^{\text {W }}$	97 181127M1_97	1803675-14 GW0280331811141310KER 0.24685	28-Nov-18	06:24:32
98		98 181127M1_98	1803675-15 GW0890941811141415KER 0.24549	28-Nov-18	06:35:05
99		99 181127M1_99	1803675-16 GW0991041811141615KER 0.24811	28-Nov-18	06:45:43
100		1... 181127M1_100	1803675-17 GW0991041811141620KER-FD 0.24325	28-Nov-18	06:56:16
101		1... 181127M1_101	QC MEOH LOT JB072509	28-Nov-18	07:06:55
102		1... 181127M1_102	IPA	28-Nov-18	07:17:28
103	,	1... 181127M1_103	ST181127M1-8 PFC CS3 18K1906	28-Nov-18	07:28:06
104	(1... 181127M1_104	IPA	28-Nov-18	07:38:39

Dataset: \quad F:IProjects\PFAS.PRO\Results\181127M11181127M1-2.qld

Last Altered: Wednesday, November 28, 2018 07:31:25 Pacific Standard Time
Printed:
Wednesday, November 28, 2018 07:32:02 Pacific Standard Time

Method: F:|Projects|PFAS.PRO\MethDB\PFAS_FULL_80C_112718.mdb 28 Nov 2018 07:06:35

Calibration: F:IProjects|PFAS.PRO\CurveDBIC18_VAL-PFĀS_Q4_11-26-18.cdb 26 Nov 2018 14:29:06

Name: 181127M1_2, Date: 27-Nov-2018, Time: 12:22:15, ID: ST181127M1-1 PFC CS0 18K1903, Description: PFC CS0 18K1903

PFBA

13C3-PFBA
F3:MRM of 1 channel,ES-

F6:MRM of 1 channel,ES

F7:MRM of 2 channels,ES-
F7:MRM of 2 channels,ES-
$299.0>99.0$

13C2-PFHxA

F10:MRM of 1 channel,ES-

PFHxA

Fg:MRM of 2 channels,ES-
F9:MRM of 2 channels,ES-
$313>269$

F9:MRM of 2 channels,ES-

PFPeS
F15:MRM of 2 channels,ES$349.1>80.1$

F15:MRM of 2 channels,ES-
$349.1>99$
$2.547 \mathrm{e}+003$

13C3-PFBS
F8:MRM of 1 channel,ES
$302 .>98.8$ $2.555 \mathrm{e}+004$

Dataset:

F:IProjects\PFAS.PRO\Results\181127M1\181127M1-2.qld
Last Altered: Wednesday, November 28, 2018 07:31:25 Pacific Standard Time
Printed:
Wednesday, November 28, 2018 07:32:02 Pacific Standard Time

Name: 181127M1_2, Date: 27-Nov-2018, Time: 12:22:15, ID: ST181127M1-1 PFC CS0 18K1903, Description: PFC CS0 18 K 1903

13C4-PFHpA
F17:MRM of 1 channel,ES-
$367.2>321.8$
$2.664 \mathrm{e}+005$

1802-PFHxS

13C2-PFOA

PFHpS

F26:MRM of 2 channels,ES-

F26:MRM of 2 channels,ES-

		449 > 98.7
1007	PFHpS	2.894 e+003
	4.60	
	1.18e2	
\%-	2889	
	bb	
	2889.00	
	TTTT	TTT min
	4.500	5.000

13C8-PFOS
F35:MRM of 1 channel,ES-
$507.0>79.9$
7.1078 .04

13C5-PFNA

F28:MRM of 1 channel,ES$468.2>422.9$

Dataset: F:IProjects\PFAS.PRO\Results\181127M11181127M1-2.qld
Last Altered: Wednesday, November 28, 2018 07:31:25 Pacific Standard Time
Printed: Wednesday, November 28, 2018 07:32:02 Pacific Standard Time

Name: 181127M1_2, Date: 27-Nov-2018, Time: 12:22:15, ID: ST181127M1-1 PFC CS0 18K1903, Description: PFC CS0 18 K 1903

F30:MRM of 2 channels,ES-

13C8-PFOSA

F34:MRM of 1 channel,ES$506.1>77.7$
$5.605 \mathrm{e}+004$

13C8-PFOS

13C8-PFOS

F35:MRM of 1 channel,ES-
$507.0>79.9$

F45:MRM of 2 channels,ES-

d3-N-MeFOSAA
F50:MRM of 1 channel,ES$573.3>419$
$6.345 e+004$

Name: 181127M1_2, Date: 27-Nov-2018, Time: 12:22:15, ID: ST181127M1-1 PFC CS0 18K1903, Description: PFC CS0 $18 K 1903$

d5-N-EtFOSAA
F52:MRM of 1 channel,ES$589.3>419$
$8.361 \mathrm{e}+004$

13C2-PFDoA

F36:MRM of 2 channels,ES-

d3-N-MeFOSA

13C2-PFDoA
F55:MRM of 2 channels,ES
$615.0>569.7$ $4.810 \mathrm{e}+005$

Dataset: \quad F:IProjectsIPFAS.PRO\Resultsl181127M1\181127M1-2.qld
$\begin{array}{ll}\text { Last Altered: } & \text { Wednesday, November 28, } 2018 \text { 07:31:25 Pacific Standard Time } \\ \text { Printed: } & \text { Wednesday, November 28, } 2018 \text { 07:32:02 Pacific Standard Time }\end{array}$

Name: 181127M1_2, Date: 27-Nov-2018, Time: 12:22:15, ID: ST181127M1-1 PFC CS0 18K1903, Description: PFC CS0 18K1903

d5-N-ETFOSA

13C2-PFHxDA
F64:MRM of 1 channel,ES-
$815>769.7$
$1.486 \mathrm{e}+005$

13C2-PFHxDA

d9-N-EtFOSE
F59:MRM of 1 channel,ES$639.2>58.8$

Dataset: \quad F:IProjects\PFAS.PRO\Results\181127M1\181127M1-2.qld
Last Altered: Wednesday, November 28, 2018 07:31:25 Pacific Standard Time
Printed: Wednesday, November 28, 2018 07:32:02 Pacific Standard Time

Name: 181127M1_2, Date: 27-Nov-2018, Time: 12:22:15, ID: ST181127M1-1 PFC CSO 18K1903, Description: PFC CSO 18 K1903

13C7-PFUdA
F49:MRM of 1 channel,ES$570.1>524.8$ $4.831 \mathrm{e}+005$

13C4-PFOS

F33:MRM of | 1 channel,ES- |
| ---: |
| $503>79.9$ |
| $7.033 \mathrm{e}+004$ |

Name: 181127M1_9, Date: 27-Nov-2018, Time: 13:36:33, ID: ST181127M1-2 PFC CS3 18K1906, Description: PFC CS3 18 K 1906

	\# Name	Trace	Area	IS Area	wtivol	RT	Response	Conc.	\%Rec	Recovery...:	Ion Ratio	Ratio Our?	
4	1 PFBA	$213.0>168.8$	5564.242	6044.539	1.00	1.20	11.507	9.8	98.2	NO			
2	2 PFPeA	$263.1>218.9$	9437.526	12552.300	1.00	2.42	9.398	9.9	98.7	NO			
3	3 PFBS	$299.0>79.7$	2744.029	1770.857	1.00	2.76	19.369	9.4	93.9	NO	2.653	NO	
4	4 4:2 FTS	$327.2>307.2$	3878.139	4684.055	1.00	3.24	10.349	9.9	99.0	NO	1.678	NO	
5\%	5 PFHxA	$313>269$	19324.664	10028.589	1.00	3.33	9.635	10.2	101.7	NO	15.387	NO	
6 6.	6 PFPeS	$349.1>80.1$	2235.374	1770.857	1.00	3.55	15.779	9.4	94.5	NO	1.569	NO	
7	$3613 \mathrm{C} 3-\mathrm{PFBA}$	$216.1>171.8$	6044.539	7529.786	1.00	1.21	10.034	12.7	101.9	NO			
8	37 13C3-PFPeA	266. >221.8	12552.300	26517.391	1.00	2.42	5.917	10.6	85.2	NO			
9	38 13C3-PFBS	302. > 98.8	1770.857	3194.410	1.00	2.77	6.930	12.9	103.2	NO			
10	39 13C2-4:2 FTS	$329.2>308.9$	4684.055	3194.410	1.00	3.24	18.329	12.4	99.2	NO			
11	40 13C2-PFHxA	$315>270$	10028.589	26517.391	1.00	3.33	4.727	4.8	95.7	NO			
12	38 13C3-PFBS	302. >98.8	1770.857	3194.410	1.00	2.77	6.930	12.9	103.2	NO			
13	-1												
14.	10 6:2 FTS	$427.1>407$	4773.198	5023.632	1.00	4.43	11.877	9.5	95.3	NO	2.980	NO	
15	7 PFHpA	$363.0>318.9$	13695.012	13520.427	1.00	4.00	12.661	9.6	96.1	NO	13.798	NO	
16\%	8 L-PFHxS	$398.9>79.6$	2138.740	1378.069	1.00	4.14	19.400	10.0	99.7	NO	1.572	NO	
17	11 L-PFOA	$412.8>368.9$	25305.109	23463.607	1.00	4.49	13.481	9.8	98.2	NO	3.389	NO	
18	13 PFHpS	$449>80.0$	2673.484	3358.318	1.00	4.60	9.951	10.6	106.1	NO	1.758	NO	
19	14 PFNA	$463.0>418.8$	21073.703	21311.506	1.00	4.92	12.361	9.9	98.6	NO	4.593	NO	
20	43 13C2-6:2 FTS	$429.1>408.9$	5023.632	3196.477	1.00	4.43	19.645	12.6	100.6	NO			
21	41 13C4-PFHpA	$367.2>321.8$	13520.427	26517.391	1.00	4.00	6.373	11.9	95.0	NO			
22.	42 1802-PFHxS	$403.0>102.6$	1378.069	3194.410	1.00	4.14	5.393	12.0	96.3	NO			
23	44 13C2-PFOA	$414.9>369.7$	23463.607	30220.549	1.00	4.49	9.705	12.9	102.9	NO			
24	47 13C8-PFOS	$507.0>79.9$	3358.318	3196.477	1.00	5.01	13.133	12.6	100.9	NO			
25.	45 13C5-PFNA	$468.2>422.9$	21311.506	21023.799	1.00	4.92	12.671	12.8	102.3	NO			
26	-1												
27	15 PFOSA	$497.9>77.9$	2579.209	2802.614	1.00	4.96	11.504	10.1	101.1	NO	36.760	NO	
28	16 L-PFOS	$498.9>79.9$	2965.089	3358.318	1.00	5.01	11.036	10.0	100.4	NO	1.857	NO	
29.	18 PFDA	$513>468.8$	22081.447	20196.289	1.00	5.30	13.667	10.4	104.0	NO	5.620	NO	
30	19 8:2 FTS	$527>506.9$	4252.868	3453.842	1.00	5.27	15.392	10.2	101.8	NO	2.416	NO	
31	20 PFNS	$549.1>80.1$	2112.453	3358.318	1.00	5.36	7.863	10.3	102.5	NO	1.633	NO	
32	21 L-MeFOSAA	$570>419$	8254.508	3445.453	1.00	5.46	29.947	10.3	103.0	NO	2.648	NO	
33 \%	46 13C8-PFOSA	$506.1>77.7$	2802.614	27465.320	1.00	4.96	1.276	13.1	105.1	NO			
34	47 13C8-PFOS	$507.0>79.9$	3358.318	3196.477	1.00	5.01	13.133	12.6	100.9	NO			
35	48 13C2-PFDA	$515.1>469.9$	20196.289	23510.281	1.00	5.30	10.738	11.9	95.2	NO			TT 11/28/2018
36.1	49 13C2-8:2 FTS	$529.1>508.7$	3453.842	3196.477	1.00	5.27	13.506	11.5	91.8	NO			MJ 1128/2018

Name: 181127M1_9, Date: 27-Nov-2018, Time: 13:36:33, ID: ST181127M1-2 PFC CS3 18K1906, Description: PFC CS3 18 K 1906

Dataset: F:IProjects\PFAS.PRO\Results\181127M1\181127M1-9.qld
Last Altered: Wednesday, November 28, 2018 07:06:39 Pacific Standard Time Printed: Wednesday, November 28, 2018 07:09:49 Pacific Standard Time

Name: 181127M1_9, Date: 27-Nov-2018, Time: 13:36:33, ID: ST181127M1-2 PFC CS3 18K1906, Description: PFC CS3 $18 K 1906$

Method: F:|Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_112718.mdb 28 Nov 2018 07:06:35 Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_11-26-18.cdb 26 Nov 2018 14:29:06

Compound name: PFBA

	\# Name	ID	Acq.Date	Acg. Time
1	1 181127M1_1	IPA	27-Nov-18	12:11:38
-	2 181127M1_2	ST181127M1-1 PFC CS0 18K1903	27-Nov-18	12:22:15
3	3 181127M1_3	QC MEOH LOT JB072509	27-Nov-18	12:32:54
$4{ }^{4}+3$	4 181127M1_4	IPA	27-Nov-18	12:43:32
5	5 181127M1_5	1803659-01 A1-MW-07-SA2 0.11704	27-Nov-18	12:54:05
6	6 181127M1_6	1803659-02 A1-MW-23-SA2 0.1178	27-Nov-18	13:04:43
7 -	7 181127M1_7	1803659-03 A1-MW-25-SA2 0.11426	27-Nov-18	13:15:22
8	8 181127M1_8	IPA	27-Nov-18	13:25:54
9	9 181127M1_9	ST181127M1-2 PFC CS3 18K1906	27-Nov-18	13:36:33
10	10 181127M1_10	IPA	27-Nov-18	13:47:11
11	11 181127M1_11	1803553-04 BS 1810291445GC 3.51	27-Nov-18	15:12:40
12	12 181127M1_12	IPA	27-Nov-18	15:23:15
13	13 181127M1_13	B8K0162-MS1 Matrix Spike 0.11696	27-Nov-18	15:33:53
14	14 181127M1_14	B8K0162-MSD1 Matrix Spike Dup 0.11463	27-Nov-18	15:44:27
15	15 181127M1_15	B8K0162-BS1 OPR 0.125	27-Nov-18	15:55:05
16	16 181127M1_16	B8K0162-BLK1 Method Blank 0.125	27-Nov-18	16:05:38
17	17 181127M1_17	1803677-01 OC-RW05-1118 0.1159	27-Nov-18	16:16:16
18	18 181127M1_18	1803677-02 OC-RW05P-11180.11752	27-Nov-18	16:26:49
19	19 181127M1_19	1803677-03 OC-FB05-1118 0.12187	27-Nov-18	16:37:27
20	20 181127M1_20	B8K0098-BS1 OPR 0.125	27-Nov-18	16:48:00
21	21 181127M1_21	B8K0098-BLK1 Method Blank 0.125	27-Nov-18	16:58:38
22	22 181127M1_22	1803630-01 277 Bond Rd 0.10443	27-Nov-18	17:09:12
23	23 181127M1_23	1803630-02 292 Bond Rd 0.11197	27-Nov-18	17:19:51
24	24 181127M1_24	1803630-03 110 Phinney Rd 0.10702	27-Nov-18	17:30:29
25	25 181127M1_25	1803630-04 305 Bond Rd 0.10908	27-Nov-18	17:41:02
26	26 181127M1_26	1803630-05 122 Phinney Rd 0.11013	27-Nov-18	17:51:40
27	27 181127M1_27	1803630-06 123 Phinney Rd 0.09851	27-Nov-18	18:02:13
28	28 181127M1_28	IPA	27-Nov-18	18:12:52
29	29 181127M1_29	ST181127M1-3 PFC CS3 18K1906	27-Nov-18	18:23:26
$30 \geq$	30 181127M1_30	IPA	27-Nov-18	18:34:04
31	31 181127M1_31	1803630-07 277 Bond Rd FRB 0.11327	27-Nov-18	18:44:37
$32+$	32 181127M1_32	B8K0105-BS1 OPR 0.125	27-Nov-18	18:55:15

Last Altered: Wednesday, November 28, 2018 08:06:15 Pacific Standard Time
Printed: Wednesday, November 28, 2018 08:06:22 Pacific Standard Time

Compound name: PFBA

	\# Name	10	Acq. Date	Acq. Time
33	33 181127M1_33	B8K0105-BLK1 Method Blank 0.125	27-Nov-18	19:05:49
34	34 181127M1_34	1803643-01 DPH-MW10-17 0.11455	27-Nov-18	19:16:27
35	35 181127M1_35	1803643-02 DPH-MW8-17 0.11432	27-Nov-18	19:27:05
36	36 181127M1_36	1803643-03 DPH-MW5-17 0.11778	27-Nov-18	19:37:44
37	37 181127M1_37	1803643-04 DPH-MW9-170.11197	27-Nov-18	19:48:16
38	38 181127M1_38	1803643-05 DPH-MW4-17 0.11305	27-Nov-18	19:58:55
39	39 181127M1_39	1803643-06 DPH-MW2-17 0.11423	27-Nov-18	20:09:28
40	40 181127M1_40	1803643-07 DPH-B5 0.11397	27-Nov-18	20:20:06
41	41 181127M1_41	1803643-08 DPH-MW1-17 0.1163	27-Nov-18	20:30:44
42	42 181127M1_42	1803643-09 DPH-EX4 0.11442	27-Nov-18	20:41:18
43	43 181127M1_43	IPA	27-Nov-18	20:51:56
44	44 181127M1_44	ST181127M1-4 PFC CS3 18K1906	27-Nov-18	21:02:28
45	45 181127M1_45	IPA	27-Nov-18	21:13:06
46	46 181127M1_46	1803645-01 DPH-MW6 0.11548	27-Nov-18	21:23:39
47	47 181127M1_47	1803645-02 DPH-MW21 0.11562	27-Nov-18	21:34:18
48	48 181127M1_48	1803645-03 DPH-MW15D 0.11807	27-Nov-18	21:44:56
49	49 181127M1_49	1803645-04 DPH-MW22 0.11748	27-Nov-18	21:55:28
50	50 181127M1_50	1803649-01 DPH-MW18 0.11992	27-Nov-18	22:06:07
51	51 181127M1_51	1803649-02 DPH-MW19 0.11728	27-Nov-18	22:16:45
52	52 181127M1_52	1803649-03 DPH-SW1 0.1142	27-Nov-18	22:27:18
53	53 181127M1_53	1803649-04 DPH-SW3 0.11432	27-Nov-18	22:37:57
54	54 181127M1_54	1803649-05 DPH-SW4 0.11082	27-Nov-18	22:48:35
55	55 181127M1_55	B8K0133-BS1 OPR 0.125	27-Nov-18	22:59:07
56	56 181127M1_56	B8K0133-BLK1 Method Blank 0.125	27-Nov-18	23:09:45
57	57 181127M1_57	1803638-01 Ireland 0.11664	27-Nov-18	23:20:24
58	58 181127M1_58	IPA	27-Nov-18	23:30:57
59	59 181127M1_59	ST181127M1-5 PFC CS3 18K1906	27-Nov-18	23:41:36
60	60 181127M1_60	IPA	27-Nov-18	23:52:09
61	61 181127M1_61	1803639-01 MW-1 0.11477	28-Nov-18	00:02:47
62	62 181127M1_62	1803639-02 MW-3 0.11437	28-Nov-18	00:13:20
63	63 181127M1_63	1803650-01 RFW-3 0.113	28-Nov-18	00:23:58
64	64 181127M1_64	1803650-02 RFW-4 0.11224	28-Nov-18	00:34:30
	65 181127M1_65	$1803650-03 \mathrm{GZ}$-202A 0.11317	28-Nov-18	00:45:09
66	66 181127M1_66	1803650-04 P-2R (South Spring) 0.11552	28-Nov-18	00:55:47
67	67 181127M1_67	1803653-01 SEA-1 0.11267	28-Nov-18	01:06:20
68	68 181127M1_68	1803653-02 SEA-2 0.1142	28-Nov-18	01:16:59

Last Altered: Wednesday, November 28, 2018 08:06:15 Pacific Standard Time
Printed:
Wednesday, November 28, 2018 08:06:22 Pacific Standard Time

Compound name: PFBA

	\# Name	10 \% \% = -	Acq. Date	Acq. Time
69	69 181127M1_69	1803653-03 DH-1A 0.11294	28-Nov-18	01:27:32
70	70 181127M1_70	1803653-04 SW-2 0.11723	28-Nov-18	01:38:10
71	71 181127M1_71	IPA	28-Nov-18	01:48:43
72	72 181127M1_72	ST181127M1-6 PFC CS3 18K1906	28-Nov-18	01:59:21
73	73 181127M1_73	IPA	28-Nov-18	02:10:00
74	74 181127M1_74	1803653-05 Seep 0.11658	28-Nov-18	02:20:31
75	75 181127M1_75	B8K0146-BS1 OPR 0.25	28-Nov-18	02:31:10
76	76 181127M1_76	B8K0146-BLK1 Method Blank 0.25	28-Nov-18	02:41:43
77	77 181127M1_77	1803692-01 SWIN1811071400GGA 0.22883	28-Nov-18	02:52:22
78	78 181127M1_78	1803692-02 SWEF 1811071430 GGA 0.24623	28-Nov-18	03:02:54
79	79 181127M1_79	B8K0140-BS1 OPR 0.25	28-Nov-18	03:13:33
80	80 181127M1_80	B8K0140-BLK1 Method Blank 0.25	28-Nov-18	03:24:11
81	81 181127M1_81	1803675-01 GW0110161811150925KER 0.2531	28-Nov-18	03:34:45
82	82 181127M1_82	1803675-02 GW0480531811151025KER 0.25333	28-Nov-18	03:45:23
83	83 181127M1_83	1803675-03 EB11811151030MK 0.2493	28-Nov-18	03:56:01
84	84 181127M1_84	1803675-04 GW 0750801811151140 KER 0.25044	28-Nov-18	04:06:34
85	85 181127M1_85	1803675-05 GW0800851811151255KER 0.25087	28-Nov-18	04:17:12
86	86 181127M1_86	1803675-06 GW0850901811151405KER 0.24759	28-Nov-18	04:27:51
87	87 181127M1_87	1803675-07 GW0920971811151535KER 0.24638	28-Nov-18	04:38:24
88	88 181127M1_88	IPA	28-Nov-18	04:49:03
89	89 181127M1_89	ST181127M1-7 PFC CS3 18K1906	28-Nov-18	04:59:41
90	90 181127M1_90	IPA	28-Nov-18	05:10:15
91	91 181127M1_91	1803675-08 GW0971021811151650KER 0.24641	28-Nov-18	05:20:53
92	92 181127M1_92	1803675-09 GW0230281811121610MK 0.25313	28-Nov-18	05:31:26
93	93 181127M1_93	1803675-10 GW0280331811131655KER 0.24856	28-Nov-18	05:42:04
94	94 181127M1_94	1803675-11 GW0820871811141045KER 0.24842	28-Nov-18	05:52:42
95	95 181127M1_95	1803675-12 FB1811141050KER 0.24655	28-Nov-18	06:03:15
96	96 181127M1_96	1803675-13 GW0971021811141145KER 0.2461	28-Nov-18	06:13:53
97	97 181127M1_97	1803675-14 GW0280331811141310KER 0.24685	28-Nov-18	06:24:32
98	98 181127M1_98	1803675-15 GW0890941811141415KER 0.24549	28-Nov-18	06:35:05
99	99 181127M1_99	1803675-16 GW0991041811141615KER 0.24811	28-Nov-18	06:45:43
100	1... 181127M1_100	1803675-17 GW0991041811141620KER-FD 0.24325	28-Nov-18	06:56:16
101	1... 181127M1_101	QC MEOH LOT JB072509	28-Nov-18	07:06:55
102	1... 181127M1_102	IPA	28-Nov-18	07:17:28
103	1... 181127M1_103	ST181127M1-8 PFC CS3 18K1906	28-Nov-18	07:28:06
104	1... 181127M1_104	IPA	28-Nov-18	07:38:39

Dataset: F:IProjects\PFAS.PRO\Results\181127M1\181127M1-9.qld

$\begin{array}{ll}\text { Last Altered: } & \text { Wednesday, November 28, } 2018 \text { 07:06:39 Pacific Standard Time } \\ \text { Printed: } & \text { Wednesday November 28, } 2018 \text { 07:09:49 Pacific Standard Time }\end{array}$
Printed:
Wednesday, November 28, 2018 07:09:49 Pacific Standard Time

Method: F:|Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_112718.mdb 28 Nov 2018 07:06:35

Calibration: F:IProjects\PFAS.PRO\CurveDBIC18_VAL-PFĀ_Q4_11-26-18.cdb 26 Nov 2018 14:29:06

Name: 181127M1_9, Date: 27-Nov-2018, Time: 13:36:33, ID: ST181127M1-2 PFC CS3 18K1906, Description: PFC CS3 18 K1906

PFBA
 F2:MRM of 1 channel,ES

F6:MRM of 1 channel,ES

PFPeS
F15:MRM of 2 channels,ES $349.1>80.1$

F15:MRM of 2 channels,ES $349.1>99$

13C3-PFBS
F8:MRM of 1 channel,ES-
$302 .>98.8$
$100-\quad 2.768 \mathrm{e}+004$

Dataset:	F:\Projects\PFAS.PRO\Results\181127M1\181127M1-9.qld
Last Altered:	Wednesday, November 28, 2018 07:06:39 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 07:09:49 Pacific Standard Time

Name: 181127M1_9, Date: 27-Nov-2018, Time: 13:36:33, ID: ST181127M1-2 PFC CS3 18K1906, Description: PFC CS3 $18 K 1906$

Dataset: \quad F:\Projects\PFAS.PRO\Results\181127M1\181127M1-9.qld
$\begin{array}{ll}\text { Last Altered: } & \text { Wednesday, November 28, } 2018 \text { 07:06:39 Pacific Standard Time } \\ \text { Printed: } & \text { Wednesday, November 28, } 2018 \text { 07:09:49 Pacific Standard Time }\end{array}$

Name: 181127M1_9, Date: 27-Nov-2018, Time: 13:36:33, ID: ST181127M1-2 PFC CS3 18K1906, Description: PFC CS3 18 K1906

PFOSA
F30:MRM of 2 channels,ES-

F30:MRM of 2 channels,ES-

		$497.9>169$
	PFOSA	$1.755 \mathrm{e}+003$
	4.96	
	7.02e1	
\%-	1754	
	bb	
	1754.00	

F32:MRM of 2 channets,ES-

13C8-PFOS
F35:MRM of 1 channel,ES-

13C2-8:2 FTS

F45:MRM of 2 channels,ES-

Dataset: F:IProjects\PFAS.PRO\Results\181127M1\181127M1-9.qld
Last Altered: Wednesday, November 28, 2018 07:06:39 Pacific Standard Time
Printed: Wednesday, November 28, 2018 07:09:49 Pacific Standard Time

Name: 181127M1_9, Date: 27-Nov-2018, Time: 13:36:33, ID: ST181127M1-2 PFC CS3 18K1906, Description: PFC CS3 18 K 1906

13C2-PFDoA
F55:MRM of 2 channels,ES-
$615.0>569.7$

13C2-PFDOA
F55:MRM of 2 channels,ES-

Dataset: \quad F:IProjects\PFAS.PRO\Results\181127M1\181127M1-9.qld

Last Altered:	Wednesday, November 28, 2018 07:06:39 Pacific Standard Time
Printed:	Wednesday, November 28, 2018 07:09:49 Pacific Standard Time

Name: 181127M1_9, Date: 27-Nov-2018, Time: 13:36:33, ID: ST181127M1-2 PFC CS3 18K1906, Description: PFC CS3 $18 K 1906$

d5-N-ETFOSA

d9-N-EtFOSE
F59:MRM of 1 channel,ES $639.2>58.8$

Dataset: F:IProjects\PFAS.PRO\Results\181127M1\181127M1-9.qld
Last Altered: Wednesday, November 28, 2018 07:06:39 Pacific Standard Time
Printed Wednesday, November 28, 2018 07:09:49 Pacific Standard Time

Name: 181127M1_9, Date: 27-Nov-2018, Time: 13:36:33, ID: ST181127M1-2 PFC CS3 18K1906, Description: PFC CS3 18 K 1906

INITIAL CALIBRATION (ICAL)
 INCLUDING ASSOCIATED

INITIAL CALIBRATION VERIFICATION (ICV) AND INSTRUMENT BLANK (IB)

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time $C-M C$ SOSA $=\downarrow$

Method: F;\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_112618.mdb 26 Nov 2018 13:53:04 Calibration: F:IProjects\PFAS.PRO\CurveDBIC18_VAL-PFAS_Q4_11-26-18.cdb 26 Nov 2018 14:29:06

Compound name: PFBA

Correlation coefficient: $\mathrm{r}=0.999908, \mathrm{r}^{\wedge} 2=0.999815$
Calibration curve: 1.16478 * x + 0.0685845
Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFPeA

Coefficient of Determination: $R^{\wedge} 2=0.999820$
Calibration curve: $4.72356 \mathrm{e}-006^{*} x^{\wedge} 2+0.945965^{*} x+0.0647094$
Response type: Internal Std (Ref 37), Area * IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

F:\Projects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld
Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:39:52 Pacific Standard Time

Compound name: PFBS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997695$
Calibration curve: $-0.000161679^{*} x^{\wedge} 2+2.06224$ * $x+0.0291321$
Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: 4:2 FTS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997744$
Calibration curve: $-0.00329241^{*} x^{\wedge} 2+1.0746^{*} x+0.0302455$
Response type: Internal Std (Ref 39), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F:IProjectsIPFAS.PRO\Results\181126M1\181126M1-CRV.ald
Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:39:52 Pacific Standard Time

Compound name: PFHxA

Coefficient of Determination: $R^{\wedge} 2=0.999832$
Calibration curve: $-0.0001048755^{*} x^{\wedge} 2+0.943399$ * $x+0.0492708$
Response type: Internal Std (Ref 40), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

(23\%	\# Name	Type	Std. Cone	RT	Area	IS Area	Resporse	Conc.	\%Dev	Conc. Flag	CoD	Cod Flag	$x=$ excluded
1.	1 18:126M1_2	Standard	0.250	3.36	543.690	9787.215	0.278	0.2	-3.1	NO	1.000	NO	MM
2.WH2	2 181126M1_3	Standard	0.500	3.36	1002.725	9629.179	0.521	0.5	-0.1	NO	1.000	NO	bb
3	3 181126M1_4	Standard	1.000	3.37	2160.279	10373.639	1.041	1.1	5.2	NO	1.000	NO	bb
4	4 181126M1_5	Standard	2.000	3.36	4246.874	10091.624	2.104	2.2	8.9	NO	1.000	NO	bb
5.	5 181126M1_6	Standard	5.000	3.36	11085.394	10427.667	5.315	5.6	11.7	NO	1.000	NO	bb
6	6 181126M1_7	Standard	10.000	3.36	19080.154	10138.645	9.410	9.9	-0.7	NO	1.000	NO	bb
	7 181126M1_8	Standard	50.000	3.36	95866.445	10164.805	47.156	50.2	0.4	NO	1.000	NO	bb
88	8 181126M1_9	Standard	100.000	3.36	187440.484	10236.929	91.551	98.1	-1.9	NO	1.000	NO	bb
19	9 181126M1_10	Standard	250.000	3.36	452512.406	9817.484	230.463	251.3	0.5	NO	1.000	NO	bb
10.』.	10 181126M1_11	Standard	500.000	3.36	822435.563	9234.549	445.304	499.7	-0.1	NO	1.000	NO	bb

Compound name: PFPeS

Coefficient of Determination: $R^{\wedge} 2=0.998416$
Calibration curve: $-0.00034984^{*} x^{\wedge} 2+1.67039{ }^{*} x+0.0318278$
Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

+	\# Name	Type	Std Conc	PT	Area	IS Area	Response	Conc	\%Dev	Conc. Flag	COD	Cod Flag	x excluded
1.	1 181126M1_2	Standard	0.250	3.58	51.237	1786.299	0.359	0.2	-21.8	NO	0.998	NO	bb
2 ${ }^{\text {2 }}$	2 181126M1_3	Standard	0.500	3.58	133.691	1802.877	0.927	0.5	7.2	NO	0.998	NO	bb
3.tastu	3 181126M1_4	Standard	1.000	3.58	238.063	1800.875	1.652	1.0	-3.0	NO	0.998	NO	bd
4	4 181126M1_5	Standard	2.000	3.58	574.238	1859.173	3.861	2.3	14.7	NO	0.998	NO	bb
5.	5 181126M1_6	Standard	5.000	3.58	1401.943	1822.236	9.617	5.7	14.9	NO	0.998	NO	bb
6	6181126 M 1 _ 7	Standard	10.000	3.58	2301.248	1802.554	15.958	9.6	-4.5	NO	0.998	NO	bb
7. \#\# \%	7 181126M1_8	Standard	50.000	3.58	11780.987	1924.595	76.516	46.2	-7.5	NO	0.998	NO	bb
8	8 181126M1_9	Standard	100.000	3.58	22362.012	1781.169	156.934	95.9	-4.1	NO	0.998	NO	bb
9	9 181126M1_10	Standard	250.000	3.58	51911.930	1561.142	415.657	263.3	5.3	NO	0.998	NO	bb
	10 181126M1_11	Standard	500.000	3.58	88368.578	1493.188	739.764	494.0	-1.2	NO	0.998	NO	bo

Dataset:

F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld
Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:39:52 Pacific Standard Time

Compound name: PFHpA

Correlation coefficient: $r=0.999783, \mathrm{r}^{\wedge} 2=0.999567$
Calibration curve: 1.30873 * $\mathrm{x}+0.0886199$
Response type: Internal Std (Ref 41), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Typer	Std. Conc	RT	Area	IS Area	Resporise	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	x-excluded
1	1 181126M1_2	Standard	0.250	4.02	391.774	14063.499	0.348	0.2	-20.7	NO	1.000	NO	bb
2	2 181126M1_3	Standard	0.500	4.02	821.452	14566.622	0.705	0.5	-5.8	NO	1.000	NO	bb
3. ${ }^{\text {atata }}$	3 181126M1_4	Standard	1.000	4.02	1646.863	14599.738	1.410	1.0	1.0	NO	1.000	NO	bb
4	4 181126M1_5	Standard	2.000	4.02	3230.693	13961.896	2.892	2.1	7.1	NO	1.000	NO	bb
5	5 181126M1_6	Standard	5.000	4.02	8943.927	14034.775	7.966	6.0	20.4	NO	1.000	NO	bb
6	6 181126M1_7	Standard	10.000	4.02	14191.912	13678.921	12.969	9.8	-1.6	NO	1.000	NO	bb
7:	7 181126M1_8	Standard	50.000	4.02	73303.828	14249.999	64.302	49.1	-1.9	NO	1.000	NO	bb
8	8 181126M1_9	Standard	100.000	4.02	137761.203	13058.787	131.866	100.7	0.7	NO	1.000	NO	bb
9	9 181126M1_10	Standard	250.000	4.02	333762.781	12520.175	333.225	254.5	1.8	NO	1.000	NO	bb
10.	10 181126M1_11	Standard	500.000	4.02	576309.688	11123.91C	647.602	494.8	-1.0	NO	1.000	NO	bb

Compound name: L-PFHxS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998700$
Calibration curve: $7.11978 \mathrm{e}-005$ * $\mathrm{x}^{\wedge} 2+1.94438$ * $x+-0.00102564$
Response type: Internal Std (Ref 42), Area * (IS Conc./ IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Sta. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	Cod flag	$x=$ excluded
1 1/4.	1 181126M1_2	Standard	0.250	4.15	63.089	1490.698	0.529	0.3	9.0	NO	0.999	NO	MM
4	2 181126M1_3	Standard	0.500	4.16	102.182	1447.785	0.882	0.5	-9.1	NO	0.999	NO	MM
\% ${ }^{2}$	3 181126M1_4	Standard	1.000	4.16	242.957	1581.371	1.920	1.0	-1.2	NO	0.999	NO	MM
4	4 181126M1_5	Standard	2.000	4.16	471.273	1558.457	3.780	1.9	-2.8	NO	0.999	NO	MM
5	5 181126M1_6	Standard	5.000	4.16	1417.070	1526.846	11.601	6.0	19.3	NO	0.999	NO	MM
6.	$6181126 \mathrm{M1}$ _7	Standard	10.000	4.16	2169.523	1542.694	17.579	9.0	-9.6	NO	0.999	NO	MM
7 7.	7 181126M1_8	Standard	50.000	4.16	11650.288	1579.074	92.224	47.3	-5.3	NO	0.999	NO	MM
8.4 \%	8 181126M1_9	Standard	100.000	4.16	22089.543	1478.125	186.804	95.7	-4.3	NO	0.999	NO	MM
9\% ${ }^{\text {a }}$	9 181126M1_10	Standard	250.000	4.16	53430.172	1300.621	513.506	261.6	4.6	NO	0.999	NO	MM
10	10 181126M1_11	Standard	500.000	4.16	95683.875	1219.567	980.716	495.4	-0.9	NO	0.999	NO	MM

Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:39:52 Pacific Standard Time

Compound name: 6:2 FTS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997882$
Calibration curve: $-0.0044139{ }^{*} x^{\wedge} 2+1.28489$ * $x+0.0365766$
Response type: Internal Std (Ref 43), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Compound name: L-PFOA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999794$
Calibration curve: $3.30794 e-005^{*} x^{\wedge} 2+1.35692{ }^{*} x+0.157598$
Response type: Internal Std (Ref 44), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc	\%Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1	1 181126M1_2	Standard	0.250	4.50	859.697	24359.602	0.441	0.2	-16.4	NO	1.000	NO	bb
2	2 181126M1_3	Standard	0.500	4.51	1402.470	24354.520	0.720	0.4	-17.1	NO	1.000	NO	bb
3	3 181126M1_4	Standard	1.000	4.51	3123.076	24178.301	1.615	1.1	7.4	NO	1.000	NO	bb
4	4 181126M1_5	Standard	2.000	4.51	5800.527	23443.150	3.093	2.2	8.2	NO	1.000	NO	bb
5.4.	5 181126M1_6	Standard	5.000	4.51	15085.033	23552.342	8.006	5.8	15.7	NO	1.000	NO	bb
6	6 181126M1_7	Standard	10.000	4.51	25699.873	22507.277	14.273	10.4	4.0	NO	1.000	NO	bb
7	7 181126M1_8	Standard	50.000	4.51	129049.719	23848.943	67.639	49.7	-0.7	NO	1.000	NO	bb
8	8 181126M1_9	Standard	100.000	4.52	241531.141	22357.822	135.037	99.2	-0.8	NO	1.000	NO	bb
9	9 181126M1_10	Standard	250.000	4.52	588288.500	21588.547	340.625	249.4	-0.2	NO	1.000	NO	bb
10.	10 181126M1_11	Standard	500.000	4.52	1097817.125	19958.678	687.556	500.5	0.1	NO	1.000	NO	bb

Dataset: F:IProjects\PFAS.PRO\Results\181126M11181126M1-CRV.qld

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:39:52 Pacific Standard Time

Compound name: PFHpS

Coefficient of Determination: $R^{\wedge} 2=0.999257$
Calibration curve: $-2.62046 \mathrm{e}-005^{*} \mathrm{x}^{\wedge} 2+0.932171^{*} \mathrm{x}+0.0595585$
Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT.	IT. Area	, IS Arca	Response	Cone:	\% Der	Conc. Flag	CoD	Cod flag	$x=$ excluded
1	1 181126M1_2	Standard	0.250	4.61	37.734	3276.263	0.144	0.1	-63.8	YES	0.999	NO	bbX
2	2 181126M1_3	Standard	0.500	4.62	124.551	3416.156	0.456	0.4	-15.0	NO	0.999	NO	$b b$
3.	3 181126M1_4	Standard	1.000	4.62	296.909	3743.129	0.992	1.0	-0.0	NO	0.999	NO	bb
4	4 181126M1_5	Standard	2.000	4.62	580.380	3748.331	1.935	2.0	0.6	NO	0.999	NO	bb
5	5 181126M1 6	Standard	5.000	4.62	1591.427	3674.965	5.413	5.7	14.9	NO	0.999	NO	bb
6.4	$6181126 \mathrm{M1} 1$ 7	Standard	10.000	4.62	2597.803	3393.818	9.568	10.2	2.0	NO	0.999	NO	bb
	7 181126M1_8	Standard	50.000	4.62	13942.404	3698.358	47.124	50.6	1.1	NO	0.999	NO	bb
8	8 181126M1_9	Standard	100.000	4.63	25496.764	3638.886	87.584	94.1	-5.9	NO	0.999	NO	$b 6$
9	9 181126M1_10	Standard	250.000	4.63	60578.254	3187.154	237.588	256.7	2.7	NO	0.999	NO	bb
10.\%:	10 181126M1_11	Standard	500.000	4.63	106407.352	2906.952	457.556	497.8	-0.4	NO	0.999	NO	bb

Compound name: PFNA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999758$
Calibration curve: $-0.000123392{ }^{*} x^{\wedge} 2+1.25051 * x+0.0436441$
Response type: Internal Std (Ref 45), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

		\# Name	Type	3 Std Conc	RT	Area	IS Area	Response	Conc	\%Dev	Conc. Flag	COD	CoD Flag	x excluded
1.		1 181126M1_2	Standard	0.250	4.93	537.912	22295.369	0.302	0.2	-17.5	NO	1.000	NO	bd
2		$2181126 \mathrm{M1}$ _3	Standard	0.500	4.94	1200.616	21931.633	0.684	0.5	2.5	NO	1.000	NO	bd
3	4,	3 181126M1_4	Standard	1.000	4.94	2409.214	23014.137	1.309	1.0	1.2	NO	1.000	NO	bb
4		4 181126M1_5	Standard	2.000	4.94	4898.088	22367.645	2.737	2.2	7.7	NO	1.000	NO	bb
5		5 181126M1_6	Standard	5.000	4.94	13174.647	23199.723	7.098	5.6	12.9	NO	1.000	NO	bb
6		6 181126M1_7	Standard	10.000	4.94	21293.529	22312.191	11.929	9.5	-4.9	NO	1.000	NO	bb
7.	Wtil	7 181126M1_8	Standard	50.000	4.94	111154.17\%	22610.824	61.450	49.3	-1.3	NO	1.000	NO	bb
8		8 181126M1_9	Standard	100.000	4.94	210237.266	21568.918	121.840	98.4	-1.6	NO	1.000	NO	bb
9	.	9 181126M1_10	Standard	250.000	4.94	500506.188	20252.943	308.910	253.3	1.3	NO	1.000	NO	bb
10	+3.4.	10 181126M1_11	Standard	500.000	4.94	857858.188	18084.188	592.962	498.7	-0.3	NO	1.000	NO	bb

Dataset: F:IProjectsiPFAS.PROTResults\181126M1\181126M1-CRV.qId
Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:39:52 Pacific Standard Time

Compound name: PFOSA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999684$
Calibration curve: $0.000109224^{*} x^{\wedge} 2+1.13948{ }^{*} x+-0.0243111$
Response type: Internal Std (Ref 46), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: L-PFOS

Correlation coefficient: $\mathrm{r}=0.999291, \mathrm{r}^{\wedge} 2=0.998583$
Calibration curve: $1.09502^{*} x+0.0459904$
Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: $1 / x$, Axis trans: None

	\# Name	Type	Std. Cone	RT	Area	IS Area	Response	Conc.	\%Dev	Conc Flag	CoD	CoD Flag	x-excluded
4.	1 181126M1_2	Standard	0.250	5.03	84.610	3276.263	0.323	0.3	1.1	NO	0.999	NO	M.M
2	2 181126M1_3	Standard	0.500	5.02	184.315	3416.156	0.674	0.6	14.8	NO	0.999	NO	MM
3	3 181126M1_4	Standard	1.000	5.03	353.854	3743.129	1.182	1.0	3.7	NO	0.999	NO	MM
4	4 181126M1_5	Standard	2.000	5.03	653.485	3748.331	2.179	1.9	-2.6	NO	0.999	NO	MM
5	5 181126M1_6	Standard	5.000	5.03	1798.805	3674.965	6.118	5.5	10.9	NO	0.999	NO	MM
6	$6181126 \mathrm{M1}$-7	Standard	10.000	5.03	2942.006	3393.818	10.836	9.9	-1.5	NO	0.999	NO	MM
7	7 181126M1_8	Standard	50.000	5.03	15189.169	3698.358	51.338	46.8	-6.3	NO	0.999	NO	MM
8	8 181126M1_9	Standard	100.000	5.03	29498.684	3638.886	101.331	92.5	-7.5	NO	0.999	NO	MM
9	9 181126M1_10	Standard	250.000	5.03	72760.766	3187.154	285.367	260.6	4.2	NO	0.999	NO	MM
10.1 \%	10181126 M 1 _ 11	Standard	500.000	5.03	127245.672	2906.952	547.161	499.6	-0.1	NO	0.999	NO	MM

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed: Monday, November 26, 2018 14:39:52 Pacific Standard Time

Compound name: PFDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999437$
Calibration curve: $-0.000121158^{*} x^{\wedge} 2+1.3134^{*} x+0.026774$
Response type: Internal Std (Ref 48), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

\%	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	Cod Flag	$x=e x c l u d e d$
	1 181126M1_2	Standard	0.250	5.31	493.215	21127.947	0.292	0.2	-19.3	NO	0.999	NO	bb
2	2 181126M1_3	Standard	0.500	5.31	1055.351	20915.982	0.631	0.5	-8.0	NO	0.999	NO	bb
3	3 181126M1_4	Standard	1.000	5.31	2556.062	22735.521	1.405	1.0	5.0	NO	0.999	NO	bb
4	4 181126M1_5	Standard	2.000	5.32	4856.033	22345.748	2.716	2.0	2.4	NO	0.999	NO	bb
5	5 181126M1_6	Standard	5.000	5.31	14504.808	21456.660	8.450	6.4	28.3	NO	0.999	NO	bb
6	$6181126 \mathrm{M1}$ _7	Standard	10.000	5.32	21679.984	22033.270	12.300	9.4	-6.5	NO	0.999	NO	bb
7.	7 181126M1_8	Standard	50.000	5.32	113078.391	22018.436	64.195	49.1	-1.8	NO	0.999	NO	bb
8	8 181126M1__9	Standard	100.000	5.32	219513.250	21141.234	129.790	99.7	-0.3	NO	0.999	NO	bb
9\%	9181126 M 1 _10	Standard	250.000	5.32	513148.719	19950.951	321.506	250.6	0.2	NO	0.999	NO	bb
10	10 181126M1_11	Standard	500.000	5.33	913019.563	18223.094	626.279	499.9	-0.0	NO	0.999	NO	bb

Compound name: 8:2 FTS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998754$
Calibration curve: $-0.0045567^{*} x^{\wedge} 2+1.55189^{*} x+0.0660151$
Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

4	\# Name	Type	Std. Conc	7T	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	Cob	Cod flag	x-excluded
1	1 181126M1_2	Standard	0.250	5.28	148.253	4148.165	0.447	0.2	-1.8	NO	0.999	NO	bb
$2^{2.4 .}$	2 181126M1_3	Standard	0.500	5.28	290.829	4224.977	0.860	0.5	2.5	NO	0.999	NO	bb
3	3 181126M1_4	Standard	1.000	5.28	463.741	4109.911	1.410	0.9	-13.1	NO	0.999	NO	bb
4.4	4 181126M1_5	Standard	2.000	5.28	953.692	3657.264	3.260	2.1	3.5	NO	0.999	NO	bb
5	5 181126M1_6	Standard	5.000	5.28	2650.359	3800.459	8.717	5.7	13.4	NO	0.999	NO	bb
6	6 181126M1_7	Standard	10.000	5.29	4293.809	3672.164	14.616	9.6	-3.5	NO	0.999	NO	bb
$7{ }^{7 \%}$	7 181126M1_8	Standard	50.000	5.28	21138.963	4037.449	65.447	49.3	-1.5	NO	0.999	NO	bb
8	8 181126M1_9	Standard	100.000	5.29	38432.820	4363.402	110.100	100.6	0.6	NO	0.999	NO	bb
9 9, W	9 181126M1_10	Standard	250.000	5.29	81069.391	5899.837	171.762			NO	0.999	NO	bbXI
10	10 181126M1_11	Standard	500.000	5.29	131198.281	7314.130	224.221			NO	0.999	YES	bbXI

Last Altered:
Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed: Monday, November 26, 2018 14:39:52 Pacific Standard Time

Compound name: PFNS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998671$

Calibration curve: $-6.14234 e-005^{*} x^{\wedge} 2+0.762317^{*} x+0.0530889$
Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

\mathfrak{F}	\# Name	Type	Std. Conc	RT	Area	IS Area	Resporse	Conc:	\%Dev	Conc. Flag	COD.	CobFlag	$x=e x c l u d e d$
1	1 181126M1_2	Standard	0.250	5.38	71.132	3276.263	0.271	0.3	14.5	NO	0.999	NO	bb
2	2 181126M1_3	Standard	0.500	5.38	88.689	3416.156	0.325	0.4	-28.8	NO	0.999	NO	bb
3	3 181125M1_4	Standard	1.000	5.38	264.160	3743.129	0.882	1.1	8.8	NO	0.999	NO	bb
4	$4181126 \mathrm{M1} 5$	Standard	2.000	5.38	447.030	3748.331	1.491	1.9	-5.7	NO	0.999	NO	bb
5	5 181126M1_6	Standard	5.000	5.38	1279.236	3674.965	4.351	5.6	12.8	NO	0.999	NO	bb
6	$6181126 \mathrm{M} 1 _7$	Standard	10.000	5.38	2185.486	3393.818	8.050	10.5	5.0	NO	0.999	NO	bb
7	7 181126M1_8	Standard	50.000	5.38	10731.038	3698.358	36.270	47.7	-4.6	NO	0.999	NO	bb
8	8 181126M1_9	Standard	100.000	5.39	20767.127	3638.886	71.338	94.2	-5.8	NO	0.999	NO	bb
19	9 181126M1_10	Standard	250.000	5.38	49811.875	3187.154	195.362	261.7	4.7	NO	0.999	NO	bb
10	10 181126M1_11	Standard	500.000	5.39	84324.992	2906.952	362.601	495.4	-0.9	NO	0.999	NO	bb

Compound name: L-MeFOSAA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998550$
Calibration curve: $-0.00052965{ }^{*} x^{\wedge} 2+2.905233^{*} x+0.0881852$
Response type: Internal Std (Ref 50), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Sld. Conc	RT.	Area	IS Area	Response	Conc	\%Dev	Conc Flag	CoD	CoD Flag	x-excluded
1	1 181126M1_2	Standard	0.250	5.47	110.370	3699.583	0.373	0.1	-60.8	YES	0.999	NO	MMX
$2{ }^{2}$	2 181126M1_3	Standard	0.500	5.47	405.738	3511.724	1.444	0.5	-6.6	NO	0.999	NO	MM
3.	3 181126M1_4	Standard	1.000	5.47	973.701	3825.910	3.181	1.1	6.5	NO	0.999	NO	MM
4	4 181126M1_5	Standard	2.000	5.48	1860.614	3744.315	6.211	2.1	5.4	NO	0.999	NO	MM
5.3!	5 181126M1_6	Standard	5.000	5.47	4599.163	3621.836	15.873	5.4	8.8	NO	0.999	NO	MM
	6 181126M1_7	Standard	10.000	5.48	8016.689	3678.562	27.241	9.4	-6.4	NO	0.999	NO	MM
7.	7 181126M1_8	Standard	50.000	5.48	42003.703	3541.941	148.237	51.5	3.0	NO	0.999	NO	MM
8	8 181126M1_9	Standard	100.000	5.48	79657.992	3788.505	262.828	92.0	-8.0	NO	0.999	NO	MM
3	9 181126M1_10	Standard	250.000	5.48	188039.656	3255.628	721.979	260.9	4.4	NO	0.999	NO	MM
10.	10 181126M1_11	Standard	500.000	5.48	330967.375	3157.978	1310.045	495.7	-0.9	NO	0.999	NO	MM

Dataset: \quad F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld
Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed: Monday, November 26, 2018 14:39:52 Pacific Standard Time

Compound name: L-EtFOSAA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999862$
Calibration curve: $0.000386736^{*} x^{\wedge} 2+1.61077{ }^{*} x+0.0602011$
Response type: Internal Std (Ref 52), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

5	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	$\%$ Dev	Conc. Flag	CoD.	CoDFlag	$x=$ excluded
1 1 \%	1 181126M1_2	Standard	0.250	5.63	146.384	4528.725	0.404	0.2	-14.6	NO	1.000	NO	MM
2	2 181126M1_3	Standard	0.500	5.63	332.970	5076.554	0.820	0.5	-5.7	NO	1.000	NO	MM
3	3 181126M1_4	Standard	1.000	5.63	779.600	5526.345	1.763	1.1	5.7	NO	1.000	NO	MM
4	4 181126M1_5	Standard	2.000	5.63	1485.310	5456.494	3.403	2.1	3.7	NO	1.000	NO	MM
5	5 181126M1_6	Standard	5.000	5.63	4041.750	5491.763	9.200	5.7	13.3	NO	1.000	NO	MM
6.	6 181126M1_7	Standard	10.000	5.63	6876.887	5467.541	15.722	9.7	-3.0	NO	1.000	NO	MM
7.	7 181126M1_8	Standard	50.000	5.63	34404.953	5239.788	82.076	50.3	0.6	NO	1.000	NO	MM
8	8 181126M1_9	Standard	100.000	5.63	64816.547	4876.164	166.157	100.7	0.7	NO	1.000	NO	MM
9	9 181126M1_10	Standard	250.000	5.63	148925.406	4403.293	422.767	247.7	-0.9	NO	1.000	NO	MM
10.	$10181126 \mathrm{M1}$ _11	Standard	500.000	5.63	256751.625	3550.520	903.923	500.9	0.2	NO	1.000	NO	MM

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed: Monday, November 26, 2018 14:41:10 Pacific Standard Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_112618.mdb 26 Nov 2018 13:53:04

Calibration: F:|Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_11-26-18.cdb 26 Nov 2018 14:29:06

Compound name: PFUdA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999703$
Calibration curve: $-0.000152898^{*} x^{\wedge} 2+0.969236$ * $x+0.0723136$
Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	15 Area	Response	Conc.	\% Dev	Conc. Flag	COO	Cod flag	x-excluded
1.	1 181126M1_2	Standard	0.250	5.64	595.664	25976.096	0.287	0.2	-11.5	NO	1.000	NO	bd
2	2 181126M1_3	Standard	0.500	5.65	1120.343	25586.691	0.547	0.5	-2.0	NO	1.000	NO	bb
3.	3181126 M 1 _4	Standard	1.000	5.65	2211.564	27670.049	0.999	1.0	-4.4	NO	1.000	NO	db
4	4 181126M1_5	Standard	2.000	5.65	4563.838	26258.051	2.173	2.2	8.4	NO	1.000	NO	bb
$\sqrt{2}$	5 181126M1_6	Standard	5.000	5.65	12366.179	27247.850	5.673	5.8	15.7	NO	1.000	NO	bb
6	$6181126 \mathrm{M} 1 _7$	Standard	10.000	5.65	19330.379	25918.631	9.323	9.6	-4.4	NO	1.000	NO	bb
17	7 181126M1_8	Standard	50.000	5.65	100258.570	26225.896	47.786	49.6	-0.8	NO	1.000	NO	bb
8	8 181126M1_9	Standard	100.000	5.65	191519.938	25584.975	93.571	98.0	-2.0	NO	1.000	NO	bb
	9 181126M1_10	Standard	250.000	5.65	441344.219	23407.137	235.689	253.2	1.3	NO	1.000	NO	bb
10	10 181126M1_11	Standard	500.000	5.65	761098.375	21357.555	445.450	498.8	-0.2	NO	1.000	NO	bb

Compound name: PFDS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998317$
Calibration curve: $-0.000138966^{*} x^{\wedge} 2+1.049377^{*} x+0.0115389$
Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\% Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1.15.	1 181126M1_2	Standard	0.250	5.69	61.728	3276.263	0.236	0.2	-14.6	NO	0.998	NO	bb
2	2 181126M1_3	Standard	0.500	5.69	164.466	3416.156	0.602	0.6	12.5	NO	0.998	NO	bb
3	3 181126M1_4	Standard	1.000	5.69	281.841	3743.129	0.941	0.9	-11.4	NO	0.998	NO	bb
4	4 181126M1_5	Standard	2.000	5.70	697.649	3748.331	2.327	2.2	10.3	NO	0.998	NO	bb
5***	5 181126M1_6	Standard	5.000	5.69	1721.918	3674.965	5.857	5.6	11.5	NO	0.998	NO	bb
${ }^{6}$	$6181726 \mathrm{M} 1 _7$	Standard	10.000	5.70	2829.394	3393.818	10.421	9.9	-0.7	NO	0.998	NO	bb
7	7 181126M1_8	Standard	50.000	5.70	14431.456	3698.358	48.777	46.8	-6.5	NO	0.998	NO	bb
8^{8}	8 181126M1_9	Standard	100.000	5.70	28465.041	3638.886	97.781	94.3	-5.7	NO	0.998	NO	bb
9	9 181126M1_10	Standard	250.000	5.70	68244.000	3187.154	267.653	264.3	5.7	NO	0.998	NO	bb
10%	10 181126M1_11	Standard	500.000	5.70	112661.602	2906.952	484.449	494.0	-1.2	NO	0.998	NO	bb

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:41:10 Pacific Standard Time

Compound name: PFDoA

Coefficient of Determination: $R^{\wedge} 2=0.999868$
Calibration curve: $-0.000134587{ }^{*} x^{\wedge} 2+1.16156$ * $x+0.0671424$
Response type: Internal Std (Ref 53), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

5	\# Namer.	Type	Std. Conc	RT	Area	IS Area	Response	Cone.	\%Dev	Conc Flag	Con	Cod Flag	$x=$ excluded
1.	1 181126M1_2	Standard	0.250	5.93	645.754	25354.904	0.318	0.2	-13.5	NO	1.000	NO	bb
2.	$2181126 \mathrm{M1}$ _3	Standard	0.500	5.93	1238.638	25224.803	0.614	0.5	-5.9	NO	1.000	NO	bd
3	3 181126M1_4	Standard	1.000	5.93	2640.428	26488.537	1.246	1.0	1.5	NO	1.000	NO	bb
4	4 181126M1_5	Standard	2.000	5.93	5064.328	25356.541	2.497	2.1	4.6	NO	1.000	NO	bb
5	5 181126M1_6	Standard	5.000	5.93	13815.301	27050.830	6.384	5.4	8.8	NO	1.000	NO	bb
6	6181126 Ml _7	Standard	10.000	5.93	23006.129	23270.566	12.358	10.6	5.9	NO	1.000	NO	bb
7	$7181126 \mathrm{M1}{ }^{8}$	Standard	50.000	5.93	115967.875	25114.900	57.719	49.9	-0.2	NO	1.000	NO	bb
8.	8 181126M1_9	Standard	100.000	5.93	220463.922	24371.867	113.073	98.4	-1.6	NO	1.000	NO	bb
9	9 181126M1_10	Standard	250.000	5.93	523928.125	23172.217	282.627	250.5	0.2	NO	1.000	NO	bb
10	10 181:26M1_11	Standard	500.000	5.93	906910.813	20714.875	547.258	500.1	0.0	NO	1.000	NO	bb

Compound name: $\mathrm{N}-\mathrm{MeFOSA}$

Coefficient of Determination: R^2 $=0.999421$
Calibration curve: $-3.87935 \mathrm{e}-005$ * $x^{\wedge} 2+0.953523$ * $x+0.468324$
Response type: Internal Std (Ref 54), Area* (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std Cone	RT	A Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	Cob	CoD flag	x-excluded
1	1 181126M1_2	Standard	1.250	5.93	119.766	11953.504	1.503	1.1	-13.2	NO	0.999	NO	bb
2	2 181126M1_3	Standard	2.500	5.94	247.098	11746.337	3.155	2.8	12.7	NO	0.999	NO	bb
3.:E\%	3 181126M1_4	Standard	5.000	5.94	443.889	11694.007	5.694	5.5	9.6	NO	0.999	NO	bb
4 W!	4 181126M1_5	Standard	10.000	5.94	851.844	11465.957	11.144	11.2	12.0	NO	0.999	NO	bb
5	5 181126M1_6	Standard	25.000	5.94	2224.112	11840.089	28.177	29.1	16.4	NO	0.999	NO	bb
6	6 181126M1_7	Standard	50.000	5.94	3701.474	11131.010	49.881	51.9	3.9	NO	0.999	NO	bb
7	7 181126M1_8	Standard	250.000	5.94	18637.240	12241.498	228.370	241.4	-3.4	NO	0.999	NO	bb
8	8 181126M1_9	Standard	500.000	5.95	37200.367	11611.420	480.566	514.3	2.9	NO	0.999	NO	bb
9	9 181126M1_10	Standard	1250.000	5.95	87847.688	11864.808	1110.608	1225.3	-2.0	NO	0.999	NO	bb
10	10 181126M1_11	Standard	2500.000	5.95	161531.891	11267.006	2150.508	2511.4	0.5	NO	0.999	NO	bb

Compound name: PFTrDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999827$
Calibration curve: $-4.24277 e-005^{*} x^{\wedge} 2+1.15539$ * $x+0.0691663$
Response type: Internal Std (Ref 53), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

	\# Name	Type	Sid. Conc	RT	Area	IS Area	Resporse	Conc.	\% Dev	Conc, Flag	CoD	CoD Flag	$x=$ excluded
1	1 18:126M1_2	Standard	0.250	6.17	650.821	25354.904	0.321	0.2	-12.9	NO	1.000	NO	bd
2	2 181126M1_3	Standard	0.500	6.18	1256.560	25224.803	0.623	0.5	-4.2	NO	1.000	NO	bb
3	3 181126M1_4	Standard	1.000	6.18	2471.074	26488.537	1.166	0.9	-5.1	NO	1.000	NO	bb
4	4 18:126M1_5	Standard	2.000	6.18	5185.712	25356.541	2.556	2.2	7.6	NO	1.000	NO	bb
5	5 181126M1_6	Standard	5.000	6.18	14089.136	27050.830	6.510	5.6	11.5	NO	1.000	NO	bb
6	$6181126 \mathrm{M1}$ _7	Standard	10.000	6.18	22218.727	23270.566	11.935	10.3	2.7	NO	1.000	NO	bb
$\sqrt{7}$	7 181126M1_8	Standard	50.000	6.18	118548.289	25114.900	59.003	51.1	2.2	NO	1.000	NO	bb
8	8 181126M1_9	Standard	100.000	6.18	220604.203	24371.867	113.145	98.2	-1.8	NO	1.000	NO	bb
9	9 181126M1_10	Standard	250.000	6.18	528676.313	23172.217	285.189	249.1	-0.4	NO	1.000	NO	bb
10	10 181126M1_11	Standard	500.000	6.18	941217.875	20714.875	567.960	500.7	0.1	NO	1.000	NO	bb

Compound name: PFTeDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999640$
Calibration curve: $-0.000300636{ }^{*} x^{\wedge} 2+1.62832{ }^{*} x+0.0899878$
Response type: Internal Std (Ref 55), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	Conf Flag	$x=$ excluded
1 LTH	1 181126M1_2	Standard	0.250	6.39	539.250	14333.310	0.470	0.2	-6.6	NO	1.000	NO	bb
2	2 181126M1_3	Standard	0.500	6.40	1051.210	14532.341	0.904	0.5	0.0	NO	1.000	NO	bb
3 .	3 181126M1_4	Standard	1.000	6.40	2050.983	15629.965	1.640	1.0	-4.8	NO	1.000	NO	bb
4.	4 181126M1_5	Standard	2.000	6.39	4309.994	15493.746	3.477	2.1	4.0	NO	1.000	NO	bb
5.	5 181126M1_6	Standard	5.000	6.40	11641.705	15853.647	9.179	5.6	11.8	NO	1.000	NO	bb
6	$6181126 \mathrm{M1}$ _7	Standard	10.000	6.40	19449.658	14923.140	16.292	10.0	-0.3	NO	1.000	NO	bb
7	7 181126M1_8	Standard	50.000	6.40	100572.320	16310.112	77.078	47.7	-4.6	NO	1.000	NO	bb
8	8 181126M1_9	Standard	100.000	6.40	196100.344	15502.673	158.118	98.9	-1.1	NO	1.000	NO	bb
9	9 181126M1_10	Standard	250.000	6.39	469956.969	14833.304	396.032	255.2	2.1	NO	1.000	NO	bb
10.	10 181126M1_11	Standard	500.000	6.40	791250.375	13438.607	735.986	497.7	-0.5	NO	1.000	NO	bb

Dataset: \quad F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld
Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:41:10 Pacific Standard Time

Compound name: N-EtFOSA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999752$
Calibration curve: $-4.89024 e-005{ }^{*} x^{\wedge} 2+0.875046{ }^{*} x+0.265554$
Response type: Internal Std (Ref 56), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Cone	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	Cob	CoD Fiag	x-excluded
1	1 181126M1_2	Standard	1.250	6.43	140.858	15262.959	1.384	1.3	2.3	NO	1.000	NO	bb
2	2 181126M1_3	Standard	2.500	6.43	232.454	16027.104	2.176	2.2	-12.7	NO	1.000	NO	bb
3 3.	3 181126M1_4	Standard	5.000	6.43	585.605	18601.041	4.722	5.1	1.9	NO	1.000	NO	bb
4	4 181126M1_5	Standard	10.000	6.43	1230.676	19918.102	9.268	10.3	2.9	NO	1.000	NO	bb
5-twhtu	5 181126M1_6	Standard	25.000	6.43	3266.325	20324.578	24.106	27.3	9.1	NO	1.000	NO	$b b$
6	$6181126 \mathrm{M1}$-7	Standard	50.000	6.43	5529.787	19247.895	43.094	49.1	-1.8	NO	1.000	NO	bb
7	7 181126M1_8	Standard	250.000	6.43	28386.855	19814.482	214.895	248.7	-0.5	NO	1.000	NO	bb
8	8 181126M1_9	Standard	500.000	6.43	53878.910	19491.674	414.630	486.8	-2.6	NO	1.000	NO	bb
9	9 181126M1_10	Standard	1250.000	6.43	132572.609	19221.986	1034.539	1272.5	1.8	NO	1.000	NO	'b
10.	10 181126M1_11	Standard	2500.000	6.43	224072.266	17915.363	1876.090	2490.3	-0.4	NO	1.000	NO	bb

Compound name: PFHxDA

Coefficient of Determination: $R^{\wedge} 2=0.998670$
Calibration curve: $-9.94628 \mathrm{e}-0055^{*} x^{\wedge} 2+0.395894 * x+0.0669369$
Response type: Internal Std (Ref 57), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	1. Area	IS Area	Response	Cone.	$\%$ Dev	Conc. Flag	COD	CoD Flag	x-excluded
\%	1 181126M1_2	Standard	0.250	6.73	225.952	6889.798	0.164	0.2	-1.9	NO	0.999	NO	bb
2 2\% ${ }^{\text {a }}$	2 181126M1_3	Standard	0.500	6.73	376.403	7098.292	0.265	0.5	0.1	NO	0.999	NO	bb
3	3 181126M1_4	Standard	1.000	6.73	727.130	8009.421	0.454	1.0	-2.2	NO	0.999	NO	bb
4.	4 181126M1_5	Standard	2.000	6.73	1397.181	8091.949	0.863	2.0	0.6	NO	0.999	NO	bb
5	5 181126M1_6	Standard	5.000	6.73	4085.416	8466.808	2.413	5.9	18.7	NO	0.999	NO	MM
6	$6181126 \mathrm{M1}$ _7	Standard	10.000	6.73	5486.094	7582.587	3.618	9.0	-10.1	NO	0.999	NO	MM
7	7 181126M1_8	Standard	50.000	6.73	32428.545	8679.925	18.680	47.6	-4.8	NO	0.999	NO	bb
8	8 181126M1_9	Standard	100.000	6.74	63093.250	8488.328	37.165	96.0	-4.0	NO	0.999	NO	bb
9 9\%	9 181126M1_10	Standard	250.000	6.74	156318.594	8060.974	96.960	262.0	4.8	NO	0.999	NO	bb
10\%	10 181126M1_11	Standard	500.000	6.74	266713.313	7776.927	171.477	494.4	-1.1	NO	0.999	NO	bb

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:41:10 Pacific Standard Time

Compound name: PFODA

Coefficient of Determination: $R^{\wedge} 2=0.999437$
Calibration curve: $-0.000110262^{*} x^{\wedge} 2+0.704083^{*} x+0.0275186$
Response type: Internal Std (Ref 57), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	2-4. Alea	IS Area	Response	Conc.	\% Dev	Conc. Flag	1F. CoD	CoD Flag	x-excluded
1	1 181126M1_2	Standard	0.250	6.97	264.722	6889.798	0.192	0.2	-6.5	NO	0.999	NO	bb
2	$2181126 \mathrm{M1}$ _3	Standard	0.500	6.97	535.462	7098.292	0.377	0.5	-0.7	NO	0.999	NO	bb
3 \%	3 181126M1_4	Standard	1.000	6.97	1192.476	8009.421	0.744	1.0	1.8	NO	0.999	NO	bb
4	$4181126 \mathrm{M1}$ _ 5	Standard	2.000	6.97	2386.819	8091.949	1.475	2.1	2.8	NO	0.999	NO	bb
5	5 181126M1_6	Standard	5.000	6.97	7024.528	8466.808	4.148	5.9	17.2	NO	0.999	NO	bb
6	6 181126M1_7	Standard	10.000	6.97	11199.354	7582.587	7.385	10.5	4.7	NO	0.999	NO	bb
7	7 181126M1_8	Standard	50.000	6.97	59971.836	8679.925	34.546	49.4	-1.2	NO	0.999	NO	bb
18	8 181126M1_9	Standard	100.000	6.97	112768.000	8488.328	66.425	95.7	-4.3	NO	0.999	NO	bb
9	9 181126M1_10	Standard	250.000	6.97	278318.969	8060.974	172.634	255.4	2.1	NO	0.999	NO	bb
10 \%	10 181126M1_11	Standard	500.000	6.97	502972.500	7776.927	323.375	498.1	-0.4	NO	0.999	NO	bb

Compound name: N-MeFOSE

Coefficient of Determination: R^2 $=0.999885$
Calibration curve: $1.26969 e-005^{*} x^{\wedge} 2+0.895945{ }^{*} x+0.479162$
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Cone	RT	Area	IS Area	Response	Conc.	\%Dev	Cone.flag	COD	CoD flag	$x=$ excluded
1.4.	1 181126M1_2	Standard	1.250	6.70	102.481	9613.644	1.599	1.2	-0.0	NO	1.000	NO	MM
2.	2 181126M1_3	Standard	2.500	6.70	175.783	9970.688	2.644	2.4	-3.3	NO	1.000	NO	bb
3	3 181126M1_4	Standard	5.000	6.70	320.276	10409.790	4.615	4.6	-7.7	NO	1.000	NO	bb
$4{ }^{4}$ \#	4 181126M1_5	Standard	10.000	6.70	685.982	10378.408	9.915	10.5	5.3	NO	1.000	NO	bb
5 \% \%	5 181126M1_6	Standard	25.000	6.69	1741.865	10389.321	25.149	27.5	10.1	NO	1.000	NO	bb
6	6 181126M1_7	Standard	50.000	6.70	2858.348	9705.995	44.174	48.7	-2.5	NO	1.000	NO	bb
7.	7 181126M1_8	Standard	250.000	6.69	15229.308	10357.785	220.549	244.8	-2.1	NO	1.000	NO	bb
8.	8 181126M1_9	Standard	500.000	6.70	30430.609	10143.168	450.016	498.2	-0.4	NO	1.000	NO	bb
9	9 181126M1_10	Standard	1250.000	6.70	78307.102	10223.422	1148.937	1259.4	0.7	NO	1.000	NO	bb
10:	10 181126M1_11	Standard	2500.000	6.70	148090.328	9590.735	2316.147	2496.3	-0.1	NO	1.000	NO	bb

Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed: Monday, November 26, 2018 14:41:10 Pacific Standard Time

Compound name: N-EtFOSE

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999668$
Calibration curve: $1.15732 \mathrm{e}-006^{*} x^{\wedge} 2+1.14211^{*} x+0.352591$
Response type: Internal Std (Ref 59), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	PT	Area	TYIS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	$x=e x c l u d e d$
T!M!	1 181126M1_2	Standard	1.250	6.84	93.317	8485.106	1.650	1.1	-9.1	NO	1.000	NO	bb
2	2 181126M1_3	Standard	2.500	6.84	177.386	8904.628	2.988	2.3	-7.7	NO	1.000	NO	bb
3	3 181126M1_4	Standard	5.000	6.84	435.865	9999.587	6.538	5.4	8.3	NO	1.000	NO	bb
4 L	4 181126M1_5	Standard	10.000	6.84	813.770	9705.979	12.576	10.7	7.0	NO	1.000	NO	bb
5	5 181126M1_6	Standard	25.000	6.84	2093.998	9902.425	31.719	27.5	9.9	NO	1.000	NO	bb
6	6 181126M1_7	Standard	50.000	6.84	3449.748	9565.112	54.099	47.1	-5.9	NO	1.000	NO	bb
7	7 181126M1_8	Standard	250.000	6.84	18169.016	9699.960	280.965	245.6	-1.7	NO	1.000	NO	bb
8	$8181126 \mathrm{M1}$ _ 9	Standard	500.000	6.85	36455.391	9803.931	557.767	487.8	-2.4	NO	1.000	NO	bb
9	9 181126M1_10	Standard	1250.000	6.84	93862.227	9641.881	1460.227	1276.6	2.1	NO	1.000	NO	bb
10 1\%	10 181126M1_11	Standard	2500.000	6.84	176096.641	9265.136	2850.956	2489.6	-0.4	NO	1.000	NO	bb

Compound name: 13C3-PFBA

Response Factor: 0.787485
RRF SD: 0.0228362 , Relative SD: 2.89989
Response type: Internal Std (Ref 60), Area * (IS Conc. / IS Area)
Curve type: RF

Dataset: \quad F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld
Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:41:10 Pacific Standard Time

Compound name: 13C3-PFPeA

Response Factor: 0.555876
RRF SD: 0.0136707, Relative SD: 2.45931
Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Sid. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD F	$\mathrm{x}=$ excluded
1	1 181126M1_2	Standard	12.500	2.46	13715.434	25192.414	6.805	12.2	-2.1	NO		NO	bb
2	2 181126M1_3	Standard	12.500	2.47	13723.302	25514.697	6.723	12.1	-3.2	NO		NO	bb
3 \%	3 181126M1_4	Standard	12.500	2.47	14561.754	26136.416	6.964	12.5	0.2	NO		NO	bb
14	4 181126M1_5	Standard	12.500	2.47	14296.794	26095.398	6.848	12.3	-1.4	NO		NO	bb
5 \%	5 181126M1_6	Standard	12.500	2.47	14592.260	26363.371	6.919	12.4	-0.4	NO		NO	bb
6	6 181126M1_7	Standard	12.500	2.47	13932.524	25322.297	6.878	12.4	-1.0	NO		NO	bb
7.	7 181126M1_8	Standard	12.500	2.47	14718.107	26522.105	6.937	12.5	-0.2	NO		NO	bb
8	8 181126M1_9	Standard	12.500	2.47	14155.756	25558.145	6.923	12.5	-0.4	NO		NO	bb
9	9 181126M1_10	Standard	12.500	2.47	13897.646	23924.270	7.261	13.1	4.5	NO		NO	bb
10.	10 181126M1_11	Standard	12.500	2.47	12898.420	22313.770	7.226	13.0	4.0	NO		NO	bb

Compound name: 13C3-PFBS

Response Factor: 0.536974
RRF SD: 0.0212494 , Relative SD: 3.95724
Response type: Internal Std (Ref 62), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std Conc	RT	Area	IS Area	Response	Cone.	\%Dev	Conc. Flag	Cob	CodFlag	x=excluded
1.	1 181126M1_2	Standard	12.500	2.80	1786.299	3368.764	6.628	12.3	-1.3	NO		NO	bb
2	2 181126M1_3	Standard	12.500	2.80	1802.877	3301.831	6.825	12.7	1.7	NO		NO	bb
3	3 181126M1_4	Standard	12.500	2.80	1800.875	3474.822	6.478	12.1	-3.5	NO		NO	bb
4	4 181126M1_5	Standard	12.500	2.80	1859.173	3365.570	6.905	12.9	2.9	NO		NO	bd
5	5 181126M1_6	Standard	12.500	2.81	1822.236	3524.441	6.463	12.0	-3.7	NO		NO	bb
6	$6181126 \mathrm{M1}$-7	Standard	12.500	2.80	1802.554	3327.563	6.771	12.6	0.9	NO		NO	bb
7.	7 181126M1_8	Standard	12.500	2.81	1924.595	3604.044	6.675	12.4	-0.6	NO		NO	bb
8	8 181126M1_9	Standard	12.500	2.81	1781.169	3316.433	6.713	12.5	0.0	NO		NO	bb
9	9 181126M1_10	Standard	12.500	2.81	1561.142	3064.151	6.369	11.9	-5.1	NO		NO	bb
10	10181126M1_11	Standard	12.500	2.81	1493.188	2559.058	7.294	13.6	8.7	NO		NO	bb

Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld
Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:41:10 Pacific Standard Time

Compound name: 13C2-4:2 FTS

Response Factor: 1.47815
RRF SD: 0.100555, Relative SD: 6.80276
Response type: Internal Std (Ref 62), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Cone. Flag	CoD	CoD Flag	x-excluded
1	1 181126M1_2	Standard	12.500	3.27	4949.353	3368.764	18.365	12.4	-0.6	NO		NO	bb
2	2 181126M1_3	Standard	12.500	3.28	4658.786	3301.831	17.637	11.9	-4.5	NO		NO	bb
3.	3 181126M1_4	Standard	12.500	3.28	5081.407	3474.822	18.279	12.4	-1.1	NO		NO	bb
4	4 181126M1_5	Standard	12.500	3.28	4976.478	3365.570	18.483	12.5	0.0	NO		NO	bb
5	5 181126M1_6	Standard	12.500	3.28	4945.298	3524.441	17.539	11.9	-5.1	NO		NO	bb
6	$6181126 \mathrm{M1}$ _7	Standard	12.500	3.28	4705.861	3327.563	17.678	12.0	-4.3	NO		NO	bb
17	7 181126M1_8	Standard	12.500	3.28	5303.523	3604.044	18.394	12.4	-0.4	NO		NO	bd
8	8 181126M1_9	Standard	12.500	3.28	5688.242	3316.433	21.440	14.5	16.0	NO		NO	$b b$
9	9 181126M1_10	Standard	12.500	3.28	6866.882	3064.151	28.013	19.0	51.6	NO		NO	$b b X$
10 \%	10 181126M1_11	Standard	12.500	3.28	8003.897	2559.058	39.096	26.4	111.6	NO		NO	bbX

Compound name: 13C2-PFHxA

Response Factor: 0.98836
RRF SD: 0.029012 , Relative SD: 2.93537
Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std Cone	RT	Area	IS Area	Response	Conc.	\%.Dev	Conc. Flag	CoD ${ }^{\text {chen flag }}$	$x=$ excluded
1.	1 181126M1_2	Standard	5.000	3.36	9787.215	25192.414	4.856	4.9	-1.7	NO	NO	bb
2	2 181126M1_3	Standard	5.000	3.36	9629.179	25514.697	4.717	4.8	-4.5	NO	NO	bb
3	3 181126M1_4	Standard	5.000	3.36	10373.639	26136.416	4.961	5.0	0.4	NO	NO	bb
$4{ }^{4}$ W\%	4 181126M1_5	Standard	5.000	3.36	10091.624	26095.398	4.834	4.9	-2.2	NO	NO	bb
5	5 181126M1_6	Standard	5.000	3.37	10427.667	26363.371	4.944	5.0	0.0	NO	NO	bb
${ }^{6}$	6 181126M1_7	Standard	5.000	3.37	10138.645	25322.297	5.005	5.1	1.3	NO	NO	bb
17	7 181126M1_8	Standard	5.000	3.37	10164.805	26522.105	4.791	4.8	-3.1	NO	NO	bb
8	8 181126M1_9	Standard	5.000	3.37	10236.929	25558.145	5.007	5.1	1.3	NO	NO	bb
9	9 181126M1_10	Standard	5.000	3.37	9817.484	23924.270	5.129	5.2	3.8	NO	NO	bb
10	$10181126 \mathrm{M} 1 \ldots 11$	Standard	5.000	3.37	9234.549	22313.770	5.173	5.2	4.7	NO	NO	bb

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:41:10 Pacific Standard Time

Compound name: 13C4-PFHpA

Response Factor: 0.536542
RRF SD: 0.0222304, Relative SD: 4.14328
Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)
Curve type: RF

5	\# Name	Type	Std. Cenc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	Cob	CoD Frag	x-excluded
1	1 181126M1_2	Standard	12.500	4.02	14063.499	25192.414	6.978	13.0	4.0	NO		NO	bb
2	2 181126M1_3	Standard	12.500	4.02	14566.622	25514.697	7.136	13.3	6.4	NO		NO	bb
3\%	3 181126M1_4	Standard	12.500	4.02	14599.738	26136.416	6.982	13.0	4.1	NO		NO	bb
4	4 181126M1_5	Standard	12.500	4.02	13961.896	26095.398	6.688	12.5	-0.3	NO		NO	bb
5	5 181126M1_6	Standard	12.500	4.02	14034.775	26363.371	6.654	12.4	-0.8	NO		NO	bb
6.	6 181126M1_7	Standard	12.500	4.02	13678.921	25322.297	6.752	12.6	0.7	NO		NO	bb
7	7 181126M1_8	Standard	12.500	4.02	14249.999	26522.105	6.716	12.5	0.1	NO		NO	bb
8.	8 181126M1_9	Standard	12.500	4.03	13058.787	25558.145	6.387	11.9	-4.8	NO		NO	bb
9\%	9 181126M1_10	Standard	12.500	4.03	12520.175	23924.270	6.542	12.2	-2.5	NO		NO	bb
10.1%	10 181126M1_11	Standard	12.500	4.03	11123.91C	22313.770	6.232	11.6	-7.1	NO		NO	bb

Compound name: 1802-PFHxS

Response Factor: 0.448083
RRF SD: 0.0160995, Relative SD: 3.59298
Response type: Internal Std (Ref 62), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Cone	RT.	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	Cob	CODFlag	x=excluded
1	1 181126M1_2	Standard	12.500	4.16	1490.698	3368.764	5.531	12.3	-1.2	NO		NO	bb
2	2 181126M1_3	Standard	12.500	4.16	1447.785	3301.831	5.481	12.2	-2.1	NO		NO	bb
3	3 181126M1_4	Standard	12.500	4.16	1581.371	3474.822	5.689	12.7	1.6	NO		NO	bb
4	4 181126M1_5	Standard	12.500	4.16	1558.457	3365.570	5.788	12.9	3.3	NO		NO	bb
5	5 181126M1_6	Standard	12.500	4.16	1526.846	3524.441	5.415	12.1	-3.3	NO		NO	bb
6	$6181126 \mathrm{M1} \mathrm{C}^{7}$	Standard	12.500	4.16	1542.694	3327.563	5.795	12.9	3.5	NO		NO	bb
17	7 181126M1_8	Standard	12.500	4.16	1579.074	3604.044	5.477	12.2	-2.2	NO		NO	bb
8.	8 181126M1_9	Standard	12.500	4.16	1478.125	3316.433	5.571	12.4	-0.5	NO		NO	bb
93.4.tix	9 181126M1_10	Standard	12.500	4.16	1300.621	3064.151	5.306	11.8	-5.3	NO		NO	bb
10	10 181126M1_11	Standard	12.500	4.16	1219.567	2559.058	5.957	13.3	6.4	NO		NO	bb

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed: Monday, November 26, 2018 14:41:10 Pacific Standard Time

Compound name: 13C2-6:2 FTS

Response Factor: 1.56299
RRF SD: 0.106642 , Relative SD: 6.82298
Response type: Internal Std (Ref 65), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc	\%Dev	Conc. Flag	CoD	CoDFlag	$x=e x c l u d e d$
11	1 181126M1_2	Standard	12.500	4.46	5225.320	3462.963	18.861	12.1	-3.5	NO		NO	bb
2	2 181126M1_3	Standard	12.500	4.46	5165.596	3224.760	20.023	12.8	2.5	NO		NO	bb
3.	3 181126M1_4	Standard	12.500	4.46	5387.143	3512.134	19.173	12.3	-1.9	NO		NO	bb
14 4tit	4 181126M1_5	Standard	12.500	4.46	5074.225	3358.832	18.884	12.1	-3.3	NO		NO	bb
15	5 181126M1_6	Standard	12.500	4.46	5181.676	3378.300	19.173	12.3	-1.9	NO		NO	bb
6	$6181126 \mathrm{M1}$ _7	Standard	12.500	4.46	4894.738	3393.990	18.027	11.5	-7.7	NO		NO	bb
7 7\%	7 181126M1_8	Standard	12.500	4.46	5563.122	3536.995	19.660	12.6	0.6	NO		NO	bb
8.	8 181126M1_9	Standard	12.500	4.46	6022.125	3346.116	22.497	14.4	15.1	NO		NO	bb
9	9 181126M1_10	Standard	12.500	4.46	7202.659	3217.784	27.980	17.9	43.2	NO		NO	bbX
10 \%	10 181126M1_11	Standard	12.500	4.46	9468.253	2856.125	41.438	26.5	112.1	NO		NO	bbX

Compound name: 13C2-PFOA

Response Factor: 0.754885
RRF SD: 0.0195047, Relative SD: 2.5838
Response type: Internal Std (Ref 63), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD flag	$x=e x c l u d e d$
4	1 181126M1_2	Standard	12.500	4.50	24359.602	30823.398	9.879	13.1	4.7	NO		NO	bb
2	2 181126M1_3	Standard	12.500	4.51	24354.520	31989.600	9.517	12.6	0.9	NO		NO	bb
32	$3181126 \mathrm{M1}$ _ 4	Standard	12.500	4.51	24178.301	32072.896	9.423	12.5	-0.1	NO		NO	bb
4	4 181126M1_5	Standard	12.500	4.51	23443.150	31406.428	9.331	12.4	-1.1	NO		NO	bb
5	5 181126M1_6	Standard	12.500	4.51	23552.342	31457.979	9.359	12.4	-0.8	NO		NO	bb
6	6 181126M1_7	Standard	12.500	4.51	22507.277	30564.838	9.205	12.2	-2.5	NO		NO	bb
7	7 181126M1_8	Standard	12.500	4.51	23848.943	32979.738	9.039	12.0	-4.2	NO		NO	bb
8	8 181126M1_9	Standard	12.500	4.52	22357.822	29964.543	9.327	12.4	-1.2	NO		NO	bb
9	9 181126M1_10	Standard	12.500	4.52	21588.547	28178.553	9.577	12.7	1.5	NO		NO	bb
1 C	10 181126M1_11	Standard	12.500	4.52	19958.678	25705.412	9.705	12.9	2.9	NO		NO	bb

Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN945 SCN960
Vista Analytical Laboratory

Vista Analytical Laboratory
Dataset: F:IProjects\PFAS.PRO\Resultsl181126M1\181126M1-CRV.qld
Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed: Monday, November 26, 2018 14:42:51 Pacific Standard Time

Compound name: 13C5-PFNA

Response Factor: 0.990648
RRF SD: 0.0224267, Relative SD: 2.26384
Response type: Internal Std (Ref 64), Area * (IS Conc. / IS Area)
Curve type: RF

		\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	x-excluded
	.	1 181126M1_2	Standard	12.500	4.93	22295.369	22519.746	12.375	12.5	-0.1	NO		NO	bb
2		2 181126M1_3	Standard	12.500	4.94	21931.633	22448.209	12.212	12.3	-1.4	NO		NO	bb
3		3 181126M1_4	Standard	12.500	4.94	23014.137	22991.566	12.512	12.6	1.0	NO		NO	bb
4		4 181126M1_5	Standard	12.500	4.94	22367.645	23074.576	12.117	12.2	-2.1	NO		NO	bb
5	W:	5 181126M1_6	Standard	12.500	4.94	23199.723	22849.063	12.692	12.8	2.5	NO		NO	bb
6		6 181126M1_7	Standard	12.500	4.94	22312.191	21600.799	12.912	13.0	4.3	NO		NO	bb
7	\%	7 181126M1_8	Standard	12.500	4.94	22610.824	22741.340	12.428	12.5	0.4	NO		NO	bb
8		8 181126M1_9	Standard	12.500	4.94	21568.918	22540.299	11.961	12.1	-3.4	NO		NO	bb
9	I	9 181126M1_10	Standard	12.500	4.94	20252.943	20378.484	12.423	12.5	0.3	NO		NO	bb
10	\%	$10181126 \mathrm{M1} 11$	Standard	12.500	4.94	18084.188	18532.297	12.198	12.3	-1.5	NO		NO	bb

Compound name: 13C8-PFOSA

Response Factor: 0.0971265
RRF SD: 0.0077469, Relative SD: 7.9761
Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std Conc	RT	Area	15 Area	Response	Conc	\% Dev	Cone. Flag	Cod Con Flag	$x=$ excluded
1	1 181126M1_2	Standard	12.500	4.98	2329.393	26672.982	1.092	11.2	-10.1	NO	NO	bb
2	2 181126M1_3	Standard	12.500	4.99	2448.447	26794.484	1.142	11.8	-5.9	NO	NO	bb
3	3 181126M1_4	Standard	12.500	4.98	2561.796	28575.072	1.121	11.5	-7.7	NO	NO	bb
4	4 181126M1_5	Standard	12.500	4.99	2603.493	28337.990	1.148	11.8	-5.4	NO	NO	bb
5	5 181126M1_6	Standard	12.500	4.99	2769.347	28551.758	1.212	12.5	-0.1	NO	NO	bb
6	6 181126M1_7	Standard	12.500	4.99	2637.660	27162.783	1.214	12.5	-0.0	NO	NO	bb
7	7 181126M1_8	Standard	12.500	4.99	2806.031	28301.350	1.239	12.8	2.1	NO	NO	bb
8	8 181126M1_9	Standard	12.500	4.99	2666.454	26656.619	1.250	12.9	3.0	NO	NO	bb
9	9 181126M1_10	Standard	12.500	4.99	2571.153	24614.043	1.306	13.4	7.5	NO	NO	bb
10.	10 181126M1_11	Standard	12.500	4.99	2411.273	21283.375	1.416	14.6	16.6	NO	NO	bb

Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.ald
Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:42:51 Pacific Standard Time

Compound name: 13C8-PFOS

Response Factor: 1.04163

RRF SD: 0.0524138 , Relative SD: 5.03189
Response type: Internal Std (Ref 65), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	H.	RT.	Area	IS Area	Response	Conc	$\%$ Dev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
,	1 181126M1_2	Standard	12.500	5.02	3276.263	3462.963	11.826	11.4	-9.2	NO		NO	bb
2	2 181126M1_3	Standard	12.500	5.02	3416.156	3224.760	13.242	12.7	1.7	NO		NO	bb
3	3 181126M1_4	Standard	12.500	5.03	3743.129	3512.134	13.322	12.8	2.3	NO		NO	bb
4	4 181126M1_5	Standard	12.500	5.03	3748.331	3358.832	13.950	13.4	7.1	NO		NO	bb
5	5 181126M1_6	Standard	12.500	5.03	3674.965	3378.300	13.598	13.1	4.4	NO		NO	bb
6.	6 181126M1_7	Standard	12.500	5.03	3393.818	3393.990	12.499	12.0	-4.0	NO		NO	bb
7	7 181126M1_8	Standard	12.500	5.03	3698.358	3536.995	13.070	1.2 .5	0.4	NO		NO	bb
8	8 181126M1_9	Standard	12.500	5.03	3638.886	3346.116	13.594	13.1	4.4	NO		NO	bb
	9 181126M1_10	Standard	12.500	5.03	3187.154	3217.784	12.381	11.9	-4.9	NO		NO	bb
10\%	10 181126M1_11	Standard	12.500	5.03	2906.952	2856.125	12.722	12.2	-2.3	NO		NO	bb

Compound name: 13C2-PFDA

Response Factor: 0.902341
RRF SD: 0.0371522, Relative SD: 4.11731
Response type: Internal Std (Ref 66), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	TS Area	Response	Conc.	\% 9 Dev	Conc. Flag	Cob	CoD Flag	$x=$ excluded
1	1 181126M1_2	Standard	12.500	5.31	21127.947	23842.426	11.077	12.3	-1.8	NO		NO	bb
2	$2181126 \mathrm{M1}$ _3	Standard	12.500	5.31	20915.982	24662.998	10.601	11.7	-6.0	NO		NO	bb
3	3 181126M1_4	Standard	12.500	5.31	22735.521	24277.797	11.706	13.0	3.8	NO		NO	bb
4	4 181126M1_5	Standard	12.500	5.32	22345.748	24205.205	11.540	12.8	2.3	NO		NO	bb
5	5 181126M1_6	Standard	12.500	5.31	21456.660	25346.094	10.582	11.7	-6.2	NO		NO	bb
6	6 181126M1_7	Standard	12.500	5.32	22033.270	23846.875	11.549	12.8	2.4	NO		NO	bb
7.	7 181126M1_8	Standard	12.500	5.32	22018.436	24795.838	11.100	12.3	-1.6	NO		NO	bb
8	8 181126M1_9	Standard	12.500	5.32	21141.234	23591.418	11.202	12.4	-0.7	NO		NO	bb
9 Mat	9 181126M1_10	Standard	12.500	5.32	19950.951	21882.871	11.396	12.6	1.0	NO		NO	bb
10	10 181126M1_11	Standard	12.500	5.32	18223.094	18919.330	12.040	13.3	6.7	NO		NO	bb

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed: Monday, November 26, 2018 14:42:51 Pacific Standard Time

Compound name: 13C2-8:2 FTS

Response Factor: 1.17744

RRF SD: 0.0887368, Relative SD: 7.53641
Response type: Internal Std (Ref 65), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: d3-N-MeFOSAA

Response Factor: 0.134598
RRF SD: 0.00697461 , Relative SD: 5.18181
Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area)
Curve type: RF

	H Name	Type	Stid. Conc	RT	Area	IS Area	Response	Conc.	9% Dev	Conc. Flag	CoD	cod flag	$x=$ excluded
	1 181126M1_2	Standard	12.500	5.46	3699.583	26672.982	1.734	12.9	3.0	NO		NO	bb
2	2 181126M1_3	Standard	12.500	5.47	3511.724	26794.484	1.638	12.2	-2.6	NO		NO	bb
3	3 181126M1_4	Standard	12.500	5.47	3825.910	28575.072	1.674	12.4	-0.5	NO		NO	bb
4	4 181126M1_5	Standard	12.500	5.47	3744.315	28337.990	1.652	12.3	-1.8	NO		NO	bb
5.	5 181126M1_6	Standard	12.500	5.47	3621.836	28551.758	1.586	11.8	-5.8	NO		NO	bb
6	6 181126M1_7	Standard	12.500	5.47	3678.562	27162.783	1.693	12.6	0.6	NO		NO	bb
7	7 181126M1_8	Standard	12.500	5.47	3541.941	28301.350	1.564	11.6	-7.0	NO		NO	bb
8	8 181126M1_9	Standard	12.500	5.47	3788.505	26656.619	1.777	13.2	5.6	NO		NO	bb
9	9 181126M1_10	Standard	12.500	5.47	3255.628	24614.043	1.653	12.3	-1.7	NO		NO	bb
10	10 181126M1_11	Standard	12.500	5.47	3157.978	21283.375	1.855	13.8	10.2	NO		NO	bb

Dataset: F:IProjects\PFAS.PRO\Results\181126M11181126M1-CRV.qld
Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:42:51 Pacific Standard Time

Compound name: 13C2-PFUdA

Response Factor: 0.957317
RRF SD: 0.0223124, Relative SD: 2.33072
Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	W1. Std. Conc	RT	Area	IS Area	Response	Conc.	\%Der	Conc. Flag	CoD	CoD Flag	x-excluded
1Fther	1 181126M1_2	Standard	12.500	5.64	25976.096	26672.982	12.173	12.7	1.7	NO		NO	bb
2 (5ix	$2181126 \mathrm{M1} 3$	Standard	12.500	5.65	25586.691	26794.484	11.937	12.5	-0.3	NO		NO	bb
3	3 181126M1_4	Standard	12.500	5.65	27670.049	28575.072	12.104	12.6	1.2	NO		NO	bb
4.\%\%\%\%	4 181126M1_5	Standard	12.500	5.65	26258.051	28337.990	11.583	12.1	-3.2	NO		NO	bb
5	5 181126M1_6	Standard	12.500	5.64	27247.850	28551.758	11.929	12.5	-0.3	NO		NO	bb
6	6 181126M1_7	Standard	12.500	5.65	25918.631	27162.783	11.927	12.5	-0.3	NO		NO	bb
17	7 181126M1_8	Standard	12.500	5.65	26225.896	28301.350	11.583	12.1	-3.2	NO		NO	bb
8 ${ }^{\text {\% }}$	8 181126M1_9	Standard	12.500	5.65	25584.975	26656.619	11.997	12.5	0.3	NO		NO	bb
9 9\%	9 181126M1_10	Standard	12.500	5.65	23407.137	24614.043	11.887	12.4	-0.7	NO		NO	bb
10.	10 181126M1_11	Standard	12.500	5.65	21357.555	21283.375	12.544	13.1	4.8	NO		NO	bb

Compound name: d5-N-EtFOSAA

Response Factor: 0.185261
RRF SD: 0.0109011, Relative SD: 5.88419
Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	x-excluded
1.4.4.	1 181126M1_2	Standard	12.500	5.62	4528.725	26672.982	2.122	11.5	-8.4	NO		NO	bb
2\%	2 181126M1_3	Standard	12.500	5.63	5076.554	26794.484	2.368	12.8	2.3	NO		NO	bb
3.	3 181126M1_4	Standard	12.500	5.63	5526.345	28575.072	2.417	13.0	4.4	NO		NO	bb
4	4 181126M1_5	Standard	12.500	5.63	5456.494	28337.990	2.407	13.0	3.9	NO		NO	bb
54.\%	5 181126M1_6	Standard	12.500	5.63	5491.763	28551.758	2.404	13.0	3.8	NO		NO	bb
6.	$6181126 \mathrm{M1}$ _7	Standard	12.500	5.63	5467.541	27162.783	2.516	13.6	8.7	NO		NO	bb
17	7 181126M1_8	Standard	12.500	5.63	5239.788	28301.350	2.314	12.5	-0.1	NO		NO	bb
8	8 181126M1_9	Standard	12.500	5.63	4876.164	26656.619	2.287	12.3	-1.3	NO		NO	bb
9.	9 181126M1_10	Standard	12.500	5.63	4403.293	24614.043	2.236	12.1	-3.4	NO		NO	bb
10 .	10 181126M1_11	Standard	12.500	5.63	3550.520	21283.375	2.085	11.3	-10.0	NO		NO	bb

Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.gld

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:42:51 Pacific Standard Time

Compound name: 13C2-PFDoA

Response Factor: 1.04677
RRF SD: 0.0366194, Relative SD: 3.49832
Response type: Internal Std (Ref 66), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Cone	RT	Area	IS Area	Pesponse	Conc.	\%.Dev	Conc Flag	Cod	CoD Flag	x=exclided
I	1 181126M1_2	Standard	12.500	5.92	25354.904	23842.426	13.293	12.7	1.6	NO		NO	bb
2	2 181126M1_3	Standard	12.500	5.93	25224.803	24662.998	12.785	12.2	-2.3	NO		NO	bb
3	3 181126M1_4	Standard	12.500	5.93	26488.537	24277.797	13.638	13.0	4.2	NO		NO	bb
4	4 181126M1_5	Standard	12.500	5.93	25356.541	24205.205	13.095	12.5	0.1	NO		NO	bb
5	5 181126M1_6	Standard	12.500	5.93	27050.830	25346.094	13.341	12.7	2.0	NO		NO	bb
6	6 181126M1_7	Standard	12.500	5.93	23270.566	23846.875	12.198	11.7	-6.8	NO		NO	bb
$\sqrt{7}$	7 181126M1_8	Standard	12.500	5.93	25114.900	24795.838	12.661	12.1	-3.2	NO		NO	bb
8	8 181126M1_9	Standard	12.500	5.93	24371.867	23591.418	12.914	12.3	-1.3	NO		NO	bb
9.	9 181126M1_10	Standard	12.500	5.93	23172.217	21882.871	13.237	12.6	1.2	NO		NO	bb
10\%	10 181126M1_11	Standard	12.500	5.93	20714.875	18919.330	13.686	13.1	4.6	NO		NO	bb

Compound name: d3-N-MeFOSA

Response Factor: 0.0367035

RRF SD: 0.00324533, Relative SD: 8.84204
Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Sta Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoDFlag	x=excluded
\%	1 181126M1_2	Standard	150.000	5.97	11953.504	26672.982	5.602	152.6	1.8	NO		NO	bd
2	$2181126 \mathrm{M1}$ _3	Standard	150.000	5.97	11746.337	26794.484	5.480	149.3	-0.5	NO		NO	bb
3	$3181126 \mathrm{M1} 1$-4	Standard	150.000	5.97	11694.007	28575.072	5.115	139.4	-7.1	NO		NO	bb
4	4 181126M1_5	Standard	150.000	5.98	11465.957	28337.990	5.058	137.8	-8.1	NO		NO	bb
5	5181126 M 1 _6	Standard	150.000	5.97	11840.089	28551.758	5.184	141.2	-5.8	NO		NO	bb
6	6 181126M1_7	Standard	150.000	5.98	11131.01 C	27162.783	5.122	139.6	-7.0	NO		NO	bb
17	7 181126M1_8	Standard	150.000	5.98	12241.498	28301.350	5.407	147.3	-1.8	NO		NO	bb
8.	8 181126M1_9	Standard	150.000	5.98	11611.42 C	26656.619	5.445	148.3	-1.1	NO		NO	bb
9	9 181126M1_10	Standard	150.000	5.98	11864.808	24614.043	6.025	164.2	9.4	NO		NO	bb
10.4.1\%	10 181126M1_11	Standard	150.000	5.98	11267.006	21283.375	6.617	180.3	20.2	NO		NO	bb

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed: Monday, November 26, 2018 14:42:51 Pacific Standard Time

Compound name: 13C2-PFTeDA

Response Factor: 0.567004

RRF SD: 0.0306617, Relative SD: 5.40767
Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: d5-N-ETFOSA

Response Factor: 0.0583225
RRF SD: 0.00662878 , Relative SD: 11.3657
Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area)
Curve type: RF

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:42:51 Pacific Standard Time

Compound name: 13C2-PFHxDA

Response Factor: 0.745697
RRF SD: 0.0807983 , Relative SD: 10.8353
Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	W. Tupe	Std. Conc	RT	Area	IS Area	Response	Conc.	\% Dev	Conc. Flag	CoD	CoD Flag	x-excluded
1	1 181126M1_2	Standard	5.000	6.73	6889.798	26672.982	3.229	4.3	-13.4	NO		NO	bb
	2 181126M1_3	Standard	5.000	6.73	7098.292	26794.484	3.311	4.4	-11.2	NO		NO	bb
3	$3181126 \mathrm{M1} \mathrm{_4}$	Standard	5.000	6.73	8009.421	28575.072	3.504	4.7	-6.0	NO		NO	bb
14	4 181126M1_5	Standard	5.000	6.73	8091.949	28337.990	3.569	4.8	-4.3	NO		NO	bb
5: せ\%	5 181126M1_6	Standard	5.000	6.73	8466.808	28551.758	3.707	5.0	-0.6	NO		NO	bb
6.	6 181126M1_7	Standard	5.000	6.73	7582.587	27162.783	3.489	4.7	-6.4	NO		NO	bb
7	7 181126M1_8	Standard	5.000	6.73	8679.925	28301.350	3.834	5.1	2.8	NO		NO	bb
8	8 181126M1_9	Standard	5.000	6.74	8488.328	26656.619	3.980	5.3	6.8	NO		NO	bb
	9 181126M1_10	Standard	5.000	6.73	8060.974	24614.043	4.094	5.5	9.8	NO		NO	bb
10	10 181126M1_11	Standard	5.000	6.74	7776.927	21283.375	4.567	6.1	22.5	NO		NO	bb

Compound name: d7-N-MeFOSE

Response Factor: 0.0316395
RRF SD: 0.00249814 , Relative SD: 7.89562
Response type: Internal Std (Ref 67), Area* (IS Conc. / IS Area)
Curve type: RF

		\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Cone. Flag	Cob	CoDFlag	$x=$ excluded
1		1 181126M1_2	Standard	150.000	6.68	9613.644	26672.982	4.505	142.4	-5.1	NO		NO	bb
2		2 181126M1_3	Standard	150.000	6.68	9970.688	26794.484	4.651	147.0	-2.0	NO		NO	bb
3		3 181126M1_4	Standard	150.000	6.68	10409.790	28575.072	4.554	143.9	-4.1	NO		NO	bb
4	4trim	4 181126M1_5	Standard	150.000	6.68	10378.408	28337.990	4.578	144.7	-3.5	NO		NO	bb
5		5 181126M1_6	Standard	150.000	6.68	10389.321	28551.758	4.548	143.8	-4.2	NO		NO	bb
6		$6181126 \mathrm{M1}$ _7	Standard	150.000	6.68	9705.995	27162.783	4.467	141.2	-5.9	NO		NO	bb
7	4.ta	7 181126M1_8	Standard	150.000	6.68	10357.785	28301.350	4.575	144.6	-3.6	NO		NO	bb
	\%	8 181126M1_9	Standard	150.000	6.68	10143.168	26656.619	4.756	150.3	0.2	NO		NO	bb
9		9 181126Mt_10	Standard	150.000	6.68	10223.422	24614.043	5.192	164.1	9.4	NO		NO	MM
10	Wititis	10 181126M1_11	Standard	150.000	6.68	9590.735	21283.375	5.633	178.0	18.7	NO		NO	bb

Dataset:
F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qłd
Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed: Monday, November 26, 2018 14:42:51 Pacific Standard Time

Compound name: d9-N-EtFOSE

Response Factor: 0.0298286

RRF SD: 0.00279971, Relative SD: 9.38599
Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Cone	RT	Area	IS Area	Response	Conc.	\% Dev	anc. Flag	COD CoDFlag	$x=e x c l u d e d ~$
1.\|	1 181126M1_2	Standard	150.000	6.83	8485.106	26672.982	3.976	133.3	-11.1	NO	NO	bb
2\%	2181126 M 1 _3	Standard	150.000	6.83	8904.628	26794.484	4.154	139.3	-7.2	NO	NO	bb
3	$3181126 \mathrm{M} 1 _4$	Standard	150.000	6.83	9999.587	28575.072	4.374	146.6	-2.2	NO	NO	bb
4	4 181126M1_5	Standard	150.000	6.83	9705.979	28337.990	4.281	143.5	-4.3	NO	NO	bb
5	5 181126M1_6	Standard	150.000	6.83	9902.425	28551.758	4.335	145.3	-3.1	NO	NO	bb
6	6 181126M1_7	Standard	150.000	6.83	9565.112	27162.783	4.402	147.6	-1.6	NO	NO	bb
17	7 181126M1_8	Standard	150.000	6.83	9699.960	28301.350	4.284	143.6	-4.2	NO	NO	bb
8	8 181126M1_9	Standard	150.000	6.83	9803.931	26656.619	4.597	154.1	2.7	NO	NO	bb
9	9 181126M1_10	Standard	150.000	6.83	9641.881	24614.043	4.897	164.2	9.4	NO	NO	bb
10	10 181126M1_11	Standard	150.000	6.83	9265.136	21283.375	5.442	182.4	21.6	NO	NO	bb

Compound name: 13C4-PFBA

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 60), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	d. Cone	RT	Area	IS Ârea	Response	Conc.	98 Dev	Conc. Flag	CoD	CoD flag	$x=$ excluded
11.	f 181126M1_2	Standard	12.500	1.24	7908.070	7908.070	12.500	12.5	0.0	NO		NO	bb
2	2 181126M1_3	Standard	12.500	1.24	8749.445	8749.445	12.500	12.5	0.0	NO		NO	db
3.	3 181126M1_4	Standard	12.500	1.24	8407.808	8407.808	12.500	12.5	0.0	NO		NO	bb
4	4 181126M1_5	Standard	12.500	1.24	8750.237	8750.237	12.500	12.5	0.0	NO		NO	bb
5.	5 181126M1_6	Standard	12.500	1.24	8717.376	8717.376	12.500	12.5	0.0	NO		NO	bb
6	$6181126 \mathrm{M} 1 _7$	Standard	12.500	1.24	8412.910	8412.910	12.500	12.5	0.0	NO		NO	bb
$\sqrt{7}$	7 181126M1_8	Standard	12.500	1.24	8782.584	8782.584	12.500	12.5	0.0	NO		NO	bb
8	8 181126M1_9	Standard	12.500	1.24	8534.894	8534.894	12.500	12.5	0.0	NO		NO	bb
9	9181126 Ml _10	Standard	12.500	1.24	8472.024	8472.024	12.500	12.5	0.0	NO		NO	bb
10.11	10 181126M1_11	Standard	12.500	1.24	9085.835	9085.835	12.500	12.5	0.0	NO		NO	db

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed: Monday, November 26, 2018 14:42:51 Pacific Standard Time

Compound name: 13C5-PFHxA

Response Factor: 1

RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Cone	RT.	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	$x=$ excluded
1	1 181126M1_2	Standard	12.500	3.35	25192.414	25192.414	12.500	12.5	0.0	NO	NO	bb
2	2 181126M1_3	Standard	12.500	3.36	25514.697	25514.697	12.500	12.5	0.0	NO	NO	bb
3	3 181126M1_4	Standard	12.500	3.36	26136.416	26436.416	12.500	12.5	0.0	NO	NO	bb
4	4 181126M1_5	Standard	12.500	3.36	26095.398	26095.398	12.500	12.5	0.0	NO	NO	bb
5	5 181126M1_6	Standard	12.500	3.37	26363.371	26363.371	12.500	12.5	0.0	NO	NO	bb
6 \%	6 181126M1_7	Standard	12.500	3.36	25322.297	25322.297	12.500	12.5	0.0	NO	NO	bb
7	7 181126M1_8	Standard	12.500	3.37	26522.105	26522.105	12.500	12.5	0.0	NO	NO	bb
8	8 181126M1_9	Standard	12.500	3.37	25558.145	25558.145	12.500	12.5	0.0	NO	NO	bb
9	9 181126M1_10	Standard	12.500	3.37	23924.270	23924.270	12.500	12.5	0.0	NO	NO	bb
10.3	10 181126M1_11	Standard	12.500	3.37	22313.770	22313.770	12.500	12.5	0.0	NO	NO	bb

Compound name: 13C3-PFHxS

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 62), Area * (IS Conc. / IS Area)
Curve type: RF

Dataset: F:IProjects\PFAS.PRO\Results1181126M1\181126M1-CRV.qld
Last Altered:
Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed: Monday, November 26, 2018 14:42:51 Pacific Standard Time

Compound name: 13C8-PFOA

Response Factor: 1

RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 63), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name .	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	x -excluded
	1 181126M1_2	Standard	12.500	4.50	30823.398	30823.398	12.500	12.5	0.0	NO		NO	bb
2	2 181126M1_3	Standard	12.500	4.51	31989.600	31989.600	12.500	12.5	0.0	NO		NO	bb
3	3 181126M1_4	Standard	12.500	4.51	32072.896	32072.896	12.500	12.5	0.0	NO		NO	bb
4	4 181126M1_5	Standard	12.500	4.51	31406.428	31406.428	12.500	12.5	0.0	NO		NO	bb
5	5 181126M1_6	Standard	12.500	4.51	31457.979	31457.979	12.500	12.5	0.0	NO		NO	bb
6	$6181126 \mathrm{M1}$ _7	Standard	12.500	4.51	30564.838	30564.838	12.500	12.5	0.0	NO		NO	bb
7	7 181126M1_8	Standard	12.500	4.51	32979.738	32979.738	12.500	12.5	0.0	NO		NO	bb
8	8 181126M1_9	Standard	12.500	4.52	29964.543	29964.543	12.500	12.5	0.0	NO		NO	bb
9	9 181126M1_10	Standard	12.500	4.52	28178.553	28178.553	12.500	12.5	0.0	NO		NO	bb
10	10 181126M1_11	Standard	12.500	4.52	25705.412	25705.412	12.500	12.5	0.0	NO		NO	bb

Compound name: 13C9-PFNA

Response Factor: 1

RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 64), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area, IS Area		Response	Conc.	\%Dev	Conc. Flag	Cod	CodFlag	$x=$ excluded
	\| 1811.26M1_2	Standard	12.500	4.93	22519.746	22519.746	12.500	12.5	0.0	NO		NO	bb
2	2 181126M1_3	Standard	12.500	4.94	22448.209	22448.209	12.500	12.5	0.0	NO		NO	bb
3 \%	3 181126M1_4	Standard	12.500	4.94	22991.566	22991.566	12.500	12.5	0.0	NO		NO	bb
4	4 181126M1_5	Standard	12.500	4.94	23074.576	23074.576	12.500	12.5	0.0	NO		NO	bb
5	5 181126M1_6	Standard	12.500	4.94	22849.063	22849.063	12.500	12.5	0.0	NO		NO	bb
6. ${ }^{\text {a }}$ (6 181126M1_7	Standard	12.500	4.94	21600.799	21600.799	12.500	12.5	0.0	NO		NO	bb
7.	7 181126M1_8	Standard	12.500	4.94	22741.340	22741.340	12.500	12.5	0.0	NO		NO	bb
8	8 181126M1_9	Standard	12.500	4.94	22540.299	22540.299	12.500	12.5	0.0	NO		NO	bb
9	9 181126M1_10	Standard	12.500	4.94	20378.484	20378.484	12.500	12.5	0.0	NO		NO	bb
	10 181126M1_11	Standard	12.500	4.94	18532.297	18532.297	12.500	12.5	0.0	NO		NO	bb

Dataset: F.IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld
Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:42:51 Pacific Standard Time

Compound name: 13C4-PFOS

Response Factor: 1

RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 65), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Sld. Conc	8T	Area	IS Area	Response	Conc.	$\%$ Dev	Conc. Flag	Com	CoD Flag	$\mathrm{x}=$ excluded
11:	1 181126M1_2	Standard	12.500	5.02	3462.963	3462.963	12.500	12.5	0.0	NO		NO	bb
2.	2 181126M1_3	Standard	12.500	5.03	3224.760	3224.760	12.500	12.5	0.0	NO		NO	bb
3.1.	3 181126M1_4	Standard	12.500	5.03	3512.134	3512.134	12.500	12.5	0.0	NO		NO	bb
4	4 181126M1_5	Standard	12.500	5.03	3358.832	3358.832	12.500	12.5	0.0	NO		NO	bb
5:\%	5 181126M1_6	Standard	12.500	5.03	3378.300	3378.300	12.500	12.5	0.0	NO		NO	bb
6.4	6181126 M 1 _ 7	Standard	12.500	5.03	3393.990	3393.990	12.500	12.5	0.0	NO		NO	bb
17	7 181126M1_8	Standard	12.500	5.03	3536.995	3536.995	12.500	12.5	0.0	NO		NO	bb
8.	8 181126M1_9	Standard	12.500	5.03	3346.116	3346.116	12.500	12.5	0.0	NO		NO	bb
	9 181126M1_10	Standard	12.500	5.03	3217.784	3217.784	12.500	12.5	0.0	NO		NO	bb
10	10 181126M1_11	Standard	12.500	5.03	2856.125	2856.125	12.500	12.5	0.0	NO		NO	bb

Compound name: 13C6-PFDA

Response Factor: 1
RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 66), Area * (IS Conc. / IS Area)
Curve type: RF

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time

Compound name: 13C7-PFUdA

Response Factor: 1

RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Cone. Flag	CoD	Con Flag	$x=$ excluded
1.	1 181126M1_2	Standard	12.500	5.64	26672.982	26672.982	12.500	12.5	0.0	NO		NO	bb
2	2 181126M1_3	Standard	12.500	5.64	26794.484	26794.484	12.500	12.5	0.0	NO		NO	bb
	$3181126 \mathrm{M} 1 _4$	Standard	12.500	5.64	28575.072	28575.072	12.500	12.5	0.0	NO		NO	bb
4	4 181126M1_5	Standard	12.500	5.65	28337.990	28337.990	12.500	12.5	0.0	NO		NO	bb
5.3:	5 181126M1_6	Standard	12.500	5.64	28551.758	28551.758	12.500	12.5	0.0	NO		NO	bb
6	6 181126M1_7	Standard	12.500	5.65	27162.783	27162.783	12.500	12.5	0.0	NO		NO	$b \mathrm{~b}$
7.	7 181126M1_8	Standard	12.500	5.65	28301.350	28301.350	12.500	12.5	0.0	NO		NO	bb
8	8 181126M1_9	Standard	12.500	5.65	26656.619	26656.619	12.500	12.5	0.0	NO		NO	bb
9.	9 181126M1_10	Standard	12.500	5.65	24614.043	24614.043	12.500	12.5	0.0	NO		NO	bb
10.	10 181126M1_11	Standard	12.500	5.65	21283.375	21283.375	12.500	12.5	0.0	NO		NO	bb

Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld
Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed: Monday, November 26, 2018 14:39:52 Pacific Standard Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_112618.mdb 26 Nov 2018 13:53:04
Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_11-26-18.cdb 26 Nov 2018 14:29:06
Name: $181120 \mathrm{M1} 2$ Date: $26-$ Nov-2018, Time: 11:45.59, 1D. ST181120M f AO $11 / 21$ | 18

		IS\#	Cod		\%R5D
1 .	1 PFBA	36	0.9998	NO	
$2 \times$	2 PFPeA	37	0.9998	NO	
3	3 PFBS	38	0.9977	NO	
4	4 4:2 FTS	39	0.9977	NO	
5 5	5 PFHxA	40	0.9998	NO	
	6 PFPeS	38	0.9984	NO	
3	7 PFHpA	41	0.9996	No	
4\%	8 L-PFHxS	42	0.9987	NO	
9 :	10 6:2 FTS	43	0.9979	NO	
10	11 L-PFOA	44	0.9998	NO	
11	13 PFHpS	47	0.9993	NO	
12.	14 PFNA	45	0.9998	NO	
13	15 PFOSA	46	0.9997	NO	
14	16 L-PFOS	47	0.9986	NO	
15.	18 PFDA	48	0.9994	NO	
16	$198: 2 \mathrm{FTS}$	49	0.9988	NO	
	20 PFNS	47	0.9987	NO	
18	21 L-MeFOSAA	50	0.9986	NO	
19 -	23 L-EtFOSAA	52	0.9999	NO	

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_112618.mdb 26 Nov 2018 13:53:04
Calibration: F:|Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_11-26-18.cdb 26 Nov 2018 14:29:06
Name: 181126M1_2, Date: 26-Nov-2018, Time: 11:45:59, ID: ST181126Mź-1 PFC CS-2 18K1901, Description: PFC CS-2 18K1901

Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld
Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed: Monday, November 26, 2018 14:42:51 Pacific Standard Time

$$
1-A 011 / 27 / 18
$$

Name: 181126M1_2, Date: 26-Nov-2018, Time: 11:45:59, ID: ST181126M4-1 PFC CS-2 18K1901, Description: PFC CS-2 18 K 1901

	\# Name	15\#	CoD CoD Flag	\%RSD
33	57 13C2-PFHxDA	67	NO	10.835
34	$58 \mathrm{d7}$-N-MeFOSE	67	NO	7.896
35	59 d9-N-EtFOSE	67	NO	9.386
36	60 13C4-PFBA	60	NO	0.000
37	61 13C5-PFHxA	61	NO	0.000
38 -	62 13C3-PFHxS	62	NO	0.000
39	63 13C8-PFOA	63	NO	0.000
40	64 13C9-PFNA	64	NO	0.000
41 -	65 13C4-PFOS	65	NO	0.000
42	66 13C6-PFDA	66	NO	0.000
43	67 13C7-PFUdA	67	NO	0.000

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed: Monday, November 26, 2018 14:51:30 Pacific Standard Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS FULL_80C 112618.mdb 26 Nov 2018 13:53:04
Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_11-26-18.cdb 26 Noy 2018 14:29:06 AD $11 / 2718$
Name: 181126M1_7, Date: 26-Nov-2018, Time: 12:38:59, ID: ST181126M2-6 PFC CS3 18K1906, Description: PFC CS3 18 K1906

	Name	Ion Ratio	Ratio out?
1	PFBA		
2	PFPeA		
3	PFBS	2.741	NO
4	4:2 FTS	1.665	NO
5	PFHxA	15.286	NO
6	PFPeS	1.601	NO
7	PFHpA	13.863	NO
8	L-PFHxS	1.609	NO
9	6:2 FTS	2.822	NO
10	L-PFOA	3.429	NO
11.	PFHpS	1.865	NO
12	PFFNA	4.488	NO
13	PFOSA	22.987	NO
14.	L-PFOS	1.888	NO
15	PFDA	5.551	NO
16	8.2 FTS	2.335	NO
17	PFNS	1.645	NO
18	L-MeFOSAA	2.554	NO
19	L-EtFOSAA	1.424	NO

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed: Monday, November 26, 2018 14:51:46 Pacific Standard Time

Method: F:|Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_112618.mdb 26 Nov 2018 13:53:04

Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_11-26-18.cdb 26 Noy 2018 14:29:06
Name: 181126M1_7, Date: 26-Nov-2018, Time: 12:38:59, ID: ST181126Mž-6 PFC CS3 18K1906, Description: PFC CS3 18K1906

T	Name	Ion Ratio	Patio out?
1 .	PFUdA	9.527	NO
2.	PFDS	1.667	NO
3	PFDoA	8.645	NO
4.	N-MeFOSA	1.410	NO.
5 5.	PFTrDA	23.378	NO.
6 \%	PFTeDA	12.484	NO.
7.1 .	N-EtFOSA	1.533	NO
8 \%	PFHxDA	12.632	NO
9	PFODA		
10.	N-MeFOSE		
111 \%	N-EtFOSE		

Dataset:	Untitled
Last Altered:	Tuesday, November 27, 2018 09:21:08 Pacific Standard Time
Printed:	Tuesday, November 27, 2018 09:21:18 Pacific Standard Time

Method: Z:\Projects\PFAS.PROMMethDB\PFAS_FULL_80C_112618.mdb 26 Nov 2018 13:53:04 Calibration: Z:IProjects\PFAS.PRO\CurveDBIC18_VAL-PFAS_Q4_11-26-18.cdb 26 Nov 2018 14:29:06

Compound name: PFBA

54mis	\# Name	ID	Acq Date	Acq. Time
	1 181126M1_1	IPA	26-Nov-18	11:35:18
2 2	2 181126M1_2	ST181126M1-1 PFC CS-2 18 K 1901	26-Nov-18	11:45:59
3:	3 181126M1_3	ST181126M1-2 PFC CS-1 18 K 1902	26-Nov-18	11:56:32
	4 181126M1_4	ST181126M1-3 PFC CS0 18K1903	26-Nov-18	12:07:10
5:	5 181126M1_5	ST181126M1-4 PFC CS1 18K1904	26-Nov-18	12:17:48
	6 181126M1_6	ST181126M1-5 PFC CS2 18K1905	26-Nov-18	12:28:21
\pm	7 181126M1_7	ST181126M1-6 PFC CS3 18K1906	26-Nov-18	12:38:59
	8 181126M1_8	ST181126M1-7 PFC CS4 1810907	26-Nov-18	12:49:38
	9 181126M1_9	ST181126M1-8 PFC CS5 18K1908	26-Nov-18	13:00:11
10	10 181126M1_10	ST181126M1-9 PFC CS6 18K1909	26-Nov-18	13:10:49
11.	11 181126M1_11	ST181126M1-10 PFC CS7 18K1910	26-Nov-18	13:21:23
12	12 181126M1_12	IPA	26-Nov-18	13:32:01
13	13 181126M1_13	ICV181126M1-1 PFC ICV 18K1911	26-Nov-18	13:42:34
14 -	14 181126M1_14	IPA	26-Nov-18	13:53:12

Dataset:
 F.IProjects\PFAS.PRO\Resultsl181126M1\181126M1-CRV.qld

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:52:13 Pacific Standard Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_112618.mdb 26 Nov 2018 13:53:04
Calibration: F:|Projects \backslash PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_11-26-18.cdb 26 Nov 2018 14:29:06
Compound name: PFBA
Correlation coefficient: $r=0.999908, r^{\wedge} 2=0.999815$
Calibration curve: 1.16478 * $x+0.0685845$
Response type: Internal Std (Ref 36), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.ald

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed: Monday, November 26, 2018 14:52:13 Pacific Standard Time

Compound name: PFPeA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999820$
Calibration curve: $4.72356 \mathrm{e}-006$ * $x^{\wedge} 2+0.9459655^{*} x+0.0647094$
Response type: Internal Std (Ref 37), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qid

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:52:13 Pacific Standard Time

Compound name: PFBS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997695$
Calibration curve: $-0.000161679{ }^{*} x^{\wedge} 2+2.06224^{*} x+0.0291321$
Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:52:13 Pacific Standard Time

Compound name: 4:2 FTS
Coefficient of Determination: $R^{\wedge} 2=0.997744$
Calibration curve: $-0.00329241^{*} x^{\wedge} 2+1.0746^{*} x+0.0302455$
Response type: Internal Std (Ref 39), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld
Last Altered:
Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed: Monday, November 26, 2018 14:52:13 Pacific Standard Time

Compound name: PFHxA

Coefficient of Determination: $R^{\wedge} 2=0.999832$
Calibration curve: $-0.000104875^{*} x^{\wedge} 2+0.943399$ * $x+0.0492708$
Response type: Internal Std (Ref 40), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Dataset:
 F:IProjects\PFAS.PRO\Results\181126M11181126M1-CRV.qld

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed: Monday, November 26, 2018 14:52:13 Pacific Standard Time

Compound name: PFPeS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998416$
Calibration curve: $-0.00034984^{*} x^{\wedge} 2+1.67039{ }^{*} x+0.0318278$
Response type: Internal Std (Ref 38), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld
Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:52:13 Pacific Standard Time

Compound name: PFHpA
Correlation coefficient: $\mathrm{r}=0.999783, \mathrm{r}^{\wedge} 2=0.999567$
Calibration curve: 1.30873 * $x+0.0886199$
Response type: Internal Std (Ref 41), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.gld
Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed: Monday, November 26, 2018 14:52:13 Pacific Standard Time

Compound name: L-PFHxS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998700$
Calibration curve: $7.11978 \mathrm{e}-005^{*} x^{\wedge} 2+1.94438{ }^{*} x+-0.00102564$
Response type: Internal Std (Ref 42), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Dataset: $\quad F:$ Projects\PFAS.PRO\Resultsl181126M1\181126M1-CRV.qld

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:52:13 Pacific Standard Time

Compound name: 6:2 FTS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997882$
Calibration curve: $-0.0044139{ }^{*} x^{\wedge} 2+1.28489 * x+0.0365766$
Response type: Internal Std (Ref 43), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld
Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed: Monday, November 26, 2018 14:52:13 Pacific Standard Time

Compound name: L-PFOA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999794$
Calibration curve: $3.30794 \mathrm{e}-005^{*} \mathrm{x}^{\wedge} 2+1.35692$ * $x+0.157598$
Response type: Internal Std (Ref 44), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed: Monday, November 26, 2018 14:52:13 Pacific Standard Time

Compound name: PFHpS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999257$
Calibration curve: $-2.62046 e-005^{*} x^{\wedge} 2+0.932171^{*} x+0.0595585$
Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\181126M11181126M1-CRV.qld

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:52:13 Pacific Standard Time

Compound name: PFNA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999758$
Calibration curve: $-0.000123392^{*} x^{\wedge} 2+1.25051^{*} x+0.0436441$
Response type: Internal Std (Ref 45), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: \quad F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:52:13 Pacific Standard Time

Compound name: PFOSA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999684$
Calibration curve: $0.000109224^{*} x^{\wedge} 2+1.13948$ * $x+-0.0243111$
Response type: Internal Std (Ref 46), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld
Last Altered:
Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed: Monday, November 26, 2018 14:52:13 Pacific Standard Time

Compound name: L-PFOS
Correlation coefficient: $r=0.999291, r^{\wedge} 2=0.998583$
Calibration curve: 1.09502 * $x+0.0459904$
Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\181126M11181126M1-CRV.qld
Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed: Monday, November 26, 2018 14:52:13 Pacific Standard Time

Compound name: PFDA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999437$
Calibration curve: $-0.000121158^{*} x^{\wedge} 2+1.3134^{*} x+0.026774$
Response type: Internal Std (Ref 48), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset:
 F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:52:13 Pacific Standard Time

Compound name: 8:2 FTS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998754$
Calibration curve: $-0.0045567^{*} x^{\wedge} 2+1.55189^{*} x+0.0660151$
Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.ald

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:52:13 Pacific Standard Time

Compound name: PFNS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998671$
Calibration curve: $-6.14234 e-005^{*} x^{\wedge} 2+0.762317^{*} x+0.0530889$
Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F.IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed: Monday, November 26, 2018 14:52:13 Pacific Standard Time

Compound name: L-MeFOSAA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998550$
Calibration curve: $-0.00052965{ }^{*} x^{\wedge} 2+2.90523^{*} x+0.0881852$
Response type: Internal Std (Ref 50), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Dataset: F:\Projects\PFAS.PRO\Results\181126M11181126M1-CRV.qid
Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed: Monday, November 26, 2018 14:52:13 Pacific Standard Time

Compound name: L-EtFOSAA
Coefficient of Determination: $R^{\wedge} 2=0.999862$
Calibration curve: $0.000386736^{*} x^{\wedge} 2+1.61077$ * $x+0.0602011$
Response type: Internal Std (Ref 52), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qId
Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:52:30 Pacific Standard Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_112618.mdb 26 Nov 2018 13:53:04
Calibration: F:IProjects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_11-26-18.cdb 26 Nov 2018 14:29:06
Compound name: PFUdA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999703$
Calibration curve: $-0.000152898{ }^{*} x^{\wedge} 2+0.969236 * x+0.0723136$
Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:52:30 Pacific Standard Time

Compound name: PFDS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998317$
Calibration curve: $-0.000138966^{*} x^{\wedge} 2+1.04937^{*} x+0.0115389$
Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:52:30 Pacific Standard Time

Compound name: PFDoA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999868$
Calibration curve: $-0.000134587^{*} x^{\wedge} 2+1.16156^{*} x+0.0671424$
Response type: Internal Std (Ref 53), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: \quad F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed: Monday, November 26, 2018 14:52:30 Pacific Standard Time

Compound name: N-MeFOSA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999421$
Calibration curve: $-3.87935 \mathrm{e}-005^{*} \mathrm{x}^{\wedge} 2+0.953523^{*} x+0.468324$
Response type: Internal Std (Ref 54), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Quantify Calibration Report

Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.gid
Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed: Monday, November 26, 2018 14:52:30 Pacific Standard Time

Compound name: PFTrDA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999827$
Calibration curve: $-4.24277 \mathrm{e}-005^{*} x^{\wedge} 2+1.15539$ * $x+0.0691663$
Response type: Internal Std (Ref 53), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

Dataset: \quad F:IProjects\PFAS.PRO\Resultsl181126M1\181126M1-CRV.qld

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed: Monday, November 26, 2018 14:52:30 Pacific Standard Time

Compound name: PFTeDA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999640$
Calibration curve: -0.000300636 * $x^{\wedge} 2+1.62832$ * $x+0.0899878$
Response type: Internal Std (Ref 55), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset:
 F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed: Monday, November 26, 2018 14:52:30 Pacific Standard Time

Compound name: N-EtFOSA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999752$
Calibration curve: $-4.89024 \mathrm{e}-005^{*} x^{\wedge} 2+0.875046$ * $x+0.265554$
Response type: Internal Std (Ref 56), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld
Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed: Monday, November 26, 2018 14:52:30 Pacific Standard Time

Compound name: PFHxDA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998670$
Calibration curve: $-9.94628 \mathrm{e}-005^{*}$ x $^{\wedge} 2+0.395894^{*} x+0.0669369$
Response type: Internal Std (Ref 57), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:52:30 Pacific Standard Time

Compound name: PFODA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999437$
Calibration curve: $-0.000110262^{*} x^{\wedge} 2+0.704083^{*} x+0.0275186$
Response type: Internal Std (Ref 57), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Dataset:

F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld
Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed: Monday, November 26, 2018 14:52:30 Pacific Standard Time

Compound name: N-MeFOSE
Coefficient of Determination: $R^{\wedge} 2=0.999885$
Calibration curve: $1.26969 e-005^{*} x^{\wedge} 2+0.895945^{*} x+0.479162$
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld
Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed: Monday, November 26, 2018 14:52:30 Pacific Slandard Time

Compound name: N-EtFOSE
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999668$
Calibration curve: $1.15732 \mathrm{e}-006^{*} x^{\wedge} 2+1.14211^{*} x+0.352591$
Response type: Internal Std (Ref 59), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\181126M11181126M1-CRV.qld

Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_112618.mdb 26 Nov 2018 13:53:04
Calibration: 26 Nov 2018 14:09:42

$$
1 A D 11 / 21 / 18
$$

Name: 181126M1_2, Date: 26-Nov-2018, Time: 11:45:59, ID: ST181126M2-1 PFC CS-2 18K1901, Description: PFC CS-2 18K1901

13C2-4:2 FTS

Dataset:
F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld
Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_2, Date: 26-Nov-2018, Time: 11:45:59, ID: ST181126M2-1 PFC CS-2 18K1901, Description: PFC CS-2 18K1901

Vista Analytical Laboratory
Dataset:
F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld
Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_2, Date: 26-Nov-2018, Time: 11:45:59, ID: ST181126M2-1 PFC CS-2 18K1901, Description: PFC CS-2 18K1901

F30:MRM of 2 channels, ES-		
		$497.9>77.9$
100	PFOSA	$8.774 \mathrm{e}+002$
	4.98	
	3.78 e 1	
\%-	877	
\%-	bb	
	877.00	

13C8-PFOSA

F34:MRM of 1 channel,ES-
$506.1>77.7$

$\begin{array}{r}\text { F32:MRM of } 2 \text { channels,ES- } \\ \text { 498.9> } 99 \\ 100 \\ \hline\end{array}$
13C8-PFOS
F35:MRM of 1 channel,ES-
$507.0>79.9$
$7.435 \mathrm{e}+004$

PFDA
F37:MRM of 2 channels, ES-
$513>468.8$
$1.125 \mathrm{e}+004$

13C2-PFDA
F38:MRM of 1 channel,ES-

13C2-8:2 FTS

F43:MRM of 1 channel,ES-

13C8-PFOS

F35:MRM of 1 channel,ES-
$507.0>79.9$

Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qid
Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: \quad Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_2, Date: 26-Nov-2018, Time: 11:45:59, ID: ST181126M2-1 PFC CS-2 18K1901, Description: PFC CS-2 18K1901

13C2-PFDoA

13C2-PFUdA

13C2-PFDoA

F55:MRM of 2 channels,ES$615.0>569.7$ $5.486 \mathrm{e}+005$

Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld
Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_2, Date: 26-Nov-2018, Time: 11:45:59, ID: ST181126M2-1 PFC CS-2 18K1901, Description: PFC CS-2 18K1901

13C2-PFTeDA

6.500

d5-N-ETFOSA

13C2-PFHxDA
13C2-PFHXDA
F64:MRM of 1 channel,ES-
$815>769.7$ $1.485 e+005$

d9-N-EtFOSE

Vista Analytical Laboratory
Dataset:
F:IProjects\PFAS.PRO\Results\181126M11181126M1-CRV.qld
Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_2, Date: 26-Nov-2018, Time: 11:45:59, ID: ST181126M2-1 PFC CS-2 18K1901, Description: PFC CS-2 18 K1901

Dataset: F:\Projects\PFAS.PRO\Results\181126M11181126M1-CRV.qld
Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time
Name: 181126M1_3, Date: 26-Nov-2018, Time: 11:56:32, ID: ST181126M2-2 PFC CS-1 18K1902, Description: PFC CS-1 18K1902

13C3-PFBA
F3:MRM of 1 channet,ES-
$216.1>171.8$ $16.1>171.8$
$8.562 e+004$

13C3-PFPeA
F6:MRM of 1 channel,ES-

13C2-PFHxA

F10:MRM of 1 channel,ES
$315>270$

Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_3, Date: 26-Nov-2018, Time: 11:56:32, ID: ST181126M2-2 PFC CS-1 18K1902, Description: PFC CS-1 18K1902
6:2 FTS

| F24:MRM of 2 channels,ES- | |
| ---: | ---: | ---: |
| | $427.1>407$ |
| 100 | $6.129 \mathrm{e}+003$ |
| $6: 2 \mathrm{FTS}$ | |
| 4.46 | |
| 2.60 e 2 | |
| 6125 | |
| bb | |
| 6125.00 | |

F24:MRM of 2 channels,ES-
$427.1>80$

13C2-6:2 FTS

13C4-PFHpA

$\begin{aligned} & \text { F21:MRM of } 2 \text { channels, ES- } \\ & 412.8>169\end{aligned}$

Dataset:

F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qId
Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_3, Date: 26-Nov-2018, Time: 11:56:32, ID: ST181126M2-2 PFC CS-1 18K1902, Description: PFC CS-1 18K1902

Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_3, Date: 26-Nov-2018, Time: 11:56:32, ID: ST181126M2-2 PFC CS-1 18K1902, Description: PFC CS-1 18K1902

d5-N-EtFOSAA

13C2-PFUdA
F47:MRM of 1 channel,ES-
$565>519.8$

F36:MRM of 2 channels, ES$512.1>219$

13C2-PFDoA

Vista Analytical Laboratory
Dataset:
F:\Projects\PFAS.PRO\Results\181126M1\181126M1-CRV.qId
Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_3, Date: 26-Nov-2018, Time: 11:56:32, ID: ST181126M2-2 PFC CS-1 18K1902, Description: PFC CS-1 18 K 1902

Dataset: \quad F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld
Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_3, Date: 26-Nov-2018, Time: 11:56:32, ID: ST181126M2-2 PFC CS-1 18K1902, Description: PFC CS-1 18K1902

Dataset: F:IProjects\PFAS.PRO\Results\181126M11181126M1-CRV.qld

Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time

1 AD $11 / 27 / 18$

Name: 181126M1_4, Date: 26-Nov-2018, Time: 12:07:10, ID: ST181126Mṕ-3 PFC CS0 18K1903, Description: PFC CS0 18K1903

Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_4, Date: 26-Nov-2018, Time: 12:07:10, ID: ST181126M2-3 PFC CSO 18K1903, Description: PFC CS0 18 K1903

F24:MRM of 2 channels,ES-

13C2-6:2 FTS

F16:MRM of 2 channets,ES-

13C4-PFHpA

F26:MRM of 2 channels,ES-

13C8-PFOS

F35:ARM of 1 channel,ES

Vista Analytical Laboratory
Dataset: F:IProjects\PFAS.PRO\Results\181126M11181126M1-CRV.qld
Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: \quad Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_4, Date: 26-Nov-2018, Time: 12:07:10, ID: ST181126M2-3 PFC CS0 18K1903, Description: PFC CS0 18K1903

F32:MRM of 2 channels,ES-

13C8-PFOS
F35:MRM of 1 channel,ES-

13C2-8:2 FTS

PFNS F45:MRM of 2 channels, ES
 F45:MRM of 2 channels, ES

L-MeFOSAA

F48:MRM of 2 channels,ES-
$570>419$

d3-N-MeFOSAA

F50:MRM of 1 channel,ESchannel, ES-
$573.3>419$ $8.052 \mathrm{e}+004$

Vista Analytical Laboratory
Dataset:
F:\Projects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld
Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_4, Date: 26-Nov-2018, Time: 12:07:10, ID: ST181126M2-3 PFC CS0 18K1903, Description: PFC CS0 18K1903

F51:MRM of 2 channels,ES-
$584.1>526$
1007

13C2-PFDoA

13C2-PFUdA

F36:MRM of 2 channels,ES

d3-N-MeFOSA

PFTrDA

F60:MRM of 2 channels, ES

13C2-PFDoA

Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_4, Date: 26-Nov-2018, Time: 12:07:10, ID: ST181126M2-3 PFC CSO 18K1903, Description: PFC CSO 18 K 1903

13C2-PFHxDA

d7-N-MeFOSE

F57:MRM of 1 channel,ES-
F57:MRM of 1 channel,ES-
$623.1>58.9$
$2.221 \mathrm{e}+005$

d9-N-EtFOSE
F59:MRM of 1 channel,ES1 channel,ES-
$639.2>58.8$

Dataset: F:IProjects\PFAS.PRO\Results\181126M11181126M1-CRV.qid

Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: \quad Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_4, Date: 26-Nov-2018, Time: 12:07:10, ID: ST181126M2-3 PFC CS0 18K1903, Description: PFC CS0 18K1903

Vista Analytical Laboratory

Dataset:

F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld
Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time

AD U $27 / 18$

Name: 181126M1_5, Date: 26-Nov-2018, Time: 12:17:48, ID: ST181126Me-4 PFC CS1 18K1904, Description: PFC CS1 18 K 1904

Vista Analytical Laboratory

Dataset: F:IProjects\PFAS.PROIResults\181126M11181126M1-CRV.gld
Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_5, Date: 26-Nov-2018, Time: 12:17:48, ID: ST181126M2-4 PFC CS1 18K1904, Description: PFC CS1 18K1904

13C4-PFHpA
F17:MRM of 1 channel,ES
$367.2>321.8$ $367.2>321.8$

1802-PFHxS

F20:MRM of 1 channel,ES-

13C2-PFOA

F22:MRM of 1 channel, ES-

13C8-PFOS
F35:MRM of 1 channel,ES
$507.0>79.9$

PFNA

Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_5, Date: 26-Nov-2018, Time: 12:17:48, ID: ST181126M2-4 PFC CS1 18K1904, Description: PFC CS1 $18 K 1904$

F32:MRM of 2 channels,ES-

13C8-PFOS
F35:MRM of 1 channel, ES-

13C2-PFDA
F38:MRM of 1 channel,ES-
F38:MRM of 1 channel,ES-
$515.1>469.9$
$5.086 \mathrm{e}+005$

Dataset:	F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld
Last Altered:	Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed:	Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_5, Date: 26-Nov-2018, Time: 12:17:48, ID: ST181126M2-4 PFC CS1 18K1904, Description: PFC CS1 18K1904

d5-N-EtFOSAA

F52:MRM of 1 channel,ES$589.3>419$ $1.153 e+005$

13C8-PFOS
F35:MRM of 1 channel,ES.
$507.0>79.9$

13C2-PFUdA

13C2-PFDOA

F55:MRM of 2 channels,ES$615.0>569.7$ $5.531 \mathrm{e}+005$

Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.gld

Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: \quad Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_5, Date: 26-Nov-2018, Time: 12:17:48, ID: ST181126M2-4 PFC CS1 18K1904, Description: PFC CS1 18K1904

13C2-PFHxDA
F64:MRM of 1 channel,ES-
$815>769.7$

Dataset: F:IProjects\PFAS.PRO\Results\181126M11181126M1-CRV.qId

Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_5, Date: 26-Nov-2018, Time: 12:17:48, ID: ST181126M2-4 PFC CS1 18K1904, Description: PFC CS1 18K1904

13C6-PFDA

F40:MRM of 1 channel,ES$519.1>473.7$ $5.489 \mathrm{e}+005$

5.500

13C7-PFUdA

F49:MRM of 1 channel,ES

13C4-PFOS

F33:MRM of 1 channel,ES-
$503>79.9$
7.320

Dataset:

Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time

I AD $11 / 27 / 18$

Name: 181126M1_6, Date: 26-Nov-2018, Time: 12:28:21, ID: ST181126Mz-5 PFC CS2 18K1905, Description: PFC CS2 $18 K 1905$

Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.gld
Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_6, Date: 26-Nov-2018, Time: 12:28:21, ID: ST181126M2-5 PFC CS2 18K1905, Description: PFC CS2 18 K1905

13C2-6:2 FTS

13C4-PFHpA

F18:MRM of 2 channels,ES-

F21:MRM of 2 channels,ES-
$412.8>169$
$1.075 e+005$

13C8-PFOS
F35:MRM of 1 channel,ES-

PFNA

13C5-PFNA
F28:MRM of 1 channel,ES-
$468.2>422.9$
$5.824 \mathrm{e}+005$

Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.ald

Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_6, Date: 26-Nov-2018, Time: 12:28:21, ID: ST181126M2-5 PFC CS2 18K1905, Description: PFC CS2 18 K 1905

Dataset:	F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld
Last Altered:	Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed:	Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_6, Date: 26-Nov-2018, Time: 12:28:21, ID: ST181126M2-5 PFC CS2 18K1905, Description: PFC CS2 18 K1905

13C2-PFDoA

F55:MRM of 2 channels,ES-
$615.0>569.7$

13C8-PFOS

F46:MRM of 2 channels,ES-

13C2-PFUdA

Printed: \quad Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_6, Date: 26-Nov-2018, Time: 12:28:21, ID: ST181126M2-5 PFC CS2 18K1905, Description: PFC CS2 18 K 1905

d5-N-ETFOSA
F44:MRM of 1 channel,ES-
$531.1>168.9$
$4.559 e+005$

13C2-PFHxDA

Dataset:	F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld
Last Altered:	Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed:	Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_6, Date: 26-Nov-2018, Time: 12:28:21, ID: ST181126M2-5 PFC CS2 18K1905, Description: PFC CS2 18 K 1905

13C6-PFDA

13C7-PFUdA

Dataset:	F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld
Last Altered:	Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed:	Monday, November 26, 2018 14:14:21 Pacific Standard Time

1 AD 11/27/18

Name: 181126M1_7, Date: 26-Nov-2018, Time: 12:38:59, ID: ST181126M2-6 PFC CS3 18K1906, Description: PFC CS3 18 K 1906

13C3-PFPeA
13C3-PFBS
F8:MRM of 1 channel,ES-
$302 .>98.8$
$302 .>98.8$
$100+3.052 \mathrm{e}+004$

F12:MRM of 2 channels, ES-

PFHxA

F9:MRM of 2 channels, ES-
$313>118.9$

13C2-PFHxA

Dataset:
 F:IProjects\PFAS.PRO\Resultsl181126M1\181126M1-CRV.qld

Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_7, Date: 26-Nov-2018, Time: 12:38:59, ID: ST181126M2-6 PFC CS3 18K1906, Description: PFC CS3 18 K1906

Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_7, Date: 26-Nov-2018, Time: 12:38:59, ID: ST181126M2-6 PFC CS3 18K1906, Description: PFC CS3 18K1906

13C2-PFDA

13C2-8:2 FTS

13C8-PFOS

Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.gld

Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_7, Date: 26-Nov-2018, Time: 12:38:59, ID: ST181126M2-6 PFC CS3 18K1906, Description: PFC CS3 18K1906

d5-N-EtFOSAA

F54:MRM of 4 channels,ES
$612.9>318.8$

13C2-PFDoA

F55:MRM of 2 channets, ES $615.0>569.7$

Vista Analytical Laboratory

Dataset:	F:\Projects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld
Last Altered:	Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed:	Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_7, Date: 26-Nov-2018, Time: 12:38:59, ID: ST181126M2-6 PFC CS3 18K1906, Description: PFC CS3 18 K 1906

13C2-PFTeDA

Dataset: F:IProjects\PFAS.PRO\Results\181126M11181126M1-CRV.qld

Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_7, Date: 26-Nov-2018, Time: 12:38:59, ID: ST181126M2-6 PFC CS3 18K1906, Description: PFC CS3 $18 K 1906$

13C6-PFDA

F40:MRM of 1 channel,ES$519.1>473.7$ $5.465 \mathrm{e}+005$

13C7-PFUdA

Vista Analytical Laboratory

Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld
Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: \quad Monday, November 26, 2018 14:14:21 Pacific Standard Time

$$
1 A D 11 / 21 / 18
$$

Name: 181126M1_8, Date: 26-Nov-2018, Time: 12:49:38, ID: ST181126Mz-7 PFC CS4 1810907, Description: PFC CS4 18 K1907

13C3-PFBA

F3:MRM of 1 channel,ES$216.1>171.8$ $8.754 \mathrm{e}+004$

PFPeA

13C3-PFPeA

F6:MRM of 1 channel, ES

PFBS
F7:MRM of 2 channels,ES
$299.0>79.7$

13C3-PFBS
F8:MRM of 1 channel, ES
$302 .>98.8$
F8:MRM of 1 channea, ES-
$302 .>98.8$
$3.015 e+004$

13C2-4:2 FTS

PFHxA
 Fg:MRM of 2 channels, ES
 $313>269$ $2.090 \mathrm{e}+006$

PFPeS

Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_8, Date: 26-Nov-2018, Time: 12:49:38, ID: ST181126M2-7 PFC CS4 1810907, Description: PFC CS4 18 K 1907

Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld
Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: \quad Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_8, Date: 26-Nov-2018, Time: 12:49:38, ID: ST181126M2-7 PFC CS4 1810907, Description: PFC CS4 18 K 1907

13C8-PFOS
F35:MRM of 1 channel,ES-
$507.0>79.9$

PFDA
F37:MRM of 2 channels,ES-
$513>468.8$

13C2-PFDA

PFNS
F45:MRM of 2 channels,ES-

Dataset: F:IProjects\PFAS.PRO\Results\181126M11181126M1-CRV.qld
Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: \quad Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_8, Date: 26-Nov-2018, Time: 12:49:38, ID: ST181126M2-7 PFC CS4 1810907, Description: PFC CS4 18K1907

d5-N-EtFOSAA

13C2-PFDoA

(-2

13C8-PFOS

13C2-PFUdA

-

13C2-PFDoA
F55:MRM of 2 channels,ES-
$615.0>569.7$

Dataset:

Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_8, Date: $26-$ Nov-2018, Time: 12:49:38, ID: ST181126M2-7 PFC CS4 1810907, Description: PFC CS4 $18 K 1907$

d5-N-ETFOSA
F44:MRM of 1 channel, ES-
$531.1>168.9$ $531.1>168.9$ $4.462 e+005$

13C2-PFHxDA

d7-N-MeFOSE

F57:MRM of 1 channel,ES-
$623.1>58.9$
$2.201 \mathrm{e}+005$

d9-N-EtFOSE
F59:MRM of 1 channel,ES. $639.2>58.8$
$2.057 \mathrm{e}+005$

Dataset: F:IProjects\PFAS.PRO\ResultsI181126M1\181126M1-CRV.qld
Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_8, Date: $26-$ Nov-2018, Time: 12:49:38, ID: ST181126M2-7 PFC CS4 1810907, Description: PFC CS4 18K1907

Quantify Sample Report \quad MassLynx MassLynx V4.1 SCN945 SCN960
Vista Analytical Laboratory

Ab $11271 / 8$

Name: 181126M1_9, Date: 26-Nov-2018, Time: 13:00:11, ID: ST181126M2-8 PFC CS5 18K1908, Description: PFC CS5 18 K 1908

13C2-4:2 FTS
13C2-4:2 FTS
F13:MRM of 1 channel,ES-
$329.2>308.9$

13C2-PFHxA

Vista Analytical Laboratory
Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld
Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_9, Date: 26-Nov-2018, Time: 13:00:11, ID: ST181126M2-8 PFC CS5 18K1908, Description: PFC CS5 18K1908
6:2 FTS
F24:MRM of 2 channels,ES-
$427.1>407$
$9.513 \mathrm{e}+005$

13C2-6:2 FTS

F25:MRM of 1 channel,ES-
$429.1>408.9$ $429.1>408.9$
$1.404 \mathrm{e}+005$

4.500

13C4-PFHpA

F17:MRM of 1 channel,ES-
$367.2>321.8$

F18:MRM of 2 channels,ES-

1802-PFHxS
F20:MRM of 1 channel,ES

F21:MRM of 2 channels, ES-

PFNA

13C5-PFNA

Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qId
Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_9, Date: 26-Nov-2018, Time: 13:00:11, ID: ST181126M2-8 PFC CS5 18K1908, Description: PFC CS5 18K1908

Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld

Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_9, Date: 26-Nov-2018, Time: 13:00:11, ID: ST181126M2-8 PFC CS5 18K1908, Description: PFC CS5 18K1908

13C2-PFDOA

13C8-PFOS

d3-N-MeFOSA
F39:MRM of 1 channel,ES F39:MRM of 1 channel,ES
$515.2>168.9$

Dataset: \quad F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qid
Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_9, Date: 26-Nov-2018, Time: 13:00:11, ID: ST181126M2-8 PFC CS5 18K1908, Description: PFC CS5 18K1908

F62:MRM of 2 channels,ES
$715.1>669.7$ $15.1>669.7$
$3.492 \mathrm{e}+005$

F41:MRM of 2 channels, ES-
$526.1>219$

d5-N-ETFOSA

PFHxDA

F63:MRM of 2 channels,ES
F63:MRM of 2 channels,ES
$813.1>768.6$

13C2-PFHxDA

d7-N-MeFOSE

F57:MRM of 1 channel,ES-

d9-N-EtFOSE

Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qid
Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_9, Date: 26-Nov-2018, Time: 13:00:11, ID: ST181126M2-8 PFC CS5 18K1908, Description: PFC CS5 18K1908

13C6-PFDA

F40:MRM of 1 channel,ES$519.1>473.7$ $5.265 \mathrm{e}+005$

5.500

13C7-PFUdA

F49:MRM of 1 channel,ES$570.1>524.8$ $5.687 \mathrm{e}+005$

13C4-PFOS

F33:MRM of 1 channel,ES-
$503>79.9$

Vista Analytical Laboratory

Dataset: \quad F:IProjects\PFAS.PRO\Results\181126M11181126M1-CRV.gld

Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time

$1 A D 11 / 21 \mid 8$

Name: 181126M1_10, Date: 26-Nov-2018, Time: 13:10:49, ID: ST181126Mk-9 PFC CS6 18K1909, Description: PFC CS6 $18 K 1909$

13C3-PFPeA
F6:MRM of 1 channel,ES-
$266 .>221.8$
$1.880 \mathrm{e}+005$

Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_10, Date: 26-Nov-2018, Time: 13:10:49, ID: ST181126M2-9 PFC CS6 18K1909, Description: PFC CS6 $18 K 1909$

F16:MRM of 2 channels, ES-

13C4-PFHpA
F17:MRM of 1 channel,ES-
$367.2>321.8$

L-PFHxS

F18:MRM of 2 channels,ES-L-PFHxS $\quad 398.9>79.6$

L-PFOA

F21:MRM of 2 channels,ES

1802-PFHxS
F20:MRM of 1 channel,ES-

PFHpS
F26:MRM of 2 channels,ES
$449>80.0$
$1.385 \mathrm{e}+006$
F26:MRM of 2 channels, ES-

13C8-PFOS
F35:MRM of 1 channel, ES-

PFNA

13C5-PFNA
F28:MRM of 1 channel,ES-

1007 | $468.2>422.9$ |
| ---: |
| $4.973 \mathrm{e}+005$ |

Vista Analytical Laboratory

Dataset:	F:IProjects $\ P F A S . P R O \backslash R e s u l t s \backslash 181126$ M1\181126M1-CRV.qld
Last Altered:	Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed:	Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_10, Date: 26-Nov-2018, Time: 13:10:49, ID: ST181126M2-9 PFC CS6 18K1909, Description: PFC CS6 18 K 1909

13C8-PFOSA
F34:MRM of 1 channel,ES-
$506.1>77.7$
$6.264 \mathrm{e}+004$

13C2-PFDA
F38:MRM of 1 channel,ES-
$515.1>469.9$
$4.443 \mathrm{e}+005$

13C2-8:2 FTS

13C8-PFOS

d3-N-MeFOSAA

F50:MRM of 1 channel,ES$573.3>419$ $6.891 \mathrm{e}+004$

Dataset:	F:\Projects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld
Last Altered:	Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed:	Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_10, Date: 26-Nov-2018, Time: 13:10:49, ID: ST181126M2-9 PFC CS6 18K1909, Description: PFC CS6 18 K1909

F51:MRM of 2 channels,ES-
$584.1>526$
$1.601 \mathrm{e}+006$

F46:MRM of 2 channels, ES- $\begin{array}{r}563.0>269 \\ 9.744 \mathrm{e}+005\end{array}$

13C2-PFUdA

d3-N-MeFOSA

Last Altered: Monday, November 26, 2018 14:29:06 Pacific Standard Time
Printed: Monday, November 26, 2018 14:29:38 Pacific Standard Time

Name: 181126M1_10, Date: 26-Nov-2018, Time: 13:10:49, ID: ST181126M2-9 PFC CS6 18K1909, Description: PFC CS6 $18 K 1909$

Quantify Sample Report \quad MassLynx MassLynx V4.1 SCN945 SCN960	
Vista Analytical Laboratory	
Dataset:	F:IProjects\PFAS.PRO\Results\181126M1 $1181126 M 1-C R V$.ald
Last Altered:	Monday, November 26, 2018 60
14:09:42 Pacific Standard Time	
Printed:	Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_10, Date: 26-Nov-2018, Time: 13:10:49, ID: ST181126M2-9 PFC CS6 18K1909, Description: PFC CS6 18K1909

Dataset:

F:\Projects\PFAS.PRO\Results\181126M1\181126M1-CRV.qid
Last Altered:
Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_11, Date: 26-Nov-2018, Time: 13:21:23, ID: ST181126M\%-10 PFC CS7 18K1910, Description: PFC CS7 18K1910

Dataset: \quad F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld
Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_11, Date: 26-Nov-2018, Time: 13:21:23, ID: ST181126M2-10 PFC CS7 18K1910, Description: PFC CS7 18K1910

13C2-6:2 FTS
F25:MRM of 1 channel,ES-

$363.0>169.0$

13C4-PFHpA

13C2-PFOA

PFNA

$$
\begin{array}{r}
\text { F27:MRM of } 2 \text { channels,ES- } \\
463.0>219.0
\end{array}
$$

$$
\begin{array}{r}
463.0>219.0 \\
4.563 e+006
\end{array}
$$

13C5-PFNA
F28:MRM of 1 channel,ES-
$468.2>422.9$
$4.363 e+005$

Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld

Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_11, Date: 26-Nov-2018, Time: 13:21:23, ID: ST181126M2-10 PFC CS7 18K1910, Description: PFC CS7 18 K1910

13C8-PFOSA

F34:MRM of 1 channel,ES-
$506.1>77.7$

L-MeFOSAA

F48:MRM of 2 channels,ES-

d3-N-MeFOSAA

Dataset:	F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qId
Last Altered:	Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed:	Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181 126M1_11, Date: 26-Nov-2018, Time: 13:21:23, ID: ST181126M2-10 PFC CS7 18K1910, Description: PFC CS7 $18 K 1910$
L-EtFOSAA
F51:MRM of 2 channels,ES-
$584.1>419$
$4.350 \mathrm{e}+006$

13C2-PFDoA

13C8-PFOS

13C2-PFUdA
F47:MRM of 1 channel,ES-
$565>519.8$

13C2-PFDoA

Dataset: \quad F:IProjects\PFAS.PRO\Results\181126M1\181126M1-CRV.qld

Last Altered: Monday, November 26, 2018 14:09:42 Pacific Standard Time
Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_11, Date: 26-Nov-2018, Time: 13:21:23, ID: ST181126M2-10 PFC CS7 18K1910, Description: PFC CS7 $18 K 1910$

Printed: Monday, November 26, 2018 14:14:21 Pacific Standard Time

Name: 181126M1_11, Date: 26-Nov-2018, Time: 13:21:23, ID: ST181126M2-10 PFC CS7 18K1910, Description: PFC CS7 18 K1910

Name: 181126M1_13, Date: 26-Nov-2018, Time: 13:42:34, ID: ICV181126Mp-1 PFC ICV 18K1911, Description: PFC ICV 18K1911

Last Altered: Monday, November 26, 2018 14:55:41 Pacific Standard Time
Printed:
Monday, November 26, 2018 14:56:11 Pacific Standard Time

(A) Not present in $1 W-A D \| 26 / 18$

Name: 181126M1_13, Date: 26-Nov-2018, Time: 13:42:34, ID: ICV181126M2-1 PFC ICV 18K1911, Description: PFC ICV 18K1911

Dataset: F:IProjects\PFAS.PRO\Results\181126M11181126M1-ICV.qld
Last Altered: Monday, November 26, 2018 14:55:41 Pacific Standard Time
Printed: Monday, November 26, 2018 14:56:11 Pacific Standard Time

Name: 181126M1_13, Date: 26-Nov-2018, Time: 13:42:34, ID: ICV181126M2-1 PFC ICV 18K1911, Description: PFC ICV 18 K1911

	\# Name	Trace	Area	IS Area	wtivol	RT	Response	Conc.	\%Rec	Recovery..	Ion Ratio	Ratio Out?
73	67 13C7-PFUdA	$570.1>524.8$	27217.928	27217.928	1.00	5.65	12.500	12.5	100.0	NO		

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_112618.mdb 26 Nov 2018 13:53:04

Calibration: F:IProjects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_11-26-18.cdb 26 Nov 2018 14:29:06

Name: 181126M1_13, Date: 26-Nov-2018, Time: 13:42:34, ID: ICV181126M2-1 PFC ICV 18K1911, Description: PFC ICV 18 K1911

Dataset:	F:\Projects\PFAS.PRO\Results\181126M1\181126M1-ICV.qld
Last Altered:	Monday, November 26, 2018 14:55:41 Pacific Standard Time
Printed:	Monday, November 26, 2018 14:56:11 Pacific Standard Time

Name: 181126M1_13, Date: 26-Nov-2018, Time: 13:42:34, ID: ICV181126M2-1 PFC ICV 18K1911, Description: PFC ICV 18 K 1911

13C2-6:2 FTS
F 25 :MRM of 1 channel,ES-

F16:MRM of 2 channels,ES-

13C4-PFHpA

F17:MRM of 1 channel,ES-
$367.2>321.8$

F18:MRM of 2 channels,ES-

1802-PFHxS
F20:MRM of 1 channel,ES-
$403.0>102.6$

13C2-PFOA

F22:MRM of 1 channel,ES-
$414.9>369.7$

PFNA

Printed: Monday, November 26, 2018 14:56:11 Pacific Standard Time

Name: 181126M1_13, Date: 26-Nov-2018, Time: 13:42:34, ID: ICV181126M2-1 PFC ICV 18K1911, Description: PFC ICV $18 K 1911$

13C8-PFOSA

F34:MRM of 1 channel,ES-

PFNS
 F45:MRM of 2 channels, ES

L-MeFOSAA

d3-N-MeFOSAA

F50:MRM of 1 channel, ES-
$573.3>419$

Dataset:	F:IProjects\PFAS.PRO\Results\181126M1\181126M1-ICV.qld
Last Altered:	Monday, November 26, 2018 14:55:41 Pacific Standard Time
Printed:	Monday, November 26, 2018 14:56:11 Pacific Standard Time

Name: 181126M1_13, Date: $26-$ Nov-2018, Time: 13:42:34, ID: ICV181126M2-1 PFC ICV 18K1911, Description: PFC ICV 18K1911

d5-N-EtFOSAA
F52:MRM of 1 channel,ES

13C2-PFDoA

F55:MRM of 2 channels, ES-

F53:MRM of 2 channels,ES

F35:MRM of 1 channel,ES-
$507.0>79.9$

PFUdA

F46:MRM of 2 channels,ES-
$563.0>518.9$
$4.304 \mathrm{e}+005$

13C2-PFUdA
F47:MRM of 1 channel, ES-
$565>519.8$

d3-N-MeFOSA

PFTrDA

F60:MRM of 2 channels,ES$662.9>618.9$

13C2-PFDOA
F55:MRM of 2 channels,ES$615.0>569.7$ $5.258 \mathrm{e}+005$

Dataset: F:IProjects\PFAS.PRO\Results\181126M1\181126M1-ICV.qld
Last Altered: Monday, November 26, 2018 14:55:41 Pacific Standard Time
Printed: \quad Monday, November 26, 2018 14:56:11 Pacific Standard Time

Name: 181126M1_13, Date: 26-Nov-2018, Time: 13:42:34, ID: ICV181126M2-1 PFC ICV 18K1911, Description: PFC ICV $18 K 1911$

Last Altered:	Monday, November 26, 2018 14:55:41 Pacific Standard Time
Printed:	Monday, November 26, 2018 14:56:11 Pacific Standard Time

Name: 181126M1_13, Date: 26-Nov-2018, Time: 13:42:34, ID: ICV181126M2-1 PFC ICV 18K1911, Description: PFC ICV 18K1911

Dataset:	F:\Projects\PFAS.PRO\Results\181126M1\181126M1-IB.qld
Last Altered:	Monday, November 26, 2018 14:38:52 Pacific Standard Time
Printed:	Monday, November 26, 2018 14:39:16 Pacific Standard Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_112618.mdb 26 Nov 2018 13:53:04

Calibration: F:\Projects\PFAS.PRO\CurveDB\C̄18_VAL-PFĀ_Q4_11-26-18.cdb 26 Nov 2018 14:29:06

Name: 181126M1_12, Date: 26-Nov-2018, Time: 13:32:01, ID: IPA, Description: IPA
PFBA
F2:MRM of 1 channel,ES-
$21300-168.8$
$6.353 \mathrm{e}+003$

13C3-PFBA

F3:MRM of 1 channel,ESF3:MRM of 1 channel,ES
$216.1>171.8$

13C3-PFPeA
F6:MRM of 1 channel,ES$266 .>221.8$
$3.218 \mathrm{e}+002$

13C3-PFBS

4:2 FTS

13C2-4:2 FTS

13C2-PFHxA

PFPeS

13C3-PFBS

Dataset:	F:\Projects\PFAS.PRO\Results\181126M1\181126M1-IB.qld
Last Altered:	Monday, November 26, 2018 14:38:52 Pacific Standard Time
Printed:	Monday, November 26, 2018 14:39:16 Pacific Standard Time

Name: 181126M1_12, Date: 26-Nov-2018, Time: 13:32:01, ID: IPA, Description: IPA

F24:MRM of 2 channels,ES-

L-PFHxS

F18:MRM of 2 channels,ES-

F18:MRM of 2 channels,ES-

1802-PFHxS

13C2-PFOA

Dataset:	F:\Projects\PFAS.PRO\Results\181126M1\181126M1-IB.qld
Last Altered:	Monday, November 26, 2018 14:38:52 Pacific Standard Time
Printed:	Monday, November 26, 2018 14:39:16 Pacific Standard Time

Name: 181126M1_12, Date: $26-$ Nov-2018, Time: 13:32:01, ID: IPA, Description: IPA

PFOSA
 F30:MRM of 2 channels,ES-

F30:MRM of 2 channels,ES$497.9>169$ $1.000 \mathrm{e}-003$

13C8-PFOSA

F34:MRM of 1 channel,ES506.1 > 77.7

F32:MRM of 2 channels,ES-

13C8-PFOS

F35:MRM of 1 channel,ES-

F37:MRM of 2 channels,ES-

13C2-PFDA

F38:MRM of 1 channel,ES-

13C2-8:2 FTS

F45:MRM of 2 channels,ES-

13C8-PFOS

F35:MRM of 1 channel,ES

d3-N-MeFOSAA
F50:MRM of 1 channel,ES$573.3>419$
$1.000 \mathrm{e}-003$

Dataset:	F:\Projects\PFAS.PRO\Results\181126M1\181126M1-IB.qld
Last Altered:	Monday, November 26, 2018 14:38:52 Pacific Standard Time
Printed:	Monday, November 26, 2018 14:39:16 Pacific Standard Time

Name: 181126M1_12, Date: 26-Nov-2018, Time: 13:32:01, ID: IPA, Description: IPA

d5-N-EtFOSAA

13C2-PFDoA

PFDS

F53:MRM of 2 channels,ES- $\begin{array}{r}598.8>79.9 \\ 1.187 \mathrm{e}+002\end{array}$

13C8-PFOS
F35:MRM of 1 channel,ES-
$507.0>79.9$

d3-N-MeFOSA

F60:MRM of 2 channels,ES$662.9>319$

13C2-PFDoA

Dataset:	F:\Projects\PFAS.PRO\Results\181126M1\181126M1-IB.qld
Last Altered:	Monday, November 26, 2018 14:38:52 Pacific Standard Time
Printed:	Monday, November 26, 2018 14:39:16 Pacific Standard Time

Name: 181126M1_12, Date: $26-$ Nov-2018, Time: 13:32:01, ID: IPA, Description: IPA

F61:MRM of 2 channels,ES-
713. > 369.0

13C2-PFTeDA

F62:MRM of 2 channels,ES-
$715.1>669.7$

F41:MRM of 2 channels,ES$526.1>219$
$1.372 e+002$

d5-N-ETFOSA

13C2-PFHxDA

13C2-PFHxDA

Dataset:	F:\Projects\PFAS.PRO\Results\181126M1\181126M1-IB.qld
Last Altered:	Monday, November 26, 2018 14:38:52 Pacific Standard Time
Printed:	Monday, November 26, 2018 14:39:16 Pacific Standard Time

Name: 181126M1_12, Date: 26-Nov-2018, Time: 13:32:01, ID: IPA, Description: IPA

13C6-PFDA

13C7-PFUdA

TUNE CHECKS

Calibration Report - MS1 Static
Printed:
Mon Nov 26 10:09:13 2018

Data file: STATMS1 - Calibrated 23 matches of 23 tested references
Reference: c:ImasslynxIrefIESI Calibration TQ ResCal.ref
Mean residual $=0.0291 \mathrm{amu}$

Residual Polynomial order $=4$
RMS residual $=0.0405 \mathrm{amu}$

Printed: Mon Nov 26 10:10:23 2018

Data file: SCNMS1 - Calibrated
23 matches of 23 tested references

Reference: c:lmasslynx\refIESI Calibration TQ ResCal.ref
Mean residual $=0.0306 \mathrm{amu}$

Calibration Report - MS1 Scan Speed Compensation
Printed:
Mon Nov 26 10:11:37 2018

Reference: c:Imasslynx|reflESI Calibration TQ ResCal.ref Mean residual $=0.0404 \mathrm{amu}$

Calibration Report - MS2 Static
Printed:
Mon Nov 26 10:12:47 2018

Data file: STATMS2 - Calibrated 23 matches of 23 tested references
Reference: c:Imasslynx\refiESI Calibration TQ ResCal.ref \quad Mean residual $=0.0116$ amu

Calibration Report - MS2 Scanning
Printed: Mon Nov 26 10:13:58 2018
Data file: SCNMS2 - Calibrated

Printed: Mon Nov 26 10:15:25 2018

Tune check Q4(M) 11-27-18

Calibration Verification Report - MS1 Static
Printed:
Tue Nov 27 11:40:17 2018

Reference: c:\masslynxIrefIESI Calibration TQ ResCal.ref
Mean residual $=0.0344 \mathrm{amu}$

Printed: \quad Tue Nov 27 11:41:28 2018

Data file: SCNMS1V - Calibrated

Reference: c:\masslynx\ref\ESI Calibration TQ ResCal.ref

Calibration Verification Report - MS1 Scan Speed Compensation
Printed: \quad Tue Nov 27 11:42:41 2018

Data file: FASTMS1V - Calibrated

Reference: c:Imasslynx|reflESI Calibration TQ ResCal.ref
Mean residual $=0.134 \mathrm{amu}$

Printed: \quad Tue Nov 27 11:43:52 2018
Data file: STATMS2V - Calibrated 22 matches of 23 tested references

Reference: c:ImasslynxIrefIESI Calibration TQ ResCal.ref
Mean residual $=0.0123 \mathrm{amu}$

Calibration Verification Report - MS2 Scanning
Printed: \quad Tue Nov 27 11:45:03 2018

Data file: SCNMS2V - Calibrated

Reference: c:Imasslynx\refIESI Calibration TQ ResCal.ref
Mean residual $=0.0127 \mathrm{amu}$

Printed:

Tue Nov 27 11:46:31 2018

Data file: FASTMS2V - Calibrated
23 matches of 23 tested references

STANDARDS

Analytical Standard Record

Vista Analytical Laboratory
$18 J 1502$

Analyte	CAS Number	Concentration	Units
13C3-PFBA		1.25	ug/mL
13C2-6:2 FTS		1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-8:2 FTS		1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFDA		1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFDoA		1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFHxA		0.5	$\mathrm{ug} / \mathrm{mL}$
13C2-PFHxDA		0.5	$\mathrm{ug} / \mathrm{mL}$
13C2-PFOA		1.25	ug/mL
13C2-4:2 FTS		1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFUnA		1.25	$\mathrm{ug} / \mathrm{mL}$
d5-EtFOSAA		1.25	$\mathrm{ug} / \mathrm{mL}$
13C3-PFBS		1.25	$\mathrm{ug} / \mathrm{mL}$
13C3-PFPeA		1.25	ug/mL

Analytical Standard Record

Vista Analytical Laboratory
$18 J 1502$

Description:	PFC - IS	Expires:	15-Oct-20	
Standard Type:	Reagent	Prepared:	15-Oct-18	
Solvent:	MeOH	Prepared By:	Giana R. Bilotta	
Final Volume (mls):	40	Department:	LCMS	
Vials:	Last Edit:	15-Oct-18 08:57 by GRB		
Analyte		CAS Number	Concentration	Units
13C4-PFHpA			1.25	$\mathrm{ug} / \mathrm{mL}$
13C5-PFNA			1.25	$\mathrm{ug} / \mathrm{mL}$
13C8-PFOS		1.25	$\mathrm{ug} / \mathrm{mL}$	
13C8-PFOSA		1.25	$\mathrm{ug} / \mathrm{mL}$	
18O2-PFHxS		1.25	$\mathrm{ug} / \mathrm{mL}$	
d3-MeFOSAA		1.25	$\mathrm{ug} / \mathrm{mL}$	
13C2-PFTeDA			1.25	$\mathrm{ug} / \mathrm{mL}$

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE:
COMPOUND:
STRUCTURE:
M2-4:2FTS
Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluoro-[1,2- $\left.{ }^{13} \mathrm{C}_{2}\right]$ hexane sulfonate

CAS \#: Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmidarysy)
EXPIRY DATE: (mmddodmys)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~F}_{9} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \quad$ (Na salt)
$46.7 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml} \quad$ (M2-4:2FTS anion)
>98\%
09/01/2017
09/01/2022
Refrigerate ampoule

MOLECULAR WEIGHT: 352.12
SOLVENT(S): Methanol

ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- The native $4: 2 \mathrm{FTS}$ contains 4.22% of ${ }^{34} \mathrm{~S}$ (due to natural isotopic abundance) therefore both native 4:2FTS and M2-4:2FTS will produce signals in the $\mathrm{m} / \mathrm{z} 329$ to $\mathrm{m} / \mathrm{z} 309$ channel during SRM analysis. We recommend using the $\mathrm{m} / \mathrm{z} 329$ to $\mathrm{m} / \mathrm{z} 81$ transition to monitor for M2-4:2FTS during quantitative analysis as it will be free of any native contribution (see Figure 2).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{p}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M2-4:2FTS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Fiqure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions

Column:
Acquity UPLC BEH Shield RP ${ }_{18}$
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: 50% ($80: 20 \mathrm{MeOH}: A C N) / 50 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 8 min
and hold for 1 min before returning
to initial conditions in 0.5 min .
Time: 10 min
Flow:

Form\#:27, Issued 2004-11-10
Revision\#:4, Revised 2017-03-06

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage $(\mathrm{V})=25.00$
Cone Gas Flow $(1 / h r)=100$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: M2-4:2FTS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ M2-4:2FTS)
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: \mathrm{ACN}$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas $(\mathrm{mbar})=3.28 \mathrm{e}-3$

Collision Energy (eV) $=25$

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE:
COMPOUND:
STRUCTURE:

M2-6:2FTS
Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluoro- $\left[1,2-{ }^{13} \mathrm{C}_{2}\right]$ octane sulfonate
CAS \#: Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiddymy)
EXPIRY DATE: (mmbdyyyy)
RECOMMENDED STORAGE: Refrigerate ampoule

MOLECULAR WEIGHT: 452.13
SOLVENT(S): Methanol
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- The native $6: 2 \mathrm{FTS}$ contains 4.22% of ${ }^{34} \mathrm{~S}$ (due to natural isotopic abundance) therefore both native 6:2FTS and M2-6:2FTS will produce signals in the $\mathrm{m} / \mathrm{z} 429$ to $\mathrm{m} / \mathrm{z} 409$ channel during SRM analysis. We recommend using the $\mathrm{m} / \mathrm{z} 429$ to $\mathrm{m} / \mathrm{z} 81$ transition to monitor for M2-6:2FTS during quantitative analysis as it will be free of any native contribution (see Figure 2).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE
Certified By:

Date: $\frac{03 / 07 / 2018}{(m m / d / d y y y)}$

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M2-6:2FTS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:	
LC: \quad Waters Acquity Ultra Performance LC	
MS: Micromass Quattro micro API MS	
Chromatographic Conditions	MS Parameters
Column: Acquity UPLC BEH Shield RP_{18} $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase: Gradient Start: $50 \%(80: 20 \mathrm{MeOH}: A C N) / 50 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer) Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min . Time: 10 min	Source:Electrospray (negative) Capillary Voltage (kV) $=3.00$ Cone Voltage (V) $=30.00$ Cone Gas Flow ($/ / \mathrm{hr}$) $=50$ Desolvation Gas Flow (l/hr) $=750$
Flow: $\quad 300 \mu / / m i n$	

Figure 2: M2-6:2FTS; LC/MS/MS Data (Selected MRM Transitions)

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE:

 COMPOUND:M2-8:2FTS
LOT NUMBER: M282FTS0118
Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluoro- $\left[1,2-{ }^{13} \mathrm{C}_{2}\right.$]decane sulfonate

STRUCTURE:

CAS \#: \quad Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodraymy)
EXPIRY DATE: (mndadsym)
RECOMMENDED STORAGE:

$$
{ }^{13} \mathrm{C}_{2}^{12} \mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{17} \mathrm{SO} \mathrm{O}_{3} \mathrm{Na}
$$

$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \quad$ (Na salt)
$47.9 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml} \quad$ (M2-8:2FTS anion)
$>98 \%$ ISOTOPIC PURITY:
01/24/2018
01/24/2023
Refrigerate ampoule

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- The native $8: 2$ FTS contains 4.22% of ${ }^{34} \mathrm{~S}$ (due to natural isotopic abundance) therefore both native 8:2FTS and M2-8:2FTS will produce signals in the $\mathrm{m} / \mathrm{z} 529$ to $\mathrm{m} / \mathrm{z} 509$ channel during SRM analysis. We recommend using the $\mathrm{m} / \mathrm{z} 529$ to $\mathrm{m} / \mathrm{z} 81$ transition to monitor for M2-8:2FTS during quantitative analysis as it will be free of any native contribution (see Figure 2).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

[^0]
INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

18F2210

Figure 1: M2-8:2FTS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions

```
Column: Acquity UPLC BEH Shield RP is
    1.7 \mum, 2.1 × }100\textrm{mm
```

Mobile phase: Gradient
Start: 50% ($80: 20 \mathrm{MeOH}: A C N) / 50 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH} \mathrm{H}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min .
Time: 10 min
Flow: $\quad 300 \mu / / m i n$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source:Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage $(\mathrm{V})=30.00$
Cone Gas Flow ($/ \mathrm{hr}$) $=100$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: \quad M2-8:2FTS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 2:

Injection:	Direct loop injection
	$10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ M2-8:2FTS)

Mobile phase: Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)

Flow: $\quad 300 \mu / / m i n$

MS Parameters

Collision Gas (mbar) $=3.43 \mathrm{e}-3$
Collision Energy (eV) $=25$

PRODUCT CODE:
 COMPOUND:

STRUCTURE:

M3PFBA
Perfluoro-n-[2,3,4- $\left.{ }^{13} \mathrm{C}_{3}\right]$ butanoic acid

MOLECULAR FORMULA: CONCENTRATION:	${ }^{13} \mathrm{C}_{3}{ }^{12} \mathrm{CHF}_{7} \mathrm{O}_{2}$ $50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
CHEMICAL PURITY:	>98\%
LAST TESTED: (mm/didny	12/14/2017
EXPIRY DATE: (mmbduhys)	12/14/2022
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
217.02

SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
$\left(2,3,4-{ }^{13} \mathrm{C}_{3}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.2 \%$ of perfluoro- $n-\left[{ }^{33} \mathrm{C}_{3}\right]$ propanoic acid and also contains $\sim 1.0 \%$ of perfluoro-n-[1,2,3,4- $\left.{ }^{13} \mathrm{C}_{4}\right]$ butanoic acid due to the naturally occurring isotopic abundance of ${ }^{13} \mathrm{C}$ in the unlabelled carbon atom.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned values), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{0}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{i}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{i}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

GALA

Nuntimes.
PAMENFNATEIAL.
For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M3PFBA; LC/MS Data (TIC and Mass Spectrum)
14dec2017_M3PFBA_001
M3PFBA1217 $25 \mathrm{ug} / \mathrm{ml}$
100

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan ($150-850 \mathrm{amu}$)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 30\% (80:20 MeOH:ACN) / 70\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with 10 mM NH	Cone Voltage (V) $=10.00$
	Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min	Cone Gas Flow (l/hr) $=100$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu / / \mathrm{min}$	

Figure 2: M3PFBA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

$\left.\begin{array}{ll}\text { Injection: } & \begin{array}{ll}\text { Direct loop injection } \\ 10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{M} 3 P F B A)\end{array} \\ \text { Mobile phase: } & \begin{array}{l}\text { Isocratic } 80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O} \\ \text { (both with } 10 \mathrm{mM} \mathrm{NH}\end{array} \mathrm{OAc}^{\mathrm{OAc}} \text { buffer) }\end{array}\right\}$

MS Parameters

Collision Gas (mbar) $=3.39 \mathrm{e}-3$
Collision Energy (eV) $=10$

PRODUCT CODE:
 COMPOUND:

STRUCTURE:

MPFDA
Perfluoro- $\mathrm{n}-\left[1,2{ }^{-13} \mathrm{C}_{2}\right.$]decanoic acid

LOT NUMBER: MPFDA0218

CAS \#: \quad Not available

MOLECULAR WEIGHT: 516.07
SOLVENT(S): Methanol
Water ($<1 \%$)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
(1,2- ${ }^{13} \mathrm{C}_{2}$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $<0.1 \%$ of ${ }^{13} \mathrm{C}_{1}$-PFNA.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: MPFDA; LC/MS Data (TIC and Mass Spectrum)

Figure 2: MPFDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection
	$10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ MPFDA)

Mobile phase: Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)

Flow:
$300 \mu 1 / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.39 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=13$

CERTIFICATE OF ANALYSIS

PRODUCT CODE:
COMPOUND:
STRUCTURE:

MPFUdA
Perfluoro-n-[1,2- $\left.{ }^{13} \mathrm{C}_{2}\right]$ undecanoic acid

LOT NUMBER: MPFUdA1116

CAS \#: Not available

MOLECULAR FORMULA: CONCENTRATION:	$\begin{aligned} & { }^{13} \mathrm{C}^{12} \mathrm{C}_{9} \mathrm{HF}_{21} \mathrm{O}_{2} \\ & 50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \end{aligned}$
CHEMICAL PURITY:	>98\%
LAST TESTED: (mmodarys)	11/22/2016
EXPIRY DATE: (mmodr/wy)	11/22/2021
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 566.08
SOLVENT(S): Methanol
Water ($<1 \%$)
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Presence of $1-{ }^{13} \mathrm{C}_{1}-$ PFUdA ($\sim 1 \%$; see Figure 2$), 2{ }^{13} \mathrm{C}_{1}-$ PFUdA $(\sim 1 \%)$, and PFUdA $(\sim 0.2 \%$; see Figure 2) are due to the isotopic purity of the ${ }^{13} \mathrm{C}$-precursor.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc, are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).
numasiono som
For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: MPFUdA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Fiqure 1:		
LC:	Waters Acquity Ultra Performance LC Micromass Quattro micro API MS	
MS:		
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan ($150-850 \mathrm{amu}$)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60% (80:20 MeOH:ACN) / $40 \% \mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=15.00$
	Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min	Cone Gas Flow ($1 / \mathrm{hr}$) $=65$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: MPFUdA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ MPFUdA)
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Flow:	$300 \mu 1 / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.46 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=11$

PRODUCT CODE:	M2PFTeDA	LOT NUMBER:	M2PFTeDA1117
COMPOUND:	Perfluoro-n- $\left[1,2-{ }^{13} \mathrm{C}_{2}\right]$ tetradecanoic acid		
STRUCTURE:		CAS \#:	Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/ddyyy)
EXPIRY DATE: (mm/dd/syy)
RECOMMENDED STORAGE:

$$
\begin{aligned}
& { }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{12} \mathrm{HF}_{27} \mathrm{O}_{2} \\
& 50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}
\end{aligned}
$$

>98\%
11/30/2017
11/30/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S):

ISOTOPIC PURITY:
716.10

Methanol
Water (<1\%) $\geq 99 \%{ }^{13} \mathrm{C}$ $\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE
Certified By:

Date: \qquad $\frac{12 / 01 / 2017}{(m m / d / d y y y y)}$

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned values), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{i}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M2PFTeDA; LC/MS Data (TIC and Mass Spectrum)
30nov2017_M2PFTeDA_005
M2PFTeDA1117 $25 \mathrm{ug} / \mathrm{ml}$
100

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions

Column:
Acquity UPLC BEH Shield RP_{18} $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: 65\% (80:20 MeOH:ACN) / 35\% $\mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min

Flow: $300 \mu 1 / m i n$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage (V) $=15.00$
Cone Gas Flow (l/hr) $=100$
Desolvation Gas Flow (l/hr) $=750$

Fiqure 2: M2PFTeDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection	MS Parameters
	$10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ M2PFTeDA)	Collision Gas (mbar) $=3.31 \mathrm{e}-3$
Mobile pha	Isocratic 80\% (80:20 MeOH:ACN) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Collision Energy (eV) $=14$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE: COMPOUND:

MPFNA
Perfluoro-n-[1,2,3,4,5- ${ }^{13} \mathrm{C}_{5}$]nonanoic acid

LOT NUMBER: MPFNA1217

CAS \#: Not available

MOLECULAR FORMULA: CONCENTRATION:	$\begin{aligned} & { }^{13} \mathrm{C}_{5}{ }_{5} \mathrm{C}_{4} \mathrm{HF}_{17} \mathrm{O}_{2} \\ & 50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \end{aligned}$
CHEMICAL PURITY:	>98\%
LAST TESTED: (mmdduyys)	12/14/2017
EXPIRY DATE: (mmddul/wy)	12/14/2022
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 469.04
SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2,3,4,5-{ }^{13} \mathrm{C}_{5}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{i}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: MPFNA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:		
MS:	Waters Acquity Ultra Performance LC Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 55% (80:20 MeOH:ACN) / 45\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=15.00$
	Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min . Time: 10 min	Cone Gas Flow ($/ / h r$) $=50$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: MPFNA; LC/MS/MS Data (Selected MRM Transitions)

CERTIFICATE OF ANALYSIS
 DOCUMENTATION

PRODUCT CODE:
COMPOUND:

MPFDoA
Perfluoro-n-[1,2- ${ }^{13} \mathrm{C}_{2}$]dodecanoic acid

LOT NUMBER: MPFDoA0218

STRUCTURE:

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodurys)
EXPIRY DATE: (mmoddsyyy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{10} \mathrm{HF}_{23} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
02/16/2018
02/16/2023

MOLECULAR WEIGHT: 616.08
SOLVENT(S): Methanol
Water (<1\%)
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyse of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned values), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{i}, x_{2}, \ldots x_{n}$ on which it depends is: $\quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}$
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Fiqure 1: MPFDoA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan ($150-850 \mathrm{amu}$)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=20.00$
	Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min . Time: 10 min	Cone Gas Flow ($/ / h r$) $=50$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

$18 F 2216$

Figure 2: MPFDoA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

MS Parameters

Collision Gas (mbar) $=3.31 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=13$

CERTIFICATE OF ANALYSIS
 DOCUMENTATION

PRODUCT CODE: COMPOUND:

STRUCTURE:

M4PFHpA
Perfluoro-n-[1,2,3,4- ${ }^{13} \mathrm{C}_{4}$]heptanoic acid

LOT NUMBER: M4PFHpA0517

CAS \#: \quad Not available

MOLECULAR FORMULA:	${ }^{13} \mathrm{C}_{4}{ }^{12} \mathrm{C}_{3} \mathrm{HF}_{13} \mathrm{O}_{2}$	MOLECULAR WEIGHT:	368.03
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT(S):	Methanol
			Water ($<1 \%$)
CHEMICAL PURITY:	>98\%	ISOTOPIC PURITY:	$\geq 99 \%{ }^{13} \mathrm{C}$
LAST TESTED: (mmidodym)	05/03/2017		(1,2,3,4- ${ }^{13} \mathrm{C}_{4}$)
EXPIRY DATE: (mmudisyy)	05/03/2022		
RECOMMENDED STORAGE	Store ampoule		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals, Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is: $\quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}$
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global; ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

CALA

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M4PFHpA; LC/MS Data (TIC and Mass Spectrum)
03may2017_M4PFHpA_002
M4PFHpA0517 $25 \mathrm{ug} / \mathrm{ml}$
100

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=15.00$
	Ramp to 90% organic over 8 min and hold for 1 min before returning to initial conditions in 0.5 min . Time: 10 min	Cone Gas Flow (l/hr) $=50$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: M4PFHpA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ M4PFHpA) $)$
Mobile phase:Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH 4 OAc buffer)	
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.46 \mathrm{e}-3$
Collision Energy (eV) $=9$

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE:

COMPOUND:

M2PFOA
Perfluoro-n-[1,2- ${ }^{13} \mathrm{C}_{2}$]octanoic acid

LOT NUMBER: M2PFOA1017

CAS \#: Not available

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodolyw)
EXPIRY DATE: (mnddalyyy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{6} \mathrm{HF}_{15} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
10/26/2017
10/26/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 416.05
SOLVENT(S): Methanol
Water ($<1 \%$)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M2PFOA; LC/MS Data (TIC and Mass Spectrum)
26oct2017_M2PFOA_001
M2PFOA1017 $25 \mathrm{ug} / \mathrm{ml}$
100

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: $50 \%(80: 20 \mathrm{MeOH}: A C N) / 50 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH} \mathrm{H}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min . Time: 10 min

Flow: $300 \mu 1 / \mathrm{min}$

MS Parameters

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage (V) $=15.00$
Cone Gas Flow (l/hr) $=100$
Desolvation Gas Flow ($/ / h r$) $=750$

Figure 2: \quad M2PFOA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection
	$10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ M2PFOA $)$

Mobile phase: Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)

Flow: $\quad 300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas $(\mathrm{mbar})=3.28 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=10$

PRODUCT CODE: COMPOUND:

STRUCTURE:

M3PFPeA
Perfluoro-n-[3,4,5- $\left.{ }^{13} \mathrm{C}_{3}\right]$ pentanoic acid
LOT NUMBER: M3PFPeA0417

MOLECULAR WEIGHT: 267.02
SOLVENT (S): Methanol
Water (<1\%)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
$\left(3,4,5-{ }^{13} \mathrm{C}_{3}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.95 \%$ of perfluoro-n- $\left[{ }^{13} \mathrm{C}_{3}\right]$ butanoic acid and 0.05% of perfluoro-1-pentanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: $\frac{04 / 24 / 2017}{(\mathrm{~mm} / \mathrm{d} / \mathrm{yyyy})}$

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyse of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers, In order to maintain the integrity of the assigned values), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is: $\quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}$
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: \quad M3PFPeA; LC/MS Data (TIC and Mass Spectrum)

| 20apr2017_M3PFPeA_001 |
| :--- | :--- | :--- |
| M3PFPeA0417 $25 \mathrm{ug} / \mathrm{ml}$ |
| 100 |

Conditions for Fiqure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 40\% (80:20 MeOH:ACN) / 60\% H $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH} \mathrm{C}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=15.00$
	Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min . Time: 10 min	Cone Gas Flow ($/ / \mathrm{hr}$) $=60$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: M3PFPeA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ M3PFPeA)	MS Parameters
Mobile pha	Isocratic 80\% (80:20 MeOH:ACN) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	$\begin{aligned} & \text { Collision Gas }(\mathrm{mbar})=3.31 \mathrm{e}-3 \\ & \text { Collision Energy }(\mathrm{eV})=9 \end{aligned}$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE: COMPOUND:

STRUCTURE:

M8FOSA-I
Perfluoro-1-[$\left.{ }^{3} \mathrm{C}_{8}\right]$ octanesulfonamide
LOT NUMBER: M8FOSA1017I

CAS \#: Not available

MOLECULAR FORMULA:

CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/dd/yys) EXPIRY DATE: (mm/ddyyyy) RECOMMENDED STORAGE: Refrigerate ampoule
${ }^{13} \mathrm{C}_{8} \mathrm{H}_{2} \mathrm{~F}_{17} \mathrm{NO}_{2} \mathrm{~S}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
$>98 \%$
10/11/2017
10/11/2022

MOLECULAR WEIGHT: 507.09
SOLVENT(S): Isopropanol ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$ $\left({ }^{13} \mathrm{C}_{8}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 1.1 \%$ of perfluoro- $1-\left[{ }^{13} \mathrm{C}_{4}\right]$ octanesulfonamide and $\sim 0.01 \%$ of perfluoro-1- $\left[{ }^{13} \mathrm{C}_{7}\right]$ heptanesulfonamide.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned values), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule, Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).
For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M8FOSA-I; LC/MS Data (TIC and Mass Spectrum)

Figure 2: M8FOSA-I; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection
	$10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ M8FOSA-I)

Mobile phase: Isocratic 80\% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)

Flow: $\quad 300 \mu / / m i n$

MS Parameters

Collision Gas (mbar) $=3.43 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=30$

PRODUCT CODE:

 COMPOUND:STRUCTURE:
d3-N-MeFOSAA
N -methyl-d3-perfluoro-1-octanesulfonamidoacetic acid

CAS \#:
Not available

MOLECULAR FORMULA:	$\mathrm{C}_{11} \mathrm{D}_{3} \mathrm{H}_{3} \mathrm{~F}_{17} \mathrm{NO}_{4} \mathrm{~S}$	MOLECULAR WEIGHT:	574.23
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT(S):	Methanol
			Water (<1\%)
CHEMICAL PURITY:	>98\%	ISOTOPIC PURITY:	$\geq 98 \%{ }^{2} \mathrm{H}_{3}$
LAST TESTED: (mm/d/dyyy)	11/08/2017		
EXPIRY DATE: (mmmddysyy)	11/08/2022		
RECOMMENDED STORAGE:	Refrigerate ampoule		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- \quad See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent the conversion of the acetic acid moiety to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad 11/16/2017
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS, The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned values), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).
For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1:
d3-N-MeFOSAA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

Figure 2: $\quad \mathrm{d} 3-\mathrm{N}-\mathrm{MeFOSAA}$; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:
$\left.\begin{array}{ll}\text { Injection: } & \begin{array}{l}\text { Direct loop injection } \\ 10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \text { d3-N-MeFOSAA) })\end{array} \\ \text { Mobile phase: } & \begin{array}{l}\text { Isocratic } 80 \%(80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O} \\ \text { (both with } 10 \mathrm{mM} \mathrm{NH}\end{array} \mathrm{AAc} \text { buffer) }\end{array}\right)$

MS Parameters
Collision Gas (mbar) $=3.43 \mathrm{e}-3$
Collision Energy (eV) $=20$

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE:
 COMPOUND:

d5-N-EtFOSAA
LOT NUMBER:
d5NEtFOSAA1117
N -ethyl-d5-perfluoro-1-octanesulfonamidoacetic acid

Not available
STRUCTURE:
GAS \#:

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent the conversion of the acetic acid moiety to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS, The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: d5-N-EtFOSAA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
 LC: \quad Waters Acquits Ultra Performance LC
 MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$ Experiment: Full Scan (225-850 amu)

Mobile phase: Gradient Start: 60\% (80:20 MeOH:ACN) / 40\% $\mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min

Flow: $300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage (V) $=35.00$
Cone Gas Flow ($1 / \mathrm{hr}$) $=50$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: d5-N-EtFOSAA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection
	$10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ d5-N-EtFOSAA) $)$

Mobile phase: Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)

Flow: $\quad 300 \mu / / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.50 \mathrm{e}-3$
Collision Energy (eV) $=20$

CERTIFICATE OF ANALYSIS

PRODUCT CODE:	M3PFBS	LOT NUMBER:	M3PFBS0218
COMPOUND:	Sodium perfluoro-1-[2,3,4- $\left.{ }^{13} \mathrm{C}_{3}\right]$ butanesulfonate		
STRUCTURE:		GAS \#:	Not available

MOLECULAR FORMULA:	${ }^{13} \mathrm{C}_{3}{ }^{12} \mathrm{CF}_{9} \mathrm{SO}_{3} \mathrm{Na}$	MOLECULAR WEIGHT:	325.06
CONCENTRATION:	$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)	SOLVENTS):	Methanol
	$46.5 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}$ (M3PFBS anion)		
CHEMICAL PURITY:	$>98 \%$	ISOTOPIC PURITY:	$\geq 99 \%{ }^{13} \mathrm{C}$
LAST TESTED: (mm/ddyyys)	$02 / 15 / 2018$		$\left(2,3,4-{ }^{13} \mathrm{C}_{3}\right)$
EXPIRY DATE: $(m m / d d / l m y)$	$02 / 15 / 2023$		
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyse of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned values), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{i}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{t}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M3PFBS; LC/MS Data (TIC and Mass Spectrum)
15feb2018_M3PFBS_001
M3PFBS0218 $10 \mathrm{ug} / \mathrm{ml}$
100 (

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 40% (80:20 MeOH:ACN) / $60 \% \mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=40.00$
	Ramp to 90% organic over 7 min and hold for	Cone Gas Flow (l/hr) = 50
	2 min before returning to initial conditions in 0.5 min . Time: 10 min	Desolvation Gas Flow (1/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

$18 F 2223$

Figure 2: \quad M3PFBS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

MS Parameters

Collision Gas (mbar) $=3.17 \mathrm{e}-3$
Collision Energy (aV) $=25$

PRODUCT CODE:
 COMPOUND:

STRUCTURE:

M8PFOS
Sodium perfluoro- $1-\left[{ }^{13} \mathrm{C}_{8}\right]$ loctanesulfonate

LOT NUMBER: M8PFOS1117

CAS \#: Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmidarysy)
EXPIRY DATE: (mmddolywy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt) $47.8 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (M8PFOS anion)
>98\%
11/08/2017
11/08/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 530.05
SOLVENT(S): Methanol
ISOTOPIC PURITY: $\quad>99 \%{ }^{13} \mathrm{C}$
$\left({ }^{13} \mathrm{C}_{8}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.3 \%$ of sodium perfluoro- $-1-\left[{ }^{13} \mathrm{C}_{7}\right]$ heptanesulfonate $\left({ }^{13} \mathrm{C}_{7}-\mathrm{PFHpS}\right)$ and $\sim 0.8 \%$ of sodium perfluoro-1-[$\left[^{13} \mathrm{C}_{4}\right.$]octanesulfonate (MPFOS).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad $\frac{11 / 22 / 2017}{(m m \mathrm{~m} d \mathrm{~d} / \mathrm{SW}) \mathrm{I})}$

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=\sqrt{\sum_{i=1}^{\prime \prime} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company, In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M8PFOS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions

Column: Acquits UPLC BEH Shield RP_{18} $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: 50% ($80: 20 \mathrm{MeOH}: A C N) / 50 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min . Time: 10 min

Flow:
$300 \mu \mathrm{l} / \mathrm{min}$

$18 F 2224$

Figure 2: M8PFOS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection
	$10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ M8PFOS $)$

Mobile phase: Isocratic $80 \%(80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)

Flow: $\quad 300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas $($ mbar $)=3.46 e-3$
Collision Energy (aV) $=40$

PRODUCT CODE: COMPOUND:

MPFHxS

Sodium perfluoro-1-hexane $\left[{ }^{18} \mathrm{O}_{2}\right]$ sulfonate

LOT NUMBER: MPFHxS0318

CAS \#:

1585941-14-5

MOLECULAR FORMULA:

CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mmoduyyy)
EXPIRY DATE: (mmbdrsmy)
RECOMMENDED STORAGE: Store ampoule in a cool, dark place
$\mathrm{C}_{6} \mathrm{~F}_{13}{ }^{18} \mathrm{O}_{2}{ }^{18} \mathrm{ONa}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$47.3 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (MPFHxS anion)
$>98 \%$
$03 / 22 / 2018$
$03 / 22 / 2023$
Store ampoule in a cool, dark place

CHED:
DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

MOLECULAR WEIGHT: 426.10
SOLVENT(S): Methanol

ISOTOPIC PURITY: $\quad>94 \%\left({ }^{(18} \mathrm{O}_{2}\right)$

ADDITIONAL INFORMATION:

- See page 2 for further details.
- The response factor for MPFHxS $\left(\mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{~S}^{18} \mathrm{O}_{2}{ }^{16} \mathrm{O}\right)$ has been observed to be up to 10% lower than for PFHxS $\left(\mathrm{C}_{6} \mathrm{~F}_{13}{ }^{16} \mathrm{O}_{3}\right)$ when both compounds are injected together. This difference may vary between instruments.
- Contains $\sim 1.0 \%$ of sodium perfluoro- 1 -octane $\left[{ }^{[8} \mathrm{O}_{2}\right]$ sulfonate $\left({ }^{18} \mathrm{O}_{2}\right.$-PFOS $)$ and $\sim 0.3 \%$ of sodium perfluoro-1-heptane $\left[{ }^{18} \mathrm{O}_{2}\right]$ sulfonate (${ }^{18} \mathrm{O}_{2}-\mathrm{PFHpS}$).
- Due to the isotopic purity of the starting material (${ }^{18} \mathrm{O}_{2}>94 \%$), MPFHxS contains $\sim 0.3 \%$ of PFHxS . This value agrees with the theoretical percent relative abundance that is expected based on the stated isotopic purity.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{i}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: MPFHxS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Waters Xevo TQ-S micro MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP_{18}
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: 50% ($80: 20 \mathrm{MeOH}: A C N) / 50 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 80% organic over 7 min and hold for 3 min before returning to initial conditions in 0.75 min . Time: 12 min

Flow: $300 \mu 1 / \mathrm{min}$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=0.50$
Cone Voltage (V) $=5.00$
Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
Desolvation Gas Flow ($/ / \mathrm{hr}$) $=750$

$18 F 2225$

Figure 2:
MPFHxS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: On-column (MPFHxS)

MS Parameters

Collision Gas (mbar) $=3.64 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=32$

CERTIFICATE OF ANALYSIS

 DOCUMENTATION
PRODUCT CODE:

COMPOUND:

M2PFHxDA
Perfluoro-n- $\left[1,2-{ }^{13} \mathrm{C}_{2}\right.$ hexadecanoic acid

LOT NUMBER: M2PFHxDA0717

GAS \#:
Not available

MOLECULAR FORMULA:
CONCENTRATION: CONCENTRATION:

CHEMICAL PURITY: LAST TESTED: (mm/darysy)
EXPIRY DATE: (mmbddyyyy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{14} \mathrm{HF}_{31} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
07/13/2017
07/13/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 816.11
SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.3 \%$ of native perfluoro-n-hexadecanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned values), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is: $\quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}$
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M2PFHxDA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column: Acquity UPLC BEH Shield RP_{18}		
		Experiment: Full Scan (250-1250 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 55\% (80:20 MeOH:ACN) / 45\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH} \mathrm{H}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=25.00$
	Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min . Time: 10 min	Cone Gas Flow (l/hr) $=60$ Desolvation Gas Flow ($/ / \mathrm{hr}$) $=750$
Flow:	$300 \mu 1 / \mathrm{min}$	

$$
18 F 2226
$$

Figure 2: M2PFHxDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

MS Parameters

Collision Gas (mbar) $=3.28 \mathrm{e}-3$
Collision Energy (eV) $=15$

PRODUCT CODE: COMPOUND:

STRUCTURE:

MPFHxA
Perfluoro-n-[1,2- $\left.{ }^{13} \mathrm{C}_{2}\right]$ hexanoic acid

LOT NUMBER: MPFHxA1017

CAS \#: Not available

MOLECULAR WEIGHT: 316.04
SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $<0.1 \%$ of perfluoro-n-hexanoic acid and $<0.3 \%$ of perfluoro-n-octanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

CALA
sundevity ana
For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: MPFHxA; LC/MS Data (TIC and Mass Spectrum)

27oct2017_MPFHxA_001 172 (2.892) MPFHxA1017 25 ug/ml	27-Oct-2017 12:24:13		$315 \quad$Scan ES- 1.24 e 6		
100					

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:		
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 40% (80:20 MeOH:ACN) / 60\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=15.00$
	Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions over 0.5 min . Time: 10 min	Cone Gas Flow ($/ \mathrm{hr}$) $=100$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Fiqure 2: \quad MPFHXA; LC/MS/MS Data (Selected MRM Transitions)

Analytical Standard Record
Vista Analytical Laboratory
$18 J 1505$

Parent Standards used in this standard:					
Standard	Description	Prepared	Prepared By	Expires	(mls)
18E0707	PFDoA	07-May-18	** Vendor **	18-Apr-23	0.4
18E0708	PFBA	07-May-18	** Vendor **	14-Dec-22	0.4
18E0709	PFPeA	07-May-18	** Vendor **	16-Feb-23	0.4
18E0710	PFHxA	07-May-18	** Vendor **	27-Sep-22	0.4
18E0711	PFDA	07-May-18	** Vendor **	14-Dec-22	0.4
18E0712	PFUdA	07-May-18	** Vendor **	21-Sep-22	0.4
18E0713	PFTrDA	07-May-18	** Vendor **	02-May-22	0.4
18E0714	PFHpA	07-May-18	** Vendor **	27-Sep-22	0.4
18E0715	PFOA	07-May-18	** Vendor **	16-Feb-23	0.4
18E0716	PFNA	07-May-18	** Vendor **	20-Jul-22	0.4
18E0717	PFTeDA	07-May-18	** Vendor **	21-Sep-22	0.4
18E0718	PFHxDA	07-May-18	** Vendor **	13-Jul-22	0.4
18E0719	PFODA	07-May-18	** Vendor **	13-Jul-22	0.4
18E0720	L-PFBS	07-May-18	** Vendor **	21-Sep-22	0.454
18E0721	L-PFPeS	07-May-18	** Vendor **	11-Jan-22	0.428
18E0722	L-PFHpS	07-May-18	** Vendor **	01-Sep-22	0.42
18E0723	L-PFNS	07-May-18	** Vendor **	27-Sep-22	0.418
18E0724	L-PFDS	07-May-18	** Vendor **	08-Nov-22	0.415
18E0725	br-PFHxSK	07-May-18	** Vendor **	04-Jan-22	0.44
18E0726	br-PFOSK anion	07-May-18	** Vendor **	12-Jan-22	0.431
18E0727	4:2 FTS	07-May-18	** Vendor **	12-Dec-21	0.43
18E0728	6:2FTS	07-May-18	** Vendor **	03-Apr-23	0.422
18E0729	8:2FTS	07-May-18	** Vendor **	24-Jan-23	0.418
18E0730	FOSA-I	07-May-18	** Vendor **	01-Sep-22	0.4
18E0731	br-NMeFOSAA	07-May-18	** Vendor **	17-Jan-23	0.4
18E0732	br-NEtFOSAA	07-May-18	** Vendor **	17-Jan-23	0.4
1810762	N-MeFOSA-M	07-Sep-18	** Vendor **	07-May-23	2
18 I 0763	N-EtFOSA-M	07-Sep-18	** Vendor **	07-May-23	2
1810764	N-MeFOSE-M	07-Sep-18	** Vendor **	04-Jun-23	2
1810765	N-EtFOSE-M	07-Sep-18	** Vendor **	14-Dec-22	2

Description:	PFC NS Stock	Expires:	15-Oct-20
Standard Type:	Analyte Spike	Prepared:	15-Oct-18
Solvent:	MeOH	Prepared By:	Giana R. Bilotta
Final Volume $(\mathrm{mls}):$	20	Department:	LCMS
Vials:	1	Last Edit:	15-Oct-18 14:52 by GRB

PFOS and PFHxS linear and branched components
As of $5 / 27 / 18$, MeFOSAA and EtFOSAA include Linear and Branched.
CAS Number Concentration Units

L-PFOA	1	$\mathrm{ug} / \mathrm{mL}$
L-PFTrDA	1	$\mathrm{ug} / \mathrm{mL}$
L-PFHpA	1	$\mathrm{ug} / \mathrm{mL}$
L-PFHpS	1	$\mathrm{ug} / \mathrm{mL}$

Analytical Standard Record
Vista Analytical Laboratory
$18 J 1505$

Description:	PFC NS Stock	Expires:	15-Oct-20
Standard Type:	Analyte Spike	Prepared:	15-Oct-18
Solvent:	MeOH	Prepared By:	Giana R. Bilotta
Final Volume $(\mathrm{mls}):$	20	Department:	LCMS
Vials:	1	Last Edit:	15-Oct-18 14:52 by GRB

PFOS and PFHxS linear and branched components
As of 5/27/18, MeFOSAA and EtFOSAA include Linear and Branched.

Annalyte	CAS Number	Concentration	Units
L-PFHxA		1	$\mathrm{ug} / \mathrm{mL}$
L-PFHxDA		1	$\mathrm{ug} / \mathrm{mL}$
L-PFHxS		0.812	$\mathrm{ug} / \mathrm{mL}$
L-PFDoA		1	$\mathrm{ug} / \mathrm{mL}$
L-PFNS	68259-12-1	1	$\mathrm{ug} / \mathrm{mL}$
L-PFDA		1	$\mathrm{ug} / \mathrm{mL}$
L-PFODA		1	$\mathrm{ug} / \mathrm{mL}$
L-PFOS		0.789	$\mathrm{ug} / \mathrm{mL}$
L-PFOSA		1	$\mathrm{ug} / \mathrm{mL}$
L-PFPeA		1	$\mathrm{ug} / \mathrm{mL}$
L-PFPeS	2706-91-4	1	$\mathrm{ug} / \mathrm{mL}$
4:2 FTS	757124-72-4	1	$\mathrm{ug} / \mathrm{mL}$
L-PFNA		1	$\mathrm{ug} / \mathrm{mL}$
L-4:2 FTS	75124-72-4	1	$\mathrm{ug} / \mathrm{mL}$
6:2 FTS	27619-97-2	1	$\mathrm{ug} / \mathrm{mL}$
8:2 FTS	39108-34-4	1	$\mathrm{ug} / \mathrm{mL}$
Br-EtFOSAA		0.224	$\mathrm{ug} / \mathrm{mL}$
Br-MeFOSAA		0.24	$\mathrm{ug} / \mathrm{mL}$
Br-PFHxS	3871-99-6	0.189	$\mathrm{ug} / \mathrm{mL}$
EtFOSA	4151-50-2	5	$\mathrm{ug} / \mathrm{mL}$
L-PFDS		1	$\mathrm{ug} / \mathrm{mL}$
EtFOSE	1691-99-2	5	$\mathrm{ug} / \mathrm{mL}$
L-PFUnA		1	$\mathrm{ug} / \mathrm{mL}$
L-6:2 FTS		1	$\mathrm{ug} / \mathrm{mL}$
L-8:2FTS		1	$\mathrm{ug} / \mathrm{mL}$
L-EtFOSAA	2991-50-6	0.776	$\mathrm{ug} / \mathrm{mL}$
L-MeFOSAA	2355-31-9	0.76	$\mathrm{ug} / \mathrm{mL}$
L-PFBA		1	$\mathrm{ug} / \mathrm{mL}$
L-PFBS		1	$\mathrm{ug} / \mathrm{mL}$
EtFOSAA	2991-50-6	1	$\mathrm{ug} / \mathrm{mL}$
Total EtFOSAA		1	$\mathrm{ug} / \mathrm{mL}$
L-PFTeDA		1	$\mathrm{ug} / \mathrm{mL}$
PFOSA	754-91-6	1	$\mathrm{ug} / \mathrm{mL}$
PFPeA	2706-90-3	1	$\mathrm{ug} / \mathrm{mL}$

Analytical Standard Record
Vista Analytical Laboratory
$18 J 1505$

Description:	PFC NS Stock	Expires:	15-Oct-20	
Standard Type:	Analyte Spike	Prepared:	15-Oct-18	
Solvent:	MeOH	Prepared By:	Giana R. Bilotta	
Final Volume (mls):	20	Department:	LCMS	
Vials:	1	Last Edit:	15-Oct-18 14:52	GRB
PFOS and PFHxS linear and branched components As of $5 / 27 / 18$, MeFOSAA and EtFOSAA include Linear and Branched.				
		CAS Number	Concentration	Units
PFPeS		2706-91-4	1	$\mathrm{ug} / \mathrm{mL}$
PFTeDA		376-06-7	1	$\mathrm{ug} / \mathrm{mL}$
PFTrDA		72629-94-8	1	$\mathrm{ug} / \mathrm{mL}$
PFODA		16517-11-6	1	$\mathrm{ug} / \mathrm{mL}$
Total 6:2 FTS			1	$\mathrm{ug} / \mathrm{mL}$
PFOA		335-67-1	1	$\mathrm{ug} / \mathrm{mL}$
Total MeFOSAA			1	$\mathrm{ug} / \mathrm{mL}$
Total PFDS			1	$\mathrm{ug} / \mathrm{mL}$
Total PFHpS			1	$\mathrm{ug} / \mathrm{mL}$
Total PFHxS			1	$\mathrm{ug} / \mathrm{mL}$
Total PFOA			1	$\mathrm{ug} / \mathrm{mL}$
Total PFOS			1	$\mathrm{ug} / \mathrm{mL}$
PFUnA		2058-94-8	1	$\mathrm{ug} / \mathrm{mL}$
PFHpA		375-85-9	1	$\mathrm{ug} / \mathrm{mL}$
MeFOSA		31506-32-8	5	$\mathrm{ug} / \mathrm{mL}$
MeFOSAA		2355-31-9	1	$\mathrm{ug} / \mathrm{mL}$
MeFOSE		24448-09-7	5	$\mathrm{ug} / \mathrm{mL}$
PFBA		375-22-4	1	$\mathrm{ug} / \mathrm{mL}$
PFBS		375-73-5	1	$\mathrm{ug} / \mathrm{mL}$
PFDA		335-76-2	1	$\mathrm{ug} / \mathrm{mL}$
PFOS		1763-23-1	1	$\mathrm{ug} / \mathrm{mL}$
PFDS		335-77-3	1	$\mathrm{ug} / \mathrm{mL}$
Total PFUnA			1	$\mathrm{ug} / \mathrm{mL}$
PFHpS		375-92-8	1	$\mathrm{ug} / \mathrm{mL}$
PFHxA		307-24-4	1	$\mathrm{ug} / \mathrm{mL}$
PFHxDA		67905-19-5	1	$\mathrm{ug} / \mathrm{mL}$
PFHxS		355-46-4	1	$\mathrm{ug} / \mathrm{mL}$
PFNA		375-95-1	1	$\mathrm{ug} / \mathrm{mL}$
PFNS		68259-12-1	1	$\mathrm{ug} / \mathrm{mL}$
PFDoA		307-55-1	1	$\mathrm{ug} / \mathrm{mL}$

CERTIFICATE OF ANALYSIS
 DOCUMENTATION

PRODUCT CODE:	PFDoA		
COMPOUND:	Perfluoro-n-dodecanoic acid	LOT NUMBER:	
PFDOA0418			
STRUCTURE:		CAS \#:	$307-55-1$

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/didyyy)
EXPIRY DATE: (mmddasmy)
RECOMMENDED STORAGE:
$\mathrm{C}_{12} \mathrm{HF}_{23} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
04/18/2018
04/18/2023
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 614.10
SOLVENT(S): Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (SIR)
Figure 2: LC/MS Data (Mass Spectrum)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad $\frac{4 / 24 / 2018}{(\mathrm{~mm} / \mathrm{dd} / \mathrm{yyyy})}$

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times, Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{0}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: \quad PFDoA; LC/MS Data (SIR)

Figure 2: PFDoA; LC/MS Data (Mass Spectrum)

Conditions for Figures 1 \& 2:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiments: SIR of 10 channels Full Scan (250-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60\% (80:20 MeOH:ACN)/40\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=0.50$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=5$ (variable for SIR (2-12))
	Ramp to 85% organic over 7 min and hold for	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
	3 min before returning to initial conditions in 0.75 min .	Desolvation Gas Flow (1/hr) $=750$
	Time: 12 min	
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

$18 E 0707$

Fiqure 3: \quad PFDoA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 3:

Injection: On-column (PFDoA)
Mobile phase: Same as Figure 1
Flow: $\quad 300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters
Collision Gas (mbar) $=3.47 \mathrm{e}-3$
Collision Energy (eV) $=12$

LABORATORIES

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE:
COMPOUND:

PFBA
Perfluoro-n-butanoic acid

STRUCTURE:

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmddayyy)
EXPIRY DATE: (mmoddyyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{4} \mathrm{HF}_{7} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
12/14/2017
12/14/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 214.04
SOLVENT(S): Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{e}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFBA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 30\% (80:20 MeOH:ACN) / 70\% $\mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH OAc buffer)	Capillary Voltage (kV) $=3.00$ Cone Voltage $(V)=10.00$
	Ramp to 90% organic over 7 min and hold for 1.5 min	Cone Gas Flow (l/hr) $=100$
	before returning to initial conditions in 0.5 min . Time: 10 min	Desolvation Gas Flow (1/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

$18 E 0708$

Figure 2:
PFBA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection	MS Parameters
	$10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml} \mathrm{PFBA})$	
		Collision Gas (mbar) $=3.31 \mathrm{e}-3$
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Coillision Energy (eV) $=10$
Flow:	$300 \mu 1 / \mathrm{min}$	

CERTIFICATE OF ANALYSIS

PRODUCT CODE:
 COMPOUND:

PFPeA
Perfluoro-n-pentanoic acid

LOT NUMBER: PFPeA0218

CAS \#:
2706-90-3

MOLECULAR FORMULA:

 CONCENTRATION:CHEMICAL PURITY:
LAST TESTED: (mmldodysy)
EXPIRY DATE: (middurysy)
RECOMMENDED STORAGE:

$$
\begin{aligned}
& \mathrm{C}_{5} \mathrm{HF}_{9} \mathrm{O}_{2} \\
& 50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}
\end{aligned}
$$

>98\%
02/16/2018
02/16/2023
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: SOLVENT(S):
264.05

Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.3 \%$ of Perfluoro-n-heptanoic acid (PFHpA) and $\sim 0.2 \%$ of $\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{~F}_{8} \mathrm{O}_{2}$ (hydrido - derivative) as measured by ${ }^{19} \mathrm{~F}$ NMR.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

[^1]
INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: \quad PFPeA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
LC: \quad Waters Acquity Ultra Performance LC
MS: \quad Micromass Quattro micro API MS
Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP_{18} $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm} \quad$ Experiment: Full Scan $(150-850 \mathrm{amu})$

Mobile phase: Gradient
Start: 30% ($80: 20 \mathrm{MeOH}: A C N) / 70 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min

Flow: $300 \mu \mathrm{l} / \mathrm{min}$

$18 E 0709$

Figure 2: PFPeA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ PFPeA)	MS Parameters
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH} \mathrm{H}_{4} \mathrm{OAc}$ buffer)	$\begin{aligned} & \text { Collision Gas }(\mathrm{mbar})=3.28 \mathrm{e}-3 \\ & \text { Collision Energy }(\mathrm{eV})=9 \end{aligned}$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE:

 COMPOUND:
STRUCTURE:

PFHxA
Perfluoro-n-hexanoic acid

LOT NUMBER: PFHxA0917

CAS \#:
307-24-4

MOLECULAR FORMULA:

 CONCENTRATION:CHEMICAL PURITY: LAST TESTED: (mm/ddypyy)

EXPIRY DATE: (mm/ddymy $)$
RECOMMENDED STORAGE:
$\mathrm{C}_{6} \mathrm{HF}_{11} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
09/27/2017
09/27/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S): Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 1.0 \%$ of branched isomers.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{\mu} u\left(y, x_{1}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: \quad PFHxA; LC/MS Data (TIC and Mass Spectrum)
27sept2017_PFHxA_002
PFHxA0917 $25 \mathrm{ug} / \mathrm{ml}$
100

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

| Chromatographic Conditions | MS Parameters |
| :--- | :--- | :--- |
| Column: | Acquity UPLC BEH Shield RP_{18} |
| $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$ | |\quad Experiment: Full Scan $(225-850 \mathrm{amu})$

Figure 2: \quad PFHxA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ PFHxA)
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

$$
\begin{aligned}
& \text { Collision Gas }(\mathrm{mbar})=3.46 \mathrm{e}-3 \\
& \text { Collision Energy }(\mathrm{eV})=10
\end{aligned}
$$

CERTIFICATE OF ANALYSIS
 DOCUMENTATION

PRODUCT CODE: COMPOUND:

PFDA
Perfluoro-n-decanoic acid

LOT NUMBER: PFDA1217

STRUCTURE:

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY: LAST TESTED: (mmoduryy)
EXPIRY DATE: (mmodrhyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{10} \mathrm{HF}_{19} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
12/14/2017
12/14/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 514.08
SOLVENT(S): Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.2 \%$ of perfluoro-n-nonanoic acid (PFNA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point, Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{n}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Fiqure 1: PFDA; LC/MS Data (TIC and Mass Spectrum)
14dec2017_PFDA_001
PFDA1217 $25 \mathrm{ug} / \mathrm{ml}$
100

Conditions for Figure 1:

LC: \quad Waters Acquity Ultra Performance LC
MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions
Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: 55% ($80: 20 \mathrm{MeOH}: A C N) / 45 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for
2 min before returning to initial conditions in 0.5 min .
Time: 10 min
Flow:
$300 \mu 1 / \mathrm{min}$

MS Parameters

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage (V) $=15.00$
Cone Gas Flow (l/hr) $=50$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: \quad PFDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:
$\left.\begin{array}{ll}\text { Injection: } & \begin{array}{l}\text { Direct loop injection } \\ 10 \mu \mathrm{I}(500 \mathrm{ng} / \mathrm{ml} \text { PFDA) }\end{array} \\ \text { Mobile phase: } & \text { Isocratic } 80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O} \\ \text { (both with } 10 \mathrm{mM} \mathrm{NH} \\ 4 \\ \mathrm{OAc} \text { buffer) }\end{array}\right)$

MS Parameters

Collision Gas (mbar) $=3.35 \mathrm{e}-3$
Collision Energy (eV) $=13$

WELLINGTON
LABORATORIES

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE:

COMPOUND:

PFUdA
Perfluoro-n-undecanoic acid

LOT NUMBER: PFUdA0917

CAS \#:
2058-94-8

MOLECULAR FORMULA:	$\mathrm{C}_{11} \mathrm{HF}_{21} \mathrm{O}_{2}$	MOLECULAR WEIGHT:	564.09
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT(S):	Methanol
			Water ($<1 \%$)
CHEMICAL PURITY:	>98\%		
LAST TESTED: (mmodidys)	09/21/2017		
EXPIRY DATE: (mmdd/hys)	09/21/2022		
RECOMMENDED STORAGE:	Store ampoule		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc, are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals, Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: \quad PFUdA; LC/MS Data (TIC and Mass Spectrum)
21sept2017_PFUdA_002
PFUdA0917 $25 \mathrm{ug} / \mathrm{ml}$
100

Conditions for Figure 1:
 LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions

$\begin{array}{ll}\text { Column: } & \text { Acquity UPLC BEH Shield } R P_{18} \\ & 1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\end{array}$
Mobile phase: Gradient
Start: $55 \%(80: 20 \mathrm{MeOH}: A C N) / 45 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
Time: 10 min

Flow:
$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage $(\mathrm{V})=15.00$
Cone Gas Flow (l/hr) $=65$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: PFUdA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:	
Injection:	Direct loop injection
	$10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml} \mathrm{PFUdA)}$
Mobile phase:	Isocratic 80\% (80:20 MeOH:ACN) / $20 \% \mathrm{H}_{2}$ (both with 10 mM NH
Flow:	$300 \mu 1 / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.46 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=11$

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE: COMPOUND:

PFTrDA
Perfluoro-n-tridecanoic acid

LOT NUMBER: PFTrDA0517

STRUCTURE:

CAS \#:
72629-94-8

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY: LAST TESTED: (mmodurys)
EXPIRY DATE: (mmldoryyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{13} \mathrm{HF}_{25} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
$>98 \%$
05/02/2017
05/02/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 664.11
SOLVENT(S): Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.1 \%$ of PFUdA $\left(\mathrm{C}_{11} \mathrm{HF}_{21} \mathrm{O}_{2}\right), \sim 0.4 \%$ of PFDoA $\left(\mathrm{C}_{12} \mathrm{HF}_{23} \mathrm{O}_{2}\right)$, and $\sim 0.1 \%$ of PFTeDA $\left(\mathrm{C}_{14} \mathrm{HF}_{27} \mathrm{O}_{2}\right)$.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFTrDA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions

$\begin{array}{ll}\text { Column: } & \text { Acquity UPLC BEH Shield } R P_{18} \\ & 1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\end{array}$
Mobile phase: Gradient
Start: 60% ($80: 20 \mathrm{MeOH}: A C N) / 40 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 1.5 min
before returning to initial conditions in 0.5 min .
Time: 10 min
Flow: $\quad 300 \mu / / m i n$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=22.00$
Cone Gas Flow ($/ / \mathrm{hr}$) $=60$
Desolvation Gas Flow $(1 / h r)=650$

Fiqure 2: PFTrDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ PFTrDA)
Mobile phase:	Isocratic $80 \%(80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.17 \mathrm{e}-3$
Collision Energy (eV) $=15$

PRODUCT CODE:
 COMPOUND:

STRUCTURE:

PFHpA
Perfluoro-n-heptanoic acid

LOT NUMBER: PFHpA0917

CAS \#:

375-85-9

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFHpA; LC/MS Data (TIC and Mass Spectrum)

27sept2017_PFHpA_001 145 (2.438) PFHpA0917 25 ug/ml			27-Sep-2017 16:36:54			363 Scan ES-			

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions

Column:
Acquity UPLC BEH Shield RP ${ }_{18}$
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$ Experiment: Full Scan (225-850 amu)
Mobile phase: Gradient
Start: 50\% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min . Time: 10 min

Flow: $\quad 300 \mu / / m i n$
Flow: $\quad 300 \mu 1 / \mathrm{min}$

MS Parameters

Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=15.00$
Cone Gas Flow (l/hr) $=50$
Desolvation Gas Flow (l/hr) $=750$

$18 E 0714$

Figure 2: PFHpA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml} \mathrm{PFHpA})$	MS Parameters
Mobile phase:	Isocratic 80\% (80:20 MeOH:ACN) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH} 4 \mathrm{OAc}^{\mathrm{OA}}$ buffer)	$\begin{aligned} & \text { Collision Gas }(\mathrm{mbar})=3.43 \mathrm{e}-3 \\ & \text { Collision Energy }(\mathrm{eV})=11 \end{aligned}$
Flow:	$300 \mu / / m i n$	

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE:
 COMPOUND:

STRUCTURE:

PFOA
Perfluoro-n-octanoic acid

LOT NUMBER: PFOA0218

CAS \#:
335-67-1

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/ddyyy)
EXPIRY DATE: (mm/dd/syy)

RECOMMENDED STORAGE: Store ampoule in a cool, dark place
$\mathrm{C}_{8} \mathrm{HF}_{15} \mathrm{O}_{2}$ $50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
02/16/2018
02/16/2023

MOLECULAR WEIGHT:
$\begin{array}{ll}\text { MOLVENT(S): } & \text { Methanol }\end{array}$

Water (<1\%)
414.07

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
(mm/dd/yyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFOA; LC/MS Data (TIC and Mass Spectrum)
16feb2018_PFOA_001
PFOA0218 $25 \mathrm{ug} / \mathrm{ml}$
100

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=15.00$
	Ramp to 90% organic over 7 min and hold for	Cone Gas Flow (1/hr) $=100$
	2 min before returning to initial conditions in 0.5 min . Time: 10 min	Desolvation Gas Flow (1/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: PFOA; LC/MS/MS Data (Selected MRM Transitions)

PRODUCT CODE:
COMPOUND:

PFNA
Perfluoro-n-nonanoic acid

LOT NUMBER: PFNA0717

CAS \#:
375-95-1

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm(ddrymy)
EXPIRY DATE: (mmoddryy)
RECOMMENDED STORAGE:
$\mathrm{C}_{9} \mathrm{HF}_{17} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
07/20/2017
07/20/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 464.08
SOLVENT(S): Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.1 \%$ of perfluoro-n-octanoic acid (PFOA), $<0.1 \%$ of perfluoro-n-heptanoic acid (PFHpA), and $<0.1 \%$ of perfluoro-n-undecanoic acid (PFUdA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

[^2]
INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFNA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50% (80:20 MeOH:ACN) / 50\% H2O	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=15.00$
	Hold for 1 min . Ramp to 90% organic over 7 min and hold for 1 min before returning to initial conditions in 0.5 min . Time: 10 min	Cone Gas Flow ($/ / \mathrm{hr}$) $=50$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu 1 / \mathrm{min}$	

Figure 2: PFNA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:
\(\left.$$
\begin{array}{ll}\text { Injection: } & \begin{array}{l}\text { Direct loop injection } \\
10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \text { PFNA) }\end{array}
$$

Mobile phase: \& \begin{array}{l}Isocratic 80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}

(both with 10 \mathrm{mM} \mathrm{NH}

4\end{array} \mathrm{OAc} buffer)\end{array}\right\}\)| | $300 \mu \mathrm{l} / \mathrm{min}$ |
| :--- | :--- |

MS Parameters

Collision Gas (mbar) $=3.50 \mathrm{e}-3$
Collision Energy (eV) $=11$

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE: COMPOUND:

PFTeDA
Perfluoro-n-tetradecanoic acid

LOT NUMBER: PFTeDA0917

CAS \#:
376-06-7

MOLECULAR FORMULA:
 CONCENTRATION:

CHEMICAL PURITY:
$\mathrm{C}_{14} \mathrm{HF}_{27} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
$>98 \%$
LAST TESTED: (mm/dodysys)
EXPIRY DATE: (mm/dadyyy)
RECOMMENDED STORAGE:

09/21/2017
09/21/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S):
714.11

Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.2 \%$ of PFDoA $\left(\mathrm{C}_{12} \mathrm{HF}_{23} \mathrm{O}_{2}\right)$ and $\sim 0.2 \%$ of PFPeDA $\left(\mathrm{C}_{15} \mathrm{HF}_{29} \mathrm{O}_{2}\right)$.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:
Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: \quad PFTeDA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	

Chromatographic Conditions

$\begin{array}{ll}\text { Column: } & \text { Acquity UPLC BEH Shield } R P_{18} \\ & 1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}\end{array}$
Mobile phase: Gradient
Start: 55% ($80: 20 \mathrm{MeOH}: A C N) / 45 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min

MS Parameters

Experiment: Full Scan ($150-850 \mathrm{amu})$
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage (V) $=15.00$
Cone Gas Flow (l/hr) $=60$
Desolvation Gas Flow (l/hr) $=750$

Flow:
$300 \mu 1 / \mathrm{min}$

Fiqure 2:
PFTeDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ PFTeDA)
Mobile phase:Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH OAc buffer)	

MS Parameters

Collision Gas (mbar) $=3.46 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=14$

PRODUCT CODE: COMPOUND:

PFHxDA
Perfluoro-n-hexadecanoic acid

LOT NUMBER: PFHxDA0717

CAS \#:
67905-19-5

MOLECULAR FORMULA:
 CONCENTRATION:

$\mathrm{C}_{16} \mathrm{HF}_{31} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
CHEMICAL PURITY:
LAST TESTED: (mmiddyyy)
EXPIRY DATE: (mmddoryy)
RECOMMENDED STORAGE: Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 814.13
SOLVENT(S): Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company, In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFHxDA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
LC: \quad Waters Acquity Ultra Performance LC
MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions

Acquity UPLC BEH Shield RP_{18} $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: $55 \%(80: 20 \mathrm{MeOH}: A C N) / 45 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min . Time: 10 min

MS Parameters

Experiment: Full Scan (250-1250 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage $(\mathrm{V})=25.00$
Cone Gas Flow (l / hr) $=60$
Desolvation Gas Flow (l/hr) $=750$

Flow:
$300 \mu 1 / \mathrm{min}$

Figure 2: PFHxDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ PFHxDA)	MS Parameters
		Collision Gas (mbar) $=3.13 \mathrm{e}-3$
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Collision Energy (eV) $=15$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

WELLINGTON
LA B ORATORIES

CERTIFICATE OF ANALYSIS

 DOCUMENTATIONPRODUCT CODE: COMPOUND:

PFODA
Perfluoro-n-octadecanoic acid

STRUCTURE:

LOT NUMBER: PFODA0717

CAS \#:
16517-11-6

MOLECULAR FORMULA:

 CONCENTRATION:CHEMICAL PURITY:
LAST TESTED: (mmoddyyy)
EXPIRY DATE: (mmbdalyyyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{18} \mathrm{HF}_{35} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
07/13/2017
07/13/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 914.14
SOLVENT(S): Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{d}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{r}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{1-1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFODA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC: Waters Acquity Ultra Performance LC
MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP $_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm} \quad$ Experiment: Full Scan (250-1250 amu)

Mobile phase: Gradient
Start: 55% ($80: 20 \mathrm{MeOH}: A C N) / 45 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH} \mathrm{N}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min . Time: 10 min

MS Parameters

Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage (V) $=25.00$
Cone Gas Flow (l/hr) $=100$
Desolvation Gas Flow (l/hr) $=750$

Flow:
$300 \mu \mathrm{l} / \mathrm{min}$

Figure 2: PFODA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ PFODA)
Mobile phase:Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH $\mathrm{OAC}^{\mathrm{OAC} \text { buffer) }}$	
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

Flow: $\quad 300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.31 \mathrm{e}-3$
Collision Energy (eV) $=15$

CERTIFICATE OF ANALYSIS

PRODUCT CODE:
 COMPOUND:

STRUCTURE:

L-PFBS
Potassium perfluoro-1-butanesulfonate

LOT NUMBER: LPFBS0917

CAS \#:

29420-49-3

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (midodysys)
EXPIRY DATE: (mndadsyys)
RECOMMENDED STORAGE:
$\mathrm{C}_{4} \mathrm{~F}_{9} \mathrm{SO}_{3} \mathrm{~K}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (K salt)
$44.2 \pm 2.2 \mu \mathrm{~g} / \mathrm{ml}$ (PFBS anion)
>98\%
09/21/2017
09/21/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 338.19
SOLVENT(S): Methanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{1=1}^{n} u\left(y, x_{j}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: L-PFBS; LC/MS Data (TIC and Mass Spectrum)
21sept2017_LPFBS_001
LPFBS0917 $10 \mathrm{ug} / \mathrm{ml}$
100

Conditions for Figure 1:

LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield $R P_{18}$
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: $50 \%(80: 20 \mathrm{MeOH}: A C N) / 50 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min .
Time: 10 min

Flow:
$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Experiment: Full Scan (150-850 amu)

Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage (V) $=40.00$
Cone Gas Flow (I/hr) $=50$
Desolvation Gas Flow (l/hr) $=750$

$18 E 0720$

Figure 2: L-PFBS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{L-PFBS})$	MS Parameters
Mobile phase:Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH 4 OAc buffer)	Collision Gas (mbar) $=3.39 \mathrm{e}-3$ Collision Energy $(\mathrm{eV})=25$	
Flow:	$300 \mu / / \mathrm{min}$	

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE:
COMPOUND:

L-PFPeS
Sodium perfluoro-1-pentanesulfonate

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY: LAST TESTED: (mmidduyny
EXPIRY DATE: (mmodolyyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{5} \mathrm{~F}_{11} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$46.9 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}$ (PFPeS anion)
>98\%
01/11/2017
01/11/2022
Store ampoule in a cool, dark place

LOT NUMBER: LPFPeS0117

CAS \#:
630402-22-1

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

MOLECULAR WEIGHT: 372.09
SOLVENT(S): Methanol

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{d}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: L-PFPeS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50\% (80:20 MeOH:ACN) / $50 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH OAc buffer)	Capillary Voltage (kV) $=3.00$ Cone Voltage (V) $=50.00$
	Ramp to 90% organic over 7.5 min and hold for 1.5 min	Cone Gas Flow (1/hr) $=60$
	before returning to initial conditions over 0.5 min . Time: 10 min	Desolvation Gas Flow (1/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: L-PFPeS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ L-PFPeS)	MS Parameters
Mobile phase:	Isocratic $80 \%(80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH} \mathrm{H}_{4} \mathrm{OAc}$ buffer)	Collision Gas (mbar) $=3.39 \mathrm{e}-3$ Collision Energy (eV) $=30$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

CERTIFICATE OF ANALYSIS
 DOCUMENTATION

PRODUCT CODE:
 COMPOUND:

L-PFHpS
Sodium perfluoro-1-heptanesulfonate

LOT NUMBER: LPFHpS0817

CAS \#: \quad Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY: LAST TESTED: (mmdduyyy)
EXPIRY DATE: (mmuddusyy)
RECOMMENDED STORAGE:

```
C}\mp@subsup{\textrm{F}}{15}{}\mp@subsup{\textrm{SO}}{3}{}\textrm{Na
    50.0\pm2.5 \mug/ml (Na salt)
    47.6 \pm2.4 \mug/ml (PFHpS anion)
    >98%
    09/01/2017
    09/01/2022
    Store ampoule in a cool, dark place
```

MOLECULAR WEIGHT: 472.10
SOLVENT(S): Methanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.2 \%$ of $\mathrm{L}-\mathrm{PFHxS}\left(\mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{SO}_{3} \mathrm{Na}\right)$ and $\sim 0.1 \%$ of $\mathrm{L}-\mathrm{PFOS}\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}\right)$.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{i}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: L-PFHpS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
$\begin{array}{ll}\text { LC: } & \text { Waters Acquity Ultra Performance LC } \\ \text { MS:: } & \text { Micromass Quattro micro API MS }\end{array}$

Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP ${ }_{18}$
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: $50 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 50 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 8 min and hold for 1 min before returning to initial conditions in 0.5 min . Time: 10 min

Flow: $\quad 300 \mu l /$ min

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=60.00$
Cone Gas Flow (l/hr) $=60$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: L-PFHpS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection
	$10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{L-PFHpS})$

Mobile phase: Isocratic 80% ($80: 20 \mathrm{MeOH}: \mathrm{ACN}$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)

Flow:
$300 \mu 1 / m i n$

MS Parameters

Collision Gas (mbar) $=3.35 \mathrm{e}-3$
Collision Energy (eV) $=35$

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE:
COMPOUND:

STRUCTURE:
L-PFNS
Sodium perfluoro-1-nonanesulfonate

LOT NUMBER: LPFNS0917

CAS \#:
98789-57-2

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmoduymy)
EXPIRY DATE: (mmddd/my)
RECOMMENDED STORAGE:
$\mathrm{C}_{9} \mathrm{~F}_{19} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$48.0 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (PFNS anion)
>98\%
09/27/2017
09/27/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 572.12
SOLVENT(S): Methanol

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:
B.G. Chittim, General Manager

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS, The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=i}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: L-PFNS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: 50\% (80:20 MeOH:ACN) / $50 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min . Time: 10 min

Flow:
$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=65.00$
Cone Gas Flow (1/hr) $=50$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: L-PFNS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:				
Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{L-PFNS})$	MS Parameters	\quad	Collision Gas (mbar) $=3.50 \mathrm{e}-3$
:---	:---			

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE: COMPOUND:

L-PFDS
Sodium perfluoro-1-decanesulfonate

STRUCTURE:

LOT NUMBER: LPFDS1117

CAS \#:
2806-15-7

MOLECULAR FORMULA:
CONCENTRATION:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mmoddryy)
EXPIRY DATE: (mmiddusys)
RECOMMENDED STORAGE:
$\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$48.2 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (PFDS anion)
>98\%
11/08/2017
11/08/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 622.13
SOLVENT(S): Methanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.9 \%$ of sodium perfluoro-1-dodecanesulfonate (L-PFDoS).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2} \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: L-PFDS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
$\begin{array}{ll}\text { LC: } & \text { Waters Acquity Ultra Performance LC } \\ \text { MS: } & \text { Micromass Quattro micro API MS }\end{array}$

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP_{18}
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: $50 \%(80: 20 \mathrm{MeOH}: A C N) / 50 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for
2 min before returning to initial conditions in 0.5 min .
Time: 10 min
Flow: $\quad 300 \mu 1 / \mathrm{min}$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage (V) $=70.00$
Cone Gas Flow (l/hr) $=50$
Desolvation Gas Flow $(1 / h r)=750$

Fiqure 2: L-PFDS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{L-PFDS})$	MS Parameters
Mobile phase:	Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Collision Gas (mbar) $=3.46 \mathrm{e}-3$ Flow:
	$300 \mu \mathrm{l} / \mathrm{min}$	Collision Energy $(\mathrm{eV})=50$

br-PFHxSK

Potassium Perfluorohexanesulfonate
Solution/Mixture of Linear and Branched Isomers

PRODUCT CODE:	br-PFHxSK
LOT NUMBER:	brPFHxSK0117
CONCENTRATION:	$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (total potassium salt)
	$45.5 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}$ (total PFHxS anion)
SOLVENT(S):	Methanol
DATE PREPARED: (mmididyyy)	01/03/2017
LAST TESTED: (mm/didyyy)	01/04/2017
EXPIRY DATE: (mm/dodysyy)	01/04/2022
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place

DESCRIPTION:

The chemical purity has been determined to be $\geq 98 \%$ perfluorohexanesulfonate linear and branched isomers. The full name, structure and percent composition for each of the identified isomeric components are given in Table A.

DOCUMENTATION/ DATA ATTACHED:

Table A: Isomeric Components and Percent Composition by ${ }^{19} \mathrm{~F}$-NMR
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (SIR)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.5 \%$ of perfluoro-1-pentanesulfonate and $\sim 0.2 \%$ of perfluoro- 1 -octanesulfonate.
- CAS\#: 3871-99-6 (for linear isomer; potassium salt).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2} \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Table A: br-PFHxSK; Isomeric Components and Percent Composition (by ${ }^{19} \mathrm{~F}$-NMR)*

Isomer	Name		Percent Composition by
1	Potassium perfluoro-1-hexanesulfonate		

** Percent of total perfluorohexanesulfonate isomers only.
** Systematic Name: Potassium perfluorohexane-2-sulfonate.

Date: 01/20/2017
(mm/dd/yyyy)

Figure 1: br-PFHxSK; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:	
LC: \quad Waters Acquity Ultra Performance LC	
MS: \quad Micromass Quattro micro API MS	
Chromatographic Conditions	MS Parameters
Column: Acquity UPLC BEH Shield $R P_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase: Gradient Start: 20\% (80:20 MeOH:ACN) / 80\% $\mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer) Ramp to 50% organic over 14 min . Ramp to 90% organic over 3 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 20 min	Source: Electrospray (negative) Capillary Voltage (kV) $=3.00$ Cone Voltage (V) $=50.00$ Cone Gas Flow ($1 / \mathrm{hr}$) $=60$ Desolvation Gas Flow (l/hr) $=750$
Flow: $\quad 300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: br-PFHxSK; LC/MS Data (SIR)

Conditions for Figure 2:
 LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP_{18} $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: 20\% (80:20 MeOH:ACN) / 80\% $\mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAC}$ buffer)
Ramp to 50% organic over 14 min . Ramp to 90% organic over 3 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 20 min

Flow: $\quad 300 \mu / / m i n$

MS Parameters

Experiment: SIR (6 channels)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage (V) $=$ variable (15-62)
Cone Gas Flow (I/hr) $=60$
Desolvation Gas Flow (l/hr) $=750$
$18 E 0725$

Figure 3: br-PFHxSK; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 3:

Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ br-PFHxSK)
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Flow:	$300 \mu / / \mathrm{min}$

Revision\#:3, Revised 2015-03-24

MS Parameters

Collision Gas (mbar) $=3.35 \mathrm{e}-3$
Collision Energy (eV) $=30$

CERTIFICATE OF ANALYSIS DOCUMENTATION

br-PFOSK

Potassium Perfluorooctanesulfonate Solution/Mixture of Linear and Branched Isomers

PRODUCT CODE:	br-PFOSK
LOT NUMBER:	brPFOSK0117
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (total potassium salt)
	$46.4 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}$ (total PFOS anion)
SOLVENT(S):	Methanol
DATE PREPARED: (mm/dd/yyy)	$01 / 09 / 2017$
LAST TESTED: (mmm/dd/yyy)	$01 / 12 / 2017$
EXPIRY DATE: (mmidd $/$ yyy)	$01 / 12 / 2022$
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place

DESCRIPTION:

The chemical purity has been determined to be $\geq 98 \%$ perfluorooctanesulfonate linear and branched isomers. The full name, structure and percent composition for each of the isomeric components are given in Table A.

DOCUMENTATION/ DATA ATTACHED:

Table A: Isomeric Components and Percent Composition by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (SIR)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- \quad See page 2 for further details.
- A 5-point calibration curve was generated using linear PFOS (potassium salt) and mass-labelled PFOS as an internal standard to enable quantitation of br-PFOSK using isotopic dilution.
- CAS\#: 2795-39-3 (for linear isomer; potassium salt).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

[^3]
INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2} \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y_{1}, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Table A: br-PFOSK; Isomeric Components and Percent Composition (by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$)*

| Isomer | $\begin{array}{c}\text { Name }\end{array}$ | $\begin{array}{c}\text { Percent } \\ \text { Composition } \\ \text { by }\end{array}$ |
| :---: | :--- | :--- | :---: |
| 1 | Potassium perfluoro-1-octanesulfonate | |$]$

** \quad Percent of total perfluorooctanesulfonate isomers only. Isomers are labelled in Figure 2.
** Systematic Name: Potassium perfluorooctane-2-sulfonate.

Certified By:

Date: \qquad
($\mathrm{mm} / \mathrm{dd} / \mathrm{yyyy}$)

Figure 1: br-PFOSK; LC/MS Data (TIC and Mass Spectrum)

Conditions for Fiqure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 45% ($80: 20 \mathrm{MeOH}: A C N) / 55 \% \mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	Ramp to 90% organic over 12 min and hold for 2 min .	Cone Gas Flow (1/hr) $=50$
	Return to initial conditions over 0.5 min . Time: 16 min	Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu / / \mathrm{min}$	

Figure 2: \quad br-PFOSK; LC/MS Data (SIR)

12jan2017_brPFOSK_009
brPFOSKO117 $1 \mathrm{ug} / \mathrm{ml}$
100

```
Conditions for Figure 2:
LC: Waters Acquity Ultra Performance LC
MS: Micromass Quattro micro API MS
Chromatographic Conditions:
Column: Acquity UPLC BEH Shield RP }\mp@subsup{\textrm{R}}{18}{(1.7 \mu\textrm{m},2.1\times100 mm}
Injection: }\quad1.0\mu\textrm{g}/\textrm{ml}\mathrm{ of br-PFOSK
Mobile Phase: Gradient
        45% (80:20 MeOH:ACN)/55% H2O (both with }10\textrm{mM NH
        Ramp to 90% organic over }15\textrm{min}\mathrm{ and hold for 3 min.
        Return to initial conditions over }1\textrm{min}
        Time: }20\textrm{min
Flow: }\quad300\mul/mi
MS Conditions:
SIR (ES-)
Source = 110 }\mp@subsup{}{}{\circ}\textrm{C
Desolvation = 325 '}\textrm{C
Cone Voltage = 60V
```

Figure 3: br-PFOSK; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 3:
Injection: On-column

Mobile phase: Same as Figure 2

MS Parameters

Collision Gas (mbar) $=3.31 \mathrm{e}-3$
Collision Energy (eV) $=11-50$ (variable)

CERTIFICATE OF ANALYSIS

PRODUCT CODE:

COMPOUND:

STRUCTURE:

MOLECULAR FORMULA:	$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{9} \mathrm{SO}_{3} \mathrm{Na}$		MOLECULAR WEIGHT:	350.13
CONCENTRATION:	$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	(Na salt)	SOLVENT(S):	Methanol
	$46.7 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}$	(4:2FTS anion)		
CHEMICAL PURITY:	>98\%			
LAST TESTED: (mmodurys)	12/12/2016			
EXPIRY DATE: (mmoddymy)	12/12/2021			
RECOMMENDED STORAGE:	Refrigerate ampo			

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point, Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{0}(y)$, of a value y and the uncertainty of the independent parameters $x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: $\quad 4: 2 F T S$; LC/MS Data (TIC and Mass Spectrum)

| 12dec2016_42FTS_002 |
| :--- | :--- | :--- |
| 42FTS1216 $25 \mathrm{ug} / \mathrm{ml}$ |
| 100 |

Conditions for Figure 1:

LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: 50% ($80: 20 \mathrm{MeOH}: A C N) / 50 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
Time: 10 min

MS Parameters

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage (V) $=25.00$
Cone Gas Flow (l/hr) $=100$
Desolvation Gas Flow (l/hr) $=750$

Flow: $\quad 300 \mu / / m i n$

Figure 2: 4:2FTS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection	MS Parameters
	$10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml} \mathrm{4:2FTS)}$	
		Collision Gas (mbar) $=3.31 \mathrm{e}-3$
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: \mathrm{ACN}$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Collision Energy (eV) $=25$
Flow:	$300 \mu 1 / \mathrm{min}$	

CERTIFICATE OF ANALYSIS

 DOCUMENTATION
PRODUCT CODE:

COMPOUND:
6:2FTS
LOT NUMBER: 62FTS0418
Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluorooctane sulfonate

CAS \#:
Not available

MOLECULAR FORMULA:	$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{13} \mathrm{SO}_{3} \mathrm{Na}$		MOLECULAR WEIGHT:	450.15
	$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	(Na salt)	SOLVENT(S):	Methanol
CONCENTRATION:	$47.4 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$	(6:2FTS anion)		
CHEMICAL PURITY:	$>98 \%$			
LAST TESTED: (mmmuddrys)	$04 / 03 / 2018$			
EXPIRY DATE: (mmdddrysy)	$04 / 03 / 2023$			
RECOMMENDED STORAGE:	Refrigerate ampoule			

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.3 \%$ of sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluorodecane sulfonate ($8: 2 \mathrm{FTS}$).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots . x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: \quad 6:2FTS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
 LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Waters Xevo TQ-S micro MS

Chromatographic Conditions

Column:	Acquity UPLC BEH Shield RP ${ }_{\text {18 }}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase:	Gradient
	Start: 50% ($80: 20 \mathrm{MeOH}: A C N$) / $50 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH OAc buffer)
	Ramp to 80% organic over 7 min and hold for
	3 min before returning to initial conditions in 0.75 min
	Time: 12 min
Flow:	$300 \mu / / \mathrm{min}$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=0.50$
Cone Voltage (V) $=25.00$
Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
Desolvation Gas Flow (l/hr) $=750$

Flow: $\quad 300 \mu / / m i n$

Figure 2: 6:2FTS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: On-column (6:2FTS)
Mobile phase: Same as Figure 1
Flow: $\quad 300 \mu / / m i n$

Revision\#:5, Revised 2018-01-22

MS Parameters

Collision Gas (mbar) $=3.39 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=20$

CERTIFICATE OF ANALYSIS

PRODUCT CODE: COMPOUND:

STRUCTURE:

8:2FTS
Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluorodecane sulfonate

CAS \#:
Not available

MOLECULAR FORMULA:	$\mathrm{C}_{10} \mathrm{H}_{4} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}$		MOLECULAR WEIGHT:	550.16
CONCENTRATION:	$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	(Na salt)	SOLVENT(S):	Methanol
	$47.9 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$	(8:2FTS anion)		
CHEMICAL PURITY:	>98\%			
LAST TESTED: (mmddaymy)	01/24/2018			
EXPIRY DATE: (mmiddryy)	01/24/2023			
RECOMMENDED STORAGE:	Refrigerate ampo			

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2} \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1:

 8:2FTS; LC/MS Data (TIC and Mass Spectrum)24jan2018_82FTS_003
$82 F T S 011825 \mathrm{ug} / \mathrm{ml}$
100

Figure 2: 8:2FTS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:				
Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{8:2FTS})$	MS Parameters	\quad	Collision Gas (mbar) $=3.39 \mathrm{e}-3$
:---	:---			

CERTIFICATE OF ANALYSIS

PRODUCT CODE: COMPOUND:

STRUCTURE:

FOSA-I
Perfluoro-1-octanesulfonamide

LOT NUMBER: FOSA0817I

CAS \#: 754-91-6

MOLECULAR FORMULA:	$\mathrm{C}_{8} \mathrm{H}_{2} \mathrm{~F}_{17} \mathrm{NO}_{2} \mathrm{~S}$
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
CHEMICAL PURITY:	$>98 \%$
LAST TESTED: (mnlddryyy)	$09 / 01 / 2017$
EXPIRY DATE: (mmmddrmy)	$09 / 01 / 2022$
RECOMMENDED STORAGE:	Refrigerate ampoule

MOLECULAR WEIGHT: 499.14
SOLVENT(S): Isopropanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: FOSA-I; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
LC: \quad Waters Acquity Ultra Performance LC
MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP ${ }_{18}$
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

MS Parameters

Experiment: Full Scan (225-850 amu)
Mobile phase: Gradient
Start: 50% ($80: 20 \mathrm{MeOH}: A C N$) / $50 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 8 min and hold for 1 min before returning to initial conditions in 0.5 min . Time: 10 min

Flow: $300 \mu 1 / \mathrm{min}$

Source: Electrospray (negative)
Capillary Voltage (kV) $=2.50$
Cone Voltage $(\mathrm{V})=40.00$
Cone Gas Flow ($1 / \mathrm{hr}$) $=50$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: FOSA-I; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{FOSA-I)}$	MS Parameters
Mobile phase:Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH 4 OAc buffer)	Collision Gas (mbar) $=3.20 \mathrm{e}-3$ Collision Energy $(\mathrm{eV})=30$	
Flow:	$300 \mu / /$ min	

CERTIFICATE OF ANALYSIS DOCUMENTATION

br-NMeFOSAA

N -Methylperfluorooctanesulfonamidoacetic
 Acid Solution/Mixture of Linear and
 Branched Isomers

PRODUCT CODE:	br-NMeFOSAA
LOT NUMBER:	brNMeFOSAA0118
CONCENTRATION:	$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
SOLVENT(S):	Methanol/Water (<1\%)
DATE PREPARED: (mmddy/my)	01/10/2018
LAST TESTED: (mmodarys)	01/17/2018
EXPIRY DATE: (mmodisym)	01/17/2023
RECOMMENDED STORAGE:	Refrigerate ampoule

DESCRIPTION:

The chemical purity has been determined to be $\geq 98 \%$ N-methylperfluorooctanesulfonamidoacetic acid (linear and branched isomers). The full name, structure and percent composition for each of the identified isomeric components are given in Table A.

DOCUMENTATION/ DATA ATTACHED:

Table A: Isomeric Components and Percent Composition by ${ }^{19} \mathrm{~F}$-NMR
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (SIR)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the acetic acid moiety to its respective methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

[^4]
INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products, as well as mixtures and calibration solutions, are compared to older lots in a similar manner. This further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y^{\prime}, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com*

Table A: br-NMeFOSAA; Isomeric Components and Percent Composition (by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$)*

Isomer	Name	Structure	Percent Composition by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$
1	N -methylperfluoro-1-octanesulfonamidoacetic acid		76.0
2	N-methylperfluoro-3-methylheptanesulfonamidoacetic acid		0.7
3	N-methylperfluoro-4-methylheptanesulfonamidoacetic acid		2.0
4	N-methylperfluoro-5-methylheptanesulfonamidoacetic acid		6.0
5	N-methylperfluoro-6-methylheptanesulfonamidoacetic acid		14.0
6	N-methylperfluoro-5,5-dimethylhexanesulfonamidoacetic acid		0.2
7	Other Unidentified Isomers		1.1

* Percent of total N-methylperfluorooctanesulfonamidoacetic acid isomers only.

Certified By:

Date: $\frac{03 / 22 / 2018}{(\mathrm{~mm} / \mathrm{d} / \mathrm{y} / \mathrm{y} y)}$

Fiqure 1: br-NMeFOSAA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 55% (80:20 MeOH:ACN) / 45\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=35.00$
	Ramp to 90% organic over 7 min and hold for	Cone Gas Flow (1/hr) $=50$
	2 min before returning to initial conditions in 0.5 min .	Desolvation Gas Flow (l/hr) $=750$
	Time: 10 min	
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: $\quad b r-N M e F O S A A ; ~ L C / M S ~ D a t a ~(S I R) ~$

Conditions for Figure 2:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP $_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: SIR (7 channels)
Mobile phase:	Gradient Start: 55% ($80: 20 \mathrm{MeOH}: A C N) / 45 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH} \mathrm{H}_{4} \mathrm{OAc}$ buffer) Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min .	Source: Electrospray (negative) Capillary Voltage (kV) $=3.00$ Cone Voltage (V) $=15-60$ Cone Gas Flow ($/ / \mathrm{hr}$) $=50$ Desolvation Gas Flow (l/hr) $=750$
	Time: 10 min	
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Fiqure 3: br-NMeFOSAA; LC/MS/MS Data (Selected MRM Transitions)

*Note: N-MeFOSA is formed by in-source fragmentation.
Conditions for Figure 3:

Injection: On-column	MS Parameters
Mobile phase:	Same as Figure 2

Flow: $\quad 300 \mu \mathrm{l} / \mathrm{min}$

CERTIFICATE OF ANALYSIS

 DOCUMENTATION
br-NEtFOSAA

N -Ethylperfluorooctanesulfonamidoacetic Acid Solution/Mixture of Linear and Branched Isomers

```
PRODUCT CODE:
    br-NEtFOSAA
    brNEtFOSAA0118
    50.0 \pm2.5 \mug/ml
    Methanol/Water (<1%)
    01/10/2018
    01/17/2018
    01/17/2023
    Refrigerate ampoule
```


DESCRIPTION:

The chemical purity has been determined to be $\geq 98 \% \mathrm{~N}$-ethylperfluorooctanesulfonamidoacetic acid (linear and branched isomers). The full name, structure and percent composition for each of the identified isomeric components are given in Table A.

DOCUMENTATION/ DATA ATTACHED:

Table A: Isomeric Components and Percent Composition by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (SIR)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the acetic acid moiety to its respective methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products, as well as mixtures and calibration solutions, are compared to older lots in a similar manner. This further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{e}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Table A: br-NEtFOSAA; Isomeric Components and Percent Composition (by ${ }^{19} \mathrm{~F}$-NMR)*

Isomer	Name	Structure	Percent Composition by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$
1	N -ethylperfluoro-1-octanesulfonamidoacetic acid		77.5
2	N -ethylperfluoro-3-methylheptanesulfonamidoacetic acid		2.3
3	N -ethylperfluoro-4-methylheptanesulfonamidoacetic acid	$\begin{gathered} \mathrm{CF}_{3}\left(\mathrm{CF}_{2}\right)_{2} \mathrm{CF}\left(\mathrm{CF}_{2}\right)_{3} \mathrm{SO}_{2} \mathrm{NCH}_{2} \mathrm{CO}_{2} \mathrm{H} \\ \mathrm{CF}_{3} \\ \mathrm{C}_{2} \mathrm{H}_{5} \end{gathered}$	2.2
4	N-ethylperfluoro-5-methylheptanesulfonamidoacetic acid		5.4
5	N-ethylperfluoro-6-methylheptanesulfonamidoacetic acid		10.4
6	N -ethylperfluoro-5,5-dimethylhexanesulfonamidoacetic acid		0.3
7	N -ethylperfluoro-4,5-dimethylhexanesulfonamidoacetic acid		0.3
8	N-ethylperfluoro-3,5-dimethylhexanesulfonamidoacetic acid		0.3
9	Other Unidentified Isomers		1.3

* Percent of total N -ethylperfluorooctanesulfonamidoacetic acid isomers only.

Certified By:

Date: $03 / 22 / 2018$ (mm/dd/yyyy)

Figure 1: br-NEtFOSAA; LC/MS Data (TIC and Mass Spectrum)

| 17jan2018_brNEtFOSAA_001 |
| :--- | :--- | :--- |
| brNEtFOSAAO118 $25 \mathrm{ug} / \mathrm{ml}$ |
| 100 |

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 55% (80:20 MeOH:ACN) / 45\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=35.00$
	Ramp to 90% organic over 7 min and hold for	Cone Gas Flow (l/hr) $=50$
	2 min before returning to initial conditions in 0.5 min .	Desolvation Gas Flow (1/hr) $=750$
	Time: 10 min	
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: \quad br-NEtFOSAA; LC/MS Data (SIR)

Figure 3: br-NEtFOSAA; LC/MS/MS Data (Selected MRM Transitions)

*Note: N -EtFOSA is formed by in-source fragmentation.

Conditions for Figure 3:	
Injection: On-column	MS Parameters
Mobile phase: Same as Figure 2	Collision Gas (mbar) $=3.39 \mathrm{e}-3$ Collision Energy (eV) $=11-40$ (variable)
Flow: $\quad 300 \mu / / m i n$	

CERTIFICATE OF ANALYSIS

 DOCUMENTATION
PRODUCT CODE: COMPOUND:

STRUCTURE:

N-MeFOSA-M
N -methylperfluoro-1-octanesulfonamide

LOT NUMBER: NMeFOSA0518M

CAS \#: 31506-32-8

MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY: LAST TESTED: (mmddyyys)
EXPIRY DATE: (mmodrymy)
RECOMMENDED STORAGE:
$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{17} \mathrm{NO}_{2} \mathrm{~S}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
05/31/2018
05/31/2023
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 513.17
SOLVENT(S): Methanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

Date: $\frac{06 / 07 / 2018}{(m m / d d / y y y)}$

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc,, please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

1850762

Figure 1: N-MeFOSA-M; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH C_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative) Capillary Voltage (kV) $=1.00$ Cone Voltage (V) $=44.00$ Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$ Desolvation Gas Flow (l/hr) $=750$
	Start: 60\% (80:20 MeOH:ACN) / 40\% H2O	
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	
	Ramp to 85\% organic over 7 min and hold for	
	3 min before returning to initial conditions in 0.75 min . Time: 12 min	
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

$18 I 0762$

Figure 2: $\quad \mathrm{N}-\mathrm{MeFOSA}-\mathrm{M} ;$ LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:			
Injection:	On-column (N-MeFOSA-M)		
Mobile phase:	Same as Figure 1		
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	\quad	MS Parameters
:---			

CERTIFICATE OF ANALYSIS

PRODUCT CODE:
COMPOUND:
STRUCTURE:

N-EtFOSA-M
N -ethylperfluoro-1-octanesulfonamide

LOT NUMBER: NEtFOSA0518M

CAS \#: 4151-50-2

MOLECULAR FORMULA:	$\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~F}_{17} \mathrm{NO}_{2} \mathrm{~S}$	MOLECULAR WEIGHT:	527.20
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT(S):	Methanol
CHEMICAL PURITY:	>98\%		
LAST TESTED: (mmud/my)	05/31/2018		
EXPIRY DATE: (mmddd/ysy)	05/31/2023		
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.5 \%$ branched isomers of N -ethylperfluorooctanesulfonamide.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).
For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

1850763

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH C_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60\% (80:20 MeOH:ACN) / 40\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=1.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=44.00$
	Ramp to 85\% organic over 7 min and hold for	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
	3 min before returning to initial conditions in 0.75 min . Time: 12 min	Desolvation Gas Flow (1/hr) $=750$
Flow:	$300 \mu 1 / \mathrm{min}$	

1810763

Figure 2: \quad N-EtFOSA-M; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	On-column (N-EtFOSA-M)	MS Parameters
Mobile phase: Same as Figure 1	Collision Gas $(\mathrm{mbar})=3.37 \mathrm{e}-3$ Flow: $300 \mu \mathrm{l} / \mathrm{min}$	Collision Energy $(\mathrm{eV})=24$

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE: COMPOUND:

STRUCTURE:

N-MeFOSE-M
2-(N-methylperfluoro-1-octanesulfonamido)-ethanol

CAS \#:
24448-09-7

MOLECULAR FORMULA:
$\mathrm{C}_{11} \mathrm{H}_{8} \mathrm{~F}_{17} \mathrm{NO}_{3} \mathrm{~S}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
05/17/2018 (HRGC/LRMS)
05/03/2018 (LC/MS)
05/17/2023
EXPIRY DATE: (mm(dd/syy)
Store ampoule in a cool, dark place
MOLECULAR WEIGHT: 557.22
SOLVENT(S): Methanol
CHEMICAL PURITY:
LAST TESTED: (mmddolysy)

RECOMMENDED STORAGE:

DOCUMENTATION/ DATA ATTACHED:

Figure 1: HRGC/LRMS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (TIC and Mass Spectrum)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- In order to see the molecular ion (adduct free), the LC mobile phase should be free of ammonium acetate buffer.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

Date: $\frac{05 / 25 / 2018}{(m m / d d / y y y y)}$

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned values), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{i}, x_{2}, \ldots x_{n}$ on which it depends is: $\quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}$
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

CAL

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: \quad N-MeFOSE-M; HRGC/LRMS Data (TIC and Mass Spectrum)

HRGC/LRMS:

Agilent 7890A (HRGC)
Agilent 5975C (LRMS)

Chromatographic Conditions:

Column:	30 m DB-5 (0.25 mm id, $0.25 \mu \mathrm{~m}$ film thickness) Agilent J\&W
Injector:	$250{ }^{\circ} \mathrm{C}$ (Splitless Injection)
Oven:	$100{ }^{\circ} \mathrm{C}$ (5 min)
	$10^{\circ} \mathrm{C} / \mathrm{min}$ to $325^{\circ} \mathrm{C}$
	$325{ }^{\circ} \mathrm{C}$ (20 min)
Ionization:	El+
Detector:	$250{ }^{\circ} \mathrm{C}$
	Full Scan (50-1000 amu)

Figure 2: N-MeFOSE-M; LC/MS Data (TIC and Mass Spectrum)

Figure 3: $\quad \mathrm{N}-\mathrm{MeFOSE}-\mathrm{M}$; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 3:	
Injection: \quad On-column (N-MeFOSE-M)	MS Parameters
Mobile phase:Same as Figure 2	Collision Gas (mbar) $=3.47 \mathrm{e}-3$ Collision Energy $(\mathrm{eV})=36$
Flow: $\quad 300 \mu / / \mathrm{min}$	

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE: COMPOUND:

N-EtFOSE-M
LOT NUMBER: NEtFOSE0518M
2-(N-ethylperfluoro-1-octanesulfonamido)-ethanol
STRUCTURE:
CAS \#:
1691-99-2

MOLECULAR FORMULA:
$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~F}_{17} \mathrm{NO}_{3} \mathrm{~S}$
MOLECULAR WEIGHT: 571.25
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mmdodym)
EXPIRY DATE: (mmodryms)
RECOMMENDED STORAGE:
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ $>98 \%$
06/04/2018 (HRGC/LRMS)
05/30/2018 (LC/MS)
06/04/2023
Store ampoule in a cool, dark place

SOLVENT(S): Methanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: HRGC/LRMS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (TIC and Mass Spectrum)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- In order to see the molecular ion (adduct free), the LC mobile phase should be free of ammonium acetate buffer.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

CALA

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: N-EtFOSE-M; HRGC/LRMS Data (TIC and Mass Spectrum)

HRGC/LRMS:

Agilent 7890A (HRGC)
Agilent 5975C (LRMS)

Chromatographic Conditions:

Column:	30 m DB-5 (0.25 mm id, $0.25 \mu \mathrm{~m}$ film thickness) Agilent J\&W
Injector:	$250{ }^{\circ} \mathrm{C}$ (Splitless Injection)
Oven:	$100^{\circ} \mathrm{C}$ (5 min)
	$10^{\circ} \mathrm{C} / \mathrm{min}$ to $325^{\circ} \mathrm{C}$
	$325{ }^{\circ} \mathrm{C}$ (20 min)
Ionization:	El+
Detector:	$250{ }^{\circ} \mathrm{C}$
	Full Scan ($50-1000 \mathrm{amu}$)

Figure 2: \quad N-EtFOSE-M; LC/MS Data (TIC and Mass Spectrum)

Conditions for Fiqure 2:

LC: Waters Acquity Ultra Performance LC

MS: \quad Waters Xevo TQ-S micro MS

Chromatographic Conditions

MS Parameters

Column: Acquity UPLC BEH C C_{18}
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: $70 \% \mathrm{MeOH} / 30 \% \mathrm{H}_{2} \mathrm{O}$
Ramp to 85% organic over 8 min and hold for
2 min before returning to initial conditions in 0.75 min .
Time: 12 min
Experiment: Full Scan (300-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=65.00$
Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=450$
Desolvation Gas Flow $(1 / h r)=750$
Flow: $\quad 300 \mu \mathrm{l} / \mathrm{min}$

Figure 3: N-EtFOSE-M; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 3:

Injection: On-column (N-EtFOSE-M)
Mobile phase: Same as Figure 2
Flow: $\quad 300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.45 \mathrm{e}-3$
Collision Energy (eV) $=32$

Analytical Standard Record

Vista Analytical Laboratory
$18 J 1503$

Parent Standards used in this standard:					
Standard Desc		Prepared	Prepared By	Expires	(mls)
18 F 2228 13C2		22-Jun-18	** Vendor **	14-Nov-19	1
18 F 2229 13C4		22-Jun-18	** Vendor **	16-Feb-23	1
18 F 2230 13C6		22-Jun-18	** Vendor **	17-Oct-22	1
18 F 2231 13C9		22-Jun-18	** Vendor **	23-May-22	1
18 F 2232 13C7		22-Jun-18	** Vendor **	13-Jul-22	1
18 F 2233 13C5		22-Jun-18	** Vendor **	17-Oct-22	1
18 F 2234 13C3		22-Jun-18	** Vendor **	05-Jul-22	1.06
18 F 2235 13C4		22-Jun-18	** Vendor **	15-Feb-23	1.05
$18 \mathrm{~F} 2236 \quad 13 \mathrm{C} 8$		22-Jun-18	** Vendor **	05-Jul-22	1.02
Description:	PFC-RS	Expires:	15-Oct-20		
Standard Type:	Reagent	Prepared:	15-Oct-18		
Solvent:	MeOH	Prepared By:	Giana R. Bilotta		
Final Volume (mls):	40	Department:	LCMS		
Vials:	1	Last Edit:	15-Oct-18 08:57	GRB	
Analyte		CAS Number	Concentration	Units	
13C9-PFNA			1.25	ug/mL	
13C8-PFOA			1.25	$\mathrm{ug} / \mathrm{mL}$	
13C7-PFUnA			1.25	$\mathrm{ug} / \mathrm{mL}$	
13C6-PFDA			1.25	$\mathrm{ug} / \mathrm{mL}$	
13C5-PFHxA			1.25	$\mathrm{ug} / \mathrm{mL}$	
13C4-PFOS			1.25	$\mathrm{ug} / \mathrm{mL}$	
13C4-PFBA			1.25	ug/mL	
13C3-PFHxS			1.25	$\mathrm{ug} / \mathrm{mL}$	
13C2-FOUEA			1.25	$\mathrm{ug} / \mathrm{mL}$	

PRODUCT CODE:
COMPOUND:

MFOUEA
2 H -Perfluoro-[1,2- $\left.{ }^{13} \mathrm{C}_{2}\right]$-2-decenoic acid

LOT NUMBER: MFOUEA1117

GAS \#: \quad Not available

MOLECULAR WEIGHT: 460.08
SOLVENT(S): Anhydrous Isopropanol
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
($1,2-{ }^{13} \mathrm{C}_{2}$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Dilution of this standard in methanol may lead to the formation of $2 \mathrm{H}-3$-methoxy-perfluoro[$\left.1,2-{ }^{13} \mathrm{C}_{2}\right]$-2-decenoic acid. This reaction can be catalyzed by the presence of acid or base. All dilutions should be routinely checked for degradation.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

$18 F 2228$

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: MFOUEA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC: \quad Waters Acquity Ultra Performance LC
MS: \quad Micromass Quattro micro API MS

```
Chromatographic Conditions
Column: Acquity UPLC BEH Shield RP }\mp@subsup{}{18}{
Mobile phase: Gradient
    Start: 55% (80:20 MeOH:ACN)/45% H2O
    (both with }10\textrm{mM NH
    Ramp to 90% organic over 7.5 min and hold
    for }1.5\textrm{min}\mathrm{ before returning to initial conditions in 0.5 min.
    Time: }10\textrm{min
Flow: }\quad300\mu//mi
Flow: \(\quad 300 \mu / / m i n\)
```

 \(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm} \quad\) Experiment: Full Scan (225-850 amu)

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage (V) $=14.00$
Cone Gas Flow ($/ / \mathrm{hr}$) $=60$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: MFOUEA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

$\left.\begin{array}{|ll}\text { Injection: } & \begin{array}{l}\text { Direct loop injection } \\ 10 \mu \mathrm{l} \\ \\ \text { (} 500 \mathrm{ng} / \mathrm{ml} \text { MFOUEA) }\end{array} \\ \text { Mobile phase: } \\ \text { Isocratic } 80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O} \\ \text { (both with } 10 \mathrm{mM} \mathrm{NH} \\ 4 \\ \mathrm{OAc} \text { buffer) }\end{array}\right)$

MS Parameters
Collision Gas (mbar) $=3.39 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=21$

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE:

COMPOUND:

STRUCTURE:

MPFBA
Perfluoro-n-[1,2,3,4- ${ }^{13} \mathrm{C}_{4}$]butanoic acid

LOT NUMBER: MPFBA0218

CAS \#: Not available

MOLECULAR WEIGHT:
218.01

SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2,3,4-{ }^{13} \mathrm{C}_{4}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- \quad See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad 02/22/2018 (mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{d}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: MPFBA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP ${ }_{18}$
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: 30\% (80:20 MeOH:ACN) / 70\% $\mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min .
Time: 10 min
Flow:
$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage $(\mathrm{V})=10.00$
Cone Gas Flow (l/hr) $=100$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: MPFBA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection	MS Parameters
	$10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml} \mathrm{MPFBA)}$	
		Collision Gas (mbar) $=3.31 \mathrm{e}-3$
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: \mathrm{ACN}$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Collision Energy (eV) $=10$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

PRODUCT CODE: COMPOUND:

STRUCTURE:

M6PFDA
Perfluoro-n-[1,2,3,4,5,6- ${ }^{13} \mathrm{C}_{6}$]decanoic acid
LOT NUMBER: M6PFDA1017

CAS \#: \quad Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/ddysyy)
EXPIRY DATE: (mmlddyyyy)
RECOMMENDED STORAGE: Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 520.04
SOLVENT(S): Methanol
Water (<1\%)
$\geq 99 \%{ }^{13} \mathrm{C}$
(1,2,3,4,5,6- ${ }^{13} \mathrm{C}_{6}$)

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad 10/20/2017
(mm/dd/yyyy)

$18 F 2230$

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyse of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned values), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{i}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Fiqure 1: M6PFDA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAC}$ buffer)	Cone Voltage (V) $=15.00$
	Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min . Time: 10 min	$\begin{aligned} & \text { Cone Gas Flow }(1 / h r)=50 \\ & \text { Desolvation Gas Flow }(1 / h r)=750 \end{aligned}$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: M6PFDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection	MS Parameters
	$10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml} \mathrm{M6PFDA)}$	
		Collision Gas (mbar) $=3.24 \mathrm{e}-3$
Mobile phase:	Isocratic 80\% (80:20 MeOH:ACN) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH	Collision Energy (eV) $=13$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE:

 COMPOUND:STRUCTURE:

M9PFNA
Perfluoro-n-[${ }^{13} \mathrm{C}_{9}$]nonanoic acid

LOT NUMBER: M9PFNA0517

CAS \#: Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/ddyysy)
EXPIRY DATE: (mm/dd/ysyy)
RECOMMENDED STORAGE: Store ampoule in a cool, dark place

MOLECULAR WEIGHT: SOLVENT(S):

ISOTOPIC PURITY:
473.01

Methanol
Water (<1\%)
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left({ }^{13} \mathrm{C}_{9}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.9 \%$ of ${ }^{13} \mathrm{C}_{5}{ }^{12} \mathrm{C}_{4} \mathrm{HF}_{17} \mathrm{O}_{2}$ (MPFNA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS, The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned values), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

$18 F 2231$

Figure 1: M9PFNA; LC/MS Data (TIC and Mass Spectrum)
23may2017_M9PFNA_001
M9PFNA0517 $25 \mathrm{ug} / \mathrm{ml}$
100

Conditions for Figure 1:

LC:	Waters Acquits Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP_{18} $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$

Mobile phase: Gradient
Start: 60\% (80:20 MeOH:ACN) / 40\% $\mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min

Flow:
$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage $(\mathrm{V})=15.00$
Cone Gas Flow (l/hr) $=50$
Desolvation Gas Flow (1/hr) $=750$

Figure 2: M9PFNA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:		
Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{M9PFNA)}$	MS Parameters

CERTIFICATE OF ANALYSIS

 DOCUMENTATION
PRODUCT CODE:

M7PFUdA
LOT NUMBER: M7PFUdA0717

Perfluoro-n-[1,2,3,4,5,6,7- ${ }^{13} \mathrm{C}_{7}$]undecanoic acid
CAS \#: \quad Not available

MOLECULAR FORMULA:	${ }^{13} \mathrm{C}_{7}{ }^{12} \mathrm{C}_{4} \mathrm{HF}_{21} \mathrm{O}_{2}$	MOLECULAR WEIGHT:	571.04
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT(S):	Methanol CHEMICAL PURITY:
	$>98 \%$	WSOTOPIC PURITY:	$\geq 99 \%{ }^{13} \mathrm{C}$
LAST TESTED: (mm/ddyyyy)	$07 / 13 / 2017$		$\left(1,2,3,4,5,6,7-{ }^{13} \mathrm{C}_{7}\right)$
EXPIRY DATE: (mm/ddyyyy)	$07 / 13 / 2022$		
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned values), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M7PFUdA; LC/MS Data (TIC and Mass Spectrum)

Figure 2: M7PFUdA; LC/MS/MS Data (Selected MRM Transitions)

PRODUCT CODE:
COMPOUND:

M5PFHxA
Perfluoro-n-[1,2,3,4,6- ${ }^{13} \mathrm{C}_{5}$]hexanoic acid

LOT NUMBER: M5PFHxA1017

CAS \#: Not available

STRUCTURE:

MOLECULAR FORMULA:	${ }^{13} \mathrm{C}_{5}{ }^{12} \mathrm{C}_{1} \mathrm{HF}_{11} \mathrm{O}_{2}$
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
CHEMICAL PURITY:	>98\%
LAST TESTED: (mm/di/yyy)	10/17/2017
	10/17/2022
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 319.02
SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY:
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2,3,4,6-{ }_{-13} \mathrm{C}_{5}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M5PFHxA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC: \quad Waters Acquits Ultra Performance LC
 MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: 40\% (80:20 MeOH:ACN) / $60 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 2 min
before returning to initial conditions in 0.5 min .
Time: 10 min
$300 \mu \mathrm{l} / \mathrm{min}$
Flow:
vo u pirmin

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage (V) $=15.00$
Cone Gas Flow ($/ \mathrm{l} / \mathrm{hr}$) $=100$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: M5PFHxA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ M5PFHxA)
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.31 \mathrm{e}-3$
Collision Energy (eV) $=9$

PRODUCT CODE:	M3PFHxS	LOT NUMBER:	M3PFHxS0717
COMPOUND:	Sodium perfluoro-1-[1,2,3- $\left.{ }^{13} \mathrm{C}_{3}\right]$ hexanesulfonate		
STRUCTURE:		CAS \#:	Not available

MOLECULAR FORMULA:	${ }^{13} \mathrm{C}_{3}{ }^{12} \mathrm{C}_{3} \mathrm{~F}_{13} \mathrm{SO}_{3} \mathrm{Na}$	MOLECULAR WEIGHT:	425.07
CONCENTRATION:	$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)	SOLVENT(S):	Methanol
CHEMICAL PURITY:	$47.3 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (M3PFHxS anion)		
LAST TESTED: (mm/dd/yyy)	$>98 \%$	$07 / 05 / 2017$	ISOTOPIC PURITY:

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad $\frac{07 / 14 / 2017}{(\mathrm{~mm} / \mathrm{d} / \mathrm{d} / \mathrm{yyy})}$

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned values), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M3PFHxS; LC/MS Data (TIC and Mass Spectrum)
05july2017_M3PFHxS_001
M3PFHxS0717 $10 \mathrm{ug} / \mathrm{ml}$
100

Conditions for Figure 1:	
LC:	Waters Acquits Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm} \quad$ Experiment: Full Scan ($150-850 \mathrm{amu}$)

Mobile phase: Gradient Start: 55% ($80: 20 \mathrm{MeOH}: A C N) / 45 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min

MS Parameters

Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage (V) $=50.00$
Cone Gas Flow ($1 / \mathrm{hr}$) $=60$
Desolvation Gas Flow (l/hr) $=750$

Flow: $300 \mu 1 / \mathrm{min}$

Figure 2: M3PFHxS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ M3PFHxS $)$
Mobile phase:	socratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH
Flow: buffer)	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.43 \mathrm{e}-3$
Collision Energy (eV) $=30$

WELLINGTON LAB ORATORIES

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE: COMPOUND:

MPFOS
Sodium perfluoro-1-[1,2,3,4- $\left.{ }^{13} \mathrm{C}_{4}\right]$ octanesulfonate

STRUCTURE:

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.6 \%$ Sodium perfluoro- $1-\left[1,2,3-{ }^{13} \mathrm{C}_{3}\right]$ heptanesulfonate.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: MPFOS; LC/MS Data (TIC and Mass Spectrum)
15feb2018_MPFOS_001
MPFOS0218 $10 \mathrm{ug} / \mathrm{ml}$
100

Conditions for Figure 1:

LC: \quad Waters Acquity Ultra Performance LC
MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP ${ }_{16}$
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: 50\% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min . Time: 10 min

Flow: $300 \mu / / \mathrm{min}$

MS Parameters

Experiment: Full Scan (150-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage (V) $=60.00$
Cone Gas Flow (l/hr) $=50$
Desolvation Gas Flow (l/hr) $=750$

Figure 2: MPFOS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection
	$10 \mu \mathrm{l}$ (500 ng/ml MPFOS)

Mobile phase: Isocratic $80 \%(80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH} \mathrm{NA}_{4} \mathrm{OAc}$ buffer)

Flow:
$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.28 \mathrm{e}-3$
Collision Energy (eV) $=40$

WELLINGTON
 LABORATORIES

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE: COMPOUND:

M8PFOA
Perfluoro-n-[${ }^{13} \mathrm{C}_{8}$]octanoic acid

LOT NUMBER: M8PFOA0717

CAS \#: Not available

MOLECULAR WEIGHT: 422.01
SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
$\left({ }^{13} \mathrm{C}_{8}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $<0.1 \%$ of native perfluoro-n-octanoic acid (PFOA) and $\sim 2.1 \%$ of [$M+4$] perfluoro-n-octanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad $\frac{07 / 14 / 2017}{(m \mathrm{~m} / \mathrm{d} / \mathrm{d} / \mathrm{y} y \mathrm{y})} \mathrm{m}$

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{e}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M8PFOA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Fiqure 1:	
LC: \quad Waters Acquity Ultra Performance LC	
MS: \quad Micromass Quattro micro API MS	
Chromatographic Conditions	MS Parameters
Column: Acquity UPLC BEH Shield RP ${ }_{18}$	
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase: Gradient	Source: Electrospray (negative)
Start: 55% (80:20 MeOH:ACN) / 45\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
(both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=15.00$
Ramp to 90% organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min	Cone Gas Flow (1/hr) $=100$ Desolvation Gas Flow (l/hr) $=750$
Flow: $\quad 300 \mu / / \mathrm{min}$	

Figure 2: M8PFOA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection
	$10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ M8PFOA $)$

Mobile phase: Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Flow: $300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.28 \mathrm{e}-3$
Collision Energy (aV) $=10$
"A1-MW-07-SA2","537 MOD","RES","1803659-01","Vista","375-73-
5","PFBS","0.114","ug/L","","0.00427","CRDL","","TRG","","","0.00854","CRDL","YES","0.00293" "A1-MW-07-SA2","537 MOD","RES","1803659-01","Vista","307-244","PFHxA","0.366","ug/L","","0.00427","CRDL","","TRG","","","0.00854","CRDL","YES","0.00293" "A1-MW-07-SA2","537 MOD","RES","1803659-01","Vista","375-859","PFHpA","0.0448","ug/L","","0.00427","CRDL","","TRG","","","0.00854","CRDL","YES","0.00293" "A1-MW-07-SA2","537 MOD","RES","1803659-01","Vista","355-464","PFHxS","0.234","ug/L","","0.00427","CRDL","","TRG","","","0.00854","CRDL","YES","0.00293" "A1-MW-07-SA2","537 MOD","RES","1803659-01","Vista","335-671","PFOA","0.0488","ug/L","","0.00427","CRDL","","TRG","","","0.00854","CRDL","YES","0.00293" "A1-MW-07-SA2","537 MOD","RES","1803659-01","Vista","375-951","PFNA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00854","CRDL","YES","0.00293" "A1-MW-07-SA2","537 MOD","RES","1803659-01","Vista","1763-231","PFOS","0.0403","ug/L","","0.00427","CRDL","","TRG","","","0.00854","CRDL","YES","0.00293" "A1-MW-07-SA2","537 MOD","RES","1803659-01","Vista","335-762","PFDA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00854","CRDL","YES","0.00293" "A1-MW-07-SA2","537 MOD","RES","1803659-01","Vista","2355-319","NMeFOSAA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00854","CRDL","YES","0.00293" "A1-MW-07-SA2","537 MOD","RES","1803659-01","Vista","2991-506","NEtFOSAA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00854","CRDL","YES","0.00293" "A1-MW-07-SA2","537 MOD","RES","1803659-01","Vista","2058-948","PFUnA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00854","CRDL","YES","0.00293" "A1-MW-07-SA2","537 MOD","RES","1803659-01","Vista","307-551","PFDoA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00854","CRDL","YES","0.00293" "A1-MW-07-SA2","537 MOD","RES","1803659-01","Vista","72629-948","PFTrDA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00854","CRDL","YES","0.00293" "A1-MW-07-SA2","537 MOD","RES","1803659-01","Vista","376-067","PFTeDA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00854","CRDL","YES","0.00293" "A1-MW-07-SA2","537 MOD","RES","1803659-01","Vista","13C3-PFBS","13C3PFBS","94.7","\%R","","","CRDL","","IS","94.7","","","CRDL","","" "A1-MW-07-SA2","537 MOD","RES","1803659-01","Vista","13C2-PFHxA","13C2PFHxA","88.8","\%R","","","CRDL","","IS","88.8","","","CRDL","","" "A1-MW-07-SA2","537 MOD","RES","1803659-01","Vista","13C4-PFHpA","13C4PFHpA","87.5","\%R","","","CRDL","","IS","87.5","","","CRDL","","' "A1-MW-07-SA2","537 MOD","RES","1803659-01","Vista","18O2-PFHxS","18O2PFHxS","97.5","\%R","","","CRDL","","IS","97.5","","","CRDL","","" "A1-MW-07-SA2","537 MOD","RES","1803659-01","Vista","13C2-PFOA","13C2PFOA","84.9","\%R","","","CRDL","","IS","84.9","","","CRDL","","" "A1-MW-07-SA2","537 MOD","RES","1803659-01","Vista","13C5-PFNA","13C5PFNA","82.6","\%R","","","CRDL","","IS","82.6","","","CRDL","","" "A1-MW-07-SA2","537 MOD","RES","1803659-01","Vista","13C8-PFOS","13C8PFOS","90.7","\%R","","","CRDL","","IS","90.7","","","CRDL","","" "A1-MW-07-SA2","537 MOD","RES","1803659-01","Vista","13C2-PFDA","13C2PFDA","77.4","\%R","","","CRDL","","IS","77.4","","","CRDL","","" "A1-MW-07-SA2","537 MOD","RES","1803659-01","Vista","d3-MeFOSAA","d3MeFOSAA","100","\%R","","","CRDL","","IS","100","","","CRDL","","" "A1-MW-07-SA2","537 MOD","RES","1803659-01","Vista","d5-EtFOSAA","d5EtFOSAA","107","\%R","","","CRDL","","IS","107","","","CRDL","","" "A1-MW-07-SA2","537 MOD","RES","1803659-01","Vista","13C2-PFUnA","13C2PFUnA","80.7","\%R","","","CRDL","","IS","80.7","","","CRDL","","" "A1-MW-07-SA2","537 MOD","RES","1803659-01","Vista","13C2-PFDoA","13C2PFDoA","90.3","\%R","","","CRDL","","IS","90.3","","","CRDL","","" "A1-MW-07-SA2","537 MOD","RES","1803659-01","Vista","13C2-PFTeDA","13C2-

PFTeDA","57.9","\%R","","","CRDL","","IS","57.9","","","CRDL","",""
"A1-MW-23-SA2","537 MOD","RES","1803659-02","Vista","375-73-
5","PFBS","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00849","CRDL","YES","0.00291"
"A1-MW-23-SA2","537 MOD","RES","1803659-02","Vista","307-24-
4","PFHxA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00849","CRDL","YES","0.00291"
"A1-MW-23-SA2","537 MOD","RES","1803659-02","Vista","375-85-
9","PFHpA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00849","CRDL","YES","0.00291" "A1-MW-23-SA2","537 MOD","RES","1803659-02","Vista","355-464","PFHxS","0.00594","ug/L","J","0.00424","CRDL","","TRG","","","0.00849","CRDL","YES","0.00291" "A1-MW-23-SA2","537 MOD","RES","1803659-02","Vista","335-67-
1","PFOA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00849","CRDL","YES","0.00291" "A1-MW-23-SA2","537 MOD","RES","1803659-02","Vista","375-95-
1","PFNA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00849","CRDL","YES","0.00291" "A1-MW-23-SA2","537 MOD","RES","1803659-02","Vista","1763-23-
1","PFOS","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00849","CRDL","YES","0.00291" "A1-MW-23-SA2","537 MOD","RES","1803659-02","Vista","335-76-
2","PFDA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00849","CRDL","YES","0.00291"
"A1-MW-23-SA2","537 MOD","RES","1803659-02","Vista","2355-31-
9","NMeFOSAA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00849","CRDL","YES","0.00291"
"A1-MW-23-SA2","537 MOD","RES","1803659-02","Vista","2991-50-
6","NEtFOSAA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00849","CRDL","YES","0.00291"
"A1-MW-23-SA2","537 MOD","RES","1803659-02","Vista","2058-94-
8","PFUnA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00849","CRDL","YES","0.00291"
"A1-MW-23-SA2","537 MOD","RES","1803659-02","Vista","307-55-
1","PFDoA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00849","CRDL","YES","0.00291" "A1-MW-23-SA2","537 MOD","RES","1803659-02","Vista","72629-94-
8","PFTrDA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00849","CRDL","YES","0.00291" "A1-MW-23-SA2","537 MOD","RES","1803659-02","Vista","376-06-
7","PFTeDA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00849","CRDL","YES","0.00291"
"A1-MW-23-SA2","537 MOD","RES","1803659-02","Vista","13C3-PFBS","13C3-
PFBS","88.4","\%R","","","CRDL","","IS","88.4","","","CRDL","",""
"A1-MW-23-SA2","537 MOD","RES","1803659-02","Vista","13C2-PFHxA","13C2-
PFHxA","90.8","\%R","","","CRDL","","IS","90.8","","","CRDL","",""
"A1-MW-23-SA2","537 MOD","RES","1803659-02","Vista","13C4-PFHpA","13C4-
PFHpA","85.0","\%R","","","CRDL","","IS","85.0","","","CRDL","",""
"A1-MW-23-SA2","537 MOD","RES","1803659-02","Vista","18O2-PFHxS","18O2-
PFHxS","93.5","\%R","","","CRDL","","IS","93.5","","","CRDL","",""
"A1-MW-23-SA2","537 MOD","RES","1803659-02","Vista","13C2-PFOA","13C2-
PFOA","82.3","\%R","","","CRDL","","IS","82.3","","","CRDL","",""
"A1-MW-23-SA2","537 MOD","RES","1803659-02","Vista","13C5-PFNA","13C5-
PFNA","82.0","\%R","","","CRDL","","IS","82.0","","","CRDL","",""
"A1-MW-23-SA2","537 MOD","RES","1803659-02","Vista","13C8-PFOS","13C8-
PFOS","97.6","\%R","","","CRDL","","IS","97.6","","","CRDL","",""
"A1-MW-23-SA2","537 MOD","RES","1803659-02","Vista","13C2-PFDA","13C2-
PFDA","73.4","\%R","","","CRDL","","IS","73.4","","","CRDL","",""
"A1-MW-23-SA2","537 MOD","RES","1803659-02","Vista","d3-MeFOSAA","d3-
MeFOSAA","97.3","\%R","","","CRDL","","IS","97.3","","","CRDL","",""
"A1-MW-23-SA2","537 MOD","RES","1803659-02","Vista","d5-EtFOSAA","d5-
EtFOSAA","99.9","\%R","","","CRDL","","IS","99.9","","","CRDL","",""
"A1-MW-23-SA2","537 MOD","RES","1803659-02","Vista","13C2-PFUnA","13C2-
PFUnA","78.9","\%R","","","CRDL","","IS","78.9","","","CRDL","",""
"A1-MW-23-SA2","537 MOD","RES","1803659-02","Vista","13C2-PFDoA","13C2-
PFDoA","94.5","\%R","","","CRDL","","IS","94.5","","","CRDL","",""
"A1-MW-23-SA2","537 MOD","RES","1803659-02","Vista","13C2-PFTeDA","13C2-

PFTeDA","84.0","\%R","","","CRDL","","IS","84.0","","","CRDL","",""
"A1-MW-25-SA2","537 MOD","RES","1803659-03","Vista","375-73-
5","PFBS","0.299","ug/L","","0.00439","CRDL","","TRG","","","0.00875","CRDL","YES","0.00300"
"A1-MW-25-SA2","537 MOD","RES","1803659-03","Vista","307-24-
4","PFHxA","1.20","ug/L","","0.00439","CRDL","","TRG","","","0.00875","CRDL","YES","0.00300"
"A1-MW-25-SA2","537 MOD","RES","1803659-03","Vista","375-85-
9","PFHpA","0.0780","ug/L","","0.00439","CRDL","","TRG","","","0.00875","CRDL","YES","0.00300"
"A1-MW-25-SA2","537 MOD","RES","1803659-03","Vista","355-46-
4","PFHxS","0.453","ug/L","","0.00439","CRDL","","TRG","","","0.00875","CRDL","YES","0.00300"
"A1-MW-25-SA2","537 MOD","RES","1803659-03","Vista","335-67-
1","PFOA","0.0612","ug/L","","0.00439","CRDL","","TRG","","","0.00875","CRDL","YES","0.00300"
"A1-MW-25-SA2","537 MOD","RES","1803659-03","Vista","375-95-
1","PFNA","0.00439","ug/L","U","0.00439","CRDL","","TRG","","","0.00875","CRDL","YES","0.00300" "A1-MW-25-SA2","537 MOD","RES","1803659-03","Vista","1763-23-
1","PFOS","0.0195","ug/L","Q","0.00439","CRDL","","TRG","","","0.00875","CRDL","YES","0.00300" "A1-MW-25-SA2","537 MOD","RES","1803659-03","Vista","335-762","PFDA","0.00439","ug/L","U","0.00439","CRDL","","TRG","","","0.00875","CRDL","YES","0.00300" "A1-MW-25-SA2","537 MOD","RES","1803659-03","Vista","2355-319","NMeFOSAA","0.00439","ug/L","U","0.00439","CRDL","","TRG","","","0.00875","CRDL","YES","0.00300" "A1-MW-25-SA2","537 MOD","RES","1803659-03","Vista","2991-50-
6","NEtFOSAA","0.00439","ug/L","U","0.00439","CRDL","","TRG","","","0.00875","CRDL","YES","0.00300" "A1-MW-25-SA2","537 MOD","RES","1803659-03","Vista","2058-948","PFUnA","0.00439","ug/L","U","0.00439","CRDL","","TRG","","","0.00875","CRDL","YES","0.00300" "A1-MW-25-SA2","537 MOD","RES","1803659-03","Vista","307-551","PFDoA","0.00439","ug/L","U","0.00439","CRDL","","TRG","","","0.00875","CRDL","YES","0.00300" "A1-MW-25-SA2","537 MOD","RES","1803659-03","Vista","72629-94-
8","PFTrDA","0.00439","ug/L","U","0.00439","CRDL","","TRG","","","0.00875","CRDL","YES","0.00300" "A1-MW-25-SA2","537 MOD","RES","1803659-03","Vista","376-067","PFTeDA","0.00439","ug/L","U","0.00439","CRDL","","TRG","","","0.00875","CRDL","YES","0.00300" "A1-MW-25-SA2","537 MOD","RES","1803659-03","Vista","13C3-PFBS","13C3-
PFBS","89.2","\%R","","","CRDL","","IS","89.2","","","CRDL","",""
"A1-MW-25-SA2","537 MOD","RES","1803659-03","Vista","13C2-PFHxA","13C2-
PFHxA","93.4","\%R","","","CRDL","","IS","93.4","","","CRDL","",""
"A1-MW-25-SA2","537 MOD","RES","1803659-03","Vista","13C4-PFHpA","13C4-
PFHpA","79.4","\%R","","","CRDL","","IS","79.4","","","CRDL","",""
"A1-MW-25-SA2","537 MOD","RES","1803659-03","Vista","18O2-PFHxS","18O2-
PFHxS","87.0","\%R","","","CRDL","","IS","87.0","","","CRDL","",""
"A1-MW-25-SA2","537 MOD","RES","1803659-03","Vista","13C2-PFOA","13C2-
PFOA","88.1","\%R","","","CRDL","","IS","88.1","","","CRDL","",""
"A1-MW-25-SA2","537 MOD","RES","1803659-03","Vista","13C5-PFNA","13C5PFNA","87.8","\%R","","","CRDL","","IS","87.8","","","CRDL","","" "A1-MW-25-SA2","537 MOD","RES","1803659-03","Vista","13C8-PFOS","13C8PFOS","92.4","\%R","","","CRDL","","IS","92.4","","","CRDL","","" "A1-MW-25-SA2","537 MOD","RES","1803659-03","Vista","13C2-PFDA","13C2PFDA","72.6","\%R","","","CRDL","","IS","72.6","","","CRDL","",""
"A1-MW-25-SA2","537 MOD","RES","1803659-03","Vista","d3-MeFOSAA","d3-
MeFOSAA","107","\%R","","","CRDL","","IS","107","","","CRDL","",""
"A1-MW-25-SA2","537 MOD","RES","1803659-03","Vista","d5-EtFOSAA","d5-
EtFOSAA","114","\%R","","","CRDL","","IS","114","","","CRDL","",""
"A1-MW-25-SA2","537 MOD","RES","1803659-03","Vista","13C2-PFUnA","13C2-
PFUnA","77.2","\%R","","","CRDL","","IS","77.2","","","CRDL","",""
"A1-MW-25-SA2","537 MOD","RES","1803659-03","Vista","13C2-PFDoA","13C2-
PFDoA","94.7","\%R","","","CRDL","","IS","94.7","","","CRDL","",""
"A1-MW-25-SA2","537 MOD","RES","1803659-03","Vista","13C2-PFTeDA","13C2-

PFTeDA","85.8","\%R","","","CRDL","","IS","85.8","","","CRDL","","" "A1-MW-27-SA2","537 MOD","RES","1803659-04","Vista","375-735","PFBS","0.0730","ug/L","","0.00427","CRDL","","TRG","","","0.00852","CRDL","YES","0.00292" "A1-MW-27-SA2","537 MOD","RES","1803659-04","Vista","307-244","PFHxA","0.255","ug/L","","0.00427","CRDL","","TRG","","","0.00852","CRDL","YES","0.00292" "A1-MW-27-SA2","537 MOD","RES","1803659-04","Vista","375-859","PFHpA","0.0256","ug/L","","0.00427","CRDL","","TRG","","","0.00852","CRDL","YES","0.00292" "A1-MW-27-SA2","537 MOD","RES","1803659-04","Vista","355-464","PFHxS","0.136","ug/L","","0.00427","CRDL","","TRG","","","0.00852","CRDL","YES","0.00292" "A1-MW-27-SA2","537 MOD","RES","1803659-04","Vista","335-671","PFOA","0.0329","ug/L","","0.00427","CRDL","","TRG","","","0.00852","CRDL","YES","0.00292" "A1-MW-27-SA2","537 MOD","RES","1803659-04","Vista","375-951","PFNA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00852","CRDL","YES","0.00292" "A1-MW-27-SA2","537 MOD","RES","1803659-04","Vista","1763-231","PFOS","0.0136","ug/L","","0.00427","CRDL","","TRG","","","0.00852","CRDL","YES","0.00292" "A1-MW-27-SA2","537 MOD","RES","1803659-04","Vista","335-762","PFDA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00852","CRDL","YES","0.00292" "A1-MW-27-SA2","537 MOD","RES","1803659-04","Vista","2355-319","NMeFOSAA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00852","CRDL","YES","0.00292" "A1-MW-27-SA2","537 MOD","RES","1803659-04","Vista","2991-50-
6","NEtFOSAA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00852","CRDL","YES","0.00292" "A1-MW-27-SA2","537 MOD","RES","1803659-04","Vista","2058-948","PFUnA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00852","CRDL","YES","0.00292" "A1-MW-27-SA2","537 MOD","RES","1803659-04","Vista","307-55-
1","PFDoA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00852","CRDL","YES","0.00292" "A1-MW-27-SA2","537 MOD","RES","1803659-04","Vista","72629-94-
8","PFTrDA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00852","CRDL","YES","0.00292"
"A1-MW-27-SA2","537 MOD","RES","1803659-04","Vista","376-06-
7","PFTeDA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00852","CRDL","YES","0.00292"
"A1-MW-27-SA2","537 MOD","RES","1803659-04","Vista","13C3-PFBS","13C3-
PFBS","93.3","\%R","","","CRDL","","IS","93.3","","","CRDL","",""
"A1-MW-27-SA2","537 MOD","RES","1803659-04","Vista","13C2-PFHxA","13C2-
PFHxA","93.1","\%R","","","CRDL","","IS","93.1","","","CRDL","",""
"A1-MW-27-SA2","537 MOD","RES","1803659-04","Vista","13C4-PFHpA","13C4-
PFHpA","87.2","\%R","","","CRDL","","IS","87.2","","","CRDL","",""
"A1-MW-27-SA2","537 MOD","RES","1803659-04","Vista","18O2-PFHxS","18O2-
PFHxS","90.8","\%R","","","CRDL","","IS","90.8","","","CRDL","",""
"A1-MW-27-SA2","537 MOD","RES","1803659-04","Vista","13C2-PFOA","13C2-
PFOA","87.9","\%R","","","CRDL","","IS","87.9","","","CRDL","",""
"A1-MW-27-SA2","537 MOD","RES","1803659-04","Vista","13C5-PFNA","13C5-
PFNA","90.1","\%R","","","CRDL","","IS","90.1","","","CRDL","",""
"A1-MW-27-SA2","537 MOD","RES","1803659-04","Vista","13C8-PFOS","13C8-
PFOS","96.3","\%R","","","CRDL","","IS","96.3","","","CRDL","",""
"A1-MW-27-SA2","537 MOD","RES","1803659-04","Vista","13C2-PFDA","13C2-
PFDA","76.9","\%R","","","CRDL","","IS","76.9","","","CRDL","",""
"A1-MW-27-SA2","537 MOD","RES","1803659-04","Vista","d3-MeFOSAA","d3-
MeFOSAA","87.0","\%R","","","CRDL","","IS","87.0","","","CRDL","",""
"A1-MW-27-SA2","537 MOD","RES","1803659-04","Vista","d5-EtFOSAA","d5-
EtFOSAA","90.3","\%R","","","CRDL","","IS","90.3","","","CRDL","",""
"A1-MW-27-SA2","537 MOD","RES","1803659-04","Vista","13C2-PFUnA","13C2-
PFUnA","78.1","\%R","","","CRDL","","IS","78.1","","","CRDL","",""
"A1-MW-27-SA2","537 MOD","RES","1803659-04","Vista","13C2-PFDoA","13C2-
PFDoA","91.5","\%R","","","CRDL","","IS","91.5","","","CRDL","",""
"A1-MW-27-SA2","537 MOD","RES","1803659-04","Vista","13C2-PFTeDA","13C2-

PFTeDA","74.4","\%R","","","CRDL","","IS","74.4","","","CRDL","","" "A1-MW-55-SA2","537 MOD","RES","1803659-05","Vista","375-735","PFBS","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00844","CRDL","YES","0.00289" "A1-MW-55-SA2","537 MOD","RES","1803659-05","Vista","307-244","PFHxA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00844","CRDL","YES","0.00289" "A1-MW-55-SA2","537 MOD","RES","1803659-05","Vista","375-85-
9","PFHpA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00844","CRDL","YES","0.00289" "A1-MW-55-SA2","537 MOD","RES","1803659-05","Vista","355-464","PFHxS","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00844","CRDL","YES","0.00289" "A1-MW-55-SA2","537 MOD","RES","1803659-05","Vista","335-671","PFOA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00844","CRDL","YES","0.00289" "A1-MW-55-SA2","537 MOD","RES","1803659-05","Vista","375-951","PFNA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00844","CRDL","YES","0.00289" "A1-MW-55-SA2","537 MOD","RES","1803659-05","Vista","1763-23-
1","PFOS","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00844","CRDL","YES","0.00289" "A1-MW-55-SA2","537 MOD","RES","1803659-05","Vista","335-762","PFDA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00844","CRDL","YES","0.00289" "A1-MW-55-SA2","537 MOD","RES","1803659-05","Vista","2355-319","NMeFOSAA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00844","CRDL","YES","0.00289" "A1-MW-55-SA2","537 MOD","RES","1803659-05","Vista","2991-50-
6","NEtFOSAA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00844","CRDL","YES","0.00289" "A1-MW-55-SA2","537 MOD","RES","1803659-05","Vista","2058-948","PFUnA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00844","CRDL","YES","0.00289" "A1-MW-55-SA2","537 MOD","RES","1803659-05","Vista","307-55-
1","PFDoA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00844","CRDL","YES","0.00289" "A1-MW-55-SA2","537 MOD","RES","1803659-05","Vista","72629-94-
8","PFTrDA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00844","CRDL","YES","0.00289" "A1-MW-55-SA2","537 MOD","RES","1803659-05","Vista","376-067","PFTeDA","0.00424","ug/L","U","0.00424","CRDL","","TRG","","","0.00844","CRDL","YES","0.00289" "A1-MW-55-SA2","537 MOD","RES","1803659-05","Vista","13C3-PFBS","13C3-
PFBS","89.8","\%R","","","CRDL","","IS","89.8","","","CRDL","",""
"A1-MW-55-SA2","537 MOD","RES","1803659-05","Vista","13C2-PFHxA","13C2-
PFHxA","91.6","\%R","","","CRDL","","IS","91.6","","","CRDL","",""
"A1-MW-55-SA2","537 MOD","RES","1803659-05","Vista","13C4-PFHpA","13C4-
PFHpA","90.1","\%R","","","CRDL","","IS","90.1","","","CRDL","",""
"A1-MW-55-SA2","537 MOD","RES","1803659-05","Vista","18O2-PFHxS","18O2-
PFHxS","89.4","\%R","","","CRDL","","IS","89.4","","","CRDL","",""
"A1-MW-55-SA2","537 MOD","RES","1803659-05","Vista","13C2-PFOA","13C2-
PFOA","90.2","\%R","","","CRDL","","IS","90.2","","","CRDL","",""
"A1-MW-55-SA2","537 MOD","RES","1803659-05","Vista","13C5-PFNA","13C5-
PFNA","84.8","\%R","","","CRDL","","IS","84.8","","","CRDL","",""
"A1-MW-55-SA2","537 MOD","RES","1803659-05","Vista","13C8-PFOS","13C8-
PFOS","82.6","\%R","","","CRDL","","IS","82.6","","","CRDL","",""
"A1-MW-55-SA2","537 MOD","RES","1803659-05","Vista","13C2-PFDA","13C2-
PFDA","81.2","\%R","","","CRDL","","IS","81.2","","","CRDL","",""
"A1-MW-55-SA2","537 MOD","RES","1803659-05","Vista","d3-MeFOSAA","d3-
MeFOSAA","78.9","\%R","","","CRDL","","IS","78.9","","","CRDL","",""
"A1-MW-55-SA2","537 MOD","RES","1803659-05","Vista","d5-EtFOSAA","d5-
EtFOSAA","88.0","\%R","","","CRDL","","IS","88.0","","","CRDL","",""
"A1-MW-55-SA2","537 MOD","RES","1803659-05","Vista","13C2-PFUnA","13C2-
PFUnA","85.3","\%R","","","CRDL","","IS","85.3","","","CRDL","",""
"A1-MW-55-SA2","537 MOD","RES","1803659-05","Vista","13C2-PFDoA","13C2-
PFDoA","86.4","\%R","","","CRDL","","IS","86.4","","","CRDL","",""
"A1-MW-55-SA2","537 MOD","RES","1803659-05","Vista","13C2-PFTeDA","13C2-

PFTeDA","83.2","\%R","","","CRDL","","IS","83.2","","","CRDL","","" "A1-MW-54-SA2","537 MOD","RES","1803659-06","Vista","375-735","PFBS","0.462","ug/L","","0.00427","CRDL","","TRG","","","0.00856","CRDL","YES","0.00293" "A1-MW-54-SA2","537 MOD","RES","1803659-06","Vista","307-244","PFHxA","1.51","ug/L","","0.00427","CRDL","","TRG","","","0.00856","CRDL","YES","0.00293" "A1-MW-54-SA2","537 MOD","RES","1803659-06","Vista","375-859","PFHpA","0.107","ug/L","","0.00427","CRDL","","TRG","","","0.00856","CRDL","YES","0.00293" "A1-MW-54-SA2","537 MOD","RES","1803659-06","Vista","355-464","PFHxS","0.899","ug/L","","0.00427","CRDL","","TRG","","","0.00856","CRDL","YES","0.00293" "A1-MW-54-SA2","537 MOD","RES","1803659-06","Vista","335-671","PFOA","0.230","ug/L","","0.00427","CRDL","","TRG","","","0.00856","CRDL","YES","0.00293" "A1-MW-54-SA2","537 MOD","RES","1803659-06","Vista","375-951","PFNA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00856","CRDL","YES","0.00293" "A1-MW-54-SA2","537 MOD","RES","1803659-06","Vista","1763-231","PFOS","0.0150","ug/L","Q","0.00427","CRDL","","TRG","","","0.00856","CRDL","YES","0.00293" "A1-MW-54-SA2","537 MOD","RES","1803659-06","Vista","335-762","PFDA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00856","CRDL","YES","0.00293" "A1-MW-54-SA2","537 MOD","RES","1803659-06","Vista","2355-319","NMeFOSAA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00856","CRDL","YES","0.00293" "A1-MW-54-SA2","537 MOD","RES","1803659-06","Vista","2991-50-
6","NEtFOSAA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00856","CRDL","YES","0.00293" "A1-MW-54-SA2","537 MOD","RES","1803659-06","Vista","2058-948","PFUnA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00856","CRDL","YES","0.00293" "A1-MW-54-SA2","537 MOD","RES","1803659-06","Vista","307-551","PFDoA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00856","CRDL","YES","0.00293" "A1-MW-54-SA2","537 MOD","RES","1803659-06","Vista","72629-948","PFTrDA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00856","CRDL","YES","0.00293" "A1-MW-54-SA2","537 MOD","RES","1803659-06","Vista","376-067","PFTeDA","0.00427","ug/L","U","0.00427","CRDL","","TRG","","","0.00856","CRDL","YES","0.00293" "A1-MW-54-SA2","537 MOD","RES","1803659-06","Vista","13C3-PFBS","13C3-
PFBS","95.2","\%R","","","CRDL","","IS","95.2","","","CRDL","",""
"A1-MW-54-SA2","537 MOD","RES","1803659-06","Vista","13C2-PFHxA","13C2-
PFHxA","91.4","\%R","","","CRDL","","IS","91.4","","","CRDL","",""
"A1-MW-54-SA2","537 MOD","RES","1803659-06","Vista","13C4-PFHpA","13C4PFHpA","89.2","\%R","","","CRDL","","IS","89.2","","","CRDL","","" "A1-MW-54-SA2","537 MOD","RES","1803659-06","Vista","18O2-PFHxS","18O2PFHxS","98.8","\%R","","","CRDL","","IS","98.8","","","CRDL","","" "A1-MW-54-SA2","537 MOD","RES","1803659-06","Vista","13C2-PFOA","13C2PFOA","94.5","\%R","","","CRDL","","IS","94.5","","","CRDL","","" "A1-MW-54-SA2","537 MOD","RES","1803659-06","Vista","13C5-PFNA","13C5PFNA","82.6","\%R","","","CRDL","","IS","82.6","","","CRDL","","" "A1-MW-54-SA2","537 MOD","RES","1803659-06","Vista","13C8-PFOS","13C8PFOS","89.5","\%R","","","CRDL","","IS","89.5","","","CRDL","","" "A1-MW-54-SA2","537 MOD","RES","1803659-06","Vista","13C2-PFDA","13C2PFDA","75.0","\%R","","","CRDL","","IS","75.0","","","CRDL","","" "A1-MW-54-SA2","537 MOD","RES","1803659-06","Vista","d3-MeFOSAA","d3MeFOSAA","65.3","\%R","","","CRDL","","IS","65.3","","","CRDL","","" "A1-MW-54-SA2","537 MOD","RES","1803659-06","Vista","d5-EtFOSAA","d5EtFOSAA","71.6","\%R","","","CRDL","","IS","71.6","","","CRDL","","" "A1-MW-54-SA2","537 MOD","RES","1803659-06","Vista","13C2-PFUnA","13C2PFUnA","67.6","\%R","","","CRDL","","IS","67.6","","","CRDL","",""
"A1-MW-54-SA2","537 MOD","RES","1803659-06","Vista","13C2-PFDoA","13C2PFDoA","61.2","\%R","","","CRDL","","IS","61.2","","","CRDL","",""
"A1-MW-54-SA2","537 MOD","RES","1803659-06","Vista","13C2-PFTeDA","13C2-

PFTeDA","58.0","\%R","","","CRDL","","IS","58.0","","","CRDL","",""
"FRB-20181114","537 MOD","RES","1803659-07","Vista","375-73-
5","PFBS","0.00435","ug/L","U","0.00435","CRDL","","TRG","","","0.00866","CRDL","YES","0.00297"
"FRB-20181114","537 MOD","RES","1803659-07","Vista","307-24-
4","PFHxA","0.00435","ug/L","U","0.00435","CRDL","","TRG","","","0.00866","CRDL","YES","0.00297"
"FRB-20181114","537 MOD","RES","1803659-07","Vista","375-85-
9","PFHpA","0.00435","ug/L","U","0.00435","CRDL","","TRG","","","0.00866","CRDL","YES","0.00297"
"FRB-20181114","537 MOD","RES","1803659-07","Vista","355-46-
4","PFHxS","0.00435","ug/L","U","0.00435","CRDL","","TRG","","","0.00866","CRDL","YES","0.00297"
"FRB-20181114","537 MOD","RES","1803659-07","Vista","335-67-
1","PFOA","0.00435","ug/L","U","0.00435","CRDL","","TRG","","","0.00866","CRDL","YES","0.00297"
"FRB-20181114","537 MOD","RES","1803659-07","Vista","375-95-
1","PFNA","0.00435","ug/L","U","0.00435","CRDL","","TRG","","","0.00866","CRDL","YES","0.00297"
"FRB-20181114","537 MOD","RES","1803659-07","Vista","1763-23-
1","PFOS","0.00435","ug/L","U","0.00435","CRDL","","TRG","","","0.00866","CRDL","YES","0.00297"
"FRB-20181114","537 MOD","RES","1803659-07","Vista","335-76-
2","PFDA","0.00435","ug/L","U","0.00435","CRDL","","TRG","","","0.00866","CRDL","YES","0.00297"
"FRB-20181114","537 MOD","RES","1803659-07","Vista","2355-31-
9","NMeFOSAA","0.00435","ug/L","U","0.00435","CRDL","","TRG","","","0.00866","CRDL","YES","0.00297"
"FRB-20181114","537 MOD","RES","1803659-07","Vista","2991-50-
6","NEtFOSAA","0.00435","ug/L","U","0.00435","CRDL","","TRG","","","0.00866","CRDL","YES","0.00297"
"FRB-20181114","537 MOD","RES","1803659-07","Vista","2058-94-
8","PFUnA","0.00435","ug/L","U","0.00435","CRDL","","TRG","","","0.00866","CRDL","YES","0.00297"
"FRB-20181114","537 MOD","RES","1803659-07","Vista","307-55-
1","PFDoA","0.00435","ug/L","U","0.00435","CRDL","","TRG","","","0.00866","CRDL","YES","0.00297"
"FRB-20181114","537 MOD","RES","1803659-07","Vista","72629-94-
8","PFTrDA","0.00435","ug/L","U","0.00435","CRDL","","TRG","","","0.00866","CRDL","YES","0.00297"
"FRB-20181114","537 MOD","RES","1803659-07","Vista","376-06-
7","PFTeDA","0.00435","ug/L","U","0.00435","CRDL","","TRG","","","0.00866","CRDL","YES","0.00297"
"FRB-20181114","537 MOD","RES","1803659-07","Vista","13C3-PFBS","13C3-
PFBS","101","\%R","","","CRDL","","IS","101","","","CRDL","",""
"FRB-20181114","537 MOD","RES","1803659-07","Vista","13C2-PFHxA","13C2-
PFHxA","92.4","\%R","","","CRDL","","IS","92.4","","","CRDL","",""
"FRB-20181114","537 MOD","RES","1803659-07","Vista","13C4-PFHpA","13C4PFHpA","88.3","\%R","","","CRDL","","IS","88.3","","","CRDL","",""
"FRB-20181114","537 MOD","RES","1803659-07","Vista","18O2-PFHxS","18O2-
PFHxS","97.0","\%R","","","CRDL","","IS","97.0","","","CRDL","",""
"FRB-20181114","537 MOD","RES","1803659-07","Vista","13C2-PFOA","13C2-
PFOA","94.0","\%R","","","CRDL","","IS","94.0","","","CRDL","",""
"FRB-20181114","537 MOD","RES","1803659-07","Vista","13C5-PFNA","13C5-
PFNA","88.6","\%R","","","CRDL","","IS","88.6","","","CRDL","",""
"FRB-20181114","537 MOD","RES","1803659-07","Vista","13C8-PFOS","13C8-
PFOS","100","\%R","","","CRDL","","IS","100","","","CRDL","",""
"FRB-20181114","537 MOD","RES","1803659-07","Vista","13C2-PFDA","13C2-
PFDA","80.7","\%R","","","CRDL","","IS","80.7","","","CRDL","",""
"FRB-20181114","537 MOD","RES","1803659-07","Vista","d3-MeFOSAA","d3-
MeFOSAA","84.4","\%R","","","CRDL","","IS","84.4","","","CRDL","",""
"FRB-20181114","537 MOD","RES","1803659-07","Vista","d5-EtFOSAA","d5-
EtFOSAA","86.7","\%R","","","CRDL","","IS","86.7","","","CRDL","",""
"FRB-20181114","537 MOD","RES","1803659-07","Vista","13C2-PFUnA","13C2-
PFUnA","80.4","\%R","","","CRDL","","IS","80.4","","","CRDL","",""
"FRB-20181114","537 MOD","RES","1803659-07","Vista","13C2-PFDoA","13C2-
PFDoA","82.1","\%R","","","CRDL","","IS","82.1","","","CRDL","",""
"FRB-20181114","537 MOD","RES","1803659-07","Vista","13C2-PFTeDA","13C2-

PFTeDA","82.2","\%R","","","CRDL","","IS","82.2","',"","CRDL","","'
"B8K0144-BLK1","537 MOD","RES","B8K0144-BLK1","Vista","375-73-
5","PFBS","0.00400","ug/L","U","0.00400","CRDL","","TRG","',"',"0.00800","CRDL","YES","0.00274"
"B8K0144-BLK1","537 MOD","RES","B8K0144-BLK1","Vista","307-24-
4","PFHxA","0.00400","ug/L","U","0.00400","CRDL","',"TRG","","","0.00800","CRDL","YES","0.00274"
"B8K0144-BLK1","537 MOD","RES","B8K0144-BLK1","Vista","375-85-
9","PFHpA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274"
"B8K0144-BLK1","537 MOD","RES","B8K0144-BLK1","Vista","355-46-
4","PFHxS","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274"
"B8K0144-BLK1","537 MOD","RES","B8K0144-BLK1","Vista","335-67-
1","PFOA","0.00400","ug/L","U","0.00400","CRDL","","TRG","',"","0.00800","CRDL","YES","0.00274"
"B8K0144-BLK1","537 MOD","RES","B8K0144-BLK1","Vista","375-95-
1","PFNA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274" "B8K0144-BLK1","537 MOD","RES","B8K0144-BLK1","Vista","1763-23-
1","PFOS","0.00400","ug/L","U","0.00400","CRDL","',"TRG","',"',"0.00800","CRDL","YES","0.00274" "B8K0144-BLK1","537 MOD","RES","B8K0144-BLK1","Vista","335-76-
2","PFDA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274" "B8K0144-BLK1","537 MOD","RES","B8K0144-BLK1","Vista","2355-31-
9","NMeFOSAA","0.00400","ug/L","U","0.00400","CRDL","","TRG","',"',"0.00800","CRDL","YES","0.00274" "B8K0144-BLK1","537 MOD","RES","B8K0144-BLK1","Vista","2991-50-
6","NEtFOSAA","0.00400",'ug/L","U","0.00400","CRDL","",'TRG",'","","0.00800","CRDL","YES","0.00274"
"B8K0144-BLK1","537 MOD","RES","B8K0144-BLK1","Vista","2058-94-
8","PFUnA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","',"0.00800","CRDL","YES","0.00274"
"B8K0144-BLK1","537 MOD","RES","B8K0144-BLK1","Vista","307-55-
1","PFDoA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274"
"B8K0144-BLK1","537 MOD","RES","B8K0144-BLK1","Vista","72629-94-
8","PFTrDA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274"
"B8K0144-BLK1","537 MOD","RES","B8K0144-BLK1","Vista","376-06-
7","PFTeDA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274"
"B8K0144-BLK1","537 MOD","RES","B8K0144-BLK1","Vista","13C3-PFBS","13C3-
PFBS","93.8","\%R","',"',"CRDL","","IS","93.8","',"',"CRDL","","'
"B8K0144-BLK1","537 MOD","RES","B8K0144-BLK1","Vista","13C2-PFHxA","13C2-
PFHxA","94.2","\%R","',"',"CRDL","',"IS","94.2","',"',"CRDL","',"'"
"B8K0144-BLK1","537 MOD","RES","B8K0144-BLK1","Vista","13C4-PFHpA","13C4PFHpA","96.2","\%R","","',"CRDL","","IS","96.2","","","CRDL","","'
"B8K0144-BLK1","537 MOD","RES","B8K0144-BLK1","Vista","18O2-PFHxS","18O2-
PFHxS","88.1","\%R","',"',"CRDL","","IS","88.1","',"',"CRDL","',"'
"B8K0144-BLK1","537 MOD","RES","B8K0144-BLK1","Vista","13C2-PFOA","13C2-
PFOA","93.9","\%R","',"',"CRDL","","IS","93.9","',"',"CRDL","',"'"
"B8K0144-BLK1","537 MOD","RES","B8K0144-BLK1","Vista","13C5-PFNA","13C5-
PFNA","84.8","\%R","',"',"CRDL","',"IS","84.8","',"',"CRDL","',"'
"B8K0144-BLK1","537 MOD","RES","B8K0144-BLK1","Vista","13C8-PFOS","13C8-
PFOS","91.0","\%R","',"","CRDL","","IS","91.0","',"',"CRDL","',"'
"B8K0144-BLK1","537 MOD","RES","B8K0144-BLK1","Vista","13C2-PFDA","13C2-
PFDA","74.8","\%R","',"',"CRDL","","IS","74.8","',"',"CRDL","',"'
"B8K0144-BLK1","537 MOD","RES","B8K0144-BLK1","Vista","d3-MeFOSAA","d3-
MeFOSAA","76.7","\%R","',"',"CRDL","',"IS","76.7","',"',"CRDL","',"'"
"B8K0144-BLK1","537 MOD","RES","B8K0144-BLK1","Vista","d5-EtFOSAA","d5-
EtFOSAA","83.6","\%R","","","CRDL","","IS","83.6","","","CRDL","","'
"B8K0144-BLK1","537 MOD","RES","B8K0144-BLK1","Vista","13C2-PFUnA","13C2-
PFUnA","76.0","\%R","',"',"CRDL","","IS","76.0","',"',"CRDL","',"'
"B8K0144-BLK1","537 MOD","RES","B8K0144-BLK1","Vista","13C2-PFDoA","13C2-
PFDoA","83.3","\%R","',"',"CRDL","","IS","83.3","',"',"CRDL","',"'
"B8K0144-BLK1","537 MOD","RES","B8K0144-BLK1","Vista","13C2-PFTeDA","13C2-

PFTeDA","84.1","\%R","","","CRDL","","IS","84.1","","","CRDL","","" "B8K0144-BS1","537 MOD","RES","B8K0144-BS1","Vista","375-73-
5","PFBS","0.0785","ug/L","","0.00400","CRDL","","SPK","98.2","","0.00800","CRDL","YES","0.00274" "B8K0144-BS1","537 MOD","RES","B8K0144-BS1","Vista","307-244","PFHxA","0.0819","ug/L","","0.00400","CRDL","","SPK","102","","0.00800","CRDL","YES","0.00274" "B8K0144-BS1","537 MOD","RES","B8K0144-BS1","Vista","375-859","PFHpA","0.0824","ug/L","","0.00400","CRDL","","SPK","103","","0.00800","CRDL","YES","0.00274" "B8K0144-BS1","537 MOD","RES","B8K0144-BS1","Vista","355-464","PFHxS","0.0837","ug/L","","0.00400","CRDL","","SPK","105","","0.00800","CRDL","YES","0.00274" "B8K0144-BS1","537 MOD","RES","B8K0144-BS1","Vista","335-671","PFOA","0.0829","ug/L","","0.00400","CRDL","","SPK","104","","0.00800","CRDL","YES","0.00274" "B8K0144-BS1","537 MOD","RES","B8K0144-BS1","Vista","375-951","PFNA","0.0810","ug/L","","0.00400","CRDL","","SPK","101","","0.00800","CRDL","YES","0.00274" "B8K0144-BS1","537 MOD","RES","B8K0144-BS1","Vista","1763-231","PFOS","0.0880","ug/L","","0.00400","CRDL","","SPK","110","","0.00800","CRDL","YES","0.00274" "B8K0144-BS1","537 MOD","RES","B8K0144-BS1","Vista","335-762","PFDA","0.0887","ug/L","","0.00400","CRDL","","SPK","111","","0.00800","CRDL","YES","0.00274" "B8K0144-BS1","537 MOD","RES","B8K0144-BS1","Vista","2355-319","NMeFOSAA","0.0828","ug/L","","0.00400","CRDL","","SPK","104","","0.00800","CRDL","YES","0.00274" "B8K0144-BS1","537 MOD","RES","B8K0144-BS1","Vista","2991-50-
6","NEtFOSAA","0.0860","ug/L","","0.00400","CRDL","","SPK","108","","0.00800","CRDL","YES","0.00274" "B8K0144-BS1","537 MOD","RES","B8K0144-BS1","Vista","2058-948","PFUnA","0.0820","ug/L","","0.00400","CRDL","","SPK","103","","0.00800","CRDL","YES","0.00274" "B8K0144-BS1","537 MOD","RES","B8K0144-BS1","Vista","307-551","PFDoA","0.0797","ug/L","","0.00400","CRDL","","SPK","99.6","","0.00800","CRDL","YES","0.00274" "B8K0144-BS1","537 MOD","RES","B8K0144-BS1","Vista","72629-948","PFTrDA","0.0762","ug/L","","0.00400","CRDL","","SPK","95.2","","0.00800","CRDL","YES","0.00274" "B8K0144-BS1","537 MOD","RES","B8K0144-BS1","Vista","376-067","PFTeDA","0.0846","ug/L","","0.00400","CRDL","","SPK","106","","0.00800","CRDL","YES","0.00274" "B8K0144-BS1","537 MOD","RES","B8K0144-BS1","Vista","13C3-PFBS","13C3PFBS","95.7","\%R","","","CRDL","","IS","95.7","","","CRDL","","" "B8K0144-BS1","537 MOD","RES","B8K0144-BS1","Vista","13C2-PFHxA","13C2PFHxA","92.1","\%R","","","CRDL","","IS","92.1","","","CRDL","","" "B8K0144-BS1","537 MOD","RES","B8K0144-BS1","Vista","13C4-PFHpA","13C4PFHpA","89.8","\%R","","","CRDL","","IS","89.8","","","CRDL","","" "B8K0144-BS1","537 MOD","RES","B8K0144-BS1","Vista","18O2-PFHxS","18O2PFHxS","93.9","\%R","","","CRDL","","IS","93.9","","","CRDL","","" "B8K0144-BS1","537 MOD","RES","B8K0144-BS1","Vista","13C2-PFOA","13C2PFOA","88.7","\%R","","","CRDL","","IS","88.7","","","CRDL","","" "B8K0144-BS1","537 MOD","RES","B8K0144-BS1","Vista","13C5-PFNA","13C5PFNA","85.3","\%R","","","CRDL","","IS","85.3","","","CRDL","","" "B8K0144-BS1","537 MOD","RES","B8K0144-BS1","Vista","13C8-PFOS","13C8PFOS","87.3","\%R","","","CRDL","","IS","87.3","","","CRDL","","" "B8K0144-BS1","537 MOD","RES","B8K0144-BS1","Vista","13C2-PFDA","13C2PFDA","73.6","\%R","","","CRDL","","IS","73.6","","","CRDL","","" "B8K0144-BS1","537 MOD","RES","B8K0144-BS1","Vista","d3-MeFOSAA","d3MeFOSAA","77.1","\%R","","","CRDL","","IS","77.1","","","CRDL","","" "B8K0144-BS1","537 MOD","RES","B8K0144-BS1","Vista","d5-EtFOSAA","d5EtFOSAA","84.7","\%R","","","CRDL","","IS","84.7","","","CRDL","","" "B8K0144-BS1","537 MOD","RES","B8K0144-BS1","Vista","13C2-PFUnA","13C2PFUnA","74.3","\%R","","","CRDL","","IS","74.3","","","CRDL","","" "B8K0144-BS1","537 MOD","RES","B8K0144-BS1","Vista","13C2-PFDoA","13C2PFDoA","74.1","\%R","","","CRDL","","IS","74.1","","","CRDL","","" "B8K0144-BS1","537 MOD","RES","B8K0144-BS1","Vista","13C2-PFTeDA","13C2-

PFTeDA","65.5","\%R","',"',"CRDL","","IS","65.5","',"',"CRDL","","' "B8K0144-BSD1","537 MOD","RES","B8K0144-BSD1","Vista","375-735","PFBS","0.0834","ug/L","","0.00400","CRDL","',"SPK","104","5.99","0.00800","CRDL","YES","0.00274" "B8K0144-BSD1","537 MOD","RES","B8K0144-BSD1","Vista","307-244","PFHxA","0.0874","ug/L","',"0.00400","CRDL","',"SPK","109","6.51","0.00800","CRDL","YES","0.00274" "B8K0144-BSD1","537 MOD","RES","B8K0144-BSD1","Vista","375-85-
9","PFHpA","0.0849","ug/L","","0.00400","CRDL","","SPK","106","3.07","0.00800","CRDL","YES","0.00274" "B8K0144-BSD1","537 MOD","RES","B8K0144-BSD1","Vista","355-46-
4","PFHxS","0.0866","ug/L","","0.00400","CRDL","","SPK","108","3.42","0.00800",'CRDL","YES","0.00274" "B8K0144-BSD1","537 MOD","RES","B8K0144-BSD1","Vista","335-67-
1","PFOA","0.0863","ug/L","',"0.00400","CRDL","',"SPK","108","4.12","0.00800","CRDL","YES","0.00274" "B8K0144-BSD1","537 MOD","RES","B8K0144-BSD1","Vista","375-951","PFNA","0.0843","ug/L","","0.00400","CRDL","","SPK","105","3.94","0.00800","CRDL","YES","0.00274" "B8K0144-BSD1","537 MOD","RES","B8K0144-BSD1","Vista","1763-23-
1","PFOS","0.0866","ug/L","',"0.00400","CRDL","',"SPK","108","1.61","0.00800","CRDL","YES","0.00274" "B8K0144-BSD1","537 MOD","RES","B8K0144-BSD1","Vista","335-762","PFDA","0.0812","ug/L","","0.00400","CRDL","","SPK","101","8.92","0.00800","CRDL","YES","0.00274" "B8K0144-BSD1","537 MOD","RES","B8K0144-BSD1","Vista","2355-319","NMeFOSAA","0.0915","ug/L","',"0.00400","CRDL","","SPK","114","9.97","0.00800","CRDL","YES","0.00274" "B8K0144-BSD1","537 MOD","RES","B8K0144-BSD1","Vista","2991-506","NEtFOSAA","0.0923","ug/L","","0.00400","CRDL","","SPK","115","7.04","0.00800","CRDL","YES","0.00274" "B8K0144-BSD1","537 MOD","RES","B8K0144-BSD1","Vista","2058-948","PFUnA","0.0824","ug/L","","0.00400","CRDL","',"SPK","103","0.455","0.00800","CRDL","YES","0.00274" "B8K0144-BSD1","537 MOD","RES","B8K0144-BSD1","Vista","307-551","PFDoA","0.0790","ug/L","","0.00400","CRDL","","SPK","98.7","0.851","0.00800","CRDL","YES","0.00274" "B8K0144-BSD1","537 MOD","RES","B8K0144-BSD1","Vista","72629-94-
8","PFTrDA","0.0865","ug/L","',"0.00400","CRDL","',"SPK","108","12.7","0.00800","CRDL","YES","0.00274" "B8K0144-BSD1","537 MOD","RES","B8K0144-BSD1","Vista","376-067","PFTeDA","0.0850","ug/L","","0.00400","CRDL","","SPK","106","0.448","0.00800","CRDL","YES","0.00274" "B8K0144-BSD1","537 MOD","RES","B8K0144-BSD1","Vista","13C3-PFBS","13C3-
PFBS","95.2","\%R","","',"CRDL","',"IS","95.2","","',"CRDL","',"'
"B8K0144-BSD1","537 MOD","RES","B8K0144-BSD1","Vista","13C2-PFHxA","13C2PFHxA","91.6","\%R","',"',"CRDL","',"IS","91.6","',"',"CRDL","',"'" "B8K0144-BSD1","537 MOD","RES","B8K0144-BSD1","Vista","13C4-PFHpA","13C4PFHpA","94.3","\%R","","',"CRDL","","IS","94.3","","","CRDL","',"'
"B8K0144-BSD1","537 MOD","RES","B8K0144-BSD1","Vista","18O2-PFHxS","18O2-
PFHxS","94.4","\%R","',"',"CRDL","","IS","94.4","","',"CRDL","',"' "B8K0144-BSD1","537 MOD","RES","B8K0144-BSD1","Vista","13C2-PFOA","13C2PFOA","94.6","\%R","","',"CRDL","","IS","94.6","","',"CRDL","',"' "B8K0144-BSD1","537 MOD","RES","B8K0144-BSD1","Vista","13C5-PFNA","13C5PFNA","82.3","\%R","',"',"CRDL","',"IS","82.3","',"',"CRDL","',"'" "B8K0144-BSD1","537 MOD","RES","B8K0144-BSD1","Vista","13C8-PFOS","13C8PFOS","94.4","\%R","","","CRDL","","IS","94.4","","',"CRDL","',"' "B8K0144-BSD1","537 MOD","RES","B8K0144-BSD1","Vista","13C2-PFDA","13C2PFDA","78.4","\%R","',"',"CRDL","","IS","78.4","',"',"CRDL","',"' "B8K0144-BSD1","537 MOD","RES","B8K0144-BSD1","Vista","d3-MeFOSAA","d3MeFOSAA","83.8","\%R","',"',"CRDL","',"IS","83.8","',"',"CRDL","',"'" "B8K0144-BSD1","537 MOD","RES","B8K0144-BSD1","Vista","d5-EtFOSAA","d5EtFOSAA","89.5","\%R","","","CRDL","","IS","89.5","","',"CRDL","","" "B8K0144-BSD1","537 MOD","RES","B8K0144-BSD1","Vista","13C2-PFUnA","13C2PFUnA","78.3","\%R","',"',"CRDL","","IS","78.3","',"',"CRDL","',"' "B8K0144-BSD1","537 MOD","RES","B8K0144-BSD1","Vista","13C2-PFDoA","13C2PFDoA","92.5","\%R","',"',"CRDL","","IS","92.5","',"',"CRDL","',"' "B8K0144-BSD1","537 MOD","RES","B8K0144-BSD1","Vista","13C2-PFTeDA","13C2-

PFTeDA","85.7","\%R","","","CRDL","","IS","85.7","","","CRDL","",""
"4663.3803","СТО 17F3803 Yuma","A1-MW-07-SA2","11/14/2018 09:07","AQ","1803659-01","","","","537
MOD","Gen Prep","RES","11/22/2018 10:31","11/26/2018
16:02","Vista","COA","","","1","","","","","B8K0144","B8K0144","S8K0064","S8K0064","1803659","11/15/2018
13:29","11/29/2018 00:00"
"4663.3803","CTO 17F3803 Yuma","A1-MW-23-SA2","11/14/2018 10:03","AQ","1803659-02","","","","537
MOD","Gen Prep","RES","11/22/2018 10:31","11/27/2018
13:04","Vista","COA","","","1","","","","","B8K0144","B8K0144","S8K0064","S8K0064","1803659","11/15/2018
13:29","11/29/2018 00:00"
"4663.3803","CTO 17F3803 Yuma","A1-MW-25-SA2","11/14/2018 12:15","AQ","1803659-03","","","","537
MOD","Gen Prep","RES","11/22/2018 10:31","11/26/2018
16:23","Vista","COA","","","1","","","","","B8K0144","B8K0144","S8K0064","S8K0064","1803659","11/15/2018
13:29","11/29/2018 00:00"
"4663.3803","СТО 17F3803 Yuma","A1-MW-27-SA2","11/14/2018 13:03","AQ","1803659-04","","","","537
MOD","Gen Prep","RES","11/22/2018 10:31","11/26/2018
16:34","Vista","COA","","","1","","","","","B8K0144","B8K0144","S8K0064","S8K0064","1803659","11/15/2018 13:29","11/29/2018 00:00"
"4663.3803","CTO 17F3803 Yuma","A1-MW-55-SA2","11/14/2018 11:02","AQ","1803659-05","","","","537
MOD","Gen Prep","RES","11/22/2018 10:31","11/26/2018
16:44","Vista","COA","","","1","","","","","B8K0144","B8K0144","S8K0064","S8K0064","1803659","11/15/2018 13:29","11/29/2018 00:00"
"4663.3803","CTO 17F3803 Yuma","A1-MW-54-SA2","11/14/2018 15:17","AQ","1803659-06","","","","537
MOD","Gen Prep","RES","11/22/2018 10:31","11/26/2018
17:16","Vista","COA","","","1","","","","","B8K0144","B8K0144","S8K0064","S8K0064","1803659","11/15/2018
13:29","11/29/2018 00:00"
"4663.3803","CTO 17F3803 Yuma","FRB-20181114","11/14/2018 14:20","AQ","1803659-07","","","","537
MOD","Gen Prep","RES","11/22/2018 10:31","11/26/2018
17:27","Vista","COA","","","1","","","","","B8K0144","B8K0144","S8K0064","S8K0064","1803659","11/15/2018
13:29","11/29/2018 00:00"
"4663.3803","CTO 17F3803 Yuma","B8K0144-BLK1","","AQ","B8K0144-BLK1","MB","","","537 MOD","Gen Prep","RES","11/22/2018 10:31","11/26/2018
15:51","Vista","COA","","","1","","","","","B8K0144","B8K0144","S8K0064","S8K0064","1803659","","11/29/2018 00:00"
"4663.3803","CTO 17F3803 Yuma","B8K0144-BS1","","AQ","B8K0144-BS1","LCS","","","537 MOD","Gen Prep","RES","11/22/2018 10:31","11/26/2018
15:29","Vista","COA","","","1","","","","","B8K0144","B8K0144","S8K0064","S8K0064","1803659","","11/29/2018 00:00"
"4663.3803","CTO 17F3803 Yuma","B8K0144-BSD1","","AQ","B8K0144-BSD1","LCSD","","","537 MOD","Gen Prep","RES","11/22/2018 10:31","11/26/2018
15:41","Vista","COA","","","1","","","","","B8K0144","B8K0144","S8K0064","S8K0064","1803659","","11/29/2018 00:00"

SUBJECT: MCAS Yuma, CTO 17F3803, Data Validation
Dear Ms. Sudoko,
Enclosed are the final validation reports for the fractions listed below. These SDGs were received on July 6, 2018. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project \#42613:

SDG \#

280-110058-1, 280-110112-1
280-110226-1, 280-110291-1
280-110353-1, L1818881
L1819087, L1819352
L1819562, L1820050
L1820175, 1801024
1801037, 1801039
1801054, 1801071
1801084

Fraction

Volatiles, 1,4-Dioxane, Wet Chemistry, Perfluorinated Alkyl Acids

The data validation was performed under Stage 2B \& 4 guidelines. The analyses were validated using the following documents, as applicable to each method:

- \quad Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona; April 2018
- U.S. Department of Defense Quality Systems Manual for Environmental Laboratories, Version 5.1; 2017
- USEPA National Functional Guidelines for Superfund Organic Methods Data Review; January 2017
- USEPA National Functional Guidelines for Inorganic Superfund Data Review; January 2017
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014

Please feel free to contact us if you have any questions.
Sincerely,

Shauna McKellar
Project Manager/Chemist

LDC \#42613 (Tetra Tech-EC, Inc.-Irvine, CA / MCAS Yuma, CTO 17F3803)
PO\# 1153059

LDC	SDG\#	DATE REC'D	(3) DATE DUE	(3) VOA (8260B)		$\begin{aligned} & \text { 1,4-Diox } \\ & \text { (8270D } \\ & \text {-SIM) } \end{aligned}$		$\begin{aligned} & \text { PFAs } \\ & (537) \end{aligned}$		$\left\lvert\, \begin{gathered} \mathrm{Cl}_{1} \mathrm{SO}_{4} \\ \mathrm{NO}_{3}-\mathrm{N} \\ (9056 \mathrm{~A}) \end{gathered}\right.$		$\begin{gathered} \text { Fe II } \\ (3500 \\ -F e ~ B) \end{gathered}$		$\left\lvert\, \begin{gathered} \mathrm{pH} \\ (9040 \mathrm{C}) \end{gathered}\right.$																									
Matrix: Water/Soil				W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S	W	S
A	280-110058-1	07/06/18	07/27/18	6	0	-	-	-	-	5	0	5	0	5	0																								
B	280-110112-1	07/06/18	07/27/18	7	0	-	-	-	-	6	0	6	0	6	0																								
C	280-110226-1	07/06/18	07/27/18	9	0	-	-	-	-	6	0	6	0	6	0																								
D	280-110291-1	07/06/18	07/27/18	7	0	-	-	-	-	6	0	6	0	6	0																								
E	280-110353-1	07/06/18	07/27/18	5	0	-	-	-	-	3	0	3	0	3	0																								
F	L1818881	07/06/18	07/27/18	-	-	5	0	-	-	-	-	-	-	-	-																								
G	L1819087	07/06/18	07/27/18	-	-	6	0	-	-	-	-	-	-	-	-																								
H	L1819352	07/06/18	07/27/18	-	-	5	0	-	-	-	-	-	-	-	-																								
1	L1819562	07/06/18	07/27/18	-	-	8	0	-	-	-	-	-	-	-	-																								
J	L1820050	07/06/18	07/27/18	-	-	4	0	-	-	-	-	-	-	-	-																								
K	L1820175	07/06/18	07/27/18	-	-	1	0	-	-	-	-	-	-	-	-																								
L	1801024	07/06/18	07/27/18	-	-	-	-	6	0	-	-	-	-	-	-																								
M	1801037	07/06/18	07/27/18	-	-	-	-	1	0	-	-	-	-	-	-																								
M	1801037	07/06/18	07/27/18	-	-	-	-	8	0	-	-	-	-	-	-																								
N	1801039	07/06/18	07/27/18	-	-	-	-	6	0	-	-	-	-	-	-																								
0	1801054	07/06/18	07/27/18	-	-	-	-	9	0	-	-	-	-	-	-																								
P	1801071	07/06/18	07/27/18	-	-	-	-	5	0	-	-	-	-	-	-																								
Q	1801084	07/06/18	07/27/18	-	-	-	-	1	0	-	-	-	-	-	-																								
Total	T/SM			34	0	29	0	36	0	26	0	26	0	26	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	177

Data Validation Report MCAS Yuma, CTO 17F3803

SDGs: 280-110058-1, 280-110112-1, 280-110226-1, 280-110291-1, 280-110353-1, L1818881, L1819087, L1819352, L1819562, L1820050, L1820175, 1801024, 1801037, 1801039, 1801054, 1801071, and 1801084

Prepared for

Tetra Tech EC, Inc.
17885 Von Karman Avenue, Suite 500
Irvine, CA 92614

Prepared by
Laboratory Data Consultants, Inc
2701 Loker Ave West, Suite 220
Carlsbad, CA 92010

July 24, 2018

INTRODUCTION

This Data Validation Report (DVR) presents Stage 2B and Stage 4 data validation results for samples collected during the May 2018 sampling period. Data validation was performed in accordance with the Final Sampling and Analysis Plan (SAP) for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), a modified outline of the US EPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017), and a modified outline of the US EPA National Functional Guidelines (NFG) for Inorganic Superfund Data Review (January 2017). Where specific guidance is not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:
Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260B
1,4-Dioxane by EPA SW 846 Method 8270D utilizing Selective Ion Monitoring (SIM)
Perfluorinated Alkyl Acids (PFAs) by EPA Method 537 Modified

Wet Chemistry:

Chloride, Nitrate as Nitrogen, and Sulfate by EPA SW 846 Method 9056A
Ferrous Iron by Standard Method 3500-Fe B
pH by EPA SW 846 Method 9040C
For samples reviewed by automated data review, the sample identification and methods of analyses performed on each sample is presented in Attachment 1. Overall data qualification summary is presented in Attachment 2. Stage 2B Automated Data Review outliers are presented in Enclosure I. DVRs for samples on which Stage 4 validation was performed are presented in Enclosure II. Validation for 1,4-Dioxane was performed manually and DVRs for Stage 2B and Stage 4 manual validation are also presented in Enclosure II.

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results for sample holding times, initial and continuing calibrations, laboratory blanks, initial and continuing calibration blanks (ICB/CCBs), surrogates, matrix spike/matrix spike duplicates (MS/MSD), laboratory control sample/laboratory control sample duplicates (LCS/LCSD), ongoing precision recovery (OPR), internal standards, trip blanks, equipment blanks, field rinsate blanks, and field duplicates. Approximately 20 percent of samples were subjected to Stage 4 evaluation as indicated in Attachment 1, which comprises a review of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

Automated data review was performed on all QC summary results using the Automated Data Review (ADR) software program (LDC, 2013) with the exception of the calibrations, ICB/CCBs, and internal standards, and all QC for 1,4-Dioxane, which were validated manually. Quality assurance (QA)/QC criteria specified in the SAP, DoD QSM, and NFGs were incorporated with the program's reference library to assess compliance with project requirements.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.

U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to nonconformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not applicable): Data did not warrant qualification since detected results only are affected and the compound was not detected in the associated samples.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt \& Technical Holding Times

All samples were received in good condition with the following exceptions:

SDG/ Method	Sample	Compound	Finding	Criteria	Flag	A or P
$\begin{aligned} & 280-110291-1 / \\ & 8260 \mathrm{~B} \end{aligned}$	A1-MW-23-SA1	All compounds	A headspace of $>6 \mathrm{~mm}$ was apparent in the sample containers.	There should be no headspace in the sample containers.	J (all detects) UJ (all non-detects)	A

The chain-of-custodies were reviewed for documentation of cooler temperatures. All cooler temperatures upon receipt by the laboratory met validation criteria with the exception of one cooler in SDG L1818881 that was reported at $7.9^{\circ} \mathrm{C}$. No data was qualified based on the cooler temperature.

All technical holding time requirements were met with the exception of twenty-five samples for pH and twenty-one samples for ferrous iron. Due to grossly exceeded holding times (e.g., $>2 x$ recommended holding time), 15 ferrous iron results were qualified as rejected (R). Additionally, the remainder of the data were qualified as detected estimated (J) or non-detected estimated (UJ) as applicable. The details regarding the qualification of data are provided in Enclosures I and II.

II. Instrument Performance Check

A tune was performed at 12 hour intervals as required by the methods.
All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

All criteria for the initial calibration and initial calibration verifications of each method were met.

IV. Continuing Calibration

All criteria for the continuing calibration of each method were met with the exception of one continuing calibration for PFAs. Since the outlier was associated with laboratory QC and there were no associated client samples, no data were qualified.

V. Laboratory Blanks

Laboratory blanks were performed as required by the methods. No contaminant concentrations were detected in the laboratory blanks reviewed by the ADR software program with the exception of one blank for chloride and sulfate. The associated sample results were not detected or were significantly greater than the concentrations found in the blanks, therefore no data were qualified. The details are presented in Enclosure I.

No contaminant concentrations were detected in the initial or continuing calibration blanks with the following exceptions:

SDG/ Method	Laboratory Blank ID	Analyte	Maximum Concentration	Associated Samples
$\begin{aligned} & \text { 280-110226-1/ } \\ & 9056 \mathrm{~A} \end{aligned}$	ICB/CCB	Nitrate as Nitrogen	$0.04663 \mathrm{mg} / \mathrm{L}$	A1-MW-42-SA1 A1-MW-54-SA1 A1-PZ-19-SA1 A1-MW-52-SA1 A1-MW-01-SA1 A1-MW-31-SA1
$\begin{aligned} & \text { 280-110291-1/ } \\ & 9056 \mathrm{~A} \end{aligned}$	ICB/CCB	Sulfate	$0.2460 \mathrm{mg} / \mathrm{L}$	A1-MW-14-SA1 A1-MW-23-SA1 A1-MW-55-SA1
$\begin{aligned} & 280-110353-1 / \\ & 9056 \mathrm{~A} \end{aligned}$	ICB/CCB	Chloride Sulfate	$\begin{aligned} & 0.5385 \mathrm{mg} / \mathrm{L} \\ & 0.6554 \mathrm{mg} / \mathrm{L} \end{aligned}$	A1-MW-13-SA1 A1-MW-11-SA1 A1-MW-15-SA1

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were not detected or were significantly greater than the concentrations found in the associated blanks.

VI. Field Blank Samples

Five trip blanks were collected and analyzed for VOCs. No contaminants were found.
One equipment blank was collected and analyzed for VOCs and PFAs. No contaminants were found.

Five field rinsate blanks were collected and analyzed for PFAs. No contaminants were found.

VII. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (\%R) were within QC limits with the exception of sample 16-HS-03-SA1 in SDG 280-110112-1 for VOCs. The associated sample results were qualified as detected estimated (J) or non-detected estimated (UJ) as applicable. The details regarding the qualification of data are provided in Enclosure I.

IX. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (\%R) and relative percent differences (RPD) were within QC limits with the exception of one MS/MSD pair for 1,1-dichloroethene, two MS/MSD pairs for several PFAs, three MS/MSD pairs for chloride and sulfate, and three MS/MSD pairs for ferrous iron. The ferrous iron results in samples 16-HS-03-SA1 and A1-MW-31-SA1 were qualified as rejected (R) due to MS/MSD \%Rs grossly outside QC limits (i.e., $\leq 30 \%$). The remainder of the associated sample results were qualified as detected estimated (J) or nondetected estimated (UJ) as applicable. No data were qualified where sample concentrations were significantly greater ($>4 \mathrm{x}$) than the spike amount. The details regarding the qualification of data are provided in Enclosures I and II.

X. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

XII. Laboratory Control Samples/Ongoing Precision Recovery

Laboratory control samples (LCS) and laboratory control sample duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (\%R) and relative percent differences (RPD) were within QC limits.

Ongoing precision recovery (OPR) samples were analyzed as required by Method 537 Mod. Percent recoveries (\%R) were within QC limits with the exception of two OPR for PFTrDA. No data were qualified due to high \%Rs since the associated results were non-detected. The details are presented in Enclosures I and II.

XIII. Field Duplicate Samples

Two field duplicate pairs were collected and analyzed for all methods. All RPDs were within QC limits. RPDs were not calculated when sample results in one or both samples were less than 5 X the limit of quantitation (LOQ). The field duplicate result comparisons are provided in Enclosures I and II.

XIV. Internal Standards

All internal standard areas and retention times were within QC limits with the following exceptions:

SDG/ Method	Sample	Internal Standards	\%R (Limits)	Compound	Flag	A or P
$\begin{aligned} & 1801024 / \\ & 537 \end{aligned}$	A1-MW-51-SA1	${ }^{13} \mathrm{C} 3-\mathrm{PFBS}$	247 (50-150)	PFBS	J (all detects)	P
$\begin{aligned} & 1801024 / \\ & 537 \end{aligned}$	A1-MW-51-SA1	${ }^{13} \mathrm{C} 3-\mathrm{NEtFOSAA}$	151 (50-150)	NEtFOSAA	UJ (all non-detects)	P
$\begin{aligned} & 18010371 \\ & 537 \end{aligned}$	A1-MW-18-SA1	${ }^{13} \mathrm{C} 3$-PFBS	170 (50-150)	PFBS	J (all detects)	P
$\begin{aligned} & 18010371 \\ & 537 \end{aligned}$	16-MW-08-SA1	${ }^{13} \mathrm{C} 3$-PFBS	187 (50-150)	PFBS	J (all detects)	P
$\begin{aligned} & 1801037 / \\ & 537 \end{aligned}$	A1-MW-19-SA1	${ }^{13} \mathrm{C} 3$-PFBS	214 (50-150)	PFBS	J (all detects)	P
$\begin{aligned} & 1801037 / \\ & 537 \end{aligned}$	A1-MW-37-SA1	${ }^{13} \mathrm{C} 3$-PFBS	228 (50-150)	PFBS	J (all detects)	P
$\begin{aligned} & 1801037 / \\ & 537 \end{aligned}$	A1-MW-37-SA1D	${ }^{13} \mathrm{C} 3$-PFBS	161 (50-150)	PFBS	J (all detects)	P

SDG/ Method	Sample	Internal Standards	\%R (Limits)	Compound	Flag	A or P
$\begin{aligned} & 1801037 / \\ & 537 \end{aligned}$	16-HS-03-SA1	${ }^{13} \mathrm{C} 3$-PFBS	154 (50-150)	PFBS	J (all detects)	P
$\begin{aligned} & 1801037 / \\ & 537 \end{aligned}$	16-MW-09-SA1	${ }^{13} \mathrm{C} 3$-PFBS	153 (50-150)	PFBS	J (all detects)	P
$1801037 /$	16-MW-06-SA1	${ }^{13} \mathrm{C} 3$-PFBS	214 (50-150)	PFBS	J (all detects)	P
$\begin{aligned} & 1801039 / \\ & 537 \end{aligned}$	A1-MW-13-SA1	${ }^{13} \mathrm{C} 3$-PFBS	419 (50-150)	PFBS	J (all detects)	P
$\begin{aligned} & 1801039 / \\ & 537 \end{aligned}$	A1-MW-11-SA1	${ }^{13} \mathrm{C} 3-\mathrm{PFBS}$	271 (50-150)	PFBS	J (all detects)	P
$\begin{aligned} & 1801039 / \\ & 537 \end{aligned}$	A1-MW-14-SA1	${ }^{13} \mathrm{C} 3$-PFBS	527 (50-150)	PFBS	J (all detects)	P
$\begin{aligned} & 1801039 / \\ & 537 \end{aligned}$	A1-MW-15-SA1	${ }^{13} \mathrm{C} 3$-PFBS	235 (50-150)	PFBS	J (all detects)	P
$\begin{aligned} & 1801039 / \\ & 537 \end{aligned}$	A1-MW-25-SA1	${ }^{13} \mathrm{C} 3$-PFBS	428 (50-150)	PFBS	J (all detects)	P
$\begin{aligned} & 1801054 / \\ & 537 \end{aligned}$	A1-MW-42-SA1	${ }^{13} \mathrm{C} 3$-PFBS	310 (50-150)	PFBS	J (all detects)	P
$\begin{aligned} & 1801054 / \\ & 537 \end{aligned}$	A1-MW-54-SA1	${ }^{13} \mathrm{C} 3$-PFBS	175 (50-150)	PFBS	J (all detects)	P
$\begin{aligned} & 1801054 / \\ & 537 \end{aligned}$	A1-MW-53-SA1	${ }^{13} \mathrm{C} 3$-PFBS	154 (50-150)	PFBS	J (all detects)	P
$\begin{aligned} & 1801054 / \\ & 537 \end{aligned}$	A1-PZ-19-SA1	${ }^{13} \mathrm{C} 3$-PFBS	182 (50-150)	PFBS	J (all detects)	P
$\begin{aligned} & 18010541 \\ & 537 \end{aligned}$	A1-MW-52-SA1	${ }^{13} \mathrm{C} 3$-PFBS	211 (50-150)	PFBS	J (all detects)	P
$\begin{aligned} & 1801054 / \\ & 537 \end{aligned}$	A1-MW-01-SA1	${ }^{13} \mathrm{C} 3$-PFBS	192 (50-150)	PFBS	J (all detects)	P
$\begin{aligned} & 1801054 / \\ & 537 \end{aligned}$	A1-MW-01-SA1D	${ }^{13} \mathrm{C} 3-\mathrm{PFBS}$	204 (50-150)	PFBS	J (all detects)	P
$\begin{aligned} & 1801054 / \\ & 537 \end{aligned}$	A1-MW-31-SA1	${ }^{13} \mathrm{C} 3$-PFBS	254 (50-150)	PFBS	J (all detects)	P
$\begin{aligned} & 1801071 / \\ & 537 \end{aligned}$	A1-MW-27-SA1	${ }^{13} \mathrm{C} 3$-PFBS	174 (50-150)	PFBS	J (all detects)	P

SDG/ Method	Sample	Internal Standards	\%R (Limits)	Compound	Flag	A or P
$1801071 / /$ 537	A1-MW-07-SA1	${ }^{13}$ C3-PFBS	$209(50-150)$	PFBS	J (all detects)	P
$1801071 / /$ 537	A1-MW-55-SA1	${ }^{13}$ C3-PFBS	$165(50-150)$	PFBS	UJ (all non-detects)	P

XV. Compound Quantitation

The laboratory reporting limits were evaluated. All laboratory reporting limits met the specified requirements.

All compounds reported below the LOQ as detected by the laboratory were qualified as detected estimated (J). The details regarding the qualification of data are provided in Enclosures I and II.

XVI. Overall Assessment of Data

The analysis was conducted within all specifications of the method.
Due to severe holding time exceedances and MS/MSD \%Rs, data were qualified as rejected in fifteen samples.

Due to headspace, data were qualified as estimated in one sample.
Due to holding time exceedances, data were qualified as estimated in twenty-five samples.
Due to surrogate \%R, data were qualified as estimated in one sample.
Due to MS/MSD \%R and RPD, data were qualified as estimated in three samples.
Due to internal standard \%R, data were qualified as estimated in twenty-five samples.
Due to results below the LOQ, data were qualified as estimated in twenty-six samples.
The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

Data flags are summarized and are presented as Attachment 2.

Attachment 1

Sample Cross Reference

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	$\begin{aligned} & \text { Sample } \\ & \text { Type } \end{aligned}$	Prep Method	Analytical Method	Review Level
22-May-2018	TB-20180522	280-110058-1	TB	METHOD	8260B	Stage 2B
22-May-2018	A1-MW-51-SA1	1801024-01	N	Gen Prep	537 MOD	Stage 2B
22-May-2018	A1-MW-51-SA1	280-110058-2	N	METHOD	8260B	Stage 2B
22-May-2018	A1-MW-51-SA1	280-110058-2	N	METHOD	9040 C	Stage 2B
22-May-2018	A1-MW-51-SA1	280-110058-2	N	METHOD	9056A	Stage 2B
22-May-2018	A1-MW-51-SA1	280-110058-2	N	METHOD	SM3500 Fe B D	Stage 2B
22-May-2018	A1-MW-51-SA1DUP	280-110058-2DUP	DUP	METHOD	SM3500 Fe B D	Stage 2B
22-May-2018	A1-MW-51-SA1MS	280-110058-2MS	MS	METHOD	8260B	Stage 2B
22-May-2018	A1-MW-51-SA1MS	280-110058-2MS	MS	METHOD	SM3500 Fe B D	Stage 2B
22-May-2018	A1-MW-51-SA1MSD	280-110058-2MSD	MSD	METHOD	8260B	Stage 2B
22-May-2018	A1-MW-51-SA1MSD	280-110058-2MSD	MSD	METHOD	SM3500 Fe B D	Stage 2B
22-May-2018	A1-MW-50-SA1	1801024-02	N	Gen Prep	537 MOD	Stage 2B
22-May-2018	A1-MW-50-SA1	280-110058-3	N	METHOD	8260B	Stage 2B
22-May-2018	A1-MW-50-SA1	280-110058-3	N	METHOD	9040 C	Stage 2B
22-May-2018	A1-MW-50-SA1	280-110058-3	N	METHOD	9056A	Stage 2B
22-May-2018	A1-MW-50-SA1	280-110058-3	N	METHOD	SM3500 Fe B D	Stage 2B
22-May-2018	A1-MW-50-SA1DUP	280-110058-3DUP	DUP	METHOD	9040 C	Stage 2B
22-May-2018	A1-MW-49-SA1	1801024-03	N	Gen Prep	537 MOD	Stage 2B
22-May-2018	A1-MW-49-SA1	280-110058-4	N	METHOD	8260B	Stage 2B
22-May-2018	A1-MW-49-SA1	280-110058-4	N	METHOD	9040 C	Stage 2B
22-May-2018	A1-MW-49-SA1	280-110058-4	N	METHOD	9056A	Stage 2B
22-May-2018	A1-MW-49-SA1	280-110058-4	N	METHOD	SM3500 Fe B D	Stage 2B
22-May-2018	A1-MW-05-SA1	1801024-04	N	Gen Prep	537 MOD	Stage 2B
22-May-2018	A1-MW-05-SA1	280-110058-5	N	METHOD	8260B	Stage 2B
22-May-2018	A1-MW-05-SA1	280-110058-5	N	METHOD	9040 C	Stage 2B
22-May-2018	A1-MW-05-SA1	280-110058-5	N	METHOD	9056A	Stage 2B

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
22-May-2018	A1-MW-05-SA1	$280-110058-5$	N	METHOD	SM3500 Fe B D	Stage 2B
22-May-2018	A1-MW-04-SA1	$1801024-05$	N	Gen Prep	537 MOD	Stage 2B
22-May-2018	A1-MW-04-SA1	$280-110058-6$	N	METHOD	8260B	Stage 2B
22-May-2018	A1-MW-04-SA1	$280-110058-6$	N	METHOD	9040C	Stage 2B
22-May-2018	A1-MW-04-SA1	$280-110058-6$	N	N	METHOD	9056A

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
23-May-2018	A1-MW-19-SA1	280-110112-4	N	METHOD	9056A	Stage 4
23-May-2018	A1-MW-19-SA1	280-110112-4	N	METHOD	SM3500 Fe B D	Stage 4
23-May-2018	A1-MW-37-SA1	1801037-04	N	Gen Prep	537 MOD	Stage 4
23-May-2018	A1-MW-37-SA1	280-110112-6	N	METHOD	8260B	Stage 4
23-May-2018	A1-MW-37-SA1	280-110112-6	N	METHOD	9040C	Stage 4
23-May-2018	A1-MW-37-SA1	280-110112-6	N	METHOD	9056A	Stage 4
23-May-2018	A1-MW-37-SA1	280-110112-6	N	METHOD	SM3500 Fe B D	Stage 4
23-May-2018	A1-MW-37-SA1D	1801037-05	FD	Gen Prep	537 MOD	Stage 4
23-May-2018	A1-MW-37-SA1D	280-110112-5	FD	METHOD	8260B	Stage 4
23-May-2018	16-HS-03-SA1	1801037-06	N	Gen Prep	537 MOD	Stage 4
23-May-2018	16-HS-03-SA1	280-110112-7	N	METHOD	8260B	Stage 4
23-May-2018	16-HS-03-SA1	280-110112-7	N	METHOD	9040 C	Stage 4
23-May-2018	16-HS-03-SA1	280-110112-7	N	METHOD	9056A	Stage 4
23-May-2018	16-HS-03-SA1	280-110112-7	N	METHOD	SM3500 Fe B D	Stage 4
23-May-2018	16-HS-03-SA1DUP	280-110112-7DUP	DUP	METHOD	9056A	Stage 4
23-May-2018	16-HS-03-SA1DUP	280-110112-7DUP	DUP	METHOD	SM3500 Fe B D	Stage 4
23-May-2018	16-HS-03-SA1MS	280-110112-7MS	MS	METHOD	8260B	Stage 4
23-May-2018	16-HS-03-SA1MS	280-110112-7MS	MS	METHOD	9056A	Stage 4
23-May-2018	16-HS-03-SA1MS	280-110112-7MS	MS	METHOD	SM3500 Fe B D	Stage 4
23-May-2018	16-HS-03-SA1MSD	280-110112-7MSD	MSD	METHOD	8260B	Stage 4
23-May-2018	16-HS-03-SA1MSD	280-110112-7MSD	MSD	METHOD	9056A	Stage 4
23-May-2018	16-HS-03-SA1MSD	280-110112-7MSD	MSD	METHOD	SM3500 Fe B D	Stage 4
23-May-2018	FRB-20180523	1801037-09	FRB	Gen Prep	537 MOD	Stage 2B
24-May-2018	A1-MW-13-SA1	1801039-01	N	Gen Prep	537 MOD	Stage 2B
24-May-2018	A1-MW-11-SA1	1801039-02	N	Gen Prep	537 MOD	Stage 2B
24-May-2018	A1-MW-14-SA1	1801039-03	N	Gen Prep	537 MOD	Stage 2B

[^5]
Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	$\begin{gathered} \text { Sample } \\ \text { Tvpes } \end{gathered}$	Prep Method	Analytical Method	Review Level
24-May-2018	A1-MW-15-SA1	1801039-04	N	Gen Prep	537 MOD	Stage 2B
24-May-2018	A1-MW-25-SA1	1801039-07	N	Gen Prep	537 MOD	Stage 2B
24-May-2018	FRB-20180524	1801039-08	FRB	Gen Prep	537 MOD	Stage 2B
25-May-2018	TB-20180525	280-110226-12	TB	METHOD	8260B	Stage 2B
25-May-2018	A1-MW-42-SA1	1801054-01	N	Gen Prep	537 MOD	Stage 2B
25-May-2018	A1-MW-42-SA1	280-110226-1	N	METHOD	8260B	Stage 2B
25-May-2018	A1-MW-42-SA1	280-110226-1	N	METHOD	9040 C	Stage 2B
25-May-2018	A1-MW-42-SA1	280-110226-1	N	METHOD	9056A	Stage 2B
25-May-2018	A1-MW-42-SA1	280-110226-1	N	METHOD	SM3500 Fe B D	Stage 2B
25-May-2018	A1-MW-54-SA1	1801054-02	N	Gen Prep	537 MOD	Stage 2B
25-May-2018	A1-MW-54-SA1	280-110226-2	N	METHOD	8260B	Stage 2B
25-May-2018	A1-MW-54-SA1	280-110226-2	N	METHOD	9040C	Stage 2B
25-May-2018	A1-MW-54-SA1	280-110226-2	N	METHOD	9056A	Stage 2B
25-May-2018	A1-MW-54-SA1	280-110226-2	N	METHOD	SM3500 Fe B D	Stage 2B
25-May-2018	A1-MW-53-SA1	1801054-03	N	Gen Prep	537 MOD	Stage 2B
25-May-2018	A1-MW-53-SA1	280-110226-3	N	METHOD	8260B	Stage 2B
25-May-2018	A1-MW-53-SA1MS	280-110226-3MS	MS	METHOD	8260B	Stage 2B
25-May-2018	A1-MW-53-SA1MSD	280-110226-3MSD	MSD	METHOD	8260B	Stage 2B
25-May-2018	A1-PZ-19-SA1	1801054-04	N	Gen Prep	537 MOD	Stage 2B
25-May-2018	A1-PZ-19-SA1	280-110226-4	N	METHOD	8260B	Stage 2B
25-May-2018	A1-PZ-19-SA1	280-110226-4	N	METHOD	9040 C	Stage 2B
25-May-2018	A1-PZ-19-SA1	280-110226-4	N	METHOD	9056A	Stage 2B
25-May-2018	A1-PZ-19-SA1	280-110226-4	N	METHOD	SM3500 Fe B D	Stage 2B
25-May-2018	A1-MW-52-SA1	1801054-05	N	Gen Prep	537 MOD	Stage 2B
25-May-2018	A1-MW-52-SA1	280-110226-5	N	METHOD	8260B	Stage 2B
25-May-2018	A1-MW-52-SA1	280-110226-5	N	METHOD	9040 C	Stage 2B

[^6]Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
25-May-2018	A1-MW-52-SA1	$280-110226-5$	N	METHOD	9056A	Stage 2B
25-May-2018	A1-MW-52-SA1	$280-110226-5$	N	METHOD	SM3500 Fe B D	Stage 2B
25-May-2018	A1-MW-52-SA1DUP	$280-110226-5 D U P$	DUP	METHOD	9056A	Stage 2B
25-May-2018	A1-MW-52-SA1MS	$280-110226-5 M S$	MS	METHOD	9056A	Stage 2B
25-May-2018	A1-MW-52-SA1MSD	$280-110226-5 M S D$	MSD	METHOD	9056A	Stage 2B
25-May-2018	A1-MW-01-SA1	$1801054-06$	N	N	Gen Prep	537 MOD

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
30-May-2018	A1-MW-27-SA1	280-110291-6	N	METHOD	SM3500 Fe B D	Stage 2B
30-May-2018	A1-MW-25-SA1	280-110291-5	N	METHOD	8260B	Stage 2B
30-May-2018	A1-MW-25-SA1	280-110291-5	N	METHOD	9040 C	Stage 2B
30-May-2018	A1-MW-25-SA1	280-110291-5	N	METHOD	9056A	Stage 2B
30-May-2018	A1-MW-25-SA1	280-110291-5	N	METHOD	SM3500 Fe B D	Stage 2B
30-May-2018	A1-MW-55-SA1	1801071-02	N	Gen Prep	537 MOD	Stage 2B
30-May-2018	A1-MW-55-SA1	280-110291-4	N	METHOD	8260B	Stage 2B
30-May-2018	A1-MW-55-SA1	280-110291-4	N	METHOD	9040C	Stage 2B
30-May-2018	A1-MW-55-SA1	280-110291-4	N	METHOD	9056A	Stage 2B
30-May-2018	A1-MW-55-SA1	280-110291-4	N	METHOD	SM3500 Fe B D	Stage 2B
30-May-2018	A1-MW-23-SA1	1801071-03	N	Gen Prep	537 MOD	Stage 2B
30-May-2018	A1-MW-23-SA1	280-110291-3	N	METHOD	8260B	Stage 2B
30-May-2018	A1-MW-23-SA1	280-110291-3	N	METHOD	9040 C	Stage 2B
30-May-2018	A1-MW-23-SA1	280-110291-3	N	METHOD	9056A	Stage 2B
30-May-2018	A1-MW-23-SA1	280-110291-3	N	METHOD	SM3500 Fe B D	Stage 2B
30-May-2018	A1-MW-07-SA1	1801071-04	N	Gen Prep	537 MOD	Stage 2B
30-May-2018	A1-MW-07-SA1	280-110291-7	N	METHOD	8260B	Stage 2B
30-May-2018	A1-MW-07-SA1	280-110291-7	N	METHOD	9040 C	Stage 2B
30-May-2018	A1-MW-07-SA1	280-110291-7	N	METHOD	9056A	Stage 2B
30-May-2018	A1-MW-07-SA1	280-110291-7	N	METHOD	SM3500 Fe B D	Stage 2B
30-May-2018	A1-MW-14-SA1	280-110291-2	N	METHOD	8260B	Stage 2B
30-May-2018	A1-MW-14-SA1	280-110291-2	N	METHOD	9040 C	Stage 2B
30-May-2018	A1-MW-14-SA1	280-110291-2	N	METHOD	9056A	Stage 2B
30-May-2018	A1-MW-14-SA1	280-110291-2	N	METHOD	SM3500 Fe B D	Stage 2B
30-May-2018	A1-MW-14-SA1DUP	280-110291-2DUP	DUP	METHOD	9056A	Stage 2B
30-May-2018	A1-MW-14-SA1MS	280-110291-2MS	MS	METHOD	9056A	Stage 2B

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
30-May-2018	A1-MW-14-SA1MSD	280-110291-2MSD	MSD	METHOD	9056A	Stage 2B
30-May-2018	FRB-20180530	1801071-05	FRB	Gen Prep	537 MOD	Stage 2B
31-May-2018	TB-20180531	280-110353-1	TB	METHOD	8260B	Stage 2B
31-May-2018	A1-MW-13-SA1	280-110353-2	N	METHOD	8260B	Stage 2B
31-May-2018	A1-MW-13-SA1	280-110353-2	N	METHOD	9040C	Stage 2B
31-May-2018	A1-MW-13-SA1	280-110353-2	N	METHOD	9056A	Stage 2B
31-May-2018	A1-MW-13-SA1	280-110353-2	N	METHOD	SM3500 Fe B D	Stage 2B
31-May-2018	A1-MW-11-SA1	280-110353-3	N	METHOD	8260B	Stage 2B
31-May-2018	A1-MW-11-SA1	280-110353-3	N	METHOD	9040C	Stage 2B
31-May-2018	A1-MW-11-SA1	280-110353-3	N	METHOD	9056A	Stage 2B
31-May-2018	A1-MW-11-SA1	280-110353-3	N	METHOD	SM3500 Fe B D	Stage 2B
31-May-2018	A1-MW-11-SA1DUP	280-110353-3DUP	DUP	METHOD	9040 C	Stage 2B
31-May-2018	A1-MW-15-SA1	280-110353-4	N	METHOD	8260B	Stage 2B
31-May-2018	A1-MW-15-SA1	280-110353-4	N	METHOD	9040C	Stage 2B
31-May-2018	A1-MW-15-SA1	280-110353-4	N	METHOD	9056A	Stage 2B
31-May-2018	A1-MW-15-SA1	280-110353-4	N	METHOD	SM3500 Fe B D	Stage 2B
31-May-2018	EB-20180531	1801084-01	EB	Gen Prep	537 MOD	Stage 2B
31-May-2018	EB-20180531	280-110353-5	EB	METHOD	8260B	Stage 2B
31-May-2018	16-HS-03-SA1MS	B8E0244-MS1	MS	Gen Prep	537 MOD	Stage 4
31-May-2018	A1-MW-53-SA1MS	B8E0244-MS2	MS	Gen Prep	537 MOD	Stage 2B
31-May-2018	16-HS-03-SA1MSD	B8E0244-MSD1	MSD	Gen Prep	537 MOD	Stage 4
31-May-2018	A1-MW-53-SA1MSD	B8E0244-MSD2	MSD	Gen Prep	537 MOD	Stage 2B

Attachment 2

Overall Data Qualification Summary

Data Qualifier Summary

Lab Reporting Batch ID: 280-110058-1, 280-110112-1, EDD Filename: Prep280-110058-1, Prep280-110112-1, Prep280-110226-1, Prep280-110291-1, Prep280-110353-1 SDG: 280-110058-1.

* denotes a non-reportable result

Project Name and Number: 4663.3803 - CTO 17F3803 Yuma
7/24/2018 8:01:24 AM

Data Qualifier Summary

Lab Reporting Batch ID: 280-110058-1, 280-110112-1,
Laboratory: TA DEN
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver EDD Filename: Prep280-110058-1, Prep280-110112-1,
Prep280-110226-1, Prep280-110291-1, Prep280-110353-1
SDG: 280-110058-1

Method caregorys yoA Method: 8260 B	Matrix: AQ								
Sample ID:A1-MW-50-SA1	5/22/2018 11:30:00Collected:AMAnalysis Type: RES							Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,1-DICHLOROETHENE	0.643	J	0.800	LOD	1.00	LOQ	ug/L	J	RI
TRICHLOROETHENE	0.903	J	0.400	LOD	1.00	LOQ	ug/L	J	RI

* denotes a non-reportable result

Project Name and Number: 4663.3803 - CTO 17F3803 Yuma
7/24/2018 8:01:24 AM

Data Qualifier Summary

Lab Reporting Batch ID: 280-110058-1, 280-110112-1, EDD Filename: Prep280-110058-1, Prep280-110112-1, Prep280-110226-1, Prep280-110291-1, Prep280-110353-1

Sample ID:16-HS-03-SA1	$\begin{aligned} & \text { 5/23/2018 2:19:00 } \\ & \text { Collected: PM } \end{aligned}$				Analysis Type:RES/TOT				ilution: 1
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	$R L$ Type	Units	Data Review Qual	Reason Code
PH	8.2	HF	0.1	LOD	0.1	LOQ	SU	J	StoA

Sample ID:16-MW-08-SA1	$\begin{array}{r} \text { 5/23/ } \\ \text { Collected:AM } \\ \hline \end{array}$		Analysis Type:RES/TOT					Dilution: 1	
Analyte	Lab Result	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{gathered} \text { DL } \\ \text { Type } \end{gathered}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
PH	8.0	HF	0.1	LOD	0.1	LOQ	SU	J	StoA

5/23/2018 9:00:00

Sample ID:A1-MW-18-SA1	Collected: AM		Analysis Type:RES/TOT					Dilution: 1	
Analyte	$\begin{gathered} \text { Lab } \\ \text { Result } \end{gathered}$	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{gathered} \text { DL } \\ \text { Type } \end{gathered}$	RL	RL Type	Units	Data Review Qual	Reason Code
PH	7.7	HF	0.1	LOD	0.1	LOQ	SU	J	StoA

5/23/2018 12:03:00

Sample ID:A1-MW-19-SA1	Collected:PM			Analysis Type:RES/TOT				Dilution: 1	
Analyte	$\begin{gathered} \text { Lab } \\ \text { Result } \end{gathered}$	Lab Qual	DL	$\begin{aligned} & \text { DL } \\ & \text { Type } \end{aligned}$	RL	RL Type	Units	Data Review Qual	Reason Code
PH	7.7	HF	0.1	LOD	0.1	LOQ	SU	J	StoA

* denotes a non-reportable result

Project Name and Number: 4663.3803 - CTO 17F3803 Yuma
7/24/2018 8:01:24 AM

Data Qualifier Summary

Lab Reporting Batch ID: 280-110058-1, 280-110112-1,
Laboratory: TA DEN
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Prep280-110226-1, Prep280-110291-1, Prep280-110353-1 SDG: 280-110112-1

Sample ID:16-MW-08-SA1	$\begin{aligned} & \text { 5/23/2018 11:09:00 } \\ & \text { Collected:AM } \\ & \hline \end{aligned}$				Analysis Type:RES/TOT			Dilution: 1	
Analyte	$\begin{gathered} \text { Lab } \\ \text { Result } \end{gathered}$	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
Ferrous Iron	0.0403	J HF	0.0500	LOD	0.200	LOQ	mg / L	J	RI

5/23/2018 9:00:00

Sample ID:A1-MW-18-SA1	Collected:AM			Analysis Type: RES/TOT				Dilution: 1	
Analyte	$\begin{gathered} \text { Lab } \\ \text { Result } \end{gathered}$	Lab Qual	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
Ferrous Iron	0.0215	J HF	0.0500	LOD	0.200	LOQ	mg / L	J	RI, StoA

[^7]7/24/2018 8:01:24 AM
Page 4 of 14

Data Qualifier Summary

Lab Reporting Batch ID: 280-110058-1, 280-110112-1, EDD Filename: Prep280-110058-1, Prep280-110112-1,
Prep280-110226-1, Prep280-110291-1, Prep280-110353-1 SDG: 280-110112-1

5/23/2018 11:09:00

Sample ID:16-MW-08-SA1	Collected:AM		Analysis Type: RES					Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{aligned} & \text { DL } \\ & \text { Type } \end{aligned}$	$R L$	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
TETRACHLOROETHENE	0.669	J	0.400	LOD	1.00	LOQ	ug/L	J	RI

5/23/2018 9:00:00

Sample ID:A1-MW-18-SA1	Collected:AM			Analysis Type: RES				Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{aligned} & \text { DL } \\ & \text { Type } \end{aligned}$	$R L$	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
1,1-DICHLOROETHENE	0.452	J	0.800	LOD	1.00	LOQ	ug/L	J	RI
Sample ID:A1-MW-19-SA1									
Analyte	Lab Result	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{gathered} \text { DL } \\ \text { Type } \end{gathered}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
TRICHLOROETHENE	0.424	J	0.400	LOD	1.00	LOQ	ug/L	J	RI

* denotes a non-reportable result

Project Name and Number: 4663.3803 - CTO 17F3803 Yuma
7/24/2018 8:01:24 AM

Data Qualifier Summary

Lab Reporting Batch ID: 280-110058-1, 280-110112-1,
Laboratory: TA DEN EDD Filename: Prep280-110058-1, Prep280-110112-1, Prep280-110226-1, Prep280-110291-1, Prep280-110353-1

* denotes a non-reportable result

Project Name and Number: 4663.3803 - CTO 17F3803 Yuma
7/24/2018 8:01:24 AM

Data Qualifier Summary

Lab Reporting Batch ID: 280-110058-1, 280-110112-1,
Laboratory: TA DEN EDD Filename: Prep280-110058-1, Prep280-110112-1, eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver Prep280-110226-1, Prep280-110291-1, Prep280-110353-1

Sample ID:A1-MW-54-SA1	$\begin{aligned} & \text { 5/25/2018 9:09:00 } \\ & \text { Collected:AM } \end{aligned}$				Analysis Type:RES/TOT			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{aligned} & \text { DL } \\ & \text { Type } \end{aligned}$	RL	RL Type	Units	Data Review Qual	Reason Code
PH	7.9	HF	0.1	LOD	0.1	LOQ	SU	J	StoA

Mevod category envertM Method: 9056 A	Matrix: AQ								
Sample ID:A1-MW-52-SA1	Collected: PM				Analysis Type: RE/TOT			Dilution: 5	
Analyte	$\begin{gathered} \text { Lab } \\ \text { Result } \end{gathered}$	Lab Qual	DL	$D L$ Type	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
CHLORIDE	500	F1	2.50	LOD	15.0	LOQ	mg / L	J	Ms

Sample ID:A1-MW-54-SA1

Mehod Chtegory cevchim Method: SM3500 Fe B D	Matrix. AQ								
Sample ID:A1-MW-01-SA1	$\begin{aligned} & \text { 5/25/2018 1:56:00 } \\ & \text { Collected:PM } \end{aligned}$				Analysis Type:RES/TOT			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
Ferrous Iron	0.0500	U HF	0.0500	LOD	0.200	LOQ	mg / L	R	StoA

* denotes a non-reportable result

Project Name and Number: 4663.3803 - CTO 17F3803 Yuma
7/24/2018 8:01:24 AM

Data Qualifier Summary

Lab Reporting Batch ID: 280-110058-1, 280-110112-1, EDD Filename: Prep280-110058-1, Prep280-110112-1, Prep280-110226-1, Prep280-110291-1, Prep280-110353-1

SDG: 280-110226-1				5		12			
Method categoryrCENCHEM Method:SM3500 Fe B D			M	s:			5		
Sample ID:A1-MW-31-SA1	$\begin{aligned} & \text { 5/25/2018 2:49:0 } \\ & \text { Collected:PM } \\ & \hline \end{aligned}$			Analysis Type:RES/TOT				Dilution: 1	
Analyte	Lab Result	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{aligned} & \text { DL } \\ & \text { Type } \end{aligned}$	RL	RL Type	Units	Data Review Qual	Reason Code
Ferrous Iron	0.0500	U HF	0.0500	LOD	0.200	LOQ	mg/L	R	Ms, StoA
Sample ID:A1-MW-42-SA1					Analysis Type: RES/TOT			Dilution: 1	
Analyte	Lab Result	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{gathered} \text { DL } \\ \text { Type } \end{gathered}$	RL	RL Type	Units	Data Review Qual	Reason Code
Ferrous Iron	0.0500	U HF	0.0500	LOD	0.200	LOQ	mg / L	R	StoA

Sample ID:A1-MW-52-SA1	$\begin{aligned} & \text { 5/25/2018 1:00:00 } \\ & \text { Collected:PM } \end{aligned}$				Analysis Type: RES/TOT			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{aligned} & \text { DL } \\ & \text { Type } \end{aligned}$	RL	RL Type	Units	Data Review Qual	Reason Code
Ferrous Iron	0.0500	U HF	0.0500	LOD	0.200	LOQ	mg / L	R	StoA
Sample ID:A1-MW-54-SA1	$\begin{aligned} & \text { 5/25/2018 9:09:00 } \\ & \text { Collected:AM } \end{aligned}$				Analysis Type:RES/TOT			Dilution: 1	
Analyte	Lab Result	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{gathered} \text { DL } \\ \text { Type } \end{gathered}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
Ferrous Iron	0.0500	U HF	0.0500	LOD	0.200	LOQ	mg / L	R	StoA

5/25/2018 11:59:00

Method eategoryt YOA Method: 8260 B	Matrix \quad AO								
Sample ID:A1-MW-31-SA1	$\begin{aligned} & \text { 5/25/2018 2:49:00 } \\ & \text { Collected:PM } \\ & \hline \end{aligned}$				Analysis Type: RES			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
TRICHLOROETHENE	0.353	J	0.400	LOD	1.00	LOQ	ug/L	J	RI

* denotes a non-reportable result

Project Name and Number: 4663.3803 - CTO 17F3803 Yuma
7/24/2018 8:01:24 AM
Page 8 of 14

Data Qualifier Summary

Lab Reporting Batch ID: 280-110058-1, 280-110112-1, EDD Filename: Prep280-110058-1, Prep280-110112-1, Prep280-110226-1, Prep280-110291-1, Prep280-110353-1 SDG: 280-110226-1

5/30/2018 1:38:00

Sample ID:A1-MW-14-SA1	Collected:PM			Analysis Type:RES/TOT				Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} \text { DL } \\ \text { Type } \end{gathered}$	RL	RL Type	Units	Data Review Qual	Reason Code
PH	7.9	HF	0.1	LOD	0.1	LOQ	SU	J	StoA

[^8]7/24/2018 8:01:24 AM

Data Qualifier Summary

Lab Reporting Batch ID: 280-110058-1, 280-110112-1, EDD Filename: Prep280-110058-1, Prep280-110112-1, Prep280-110226-1, Prep280-110291-1, Prep280-110353-1

SDG: 280-110291-1

* denotes a non-reportable result

Project Name and Number: 4663.3803 - CTO 17F3803 Yuma
7/24/2018 8:01:24 AM

Data Qualifier Summary

Lab Reporting Batch ID: 280-110058-1, 280-110112-1,
Laboratory: TA DEN
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver
EDD Filename: Prep280-110058-1, Prep280-110112-1, Prep280-110226-1, Prep280-110291-1, Prep280-110353-1
SDG: 280-110291-1

Sample ID:A1-MW-07-SA1	Collected:PM5/30/2018 12:06:00				Analysis Type:RES			Dilution: 1	
Analyte	$\begin{gathered} \text { Lab } \\ \text { Result } \end{gathered}$	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,1-DICHLOROETHENE	0.405	J	0.800	LOD	1.00	LOQ	ug/L	J	RI
TRICHLOROETHENE	0.797	J	0.400	LOD	1.00	LOQ	ug/L	J	RI
Sample ID:A1-MW-14-SA1	Collected:PM				Analysis Type:RES			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,1-DICHLOROETHENE	0.898	J	0.800	LOD	1.00	LOQ	ug/L	J	RI

* denotes a non-reportable result

Project Name and Number: 4663.3803 - CTO 17F3803 Yuma
7/24/2018 8:01:24 AM

Data Qualifier Summary

Lab Reporting Batch ID: 280-110058-1, 280-110112-1,
EDD Filename: Prep280-110058-1, Prep280-110112-1, Prep280-110226-1, Prep280-110291-1, Prep280-110353-1 SDG: 280-110291-1

Methoo oategory VoA Method: 8260 B		茂	Matrix: AQ						
Sample ID:A1-MW-14-SA1	$\begin{aligned} & \text { 5/30/2018 1:38:00 } \\ & \text { Collected:PM } \end{aligned}$				Analysis Type:RES			Dilution: 1	
Analyte	Lab Result	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	RL Type	Units	Data Review Qual	Reason Code
TRICHLOROETHENE	0.876	J	0.400	LOD	1.00	LOQ	ug/L	J	RI
Sample ID:A1-MW-23-SA1	$\begin{aligned} & \begin{array}{l} \text { 5/30/2018 11:10:00 } \\ \text { Collected:AM } \end{array} \\ & \hline \end{aligned}$				Analysis Type:RES			Dilution: 1	
Analyte	$\begin{gathered} \text { Lab } \\ \text { Result } \end{gathered}$	Lab Qual	DL	$\begin{gathered} \text { DL } \\ \text { Type } \end{gathered}$	RL	$R L$ Type	Units	Data Review Qual	Reason Code
1,1-DICHLOROETHENE	0.800	U	0.800	LOD	1.00	LOQ	ug/L	UJ	Headspace
TETRACHLOROETHENE	0.400	U	0.400	LOD	1.00	LOQ	ug/L	UJ	Headspace
TRICHLOROETHENE	0.400	U	0.400	LOD	1.00	LOQ	ug/L	UJ	Headspace
Sample ID:A1-MW-25-SA1	$\begin{aligned} & \text { 5/30/2018 9:12:00 } \\ & \text { Collected:AM } \end{aligned}$				Analysis Type: RES			Dilution: 1	
Analyte	$\begin{gathered} \text { Lab } \\ \text { Result } \end{gathered}$	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	RL Type	Units	Data Review Qual	Reason Code
1,1-DICHLOROETHENE	0.204	J	0.800	LOD	1.00	LOQ	ug/L	J	RI
TRICHLOROETHENE	0.418	J	0.400	LOD	1.00	LOQ	ug/L	J	RI

SDG: 280-110353-1

Method eategory $E M$ Method: 9040 C	Matrix AQ								
Sample ID:A1-MW-11-SA1	Collected:AM5/31/2018 8:24:00Analysis Type:RES/TOT							Dilution: 1	
Analyte	$\begin{gathered} \text { Lab } \\ \text { Result } \end{gathered}$	Lab Qual	DL	$\begin{aligned} & \text { DL } \\ & \text { Type } \end{aligned}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
PH	8.1	HF	0.1	LOD	0.1	LOQ	SU	J	StoA
Sample ID:A1-MW-13-SA1	$\begin{aligned} & \text { 5/31/2018 7:43:00 } \\ & \text { Collected:AM } \\ & \hline \end{aligned}$				Analysis Type:RES/TOT			Dilution: 1	
Analyte	$\begin{gathered} \text { Lab } \\ \text { Result } \end{gathered}$	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
PH	8.0	HF	0.1	LOD	0.1	LOQ	SU	J	StoA

[^9]7/24/2018 8:01:24 AM

Data Qualifier Summary

Lab Reporting Batch ID: 280-110058-1, 280-110112-1,
Laboratory: TA DEN
EDD Filename: Prep280-110058-1, Prep280-110112-1, Prep280-110226-1, Prep280-110291-1, Prep280-110353-1

Method Category GENCHEM Method: SM3500 Fe B D	Matrix: AQ								
Sample ID:A1-MW-11-SA1	Collected:AM5/31/2018 8:24:00Analysis Type:RES/TOT							Dilution: 1	
Analyte	$\begin{gathered} \text { Lab } \\ \text { Result } \end{gathered}$	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
Ferrous Iron	0.0500	U HF	0.0500	LOD	0.200	LOQ	mg / L	R	StoA
Sample ID:A1-MW-13-SA1	Collected:AM ${ }^{\text {5/31/2018 7:43:00 }}$				Analysis Type:RES/TOT			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} \text { DL } \\ \text { Type } \end{gathered}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
Ferrous Iron	0.0500	U HF	0.0500	LOD	0.200	LOQ	mg / L	R	StoA
Sample ID:A1-MW-15-SA1	\qquad				Analysis Type: RES/TOT			Dilution: 1	
Analyte	Lab Result	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{aligned} & \text { DL } \\ & \text { Type } \end{aligned}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
Ferrous Iron	0.0500	U HF	0.0500	LOD	0.200	LOQ	mg / L	R	StoA

Sample ID:A1-MW-15-SA1

* denotes a non-reportable result

Project Name and Number: 4663.3803 - CTO 17F3803 Yuma
7/24/2018 8:01:24 AM

Data Qualifier Summary

Lab Reporting Batch ID: 280-110058-1, 280-110112-1,
EDD Filename: Prep280-110058-1, Prep280-110112-1, Prep280-110226-1, Prep280-110291-1, Prep280-110353-1

eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver

Reason Code Legend

Reason Code	Description
Headspace	Preservation
Mb	Method Blank Contamination
Ms	Matrix Spike Lower Estimation
Ms	Matrix Spike Lower Rejection
Ms	Matrix Spike Precision
Preservation	Preservation
RI	Reporting Limit Trace Value
StoA	Sampling to Analysis Estimation
StoA	Sampling to Analysis Rejection
Surr	Surrogate/Tracer Recovery Lower Estimation

[^10]Project Name and Number: 4663.3803 - CTO 17F3803 Yuma

Data Qualifier Summary

Lab Reporting Batch ID: 1801024, 1801037, 1801039,
EDD Filename: 1801024, 1801037, 1801039, 1801054, 1801071, 1801084
SDG: 1801024

Mehod eargory SVOA Method: 537 MOD	Matrix: AQ								
Sample ID:A1-MW-04-SA1	$\begin{aligned} & \quad \text { 5/22/2018 2:06:00 } \\ & \text { Collected:PM } \\ & \hline \end{aligned}$				Analysis Type: RES			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{aligned} & \text { DL } \\ & \text { Type } \end{aligned}$	RL	RL Type	Units	$\begin{gathered} \text { Data } \\ \text { Review } \\ \text { Qual } \end{gathered}$	Reason Code
PFOA	0.00333	J	0.00508	LOD	0.00812	LOQ	ug/L	J	RI
PFOS	0.00161	J	0.00508	LOD	0.00812	LOQ	ug/L	J	RI

5/22/2018 1:19:00

Sample ID:A1-MW-05-SA1	Collected:PM			Analysis Type:RES				Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	RL Type	Units	Data Review Qual	Reason Code
PFHpA	0.000917	J	0.00525	LOD	0.00842	LOQ	ug/L	J	RI
PFHxS	0.00278	J	0.00525	LOD	0.00842	LOQ	ug/L	J	RI
Sample ID:A1-MW-49-SA1	$\begin{aligned} & \text { 5/22/2018 12:20:00 } \\ & \text { Collected:PM } \end{aligned}$				Analysis Type:RES			Dilution: 1	
Analyte	Lab Result	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	RL Type	Units	Data Review Qual	Reason Code
PFBS	0.00627	J	0.00508	LOD	0.00812	LOQ	ug/L	J	RI
Analyte	Lab Result	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	$R L$	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
NEtFOSAA	0.00521	U	0.00521	LOD	0.00836	LOQ	ug/L	UJ	Is
PFBS	0.0613		0.00521	LOD	0.00836	LOQ	ug/L	J	Is
PFOS	0.00303	J	0.00521	LOD	0.00836	LOQ	ug/L	J	RI

SDG. 1801037

Method Categrory
Method:

SVOA

537 MOD
Matrix: AQ
5/23/2018 2:19:00
Sample ID:16-HS-03-SA1

Sample ID:16-HS-03-SA1	Collected:PM			Analysis Type: RES				Dilution: 1	
Analyte	$\begin{gathered} \text { Lab } \\ \text { Result } \end{gathered}$	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{gathered} \text { DL } \\ \text { Type } \end{gathered}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
PFBS	0.582		0.00500	LOD	0.00803	LOQ	ug/L	J	Is
PFHxS	0.150		0.00500	LOD	0.00803	LOQ	ug/L	J	Ms

* denotes a non-reportable result

Project Name and Number: 4663.3803 - CTO 17F3803 Yuma
7/19/2018 12:54:59 PM
ADR version 1.9.0.325
Page 1 of 7

Data Qualifier Summary

Lab Reporting Batch ID: 1801024, 1801037, 1801039, EDD Filename: 1801024, 1801037, 1801039, 1801054, 1801071, 1801084
SDG: 1801037

* denotes a non-reportable result

Project Name and Number: 4663.3803 - CTO 17F3803 Yuma
7/19/2018 12:54:59 PM

Data Qualifier Summary

Lab Reporting Batch ID: 1801024, 1801037, 1801039, EDD Filename: 1801024, 1801037, 1801039, 1801054, 1801071, 1801084
SDG:1801037

SDG: 1801039
Method Category
syo4
537 MOD

Method:
Matrix: AQ
5/24/2018 8:51:00
Sample ID:A1-MW-11-SA1

Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Data Units	Review Qual	Reason Code
PFOS	0.00359	J	0.00539	LOD	0.00860	LOQ	ug/L	J	RI
PFBS	0.109		0.00539	LOD	0.00860	LOQ	ug / L	J	Is

5/24/2018 7:44:00
Sample ID:A1-MW-13-SA1

Analyte	
PFBS	

[^11]7/19/2018 12:54:59 PM

Data Qualifier Summary

Lab Reporting Batch ID: 1801024, 1801037, 1801039,
Laboratory: Vista
EDD Filename: 1801024, 1801037, 1801039, 1801054, 1801071, 1801084
SDG: 1801039

Method category: SVOA Method: $\mathbf{5 3 7}$ MOD	Matrix: AQ								
Sample ID:A1-MW-14-SA1	$\begin{array}{ll} \text { 5/24/2018 10:05:00 } \\ \text { Collected: AM } & \text { Analysis Type:RES } \\ \hline \end{array}$							Dilution: 1	
Analyte	Lab Result	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	RL Type	Units	Data Review Qual	Reason Code
PFBS	0.118		0.00558	LOD	0.00893	LOQ	ug/L	J	Is
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	$R L$	RL Type	Units	Data Review Qual	Reason Code
PFBS	0.523		0.00558	LOD	0.00889	LOQ	ug/L	J	Is
Analyte	Lab Result	Lab Qual	DL	$\begin{aligned} & \text { DL } \\ & \text { Type } \end{aligned}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
PFBS	0.355		0.00553	LOD	0.00889	LOQ	ug/L	J	Is

SDG: 1801054

5/25/2018 2:06:00

[^12]Project Name and Number: 4663.3803-CTO 17F3803 Yuma
7/19/2018 12:54:59 PM

Data Qualifier Summary

Lab Reporting Batch ID: 1801024, 1801037, 1801039,
Laboratory: Vista
EDD Filename: 1801024, 1801037, 1801039, 1801054, 1801071, 1801084
SDG: 1801054

Mehod eategorg: SVOA Method: 537 MOD	Matrix AQ								
Sample ID:A1-MW-31-SA1	Collected:PM5/25/2018 2:49:00 Analysis Type: RES							Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{aligned} & \text { DL } \\ & \text { Type } \end{aligned}$	RL	RL Type	Units	$\begin{aligned} & \text { Data } \\ & \text { Review } \end{aligned}$ Qual	Reason Code
PFBS	0.0634		0.00553	LOD	0.00887	LOQ	ug/L	J	Is
PFHpA	0.00851	J	0.00553	LOD	0.00887	LOQ	ug/L	J	RI

5/25/2018 7:56:00

Sample ID:A1-MW-42-SA1	Collected:AM			Analysis Type: RES				Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} \text { DL } \\ \text { Type } \end{gathered}$	RL	RL Type	Units	Data Review Qual	Reason Code
PFBS	0.292		0.00553	LOD	0.00887	LOQ	ug/L	J	Is
PFOS	0.00186	J	0.00553	LOD	0.00887	LOQ	ug/L	J	RI

Sample ID:A1-MW-52-SA1	$\begin{array}{r} 5 / 25 \\ \text { Collected:PM } \\ \hline \end{array}$			Analysis Type: RES				Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	$R L$ Type	Units	Data Review Qual	Reason Code
PFBS	0.146		0.00543	LOD	0.00869	LOQ	ug/L	J	Is

Sample ID:A1-MW-53-SA1	Collected:AM			Analysis Type: RES				Dilution: 1	
Analyte	Lab Result	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{aligned} & \text { DL } \\ & \text { Type } \end{aligned}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
PFBS	0.551		0.00548	LOD	0.00878	LOQ	ug/L	J	Is
PFOS	0.00188	J	0.00548	LOD	0.00878	LOQ	ug/L	J	RI

Sample ID:A1-MW-54-SA1	$\begin{aligned} & \text { 5/25/2018 9:09:00 } \\ & \text { Collected:AM } \end{aligned}$				Analysis Type:RES			Dilution: 1	
Analyte	Lab Result	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{gathered} \text { DL } \\ \text { Type } \end{gathered}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
PFBS	0.536		0.00558	LOD	0.00892	LOQ	ug/L	J	Is
PFOS	0.00652	J	0.00558	LOD	0.00892	LOQ	ug/L	J	RI

5/25/2018 11:59:00
Sample ID:A1-PZ-19-SA1

[^13]7/19/2018 12:54:59 PM

Data Qualifier Summary

Lab Reporting Batch ID: 1801024, 1801037, 1801039,
Laboratory: Vista
EDD Filename: 1801024, 1801037, 1801039, 1801054, 1801071, 1801084
SDG: 1801054

Sample ID:A1-MW-55-SA1	$\begin{aligned} & 5 / 301 \\ & \text { Collected:AM } \\ & \hline \end{aligned}$		Analysis Type: RES					Dilution: 1	
Analyte	Lab Result	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	RL Type	Units	Data Review Qual	Reason Code
PFBS	0.00548	U	0.00548	LOD	0.00875	LOQ	ug/L	UJ	Is

* denotes a non-reportable result

Project Name and Number: 4663.3803 - CTO 17F3803 Yuma
7/19/2018 12:54:59 PM

Data Qualifier Summary

Lab Reporting Batch ID: 1801024, 1801037, 1801039, 1801071, 1801084

Reason Code Legend

Reason Code	Description
Is	Internal Standard Estimation
Lcs	Laboratory Control Spike Upper Estimation
Ms	Matrix Spike Lower Estimation
Ms	Matrix Spike Lower Rejection
Ms	Matrix Spike Precision
Ms	Matrix Spike Upper Estimation
Rl	Reporting Limit Trace Value

[^14]
Enclosure I

Stage 2B ADR Outliers

(Including Manual Review Outliers)

Quality Control Outlier Reports

$$
280-110058-1
$$

QC Outlier Report: HoldingTimes

Lab Reporting Batch ID: 280-110058-1
Laboratory: TA DEN
EDD Filename: 280-110058-1
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver

Methoar 9040C Matrix: AQ			5	3	TMethoo:
Sample ID	Type	Actual	Criteria	Units	Flag
A1-MW-04-SA1 (RES/TOT)	Sampling To Analysis	226.00	24.00	HOURS	J (all detects)
A1-MW-05-SA1 (RES/TOT)		319.25	24.00	HOURS	
A1-MW-49-SA1 (RES/TOT)		227.75	24.00	HOURS	
A1-MW-50-SA1 (RES/TOT)		228.25	24.00	HOURS	
A1-MW-50-SA1DUP (RES/TOT)		228.50	24.00	HOURS	
A1-MW-51-SA1 (RES/TOT)		229.25	24.00	HOURS	

Sample ID	Type	Actual	Criteria	Units	
A1-MW-04-SA1 (RES/TOT)	Sampling To Analysis	45.75	24.00	HOURS	Flag
A1-MW-05-SA1 (RES/TOT)		46.50	24.00	HOURS	J(all detects)
A1-MW-49-SA1 (RES/TOT)		47.50	24.00	HOURS	
A1-MWW-50-SA1 (RESTOT)		Sampling To Analysis	48.25	24.00	HOURS
A1-MW-51-SA1 (RES/TOT)	49.50	24.00	HOURS	J(all detects)	
A1-MW-51-SA1DUP (RES/TOT)		49.50	24.00	HOURS	R(all non-detects)
A1-MW-51-SA1MS (RES/TOT)		49.50	24.00	HOURS	
A1-MW-51-SA1MSD (RES/TOT)		49.50	24.00	HOURS	

Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: 280-110058-1
Laboratory: TA DEN
EDD Filename: 280-110058-1
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver

| QC Sample ID
 (Associated
 Samples) | | | | | | |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |

Reporting Limit Outliers

Lab Reporting Batch ID: 280-110058-1
Laboratory: TA DEN
EDD Filename: 280-110058-1
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver
Meihod: 8260 B
Matrix: AQ

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
A1-MW-50-SA1	1,1-DICHLOROETHENE	J	0.643	1.00	LOQ	ug / L	J (all detects)
	TRICHLOROETHENE	J	0.903	1.00	LOQ	ug / L	
A1-MW-51-SA1	1,1-DICHLOROETHENE	J	0.629	1.00	LOQ	ug / L	J (all detects)

Methode 9036A
Matrix: AQ

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
A1-MW-49-SA1	NITRATE	J	2.82	5.00	LOQ	mg / L	J (all detects)

Method: SM3500Fe B D
Matrix: AQ

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
A1-MW-04-SA1	Ferrous Iron	JHF	0.0751	0.200	LOQ	mg / L	J (all detects)
A1-MW-05-SA1	Ferrous Iron	JHF	0.0617	0.200	LOQ	mg / L	J (all detects)
A1-MW-51-SA1	Ferrous Iron	JHF F 1	0.0563	0.200	LOQ	mg / L	J (all detects)

LDC \#: 42613A1
SDG \#: 280-110058-1
Laboratory:Test America, Inc.

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times		
II.	GC/MS Instrument performance check	\xrightarrow{A}	
III.	Initial calibration/ICV	$\leq x, A$	$\tan 0 \leqslant 150.10 \sqrt{3}+2$
IV.	Continuing calibration	A	$\operatorname{HeV} 500 / 507$
V.	Laboratory Blanks	N	
VI.	Field blanks	$N D$	$T B=1$
VII.	Surrogate spikes	N	
VIII.	Matrix spike/Matrix spike duplicates	N	
IX.	Laboratory control samples	N	
X.	Field duplicates	${ }^{*}$	
XI.	Internal standards	A	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	N	

Note: $\quad \mathrm{A}=$ Acceptable
$\mathrm{N}=$ Not provided/applicable
SW = See worksheet

ND = No compounds detected
R = Rinsate
$\mathrm{FB}=$ Field blank

D = Duplicate
TB = Trip blank
$E B=$ Equipment blank

SB=Source blank OTHER:

Lab ID	Matrix	Date
$280-110058-1$	Water	$05 / 22 / 18$
$280-110058-2$	Water	$05 / 22 / 18$
$280-110058-3$	Water	$05 / 22 / 18$
$280-110058-4$	Water	$05 / 22 / 18$
$280-110058-5$	Water	$05 / 22 / 18$
$280-110058-6$	Water	$05 / 22 / 18$
$280-110058-2$ MS	Water	$05 / 22 / 18$
$280-110058-2 M S D$	Water	$05 / 22 / 18$

Notes:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation_Area		
I.	Sample receipt/Technical holding times	A	
II	Initial calibration	A	
III.	Calibration verification	A	
IV	Laboratory Blanks	A	
V	Field blanks	-	
VI.	Matrix Spike/Matrix Spike Duplicates	N	
VII.	Duplicate sample analysis	N	
VIII.	Laboratory control samples	N	
IX.	Field duplicates	-	
X.	Sample result verification	N	
XI_	Overall_assessment_ofdata	N	

Note:	$A=$ Acceptable	$N D=$ No compounds detected	$D=$ Duplicate	SB=Source blank
	$N=$ Not provided/applicable	$R=$ Rinsate	TB $=$ Trip blank	OTHER:
	$S W=$ See worksheet	FB = Field blank	BB $=$ Equipment blank	

	Client ID	Lab ID	Matrix	Date
1	A1-MW-51-SA1	$280-110058-2$	Water	$05 / 22 / 18$
2	A1-MW-50-SA1	$280-110058-3$	Water	$05 / 22 / 18$
3	A1-MW-49-SA1	$280-110058-4$	Water	$05 / 22 / 18$
4	A1-MW-05-SA1	$280-110058-5$	Water	$05 / 22 / 18$
5	A1-MW-04-SA1	$280-110058-6$	Water	$05 / 22 / 18$
6	A1-MW-51-SA1MS	$280-110058-2 M S$	Water	$05 / 22 / 18$
7	A1-MW-51-SA1MSD	$280-110058-2 M S D$	Water	$05 / 22 / 18$
8	A1-MW-51-SA1DUP	$280-110058-2 D U P$	Water	$05 / 22 / 18$
9	A1-MW-50-SA1DUP	$280-110058-3 D U P$	Water	$05 / 22 / 18$
10				
11				
12				
13				
14				
15				

Notes:

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

Page: 1 of 1 Reviewer: CR 2nd reviewer: bole

All circled methods are applicable to each sample.

Quality Control Outlier Reports

280-110112-1

QC Outlier Report: HoldingTimes

Lab Reporting Batch ID: 280-110112-1
Laboratory: TA DEN
EDD Filename: 280-110112-1
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver

| Methodf 9040 C |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Matrix: |
| AQ |

Methot SMB500Fe B D preparatommethoorvinigh
Matrix: AQ

Sample ID	Type	Actual	Criteria	Units	Flag
A1-MW-18-SA1 (RES/TOT)	Sampling To Analysis	26.85	24.00	HOURS	J(all detects) UJ(all non-detects)

Surrogate Outlier Report

Lab Reporting Batch ID: 280-110112-1
Laboratory: TA DEN
EDD Filename: 280-110112-1
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver

Method: Matrix: AQ					
Sample ID (Analysis Type)	Surrogate	Sample \% Recovery	\% Recovery Limits	Affected Compounds	Flag
16-HS-03-SA1	TOLUENE-D8	75	89.00-112.00	All Target Analytes	$\begin{gathered} \hline \hline \mathrm{J} \text { (all detects) } \\ \text { UJ (all non-detects) } \end{gathered}$

Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: 280-110112-1
Laboratory: TA DEN
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver
Method: SM3500 Fe B D
Matrix: AQ

QC Sample ID (Associated Samples)	Compound	$\begin{aligned} & M S \\ & \% R \\ & \hline \end{aligned}$	$\begin{gathered} \text { MSD } \\ \% R \end{gathered}$	$\% R$ Limits	RPD (Limits)	Affected Compounds	Flag
16-HS-03-SA1MS 16-HS-03-SA1MSD (16-HS-03-SA1)	Ferrous Iron	1	0	85.00-113.00	-	Ferrous Iron	J (all detects) R (all non-detects)

Methoat 8250 B
Matrix: AQ

QC Sample ID (Associated Samples)	Compound	$\begin{aligned} & M S \\ & \% R \end{aligned}$	$\begin{gathered} \text { MSD } \\ \% R \end{gathered}$	$\% R$ Limits	RPD (Limits)	Affected Compounds	Flag
16-HS-03-SA1MS 16-HS-03-SA1MSD (16-HS-03-SA1)	1,1-DICHLOROETHENE	56	33	71.00-131.00	53 (20.00)	1,1-DICHLOROETHENE	J (all detects) UJ(all non-detects)

Method: 9056 A
Matrix: AQ

QC Sample ID (Associated Samples)	Compound	$\begin{aligned} & M S \\ & \% R \end{aligned}$	$\begin{gathered} \text { MSD } \\ \% R \end{gathered}$	\%R Limits	RPD (Limits)	Affected Compounds	Flag
$\begin{aligned} & \text { 16-HS-03-SA1MSD } \\ & (16-H S-03-S A 1) \end{aligned}$	Sulfate	-	86	87.00-112.00	-	Sulfate	$\begin{gathered} \mathrm{J} \text { (all detects) } \\ \text { UJ(all non-detects) } \end{gathered}$
A1-MW-18-SA1MS A1-MW-18-SA1MSD (A1-MW-18-SA1)	CHLORIDE Sulfate	$\begin{aligned} & 50 \\ & 73 \end{aligned}$	$\begin{aligned} & \hline 45 \\ & 72 \end{aligned}$	$\begin{aligned} & 87.00-111.00 \\ & 87.00-112.00 \end{aligned}$	-	$\begin{aligned} & \hline \text { CHLORIDE } \\ & \text { Sulfate } \end{aligned}$	No Qual, >4x

Reporting Limit Outliers

Lab Reporting Batch ID: 280-110112-1
Laboratory: TA DEN
EDD Filename: 280-110112-1
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver
Mellog 8260E
Matrix: AQ

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
16-MW-08-SA1	TETRACHLOROETHENE	J	0.669	1.00	LOQ	ug / L	J (all detects)
A1-MW-18-SA1	1,1-DICHLOROETHENE	J	0.452	1.00	LOQ	ug / L	J (all detects)
A1-MW-19-SA1	TRICHLOROETHENE	J	0.424	1.00	LOQ	ug / L	J (all detects)
A1-MW-37-SA1	TRICHLOROETHENE	J	0.624	1.00	LOQ	ug / L	J (all detects)
A1-MW-37-SA1D	TRICHLOROETHENE	J	0.652	1.00	LOQ	ug / L	J (all detects)

Methode SM3500 Fe E D
Matrix: AQ

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
16-MW-08-SA1	Ferrous Iron	J HF	0.0403	0.200	LOQ	mg / L	J (all detects)
A1-MW-18-SA1	Ferrous Iron	JHF	0.0215	0.200	LOQ	mg / L	J (all detects)
A1-MW-37-SA1	Ferrous Iron	JHF	0.166	0.200	LOQ	mg / L	J (all detects)

Field Duplicate RPD Report

Lab Reporting Batch ID: 280-110112-1
Laboratory: TA DEN
EDD Filename: 280-110112-1
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver
Mehork 8260 B
Matrix: $A Q$

Analyte	Concentration (ug/L)		Sample RPD	$\begin{aligned} & \text { eQAPP } \\ & R P D \end{aligned}$	Flag
	A1-MW-37-SA1	A1-MW-37-SA1D			
TRICHLOROETHENE	0.624	0.652	NC	30.00	No Qualifiers Applied

Quality Control Outlier Reports

280-110226-1

QC Outlier Report: HoldingTimes

Lab Reporting Batch ID: 280-110226-1
Laboratory: TA DEN
EDD Filename: 280-110226-1
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver

Method: SM3500 FC ED Matrix: AQ					on Methoap METHOR
Sample ID	Type	Actual	Criteria	Units	Flag
A1-MW-01-SA1 (RES/TOT)	Sampling To Analysis	452.25	24.00	HOURS	J (all detects)
A1-MW-31-SA1 (RES/TOT)		451.25	24.00	HOURS	R (all non-detects)
A1-MW-31-SA1DUP (RES/TOT)		451.25	24.00	HOURS	
A1-MW-31-SA1DUP (RE/TOT)		452.25	24.00	HOURS	
A1-MW-31-SA1MS (RES/TOT)		451.25	24.00	HOURS	
A1-MW-31-SA1MS (RETOT)		452.25	24.00	HOURS	
A1-MW-31-SA1MSD (RES/TOT)		451.50	24.00	HOURS	
A1-MW-31-SA1MSD (RE/TOT)		452.25	24.00	HOURS	
A1-MW-42-SA1 (RES/TOT)		458.25	24.00	HOURS	
A1-MW-52-SA1 (RES/TOT)		453.25	24.00	HOURS	
A1-MW-54-SA1 (RES/TOT)		457.00	24.00	HOURS	
A1-PZ-19-SA1 (RES/TOT)		454.25	24.00	HOURS	

Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: 280-110226-1
Laboratory: TA DEN
EDD Filename: 280-110226-1
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver

| Method: 9056A |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| Matrix: AQ |

Method SM3500 Fe B D
Matrix: AQ

QC Sample ID (Associated Samples)	Compound	MS $\% R$	MSD $\%$	\%R Limits	RPD (Limits)	Affected Compounds	
A1-MW-31-SA1MS A1-MW-31-SA1MSD (A1-MW-31-SA1)	Ferrous Iron	21	21	$85.00-113.00$	-	Ferrous Iron	Flag

Reporting Limit Outliers

Lab Reporting Batch ID: 280-110226-1
Laboratory: TA DEN
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
A1-MW-31-SA1	TRICHLOROETHENE	J	0.353	1.00	LOQ	ug/L	J (all detects)
A1-MW-42-SA1	$\begin{aligned} & \text { 1,1-DICHLOROETHENE } \\ & \text { TRICHLOROETHENE } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \end{aligned}$	$\begin{aligned} & 0.298 \\ & 0.415 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LOQ } \\ & \text { LOQ } \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{ug} / \mathrm{L} \\ & \mathrm{ug} / \mathrm{L} \end{aligned}$	J (all detects)
A1-MW-52-SA1	1,1-DICHLOROETHENE TRICHLOROETHENE	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \end{aligned}$	$\begin{aligned} & 0.507 \\ & 0.627 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \mathrm{LOQ} \\ & \mathrm{LOQ} \end{aligned}$	ug/L ug/L	J (all detects)
A1-PZ-19-SA1	TRICHLOROETHENE	J	0.269	1.00	LOQ	ug/L	J (all detects)

Mehord gos6a

Matrix: AQ

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
A1-MW-54-SA1	NITRATE	J	0.343	0.500	LOQ	mg / L	J (all detects)

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
A1-PZ-19-SA1	Ferrous Iron	JHF	0.198	0.200	LOQ	mg / L	J (all detects)

\qquad
Page:

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note: $\quad \mathrm{A}=$ Acceptable
$N=$ Not provided/applicable
SW = See worksheet

ND = No compounds detected
$\mathrm{R}=$ Rinsate
FB = Field blank

D = Duplicate
TB = Trip blank
$\mathrm{EB}=$ Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	A1-MW-42-SA1	$280-110226-1$	Water	$05 / 25 / 18$
2	A1-MW-54-SA1	$280-110226-2$	Water	$05 / 25 / 18$
3	A1-MW-53-SA1	$280-110226-3$	Water	$05 / 25 / 18$
4	A1-PZ-19-SA1	$280-110226-4$	Water	$05 / 25 / 18$
5	A1-MW-52-SA1	$280-110226-5$	Water	$05 / 25 / 18$
6	A1-MW-01-SA1	$280-110226-6$	Water	$05 / 25 / 18$
7	A1-MW-01-SA1D	$280-110226-7$	Water	$05 / 25 / 18$
8	A1-MW-31-SA1	$280-110226-8$	Water	$05 / 25 / 18$
9	TB-20180525	$280-110226-12$	Water	$05 / 25 / 18$
10	A1-MW-53-SA1MS	$280-110226-3 M S$	Water	$05 / 25 / 18$
11	A1-MW-53-SA1MSD	$280-110226-3 M S D$	Water	$05 / 25 / 18$
12				
13				

METHOD: (Analyte)_Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056A), Ferrous Iron (SM3500-Fe B) pH (EPA SW846 Method (9040C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Client ID	Lab ID	Matrix	Date
1	A1-MW-42-SA1	$280-110226-1$	Water	0
2	A1-MW-54-SA1	$280-110226-2$	Water	$05 / 25 / 18$
3	A1-PZ-19-SA1	$280-110226-4$	Water	$05 / 25 / 18$
4	A1-MW-52-SA1	$280-110226-5$	Water	$05 / 25 / 18$
5	A1-MW-01-SA1	$280-110226-6$	Water	$05 / 25 / 18$
6	A1-MW-31-SA1	$280-110226-8$	Water	$05 / 25 / 18$
7	A1-MW-52-SA1MS	$280-110226-5 M S$	Water	$05 / 25 / 18$
8	A1-MW-52-SA1MSD	$280-110226-5 M S D$	Water	$05 / 25 / 18$
9	A1-MW-52-SA1DUP	$280-110226-5 D U P$	Water	$05 / 25 / 18$
10	A1-MW-31-SA1MS1	$280-110226-8 M S 1$	Water	$05 / 25 / 18$
11	A1-MW-31-SA1MSD1	$280-110226-8 M S D 1$	Water	$05 / 25 / 18$
12	A1-MW-31-SA1DUP1	$280-110226-8 D U P 2$	Water	$05 / 25 / 18$
13	A1-MW-31-SA1MS2	$280-110226-8 M S 2$	Water	$05 / 25 / 18$
14	A1-MW-31-SA1MSD2	$280-110226-8 M S D 2$	Water	$05 / 25 / 18$
15	A1-MW-31-SA1DUP2	$280-110226-8 D U P 2$	Water	$05 / 25 / 18$
16				

[^15]VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference All circled methods are applicable to each sample.

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:
All contaminants within five times the method blank concentration were qualified as not detected, " U ".

Quality Control Outlier Reports

$$
280-110291-1
$$

QC Outlier Report: HoldingTimes

Lab Reporting Batch ID: 280-110291-1
Laboratory: TA DEN
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver

Methad: SMB500 Fe ED Matrix: AQ	Ereparation Wethod: METHOH				
Sample ID	Type	Actual	Criteria	Units	Flag
A1-MW-07-SA1 (RES/TOT)	Sampling To Analysis	334.25	24.00	HOURS	J (all detects)
A1-MW-14-SA1 (RES/TOT)		332.50	24.00	HOURS	R (all non-detects)
A1-MW-23-SA1 (RES/TOT)		335.00	24.00	HOURS	
A1-MW-25-SA1 (RES/TOT)		337.00	24.00	HOURS	
A1-MW-27-SA1 (RES/TOT)		338.00	24.00	HOURS	
A1-MW-55-SA1 (RES/TOT)		336.00	24.00	HOURS	

Reporting Limit Outliers

Lab Reporting Batch ID: 280-110291-1

SampleID	Analyte	Lab Qual	Result	Reporting Limit	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Flag
A1-MW-07-SA1	1,1-DICHLOROETHENE TRICHLOROETHENE	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \end{aligned}$	$\begin{aligned} & 0.405 \\ & 0.797 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { LOQ } \\ & \text { LOQ } \end{aligned}$	ug/L ug / L	J (all detects)
A1-MW-14-SA1	1,1-DICHLOROETHENE TRICHLOROETHENE	J	$\begin{aligned} & 0.898 \\ & 0.876 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$	$\begin{aligned} & \mathrm{LOQ} \\ & \mathrm{LOQ} \end{aligned}$	ug/L	J (all detects)
A1-MW-25-SA1	1,1-DICHLOROETHENE TRICHLOROETHENE	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \end{aligned}$	$\begin{aligned} & 0.204 \\ & 0.418 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$	$\begin{aligned} & \mathrm{LOQ} \\ & \mathrm{LOQ} \end{aligned}$	ug/L ug/L	J (all detects)

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
A1-MW-25-SA1	Ferrous Iron	J HF	0.123	0.200	LOQ	mg / L	J (all detects)

LDC \#: 42613D1
SDG \#: 280-110291-1 VALIDATION COMPLETENESS WORKSHEET

Laboratory:Test America, Inc.

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	M1 A	
II.	GC/MS Instrument performance check	A	
III.	Initial calibration/ICV	A / A	$\text { ko } \leqslant 1570 . \quad 1 \subset V \leqslant 20 / 0$
IV.	Continuing calibration	A	$\in V \leqslant 20 / 5 \sqrt{7}$
V .	Laboratory Blanks	N	V
VI.	Field blanks	NB	$T 8=1$
VII.	Surrogate spikes	N	7
VIII.	Matrix spike/Matrix spike duplicates	N	
IX.	Laboratory control samples	N	
X.	Field duplicates	N	
XI.	Internal standards	A	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	N	

Note: $\quad \mathrm{A}=$ Acceptable
$\mathrm{N}=$ Not provided/applicable SW = See worksheet
ND = No compounds detected $\mathrm{R}=$ Rinsate FB = Field blank
D = Duplicate

TB = Trip blank $\mathrm{EB}=$ Equipment blank
SB=Source blank
OTHER:

	Client ID	Lab ID	Matrix	Date
1	TB-20180530	$280-110291-1$	Water	$05 / 30 / 18$
2	A1-MW-14-SA1	$280-110291-2$	Water	$05 / 30 / 18$
3	A1-MW-23-SA1	$280-110291-3$	Water	$05 / 30 / 18$
4	A1-MW-55-SA1	$280-110291-4$	Water	$05 / 30 / 18$
5	A1-MW-25-SA1	$280-110291-5$	Water	$05 / 30 / 18$
6	A1-MW-27-SA1	$280-110291-6$	Water	$05 / 30 / 18$
7	A1-MW-07-SA1	$280-110291-7$	Water	$05 / 30 / 18$
8				
9				

Notes:

Athcircled dates have exceeded the technical holding times.
N N/A Were all cooler temperatures within validation criteria?
VN N/A Were air bubbles > $1 / 4$ inch or was headspace present in the vials?

METHOD : GC/MS VOA (EPA SW 846 Method 8260B)							
Sample ID	Matrix	Preserved	Sampling Date	Extraction date	Analysis date	Total \# of Days	Qualifier
3 (ND)	Hec	lobace	$\rightarrow 6 \mathrm{un}$				CuA
							,

TECHNICAL HOLDING TIME CRITERIA

Water unpreserved: \quad Aromatic within 7 days, non-aromatic within 14 days of sample collection. Water preserved: Within 14 days of sample collection.
Within 14 days of sample collection.

METHOD: (Analyte)_Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056A), Ferrous Iron (SM3500-Fe B) pH (EPA SW846 Method (9040C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comme	
1.	Sample receipt/Technical holding times	A1-		
11	Initial calibration	A		
III.	Calibration verification	A		
IV	Laboratory Blanks	Su		
V	Field blanks	-		
VI.	Matrix Spike/Matrix Spike Duplicates	N		
VII.	Duplicate sample analysis	N		
VIII.	Laboratory control samples	N		
IX.	Field duplicates	-		
X.	Sample result verification	N		
XI	Overall assessment of data	N		
Note:	A = Acceptable $\mathrm{N}=$ Not provided/applicable SW = See worksheet	ND = No compounds detected R = Rinsate	D = Duplicate TB = Trip blank $E B=$ Equipment blank	SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	A1-MW-14-SA1	$280-110291-2$	Water	$05 / 30 / 18$
2	A1-MW-23-SA1	$280-110291-3$	Water	$05 / 30 / 18$
3	A1-MW-55-SA1	$280-110291-4$	Water	$05 / 30 / 18$
4	A1-MW-25-SA1	$280-110291-5$	Water	$05 / 30 / 18$
5	A1-MW-27-SA1	$280-110291-6$	Water	$05 / 30 / 18$
6	A1-MW-07-SA1	$280-110291-7$	Water	$05 / 30 / 18$
7	A1-MW-14-SA1MS	$280-110291-2 M S$	Water	$05 / 30 / 18$
8	A1-MW-14-SA1MSD	$280-110291-2 M S D$	Water	$05 / 30 / 18$
9	A1-MW-14-SA1DUP	$280-110291-2 D U P$	Water	$05 / 30 / 18$
10				
11				
12				
13				
14				
15				
16				

Notes:

$L D C \# 4261306$
 VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

All circled methods are applicable to each sample.

Comments:

METHOD:Inorganics, Method See Cover

Blanks

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:
All contaminants within five times the method blank concentration were qualified as not detected, "U".

Quality Control Outlier Reports

280-110353-1

QC Outlier Report: HoldingTimes

Lab Reporting Batch ID: 280-110353-1
Laboratory: TA DEN
EDD Filename: 280-110353-1
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver

Method: g0406	Preparation Method M=THO				
Sample ID	Type	Actual	Criteria	Units	Flag
A1-MW-11-SA1 (RES/TOT) A1-MW-11-SA1DUP (RES/TOT) A1-MW-13-SA1 (RES/TOT) A1-MW-15-SA1 (RES/TOT)	Sampling To Analysis	$\begin{aligned} & 111.75 \\ & 111.75 \\ & 112.50 \\ & 110.50 \end{aligned}$	$\begin{aligned} & 24.00 \\ & 24.00 \\ & 24.00 \\ & 24.00 \end{aligned}$	HOURS HOURS HOURS HOURS	J (all detects)

Method Blank Outlier Report

Lab Reporting Batch ID: 280-110353-1
EDD Filename: 280-110353-1
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver

Reporting Limit Outliers

Lab Reporting Batch ID: 280-110353-1
EDD Filename: 280-110353-1
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver
Method: 8260 B
Matrix: AQ

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
A1-MW-15-SA1	TRICHLOROETHENE	J	0.321	1.00	LOQ	ug/L	J (all detects)

\qquad
METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A	
II.	GC/MS Instrument performance check	A	
III.	Initial calibration/ICV	$A_{i} A$	$F 50 \leqslant 1570 . \quad 1 \rho V \leqslant 30 / 0$
IV.	Continuing calibration $/$ eves	A	$G N=20 / 5070$
V .	Laboratory Blanks	N	1
VI.	Field blanks	$N D$	$T E=1 . \quad 25=5$
VII.	Surrogate spikes	N	
VIII.	Matrix spike/Matrix spike duplicates	N	
IX.	Laboratory control samples	N	
X.	Field duplicates	N	
XI.	Internal standards	4	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	N	

Note:	$A=$ Acceptable
	$N=$ Not provided/applicable
	SW $=$ See worksheet

ND = No compounds detected

D = Duplicate
TB = Trip blank
EB = Equipment blank
SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	TB-20180531	$280-110353-1$	Water	$005 / 31 / 18$
2	A1-MW-13-SA1	$280-110353-2$	Water	$05 / 31 / 18$
3	A1-MW-11-SA1	$280-110353-3$	Water	$05 / 31 / 18$
4	A1-MW-15-SA1	$280-110353-4$	Water	$05 / 31 / 18$
5	EB-20180531	$280-110353-5$	Water	$05 / 31 / 18$
6				
7				
8				

Notes:

METHOD: (Analyte)_Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056A), Ferrous Iron (SM3500-Fe B) pH (EPA SW846 Method (9040C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Client ID	Lab ID	Matrix	Date
1	A1-MW-13-SA1	$280-110353-2$	Water	
2	A1-MW-11-SA1	$280-110353-3$	Water	$05 / 31 / 18$
3	A1-MW-15-SA1	$280-110353-4$	Water	$05 / 31 / 18$
4	A1-MW-11-SA1DUP	$280-110353-3 D U P$	Water	$05 / 31 / 18$
5				$05 / 31 / 18$
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				

Notes:

VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

VALIDATION FINDINGS WORKSHEET Blanks

Page: (_of_1
Reviewer:

METHOD:Inorganics, Method See Cover

[^16]
Quality Control Outlier Reports
 $$
1801024
$$

Lab Control Spike/Lab Control Spike Duplicate Outlier Report

Lab Reporting Batch ID: 1801024
Laboratory: Vista
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista

Method: 537 MOD Matrix: AQ							
QC Sample ID (Associated Samples)	Compound	$\begin{gathered} \text { LCS } \\ \% R \\ \hline \end{gathered}$	$\begin{gathered} \text { LCSD } \\ \% R \end{gathered}$	\%R Limits	RPD (Limits)	Affected Compounds	Flag
B8E0250-BS1 (A1-MWW-04-SA1 A1-MW-05-SA1 A1-MW-49-SA1 A1-MW-50-SA1 A1-MW-51-SA1 FRB-20180522)	PFTrDA	138	-	70.00-130.00	-	PFTTDA	J (all detects)

Reporting Limit Outliers

Lab Reporting Batch ID: 1801024
Laboratory: Vista
EDD Filename: 1801024
Methoof: 587 MOD
Matrix: AQ

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
A1-MW-04-SA1	PFOA	J	0.00333	0.00812	LOQ	ug / L	J (all detects)
	PFOS	J	0.00161	0.00812	LOQ	ug / L	J
	PFHPA	J	0.000917	0.00842	LOQ	ug / L	J (all detects)
A1-MW-05-SA1	PFHxS	J	0.00278	0.00842	LOQ	ug / L	
A1-MW-49-SA1	PFBS	J	0.00627	0.00812	LOQ	ug / L	J (all detects)
A1-MW-51-SA1	PFOS	J	0.00303	0.00836	LOQ	ug / L	J (all detects)

LDC \#: 42613L96
SDG \#: 1801024
Laboratory: Vista Analytical Laboratory

Page:
Reviewer:

2nd Reviewer:
METHOD: LC/MS Perfluorinated Alkyl Acids (EPA Method 537Modified)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A	
II.	GC/MS Instrument performance check	A	
III.	Initial calibration/ICV	$A M$	$\text { Psorabla. } \gamma^{\circ} \text { mive } / 1 \mathrm{eN}=317$
IV.	Continuing calibration	A	$\operatorname{sev} \leqslant 307$
V .	Laboratory Blanks	N	
VI.	Field blanks	$N 0$	$F P B=-5$
VII.	Surrogate spikes	N	
VIII.	Matrix spike/Matrix spike duplicates	N	
IX.	Laboratory control samples	N	
X.	Field duplicates	N	
XI.	Internal standards	MN	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	N	

Note:
A = Acceptable
$\mathrm{N}=$ Not provided/applicable
SW = See worksheet

ND = No compounds detected
$\mathrm{R}=$ Rinsate
$\mathrm{FB}=$ Field blank

D = Duplicate
TB = Trip blank
$E B=$ Equipment blank
$\mathrm{SB}=$ Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	A1-MW-51-SA1	$1801024-01$		Water
2	A1-MW-50-SA1	$1801024-02$	Water	
3	A1-MW-49-SA1	$1801024-03$	Water	
4	A1-MW-05-SA1	$1801024-04$	$05 / 22 / 18$	
5	A1-MW-04-SA1	$1801024-05$	Water	
6	FRB-20180522	$1801024-06$	Water	$05 / 22 / 18$
7			Water	$05 / 22 / 18$
8				$05 / 22 / 18$
9				

Notes:

	$B 8 \in 0250-B \nmid$					

VALIDATION FINDINGS WORKSHEET Internal Standards

Page: _ of / / Reviewer: and Reviewer: ER

METHOD: LC/MS PFC
Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".
Y/4 N/A Were all internal standard area counts within $50-150 \%$ limits?
Y / N N/A Were the retention times of the internal standards within $+/-30$ seconds of the retention times of the associated calibration standard?

Quality Control Outlier Reports
 1801037

Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: 1801037
Laboratory: Vista
EDD Filename: 1801037
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista

QC Sample ID (Associated Samples)	Compound	$\begin{aligned} & M S \\ & \% R \end{aligned}$	$\begin{gathered} M S D \\ \% R \\ \hline \end{gathered}$	$\begin{gathered} \% R \\ \text { Limits } \end{gathered}$	RPD (Limits)	Affected Compounds	Flag
16-HS-03-SA1MS 16-HS-03-SA1MSD (16-HS-03-SA1)	NMeFOSAA PFDA PFDOA PFHpA PFHxS PFOA PFTrDA	$\begin{aligned} & 132 \\ & 136 \\ & 140 \\ & 146 \\ & 131 \\ & 136 \end{aligned}$	133	70.00-130.00 $70.00-130.00$ $70.00-130.00$ 70.00-130.00 70.00-130.00 70.00-130.00 70.00-130.00	$\begin{gathered} 41.1(30.00) \\ - \\ 49.6(30.00) \end{gathered}$	NMeFOSAA PFDA PFDoA PFHpA PFHxS PFOA PFTrDA	J (all detects)
16-HS-03-SA1MS 16-HS-03-SA1MSD (16-HS-03-SA1)	$\begin{aligned} & \text { PFHXA } \\ & \text { PFBS } \end{aligned}$	$\begin{aligned} & -21 \\ & 182 \end{aligned}$	$\stackrel{-}{-}$	$\begin{aligned} & 70.00-130.00 \\ & 70.00-130.00 \end{aligned}$	$\begin{aligned} & 329(30.00) \\ & 45.9(30.00) \end{aligned}$	$\begin{aligned} & \text { PFHxA } \\ & \text { PFBS } \end{aligned}$	No Qual, >4x

Lab Control Spike/Lab Control Spike Duplicate Outlier Report

Lab Reporting Batch ID: 1801037
Laboratory: Vista
EDD Filename: 1801037
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista

QC Sample ID (Associated Samples)	Compound	$\begin{gathered} L C S \\ \% R \end{gathered}$	$\begin{array}{\|c\|} \hline L C S D \\ \% R \\ \hline \end{array}$	$\% R$ Limits	$\begin{gathered} R P D \\ \text { (Limits) } \end{gathered}$	Affected Compounds	Flag
B8E0244-BS1 (16-HS-03-SA1 16-MW-06-SA1 16-MW-08-SA1 16-MW-09-SA1 A1-MW-18-SA1 A1-MW-19-SA1 A1-MW-37-SA1 A1-MW-37-SA1D FRB-20180523)	PFTrDA	153	-	70.00-130.00	-	PFTrDA	J (all detects)

Reporting Limit Outliers

Lab Reporting Batch ID: 1801037
Laboratory: Vista
EDD Filename: 1801037
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista
Methode 587 MOD
Matrix: AQ
$\left.\begin{array}{|l|l|c|c|c|c|c|c|}\hline \text { SampleID } & \text { Analyte } & \begin{array}{c}\text { Lab } \\ \text { Qual }\end{array} & \text { Result }\end{array} \begin{array}{c}\text { Reporting } \\ \text { Limit }\end{array}\right)$

Field Duplicate RPD Report

Lab Reporting Batch ID: 1801037
Laboratory: Vista
EDD Filename: 1801037
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista

Memorf	$5 y^{2}$ MOD
Matrix:	$\mathbf{A Q}$

Analyte	Concentration (ug/L)		Sample RPD	$\begin{gathered} \text { eQAPP } \\ R P D \end{gathered}$	Flag
	A1-MW-37-SA1	A1-MW-37-SA1D			
PFBS	0.230	0.252	9	30.00	
PFHpA	0.0328	0.0322	NC	30.00	
PFHxA	1.66	1.71	3	30.00	
PFHxS	0.155	0.152	2	30.00	
PFNA	0.00170	0.00210	NC	30.00	No Qualifiers Applied
PFOA	0.0196	0.0203	NC	30.00	
PFOS	0.0458	0.0416	NC	30.00	
PFUnA	0.00839 U	0.00135	NC	30.00	

LDC \#: 42613M96
SD \#: 1801037
Laboratory: Vista Analytical Laboratory
METHOD: LC/MS Perfluorinated Alkyl Acids (EPA Method 537 Modified)
Page
Reviewer:
2nd Reviewer: \qquad

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note: $\quad \mathrm{A}=$ Acceptable
$\mathrm{N}=$ Not provided/applicable
SW = See worksheet

ND = No compounds detected
R = Rinsate
FB = Field blank

D = Duplicate
TB = Trip blank $\mathrm{EB}=$ Equipment blank

SB=Source blank OTHER:

Lab ID	Matrix	Date
$1801037-01^{* *}$	Water	$05 / 23 / 18$
$1801037-02^{* *}$	Water	$05 / 23 / 18$
$1801037-03^{* *}$	Water	$05 / 23 / 18$
$1801037-04^{* *}$	Water	$05 / 23 / 18$
$1801037-05^{* *}$	Water	$05 / 23 / 18$
$1801037-06^{* *}$	Water	$05 / 23 / 18$
$1801037-07^{* *}$	Water	$05 / 23 / 18$
$1801037-08^{* *}$	Water	$05 / 23 / 18$
$1801037-09$	Water	$05 / 23 / 18$
$1801037-06 \mathrm{MS}$	Water	$05 / 23 / 18$
$1801037-06 \mathrm{MSD}$	Water	$05 / 23 / 18$

VALIDATION FINDINGS WORKSHEET Internal Standards

Page: \quad lof 1
Reviewer: 1 Reviewer: 1 Cle

METHOD: LC/MS PFCs
Please see qualifications below for all questions answered " N ". Not applicable questions are identified as " N / A ".
Y (1) N/A Were all internal standard area counts within $50-150 \%$ limits?
Y)N N/A Were the retention times of the internal standards within $+/-30$ seconds of the retention times of the associated calibration standard?

\#	Date	Sample ID	$\begin{aligned} & \text { Internal } \\ & \text { Standard } \end{aligned}$	Area (Limits)	RT(Limits)	Qualifications
		1 (dets)	13C3-PFBS	170 (50-150)		144A CPFBS
						\%
		2		187		
		3		214		
		4		228		
		5		161		
		6		154		
		7		153		
		$8 \quad 7$		214		$\sqrt{2}$
		10 (H / S)		167		No Cual
		11 (Nst)	$\sqrt{ }$	165 v		1

VALIDATION FINDINGS WORKSHEET

Field Duplicates

Page: / of Reviewer:

METHOD: PFCs

Compound	Concentration (ug/L)		$\begin{aligned} & (\leq 30) \\ & R P D \end{aligned}$	Qual
	4	5		
PFBS	0.230	0.252	9	
PFHxA	1.66	1.71	3	
PFHpA	0.0328	0.0322	$2 N C$	
PFHxS	0.155	0.152	2	
PFOA	0.0196	0.0203	- NL	
PFNA	0.00170	0.00210	21 NC	
PFOS	0.0458	0.0416		
PFUnA	0.00525 U	0.00135	NC	

Quality Control Outlier Reports

$$
1801039
$$

Reporting Limit Outliers
Lab Reporting Batch ID: 1801039
Laboratory: Vista
EDD Filename: 1801039
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
A1-MW-11-SA1	PFOS	J	0.00359	0.00860	LOQ	ug/L	J (all detects)

METHOD: LC/MS Perfluorinated Alkyl Acids (EPA Method 537 Modified)

Reviewer 2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		
I.	Sample receipt/Technical holding times	A	
II.	GC/MS Instrument performance check	A	
III.	Initial calibration/ICV	Comments	
IV.	Continuing calibration	A	
V.	Laboratory Blanks	N	
VI.	Field blanks	N	FR F
VII.	Surrogate spikes	N	
VIII.	Matrix spike/Matrix spike duplicates	N	
IX.	Laboratory control samples	N	
X.	Field duplicates	N	
XI.	Internal standards	N	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data		

Note: $\quad \mathrm{A}=$ Acceptable
$\mathrm{N}=$ Not provided/applicable
SW = See worksheet
ND = No compounds detected
R = Rinsate
FB = Field blank

D = Duplicate
TB = Trip blank
SB=Source blank
EB = Equipment blank
OTHER:

	Client ID	Lab ID	Matrix	Date
1	A1-MW-13-SA1	$1801039-01$	Water	$05 / 24 / 18$
2	A1-MW-11-SA1	$1801039-02$	Water	$05 / 24 / 18$
3	A1-MW-14-SA1	$1801039-03$	Water	$05 / 24 / 18$
4	A1-MW-15-SA1	$1801039-04$	Water	$05 / 24 / 18$
5	A1-MW-25-SA1	$1801039-07$	Water	$05 / 24 / 18$
6	FRB-20180524	$1801039-08$	Water	$05 / 24 / 18$
7				
8				
9				

Notes:

pBfooctekt						

METHOD: LC/MS PFCs
Please see qualifications below for all questions answered " N ". Not applicable questions are identified as "N/A".
Y 11 N/A Were all internal standard area counts within $50-150 \%$ limits?
Y N N/A Were the retention times of the internal standards within $+/-30$ seconds of the retention times of the associated calibration standard?

\#	Date	Sample ID	Internal Standard	Area (Limits)	RT (Limits)	Qualifications
		$1 \text { (ates) }$	$13 C 3-4 / 73$	$419(50-150)$		$N / N A F(H F S$
		1		1		
		2		$37 /$		
		3		537		,
		-				
		\pm		D3s		,
			1	/		/1
		$5 \quad(+1)$	1	$438 \quad \sqrt{5}$		$\sqrt{ }$
		(Det)				

Quality Control Outlier Reports

$$
1801054
$$

Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: 1801054
EDD Filename: 1801054
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista

QC Sample ID (Associated Samples)	Compound	$\begin{aligned} & M S \\ & \% R \end{aligned}$	$\begin{gathered} M S D \\ \% R \\ \hline \end{gathered}$	$\begin{gathered} \text { \%R } \\ \text { Limits } \\ \hline \end{gathered}$	$\begin{gathered} \text { RPD } \\ \text { (Limits) } \end{gathered}$	Affected Compounds	Flag
A1-MW-53-SA1MS A1-MW-53-SA1MSD (A1-MW-53-SA1)	NMeFOSAA PFTrDA	141	148	$\begin{aligned} & 70.00-130.00 \\ & 70.00-130.00 \end{aligned}$	$32.9(30.00)$	NMeFOSAA PFTrDA	J (all detects)
A1-MW-53-SA1MS A1-MW-53-SA1MSD (A1-MW-53-SA1)	PFBS PFHxS PFHxA	$\begin{aligned} & 141 \\ & 232 \end{aligned}$	$\begin{gathered} \hline 37.7 \\ 58.4 \\ 175 \end{gathered}$	$\begin{aligned} & \hline 70.00-130.00 \\ & 70.00-130.00 \\ & 70.00-130.00 \end{aligned}$	$\begin{array}{\|l\|} \hline 96.5(30.00) \\ 82.8(30.00) \end{array}$	PFBS PFHxS PFHxA	No Qual, >4x

Lab Control Spike/Lab Control Spike Duplicate Outlier Report

Lab Reporting Batch ID: 1801054
Laboratory: Vista
EDD Filename: 1801054
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista

QC Sample ID (Associated Samples)	Compound	$\begin{gathered} L C S \\ \% R \end{gathered}$	$\begin{gathered} L C S D \\ \% R \\ \hline \end{gathered}$	$\% R$ Limits	RPD (Limits)	Affected Compounds	Flag
B8E0244-BS1 (A1-MW-01-SA1 A1-MW-01-SA1D A1-MW-31-SA1 A1-MW-42-SA1 A1-MW-52-SA1 A1-MW-53-SA1 A1-MW-54-SA1 A1-PZ-19-SA1 FRB-20180525)	PFTrDA	153	-	70.00-130.00	-	PFTrDA	J (all detects)

Reporting Limit Outliers

Lab Reporting Batch ID: 1801054

SamplelD	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
A1-MW-01-SA1	PFHpA	J	0.00225	0.00907	LOQ	ug/L	J (all detects)
A1-MW-01-SA1D	PFHpA	J	0.00273	0.00854	LOQ	ug/L	J (all detects)
A1-MW-31-SA1	PFHpA	J	0.00851	0.00887	LOQ	ug/L	J (all detects)
A1-MW-42-SA1	PFOS	J	0.00186	0.00887	LOQ	ug/L	J (all detects)
A1-MW-53-SA1	PFOS	J	0.00188	0.00878	LOQ	ug/L	J (all detects)
A1-MW-54-SA1	PFOS	J	0.00652	0.00892	LOQ	ug/L	J (all detects)
A1-PZ-19-SA1	$\begin{aligned} & \mathrm{PFHpA} \\ & \text { PFOA } \\ & \text { PFOS } \end{aligned}$	J J	$\begin{aligned} & 0.00326 \\ & 0.00756 \\ & 0.00115 \end{aligned}$	0.00852 0.00852 0.00852	$\begin{aligned} & \text { LOQ } \\ & \text { LOQ } \\ & \text { LOQ } \end{aligned}$	ug / L ug / L ug / L	J (all detects)

Field Duplicate RPD Report

Lab Reporting Batch ID: 1801054
Laboratory: Vista eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista Methort bet Mon
Matrix: AQ

Analyte	Concentration (ug/L)		Sample RPD	$\begin{gathered} \text { eQAPP } \\ R P D \end{gathered}$	Flag
	A1-MW-01-SA1	A1-MW-01-SA1D			
	0.0524 0.00225 0.101 0.0230	0.0557 0.00273 0.0971 0.0238	6 NC 4 NC	$\begin{aligned} & 30.00 \\ & 30.00 \\ & 30.00 \\ & 30.00 \end{aligned}$	No Qualifiers Applied

METHOD: LC/MS Perfluorinated Alkyl Acids (EPA Method 537 Modified)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note: $\quad \mathrm{A}=$ Acceptable
$N=$ Not provided/applicable SW = See worksheet

ND = No compounds detected
$R=$ Rinsate
FB = Field blank
$\mathrm{D}=$ Duplicate
TB = Trip blank
$E B=$ Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	A1-MW-42-SA1	$1801054-01$	Water	$05 / 25 / 18$
2	A1-MW-54-SA1	$1801054-02$	Water	$005 / 25 / 18$
3	A1-MW-53-SA1	$1801054-03$	Water	$05 / 25 / 18$
4	A1-PZ-19-SA1	$1801054-04$	Water	$05 / 25 / 18$
5	A1-MW-52-SA1	$1801054-05$	Water	$05 / 25 / 18$
6	A1-MW-01-SA1	$1801054-06$	Water	$05 / 25 / 18$
7	A1-MW-01-SA1D	$1801054-07$	Water	$05 / 25 / 18$
8	A1-MW-31-SA1	$1801054-08$	Water	$05 / 25 / 18$
9	FRB-20180525	$1801054-09$	Water	$05 / 25 / 18$
10	A1-MW-53-SA1MS	$1801054-03 M S$	Water	$05 / 25 / 18$
11	A1-MW-53-SA1MSD	$1801054-03 M S D$	Water	$05 / 25 / 18$
12				
13				
14	Z 2 LOLA 4			

VALIDATION FINDINGS WORKSHEET Field Duplicates

METHOD: PFCs
Page: /of /
Reviewer: \bar{q}
Reviewer: 2nd Reviewer: $\boxed{\sim}$

Compound	Concentration (ug/L)		$\begin{aligned} & (\leq 30) \\ & \text { RPD } \end{aligned}$	Qual
	6	7		
PFBS	0.0524	0.0557	6	
PFHXA	0.101	0.0971	4	
PFHPA	0.00225	0.00273	$1+N C$	
PFHxS	0.0230	0.0238	$\rightarrow N \mathrm{C}$	

VALIDATION FINDINGS WORKSHEET
Internal Standards

Page:
Reviewer:
2nd Reviewer:
METHOD: LC/MS PFC
Please see qualifications below for all questions answered " N ". Not applicable questions are identified as " N / A ".
1 N N/A Were all internal standard area counts within 50-150\% limits?
Y N NRA
Were the retention times of the internal standards within $+/-30$ seconds of the retention times of the associated calibration standard?

Quality Control Outlier Reports

$$
1801071
$$

Reporting Limit Outliers

Lab Reporting Batch ID: 1801071
Laboratory: Vista
EDD Filename: 1801071
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista

SamplelD	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
A1-MW-23-SA1	PFHxS	J	0.00581	0.00874	LOQ	ug/L	J (all detects)

METHOD: LC/MS Perfluorinated Alkyl Acids (EPA Method 537Modified)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A	
II.	GC/MS Instrument performance check	\triangle	
III.	Initial calibration/ICV	A, A	
IV.	Continuing calibration	A	
V .	Laboratory Blanks	N	
VI.	Field blanks	$N D$	$F R B=5$
VII.	Surrogate spikes	N	
VIII.	Matrix spike/Matrix spike duplicates	N	
IX.	Laboratory control samples	N	
X.	Field duplicates	N	
XI.	Internal standards	$2 N$	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	N	

$\begin{array}{ll}\text { Note: } & A=\text { Acceptable } \\ & N=\text { Not provided/applicable } \\ & S W=\text { See worksheet }\end{array}$

	Client ID	Lab ID	Matrix	Date
1	A1-MW-27-SA1	1801071-01	Water	05/30/18
2	A1-MW-55-SA1	1801071-02	Water	05/30/18
3	A1-MW-23-SA1	1801071-03	Water	05/30/18
4	A1-MW-07-SA1	1801071-04	Water	05/30/18
5	FRB-20180530	1801071-05	Water	05/30/18
$6{ }^{6}$				
7				
8				
-				
Notes:				

Notes:

TARGET COMPOUND WORKSHEET

VALIDATION FINDINGS WORKSHEET Internal Standards

Page: _ of/
Reviewer: C 2nd Reviewer:/LK

METHOD: LC/MS PFC

Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".
Y No N/A
Were all internal standard area counts within $50-150 \%$ limits?
Y N N/A Were the retention times of the internal standards within $+/-30$ seconds of the retention times of the associated calibration standard?

Quality Control Outlier Reports

$$
1801084
$$

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note: $\quad \mathrm{A}=$ Acceptable
$\mathrm{N}=$ Not provided/applicable SW = See worksheet

ND = No compounds detected
$R=$ Rinsate
FB = Field blank
$D=$ Duplicate
$T B=$ Trip blank $E B=$ Equipment blank
$\mathrm{SB}=$ Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	EB-20180531	$1801084-01$	Water	$05 / 31 / 18$
2				
3				
4				
5				
6				
7				
8				
6				

Notes:

TARGET COMPOUND WORKSHEET
METHOD: PFOS/PFOAs

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)
Please see qualifications below for all questions answered " N ". Not applicable questions are identified as " N / A ". VN N/A Was a continuing calibration standard analyzed after every 10 injections for each instrument? Y (N)N/A Were all continuing calibration percent differences (\%D) $\leq 30 \%$?

Enclosure II

Manual Stage 2B and Stage 4 Data Validation Reports

Laboratory Data Consultants, Inc.
 Data Validation Report

Project/Site Name:
LDC Report Date:
Parameters:
Validation Level:
Laboratory:

MCAS Yuma, CTO 17F3803
July 16, 2018
Volatiles
Stage 4
TestAmerica, Inc.

Sample Delivery Group (SDG): 280-110112-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
TB-20180523	$280-110112-1$	Water	$05 / 23 / 18$
A1-MW-18-SA1	$280-110112-2$	Water	$05 / 23 / 18$
16-MW-08-SA1	$280-110112-3$	Water	$05 / 23 / 18$
A1-MW-19-SA1	$280-110112-4$	Water	$05 / 23 / 18$
A1-MW-37-SA1D	$280-110112-5$	Water	$05 / 23 / 18$
A1-MW-37-SA1	$280-110112-6$	Water	$05 / 23 / 18$
16-HS-03-SA1	$280-110112-7$	Water	$05 / 23 / 18$
16-HS-03-SA1MS	$280-110112-7 M S$	Water	$05 / 23 / 18$
16-HS-03-SA1MSD	$280-110112-7 M S D$	Water	$05 / 23 / 18$

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.
All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.
The percent relative standard deviations (\%RSD) were less than or equal to 15.0% for all compounds.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.
The percent differences (\%D) were less than or equal to 20.0% for all compounds.
The percent differences (\%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample TB-20180523 was identified as a trip blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (\%R) were within QC limits with the following exceptions:

Sample	Surrogate	\%R (Limits)	Affected Compound	Flag	A or P
$16-$ HS-03-SA1	Toluene-d8	$75(89-112)$	All compounds	UJ (all non-detects)	A

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (\%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (\%R) (Limits)	MSD (\%R) (Limits)	Flag	A or P
(L-HS-03-SA1MS/MSD $(16-H S-03-S A 1) ~$	1,1-Dichloroethene	$56(71-131)$	$33(71-131)$	UJ (all non-detects)	A

Relative percent differences (RPD) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	RPD (Limits)	Flag	A or P
16-HS-03-SA1MS/MSD $(16-H S-03-S A 1) ~$	1,1-Dichloroethene	$53(\$ 20)$	NA	-

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits.

X. Field Duplicates

Samples A1-MW-37-SA1 and A1-MW-37-SA1D were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

Compound	Concentration (ug/L)				
	A1-MW-37-SA1D	A1-MW-37-SA1	RPD (Limits)	Flag	A or P
	0.652	0.624		-	-

RPDs were not calculated when sample results in one or both samples were less than $5 x$ the limit of quantitation (LOQ).

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

All compound quantitations met validation criteria.
All compounds reported below the limit of quantitation (LOQ) were qualified as follows:

Sample	Finding	Flag	A or P
A1-MW-18-SA1	All compounds reported below the LOQ.	J (all detects)	A
16-MW-08-SA1			
A1-MW-19-SA1			
A1-MW-37-SA1D			

XIII. Target Compound Identifications

All target compound identifications met validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to surrogate \%R, MS/MSD \%R, and results below the LOQ, data were qualified as estimated in six samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

MCAS Yuma, CTO 17F3803
Volatiles - Data Qualification Summary - SDG 280-110112-1

Sample	Compound	Flag	A or P	Reason
16-HS-03-SA1	All compounds	UJ (all non-detects)	A	Surrogates (\%R)
16-HS-03-SA1	1,1-Dichloroethene	UJ (all non-detects)	A	Matrix spike/Matrix spike duplicate (\%R)
A1-MW-18-SA1 16-MW-08-SA1 A1-MW-19-SA1 A1-MW-37-SA1D A1-MW-37-SA1	All compounds reported below the LOQ.	J (all detects)	A	Compound quantitation

MCAS Yuma, CTO 17F3803
Volatiles - Laboratory Blank Data Qualification Summary - SDG 280-110112-1
No Sample Data Qualified in this SDG
MCAS Yuma, CTO 17F3803
Volatiles - Field Blank Data Qualification Summary - SDG 280-110112-1
No Sample Data Qualified in this SDG

LDC \#: 42613B1
VALIDATION COMPLETENESS WORKSHEET
SDG \#: 280-110112-1
Laboratory: Test America, Inc.
Stage 4

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A	
11.	GC/MS Instrument performance check	A	
III.	Initial calibration/ICV	$A A$	
IV.	Continuing calibration leuds-	A	$\operatorname{cov} s \infty / 5 \infty / 0$
V .	Laboratory Blanks	A	\%
VI.	Field blanks	$N, ~$	$T B=1$
VII.	Surrogate spikes	W	
VIII.	Matrix spike/Matrix spike duplicates	WN	
IX.	Laboratory control samples	A	LCS
X.	Field duplicates	GM	$\phi=5+\infty$
XI.	Internal standards		
XII.	Compound quantitation RL/LOQ/LODs	A	
XIII.	Target compound identification	A	
XIV.	System performance	4	
XV.	Overall assessment of data	∞	

Note: $\quad \mathrm{A}=$ Acceptable
$\mathrm{N}=$ Not provided/applicable
SW = See worksheet
ND = No compounds detected $\mathrm{R}=$ Rinsate
$\mathrm{D}=$ Duplicate
SB=Source blank
TB = Trip blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	TB-20180523	$280-110112-1$	Water	$05 / 23 / 18$
2	A1-MW-18-SA1	$280-110112-2$	Water	$05 / 23 / 18$
3	16-MW-08-SA1	$280-110112-3$	Water	$05 / 23 / 18$
4	A1-MW-19-SA1	$280-110112-4$	Water	$05 / 23 / 18$
5	A1-MW-37-SA1D	$280-110112-5$	Water	$05 / 23 / 18$
6	A1-MW-37-SA1	$280-110112-6$	Water	$05 / 23 / 18$
7	16-HS-03-SA1	$280-110112-7$	Water	$05 / 23 / 18$
8	16-HS-03-SA1MS	$280-110112-7 M S$	Water	$05 / 23 / 18$
9	16-HS-03-SA1MSD	$280-110112-7 M S D$	Water	$05 / 23 / 18$
10				
11				
12				
13				

VALIDATION FINDINGS CHECKLIST

Method: Volatiles (EPA SW 846 Method 8260B)

Validation Area	Yes	No	NA Findings/Comments	
1.Technical holding times				
Were all technical holding times met?				
Was cooler temperature criteria met?				
11. GCMMS Instrument performance check				
Were the BFB performance results reviewed and found to be within the specified criteria?	7			
Were all samples analyzed within the 12 hour clock criteria? Ilia. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (\%RSD) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990 ?				
Were all percent relative standard deviations (\%RSD) $\leq \leq /(0 \% / 15 \%$ and relative response factors (RRF) ≥ 0.05 ?				
IIIb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (\%D) $\leq 20 \%$ or percent recoveries (\%R) $80-120 \%$?				
(V. Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?				
Were all percent differences (\%D) and relative response factors (RRF) within method criteria for all CCCs and SPCCs?				
Were all percent differences (\%D) $\leq 20 \%$ and relative response factors (RRF) \geq 0.05 ?				
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed at least once every 12 hours for each matrix and concentration?				
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.				
VI Field blanks				
Were field blanks were identified in this SDG?				
Were target compounds detected in the field blanks?				
VII. Surrogate spikes				
Were all surrogate percent recovery (\%R) within QC limits?				
If the percent recovery (\%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with \%R outside of criteria?	,			

Validation Area	Yes	No	NA	Findings/Comments
VIII. Matrix spikeMatrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.	,			
Was a MS/MSD analyzed every 20 samples of each matrix?	/			
Were the MS/MSD percent recoveries (\%R) and the relative percent differences (RPD) within the QC limits?		/		
IX. Laboratory control samples				
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per analytical batch?				
Were the LCS percent recoveries (\%R) and relative percent difference (RPD) within the QC limits?				
x: Field duplicates				
Were field duplicate pairs identified in this SDG?				
Were target compounds detected in the field duplicates?				
XI. Internalstandards				
Were internal standard area counts within -50% to $+100 \%$ of the associated calibration standard?				
Were retention times within +30 seconds of the associated calibration standard?				
Compound quantitation				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII Target compound identification				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
XIV System performance				
System performance was found to be acceptable.				
x Overall assessment of data				
Overall assessment of data was found to be acceptable.				

TARGET COMPOUND WORKSHEET

METHOD: VOA

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl tert-butyl ether	A1. 1,3-Butadiene
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane
C. Vinyl choride	CC. Toluene	CCC tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12
G. Carbon disulfide	GG. Xylenes, total	GGG. p-Isopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114
I. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	11. 2-Nitropropane
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyl disulfide
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane
M. 2-Butanone	MM. 1,2-Dibromo-3-chloropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene	NNNN. lodomethane	N1. 2-Methylpentane
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	OOO. 1,3,5-Trichlorobenzene	O000.1,1-Difluoroethane	O1. 3-Methylpentane
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3- Trimethylbutane
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methylcyclohexane	T1. 2-Methylhexane
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal
V. Benzene	W. Isopropylbenzene	WV. 4-Ethyltoluene	VWW. Methyl methacrylate	V1. 2-Methylnaphthalene
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	WWWWW. Ethyl methacrylate	W1. Methanol
X. Bromoform	XX. 1,2,3-Trichloropropane	XXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYYY. trans-1,4-Dichloro-2-butene	Y1.
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	Z1.

COMPNDL_VOA_Long list.wpd

VALIDATION FINDINGS WORKSHEET Surrogate Spikes

Page: /Cf/

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered " N ". Not applicable questions are identified as " N / A ".
N N/A Were all surrogate $\%$ R within QC limits?
Y N N/A If the percent recovery (\%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with \%R out of outside of criteria?

(DCE) $=1,2$-Dichloroethane-d4
(DFM) = Dibromofluoromethane

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

METHOD : GC/MS VOA (EPA SW 846 Method 8260B)

Please see qualifications below for all questions answered " N ". Not applicable questions are identified as " N / A ".
$($ N N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MN MS/MSD. Soil / Water.

Was a MS/MSD analyzed every 20 samples of each matrix?
Y NN/A Were the MS/MSD percent recoveries (\%R) and the relative percent differences (RPD) within the QC limits?

\#	Date	MSIMSD ID	Compound	$\begin{gathered} \text { MS } \\ \% \mathrm{R} \text { (Limits) } \\ \hline \end{gathered}$	$\begin{gathered} \text { MSD } \\ \% \mathrm{R} \text { (Limits) } \\ \hline \end{gathered}$	RPD (Limits)	Associated Samples	Qualifications
		39	H	56 (71-13)	$33(1-131)$	()	$7(N X)$	$\cdots / U / A$
			H	()	()	$53(\leqslant 20)$		Vets A
				()	()	()		7
				()	()	()		
				()))		
				()	()	()		
				()))		
				()	()	()		
				()	()	()		
				()))		
				()	()	()		
				()	())		
				()	()	()		
				())	()		
))	()		
))	()		
				())	()		
)))		
)))		
)))		
)	,)		
)))		
				())	()		
)	()	()		
\square				1	1	(\quad)		

LDC\#: + 本	VALIDATION FINDINGS WORKSHEET Field Duplicates			Page: \qquad / of $/$ Reviewer: \qquad	
METHOD: GCMS VOA 8260 B					
Compound	Concentration (ug/L)		$\begin{aligned} & (\leq 30) \\ & \text { RPD } \end{aligned}$	Qual	
	5	6			
s	0.652	0.624	4		

V:IFIELD DUPLICATESIField DuplicatesIFD_OrganicsL2018142613B1.wpd

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_/_of/
Reviewer: Q 2nd Reviewer: $\angle K S$

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (\%RSD) were recalculated for the compounds identified below using the following calculations:

$R R F=\left(A_{x}\right)\left(C_{i s}\right) /\left(A_{i s}\right)\left(C_{x}\right)$ average RRF = sum of the RRFs/number of standards $\% R S D=100 *(S / X)$				$A_{x}=$ Area of compound, $\mathrm{C}_{\mathrm{x}}=$ Concentration of compound, $S=$ Standard deviation of the RRFs X = Mean of the RRFs	$\mathrm{A}_{\mathrm{is}}=$ Area of associated internal standard $\mathrm{C}_{\text {is }}=$ Concentration of internal standard				
				Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
\#	Standard ID	Calibration Date	Compound (Reference Internal Standard)	$\begin{gathered} \text { RRF } \\ (10 \mathrm{std}) \\ \hline \end{gathered}$	$\begin{gathered} \text { RRF } \\ \left(/ D_{\text {std }}\right) \end{gathered}$	Average RRF (initial)	Average RRF (initial)	\%RSD	\%RSD
1	$(R,)$	$5 / 16 / 1$	H (1st internal standard)	0.3187	0.3187	0.3149	0.314	48^{8}	48
			$A A$ (2nd internal standard)	1.3348	1.3348	1.3251	1.325	3.5	3.5
			(3rd internal standard)						
			(4th internal standard)						
2			(1st internal standard)						
			(2nd internal standard)						
			(3rd internal standard)						
			(4th internal standard)						
3			(1st internal standard)						
			(2nd internal standard)						
			(3rd internal standard)						
			(4th internal standard)						
4			(1st internal standard)						
			(2nd internal standard)						
			(3rd internal standard)						
			(4th internal standard)						

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

INICLC-4IS.1SBB

VALIDATION FINDINGS WORKSHEET Continuing Calibration Results Verification

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:
\% Difference $=100^{*}$ (ave. RRF - RRF)/ave. RRF RRF $=\left(A_{x}\right)\left(C_{i s}\right) /\left(A_{i s}\right)\left(C_{x}\right)$

Where: ave. $R R F=$ initial calibration average $R R F$
RRF = continuing calibration RRF
$\mathrm{A}_{\mathrm{x}}=$ Area of compound,
$C_{x}=$ Concentration of compound,
$\mathrm{A}_{\mathrm{is}}=$ Area of associated internal standard $\mathrm{C}_{\text {is }}$ = Concentration of internal standard

\#	Standard In	Calibration Date	Compound (Reference internal Standard)	Average RRF (initial)	Reported RRF (CE)	$\begin{gathered} \text { Recalculated } \\ \text { RRF } \\ \text { (CC) } \\ \hline \end{gathered}$	Reported \%D	$\begin{aligned} & \text { Recalculated } \\ & \% \mathrm{D} \end{aligned}$
1	R/>35	$6 / 418$	H (1st internal standard)	0.3149	$0.33 / 2$	0.3312	5	S.2
			AA (2nd internal standard)	1.3251	1.401	1.401	5.7	5.7
			(3rd internal standard)					
			(4th internal standard)					
2			(1st internal standard)					
			(2nd internal standard)					
			(3rd internal standard)					
			(4th internalstandard)					
3			(1st internal standard)					
			(2nd internal standard)					
			(3rd internal standard)					
			(4th internal standard)					
4			(1st internal standard)					
			(2nd internal standard)					
			(3rd internal standard)					
			(4th internal standard)					

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Page:__ /of /
Reviewer \qquad

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)
The percent recoveries (\%R) of surrogates were recalculated for the compounds identified below using the following calculation:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane	11.5	$1 \otimes .2$	tots	$10-5$	0
1,2-Dichloroethane-d4	1	12.4	108	108	1
Toluene-d8	7	11.5	-100	100	\square
Bromofluorobenzene	\checkmark	11.2	100	$1 D 2$	N

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported		Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

Sample ID:

| | Surrogate
 Spiked | Surrogate
 Found | Percent
 Recovery
 Reported | Percent
 Recovery
 Recalculated |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Dibromofluoromethane | | | | |
| 1,2-Dichloroethane-d4 | | | | |
| Toluene-d8 | | | | |
| Bromofluorobenzene | | | | |

VALIDATION FINDINGS WORKSHEET

Matrix Spike/Matrix Spike Duplicates Results Verification

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)
The percent recoveries (\%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

\% Recovery $=100^{*}(S S C-S C) / S A$	Where:	SSC = Spiked sample concentration
	$S A=$ Spike added	SC = Sample concentration
RPD $=1$ MSC - MSC $1 * 2 /(M S C+M S D C)$	MSC $=$ Matrix spike concentration	MSDC = Matrix spike duplicate concentration

MS/MSD sample: $8 / 9$

Compound	Spike Added 14^{2}		Sample	Spiked Sample Concentration res)		Matrix Spike		Matrix Spike Duplicate		MSIMSD	
			$\begin{aligned} & \text { incentration } \\ & (\mu \nmid q) \end{aligned}$			Percent Recovery		Percent Recovery		RPD	
2 ${ }^{\text {a }}$ -	MS	MSD	-	MS	MSn	Renorted	Recalc	Renoted	Recar	Renorted	Recalculated
1,1-Dichloroethene	5.00	5.00	$N \rightarrow$	2.195	$1.6=9$	z6	56	33	33	53	53
Trichloroethene	V	l	V	4.863	4.489	97	97	90	90	8	8
Benzene											
Toluene											
Chlorobenzene											

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent recoveries (\%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:

\% Recovery $=100$ SSC/SA \quad Where:SSC $=$ Spiked sample concentration SA $=$ Spike added												
RPD $=1$ LCSC - LCSDC I * $2 /($ LCSC + LCSDC $) \quad$ LCSC $=$ Laboraotry control sample concentration LCSDC $=$ Laboratory control sample duplicate concentration												
$\text { LCS ID: } 280-417198 / 4$												
Compound	$\begin{aligned} & \text { Spike } \\ & \text { Addged } \\ & (\mu \ll) \end{aligned}$		Spiked Sample Concentration\qquad (M)		Les.		1 CSn		Les/lesn			
			Percent Recovery	Percent Recovery		RPD						
	LCS	LCSD			LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
1,1-Dichloroethene	5.00	$N A$	5.615	$N A$	112	112						
Trichloroethene	\downarrow	\downarrow	(5.111	\downarrow	102	102						
Benzene												
Toluene												
Chlorobenzene												

Comments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

```
MAETHOD: GC/MS VOA (EPA SW 846 Method 8260B)
N N/A Were all reported results recalculated and verified for all level IV samples?
V/ N N/A Were all recalculated results for detected target compounds agree within 10.0% of the reported results?
```

Concentration $=\frac{\left(A_{A}\right)\left(I_{e}\right)(D F)}{\left(A_{i 6}\right)(R R F)\left(V_{0}\right)(\% S)}$
$A_{x} \quad=\quad$ Area of the characteristic ion (EICP) for the compound to be measured
$\mathrm{A}_{\mathrm{is}}=\quad=\quad$ Area of the characteristic ion (EICP) for the specific internal standard
$I_{s} \quad=\quad$ Amount of internal standard added in nanograms (ng)

RRF = Relative response factor of the calibration standard.
$\mathrm{V}_{0} \quad=\quad$ Volume or weight of sample pruged in milliliters (ml) or grams (g).
Vf $=$ Dilution factor.
\%S = Percent solids, applicable to soils and solid matrices only.

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

LDC Report Date:
Parameters:
Validation Level:

Laboratory:

MCAS Yuma, CTO 17F3803
July 19, 2018
Wet Chemistry
Stage 4
TestAmerica, Inc.

Sample Delivery Group (SDG): 280-110112-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
A1-MW-18-SA1	$280-110112-2$	Water	$05 / 23 / 18$
16-MW-08-SA1	$280-110112-3$	Water	$05 / 23 / 18$
A1-MW-19-SA1	$280-110112-4$	Water	$05 / 23 / 18$
A1-MW-37-SA1	$280-110112-6$	Water	$05 / 23 / 18$
16-HS-03-SA1	$280-110112-7$	Water	$05 / 23 / 18$
A1-MW-18-SA1MS	$280-110112-2 M S$	Water	$05 / 23 / 18$
A1-MW-18-SA1MSD	$280-110112-2 M S D$	Water	$05 / 23 / 18$
A1-MW-18-SA1DUP	$280-110112-2 D U P$	Water	$05 / 23 / 18$
16-HS-03-SA1MS	$280-110112-7 M S$	Water	$05 / 23 / 18$
16-HS-03-SA1MSD	$280-110112-7 M S D$	Water	$05 / 23 / 18$
16-HS-03-SA1DUP	$280-110112-7 D U P$	Water	$05 / 23 / 18$
16-HS-03-SA1DLMS	$280-11012-7 D L M S$	Water	$05 / 23 / 18$
16-HS-03-SA1DLMSD	$280-11012-7 D L M S D$	Water	$05 / 23 / 18$
16-HS-03-SA1DLDUP	$280-110112-7 D L D U P$	Water	$05 / 23 / 18$

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:
Chloride, Nitrate as Nitrogen, and Sulfate by Environmental Protection Agency (EPA) SW 846 Method 9056A
Ferrous Iron by Standard Method 3500-Fe B
pH by EPA SW 846 Method 9040C
All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.
All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Time From Sample Collection Until Analysis	Required Holding Time From Sample Collection Until Analysis	Flag	A or P
A1-MW-18-SA1 16-MW-08-SA1 A1-MW-19-SA1 A1-MW-37-SA1 16-HS-03-SA1	pH	8 days	24 hours	J (all detects)	P
A1-MW-18-SA1	Ferrous Iron	26.85 hours	24 hours	J (all detects)	P

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (\%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Analyte	MS (\%R) (Limits)	MSD (\%R) (Limits)	Flag	A or P
16-HS-03-SA1MS/MSD (16-HS-03-SA1)	Sulfate	$88(87-112)$	$86(87-112)$	J (all detects)	A
16-HS-03-SA1MS/MSD (16-HS-03-SA1)	Ferrous Iron	1 (85-113)	$0(85-113)$	R (all non-detects)	A

For A1-MW-18-SA1MS/MSD, no data were qualified for Chloride and Sulfate percent recoveries (\%R) outside the QC limits since the parent sample results were greater than $4 X$ the spike concentration.

Relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Sample Result Verification

All sample result verifications were acceptable.
All analytes reported below the limit of quantitation (LOQ) were qualified as follows:

Sample	Finding	Flag	A or \mathbf{P}
A1-MW-18-SA1 16-MW-08-SA1 A1-MW-37-SA1	All analytes reported below the LOQ.	J (all detects)	A

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods.
Due to MS/MSD \%R, data were rejected in one sample.
Due to technical holding time, MS/MSD \%R, and results below the LOQ, data were qualified as estimated in five samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

MCAS Yuma, CTO 17F3803
Wet Chemistry - Data Qualification Summary - SDG 280-110112-1

Sample	Analyte	Flag	A or P	Reason
A1-MW-18-SA1 16-MW-08-SA1 A1-MW-19-SA1 A1-MW-37-SA1 16-HS-03-SA1	pH	J (all detects)	P	Technical holding times
A1-MW-18-SA1	Ferrous Iron	J (all detects)	P	Technical holding times
16-HS-03-SA1	Sulfate	J (all detects)	A	Matrix spike/Matrix spike duplicate (\%R)
16-HS-03-SA1	Ferrous Iron	R (all non-detects)	A	Matrix spike/Matrix spike duplicate (\%R)
A1-MW-18-SA1 16-MW-08-SA1 A1-MW-37-SA1	All analytes reported below the LOQ.	J (all detects)	A	Sample result verification

MCAS Yuma, CTO 17F3803
Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 280-1101121

No Sample Data Qualified in this SDG
MCAS Yuma, CTO 17F3803
Wet Chemistry - Field Blank Data Qualification Summary - SDG 280-110112-1
No Sample Data Qualified in this SDG

LDC \#: 42613B6
VALIDATION COMPLETENESS WORKSHEET
State 4
SDG \#: 280-110112-1
Laboratory: Test America, Inc.

METHOD: (Analyte)_Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056A), Ferrous Iron (SM3500-Fe B) pH (EPA SW846 Method (9040C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note:
$A=$ Acceptable
$N=$ Not provided/applicable
SW $=$ See worksheet

SW = See worksheet

Notes:

VALIDATION FINDINGS CHECKLIST

Method:Inorganics (EPA Method Selcovery

Validation Area	Yes	No	NA	Findings/Comments
VII. Sample Result Verification				
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
Were detection limits < RL?				
VIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.				
IX. Field duplicates				
Field duplicate pairs were identified in this SDG.				
Target analytes were detected in the field duplicates.			7	
X. Field blanks				
Field blanks were identified in this SDG.		7		
Target analytes were detected in the field blanks.			7	

circled dates have exceeded the technical holding time.
N N/A Were all samples preserved as applicable to each method?
Were all cooler temperatures within validation criteria?

LDC \#: \qquad

Page:
Reviewer:
METHOD: Inorganics, EPA Method \qquad

Please see qualifications below for all questions answered " N ". Not applicable questions are identified as "N/A".

Y N N/A Were recalculated results acceptable? See Level IV Recalculation Worksheet for recalculations.

N NRA
(N) N / A
(Y) N NRA LEVEL IV ONLY:

Was a matrix spike analyzed for each matrix in this SDG?
Were matrix spike percent recoveries (\%R) within the control limits of 75-125? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.
Were all duplicate sample relative percent differences (RPD) $\leq 20 \%$ for water samples and $\leq 35 \%$ for soil samples?

Comments: $718: \mathrm{Cl}, \mathrm{SO}_{4}>4 x$
\qquad
\qquad

LDC \#

Validation Findings Worksheet Initial and Continuing Calibration Calculation Verification

Page:
Reviewer: 2nd Reviewer: of $\hat{F K}$

Method: Inorganics, Method

\qquad
See Cover
The correlation coefficient (r) for the calibration of $C \mid$ was recalculated.Calibration date: 3/21/18
An initial or continuing calibration verification percent recovery (\%R) was recalculated for each type of analysis using the following formula:

$\% R=\frac{\text { Found } X 100}{\text { True }} \quad$ Where,	Found $=$ concentration of each analyte measured in the analysis of the ICV or CCV solution
True $=$ concentration of each analyte in the ICV or CCV source	

Type of analysis	Analyte	Standard	Conc. (mg/L)	Area	Recalculated	Reported	Acceptable (Y/N)
					r or r ${ }^{2}$	r or r^{2}	
Initial calibration	C^{\prime}	s1	1.0	16911296	1.000	1.000	
		s2	2.5	43759132			
		s3	5	85841374			
		s4	60	1053445301			
		s5	120	2068634717			
		s6	200	3433898767			
Calibration verification	$\mathrm{NO}_{3} \mathrm{~N}$	$I C V$	4	3.93			
Calibration verification		$88 C C$	10	100.1	100	$10 \bigcirc$	
Calibration verification	$=e^{2 t}$		1. 0	10086	107		

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET
 Level IV Recalculation Worksheet

METHOD: Inorganics, Method See cover
Percent recoveries (\%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

$\% R=\frac{\text { Found }}{\text { True }} \times 100 \quad$ Where, \quad| Found $=\cdots \quad$concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation,
 Found $=S S R$ (spiked sample result) $-S R$ (sample result). |
| :--- |
| |
| True $=$ concentration of each analyte in the source. | True $=$ concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

| $\mathrm{RPD}=\frac{\|\mathrm{S}-\mathrm{D}\|}{(\mathrm{S}+\mathrm{D}) / 2}$ |
| :--- | :--- | :--- |$\times 100 \quad$ Where, \quad| $\mathrm{S}=$ | Original sample concentration |
| :--- | :--- |
| $\mathrm{D}=\mathrm{Duplicate}$ sample concentration | |

Smano	nomataper	cmam	${ }_{\text {remems }}$	\%mion	sereo	cmo	\cdots
LCS		Ferraw	2,2416	200	112	112	Y
10	mantame	$\mathrm{NO}_{3} \mathrm{~N}$	(SSR-SR) 10.0	10	100	100	
12		SO_{4}	42.4	38.4	10	10	\downarrow

Comments: \qquad

LDC \#: 42613 VALIDATION FINDINGS WORKSHEET
Sample Calculation Verification

Page: \qquad of
Reviewer:
and reviewer: \qquad

METHOD: Inorganics, Method \qquad see carer

Please see qualifications below for all questions answered " N ". Not applicable questions are identified as "N/A".
N N/A Have results been reported and calculated correctly?
Y N N/A Are results within the calibrated range of the instruments?
Y N NA
Are all detection limits below the CRQL?
Compound (analyte) results for \qquad reported with a positive detect were recalculated and verified using the following equation:

$$
\begin{aligned}
& \text { Concentration }= \\
& y=16553610 x-440112
\end{aligned}
$$

Recalculation:

$$
\frac{1079969301+440112}{1655360} \times 50=3263.3 \mathrm{mg} / \mathrm{L}
$$

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:
LDC Report Date:
Parameters:
Validation Level:

Laboratory:

MCAS Yuma, CTO 17F3803
July 19, 2018
1,4-Dioxane
Stage 2B
Alpha Analytical, Inc.

Sample Delivery Group (SDG): L1818881

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
A1-MW-51-SA1	L1818881-01	Water	$05 / 22 / 18$
A1-MW-50-SA1	L1818881-02	Water	$05 / 22 / 18$
A1-MW-49-SA1	L1818881-03	Water	$05 / 22 / 18$
A1-MW-05-SA1	L1818881-04	Water	$05 / 22 / 18$
A1-MW-04-SA1	L1818881-05	Water	$05 / 22 / 18$

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
1,4-Dioxane by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage $2 B$ data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.
The chain-of-custodies were reviewed for documentation of cooler temperatures. Cooler temperatures for all samples were reported at $7.9^{\circ} \mathrm{C}$ upon receipt by the laboratory. No data was qualified based on the cooler temperature.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.
All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.
The percent relative standard deviations (\%RSD) were less than or equal to 15.0%.
Average relative response factors (RRF) were within validation criteria.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.
The percent differences (\%D) were less than or equal to 20.0%.
The percent differences (\%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0%.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (\%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

MCAS Yuma, CTO 17F3803
1,4-Dioxane - Data Qualification Summary - SDG L1818881
No Sample Data Qualified in this SDG
MCAS Yuma, CTO 17F3803
1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG L1818881
No Sample Data Qualified in this SDG
MCAS Yuma, CTO 17F3803
1,4-Dioxane - Field Blank Data Qualification Summary - SDG L1818881
No Sample Data Qualified in this SDG

METHOD: GC/MS 1,4-Dioxane (EPA SW 846 Method 8270D-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note: $\quad \mathrm{A}=$ Acceptable $\mathrm{N}=$ Not provided/applicable SW = See worksheet
ND = No compounds detected $\mathrm{R}=$ Rinsate

D = Duplicate
TB = Trip blank
SB=Source blank
$\mathrm{EB}=$ Equipment blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	A1-MW-51-SA1	L1818881-01	Water	$05 / 22 / 18$
2	A1-MW-50-SA1	L1818881-02	Water	$05 / 22 / 18$
3	A1-MW-49-SA1	L1818881-03	Water	$05 / 22 / 18$
4	A1-MW-05-SA1	L1818881-04	Water	$05 / 22 / 18$
5	A1-MW-04-SA1	L1818881-05	Water	$05 / 22 / 18$
6				
7				
8				

Notes:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

LDC Report Date:
Parameters:
Validation Level:
Laboratory:

MCAS Yuma, CTO 17F3803
July 16, 2018
1,4-Dioxane
Stage 4
Alpha Analytical, Inc.

Sample Delivery Group (SDG): L1819087

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
A1-MW-18-SA	L1819087-01	Water	$05 / 23 / 18$
16-MW-08-SA1	L1819087-02	Water	$05 / 23 / 18$
A1-MW-19-SA1	L1819087-03	Water	$05 / 23 / 18$
A1-MW-37-SA1	L1819087-04	Water	$05 / 23 / 18$
A1-MW-37-SA1D	L1819087-05	Water	$05 / 23 / 18$
16-HS-03-SA1	L1819087-06	Water	$05 / 23 / 18$
16-HS-03-SA1MS	L1819087-06MS	Water	$05 / 23 / 18$
16-HS-03-SA1MSD	L1819087-06MSD	Water	$05 / 23 / 18$

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
1,4-Dioxane by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.
All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.
The percent relative standard deviations (\%RSD) were less than or equal to 15.0%.
Average relative response factors (RRF) were within validation criteria.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.
The percent differences (\%D) were less than or equal to 20.0%.
The percent differences (\%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0%.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (\%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples A1-MW-37-SA1 and A1-MW-37-SA1D were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

Compound	Concentration (ng/L)				
	A1-MW-37-SA1	A1-MW-37-SA1D	RPD (Limits)	Flag	A or P
	7780	7500	$4(\leq 30)$	-	-

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

All compound quantitations were within validation criteria.

XIII. Target Compound Identifications

All target compound identifications were within validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

MCAS Yuma, CTO 17F3803
1,4-Dioxane - Data Qualification Summary - SDG L1819087
No Sample Data Qualified in this SDG
MCAS Yuma, CTO 17F3803
1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG L1819087
No Sample Data Qualified in this SDG
MCAS Yuma, CTO 17F3803
1,4-Dioxane - Field Blank Data Qualification Summary - SDG L1819087
No Sample Data Qualified in this SDG

LDC \#: 42613G2b
VALIDATION COMPLETENESS WORKSHEET
SDG \#: L1819087
Stage 4
Laboratory: Alpha Analytical, Inc. \qquad
Date:
Page: / of 1
viewer

METHOD: GC/MS 1,4-Dioxane (EPA SW 846 Method 8270D-SIM)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note:
A = Acceptable
N = Not provided/applicable
SW = See worksheet
ND = No compounds detected
$\mathrm{R}=$ Rinsate

D = Duplicate
TB = Trip blank EB = Equipment blank
$\mathrm{SB}=$ Source blank
OTHER:

	Client ID	Lab ID	Matrix	Date
1	A1-MW-18-SA	L1819087-01	Water	$05 / 23 / 18$
2	16-MW-08-SA1	L1819087-02	Water	$05 / 23 / 18$
3	A1-MW-19-SA1	L1819087-03	Water	$05 / 23 / 18$
4	A1-MW-37-SA1	L1819087-04	Water	$05 / 23 / 18$
5	A1-MW-37-SA1D	L1819087-05	Water	$05 / 23 / 18$
6	16-HS-03-SA1	L1819087-06	Water	$05 / 23 / 18$
7	16-HS-03-SA1MS	L1819087-06MS	Water	$05 / 23 / 18$
8	16-HS-03-SA1MSD	L1819087-06MSD	Water	$05 / 23 / 18$
6				

Notes:

Page: \qquad
Reviewer: 2nd Reviewer: \qquad

Method: Semivolatiles (EPA SW 846 Method 8270C-SIM)

Validation Area	Yes	No	NA	Findings/Comments
VIII. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (\%R) and the relative percent differences (RPD) within the QC limits?				
IX. Laboratory control samples				
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per analytical batch?				
Were the LCS percent recoveries (\%R) and relative percent difference (RPD) within the QC limits?				
Field duplicates				
Were field duplicate pairs identified in this SDG?				
Were target compounds detected in the field duplicates?				
XI. Internal standards				
Were internal standard area counts within -50% or $+100 \%$ of the associated calibration standard?	1			
Were retention times within +30 seconds of the associated calibration standard?				
XII: Compound quantitation				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target compound identification				
Were relative retention times (RRT's) within + 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
XIV System perfomance				
System performance was found to be acceptable.	$/$			(20
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

VALIDATION FINDINGS WORKSHEET
METHOD: GC/MS SVOA

A. Phenol	AA. 2-Chloronaphthalene	AAA. Butylbenzylphthalate	AAAA. Dibenzothiopherie	A1.
B. Bis (2-chloroethyl) ether	BB. 2-Nitroaniline	BBB. 3,3'-Dichlorobenzidine	BBBB. Benzo(a)fluoranthene	B1.
C. 2-Chlorophenol	CC. Dimethylphthalate	CCC. Benzo(a)anthracene	CCCC. Benzo(b)fluorene	C1.
D. 1,3-Dichlorobenzene	DD. Acenaphthylene	DDD. Chrysene	DDDD. cis/trans-Decalin	D1.
E. 1,4-Dichlorobenzene	EE. 2,6-Dinitrotoluene	EEE. Bis(2-ethylhexyl)phthalate	EEEE. Biphenyl	E1.
F. 1,2-Dichlorobenzene	FF. 3-Nitroaniline	FFF. Di-n-octylphthalate	FFFF. Retene	F1.
G. 2-Methylphenol	GG. Acenaphthene	GGG. Benzo(b)fluoranthene	GGGG. C30-Hopane	G1.
H. 2,2'-Oxybis(1-chloropropane)	HH. 2,4-Dinitrophenol	HHH. Benzo(k)fluoranthene	HHHH. 1-Methylphenanthrene	H1.
1. 4-Methylphenol	II. 4-Nitrophenol	III. Benzo(a)pyrene	IIII. 1,4-Dioxane	11.
J. N-Nitroso-di-n-propylamine	JJ. Dibenzofuran	JJJ. Indeno(1,2,3-cd)pyrene	JJJJ. Acetophenone	J1.
K. Hexachloroethane	KK. 2,4-Dinitrotoluene .	KKK. Dibenz(a,h)anthracene	KKKK. Atrazine	K1.
L. Nitrobenzene	LL. Diethylphthalate	LLL. Benzo(g,h,i)perylene	LLLL. Benzaldehyde	L1.
M. Isophorone	MM. 4-Chlorophenyl-phenyl ether	MMM. Bis(2-Chloroisopropyl)ether	MMMM. Caprolactam	M1.
N. 2-Nitrophenol	NN. Fluorene	NNN. Aniline	NNNN. 2,6-Dichlorophenol	N1.
O. 2,4-Dimethylphenol	OO. 4-Nitroaniline	OOO. N-Nitrosodimethylamine	OOOO. 1,2-Diphenylhydrazine	01.
P. Bis(2-chloroethoxy)methane	PP. 4,6-Dinitro-2-methylphenol	PPP. Benzoic Acid	PPPP. 3-Methylphenol	P1.
Q. 2,4-Dichlorophenol	QQ. N-Nitrosodiphenylamine	QQQ. Benzyl alcohol	QQQQ. 3\&4-Methylphenol	Q1.
R. 1,2,4-Trichlorobenzene	RR. 4-Bromophenyl-phenylether	RRR. Pyridine	RRRR. 4-Dimethyldibenzothiophene (4MDT)	R1.
S. Naphthalene	SS. Hexachlorobenzene	SSS. Benzidine	SSSS. 2/3-Dimethyldibenzothiophene (4MDT)	S1.
T. 4-Chloroaniline	TT. Pentachlorophenol	TTT. 1-Methylnaphthalene	TTTT. 1-Methyldibenzothiophene (1MDT)	T1.
U. Hexachlorobutadiene	UU. Phenanthrene	UUU.Benzo(b)thiophene	UUUU.	U1.
V. 4-Chioro-3-methylphenol	V. Anthracene	WV.Benzonaphthothiophene	WV.	V1.
W. 2-Methylnaphthalene	WW. Carbazole	WWW.Benzo(e)pyrene	WWWW.	W1.
X. Hexachlorocyclopentadiene	XX. Di-n-butylphthalate	XXX. 2,6-Dimethylnaphthalene	XXXX.	X1.
Y. 2,4,6-Trichlorophenol	YY. Fluoranthene	YYY. 2,3,5-Trimethylnaphthalene	YYYY.	Y1.
Z. 2,4,5-Trichlorophenol	ZZ. Pyrene	ZZZ. Perylene	ZZZZ.	Z1.

VALIDATION FINDINGS WORKSHEET
Field Duplicates

Page: /of_/
Reviewer: $\frac{\square}{\ell K K}$

METHOD: GCMS SVOA 8270D-SIM

Compound	Concentration (ng/L)		(≤ 30) RPD	Qual
	4	5		
1,4-Dioxane	7780	7500	4	

METHOD: GC/MS BNA (EPA SW 846 Method 8270C-SIM)

The Relative Response Factor(RRF), average RRF, and percent relative standard deviation (\%RSD) were recalculated for the compounds identified below using the following calculations:

$R R F=\left(A_{x}\right)\left(C_{i s}\right) /\left(A_{i s}\right)\left(C_{x}\right)$	$A_{x}=$ Area of compound,	$A_{i s}=$ Area of associated internal standard
average $R R F=s u m$ of the RRFs/number of standards	$C_{x}=$ Concentration of compound,	$C_{i s}=$ Concentration of internal standard
$\% R S D=100^{*}(S / X)$	$S=$ Standard deviation of the RRFs,	$X=$ Mean of the RRFs

		$\begin{gathered} \text { Calibration } \\ \text { Date } \\ \hline \end{gathered}$	Compound (Reference Internal Standard)	Reported	Recalculated	Reported	Recalculated	Reported	Recalculated
\#	Standard ID			$\left(\stackrel{\mathrm{RRF}}{\mathrm{std}}^{(500}\right.$	$\stackrel{\mathrm{RRF}}{\left.50^{\mathrm{R}} \mathrm{Otd}\right)}$	$\begin{gathered} \text { Average RRF } \\ \text { (initial) } \\ \hline \hline \end{gathered}$	Average RRF (initial)	\%RSD	\%RSD
1	伩	$5 / 29 / 18$	//1/ (1st internal standard)	1.618	$1.6 / 8$	1.686	1.486	7.57	7.57
			Naphthalene (2nd internal standard)					7	
			Fluorene _ (3rd internal standard)						
			Phenanthrene (4th internal standard)						
			Chrysene (5th internal standard)						
			Benzo(a)pyrene (6th internal standard)						
2	1942	$6 / 1 / 18$	$/ / / /$ (1st internal standard)	1.471	1.471	1.437	1.437	402	402
			Naphthalene (2nd internal standard)						
			Fluorene (3rd internal standard)						
			Phenanthrene (4th internal standard)						
			Chrysene (5th internal standard)						
			Benzo(alpyrene (6th internal standard)						
3			(1st internal standard)						
			Naphthalene (2nd internal standard)						
			Fluorene (3rd internal standard)						
			Phenanthrene (4th internal standard)						
			Chrysene (5th internal standard)						
			Benzo(a)pyrene (6th internal standard)						

Comments: Refer to Initial Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

2nd Reviewer:
METHOD: GC/MS RNA (EPA SW 846 Method 8270C-SIM)
The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration REFs were recalculated for the compounds identified below using the following calculation:
\% Difference $=100^{*}$ (ave. RRF - RRF)/ave. RRF
$R R F=(A)(C.) /(A).(C)$ REF $=\left(A_{x}\right)\left(C_{i s}\right) /\left(A_{i s}\right)\left(C_{x}\right)$

Where: ave. $R R F=$ initial calibration average $R R F$ RRF = continuing calibration RRF $A_{x}=$ Area of compound, $\quad A_{i s}=$ Area of associated internal standard $C_{x}=$ Concentration of compound,$\quad C_{i s}=$ Concentration of internal standard

Comments: Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET
Surrogate Results Verification
Page: _of /
Reviewer:
METHOD: GC/MS Semivolatiles (EPA SW 846 Method 8270C-SIM)
The percent recoveries (\%R) of surrogates were recalculated for the compounds identified below using the following calculation:
\% Recovery: SF/SS * 100

```
Where: \(\quad S F=\) Surrogate Found
```

SS = Surrogate Spiked
Sample ID:

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Nitrobenzene-d5					
2-Fluorobiphenyl					
Terphenyl-d14					

Sample ID:

	Surrogate Spiked		Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated
Nitrobenzene-d5					Percent Difference
2-Fluorobiphenyl					
Terphenyl-d14					

METHOD: GC/MS (EPA SW 846 Method 8270C-SIM)
The percent recoveries (\%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

$\%$ Recovery $=100$ * (SSC - SC)/SA	Where:	SSC = Spiked sample concentration SA = Spike added	SC = Sample concentation
RPD $=1$ MSC $-M S C 1 * 2 /(M S C+M S D C)$		MSC $=$ Matrix spike concentration	MSDC = Matrix spike duplicate concentration
MS/MSD samples: 7/8			

Compound			Sample	Spiked Sample Concentration\qquad ($1 \mathrm{~s} / \mathrm{L}$)		Matrix Spike		Matrix.Spike_Duplicate		MS/MSD	
			(ns/4			Percent Recovery		Percent Recovery		RPD	
\square	MS	MSD		MS.	MSD	Reported	Recale.	Reported	Recale	Reported	Recalculated
Acenaphthene											
Pyrene											
$1.4 \text {-oioxale }$	$5 / 00$	5100	3270	8340	$\sum \operatorname{sen}$	89	99	106	125	\neq	4

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

METHOD：GC／MS Semivolatiles（EPA SW 846 Method 8270C－SIM）

The percent recoveries（\％R）and Relative Percent Difference（RPD）of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation：

```
\(\%\) Recovery \(=100\)＊\((\mathrm{SC} / \mathrm{SA}) \quad\) Where： \begin{tabular}{l} 
SSC \(=\) Spike concentration \\
\\
SA \(=\) Spike added
\end{tabular}
RPD \(=\operatorname{ILCSC}-\operatorname{LCSDC} \|^{*} 2 /(\operatorname{LCSC}+\operatorname{LCSDC}) \quad\) LCSC \(=\) Laboratory control sample concentration LCSDC＝Laboratory control sample duplicate concentration LCS／LCSD samples：\(W^{4} / 1 / 20650-2 /-3\)
```

Compound	$\begin{gathered} \text { Spike } \\ \text { Added } \\ 1 \cap \delta / 4 \\ \hline \hline \end{gathered}$		Spike Concentration （hठ／ 4		LCS		ICSD		Les／lesn			
			Percent Recovery	Percent Recovery		RPD						
	ICS	1 CSD			S	1 CSD	Reported	Recalc	Reported	Recalc．	Reported	Recalculated
Acenaphthene												
Pyrene												
1．4－Dioxaue	5000	500	5640	5660	113	$11-3$	113	113	D	0		
				\cdots								

Comments：Refer to Laboratory Control Sample／Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results．

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page: \qquad /of $/$
Reviewer:
2nd reviewer: \qquad

METHOD: GC/MS PAHs (EPA SW 846 Method 8270D-SIM)
Were all reported results recalculated and verified for all level IV samples?
Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:	MCAS Yuma, CTO 17F3803
LDC Report Date:	July 19, 2018
Parameters:	1,4-Dioxane
Validation Level:	Stage 2B
Laboratory:	Alpha Analytical, Inc.

Sample Delivery Group (SDG): L1819352

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
A1-MW-13-SA1	L1819352-01	Water	$05 / 24 / 18$
A1-MW-11-SA1	L1819352-02	Water	$05 / 24 / 18$
A1-MW-14-SA1	L1819352-03	Water	$05 / 24 / 18$
A1-MW-15-SA1	L1819352-04	Water	$05 / 24 / 18$
A1-MW-25-SA1	L1819352-07	Water	$05 / 24 / 18$

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
1,4-Dioxane by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.
All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.
The percent relative standard deviations (\%RSD) were less than or equal to 15.0%.
Average relative response factors (RRF) were within validation criteria.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.
The percent differences (\%D) were less than or equal to 20.0%.
The percent differences (\%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0%.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (\%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

MCAS Yuma, CTO 17F3803
1,4-Dioxane - Data Qualification Summary - SDG L1819352
No Sample Data Qualified in this SDG
MCAS Yuma, CTO 17F3803
1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG L1819352
No Sample Data Qualified in this SDG
MCAS Yuma, CTO 17F3803
1,4-Dioxane - Field Blank Data Qualification Summary - SDG L1819352
No Sample Data Qualified in this SDG

LDC \＃： 42613 H 2 b
VALIDATION COMPLETENESS WORKSHEET
SDG \＃：L1819352
Laboratory：Alpha Analytical，Inc．
METHOD：GC／MS 1，4－Dioxane（EPA SW 846 Method 8270D－SIM）
The samples listed below were reviewed for each of the following validation areas．Validation findings are noted in attached validation findings worksheets．

	Validation Area		Comments
1.	Sample receipt／Technical holding times	A	
II．	GC／MS Instrument performance check	\pm	
III．	Initial calibration／ICV	A，A	上®入下
IV．	Continuing calibration	A	$\operatorname{ecV} \leqslant 20 / 5070$
V ．	Laboratory Blanks	Δ	7
VI．	Field blanks	N	
VII．	Surrogate spikes	A	
VIII．	Matrix spike／Matrix spike duplicates	N	$\bigcirc 5$
IX．	Laboratory control samples	∞	$\angle c s t \rightarrow$
X．	Field duplicates	N	1
XI．	Internal standards	A	
XII．	Compound quantitation RL／LOQ／LODs	N	
XIII．	Target compound identification	N	
XIV．	System performance	N	
XV．	Overall assessment of data	A	

Note：	$A=$ Acceptable	$N D=$ No compounds detected	$D=$ Duplicate	SB＝Source blank
	$N=$ Not provided／applicable	$R=$ Rinsate	TB＝Trip blank	OTHER：
	SW $=$ See worksheet	FB＝Field blank	EB＝Equipment blank	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:
LDC Report Date:
Parameters:
Validation Level:
Laboratory:

MCAS Yuma, CTO 17F3803
July 19, 2018
1,4-Dioxane
Stage 2B
Alpha Analytical, Inc.

Sample Delivery Group (SDG): L1819562

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
A1-MW-42-SA1	L1819562-01	Water	$05 / 25 / 18$
A1-MW-54-SA1	L1819562-02	Water	$05 / 25 / 18$
A1-MW-53-SA1	L1819562-03	Water	$05 / 25 / 18$
A1-PZ-19-SA1	L1819562-04	Water	$05 / 25 / 18$
A1-MW-52-SA1	L1819562-05	Water	$05 / 25 / 18$
A1-MW-01-SA1	L1819562-06	Water	$05 / 25 / 18$
A1-MW-01-SA1D	L1819562-07	Water	$05 / 25 / 18$
A1-MW-31-SA1	L1819562-08	Water	$05 / 25 / 18$
A1-MW-53-SA1MS	L1819562-03MS	Water	$05 / 25 / 18$
A1-MW-53-SA1MSD	L1819562-03MSD	Water	$05 / 25 / 18$

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
1,4-Dioxane by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage $2 B$ data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.
All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.
The percent relative standard deviations (\%RSD) were less than or equal to 15.0%.
Average relative response factors (RRF) were within validation criteria.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.
The percent differences (\%D) were less than or equal to 20.0%.
The percent differences (\%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0%.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (\%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples A1-MW-01-SA1 and A1-MW-01-SA1D were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

Compound	Concentration (ug/L)				
	A1-MW-01-SA1	A1-MW-01-SA1D	RPD (Limits)	Flag	A or P
	1840	1880	$2(\leq 30)$	-	-

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

MCAS Yuma, CTO 17F3803
1,4-Dioxane - Data Qualification Summary - SDG L1819562
No Sample Data Qualified in this SDG
MCAS Yuma, CTO 17F3803
1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG L1819562
No Sample Data Qualified in this SDG
MCAS Yuma, CTO 17F3803
1,4-Dioxane - Field Blank Data Qualification Summary - SDG L1819562
No Sample Data Qualified in this SDG

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note:
A = Acceptable $\mathrm{N}=$ Not provided/applicable SW = See worksheet
ND = No compounds detected R = Rinsate
FB = Field blank
$\mathrm{D}=$ Duplicate

TB = Trip blank
EB = Equipment blank

SB=Source blank

SB= Sour OTHER:

Matrix	Date
Water	$05 / 25 / 18$
Water	$05 / 25 / 18$
Water	$05 / 25 / 18$
Water	$05 / 25 / 18$
Water	$05 / 25 / 18$
Water	$05 / 25 / 18$
Water	$05 / 25 / 18$
Water	$05 / 25 / 18$
Water	$05 / 25 / 18$
Water	$05 / 25 / 18$

LDC\#: $42613 /=5 \quad$\begin{tabular}{c}
VALIDATION FINDINGS WORKSHEET

Field Duplicates

\quad

Page: 1

Reviewer: $\frac{1}{K K}$
\end{tabular}

METHOD: GCMS SVOA 8270D-SIM

Compound	Concentration (ng/L)		(≤ 30) RPD	Qual
	6	7		
1,4-Dioxane	1840	1880	2	

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:
LDC Report Date:
Parameters:
Validation Level:
Laboratory:

MCAS Yuma, CTO 17F3803
July 19, 2018
1,4-Dioxane
Stage 2B
Alpha Analytical, Inc.

Sample Delivery Group (SDG): L1820050

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
A1-MW-27-SA1	L1820050-01	Water	$05 / 30 / 18$
A1-MW-55-SA1	L1820050-02	Water	$05 / 30 / 18$
A1-MW-23-SA1	L1820050-03	Water	$05 / 30 / 18$
A1-MW-07-SA1	L1820050-04	Water	$05 / 30 / 18$

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
1,4-Dioxane by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage $2 B$ data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.
All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.
The percent relative standard deviations (\%RSD) were less than or equal to 15.0%.
Average relative response factors (RRF) were within validation criteria.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.
The percent differences (\%D) were less than or equal to 20.0%.
The percent differences (\%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0%.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (\%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

All compounds reported below the reporting limit (RL) were qualified as follows:

Sample	Finding	Flag	A or \mathbf{P}
A1-MW-23-SA1	All compounds reported below the RL.	J (all detects)	A

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage $2 B$ validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to results below the RL, data were qualified as estimated in one sample.
The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

MCAS Yuma, CTO 17F3803
1,4-Dioxane - Data Qualification Summary - SDG L1820050

Sample	Compound	Flag	A or P	Reason
A1-MW-23-SA1	All compounds reported below the RL.	J (all detects)	A	Compound quantitation

MCAS Yuma, CTO 17F3803
1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG L1820050
No Sample Data Qualified in this SDG
MCAS Yuma, CTO 17F3803
1,4-Dioxane - Field Blank Data Qualification Summary - SDG L1820050
No Sample Data Qualified in this SDG

LDC \#: 42613J2b
VALIDATION COMPLETENESS WORKSHEET
SDG \#: L1820050
Stage 2B
Laboratory: Alpha Analytical, Inc.

METHOD: GC/MS 1,4-Dioxane (EPA SW 846 Method 8270D-SIM)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	大	
11.	GC/MS Instrument performance check	A	
III.	Initial calibration/ICV	$A \cdot A$	$R S 0 \leqslant 1570 . \quad 10 V \leqslant 2070$
IV.	Continuing calibration	A	$\operatorname{ecV}=20 / 50$
V.	Laboratory Blanks δ	θ	
VI.	Field blanks	N	
VIII.	Surrogate spikes	\pm	
VIIII.	Matrix spike/Matrix spike duplicates	N	C3
IX.	Laboratory control samples	∞	$\angle C S / \square$
X.	Field duplicates	N	7
XI.	Internal standards	A	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N	
XIV.	System performance	N	
XV.	Overall assessment of data	A	

Note: $\quad \mathrm{A}=$ Acceptable
$\mathrm{N}=$ Not provided/applicable SW = See worksheet
ND = No compounds detected
$\mathrm{R}=$ Rinsate
$\mathrm{FB}=$ Field blank

D = Duplicate
SB=Source blank
TB = Trip blank
$\mathrm{EB}=$ Equipment blank

	Client ID	Lab ID	Matrix	Date
1	A1-MW-27-SA1	L1820050-01	Water	$05 / 30 / 18$
2	A1-MW-55-SA1	L1820050-02	Water	$05 / 30 / 18$
3	A1-MW-23-SA1	L1820050-03	Water	$05 / 30 / 18$
4	A1-MW-07-SA1	L1820050-04	Water	$00 / 30 / 18$
5				
6				
7				
8				

Notes:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:
LDC Report Date:
Parameters:
Validation Level:
Laboratory:

MCAS Yuma, CTO 17F3803
July 19, 2018
1,4-Dioxane
Stage 2B
Alpha Analytical, Inc.

Sample Delivery Group (SDG): L1820175

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
EB-20180531	L1820175-01	Water	$05 / 31 / 18$

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
1,4-Dioxane by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:
J. (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.
$R \quad$ (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.
All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.
The percent relative standard deviations (\%RSD) were less than or equal to 15.0%.
Average relative response factors (RRF) were within validation criteria.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.
The percent differences (\%D) were less than or equal to 20.0%.
The percent differences (\%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0%.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample EB-20180531 was identified as an equipment blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (\%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

MCAS Yuma, CTO 17F3803
1,4-Dioxane - Data Qualification Summary - SDG L1820175
No Sample Data Qualified in this SDG
MCAS Yuma, CTO 17F3803
1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG L1820175
No Sample Data Qualified in this SDG
MCAS Yuma, CTO 17F3803
1,4-Dioxane - Field Blank Data Qualification Summary - SDG L1820175
No Sample Data Qualified in this SDG

METHOD: GC/MS 1,4-Dioxane (EPA SW 846 Method 8270D-SIM)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A	
II.	GC/MS Instrument performance check	∞	
III.	Initial calibration/ICV	A1A	
IV.	Continuing calibration	A	$\operatorname{GeD}=35 / 55$
V.	Laboratory Blanks		
VI.	Field blanks	$N D$	$\sum \square=$
VII.	Surrogate spikes	$\$$	
VIII.	Matrix spike/Matrix spike duplicates	N	\cdots
IX.	Laboratory control samples	\pm	$\cos /-6$
X.	Field duplicates	N	4
XI.	Internal standards	A	
XII.	Compound quantitation RL/LOQ/LODs	N	
XIII.	Target compound identification	N/	
XIV.	System performance	N	
XV.	Overall assessment of data	A	

Note: $\quad \mathrm{A}=$ Acceptable
$\mathrm{N}=$ Not provided/applicable
SW = See worksheet
ND = No compounds detected R = Rinsate

D = Duplicate
SB=Source blank
TB = Trip blank
OTHER:

	Client ID	Lab ID	Matrix	Date
1	EB-20180531	L1820175-01	Water	
2			$05 / 31 / 18$	
3				
4				
5				
6				
7				
8				

Notes:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:
LDC Report Date:
Parameters:
Validation Level:
Laboratory:

MCAS Yuma, CTO 17F3803
July 16, 2018
Perfluorinated Alkyl Acids
Stage 4
Vista Analytical Laboratory

Sample Delivery Group (SDG): 1801037

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
A1-MW-18-SA1	$1801037-01$	Water	$05 / 23 / 18$
16-MW-08-SA1	$1801037-02$	Water	$05 / 23 / 18$
A1-MW-19-SA1	$1801037-03$	Water	$05 / 23 / 18$
A1-MW-37-SA1	$1801037-04$	Water	$05 / 23 / 18$
A1-MW-37-SA1D	$1801037-05$	Water	$05 / 23 / 18$
16-HS-03-SA1	$1801037-06$	Water	$05 / 23 / 18$
16-MW-09-SA1	$1801037-07$	Water	$05 / 23 / 18$
16-MW-06-SA1	$1801037-08$	Water	$05 / 23 / 18$

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
Perfluorinated Alkyl Acids by Environmental Protection Agency (EPA) Method 537 Modified

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. LC/MS Instrument Performance Check

Instrument performance was checked as applicable.
All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.
For compounds where average relative response factors (RRFs) were utilized, the percent relative standard deviations (\%RSD) were less than or equal to 20.0\%.

In the case where the laboratory used a calibration curve to evaluate the compounds, all coefficients of determination $\left(r^{2}\right)$ were greater than or equal to 0.990 .

For each calibration point, the percent differences (\%D) for their true value were less than or equal to 30.0% for all compounds.

The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.
The percent differences (\%D) were less than or equal to 30.0% for all compounds.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample FRB-20180523 was identified as a field rinsate blank. No contaminants were found.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (\%R) were within QC limits with the following exceptions:

Spike ID (Associated Samples)	Compound	MS (\%R) (Limits)	MSD (\%R) (Limits)	Flag	A or P
16-HS-03-SA1MS/MSD (16-HS-03-SA1)	PFHpA PFHxS PFOA	$\begin{aligned} & 140(70-130) \\ & 146(70-130) \\ & 131(70-130) \end{aligned}$	--	J (all detects) J (all detects) J (all detects)	A
16-HS-03-SA1MS/MSD (16-HS-03-SA1)	PFDA PFDoA PFTrDA	$\begin{aligned} & 132(70-130) \\ & 136(70-130) \\ & 136(70-130) \end{aligned}$	$133 \text { (70-130) }$	NA	-

Relative percent differences (RPD) were within QC limits with the following exceptions:

| Spike ID
 (Associated Samples) | Compound | RPD
 (Limits) | Flag |
| :---: | :---: | :---: | :---: | :---: |

For $16-H S-03-S A 1 M S / M S D$, no data were qualified for PFBS and PFHxA percent recoveries (\%R) and relative percent differences (RPD) outside the QC limits since the parent sample results were greater than 4 X the spike concentration.

VIII. Ongoing Precision Recovery

Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (\%R) were within QC limits with the following exceptions:

OPR ID (Associated Samples)	Compound		
B8E0244-BS1 (All samples in SDG 1801037)	PFTrDA	$153(70-130)$	Flag

IX. Field Duplicates

Samples A1-MW-37-SA1 and A1-MW-37-SA1D were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

Compound	Concentration (ug/L)				
	A1-MW-37-SA1	A1-MW-37-SA1D	RPD (Limits)	Flag	A or P
	0.230	0.252	$9(\leq 30)$	-	-
PFHxA	1.66	1.71	$3(\leq 30)$	-	-
PFHPA	0.0328	0.0322	Not calculable	-	-
PFHxS	0.155	0.152	$2(\leq 30)$	-	-
PFOA	0.0196	0.0203	Not calculable		-
PFNA	0.00170	0.00210	Not calculable		-
PFOS	0.0458	0.0416	Not calculable		-
PFUnA	$0.00525 U$			-	

RPDs were not calculated when sample results in one or both samples were less than $5 x$ the limit of quantitation (LOQ).

X. Internal Standards

All internal standard areas and retention times were within QC limits with the following exceptions:

Sample	Internal Standards	Area (Limits)	Affected Compound	Flag	A or P
A1-MW-18-SA1	${ }^{13}$ C3-PFBS	$170(50-150)$	PFBS	J (all detects)	P
16-MW-08-SA1	${ }^{13}$ C3-PFBS	$187(50-150)$	PFBS	J (all detects)	P
A1-MW-19-SA1	${ }^{13}$ C3-PFBS	$214(50-150)$	PFBS	J (all detects)	P
A1-MW-37-SA1	${ }^{13}$ C3-PFBS	$161(50-150)$	PFBS	J (all detects)	P
A1-MW-37-SA1D	${ }^{13}$ C3-PFBS	$154(50-150)$	PFBS	J (all detects)	P
16-HS-03-SA1	${ }^{13}$ C3-PFBS	$153(50-150)$	PFBS	J (all detects)	P
16-MW-09-SA1	${ }^{13}$ C3-PFBS	$214(50-150)$	PFBS	J (all detects)	P
16-MW-06-SA1	${ }^{13}$ C3-PFBS	J (all detects)	P		

XI. Compound Quantitation

All compound quantitations met validation criteria.
All compounds reported below the limit of quantitation (LOQ) were qualified as follows:

Sample	Finding	Flag	A or P
A1-MW-18-SA1	All compounds reported below the LOQ.	J (all detects)	A
16-MW-08-SA1			
A1-MW-19-SA1			
A1-MW-37-SA1			
16-MW-37-SA1D			
16-MW-06-SA1			

XII. Target Compound Identifications

All target compound identifications met validation criteria.

XIII. System Performance

The system performance was acceptable.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to MS/MSD \%R and RPD, internal standard \%R, and results below the LOQ, data were qualified as estimated in eight samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

MCAS Yuma, CTO 17F3803
Perfluorinated Alkyl Acids - Data Qualification Summary - SDG 1801037

Sample	Compound	Flag	A or P	Reason
16-HS-03-SA1	PFHpA PFHxS PFOA	J (all detects) J (all detects) J (all detects)	A	Matrix spike/Matrix spike duplicate (\%R)
16-HS-03-SA1	PFHpA	J (all detects)	A	Matrix spike/Matrix spike duplicate (RPD)
A1-MW-18-SA1 16-MW-08-SA1 A1-MW-19-SA1 A1-MW-37-SA1 A1-MW-37-SA1D 16-HS-03-SA1 16-MW-09-SA1 16-MW-06-SA	PFBS	J (all detects)	P	Internal standards (\%R)
A1-MW-18-SA1 16-MW-08-SA1 A1-MW-19-SA1 A1-MW-37-SA1 A1-MW-37-SA1D 16-MW-09-SA1 16-MW-06-SA1	All compounds reported below the LOQ.	J (all detects)	A	Compound quantitation

MCAS Yuma, CTO 17F3803
Perfluorinated Alkyl Acids - Laboratory Blank Data Qualification Summary - SDG 1801037

No Sample Data Qualified in this SDG
MCAS Yuma, CTO 17F3803
Perfluorinated Alkyl Acids - Field Blank Data Qualification Summary - SDG 1801037

No Sample Data Qualified in this SDG

LDC \#: 42613M96 VALIDATION COMPLETENESS WORKSHEET
SDG \#: 1801037
Stage 4
Laboratory: Vista Analytical Laboratory
METHOD: LC/MS Perfluorinated Alkyl Acids (EPA Method 537Modified)
Reviewer: 2nd Reviewer: K/K

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receipt/Technical holding times	A	
II.	GC/MS Instrument performance check	A	
III.	Initial calibration/ICV	$\Delta+A$	$R \leq 0 \leqslant 20 / 0 . r^{2} \text { Truevalue/ } 1 \mathrm{CV} \leq \geqslant \delta /$
IV.	Continuing calibration	A	$\text { ect } v 3070$
V .	Laboratory Blanks	A	
VI.	Field blanks	NO	$\mp P F=9$
VIH.	Surrogate-spikes	A	
VIII.	Matrix spike/Matrix spike duplicates	MV	
IX.	Laboratory control samples	M	DP号
X.	Field duplicates	Nu	$\Delta=4+5$
XI.	Internal standards	W	
XII.	Compound quantitation RL/LOQ/LODs	A	
XIII.	Target compound identification	A	
XIV.	System performance	A	
XV.	Overall assessment of data	Δ	

Method: LC/MS PFOS/PFOAs (EPA Method 537M)

Validation Area	Yes	No	NA	Findings/Comments
1.Technical holding times				
All technical holding times were met.				
Cooler temperature criteria was met.				
11. LCIMS Instrument performance check				
Were the instrument performance reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 12 hour clock criteria?				
IIla. Initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (\%RSD) $\leq 20 \%$?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990 ?				
Were the S / N ratio for all compounds within validation criteria?				
Were all analytes within $70-130 \%$ or percent differences (\%D) $\leq 30 \%$ of their true value for each calibration standard?				
llib. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (\%D) $\leq 30 \%$				
IV. Continuing calibration				
Were all percent differences (\%D) $\leq 30 \%$ \%				
Were the S/N ratio for all compounds within validation criteria?				
Were all the retention times within the acceptance windows?				
V. Laboratory Blanks				
Was a method blank associated with every sample in this SDG?				
Was a method blank analyzed for each matrix and concentration?				
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.				
VI. Field blanks				
Field blanks were identified in this SDG.				
Target compounds were detected in the field blanks.				
VII. Surrogate spikes				
Were all surrogate \%R within the QC limits?				
If the percent recovery (\%R) for one or more surrogates was out of QC limits, was a reanalysis performed to confirm samples with \%R outside of criteria?				
VII. Matrix spike/Matrix spike duplicates				

VALIDATION FINDINGS CHECKLIST

TARGET COMPOUND WORKSHEET

A. Perfluorohexanoic acid (PFHxA)			
B. Perfluoroheptanoic acid (PFHPA)			
C. Perfluorooctanoic acid (PFOA)			
D. Perfluorononanoic acid (PFNA)			
E. Perfluorodecanoic acid (PFDA)			
F. Perfluoroundecanoic acid (PFUnA)			
G. Perfluorododecanoic acid (PFDoA)			
H. Perfluorotridecanoic acid (PFTriDA)			
I. Perfluorotetradecanoic acid (PFTeDA)			
J. Perfluorobutanesulfonic acid (PFBS)			
K. Perfluorohexanesulfonic acid (PFHxS)			
L. Perfiluoroheptanesulfonic acid (PFHpS)			
M. Perfluorooctanesulfonic acid (PFOS)			
N. Perfluorodecanesulfonic acid (PFDS)			
O. Perfluorooctane Sulfonamide (FOSA)			
P. Perfluorobutanoic acid (PFBA)			
Q. Perfluoropentanoic acis (PFPeA)		.	
R. 6:2FTS			
S. 8:2 FTS			
T. N-methyl perfluorooctanesulfonamidoacetic acid (NMeFOSAA)			
U. N-Ethyl perfluorooctanesulfonamidoacetic acid (NEtFOSAA)			
			.

VALIDATION FINDINGS WORKSHEET

Matrix Spike/Matrix Spike Duplicates/Duplicates

Page: _ 1 of 1 Reviewer: 2nd Reviewer: $K \swarrow K$

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

Please see qualifications below for all questions answered " N ". Not applicable questions are identified as "N/A".

WN N/A	Were a matrix spike (MS) and matrix spike duplicate (MSD) or duplicate sample analyzed for each matrix in this SDG?
N N N/A	Was a MS/MSD analyzed every 20 samples of each matrix?
Y N N/A	Were the MS/MSD percent recoverias (\%R) and the relative percent differences (RPD) within the QC limits?
Were all duplicate sample relative percent differences (RPD) or differences within QC limits?	

Y A NN W Were all duplicate sample relative percent differences (RPD) or differences within QC limits?

\#	Date	MSIMSIDUP ID	Compound	\% ${ }_{\text {\% }}^{\text {MS }}$ (Limits)	$\underset{\text { \%R(Limits) }}{\text { M }}$	${ }_{\text {LLimits }}^{\text {RP }}$	Associated Samples	Qualifications
		10/11	Pfos	$18>(70-130)$		$459(\leqslant 30)$	6 (dets)	No Cual -4×34
			PTPHXA	$-210(\mathrm{~V})$		$329(1)$		V
			PFHPA	140 ($70-130$)				blets/A
			PFHXS	1461)				
			PFOA	$131($)			\downarrow	
			PFDA	132 ()			(ND)	
			PFDDA	B6,)				
			PFTrDA	$136(\downarrow)$	$133(70-130)$		V	
			PFHPA			$49.6(\leq 30)$	(dets)	vets/A
			Mefos $\triangle A$			$41.1(\mathrm{~V})$	(ND)	d

Ploase see qualifications below for all questions answered " N ". Not applicable questions are identified as "N/A".
N N/A Was a LCS required?
Y(N) N/A Were the LCS percent recoveries (\%R) and relative percent difference (RPD) within the QC limits?

VALIDATION FINDINGS WORKSHEET
 Field Duplicates

Page: / of / Reviewer: \bar{K} and Reviewer: KK
METHOD: PECs

VALIDATION FINDINGS WORKSHEET
Internal Standards

Page: lon 1 Reviewer:

METHOD: LC/MS PFC
Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".
(1) N/A Were all internal standard area counts within $50-150 \%$ limits?

Y N N/A Were the retention times of the internal standards within $+/-30$ seconds of the retention times of the associated calibration standard?

Validation Findings Worksheet

Method: PFCs (EPA Method 537)

Calibration Date	Instrument/Column	Compound	Standard	(Y) Response	(X) Conc.	$\left(X^{\wedge} 2\right)$ Conc.
6/6/2018	M2	PFBS	0	0.51953	0.25	0.0625
			s1	0.9040925	0.5	0.25
			s2	1.9572675	1	1
			s3	3.7049862	2	4
			S4	10.06541	5	25
			s5	19.886856	10	100
			s6	99.722347	50	2500
			s7	204.60758	100	10000
			s8	513.09516	250	62500
			s9	1017.3084	500	250000

Regression Output	Calculated		Reported	
Constant	c	-0.63805	c	-0.0700934
Std Err of Y Est				
R Squared		0.9999897		0.9999340
Degrees of Freedom				
	b	a	b	a
X Coefficient(s)	2.063159148	-5.34413E-05	2.03725	$2.30679 \mathrm{E}-06$
Std Err of Coef.				
Correlation Coefficient		0.999995		
Coefficient of Determination ($\mathrm{r}^{\wedge} 2$)		0.999990		

Validation Findings Worksheet
Initial Calibration Calculation Verification

Page: 2 of 3
Reviewer:
2nd Reviewer: KK

Method: PFCs (EPA Method 537)

Calibration Date	Instrument/Column	Compound	Standard	(Y) Response	(X) Conc.	$\left(X^{\wedge} 2\right)$ Conc.
6/6/2018	M2	PFOA	0	0.2482712	0.25	0.0625
			s1	0.5747737	0.5	0.25
			s2	1.0592625	1	1
			s3	1.846235	2	4
			s4	4.6900387	5	25
			s5	10.243193	10	100
			s6	51.521462	50	2500
			s7	93.85144027	100	10000
			S8	228.044994	250	62500
			s9	451.7265496	500	250000

Regression Output	Calculated		Reported	
Constant	c	0.76340	c	0.0441882
Std Err of Y Est				
R Squared		0.9998726		0.9994240
Degrees of Freedom				
	b	a	b	a
X Coefficient(s)	0.931889278	-6.1517E-05	0.964706	-0.000132122
Std Err of Coef.				
Correlation Coefficient		0.999936		
Coefficient of Determination ($r^{\wedge} 2$)		0.999873		

Method: PFCs (EPA Method 537)

Calibration Date	Instrument/Column	Compound	Standard	(Y) Response	(X) Conc.	$\left(X^{\wedge} 2\right)$ Conc.
6/13/2018	M2	PFHxA	0	0.4266035	0.25	0.0625
			s1	0.97093	0.5	0.25
			s2	1.9639255	1	1
			s3	3.6634565	2	4
			S4	8.4481905	5	25
			s5	15.881127	10	100
			s6	85.352945	50	2500
			s7	154.4073192	100	10000
			S8	412.8312447	250	62500
			s9	789.7483287	500	250000

Regression Output	Calculated		Reported	
Constant	c	-0.57068	c	0.0713566
Std Err of Y Est				
R Squared		0.9997320		0.9993330
Degrees of Freedom				
	b	a	b	a
X Coefficient(s)	1.676648676	-0.000187679	1.64736	-0.000124659
Std Err of Coef.				
Correlation Coefficient		0.999866		
Coefficient of Determination (r^{\wedge} 2)		0.999732		

METHOD：LC／MS PFOS／PFOAs（EPA Method 537M）

The percent difference（\％D）of the initial calibration average Relative Response Factors（RRFs）and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation：
\％Difference $=100$＊（ave．RRF－RRF）／ave．RRF RRF $=\left(A_{x}\right)\left(C_{i s}\right) /\left(A_{i s}\right)\left(C_{x}\right)$

Where：ave．RRF＝initial calibration average RRF
RRF＝continuing calibration RRF
$A_{x}=$ Area of compound，$\quad A_{i s}=$ Area of associated internal standard
$\mathrm{C}_{\mathrm{x}}=$ Concentration of compound,$\quad \mathrm{C}_{\mathrm{is}}$＝Concentration of internal standard

\＃	Standard ID	$\begin{gathered} \text { Calibration } \\ \text { Date } \\ \hline \hline \end{gathered}$	Compound（Reference Internal Standard）		AverageRRF（initial）	Renorted	Recalculated	Reparted	Realculated	
					$\begin{aligned} & \text { RRF } \\ & \text { (CC) } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { RRF } \\ & \text { (CC) } \\ & \hline \end{aligned}$	\％D	\％D		
1	180667M2．3	4イイシ	PFBS	（1st internal standard）		1.0	0.913	0.911	8.7	8.9
			PFOA	（2nd internal standard）	1.0	1.05	1.06	5.4	5.8	
				（3rd internalstandard）						
2	18660 M2 28	$6 / 7 / 18$	PFBS	（1st internal standard）	10.0	9.27	9.27	7.3	7.3	
			PFOA	（2nd internal standard）	10.0	9.52	9.53	4.8	4.7	
				（3rd internalstandard）						
3	180600 MP 24	6／7／18		（1st internal standard）	1.0	0.885	0.884	11.5	11.8	
			PFOA	（2nd internal standard）	1.0	1.10	1.10	9.8	10．1	
				（3rd internalstandard）						
4	$180612 N=40$	$6 / 1318$		（1st internal standard）	10.0	10.4	10.4	4.2	4.5	
				（2nd internal standard）						
				（3rd internalstandard）						

Comments：Refer to Continuing Calibration findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent recoveries (\%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

\% Recovery $=100$ * (SSC - SC)/SA	Where:	SSC = Spiked sample concentration SA = Spike added	SC = Sample concentation
RPD $=1$ MSC - MSC $1 * 2 /(M S C+M S D C)$		MSC = Matrix spike concentration	MSDC = Matrix spike duplicate concentration
MS/MSD samples: $10 / 11$ \qquad			

Compound	$\begin{gathered} \text { Spike } \\ \text { Added } \\ (\mu) \\ \hline \end{gathered}$		Sample	Spiked Sample Concentration (r)cr)		Matrix Snike		Matrix Snike Duplicate		MSIMSD	
			(10pl)			Percent Recovery		Percent Recovery		RPD	
4	MS	MSn	\cdots	MS	MSD	Reported	Recalc.	Reparted	Recals.	Reported	Recalculated
PFBS	0.0907	0.0882	0.582	0.746	0.682	182	181	114	113	45.9	45.9
\#10A	\downarrow	\downarrow	0.0218	0.141	0.113	31	131	103	103	23.9	239

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)

The percent recoveries (\%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

```
% Recovery = 100 * (SC/SA Where: SSC = Spike concentration
    SA = Spike added
RPD = ILCSC - LCSDC 1* 2/(LCSC + LCSDC) LCSC = Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration
LCS/LCSD samples: B%ED2A4t-BS/
```

Compound	$\begin{gathered} \text { Spike } \\ \text { Adided } \\ \text { (N) } \end{gathered}$		$\begin{gathered} \text { Spike } \\ \text { concenkeation } \end{gathered}$		LCS		$\underbrace{\text { CCSD }}_{\text {Percent Recovery }}$		RPD	
\cdots	Lcs	LCSD	Lcs	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
PFBS	0.0800	NA	0.0918	NA	115	115				
FFOA	V	V	0.0941	\downarrow	118	118				

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET
 Sample Calculation Verification

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)
$\begin{array}{ll}\text { Y N N/A } & \text { Were all reported results recalculated and verified for all level IV samples? } \\ \text { Y N N/A Were all recalculated results for detected target compounds agree within } 10.0 \% \text { of the reported results? }\end{array}$

Example:
Sample I.D. \qquad \#FA.

$$
\begin{aligned}
& \text { Conc. }=\frac{-0.964\left(06+\sqrt{\left(0.964(06)-44(-0.050132120)\left(\frac{180 \times 12^{5}}{9070}+0.04+6\right.\right.}\right)}{(2)(0.113)} \\
& =1.87 n 8 / \angle \\
& =0.00 / 37
\end{aligned}
$$

SUBJECT: MCAS Yuma, CTO 3803, Data Validation
Dear Ms. Sudoko,
Enclosed are the final validation reports for the fractions listed below. These SDGs were received on December 10, 2018. Attachment 1 is a summary of the samples that were reviewed for each analysis.

LDC Project \#43888:

SDG \#

280-116898-1, 280-116942-1
280-117007-1, 280-117103-1
280-117110-1, L1846366
L1846592, L1846856
L1847243, L1847316
1803615, 1803626
1803659, 1803676
1803678

Fraction

Volatiles, 1,4-Dioxane, Wet Chemistry, Perfluoroalkyl and Polyfluoroalkyl Substances

The data validation was performed under Stage 2B \& 4 guidelines. The analyses were validated using the following documents, as applicable to each method:

- Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona; April 2018
- U.S. Department of Defense Quality Systems Manual for Environmental Laboratories, Version 5.1; 2017
- USEPA National Functional Guidelines for Superfund Organic Methods Data Review; January 2017
- USEPA National Functional Guidelines for Inorganic Superfund Data Review; January 2017
- EPA SW 846, Third Edition, Test Methods for Evaluating Solid Waste, update 1, July 1992; update IIA, August 1993; update II, September 1994; update IIB, January 1995; update III, December 1996; update IIIA, April 1998; IIIB, November 2004; update IV, February 2007; update V, July 2014

Please feel free to contact us if you have any questions.

Sincerely,

Shauna McKellar Project Manager/Chemist

Data Validation Report
 MCAS Yuma, CTO 3803

SDGs: 280-116898-1, 280-116942-1, 280-117007-1, 280-117103-1, 280-117110-1, L1846366, L1846592, L1846856, L1847243, L1847316, 1803615, 1803626, 1803659, 1803676, and 1803678

Prepared for
Tetra Tech EC, Inc.
17885 Von Karman Avenue, Suite 500
Irvine, CA 92614

Prepared by
Laboratory Data Consultants, Inc 2701 Loker Ave West, Suite 220
Carlsbad, CA 92010

INTRODUCTION

This Data Validation Report (DVR) presents Stage 2B and Stage 4 data validation results for samples collected during the November 2018 sampling period. Data validation was performed in accordance with the Final Sampling and Analysis Plan (SAP) for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), a modified outline of the US EPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017), and a modified outline of the US EPA National Functional Guidelines (NFG) for Inorganic Superfund Data Review (January 2017). Where specific guidance is not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:
Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260B
1,4-Dioxane by EPA SW 846 Method 8270D utilizing Selective Ion Monitoring (SIM)
Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) by EPA Method 537 Modified

Wet Chemistry:

Chloride, Nitrate as Nitrogen, and Sulfate by EPA SW 846 Method 9056A
Ferrous Iron by Standard Method 3500-Fe B
pH by EPA SW 846 Method 9040C
For samples reviewed by automated data review, the sample identification and methods of analyses performed on each sample is presented in Attachment 1. Overall data qualification summary is presented in Attachment 2. Stage 2B Automated Data Review outliers are presented in Enclosure I. DVRs for samples on which Stage 4 validation was performed are presented in Enclosure II. Validation for 1,4-Dioxane was performed manually and DVRs for Stage 2B and Stage 4 manual validation are also presented in Enclosure II.

All sample results were subjected to Stage $2 B$ data validation, which comprises an evaluation of quality control (QC) summary results for sample holding times, initial and continuing calibrations, laboratory blanks, initial and continuing calibration blanks (ICB/CCBs), surrogates, matrix spike/matrix spike duplicates (MS/MSD), laboratory control sample/laboratory control sample duplicates (LCS/LCSD), ongoing precision recovery (OPR), internal standards, trip blanks, equipment blanks, field rinsate blanks, and field duplicates. Approximately 20 percent of samples were subjected to Stage 4 evaluation as indicated in Attachment 1, which comprises a review of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

Automated data review was performed on all QC summary results using the Automated Data Review (ADR) software program (LDC, 2013) with the exception of the calibrations, ICB/CCBs, and internal standards, and all QC for 1,4-Dioxane, which were validated manually. Quality assurance (QA)/QC criteria specified in the SAP, DoD QSM, and NFGs were incorporated with the program's reference library to assess compliance with project requirements.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to non-conformances discovered during data validation.

U (Non-detect): The compound or analyte was analyzed for and positively identified by the laboratory; however the analyte should be considered non-detect at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to nonconformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not applicable): Data did not warrant qualification since detected results only are affected and the compound was not detected in the associated samples.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt \& Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met with the exception of eight samples for PFAs, twenty-eight samples for pH , one sample for nitrate as N , and twenty-eight samples for ferrous iron. Due to grossly exceeded holding times (e.g., $>2 x$ recommended holding time), 23 ferrous iron results were qualified as rejected (R). The remainder of the data were qualified as detected estimated (J) and non-detected estimated (UJ) as applicable. The details regarding the qualification of data are provided in Enclosures I and II.

II. Instrument Performance Check

A tune was performed at 12 hour intervals as required by the methods.
All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

All criteria for the initial calibration and initial calibration verifications of each method were met.

IV. Continuing Calibration

All criteria for the continuing calibration verifications of each method were met with the following exceptions:

SDG/ Method	Date	Compound	\%D (Limits)	Associated Samples	Flag	A or P
$1803676 /$						
537 Mod.	$12 / 03 / 18$	PFTeDA	$42.4(\leq 30)$	A1-MW-11-SA2 A1-MW-13-SA2 A1-MW-14-SA2 A1-MW-15-SA2 A1-MW-3-SA2 A1-MW-37-SA2D FRB-20181115 A1-MW-31-SA2	UJ (all non-detects)	A
$1803678 /$	$12 / 03 / 18$	PFTeDA	$42.4(\leq 30)$	A1-MW-01-SA2 A1-MW-42-SA2 FRB-20181116 EB-20181116	UJ (all non-detects)	A
537 Mod.						

V. Laboratory Blanks

Laboratory blanks were performed as required by the methods. No contaminant concentrations were detected in the laboratory blanks reviewed by the ADR software program with the exception of several blanks for chloride, nitrate as N , and sulfate. The associated sample results were not detected or were significantly greater than the concentrations found in the blanks, therefore no data were qualified. The details are presented in Enclosures I and II.

No contaminant concentrations were detected in the initial or continuing calibration blanks with the following exceptions:

SDG/ Method	Laboratory Blank ID	Analyte	Maximum Concentration	Associated Samples
$\begin{aligned} & 280-116898-1 / \\ & 9056 \mathrm{~A} \end{aligned}$	ICB/CCB	Nitrate as Nitrogen Sulfate	$0.04526 \mathrm{mg} / \mathrm{L}$ $0.3841 \mathrm{mg} / \mathrm{L}$	A1-MW-04-SA2 A1-MW-05-SA2 A1-MW-49-SA2 A1-MW-50-SA2 A1-MW-51-SA2 A1-PZ-19-SA2 A1-MW-52-SA2
$\begin{aligned} & \text { 280-116942-1/ } \\ & 9056 \mathrm{~A} \end{aligned}$	ICB/CCB	Sulfate	$0.6931 \mathrm{mg} / \mathrm{L}$	16-HS-03-SA2 16-MW-06-SA2 16-MW-08-SA2 16-MW-09-SA2 A1-MW-19-SA2
$\begin{aligned} & \text { 280-116942-1/ } \\ & 9056 \mathrm{~A} \end{aligned}$	ICB/CCB	Chloride	$0.3086 \mathrm{mg} / \mathrm{L}$	$\begin{aligned} & \text { 16-MW-06-SA2 } \\ & \text { 16-MW-08-SA2 } \\ & \text { 16-MW-09-SA2 } \\ & \text { A1-MW-53-SA2 } \end{aligned}$
$\begin{aligned} & \text { 280-117007-1/ } \\ & 9056 \mathrm{~A} \end{aligned}$	ICB/CCB	Chloride	$0.2558 \mathrm{mg} / \mathrm{L}$	A1-MW-07-SA2 A1-MW-23-SA2 A1-MW-25-SA2 A1-MW-27-SA2 A1-MW-55-SA2
$\begin{aligned} & \text { 280-117007-1/ } \\ & 9056 \mathrm{~A} \end{aligned}$	ICB/CCB	Chloride	$0.2618 \mathrm{mg} / \mathrm{L}$	A1-MW-54-SA2
$\begin{aligned} & \text { 280-117103-1/ } \\ & 9056 \mathrm{~A} \end{aligned}$	ICB/CCB	Chloride Sulfate	$\begin{aligned} & 0.2982 \mathrm{mg} / \mathrm{L} \\ & 0.4094 \mathrm{mg} / \mathrm{L} \end{aligned}$	A1-MW-11-SA2 A1-MW-13-SA2 A1-MW-14-SA2 A1-MW-15-SA2 A1-MW-37-SA2 A1-MW-31-SA2
$\begin{aligned} & \text { 280-117103-1/ } \\ & 9056 \mathrm{~A} \end{aligned}$	ICB/CCB	Nitrate as N	$0.04805 \mathrm{mg} / \mathrm{L}$	A1-MW-11-SA2 A1-MW-13-SA2 A1-MW-14-SA2 A1-MW-15-SA2 A1-MW-37-SA2
$\begin{aligned} & \text { 280-117103-1/ } \\ & 9056 \mathrm{~A} \end{aligned}$	ICB/CCB	Nitrate as N	$0.04749 \mathrm{mg} / \mathrm{L}$	A1-MW-31-SA2
$\begin{aligned} & 280-117110-1 / \\ & 9056 \mathrm{~A} \end{aligned}$	ICB/CCB	Chloride Sulfate	$\begin{aligned} & 0.6147 \mathrm{mg} / \mathrm{L} \\ & 0.3987 \mathrm{mg} / \mathrm{L} \end{aligned}$	A1-MW-42-SA2

Sample concentrations were compared to concentrations detected in the laboratory blanks. The sample concentrations were not detected or were significantly greater than the concentrations found in the associated blanks.

VI. Field Blank Samples

Five trip blanks were collected and analyzed for VOCs. No contaminants were found. One equipment blank was collected and analyzed for VOCs and PFAs. No contaminants were found.

Five field rinsate blanks were collected and analyzed for PFAs. No contaminants were found.

VII. Surrogate Spikes

Surrogates were added to all samples and blanks as required by the method. All surrogate recoveries (\%R) were within QC limits with the exception of sample EB-20181116 in SDG 280-117110-1 for VOCs. No data were qualified due to high \%Rs since the associated results were non-detected.

IX. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (\%R) and relative percent differences (RPD) were within QC limits with the exception of one MS/MSD pair for 1,1-dichloroethene, one MS/MSD pair for PFTeDA, one MS/MSD pair for sulfate, three MS/MSD pairs for ferrous iron. The ferrous iron results in sample A1-MW-42-SA2 was qualified as rejected (R) due to MS/MSD \%Rs grossly outside QC limits (i.e., < 30\%). The remainder of the associated sample results were qualified as detected estimated (J) or non-detected estimated (UJ) as applicable. The details regarding the qualification of data are provided in Enclosures I and II.

X. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

XII. Laboratory Control Samples/Ongoing Precision Recovery

Laboratory control samples (LCS) and laboratory control sample duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (\%R) and relative percent differences (RPD) were within QC limits.

Ongoing precision recovery (OPR) samples were analyzed as required by Method 537 Mod. Percent recoveries (\%R) were within QC limits with the exception of two OPR samples for PFTeDA. No data were qualified due to high \%Rs since the associated results were nondetected. The details are presented in Enclosure I.

XIII. Field Duplicate Samples

Three field duplicate pairs were collected and analyzed for all methods. All RPDs were within QC limits. RPDs were not calculated when sample results in one or both samples were less than 5 X the limit of quantitation (LOQ). The field duplicate result comparisons are provided in Enclosures I and II.

XIV. Internal Standards/Labeled Compounds

All internal standard areas and retention times were within QC limits. All percent recoveries (\%R) for labeled compounds used to quantitate target compounds were within QC limits.

XV. Compound Quantitation

The laboratory reporting limits were evaluated. All laboratory reporting limits met the specified requirements.

The laboratory indicated that the parent/product transition ion ratios met laboratory requirements with the following exceptions:

SDG/Method	Sample	Compound	Finding
1803615/537M	A1-MW-05-SA2 A1-MW-50-SA2 A1-PZ-19-SA2	All compounds qualified ' Q ' by the laboratory	The parent/product transition ion ratio was outside of the 70-130\% laboratory limits.
1803626/537M	A1-MW-53-SA2	All compounds qualified ' Q ' by the laboratory	The parent/product transition ion ratio was outside of the $70-130 \%$ laboratory limits.
1803659/537M	A1-MW-25-SA2 A1-MW-54-SA2	All compounds qualified ' Q ' by the laboratory	The parent/product transition ion ratio was outside of the $70-130 \%$ laboratory limits.
1803678/537M	A1-MW-01-SA2	All compounds qualified ' Q ' by the laboratory	The parent/product transition ion ratio was outside of the 70-130\% laboratory limits.

Since there are no established transition ion ratio requirements in the validation documents for this project, using professional judgment, no data were qualified.

All compounds reported below the LOQ as detected by the laboratory were qualified as detected estimated (J). The details regarding the qualification of data are provided in Enclosures I and II.

XVI. Overall Assessment of Data

The analysis was conducted within all specifications of the method.
Due to severe holding time exceedances, data were qualified as rejected in twenty-three samples.

Due to gross MS/MSD \%R exceedance, data were qualified as rejected in one sample.
Due to holding time exceedances, data were qualified as estimated in thirty samples.
Due to CCV \%D, data were qualified as estimated in twelve samples.
Due to MS/MSD \%R, data were qualified as estimated in one sample.
Due to results below the LOQ, data were qualified as estimated in twenty-two samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable. Data flags are summarized and are presented as Attachment 2.

Attachment 1

Sample Cross Reference

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method
12-Nov-2018	TB-20181112	$280-116898-7$	TB	METHOD	Revel

Sample Cross Reference

Date Collected	Fieid Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
12-Nov-2018	A1-MW-04-SA2	280-116898-1	N	METHOD	9056A	Stage 4
12-Nov-2018	A1-MW-04-SA2	280-116898-1	N	METHOD	SM3500 Fe B D	Stage 4
12-Nov-2018	A1-PZ-19-SA2	1803615-09	N	Gen Prep	537 MOD	Stage 4
12-Nov-2018	A1-PZ-19-SA2	280-116898-8	N	METHOD	8260B	Stage 4
12-Nov-2018	A1-PZ-19-SA2	280-116898-8	N	METHOD	9040 C	Stage 4
12-Nov-2018	A1-PZ-19-SA2	280-116898-8	N	METHOD	9056A	Stage 4
12-Nov-2018	A1-PZ-19-SA2	280-116898-8	N	METHOD	SM3500 Fe B D	Stage 4
12-Nov-2018	A1-MW-52-SA2	1803615-07	N	Gen Prep	537 MOD	Stage 4
12-Nov-2018	A1-MW-52-SA2	280-116898-9	N	METHOD	8260B	Stage 4
12-Nov-2018	A1-MW-52-SA2	280-116898-9	N	METHOD	9040C	Stage 4
12-Nov-2018	A1-MW-52-SA2	280-116898-9	N	METHOD	9056A	Stage 4
12-Nov-2018	A1-MW-52-SA2	280-116898-9	N	METHOD	SM3500 Fe B D	Stage 4
12-Nov-2018	A1-MW-05-SA2	1803615-02	N	Gen Prep	537 MOD	Stage 4
12-Nov-2018	A1-MW-05-SA2	280-116898-2	N	METHOD	8260B	Stage 4
12-Nov-2018	A1-MW-05-SA2	280-116898-2	N	METHOD	9040C	Stage 4
12-Nov-2018	A1-MW-05-SA2	280-116898-2	N	METHOD	9056A	Stage 4
12-Nov-2018	A1-MW-05-SA2	280-116898-2	N	METHOD	SM3500 Fe B D	Stage 4
12-Nov-2018	FRB-20181112	1803615-08	FRB	Gen Prep	537 MOD	Stage 2B
13-Nov-2018	TB-20181113	280-116942-7	TB	METHOD	8260B	Stage 2B
13-Nov-2018	16-MW-06-SA2	1803626-02	N	Gen Prep	537 MOD	Stage 2B
13-Nov-2018	16-MW-06-SA2	280-116942-2	N	METHOD	8260B	Stage 2B
13-Nov-2018	16-MW-06-SA2	280-116942-2	N	METHOD	9040 C	Stage 2B
13-Nov-2018	16-MW-06-SA2	280-116942-2	N	METHOD	9056A	Stage 2B
13-Nov-2018	16-MW-06-SA2	280-116942-2	N	METHOD	SM3500 Fe B D	Stage 2B
13-Nov-2018	16-MW-06-SA2DUP	280-116942-2DUP	DUP	METHOD	9056A	Stage 2B
13-Nov-2018	16-MW-06-SA2MS	280-116942-2MS	MS	METHOD	9056A	Stage 2B

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method
13-Nov-2018	16-MW-06-SA2MSD	$280-116942-2 M S D$	MSD	METHOD	9056A

MSD = Matrix Spike Duplicate $E B=$ Equipment Blank

DUP $=$ Laboratory Duplicate
FRB $=$ Field Rinsate Blank

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method
13-Nov-2018	16-MW-09-SA2	$280-116942-4$	N	METHOD	9056A

$M S D=$ Matrix Spike Duplicate $E B=$ Equipment Blank

DUP $=$ Laboratory Duplicate
FRB $=$ Field Rinsate Blank
Page 4 of 8

Sample Cross Reference

| Date
 Collected | Field Sample ID |
| :---: | :--- | :--- | :--- | :--- | :--- |

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method	Review Level
15-Nov-2018	A1-MW-13-SA2	280-117103-2	N	METHOD	9056A	Stage 2B
15-Nov-2018	A1-MW-13-SA2	280-117103-2	N	METHOD	SM3500 Fe B D	Stage 2B
15-Nov-2018	A1-MW-11-SA2	1803676-01	N	Gen Prep	537 MOD	Stage 2B
15-Nov-2018	A1-MW-11-SA2	280-117103-1	N	METHOD	8260B	Stage 2B
15-Nov-2018	A1-MW-11-SA2	280-117103-1	N	METHOD	9040C	Stage 2B
15-Nov-2018	A1-MW-11-SA2	280-117103-1	N	METHOD	9056A	Stage 2B
15-Nov-2018	A1-MW-11-SA2	280-117103-1	N	METHOD	SM3500 Fe B D	Stage 2B
15-Nov-2018	A1-MW-15-SA2	1803676-04	N	Gen Prep	537 MOD	Stage 2B
15-Nov-2018	A1-MW-15-SA2	280-117103-4	N	METHOD	8260B	Stage 2B
15-Nov-2018	A1-MW-15-SA2	280-117103-4	N	METHOD	9040C	Stage 2B
15-Nov-2018	A1-MW-15-SA2	280-117103-4	N	METHOD	9056A	Stage 2B
15-Nov-2018	A1-MW-15-SA2	280-117103-4	N	METHOD	SM3500 Fe B D	Stage 2B
15-Nov-2018	A1-MW-14-SA2	1803676-03	N	Gen Prep	537 MOD	Stage 2B
15-Nov-2018	A1-MW-14-SA2	280-117103-3	N	METHOD	8260B	Stage 2B
15-Nov-2018	A1-MW-14-SA2	280-117103-3	N	METHOD	9040C	Stage 2B
15-Nov-2018	A1-MW-14-SA2	280-117103-3	N	METHOD	9056A	Stage 2B
15-Nov-2018	A1-MW-14-SA2	280-117103-3	N	METHOD	SM3500 Fe B D	Stage 2B
15-Nov-2018	A1-MW-14-SA2DUP	280-117103-3DUP	DUP	METHOD	9040C	Stage 2B
15-Nov-2018	A1-MW-37-SA2	1803676-05	N	Gen Prep	537 MOD	Stage 2B
15-Nov-2018	A1-MW-37-SA2	280-117103-5	N	METHOD	8260B	Stage 2B
15-Nov-2018	A1-MW-37-SA2	280-117103-5	N	METHOD	9040C	Stage 2B
15-Nov-2018	A1-MW-37-SA2	280-117103-5	N	METHOD	9056A	Stage 2B
15-Nov-2018	A1-MW-37-SA2	280-117103-5	N	METHOD	SM3500 Fe B D	Stage 2B
15-Nov-2018	A1-MW-37-SA2D	1803676-06	FD	Gen Prep	537 MOD	Stage 2B
15-Nov-2018	A1-MW-37-SA2D	280-117103-6	FD	METHOD	8260B	Stage 2B
15-Nov-2018	A1-MW-31-SA2	1803676-08	N	Gen Prep	537 MOD	Stage 2B

$M S D=$ Matrix Spike Duplicate $E B=$ Equipment Blank

DUP $=$ Laboratory Duplicate
FRB $=$ Field Rinsate Blank

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method
15-Nov-2018	A1-MW-31-SA2	$280-117103-8$	N	METHOD	8260B

Sample Cross Reference

Date Collected	Field Sample ID	Lab Sample ID	Sample Type	Prep Method	Analytical Method
30-Nov-2018	A1-MW-01-SA2MS	B8K0153-MS1	MS	Gen Prep	537 MOD
Level					

Attachment 2
Overall Data Qualification Summary

Data Qualifier Summary

Lab Reporting Batch ID: 280-116898-1, 280-116942-1, 280-117103-1, 280-117110-1

Mehrod category: EM Method: 9040 C	Matrix: AQ								
Sample ID:A1-MW-04-SA2	$\begin{aligned} & \text { 11/12/2018 11:40:00 } \\ & \text { Collected:AM } \end{aligned}$				Analysis Type: RES/TOT			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
PH	8.0	HF	0.1	LOD	0.1	LOQ	SU	J	StoA

Sample ID:A1-MW-05-SA2	$\begin{aligned} & \begin{array}{l} \text { 11/12/2018 2:24:00 } \\ \text { Collected:PM } \end{array} \\ & \hline \end{aligned}$				Analysis Type: RES/TOT			Dilution: 1	
Analyte	Lab Result	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	RL Type	Units	Data Review Qual	Reason Code
PH	7.9	HF	0.1	LOD	0.1	LOQ	SU	J	StoA

Sample ID:A1-MW-49-SA2	$\begin{aligned} & \begin{array}{l} \text { 11/12/2018 8:32:00 } \\ \text { Collected:AM } \end{array} \\ & \hline \end{aligned}$				Analysis Type:RES/TOT			Dilution: 1	
Analyte	Lab Result	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{gathered} \text { DL } \\ \text { Type } \end{gathered}$	RL	RL Type	Units	Data Review Qual	Reason Code
PH	7.9	HF	0.1	LOD	0.1	LOQ	SU	J	StoA
Sample ID:A1-MW-50-SA2	$\begin{aligned} & \begin{array}{l} \text { 11/12/2018 9:25:00 } \\ \text { Collected:AM } \end{array} \\ & \hline \end{aligned}$				Analysis Type: RES/TOT			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	$R L$	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
PH	7.8	HF	0.1	LOD	0.1	LOQ	SU	J	StoA

11/12/2018 10:46:00

Sample ID:A1-MW-51-SA2	Collected:AM				Analysis Type: RES/TOT			Dilution: 1	
Analyte	Lab Result	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	DL Type	$R L$	RL Type	Units	Data Review Qual	Reason Code
PH	8.0	HF	0.1	LOD	0.1	LOQ	SU	J	StoA

Sample ID:A1-MW-52-SA2	Collected: PM			Analysis Type:RES/TOT				Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	RL Type	Units	Data Review Qual	Reason Code
PH	8.0	HF	0.1	LOD	0.1	LOQ	SU	J	StoA

* denotes a non-reportable result

Project Name and Number: 4663.3803 - CTO 17F3803 Yuma
12/21/2018 9:21:17 AM

Data Qualifier Summary

Lab Reporting Batch ID: 280-116898-1, 280-116942-1,
Laboratory: TA DEN
EDD Filename: 280-116898-1, 280-116942-1, 280-117007-1, 280-117103-1, 280-117110-1
SDG: $280-116898-1$.

Method Category EM Method: 9040 C Sample ID:A1-PZ-19-SA2									
	$\begin{aligned} & \begin{array}{l} \text { 11/12/2018 12:43:00 } \\ \text { Collected:PM } \end{array} \\ & \hline \end{aligned}$				Analysis Type: RES/TOT			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
PH	8.0	HF	0.1	LOD	0.1	LOQ	SU	J	StoA

Mehoo category: CENGHEM Method: 9056 A	Matrix: AQ								
Analyte	Lab Result	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{gathered} \text { DL } \\ \text { Type } \end{gathered}$	RL	$R L$ Type	Units	Data Review Qual	Reason Code
NITRATE	0.896	J B	0.200	LOD	1.00	LOQ	mg/L	J	RI

Methoo Category: GENCHEM Method: SM3500 Fe B D	Matrix: AQ								
Sample ID:A1-MW-04-SA2	$\begin{aligned} & \text { 11/12/2018 11:40:00 } \\ & \text { Collected:AM } \\ & \hline \end{aligned}$				nalysis Type: RES/TOT			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} \text { DL } \\ \text { Type } \end{gathered}$	RL	RL Type	Units	Data Review Qual	Reason Code
Ferrous Iron	0.0500	U HF	0.0500	LOD	0.200	LOQ	mg / L	R	StoA

11/12/2018 2:24:00

11/12/2018 8:32:00

Sample ID:A1-MW-49-SA2	Collected: AM			Analysis Type:RES/TOT				Dilution: 1	
Analyte	Lab Result	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	RL Type	Units	Data Review Qual	Reason Code
Ferrous Iron	0.0500	U HF	0.0500	LOD	0.200	LOQ	mg/L	R	StoA

[^17]Project Name and Number: 4663.3803-CTO 17F3803 Yuma

Data Qualifier Summary

Lab Reporting Batch ID: 280-116898-1, 280-116942-1, EDD Filename: 280-116898-1, 280-116942-1, 280-117007-1, 280-117103-1, 280-117110-1

Method Category:
 Method:

CENCHEM

Sample ID:A1-MW-50-SA2	$\begin{aligned} & \text { 11/12/2018 9:25:00 } \\ & \hline \text { Collected:AM } \\ & \hline \end{aligned}$				Analysis Type: RES/TOT			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} \text { DL } \\ \text { Type } \end{gathered}$	$R L$	RL Type	Units	Data Review Qual	Reason Code
Ferrous Iron	0.380	HF	0.0500	LOD	0.200	LOQ	mg/L	J	StoA
Sample ID:A1-MW-51-SA2	$\begin{aligned} & \begin{array}{l} \text { 11/12/2018 10:46:00 } \\ \text { Collected:AM } \end{array} \\ & \hline \end{aligned}$				Analysis Type:RES/TOT			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	RL Type	Units	Data Review Qual	Reason Code
Ferrous Iron	0.0278	J HF	0.0500	LOD	0.200	LOQ	mg/L	J	RI, StoA
Sample ID:A1-MW-52-SA2	\qquad				Analysis Type:RES/TOT			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} \text { DL } \\ \text { Type } \end{gathered}$	$R L$	RL Type	Units	Data Review Qual	Reason Code
Ferrous Iron	0.0500	U HF	0.0500	LOD	0.200	LOQ	mg/L	R	StoA
Sample ID:A1-PZ-19-SA2	$\begin{aligned} & \text { 11/12/2018 12:43:00 } \\ & d: P M \end{aligned}$				Analysis Type:RES/TOT			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	RL Type	Units	Data Review Qual	Reason Code
Ferrous Iron	0.0591	J HF	0.0500	LOD	0.200	LOQ	mg/L	J	RI, StoA

Method Oategory VOA Method: 8260 B			Matrix:						
Sample ID:A1-MW-50-SA2	$\begin{aligned} & \text { 11/12/2018 9:25:00 } \\ & \hline \text { Collected:AM } \\ & \hline \end{aligned}$				Analysis Type:RES			Dilution: 1	
Analyte	Lab Result	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
1,1-DICHLOROETHENE	0.564	J	0.800	LOD	1.00	LOQ	ug/L	J	RI
TRICHLOROETHENE	0.780	J	0.400	LOD	1.00	LOQ	ug/L	J	RI

> 11/12/2018 9:35:00

Sample ID:A1-MW-50-SA2D

Sample ID:A1-MW-50-S	Colle	:AM			ysis	促,			(
Analyte	Lab Result	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	DL Type	RL	$R L$ Type	Units	Data Review Qual	Reason Code
1,1-DICHLOROETHENE	0.630	J	0.800	LOD	1.00	LOQ	ug/L	J	RI

* denotes a non-reportable result

Project Name and Number: 4663.3803 - CTO 17F3803 Yuma
12/21/2018 9:21:17 AM

Data Qualifier Summary

Lab Reporting Batch ID: 280-116898-1, 280-116942-1, EDD Filename: 280-116898-1, 280-116942-1, 280-117007-1, 280-117103-1, 280-117110-1
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver SDG: 280-116898-1

SDG: 280-116942-1
Method Categorye EM
Method: $\quad 9040 \mathrm{C}$

11/13/2018 12:00:00

Sample ID.16-HS-03-SA2	Collected:PM				Analysis Type:RES/TOT			Dilution: 1	
Analyte	Lab Result	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{aligned} & \text { DL } \\ & \text { Type } \end{aligned}$	RL	RL Type	Units	Data Review Qual	Reason Code
PH	8.4	HF	0.1	LOD	0.1	LOQ	SU	J	StoA

Sample ID:16-MW-06-SA2	$\begin{aligned} & \text { 11/13/2018 9:38:00 } \\ & \text { Collected:AM } \end{aligned}$				Analysis Type:RES/TOT			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
PH	8.2	HF	0.1	LOD	0.1	LOQ	SU	J	StoA

* denotes a non-reportable result

Project Name and Number: 4663.3803 - CTO 17F3803 Yuma
12/21/2018 9:21:17 AM

Data Qualifier Summary

Lab Reporting Batch ID: 280-116898-1, 280-116942-1,
Laboratory: TA DEN
EDD Filename: 280-116898-1, 280-116942-1, 280-117007-1, 280-117103-1, 280-117110-1
SDG: 280-116942-1

11/13/2018 1:00:00

Sample ID:16-MW-08-SA2	Collected:PM				si	e:R	TOT	Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	RL Type	Units	Data Review Qual	Reason Code
PH	8.0	HF	0.1	LOD	0.1	LOQ	SU	J	StoA
Sample ID:16-MW-09-SA2	$\begin{aligned} & \text { 11/13/2018 1:44:00 } \\ & \text { Collected:PM } \\ & \hline \end{aligned}$				Analysis Type:RES/TOT			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} \text { DL } \\ \text { Type } \end{gathered}$	$R L$	$R L$ Type	Units	Data Review Qual	Reason Code
PH	8.0	HF	0.1	LOD	0.1	LOQ	SU	J	StoA

Sample ID:A1-MW-19-SA2	$\begin{array}{r} 11 / 13 \\ \text { Collected:AM } \\ \hline \end{array}$		Analysis Type: RES/TOT					Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	$R L$ Type	Units	Data Review Qual	Reason Code
PH	7.9	HF	0.1	LOD	0.1	LOQ	SU	J	StoA

11/13/2018 2:54:00

Sample ID:A1-MW-53-SA2	Collected:PM			Analysis Type: RES/TOT				Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	RL Type	Units	Data Review Qual	Reason Code
PH	7.9	HF	0.1	LOD	0.1	LOQ	SU	J	StoA

Methor category.
Method:

CENOHEM
9056A

Matrix: AQ
11/13/2018 9:38:00

Sample ID.16-MW-06-SA2	Collected:AM			Analysis Type: RE/TOT				Dilution: 10	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
Sulfate	695	F1	5.00	LOD	50.0	LOQ	mg/L	J	Ms

[^18]12/21/2018 9:21:17 AM

Data Qualifier Summary

Lab Reporting Batch ID: 280-116898-1, 280-116942-1,
Laboratory: TA DEN
EDD Filename: 280-116898-1, 280-116942-1, 280-117007-1, 280-117103-1, 280-117110-1
SDG: 280-116942-

Method Category: GENCHEM Method: SM3500 Fe B D Sample ID.16-HS-03-SA2			Matrix:		Q				
	$\begin{aligned} & \begin{array}{l} \text { 11/13/2018 12:00:00 } \\ \text { Collected:PM } \end{array} \\ & \hline \end{aligned}$				nalysis Type:RES/TOT			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} \text { DL } \\ \text { Type } \end{gathered}$	RL	$R L$ Type	Units	Data Review Qual	Reason Code
Ferrous Iron	0.0500	U HF	0.0500	LOD	0.200	LOQ	mg / L	R	StoA

Sample ID:16-MW-06-SA2	$\begin{aligned} & \text { 11/13/2018 9:38:00 } \\ & \text { Collected:AM } \end{aligned}$				Analysis Type:RES/TOT			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
Ferrous Iron	0.0500	U HF	0.0500	LOD	0.200	LOQ	mg/L	R	StoA

11/13/2018 1:00:00

Sample ID:16-MW-08-SA2	Collected:PM			Analysis Type: RES/TOT				Dilution: 1	
Analyte	Lab Result	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{aligned} & \text { DL } \\ & \text { Type } \end{aligned}$	RL	RL Type	Units	Data Review Qual	Reason Code
Ferrous Iron	0.0500	U HF	0.0500	LOD	0.200	LOQ	mg/L	R	StoA

11/13/2018 1:44:00

Sample ID.16-MW-09-SA2	Collected:PM				Analysis Type:RES/TOT			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	RL Type	Units	Data Review Qual	Reason Code
Ferrous Iron	0.0500	U HF F1	0.0500	LOD	0.200	LOQ	mg / L	R	StoA
Sample ID:A1-MW-18-SA2	$\begin{aligned} & \text { 11/13/2018 10:31:00 } \\ & \text { Collected:AM } \end{aligned}$				Analysis Type:RES/TOT			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} \text { DL } \\ \text { Type } \end{gathered}$	RL	RL Type	Units	Data Review Qual	Reason Code
Ferrous Iron	0.0500	U HF	0.0500	LOD	0.200	LOQ	mg / L	R	StoA

* denotes a non-reportable result

Project Name and Number: 4663.3803 - CTO 17F3803 Yuma
12/21/2018 9:21:17 AM
ADR version 1.9.0.325
Page 6 of 15

Data Qualifier Summary

Lab Reporting Batch ID: 280-116898-1, 280-116942-1,
Laboratory: TA DEN
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver EDD Filename: 280-116898-1, 280-116942-1, 280-117007-1, 280-117103-1, 280-117110-1
SDG: 280-116942-1,

Mehod Categoy: \quad Genchely Method: sM3500 Fe B D	Matrix: AQ								
Sample ID:A1-MW-19-SA2	Collected:AM $\begin{aligned} & \text { 11/13/2018 11:15:00 } \\ & \text { Analysis Type:RES/TOT }\end{aligned}$							Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	$R L$ Type	Units	Data Review Qual	Reason Code
Ferrous Iron	0.0500	U HF	0.0500	LOD	0.200	LOQ	mg/L	R	StoA

Sample ID:A1-MW-53-SA2	$\begin{aligned} & \text { 11/13/2018 2:54:00 } \\ & \text { Collected:PM } \end{aligned}$				Analysis Type:RES/TOT			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	RL Type	Units	Data Review Qual	Reason Code
Ferrous Iron	0.0500	U HF	0.0500	LOD	0.200	LOQ	mg/L	R	StoA

Mehod Categary yet Method: 8260 B		Matrix:			$A Q$				
Sample ID:16-MW-06-SA2		$\begin{gathered} \text { 11/1 } \\ \text { d:AM } \\ \hline \end{gathered}$	$1189: 3$	00	lysis	pe:RE			ution: 1
Analyte	Lab Result	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
TRICHLOROETHENE	0.195	J	0.400	LOD	1.00	LOQ	ug/L	J	RI

11/13/2018 1:00:00

Sample ID:16-MW-08-SA2	Collected:PM			Analysis Type: RES				Dilution: 1	
Analyte	Lab Result	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{gathered} \text { DL } \\ \text { Type } \end{gathered}$	RL	RL Type	Units	Data Review Qual	Reason Code
TETRACHLOROETHENE	0.538	J	0.400	LOD	1.00	LOQ	ug/L	J	RI

11/13/2018 1:44:00

Sample ID.16-MW-09-SA2	Collected:PM			Analysis Type: RES				Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} \text { DL } \\ \text { Type } \end{gathered}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
TETRACHLOROETHENE	0.271	J	0.400	LOD	1.00	LOQ	ug/L	J	RI
Sample ID:A1-MW-19-SA2	$\begin{aligned} & \text { 11/13/2018 11:15:00 } \\ & \text { Collected:AM } \end{aligned}$				Analysis Type:RES			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
TRICHLOROETHENE	0.545	J	0.400	LOD	1.00	LOQ	ug/L	J	RI

* denotes a non-reportable result

Project Name and Number: 4663.3803-CTO 17F3803 Yuma
12/21/2018 9:21:17 AM
ADR version 1.9.0.325
Page 7 of 15

Data Qualifier Summary

Lab Reporting Batch ID: 280-116898-1, 280-116942-1,
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver EDD Filename: 280-116898-1, 280-116942-1, 280-117007-1, 280-117103-1, 280-117110-1
SDG: 280-117007-1

Sample ID:A1-MW-25-SA2	11/14/2018 12:15:00 Collected:PM				Analysis Type: RES/TOT			Dilution: 1	
Analyte	Lab Result	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
PH	8.0	HF	0.1	LOD	0.1	LOQ	SU	J	StoA
Sample ID:A1-MW-27-SA2	$\begin{aligned} & \begin{array}{l} \text { 11/14/2018 1:03:00 } \\ \text { Collected:PM } \end{array} \\ & \hline \end{aligned}$				Analysis Type: RES/TOT			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} \text { DL } \\ \text { Type } \end{gathered}$	$R L$	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
PH	8.0	HF	0.1	LOD	0.1	LOQ	SU	J	StoA
Sample ID:A1-MW-54-SA2	$\begin{aligned} & \begin{array}{l} \text { 11/14/2018 3:17:00 } \\ \text { Collected:PM } \end{array} \\ & \hline \end{aligned}$				Analysis Type: RES/TOT			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} \text { DL } \\ \text { Type } \end{gathered}$	$R L$	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
PH	8.0	HF	0.1	LOD	0.1	LOQ	SU	J	StoA

[^19]Project Name and Number: 4663.3803 - CTO 17F3803 Yuma
12/21/2018 9:21:17 AM

Data Qualifier Summary

Lab Reporting Batch ID: 280-116898-1, 280-116942-1,

Laboratory: TA DEN
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver

EDD Filename: 280-116898-1, 280-116942-1, 280-117007-1, 280-117103-1, 280-117110-1

SDG: 280-117007-1

Method Categony cENCHEM

Method: SM3500 Fe B D Matrix: AQ	Matrix: AQ								
Sample ID:A1-MW-07-SA2	$\begin{aligned} & \text { 11/14/2018 9:07:00 } \\ & \text { Collected:AM } \end{aligned}$				Analysis Type:RES/TOT			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} \text { DL } \\ \text { Type } \end{gathered}$	RL	RL Type	Units	Data Review Qual	Reason Code
Ferrous Iron	0.0500	U HF	0.0500	LOD	0.200	LOQ	mg/L	R	StoA

Sample ID:A1-MW-23-SA2	$\begin{aligned} & \begin{array}{l} \text { 11/14/2018 10:03:00 } \\ \text { Collected: } \mathrm{AM} \end{array} \\ & \hline \end{aligned}$				Analysis Type: RES/TOT			Dilution: 1	
Analyte	Lab Result	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
Ferrous Iron	0.0500	U HF	0.0500	LOD	0.200	LOQ	mg / L	R	StoA

11/14/2018 12:15:00

Sample ID:A1-MW-25-SA2	Collected:PM			Analysis Type: RES/TOT				Dilution: 1	
Analyte	Lab Result	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{gathered} \text { DL } \\ \text { Type } \end{gathered}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
Ferrous Iron	0.0500	U HF	0.0500	LOD	0.200	LOQ	mg / L	R	StoA

11/14/2018 1:03:00

Sample ID:A1-MW-27-SA2	Collected:PM		Analysis Type:RES/TOT					Dilution: 1	
Analyte	Lab Result	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	DL Type	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
Ferrous Iron	0.0500	U HF	0.0500	LOD	0.200	LOQ	mg / L	R	StoA

11/14/2018 3:17:00

Sample ID:A1-MW-54-SA2	Collected:PM			Analysis Type: RES/TOT				Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	RL Type	Units	Data Review Qual	Reason Code
Ferrous Iron	0.0500	U HF F1	0.0500	LOD	0.200	LOQ	mg / L	R	StoA

Sample ID:A1-MW-55-SA2	$\begin{array}{r} 11 / 1 \\ \text { Collected:AM } \\ \hline \end{array}$		Analysis Type:RES/TOT					Dilution: 1	
Analyte	Lab Result	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	RL Type	Units	Data Review Qual	Reason Code
Ferrous Iron	0.0500	U HF	0.0500	LOD	0.200	LOQ	mg / L	R	StoA

* denotes a non-reportable result

Project Name and Number: 4663.3803 - CTO 17F3803 Yuma
12/21/2018 9:21:17 AM
ADR version 1.9.0.325
Page 9 of 15

Data Qualifier Summary

Lab Reporting Batch ID: 280-116898-1, 280-116942-1,

Laboratory: TA DEN
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver

EDD Filename: 280-116898-1, 280-116942-1, 280-117007-1, 280-117103-1, 280-117110-1

Method Category VOA Method: $8260 B$		Matrix:							
Sample ID:A1-MW-07-SA2	$\begin{aligned} & \text { 11/14/2018 9:07:00 } \\ & \text { Collected:AM } . \end{aligned}$				Analysis Type: RES			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
1,1-DICHLOROETHENE	0.357	J	0.800	LOD	1.00	LOQ	ug/L	J	RI
TRICHLOROETHENE	0.826	J	0.400	LOD	1.00	LOQ	ug/L	J	RI
Sample ID:A1-MW-25-SA2	Collected: PM11/14/2018 12:15:00 Analysis Type:RES							Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{aligned} & D L \\ & \text { Type } \end{aligned}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
1,1-DICHLOROETHENE	0.273	J	0.800	LOD	1.00	LOQ	ug/L	J	RI
TRICHLOROETHENE	0.539	J	0.400	LOD	1.00	LOQ	ug/L	J	RI

SDG: 280-117103-1

Method Category: EM Method: 9040 C	Matrix: AQ								
Sample ID:A1-MW-11-SA2	$\begin{aligned} & \text { 11/15/2018 9:06:00 } \\ & \text { Collected: AM } \end{aligned}$				Analysis Type: RES/TOT			Dilution: 1	
Analyte	$\begin{gathered} \text { Lab } \\ \text { Result } \end{gathered}$	Lab Qual	DL	DL Type	$R L$	RL Type	Units	Data Review Qual	Reason Code
PH	8.1	HF	0.1	LOD	0.1	LOQ	SU	J	StoA

11/15/2018 8:20:00
Sample ID:A1-MW-13-SA2

[^20]Project Name and Number: 4663.3803-CTO 17F3803 Yuma
12/21/2018 9:21:17 AM

Data Qualifier Summary

Lab Reporting Batch ID: 280-116898-1, 280-116942-1,
Laboratory: TA DEN
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver EDD Filename: 280-116898-1, 280-116942-1, 280-117007-1 280-117103-1, 280-117110-1
SDG: 280-117103-1

Method oategory EM. Method: 9040 C	Matrix: AQ								
Sample ID:A1-MW-15-SA2	$\begin{aligned} & \text { 11/15/2018 10:07:00 } \\ & \text { Collected:AM } \\ & \end{aligned}$							Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} \text { DL } \\ \text { Type } \end{gathered}$	RL	RL Type	Units	Data Review Qual	Reason Code
PH	8.1	HF	0.1	LOD	0.1	LOQ	SU	J	StoA

Sample ID:A1-MW-31-SA2
11/15/2018 2:16:00

Sample ID:A1-MW-31-SA2	Collected:PM			Analysis Type: RES/TOT				Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} \text { DL } \\ \text { Type } \end{gathered}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
PH	8.0	HF	0.1	LOD	0.1	LOQ	SU	J	StoA

Sample ID:A1-MW-37-SA2
11/15/2018 11:54:00

Method Category: GENCHEM, Method: SM3500 Fe B D		Matrix: AQ							
Sample ID:A1-MW-11-SA2	Collected:AM11/15/2018 9:06:00 Analysis Type:RES/TOT							Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Ferrous Iron	0.0500	U HF	0.0500	LOD	0.200	LOQ	mg / L	R	StoA

11/15/2018 10:53:00

Sample ID:A1-MW-14-SA2	Collected:AM			Analysis Type: RES/TOT				Dilution: 1	
Analyte	$\begin{gathered} \text { Lab } \\ \text { Result } \end{gathered}$	Lab Qual	DL	$\begin{aligned} & \text { DL } \\ & \text { Type } \end{aligned}$	RL	RL Type	Units	Data Review Qual	Reason Code
Ferrous Iron	0.0500	U HF	0.0500	LOD	0.200	LOQ	mg/L	R	StoA

* denotes a non-reportable result

Project Name and Number: 4663.3803 - CTO 17F3803 Yuma
12/21/2018 9:21:17 AM

Data Qualifier Summary

Lab Reporting Batch ID: 280-116898-1, 280-116942-1,
Laboratory: TA DEN
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver

Sample ID:A1-MW-31-SA2	11/15/2018 2:16:00 Collected:PM				Analysis Type:RES/TOT			Dilution: 1	
Analyte	Lab Result	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{aligned} & D L \\ & \text { Type } \end{aligned}$	RL	RL Type	Units	Data Review Qual	Reason Code
Ferrous Iron	0.0500	U HF	0.0500	LOD	0.200	LOQ	mg/L	R	StoA

11/15/2018 11:54:00

Sample ID:A1-MW-37-SA2	Collected:AM			Analysis Type:RES/TOT				Dilution: 1	
Analyte	Lab Result	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{gathered} \text { DL } \\ \text { Type } \end{gathered}$	RL	RL Type	Units	Data Review Qual	Reason Code
Ferrous Iron	0.156	J HF	0.0500	LOD	0.200	LOQ	mg/L	J	RI, StoA

11/15/2018 10:53:00

Sample ID:A1-MW-14-SA2	Collected:AM			Analysis Type:RES				Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	RL Type	Units	Data Review Qual	Reason Code
1,1-DICHLOROETHENE	0.635	J	0.800	LOD	1.00	LOQ	ug/L	J	RI
TRICHLOROETHENE	0.728	J	0.400	LOD	1.00	LOQ	ug/L	J	RI
Sample ID:A1-MW-15-SA2	$\begin{aligned} & \begin{array}{l} \text { 11/15/2018 10:07:00 } \\ \text { Collected:AM } \end{array} \\ & \hline \end{aligned}$				Analysis Type: RES			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
TRICHLOROETHENE	0.426	J	0.400	LOD	1.00	LOQ	ug/L	J	RI
Sample ID:A1-MW-37-SA2	$$				Analysis Type: RES			Dilution: 1	
Analyte	Lab Result	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{gathered} \text { DL } \\ \text { Type } \end{gathered}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
1,1-DICHLOROETHENE	0.379	J	0.800	LOD	1.00	LOQ	ug/L	J	RI

* denotes a non-reportable result

Project Name and Number: 4663.3803 - CTO 17F3803 Yuma
12/21/2018 9:21:17 AM
ADR version 1.9.0.325
Page 12 of 15

Data Qualifier Summary

Lab Reporting Batch ID: 280-116898-1, 280-116942-1,
Laboratory: TA DEN
EDD Filename: 280-116898-1, 280-116942-1, 280-117007-1, 280-117103-1, 280-117110-1
SDG: 280-117103-1

SDG: 280-117110-1

11/16/2018 8:12:00

Sample ID:A1-MW-01-SA2	Collected:AM			Analysis Type:RES/TOT				Dilution: 1	
Analyte	$\begin{gathered} \text { Lab } \\ \text { Result } \end{gathered}$	Lab Qual	DL	$\begin{gathered} \text { DL } \\ \text { Type } \end{gathered}$	RL	RL Type	Units	Data Review Qual	Reason Code
PH	8.0	HF	0.1	LOD	0.1	LOQ	SU	J	StoA
Sample ID:A1-MW-42-SA2	$\begin{aligned} & \text { 11/16/2018 9:17:00 } \\ & \text { Collected:AM } \\ & \hline \end{aligned}$				Analysis Type: RES/TOT			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} \text { DL } \\ \text { Type } \end{gathered}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
PH	8.0	HF	0.1	LOD	0.1	LOQ	SU	J	StoA

Method Category GENCHEM Method: SM3500 Fe B D	Matrix: AQ								
Sample ID:A1-MW-01-SA2	\qquad Collected:AM				Analysis Type:RES/TOT			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
Ferrous Iron	0.0500	U HF	0.0500	LOD	0.200	LOQ	mg / L	R	StoA

* denotes a non-reportable result

Project Name and Number: 4663.3803 - CTO 17F3803 Yuma

Data Qualifier Summary

Lab Reporting Batch ID: 280-116898-1, 280-116942-1,
Laboratory: TA DEN
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver EDD Filename: 280-116898-1, 280-116942-1, 280-117007-1, 280-117103-1, 280-117110-1
SDG: 280-117110-1

[^21]Project Name and Number: 4663.3803 - CTO 17F3803 Yuma
12/21/2018 9:21:17 AM

Data Qualifier Summary

Lab Reporting Batch ID: 280-116898-1, 280-116942-1,
Laboratory: TA DEN
EDD Filename: 280-116898-1, 280-116942-1, 280-117007-1, eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver 280-117103-1, 280-117110-1

Reason Code Legend

Reason Code	Description
Mb	Method Blank Contamination
Ms	Matrix Spike Lower Estimation
Ms	Matrix Spike Lower Rejection
Ms	Matrix Spike Precision
RI	Reporting Limit Trace Value
StoA	Sampling to Analysis Estimation
StoA	Sampling to Analysis Rejection
Surr	Surrogate/Tracer Recovery Upper Estimation

[^22]12/21/2018 9:21:17 AM

1803676, 1803678
EDD Filename: Prep1803615, Prep1803626, Prep1803659,
Prep1803676, Prep1803678
SDG:1803615

* denotes a non-reportable result

Project Name and Number: 4663.3803-CTO 17F3803 Yuma

Data Qualifier Summary

1803676, 1803678
EDD Filename: Prep1803615, Prep1803626, Prep1803659, Prep1803676, Prep1803678
SDG: 1803626

Sample ID:A1-MW-18-SA2	Collected:AM			Analysis Type:RES				Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
PFOA	0.00309	J	0.00427	LOD	0.00856	LOQ	ug/L	J	RI

Sample ID:A1-MW-19-SA2	Collected:AM ${ }^{\text {11/13/2018 11:1 }}$			Analysis Type:RES				Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} D L \\ \text { Type } \\ \hline \end{gathered}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
PFDA	0.00721	J	0.00431	LOD	0.00861	LOQ	ug/L	J	RI
PFNA	0.00398	J	0.00431	LOD	0.00861	LOQ	ug/L	J	RI

Sample ID:A1-MW-53-SA2	Collected:PM			Analysis Type: RES				Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
PFOS	0.00400	J, Q	0.00420	LOD	0.00841	LOQ	ug/L	J	RI

* denotes a non-reportable result

Project Name and Number: 4663.3803-CTO 17F3803 Yuma

Data Qualifier Summary

$\text { SDG: } 1803676$	5								
Mehod Category Syoa Method: $\quad 537 \mathrm{MOD}$	Matrix: AQ								
Sample ID:A1-MW-11-SA2	11/15/20189.n6.n Collected:AM				nalysis Type: RES			Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
NEtFOSAA	0.00431	U	0.00431	LOD	0.00860	LOQ	ug/L	UJ	StoE
NMeFOSAA	0.00431	U	0.00431	LOD	0.00860	LOQ	ug/L	UJ	StoE
PFBS	0.184		0.00431	LOD	0.00860	LOQ	ug/L	J	StoE
PFDA	0.00431	U	0.00431	LOD	0.00860	LOQ	ug/L	UJ	StoE
PFDoA	0.00431	U	0.00431	LOD	0.00860	LOQ	ug/L	UJ	StoE
PFHpA	0.0352		0.00431	LOD	0.00860	LOQ	ug/L	J	StoE
PFHxA	0.460		0.00431	LOD	0.00860	LOQ	ug/L	J	StoE
PFHxS	0.109		0.00431	LOD	0.00860	LOQ	ug/L	J	StoE
PFNA	0.00431	U	0.00431	LOD	0.00860	LOQ	ug/L	UJ	StoE
PFOS	0.00916		0.00431	LOD	0.00860	LOQ	ug/L	J	StoE
PFTeDA	0.00431	U	0.00431	LOD	0.00860	LOQ	ug/L	UJ	StoE, Ccv
PFTrDA	0.00431	U	0.00431	LOD	0.00860	LOQ	ug/L	UJ	StoE
PFUnA	0.00431	U	0.00431	LOD	0.00860	LOQ	ug/L	UJ	StoE
PFOA	0.0349		0.00431	LOD	0.00860	LOQ	ug/L	J	StoE

Sample ID:A1-MW-13-SA2	Collected:AM			Analysis Type:RES				Dilution: 1	
Analyte	Lab Result	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
NEtFOSAA	0.00455	U	0.00455	LOD	0.00906	LOQ	ug/L	UJ	StoE
NMeFOSAA	0.00455	U	0.00455	LOD	0.00906	LOQ	ug/L	UJ	StoE
PFBS	0.259		0.00455	LOD	0.00906	LOQ	ug/L	J	StoE
PFDA	0.00455	U	0.00455	LOD	0.00906	LOQ	ug/L	UJ	StoE
PFDoA	0.00455	U	0.00455	LOD	0.00906	LOQ	ug/L	UJ	StoE
PFHpA	0.105		0.00455	LOD	0.00906	LOQ	ug/L	J	StoE
PFHxA	0.655		0.00455	LOD	0.00906	LOQ	ug/L	J	StoE
PFHxS	0.368		0.00455	LOD	0.00906	LOQ	ug/L	J	StoE
PFNA	0.00455	U	0.00455	LOD	0.00906	LOQ	ug/L	UJ	StoE
PFOA	0.0695		0.00455	LOD	0.00906	LOQ	ug/L	J	StoE
PFOS	0.107		0.00455	LOD	0.00906	LOQ	ug/L	J	StoE
PFTeDA	0.00455	U	0.00455	LOD	0.00906	LOQ	ug/L	UJ	StoE, Ccv
PFTrDA	0.00455	U	0.00455	LOD	0.00906	LOQ	ug/L	UJ	StoE
PFUnA	0.00455	U	0.00455	LOD	0.00906	LOQ	ug/L	UJ	StoE

* denotes a non-reportable result

Project Name and Number: 4663.3803 - CTO 17F3803 Yuma

Data Qualifier Summary

Sample ID:A1-MW-15-SA2

Sample ID:A1-MW-15-SA2	Collected:AM			Analysis Type: RES				Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
NEtFOSAA	0.00450	U	0.00450	LOD	0.00902	LOQ	ug/L	UJ	StoE
NMeFOSAA	0.00450	U	0.00450	LOD	0.00902	LOQ	ug/L	UJ	StoE
PFBS	0.363		0.00450	LOD	0.00902	LOQ	ug/L	J	StoE
PFDA	0.00450	U	0.00450	LOD	0.00902	LOQ	ug/L	UJ	StoE
PFDoA	0.00450	U	0.00450	LOD	0.00902	LOQ	ug/L	UJ	StoE
PFHpA	0.0773		0.00450	LOD	0.00902	LOQ	ug/L	J	StoE
PFHxA	0.596		0.00450	LOD	0.00902	LOQ	ug/L	J	StoE
PFHxS	0.322		0.00450	LOD	0.00902	LOQ	ug/L	J	StoE
PFNA	0.00450	U	0.00450	LOD	0.00902	LOQ	ug/L	UJ	StoE
PFOA	0.190		0.00450	LOD	0.00902	LOQ	ug/L	J	StoE
PFOS	0.0185		0.00450	LOD	0.00902	LOQ	ug/L	J	StoE
PFTeDA	0.00450	U	0.00450	LOD	0.00902	LOQ	ug/L	UJ	StoE, Ccv
PFTrDA	0.00450	U	0.00450	LOD	0.00902	LOQ	ug/L	UJ	StoE
PFUnA	0.00450	U	0.00450	LOD	0.00902	LOQ	ug/L	UJ	StoE

* denotes a non-reportable result

Project Name and Number: 4663.3803 - CTO 17F3803 Yuma
12/28/2018 11:47:26 AM

Data Qualifier Summary

SDG: 1803676

Mevod catigoylysvoa Method: 537 MOD	Matrix AQ								
Analyte	Lab Result	$\begin{aligned} & \text { Lab } \\ & \text { Qual } \end{aligned}$	DL	$\begin{gathered} \text { DL } \\ \text { Type } \end{gathered}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	$\begin{gathered} \text { Data } \\ \text { Review } \end{gathered}$ Qual	Reason Code
NEtFOSAA	0.00427	U	0.00427	LOD	0.00855	LOQ	ug/L	UJ	StoE
NMeFOSAA	0.00427	U	0.00427	LOD	0.00855	LOQ	ug/L	UJ	StoE
PFBS	0.0235		0.00427	LOD	0.00855	LOQ	ug/L	J	StoE
PFDA	0.00427	U	0.00427	LOD	0.00855	LOQ	ug/L	UJ	StoE
PFDoA	0.00427	U	0.00427	LOD	0.00855	LOQ	ug/L	UJ	StoE
PFHpA	0.00427	U	0.00427	LOD	0.00855	LOQ	ug/L	UJ	StoE
PFHxA	0.0732		0.00427	LOD	0.00855	LOQ	ug/L	J	StoE
PFHxS	0.00855		0.00427	LOD	0.00855	LOQ	ug/L	J	StoE
PFNA	0.00427	U	0.00427	LOD	0.00855	LOQ	ug/L	UJ	StoE
PFOA	0.00388	J	0.00427	LOD	0.00855	LOQ	ug/L	J	RI, StoE
PFOS	0.00427	U	0.00427	LOD	0.00855	LOQ	ug/L	UJ	StoE
PFTeDA	0.00427	U	0.00427	LOD	0.00855	LOQ	ug/L	UJ	StoE, Ccv
PFTrDA	0.00427	U	0.00427	LOD	0.00855	LOQ	ug/L	UJ	StoE
PFUnA	0.00427	U	0.00427	LOD	0.00855	LOQ	ug/L	UJ	StoE

11/15/2n18 11.54.

Sample ID:A1-MW-37-SA2	Collected:AM			Analysis Type:RES				Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
NEtFOSAA	0.00424	U	0.00424	LOD	0.00851	LOQ	ug/L	UJ	StoE
NMeFOSAA	0.00424	U	0.00424	LOD	0.00851	LOQ	ug/L	UJ	StoE
PFBS	0.151		0.00424	LOD	0.00851	LOQ	ug/L	J	StoE
PFDA	0.00424	U	0.00424	LOD	0.00851	LOQ	ug/L	UJ	StoE
PFDoA	0.00424	U	0.00424	LOD	0.00851	LOQ	ug/L	UJ	StoE
PFHpA	0.0856		0.00424	LOD	0.00851	LOQ	ug/L	J	StoE
PFHxA	0.520		0.00424	LOD	0.00851	LOQ	ug/L	J	StoE
PFHxS	0.438		0.00424	LOD	0.00851	LOQ	ug/L	J	StoE
PFNA	0.00424	U	0.00424	LOD	0.00851	LOQ	ug/L	UJ	StoE
PFOA	0.0599		0.00424	LOD	0.00851	LOQ	ug/L	J	StoE
PFOS	0.0288		0.00424	LOD	0.00851	LOQ	ug/L	J	StoE
PFTeDA	0.00424	U	0.00424	LOD	0.00851	LOQ	ug/L	UJ	StoE, Ccv
PFTrDA	0.00424	U	0.00424	LOD	0.00851	LOQ	ug/L	UJ	StoE
PFUnA	0.00424	U	0.00424	LOD	0.00851	LOQ	ug/L	UJ	StoE

* denotes a non-reportable result

Project Name and Number: 4663.3803 - CTO 17F3803 Yuma
12/28/2018 11:47:26 AM

Data Qualifier Summary

1803676, 1803678
EDD Filename: Prep1803615, Prep1803626, Prep1803659, Prep1803676, Prep1803678
$\frac{\text { SDG: } 1803676}{\text { Method category svea }}$

Method Category 5 SVOA Method:	Matrix: AQ								
Sample ID:A1-MW-37-SA2D	Collected:PM $\begin{aligned} & \text { 11/15/2018 19.n4. } \\ & \text { Analysis Type:RES }\end{aligned}$							Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} \text { DL } \\ \text { Type } \end{gathered}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
NEtFOSAA	0.00435	U	0.00435	LOD	0.00870	LOQ	ug/L	UJ	StoE
NMeFOSAA	0.00435	U	0.00435	LOD	0.00870	LOQ	ug/L	UJ	StoE
PFBS	0.150		0.00435	LOD	0.00870	LOQ	ug/L	J	StoE
PFDA	0.00435	U	0.00435	LOD	0.00870	LOQ	ug/L	UJ	StoE
PFDoA	0.00435	U	0.00435	LOD	0.00870	LOQ	ug/L	UJ	StoE
PFHpA	0.0830		0.00435	LOD	0.00870	LOQ	ug/L	J	StoE
PFHxA	0.529		0.00435	LOD	0.00870	LOQ	ug/L	J	StoE
PFHxS	0.429		0.00435	LOD	0.00870	LOQ	ug/L	J	StoE
PFNA	0.00435	U	0.00435	LOD	0.00870	LOQ	ug/L	UJ	StoE
PFOA	0.0555		0.00435	LOD	0.00870	LOQ	ug/L	J	StoE
PFOS	0.0275		0.00435	LOD	0.00870	LOQ	ug/L	J	StoE
PFTeDA	0.00435	U	0.00435	LOD	0.00870	LOQ	ug/L	UJ	StoE, Ccv
PFTrDA	0.00435	U	0.00435	LOD	0.00870	LOQ	ug/L	UJ	StoE
PFUnA	0.00435	U	0.00435	LOD	0.00870	LOQ	ug/L	UJ	StoE

11/15/20189.3n•n

Sample ID.FRB-20181115	Collected:PM			Analysis Type: RES				Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
NEtFOSAA	0.00450	U	0.00450	LOD	0.00904	LOQ	ug/L	UJ	StoE
NMeFOSAA	0.00450	U	0.00450	LOD	0.00904	LOQ	ug/L	UJ	StoE
PFBS	0.00450	U	0.00450	LOD	0.00904	LOQ	ug/L	UJ	StoE
PFDA	0.00450	U	0.00450	LOD	0.00904	LOQ	ug/L	UJ	StoE
PFDoA	0.00450	U	0.00450	LOD	0.00904	LOQ	ug/L	UJ	StoE
PFHpA	0.00450	U	0.00450	LOD	0.00904	LOQ	ug/L	UJ	StoE
PFHxA	0.00450	U	0.00450	LOD	0.00904	LOQ	ug/L	UJ	StoE
PFHxS	0.00450	U	0.00450	LOD	0.00904	LOQ	ug/L	UJ	StoE
PFNA	0.00450	U	0.00450	LOD	0.00904	LOQ	ug/L	UJ	StoE
PFOA	0.00450	U	0.00450	LOD	0.00904	LOQ	ug/L	UJ	StoE
PFOS	0.00450	U	0.00450	LOD	0.00904	LOQ	ug/L	UJ	StoE
PFTeDA	0.00450	U	0.00450	LOD	0.00904	LOQ	ug/L	UJ	StoE, Ccv
PFTrDA	0.00450	U	0.00450	LOD	0.00904	LOQ	ug/L	UJ	StoE
PFUnA	0.00450	U	0.00450	LOD	0.00904	LOQ	ug/L	UJ	StoE

* denotes a non-reportable result

Project Name and Number: 4663.3803 - CTO 17F3803 Yuma

Data Qualifier Summary

SDG: 1803678

Memor Categoys SVoh Methoo: 537 MOD									
Sample ID:A1-MW-01-SA2	Collected:AM				Analysis Type:RES			Dilution: 1	
Analyte	$\begin{gathered} \text { Lab } \\ \text { Result } \end{gathered}$	Lab Qual	DL	$\begin{aligned} & \text { DL } \\ & \text { Type } \end{aligned}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
PFTeDA	0.00446	U	0.00446	LOD	0.00894	LOQ	ug/L	UJ	Ccv

Sample ID:A1-MW-42-SA2	Collected:AM			Analysis Type:RES				Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{gathered} D L \\ \text { Type } \end{gathered}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
PFTeDA	0.00424	U	0.00424	LOD	0.00849	LOQ	ug/L	UJ	Ccv

Sample ID:EB-20181116	Collected:AM			Analysis Type:RES				Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	DL Type	RL	RL Type	Units	Data Review Qual	Reason Code
PFTeDA	0.00424	U	$0.00424 \mid$	LOD	0.00849	LOQ	ug/L	UJ	Ccv

11/16/0n18 9.4n•n

Sample ID:FRB-20181116	Collected:AM			Analysis Type:RES				Dilution: 1	
Analyte	Lab Result	Lab Qual	DL	$\begin{aligned} & \text { DL } \\ & \text { Type } \end{aligned}$	RL	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Data Review Qual	Reason Code
PFTeDA	0.00481	U	0.00481	LOD	0.00965	LOQ	ug/L	UJ	Ccv

[^23]Project Name and Number: 4663.3803-CTO 17F3803 Yuma

Data Qualifier Summary

Laboratory: Vista
 eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista

Reason Code Legend

Reason Code	Description
Ccv	Continuing Calibration Verification Percent Difference Lower Estimation
Lcs	Laboratory Control Spike Upper Estimation
Ms	Matrix Spike Precision
Ms	Matrix Spike Upper Estimation
RI	Reporting Limit Trace Value
StoE	Sampling to Extraction Estimation

* denotes a non-reportable result

Project Name and Number: 4663.3803-CTO 17F3803 Yuma

Enclosure I

Stage 2B ADR Outliers

(Including Manual Review Outliers)

Quality Control Outlier Reports

$$
280-116898-1
$$

QC Outlier Report: HoldingTimes

Lab Reporting Batch ID: 280-116898-1
Laboratory: TA DEN
EDD Filename: 280-116898-1
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver

Method: SM3500 Fe 8 D Matrix: AQ					Preparation Methode Metree
Sample ID	Type	Actual	Criteria	Units	Flag
A1-MW-04-SA2 (RES/TOT) A1-MW-05-SA2 (RES/TOT) A1-MW-49-SA2 (RES/TOT) A1-MW-50-SA2 (RES/TOT) A1-MW-51-SA2 (RES/TOT) A1-MW-52-SA2 (RES/TOT) A1-PZ-19-SA2 (RES/TOT)	Sampling To Analysis	$\begin{aligned} & 222.75 \\ & 220.00 \\ & 226.00 \\ & 225.00 \\ & 223.75 \\ & 220.75 \\ & 221.75 \end{aligned}$	$\begin{aligned} & 24.00 \\ & 24.00 \\ & 24.00 \\ & 24.00 \\ & 24.00 \\ & 24.00 \\ & 24.00 \end{aligned}$	HOURS HOURS HOURS HOURS HOURS HOURS HOURS	J (all detects) R (all non-detects)

Method Blank Outlier Report

Lab Reporting Batch ID: 280-116898-1

EDD Filename: 280-116898-1
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver

| Hethosfg056A
 Matrix: AQ |
| :--- | :--- | :--- | :--- | :--- |

Reporting Limit Outliers

Lab Reporting Batch ID: 280-116898-1
Laboratory: TA DEN
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver

Metiod 8260 E Matrix: AQ							
SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
A1-MW-50-SA2	$\begin{aligned} & \text { 1,1-DICHLOROETHENE } \\ & \text { TRICHLOROETHENE } \end{aligned}$	J	$\begin{aligned} & 0.564 \\ & 0.780 \end{aligned}$	$\begin{array}{r} 1.00 \\ 1.00 \\ \hline \end{array}$	$\begin{aligned} & \text { LOQ } \\ & \text { LOQ } \end{aligned}$	$\begin{aligned} & \mathrm{ug} / \mathrm{L} \\ & \mathrm{ug} / \mathrm{L} \end{aligned}$	J (all detects)
A1-MW-50-SA2D	1,1-DICHLOROETHENE TRICHLOROETHENE	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \end{aligned}$	$\begin{aligned} & 0.630 \\ & 0.949 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$	$\begin{aligned} & \text { LOQ } \\ & \text { LOQ } \end{aligned}$	ug/L ug/L	J (all detects)
A1-MW-52-SA2	1,1-DICHLOROETHENE TRICHLOROETHENE	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \end{aligned}$	$\begin{aligned} & \hline 0.458 \\ & 0.811 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \\ & \hline \end{aligned}$	$\begin{aligned} & \mathrm{LOQ} \\ & \mathrm{LOQ} \end{aligned}$	ug/L ug/L	J (all detects)
A1-PZ-19-SA2	TRICHLOROETHENE	J	0.430	1.00	LOQ	ug/L	J (all detects)

Medrad: $9056 A$
Matrix: $A Q$

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
A1-PZ-19-SA2	NITRATE	JB	0.896	1.00	LOQ	mg / L	J (all detects)

Method SMB500 Fe B D

Matrix: AQ

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
A1-MW-05-SA2	Ferrous Iron	J HF	0.119	0.200	LOQ	mg / L	J (all detects)
A1-MW-51-SA2	Ferrous Iron	J HF	0.0278	0.200	LOQ	mg / L	J (all detects)
A1-PZ-19-SA2	Ferrous Iron	J HF	0.0591	0.200	LOQ	mg / L	J (all detects)

Field Duplicate RPD Report

Lab Reporting Batch ID: 280-116898-1
EDD Filename: Prep280-116898-1

Mehod $: 260 \mathrm{~B}$

Matrix: \quad Q

Analyte	Concentration (ug/L)		Sample RPD	eQAPP RPD	Flag
	A1-MW-50-SA2	A1-MW-50-SA2D			
1,1-DICHLOROETHENE TRICHLOROETHENE	$\begin{aligned} & 0.564 \\ & 0.780 \end{aligned}$	$\begin{aligned} & 0.630 \\ & 0.949 \end{aligned}$	$\begin{aligned} & \hline \mathrm{NC} \\ & \mathrm{NC} \end{aligned}$	$\begin{aligned} & 30.00 \\ & 30.00 \end{aligned}$	No Qualifiers Applied

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note: $\quad \mathrm{A}=$ Acceptable
$\mathrm{N}=$ Not provided/applicable
SW = See worksheet

ND = No compounds detected
$\mathrm{R}=$ Rinsate
FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank

SB=Source blank OTHER:
** Indicates sample underwent Stage 4 validation

	Client ID	Lab ID	Matrix	Date
1	A1-MW-04-SA2**	$280-116898-1^{* *}$	Water	$11 / 12 / 18$
2	A1-MW-05-SA2**	$280-116898-2^{\star *}$	Water	$11 / 12 / 18$
3	A1-MW-49-SA2**	$280-116898-3^{\star *}$	Water	$11 / 12 / 18$
4	A1-MW-50-SA2**	$280-116898-4^{\star *}$	Water	$11 / 12 / 18$
5	A1-MW-50-SA2D**	$280-116898-5^{* *}$	Water	$11 / 12 / 18$
6	A1-MW-51-SA2**	$280-116898-6^{\star *}$	Water	$11 / 12 / 18$
7	TB-20181112	$280-116898-7$	Water	$11 / 12 / 18$
8	A1-PZ-19-SA2**	$280-116898-8^{\star *}$	Water	$11 / 12 / 18$
9	A1-MW-52-SA2**	$280-116898-9^{* *}$	Water	$11 / 12 / 18$
10	A1-MW-50-SA2MS	$280-116898-4 M S$	Water	$11 / 12 / 18$
11	A1-MW-50-SA2MSD	$280-116898-4 M S D$	Water	$11 / 12 / 18$
12				
13	MB 28D-438700/6			

$1-488747 / 4$

LDC \#: 43888A6 SDG \#: 280-116898-1 Laboratory: Test America, Inc.

VALIDATION COMPLETENESS WORKSHEET
ADR/Stage-4

Date:12-20-
18
Page: 1 of 1
Reviewer: \qquad 2nd Reviewer:

METHOD: (Analyte) Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056A), Ferrous Iron (SM3500-Fe B), pH (EPA SW846 Method 9040C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		
I.	Sample receipt/Technical holding times	SW	
II	Initial calibration	A	
III.	Calibration verification	A	
IV	Laboratory Blanks	SW	
V	Field blanks	N	
VI.	Matrix Spike/Matrix Spike Duplicates	A	Not reviewed for ADR validation. MS /MSD
VII.	Duplicate sample analysis	A	Not reviewed for ADR validation. DUP
VIII.	Laboratory control samples	A	Not reviewed for ADR validation. LCS /LCSD
IX.	Field duplicates	N	
X.	Sample result verification	A	Not reviewed for ADR validation.
XI	Overall assessment of data	A	Not reviewed for ADR validation.

Note:	$A=$ Acceptable	$N D=$ No compounds detected	$D=$ Duplicate	SB= Source blank
	$N=$ Not provided/applicable	$R=$ Rinsate	TB = Trip blank	OTHER:
SW $=$ See worksheet	PB $=$ Field blank	ER $=$ Equipment blank		

$* *$ Indicates sample underwent Stage 4 validation

	Client ID	Lab ID	Matrix	Date
1	A1-MW-04-SA2**	$280-116898-1^{* *}$	Water	$11 / 12 / 18$
2	A1-MW-05-SA2**	$280-116898-2^{* *}$	Water	$11 / 12 / 18$
3	A1-MW-49-SA2**	$280-116898-3^{* *}$	Water	$11 / 12 / 18$
4	A1-MW-50-SA2**	$280-116898-4^{* *}$	Water	$11 / 12 / 18$
5	A1-MW-51-SA2	$280-116898-6$	Water	$11 / 12 / 18$
6	A1-PZ-19-SA2**	$280-116898-8^{* *}$	Water	$11 / 12 / 18$
7	A1-MW-52-SA2**	$280-116898-9^{* *}$	Water	$11 / 12 / 18$
8	A1-MW-50-SA2MS	$280-116898-4 M S$	Water	$11 / 12 / 18$
9	A1-MW-50-SA2MSD	$280-116898-4 M S D$	Water	$11 / 12 / 18$
10	A1-MW-50-SA2DUP	$280-116898-4 D$ UP	Water	$11 / 12 / 18$
11				
12				
13				
14				
15	PB			

[^24]
VALIDATION FINDINGS WORKSHEET Sample Specific Analysis Reference

All circled methods are applicable to each sample.

Sample ID	Matrix	Parameter
$1 \rightarrow 7$	w	(pH) $\mathrm{TDS} \mathrm{(Cl)} \mathrm{~F}^{\left(\mathrm{NO}_{3}\right) \mathrm{NO}_{2} \text { (} \mathrm{SO}_{2} \mathrm{PO}_{4} \mathrm{ALK} \mathrm{CN} \mathrm{NH}}$
$Q C 8 \rightarrow 10$	\downarrow	pH TDS (Cl) $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH ${ }^{\text {a }}$ TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN- NH_{3} TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-1} \mathrm{NH}_{3}$ TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CIF $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN- NH_{3} TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH3 TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO $3 \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH ${ }^{\text {d }}$ TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS Cl F $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS Cl F $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN- NH_{3} TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS Cl $\mathrm{FNO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CIF NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH ${ }_{3}$ TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS CIF NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO $3 \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CIF NO ${ }^{\text {N }} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN- NH_{3} TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CIF $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS Cl F $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN- NH_{3} TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH3 ${ }^{\text {a }}$ TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		OH TDS CLF FO, NO, SO, PO ALK CN NH, TKN TOC CR ${ }^{6+} \mathrm{ClO}$

Comments:
VALIDATION FINDINGS WORKSHEET Technical Holding Times

All circled dates have exceeded the technical holding time.
(1) N N/A Were all samples preserve as applicable to each
(1) N N/A Were all cooler temperatures within validation criteria?

VALIDATION FINDINGS WORKSHEET
Blanks

Page: 1 of 1
Reviewer: $M G$ and Reviewer \qquad $\xrightarrow{M G}$

METHOD:Inorganics, Method See Cover
Conc. units: $\mathrm{mg} / \mathrm{L} \quad$ Associated Samples: all (NO3-N: 2x ail, SO4: 20x ail, $>5 \mathrm{x}$ or ND)

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, " U ".

Quality Control Outlier Reports

$$
280-116942-1
$$

QC Outlier Report: HoldingTimes

Lab Reporting Batch ID: 280-116942-1
Laboratory: TA DEN
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver
EDD Filename: 280-116942-1

Sample ID	Type	Actual	Criteria	Units	Flag
16-HS-03-SA2 (RES/TOT) 16-MW-06-SA2 (RES/TOT) 16-MW-08-SA2 (RES/TOT) 16-MW-09-SA2 (RES/TOT) A1-MW-18-SA2 (RES/TOT) A1-MW-19-SA2 (RES/TOT) A1-MW-53-SA2 (RES/TOT)	Sampling To Analysis	$\begin{aligned} & 316.00 \\ & 318.50 \\ & 314.75 \\ & 314.50 \\ & 317.50 \\ & 316.25 \\ & 312.75 \end{aligned}$	$\begin{aligned} & 24.00 \\ & 24.00 \\ & 24.00 \\ & 24.00 \\ & 24.00 \\ & 24.00 \\ & 24.00 \end{aligned}$	HOURS HOURS HOURS HOURS HOURS HOURS HOURS	J (all detects)
Method: 9056 A Matrix: AQ					fon Method METHOE
Sample ID	Type	Actual	Criteria	Units	Flag
A1-MW-18-SA2 (RES/TOT)	Sampling To Analysis	$\begin{array}{r} 62.25 \\ 62.50 \\ \hline \end{array}$	$\begin{aligned} & 48.00 \\ & 48.00 \\ & \hline \end{aligned}$	HOURS HOURS	J (all detects) UJ(all non-detects)
Methot SM3600Fe ED Matrix: AQ Sample ID	Type	Actual 198.50			\%on Methoa METHOL
			Criteria	Units	Flag
16-HS-03-SA2 (RES/TOT) 16-MW-06-SA2 (RES/TOT) 16-MW-08-SA2 (RES/TOT) 16-MW-09-SA2 (RES/TOT) 16-MW-09-SA2DUP (RES/TOT) 16-MW-09-SA2MS (RES/TOT) 16-MW-09-SA2MSD (RES/TOT) A1-MW-18-SA2 (RES/TOT) A1-MW-19-SA2 (RES/TOT) A1-MW-53-SA2 (RES/TOT)	Sampling To Analysis	$\begin{aligned} & 198.50 \\ & 200.75 \\ & 197.50 \\ & 196.75 \\ & 196.75 \\ & 196.75 \\ & 196.75 \\ & 200.00 \\ & 199.25 \\ & 195.50 \end{aligned}$	$\begin{aligned} & 24.00 \\ & 24.00 \\ & 24.00 \\ & 24.00 \\ & 24.00 \\ & 24.00 \\ & 24.00 \\ & 24.00 \\ & 24.00 \\ & 24.00 \end{aligned}$	HOURS HOURS	$\begin{gathered} \mathrm{J}(\text { all detects }) \\ \mathrm{R}(\text { all non-detects }) \end{gathered}$

Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: 280-116942-1
Laboratory: TA DEN
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver

Method: 9056 A
Matrix: AQ

QC Sample ID (Associated Samples)	Compound	$\begin{aligned} & \text { MS } \\ & \% R \end{aligned}$	$\begin{gathered} M S D \\ \% R \end{gathered}$	$\begin{aligned} & \text { \%R } \\ & \text { Limits } \end{aligned}$	$\begin{gathered} R P D \\ \text { (Limits) } \end{gathered}$	Affected Compounds	Flag
16-MWW-06-SA2MS 16-MW-06-SA2MSD (16-MW-06-SA2)	Sulfate	80	74	87.00-112.00	-	Suffate	$\begin{aligned} & J(\text { all detects) } \\ & U J \text { (all non-detects) } \end{aligned}$

Method: SM3500 Fe B D
Matrix: AQ

QC Sample ID (Associated Samples)	Compound	$\begin{aligned} & \text { MS } \\ & \% R \end{aligned}$	$\begin{aligned} & \text { MSD } \\ & \% R \end{aligned}$	$\begin{gathered} \text { \%R } \\ \text { Limits } \end{gathered}$	$\underset{\text { RPD }}{\text { (Limits) }}$	Affected Compounds	Flag
16-MW-09-SA2MS (16-MW-09-SA2)	Ferrous Iron	${ }^{53}$	51	85.00-113.00	-	Ferrous Iron	$\begin{gathered} \text { J(all detects) } \\ \text { UJ(all non-detects) } \end{gathered}$

Reporting Limit Outliers

Lab Reporting Batch ID: 280-116942-1
Laboratory: TA DEN
EDD Filename: 280-116942-1
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
16-MW-06-SA2	TRICHLOROETHENE	J	0.195	1.00	LOQ	ug / L	J (all detects)
16-MW-08-SA2	TETRACHLOROETHENE	J	0.538	1.00	LOQ	ug / L	J (all detects)
16-MW-09-SA2	TETRACHLOROETHENE	J	0.271	1.00	LOQ	ug / L	J (all detects)
A1-MW-19-SA2	TRICHLOROETHENE	J	0.545	1.00	LOQ	ug / L	J (all detects)

LDC \#: 43888B1a VALIDATION COMPLETENESS WORKSHEET Date: $12 / 19 / 18$
SDG \#: 280-116942-1
ABR
Laboratory: Test America, Inc. \qquad
Page: 1 of
Reviewer: 2nd Reviewer: \qquad
METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note:	$A=$ Acceptable	$N D=$ No compounds detected	$D=$ Duplicate	SB=Source blank
	$N=$ Not provided/applicable	$R=$ Rinsate	TB $=$ Trip blank	OTHER:
	$S W=$ See worksheet	FB = Field blank	EB = Equipment blank	

	Client ID	Lab ID	Matrix	Date
1	16-HS-03-SA2	$280-116942-1$	Water	$11 / 13 / 18$
2	16-MW-06-SA2	$280-116942-2$	Water	$11 / 13 / 18$
3	16-MW-08-SA2	$280-116942-3$	Water	$11 / 13 / 18$
4	16-MW-09-SA2	$280-116942-4$	Water	$11 / 13 / 18$
5	A1-MW-18-SA2	$280-116942-5$	Water	$11 / 13 / 18$
6	A1-MW-19-SA2	$280-116942-6$	Water	$11 / 13 / 18$
7	TB-20181113	$280-116942-7$	Water	$11 / 13 / 18$
8	A1-MW-53-SA2	$280-116942-8$	Water	$11 / 13 / 18$
9	$16-H S-063-S A 2 D$	$280-116942-9$	Water	$11 / 13 / 18$
10				
11				
12	MB 2SO-4388/7/4			
13				

($H, A A, S$ only)

LDC \#: 43888B6 VALIDATION COMPLETENESS WORKSHEET SDG \#: 280-116942-1 Laboratory: Test America, Inc.

METHOD: (Analyte) Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056A), Ferrous Iron (SM3500-Fe B), pH (EPA SW846 Method 9040C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note: $\quad \mathrm{A}=$ Acceptable
$\mathrm{N}=$ Not provided/applicable
SW = See worksheet

ND = No compounds detected
$\mathrm{R}=$ Rinsate
FB = Field blank

D = Duplicate
TB = Trip blank
EB = Equipment blank
$\mathrm{SB}=$ Source blank OTHER:

Lab ID	Matrix	Date
$280-116942-1$	Water	$11 / 13 / 18$
$280-116942-2$	Water	$11 / 13 / 18$
$280-116942-3$	Water	$11 / 13 / 18$
$280-116942-4$	Water	$11 / 13 / 18$
$280-116942-5$	Water	$11 / 13 / 18$
$280-116942-6$	Water	$11 / 13 / 18$
$280-116942-8$	Water	$11 / 13 / 18$
$280-116942-2 M S$	Water	$11 / 13 / 18$
$280-116942-2 M S D$	Water	$11 / 13 / 18$
$280-116942-2 D U P$	Water	$11 / 13 / 18$
$280-116942-4 M S$	Water	$11 / 13 / 18$
$280-116942-4 M S D$	Water	$11 / 13 / 18$
$280-116942-4 D U P$	Water	$11 / 13 / 18$

Notes: All circled methods are applicable to each sample.

Sample in	Matrix	Parameter
$1 \rightarrow 7$	W	(pH) TDS (Cl) F (NO_{3}) $\mathrm{NO}_{2}\left(\mathrm{SO}_{2} \mathrm{PO}_{4} \mathrm{ALK} \mathrm{CN} \mathrm{NH}_{3} \mathrm{TKN} \mathrm{TOC} \mathrm{CR}{ }^{6+} \mathrm{ClO}_{4}\right.$ ($\mathrm{Fe}+2$
$\alpha C_{8 \rightarrow 10}$		pH TDS(Cl) $\mathrm{NO}_{3} \mathrm{NO}_{2}\left(\mathrm{SO}_{4} \mathrm{PO}_{4} \mathrm{ALK} \mathrm{CN} \mathrm{NH}\right.$
$\downarrow 11 \rightarrow 13$	\downarrow	pH TDS Cl $\mathrm{FNO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4} \mathrm{ALK} \mathrm{CN} \mathrm{NH}_{3} \mathrm{TKN}$ TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$ (Fe+2)
		pH TDS Cl F $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS CIF NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CIF NO
		pH TDS CI F $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS CIF NO
		pH TDS CIF NO
		pH TDS CIF $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS CIF $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{\text {d }} \mathrm{NH}_{3}$ TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS Cl $\mathrm{FNO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN- NH_{3} TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC CR ${ }^{\text {d+ }} \mathrm{ClO}_{4}$
		pH TDS CIF NO $\mathrm{NO}_{3} \mathrm{NO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO $3 \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN- NH_{3} TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN- NH_{3} TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CIF NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN- NH_{3} TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN- NH_{3} TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN- NH_{3} TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		OH TDS CI F NO, NO, SO, PO, AlK CN - NH_{4} TKN TOC CR ${ }^{6+} \mathrm{ClO}$

Comments:

VALIDATION FINDINGS WORKSHEET Blanks

METHOD:Inorganics, Method See Cover

Associated Samples: 1-4,6 (various dilutions, $>5 \mathrm{x}$)

Conc. units: mg/L Associated Samples: 2,3,4,7 (various dilutions, >5x)

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U"

Quality Control Outlier Reports

280-117007-1

QC Outlier Report: HoldingTimes

Lab Reporting Batch ID: 280-117007-1
Laboratory: TA DEN
EDD Filename: 280-117007-1
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver

$\begin{array}{ll} \text { Method: } & 90400 \\ \text { Matrix: } & \text { AQ } \\ \hline \end{array}$	Preparation Method: METHOL				
Sample ID	Type	Actual	Criteria	Units	Flag
A1-MW-07-SA2 (RES/TOT)	Sampling To Analysis	${ }^{363.25}$	24.00	HOURS	J (all detects)
A1-MW-23-SA2 (RES/TOT)		${ }^{362.25}$	24.00	HOURS	
A1-MW-25-SA2 (RES/TOT)		359.75	24.00	HOURS	
A1-MW-27-SA2 (RES/TOT)		359.25	24.00	HOURS	
A1-MW-54-SA2 (RES/TOT)		356.75	24.00	HOURS	
A1-MW-55-SA2 (RES/TOT)		361.00	24.00	HOURS	

Method: SM3500 Fe BD
Matrix: AQ

| Sample ID | Type | Actual | Criteria | Units | |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| A1-MW-07-SA2 (RES/TOT) | Flag | | | | |
| A1-MW-23-SA2 (RES/TOT) | Sampling To Analysis | 177.50 | 24.00 | HOURS | |
| A1-MW-25-SA2 (RES/TOT) | | 176.50 | 24.00 | HOURS | J(all detects) |
| A1-MW-27-SA2 (RES/TOT) | | 174.25 | 24.00 | HOURS | |
| A1-MW-54-SA2 (RES/TOT) | | 173.50 | 24.00 | HOURS | |
| A1-MW-54-SA2DUP (RES/TOT) | | 171.25 | 24.00 | HOURS | |
| A1-MW-54-SA2MS (RES/TOT) | | 171.25 | 24.00 | HOURS | |
| A1-MW-54-SA2MSD (RES/TOT) | | 171.25 | 24.00 | HOURS | |
| A1-MW-55-SA2 (RES/TOT) | | 171.25 | 24.00 | HOURS | |
| | | | | | |

Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: 280-117007-1
Laboratory: TA DEN
EDD Filename: 280-117007-1
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver
Method SM3500 reE B
Matrix: AQ

QC Sample ID (Associated Samples)	Compound	MS $\%$	MSD $\%$	$\% R$ Limits	RPD (Limits)	Affected Compounds	
A1-MW-54-SA2MS CA1-MW-54-SA2MSD (A1-MW-54-SA2)	Ferrous Iron	34	35	$85.00-113.00$	-	Ferrous Iron	Flag

Reporting Limit Outliers

Lab Reporting Batch ID: 280-117007-1
Laboratory: TA DEN
EDD Filename: 280-117007-1
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver
Method: 8260 B
Matrix: AQ

			Lab				
SampleID	Analyte	Result	Reporting Limit	RL Type	Units	Flag	
A1-MW-07-SA2	1,1-DICHLOROETHENE	J	0.357	1.00	LOQ	ug / L	J (all detects)
	TRICHLOROETHENE	J	0.826	1.00	LOQ	ug / L	
A1-MW-25-SA2	$1,1-$ DICHLOROETHENE	J	0.273	1.00	LOQ	ug / L	J (all detects)

\qquad

METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)

Reviewer 2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note:	
	$A=$ Acceptable
	$N=$ Not provided/applicable
	SW $=$ See worksheet

ND = No compounds detected
$\mathrm{R}=$ Rinsate

D = Duplicate
SB=Source blank
TB = Trip blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	A1-MW-07-SA2	$280-117007-1$	Water	$11 / 14 / 18$
2	A1-MW-23-SA2	$280-117007-2$	Water	$11 / 14 / 18$
3	A1-MW-25-SA2	$280-117007-3$	Water	$11 / 14 / 18$
4	A1-MW-27-SA2	$280-117007-4$	Water	$11 / 14 / 18$
5	A1-MW-55-SA2	$280-117007-5$	Water	$11 / 14 / 18$
6	TB-20181114	$280-117007-6$	Water	$11 / 14 / 18$
7	A1-MW-54-SA2	$280-117007-7$	Water	$11 / 14 / 18$
8	A1-MW-07-SA2MS	$280-117007-1 \mathrm{MS}$	Water	$11 / 14 / 18$
9	A1-MW-07-SA2MSD	$280-117007-1$ MS	Water	$11 / 14 / 18$
10				
11	MB 280-43 $8841 / 6$			
12				
13				

(H, AA, S only)

SDG \#: 280-117007-1 ADR Laboratory: Test America, Inc.

METHOD: (Analyte)Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056A), Ferrous Iron (SM3500-Fe B), pH (EPA SW846 Method 9040C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note: $\quad \mathrm{A}=$ Acceptable
$\mathrm{N}=$ Not provided/applicable
SW = See worksheet
ND = No compounds detected
$\mathrm{R}=$ Rinsate
FB = Field blank
D = Duplicate
SB=Source blank

	Client ID	Lab ID	Matrix	Date
1	A1-MW-07-SA2	$280-117007-1$	Water	$11 / 14 / 18$
2	A1-MW-23-SA2	$280-117007-2$	Water	$11 / 14 / 18$
3	A1-MW-25-SA2	$280-117007-3$	Water	$11 / 14 / 18$
4	A1-MW-27-SA2	$280-117007-4$	Water	$11 / 14 / 18$
5	A1-MW-55-SA2	$280-117007-5$	Water	$11 / 14 / 18$
6	A1-MW-54-SA2	$280-117007-7$	Water	$11 / 14 / 18$
7	A1-MW-54-SA2MS	$280-117007-7 M S$	Water	$11 / 14 / 18$
8	A1-MW-54-SA2MSD	$280-117007-7 M S D$	Water	$11 / 14 / 18$
9	A1-MW-54-SA2DUP	$280-117007-7 D U P$	Water	$11 / 14 / 18$
10				
11				
12				
13				
14				
15	PB			

Notes \qquad
\qquad

Sample ID	Matrix	Parameter
$1 \rightarrow 6$	W	(pH) TDS (C1) F ($\mathrm{NO}_{3} \mathrm{NO}_{2}\left(\mathrm{SO}_{2} \mathrm{PO}_{4} \mathrm{ALK} \mathrm{CN} \mathrm{NH}_{3} \mathrm{TKN} \mathrm{TOC} \mathrm{CR}^{6+} \mathrm{ClO}_{4}\left(\mathrm{Fe}{ }^{+2}\right.\right.$
$Q C_{7 \rightarrow 9}$	\downarrow	pH TDS CIF NO $\mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN $\mathrm{NH}_{3} \mathrm{TKN}$ TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}(\mathrm{Fe}+3)$
		pH TDS CIF $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO ${ }^{\text {NO }} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS CIF NO${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS $\mathrm{CIF} \mathrm{NO} \mathrm{N}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CIF NO $3 \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO $3 \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS Cl F $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS Cl F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO $\mathrm{N}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO $3 \mathrm{NO}_{2} \mathrm{NO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3} \mathrm{TKN}$ TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN- NH_{3} TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO, $\mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$

[^25]
VALIDATION FINDINGS WORKSHEET
 Blanks

METHOD:Inorganics, Method See Cover

Conc. units: mg/L Associated Samples: 1-5 (10x dil, >5x)

CIRCIED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT All contaminants within five times the method blank concentration were qualified as not detected, "U".

Quality Control Outlier Reports

$$
280-117103-1
$$

QC Outlier Report: HoldingTimes

Lab Reporting Batch ID: 280-117103-1
EDD Filename: 280-117103-1

Laboratory: TA DEN
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver

Method: SM15000 Fe E D
Preparation Methoa: MIDHOO
Matrix: AQ

Sample ID	Type	Actual	Criteria	Units	
A1-MW-11-SA2 (RESSTOT)	Sampling To Analysis	153.50	24.00	HOURS	Flag
A1-MW-13-SA2 (RESTOOT)		154.25	24.00	HOURS	J(all detects)
A1-MW-14-SA2 (RES/TOT)		151.75	24.00	HOURS	R(all non-detects)
A1-MW-15-SA2 (RES/TOT)		152.50	24.00	HOURS	
A1-MW-31-SA2 (RES/TOT)		148.25	24.00	HOURS	
A1-MW-37-SA2 (RES/TOT)		150.75	24.00	HOURS	

Method Blank Outlier Report

Lab Reporting Batch ID: 280-117103-1
EDD Filename: 280-117103-1
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver

Method Blank Sample ID	Analysis Date	Analyte	Result	Associated Samples
MB 280-437914/6	11/16/2018 5:36:00 PM	CHLORIDE Sulfate	$0.2635 \mathrm{mg} / \mathrm{L}$ $0.3386 \mathrm{mg} / \mathrm{L}$	$\|$A1-MW-11-SA 2 A1-MWW-13-SA A1-MWW-14-SA A1-MWW-15-SA A1 A1-MWW-31-SA2 A1-MW-37-SA
MB 280-437915/6	11/16/2018 5:36:00 PM	NITRATE	$0.04638 \mathrm{mg} / \mathrm{L}$	A1-MW-11-SA2 A1-MW-13-SA2 A1-MW-14-SA2 A1-MW-31-SA2 A1-MW-37-SA2

Reporting Limit Outliers

Lab Reporting Batch ID: 280-117103-1
Laboratory: TA DEN
EDD Filename: 280-117103-1
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver

SamplelD	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
A1-MW-14-SA2	1,1-DICHLOROETHENE TRICHLOROETHENE	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \end{aligned}$	$\begin{aligned} & 0.635 \\ & 0.728 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$	$\begin{aligned} & \text { LOQ } \\ & \text { LOQ } \end{aligned}$	ug/L ug/L	J (all detects)
A1-MW-15-SA2	TRICHLOROETHENE	J	0.426	1.00	LOQ	ug/L	J (all detects)
A1-MW-37-SA2	1,1-DICHLOROETHENE TRICHLOROETHENE	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \end{aligned}$	$\begin{aligned} & 0.379 \\ & 0.914 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$	$\begin{aligned} & \text { LOQ } \\ & \text { LOQ } \end{aligned}$	$\begin{aligned} & \mathrm{ug} / \mathrm{L} \\ & \mathrm{ug} / \mathrm{L} \end{aligned}$	J (all detects)
A1-MW-37-SA2D	1,1-DICHLOROETHENE TRICHLOROETHENE	J	$\begin{aligned} & 0.373 \\ & 0.909 \end{aligned}$	$\begin{aligned} & 1.00 \\ & 1.00 \end{aligned}$	$\begin{aligned} & \text { LOQ } \\ & \text { LOQ } \end{aligned}$	ug/L ug/L	J (all detects)

Methoat SM3500 FE B D
Matrix: AQ

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
A1-MW-37-SA2	Ferrous Iron	JHF	0.156	0.200	LOQ	mg / L	J (all detects)

Field Duplicate RPD Report

Lab Reporting Batch ID: 280-117103-1
Laboratory: TA DEN
EDD Filename: Prep280-117103-1
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver

Method: 2260 B

Matrix: $A Q$

Analyte	Concentration (ug/L)		Sample RPD	$\begin{gathered} \text { eQAPP } \\ R P D \end{gathered}$	Flag
	A1-MW-37-SA2	A1-MW-37-SA2D			
1,1-DICHLOROETHENE TRICHLOROETHENE	$\begin{aligned} & 0.379 \\ & 0.914 \end{aligned}$	$\begin{aligned} & \hline 0.373 \\ & 0.909 \end{aligned}$	$\begin{aligned} & \mathrm{NC} \\ & \mathrm{NC} \end{aligned}$	$\begin{aligned} & 30.00 \\ & 30.00 \end{aligned}$	No Qualifiers Applied

LDC \#: 43888D1a VALIDATION COMPLETENESS WORKSHEET
SDG \#: 280-117103-1 ADR
Laboratory: Test America, Inc.
Date:
\qquad
METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

$\begin{array}{ll}\text { Note: } & A=\text { Acceptable } \\ & N=\text { Not provided/applicable } \\ & \text { SW }=\text { See worksheet }\end{array}$
SW = See worksheet

ND = No compounds detected
D = Duplicate
TB = Trip blank $E B=$ Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	A1-MW-11-SA2	$280-117103-1$	Water	$11 / 15 / 18$
2	A1-MW-13-SA2	$280-117103-2$	Water	$11 / 15 / 18$
3	A1-MW-14-SA2	$280-117103-3$	Water	$11 / 15 / 18$
4	A1-MW-15-SA2	$280-117103-4$	Water	$11 / 15 / 18$
5	A1-MW-37-SA2	$280-117103-5$	Water	$11 / 15 / 18$
6	A1-MW-37-SA2D	$280-117103-6$	Water	$11 / 15 / 18$
7	TB-20181115	$280-117103-7$	Water	$11 / 15 / 18$
8	A1-MW-31-SA2	$280-117103-8$	Water	$11 / 15 / 18$
9				
10				
11				
12	MB $280-438823 / 9$			
13				

$H, A A, S$ only)

METHOD: (Analyte)Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056A), Ferrous Iron (SM3500-Fe B), pH (EPA SW846 Method 9040C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Client ID	Lab ID	Matrix	Date
1	A1-MW-11-SA2	$280-117103-1$	Water	$11 / 15 / 18$
2	A1-MW-13-SA2	$280-117103-2$	Water	$11 / 15 / 18$
3	A1-MW-14-SA2	$280-117103-3$	Water	$11 / 15 / 18$
4	A1-MW-15-SA2	$280-117103-4$	Water	$11 / 15 / 18$
5	A1-MW-37-SA2	$280-117103-5$	Water	$11 / 15 / 18$
6	A1-MW-31-SA2	$280-117103-8$	Water	$11 / 15 / 18$
7	A1-MW-14-SA2DUP	$280-117103-3 D$ UP	Water	$11 / 15 / 18$
8				
9				
10				
11				
12				
13				
14				
15	PW			

Notes:

Sample ID	Matrix	Parameter
$1 \rightarrow 6$	W	(pH) TDS (Cl) $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4} \mathrm{ALK} \mathrm{CN}^{-} \mathrm{NH}_{3} \mathrm{TKN} \mathrm{TOC} \mathrm{CR}{ }^{6+} \mathrm{ClO}_{4} \mathrm{Fe}+2$
$Q C 7$	\downarrow	(pH)TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3} \mathrm{TKN}$ TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS Cl F NO $\mathrm{NO}_{2} \mathrm{NO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS Cl F NO $\mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS Cl F NO $\mathrm{NHO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS Cl F NO $\mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN- NH_{3} TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO $\mathrm{NH}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4} \mathrm{ALK} \mathrm{CN}^{-} \mathrm{NH}_{3}$ TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS Cl F NO $\mathrm{FH}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO $3 \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN- NH_{3} TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS Cl F NO $\mathrm{FO}_{2} \mathrm{NO}_{4} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS Cl F NO $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS Cl F NO $\mathrm{NO}_{2} \mathrm{NO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS Cl F NO $\mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS Cl F NO $\mathrm{NO}_{2} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS Cl F NO $\mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN- NH_{3} TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS Cl F NO $\mathrm{NHO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS Cl F NO $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO $\mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS Cl F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS Cl F NO $\mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS Cl F NO $\mathrm{FH}_{3} \mathrm{NO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS Cl F NO $\mathrm{FH}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS Cl F NO $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS Cl F NO $\mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS Cl F NO $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS Cl F NO $\mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN- NH_{3} TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS Cl F NO $3 \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC CR ${ }^{++} \mathrm{ClO}_{4}$

Comments:

Page: \perp _of 1
Reviewer: $M G$ 2nd Reviewer $\xrightarrow{M B}$

METHOD:Inorganics, Method See Cover

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

Quality Control Outlier Reports
 $$
280-117110-1
$$

QC Outlier Report: HoldingTimes

Lab Reporting Batch ID: 280-117110-1
EDD Filename: 280-117110-1

Laboratory: TA DEN
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver

Matrix: AQ

Sample ID	Type	Actual	Criteria	Units	
A1-MW-01-SA2 (RES/TOT)	Sampling To Analysis	318.00	24.00	HOURS	Flag
A1-MW-42-SA2 (RES/TOT)		316.75	24.00	HOURS	

$\begin{array}{ll}\text { Mothod } & \text { SMB500FeBD } \\ \text { Matrix: } A Q\end{array}$

Sample ID	Type	Actual	Criteria	Units	Flag
A1-MW-01-SA2 (RES/TOT)	Sampling To Analysis	130.25	24.00	HOURS	J(all detects)
A1-MW-42-SA2 (RES/TOT)		129.25	24.00	HOURS	R(all non-detects)
A1-MW-42-SA2DUP (RES/TOT)		129.25	24.00	HOURS	
A1-MW-42-SA2MS (RES/TOT)		129.25	24.00	HOURS	
A1-MW-42-SA2MSD (RES/TOT)		129.25	24.00	HOURS	

Surrogate Outlier Report

Lab Reporting Batch ID: 280-117110-1
EDD Filename: 280-117110-1
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver

Thethods 8260B					
Matrix: AQ					
Sample ID (Analysis Type)	Surrogate	Sample \% Recovery	\% Recovery Limits	Affected Compounds	Flag
EB-20181116	1,2-DICHLOROETHANE-D4	122	$81.00-118.00$	All Target Analytes	J (all detects)

Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: 280-117110-1
Laboratory: TA DEN
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver

QC Sample ID (Associated Samples)	Compound	$\begin{aligned} & M S \\ & \% R \\ & \hline \end{aligned}$	$\begin{gathered} M S D \\ \% R \end{gathered}$	$\begin{gathered} \text { \%R } \\ \text { Limits } \\ \hline \end{gathered}$	$\begin{gathered} R P D \\ \text { (Limits) } \end{gathered}$	Affected Compounds	Flag
$\begin{aligned} & \text { A1-MWW-42-SA22MS } \\ & \text { A1-MW-42-SAMSD } \\ & \text { (A1-MW-42-SA2) } \end{aligned}$	Ferrous Iron	${ }^{27}$	${ }^{27}$	85.00-113.00	-	Ferrous Iron	J (all detects) R (all non-detects)

Methode 8260 B
Matrix: AQ

QC Sample ID (Associated Samples)	Compound	$\begin{aligned} & M S \\ & \% R \\ & \hline \end{aligned}$	$\begin{gathered} M S D \\ \% R \\ \hline \end{gathered}$	\%R Limits	$\begin{gathered} R P D \\ \text { (Limits) } \end{gathered}$	Affected Compounds	Flag
$\begin{aligned} & \text { A1-MW-01-SA2MSD } \\ & \text { (A1-MW-01-SA2) } \end{aligned}$	1,1-DICHLOROETHENE	-	-	71.00-131.00	22 (20.00)	1,1-DICHLOROETHENE	J(all detects)

Reporting Limit Outliers

Lab Reporting Batch ID: 280-117110-1
Laboratory: TA DEN
EDD Filename: 280-117110-1
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Denver

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
A1-MW-42-SA2	1,1-DICHLOROETHENE	J	0.238	1.00	LOQ	ug/L	J (all detects)

LDC \#: 438888E1a

VALIDATION COMPLETENESS WORKSHEET
 ABR

SDG \#: 280-117110-1
Laboratory: Test America, Inc. \qquad
METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note: $\quad \mathrm{A}=$ Acceptable
$\mathrm{N}=$ Not provided/applicable SW = See worksheet
ND = No compounds detected
R = Rinsate

D = Duplicate
TB = Trip blank
$E B=$ Equipment blank
$\mathrm{SB}=$ Source blank

	Client ID	Lab ID	Matrix	Date
1	A1-MW-01-SA2	$280-117110-1$	Water	$11 / 16 / 18$
2	A1-MW-42-SA2	$280-117110-2$	Water	$11 / 16 / 18$
3	TB-20181116	$280-117110-3$	Water	$11 / 16 / 18$
4	EB-20181116	$280-117110-4$	Water	$11 / 16 / 18$
5	A1-MW-01-SA2MS	$280-117110-1$ MS	Water	$11 / 16 / 18$
6	A1-MW-01-SA2MSD	$280-117110-1$ MSD	Water	$11 / 16 / 18$
7				
8				
9				

Notes:

($H, A A, S$ only)

LDC \#:_43888E6
SDG \#: 280-117110-1 Laboratory:Test America, Inc.

METHOD: (Analyte)Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056A), Ferrous Iron (SM3500-Fe B), pH (EPA SW846 Method 9040C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments
1.	Sample receiptTechnical holding times	SW	HT out for all $\mathrm{pH}, \mathrm{Fe}^{+2}$
11	Initial calibration	A	
III.	Calibration verification	A	
IV	Laboratory Blanks	SW	ICB/CCB only
V	Field blanks	N	
V .	Matrix Spike/Matrix Spike Duplicates	N	MS/MSD (\#3/4: Fe^{+2} fails)
VII.	Duplicate sample analysis	N	DUP
VIII.	Laboratory control samples	N	LCS/LCSD
IX.	Field duplicates	N	
x.	Sample result verification	N	
$\underline{\mathrm{x}}{ }^{1}$	Overall assessment of data	N	

Note: $\quad \mathrm{A}=$ Acceptable
$\mathrm{N}=$ Not provided/applicable
SW = See worksheet

ND = No compounds detected
$R=$ Rinsate
FB = Field blank

D = Duplicate
SB=Source blank TB = Trip blank EB = Equipment blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	A1-MW-01-SA2	$280-117110-1$	Water	$11 / 16 / 18$
2	A1-MW-42-SA2	$280-117110-2$	Water	$11 / 16 / 18$
3	A1-MW-42-SA2MS	$280-117110-2 M S$	Water	$11 / 16 / 18$
4	A1-MW-42-SA2MSD	$280-117110-2 M S D$	Water	$11 / 16 / 18$
5	A1-MW-42-SA2DUP	$280-117110-2 D U P$	Water	$11 / 16 / 18$
6				
7				
8				
9				
10				
11				
12				
13				
14				
15	PBW			

Notes: \qquad

All circled methods are applicable to each sample.

Sample ID	Matrix	Parameter
1,2	W	(pH)TDS (CII $\mathrm{NO}_{3} \mathrm{NO}_{2}\left(\mathrm{SO}_{4}\right) \mathrm{PO}_{4} \mathrm{ALK} \mathrm{CN} \mathrm{NH}$
$Q C_{3 \rightarrow 5}$	\downarrow	pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4} \mathrm{ALK} \mathrm{CN} \mathrm{NH}_{3} \mathrm{TKN} \mathrm{TOC} \mathrm{CR}{ }^{6+} \mathrm{ClO}_{4}\left(\mathrm{Fe}^{+2}\right.$
		pH TDS CI F $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS CIF NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO ${ }^{\text {NO }} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS CIF NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS CIF NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CIF NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CIF NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CIF NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS CIF NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-1} \mathrm{NH}_{3}$ TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CIF NO
		pH TDS CIF NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS Cl F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CIF NO ${ }^{\text {NO }} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F NO, $\mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC CR ${ }^{\text {c+ }} \mathrm{ClO}_{4}$
		pH TDS CI F NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN $\mathrm{NH}_{3} \mathrm{TKN}$ TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CIF NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS CIF NO $3 \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN NH_{3} TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CIF NO ${ }^{\text {NO }} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN- NH_{3} TKN TOC CR ${ }^{6+} \mathrm{ClO}_{4}$
		pH TDS CIF NO ${ }_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		pH TDS CI F $\mathrm{NO}_{3} \mathrm{NO}_{2} \mathrm{SO}_{4} \mathrm{PO}_{4}$ ALK CN ${ }^{-} \mathrm{NH}_{3}$ TKN TOC $\mathrm{CR}^{6+} \mathrm{ClO}_{4}$
		PH TDS CI F NO, NO, SO, PO, AlK CN- NH_{4} TKN TOC CR ${ }^{6+} \mathrm{ClO}$

Comments:

VALIDATION FINDINGS WORKSHEET
Blanks
\qquad METHOD:Inorganics, Method See Cover

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT: All contaminants within five times the method blank concentration were qualified as not detected, "U".

Quality Control Outlier Reports

1803615

Reporting Limit Outliers

Lab Reporting Batch ID: 1803615
EDD Filename: 1803615

Laboratory: Vista
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
A1-MW-04-SA2	PFOA	J	0.00646	0.00881	LOQ	ug/L	J (all detects)
A1-MW-05-SA2	PFHxS	J, Q	0.00359	0.00864	LOQ	ug/L	J (all detects)
A1-MW-50-SA2	PFHpA	J, Q	0.00474	0.00894	LOQ	ug/L	J (all detects)
A1-MW-50-SA2D	PFHpA	J	0.00494	0.00874	LOQ	ug/L	J (all detects)
A1-MW-52-SA2	PFOS	J	0.00356	0.00872	LOQ	ug/L	J (all detects)
A1-PZ-19-SA2	$\begin{array}{\|l\|} \hline \text { PFHpA } \\ \text { PFOS } \end{array}$	$\stackrel{J}{J, Q}$	$\begin{aligned} & 0.00548 \\ & 0.00321 \end{aligned}$	$\begin{aligned} & 0.00884 \\ & 0.00884 \end{aligned}$	$\begin{aligned} & \hline \text { LOQ } \\ & \text { LOQ } \end{aligned}$	$\begin{aligned} & \mathrm{ug} / \mathrm{L} \\ & \mathrm{ug} / \mathrm{L} \end{aligned}$	J (all detects)

Field Duplicate RPD Report

Lab Reporting Batch ID: 1803615
Laboratory: Vista
EDD Filename: Prep1803615
Mehnode 587 MOD

Matrix: $A Q$

Analyte	Concentration (ug/L)		Sample RPD	$\begin{aligned} & \text { eQAPP } \\ & R P D \end{aligned}$	Flag
	A1-MW-50-SA2	A1-MW-50-SA2D			
PFBS	0.0250	0.0264	5	30.00	
PFHpA	0.00474	0.00494	NC	30.00	
PFHXA	0.0806	0.0829	3	30.00	No Qualifiers Applied
PFHxS	0.0367	0.0355	3	30.00	
PFOA	0.00947	0.00878	8	30.00	

LDC \#: 43888K96
VALIDATION COMPLETENESS WORKSHEET
SD \#: 1803615
Laboratory: Vista Analytical Laboratory

METHOD: LC/MS Perfluoroalkyl \& Polyfluoroalkyl Substances (EPA Method 537)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note:	$A=$ Acceptable	$N D=$ No compounds detected	$D=$ Duplicate	SB=Source blank
$N=$ Not provided/applicable	$R=$ Rinsate	TB $=$ Trip blank	OTHER:	
	$S W=$ See worksheet	TB $=$ Field blank	BB $=$ Equipment blank	

Quality Control Outlier Reports

$$
1803626
$$

Reporting Limit Outliers

Lab Reporting Batch ID: 1803626
Laboratory: Vista
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista
EDD Filename: 1803626
eqAPP Name: SW RAC _

SampleID	Analyte	Lab Qual	Result	Reporting Limit	$\begin{gathered} R L \\ \text { Type } \end{gathered}$	Units	Flag
16-MW-06-SA2	PFOS	J	0.00582	0.00835	LOQ	ug/L	J (all detects)
16-MW-09-SA2	$\begin{aligned} & \mathrm{PFOA} \\ & \mathrm{PFOS} \end{aligned}$	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \end{aligned}$	$\begin{aligned} & 0.00449 \\ & 0.00503 \end{aligned}$	$\begin{aligned} & \hline 0.00852 \\ & 0.00852 \end{aligned}$	$\begin{aligned} & \hline \text { LOQ } \\ & \text { LOQ } \end{aligned}$	$\begin{aligned} & \hline \mathrm{ug} / \mathrm{L} \\ & \mathrm{ug} / \mathrm{L} \end{aligned}$	J (all detects)
A1-MW-18-SA2	PFOA	J	0.00309	0.00856	LOQ	ug/L	J (all detects)
A1-MW-19-SA2	PFDA PFNA	$\begin{aligned} & \mathrm{J} \\ & \mathrm{~J} \end{aligned}$	$\begin{aligned} & \hline 0.00721 \\ & 0.00398 \end{aligned}$	$\begin{aligned} & \hline 0.00861 \\ & 0.00861 \end{aligned}$	$\begin{aligned} & \hline \text { LOQ } \\ & \text { LOQ } \end{aligned}$	$\begin{aligned} & \mathrm{ug} / \mathrm{L} \\ & \mathrm{ug} / \mathrm{L} \end{aligned}$	J (all detects)
A1-MW-53-SA2	PFOS	$J, ~ Q$	0.00400	0.00841	LOQ	ug/L	J (all detects)

Field Duplicate RPD Report

Lab Reporting Batch ID: 1803626
Laboratory: Vista EDD Filename: 1803626
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista Method 5 FF MOD

Matrix: \quad AQ

Analyte	Concentration (ug/L)		Sample RPD	$\begin{aligned} & \text { eQAPP } \\ & R P D \end{aligned}$	Flag
	16-HS-03-SA2	16-HS-03-SA2D			
PFBS	1.34	1.39	4	30.00	
PFHpA	0.405	0.412	2	30.00	
PFHXA	10.3	11.7	13	30.00	No Qualifiers Applied
PFHxS	0.324	0.312	4	30.00	
PFOA	0.0206	0.0200	3	30.00	

LDC \#: 43888L96
VALIDATION COMPLETENESS WORKSHEET
Date:
$12 / 19 / 18$
SDG \#: 1803626
ADR
Page: \qquad 2nd Reviewer:

METHOD: LC/MS Perfluoroalkyl \& Polyfluoroalkyl Substances (EPA Method 537)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

	Validation Area		Comments	
1.	Sample receipt/Technical holding times	$A \rightarrow A$		
II.	LC/MS Instrument performance check	A		
III.	Initial calibration/ICV	A, A	r^{2} Individual ≤ 302	$10 \leq 303$
IV.	Continuing calibration/ISC	A	$C \mathrm{C} \leqslant 30 \mathrm{~L}$	
V .	Laboratory Blanks	N		
VI.	Field blanks	N		
VII.	Matrix spike/Matrix spike duplicates	N		
VIII.	Laboratory control samples	N		
IX.	Field duplicates	N		
X.	Labeled Compounds	$\cdots A$		
XI.	Compound quantitation RL/LOQ/LODs	N		
XII.	Target compound identification	N		
XIII.	System performance	N		
XIV.	Overall assessment of data	N		

Note:	$A=$ Acceptable	$N D=$ No compounds detected	$D=$ Duplicate	SB=Source blank
	$N=$ Not provided/applicable	$R=$ Rinsate	TB $=$ Trip blank	OTHER:
	SW $=$ See worksheet	FB $=$ Field blank	EB $=$ Equipment blank	

	Client ID	Lab ID	Matrix	Date
1	16-HS-03-SA2	$1803626-01$	Water	$11 / 13 / 18$
2	16-MW-06-SA2	$1803626-02$	Water	$11 / 13 / 18$
3	16-MW-08-SA2	$1803626-03$	Water	$11 / 13 / 18$
4	16-MW-09-SA2	$1803626-04$	Water	$11 / 13 / 18$
5	A1-MW-18-SA2	$1803626-05$	Water	$11 / 13 / 18$
6	A1-MW-19-SA2	$1803626-06$	Water	11/13/18
7	FRB-20181113	$1803626-07$	Water	$11 / 13 / 18$
8	A1-MW-53-SA2	$1803626-08$	Water	$11 / 13 / 18$
9	16-HS-03-SA2D	$1803626-09$	Water	$11 / 13 / 18$
10				
11				

Quality Control Outlier Reports

$$
1803659
$$

Reporting Limit Outliers

Lab Reporting Batch ID: 1803659 EDD Filename: 1803659

Laboratory: Vista eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista
Methort 58 time
Matrix: AQ

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
A1-MW-23-SA2	PFHxS	J	0.00594	0.00849	LOQ	ug/L	J (all detects)

LDC \#: 43888M96
VALIDATION COMPLETENESS WORKSHEET
SD \#: 1803659
ABR
Laboratory: Vista Analytical Laboratory
METHOD: LC/MS Perfluoroalkyl \& Polyfluoroalkyl Substances (EPA Method 537)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note:	$A=$ Acceptable	$N D=$ No compounds detected	$D=$ Duplicate	SB= Source blank
	$N=N o t$ provided/applicable	$R=$ Rinsate	TB $=$ Trip blank	OTHER:
	$S W=$ See worksheet	$F B=$ Field blank	BB $=$ Equipment blank	

	Client ID	Lab ID	Matrix	Date
1	A1-MW-07-SA2	$1803659-01$	Water	$11 / 14 / 18$
2	A1-MW-23-SA2	$1803659-02$	Water	$11 / 14 / 18$
3	A1-MW-25-SA2	$1803659-03$	Water	$11 / 14 / 18$
4	A1-MW-27-SA2	$1803659-04$	Water	$11 / 14 / 18$
5	A1-MW-55-SA2	$1803659-05$	Water	$11 / 14 / 18$
6	A1-MW-54-SA2	$1803659-06$	Water	$11 / 14 / 18$
7	FRB-20181114	$1803659-07$	Water	$11 / 14 / 18$
8				
9				
10				

Notes:

	B8KK0144-K1K4						

Quality Control Outlier Reports
 $$
1803676
$$

QC Outlier Report: HoldingTimes

Lab Reporting Batch ID: 1803676
Laboratory: Vista
EDD Filename: 1803676
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista
Method: 587 MOD
Matrix: AQ

Sample ID	Type	Actual	Criteria	Units	
A1-MW-11-SA2 (RES)	Flag				
A1-MW-13-SA2 (RES)	Sampling To Extraction	15.00	14.00	DAYS	J (all detects)
A1-MW-14-SA2 (RES)		15.00	14.00	DAYS	UJ (all non-detects)
A1-MW-15-SA2 (RES)		15.00	14.00	DAYS	
A1-MW-31-SA2 (RES)		15.00	14.00	DAYS	
A1-MW-37-SA2 (RES)		15.00	14.00	DAYS	
A1-MW-37-SA2D (RES)		15.00	14.00	DAYS	
FRB-20181115 (RES)		15.00	14.00	DAYS	

Lab Control Spike/Lab Control Spike Duplicate Outlier Report

Lab Reporting Batch ID: 1803676
Laboratory: Vista
EDD Filename: 1803676
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista

QC Sample ID (Associated Samples)	Compound	$\begin{gathered} L C S \\ \% R \end{gathered}$	$\begin{gathered} L C S D \\ \% R \end{gathered}$	\%R Limits	$\begin{gathered} R P D \\ \text { (Limits) } \\ \hline \end{gathered}$	Affected Compounds	Flag
B8K0153-BS1 (A1-MW-11-SA2 A1-MW-13-SA2 A1-MW-14-SA2 A1-MW-15-SA2 A1-MW-31-SA2 A1-MW-37-SA2 A1-MW-37-SA2D FRB-20181115)	PFTeDA	140	-	70.00-130.00	-	PFTeDA	J (all detects)

Reporting Limit Outliers

Laboratory: Vista
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista

EDD Filename: 1803676

SampleID	Analyte	Lab Qual	Result	Reporting Limit	RL Type	Units	Flag
A1-MW-31-SA2	PFOA	J	0.00388	0.00855	LOQ	ug/L	J (all detects)

Field Duplicate RPD Report
Lab Reporting Batch ID: 1803676
Laboratory: Vista
EDD Filename: 1803676
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista Methork 58 Yimob
Matrix: $\mathbf{A Q}$

\left.| Analyte | Concentration (ug/L) | | | | |
| :--- | :---: | :---: | :---: | :---: | :---: |
| | | | | Sample | eQAPP |
| | | | | | |$\right]$

METHOD: LC/MS Perfluoroalkyl \& Polyfluoroalkyl Substances (EPA Method 537)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note: $\quad \mathrm{A}=$ Acceptable
$\mathrm{N}=$ Not provided/applicable
SW = See worksheet

ND = No compounds detected
$\mathrm{D}=$ Duplicate
SB=Source blank
$\mathrm{R}=$ Rinsate
$\mathrm{FB}=$ Field blank
TB = Trip blank OTHER:

	Client ID	Lab ID	Matrix	Date
1	A1-MW-11-SA2	$1803676-01$	Water	$11 / 15 / 18$
2	A1-MW-13-SA2	$1803676-02$	Water	$11 / 15 / 18$
3	A1-MW-14-SA2	$1803676-03$	Water	$11 / 15 / 18$
4	A1-MW-15-SA2	$1803676-04$	Water	$11 / 15 / 18$
5	A1-MW-37-SA2	$1803676-05$	Water	$11 / 15 / 18$
6	A1-MW-37-SA2D	$1803676-06$	Water	$11 / 15 / 18$
7	FRB-20181115	$1803676-07$	Water	$11 / 15 / 18$
8	A1-MW-31-SA2	$1803676-08$	Water	$11 / 15 / 18$
9				
10				
11				

Notes:

	$B 8 K 0153-B 4<1$						

TARGET COMPOUND WORKSHEET

A. PFHxA			
B. PFHPA			
C. PFOA			
D. PFNA			
E. PfDA			
F. PFUnA			
G. PFDoA			
H. PfttiA			
1. PFTedA			
J. PFBS			
K. PFHKS			
L. PFHpS			
M. pfos			
N. PFDS			
o. FOSA			
P. PrBA			
Q. PrPeA			
R. 6:2FTS			
s. 8:2FTS			
T. MeFoSAA			
U. Effosa			
v. Combined PFoASIPFos			

METHOD: LC/MS PFOS/PFOAs (EPA Method 537M)
Ptease see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".
Y/LN/A Was a continuing calibration standard analyzed after every 10 injections for each instrument?

\#	Date	Standard ID	Compound	Finding \%D Limit: <30. (Limit: $\leq 30.0 \%$)	Associated Samples	Qualifications
	12/03/18	$181203 \mathrm{MIL}-3$	I	42.4	All (ND)	J/uJ/A
-						

Quality Control Outlier Reports

$$
1803678
$$

Matrix Spike/Matrix Spike Duplicate Outlier Report

Lab Reporting Batch ID: 1803678
Laboratory: Vista
EDD Filename: 1803678
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista

| QC Sample ID
 (Associated
 Samples) | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Lab Control Spike/Lab Control Spike Duplicate Outlier Report

Lab Reporting Batch ID: 1803678
EDD Filename: 1803678
eQAPP Name: SW RAC 6_CTO 3803 YUMA - Vista

| QC Sample ID
 (Associated
 Samples) | Compound |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

LDC \#: 43888096
VALIDATION COMPLETENESS WORKSHEET
SD \#: 1803678
ABR
Laboratory: Vista Analytical Laboratory
METHOD: LC/MS Perfluoroalkyl \& Polyfluoroalkyl Substances (EPA Method 537)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note:	$\mathrm{A}=$ Acceptable	$\mathrm{ND}=$ No compounds detected	$\mathrm{D}=$ Duplicate	SB=Source blank
$\mathrm{N}=$ Not provided/applicable	$\mathrm{R}=$ Rinsate	TB $=$ Trip blank	OTHER:	
	$\mathrm{SW}=$ See worksheet	$\mathrm{FB}=$ Field blank	BB $=$ Equipment blank	

	Client ID	Lab ID	Matrix	Date
1	A1-MW-01-SA2	$1803678-01$	Water	$11 / 16 / 18$
2	A1-MW-42-SA2	$1803678-02$	Water	$11 / 16 / 18$
3	FRB-20181116	$1803678-03$	Water	$11 / 16 / 18$
4	EB-20181116	$1803678-04$	Water	$11 / 16 / 18$
5	A1-MW-01-SA2MS	$1803678-01$ MS	Water	$11 / 16 / 18$
6	A1-MW-01-SA2MSD	$1803678-01$ MSD	Water	$11 / 16 / 18$
7				
8				
9				
10				

Notes:

	B8K0153-BUK1						

TARGET COMPOUND WORKSHEET

A. PFHXA			
B. PFHpA			
c. PFOA			
D. PFNA			
E. PFDA			
F. PFUnA			
G. PFDoA			
H. PftiA			
1. Pfteda			
J. PrBS			
K. PFHxS			
L. PFHPS			
M. PFos			
N. pros			
O. Fosa			
P. Prba			
Q. PFPAA			
R. 6:2FTS			
S. 8.2FTS			
T. MeFosas			
u. Effosas			
V. Combined PFOASIPFOS			

METHOD: LC/MS PFAS (EPA Method 537M)
Please see qualifications below for all questions answered " N ". Not applicable questions are identified as "N/A".

$$
\text { YN N/A Was a continuing calibration standard analyzed after every } 10 \text { injections for each instrument? }
$$ Were all continuing calibration percent differences (\%D) $\leq 30 \%$?

\#	Date	Standard ID	Compound	Finding \%D , (Limit: $<30.0 \%$)	Finding RRF (Limit:)	Associated Samples	Qualifications
	12/03/18	181203 Ml - 2	I	42.4		All (ND)	J/nJ/A

Enclosure II

Manual Stage 2B and Stage 4 Data Validation Reports

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:
LDC Report Date:

Parameters:

Validation Level:
Laboratory:

MCAS Yuma, CTO 17F3803
December 20, 2018
Volatiles
Stage 4
TestAmerica, Inc.

Sample Delivery Group (SDG): 280-116898-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
A1-MW-04-SA2	$280-116898-1$	Water	$11 / 12 / 18$
A1-MW-05-SA2	$280-116898-2$	Water	$11 / 12 / 18$
A1-MW-49-SA2	$280-116898-3$	Water	$11 / 12 / 18$
A1-MW-50-SA2	$280-116898-4$	Water	$11 / 12 / 18$
A1-MW-50-SA2D	$280-116898-5$	Water	$11 / 12 / 18$
A1-MW-51-SA2	$280-116898-6$	Water	$11 / 12 / 18$
A1-PZ-19-SA2	$280-116898-8$	Water	$11 / 12 / 18$
A1-MW-52-SA2	$280-116898-9$	Water	$11 / 12 / 18$
A1-MW-50-SA2MS	$280-116898-4 M S$	Water	$11 / 12 / 18$
A1-MW-50-SA2MSD	$280-116898-4 M S D$	Water	$11 / 12 / 18$

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
Volatile Organic Compounds (VOCs) by Environmental Protection Agency (EPA) SW 846 Method 8260B

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A bromofluorobenzene (BFB) tune was performed at 12 hour intervals.
All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.
The percent relative standard deviations (\%RSD) were less than or equal to 15.0% for all compounds.

Average relative response factors (RRF) for all compounds were within validation criteria.

The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.
The percent differences (\%D) were less than or equal to 20.0% for all compounds.
The percent differences (\%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0% for all compounds.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample TB-20181112 was identified as a trip blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (\%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits.

X. Field Duplicates

Samples A1-MW-50-SA2 and A1-MW-50-SA2D were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

Compound	Concentration (ug/L)				
	A1-MW-50-SA2	A1-MW-50-SA2D	RPD (Limits)	Flag	A or P
	0.564	0.630	Not calculable	-	-
Trichloroethene	0.780	0.949	Not calculable	-	-

RPDs were not calculated when sample results in one or both samples were less than $5 x$ the limit of quantitation (LOQ).

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

All compound quantitations met validation criteria.
All compounds reported below the limit of quantitation (LOQ) were qualified as follows:

Sample	Finding	Flag	A or P
A1-MW-04-SA2	All compounds reported below the LOQ.	J (all detects)	A
A1-MW-05-SA2			
A1-MW-49-SA2			
A1-MW-50-SA2			
A1-MWW-50-SA2D			
A1-PZ-19-SA2			

XIII. Target Compound Identifications

All target compound identifications met validation criteria.

XIV. System Performance

The system performance was acceptable.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to results below the LOQ, data were qualified as estimated in eight samples.
The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

MCAS Yuma, CTO 17F3803
Volatiles - Data Qualification Summary - SDG 280-116898-1

Sample	Compound			
A1-MW-04-SA2	All compounds reported below the	J (all detects)	A	Compound quantitation
A1-MW-05-SA2	LOQ.			
A1-MW-49-SA2				
A1-MW-50-SA2				
A1-MWN-50-SA2D				
A1-MW-51-SA2				
A1-PZ-19-SA2				

MCAS Yuma, CTO 17F3803
Volatiles - Laboratory Blank Data Qualification Summary - SDG 280-116898-1
No Sample Data Qualified in this SDG
MCAS Yuma, CTO 17F3803
Volatiles - Field Blank Data Qualification Summary - SDG 280-116898-1
No Sample Data Qualified in this SDG

LDC \#: 43888A1a
SDG \#: 280-116898-1
Laboratory: Test America, Inc.

VALIDATION COMPLETENESSWQRKSHEET
ADR/Stage 2 B 4
\qquad
METHOD: GC/MS Volatiles (EPA SW 846 Method 8260B)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note: $\quad \mathrm{A}=$ Acceptable $\mathrm{N}=$ Not provided/applicable SW = See worksheet
ND = No compounds detected $\mathrm{R}=$ Rinsate FB = Field blank
$\mathrm{D}=$ Duplicate
TB = Trip blank
$\mathrm{EB}=$ Equipment blank

SB=Source blank OTHER:

(H,AA,S only)

VALIDATION FINDINGS CHECKLIST
Page: 1 of 2
Reviewer: \qquad 2nd Reviewer:

Method: Volatiles (EPA SW 846 Method 8260B)

VALIDATION FINDINGS CHECKLIST
Page: 2 of 2 Reviewer: $=\mathrm{JVG}$

Validation Area	Yes	No	NA	Findings/Comments
VIII. Matrix spike/Matrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries $(\% \mathrm{R})$ and the relative percent differences (RPD) within the QC limits?				
1X. Laboratory control samples				
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per analytical batch?				
Were the LCS percent recoveries (\%R) and relative percent difference (RPD) within the QC limits?				
X. Field duplicates				
Were field duplicate pairs identified in this SDG?	\square			
Were target compounds detected in the field duplicates?				
x. Intermal standards				
Were internal standard area counts within -50% to $+100 \%$ of the associated calibration standard?	1			
Were retention times within ± 30 seconds of the associated calibration standard?				
XII. Compound quantitation				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
XIII. Target compound identification				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
XV. System performance				
System performance was found to be acceptable. \nearrow				
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.	L			

TARGET COMPOUND WORKSHEET

A. Chloromethane	AA. Tetrachloroethene	AAA. 1,3,5-Trimethylbenzene	AAAA. Ethyl ter-butyl ether	A1. 1,3-Butadiene	A2.
B. Bromomethane	BB. 1,1,2,2-Tetrachloroethane	BBB. 4-Chlorotoluene	BBBB. tert-Amyl methyl ether	B1. Hexane	B2.
C. Vinyl choride	CC. Toluene	CCC. tert-Butylbenzene	CCCC. 1-Chlorohexane	C1. Heptane	C2.
D. Chloroethane	DD. Chlorobenzene	DDD. 1,2,4-Trimethylbenzene	DDDD. Isopropyl alcohol	D1. Propylene	D2.
E. Methylene chloride	EE. Ethylbenzene	EEE. sec-Butylbenzene	EEEE. Acetonitrile	E1. Freon 11	E2.
F. Acetone	FF. Styrene	FFF. 1,3-Dichlorobenzene	FFFF. Acrolein	F1. Freon 12	F2.
G. Carbon disulfide	GG. Xylenes, total	GGG. p-Isopropyltoluene	GGGG. Acrylonitrile	G1. Freon 113	G2.
H. 1,1-Dichloroethene	HH. Vinyl acetate	HHH. 1,4-Dichlorobenzene	HHHH. 1,4-Dioxane	H1. Freon 114	H2.
1. 1,1-Dichloroethane	II. 2-Chloroethylvinyl ether	III. n-Butylbenzene	IIII. Isobutyl alcohol	11. 2-Nitropropane	12.
J. 1,2-Dichloroethene, total	JJ. Dichlorodifluoromethane	JJJ. 1,2-Dichlorobenzene	JJJJ. Methacrylonitrile	J1. Dimethyi disulfide	J2.
K. Chloroform	KK. Trichlorofluoromethane	KKK. 1,2,4-Trichlorobenzene	KKKK. Propionitrile	K1. 2,3-Dimethyl pentane	K2.
L. 1,2-Dichloroethane	LL. Methyl-tert-butyl ether	LLL. Hexachlorobutadiene	LLLL. Ethyl ether	L1. 2,4-Dimethyl pentane	L2.
M. 2-Butanone	MM. 1,2-Dibromo-3-chioropropane	MMM. Naphthalene	MMMM. Benzyl chloride	M1. 3,3-Dimethyl pentane	M2.
N. 1,1,1-Trichloroethane	NN. Methyl ethyl ketone	NNN. 1,2,3-Trichlorobenzene.	NNNN. Iodomethane	N1. 2-Methylpentane	N2.
O. Carbon tetrachloride	OO. 2,2-Dichloropropane	000. 1,3,5-Trichlorobenzene	0000.1,1-Difluoroethane	O1. 3-Methylpentane	O2.
P. Bromodichloromethane	PP. Bromochloromethane	PPP. trans-1,2-Dichloroethene	PPPP. Tetrahydrofuran	P1. 3-Ethylpentane	P2.
Q. 1,2-Dichloropropane	QQ. 1,1-Dichloropropene	QQQ. cis-1,2-Dichloroethene	QQQQ. Methyl acetate	Q1. 2,2-Dimethylpentane	Q2.
R. cis-1,3-Dichloropropene	RR. Dibromomethane	RRR. m,p-Xylenes	RRRR. Ethyl acetate	R1. 2,2,3-Trimethylbutane	R2.
S. Trichloroethene	SS. 1,3-Dichloropropane	SSS. o-Xylene	SSSS. Cyclohexane	S1. 2,2,4-Trimethylpentane	S2.
T. Dibromochloromethane	TT. 1,2-Dibromoethane	TTT. 1,1,2-Trichloro-1,2,2-trifluoroethane	TTTT. Methylcyclohexane	T1. 2-Methylhexane	T2.
U. 1,1,2-Trichloroethane	UU. 1,1,1,2-Tetrachloroethane	UUU. 1,2-Dichlorotetrafluoroethane	UUUU. Allyl chloride	U1. Nonanal	U2.
V. Benzene	V. Isopropylbenzene	WW. 4-Ethyltoluene	WWV. Methyl methacrylate	V1. 2-Methylnaphthalene	V2.
W. trans-1,3-Dichloropropene	WW. Bromobenzene	WWW. Ethanol	wwww. Ethyl methacrylate	W1. Methanol	W2.
X . Bromoform	XX. 1,2,3-Trichloropropane	xXX. Di-isopropyl ether	XXXX. cis-1,4-Dichloro-2-butene	X1. 1,2,3-Trimethylbenzene	X2.
Y. 4-Methyl-2-pentanone	YY. n-Propylbenzene	YYY. tert-Butanol	YYY\%. trans-1,4-Dichloro-2-butene	Y1.	Y2.
Z. 2-Hexanone	ZZ. 2-Chlorotoluene	ZZZ. tert-Butyl alcohol	ZZZZ. Pentachloroethane	21.	22.

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page: 1 of 1 Reviewer:JVG 2nd Reviewer:

METHOD: GCMS VOA (EPA SW 846 Method 8260B)
Y N NA Were field duplicate pairs identified in this SDG?
Y N NA Were target analyses detected in the field duplicate pairs?

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (\%RSD) were recalculated for the compounds identified below using the following calculations:

$\operatorname{RRF}=\left(A_{x}\right)\left(C_{i s}\right) /\left(A_{i s}\right)\left(C_{x}\right)$	$A_{x}=$ Area of Compound	$A_{i s}=$ Area of associated internal standard
average RRF = sum of the RRFs/number of standards	$C_{x}=$ Concentration of compound	$C_{i s}=$ Concentration of internal standard
$\% R S D=100 *(S / X)$	$S=$ Standard deviation of the RRFs	$X=$ Mean of the RRFs

\#	Standard ID	$\begin{gathered} \text { Calibration } \\ \text { Date } \\ \hline \end{gathered}$	Compound (IS)		Recalculated RRF (RRF 10 std)	Reported Average RRF (Initial)	Recalculated Average RRF (Initial)	$\begin{gathered} \text { Reported } \\ \text { \%RSD } \end{gathered}$	Recalculated \%RSD
1	ICALGC MSV G	10/29/2018	Trichloroethene (IS1)	0.4141	0.4141	0.3989	0.3989	3.0	3.0
			Tetrachloroethene (IS2)	1.5494	1.5494	1.4974	1.4974	2.5	2.5
2	$\begin{gathered} \text { ICAL } \\ \text { GC MSV Z } \end{gathered}$	11/3/2018	Trichloroethene (IS1)	0.4665	0.4665	0.4837	0.4837	6.8	6.8
			Tetrachloroethene (IS2)	1.6975	1.6975	1.7599	1.7599	5.9	5.9

VALIDATION FINDINGS WORKSHEET

Page: 1 of 1
Reviewer:JJG 2nd Reviewer: \qquad

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)
The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

Where:

\% Difference $=100$ * (ave. RRF - RRF)/ave. RRF $R R F=(A x)(C i s) /(A i s)(C x)$
ave. $R R F=$ initial calibration average RRF
RRF = continuing calibration RRF
$A x=$ Area of compound

Cx = Concentration of compound,
Ais = Area of associated internal standard
Cis = Concentration of internal standard

\#	Standard ID	Calibration Date	Compound (IS)	Average RRF (Initial)	Reported RRF (CCV)	$\begin{gathered} \hline \text { Recalculated } \\ \text { RRF } \\ (\mathrm{CCV}) \\ \hline \end{gathered}$	Reported \% D	Recalculated \%D
1	$\begin{gathered} \hline \text { G2197 } \\ \text { GC MSV G } \end{gathered}$	11/26/2018	Trichloroethene (IS1)	0.3989	0.4216	0.4216	5.7	5.7
			Tetrachloroethene (IS2)	1.4974	1.5171	1.5171	1.3	1.3
2	$\begin{gathered} \text { Z3472 } \\ \text { GC MSV Z } \end{gathered}$	11/26/2018	Trichloroethene (IS1)	0.4837	0.5081	0.5081	5.0	5.0
			Tetrachloroethene (IS2)	1.7599	1.7106	1.7106	2.8	2.8

VALIDATION FINDINGS WORKSHEET Surrogate Results Verification

Reviewer:
\qquad Power: JVG 2nd reviewer: \qquad

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)

The percent recoveries (\%R) of surrogates were recalculated for the compounds identified below using the following calculation:
$\begin{array}{ll}\text { \% Recovery: SF/SS * } 100 & \text { Where: } \begin{array}{l}\text { SF }=\text { Surrogate Found } \\ \text { SS }\end{array}=\text { Surrogate Spiked }\end{array}$
Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane	10.0	10.1	101	101	0
1,2 -Dichloroethane-d4			9.22	92	92
Toluene-d8			10.3	163	107
Bromofluorobenzene	γ	10.1	101	101	

Sample ID:

| | Surrogate
 Spiked | Surrogate
 Found | Percent
 Recovery
 Reported | Percent
 Recovery
 Recalculated |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Dibromofluoromethane | | | | |
| 1,2-Dichloroethane-d4 | | | | |
| Toluene-d8 | | | | |
| Bromofluorobenzene | | | | |

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recover Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

Sample ID:

	Surrogate Spiked	Surrogate Found	Percent Recovery Reported	Percent Recovery Recalculated	Percent Difference
Dibromofluoromethane					
1,2-Dichloroethane-d4					
Toluene-d8					
Bromofluorobenzene					

VALIDATION FINDINGS WORKSHEET

Matrix Spike/Matrix Spike Duplicates Results Verification

Page: 1 of 1 Reviewer:_JVG 2nd Reviewer: \qquad

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)
The percent recoveries (\%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

\% Recovery $=100$ * (SSC - SC)/SA	Where:	SSC = Spiked sample concentration SA = Spike added	SC $=$ Sample concentration
$R P D=1$ MSC - MSC $\left.\right\|^{*} 2 /($ MSC + MSDC $)$		MSC = Matrix spike concentration	MSDC = Matrix spike

MS/MSD sample: \qquad $10 / 11$

Compound	$\begin{gathered} \text { Spike } \\ \text { Added } \\ (\mathrm{Ug} / 2) \end{gathered}$		Sample	Spiked Sample Concentration (ug/L)		Matrix Spike		Matrix Spike Duplicate		MS/MSD	
			(ug/4)			Percent Recovery		Percent Recovery		RPD	
	MS	MSD	-	MS	MSD	Reported	Recalc	Reported	Recale	Reported	Recalculated
1,1-Dichloroethene	5.00	5,00	0.564	5.549	5.972	100	100	108	108	7	7
Trichloroethene	1		0. 780	5.580	5.935	96	96	103	107	6	6
Benzene											
Toluene											
Chlorobenzene											

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

LDC \#: 93888 Ala

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample Results Verification

Page: 1 of 1
Reviewer: JVG 2nd Reviewer: \longrightarrow

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)
The percent recoveries (\%R) and Relative Percent Difference (RPD) of the laboratoy control sample and laboratory control sample duplicate (if applicable) were recalculated for the compounds identified below using the following calculation:
\% Recovery $=100$ *SSC/SA
Where: \quad SSC $=$ Spiked sample concentration
SA = Spike added
RPD $=I \operatorname{LCSC}-\operatorname{LCSDC} I^{*} 2 /(\operatorname{LCSC}+\operatorname{LCSDC})$
LCSC $=$ Laboraotry control sample concentration LCSDC $=$ Laboratory control sample duplicate concentration
LCSID: $\quad \operatorname{lCS} 280-438700 / 4$

Compound	$\begin{gathered} \text { Spike } \\ \text { Added } \\ (\mathrm{Ug} / L) \\ \hline \end{gathered}$		Spiked Sample Concentration (45/4)		Les		1 CsD		LeSILCSD			
			Percent Recovery	Percent Recovery		RPD						
	LCS	LCSD			LCS	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalculated
1,1-Dichloroethene	5,00	NA	4.874	MA	97	97			-			
Trichloroethene	5.00	\downarrow	5.029	1	101	161						
Benzene												
Toluene												
Chlorobenzene												

Comments: Refer to Laboratory Control Sample findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.
\qquad 2nd reviewer:

METHOD: GC/MS VOA (EPA SW 846 Method 8260B)
Were all reported results recalculated and verified for all level IV samples?
Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

LDC Report\# 43888A6

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:
LDC Report Date:
Parameters:
Validation Level:
Laboratory:

MCAS Yuma, CTO 17F3803
January 2, 2019
Wet Chemistry
Stage 4
TestAmerica, Inc.

Sample Delivery Group (SDG): 280-116898-1

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
A1-MW-04-SA2	$280-116898-1$	Water	$11 / 12 / 18$
A1-MW-05-SA2	$280-116898-2$	Water	$11 / 12 / 18$
A1-MW-49-SA2	$280-116898-3$	Water	$11 / 12 / 18$
A1-MW-50-SA2	$280-116898-4$	Water	$11 / 12 / 18$
A1-PZ-19-SA2	$280-116898-8$	Water	$11 / 12 / 18$
A1-MW-52-SA2	$280-116898-9$	Water	$11 / 12 / 18$
A1-MW-50-SA2MS	$280-116898-4 M S$	Water	$11 / 12 / 18$
A1-MW-50-SA2MSD	$280-116898-4 M S D$	Water	$11 / 12 / 18$
A1-MW-50-SA2DUP	$280-116898-4 D U P$	Water	$11 / 12 / 18$

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Inorganic Superfund Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following methods:
Chloride, Nitrate as Nitrogen, and Sulfate by Environmental Protection Agency (EPA) SW 846 Method 9056A
Ferrous Iron by Standard Method 3500-Fe B pH by EPA SW 846 Method 9040C

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition.
All technical holding time requirements were met with the following exceptions:

Sample	Analyte	Total Time From Sample Collection Until Analysis	Required Holding Time From Sample Collection Until Analysis	Flag	A or P
A1-MW-04-SA2 A1-MW-50-SA2 A1-MW-52-SA2	pH	11 days	24 hours	J (all detects)	P
A1-MW-05-SA2 A1-MWW-49-SA2 A1-PZ-19-SA2	pH	14 days	24 hours	J (all detects)	P
A1-MW-04-SA2 A1-MWW-49-SA2 A1-MW-52-SA2	Ferrous Iron	9 days	24 hours	R (all non-detects)	P
A1-MW-05-SA2 A1-MW-50-SA2 A1-PZ-19-SA2	Ferrous Iron	9 days	24 hours	J (all detects)	P

II. Initial Calibration

All criteria for the initial calibration of each method were met.

III. Continuing Calibration

Continuing calibration frequency and analysis criteria were met for each method when applicable.

IV. Laboratory Blanks

Laboratory blanks were analyzed as required by the methods. No contaminants were found in the laboratory blanks with the following exceptions:

Blank ID	Analyte	Maximum Concentration
PB (prep blank)	Nitrate as N Sulfate	$0.04530 \mathrm{mg} / \mathrm{L}$ $0.3332 \mathrm{mg} / \mathrm{L}$
ICB/CCB	Nitrate as N Sulfate	All samples in SDG 280-116898-1

Data qualification by the laboratory blanks was based on the maximum contaminant concentration in the laboratory blanks in the analysis of each analyte. The sample concentrations were either not detected or were significantly greater ($>5 \mathrm{X}$ blank contaminants) than the concentrations found in the associated laboratory blanks.

V. Field Blanks

No field blanks were identified in this SDG.

VI. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VII. Duplicate Sample Analysis

Duplicate (DUP) sample analysis was performed on an associated project sample. Results were within QC limits.

VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the methods. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Field Duplicates

No field duplicates were identified in this SDG.

X. Sample Result Verification

All sample result verifications were acceptable.
All analytes reported below the limit of quantitation (LOQ) were qualified as follows:

Sample	Finding	Flag	A or \mathbf{P}
A1-MW-04-SA2	All analytes reported below the LOQ.	J (all detects)	A
A1-MW-05-SA2			
A1-MW-49-SA2			
A1-MW-50-SA2			
A1-MW-52-SA2			

XI. Overall Assessment of Data

The analysis was conducted within all specifications of the methods.

Due to technical holding time, data were rejected in three samples.
Due to technical holding time and results below the LOQ, data were qualified as estimated in six samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

MCAS Yuma, CTO 17F3803
Wet Chemistry - Data Qualification Summary - SDG 280-116898-1

Sample	Analyte	Flag	A or P	Reason
A1-MW-04-SA2 A1-MW-05-SA2 A1-MW-49-SA2 A1-MW-50-SA2 A1-PZ-19-SA2 A1-MW-52-SA2	pH	J (all detects)	P	Technical holding times
A1-MW-04-SA2 A1-MW-49-SA2 A1-MW-52-SA2	Ferrous Iron	R (all non-detects)	P	Technical holding times
A1-MW-05-SA2 A1-MW-50-SA2 A1-PZ-19-SA2	Ferrous Iron	J (all detects)	P	Technical holding times
A1-MW-04-SA2 A1-MW-05-SA2 A1-MW-49-SA2 A1-MW-50-SA2 A1-PZ-19-SA2 A1-MW-52-SA2	All analytes reported below the LOQ.	J (all detects)	A	Sample result verification

MCAS Yuma, CTO 17F3803
Wet Chemistry - Laboratory Blank Data Qualification Summary - SDG 280-1168981

No Sample Data Qualified in this SDG
MCAS Yuma, CTO 17F3803
Wet Chemistry - Field Blank Data Qualification Summary - SDG 280-116898-1
No Sample Data Qualified in this SDG

METHOD: (Analyte) Chloride, Nitrate-N, Sulfate (EPA SW846 Method 9056A), Ferrous Iron (SM3500-Fe B), pH (EPA SW846 Method 9040C)

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Notes:

Method:Inorganics (EPA Method SeeCover)

Validation Area	Yes	No	NA	Findings/Comments
1. Technical holding times				
All technical holding times were met.		\checkmark		
Cooler temperature criteria was met.	\checkmark			
II. Calibration				
Were all instruments calibrated daily, each set-up time?	\checkmark			
Were the proper number of standards used?	\checkmark			
Were all initial calibration correlation coefficients ≥ 0.995 ?	\checkmark			
Were all initial and continuing calibration verification \%Rs within the $90-110 \%$ QC limits?	$\sqrt{ }$			
Were titrant checks performed as required? (Level IV only)			\checkmark	
Were balance checks performed as required? (Level IV only)			\checkmark	
III. Blanks				
Was a method blank associated with every sample in this SDG?	\checkmark			
Was there contamination in the method blanks? If yes, please see the Blanks validation completeness worksheet.	\checkmark			
IV. Matrix spike/Matrix spike duplicates and Duplicates				
Were a matrix spike (MS) and duplicate (DUP) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD or MS/DUP. Soil / Water.	\checkmark			
Were the MS/MSD percent recoveries (\%R) and the relative percent differences (RPD) within the 75-125 QC limits? If the sample concentration exceeded the spike concentration by a factor of 4 or more, no action was taken.	\checkmark			
Were the MS/MSD or duplicate relative percent differences (RPD) $\leq 20 \%$ for waters and $\leq 35 \%$ for soil samples? A control limit of \leq CRDL($\leq 2 X$ CRDL for soil) was used for samples that were $\leq 5 X$ the CRDL, including when only one of the duplicate sample values were $\leq 5 \times$ the CRDL.	$\sqrt{ }$			
V. Laboratory control samples				
Was an LCS anaylzed for this SDG?	\checkmark			
Was an LCS analyzed per extraction batch?	\checkmark			
Were the LCS percent recoveries (\%R) and relative percent difference (RPD) within the $80-120 \%(85-115 \%$ for Method 300.0) QC limits?	\checkmark			
VI. Regional Quality Assurance and Quality Control				
Were performance evaluation (PE) samples performed?		\checkmark		
Were the performance evaluation (PE) samples within the acceptance limits?			\checkmark	

Validation Area	Yes	No	NA	Findings/Comments
VII. Sample Result Verification				
Were RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	\checkmark			
Were detection limits < RL?	\checkmark			
VIII. Overall assessment of data				
Overall assessment of data was found to be acceptable.	\checkmark			
IX. Field duplicates				
Field duplicate pairs were identified in this SDG.		\checkmark		
Target analytes were detected in the field duplicates.			\checkmark	
X. Field blanks				
Field blanks were identified in this SDG.		\checkmark		
Target analytes were detected in the field blanks.			\checkmark	

Comments:

VALIDATION FINDINGS WORKSHEET Technical Holding Times

Page: 1 of 1 Reviewer: $M \bar{G}$ 2nd reviewer:
 METHOD:Inorganics, Method See Cover

Conc. units: mg/L Associated Samples: all (NO3-N: 2x dit, SO4: 20x dil, $>5 x$ or ND)

CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:
All contaminants within five times the method blank concentration were qualified as not detected, "U".

VALIDATION FINDINGS WORKSHEET Initial and Continuing Calibration Calculation Verification

The correlation coefficient (r) for the calibration of \qquad $C 1$ was recalculated. Calibration date:

```
9-1-18
```

An initial or continuing calibration verification percent recovery (\%R) was recalculated for each type of analysis using the following formula:

```
% = Found }\times10
    True
```

Where. Found = concentration of each analyte measured in the analysis of the ICV or CCV solution True = concentration of each analyte in the ICV or CCV source

Type of Analysis	Analyte	Standard ID	$\begin{aligned} & \text { Conc. } \\ & \text { Found (units) } \end{aligned}$	Area True (units)	Recalculated ror \%R	Reported ror \%R	Acceptable (Y/N)
Initial calibration	$C 1$	Blank	-	-	$r=1.000$	$r=i .000$	Y
		Standard 1	1.0 (mg/L)	17320827			
		Standard 2	2.5 (1	46063990			
		Standard 3	5.0 ()	94576346			
		Standard 4	$60.0 \quad 1)$	1169987193			
		Standard 5	$120.0 \quad 1 \quad$	2305131911			
		Standard 6	$200.0(\downarrow)$	3845262113			
		Standard 7	-	-			
Calibration verification	Ferrous Iron	$\begin{aligned} & i 830 \\ & \text { ICV } \end{aligned}$	1.045 (mg/L)	$1.00(\mathrm{mg} / \mathrm{L})$	104	105	
Calibration verification	$\mathrm{NO}_{3}-\mathrm{N}$	$\begin{aligned} & 1052 \\ & \mathrm{CCV} \end{aligned}$	$4.85(\mathrm{mg} / \mathrm{L})$	$5.00(\operatorname{mg} / 1)$	47	97	
Calibration verification	SO_{4}	$\begin{aligned} & 1646 \\ & C C V \end{aligned}$	$102.2(\mathrm{mg} / \mathrm{c})$	$100(\mathrm{mg} / \mathrm{i})$	102	102	\downarrow

Comments: Refer to Calibration Verification findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results \qquad METHOD: Inorganics, Method see Cover

Percent recoveries (\%R) for a laboratory control sample and a matrix spike sample were recalculated using the following formula:

$\% R=\frac{\text { Found }}{\text { True }} \times 100 \quad$ Where,\quad Found $=$	concentration of each analyte measured in the analysis of the sample. For the matrix spike calculation, Found $=S S R$ (spiked sample result) $-S R$ (sample result).
	True $=$ concentration of each analyte in the source.

A sample and duplicate relative percent difference (RPD) was recalculated using the following formula:

$R P D=\frac{|S-D|}{(S+D) / 2}$$\quad$ Where, \quad| $S=$ | Original sample concentration |
| :--- | :--- |
| | |

[^26]VALIDATION FINDINGS WORKSHEET Sample Calculation Verification
\qquad
METHOD: Inorganics, Method see cover

Please see qualifications below for all questions answered " N ". Not applicable questions are identified as "N/A".
Y N N/A Have results been reported and calculated correctly?
EN N/A Are results within the calibrated range of the instruments?
Y) N/A Are all detection limits below the CRQL?

Compound (analyse) results for \#1, SO_{4} reported with a positive detect were recalculated and verified using the following equation:

Concentration = $y=m x+b$
$m=14253830$

$$
\begin{aligned}
& 601084316=14253830\left(\frac{x}{20}\right)-272056 \\
& 843.78 \mathrm{mg} / \mathrm{L}=x
\end{aligned}
$$

$b=-272056$
$d_{i}=20 x$

Note: \qquad

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:

LDC Report Date:
Parameters:
Validation Level:
Laboratory:

MCAS Yuma, CTO 17F3803
December 20, 2018
1,4-Dioxane
Stage 2B \& 4
Alpha Analytical, Inc.

Sample Delivery Group (SDG): L1846366

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
A1-MW-04-SA2**	L1846366-01**	Water	$11 / 12 / 18$
A1-MW-05-SA2**	L1846366-02**	Water	$11 / 12 / 18$
A1-MW-49-SA2**	L1846366-03**	Water	$11 / 12 / 18$
A1-MW-50-SA2**	L1846366-04**	Water	$11 / 12 / 18$
A1-MW-50-SA2D	L1846366-05	Water	$11 / 12 / 18$
A1-MW-51-SA2**	L1846366-06**	Water	$11 / 12 / 18$
A1-PZ-19-SA2**	L1846366-07**	Water	$11 / 12 / 18$
A1-MW-52-SA2**	L1846366-08**	Water	$11 / 12 / 18$
A1-MW-50-SA2MS	L1846366-04MS	Water	$11 / 12 / 18$
A1-MW-50-SA2MSD	L1846366-04MSD	Water	$11 / 12 / 18$

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
1,4-Dioxane by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage $2 B$ data validation, which comprises an evaluation of quality control (QC) summary results. Samples appended with a double asterisk on the cover page were subjected to Stage 4 data validation, which is comprised of the QC summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.
All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.
The percent relative standard deviations (\%RSD) were less than or equal to 15.0%.
Average relative response factors (RRF) were within validation criteria.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.
The percent differences (\%D) were less than or equal to 20.0%.
The percent differences (\%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0%.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (\%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples A1-MW-50-SA2** and A1-MW-50-SA2D were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

Compound	Concentration (ng/L)				
	A1-MW-50-SA2**	A1-MW-50-SA2D	RPD (Limits)	Flag	A or P
	592	591	$0(\leq 30)$	-	-

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

All compound quantitations met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

All target compound identifications met validation criteria for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

The system performance was acceptable for samples which underwent Stage 4 validation. Raw data were not reviewed for Stage $2 B$ validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

MCAS Yuma, CTO 17F3803
1,4-Dioxane - Data Qualification Summary - SDG L1846366
No Sample Data Qualified in this SDG
MCAS Yuma, CTO 17F3803
1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG L1846366
No Sample Data Qualified in this SDG
MCAS Yuma, CTO 17F3803
1,4-Dioxane - Field Blank Data Qualification Summary - SDG L1846366
No Sample Data Qualified in this SDG

METHOD: GC/MS 1,4-Dioxane (EPA SW 846 Method 8270D-SIM)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

LDC \#: \qquad VALIDATION FINDINGS CHECKLIST
Page: 1 of 2
Reviewer: \qquad 2nd Reviewer: \qquad

SUOA

Method: PAH (EPA SW 846 Method 8270D-SIM)

Validation Area	Yes	No	NA	Findings/Comments
1. Techinical holding times				
Were all technical holding times met?				
Was cooler temperature criteria met?				
11. Gcms instument performance check (Notrequited) $=2$				
Were the DFTPP performance results reviewed and found to be within the specified criteria?				
Were all samples analyzed within the 12 hour clock criteria?				
lla. initial calibration				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (\%RSD) $\leq 20 \%$ and relative response factors (RRF) ≥ 0.05 ?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit acceptance criteria of ≥ 0.990 ?				
IIIb. Initial Calibration Venfication				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?				
Were all percent differences (\%D) $\leq 30 \%$ or percent recoveries (\%R) $70-130 \%$?				
IV Continuing calibration				
Was a continuing calibration standard analyzed at least once every 12 hours for each instrument?				
Were all percent differences (\%D) $\leq 20 \%$ and relative response factors (RRF) ≥ 0.05 ?				
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed for each matrix and concentration?				
Was there contamination in the laboratory blanks? If yes, please see the Blanks validation completeness worksheet.				
Vi. Field blanks				
Were field blanks identified in this SDG?				
Were target compounds detected in the field blanks?				
VII. Surrogate spikes				
Were all surrogate percent differences (\%R) within QC limits?				
If 2 or more base neutral or acid surrogates were outside QC limits, was a reanalysis performed to confirm \%R?				
If any percent recoveries (\%R) was less than 10 percent, was a reanalysis performed to confirm \%R?				

Page: 2 of 2
Reviewer: JVG 2nd Reviewer:
\qquad \square

Validation Area	Yes	No	NA	Findings/Comments
VIII Matrix spikelMatrix spike duplicates				
Were a matrix spike (MS) and matrix spike duplicate (MSD) analyzed for each matrix in this SDG? If no, indicate which matrix does not have an associated MS/MSD. Soil / Water.				
Was a MS/MSD analyzed every 20 samples of each matrix?				
Were the MS/MSD percent recoveries (\%R) and the relative percent differences (RPD) within the QC limits?				
IX. Laboraton control samples				
Was an LCS analyzed for this SDG?				
Was an LCS analyzed per analytical batch?				
Were the LCS percent recoveries (\%R) and relative percent difference (RPD) within the QC limits?				
x Field duplicates				
Were field duplicate pairs identified in this SDG?				
Were target compounds detected in the field duplicates?				
Were internal standard area counts within -50% or $+100 \%$ of the associated calibration standard?	17			
Were retention times within ± 30 seconds of the associated calibration standard?				
Xll Compound quantitation				
Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?				
Were relative retention times (RRT's) within ± 0.06 RRT units of the standard?				
Did compound spectra meet specified EPA "Functional Guidelines" criteria?				
Were chromatogram peaks verified and accounted for?				
XIV:System performance				
System performance was found to be acceptable.				
XV. Overall assessment of data				
Overall assessment of data was found to be acceptable.				

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page: 1 of 1
Reviewer: JVG 2nd Reviewer: JVG
\qquad

METHOD: GC/MS 1,4-Dioxane (EPA SW 846 Method 8270D-SIM)
The Relative Response Factor (RRF), average RRF, and percent relative standard deviation (\%RSD) were recalculated for the compounds identified below using the following calculations:

$\operatorname{RRF}=\left(A_{x}\right)\left(C_{i s}\right) /\left(A_{i s}\right)\left(C_{x}\right)$	$A_{x}=$ Area of Compound	$A_{i s}=$ Area of associated internal standard
average $R R F=$ sum of the RRFs/number of standards	$C_{x}=$ Concentration of compound,	$C_{i s}=$ Concentration of internal standard
$\% R S D=100^{*}(S I X)$	$S=$ Standard deviation of the RRFs,	$X=$ Mean of the RRFs

\#	Standard ID	Calibration Date	Compound (IS)		Reported RRF $(500$ std $)$	Recalculated RRF (500 std)	\qquad	Recalculated Average RRF (Initial)	Reported \%RSD	Recalculated \%RSD
1	ICAL	11/15/2018	1,4-Dioxane	(DXN-d8)	1.428	1.428	1.407	1.407	3.61	3.60
	MS16									

VALIDATION FINDINGS WORKSHEET
Surrogate Results Verification
STOA
METHOD: GC/MSPAH (EPA SW 846 Method 8270D-SIM)
Reviewer:
and reviewer:
\qquad

The percent recoveries (\%R) of surrogates were recalculated for the compounds identified below using the following calculation:
\% Recovery: SF/SS * 100
Where: $\quad S F=$ Surrogate Found SS = Surrogate Spiked

Sample ID:

Sample ID:

Sample ID:

Sample ID:

Sample ID:

VALIDATION FINDINGS WORKSHEET

METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)
The percent recoveries (\%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:
$\%$ Recovery $=100$ * (SSC - SC)/SA

Where:
SSC = Spiked sample concentration SA = Spike added

MSC = Matrix spike concentration

SC = Sample concentation

MSDC = Matrix spike duplicate concentration
$R P D=1$ MSC $-M S C I^{*} 2 /(M S C+M S D C)$ 9/10
MS/MSD samples:

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.
\qquad 2nd Reviewer: $\quad \longrightarrow$
SVAA
METHOD: GC/MS PAH (EPA SW 846 Method 8270D-SIM)
The percent recoveries (\%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:
\% Recovery $=100$ * (SC/SA

Where:	SSC $=$ Spike concentration
	SA $=$ Spike added

SA = Spike added
$R P D=I \operatorname{LCSC}-\operatorname{LCSDC~I~} 2 /($ LCSC $+\operatorname{LCSDC}) \quad$ LCSC $=$ Laboratory control sample concentration LCSDC = Laboratory control sample duplicate concentration
LCS/LCSD samples: WGII Soall- $2 / 3$

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

susa
 METHOD: GC/MS PAH(EPA SW 846 Method 8270D-SIM)

Page: 1 of 1
Reviewer: JVG
and reviewer:

Y
Y
Y
Were all reported results recalculated and verified for all level IV samples?
Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

Concentration $=\left(A_{0}\right)\left(I_{5}\right)\left(V_{V}\right)(D F)(2.0)$

$$
\left(A_{i s}\right)\left(R_{R}\right)\left(V_{0}\right)\left(V_{i}\right)(\% S)
$$

$A_{x} \quad=\quad$ Area of the characteristic ion (EICP) for the compound to be measured
$\mathrm{A}_{\text {is }}=\quad=\quad$ Area of the characteristic ion (EICP) for the specific internal standard
$\mathrm{I}_{\mathrm{s}} \quad=\quad$ Amount of internal standard added in nanograms (ing)
$V_{0}=\quad$ Volume or weight of sample extract in milliliters (ml) or grams (g).
$V_{1}=$ Volume of extract injected in microliters (ul)
$V_{t}=$ Volume of the concentrated extract in microliters (ul)
bf $=$ Dilution Factor.
\%S = Percent solids, applicable to soil and solid matrices only.
$2.0=$ Factor of 2 to account for GPC cleanup

Example:
Sample 1.D. \qquad 1,4-Dioxare

$=4311 \mathrm{ng} / \mathrm{L}$

| \# | Sample ID | Compound | Reported
 Concentration
 (ng/L | Calculated
 Concentration
 (| Qualification |
| :--- | :--- | :--- | :--- | :--- | :--- |$|$

Laboratory Data Consultants, Inc.
 Data Validation Report

Project/Site Name:
LDC Report Date:
Parameters:
Validation Level:

Laboratory:

MCAS Yuma, CTO 17F3803
December 20, 2018
1,4-Dioxane
Stage 2B
Alpha Analytical, Inc.

Sample Delivery Group (SDG): L1846592

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
16-HS-03-SA2	L1846592-01	Water	$11 / 13 / 18$
16-MW-06-SA2	L1846592-02	Water	$11 / 13 / 18$
16-MW-08-SA2	L1846592-03	Water	$11 / 13 / 18$
16-MW-09-SA2	L1846592-04	Water	$11 / 13 / 18$
A1-MW-18-SA2	L1846592-05	Water	$11 / 13 / 18$
A1-MW-19-SA2	L1846592-06	Water	$11 / 13 / 18$
A1-MW-53-SA2	L1846592-07	Water	$11 / 13 / 18$
16-HS-03-SA2D	L1846592-08	Water	$11 / 13 / 18$

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
1,4-Dioxane by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage $2 B$ data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.
All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.
The percent relative standard deviations (\%RSD) were less than or equal to 15.0%.
Average relative response factors (RRF) were within validation criteria.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.
The percent differences (\%D) were less than or equal to 20.0%.
The percent differences (\%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0%.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (\%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples $16-\mathrm{HS}-03-\mathrm{SA} 2$ and $16-\mathrm{HS}-03-\mathrm{SA} 2 \mathrm{D}$ were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

Compound	Concentration (ng/L)		RPD (Limits)	Flag	A or P
	16-HS-03-SA2	16-HS-03-SA2D			
1,4-Dioxane	5330	6120	$14(\leq 30)$	-	-

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

MCAS Yuma, CTO 17F3803
1,4-Dioxane - Data Qualification Summary - SDG L1846592
No Sample Data Qualified in this SDG
MCAS Yuma, CTO 17F3803
1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG L1846592
No Sample Data Qualified in this SDG
MCAS Yuma, CTO 17F3803
1,4-Dioxane - Field Blank Data Qualification Summary - SDG L1846592
No Sample Data Qualified in this SDG

LDC \#: 438888G2b
VALIDATION COMPLETENESS WORKSHEET
Date: $12 / 19 / 18$
SDG \#: L1846592
Laboratory: Alpha Analytical, Inc.
ADR stagez ${ }^{2}$
Page: 1 of 1
Reviewer: $5 \sqrt{6}$ 2nd Reviewer
METHOD: GC/MS 1,4-Dioxane (EPA SW 846 Method 8270D-SIM)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note: $\quad \mathrm{A}=$ Acceptable
$\mathrm{N}=$ Not provided/applicable
SW = See worksheet

ND = No compounds detected
D = Duplicate
TB = Trip blank $\mathrm{EB}=$ Equipment blank

SB=Source blank OTHER:

	Client ID	Lab ID	Matrix	Date
1^{+}	16-HS-03-SA2	D	L1846592-01	Water
2^{-}	16-MW-06-SA2	L1846592-02	Water	$11 / 13 / 18$
3^{+}	16-MW-08-SA2	L1846592-03	Water	$11 / 13 / 18$
4^{+}	16-MW-09-SA2	L1846592-04	Water	$11 / 13 / 18$
5^{+}	A1-MW-18-SA2	L1846592-05	Water	$11 / 13 / 18$
6^{+}	A1-MW-19-SA2	L1846592-06	Water	$11 / 13 / 18$
7^{+}	A1-MW-53-SA2	L1846592-07	Water	$11 / 13 / 18$
8^{+}	16-HS-03-SA2D	L1846592-08	Water	$11 / 13 / 18$
9			$11 / 13 / 18$	
10				

Notes:

$-W G 11809 \cap-1$ BLAN					

VALIDATION FINDINGS WORKSHEET
Field Duplicates

METHOD: GCMS 1,4-Dioxane (EPA SW 846 Method 8270D-SIM)
Y N NA Were field duplicate pairs identified in this SDG?
Y NNA Were target analytes detected in the field duplicate pairs?

Compound	Concentration (ng/L)		$\begin{aligned} & \text { RPD } \\ & (\leq 30 \%) \end{aligned}$	Qualifications (Parent only)
	1	8		
1,4-Dioxane	5330	6120	14	

V:\JosephinelFIELD DUPLICATES\43888G2b ttech yuma.wpd

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:
LDC Report Date:
Parameters:
Validation Level:
Laboratory:

MCAS Yuma, CTO 17F3803
December 20, 2018
1,4-Dioxane
Stage 2B
Alpha Analytical, Inc.

Sample Delivery Group (SDG): L1846856

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
A1-MW-07-SA2	L1846856-01	Water	$11 / 14 / 18$
A1-MW-23-SA2	L1846856-02	Water	$11 / 14 / 18$
A1-MW-25-SA2	L1846856-03	Water	$11 / 14 / 18$
A1-MW-27-SA2	L1846856-04	Water	$11 / 14 / 18$
A1-MW-55-SA2	L1846856-05	Water	$11 / 14 / 18$
A1-MW-54-SA2	L1846856-06	Water	$11 / 14 / 18$

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
1,4-Dioxane by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage 2B data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.
All ion abundance requirements were met.
III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.
The percent relative standard deviations (\%RSD) were less than or equal to 15.0%.
Average relative response factors (RRF) were within validation criteria.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.
The percent differences (\%D) were less than or equal to 20.0%.
The percent differences (\%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0%.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (\%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

MCAS Yuma, CTO 17F3803
1,4-Dioxane - Data Qualification Summary - SDG L1846856
No Sample Data Qualified in this SDG
MCAS Yuma, CTO 17F3803
1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG L1846856
No Sample Data Qualified in this SDG
MCAS Yuma, CTO 17F3803
1,4-Dioxane - Field Blank Data Qualification Summary - SDG L1846856
No Sample Data Qualified in this SDG

LDC \#: 43888 H 2 b
STG \#: L1846856
ADR Stage
Laboratory: Alpha Analytical, Inc. \qquad Page: 1 of 1
Reviewer:
은 2nd Reviewer:
METHOD: GC/MS 1,4-Dioxane (EPA SW 846 Method 8270D-SIM)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note: $\quad \mathrm{A}=$ Acceptable
$\mathrm{N}=$ Not provided/applicable
SW = See worksheet

ND = No compounds detected
$\mathrm{D}=$ Duplicate
$\mathrm{SB}=$ Source blank
$R=$ Rinsate
FB = Field blank

TB = Trip blank
$\mathrm{EB}=$ Equipment blank

OTHER:

Notes:

-	WC $1181575-1$ BLANK					

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:
LDC Report Date:
Parameters:
Validation Level:
Laboratory:

MCAS Yuma, CTO 17F3803
December 20, 2018
1,4-Dioxane
Stage 2B
Alpha Analytical, Inc.

Sample Delivery Group (SDG): L1847243

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
A1-MW-11-SA2	L1847243-01	Water	$11 / 15 / 18$
A1-MW-13-SA2	L1847243-02	Water	$11 / 15 / 18$
A1-MW-14-SA2	L1847243-03	Water	$11 / 15 / 18$
A1-MW-15-SA2	L1847243-04	Water	$11 / 15 / 18$
A1-MW-37-SA2	L1847243-05	Water	$11 / 15 / 18$
A1-MW-37-SA2D	L1847243-06	Water	$11 / 15 / 18$
A1-MW-31-SA2	L1847243-07	Water	$11 / 15 / 18$

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
1,4-Dioxane by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage $2 B$ data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.
All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.
The percent relative standard deviations (\%RSD) were less than or equal to 15.0%.
Average relative response factors (RRF) were within validation criteria.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.
The percent differences (\%D) were less than or equal to 20.0%.
The percent differences (\%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0%.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

No field blanks were identified in this SDG.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (\%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

IX. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

X. Field Duplicates

Samples A1-MW-37-SA2 and A1-MW-37-SA2D were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

Compound	Concentration (ng/L)				
	A1-MW-37-SA2	A1-MW-37-SA2D	RPD (Limits)	Flag	A or P
	13100	13200	$1(\leq 30)$	-	-

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

MCAS Yuma, CTO 17F3803
1,4-Dioxane - Data Qualification Summary - SDG L1847243
No Sample Data Qualified in this SDG
MCAS Yuma, CTO 17F3803
1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG L1847243
No Sample Data Qualified in this SDG
MCAS Yuma, CTO 17F3803
1,4-Dioxane - Field Blank Data Qualification Summary - SDG L1847243
No Sample Data Qualified in this SDG

SD \#: L1847243
Laboratory: Alpha Analytical, Inc.
ADR Stage 2B Page: 1 of $\frac{1}{2}$
Reviewer: $\sqrt{ }$ and Reviewer:
METHOD: GC/MS 1,4-Dioxane (EPA SW 846 Method 8270D-SIM)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note: $\quad \mathrm{A}=$ Acceptable
$\mathrm{N}=$ Not provided/applicable
SW = See worksheet
ND = No compounds detected
= Rinsate
$\mathrm{D}=$ Duplicate
SB=Source blank
= Trip blank OTHER:

Notes:

(EB-on hold)

VALIDATION FINDINGS WORKSHEET
Field Duplicates

Page: 1 of 1
Reviewer:JVG
2nd Reviewer:

METHOD: GCMS 1,4-Dioxane (EPA SW 846 Method 8270D-SIM)
Y N NA Were field duplicate pairs identified in this SDG?
Y N NA Were target analytes detected in the field duplicate pairs?

V:\Josephine\FIELD DUPLICATES \43888I2b tech yuma.wpd

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:
LDC Report Date:
Parameters:
Validation Level:
Laboratory:

MCAS Yuma, CTO 17F3803
December 20, 2018
1,4-Dioxane
Stage 2B
Alpha Analytical, Inc.
Sample Delivery Group (SDG): L1847316

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
A1-MW-01-SA2	L1847316-01	Water	$11 / 16 / 18$
A1-MW-42-SA2	L1847316-02	Water	$11 / 16 / 18$
EB-20181116	L1847316-03	Water	$11 / 16 / 18$
A1-MW-01-SA2MS	L1847316-01MS	Water	$11 / 16 / 18$
A1-MW-01-SA2MSD	L1847316-01MSD	Water	$11 / 16 / 18$

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
1,4-Dioxane by Environmental Protection Agency (EPA) SW 846 Method 8270D in Selected Ion Monitoring (SIM) mode

All sample results were subjected to Stage $2 B$ data validation, which comprises an evaluation of quality control (QC) summary results.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. GC/MS Instrument Performance Check

A decafluorotriphenylphosphine (DFTPP) tune was performed at 12 hour intervals.
All ion abundance requirements were met.

III. Initial Calibration and Initial Calibration Verification

An initial calibration was performed as required by the method.
The percent relative standard deviations (\%RSD) were less than or equal to 15.0%.
Average relative response factors (RRF) were within validation criteria.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to 20.0%.

IV. Continuing Calibration

Continuing calibration was performed at the required frequencies.
The percent differences (\%D) were less than or equal to 20.0%.
The percent differences (\%D) of the ending continuing calibration verifications (CCVs) were less than or equal to 50.0%.

All of the continuing calibration relative response factors (RRF) were within validation criteria.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample EB-20181116 was identified as an equipment blank. No contaminants were found.

VII. Surrogates

Surrogates were added to all samples as required by the method. All surrogate recoveries (\%R) were within QC limits.

VIII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

IX. Laboratory Control Samples

Laboratory control samples (LCS) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits.

X. Field Duplicates

No field duplicates were identified in this SDG.

XI. Internal Standards

All internal standard areas and retention times were within QC limits.

XII. Compound Quantitation

Raw data were not reviewed for Stage 2B validation.

XIII. Target Compound Identifications

Raw data were not reviewed for Stage 2B validation.

XIV. System Performance

Raw data were not reviewed for Stage 2B validation.

XV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

The quality control criteria reviewed were met and are considered acceptable.

MCAS Yuma, CTO 17F3803
1,4-Dioxane - Data Qualification Summary - SDG L1847316
No Sample Data Qualified in this SDG
MCAS Yuma, CTO 17F3803
1,4-Dioxane - Laboratory Blank Data Qualification Summary - SDG L1847316
No Sample Data Qualified in this SDG
MCAS Yuma, CTO 17F3803
1,4-Dioxane - Field Blank Data Qualification Summary - SDG L1847316
No Sample Data Qualified in this SDG

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note: $\quad \mathrm{A}=$ Acceptable
$\mathrm{N}=$ Not provided/applicable
SW = See worksheet
ND = No compounds detected R = Rinsate
$\mathrm{D}=$ Duplicate
SB=Source blank
TB = Trip blank
OTHER:

	Client ID	Lab ID	Matrix	Date
+	A1-MW-01-SA2	L1847316-01	Water	$11 / 16 / 18$
$1+$	A1-MW-42-SA2	L1847316-02	Water	$11 / 16 / 18$
3	EB-20181116	L1847316-03	Water	$11 / 16 / 18$
4	A1-MW-01-SA2MS	L1847316-01MS	Water	$11 / 16 / 18$
5	A1-MW-01-SA2MSD	L1847316-01MSD	Water	$11 / 16 / 18$
6				
7				
8				

Notes:

Laboratory Data Consultants, Inc. Data Validation Report

Project/Site Name:
LDC Report Date:
Parameters:
Validation Level:
Laboratory:
Sample Delivery Group (SDG):

Sample Identification	Laboratory Sample Identification	Matrix	Collection Date
A1-MW-04-SA2	$1803615-01$	Water	$11 / 12 / 18$
A1-MW-05-SA2	$1803615-02$	Water	$11 / 12 / 18$
A1-MW-49-SA2	$1803615-03$	Water	$11 / 12 / 18$
A1-MW-50-SA2	$1803615-04$	Water	$11 / 12 / 18$
A1-MW-50-SA2D	$1803615-05$	Water	$11 / 12 / 18$
A1-MW-51-SA2	$1803615-06$	Water	$11 / 12 / 18$
A1-MW-52-SA2	$1803615-07$	Water	$11 / 12 / 18$
FRB-2018112	$1803615-08$	Water	$11 / 12 / 18$
A1-PZ-19-SA2	$1803615-09$	Water	$11 / 12 / 18$
A1-MW-50-SA2MS	$1803615-04$ MS	Water	$11 / 12 / 18$
A1-MW-50-SA2MSD	$1803615-04 M S D$	Water	$11 / 12 / 18$

Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan for Groundwater Long-Term Monitoring Program at Operable Unit-1 Area 1, Marine Corps Air Station Yuma, Arizona (April 2018), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Superfund Organic Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) by Environmental Protection Agency (EPA) Method 537

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

II. LC/MS Instrument Performance Check

Instrument performance was checked and the requirements were met.

III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.
A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination $\left(r^{2}\right)$ was greater than or equal to 0.990 .

For each calibration standard, all compounds were less than or equal to 30% of their true value.

The signal to noise (S / N) ratio was within validation criteria for all compounds.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to 30.0% for all compounds.

IV. Continuing Calibration

Continuing calibration was performed at required frequencies.
The percent differences (\%D) were less than or equal to 30.0% for all compounds.
The signal to noise (S / N) ratio was within validation criteria for all compounds.

V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

VI. Field Blanks

Sample FRB-20181112 was identified as a field rinsate blank. No contaminants were found.

VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

VIII. Ongoing Precision Recovery

Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (\%R) were within QC limits.

IX. Field Duplicates

Samples A1-MW-50-SA2 and A1-MW-50-SA2D were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

Compound	Concentration (ug/L)				
	A1-MW-50-SA2	A1-MW-50-SA2D	RPD (Limits)	Flag	A or P
	0.0250	0.0264	$5(\leq 30)$	-	-
PFHxA	0.0806	0.0829	$3(\leq 30)$	-	-
PFHPA	0.00474	0.00494	Not calculable	-	-
PFHxS	0.0367	0.0355	$3(\leq 30)$	-	-
PFOA	0.00947	0.00878	Not calculable		-

RPDs were not calculated when sample results in one or both samples were less than $5 x$ the limit of quantitation (LOQ).

X. Labeled Compounds

All percent recoveries (\%R) for labeled compounds used to quantitate target compounds were within QC limits.

XI. Compound Quantitation

All compound quantitations met validation criteria.
The laboratory indicated that the parent/product transition ion ratios met laboratory requirements with the following exceptions:

Sample	Compound	
A1-MW-05-SA2	All compounds A1-MW-50-SA2 qualified 'Q' by the laboratory	The parent/product transition ion ratio was outside of the $70-130 \%$ laboratory limits.

Since there are no established transition ion ratio requirements in the validation documents for this project, using professional judgment, no data were qualified.

All compounds reported below the limit of quantitation (LOQ) were qualified as follows:

Sample			
A1-MW-04-SA2	Finding	Flag	A or P
A1-MW-05-SA2	All compounds reported below the LOQ.	J (all detects)	A
A1-MW-49-SA2			
A1-MW-50-SA2			
A1-MW-50-SA2D			
A1-MW-51-SA2			
A1-MW-52-SA2			

XII. Target Compound Identifications

All target compound identifications met validation criteria.

XIII. System Performance

The system performance was acceptable.

XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to results below the LOQ, data were qualified as estimated in eight samples.
The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

MCAS Yuma, CTO 17F3803
Perfluoroalkyl \& Polyfluoroalkyl Substances - Data Qualification Summary - SDG 1803615

Sample	Compound	Flag	A or P	Reason
$\begin{aligned} & \text { A1-MW-04-SA2 } \\ & \text { A1-MW-05-SA2 } \\ & \text { A1-MW-4-SA2 } \\ & \text { A1-MW-50-SA2 } \\ & \text { A1-MW-50-SA2D } \\ & \text { A1-MW-51-SA2 } \\ & \text { A1-MW-52-SA2 } \\ & \text { A1-PZ-19-SA2 } \end{aligned}$	All compounds reported below the LOQ.	J (all detects)	A	Compound quantitation

MCAS Yuma, CTO 17F3803
Perfluoroalkyl \& Polyfluoroalkyl Substances - Laboratory Blank Data Qualification Summary - SDG 1803615

No Sample Data Qualified in this SDG
MCAS Yuma, CTO 17F3803
Perfluoroalkyl \& Polyfluoroalkyl Substances - Field Blank Data Qualification Summary - SDG 1803615

No Sample Data Qualified in this SDG

LDC \#: 43888K96
VALIDATION COMPLETENESS WORKSHEET
Date: $12 / 19 / 18$
SD \#: 1803615
ADR/Stage 4
Laboratory: Vista Analytical Laboratory
METHOD: LC/MS Perfluoroalkyl \& Polyfluoroalkyl Substances (EPA Method 537)

Page: 1 of 1
Reviewer: \qquad 2nd Reviewer

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note: $\quad \mathrm{A}=$ Acceptable
$\mathrm{N}=$ Not provided/applicable
SW = See worksheet
** Indicates sample underwent Stage 4 validation

SB=Source blank
OTHER:
FR $=$ Field Rinsate B / K

Lab ID	Matrix	Date
$1803615-01^{* *}$	Water	$11 / 12 / 18$
$1803615-02^{* *}$	Water	$11 / 12 / 18$
$1803615-03^{* *}$	Water	$11 / 12 / 18$
$1803615-04^{* *}$	Water	$11 / 12 / 18$
$1803615-05^{* *}$	Water	$11 / 12 / 18$
$1803615-06^{\star *}$	Water	$11 / 12 / 18$
$1803615-07^{* *}$	Water	$11 / 12 / 18$
$1803615-08$	Water	$11 / 12 / 18$
$1803615-09^{* *}$	Water	$11 / 12 / 18$
$1803615-04 \mathrm{MS}$	Water	$11 / 12 / 18$
$1803615-04 \mathrm{MSD}$	Water	$11 / 12 / 18$

Page: 1 of 2
Reviewer: 2nd Reviewer: \qquad

Method: LCMS (EPA Method 537 Modified)

Validation Area	Yes	No	NA	Findings/Comments
1. Technical holding times				
Were all technical holding times met?				
Was cooler temperature criteria met?				
11. LCIMS Instrument performance check				
Were the instrument performance reviewed and found to be within the validation criteria?				
Did the laboratory perform a 5 point calibration prior to sample analysis?				
Were all percent relative standard deviations (\%RSD) $\leq 20 \%$?				
Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of ≥ 0.990 ?				
Were all analytes within $70-130 \%$ or percent differences (\%D) $\leq 30 \%$ of their true value for each calibration standard?				
Was the signal to noise $(\mathrm{S} / \mathrm{N})$ ratio for all compounds within the validation criteria?				
IIlb. Initial Calibration Verification				
Was an initial calibration verification standard analyzed after each initial calibration for each instrument?	\square			
IV. Continuing calibration				
Was a continuing calibration analyzed daily?				
Were all percent differences (\%D) of the continuing calibration $\leq 30 \%$?				
Was the signal to noise $(\mathrm{S} / \mathrm{N})$ ratio for all compounds within the validation criteria?				
Were all percent differences (\%D) of the Instrument Sensitivity Check $\leq 30 \%$?				
V. Laboratory Blanks				
Was a laboratory blank associated with every sample in this SDG?				
Was a laboratory blank analyzed for each matrix and concentration?				
Was there contamination in the laboratory blanks?				
VI. Field blanks				
Were field blanks identified in this SDG?				
Were target compounds detected in the field blanks?				
VIII. Matrix spike/Matrix spike duplicates				
Were matrix spike (MS) and matrix spike duplicate (MSD) analyzed in this SDG?				
Were the MS/MSD percent recoveries (\%R) and the relative percent differences (RPD) within the QC limits?				
IX. Laboratory control samples				
	Was an LCS analyzed per extraction batch for this SDG?			

VALIDATION FINDINGS CHECKLIST
Page: \qquad
Reviewer:
2nd Reviewer: \qquad

Validation Area	Yes	No	NA	Findings/Comments	
Were the LCS percent recoveries (\%R) and relative percent difference (RPD) within the QC limits?					
X Field duplicates					
Were field duplicate pairs identified in this SDG?	/				
Were target compounds detected in the field duplicates?	7				
X1. Labeled compounds					
Were labeled compound percent recoveries (\%R) within the QC limits?	-				
x\\|l. Compound quantitation					
Did the laboratory reporting limits (RL) meet the QAPP RLs?					
Did reported results include both branched and linear isomers?	\bigcirc				
Were the correct ion transition, labeled compound and relative response factor (RRF) used to quantitate the compound?	7				
Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?	\checkmark				
XII. Target compound identification					
Were two transitions and the ion transition ratio per analyte monitored and documented with the exception of PFBA and PFPeA?	I				
XIV System performance					
System performance was found to be acceptable.					
XIII. Overall assessment of data					
Overall assessment of data was found to be acceptable.	.				

TARGET COMPOUND WORKSHEET

A. PFHxA			
B. PFHPA			
C. PFOA			
D. PfNA			
E. Prda			
F. PFUnA			
G. PFDoA			
H. PftriA			
1. PFTeda			
J. Pfes			
K. PFHxS			
L. PFFHPS			
M. Pfos			
N. PfDS			
O. FOSA			
P. PFBA			
Q. PFPPA			
R. 6:2FTS			
s. 8:2FTS			
T. Mefosas			
U. EIFOSAA			
v. Combined PFoASIPFos			

VALIDATION FINDINGS WORKSHEET
Field Duplicates

Page: 1 of 1
Reviewer: JVG
2nd Reviewer:

METHOD: LCMS PFAS (EPA Method 537M)

YN NA Were field duplicate pairs identified in this SDG?
Y/N NA Were target analytes detected in the field duplicate pairs?

VALIDATION FINDINGS WORKSHEET Compound Quantitation and Reported RLs

Page: 1 of 1
Reviewer: JVG 2nd Reviewer: \qquad

METHOD: LCMS PFAS (EPA Method 537M)
Please see qualifications below for all questions answered " N ". Not applicable questions are identified as "N/A".
Y N N/A Were the correct internal standard (IS), quantitation ion and relative response factor (RRF) used to quantitate the compound?
Y/N N/A Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation?

\#	Samples	Compound	Finding	Qualifications
	2,4.9	All compounds qualified " Q " by the lab.	The laboratory indicated that the parent/product transition ion ratio was outside of the 70-130\% laboratory limits	Since there are no established transition ion ratio requirements in the validation documents for this project, using professional judgment no data were qualified

Comments: See sample calculation verification worksheet for recalculations

Page:_1_of_2 Initial Calibration Calculation Verification
\qquad

METHOD: LC/MS PFCs (EPA Method 537Mod)

Calibration Date	Instrument	Compound	Standard	(Y) Response ratio	$\overline{(X)}$ Conc. Ratio	$\left(\mathrm{X}^{\wedge} 2\right)$ Conc. Ratio
11/19/2018	SCN960	PFOA	1	0.0327	0.02	0.00040
			2	0.0593	0.04	0.0016
		13C2-PFOA	3	0.1197	0.08	0.0064
			4	0.2358	0.16	0.0256
			5	0.5699	0.40	0.1600
			6	1.0165	0.80	0.6400
			7	5.1296	4.00	16.0000
			8	10.3516	8.00	64.0000
			9	25.6395	20.00	400.0000
			10	51.9892	40.00	1600.0000

Regression Output	Calculated		Reported WQR	
Constant	c	0.03180	c	0.1398430
Std Err of Y Est				
R Squared		0.9999917		0.9999030
Degrees of Freedom				
	m1	m2	m1	m2
X Coefficient(s)	1.2736124	0.0006421	1.2814700	0.000032442
Std Err of Coef.				
Correlation Coefficient		0.999996		
Coefficient of Determination ($\mathrm{r}^{\wedge} 2$)		0.999992		

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_2_of_2_ Reviewer:_JVG 2nd Reviewer: \sim

METHOD: LC/MS PFCs (EPA Method 537Mod)

$\begin{gathered} \hline \text { Calibration } \\ \text { Date } \\ \hline \end{gathered}$	System	Compound	Standard	(Y) Area ratio	(X) Conc ratio
11/19/2018	SCN960	PFOS	1	0.02405	0.020
			2	0.04028	0.040
			3	0.00828	0.080
		13C8-PFOS	4	0.15076	0.160
			5	0.42475	0.400
			6	0.84488	0.800
			7	4.25487	4.000
			8	8.43628	8.000
			9	21.03584	20.000
			10	43.32010	40.000

Regression Output	Calculated	Reported WLR
Constant	-0.073380	-0.0118865
Std Err of Y Est		
R Squared	0.999854	0.999775
Degrees of Freedom		
X Coefficient(s)	1.07855632	1.069710
Std Err of Coef.		
Correlation Coefficient	0.999927	
Coefficient of Determination ($\mathrm{r}^{\wedge} 2$)	0.999854	0.999775

\qquad of 1

Continuing Calibration Calculation Verification

Page: 1_of 1
Reviewer:_JVG
2nd Reviewer:

METHOD: LC/MS PFAs (EPA Method 537Mod)

The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

Where:
\% Difference $=100$ * (ave. RRF - RRF)/ave. I ave. RRF = initial calibration average RRF $R R F=(A x)(C i s) /(A i s)(C x)$

RRF = continuing calibration RRF
Ax = Area of compound

Cx $=$ Concentration of compound,
Ais = Area of associated internal standard
Cis = Concentration of internal standard

\#	Standard ID	$\begin{gathered} \text { Calibration } \\ \text { Date } \\ \hline \end{gathered}$	Compound (IS)			Conc	Reported	Recalculated	Reported \% R	Recalculated \% R
1	181120M1_58	11/20/2018	PFOA	(13C	-PFOA)	1.00	1.139	1.139	113.9	113.9
			PFOS	(13C	-PFOS)	1.00	1.092	1.092	109.2	109.2

VALIDATION FINDINGS WORKSHEET

\qquad Matrix Spike/Matrix Spike Duplicates Results Verification

Reviewer: \qquad
Reviewer: JVG
2nd Reviewer: \qquad

METHOD: LC/MS PFAS (EPA Method 537Mod)

The percent recoveries (\%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

\% Recovery $=100$ * (SSC - SC)/SA	Where:	SSC = Spiked sample concentration SA = Spike added	SC = Sample concentation
RPD $=1$ MSC - MSC $\left.\right\|^{*} 2 /($ MSC + MSDC $)$		MSC = Matrix spike concentration	MSDC = Matrix spike duplicate concentration

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

METHOD: LC/MS PFCs (EPA Method 537Mod)

The percent recoveries (\%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

Compound	$\begin{gathered} \text { Spike } \\ \text { Added } \\ \text { (} \mathrm{G} / \mathrm{L} \text {) } \end{gathered}$		$\begin{gathered} \text { Spike } \\ \text { Concentration } \\ \left(v_{g} / L\right) \end{gathered}$		Pes		$\xrightarrow[\text { Percent Recovery }]{\text { CSS }}$		1 CSn cso			
-	LCS	LCSD			Lcs	LCSD	Reported	Recalc.	Reported	Recalc.	Reported	Recalc.
PFOS	0.0800	$\begin{aligned} & 0.94 \\ & 0.066 \end{aligned}$	0.0864	NA	108	108						
PFOA	1	1	0.0949	1	119	119		-				

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

Page: 1 of 1
Reviewer: \qquad

METHOD: LC/MS PFAS (EPA Method 537M)
Y N N/A Were all reported results recalculated and verified for all level IV samples?
Y N N/A Were all recalculated results for detected target compounds agree within 10.0% of the reported results?

LOCATION-NAME	SITE_NAME	INSTALLATION_ID	LOCATION_TYPE	LOCATION_TYPE_DESC	SDG	COORD_X	COORD_Y	ANALYTICAL_METHOD_GRP_DESC	SAMPLE_NAME	SAMPLE_MATRIX	SAMPLE_MATRIC_DESC	COLLECT_DATE
A1-MW-07	SITE 00019	YUMA_MCAS	WLM	Monitoring well	1803659	439541.91	606106.3553	Perfluoroalkyl Compounds	A1-MW-07-SA2	WG	GROUNDWATER	11/14/2018
A1-MW-23	SITE 00019	YUMA_MCAS	WLM	Monitoring well	1803659	439180.7795	606307.5976	Perfluoroalkyl Compounds	A1-MW-23-SA2	WG	GROUNDWATER	11/14/2018
A1-MW-25	SITE 00019	YUMA_MCAS	WLM	Monitoring well	1803659	437848.2796	606352.9876	Perfluoroalkyl Compounds	A1-MW-25-SA2	WG	GROUNDWATER	11/14/2018
A1-MW-27	SITE 00019	YUMA_MCAS	WLM	Monitoring well	1803659	437455.9739	606818.6576	Perfluoroalkyl Compounds	A1-MW-27-SA2	WG	GROUNDWATER	11/14/2018
A1-MW-54	OU 0000001 AREA 1	YUMA_MCAS	WLM	Monitoring well	1803659	436340.456	606933.323	Perfluoroalkyl Compounds	A1-MW-54-SA2	WG	GROUNDWATER	11/14/2018
A1-MW-55	OU 0000001 AREA 1	YUMA_MCAS	WLM	Monitoring well	1803659	439126.157	606237.177	Perfluoroalkyl Compounds	A1-MW-55-SA2	WG	GROUNDWATER	11/14/2018

[^0]: Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

[^1]: Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

[^2]: Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

[^3]: Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

[^4]: Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

[^5]: $N=$ Normal Sample FD $=$ Field Duplicate $T B=$ Trip Blank

[^6]: $N=$ Normal Sample FD $=$ Field Duplicate $T B=$ Trip Blank

[^7]: * denotes a non-reportable result

 Project Name and Number: 4663.3803 - CTO 17F3803 Yuma

[^8]: * denotes a non-reportable result

 Project Name and Number: 4663.3803 - CTO 17F3803 Yuma

[^9]: * denotes a non-reportable result

 Project Name and Number: 4663.3803 - CTO 17F3803 Yuma

[^10]: * denotes a non-reportable result

[^11]: * denotes a non-reportable result

 Project Name and Number: 4663.3803 - CTO 17F3803 Yuma

[^12]: * denotes a non-reportable result

[^13]: * denotes a non-reportable result

 Project Name and Number: 4663.3803 - CTO 17F3803 Yuma

[^14]: * denotes a non-reportable result

 Project Name and Number: 4663.3803 - CTO 17F3803 Yuma

[^15]: Notes:

[^16]: CIRCLED RESULTS WERE NOT QUALIFIED. ALL RESULTS NOT CIRCLED WERE QUALIFIED BY THE FOLLOWING STATEMENT:
 All contaminants within five times the method blank concentration were qualified as not detected, "U".

[^17]: * denotes a non-reportable result

[^18]: * denotes a non-reportable result

 Project Name and Number: 4663.3803 - CTO 17F3803 Yuma

[^19]: * denotes a non-reportable result

[^20]: * denotes a non-reportable result

[^21]: * denotes a non-reportable result

[^22]: * denotes a non-reportable result

 Project Name and Number: 4663.3803 - CTO 17F3803 Yuma

[^23]: * denotes a non-reportable result

[^24]: Notes:

[^25]: Comments:

[^26]: Comments: Refer to appropriate worksheet for list of qualifications and associated samples when reported results do not agree within 10.0% of the recalculated results.

