Groundwater Sample Results,
Level 4 Laboratory Report, Electronic Data Deliverable, Data Validation Report, and the Sample Location Report, SDG 1901922
Marine Corps Air Station Yuma
Yuma, Arizona

November 2019

July 16, 2019
Vista Work Order No. 1901922

Ms. Lisa Bienkowski
Tetra Tech EC, Inc.
17885 Vo Karman Avenue, Suite 500
Irvine, CA 92614
Dear Ms. Bienkowski,
Enclosed are the results for the sample set received at Vista Analytical Laboratory on July 03, 2019 under your Project Name '4663.3803'.

Vista Analytical Laboratory is committed to serving you effectively. If you require additional information, please contact me at 916-673-1520 or by email at mmaier@vista-analytical.com.

Thank you for choosing Vista as part of your analytical support team.
Sincerely,

Martha Meier
Laboratory Director

Vista Analytical Laboratory certifies that the report herein meets all the requirements set forth by NELAP for those applicable test methods. Results relate only to the samples as received by the laboratory. This report should not be reproduced except in full without the written approval of Vista.

Vista Work Order No. 1901922
 Case Narrative

Sample Condition on Receipt:

Two aqueous samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology

Analytical Notes:

PFAS Isotope Dilution Method

Sample "CAOA-B02-GW" contained particulate and were centrifuged prior to extraction.

The samples were extracted and analyzed for a selected list of PFAS using the PFAS Isotope Dilution Method (Modified EPA Method 537). The results for PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Results for all other analytes include the linear isomers only.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Method Blank and Laboratory Control Sample (LCS)/Laboratory Control Sample Duplicate (LCSD) were extracted and analyzed with the preparation batch. No analytes were detected in the Method Blank above $1 / 2$ of the LOQ concentrations. The LCS/LCSD recoveries were within the acceptance criteria.

The labeled standard recoveries outside the acceptance criteria are listed in the table below.

QC Anomalies

LabNumber	SampleName	Analysis	Analyte	Flag
B9G0062-BLK1	B9G0062-BLK1	PFAS Isotope Dilution Method	13C2-PFTeDA	H
B9G0062-BSD1	B9G0062-BSD1	PFAS Isotope Dilution Method	13C2-PFDoA	46.6
B9G0062-BSD1	B9G0062-BSD1	PFAS Isotope Dilution Method	13C2-PFTeDA	H

$\mathrm{H}=$ Recovery was outside laboratory acceptance criteria.

TABLE OF CONTENTS

Case Narrative 1
Table of Contents 3
Sample Inventory 4
Analytical Results. 5
Qualifiers 10
Certifications 11
Sample Receipt 14
Receiving Airbills. 17
Extraction Information 18
Extraction Information. 19
Sample Data - PFAS Isotope Dilution Method 24
IIS Areas, IBs and CCVs. 60
ICAL with ICV and IB. 134
Tune Checks. 285
Standards 298

Sample Inventory Report

Vista	Client			
Sample ID	Sample ID	Sampled	Received	Components/Containers
1901922-01	FRB-07022019	02-Jul-19 12:30	03-Jul-19 09:10	HDPE Bottle, 125 mL
1901922-02	CAOA-B02-GW	02-Jul-19 13:15	03-Jul-19 09:10	HDPE Bottle, 125 mL
				HDPE Bottle, 125 mL

ANALYTICAL RESULTS

DATA QUALIFIERS \& ABBREVIATIONS

B	This compound was also detected in the method blank
Conc.	Concentration
D	Dilution
DL	Detection limit
E	The associated compound concentration exceeded the calibration range of the instrument
H	Recovery and/or RPD was outside laboratory acceptance limits
I	Chemical Interference
J	The amount detected is below the Reporting Limit/LOQ
LOD	Limits of Detection
LOQ	Limits of Quantitation
M	Estimated Maximum Possible Concentration (CA Region 2 projects only)
NA	Not applicable
ND	Not Detected
P	The reported concentration may include contribution from chlorinated diphenyl ether(s).
Q	The ion transition ratio is outside of the acceptance criteria.
TEQ	Toxic Equivalency
U	Not Detected (specific projects only)
*	See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Vista Analytical Laboratory Certifications

Accrediting Authority	Certificate Number
Alaska Department of Environmental Conservation	$17-013$
Arkansas Department of Environmental Quality	$19-013-0$
California Department of Health - ELAP	2892
DoD ELAP - A2LA Accredited - ISO/IEC 17025:2005	3091.01
Florida Department of Health	E87777-21
Hawaii Department of Health	N/A
Louisiana Department of Environmental Quality	01977
Maine Department of Health	2018017
Massachusetts Department of Environmental Protection	N/A
Michigan Department of Environmental Quality	9932
Minnesota Department of Health	1521520
New Hampshire Environmental Accreditation Program	$207718-\mathrm{B}$
New Jersey Department of Environmental Protection	190001
New York Department of Health	11411
Oregon Laboratory Accreditation Program	$4042-010$
Pennsylvania Department of Environmental Protection	016
Texas Commission on Environmental Quality	T104704189-19-10
Virginia Department of General Services	10272
Washington Department of Ecology	C584-19
Wisconsin Department of Natural Resources	998036160

NELAP Accredited Test Methods

MATRIX: Air	Method
Description of Test	EPA 23
Determination of Polychlorinated p-Dioxins \& Polychlorinated Dibenzofurans	EPA TO-9A
Determination of Polychlorinated p-Dioxins \& Polychlorinated Dibenzofurans	

MATRIX: Biological Tissue	Method
Description of Test	EPA 1613B
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1614A
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1668A/C
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1699
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 8280A/B
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA $8290 / 8290 \mathrm{~A}$
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	

MATRIX: Drinking Water	
Description of Test	Method
2,3,7,8-Tetrachlorodibenzo- p-dioxin (2,3,7,8-TCDD) GC/HRMS	$\begin{aligned} & \hline \text { EPA } \\ & 1613 / 1613 B \end{aligned}$
1,4-Dioxane (1,4-Diethyleneoxide) analysis by GC/HRMS	EPA 522
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	$\begin{array}{\|l\|} \hline \text { ISO } 25101 \\ 2009 \\ \hline \end{array}$

MATRIX: Non-Potable Water	Method
Description of Test	EPA 1613B
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1614A
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1668A/C
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 537
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 1699
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 613
Dioxin by GC/HRMS	EPA 8280A/B
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA $8290 / 8290 \mathrm{~A}$
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	

MATRIX: Solids	Method
Description of Test	EPA 1613B
Tetra-Octa Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1613
Tetra- through Octa-Chlorinated Dioxins and Furans by Isotope Dilution GC/HRMS	EPA 1614A
Brominated Diphenyl Ethers by HRGC/HRMS	EPA 1668A/C
Chlorinated Biphenyl Congeners in Water, Soil, Sediment, and Tissue by GC/HRMS	EPA 1699
Pesticides in Water, Soil, Sediment, Biosolids, and Tissue by HRGC/HRMS	EPA 537
Perfluorinated Alkyl Acids in Drinking Water by SPE and LC/MS/MS	EPA 8280A/B
Polychlorinated Dibenzo-p-Dioxins and Polychlorinated Dibenzofurans by GC/HRMS	EPA $8290 / 8290 \mathrm{~A}$
Polychlorinated Dibenzodioxins (PCDDs) and Polychlorinated Dibenzofurans (PCDFs) by GC/HRMS	

Sample LogIn Checklist

Page \# \qquad f 1

Vista Work Order \#:
1901922 2 TAT \qquad 14 days

Comments:

	TEIGIN ID:YUMA (619) 200-689? 	SHIP DATE: 02JUL19 ALMGT: 45.70 DIMS: $24 \times 13 \times 14$ STM bill third party
To ATTN SAMPLE RECVING		
VISTA ANALYTICAL LAB		
1104 WINDFIELD WAY		

(9,

**757
**757
10:30 A
10:30 A
ST1 }1\begin{array}{l}{7542}
{\hline1.07.03}
ST1 }1\begin{array}{l}{7542}
{\hline1.07.03}

	TEIGIN ID:YUMA (619) 200-689? 	SHIP DATE: 02JUL19 ALMGT: 45.70 DIMS: $24 \times 13 \times 14$ STM bill third party
To ATTN SAMPLE RECVING		
VISTA ANALYTICAL LAB		
1104 WINDFIELD WAY		

(9,

**757
**757
10:30 A
10:30 A
ST1 }1\begin{array}{l}{7542}
{\hline1.07.03}
ST1 }1\begin{array}{l}{7542}
{\hline1.07.03}

EXTRACTION INFORMATION

Process Sheet
Workorder: 1901922
Prep Expiration: 2019-07-16
Client: Tetra Tech EC, Inc.

Method: 537M PFAS DOD (LOQ as mRL) Matrix: Aqueous

Version: 537 (14 Analyte) - DoD Limits DoD: DoD QSM 5.1

LabSampID	A/B	$\begin{aligned} & \text { Prep } \\ & \text { Rec } \end{aligned}$	Spike Rec,	ClientSampleID	Comments	Location	Container
1901922-01	"A"	\checkmark	\square	FRB-07022019		R-13 A-1	HDPE Bottle, 125 mL
1901922-02	\downarrow	\square	\checkmark	CAOA-B02-GW		R-13 A-1	HDPE Bottle, 125 mL

WO Comments: Internal COC

Preferep check out: ONL 0710119
Pre-Prep Check In: \qquad NIA

Prep Check Out: \quad MA
Prep Check In: NA
\qquad
\qquad

Spike Reconciled Initals/Date:HR 07/10/19
VialBoxID \qquad Future

Matrix：Aqueous

－Method：537M PFAS DOD（LOQ as mRL）

PREPARATION BENCH SHEET
B9G0062

Prepared usin \square Sonication Shaker SPE Extraction 区 Centrifuge ID： \qquad

Chemist：ONL
Prep Date： 0710119
Prep Time： $06: 42$

		Date／Initals：ONL 07110119				BalancelD：HRMS－9			$\begin{aligned} & \text { IS/NS } \\ & \text { CHEM/WIT } \\ & \text { DATE } \end{aligned}$	SPE	ENVI－Carb	
Cen	VISTA Sample ID	$\begin{gathered} \mathrm{pH} \\ \text { Before } \end{gathered}$	$\begin{gathered} \mathrm{pH} \\ \text { After } \end{gathered}$	Chlorine （Cl）	Drops HCl Added	Bottle＋ Sample （g）	Bottle Only （g）	Sample Amt． （L）				$\begin{gathered} \text { RS } \\ \text { CHEM/WIT } \\ \text { DATE } \end{gathered}$
区	B9G0062－BLK1	5	2	0	1	N｜A	NA	（0．125）	ON HECOH｜1919	or of／10／19	IN a／10／n	avonc aflo／ds
■ \times	B9G0062－BS1	5	2	0	1		T	（0．125）	T	T	T	
区	B9G0062－BSD1	5	2	0	1	\pm	\checkmark	（0．125）				
$\boxed{\square}$	1901920－02	7	2	0	3	160.44	27.26	0.13318				
\square	1901920－03	6	2	0	1	141.39	27.10	0.11429				
\square	1901920－04	5	2	0	1	142.55	26.79	0.11576				
区	1901920－05	7	21^{*}	0	2	148.75	26.71	0.12204				
区	1901920－06	7	2	0	1	153.09	26.70	0.12639				
区	1901920－11	6	2	0	3	148.84	26.84	0.12200				
\square	1901920－12	5	2	0	1	138.69	27.14	0.11155				
\square	1901920－14	5	2	0	1	143.19	26.76	0.11643				
区	1901920－16	7	2	0	3	156.13	26.73	0.12940				
\square	${ }^{1901920-17}$（4）（6）${ }^{(3)}$	6	2	0	3	164.60	26.92	0.13768				
\square	1901920－20	5	2	0	1	143.24	26.80	0.11644				
\square	1901922－01	5	2	0	1	133.70	26.61	0.10709	t	\checkmark	\checkmark	∇

IS SUP： \qquad N / A
NS：19E2204，10M2，V3
NS SUP： \qquad N / A SPE Lot\＃： 918 －006880
（4）or of low 19
（6）up atiolic
（3）OR OT／10119
RS： $19 E 2202,10 \mu \mathrm{~L}$（4）
ENVI-Carb Lot\#:_115550 0)

$$
\text { (3) } \mathbb{A} \quad 0 / 10119
$$

Comments：Assume $1 \mathrm{~g}=1 \mathrm{~mL}$

 Cen＝Centrifuged1 ＝Sample centrifuged twice $2=$ Sample deeply colored after centrifuge 3 ＝Cartridge sorbent discolored after SPE $4=$ Sample clogged cartridge，additional cartridge（s）used $5=$ Sample recombined at final volume

6 ＝Sample took longer to SPE，required stronger vacuum
$7=$ Required Nitrogen line to finish SPE
$8=$ Required Nitrogen line to finish elution
$9=$ Sample arrived with low volume
$10=$ Trizma added to $\mathrm{QC}(5 \mathrm{~g} / \mathrm{L})$

Matrix: Aqueous

- Method: 537M PFAS DOD (LOQ as mRL)

Prepared using:Sonication Shaker © SPE Extraction ¥ Centrifuge D: \qquad C3/C5

Chemist: ONL
Prep Date: 0710119
Prep Time: \qquad 06.42

		Date/Initals:OM 0710119				Balanceil: HRMS-9						
Cen	$\begin{gathered} \text { VISTA } \\ \text { Sample ID } \end{gathered}$	$\begin{gathered} \mathrm{pH} \\ \text { Before } \end{gathered}$	$\underset{\text { After }}{\mathrm{pH}}$	Chlorine (Cl)	Drops HCl Added	Bottle + Sample (g)	Bottle Only (g)	Sample Amt. (L)	IS/NS CHEM/WTT DATE	SPE	ENVI-Carb	$\begin{gathered} \text { RS } \\ \text { CHEM/WIT } \\ \text { DATE } \end{gathered}$
D	1901922-02	6	2	0	2	147.37	26.87	0.12050	NL HEOA1019	6 PV of $10 / 19$	ON of $/ 10 \mid$	ONL arfldel

$\begin{aligned} & \text { is: } 19 E-2 O 1,10 \mu L(\sqrt{4}) \\ & \text { is sup: } \frac{N A}{19 E 2204,10 \mu L}(\sqrt{3}) \\ & \text { Ns: } \frac{N V A}{19 E 2202,19 \mu L(\sqrt{4})} \\ & \text { NS sup: } \\ & \text { Rs: } \end{aligned}$	SPE Chem: \qquad Stand $-x$-AW 33 m ${ }^{2}$ womblat SPE Lott: $\quad 98-006880$ \qquad ENVI-Carb Lot\#: \qquad 11155501 Ele SOLV: $\mathrm{MeOH} / 0.5 \% \mathrm{NH} 4 \mathrm{OH}$ in MeOH Final Volume(s) \qquad mL	Notes:		
Comments: Assume $1 \mathrm{~g}=1 \mathrm{~mL}$ Cen $=$ Centrifuged Work Order 1901922	$1=$ Sample centrifuged twice $2=$ Sample deeply colored after centrifuge $3=$ Cartridge sorbent discolored after SPE $4=$ Sample clogged cartridge, additional cartridge(s) used $5=$ Sample recombined at final volume		6 = Sample took longer to SPE, required stronger vacuum $7=$ Required Nitrogen line to finish SPE $8=$ Required Nitrogen line to finish elution $9=$ Sample arrived with low volume $10=$ Trizma added to QC ($5 \mathrm{~g} / \mathrm{L}$)	Page 21 of 587

Vista Internal Chain-of-Custody

B9G0062
(B)V/Sta

Analytical Laboratory

Batch: B9G0062

Matrix: Aqueous

LabNumber	WetWeight (Initial)	\% Solids (Extraction Solids)	DryWeight	Final	Extracted	Ext By	Spike	SpikeAmount	ClientMatrix	Analysis
1901920-02	0.13318	NA	NA	1000	10-Jul-19 06:42	ONL			Aqueous	537M PFAS DOD (LOQ as
1901920-03	0.11429		T	1000	10-Jul-19 06:42	ONL			Aqueous	537M PFAS DOD (LOQ as
1901920-04	0.11576			1000	10-Jul-19 06:42	ONL			Aqueous	537M PFAS DOD (LOQ as
1901920-05	0.12204			1000	10-Jul-19 06:42	ONL			Aqueous	537M PFAS DOD (LOQ as
1901920-06	0.12639			1000	10-Jul-19 06:42	ONL			Aqueous	537M PFAS DOD (LOQ as
1901920-11	0.122			1000	10-Jul-19 06:42	ONL			Aqueous	537M PFAS DOD (LOQ as
1901920-12	0.11155			1000	10-Jul-19 06:42	ONL			Aqueous	537M PFAS DOD (LOQ as
1901920-14	0.11643			1000	10-Jul-19 06:42	ONL			Aqueous	537M PFAS DOD (LOQ as
1901920-16	$0.1294 \checkmark$			1000	10-Jul-19 06:42	ONL			Aqueous	537M PFAS DOD (LOQ as
1901920-17	0.13768			1000	10-Jul-19 06:42	ONL			Aqueous	537M PFAS DOD (LOQ as
1901920-20	$0.11644^{\text { }}$			1000	10-Jul-19 06:42	ONL			Aqueous	537M PFAS DOD (LOQ as
1901922-01	0.10709			1000	10-Jul-19 06:42	ONL			Aqueous	537M PFAS DOD (LOQ as
1901922-02	$0.1205 \checkmark$			1000	10-Jul-19 06:42	ONL			Aqueous	537M PFAS DOD (LOQ as
B9G0062-BLK1	0.125			1000	10-Jul-19 06:42	ONL				QC
B9G0062-BS1	$0.125^{\text {d }}$			1000	10-Jul-19 06:42	ONL	19E2204	-10		QC
B9G0062-BSD1	0.125	\checkmark	\downarrow	1000	10-Jul-19 06:42	ONL	19E2204	$10 \checkmark$		QC

Sample Data - PFAS Isotope Dilution Method

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:IPFAS.PRO\Results\190711M31190711M3-36.qld
Last Altered:	Monday, July 15, 2019 09:48:57 Pacific Daylight Time
Printed:	Monday, July 15, 2019 09:51:39 Pacific Daylight Time

Name: 190711M3_36, Date: 12-Jul-2019, Time: 03:38:11, ID: B9G0062-BLK1 Method Blank 0.125, Description: Method Blank

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	$299.0>79.7$		6.10 e 2	0.125		2.46						
2	7 PFHxA	$313.0>269.0$		2.86 e 3	0.125		2.97						
3	11 PFHpA	$363.0>318.9$		3.26 e 3	0.125		3.59						
4	13 L-PFHxS	$398.9>79.6$		1.39 e 3	0.125		3.74						
5	80 Total PFHxS	$398.9>79.6$	0.00e0	1.39 e 3	0.125		3.83		0.000				
6	49 13C3-PFBS	$302.0>98.8$	6.10 e 2	5.72 e 2	0.125	1.035	2.46	2.46	13.3	103.0347	103.0		
7	52 13C2-PFHxA	$315.0>270.0$	2.86 e 3	9.67e3	0.125	0.792	2.96	2.97	3.70	37.3272	93.3		
8	53 13C4-PFHpA	$367.2>321.8$	3.26 e 3	9.67 e 3	0.125	0.391	3.58	3.59	4.22	86.2635	86.3		
9	54 13C3-PFHxS	$401.8>79.9$	1.39 e 3	5.72 e 2	0.125	2.547	3.74	3.74	30.4	95.5685	95.6		
10	54 13C3-PFHxS	$401.8>79.9$	1.39 e 3	5.72 e 2	0.125	2.547	3.74	3.74	30.4	95.5685	95.6		
11	-1												
12	16 L-PFOA	$412.8>368.9$		6.46 e 3	0.125		4.11						
13	81 Total PFOA	$412.8>368.9$	0.00e0	6.46 e 3	0.125		4.21		0.000				
14	21 PFNA	$463.0>418.8$	8.36e0	6.38 e 3	0.125		4.56	4.55	0.0164			24.507	YES
15	23 L-PFOS	$498.9>79.9$		1.08 e 3	0.125		4.64						
16	82 Total PFOS	$498.9>79.9$	0.00e0	1.08 e 3	0.125		4.74		0.000				
17	58 13C2-PFOA	$414.9>369.7$	6.46 e 3	1.45 e 4	0.125	0.564	4.11	4.11	5.56	78.7847	78.8		
18	58 13C2-PFOA	$414.9>369.7$	6.46 e 3	1.45 e 4	0.125	0.564	4.11	4.11	5.56	78.7847	78.8		
19	56 13C5-PFNA	$468.2>422.9$	6.38e3	8.35 e 3	0.125	0.983	4.56	4.56	9.55	77.7289	77.7		
20	59 13C8-PFOS	$507.0>79.9$	1.08 e 3	1.38 e 3	0.125	1.060	4.64	4.64	9.73	73.4587	73.5		
21	59 13C8-PFOS	$507.0>79.9$	1.08 e 3	1.38 e 3	0.125	1.060	4.64	4.64	9.73	73.4587	73.5		
22	-1												
23	26 PFDA	$513>468.8$		4.77 e 3	0.125		4.94						
24	29 L-MeFOSAA	$570>419$		1.01 e 3	0.125		5.08						
25	83 Total N-MeFOSAA	570. >419	0.00 e 0	1.01 e 3	0.125		5.19		0.000				
26	33 PFUdA	$563.0>518.9$		7.52e3	0.125		5.27						
27	37 PFDoA	$612.9>569.0$		7.52e3	0.125		5.55						
28	60 13C2-PFDA	$515.1>469.9$	4.77 e 3	1.03 e 4	0.125	0.662	4.94	4.94	5.80	70.0682	70.1		
29	62 d3-N-MeFOSAA	$573.3>419$	1.01 e 3	1.23 e 4	0.125	0.129	5.09	5.08	1.03	63.5568	63.6		
30	62 d3-N-MeFOSAA	$573.3>419$	1.01 e 3	1.23 e 4	0.125	0.129	5.09	5.08	1.03	63.5568	63.6		
31	63 13C2-PFUdA	$565>519.8$	7.52 e 3	1.23 e 4	0.125	0.857	5.26	5.27	7.62	71.1167	71.1		
32	65 13C2-PFDoA	$614.7>569.7$	7.52 e 3	1.03 e 4	0.125	1.229	5.55	5.55	9.15	59.5502	59.6		
33	-1												
34	31 L-EtFOSAA	$584.1>419$		1.18 e 3	0.125		5.25						
35	84 Total N-EtFOSAA	$584.1>419$	0.00e0	1.18 e 3	0.125		5.33		0.000				
36	39 PFTrDA	$662.9>618.9$		7.52e3	0.125		5.80						

Dataset:	Z:IPFAS.PRO\Results\190711M31190711M3-36.qld
Last Altered:	Monday, July 15, 2019 09:48:57 Pacific Daylight Time
Printed:	Monday, July 15, 2019 09:51:39 Pacific Daylight Time

Name: 190711M3_36, Date: 12-Jul-2019, Time: 03:38:11, ID: B9G0062-BLK1 Method Blank 0.125, Description: Method Blank

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	41 PFTeDA	713.0 > 669.0		2.94 e 3	0.125		6.03						
38	85 TDCA	$498.3>106.9$			0.125		5.45						
39	64 d5-N-EtFOSAA	$589.3>419$	1.18 e 3	1.23 e 4	0.125	0.147	5.24	5.25	1.20	65.1203	65.1		
40	64 d5-N-EtFOSAA	$589.3>419$	1.18 e 3	1.23 e 4	0.125	0.147	5.24	5.25	1.20	65.1203	65.1		
41	65 13C2-PFDoA	$614.7>569.7$	7.52 e 3	1.03 e 4	0.125	1.229	5.55	5.55	9.15	59.5502	59.6		
42	67 13C2-PFTeDA	$715.1>669.7$	2.94 e 3	1.23 e 4	0.125	0.511	6.02	6.03	2.98	46.6375	46.6		
43	59 13C8-PFOS	$507.0>79.9$	1.08 e 3	1.38 e 3	0.125	1.060	4.64	4.64	9.73	73.4587	73.5		
44	-1												
45	73 13C5-PFHxA	318.0 > 272.9	9.67 e 3	9.67 e 3	0.125	1.000	2.96	2.97	12.5	100.0000	100.0		
46	75 13C8-PFOA	$420.9>376.0$	1.45 e4	1.45 e 4	0.125	1.000	4.11	4.11	12.5	100.0000	100.0		
47	74 1802-PFHxS	$403.0>102.6$	5.72e2	5.72 e 2	0.125	1.000	3.74	3.74	12.5	100.0000	100.0		
48	76 13C9-PFNA	$472.2>426.9$	8.35 e 3	8.35 e 3	0.125	1.000	4.55	4.56	12.5	100.0000	100.0		
49	77 13C4-PFOS	$503>79.9$	1.38 e 3	1.38 e 3	0.125	1.000	4.64	4.64	12.5	100.0000	100.0		
50	78 13C6-PFDA	$519.1>473.7$	1.03 e 4	1.03 e 4	0.125	1.000	4.93	4.94	12.5	100.0000	100.0		
51	79 13C7-PFUdA	$570.1>524.8$	1.23 e 4	1.23 e 4	0.125	1.000	5.26	5.26	12.5	100.0000	100.0		

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:\PFAS.PRO\Results\190711M3\190711M3-36.qld
Last Altered:	Monday, July 15, 2019 09:48:57 Pacific Daylight Time
Printed:	Monday, July 15, 2019 09:51:39 Pacific Daylight Time

Method: Z:\PFAS.PRO\MethDB\PFAS_FULL_80C_071119.mdb 12 Jul 2019 08:40:55

Calibration: Z:\PFAS.PRO\CurveDB\C18_VAL-PFĀS_Q4_07-10-19.cdb 11 Jul 2019 10:56:26

Name: 190711M3_36, Date: 12-Jul-2019, Time: 03:38:11, ID: B9G0062-BLK1 Method Blank 0.125, Description: Method Blank

PFBS
 F11:MRM of 2 channels,ES- $299.0>79.7$ $2.164 \mathrm{e}+001$

13C3-PFBS

13C4-PFHpA

13C3-PFHxS

F24:MRM of 1 channel,ES$401.8>79.9$
$3.584 \mathrm{e}+004$

Total PFHxS
F23:MRM of 2 channels,ES-
$398.9>79.6$
$1.000 \mathrm{e}-003$

13C3-PFHxS
F24:MRM of 1 channel,ES401.8 > 79.9 $3.584 \mathrm{e}+004$

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:IPFAS.PRO\Results\190711M3\190711M3-36.qld
Last Altered:	Monday, July 15, 2019 09:48:57 Pacific Daylight Time
Printed:	Monday, July 15, 2019 09:51:39 Pacific Daylight Time

Name: 190711M3_36, Date: 12-Jul-2019, Time: 03:38:11, ID: B9G0062-BLK1 Method Blank 0.125, Description: Method Blank

L-PFOA

13C2-PFOA

13C2-PFOA

PFNA

13C5-PFNA

13C8-PFOS
F42:MRM of 1 channel,ES-

Total PFOS

F39:MRM of 2 channels,ES 498.9 > 79.9 $1.000 \mathrm{e}-003$
100

13C8-PFOS
F42:MRM of 1 channel,ES$507.0>79.9$

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:IPFAS.PRO\Results\190711M3\190711M3-36.qld
Last Altered:	Monday, July 15, 2019 09:48:57 Pacific Daylight Time
Printed:	Monday, July 15, 2019 09:51:39 Pacific Daylight Time

Name: 190711M3_36, Date: 12-Jul-2019, Time: 03:38:11, ID: B9G0062-BLK1 Method Blank 0.125, Description: Method Blank

PFDA

PFDA	
	F44:MRM of 2 channels,ES-
	$513>468.8$
$100-2.157 \mathrm{e}+001$	
\%-	

	F44:MRM of 2 channels,ES $513>219$
100	$1.000 \mathrm{e}-003$

13C2-PFDA
F45:MRM of 1 channel,ES$515.1>469.9$

d3-N-MeFOSAA
F58:MRM of 1 channel,ES$573.3>419$ $2.391 e+004$

Total N-MeFOSAA

F56:MRM of 2 channels,ES$570>419$ $.000 \mathrm{e}-003$

F56:MRM of 2 channels,ES570. > 512 $1.000 \mathrm{e}-003$

d3-N-MeFOSAA
F58:MRM of 1 channel,ES$573.3>419$ $2.391 \mathrm{e}+004$

PFUdA

F54:MRM of 2 channels,ES-
 F54:MRM of 2 channels,ES$563.0>269$

13C2-PFUdA

PFDoA

F62:MRM of 4 channels,ES-
$612.9>318.8$ $1.000 \mathrm{e}-003$

13C2-PFDoA
F63:MRM of 1 channel,ES $614.7>569.7$

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:IPFAS.PRO\Results\190711M3\190711M3-36.qld
Last Altered:	Monday, July 15, 2019 09:48:57 Pacific Daylight Time
Printed:	Monday, July 15, 2019 09:51:39 Pacific Daylight Time

Name: 190711M3_36, Date: 12-Jul-2019, Time: 03:38:11, ID: B9G0062-BLK1 Method Blank 0.125, Description: Method Blank

L-EtFOSAA

d5-N-EtFOSAA
F60:MRM of 1 channel,ES-

d5-N-EtFOSAA

PFTrDA

13C2-PFDoA

13C2-PFTeDA

TDCA

F38:MRM of 3 channels,ES- | $498.3>106.9$ |
| ---: |
| $1.000 \mathrm{e}-003$ |

13C8-PFOS
F42:MRM of 1 channel,ES$507.0>79.9$

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:IPFAS.PRO\Results\190711M3\190711M3-36.qld
Last Altered:	Monday, July 15, 2019 09:48:57 Pacific Daylight Time
Printed:	Monday, July 15, 2019 09:51:39 Pacific Daylight Time

Name: 190711M3_36, Date: 12-Jul-2019, Time: 03:38:11, ID: B9G0062-BLK1 Method Blank 0.125, Description: Method Blank

13C6-PFDA
F47:MRM of 1 channel,ES$519.1>473.7$ $2.487 e+005$

13C7-PFUdA

F57:MRM of 1 channel,ES$570.1>524.8$ $3.124 \mathrm{e}+005$

13C4-PFOS

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:IPFAS.PRO\Results\190711M3\190711M3-34.qld
Last Altered:	Monday, July 15, 2019 09:20:25 Pacific Daylight Time
Printed:	Monday, July 15, 2019 09:34:34 Pacific Daylight Time

Name: 190711M3_34, Date: 12-Jul-2019, Time: 03:16:59, ID: B9G0062-BS1 OPR 0.125, Description: OPR

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	$299.0>79.7$	1.12 e 3	6.06e2	0.125		2.46	2.46	23.1	80.6279	100.8	2.625	NO
2	7 PFHxA	$313.0>269.0$	7.24 e 3	2.93 e3	0.125		2.96	2.96	12.3	84.9841	106.2	13.650	NO
3	11 PFHpA	$363.0>318.9$	3.61 e 3	3.16 e3	0.125		3.58	3.58	14.3	93.0186	116.3	5.367	NO
4	13 L-PFHxS	$398.9>79.6$	1.07e3	1.28 e 3	0.125		3.74	3.74	10.4	99.4572	124.3	2.100	NO
5	80 Total PFHxS	$398.9>79.6$	1.07 e 3	1.28 e 3	0.125		3.83		10.4	99.4572			
6	49 13C3-PFBS	$302.0>98.8$	6.06 e 2	6.11 e 2	0.125	1.035	2.46	2.46	12.4	95.7834	95.8		
7	52 13C2-PFHxA	$315.0>270.0$	2.93 e3	9.48 e 3	0.125	0.792	2.96	2.96	3.86	39.0093	97.5		
8	53 13C4-PFHpA	$367.2>321.8$	3.16 e 3	9.48 e 3	0.125	0.391	3.58	3.58	4.16	85.1160	85.1		
9	54 13C3-PFHxS	$401.8>79.9$	1.28 e 3	6.11 e 2	0.125	2.547	3.74	3.74	26.2	82.4096	82.4		
10	54 13C3-PFHxS	401.8 > 79.9	1.28 e 3	6.11 e 2	0.125	2.547	3.74	3.74	26.2	82.4096	82.4		
11	-1												
12	16 L-PFOA	412.8 > 368.9	9.31 e 3	5.78 e 3	0.125		4.11	4.11	20.1	87.0351	108.8	3.506	NO
13	81 Total PFOA	412.8 > 368.9	9.31 e 3	5.78 e 3	0.125		4.21		20.1	87.0351			
14	21 PFNA	463.0 > 418.8	5.09 e 3	5.51 e 3	0.125		4.55	4.55	11.5	84.0315	105.0	2.839	NO
15	23 L-PFOS	$498.9>79.9$	1.12e3	1.02 e 3	0.125		4.64	4.64	13.8	87.9616	110.0	2.454	NO
16	82 Total PFOS	$498.9>79.9$	1.12 e 3	1.02 e 3	0.125		4.74		13.8	87.9616			
17	58 13C2-PFOA	414.9 > 369.7	5.78 e 3	1.24 e 4	0.125	0.564	4.11	4.11	5.84	82.7667	82.8		
18	58 13C2-PFOA	$414.9>369.7$	5.78 e 3	1.24 e 4	0.125	0.564	4.11	4.11	5.84	82.7667	82.8		
19	56 13C5-PFNA	468.2 > 422.9	5.51 e 3	7.11e3	0.125	0.983	4.56	4.55	9.69	78.9171	78.9		
20	59 13C8-PFOS	$507.0>79.9$	1.02 e 3	1.42 e 3	0.125	1.060	4.64	4.64	8.98	67.7766	67.8		
21	59 13C8-PFOS	$507.0>79.9$	1.02 e 3	1.42 e 3	0.125	1.060	4.64	4.64	8.98	67.7766	67.8		
22	-1												
23	26 PFDA	$513>468.8$	5.98 e 3	4.26 e 3	0.125		4.93	4.93	17.5	84.4337	105.5	4.949	NO
24	29 L-MeFOSAA	$570>419$	2.72 e 3	8.79 e 2	0.125		5.08	5.09	38.6	103.1149	128.9	2.657	NO
25	83 Total N-MeFOSAA	570. > 419	2.72 e 3	8.79 e 2	0.125		5.19		38.6	103.1149			
26	33 PFUdA	$563.0>518.9$	4.70 e 3	6.10 e 3	0.125		5.26	5.26	9.63	82.6629	103.3	6.352	NO
27	37 PFDoA	$612.9>569.0$	5.17 e 3	5.86 e 3	0.125		5.55	5.55	11.0	92.4785	115.6	7.877	NO
28	60 13C2-PFDA	$515.1>469.9$	4.26 e 3	9.08 e 3	0.125	0.662	4.94	4.93	5.87	70.9011	70.9		
29	62 d3-N-MeFOSAA	$573.3>419$	8.79 e 2	1.13 e 4	0.125	0.129	5.09	5.08	0.972	60.2513	60.3		
30	62 d3-N-MeFOSAA	$573.3>419$	8.79 e 2	1.13 e 4	0.125	0.129	5.09	5.08	0.972	60.2513	60.3		
31	63 13C2-PFUdA	$565>519.8$	6.10 e 3	1.13 e 4	0.125	0.857	5.26	5.26	6.75	62.9969	63.0		
32	65 13C2-PFDoA	$614.7>569.7$	5.86 e 3	9.08 e 3	0.125	1.229	5.55	5.55	8.07	52.5479	52.5		
33	-1												
34	31 L-EtFOSAA	$584.1>419$	2.07e3	1.16 e 3	0.125		5.24	5.25	22.3	90.0928	112.6	1.573	NO
35	84 Total N-EtFOSAA	$584.1>419$	2.07 e 3	1.16 e 3	0.125		5.33		22.3	90.0928			
36	39 PFTrDA	$662.9>618.9$	5.40 e 3	5.86 e 3	0.125		5.80	5.80	11.5	86.8878	108.6	16.865	NO

Dataset:	Z:IPFAS.PRO\Results\190711M31190711M3-34.qld
Last Altered:	Monday, July 15, 2019 09:20:25 Pacific Daylight Time
Printed:	Monday, July 15, 2019 09:34:34 Pacific Daylight Time

Name: 190711M3_34, Date: 12-Jul-2019, Time: 03:16:59, ID: B9G0062-BS1 OPR 0.125, Description: OPR

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	41 PFTeDA	$713.0>669.0$	4.08 e 3	3.00e3	0.125		6.02	6.02	17.0	90.5921	113.2	13.511	NO
38	85 TDCA	$498.3>106.9$			0.125		5.45						
39	64 d5-N-EtFOSAA	$589.3>419$	1.16 e 3	1.13 e 4	0.125	0.147	5.24	5.24	1.28	69.5703	69.6		
40	64 d5-N-EtFOSAA	$589.3>419$	1.16 e 3	1.13 e 4	0.125	0.147	5.24	5.24	1.28	69.5703	69.6		
41	65 13C2-PFDoA	$614.7>569.7$	5.86 e 3	9.08 e 3	0.125	1.229	5.55	5.55	8.07	52.5479	52.5		
42	67 13C2-PFTeDA	$715.1>669.7$	3.00 e 3	1.13 e 4	0.125	0.511	6.02	6.02	3.32	51.9704	52.0		
43	59 13C8-PFOS	$507.0>79.9$	1.02 e 3	1.42 e 3	0.125	1.060	4.64	4.64	8.98	67.7766	67.8		
44	-1												
45	73 13C5-PFHxA	318.0 > 272.9	9.48 e 3	9.48 e 3	0.125	1.000	2.96	2.96	12.5	100.0000	100.0		
46	75 13C8-PFOA	$420.9>376.0$	1.24 e 4	1.24 e 4	0.125	1.000	4.11	4.11	12.5	100.0000	100.0		
47	74 1802-PFHxS	$403.0>102.6$	6.11 e 2	6.11 e 2	0.125	1.000	3.74	3.74	12.5	100.0000	100.0		
48	76 13C9-PFNA	$472.2>426.9$	7.11e3	7.11 e 3	0.125	1.000	4.55	4.55	12.5	100.0000	100.0		
49	77 13C4-PFOS	$503>79.9$	1.42 e 3	1.42 e 3	0.125	1.000	4.64	4.64	12.5	100.0000	100.0		
50	78 13C6-PFDA	$519.1>473.7$	9.08 e 3	9.08 e 3	0.125	1.000	4.93	4.93	12.5	100.0000	100.0		
51	79 13C7-PFUdA	$570.1>524.8$	1.13 e 4	1.13 e 4	0.125	1.000	5.26	5.26	12.5	100.0000	100.0		

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:\PFAS.PRO\Results\190711M3\190711M3-34.qld
Last Altered:	Monday, July 15, 2019 09:20:25 Pacific Daylight Time
Printed:	Monday, July 15, 2019 09:34:34 Pacific Daylight Time

Method: Z:\PFAS.PRO\MethDB\PFAS_FULL_80C_071119.mdb 12 Jul 2019 08:40:55

Calibration: Z:\PFAS.PRO\CurveDB\C18_VAL-PFĀS_Q4_07-10-19.cdb 11 Jul 2019 10:56:26

Name: 190711M3_34, Date: 12-Jul-2019, Time: 03:16:59, ID: B9G0062-BS1 OPR 0.125, Description: OPR

13C4-PFHpA

L-PFHxS
 F23:MRM of 2 channels,ES-
 $398.9>79.6$ $2.387 \mathrm{e}+004$

13C3-PFHxS

13C3-PFHxS

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:IPFAS.PRO\Results\190711M3\190711M3-34.qld
Last Altered:	Monday, July 15, 2019 09:20:25 Pacific Daylight Time
Printed:	Monday, July 15, 2019 09:34:34 Pacific Daylight Time

Name: 190711M3_34, Date: 12-Jul-2019, Time: 03:16:59, ID: B9G0062-BS1 OPR 0.125, Description: OPR

L-PFOA

F26:MRM of 2 channels,ES-
F26:MRM of 2 channels,ES-
$412.8>368.9$
${ }^{100}{ }_{-} \quad 2.323 e+005$

F26:MRM of 2 channels,ES$412.8>169$ $6.565 \mathrm{e}+004$

13C2-PFOA

13C2-PFOA

PFNA

13C5-PFNA

L-PFOS

13C8-PFOS

F42:MRM of 1 channel,ES-

Total PFOS

F39:MRM of 2 channels,ES-

100	F39:MRM of 2 channels,ES-	
	L-PFOS	498.9 > 99.0
	4.65	$8.117 \mathrm{e}+003$
	4.58 e 2	
	8117	
\%-	MM	
	8117.00	
	4.500	5.000

13C8-PFOS

F42:MRM of 1 channel,ES-
507.0 > 79.9

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:IPFAS.PRO\Results\190711M31190711M3-34.qld
Last Altered:	Monday, July 15, 2019 09:20:25 Pacific Daylight Time
Printed:	Monday, July 15, 2019 09:34:34 Pacific Daylight Time

Name: 190711M3_34, Date: 12-Jul-2019, Time: 03:16:59, ID: B9G0062-BS1 OPR 0.125, Description: OPR

PFDA

F44:MRM of 2 channels,ES-
$513>468.8$
$100 \quad 1.452 \mathrm{e}+005$

13C2-PFDA
F45:MRM of 1 channel,ES515.1 > 469.9 $9.991 \mathrm{e}+004$

L-MeFOSAA

56:MRM of 2 channels,ES-

	F56:MRM o	channels,ES- $570>419$
100	L-MeFOSAA	$5.869 \mathrm{e}+004$
	5.09	
	2.72 e 3	
\%-	58691	
	MM	
	58691.00	

F56:MRM of 2 channels,ES-

	F56:MRM of	$570 .>512$
100	L-MeFOSAA	$2.070 \mathrm{e}+004$
	5.09	
	1.02 e 3	
\%-	20673	
	MM	
	20673.00	

d3-N-MeFOSAA

F58:MRM of 1 channel,ES $573.3>419$ $2.123 \mathrm{e}+004$

Total N-MeFOSAA

F56:MRM of 2 channels,ES-
$570>419$
$5.869 \mathrm{e}+004$
100
L-MeFOSAA
5.09
2.72 e 3
58691
MM
58691.00
F56:MRM of 2 channels,ES-

4.7505 .0005 .250
d3-N-MeFOSAA
F58:MRM of 1 channel,ES-

PFUdA F54:MRM of 2 channels,ES-

$563.0>518.9$

13C2-PFUdA

PFDoA

F62:MRM of 4 channels,ES-
$612.9>318.8$

13C2-PFDoA
F63:MRM of 1 channel,ES $614.7>569.7$

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:IPFAS.PRO\Results\190711M3\190711M3-34.qld
Last Altered:	Monday, July 15, 2019 09:20:25 Pacific Daylight Time
Printed:	Monday, July 15, 2019 09:34:34 Pacific Daylight Time

Name: 190711M3_34, Date: 12-Jul-2019, Time: 03:16:59, ID: B9G0062-BS1 OPR 0.125, Description: OPR

L-EtFOSAA

d5-N-EtFOSAA
F60:MRM of 1 channel,ES-

d5-N-EtFOSAA

PFTrDA

13C2-PFDoA

13C2-PFTeDA

TDCA

F38:MRM of 3 channels,ES- $498.3>106.9$

13C8-PFOS
F42:MRM of 1 channel,ES $507.0>79.9$

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:IPFAS.PRO\Results\190711M3\190711M3-34.qld
Last Altered:	Monday, July 15, 2019 09:20:25 Pacific Daylight Time
Printed:	Monday, July 15, 2019 09:34:34 Pacific Daylight Time

Name: 190711M3_34, Date: 12-Jul-2019, Time: 03:16:59, ID: B9G0062-BS1 OPR 0.125, Description: OPR

13C6-PFDA
F47:MRM of 1 channel,ES$519.1>473.7$

13C7-PFUdA

F57:MRM of 1 channel,ES$570.1>524.8$ $2.800 \mathrm{e}+005$

13C4-PFOS

Quantify Sample Report

Dataset:	Z:IPFAS.PRO\Results\190711M31190711M3-35.qld
Last Altered:	Monday, July 15, 2019 09:40:54 Pacific Daylight Time
Printed:	Monday, July 15, 2019 09:43:10 Pacific Daylight Time

Name: 190711M3_35, Date: 12-Jul-2019, Time: 03:27:38, ID: B9G0062-BSD1 LCSD 0.125, Description: LCSD

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	$299.0>79.7$	1.16 e 3	6.16e2	0.125		2.46	2.46	23.4	81.6899	102.1	2.690	NO
2	7 PFHxA	313.0 > 269.0	7.76 e 3	3.00 e 3	0.125		2.96	2.96	12.9	89.0469	111.3	15.652	NO
3	11 PFHpA	363.0 > 318.9	3.70 e3	3.61 e3	0.125		3.58	3.58	12.8	83.4201	104.3	5.402	NO
4	13 L-PFHxS	$398.9>79.6$	9.53 e 2	1.27e3	0.125		3.74	3.74	9.36	89.3600	111.7	1.808	NO
5	80 Total PFHxS	$398.9>79.6$	9.53 e 2	1.27 e 3	0.125		3.83		9.36	89.3600			
6	49 13C3-PFBS	$302.0>98.8$	6.16 e 2	5.93 e 2	0.125	1.035	2.46	2.46	13.0	100.2958	100.3		
7	52 13C2-PFHxA	315.0 > 270.0	3.00 e 3	9.46 e 3	0.125	0.792	2.96	2.96	3.96	39.9947	100.0		
8	53 13C4-PFHpA	$367.2>321.8$	3.61e3	9.46 e 3	0.125	0.391	3.58	3.58	4.78	97.6880	97.7		
9	54 13C3-PFHxS	$401.8>79.9$	1.27 e 3	5.93 e 2	0.125	2.547	3.74	3.74	26.8	84.2328	84.2		
10	54 13C3-PFHxS	$401.8>79.9$	1.27 e 3	5.93 e 2	0.125	2.547	3.74	3.74	26.8	84.2328	84.2		
11	-1												
12	16 L-PFOA	412.8 > 368.9	1.00 e 4	6.42 e 3	0.125		4.11	4.11	19.6	84.5572	105.7	3.580	NO
13	81 Total PFOA	412.8 > 368.9	1.00 e 4	6.42 e 3	0.125		4.21		19.6	84.5572			
14	21 PFNA	463.0 > 418.8	5.44 e 3	5.96 e 3	0.125		4.55	4.55	11.4	83.0935	103.9	2.965	NO
15	23 L-PFOS	$498.9>79.9$	1.10 e 3	1.08 e 3	0.125		4.64	4.64	12.8	81.7420	102.2	1.968	NO
16	82 Total PFOS	$498.9>79.9$	1.10 e 3	1.08 e 3	0.125		4.74		12.8	81.7420			
17	58 13C2-PFOA	414.9 > 369.7	6.42 e 3	1.42 e 4	0.125	0.564	4.11	4.11	5.65	80.0370	80.0		
18	58 13C2-PFOA	414.9 > 369.7	6.42 e 3	1.42 e 4	0.125	0.564	4.11	4.11	5.65	80.0370	80.0		
19	56 13C5-PFNA	468.2 > 422.9	5.96e3	8.54 e 3	0.125	0.983	4.56	4.55	8.72	70.9977	71.0		
20	59 13C8-PFOS	$507.0>79.9$	1.08 e 3	1.39 e 3	0.125	1.060	4.64	4.64	9.65	72.8274	72.8		
21	59 13C8-PFOS	$507.0>79.9$	1.08 e 3	1.39 e 3	0.125	1.060	4.64	4.64	9.65	72.8274	72.8		
22	-1												
23	26 PFDA	$513>468.8$	6.03 e 3	4.49 e 3	0.125		4.93	4.93	16.8	80.8252	101.0	4.484	NO
24	29 L-MeFOSAA	$570>419$	2.80 e 3	1.11 e 3	0.125		5.08	5.09	31.6	84.5379	105.7	2.870	NO
25	83 Total N-MeFOSAA	570. >419	2.80 e 3	1.11 e 3	0.125		5.19		31.6	84.5379			
26	33 PFUdA	$563.0>518.9$	5.09e3	6.35 e 3	0.125		5.26	5.26	10.0	86.0433	107.6	6.960	NO
27	37 PFDoA	$612.9>569.0$	4.69 e 3	5.70 e 3	0.125		5.55	5.55	10.3	86.1885	107.7	7.289	NO
28	60 13C2-PFDA	$515.1>469.9$	4.49 e 3	1.01 e 4	0.125	0.662	4.94	4.93	5.55	67.0208	67.0		
29	62 d3-N-MeFOSAA	$573.3>419$	1.11 e 3	1.26 e 4	0.125	0.129	5.09	5.08	1.10	68.3306	68.3		
30	$62 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	$573.3>419$	1.11 e 3	1.26 e 4	0.125	0.129	5.09	5.08	1.10	68.3306	68.3		
31	63 13C2-PFUdA	$565>519.8$	6.35 e 3	$1.26 e 4$	0.125	0.857	5.26	5.26	6.32	58.9557	59.0		
32	65 13C2-PFDoA	$614.7>569.7$	5.70 e3	1.01 e 4	0.125	1.229	5.55	5.55	7.04	45.8324	45.8		
33	-1												
34	31 L-EtFOSAA	$584.1>419$	1.99 e 3	1.10e3	0.125		5.24	5.25	22.6	91.0494	113.8	1.437	NO
35	84 Total N-EtFOSAA	$584.1>419$	1.99e3	1.10 e 3	0.125		5.33		22.6	91.0494			
36	39 PFTrDA	$662.9>618.9$	4.94 e 3	5.70 e 3	0.125		5.80	5.80	10.8	81.7354	102.2	13.117	NO

Dataset:	Z:IPFAS.PRO\Results\190711M3\190711M3-35.qld
Last Altered:	Monday, July 15, 2019 09:40:54 Pacific Daylight Time
Printed:	Monday, July 15, 2019 09:43:10 Pacific Daylight Time

Name: 190711M3_35, Date: 12-Jul-2019, Time: 03:27:38, ID: B9G0062-BSD1 LCSD 0.125, Description: LCSD

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	41 PFTeDA	$713.0>669.0$	3.53 e3	2.66 e 3	0.125		6.02	6.02	16.5	88.3182	110.4	12.150	NO
38	85 TDCA	$498.3>106.9$			0.125		5.45						
39	64 d5-N-EtFOSAA	$589.3>419$	1.10 e 3	1.26 e 4	0.125	0.147	5.24	5.24	1.09	59.2984	59.3		
40	64 d5-N-EtFOSAA	$589.3>419$	1.10 e 3	1.26 e 4	0.125	0.147	5.24	5.24	1.09	59.2984	59.3		
41	65 13C2-PFDoA	$614.7>569.7$	5.70 e 3	1.01 e 4	0.125	1.229	5.55	5.55	7.04	45.8324	45.8		
42	67 13C2-PFTeDA	$715.1>669.7$	2.66 e 3	1.26 e 4	0.125	0.511	6.02	6.02	2.65	41.4365	41.4		
43	59 13C8-PFOS	$507.0>79.9$	1.08 e 3	1.39 e 3	0.125	1.060	4.64	4.64	9.65	72.8274	72.8		
44	-1												
45	73 13C5-PFHxA	318.0 > 272.9	9.46 e 3	9.46 e 3	0.125	1.000	2.96	2.96	12.5	100.0000	100.0		
46	75 13C8-PFOA	$420.9>376.0$	1.42 e 4	1.42 e 4	0.125	1.000	4.11	4.11	12.5	100.0000	100.0		
47	74 1802-PFHxS	$403.0>102.6$	5.93 e 2	5.93 e 2	0.125	1.000	3.74	3.74	12.5	100.0000	100.0		
48	76 13C9-PFNA	$472.2>426.9$	8.54 e 3	8.54 e 3	0.125	1.000	4.55	4.55	12.5	100.0000	100.0		
49	77 13C4-PFOS	$503>79.9$	1.39 e 3	1.39 e 3	0.125	1.000	4.64	4.64	12.5	100.0000	100.0		
50	78 13C6-PFDA	$519.1>473.7$	1.01 e 4	1.01e4	0.125	1.000	4.93	4.93	12.5	100.0000	100.0		
51	79 13C7-PFUdA	$570.1>524.8$	$1.26 e 4$	1.26 e 4	0.125	1.000	5.26	5.26	12.5	100.0000	100.0		

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:\PFAS.PRO\Results\190711M3\190711M3-35.qld
Last Altered:	Monday, July 15, 2019 09:40:54 Pacific Daylight Time
Printed:	Monday, July 15, 2019 09:43:10 Pacific Daylight Time

Method: Z:\PFAS.PRO\MethDB\PFAS_FULL_80C_071119.mdb 12 Jul 2019 08:40:55

Calibration: Z:\PFAS.PRO\CurveDB\C18_VAL-PFĀS_Q4_07-10-19.cdb 11 Jul 2019 10:56:26

Name: 190711M3_35, Date: 12-Jul-2019, Time: 03:27:38, ID: B9G0062-BSD1 LCSD 0.125, Description: LCSD

PFBS
F11:MRM of 2 channels,ES-
$299.0>79.7$
$2.799 \mathrm{e}+004$

13C3-PFBS

F12:MRM of 1 channel,ES$302.0>98.8$

13C2-PFHxA

PFHpA

13C4-PFHpA

L-PFHxS
 F23:MRM of 2 channels,ES-
 $398.9>79.6$ $1.959 \mathrm{e}+004$

13C3-PFHxS

13C3-PFHxS
F24:MRM of 1 channel,ES$401.8>79.9$ $3.056 \mathrm{e}+004$

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:IPFAS.PRO\Results\190711M3\190711M3-35.qld
Last Altered:	Monday, July 15, 2019 09:40:54 Pacific Daylight Time
Printed:	Monday, July 15, 2019 09:43:10 Pacific Daylight Time

Name: 190711M3_35, Date: 12-Jul-2019, Time: 03:27:38, ID: B9G0062-BSD1 LCSD 0.125, Description: LCSD

L-PFOA

F26:MRM of 2 channels,Es-

		$412.8>368.9$
100	L-PFOA	$2.570 \mathrm{e}+005$
	4.11	
	1.00 e 4	
\%	255978	
	bb	
	1625.72	

13C2-PFOA

13C2-PFOA

PFNA

13C5-PFNA

L-PFOS

13C8-PFOS
F42:MRM of 1 channel,ES-

Total PFOS

13C8-PFOS
F42:MRM of 1 channel,ES507.0 > 79.9

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:IPFAS.PRO\Results\190711M3\190711M3-35.qld
Last Altered:	Monday, July 15, 2019 09:40:54 Pacific Daylight Time
Printed:	Monday, July 15, 2019 09:43:10 Pacific Daylight Time

Name: 190711M3_35, Date: 12-Jul-2019, Time: 03:27:38, ID: B9G0062-BSD1 LCSD 0.125, Description: LCSD

PFDA

F44:MRM of 2 channels,ES-
$513>468.8$
1.4380 .005
$100 \quad 1.438 \mathrm{e}+005$

F44:MRM of 2 channels,ES-$513>219$		
100	PFDA	$3.298 e+004$
	4.93	
	1.35 e 3	
\%	32935	
	bb	
	32935.00	
$0-$ -		
4.7505 .0005 .250		

13C2-PFDA
F45:MRM of 1 channel,ES$515.1>469.9$ $1.072 \mathrm{e}+005$

\section*{L-MeFOSAA
 F56:MRM of 2 channels,ES-
 | | F56:MRM of | channels,ES- $570>419$ |
| :---: | :---: | :---: |
| 100 | L-MeFOSAA | $5.938 \mathrm{e}+004$ |
| | 5.09 | |
| | 2.80 e 3 | |
| | 59383 | |
| \% - | MM | |
| | 59383.00 | |

F56:MRM of 2 channels,ES-

	F56:MRM	hannels,ES- $570 .>512$
100	L-MeFOSAA	$1.985 \mathrm{e}+004$
100	5.09	
	9.75 e 2	
\%-	19852	
	MM	
	19852.00	
	-	
	4.7505 .000	

d3-N-MeFOSAA
F58:MRM of 1 channel,ES$573.3>419$ $2.647 e+004$

Total N-MeFOSAA

F56:MRM of 2 channels,ES-
$570>419$
$5.938 \mathrm{e}+004$
F56:MRM of 2 channels,ES-

4.7505 .0005 .250
d3-N-MeFOSAA
F58:MRM of 1 channel,ES-

13C2-PFUdA

PFDoA

F62:MRM of 4 channels,ES-
$612.9>318.8$

13C2-PFDoA
F63:MRM of 1 channel,ES $614.7>569.7$

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:IPFAS.PRO\Results\190711M3\190711M3-35.qld
Last Altered:	Monday, July 15, 2019 09:40:54 Pacific Daylight Time
Printed:	Monday, July 15, 2019 09:43:10 Pacific Daylight Time

Name: 190711M3_35, Date: 12-Jul-2019, Time: 03:27:38, ID: B9G0062-BSD1 LCSD 0.125, Description: LCSD

L-EtFOSAA

F59:MRM of 2 channels, ES-
584.1 > 526 $2.789 \mathrm{e}+004$

d5-N-EtFOSAA
F60:MRM of 1 channel,ES-

PFTrDA

13C2-PFDoA

PFTeDA

13C2-PFTeDA

TDCA

13C8-PFOS
F42:MRM of 1 channel,ES 507.0 > 79.9

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset: Z:\PFAS.PRO\Results\190711M3\190711M3-35.qld
 Last Altered: Monday, July 15, 2019 09:40:54 Pacific Daylight Time Printed: Monday, July 15, 2019 09:43:10 Pacific Daylight Time

Name: 190711M3_35, Date: 12-Jul-2019, Time: 03:27:38, ID: B9G0062-BSD1 LCSD 0.125, Description: LCSD

13C5-PFHxA
 F15:MRM of 1 channel,ES-
 $318.0>272.9$ $2.619 \mathrm{e}+005$

F47:MRM of 1 channel,ES $519.1>473.7$ $2.445 \mathrm{e}+005$

13C7-PFUdA

F57:MRM of 1 channel,ES$570.1>524.8$ $3.139 \mathrm{e}+005$

13C4-PFOS

MassLynx MassLynx V4.1 SCN 945
Dataset:
Z:IPFAS.PRO\Results\190711M3\190711M3-37.qld
Last Altered: Tuesday, July 16, 2019 10:40:29 Pacific Daylight Time
Printed:
Tuesday, July 16, 2019 10:42:17 Pacific Daylight Time

Name: 190711M3_37, Date: 12-Jul-2019, Time: 03:48:49, ID: 1901922-01 FRB-07022019 0.10709, Description: FRB-07022019

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	$299.0>79.7$		5.42 e 2	0.107		2.46						
2	7 PFHxA	$313.0>269.0$		2.57 e 3	0.107		2.96						
3	11 PFHpA	$363.0>318.9$		3.10 e 3	0.107		3.59						
4	13 L-PFHxS	$398.9>79.6$		1.25 e 3	0.107		3.74						
5	80 Total PFHxS	$398.9>79.6$	0.00 e 0	1.25 e 3	0.107		3.83		0.000				
6	49 13C3-PFBS	$302.0>98.8$	5.42 e 2	5.51 e 2	0.107	1.035	2.46	2.46	12.3	110.8508	95.0		
7	52 13C2-PFHxA	$315.0>270.0$	2.57 e 3	9.02 e 3	0.107	0.792	2.96	2.96	3.56	42.0098	90.0		
8	53 13C4-PFHpA	$367.2>321.8$	3.10 e 3	9.02 e 3	0.107	0.391	3.58	3.59	4.30	102.6826	88.0		
9	54 13C3-PFHxS	$401.8>79.9$	1.25 e 3	5.51 e 2	0.107	2.547	3.74	3.74	28.4	104.1369	89.2		
10	54 13C3-PFHxS	$401.8>79.9$	1.25 e 3	5.51 e 2	0.107	2.547	3.74	3.74	28.4	104.1369	89.2		
11	-1												
12	16 L-PFOA	$412.8>368.9$		6.78 e 3	0.107		4.11						
13	81 Total PFOA	$412.8>368.9$	0.00e0	6.78 e 3	0.107		4.21		0.000				
14	21 PFNA	$463.0>418.8$		6.71 e3	0.107		4.56						
15	23 L-PFOS	$498.9>79.9$		1.10 e 3	0.107		4.64						
16	82 Total PFOS	$498.9>79.9$	0.00 e 0	1.10 e 3	0.107		4.74		0.000				
17	58 13C2-PFOA	$414.9>369.7$	6.78 e 3	1.29 e 4	0.107	0.564	4.11	4.11	6.58	108.8541	93.3		
18	58 13C2-PFOA	$414.9>369.7$	6.78 e 3	1.29 e 4	0.107	0.564	4.11	4.11	6.58	108.8541	93.3		
19	56 13C5-PFNA	$468.2>422.9$	6.71 e 3	7.74 e 3	0.107	0.983	4.56	4.56	10.8	102.8721	88.1		
20	59 13C8-PFOS	$507.0>79.9$	1.10 e 3	1.18 e 3	0.107	1.060	4.64	4.64	11.6	102.5593	87.9		
21	59 13C8-PFOS	$507.0>79.9$	1.10 e 3	1.18 e 3	0.107	1.060	4.64	4.64	11.6	102.5593	87.9		
22	-1												
23	26 PFDA	$513>468.8$		4.87 e 3	0.107		4.93						
24	29 L-MeFOSAA	$570>419$		9.56 e 2	0.107		5.08						
25	83 Total N-MeFOSAA	570. >419	0.00e0	9.56 e 2	0.107		5.19		0.000				
26	33 PFUdA	$563.0>518.9$	6.79 e 0	8.12 e 3	0.107		5.26	5.25	0.0105			17.976	YES
27	37 PFDoA	$612.9>569.0$		8.84e3	0.107		5.55						
28	60 13C2-PFDA	$515.1>469.9$	4.87 e 3	9.58 e 3	0.107	0.662	4.94	4.93	6.36	89.6766	76.8		
29	62 d3-N-MeFOSAA	$573.3>419$	9.56 e 2	1.12 e 4	0.107	0.129	5.09	5.08	1.07	77.5684	66.5		
30	62 d3-N-MeFOSAA	$573.3>419$	9.56 e 2	1.12 e 4	0.107	0.129	5.09	5.08	1.07	77.5684	66.5		
31	63 13C2-PFUdA	$565>519.8$	8.12 e 3	1.12 e 4	0.107	0.857	5.26	5.26	9.10	99.1573	85.0		
32	65 13C2-PFDoA	$614.7>569.7$	8.84 e 3	9.58 e 3	0.107	1.229	5.55	5.55	11.5	87.6907	75.1		
33	-1												
34	31 L-EtFOSAA	$584.1>419$		1.20 e 3	0.107		5.24						
35	84 Total N-EtFOSAA	$584.1>419$	0.00 e 0	1.20 e 3	0.107		5.33		0.000				
36	39 PFTrDA	$662.9>618.9$		8.84e3	0.107		5.80						

Dataset:	Z:IPFAS.PRO\Results\190711M3\190711M3-37.qld
Last Altered:	Tuesday, July 16, 2019 10:40:29 Pacific Daylight Time
Printed:	Tuesday, July 16, 2019 10:42:17 Pacific Daylight Time

Name: 190711M3_37, Date: 12-Jul-2019, Time: 03:48:49, ID: 1901922-01 FRB-07022019 0.10709, Description: FRB-07022019

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	41 PFTeDA	713.0 > 669.0		4.78 e 3	0.107		6.02						
38	85 TDCA	$498.3>106.9$			0.107		5.45						
39	64 d5-N-EtFOSAA	$589.3>419$	1.20 e 3	1.12 e 4	0.107	0.147	5.24	5.24	1.34	85.0214	72.8		
40	$64 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$	$589.3>419$	1.20 e 3	1.12 e 4	0.107	0.147	5.24	5.24	1.34	85.0214	72.8		
41	65 13C2-PFDoA	$614.7>569.7$	8.84e3	9.58 e 3	0.107	1.229	5.55	5.55	11.5	87.6907	75.1		
42	67 13C2-PFTeDA	$715.1>669.7$	4.78 e 3	1.12 e 4	0.107	0.511	6.02	6.02	5.36	97.8949	83.9		
43	59 13C8-PFOS	$507.0>79.9$	1.10 e 3	1.18 e 3	0.107	1.060	4.64	4.64	11.6	102.5593	87.9		
44	-1												
45	73 13C5-PFHxA	318.0 > 272.9	9.02 e 3	9.02 e 3	0.107	1.000	2.96	2.96	12.5	116.7243	100.0		
46	75 13C8-PFOA	$420.9>376.0$	1.29 e 4	1.29 e 4	0.107	1.000	4.11	4.11	12.5	116.7243	100.0		
47	74 1802-PFHxS	403.0 > 102.6	5.51 e 2	5.51 e 2	0.107	1.000	3.74	3.74	12.5	116.7243	100.0		
48	76 13C9-PFNA	$472.2>426.9$	7.74 e 3	7.74 e 3	0.107	1.000	4.55	4.56	12.5	116.7243	100.0		
49	77 13C4-PFOS	$503>79.9$	1.18 e 3	1.18 e 3	0.107	1.000	4.64	4.64	12.5	116.7243	100.0		
50	78 13C6-PFDA	$519.1>473.7$	9.58 e 3	9.58 e 3	0.107	1.000	4.93	4.93	12.5	116.7243	100.0		
51	79 13C7-PFUdA	$570.1>524.8$	1.12 e 4	1.12e4	0.107	1.000	5.26	5.26	12.5	116.7243	100.0		

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:\PFAS.PRO\Results\190711M3\190711M3-37.qld
Last Altered:	Tuesday, July 16, 2019 10:40:29 Pacific Daylight Time
Printed:	Tuesday, July 16, 2019 10:42:17 Pacific Daylight Time

Method: Z:|PFAS.PRO\MethDB\PFAS_FULL_80C_071119.mdb 12 Jul 2019 08:40:55

Calibration: Z:\PFAS.PRO\CurveDB\C18_VAL-PFĀS_Q4_07-10-19.cdb 11 Jul 2019 10:56:26

Name: 190711M3_37, Date: 12-Jul-2019, Time: 03:48:49, ID: 1901922-01 FRB-07022019 0.10709, Description: FRB-07022019

PFBS
 F11:MRM of 2 channels,ES- $299.0>79.7$ $1.000 \mathrm{e}-003$

13C3-PFBS

F12:MRM of 1 channel,ES$302.0>98.8$

13C2-PFHxA

PFHpA

F20:MRM of 2 channels,ES363.0 > 169.0

13C4-PFHpA

13C3-PFHxS

F24:MRM of 1 channel,ES401.8 > 79.9 $3.137 e+004$

Total PFHxS		
F23:MRM of 2 channels,ES-		
		398.9 > 79.6
	3.73	$8.716 \mathrm{e}+001$
1007		

13C3-PFHxS
F24:MRM of 1 channel,ES$401.8>79.9$ $3.137 e+004$

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:\PFAS.PRO\Results\190711M3\190711M3-37.qld
Last Altered:	Tuesday, July 16, 2019 10:40:29 Pacific Daylight Time
Printed:	Tuesday, July 16, 2019 10:42:17 Pacific Daylight Time

Name: 190711M3_37, Date: 12-Jul-2019, Time: 03:48:49, ID: 1901922-01 FRB-07022019 0.10709, Description: FRB-07022019

L-PFOA

F26:MRM of 2 channels,ES-
F26:MRM of 2 channels,ES-
$412.8>368.9$

13C2-PFOA
F27:MRM of 1 channel,ES$414.9>369.7$ $1.722 \mathrm{e}+005$

13C2-PFOA

PFNA

F34:MRM of 2 channels,ES-

13C5-PFNA

13C8-PFOS
F42:MRM of 1 channel,ES-
$507.0>79.9$

Total PFOS
F39:MRM of 2 channels,ES 498.9 > 79.9 $1.000 \mathrm{e}-003$
(100

13C8-PFOS
F42:MRM of 1 channel,ES 507.0 > 79.9

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:\PFAS.PRO\Results\190711M3\190711M3-37.qld
Last Altered:	Tuesday, July 16, 2019 10:40:29 Pacific Daylight Time
Printed:	Tuesday, July 16, 2019 10:42:17 Pacific Daylight Time

Name: 190711M3_37, Date: 12-Jul-2019, Time: 03:48:49, ID: 1901922-01 FRB-07022019 0.10709, Description: FRB-07022019

PFDA

F44:MRM of 2 channels,ES-
$513>468.8$

100
\square

100-1.000e-003

F44:MRM of 2 channels,ES-
$513>219$
$1.000 \mathrm{e}-003$

13C2-PFDA

F45:MRM of 1 channel,ES$515.1>469.9$

d3-N-MeFOSAA
F58:MRM of 1 channel,ES$573.3>419$ $2.288 \mathrm{e}+004$

T

Total N-MeFOSAA
F56:MRM of 2 channels,ES$3.193 \mathrm{e}+001$

d3-N-MeFOSAA
F58:MRM of 1 channel,ES-

PFDoA

13C2-PFUdA

13C2-PFDoA
F63:MRM of 1 channel,ES $614.7>569.7$

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:\PFAS.PRO\Results\190711M3\190711M3-37.qld
Last Altered:	Tuesday, July 16, 2019 10:40:29 Pacific Daylight Time
Printed:	Tuesday, July 16, 2019 10:42:17 Pacific Daylight Time

Name: 190711M3_37, Date: 12-Jul-2019, Time: 03:48:49, ID: 1901922-01 FRB-07022019 0.10709, Description: FRB-07022019

L-EtFOSAA

d5-N-EtFOSAA
F60:MRM of 1 channel,ES-

d5-N-EtFOSAA

PFTrDA

13C2-PFDoA

PFTeDA

F72:MRM of 2 channels,ES713. >369.0
$1.000-003$

13C2-PFTeDA

F73:MRM of 2 channels,ES$715.1>669.7$

TDCA

13C8-PFOS
F42:MRM of 1 channel,ES$507.0>79.9$

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset: Z:IPFAS.PRO\Results\190711M3\190711M3-37.qld
 Last Altered: Tuesday, July 16, 2019 10:40:29 Pacific Daylight Time Printed: \quad Tuesday, July 16, 2019 10:42:17 Pacific Daylight Time

Name: 190711M3_37, Date: 12-Jul-2019, Time: 03:48:49, ID: 1901922-01 FRB-07022019 0.10709, Description: FRB-07022019

13C6-PFDA
F47:MRM of 1 channel,ES$519.1>473.7$ $2.315 \mathrm{e}+005$

13C7-PFUdA

F57:MRM of 1 channel,ES$570.1>524.8$ $2.811 e+005$

Quantify Sample Report

Dataset:
 Z:IPFAS.PRO\Results\190711M3\190711M3-38.qld
 Last Altered: Tuesday, July 16, 2019 10:46:55 Pacific Daylight Time Printed: \quad Tuesday, July 16, 2019 10:49:20 Pacific Daylight Time

Name: 190711M3_38, Date: 12-Jul-2019, Time: 03:59:23, ID: 1901922-02 CAOA-B02-GW 0.1205, Description: CAOA-B02-GW

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
1	5 PFBS	$299.0>79.7$	2.64 e 2	5.29e2	0.121		2.46	2.46	6.25	23.2630		3.047	NO
2	7 PFHxA	$313.0>269.0$	5.97e3	2.64 e 3	0.121		2.96	2.96	11.3	80.7009		13.190	NO
3	11 PFHpA	$363.0>318.9$	7.02e2	3.14 e 3	0.121		3.58	3.58	2.79	19.1085		5.869	NO
4	13 L-PFHxS	$398.9>79.6$	2.54 e 3	1.18 e 3	0.121		3.74	3.74	26.8	258.5302		2.003	NO
5	80 Total PFHxS	$398.9>79.6$	2.54 e 3	1.18 e 3	0.121		3.83		26.8	258.5302			
6	49 13C3-PFBS	$302.0>98.8$	5.29 e 2	5.39 e 2	0.121	1.035	2.46	2.46	12.3	98.3372	94.8		
7	52 13C2-PFHxA	$315.0>270.0$	2.64 e 3	8.33 e 3	0.121	0.792	2.96	2.96	3.97	41.5542	100.1		
8	53 13C4-PFHpA	$367.2>321.8$	3.14 e 3	8.33 e 3	0.121	0.391	3.58	3.58	4.72	100.1192	96.5		
9	54 13C3-PFHxS	$401.8>79.9$	1.18 e 3	5.39 e 2	0.121	2.547	3.74	3.74	27.4	89.4236	86.2		
10	54 13C3-PFHxS	$401.8>79.9$	1.18 e 3	5.39 e 2	0.121	2.547	3.74	3.74	27.4	89.4236	86.2		
11	-1												
12	16 L-PFOA	$412.8>368.9$	9.13 e 3	6.59 e 3	0.121		4.11	4.11	17.3	77.6162		3.116	NO
13	81 Total PFOA	$412.8>368.9$	9.13 e 3	6.59 e 3	0.121		4.21		17.3	77.6162			
14	21 PFNA	$463.0>418.8$	5.16 e 3	6.84e3	0.121		4.55	4.55	9.43	71.1770		3.212	NO
15	23 L-PFOS	$498.9>79.9$	2.55 e 3	1.25 e 3	0.121		4.64	4.64	25.5	168.0306		2.054	NO
16	82 Total PFOS	$498.9>79.9$	2.55 e 3	1.25 e 3	0.121		4.74		25.5	168.0306			
17	58 13C2-PFOA	$414.9>369.7$	6.59 e 3	1.15 e 4	0.121	0.564	4.11	4.11	7.17	105.4071	101.6		
18	58 13C2-PFOA	$414.9>369.7$	6.59 e 3	1.15 e 4	0.121	0.564	4.11	4.11	7.17	105.4071	101.6		
19	56 13C5-PFNA	$468.2>422.9$	6.84 e 3	7.51 e 3	0.121	0.983	4.56	4.55	11.4	96.1907	92.7		
20	59 13C8-PFOS	$507.0>79.9$	1.25 e 3	1.14 e 3	0.121	1.060	4.64	4.64	13.6	106.6099	102.8		
21	59 13C8-PFOS	$507.0>79.9$	1.25 e 3	1.14 e 3	0.121	1.060	4.64	4.64	13.6	106.6099	102.8		
22	-1												
23	26 PFDA	$513>468.8$	2.44 e 2	4.90 e 3	0.121		4.93	4.93	0.622	3.6605		4.248	NO
24	29 L-MeFOSAA	$570>419$		7.67e2	0.121		5.08						
25	83 Total N-MeFOSAA	570. >419	0.00e0	7.67e2	0.121		5.19		0.000				
26	33 PFUdA	$563.0>518.9$	3.12 e 2	6.93 e 3	0.121		5.26	5.26	0.563	4.9029		7.210	NO
27	37 PFDoA	$612.9>569.0$		6.93 e 3	0.121		5.55						
28	60 13C2-PFDA	$515.1>469.9$	4.90 e 3	8.56 e 3	0.121	0.662	4.94	4.93	7.15	89.5546	86.3		
29	62 d3-N-MeFOSAA	$573.3>419$	7.67e2	1.01 e 4	0.121	0.129	5.09	5.08	0.953	61.3099	59.1		
30	62 d3-N-MeFOSAA	$573.3>419$	7.67e2	1.01 e 4	0.121	0.129	5.09	5.08	0.953	61.3099	59.1		
31	63 13C2-PFUdA	$565>519.8$	6.93 e 3	1.01 e 4	0.121	0.857	5.26	5.26	8.61	83.3720	80.4		
32	65 13C2-PFDoA	$614.7>569.7$	6.93 e 3	8.56 e 3	0.121	1.229	5.55	5.55	10.1	68.3153	65.9		
33	-1												
34	31 L-EtFOSAA	$584.1>419$		1.20 e 3	0.121		5.24						
35	84 Total N-EtFOSAA	$584.1>419$	0.00 e 0	1.20 e 3	0.121		5.33		0.000				
36	39 PFTrDA	$662.9>618.9$		6.93 e 3	0.121		5.80						

Dataset: Z:IPFAS.PRO\Results\190711M3\190711M3-38.qld
 Last Altered: Tuesday, July 16, 2019 10:46:55 Pacific Daylight Time
 Printed:
 Tuesday, July 16, 2019 10:49:20 Pacific Daylight Time

Name: 190711M3_38, Date: 12-Jul-2019, Time: 03:59:23, ID: 1901922-02 CAOA-B02-GW 0.1205, Description: CAOA-B02-GW

	\# Name	Trace	Area	IS Area	wt/vol	RRF Mean	Pred.RT	RT	Response	Conc.	\%Rec	Ion Ratio	Ratio Out?
37	41 PFTeDA	713.0 > 669.0		3.89e3	0.121		6.02						
38	85 TDCA	$498.3>106.9$			0.121		5.45						
39	64 d5-N-EtFOSAA	$589.3>419$	1.20 e 3	1.01e4	0.121	0.147	5.24	5.24	1.49	83.6151	80.6		
40	64 d5-N-EtFOSAA	$589.3>419$	1.20 e 3	1.01e4	0.121	0.147	5.24	5.24	1.49	83.6151	80.6		
41	65 13C2-PFDoA	$614.7>569.7$	6.93 e 3	8.56 e 3	0.121	1.229	5.55	5.55	10.1	68.3153	65.9		
42	67 13C2-PFTeDA	$715.1>669.7$	3.89 e 3	1.01 e 4	0.121	0.511	6.02	6.02	4.83	78.3374	75.5		
43	59 13C8-PFOS	$507.0>79.9$	1.25 e 3	1.14 e 3	0.121	1.060	4.64	4.64	13.6	106.6099	102.8		
44	-1												
45	73 13C5-PFHxA	318.0 > 272.9	8.33 e 3	8.33e3	0.121	1.000	2.96	2.96	12.5	103.7344	100.0		
46	75 13C8-PFOA	$420.9>376.0$	1.15 e 4	1.15 e 4	0.121	1.000	4.11	4.11	12.5	103.7344	100.0		
47	74 1802-PFHxS	$403.0>102.6$	5.39 e 2	5.39 e 2	0.121	1.000	3.74	3.74	12.5	103.7344	100.0		
48	76 13C9-PFNA	$472.2>426.9$	7.51 e 3	7.51e3	0.121	1.000	4.55	4.55	12.5	103.7344	100.0		
49	77 13C4-PFOS	$503>79.9$	1.14 e 3	1.14 e 3	0.121	1.000	4.64	4.64	12.5	103.7344	100.0		
50	78 13C6-PFDA	$519.1>473.7$	8.56 e 3	8.56 e 3	0.121	1.000	4.93	4.93	12.5	103.7344	100.0		
51	79 13C7-PFUdA	$570.1>524.8$	1.01 e 4	1.01 e 4	0.121	1.000	5.26	5.26	12.5	103.7344	100.0		

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:\PFAS.PRO\Results\190711M3\190711M3-38.qld
Last Altered:	Tuesday, July 16, 2019 10:46:55 Pacific Daylight Time
Printed:	Tuesday, July 16, 2019 10:49:20 Pacific Daylight Time

Method: Z:\PFAS.PRO\MethDB\PFAS_FULL_80C_071119.mdb 12 Jul 2019 08:40:55

Calibration: Z:\PFAS.PRO\CurveDB\C18_VAL-PFĀS_Q4_07-10-19.cdb 11 Jul 2019 10:56:26

Name: 190711M3_38, Date: 12-Jul-2019, Time: 03:59:23, ID: 1901922-02 CAOA-B02-GW 0.1205, Description: CAOA-B02-GW

$$
\begin{aligned}
& \text { F11:MRM of } 2 \text { channels,ES- }
\end{aligned}
$$

13C3-PFBS

13C2-PFHxA

13C4-PFHpA

13C3-PFHxS

13C3-PFHxS

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:	Z:\PFAS.PRO\Results\190711M3\190711M3-38.qld
Last Altered:	Tuesday, July 16, 2019 10:46:55 Pacific Daylight Time
Printed:	Tuesday, July 16, 2019 10:49:20 Pacific Daylight Time

Name: 190711M3_38, Date: 12-Jul-2019, Time: 03:59:23, ID: 1901922-02 CAOA-B02-GW 0.1205, Description: CAOA-B02-GW

L-PFOA

F26:MRM of 2 channels,Es-
$412.8>368.9$

F26:MRM of 2 channels,ES-

13C2-PFOA

13C2-PFOA

PFNA

13C5-PFNA

13C8-PFOS
F42:MRM of 1 channel,ES-

Total PFOS

F39:MRM of 2 channels,ES-
$498.9>79.9$
$4.276 \mathrm{e}+004$

13C8-PFOS
F42:MRM of 1 channel,ES$507.0>79.9$

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset: Z:|PFAS.PRO\Results\190711M3\190711M3-38.qld
 Last Altered: Tuesday, July 16, 2019 10:46:55 Pacific Daylight Time
 Printed: \quad Tuesday, July 16, 2019 10:49:20 Pacific Daylight Time

Name: 190711M3_38, Date: 12-Jul-2019, Time: 03:59:23, ID: 1901922-02 CAOA-B02-GW 0.1205, Description: CAOA-B02-GW

PFDA

F44:MRM of 2 channels,ES-

13C2-PFDA
F45:MRM of 1 channel,ES$515.1>469.9$

F58:MRM of 1 channel,ES $573.3>419$ $1.672 \mathrm{e}+004$
TO
10

d3-N-MeFOSAA

F58:MRM of 1 channel,ES-

13C2-PFUdA

PFDoA

F62:MRM of 4 channels,ES-
$612.9>318.8$
$1.000 \mathrm{e}-003$

13C2-PFDoA
F63:MRM of 1 channel,ES $614.7>569.7$

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset:
 Z:\PFAS.PRO\Results\190711M3\190711M3-38.qld
 Last Altered: Tuesday, July 16, 2019 10:46:55 Pacific Daylight Time
 Printed: \quad Tuesday, July 16, 2019 10:49:20 Pacific Daylight Time

Name: 190711M3_38, Date: 12-Jul-2019, Time: 03:59:23, ID: 1901922-02 CAOA-B02-GW 0.1205, Description: CAOA-B02-GW

L-EtFOSAA

F59:MRM of 2 channels,ES$584.1>419$

100 5.25 | $584.1>419$ |
| :--- |
| $7.059 \mathrm{e}+001$ |

d5-N-EtFOSAA
F60:MRM of 1 channel,ESF60:MRM of 1 channel,ES-
$589.3>419$
$2.828 \mathrm{e}+004$

d5-N-EtFOSAA
F60:MRM of 1 channel,ES $589.3>419$ $2.828 \mathrm{e}+004$

PFTrDA

F70:MRM of 2 channels,ES-	
	$662.9>618.9$
PFTrDA	$1.296 \mathrm{e}+003$
$100 \square 5.80$	
5.11 e 1	
\%- 1295	
MM-	
1295.00	

13C2-PFDoA

13C2-PFTeDA

TDCA
F38:MRM of 3 channels,ES 498.3 > 106.9 $1.000 \mathrm{e}-003$
100 $1.000 \mathrm{e}-003$

F38:MRM of 3 channels,ES 498.3 > 123.9 $1.000 \mathrm{e}-003$

13C8-PFOS

F42:MRM of 1 channel,ES $507.0>79.9$

Quantify Sample Report

MassLynx MassLynx V4.1 SCN 945

Dataset: Z:IPFAS.PRO\Results\190711M3\190711M3-38.qld
 Last Altered: Tuesday, July 16, 2019 10:46:55 Pacific Daylight Time Printed: \quad Tuesday, July 16, 2019 10:49:20 Pacific Daylight Time

Name: 190711M3_38, Date: 12-Jul-2019, Time: 03:59:23, ID: 1901922-02 CAOA-B02-GW 0.1205, Description: CAOA-B02-GW

13C5-PFHxA
 F15:MRM of 1 channel,ES-
 $318.0>272.9$
 $2.207 \mathrm{e}+005$

F47:MRM of 1 channel,ES $519.1>473.7$ $2.106 e+005$

13C7-PFUdA

F57:MRM of 1 channel,ES$570.1>524.8$ $2.484 \mathrm{e}+005$

INJECTION INTERNAL STANDARD (IIS) AREAS,

INSTRUMENT BLANKS (IB)

AND

CONTINUTING CALIBRATION VERIFICATIONS CCV)

Quantify Sample Summary Report
Vista Analytical Laboratory

Dataset: Untitled
Last Altered: Friday, July 12, 2019 15:56:55 Pacific Daylight Time
Printed: \quad Friday, July 12, 2019 15:56:58 Pacific Daylight Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_RS-07-11-19.mdb 11 Jul 2019 15:12:17 Calibration: 12 Jul 2019 15:56:55

Name: 190711M3_4, Date: 11-Jul-2019, Time: 21:59:01, ID: ST190711M3-3 PFC CS0 19G1103, Description: PFC CS0 $19 G 1103$

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	ST190711M3-3 PFC CS0 19G1103	3.19 e 3	100.0	NO
2	$213 C 5-P F H x A$	ST190711M3-3 PFC CS0 19G1103	1.12 e 4	100.0	NO
3	$318 \mathrm{O}-$ PFHxS	ST190711M3-3 PFC CS0 19G1103	5.41 e 2	100.0	NO
4	$413 C 8-P F O A$	ST190711M3-3 PFC CS0 19G1103	1.48 e 4	100.0	NO
5	$513 C 9-P F N A$	ST190711M3-3 PFC CS0 19G1103	8.34 e 3	100.0	NO
6	$613 C 4-P F O S$	ST190711M3-3 PFC CS0 19G1103	1.44 e 3	100.0	NO
7	$713 C 6-P F D A$	ST190711M3-3 PFC CS0 19G1103	$1.12 e 4$	100.0	NO
8	$813 C 7-P F U d A$	ST190711M3-3 PFC CS0 19G1103	1.41 e 4	100.0	NO

Name: 190711M3_5, Date: 11-Jul-2019, Time: 22:09:33, ID: ST190711M3-4 PFC CS1 19G1104, Description: PFC CS1 $19 G 1104$

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	ST190711M3-4 PFC CS1 19G1104	3.72 e 3	116.5	NO
2	$213 C 5-P F H x A$	ST190711M3-4 PFC CS1 19G1104	1.18 e 4	105.6	NO
3	$318 O 2-P F H x S$	ST190711M3-4 PFC CS1 19G1104	5.97 e 2	110.5	NO
4	$413 C 8-P F O A$	ST190711M3-4 PFC CS1 19G1104	1.55 e 4	105.0	NO
5	$513 C 9-P F N A$	ST190711M3-4 PFC CS1 19G1104	9.65 e 3	115.7	NO
6	$613 C 4-P F O S$	ST190711M3-4 PFC CS1 19G1104	1.57 e 3	108.5	NO
7	$713 C 6-P F D A$	ST190711M3-4 PFC CS1 19G1104	1.19 e 4	106.4	NO
8	$813 C 7-P F U d A$	ST190711M3-4 PFC CS1 19G1104	1.40 e 4	99.3	NO

Name: 190711M3_6, Date: 11-Jul-2019, Time: 22:20:12, ID: ST190711M3-5 PFC CS2 19G1105, Description: PFC CS2 $19 G 1105$

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	ST190711M3-5 PFC CS2 19G1105	3.27e3	102.3	NO
2	2 13C5-PFHxA	ST190711M3-5 PFC CS2 19G1105	1.10 e 4	98.7	NO
3	3 18O2-PFHxS	ST190711M3-5 PFC CS2 19G1105	5.35 e 2	99.0	NO
4	4 13C8-PFOA	ST190711M3-5 PFC CS2 19G1105	1.41 e 4	95.7	NO
5	5 13C9-PFNA	ST190711M3-5 PFC CS2 19G1105	9.01 e 3	108.1	NO
6	6 13C4-PFOS	ST190711M3-5 PFC CS2 19G1105	1.41 e 3	98.0	NO
7	7 13C6-PFDA	ST190711M3-5 PFC CS2 19G1105	1.06 e 4	94.1	NO
8	8 13C7-PFUdA	ST190711M3-5 PFC CS2 19G1105	1.33 e 4	94.1	NO

Name: 190711M3_7, Date: 11-Jul-2019, Time: 22:30:45, ID: ST190711M3-6 PFC CS3 19G1106, Description: PFC CS3 $19 G 1106$

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	ST190711M3-6 PFC CS3 19G1106	3.26 e 3	102.0	NO
2	2 13C5-PFHxA	ST190711M3-6 PFC CS3 19G1106	1.06 e 4	94.7	NO
3	3 18O2-PFHxS	ST190711M3-6 PFC CS3 19G1106	5.77 e 2	106.8	NO
4	4 13C8-PFOA	ST190711M3-6 PFC CS3 19G1106	1.45 e 4	98.4	NO
5	5 13C9-PFNA	ST190711M3-6 PFC CS3 19G1106	8.64 e 3	103.6	NO
6	6 13C4-PFOS	ST190711M3-6 PFC CS3 19G1106	1.39 e 3	96.6	NO
7	7 13C6-PFDA	ST190711M3-6 PFC CS3 19G1106	1.04 e 4	92.7	NO
8	8 13C7-PFUdA	ST190711M3-6 PFC CS3 19G1106	1.27 e 4	90.2	NO

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: Untitled
Last Altered: Friday, July 12, 2019 15:56:55 Pacific Daylight Time
Printed: \quad Friday, July 12, 2019 15:56:58 Pacific Daylight Time

Name: 190711M3_8, Date: 11-Jul-2019, Time: 22:41:23, ID: ST190711M3-7 PFC CS4 19G1107, Description: PFC CS4 $19 G 1107$

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	ST190711M3-7 PFC CS4 19G1107	3.37e3	105.4	NO
2	2 13C5-PFHxA	ST190711M3-7 PFC CS4 19G1107	1.06 e 4	94.9	NO
3	3 18O2-PFHxS	ST190711M3-7 PFC CS4 19G1107	6.09 e 2	112.6	NO
4	4 13C8-PFOA	ST190711M3-7 PFC CS4 19G1107	1.37 e 4	92.8	NO
5	5 13C9-PFNA	ST190711M3-7 PFC CS4 19G1107	8.12 e 3	97.3	NO
6	6 13C4-PFOS	ST190711M3-7 PFC CS4 19G1107	1.47 e 3	101.9	NO
7	7 13C6-PFDA	ST190711M3-7 PFC CS4 19G1107	1.06 e 4	94.2	NO
8	8 13C7-PFUdA	ST190711M3-7 PFC CS4 19G1107	1.22 e 4	86.7	NO

Name: 190711M3_9, Date: 11-Jul-2019, Time: 22:51:57, ID: ST190711M3-8 PFC CS5 19G1108, Description: PFC CS5 19G1108

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	ST190711M3-8 PFC CS5 19G1108	3.27 e 3	102.4	NO
2	2 13C5-PFHxA	ST190711M3-8 PFC CS5 19G1108	1.02 e 4	91.4	NO
3	3 18O2-PFHxS	ST190711M3-8 PFC CS5 19G1108	6.28 e 2	116.1	NO
4	4 13C8-PFOA	ST190711M3-8 PFC CS5 19G1108	1.26 e 4	85.4	NO
5	5 13C9-PFNA	ST190711M3-8 PFC CS5 19G1108	8.05 e 3	96.5	NO
6	6 13C4-PFOS	ST190711M3-8 PFC CS5 19G1108	1.25 e 3	86.6	NO
7	7 13C6-PFDA	ST190711M3-8 PFC CS5 19G1108	9.53 e 3	84.9	NO
8	8 13C7-PFUdA	ST190711M3-8 PFC CS5 19G1108	1.16 e 4	82.0	NO

Name: 190711M3_10, Date: 11-Jul-2019, Time: 23:02:37, ID: ST190711M3-9 PFC CS6 19G1109, Description: PFC CS6 $19 G 1109$

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	ST190711M3-9 PFC CS6 19G1109	3.39e3	106.0	NO
2	2 13C5-PFHxA	ST190711M3-9 PFC CS6 19G1109	8.90e3	79.5	NO
3	3 18O2-PFHxS	ST190711M3-9 PFC CS6 19G1109	4.58 e 2	84.7	NO
4	4 13C8-PFOA	ST190711M3-9 PFC CS6 19G1109	1.06 e 4	71.6	NO
5	5 13C9-PFNA	ST190711M3-9 PFC CS6 19G1109	7.48 e 3	89.6	NO
6	6 13C4-PFOS	ST190711M3-9 PFC CS6 19G1109	1.16 e 3	80.2	NO
7	7 13C6-PFDA	ST190711M3-9 PFC CS6 19G1109	8.83e3	78.6	NO
8	8 13C7-PFUdA	ST190711M3-9 PFC CS6 19G1109	1.02 e 4	72.1	NO

Name: 190711M3_11, Date: 11-Jul-2019, Time: 23:13:13, ID: ST190711M3-10 PFC CS7 19G1110, Description: PFC CS7 $19 G 1110$

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	ST190711M3-10 PFC CS7 $19 \mathrm{G1110}$	3.35 e 3	104.7	NO
2	2 13C5-PFHxA	ST190711M3-10 PFC CS7 $19 \mathrm{G1110}$	8.41 e 3	75.2	NO
3	3 18O2-PFHxS	ST190711M3-10 PFC CS7 $19 \mathrm{G1110}$	4.42 e 2	81.8	NO
4	4 13C8-PFOA	ST190711M3-10 PFC CS7 $19 \mathrm{G1110}$	9.42 e 3	63.8	NO
5	5 13C9-PFNA	ST190711M3-10 PFC CS7 $19 \mathrm{G1110}$	6.52e3	78.2	NO
6	6 13C4-PFOS	ST190711M3-10 PFC CS7 $19 \mathrm{G1110}$	1.09 e 3	75.3	NO
7	7 13C6-PFDA	ST190711M3-10 PFC CS7 $19 \mathrm{G1110}$	7.69 e 3	68.5	NO
8	8 13C7-PFUdA	ST190711M3-10 PFC CS7 $19 \mathrm{G1110}$	8.80 e 3	62.5	NO

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: Untitled
Last Altered: Friday, July 12, 2019 15:56:55 Pacific Daylight Time
Printed: \quad Friday, July 12, 2019 15:56:58 Pacific Daylight Time

Name: 190711M3_12, Date: 11-Jul-2019, Time: 23:23:47, ID: IB, Description: IB

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	IB	3.39 e 3	106.2	NO
2	$213 C 5-P F H x A$	IB	1.12 e 4	99.9	NO
3	$318 O 2-P F H x S$	IB	6.46 e 2	119.4	NO
4	$413 C 8-P F O A$	IB	1.54 e 4	104.2	NO
5	$513 C 9-P F N A$	IB	9.15 e 3	109.7	NO
6	$613 C 4-P F O S$	IB	1.44 e 3	100.1	NO
7	$713 C 6-P F D A$	IB	1.13 e 4	100.7	NO
8	$813 C 7-P F U d A$	IB	1.39 e 4	98.5	NO

Name: 190711M3_13, Date: 11-Jul-2019, Time: 23:34:17, ID: ST190711M3-1 PFC ICV 19G1111, Description: PFC ICV $19 G 1111$

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	ST190711M3-1 PFC ICV 19G1111	3.42 e 3	107.0	NO
2	2 13C5-PFHxA	ST190711M3-1 PFC ICV 19G1111	1.07 e 4	95.5	NO
3	3 18O2-PFHxS	ST190711M3-1 PFC ICV 19G1111	6.15 e 2	113.8	NO
4	4 13C8-PFOA	ST190711M3-1 PFC ICV 19G1111	1.48 e 4	100.0	NO
5	5 13C9-PFNA	ST190711M3-1 PFC ICV 19G1111	9.07 e 3	108.7	NO
6	6 13C4-PFOS	ST190711M3-1 PFC ICV 19G1111	1.42 e 3	98.4	NO
7	7 13C6-PFDA	ST190711M3-1 PFC ICV 19G1111	1.12 e 4	100.0	NO
8	8 13C7-PFUdA	ST190711M3-1 PFC ICV 19 G 1111	1.30 e 4	92.5	NO

Name: 190711M3_14, Date: 11-Jul-2019, Time: 23:44:56, ID: IPA, Description: IPA

	\# Name	ID	Area
1	$113 C 4-P F B A$	IPA	
2	$213 C 5-P F H x A$	IPA	Area Out
3	$31802-P F H x S$	IPA	NO
4	$413 C 8-P F O A$	IPA	NO
5	$513 C 9-P F N A$	IPA	NO
6	$613 C 4-P F O S$	IPA	NO
7	$713 C 6-P F D A$	IPA	NO
8	$813 C 7-P F U d A$	IPA	NO

Name: 190711M3_15, Date: 11-Jul-2019, Time: 23:55:34, ID: B9G0061-BS1 OPR 0.250, Description: OPR

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	B9G0061-BS1 OPR 0.250	8.04 e 3	125.9	NO
2	2 13C5-PFHxA	B9G0061-BS1 OPR 0.250	1.45 e 4	64.9	NO
3	$318 O 2-P F H x S$	B9G0061-BS1 OPR 0.250	8.85 e 2	81.8	NO
4	$413 C 8-P F O A$	B9G0061-BS1 OPR 0.250	2.01 e 4	67.9	NO
5	$513 C 9-P F N A$	B9G0061-BS1 OPR 0.250	1.24 e 4	74.6	NO
6	$613 C 4-P F O S$	B9G0061-BS1 OPR 0.250	2.04 e 3	70.7	NO
7	$713 C 6-P F D A$	B9G0061-BS1 OPR 0.250	1.55 e 4	69.1	NO
8	$813 C 7-P F U d A$	B9G0061-BS1 OPR 0.250	1.87 e 4	66.4	NO

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: Untitled
Last Altered: Friday, July 12, 2019 15:56:55 Pacific Daylight Time
Printed: \quad Friday, July 12, 2019 15:56:58 Pacific Daylight Time

Name: 190711M3_16, Date: 12-Jul-2019, Time: 00:06:07, ID: B9F0279-BS1 OPR 1, Description: OPR

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	B9F0279-BS1 OPR 1	3.79 e 3	118.6	NO
2	$213 C 5-P F H x A$	B9F0279-BS1 OPR 1	7.08 e 3	63.3	NO
3	$318 O 2-P F H x S$	B9F0279-BS1 OPR 1	5.30 e 2	98.0	NO
4	$413 C 8-P F O A$	B9F0279-BS1 OPR 1	1.06 e 4	71.8	NO
5	$513 C 9-P F N A$	B9F0279-BS1 OPR 1	6.92 e 3	83.0	NO
6	$613 C 4-P F O S$	B9F0279-BS1 OPR 1	1.26 e 3	87.1	NO
7	$713 C 6-P F D A$	B9F0279-BS1 OPR 1	8.72 e 3	77.7	NO
8	$813 C 7-P F U d A$	B9F0279-BS1 OPR 1	1.04 e 4	73.9	NO

Name: 190711M3_17, Date: 12-Jul-2019, Time: 00:16:45, ID: B9F0279-BLK1 Method Blank 1, Description: Method Blank

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	B9F0279-BLK1 Method Blank 1	3.68 e 3	115.1	NO
2	$213 C 5-P F H x A$	B9F0279-BLK1 Method Blank 1	7.23 e 3	64.6	NO
3	$318 O 2-P F H x S$	B9F0279-BLK1 Method Blank 1	4.49 e 2	83.1	NO
4	$413 C 8-P F O A$	B9F0279-BLK1 Method Blank 1	1.01 e 4	68.5	NO
5	$513 C 9-P F N A$	B9F0279-BLK1 Method Blank 1	6.97 e 3	83.6	NO
6	$613 C 4-P F O S$	B9F0279-BLK1 Method Blank 1	1.15 e 3	79.9	NO
7	$713 C 6-P F D A$	B9F0279-BLK1 Method Blank 1	8.48 e 3	75.5	NO
8	$813 C 7-P F U d A$	B9F0279-BLK1 Method Blank 1	1.08 e 4	76.8	NO

Name: 190711M3_18, Date: 12-Jul-2019, Time: 00:27:18, ID: 1901784-02RE1 FRB-1 0.24972, Description: FRB-1

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1901784-02RE1 FRB-1 0.24972	2.89e3	90.6	NO
2	2 13C5-PFHxA	1901784-02RE1 FRB-1 0.24972	5.14 e 3	45.9	YES
3	3 18O2-PFHxS	1901784-02RE1 FRB-1 0.24972	4.13 e 2	76.3	NO
4	4 13C8-PFOA	1901784-02RE1 FRB-1 0.24972	7.27 e 3	49.2	YES
5	5 13C9-PFNA	1901784-02RE1 FRB-1 0.24972	4.31 e 3	51.6	NO
6	6 13C4-PFOS	1901784-02RE1 FRB-1 0.24972	1.08 e 3	74.5	NO
7	7 13C6-PFDA	1901784-02RE1 FRB-1 0.24972	5.65 e 3	50.3	NO
8	8 13C7-PFUdA	1901784-02RE1 FRB-1 0.24972	7.29 e 3	51.8	NO

Name: 190711M3_19, Date: 12-Jul-2019, Time: 00:37:57, ID: 1901683-03 Hagatna 1 3.93, Description: Hagatna 1

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1901683-03 Hagatna 13.93	4.57e3	143.0	NO
2	2 13C5-PFHxA	1901683-03 Hagatna 13.93	8.50 e 3	75.9	NO
3	3 18O2-PFHxS	1901683-03 Hagatna 13.93	5.36 e 2	99.2	NO
4	4 13C8-PFOA	1901683-03 Hagatna 13.93	1.26 e 4	85.0	NO
5	5 13C9-PFNA	1901683-03 Hagatna 13.93	7.36 e 3	88.2	NO
6	6 13C4-PFOS	1901683-03 Hagatna 13.93	1.33 e 3	92.4	NO
7	7 13C6-PFDA	1901683-03 Hagatna 13.93	8.45 e 3	75.2	NO
8	8 13C7-PFUdA	1901683-03 Hagatna 13.93	6.75 e 3	47.9	YES

Quantify Sample Summary Report

Vista Analytical Laboratory
Dataset: Untitled
Last Altered: Friday, July 12, 2019 15:56:55 Pacific Daylight Time
Printed: \quad Friday, July 12, 2019 15:56:58 Pacific Daylight Time

Name: 190711M3_20, Date: 12-Jul-2019, Time: 00:48:35, ID: 1901910-01 SW1906280950KME 0.24336, Description: SW1906280950KME

	\# Name	l ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1901910-01$ SW1906280950KME 0.243...	4.22 e 3	132.1	NO
2	$213 C 5-P F H x A$	$1901910-01$ SW1906280950KME 0.243...	7.72 e 3	69.0	NO
3	$318 O 2-P F H x S$	$1901910-01$ SW1906280950KME 0.243...	5.67 e 2	104.9	NO
4	$413 C 8-P F O A$	$1901910-01$ SW1906280950KME 0.243...	1.01 e 4	68.6	NO
5	$513 C 9-P F N A$	$1901910-01$ SW1906280950KME 0.243...	6.65 e 3	79.7	NO
6	$613 C 4-P F O S$	$1901910-01$ SW1906280950KME 0.243...	1.19 e 3	82.6	NO
7	$713 C 6-P F D A$	$1901910-01$ SW1906280950KME 0.243...	7.93 e 3	70.6	NO
8	$813 C 7-P F U d A$	$1901910-01$ SW1906280950KME 0.243...	9.29 e 3	66.0	NO

Name: 190711M3_21, Date: 12-Jul-2019, Time: 00:59:09, ID: 1901910-02 SW1906281025KME 0.24464, Description: SW1906281025KME

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	$1901910-02$ SW1906281025KME $0.244 \ldots$	3.60 e 3	112.9	NO
2	$213 C 5-P F H x A$	$1901910-02$ SW1906281025KME $0.244 \ldots$	6.46 e 3	57.8	NO
3	$318 \mathrm{O} 2-\mathrm{PFHxS}$	$1901910-02$ SW1906281025KME $0.244 \ldots$	5.17 e 2	95.5	NO
4	$413 C 8-P F O A$	$1901910-02$ SW1906281025KME $0.244 \ldots$	9.61 e 3	65.1	NO
5	$513 C 9-P F N A$	$1901910-02$ SW1906281025KME $0.244 \ldots$	5.97 e 3	71.6	NO
6	$613 C 4-P F O S$	$1901910-02$ SW1906281025KME $0.244 \ldots$	1.12 e 3	77.4	NO
7	$713 C 6-P F D A$	$1901910-02$ SW1906281025KME $0.244 \ldots$	7.48 e 3	66.6	NO
8	$813 C 7-P F U d A$	$1901910-02$ SW1906281025KME $0.244 \ldots$	8.58 e 3	60.9	NO

Name: 190711M3_22, Date: 12-Jul-2019, Time: 01:09:47, ID: 1901910-03 SW1906281035KME 0.24318, Description: SW1906281035KME

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1901910-03 SW1906281035KME 0.243...	4.10 e 3	128.3	NO
2	2 13C5-PFHxA	1901910-03 SW1906281035KME 0.243...	7.57 e 3	67.7	NO
3	3 18O2-PFHxS	1901910-03 SW1906281035KME 0.243...	5.50 e 2	101.6	NO
4	4 13C8-PFOA	1901910-03 SW1906281035KME 0.243...	9.89 e 3	67.0	NO
5	5 13C9-PFNA	1901910-03 SW1906281035KME 0.243...	6.10 e 3	73.2	NO
6	6 13C4-PFOS	1901910-03 SW1906281035KME 0.243...	1.13 e 3	78.4	NO
7	7 13C6-PFDA	1901910-03 SW1906281035KME 0.243...	7.28 e 3	64.8	NO
8	8 13C7-PFUdA	1901910-03 SW1906281035KME 0.243...	8.72e3	61.9	NO

Name: 190711M3_23, Date: 12-Jul-2019, Time: 01:20:19, ID: 1901911-01 WMP1907010855JSJ 0.2509, Description: WMP1907010855JSJ

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1901911-01 WMP1907010855JSJ 0.2509	3.34 e 3	104.6	NO
2	2 13C5-PFHxA	1901911-01 WMP1907010855JSJ 0.2509	5.99 e 3	53.6	NO
3	3 18O2-PFHxS	1901911-01 WMP1907010855JSJ 0.2509	4.69 e 2	86.7	NO
4	4 13C8-PFOA	1901911-01 WMP1907010855JSJ 0.2509	6.73 e 3	45.6	YES
5	5 13C9-PFNA	1901911-01 WMP1907010855JSJ 0.2509	4.99 e 3	59.9	NO
6	6 13C4-PFOS	1901911-01 WMP1907010855JSJ 0.2509	1.09 e 3	75.2	NO
7	7 13C6-PFDA	1901911-01 WMP1907010855JSJ 0.2509	6.48 e 3	57.7	NO
8	8 13C7-PFUdA	1901911-01 WMP1907010855JSJ 0.2509	7.52 e 3	53.4	NO

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: Untitled
Last Altered: Friday, July 12, 2019 15:56:55 Pacific Daylight Time
Printed: \quad Friday, July 12, 2019 15:56:58 Pacific Daylight Time

Name: 190711M3_24, Date: 12-Jul-2019, Time: 01:30:58, ID: B9G0095-BS1 OPR 0.25, Description: OPR

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	B9G0095-BS1 OPR 0.25	9.59 e 3	150.1	YES
2	$213 C 5-P F H x A$	B9G0095-BS1 OPR 0.25	1.69 e 4	75.5	NO
3	$318 \mathrm{O}-$-PFHxS	B9G0095-BS1 OPR 0.25	9.93 e 2	91.8	NO
4	$413 C 8-P F O A$	B9G0095-BS1 OPR 0.25	2.46 e 4	83.3	NO
5	$513 C 9-P F N A$	B9G0095-BS1 OPR 0.25	1.57 e 4	94.3	NO
6	$613 C 4-P F O S$	B9G0095-BS1 OPR 0.25	2.59 e 3	89.9	NO
7	$713 C 6-P F D A$	B9G0095-BS1 OPR 0.25	1.80 e 4	80.3	NO
8	$813 C 7-P F U d A$	B9G0095-BS1 OPR 0.25	2.28 e 4	81.0	NO

Name: 190711M3_25, Date: 12-Jul-2019, Time: 01:41:36, ID: B9G0095-BSD1 LCSD 0.25, Description: LCSD

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	B9G0095-BSD1 LCSD 0.25	1.05 e 4	164.9	YES
2	$213 C 5-P F H x A$	B9G0095-BSD1 LCSD 0.25	1.87 e 4	83.6	NO
3	$31802-P F H x S$	B9G0095-BSD1 LCSD 0.25	1.02 e 3	94.5	NO
4	$413 C 8-P F O A$	B9G0095-BSD1 LCSD 0.25	2.53 e 4	85.7	NO
5	$513 C 9-P F N A$	B9G0095-BSD1 LCSD 0.25	1.53 e 4	91.6	NO
6	$613 C 4-P F O S$	B9G0095-BSD1 LCSD 0.25	2.59 e 3	89.7	NO
7	$713 C 6-P F D A$	B9G0095-BSD1 LCSD 0.25	1.87 e 4	83.4	NO
8	$813 C 7-P F U d A$	B9G0095-BSD1 LCSD 0.25	2.30 e 4	81.6	NO

Name: 190711M3_26, Date: 12-Jul-2019, Time: 01:52:09, ID: B9G0095-BLK1 Method Blank 0.25, Description: Method Blank

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	B9G0095-BLK1 Method Blank 0.25	9.93 e 3	155.4	YES
2	2 13C5-PFHxA	B9G0095-BLK1 Method Blank 0.25	1.79 e 4	79.8	NO
3	3 18O2-PFHxS	B9G0095-BLK1 Method Blank 0.25	1.04 e 3	96.6	NO
4	4 13C8-PFOA	B9G0095-BLK1 Method Blank 0.25	2.53 e 4	85.5	NO
5	5 13C9-PFNA	B9G0095-BLK1 Method Blank 0.25	1.55 e 4	92.9	NO
6	6 13C4-PFOS	B9G0095-BLK1 Method Blank 0.25	2.55 e 3	88.5	NO
7	7 13C6-PFDA	B9G0095-BLK1 Method Blank 0.25	1.90 e 4	84.8	NO
8	8 13C7-PFUdA	B9G0095-BLK1 Method Blank 0.25	2.29 e 4	81.1	NO

Name: 190711M3_27, Date: 12-Jul-2019, Time: 02:02:47, ID: 1901759-01 HW-AF-01-01-420-062419 0.11818, Description: HW-AF-01-01-420-062419

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1901759-01 HW-AF-01-01-420-062419 ...	8.08e3	126.5	NO
2	2 13C5-PFHxA	1901759-01 HW-AF-01-01-420-062419 ...	1.53 e 4	68.3	NO
3	3 18O2-PFHxS	1901759-01 HW-AF-01-01-420-062419 ...	9.46 e 2	87.4	NO
4	4 13C8-PFOA	1901759-01 HW-AF-01-01-420-062419 ...	2.23 e 4	75.6	NO
5	5 13C9-PFNA	1901759-01 HW-AF-01-01-420-062419 ...	1.27 e 4	76.1	NO
6	6 13C4-PFOS	1901759-01 HW-AF-01-01-420-062419 ...	2.26 e 3	78.4	NO
7	7 13C6-PFDA	1901759-01 HW-AF-01-01-420-062419 ...	1.60 e 4	71.3	NO
8	8 13C7-PFUdA	1901759-01 HW-AF-01-01-420-062419 ...	1.62 e 4	57.4	NO

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: Untitled
Last Altered: Friday, July 12, 2019 15:56:55 Pacific Daylight Time
Printed: Friday, July 12, 2019 15:56:58 Pacific Daylight Time

Name: 190711M3_28, Date: 12-Jul-2019, Time: 02:13:26, ID: 1901992-01 WIN1907081315GGA 0.24256, Description: WIN1907081315GGA

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1901992-01 WIN1907081315GGA 0.24...	1.05 e 4	165.0	YES
2	2 13C5-PFHxA	1901992-01 WIN1907081315GGA 0.24...	1.90 e 4	85.0	NO
3	3 18O2-PFHxS	1901992-01 WIN1907081315GGA 0.24...	1.08 e 3	99.7	NO
4	4 13C8-PFOA	1901992-01 WIN1907081315GGA 0.24...	2.70 e 4	91.6	NO
5	5 13C9-PFNA	1901992-01 WIN1907081315GGA 0.24...	1.63 e 4	98.0	NO
6	6 13C4-PFOS	1901992-01 WIN1907081315GGA 0.24...	2.44 e 3	84.4	NO
7	7 13C6-PFDA	1901992-01 WIN1907081315GGA 0.24...	2.01e4	89.5	NO
8	8 13C7-PFUdA	1901992-01 WIN1907081315GGA 0.24...	2.46 e 4	87.2	NO

Name: 190711M3_29, Date: 12-Jul-2019, Time: 02:23:58, ID: 1901992-02 WMP1907081305GGA 0.23352, Description: WMP1907081305GGA

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1901992-02 WMP1907081305GGA 0.2...	8.79 e 3	137.6	NO
2	2 13C5-PFHxA	1901992-02 WMP1907081305GGA 0.2...	1.60 e 4	71.4	NO
3	3 18O2-PFHxS	1901992-02 WMP1907081305GGA 0.2...	9.72 e 2	89.8	NO
4	4 13C8-PFOA	1901992-02 WMP1907081305GGA 0.2...	2.28 e 4	77.1	NO
5	5 13C9-PFNA	1901992-02 WMP1907081305GGA 0.2...	1.45 e 4	87.2	NO
6	6 13C4-PFOS	1901992-02 WMP1907081305GGA 0.2...	2.71 e 3	93.9	NO
7	7 13C6-PFDA	1901992-02 WMP1907081305GGA 0.2...	1.90 e 4	84.5	NO
8	8 13C7-PFUdA	1901992-02 WMP1907081305GGA 0.2...	2.17 e 4	77.0	NO

Name: 190711M3_30, Date: 12-Jul-2019, Time: 02:34:37, ID: 1901992-03 WEF1907081310GGA 0.24328, Description: WEF1907081310GGA

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1901992-03 WEF1907081310GGA 0.24...	8.61e3	134.8	NO
2	2 13C5-PFHxA	1901992-03 WEF1907081310GGA 0.24...	1.56 e 4	69.8	NO
3	3 18O2-PFHxS	1901992-03 WEF1907081310GGA 0.24...	1.02 e 3	94.2	NO
4	4 13C8-PFOA	1901992-03 WEF1907081310GGA 0.24...	2.29 e 4	77.4	NO
5	5 13C9-PFNA	1901992-03 WEF1907081310GGA 0.24...	1.40 e 4	83.7	NO
6	6 13C4-PFOS	1901992-03 WEF1907081310GGA 0.24...	2.34 e 3	80.9	NO
7	7 13C6-PFDA	1901992-03 WEF1907081310GGA 0.24...	1.67 e 4	74.3	NO
8	8 13C7-PFUdA	1901992-03 WEF1907081310GGA 0.24...	2.09 e 4	74.1	NO

Name: 190711M3_31, Date: 12-Jul-2019, Time: 02:45:10, ID: IPA, Description: IPA

	\# Name	ID	Area
1	$113 C 4-P F B A$	IPA	
2	$213 C 5-P F H x A$	IPA	Area Out
3	$31802-P F H x S$	IPA	NO
4	$413 C 8-P F O A$	IPA	NO
5	$513 C 9-P F N A$	IPA	NO
6	$613 C 4-P F O S$	IPA	NO
7	$713 C 6-P F D A$	IPA	NO
8	$813 C 7-P F U d A$	IPA	NO

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: Untitled
Last Altered: Friday, July 12, 2019 15:56:55 Pacific Daylight Time
Printed: \quad Friday, July 12, 2019 15:56:58 Pacific Daylight Time

Name: 190711M3_32, Date: 12-Jul-2019, Time: 02:55:49, ID: ST190711M3-11 PFC CS3 19G1106, Description: PFC CS3 $19 G 1106$

	\# Name	l ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	ST190711M3-11 PFC CS3 19G1106	3.26 e 3	102.1	NO
2	2 13C5-PFHxA	ST190711M3-11 PFC CS3 19G1106	1.07 e 4	95.5	NO
3	$318 \mathrm{O}-$-PFHxS	ST190711M3-11 PFC CS3 19G1106	5.26 e 2	97.3	NO
4	$413 C 8-P F O A$	ST190711M3-11 PFC CS3 19G1106	1.42 e 4	95.9	NO
5	$513 C 9-P F N A$	ST190711M3-11 PFC CS3 19G1106	8.50 e 3	101.9	NO
6	$613 C 4-P F O S$	ST190711M3-11 PFC CS3 19G1106	1.36 e 3	94.5	NO
7	$713 C 6-P F D A$	ST190711M3-11 PFC CS3 19G1106	1.08 e 4	96.4	NO
8	$813 C 7-P F U d A$	ST190711M3-11 PFC CS3 19G1106	1.28 e 4	90.8	NO

Name: 190711M3_33, Date: 12-Jul-2019, Time: 03:06:21, ID: IPA, Description: IPA

	\# Name	ID	Area
1	$113 C 4-P F B A$	IPA	\%Rec
2	$213 C 5-P F H x A$	IPA	Area Out
3	$318 O 2-P F H x S$	IPA	NO
4	$413 C 8-P F O A$	IPA	NO
5	$513 C 9-P F N A$	IPA	NO
6	$613 C 4-P F O S$	IPA	NO
7	$713 C 6-P F D A$	IPA	NO
8	$813 C 7-P F U d A$	IPA	NO

Name: 190711M3_34, Date: 12-Jul-2019, Time: 03:16:59, ID: B9G0062-BS1 OPR 0.125, Description: OPR

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	B9G0062-BS1 OPR 0.125	5.21 e 3	163.3	YES
2	2 13C5-PFHxA	B9G0062-BS1 OPR 0.125	9.48 e 3	84.8	NO
3	3 18O2-PFHxS	B9G0062-BS1 OPR 0.125	6.11 e 2	113.0	NO
4	4 13C8-PFOA	B9G0062-BS1 OPR 0.125	1.24 e 4	83.7	NO
5	5 13C9-PFNA	B9G0062-BS1 OPR 0.125	7.11 e3	85.2	NO
6	6 13C4-PFOS	B9G0062-BS1 OPR 0.125	1.42 e 3	98.3	NO
7	7 13C6-PFDA	B9G0062-BS1 OPR 0.125	9.08 e 3	80.8	NO
8	8 13C7-PFUdA	B9G0062-BS1 OPR 0.125	1.13 e 4	80.3	NO

Name: 190711M3_35, Date: 12-Jul-2019, Time: 03:27:38, ID: B9G0062-BSD1 LCSD 0.125, Description: LCSD

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	B9G0062-BSD1 LCSD 0.125	5.35 e 3	167.6	YES
2	$213 C 5-P F H x A$	B9G0062-BSD1 LCSD 0.125	9.46 e 3	84.6	NO
3	$318 O 2-P F H x S$	B9G0062-BSD1 LCSD 0.125	5.93 e 2	109.7	NO
4	$413 C 8-P F O A$	B9G0062-BSD1 LCSD 0.125	1.42 e 4	96.2	NO
5	$513 C 9-P F N A$	B9G0062-BSD1 LCSD 0.125	8.54 e 3	102.4	NO
6	$613 C 4-P F O S$	B9G0062-BSD1 LCSD 0.125	1.39 e 3	96.5	NO
7	$713 C 6-P F D A$	B9G0062-BSD1 LCSD 0.125	1.01 e 4	90.1	NO
8	$813 C 7-P F U d A$	B9G0062-BSD1 LCSD 0.125	1.26 e 4	89.2	NO

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: Untitled
Last Altered: Friday, July 12, 2019 15:56:55 Pacific Daylight Time
Printed: \quad Friday, July 12, 2019 15:56:58 Pacific Daylight Time

Name: 190711M3_36, Date: 12-Jul-2019, Time: 03:38:11, ID: B9G0062-BLK1 Method Blank 0.125, Description: Method Blank

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	B9G0062-BLK1 Method Blank 0.125	5.44 e 3	170.5	YES
2	$213 C 5-P F H x A$	B9G0062-BLK1 Method Blank 0.125	9.67 e 3	86.5	NO
3	$318 O 2-P F H x S$	B9G0062-BLK1 Method Blank 0.125	5.72 e 2	105.8	NO
4	$413 C 8-P F O A$	B9G0062-BLK1 Method Blank 0.125	1.45 e 4	98.2	NO
5	$513 C 9-P F N A$	B9G0062-BLK1 Method Blank 0.125	8.35 e 3	100.1	NO
6	$613 C 4-P F O S$	B9G0062-BLK1 Method Blank 0.125	1.38 e 3	95.8	NO
7	$713 C 6-P F D A$	B9G0062-BLK1 Method Blank 0.125	1.03 e 4	91.4	NO
8	$813 C 7-P F U d A$	B9G0062-BLK1 Method Blank 0.125	1.23 e 4	87.6	NO

Name: 190711M3_37, Date: 12-Jul-2019, Time: 03:48:49, ID: 1901922-01 FRB-07022019 0.10709, Description: FRB-07022019

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1901922-01 FRB-07022019 0.10709	4.53 e 3	142.0	NO
2	2 13C5-PFHxA	1901922-01 FRB-07022019 0.10709	9.02 e 3	80.6	NO
3	3 18O2-PFHxS	1901922-01 FRB-07022019 0.10709	5.51 e 2	102.0	NO
4	4 13C8-PFOA	1901922-01 FRB-07022019 0.10709	1.29 e 4	87.3	NO
5	5 13C9-PFNA	1901922-01 FRB-07022019 0.10709	7.74 e 3	92.8	NO
6	6 13C4-PFOS	1901922-01 FRB-07022019 0.10709	1.18 e 3	81.5	NO
7	7 13C6-PFDA	1901922-01 FRB-07022019 0.10709	9.58 e 3	85.3	NO
8	8 13C7-PFUdA	1901922-01 FRB-07022019 0.10709	1.12 e 4	79.2	NO

Name: 190711M3_38, Date: 12-Jul-2019, Time: 03:59:23, ID: 1901922-02 CAOA-B02-GW 0.1205, Description: CAOA-B02-GW

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1901922-02 CAOA-B02-GW 0.1205	4.26 e 3	133.3	NO
2	2 13C5-PFHxA	1901922-02 CAOA-B02-GW 0.1205	8.33 e 3	74.4	NO
3	3 18O2-PFHxS	1901922-02 CAOA-B02-GW 0.1205	5.39 e 2	99.7	NO
4	4 13C8-PFOA	1901922-02 CAOA-B02-GW 0.1205	1.15 e 4	77.8	NO
5	5 13C9-PFNA	1901922-02 CAOA-B02-GW 0.1205	7.51 e 3	90.1	NO
6	6 13C4-PFOS	1901922-02 CAOA-B02-GW 0.1205	1.14 e 3	79.3	NO
7	7 13C6-PFDA	1901922-02 CAOA-B02-GW 0.1205	8.56 e 3	76.2	NO
8	8 13C7-PFUdA	1901922-02 CAOA-B02-GW 0.1205	1.01 e 4	71.4	NO

Name: 190711M3_39, Date: 12-Jul-2019, Time: 04:10:01, ID: 1901920-02 SAOA-B08-GW 0.13318, Description: SAOA-B08-GW

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	$1901920-02$ SAOA-B08-GW 0.13318	3.61 e 3	113.1	NO
2	$213 C 5-P F H x A$	$1901920-02$ SAOA-B08-GW 0.13318	6.63 e 3	59.2	NO
3	$318 O 2-P F H x S$	$1901920-02$ SAOA-B08-GW 0.13318	5.08 e 2	93.9	NO
4	$413 C 8-P F O A$	$1901920-02$ SAOA-B08-GW 0.13318	9.30 e 3	63.0	NO
5	$513 C 9-P F N A$	$1901920-02$ SAOA-B08-GW 0.13318	6.00 e 3	71.9	NO
6	$613 C 4-P F O S$	$1901920-02$ SAOA-B08-GW 0.13318	9.76 e 2	67.6	NO
7	$713 C 6-P F D A$	$1901920-02$ SAOA-B08-GW 0.13318	7.57 e 3	67.4	NO
8	$813 C 7-P F U d A$	$1901920-02$ SAOA-B08-GW 0.13318	9.39 e 3	66.6	NO

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: Untitled
Last Altered: Friday, July 12, 2019 15:56:55 Pacific Daylight Time
Printed: \quad Friday, July 12, 2019 15:56:58 Pacific Daylight Time

Name: 190711M3_40, Date: 12-Jul-2019, Time: 04:20:34, ID: 1901920-03 EB-06272019-GW 0.11429, Description: EB-06272019-GW

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1901920-03 EB-06272019-GW 0.11429	4.68 e 3	146.5	NO
2	2 13C5-PFHxA	1901920-03 EB-06272019-GW 0.11429	8.48e3	75.8	NO
3	3 18O2-PFHxS	1901920-03 EB-06272019-GW 0.11429	5.44 e 2	100.6	NO
4	4 13C8-PFOA	1901920-03 EB-06272019-GW 0.11429	1.28 e 4	86.5	NO
5	5 13C9-PFNA	1901920-03 EB-06272019-GW 0.11429	8.42 e 3	100.9	NO
6	6 13C4-PFOS	1901920-03 EB-06272019-GW 0.11429	1.34 e 3	93.1	NO
7	7 13C6-PFDA	1901920-03 EB-06272019-GW 0.11429	9.41 e 3	83.8	NO
8	8 13C7-PFUdA	1901920-03 EB-06272019-GW 0.11429	1.22 e 4	86.7	NO

Name: 190711M3_41, Date: 12-Jul-2019, Time: 04:31:13, ID: 1901920-04 FRB-06282019 0.11576, Description: FRB-06282019

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1901920-04 FRB-06282019 0.11576	5.21 e 3	163.2	YES
2	2 13C5-PFHxA	1901920-04 FRB-06282019 0.11576	9.33 e 3	83.4	NO
3	3 18O2-PFHxS	1901920-04 FRB-06282019 0.11576	5.69 e 2	105.2	NO
4	4 13C8-PFOA	1901920-04 FRB-06282019 0.11576	1.31 e 4	88.4	NO
5	5 13C9-PFNA	1901920-04 FRB-06282019 0.11576	7.85e3	94.1	NO
6	6 13C4-PFOS	1901920-04 FRB-06282019 0.11576	1.32 e 3	91.6	NO
7	7 13C6-PFDA	1901920-04 FRB-06282019 0.11576	9.53 e 3	84.9	NO
8	8 13C7-PFUdA	1901920-04 FRB-06282019 0.11576	1.17 e 4	83.3	NO

Name: 190711M3_42, Date: 12-Jul-2019, Time: 04:41:51, ID: 1901920-05 SAOA-B12-GW 0.12204, Description: SAOA-B12-GW

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1901920-05 SAOA-B12-GW 0.12204	3.93 e 3	123.1	NO
2	2 13C5-PFHxA	1901920-05 SAOA-B12-GW 0.12204	7.04 e 3	62.9	NO
3	3 18O2-PFHxS	1901920-05 SAOA-B12-GW 0.12204	4.90 e 2	90.7	NO
4	4 13C8-PFOA	1901920-05 SAOA-B12-GW 0.12204	9.84 e 3	66.6	NO
5	5 13C9-PFNA	1901920-05 SAOA-B12-GW 0.12204	6.43 e 3	77.1	NO
6	6 13C4-PFOS	1901920-05 SAOA-B12-GW 0.12204	1.32 e 3	91.5	NO
7	7 13C6-PFDA	1901920-05 SAOA-B12-GW 0.12204	8.26 e 3	73.6	NO
8	8 13C7-PFUdA	1901920-05 SAOA-B12-GW 0.12204	1.04 e 4	73.5	NO

Name: 190711M3_43, Date: 12-Jul-2019, Time: 04:52:24, ID: 1901920-06 SAOA-B12-GW-D 0.12639, Description: SAOA-B12-GW-D

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	$1901920-06$ SAOA-B12-GW-D 0.12639	3.36 e 3	105.1	NO
2	$213 C 5-P F H x A$	$1901920-06$ SAOA-B12-GW-D 0.12639	6.30 e 3	56.3	NO
3	$318 O 2-P F H x S$	$1901920-06$ SAOA-B12-GW-D 0.12639	5.40 e 2	99.9	NO
4	$413 C 8-P F O A$	$1901920-06$ SAOA-B12-GW-D 0.12639	9.25 e 3	62.6	NO
5	$513 C 9-P F N A$	$1901920-06$ SAOA-B12-GW-D 0.12639	6.01 e 3	72.0	NO
6	$613 C 4-P F O S$	$1901920-06$ SAOA-B12-GW-D 0.12639	1.10 e 3	76.5	NO
7	$713 C 6-P F D A$	$1901920-06$ SAOA-B12-GW-D 0.12639	7.55 e 3	67.2	NO
8	$813 C 7-P F U d A$	$1901920-06$ SAOA-B12-GW-D 0.12639	9.76 e 3	69.3	NO

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: Untitled
Last Altered: Friday, July 12, 2019 15:56:55 Pacific Daylight Time
Printed: \quad Friday, July 12, 2019 15:56:58 Pacific Daylight Time

Name: 190711M3_44, Date: 12-Jul-2019, Time: 05:03:03, ID: 1901920-11 NAOA-B02-GW 0.122, Description: NAOA-B02-GW

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	$1901920-11$ NAOA-B02-GW 0.122	4.54 e 3	142.3	NO
2	$213 C 5-P F H x A$	$1901920-11$ NAOA-B02-GW 0.122	8.60 e 3	76.8	NO
3	$318 O 2-P F H x S$	$1901920-11$ NAOA-B02-GW 0.122	5.59 e 2	103.3	NO
4	$413 C 8-P F O A$	$1901920-11$ NAOA-B02-GW 0.122	1.18 e 4	79.7	NO
5	$513 C 9-P F N A$	$1901920-11$ NAOA-B02-GW 0.122	7.50 e 3	89.9	NO
6	$613 C 4-P F O S$	$1901920-11$ NAOA-B02-GW 0.122	1.22 e 3	84.5	NO
7	$713 C 6-P F D A$	$1901920-11$ NAOA-B02-GW 0.122	9.46 e 3	84.2	NO
8	$813 C 7-P F U d A$	$1901920-11$ NAOA-B02-GW 0.122	1.13 e 4	80.2	NO

Name: 190711M3_45, Date: 12-Jul-2019, Time: 05:13:36, ID: 1901920-12 EB-07012019 0.11155, Description: EB-07012019

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1901920-12 EB-07012019 0.11155	4.84 e 3	151.7	YES
2	2 13C5-PFHxA	1901920-12 EB-07012019 0.11155	9.27 e 3	82.8	NO
3	3 18O2-PFHxS	1901920-12 EB-07012019 0.11155	5.50 e 2	101.8	NO
4	4 13C8-PFOA	1901920-12 EB-07012019 0.11155	1.29 e 4	87.3	NO
5	5 13C9-PFNA	1901920-12 EB-07012019 0.11155	8.00 e 3	96.0	NO
6	6 13C4-PFOS	1901920-12 EB-07012019 0.11155	1.35 e 3	93.5	NO
7	7 13C6-PFDA	1901920-12 EB-07012019 0.11155	1.04 e 4	92.4	NO
8	8 13C7-PFUdA	1901920-12 EB-07012019 0.11155	1.26 e 4	89.6	NO

Name: 190711M3_46, Date: 12-Jul-2019, Time: 05:24:14, ID: 1901920-14 FRB-07012019 0.11643, Description: FRB-07012019

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1901920-14 FRB-07012019 0.11643	4.96 e 3	155.3	YES
2	2 13C5-PFHxA	1901920-14 FRB-07012019 0.11643	8.93 e 3	79.8	NO
3	3 18O2-PFHxS	1901920-14 FRB-07012019 0.11643	4.81 e 2	89.0	NO
4	4 13C8-PFOA	1901920-14 FRB-07012019 0.11643	1.19 e 4	80.3	NO
5	5 13C9-PFNA	1901920-14 FRB-07012019 0.11643	7.27 e 3	87.2	NO
6	6 13C4-PFOS	1901920-14 FRB-07012019 0.11643	1.07 e 3	74.2	NO
7	7 13C6-PFDA	1901920-14 FRB-07012019 0.11643	8.55 e 3	76.2	NO
8	8 13C7-PFUdA	1901920-14 FRB-07012019 0.11643	1.05 e 4	74.9	NO

Name: 190711M3_47, Date: 12-Jul-2019, Time: 05:34:46, ID: 1901920-16 NAOA-B01-GW 0.1294, Description: NAOA-B01-GW

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	$1901920-16$ NAOA-B01-GW 0.1294	4.36 e 3	136.6	NO
2	$213 C 5-P F H x A$	$1901920-16$ NAOA-B01-GW 0.1294	8.41 e 3	75.1	NO
3	$318 O 2-P F H x S$	$1901920-16$ NAOA-B01-GW 0.1294	5.31 e 2	98.2	NO
4	$413 C 8-P F O A$	$1901920-16$ NAOA-B01-GW 0.1294	1.24 e 4	83.8	NO
5	$513 C 9-P F N A$	$1901920-16$ NAOA-B01-GW 0.1294	7.63 e 3	91.5	NO
6	$613 C 4-P F O S$	$1901920-16$ NAOA-B01-GW 0.1294	1.16 e 3	80.1	NO
7	$713 C 6-P F D A$	$1901920-16$ NAOA-B01-GW 0.1294	9.00 e 3	80.1	NO
8	$813 C 7-P F U d A$	$1901920-16$ NAOA-B01-GW 0.1294	1.11 e 4	79.1	NO

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: Untitled
Last Altered: Friday, July 12, 2019 15:56:55 Pacific Daylight Time
Printed: \quad Friday, July 12, 2019 15:56:58 Pacific Daylight Time

Name: 190711M3_48, Date: 12-Jul-2019, Time: 05:45:25, ID: IPA, Description: IPA

	\# Name	ID	Area
1	$113 C 4-P F B A$	IPA	\%Rec
2	$213 C 5-P F H x A$	IPA	Area Out
3	$318 O 2-P F H x S$	IPA	NO
4	$413 C 8-P F O A$	IPA	NO
5	$513 C 9-P F N A$	IPA	NO
6	$613 C 4-P F O S$	IPA	NO
7	$713 C 6-P F D A$	IPA	NO
8	$813 C 7-P F U d A$	IPA	NO

Name: 190711M3_49, Date: 12-Jul-2019, Time: 05:56:03, ID: ST190711M3-12 PFC CS3 19G1106, Description: PFC CS3 $19 G 1106$

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	ST190711M3-12 PFC CS3 19 G 1106	3.35 e 3	104.8	NO
2	2 13C5-PFHxA	ST190711M3-12 PFC CS3 $19 \mathrm{G1106}$	1.08 e 4	96.3	NO
3	3 18O2-PFHxS	ST190711M3-12 PFC CS3 19G1106	5.66 e 2	104.6	NO
4	4 13C8-PFOA	ST190711M3-12 PFC CS3 19 G 1106	1.41 e 4	95.6	NO
5	5 13C9-PFNA	ST190711M3-12 PFC CS3 19 G 1106	9.26 e 3	111.0	NO
6	6 13C4-PFOS	ST190711M3-12 PFC CS3 19 G 1106	1.56 e 3	107.9	NO
7	7 13C6-PFDA	ST190711M3-12 PFC CS3 19 G 1106	1.07 e 4	95.5	NO
8	8 13C7-PFUdA	ST190711M3-12 PFC CS3 19G1106	1.27 e 4	89.9	NO

Name: 190711M3_50, Date: 12-Jul-2019, Time: 06:06:35, ID: IPA, Description: IPA

	\# Name	ID	Area
1	$113 C 4-P F B A$	IPA	
2	$213 C 5-P F H x A$	IPA	Area Out
3	$31802-P F H x S$	IPA	NO
4	$413 C 8-P F O A$	IPA	NO
5	$513 C 9-P F N A$	IPA	NO
6	$613 C 4-P F O S$	IPA	NO
7	$713 C 6-P F D A$	IPA	NO
8	$813 C 7-P F U d A$	IPA	NO

Name: 190711M3_51, Date: 12-Jul-2019, Time: 06:17:14, ID: 1901920-17 NAOA-B01-GW-D 0.13768, Description: NAOA-B01-GW-D

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1901920-17 NAOA-B01-GW-D 0.13768	3.80 e 3	119.0	NO
2	2 13C5-PFHxA	1901920-17 NAOA-B01-GW-D 0.13768	7.44 e 3	66.5	NO
3	3 1802-PFHxS	1901920-17 NAOA-B01-GW-D 0.13768	5.73 e 2	105.9	NO
4	4 13C8-PFOA	1901920-17 NAOA-B01-GW-D 0.13768	1.15 e 4	78.1	NO
5	5 13C9-PFNA	1901920-17 NAOA-B01-GW-D 0.13768	6.81 e 3	81.7	NO
6	6 13C4-PFOS	1901920-17 NAOA-B01-GW-D 0.13768	1.24 e 3	86.3	NO
7	7 13C6-PFDA	1901920-17 NAOA-B01-GW-D 0.13768	9.18 e 3	81.8	NO
8	8 13C7-PFUdA	1901920-17 NAOA-B01-GW-D 0.13768	1.10 e 4	77.8	NO

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: Untitled
Last Altered: Friday, July 12, 2019 15:56:55 Pacific Daylight Time
Printed: \quad Friday, July 12, 2019 15:56:58 Pacific Daylight Time

Name: 190711M3_52, Date: 12-Jul-2019, Time: 06:27:47, ID: 1901920-20 EB-07022019 0.11644, Description: EB-07022019

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1901920-20 EB-07022019 0.11644	4.52 e 3	141.4	NO
2	2 13C5-PFHxA	1901920-20 EB-07022019 0.11644	8.13 e 3	72.7	NO
3	3 18O2-PFHxS	1901920-20 EB-07022019 0.11644	4.44 e 2	82.1	NO
4	4 13C8-PFOA	1901920-20 EB-07022019 0.11644	1.14 e 4	76.9	NO
5	5 13C9-PFNA	1901920-20 EB-07022019 0.11644	6.65 e 3	79.7	NO
6	6 13C4-PFOS	1901920-20 EB-07022019 0.11644	1.20 e 3	83.1	NO
7	7 13C6-PFDA	1901920-20 EB-07022019 0.11644	8.40 e 3	74.8	NO
8	8 13C7-PFUdA	1901920-20 EB-07022019 0.11644	1.00 e 4	71.2	NO

Name: 190711M3_53, Date: 12-Jul-2019, Time: 06:38:25, ID: B9G0065-BS1 OPR 0.25, Description: OPR

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	B9G0065-BS1 OPR 0.25	4.49 e 3	140.6	NO
2	$213 C 5-P F H x A$	B9G0065-BS1 OPR 0.25	8.37 e 3	74.8	NO
3	$318 O 2-P F H x S$	B9G0065-BS1 OPR 0.25	4.46 e 2	82.4	NO
4	$413 C 8-P F O A$	B9G0065-BS1 OPR 0.25	1.11 e 4	75.4	NO
5	$513 C 9-P F N A$	B9G0065-BS1 OPR 0.25	7.27 e 3	87.1	NO
6	$613 C 4-P F O S$	B9G0065-BS1 OPR 0.25	1.18 e 3	81.8	NO
7	$713 C 6-P F D A$	B9G0065-BS1 OPR 0.25	8.59 e 3	76.5	NO
8	$813 C 7-P F U d A$	B9G0065-BS1 OPR 0.25	1.05 e 4	74.8	NO

Name: 190711M3_54, Date: 12-Jul-2019, Time: 06:48:58, ID: B9G0065-BLK1 Method Blank 0.25, Description: Method Blank

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	B9G0065-BLK1 Method Blank 0.25	4.23 e 3	132.3	NO
2	$213 C 5-P F H x A$	B9G0065-BLK1 Method Blank 0.25	7.81 e 3	69.8	NO
3	$318 \mathrm{O} 2-\mathrm{PFHxS}$	B9G0065-BLK1 Method Blank 0.25	4.99 e 2	92.2	NO
4	$413 C 8-P F O A$	B9G0065-BLK1 Method Blank 0.25	1.09 e 4	73.8	NO
5	$513 C 9-P F N A$	B9G0065-BLK1 Method Blank 0.25	7.05 e 3	84.5	NO
6	$613 C 4-P F O S$	B9G0065-BLK1 Method Blank 0.25	9.85 e 2	68.2	NO
7	$713 C 6-P F D A$	B9G0065-BLK1 Method Blank 0.25	8.06 e 3	71.8	NO
8	$813 C 7-P F U d A$	B9G0065-BLK1 Method Blank 0.25	9.84 e 3	69.8	NO

Name: 190711M3_55, Date: 12-Jul-2019, Time: 06:59:37, ID: 1901781-01 GW1906241425SK 0.24561, Description: GW1906241425SK

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	$1901781-01$ GW1906241425SK 0.24561	4.51 e 3	141.3	NO
2	$213 C 5-P F H x A$	$1901781-01$ GW1906241425SK 0.24561	8.11 e 3	72.4	NO
3	$318 \mathrm{O}-\mathrm{PFHxS}$	$1901781-01$ GW1906241425SK 0.24561	4.90 e 2	90.6	NO
4	$413 C 8-P F O A$	$1901781-01$ GW1906241425SK 0.24561	1.09 e 4	73.7	NO
5	$513 C 9-P F N A$	$1901781-01$ GW1906241425SK 0.24561	6.86 e 3	82.3	NO
6	$613 C 4-P F O S$	$1901781-01$ GW1906241425SK 0.24561	1.15 e 3	79.8	NO
7	$713 C 6-P F D A$	$1901781-01$ GW1906241425SK 0.24561	8.12 e 3	72.3	NO
8	$813 C 7-P F U d A$	$1901781-01$ GW1906241425SK 0.24561	1.00 e 4	71.0	NO

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: Untitled
Last Altered: Friday, July 12, 2019 15:56:55 Pacific Daylight Time
Printed: \quad Friday, July 12, 2019 15:56:58 Pacific Daylight Time

Name: 190711M3_56, Date: 12-Jul-2019, Time: 07:10:15, ID: 1901781-02 GW1906241605SK 0.25501, Description: GW1906241605SK

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1901781-02 GW1906241605SK 0.25501	4.72 e 3	147.7	NO
2	2 13C5-PFHxA	1901781-02 GW1906241605SK 0.25501	8.56e3	76.5	NO
3	3 18O2-PFHxS	1901781-02 GW 1906241605SK 0.25501	5.27 e 2	97.4	NO
4	4 13C8-PFOA	1901781-02 GW1906241605SK 0.25501	1.17 e 4	79.3	NO
5	5 13C9-PFNA	1901781-02 GW1906241605SK 0.25501	6.98 e 3	83.7	NO
6	6 13C4-PFOS	1901781-02 GW1906241605SK 0.25501	1.08 e 3	75.1	NO
7	7 13C6-PFDA	1901781-02 GW1906241605SK 0.25501	8.55 e 3	76.1	NO
8	8 13C7-PFUdA	1901781-02 GW1906241605SK 0.25501	9.97 e 3	70.8	NO

Name: 190711M3_57, Date: 12-Jul-2019, Time: 07:20:48, ID: 1901781-03 GW1906250855KME 0.24339, Description: GW1906250855KME

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	$1901781-03$ GW1906250855KME 0.24...	3.58 e 3	112.2	NO
2	$213 C 5-P F H x A$	$1901781-03$ GW1906250855KME 0.24...	7.02 e 3	62.7	NO
3	$318 O 2-P F H x S$	$1901781-03$ GW1906250855KME 0.24...	4.71 e 2	87.1	NO
4	$413 C 8-P F O A$	$1901781-03$ GW1906250855KME 0.24...	1.06 e 4	71.7	NO
5	$513 C 9-P F N A$	$1901781-03$ GW1906250855KME 0.24...	6.73 e 3	80.7	NO
6	$613 C 4-P F O S$	$1901781-03$ GW1906250855KME 0.24...	1.16 e 3	80.7	NO
7	$713 C 6-P F D A$	$1901781-03$ GW1906250855KME 0.24...	8.00 e 3	71.2	NO
8	$813 C 7-P F U d A$	$1901781-03$ GW1906250855KME 0.24...	9.56 e 3	67.9	NO

Name: 190711M3_58, Date: 12-Jul-2019, Time: 07:31:26, ID: 1901781-04 GW1906250855KME-FD 0.24341, Description: GW1906250855KME-FD

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1901781-04 GW1906250855KME-FD 0...	4.08 e 3	127.6	NO
2	2 13C5-PFHxA	1901781-04 GW1906250855KME-FD 0...	8.26 e 3	73.8	NO
3	3 18O2-PFHxS	1901781-04 GW1906250855KME-FD 0...	5.20 e 2	96.2	NO
4	4 13C8-PFOA	1901781-04 GW1906250855KME-FD 0...	1.21 e 4	81.7	NO
5	5 13C9-PFNA	1901781-04 GW1906250855KME-FD 0...	7.71 e 3	92.4	NO
6	6 13C4-PFOS	1901781-04 GW1906250855KME-FD 0...	1.39 e 3	96.1	NO
7	7 13C6-PFDA	1901781-04 GW1906250855KME-FD 0...	9.49 e 3	84.5	NO
8	8 13C7-PFUdA	1901781-04 GW1906250855KME-FD 0...	1.11 e 4	79.0	NO

Name: 190711M3_59, Date: 12-Jul-2019, Time: 07:41:59, ID: 1901781-05 GW1906250935SK 0.24535, Description: GW1906250935SK

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1901781-05 GW1906250935SK 0.24535	4.68 e 3	146.6	NO
2	2 13C5-PFHxA	1901781-05 GW1906250935SK 0.24535	9.59 e 3	85.7	NO
3	3 18O2-PFHxS	1901781-05 GW1906250935SK 0.24535	5.15 e 2	95.3	NO
4	4 13C8-PFOA	1901781-05 GW1906250935SK 0.24535	1.34 e 4	90.6	NO
5	5 13C9-PFNA	1901781-05 GW1906250935SK 0.24535	7.88 e 3	94.5	NO
6	6 13C4-PFOS	1901781-05 GW1906250935SK 0.24535	1.37 e 3	94.8	NO
7	7 13C6-PFDA	1901781-05 GW1906250935SK 0.24535	9.42 e 3	83.8	NO
8	8 13C7-PFUdA	1901781-05 GW 1906250935 SK 0.24535	1.13 e 4	80.4	NO

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: Untitled
Last Altered: Friday, July 12, 2019 15:56:55 Pacific Daylight Time
Printed: \quad Friday, July 12, 2019 15:56:58 Pacific Daylight Time

Name: 190711M3_60, Date: 12-Jul-2019, Time: 07:52:37, ID: 1901781-06 GW1906251040KME 0.24373, Description: GW1906251040KME

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1901781-06 GW1906251040KME 0.24...	5.29 e 3	165.7	YES
2	2 13C5-PFHxA	1901781-06 GW 1906251040KME 0.24...	9.75 e 3	87.1	NO
3	3 18O2-PFHxS	1901781-06 GW1906251040KME 0.24...	5.39 e 2	99.7	NO
4	4 13C8-PFOA	1901781-06 GW 1906251040KME 0.24...	1.25 e 4	84.8	NO
5	5 13C9-PFNA	1901781-06 GW1906251040KME 0.24...	7.95 e 3	95.3	NO
6	6 13C4-PFOS	1901781-06 GW1906251040KME 0.24...	1.27 e 3	88.1	NO
7	7 13C6-PFDA	1901781-06 GW 1906251040KME 0.24...	1.03 e 4	91.9	NO
8	8 13C7-PFUdA	1901781-06 GW1906251040KME 0.24...	1.18 e 4	83.8	NO

Name: 190711M3_61, Date: 12-Jul-2019, Time: 08:03:15, ID: 1901781-07 GW1906251120SK 0.24467, Description: GW1906251120SK

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1901781-07 GW1906251120SK 0.24467	4.68 e 3	146.5	NO
2	2 13C5-PFHxA	1901781-07 GW1906251120SK 0.24467	8.99 e 3	80.4	NO
3	3 18O2-PFHxS	1901781-07 GW1906251120SK 0.24467	4.85 e 2	89.7	NO
4	4 13C8-PFOA	1901781-07 GW1906251120SK 0.24467	1.24 e 4	84.0	NO
5	5 13C9-PFNA	1901781-07 GW1906251120SK 0.24467	7.64 e 3	91.6	NO
6	6 13C4-PFOS	1901781-07 GW1906251120SK 0.24467	1.31 e 3	90.7	NO
7	7 13C6-PFDA	1901781-07 GW1906251120SK 0.24467	9.71 e 3	86.4	NO
8	8 13C7-PFUdA	1901781-07 GW1906251120SK 0.24467	1.03 e 4	73.3	NO

Name: 190711M3_62, Date: 12-Jul-2019, Time: 08:13:48, ID: IPA, Description: IPA

	\# Name	ID	Area	\%Rec
1	$113 C 4-P F B A$	IPA	Area Out	
2	$213 C 5-P F H x A$	IPA	NO	
3	$318 O 2-P F H x S$	IPA	NO	
4	$413 C 8-P F O A$	IPA	NO	
5	$513 C 9-P F N A$	IPA	NO	
6	$613 C 4-P F O S$	IPA	NO	
7	$713 C 6-P F D A$	IPA	NO	
8	$813 C 7-P F U d A$	IPA	NO	

Name: 190711M3_63, Date: 12-Jul-2019, Time: 08:24:26, ID: ST190711M3-13 PFC CS3 19G1106, Description: PFC CS3 $19 G 1106$

	\# Name	l ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	ST190711M3-13 PFC CS3 19G1106	3.44 e 3	107.7	NO
2	2 13C5-PFHxA	ST190711M3-13 PFC CS3 19G1106	1.11 e 4	99.5	NO
3	$318 \mathrm{O}-$ PFHxS	ST190711M3-13 PFC CS3 19G1106	6.06 e 2	112.0	NO
4	$413 C 8-P F O A$	ST190711M3-13 PFC CS3 19G1106	1.48 e 4	100.3	NO
5	$513 C 9-P F N A$	ST190711M3-13 PFC CS3 19G1106	8.90 e 3	106.7	NO
6	$613 C 4-P F O S$	ST190711M3-13 PFC CS3 19G1106	1.46 e 3	101.2	NO
7	$713 C 6-P F D A$	ST190711M3-13 PFC CS3 19G1106	1.12 e 4	100.1	NO
8	$813 C 7-P F U d A$	ST190711M3-13 PFC CS3 19G1106	1.30 e 4	92.3	NO

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: Untitled
Last Altered: Friday, July 12, 2019 15:56:55 Pacific Daylight Time
Printed: \quad Friday, July 12, 2019 15:56:58 Pacific Daylight Time

Name: 190711M3_64, Date: 12-Jul-2019, Time: 08:34:58, ID: IPA, Description: IPA

	\# Name	ID	Area
1	$113 C 4-P F B A$	IPA	\%Rec
2	$213 C 5-P F H x A$	IPA	Area Out
3	$318 O 2-P F H x S$	IPA	NO
4	$413 C 8-P F O A$	IPA	NO
5	$513 C 9-P F N A$	IPA	NO
6	$613 C 4-P F O S$	IPA	NO
7	$713 C 6-P F D A$	IPA	NO
8	$813 C 7-P F U d A$	IPA	NO

Name: 190711M3_65, Date: 12-Jul-2019, Time: 08:45:54, ID: 1901781-08 GMW1906251200KME 0.24756, Description: GMW1906251200KME

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	1901781-08 GMW1906251200KME 0.2...	4.71 e 3	147.4	NO
2	2 13C5-PFHxA	1901781-08 GMW1906251200KME 0.2...	8.25 e 3	73.7	NO
3	3 18O2-PFHxS	1901781-08 GMW1906251200KME 0.2...	4.72 e 2	87.2	NO
4	4 13C8-PFOA	1901781-08 GMW1906251200KME 0.2...	1.22 e 4	82.5	NO
5	5 13C9-PFNA	1901781-08 GMW1906251200KME 0.2...	7.51 e 3	90.1	NO
6	6 13C4-PFOS	1901781-08 GMW1906251200KME 0.2...	1.23 e 3	85.4	NO
7	7 13C6-PFDA	1901781-08 GMW1906251200KME 0.2...	8.52 e 3	75.9	NO
8	8 13C7-PFUdA	1901781-08 GMW 1906251200KME 0.2...	1.05 e 4	74.6	NO

Name: 190711M3_66, Date: 12-Jul-2019, Time: 08:56:32, ID: 1901781-09 FB1906251135SK 0.25189, Description: FB1906251135SK

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	$1901781-09$ FB1906251135SK 0.25189	4.58 e 3	143.4	NO
2	$213 C 5-P F H x A$	$1901781-09$ FB1906251135SK 0.25189	8.25 e 3	73.8	NO
3	$318 O 2-P F H x S$	$1901781-09$ FB1906251135SK 0.25189	5.36 e 2	99.1	NO
4	$413 C 8-P F O A$	$1901781-09$ FB1906251135SK 0.25189	1.21 e 4	82.2	NO
5	$513 C 9-P F N A$	$1901781-09$ FB1906251135SK 0.25189	7.53 e 3	90.2	NO
6	$613 C 4-P F O S$	$1901781-09$ FB1906251135SK 0.25189	1.20 e 3	83.0	NO
7	$713 C 6-P F D A$	$1901781-09$ FB1906251135SK 0.25189	9.05 e 3	80.6	NO
8	$813 C 7-P F U d A$	$1901781-09$ FB1906251135SK 0.25189	1.10 e 4	78.3	NO

Name: 190711M3_67, Date: 12-Jul-2019, Time: 09:07:05, ID: IPA, Description: IPA

| | \# | Name | ID | Area |
| :--- | :--- | :--- | :--- | :--- | \%Rec | Area Out |
| :---: |
| 1 |

Quantify Sample Summary Report
Vista Analytical Laboratory
Dataset: Untitled
Last Altered: Friday, July 12, 2019 15:56:55 Pacific Daylight Time
Printed: \quad Friday, July 12, 2019 15:56:58 Pacific Daylight Time

Name: 190711M3_68, Date: 12-Jul-2019, Time: 09:17:43, ID: ST190711M3-14 PFC CS3 19G1106, Description: PFC CS3 $19 G 1106$

	\# Name	ID	Area	\%Rec	Area Out
1	1 13C4-PFBA	ST190711M3-14 PFC CS3 19G1106	3.37e3	105.7	NO
2	2 13C5-PFHxA	ST190711M3-14 PFC CS3 19G1106	1.03 e 4	92.4	NO
3	3 18O2-PFHxS	ST190711M3-14 PFC CS3 19G1106	5.56 e 2	102.8	NO
4	4 13C8-PFOA	ST190711M3-14 PFC CS3 19G1106	1.45 e 4	98.1	NO
5	5 13C9-PFNA	ST190711M3-14 PFC CS3 19 G 1106	8.67 e 3	104.0	NO
6	6 13C4-PFOS	ST190711M3-14 PFC CS3 19G1106	1.43 e 3	98.9	NO
7	7 13C6-PFDA	ST190711M3-14 PFC CS3 19G1106	1.06 e 4	94.6	NO
8	8 13C7-PFUdA	ST190711M3-14 PFC CS3 19 G 1106	1.25 e 4	88.8	NO

Name: 190711M3_69, Date: 12-Jul-2019, Time: 09:28:22, ID: IPA, Description: IPA

	\# Name	ID	Area
1	$113 C 4-P F B A$	IPA	
2	$213 C 5-P F H x A$	IPA	Area Out
3	$318 O 2-P F H x S$	IPA	NO
4	$413 C 8-P F O A$	IPA	NO
5	$513 C 9-P F N A$	IPA	NO
6	$613 C 4-P F O S$	IPA	NO
7	$713 C 6-P F D A$	IPA	NO
8	$813 C 7-P F U d A$	IPA	NO
			NO

Name: 190711M3_70, Date: 12-Jul-2019, Time: 09:38:55, ID: IB tester, Description: MeOH

	\# Name	ID	Area	\%Rec	Area Out
1	$113 C 4-P F B A$	IB tester	2.63 e 3	82.3	NO
2	$213 C 5-P F H x A$	IB tester	8.52 e 3	76.1	NO
3	$318 \mathrm{O} 2-\mathrm{PFHxS}$	IB tester	5.54 e 2	102.5	NO
4	$413 C 8-P F O A$	IB tester	1.35 e 4	91.5	NO
5	$513 C 9-P F N A$	IB tester	8.80 e 3	105.5	NO
6	$613 C 4-P F O S$	IB tester	1.37 e 3	94.8	NO
7	$713 C 6-P F D A$	IB tester	1.01 e 4	89.6	NO
8	$813 C 7-P F U d A$	IB tester	1.22 e 4	86.8	NO

Name: 190711M3_12, Date: 11-Jul-2019, Time: 23:23:47, ID: IB, Description: IB

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
1	1 PFBA	$213.0>168.8$		2169.162	1.00					NO		
2	2 PFPrS	$248.9>79.9$		658.630	1.00					NO		
3	3 3:3 FTCA	$240.9>176.9$		4335.059	1.00					NO		
4	4 PFPeA	$263.1>218.9$		4335.059	1.00					NO		
5	5 PFBS	$299.0>79.7$		658.630	1.00					NO		
6	6 4:2 FTS	$327.0>306.9$		1393.920	1.00					NO		
7	47 13C3-PFBA	$216.1>171.8$	2169.162	3391.515	1.00	1.18	7.995	12.3	98.4	NO		
8	49 13C3-PFBS	$302.0>98.8$	658.630	645.575	1.00	2.46	12.753	12.3	98.6	NO		
9	48 13C3-PFPeA	$266.0>221.8$	4335.059	11174.867	1.00	2.17	4.849	11.9	95.2	NO		
10	48 13C3-PFPeA	$266.0>221.8$	4335.059	11174.867	1.00	2.17	4.849	11.9	95.2	NO		
11	49 13C3-PFBS	$302.0>98.8$	658.630	645.575	1.00	2.46	12.753	12.3	98.6	NO		
12	51 13C2-4:2 FTS	$329.0>79.9$	1393.920	645.575	1.00	2.88	26.990	12.1	96.4	NO		
13	-1											
14	7 PFHxA	313.0 > 269.0		3474.314	1.00					NO		
15	8 PFPeS	$349.1>80.1$		658.630	1.00					NO		
16	9 HFPO-DA	$285.1>168.9$		1278.940	1.00					NO		
17	10 5:3 FTCA	$340.9>236.9$		4347.714	1.00					NO		
18	11 PFHpA	363.0 > 318.9		4347.714	1.00					NO		
19	12 ADONA	$376.8>250.9$		4347.714	1.00					NO		
20	52 13C2-PFHxA	$315.0>270.0$	3474.314	11174.867	1.00	2.96	3.886	4.9	98.1	NO		
21	49 13C3-PFBS	$302.0>98.8$	658.630	645.575	1.00	2.46	12.753	12.3	98.6	NO		
22	50 13C3-HFPO-DA	$287.0>168.9$	1278.940	11174.867	1.00	3.18	1.431	4.7	93.4	NO		
23	53 13C4-PFHpA	$367.2>321.8$	4347.714	11174.867	1.00	3.58	4.863	12.4	99.5	NO		
24	53 13C4-PFHpA	$367.2>321.8$	4347.714	11174.867	1.00	3.58	4.863	12.4	99.5	NO		
25	53 13C4-PFHpA	$367.2>321.8$	4347.714	11174.867	1.00	3.58	4.863	12.4	99.5	NO		
26	-1											
27	13 L-PFHxS	$398.9>79.6$		1497.795	1.00					NO		
28	15 6:2 FTS	$427.0>406.9$		1169.839	1.00					NO		
29	16 L-PFOA	412.8 > 368.9	50.243	8479.957	1.00	4.11	0.074	0.0		NO	10.472	YES
30	18 PFechS	$460.8>381.0$		8479.957	1.00					NO		
31	19 PFHpS	$449.0>80.0$		1397.016	1.00					NO		
32	20 7:3 FTCA	$440.9>336.9$		9163.891	1.00					NO		
33	54 13C3-PFHxS	$401.8>79.9$	1497.795	645.575	1.00	3.74	29.001	11.4	91.1	NO		
34	55 13C2-6:2 FTS	$429.0>79.9$	1169.839	1444.856	1.00	4.05	10.121	13.7	110.0	NO		
35	58 13C2-PFOA	414.9 > 369.7	8479.957	15397.797	1.00	4.11	6.884	12.2	97.6	NO		
36	58 13C2-PFOA	414.9 > 369.7	8479.957	15397.797	1.00	4.11	6.884	12.2	97.6	NO.		

[^0]Name: 190711M3_12, Date: 11-Jul-2019, Time: 23:23:47, ID: IB, Description: IB

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
37	59 13C8-PFOS	507.0 > 79.9	1397.016	1444.856	1.00	4.64	12.086	11.4	91.2	NO		
38	56 13C5-PFNA	468.2 > 422.9	9163.891	9162.572	1.00	4.55	12.502	12.7	101.8	NO		
39	-1											
40	21 PFNA	$463.0>418.8$		9163.891	1.00					NO		
41	22 PFOSA	$497.9>77.9$		1767.577	1.00					NO		
42	23 L-PFOS	$498.9>79.9$		1397.016	1.00					NO		
43	259 Cl -PF30NS	$530.7>350.8$		1397.016	1.00					NO		
44	26 PFDA	$513>468.8$		7527.925	1.00					NO		
45	27 8:2 FTS	$527.0>506.9$		1117.957	1.00					NO		
46	56 13C5-PFNA	$468.2>422.9$	9163.891	9162.572	1.00	4.55	12.502	12.7	101.8	NO		
47	57 13C8-PFOSA	$506.1>77.7$	1767.577	13872.562	1.00	4.62	1.593	12.2	97.8	NO		
48	59 13C8-PFOS	$507.0>79.9$	1397.016	1444.856	1.00	4.64	12.086	11.4	91.2	NO		
49	59 13C8-PFOS	$507.0>79.9$	1397.016	1444.856	1.00	4.64	12.086	11.4	91.2	NO		
50	60 13C2-PFDA	$515.1>469.9$	7527.925	11306.739	1.00	4.93	8.322	12.6	100.5	NO		
51	61 13C2-8:2 FTS	$529>79.9$	1117.957	1444.856	1.00	4.90	9.672	13.9	111.3	NO		
52	-1											
53	28 PFNS	$549.1>80.1$		1397.016	1.00					NO		
54	29 L-MeFOSAA	$570>419$		1463.168	1.00					NO		
55	31 L-EtFOSAA	$584.1>419$		1896.617	1.00					NO		
56	33 PFUdA	$563.0>518.9$	27.150	11955.964	1.00	5.26	0.028	0.0		NO	20.292	YES
57	34 PFDS	$598.8>79.9$		1117.957	1.00					NO		
58	3511 Cl PFF30UdS	$632.6>452.7$		13471.563	1.00					NO		
59	59 13C8-PFOS	$507.0>79.9$	1397.016	1444.856	1.00	4.64	12.086	11.4	91.2	NO		
60	62 d3-N-MeFOSAA	$573.3>419$	1463.168	13872.562	1.00	5.08	1.318	10.2	81.7	NO		
61	64 d5-N-EtFOSAA	$589.3>419$	1896.617	13872.562	1.00	5.24	1.709	11.6	92.7	NO		
62	63 13C2-PFUdA	$565>519.8$	11955.964	13872.562	1.00	5.26	10.773	12.6	100.6	NO		
63	61 13C2-8:2 FTS	$529>79.9$	1117.957	1444.856	1.00	4.90	9.672	13.9	111.3	NO		
64	65 13C2-PFDoA	$614.7>569.7$	13471.563	11306.739	1.00	5.55	14.893	12.1	96.9	NO		
65	-1											
66	36 10:2 FTS	$627.0>606.9$		1117.957	1.00					NO		
67	37 PFDoA	$612.9>569.0$		13471.563	1.00					NO		
68	38 N-MeFOSA	$512.1>168.9$		3768.635	1.00					NO		
69	39 PFTrDA	$662.9>618.9$		13471.563	1.00					NO		
70	40 PFDoS	$698.8>79.9$		6802.284	1.00					NO		
71	41 PFTeDA	713.0 > 669.0		6802.284	1.00					NO		
72	65 13C2-PFDoA	$614.7>569.7$	13471.563	11306.739	1.00	5.55	14.893	12.1	96.9	NO		

[^1]
Dataset:

F:\Projects\PFAS.PRO\Results\190711M3\190711M3-IB.qld
Last Altered: Friday, July 12, 2019 09:29:49 Pacific Daylight Time
Printed:
Friday, July 12, 2019 09:30:42 Pacific Daylight Time

Name: 190711M3_12, Date: 11-Jul-2019, Time: 23:23:47, ID: IB, Description: IB

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
73	65 13C2-PFDoA	614.7 > 569.7	13471.563	11306.739	1.00	5.55	14.893	12.1	96.9	NO		
74	66 d3-N-MeFOSA	$515.2>168.9$	3768.635	13872.562	1.00	5.70	3.396	153.2	102.2	NO		
75	65 13C2-PFDoA	$614.7>569.7$	13471.563	11306.739	1.00	5.55	14.893	12.1	96.9	NO		
76	67 13C2-PFTeDA	$715.1>669.7$	6802.284	13872.562	1.00	6.02	6.129	12.0	95.9	NO		
77	67 13C2-PFTeDA	$715.1>669.7$	6802.284	13872.562	1.00	6.02	6.129	12.0	95.9	NO		
78	-1											
79	$42 \mathrm{~N}-\mathrm{EtFOSA}$	$526.1>168.9$		5493.738	1.00					NO		
80	43 PFHxDA	$813.1>768.6$		3849.397	1.00					NO		
81	44 PFODA	$913.1>868.8$	22.256	3849.397	1.00	6.63	0.029	0.0		NO		
82	$45 \mathrm{~N}-\mathrm{MeFOSE}$	$616.1>58.9$		5038.851	1.00					NO		
83	$46 \mathrm{~N}-\mathrm{EtFOSE}$	$630.1>58.9$		4912.971	1.00					NO		
84	72 13C4-PFBA	$217.0>172.0$	3391.515	3391.515	1.00	1.18	12.500	12.5	100.0	NO		
85	68 d5-N-ETFOSA	$531.1>168.9$	5493.738	13872.562	1.00	6.13	4.950	158.8	105.9	NO		
86	69 13C2-PFHxDA	$815>769.7$	3849.397	13872.562	1.00	6.38	3.469	4.7	94.4	NO		
87	69 13C2-PFHxDA	$815>769.7$	3849.397	13872.562	1.00	6.38	3.469	4.7	94.4	NO		
88	70 d7-N-MeFOSE	$623.1>58.9$	5038.851	13872.562	1.00	6.29	4.540	162.4	108.3	NO		
89	71 d9-N-EtFOSE	$639.2>58.8$	4912.971	13872.562	1.00	6.44	4.427	160.9	107.3	NO		
90	73 13C5-PFHxA	$318.0>272.9$	11174.867	11174.867	1.00	2.96	12.500	12.5	100.0	NO		
91	-1											
92	75 13C8-PFOA	$420.9>376.0$	15397.797	15397.797	1.00	4.11	12.500	12.5	100.0	NO		
93	74 1802-PFHxS	$403.0>102.6$	645.575	645.575	1.00	3.74	12.500	12.5	100.0	NO		
94	76 13C9-PFNA	$472.2>426.9$	9162.572	9162.572	1.00	4.55	12.500	12.5	100.0	NO		
95	77 13C4-PFOS	$503>79.9$	1444.856	1444.856	1.00	4.64	12.500	12.5	100.0	NO		
96	78 13C6-PFDA	$519.1>473.7$	11306.739	11306.739	1.00	4.93	12.500	12.5	100.0	NO		
97	79 13C7-PFUdA	$570.1>524.8$	13872.562	13872.562	1.00	5.26	12.500	12.5	100.0	NO		

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_071119.mdb 12 Jul 2019 08:40:55

Calibration: F:|Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_07-10-19.cdb 11 Jul 2019 10:56:26

Name: 190711M3_12, Date: 11-Jul-2019, Time: 23:23:47, ID: IB, Description: IB

13C3-PFBA

IB IB F3:MRM of 1 channel,ES$216.1>171.8$ $3.396 e+004$

IB IB F6:MRM of 2 channels,ES-

13C3-PFBS
IB IBF12:MRM of 1 channel,ES$302.0>98.8$

13C3-PFPeA
IB IB F8:MRM of 1 channel,ES$266.0>221.8$ $8.140 \mathrm{e}+004$

13C3-PFPeA

IB IB F8:MRM of 1 channel,ES266.0 > 221.8

Name: 190711M3_12, Date: 11-Jul-2019, Time: 23:23:47, ID: IB, Description: IB

PFHxA
 F13:MRM of 2 channels,ES- $313.0>269.0$ $4.583 \mathrm{e}+002$

F13:MRM of 2 channels,ES-

13C2-PFHxA

IB IBF14:MRM of 1 channel,ES$315.0>270.0$ $8.375 \mathrm{e}+004$

13C3-PFBS
IB IBF12:MRM of 1 channel,ES-

IB IB F9:MRM of 3 channels,ES- F18:MRM of 2 channels,ES-

13C3-HFPO-DA
F10:MRM of 2 channels,ES-

$$
\begin{array}{r}
287.0>168.9 \\
3.010 \mathrm{e}+004
\end{array}
$$

(1007

13C4-PFHpA
IB IBF21:MRM of 1 channel,ES-

F20:MRM of 2 channels,ES 363.0 > 169.0

13C4-PFHpA

IB IBF21:MRM of 1 channel,ES367.2 > 321.8 $1.081 \mathrm{e}+005$

ADONA

F22:MRM of 2 channels,ES$376.8>85.0$

13C4-PFHpA
IB IBF21:MRM of 1 channel,ES-
$367.2>321.8$

Dataset:	F:\Projects\PFAS.PRO\Results\190711M3\190711M3-IB.qld
Last Altered:	Friday, July 12, 2019 09:29:49 Pacific Daylight Time
Printed:	Friday, July 12, 2019 09:30:42 Pacific Daylight Time

Name: 190711M3_12, Date: 11-Jul-2019, Time: 23:23:47, ID: IB, Description: IB

L-PFHxS

F23:MRM of 2 channels,ES- | $398.9>79.6$ |
| ---: |
| $6.350 \mathrm{e}+001$ |

F23:MRM of 2 channels,ES$398.9>99.0$
3.500 4.000

13C3-PFHxS

IB IBF24:MRM of 1 channel,ES$401.8>79.9$ $3.636 e+004$

13C2-6:2 FTS
IB IBF30:MRM of 1 channel,ES-

13C2-PFOA
IB IBF27:MRM of 1 channel,ES$414.9>369.7$ $2.117 e+005$

13C2-PFOA
IB IBF27:MRM of 1 channel,ES414.9 > 369.7

PFHpS

F32:MRM of 2 channels,ES-

F32:MRM of 2 channels,ES-

13C8-PFOS
IB IBF42:MRM of 1 channel,ES $507.0>79.9$ $3.199 \mathrm{e}+004$

7:3 FTCA

F31:MRM of 2 channels,ES-
$440.9>336.9$
$7.562 e+001$

13C5-PFNA
IB IBF35:MRM of 1 channel,ES$468.2>422.9$ $2.126 e+005$

Name: 190711M3_12, Date: 11-Jul-2019, Time: 23:23:47, ID: IB, Description: IB

13C5-PFNA

IB IBF35:MRM of 1 channel,ES$468.2>422.9$ $2.126 e+005$

PFOSA

F37:MRM of 2 channels,ES-

F37:MRM of 2 channels,ES-

13C8-PFOSA
IB IBF41:MRM of 1 channel,ES $506.1>77.7$ $4.339 e+004$

L-PFOS
F39:MRM of 2 channels,ES

F39:MRM of 2 channels,ES498.9 > 99.0

13C8-PFOS

IB IBF42:MRM of 1 channel,ES-

13C8-PFOS
IB IBF42:MRM of 1 channel,ES-

F44:MRM of 2 channels,ES
$513>219$

13C2-PFDA

IB IBF45:MRM of 1 channel,ES $515.1>469.9$ $1.841 \mathrm{e}+005$

13C2-8:2 FTS
IB IBF50:MRM of 1 channel,ES-

Dataset:	F:\Projects\PFAS.PRO\Results\190711M3\190711M3-IB.qld
Last Altered:	Friday, July 12, 2019 09:29:49 Pacific Daylight Time
Printed:	Friday, July 12, 2019 09:30:42 Pacific Daylight Time

Name: 190711M3_12, Date: 11-Jul-2019, Time: 23:23:47, ID: IB, Description: IB

PFNS
 F53:MRM of 2 channels,ES- $549.1>80.1$ $1.000 \mathrm{e}-003$
 F53:MRM of 2 channels,ES$549.1>99.1$

d3-N-MeFOSAA
IB IBF58:MRM of 1 channel,ES-

d5-N-EtFOSAA
IB IBF60:MRM of 1 channel,ES-

F54:MRM of 2 channels,ES-

13C2-PFUdA
IB IBF55:MRM of 1 channel,ES-

13C2-8:2 FTS
IB IBF50:MRM of 1 channel,ES-

11CI-PF30UdS

F68:MRM of 2 channels,ES-
$632.6>450.7$

13C2-PFDoA
IB IBF63:MRM of 1 channel,ES-

Dataset:	F:\Projects\PFAS.PRO\Results\190711M3\190711M3-IB.qld
Last Altered:	Friday, July 12, 2019 09:29:49 Pacific Daylight Time
Printed:	Friday, July 12, 2019 09:30:42 Pacific Daylight Time

Name: 190711M3_12, Date: 11-Jul-2019, Time: 23:23:47, ID: IB, Description: IB

13C2-PFDoA

IB IBF63:MRM of 1 channel,ES$614.7>5697$ $3.529 \mathrm{e}+005$

13C2-PFDoA

IB IBF63:MRM of 1 channel,ES-

d3-N-MeFOSA
IB IBF46:MRM of 1 channel,ES-

F70:MRM of 2 channels,ES$662.9>319$

13C2-PFDoA
IB IBF63:MRM of 1 channel,ES-

13C2-PFTeDA

F72:MRM of 2 channels,ES713. > 369.0

13C2-PFTeDA

Dataset: F:\Projects\PFAS.PRO\Results\190711M3\190711M3-IB.qld

Last Altered: Friday, July 12, 2019 09:29:49 Pacific Daylight Time
Printed: Friday, July 12, 2019 09:30:42 Pacific Daylight Time

Name: 190711M3_12, Date: 11-Jul-2019, Time: 23:23:47, ID: IB, Description: IB

d5-N-ETFOSA

IB IBF52:MRM of 1 channel,ES$531.1>168.9$ $1.257 \mathrm{e}+005$

PFHxDA
F74:MRM of 2 channels,ES-

F74:MRM of 2 channels,ES$813.1>219$

13C2-PFHxDA
IB IBF75:MRM of 1 channel,ES-

PFODA

13C2-PFHxDA
IB IBF75:MRM of 1 channel,ES-

d7-N-MeFOSE
IB IBF65:MRM of 1 channel,ES$623.1>58.9$ $1.273 \mathrm{e}+005$

N-EtFOSE

d9-N-EtFOSE
IB IBF69:MRM of 1 channel,ES$639.2>58.8$

13C4-PFBA
IB IB F4:MRM of 1 channel,ES-
$217.0>172.0$ $5.267 \mathrm{e}+004$

13C5-PFHxA
IB IBF15:MRM of 1 channel,ES
$318.0>272.9$

Dataset:	F:IProjects\|PFAS.PRO\Results\190711M3\190711M3-IB.qld
Last Altered:	Friday, July 12, 2019 09:29:49 Pacific Daylight Time
Printed:	Friday, July 12, 2019 09:30:42 Pacific Daylight Time

Name: 190711M3_12, Date: 11-Jul-2019, Time: 23:23:47, ID: IB, Description: IB

13C8-PFOA
 IB IBF28:MRM of 1 channel,ES$420.9>376.0$ $3.825 \mathrm{e}+005$

13C9-PFNA
 IB IBF36:MRM of 1 channel,ES-channel,ES- $472.2>426.9$ $2.117 \mathrm{e}+005$

13C4-PFOS
IB IBF40:MRM of 1 channel,ES$503>79.9$ $3.465 \mathrm{e}+004$

13C6-PFDA
IB IBF47:MRM of 1 channel,ES-
channel, ES-
$519.1>473.7$ $2.709 \mathrm{e}+005$

13C7-PFUdA
IB IBF57:MRM of 1 channel,ES $570.1>524.8$ $3.476 \mathrm{e}+005$

LC Calibration Standards Review Checklist \qquad

Full Mass Cal. Date: $07 / 03 / 19$

Dataset: \quad F:IProjects\PFAS.PRO\Results\190711M3\190711M3-32.qld
Last Altered: Friday, July 12, 2019 08:40:57 Pacific Daylight Time
Printed:
Friday, July 12, 2019 08:42:47 Pacific Daylight Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_071119.mdb 12 Jul 2019 08:40:55 Calibration: F:|Projects\PFAS.PRO\CurveDBIC18_VAL-PFĀS_Q4_07-10-19.cdb 11 Jul 2019 10:56:26

Name: 190711M3_32, Date: 12-Jul-2019, Time: 02:55:49, ID: ST190711M3-11 PFC CS3 19G1106, Description: PFC CS3 $19 G 1106$

	Name	PredRT	RT	Ratio:	Ratio	1?
4*":	PFBA	1.17	1.17			
2.2"\#\#	PFPrs	1.53	1.53	2.303	2.303	NO
3 3: 3^{2} 2\%	3:3 FTCA	2.03	2.01	1.893	1.893	NO
42*32\% ${ }^{2}$	PFPeA	2.16	2.16			
5\%	PFBS	2.46	2.46	3.066	3.066	NO
	4:2 FTS	2.88	2.88	1.967	1.967	NO
	PFHxA	2.96	2.96	16.349	16.349	NO
8.2\% ${ }^{\text {2 }}$	PFPeS	3.17	3.17	1.554	1.554	NO
943\%	HFPO-DA	3.17	3.17	1.994	1.994	NO
10\% ${ }^{\text {2\% }}$	5:3 FTCA	3.51	3.52	1.387	1.387	NO
	PFHpA	3.58	3.58	5.744	5.744	NO
$12=4$	ADONA	3.70	3.70	3.227	3.227	NO
3 3	L-PFHxS	3.74	3.74	2.181	2.181	NO
$14 \times 2{ }^{\text {2 }}$	6:2 FTS	4.05	4.05	2.109	2.109	NO
	L-PFOA	4.11	4.11	3.450	3.450	NO
168\% ${ }^{\text {2 }}$	PFechS	4.13	4.13	0.939	0.939	NO
17\% ${ }^{\text {2 }}$	PFHpS	4.23	4.23	2.242	2.242	NO
18\% ${ }^{\text {a }}$	7:3 FTCA	4.55	4.54	2.024	2.024	NO
	PFNA	4.56	4.56	2.747	2.747	NO
20.	PFOSA	4.62	4.61	32.469	32.469	NO
21:854	L-PFOS	4.64	4.64	2.240	2.240	NO
22×3	$9 \mathrm{Cl}-\mathrm{PF} 30 \mathrm{NS}$	4.86	4.86	16.635	16.635	NO
23:	PFDA	4.94	4.94	4.576	4.576	NO
24\% ${ }^{2}$	8:2 FTS	4.90	4.90	1.464	1.464	NO
25-3\%	PFNS	5.00	5.00	1.585	1.585	NO
	L-MeFOSAA	5.09	5.09	2.581	2.581	NO

Dataset: F:IProjects\PFAS.PRO\Results\190711M3\190711M3-32.qld

Last Altered: Friday, July 12, 2019 08:40:57 Pacific Daylight Time
Printed: Friday, July 12, 2019 08:42:59 Pacific Daylight Time

Method: F:|Projects\PFAS.PRO\MethDB\PFAS_FLLL_80C_071119.mdb 12 Jul 2019 08:40:55
Calibration: F:IProjects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_07-10-19.cdb 11 Jul 2019 10:56:26
Name: 190711M3_32, Date: 12-Jul-2019, Time: 02:55:49, ID: ST190711M3-11 PFC CS3 19G1106, Description: PFC CS3 $19 G 1106$

	Name	Predint:		Pred.Ratio	Ion Ratio	Patio out?
$114{ }^{2}$	L-EtFOSAA	5.24	5.25	1.399	1.399	NO
2 2\% "\%	PFUdA	5.26	5.26	6.355	6.355	NO
3.4.3.ab	PFDS	5.31	5.31	1.783	1.783	NO
	11CI-PF30UdS	5.48	5.48	6.844	6.844	NO
52\%	10:2 FTS	5.53	5.53	1.528	1.528	NO
62	PFDoA	5.55	5.55	7.294	7.294	NO
7. ${ }^{\text {2 }}$	N-MeFOSA	5.67	5.67	1.663	1.663	NO
8**"\%	PFTrDA	5.80	5.80	15.848	15.848	NO
	PFDoS	5.83	5.83	1.916	1.916	NO
10 sch	PFTeDA	6.02	6.03	13.714	13.714	NO
11-5	N-EtFOSA	6.11	6.11	1.778	1.778	NO
12	PFHxDA	6.38	6.38	15.561	15.561	NO
	PFODA	6.63	6.63			
14 -	N-MeFOSE	6.30	6.30			
15-2\% ${ }^{\text {a }}$	N-EtFOSE	6.46	6.46			

Last Altered: Friday, July 12, 2019 08:53:31 Pacific Daylight Time
Printed: \quad Friday, July 12, 2019 08:54:22 Pacific Daylight Time

Name: 190711M3_4, Date: 11-Jul-2019, Time: 21:59:01, ID: ST190711M3-3 PFC CSO 19G1103, Description: PFC CSO $19 \mathrm{G1103}$

Name: 190711M3_4, Date: 11-Jul-2019, Time: 21:59:01, ID: ST190711M3-3 PFC CS0 19G1103, Description: PFC CS0 19G1103

-	\# Name	Trace	Area	IS Area	wivol	RT	Response	Conc.	\%RRec Re	ery.:	Ion Ratio	Ratio Out?
37	59 13C8-PFOS	$507.0>79.9$	1537.147	1443.314	1.00	4.64	13.313	12.6	100.5	NO		
38	56 13C5-PFNA	$468.2>422.9$	8563.523	8340.979	1.00	4.55	12.834	13.1	104.5	NO		
39	-1											
40	21 PFNA	$463.0>418.8$	736.998	8563.523	1.00	4.55	1.076	1.0	95.4	No	3.789	NO
41	22 PFOSA	$497.9>77.9$	129.996	1871.672	1.00	4.61	0.868	0.7	70.4	No	39.803	NO
42	23 L-PFOS	$498.9>79.9$	148.648	1537.147	1.00	4.64	1.209	1.1	109.0	NO	2.829	NO
43	25 9CHPF30NS	$530.7>350.8$	349.698	1537.147	1.00	4.86	2.844	1.0	97.3	NO	88.554	YES
44	26 PFDA	$513>468.8$	857.462	7221.111	1.00	4.93	1.484	1.0	95.6	NO	4.508	NO
45	27 8:2 FTS	$527.0>506.9$	244.740	1038.107	1.00	4.90	2.947	1.3	129.7	NO	1.759	NO
45	56 13C5-PFNA	$468.2>422.9$	8563.523	8340.979	1.00	4.55	12.834	13.1	104.5	NO		
47.	57 13C8-PFOSA	$506.1>77.7$	1871.672	14087.684	1.00	4.61	1.661	12.7	102.0	No		
48	59 13C8-PFOS	$507.0>79.9$	1537.147	1443.314	1.00	4.64	13.313	12.6	100.5	NO		
49	59 13C8-PFOS	$507.0>79.9$	1537.147	1443.314	1.00	4.64	13.313	12.6	100.5	NO		
50	60 13C2-PFDA	$515.1>469.9$	7221.111	11232.013	1.00	4.93	8.036	12.1	97.1	No		
51	61 13C2-8:2 FTS	$529>79.9$	1038.107	1443.314	1.00	4.90	8.991	12.9	103.4	NO		
52	-1											
53	28 PFNS	$549.1>80.1$	92.409	1537.147	1.00	5.00	0.751	0.9	93.7	No	1.202	NO
54	29 L -MeFOSAA	$570>419$	377.045	1554.592	1.00	5.09	3.032	1.0	103.1	No	2.525	NO
55	31 L -EtFOSAA	$584.1>419$	225.752	1758.010	1.00	5.25	1.605	0.9	92.8	No	1.253	NO
56	33 PFUdA	$563.0>518.9$	833.829	11481.199	1.00	5.26	0.908	1.0	96.2	No	7.443	NO
57	34 PFDS	$598.8>79.9$	110.114	1038.107	1.00	5.31	1.326	0.8	83.1	No	2.878	YES
58.	3511 Cl PF30UdS	$632.6>452.7$	48.250	13223.400	1.00	5.49	0.046	0.7	69.6 (A)	YES		
59	59 13C8-PFOS	$507.0>79.9$	1537.147	1443.314	1.00	4.64	13.313	12.6	100.5	NO		
60	62 d3-N-MeFOSAA	$573.3>419$	1554.592	14087.684	1.00	5.08	1.379	10.7	85.5	NO		
61	$64 \mathrm{~d} 5-\mathrm{N}-\mathrm{EtFOSAA}$	$589.3>419$	1758.010	14087.684	1.00	5.24	1.560	10.6	84.7	NO		
62	6313 C 2 -PFUdA	$565>519.8$	11481.199	14087.684	1.00	5.26	10.187	11.9	95.1	NO		
63	61 13C2-8:2 FTS	$529>79.9$	1038.107	1443.314	1.00	4.90	8.991	12.9	103.4	No		
64	65 13C2-PFDoA	$614.7>569.7$	13223.400	11232.013	1.00	5.55	14.716	12.0	95.8	No		
65	-1											
66	36 10:2 FTS	$627.0>606.9$	192.572	1038.107	1.00	5.54	2.319	0.9	88.8	No	1.464	NO
67	37 PFDoA	$612.9>569.0$	921.527	13223.400	1.00	5.55	0.871	0.9	93.8	NO	8.227	NO
68 -	38 N -MeFOSA	$512.1>168.9$	106.245	3520.567	1.00	5.67	4.527	3.9	78.0	No	1.699	NO
69	39 PFTrDA	$662.9>618.9$	1226.758	13223.400	1.00	5.80	1.160	1.1	112.7	NO	20.390	NO
70	40 PFDos	$698.8>79.9$	135.882	6850.699	1.00	5.83	0.248	1.1	109.8	No	2.545	NO
$71 \times$	41 PFTeDA	$713.0>669.0$	831.811	6850.699	1.00	6.03	1.518	1.0	99.6	No	24.591	YES
72×8	65 13C2-PFDoA	$614.7>569.7$	13223.400	11232.013	1.00	5.55	14.716	12.0	95.8	No		

Dataset:	F:\Projects\PFAS.PRO\Results\190711M3\190711M3-4.qld
Last Altered:	Friday, July 12, 2019 08:53:31 Pacific Daylight Time
Printed:	Friday, July 12, 2019 08:54:22 Pacific Daylight Time

Name: 190711M3_4, Date: 11-Jul-2019, Time: 21:59:01, ID: ST190711M3-3 PFC CSO 19G1103, Description: PFC CS0 19G1103

Method: F:IProjectsIPFAS.PROMMethDBIPFAS_FULL_80C_071119.mdb 12 Jul 2019 08:40:55 Calibration: F:IProjectsIPFAS.PRO\CurveDBIC18_VAL-PFAS_Q4_07-10-19.cdb 11 Jul 2019 10:56:26

Compound name: PFBA

	\# Name		Acq Date	Acq. Time
1	1 190711M3_1	IPA	11-Jul-19	21:27:14
	2 190711M3_2	ST190711M3-1 PFC CS-2 19G1101	11-Jul-19	21:37:49
	$3190711 \mathrm{M3}$ _3	ST190711M3-2 PFC CS-1 $19 \mathrm{G1102}$	11-Jul-19	21:48:22
4	4 190711M3_4	ST190711M3-3 PFC CSO 19G1103	11-Jul-19	21:59:01
-	$5190711 \mathrm{M3}$ _5	ST190711M3-4 PFC CS1 19G1104	11-Jul-19	22:09:33
6.	6 190711M3_6	ST190711M3-5 PFC CS2 19G1105 * *	11-Jul-19	22:20:12
	7 190711M3_7	ST190711M3-6 PFC CS3 19G1106	11-Jul-19	22:30:45
8	8 190711M3_8	ST190711M3-7 PFC CS4 19G1107	11-Jul-19	22:41:23
	9190711 M 3 _9	ST190711M3-8 PFC CS5 $19 \mathrm{G1108}$	11-Jul-19	22:51:57
10	10 190711M3_10	ST190711M3-9 PFC CS6 $19 \mathrm{G1109}$	11-Jul-19	23:02:37
11	11 190711M3_11	ST190711M3-10 PFC CS7 19 G 1110	11-Jul-19	23:13:13
12.	12 190711M3_12	IB	11-Jul-19	23:23:47
13	13 190711M3_13	ST190711M3-1 PFC ICV 19G1111	11-Jul-19	23:34:17
14	14 190711M3_14	IPA	11-Jul-19	23:44:56
15	15 190711M3_15	B9G0061-BS1 OPR 0.125	11-Jul-19	23:55:34
16	16 190711M3_16	B9F0279-BS1 OPR 1	12-Jul-19	00:06:07
17	17 190711M3_17	B9F0279-BLK1 Method Blank 1	12-Jul-19	00:16:45
18 -	18 190711M3_18	1901784-02RE1 FRB-1 0.24972	12-Jul-19	00:27:18
19	19 190711M3_19	1901683-03 Hagatna 13.93	12-Jul-19	00:37:57
20	20 190711M3_20	1901910-01 SW 1906280950 KME 0.24336	12-Jul-19	00:48:35
21:	21 190711M3_21	1901910-02 SW 1906281025KME 0.24464	12-Jul-19	00:59:09
22. 4	22 190711M3_22	1901910-03 SW 1906281035KME 0.24318	12-Jul-19	01:09:47
23	23 190711M3_23	1901911-01 WMP1907010855JSJ 0.2509	12-Jul-19	01:20:19
24	24 190711M3_24	B9G0095-BS1 OPR 0.25	12-Jul-19	01:30:58
25:	25 190711M3_25	B9G0095-BSD1 LCSD 0.25	12-Jul-19	01:41:36
26	26 190711M3_26	B9G0095-BLK1 Method Blank 0.25	12-Jul-19	01:52:09
27.	27 190711M3_27	1901759-01 HW-AF-01-01-420-062419 0.11818	12-Jul-19	02:02:47
	28 190711M3_28	1901992-01 WIN1907081315GGA 0.24256	12-Jul-19	02:13:26
29	29 190711M3_29	1901992-02 WMP 1907081305GGA 0.23352	12-Jul-19	02:23:58
30.	$30190711 \mathrm{M3}$ _30	1901992-03 WEF1907081310GGA 0.24328	12-Jul-19	02:34:37
$1{ }^{14}$	31 190711M3_31	IPA	12-Jul-19	02:45:10
32×4	32 190711M3_32	ST190711M3-11 PFC CS3 19G1106	12-Jul-19	02:55:49

Last Altered: Friday, July 12, 2019 09:54:29 Pacific Daylight Time
Printed:
Friday, July 12, 2019 09:54:35 Pacific Daylight Time

Compound name: PFBA

	\# Name	ID	Acq. Date	Acq. Time
	$33190711 \mathrm{M3}$ _33	IPA	12-Jul-19	03:06:21
	$34190711 \mathrm{M3}$ _34	B9G0062-BS1 OPR 0.125	12-Jul-19	03:16:59
	35190711 M 3 _35	B9G0062-BSD1 LCSD 0.125	12-Jul-19	03:27:38
	$36190711 \mathrm{M3}$ _36	B9G0062-BLK1 Method Blank 0.125	12-Jul-19	03:38:11
	37 190711M3_37	1901922-01 FRB-07022019 0.10709	12-Jul-19	03:48:49
	38190711 M 3 _38	1901922-02 CAOA-B02-GW 0.1205	12-Jul-19	03:59:23
	39 190711M3_39	1901920-02 SAOA-B08-GW 0.13318	12-Jul-19	04:10:01
	40 190711M3_40	1901920-03 EB-06272019-GW 0.11429	12-Jul-19	04:20:34
	41 190711M3_41	1901920-04 FRB-06282019 0.11576	12-Jul-19	04:31:13
	42 190711M3_42	1901920-05 SAOA-B12-GW 0.12204	12-Jut-19	04:41:51
	43 190711M3_43	1901920-06 SAOA-B12-GW-D 0.12639	12-Jul-19	04:52:24
	44 190711M3_44	1901920-11 NAOA-B02-GW 0.122	12-Jul-19	05:03:03
	45 190711M3_45	1901920-12 EB-07012019 0.11155	12-Jul-19	05:13:36
	46 190711M3_46	1901920-14 FRB-07012019 0.11643	12-Jul-19	05:24:14
	47 190711M3_47	1901920-16 NAOA-B01-GW 0.1294	12-Jul-19	05:34:46
	48 190711M3_48	IPA	12-Jul-19	05:45:25
	49 190711M3_49	ST190711M3-12 PFC CS3 19G1106	12-Jul-19	05:56:03
	50 190711M3_50	IPA	12-Jul-19	06:06:35
	51 190711M3_51	1901920-17 NAOA-B01-GW-D 0.13768	12-Jul-19	06:17:14
	52 190711M3_52	1901920-20 EB-07022019 0.11644	12-Jul-19	06:27:47
	53 190711M3_53	B9G0065-BS1 OPR 0.25	12-Jul-19	06:38:25
	54 190711M3_54	B9G0065-BLK1 Method Blank 0.25	12-Jul-19	06:48:58
	55190711 M 3 _55	1901781-01 GW1906241425SK 0.24561	12-Jul-19	06:59:37
	56 190711M3_56	1901781-02 GW 1906241605SK 0.25501	12-Jul-19	07:10:15
	57 190711M3_57	1901781-03 GW 1906250855KME 0.24339	12-Jul-19	07:20:48
	58 190711M3_58	1901781-04 GW 1906250855KME-FD 0.24341	12-Jul-19	07:31:26
	59 190711M3_59	1901781-05 GW 1906250935SK 0.24535	12-Jul-19	07:41:59
	60190711 M3_60	1901781-06 GW1906251040KME 0.24373	12-Jut-19	07:52:37
	61 190711M3_61	1901781-07 GW 1906251120 SK 0.24467	12-Jul-19	08:03:15
	62 190711M3_62	IPA	12-Jul-19	08:13:48
	63 190711M3_63	ST190711M3-13 PFC CS3 19G1106	12-Jul-19	08:24:26
	64 190711M3_64	IPA	12-Jul-19	08:34:58
	65 190711M3_65	1901781-08 GMW 1906251200KME 0.24756	12-Jul-19	08:45:54
	66190711 M 3 _66	1901781-09 FB1906251135SK 0.25189	12-Jul-19	08:56:32
	67 190711M3_67	IPA	12-Jul-19	09:07:05
	68190711 M 3 _68	ST190711M3-14 PFC CS3 19G1 106	12-Jul-19	09:17:43

Dataset: Untitled

Last Altered: Friday, July 12, 2019 09:54:29 Pacific Daylight Time
Printed: Friday, July 12, 2019 09:54:35 Pacific Daylight Time

Compound name: PFBA

Dataset: \quad F:IProjects\PFAS.PRO\Resultsl190711M3\190711M3-4.qld

Last Altered: Friday, July 12, 2019 08:53:31 Pacific Daylight Time
Printed: Friday, July 12, 2019 08:54:22 Pacific Daylight Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS FULL 80C 071119.mdb 12 Jul 2019 08:40:55
Calibration: F:|Projects\PFAS.PRO\CurveDBIC-18_VAL-PFĀS_Q4_07-10-19.cdb 11 Jul 2019 10:56:26
Name: 190711M3_4, Date: 11-Jul-2019, Time: 21:59:01, ID: ST190711M3-3 PFC CS0 19G1103, Description: PFC CS0 $19 G 1103$

13C3-PFBA
F3:MRM of 1 channel,ES-
$216.1>171.8$

13C3-PFBS
F12:MRM of 1 channel,ES-

13C3-PFPeA

13C2-4:2 FTS
F17:MRM of 2 channels,ES-

Dataset:	F:IProjects\PFAS.PRO\Results\190711M3\190711M3-4.qld
Last Altered:	Friday, July 12, 2019 08:53:31 Pacific Daylight Time
Printed:	Friday, July 12, 2019 08:54:22 Pacific Daylight Time

Name: 190711M3_4, Date: 11-Jul-2019, Time: 21:59:01, ID: ST190711M3-3 PFC CS0 19G1103, Description: PFC CS0 $19 G 1103$

13C3-PFBS
F12:MRM of 1 channel,ES-

13C3-HFPO-DA
F10:MRM of 2 channels,ES-
$287.0>168.9$

F18:MRM of 2 channels,ES-
$340.9>216.9$

F2O:MRM of 2 channels,ES-
$363.0>169.0$

13C4-PFHpA
F21:MRM of 1 channel, ES-
$3672>3218$

Dataset: F:IProjects\PFAS.PRO\Results\190711M3\190711M3-4.qld
Last Altered: Friday, July 12, 2019 08:53:31 Pacific Daylight Time
Printed:
Friday, July 12, 2019 08:54:22 Pacific Daylight Time

Name: 190711M3 4, Date: 11-Jul-2019, Time: 21:59:01, ID: ST190711M3-3 PFC CS0 19G1103, Description: PFC CS0 19 G 1103

13C3-PFHxS

F24:MRM of 1 channel,ES-

13C2-6:2 FTS

13C2-PFOA
F27:MRM of 1 channel,ES-
$414.9>369.7$

F33:MRM of 2 channels,ES-
$460.8>98.9$

F32:MRM of 2 channels,ES-

13C8-PFOS

13C5-PFNA
F35:MRM of 1 channel,ES-
$468.2>422.9$
$1.984 e+005$

Dataset:

Last Altered: Friday, July 12, 2019 08:53:31 Pacific Daylight Time
Printed:
Friday, July 12, 2019 08:54:22 Pacific Daylight Time

Name: 190711M3_4, Date: 11-Jul-2019, Time: 21:59:01, ID: ST190711M3-3 PFC CS0 19G1103, Description: PFC CS0 $19 G 1103$

13C8-PFOSA
F41:MRM of 1 channel, ES-
$506.1>77.7$

L-PFOS

F39:MRM of 2 channels,ES-
F39:MRM of 2 channels,ES-

F39:MRM of 2 channels,ES-

13C8-PFOS
F42:MRM of 1 channel,ES-

F51:MRM of 2 channels,ES

F44:MRM of 2 channels,ES-

13C2-PFDA
F45:MRM of 1 channel,ES$515.1>469.9$ $1.731 e+005$

F49:MRM of 2 channels,ES-

13C2-8:2 FTS
F50:MRM of 1 channel,ES $\begin{array}{r}529>79.9 \\ \hline\end{array}$

Dataset:
F:IProjects\PFAS.PRO\Results\190711M3\190711M3-4.qld
Last Altered: Friday, July 12, 2019 08:53:31 Pacific Daylight Time
Printed: Friday, July 12, 2019 08:54:22 Pacific Daylight Time

Name: 190711M3_4, Date: 11-Jul-2019, Time: 21:59:01, ID: ST190711M3-3 PFC CS0 19G1103, Description: PFC CS0 $19 G 1103$

PFNS

F42:MRM of 1 channel,ES$507.0>79.9$ $3.787 \mathrm{e}+004$

F56:MRM of 2 channeis,ESF56:MRM of 2 channes, ES
$570 .>512$

d3-N-MeFOSAA
F58:MRM of 1 channel,ES$573.3>419$ $3.415 \mathrm{e}+004$

$$
\begin{array}{r}
\text { F59:MRM of } 2 \text { channels,ES- } \\
584.1>526 \\
3.657 \mathrm{e}+003
\end{array}
$$

$$
\begin{array}{llll}
& 584.1>526 \\
& & & 563.0>269 \\
& 3.657 \mathrm{e}+003 \\
& 100 & 2.827 \mathrm{e}+003
\end{array}
$$

(1007
d5-N-EtFOSAA
F60:MRM of 1 channel,ES-

PFUdA F54:MRM of 2 channels,ES-

 $563.0>518.9$

PFDS
F61:MRM of 2 channels,ES-
F61:MRM of 2 channels,ES-
$598.8>79.9$
$2.796 \mathrm{e}+003$

13C2-8:2 FTS
F50:MRM of 1 channel,ES-
$529>79.9$
$2.4930+004$

11Cl-PF30UdS

13C2-PFDOA
F63:MRM of 1 channel,ES
$614.7>569.7$
$3.483 e+005$

Last Altered: Friday, July 12, 2019 08:53:31 Pacific Daylight Time
Printed:
Friday, July 12, 2019 08:54:22 Pacific Daylight Time

Name: 190711M3_4, Date: 11-Jul-2019, Time: 21:59:01, ID: ST190711M3-3 PFC CS0 19G1103, Description: PFC CS0 $19 G 1103$

d3-N-MeFOSA
F46:MRM of 1 channe, ES-
$515.2>168.9$

13C2-PFTeDA
F73:MRM of 2 channels,ES-

F72:MRM of 2 channels,ES-

13C2-PFTeDA
F73:MRM of 2 channels,ES-
$715.1>669.7$

Last Altered: Friday, July 12, 2019 08:53:31 Pacific Daylight Time
Printed: \quad Friday, July 12, 2019 08:54:22 Pacific Daylight Time

Name: 190711M3_4, Date: 11-Jul-2019, Time: 21:59:01, ID: ST190711M3-3 PFC CS0 19G1103, Description: PFC CS0 $19 G 1103$

d5-N-ETFOSA

F52:MRM of 1 channel,ES $531.1>168.9$ $1.266 \mathrm{e}+005$

13C2-PFHxDA

F75:MRM of 1 channel,ES-
$815>769.7$
$9.746 \mathrm{e}+004$

13C2-PFHxDA
F75:MRM of 1 channel,ES$815>769.7$ $9.746 \mathrm{e}+004$

F67:MRM of 1 channel,ES- $630.1>58.9$

d9-N-EtFOSE
F69:MRM of 1 channel,ES. $639.2>58.8$ $1.299 \mathrm{e}+005$

13C4-PFBA
F4:MRM of 1 channel,ES

13C5-PFHxA
F15:MRM of 1 channel,ES-
$318.0>272.9$ $2.599 \mathrm{e}+005$

Dataset: F:IProjects\PFAS.PRO\Results\190711M3\190711M3-4.qld

Last Altered: Friday, July 12, 2019 08:53:31 Pacific Daylight Time
Printed: Friday, July 12, 2019 08:54:22 Pacific Daylight Time

Name: 190711M3_4, Date: 11-Jul-2019, Time: 21:59:01, ID: ST190711M3-3 PFC CS0 19G1103, Description: PFC CS0 $19 G 1103$

13C6-PFDA
F47:MRM of 1 channel,ES$519.1>473.7$ $2.659 \mathrm{e}+005$

13C7-PFUdA
F57:MRM of 1 channel,ES$570.1>524.8$

Last Altered: Friday, July 12, 2019 08:40:57 Pacific Daylight Time
Printed:
Friday, July 12, 2019 08:41:15 Pacific Daylight Time

Name: 190711M3_32, Date: 12-Jul-2019, Time: 02:55:49, ID: ST190711M3-11 PFC CS3 19G1106, Description: PFC CS3 $19 G 1106$

Last Altered: Friday, July 12, 2019 08:40:57 Pacific Daylight Time

Name: 190711M3_32, Date: 12-Jul-2019, Time: 02:55:49, ID: ST190711M3-11 PFC CS3 19G1106, Description: PFC CS3 $19 G 1106$

Last Altered: Friday, July 12, 2019 08:40:57 Pacific Daylight Time
Printed: Friday, July 12, 2019 08:41:15 Pacific Daylight Time

Name: 190711M3_32, Date: 12-Jul-2019, Time: 02:55:49, ID: ST190711M3-11 PFC CS3 19G1106, Description: PFC CS3 19G1106

2-4\%	\# Name	Trace	Area	IS Area	wituot	RT	Response	Conc.	\%Rec	Recovery .:	Ion Ratio	Ratio Out?
73	65 13C2-PFDoA	$614.7>569.7$	12278.030	10829.662	1.00	5.55	14.172	11.5	92.2	NO		
74	66 d 3 -N-MeFOSA	$515.2>168.9$	3637.441	12786.682	1.00	5.70	3.556	160.5	107.0	NO		
75	65 13C2-PFDoA	614.7 > 569.7	12278.030	10829.662	1.00	5.55	14.172	11.5	92.2	NO		
76	67 13C2-PFTeDA	715.1 > 669.7	6391.971	12786.682	1.00	6.02	6.249	12.2	97.8	NO		
77	67 13C2-PFTeDA	715.1 > 669.7	6391.971	12786.682	1.00	6.02	6.249	12.2	97.8	No		
78	-1											
79	$42 \mathrm{~N}-\mathrm{EtFOSA}$	$526.1>168.9$	1512.230	5379.544	1.00	6.11	42.166	46.0	91.9	NO	1.778	NO
80 :	$43 \mathrm{PFH} \times \mathrm{DA}$	$813.1>768.6$	5454.731	3667.506	1.00	6.38	7.437	9.8	98.2	NO	15.561	NO
81	44 PFODA	913.1 > 868.8	6219.668	3667.506	1.00	6.63	8.479	10.1	101.4	NO		
82	45 N -MeFOSE	$616.1>58.9$	1740.919	4729.849	1.00	6.30	55.211	49.2	98.4	NO		
83.	46 N -EtFOSE	$630.1>58.9$	2237.700	4507.340	1.00	6.46	74.469	52.9	105.9	NO		
84	72 13C4-PFBA	$217.0>172.0$	3260.294	3260.294	1.00	1.17	12.500	12.5	100.0	NO		
85	68 d5-N-ETFOSA	$531.1>168.9$	5379.544	12786.682	1.00	6.13	5.259	168.7	112.5	NO		
86	69 13C2-PFHxDA	$815>769.7$	3667.506	12786.682	1.00	6.38	3.585	4.9	97.6	NO		
87	69 13C2-PFHxDA	$815>769.7$	3667.506	12786.682	1.00	6.38	3.585	4.9	97.6	NO		
88	70 d 7 -N-MeFOSE	$623.1>58.9$	4729.849	12786.682	1.00	6.29	4.624	165.4	110.3	NO		
89	71 d9-N-EtFOSE	$639.2>58.8$	4507.340	12786.682	1.00	6.44	4.406	160.2	106.8	No		
90	73 13C5-PFHxA	318.0 > 272.9	10681.250	10681.250	1.00	2.96	12.500	12.5	100.0	NO		
$91 \times$	-1											
92.8	75 13C8-PFOA	$420.9>376.0$	14158.793	14158.793	1.00	4.11	12.500	12.5	100.0	No		
93	74 1802-PFHxS	403.0 > 102.6	525.983	525.983	1.00	3.74	12.500	12.5	100.0	NO		
94	76 13C9-PFNA	472.2 > 426.9	8496.886	8496.886	1.00	4.55	12.500	12.5	100.0	NO		
95	77 13C4-PFOS	$503>79.9$	1363.537	1363.537	1.00	4.64	12.500	12.5	100.0	NO		
96×3	78 13C6-PFDA	$519.1>473.7$	10829.662	10829.662	1.00	4.93	12.500	12.5	100.0	No		
97. ${ }^{\text {- }}$	79 13C7-PFUdA	570.1 > 524.8	12786.682	12786.682	1.00	5.26	12.500	12.5	100.0	NO		

Method: F:IProjects|PFAS.PRO\MethDB\PFAS_FULL_80C_071119.mdb 12 Jul 2019 08:40:55 Calibration: F:|Projects\PFAS.PROICurveDBIC18_VAL-PFĀS_Q4_07-10-19.cdb 11 Jul 2019 10:56:26

Compound name: PFBA

* cri not used
(2) $7 / 12 / 19$

Compound name: PFBA

Dataset: Untitled

Last Altered: Friday, July 12, 2019 09:54:29 Pacific Daylight Time Printed Friday, July 12, 2019 09:54:35 Pacific Daylight Time

Compound name: PFBA

	\# Name	$1{ }^{10}$	Acq. ${ }^{\text {ate }}$	Acq. Time
69	69190711 M 3 _69	IPA	12-Jul-19	09:28:22
70	70 190711M3_70	IB tester	12-Jul-19	09:38:55

Dataset:

F:IProjects\PFAS.PRO\Results\190711M3\190711M3-32.qld
Last Altered: Friday, July 12, 2019 08:40:57 Pacific Daylight Time
Printed: \quad Friday, July 12, 2019 08:41:15 Pacific Daylight Time

Method: F:IProjects\PFAS.PRO\MethDB\PFAS_FULL_80C_071119.mdb 12 Jul 2019 08:40:55

Calibration: F:|Projects\PFAS.PRO\CurveDBIC18_VAL-PFAS_Q4_07-10-19.cdb 11 Jul 2019 10:56:26

Name: 190711M3_32, Date: 12-Jul-2019, Time: 02:55:49, ID: ST190711M3-11 PFC CS3 19G1106, Description: PFC CS3 $19 G 1106$

Dataset: F:\Projects\PFAS.PRO\Results\190711M3\190711M3-32.qld
$\begin{array}{ll}\text { Last Altered: } & \text { Friday, July 12, 2019 08:40:57 Pacific Daylight Time } \\ \text { Printed: } & \text { Friday, July 12, } 2019 \text { 08:41:15 Pacific Daylight Time }\end{array}$

Name: 190711M3_32, Date: 12-Jul-2019, Time: 02:55:49, ID: ST190711M3-11 PFC CS3 19G1106, Description: PFC CS3 $19 G 1106$

13C3-PFBS

F9:MRM of 3 channels,ES-
F9:MRM of 3 channels,ES-
$285.1>184.9$
$1.785 \mathrm{e}+004$

F20:MRM of 2 channels, ES-
$363.0>169.0$
$1.907 \mathrm{e}+004$

13C4-PFHpA

F21:MRM of 1 channel,ES-
$367.2>321.8$

13C4-PFHpA
F21:MRM of 1 channel,ES-
$367.2>321.8$

ADONA

F22:MRM of 2 channels,ES$376.8>85.0$

13C4-PFHpA
F21:MRM of 1 channel,ES$367.2>321.8$

Last Altered:	Friday, July 12, 2019 08:40:57 Pacific Daylight Time
Printed:	Friday, July 12, 2019 08:41:15 Pacific Daylight Time

Name: 190711M3_32, Date: 12-Jul-2019, Time: 02:55:49, ID: ST190711M3-11 PFC CS3 19G1106, Description: PFC CS3 $19 G 1106$

Dataset:
F:IProjects\PFAS.PRO\Results\190711M3\190711M3-32.qld
Last Altered: Friday, July 12, 2019 08:40:57 Pacific Daylight Time
Printed: \quad Friday, July 12, 2019 08:41:15 Pacific Daylight Time

Name: 190711M3_32, Date: 12-Jul-2019, Time: 02:55:49, ID: ST190711M3-11 PFC CS3 19G1106, Description: PFC CS3 $19 G 1106$

13C8-PFOSA
F41:MRM of 1 channel,ES-
$506.1>77.7$

F39:MRM of 2 channels,ES

13C8-PFOS
F42:MRM of 1 channel,ES-
$507.0>79.9$
$3.423 \mathrm{e}+004$

F44:MRM of 2 channels,ES-

13C2-PFDA
F45:MRM of 1 channel,ES
$515.1>469.9$

$527>80.9$
$3.048 \mathrm{e}+004$

13C2-8:2 FTS

Dataset:
F:IProjects\PFAS.PRO\Results\190711M3\190711M3-32.qld
Last Altered: Friday, July 12, 2019 08:40:57 Pacific Daylight Time
Printed: \quad Friday, July 12, 2019 08:41:15 Pacific Daylight Time

Name: 190711M3_32, Date: 12-Jul-2019, Time: 02:55:49, ID: ST190711M3-11 PFC CS3 19G1106, Description: PFC CS3 19 G1106

13C8-PFOS

F42:MRM of 1 channel,ES$507.0>79.9$ $3.423 e+004$

d3-N-MeFOSAA
F58:MRM of 1 channel,ES-
F58:MRM of 1 channel, ES-
$573.3>419$

d5-N-EtFOSAA
F60:MRM of 1 channel, ES
$589.3>419$

13C2-PFUdA
F55:MRM of 1 channel, ES-

F61:MRM of 2 channels,ES
$598.8>98.9$
$2.111 e+004$

13C2-PFDoA
F63:MRM of 1 channel,ES$614.7>569.7$

Dataset:

F:IProjects\PFAS.PRO\Results\190711M3\190711M3-32.qld
Last Altered: Friday, July 12, 2019 08:40:57 Pacific Daylight Time
Printed: Friday, July 12, 2019 08:41:15 Pacific Daylight Time

Name: 190711M3_32, Date: 12-Jul-2019, Time: 02:55:49, ID: ST190711M3-11 PFC CS3 19G1106, Description: PFC CS3 19 G1106

13C2-PFDOA
F63:MRM of 1 channel,ES-
$614.7>569.7$

d3-N-MeFOSA
F46:MRM of 1 channel,ES$515.2>168.9$ $8.566 e+004$

13C2-PFDOA
F63:MRM of 1 channel,ES-
$614.7>569.7$ $3.279 \mathrm{e}+005$

F71:MRM of 2 channels,ES-
$698.8>98.9$

13C2-PFTeDA
F73:MRM of 2 channels,ES$715.1>669.7$

13C2-PFTeDA
F73:MRM of 2 channels,ES-
$715.1>669.7$ $1.531 \mathrm{e}+005$

Dataset:

F:IProjects\PFAS.PRO\Results\190711M31190711M3-32.qld
Last Altered: Friday, July 12, 2019 08:40:57 Pacific Daylight Time
Printed: Friday, July 12, 2019 08:41:15 Pacific Daylight Time

Name: 190711M3_32, Date: 12-Jul-2019, Time: 02:55:49, ID: ST190711M3-11 PFC CS3 19G1106, Description: PFC CS3 $19 G 1106$

d5-N-ETFOSA
F52:MRM of 1 channel,ES$531.1>168.9$ $1.199 \mathrm{e}+005$

13C2-PFHxDA
F75:MRM of 1 channel,ES-
$815>769.7$
$9.891 \mathrm{e}+004$

13C2-PFHxDA

F75:MRM of 1 channel,ES$815>769.7$ $9.891 \mathrm{e}+004$

d7-N-MeFOSE
F65:MRM of 1 channel, ES-
$623.1>58.9$ $623.1>58.9$
$1.208 \mathrm{e}+005$

F69:MRM of 1 channel,ES-

Last Altered: Friday, July 12, 2019 08:40:57 Pacific Daylight Time
Printed: Friday, July 12, 2019 08:41:15 Pacific Daylight Time

Name: 190711M3_32, Date: 12-Jul-2019, Time: 02:55:49, ID: ST190711M3-11 PFC CS3 19G1106, Description: PFC CS3 $19 G 1106$

13C9-PFNA
F36:MRM of 1 channel,ES$472.2>425.9$

13C7-PFUdA

F57:MRM of 1 channel,ES$570.1>524.8$ $3.206 \mathrm{e}+005$

Last Altered: Friday, July 12, 2019 09:02:20 Pacific Daylight Time
Printed: Friday, July 12, 2019 09:02:40 Pacific Daylight Time

Name: 190711M3_49, Date: 12-Jul-2019, Time: 05:56:03, ID: ST190711M3-12 PFC CS3 19G1106, Description: PFC CS3 $19 G 1106$

Name: 190711M3_49, Date: 12-Jul-2019, Time: 05:56:03, ID: ST190711M3-12 PFC CS3 19G1106, Description: PFC CS3 19G1106

[^2]Friday, July 12, 2019 09:02:20 Pacific Daylight Time
Printed: Friday, July 12, 2019 09:02:40 Pacific Daylight Time

Name: 190711M3_49, Date: 12-Jul-2019, Time: 05:56:03, ID: ST190711M3-12 PFC CS3 19G1106, Description: PFC CS3 19G1106

	\# Name	Trace	Area	IS Area	wtur	R	osponse	Conc.	9RRec		Ratio	ut?
73	65 13C2-PFDOA	$614.7>569.7$	12751.516	10721.471	1.00	5.55	14.867	12.1	96.8	NO		
74 W W	66 d3-N-MeFOSA	$515.2>168.9$	3659.659	12658.801	1.00	5.70	3.614	163.1	108.7	NO		
75.4	65 13C2-PFDOA	$614.7>569.7$	12751.516	10721.471	1.00	5.55	14.867	12.1	96.8	NO		
76	67 13C2-PFTeDA	$715.1>669.7$	6431.932	12658.801	1.00	6.03	6.351	12.4	99.4	NO		
	67 13C2-PFTeDA	$715.1>669.7$	6431.932	12658.801	1.00	6.03	6.351	12.4	99.4	NO		
	-1											
73 \% ${ }^{\text {a }}$	$42 \mathrm{~N}-\mathrm{EtFOSA}$	$526.1>168.9$	1581.472	5463.459	1.00	6.11	43.420	47.3	94.6	NO	1.847	NO
80: ${ }^{\text {\% }}$	43 PFHxDA	$813.1>768.6$	5606.415	3681.921	1.00	6.38	7.613	10.1	100.6	NO	18.767	NO
81	44 PFODA	$913.1>868.8$	6195.762	3681.921	1.00	6.63	8.414	10.1	100.7	NO		
82 2\%	$45 \mathrm{~N}-\mathrm{MeFOSE}$	$616.1>58.9$	1616.713	4972.039	1.00	6.30	48.774	43.5	86.9	NO		
832 ${ }^{3}$	46 N -EtFOSE	$630.1>58.9$	2038.453	4474.348	1.00	6.45	68.338	48.6	97.2	NO		
$84{ }^{\text {\% }}$	72 13C4-PFBA	$217.0>172.0$	3345.600	3345.600	1.00	1.17	12.500	12.5	100.0	NO		
85	68 d5-N-ETFOSA	$531.1>168.9$	5463.459	12658.801	1.00	6.13	5.395	173.1	115.4	NO		
86. ${ }^{\text {2 }}$	69 13C2-PFHxDA	$815>769.7$	3681.921	12658.801	1.00	6.38	3.636	4.9	99.0	NO		
87: 4	69 13C2-PFHxDA	$815>769.7$	3681.921	12658.801	1.00	6.38	3.636	4.9	99.0	NO		
88*	70 d7-N-MeFOSE	$623.1>58.9$	4972.039	12658.801	1.00	6.29	4.910	175.6	117.1	NO		
89×3	71 d9-N-EtFOSE	$639.2>58.8$	4474.348	12658.801	1.00	6.44	4.418	160.6	107.1	NO		
	73 13C5-PFHxA	$318.0>272.9$	10771.561	10771.561	1.00	2.96	12.500	12.5	100.0	NO		
	-1											
92	75 13C8-PFOA	$420.9>376.0$	14119.083	14119.083	1.00	4.11	12.500	12.5	100.0	NO		
93	74 18O2-PFHxS	$403.0>102.6$	565.812	565.812	1.00	3.74	12.500	12.5	100.0	NO		
94	76 13C9-PFNA	$472.2>426.9$	9261.484	9261.484	1.00	4.56	12.500	12.5	100.0	NO		
$95 \mathrm{mb}=\mathrm{S}^{2}$	77 13C4-PFOS	$503>79.9$	1557.096	1557.096	1.00	4.64	12.500	12.5	100.0	NO		
196	78 13C6-PFDA	$519.1>473.7$	10721.471	10721.471	1.00	4.93	12.500	12.5	100.0	NO		
	79 13C7-PFUdA	$570.1>524.8$	12658.801	12658.801	1.00	5.26	12.500	12.5	100.0	NO		

Dataset:
Untitled
Last Altered: Friday, July 12, 2019 09:54:29 Pacific Daylight Time
Printed: \quad Friday, July 12, 2019 09:54:35 Pacific Daylight Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_071119.mdb 12 Jul 2019 08:40:55 Calibration: F:|Projects\PFAS.PROICurveDBIC18_VAL-PFAS_Q4_07-10-19.cdb 11 Jul 2019 10:56:26

Compound name: PFBA

-	\# Name	ID	Aca Date	Acq.Tlime
	1 190711M3_1	IPA	11-Julil9	21:27:14
2	2 190711M3_2	ST190711M3-1 PFC CS-2 19G1101	11-Jul-19	21:37:49
$3{ }^{3}$	3 190711M3_3	ST 190711M3-2 PFC CS-1 19G1102	11-Jul-19	21:48:22
4	4190711 M 3 _4	ST 190711M3-3 PFC CS0 19G1103	11-Jul-19	21:59:01
	5 190711M3_5	ST190711M3-4 PFC CS1 19G1104	11-Jul-19	22:09:33
	6 190711M3_6	ST190711M3-5 PFC CS2 19G1105	11-Jul-19	22:20:12
	$7190711 \mathrm{M3}^{\text {\% }} 7$	ST 190711 M3-6 PFC CS3 19G1106	11-Jul-19	22:30:45
8 8:	8 190711M3_8	ST190711M3-7 PFC CS4 19G1107	11-Jul-19	22:41:23
	9190711 M 3 _9	ST190711M3-8 PFC CS5 19G1108	11-Jul-19	22:51:57
10	10 190711M3_10	ST190711M3-9 PFC CS6 19G1109	11-Jul-19	23:02:37
11	11 190711M3_11	ST 190711M3-10 PFC CS7 $19 \mathrm{G1} 110$	11-Jul-19	23:13:13
	12 190711M3_12	IB	11-Jul-19	23:23:47
13.	13 190711M3_13	ST190711M3-1 PFC ICV 19G1111	11-Jul-19	23:34:17
14	14 190711M3_14	IPA	11-Jul-19	23:44:56
15	15 190711M3_15	B9G0061-BS1 OPR 0.125	11-Jul-19	23:55:34
16	16 190711M3_16	B9F0279-BS1 OPR 1	12-Jul-19	00:06:07
17	17 190711M3_17	B9F0279-BLK1 Method Blank 1	12-Jul-19	00:16:45
18	18 190711M3_18	1901784-02RE1 FRB-1 0.24972	12-Jul-19	00:27:18
19	19 190711M3_19	1901683-03 Hagatna 13.93	12-Jul-19	00:37:57
20	20 190711M3_20	1901910-01 SW 1906280950 KME 0.24336	12-Jul-19	00:48:35
21	21 190711M3_21	1901910-02 SW1906281025KME 0.24464	12-Jul-19	00:59:09
22	22 190711M3_22	1901910-03 SW1906281035KME 0.24318	12-Jul-19	01:09:47
23	23 190711M3_23	1901911-01 WMP1907010855JSJ 0.2509	12-Jul-19	01:20:19
24.	24 190711M3_24	B9G0095-BS1 OPR 0.25	12-Jul-19	01:30:58
	25190711 M 3 _25	B9G0095-BSD1 LCSD 0.25	12-Jul-19	01:41:36
26	26 190711M3_26	B9G0095-BLK1 Method Blank 0.25	12-Jul-19	01:52:09
	27 190711M3_27	1901759-01 HW-AF-01-01-420-062419 0.11818	12-Jul-19	02:02:47
28	28 190711M3_28	1901992-01 WIN1907081315GGA 0.24256	12-Jul-19	02:13:26
	29 190711M3_29	1901992-02 WMP 1907081305GGA 0.23352	12-Jul-19	02:23:58
30	$30190711 \mathrm{M3} 30$	1901992-03 WEF1907081310GGA 0.24328	12-Jul-19	02:34:37
	31 190711M3_31	IPA	12-Jul-19	02:45:10
$32=$	32 190711M3_32	ST 190711M3-11 PFC CS3 19G1106	12-Jul-19	02:55:49

Last Altered: Friday, July 12, 2019 09:54:29 Pacific Daylight Time
Printed: Friday, July 12, 2019 09:54:35 Pacific Daylight Time

Compound name: PFBA

	\# Name	10	Acq.Date	AcqTime
33	33 190711M3_33	IPA	12-Jul-19	03:06:21
34	34 190711M3_34	B9G0062-BS1 OPR 0.125	12-Jul-19	03:16:59
35	35 190711M3_35	B9G0062-BSD1 LCSD 0.125	12-Jul-19	03:27:38
36	36190711 M 3 _ 36	B9G0062-BLK1 Method Blank 0.125	12-Jul-19	03:38:11
37	37 190711M3_37	1901922-01 FRB-07022019 0.10709	12-Jul-19	03:48:49
38.	38 190711M3_38	1901922-02 CAOA-B02-GW 0.1205	12-Jul-19	03:59:23
39	39 190711M3_39	1901920-02 SAOA-B08-GW 0.13318	12-Jul-19	04:10:01
40	40 190711M3_40	1901920-03 EB-06272019-GW 0.11429	12-Jul-19	04:20:34
41.	41 190711M3_41	1901920-04 FRB-06282019 0.11576	12-Jul-19	04:31:13
42	42 190711M3_42	1901920-05 SAOA-B12-GW 0.12204	12-Jul-19	04:41:51
43	43 190711M3_43	1901920-06 SAOA-B12-GW-D 0.12639	12-Jul-19	04:52:24
	44 190711M3_44	1901920-11 NAOA-B02-GW 0.122	12-Jul-19	05:03:03
45	45 190711M3_45	1901920-12 EB-07012019 0.11155	12-Jul-19	05:13:36
46	46 190711M3_46	1901920-14 FRB-07012019 0.11643	12-Jul-19	05:24:14
47	47 190711M3_47	1901920-16 NAOA-B01-GW 0.1294	12-Jul-19	05:34:46
48	48 190711M3_48	IPA	12-Jul-19	05:45:25
49	49 190711M3_49	ST190711M3-12 PFC CS3 19G1106	12-Jul-19	05:56:03
50	50 190711M3_50	IPA	12-Jul-19	06:06:35
51.	51 190711M3_51	1901920-17 NAOA-B01-GW-D 0.13768	12-Jul-19	06:17:14
52	52 190711M3_52	1901920-20 EB-07022019 0.11644	12-Jul-19	06:27:47
53	53 190711M3_53	B9G0065-BS1 OPR 0.25	12-Jul-19	06:38:25
54.	54 190711M3_54	B9G0065-BLK1 Method Blank 0.25	12-Jul-19	06:48:58
55	55 190711M3_55	1901781-01 GW 1906241425SK 0.24561	12-Jul-19	06:59:37
56.	56 190711M3_56	1901781-02 GW 1906241605SK 0.25501	12-Jul-19	07:10:15
$57 \times$	57 190711M3_57	1901781-03 GW 1906250855KME 0.24339	12-Jul-19	07:20:48
58	58 190711M3_58	1901781-04 GW1906250855KME-FD 0.24341	12-Jul-19	07:31:26
59	59 190711M3_59	1901781-05 GW 1906250935SK 0.24535	12-Jul-19	07:41:59
60	60 190711M3_60	1901781-06 GW 1906251040KME 0.24373	12-Jul-19	07:52:37
61	61 190711M3_61	1901781-07 GW 1906251120SK 0.24467	12-Jul-19	08:03:15
62	62 190711M3_62	IPA	12-Jul-19	08:13:48
63	63 190711M3_63	ST190711M3-13 PFC CS3 $19 \mathrm{G1} 106$	12-Jul-19	08:24:26
64 -	64 190711M3_64	IPA	12-Jul-19	08:34:58
65	65190711 M3_65	1901781-08 GMW 1906251200KME 0.24756	12-Jul-19	08:45:54
66	66 190711M3_66	1901781-09 FB1906251135SK 0.25189	12-Jul-19	08:56:32
67.	67 190711M3_67	IPA	12-Jut-19	09:07:05
68 - 8	68190711 M3_68	ST190711M3-14 PFC CS3 19G1106	12-Jul-19	09:17:43

Last Altered: Friday, July 12, 2019 09:54:29 Pacific Daylight Time
Printed: Friday, July 12, 2019 09:54:35 Pacific Daylight Time

Compound name: PFBA

Dataset:

F:IProjects\PFAS.PRO\Results\190711M3\190711M3-49.qld
Last Altered: Friday, July 12, 2019 09:02:20 Pacific Daylight Time
Printed:
Friday, July 12, 2019 09:02:40 Pacific Daylight Time

Method: F:|Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_071119.mdb 12 Jul 2019 08:40:55

Calibration: F:IProjects\PFAS.PRO\CurveDBIC18_VAL-PFAS_Q4_07-10-19.cdb 11 Jul 2019 10:56:26

Name: 190711M3_49, Date: 12-Jul-2019, Time: 05:56:03, ID: ST190711M3-12 PFC CS3 19G1106, Description: PFC CS3 $19 G 1106$

13C3-PFBA

F3:MRM of 1 channel,ES$216.1>171.8$

F6:MRM of 2 channels,ES-

13C3-PFBS
F12:MRM of 1 channel,ES-
$302.0>98.8$
1.156 .

13C3-PFPeA

F8:MRM of 1 channet,ES-

 $299.0>99.0$ $7.156 \mathrm{e}+003$

13C3-PFBS
F12:MRM of 1 channel,ES

Dataset:

F:IProjects\PFAS.PRO\Results\190711M3\190711M3-49.qld
Last Altered: Friday, July 12, 2019 09:02:20 Pacific Daylight Time
Printed: Friday, July 12, 2019 09:02:40 Pacific Daylight Time

Name: 190711M3_49, Date: 12-Jul-2019, Time: 05:56:03, ID: ST190711M3-12 PFC CS3 19G1106, Description: PFC CS3 $19 G 1106$

13C2-PFHxA

F14:MRM of 1 channel,ES-

F19:MRM of 2 channels,ES $349.1>99$
$1.725 \mathrm{e}+004$

13C3-PFBS
F12:MRM of 1 channel, ES-
$302.0>98.8$
$1.156 e+004$

13C3-HFPO-DA
F10:MRM of 2 channels,ES-
$287.0>168.9$

13C4-PFHpA
F21:MRM of 1 channel,ES-
$367.2>321.8$
$9.346 \mathrm{e}+004$

13C4-PFHpA
F21:MRM of 1 channel,ES$367.2>321.8$

ADONA

13C4-PFHpA
F21:MRM of 1 channel,ES-
367.2 > 321.8 $9.346 e+004$

Dataset:	F:IProjects\PFAS.PRO\Results\190711M3\190711M3-49.qld
Last Altered:	Friday, July 12, 2019 09:02:20 Pacific Daylight Time
Printed:	Friday, July 12, 2019 09:02:40 Pacific Daylight Time

Name: 190711M3_49, Date: 12-Jul-2019, Time: 05:56:03, ID: ST190711M3-12 PFC CS3 19G1106, Description: PFC CS3 $19 G 1106$

F23:MRM of 2 channels,ESF23:MRM of 2 channets,ES-
$398.9>99.0$

13C2-6:2 FTS

F31:MRM of 2 channels,ES$440.9>316.9$

13C5-PFNA
F35:MRM of 1 channel,ES-
$468.2>422.9$
$2.016 e+005$

Dataset:
F:IProjects\PFAS.PRO\Results\190711M3\190711M3-49.qld
Last Altered: Friday, July 12, 2019 09:02:20 Pacific Daylight Time
Printed: \quad Friday, July 12, 2019 09:02:40 Pacific Daylight Time

Name: 190711M3_49, Date: 12-Jul-2019, Time: 05:56:03, ID: ST190711M3-12 PFC CS3 19G1106, Description: PFC CS3 $19 G 1106$

F34:MRM of 2 channels,ES$463.0>219.0$ $6.348 e+004$

13C5-PFNA

F41:MRM of 1 channel,ES$506.1>77.7$

13C8-PFOS
F42:MRM of 1 channel, ES
$507.0>79.9$
$3.681 e+004$

13C8-PFOS

Dataset:
F:IProjects\PFAS.PRO\Results\190711M3\190711M3-49.qId
Last Altered: Friday, July 12, 2019 09:02:20 Pacific Daylight Time
Printed: Friday, July 12, 2019 09:02:40 Pacific Daylight Time

Name: 190711M3_49, Date: 12-Jul-2019, Time: 05:56:03, ID: ST190711M3-12 PFC CS3 19G1106, Description: PFC CS3 $19 G 1106$

F59:MRM of 2 channels, ES-
$584.1>526$

d5-N-EtFOSAA
F60:MRM of 1 channel,ES-
$589.3>419$

13C2-PFUdA
F55:MRM of 1 channel, ES-
$565>519.8$

13C2-8:2 FTS
F50:MRM of 1 channel,ES-
$529>79.9$
PFDS
F61:MRM of 2 channels,ES-
11Cl-PF30UdS

13C2-PFDoA
F63:MRM of 1 channel,ES-
$614.7>569.7$
$3.393 e+005$

Dataset: F:\Projects\PFAS.PRO\Results\190711M3\190711M3-49.qld
Last Altered: Friday, July 12, 2019 09:02:20 Pacific Daylight Time
Printed: \quad Friday, July 12, 2019 09:02:40 Pacific Daylight Time

Name: 190711M3_49, Date: 12-Jul-2019, Time: 05:56:03, ID: ST190711M3-12 PFC CS3 19G1106, Description: PFC CS3 $19 G 1106$

d3-N-MeFOSA

13C2-PFDoA
F63:MRM of 1 channel,ES-
$614.7>569.7$

F71:MRM of 2 channels,ES-
$698.8>98.9$

Dataset:	F:IProjects\PFAS.PRO\Results\190711M3\190711M3-49.qld
Last Altered:	Friday, July 12, 2019 09:02:20 Pacific Daylight Time
Printed:	Friday, July 12, 2019 09:02:40 Pacific Daylight Time

Name: 190711M3_49, Date: 12-Jul-2019, Time: 05:56:03, ID: ST190711M3-12 PFC CS3 19G1106, Description: PFC CS3 $19 G 1106$

Dataset: F:IProjects\PFAS.PRO\Results\190711M3\190711M3-49.qld

Last Altered:	Friday, July 12, 2019 09:02:20 Pacific Daylight Time
Printed:	Friday, July 12, 2019 09:02:40 Pacific Daylight Time

Name: 190711M3_49, Date: 12-Jul-2019, Time: 05:56:03, ID: ST190711M3-12 PFC CS3 19G1106, Description: PFC CS3 $19 G 1106$

13C7-PFUdA
F57:MRM of 1 channel,ES $570.1>524.8$

INITIAL CALIBRATION (ICAL)
 INCLUDING ASSOCIATED

INITIAL CALIBRATION VERIFICATION (ICV) AND INSTRUMENT BLANK (IB)

Thursday, Jul 11,2019 11:11:11 Pacific Daylight Time
Thursday, July 11, 2019 11:11:11 Pacific Daylight Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_071019.mdb 11 Jul 2019 10:07:19

Calibration: F:|Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_07-10-19.cdb 11 Jul 2019 10:56:26

Compound name: PFBA

Correlation coefficient: $r=0.999710, \mathrm{\wedge} 2=0.999420$
Calibration curve: 1.42744 * $x+-0.0673711$
Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFPrS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997891$
Calibration curve: $0.000772076{ }^{*} x^{\wedge} 2+1.04403 * x+0.0148423$
Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area)
Curve type: and Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Dataset:	F:IProjects\PFAS.PRO\Results1190710M2\190710M2-CRV.qld
Last Altered:	Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:	Thursday, July 11, 2019 10:29:54 Pacific Daylight Time

Compound name: 3:3 FTCA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997073$
Calibration curve: $-1.28403 e-005{ }^{*} x^{\wedge} 2+0.0420476$ * $x+-0.00551054$
Response type: Internal Std (Ref 48), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	WW RT	Area	SIS Area	Response	Conc.	\% Dev.	Conc. Flag	Cob	Cob Flag	$x=$ excluded
1	1 190710M2_6	Standard	0.250	2.06	1.490	3451.527	0.005	0.3	3.8	NO	0.997	NO	MM
2	$2190710 \mathrm{M} 2 \ldots 7$	Standard	0.500	2.03	5.305	4278.600	0.015	0.5	-0.1	NO	0.997	NO	MM
3	3 190710M2_8	Standard	1.000	2.05	7.390	3455.927	0.027	0.8	-23.3	NO	0.997	NO	bb
4	4 190710M2_9	Standard	2.000	2.05	16.319	3752.667	0.054	1.4	-28.8	NO	0.997	NO	MM
15	5 190710M2_10	Standard	5.000	2.05	76.161	4918.636	0.194	4.7	-5.2	NO	0.997	NO	MM
6,	$6190710 \mathrm{M} 2 _11$	Standard	10.000	2.04	127.957	3981.248	0.402	9.7	-2.9	NO	0.997	NO	MM
17	7 190710M2_12	Standard	50.000	2.05	1056.409	6077.235	2.173	52.7	5.3	NO	0.997	NO	db
	8 190710M2_13	Standard	100.000	2.04	1111.191	3455.963	4.019	98.7	-1.3	NO	0.997	NO	MM

Compound name: PFPeA

Correlation coefficient: $\mathrm{r}=0.998647, \mathrm{r}^{\wedge} 2=0.997296$
Calibration curve: 0.957887 * $x+-0.0507044$
Response type: Internal Std (Ref 48), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Stid Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conce Flag	Cob	CoD Flag	x=excluded
1	1 190710M2_6	Standard	0.250	2.19	60.373	3451.527	0.219	0.3	12.5	NO	0.997	NO	bb
2W	$2190710 \mathrm{M2}$ _7	Standard	0.500	2.20	143.024	4278.600	0.418	0.5	-2.2	NO	0.997	NO	MM
3.3 met	3 190710M2_8	Standard	1.000	2.19	247.637	3455.927	0.896	1.0	-1.2	NO	0.997	NO	MM
4	4 190710M2_9	Standard	2.000	2.19	519.623	3752.667	1.731	1.9	-7.0	NO	0.997	NO	MM
52\%	5 190710M2_10	Standard	5.000	2.20	1963.789	4918.636	4.991	5.3	5.3	NO	0.997	NO	bb
64\%	6 190710M2_11	Standard	10.000	2.20	2908.583	3981.248	9.132	9.6	-4.1	NO	0.997	NO	bb
7.	7 190710M2_12	Standard	50.000	2.20	21625.723	6077.235	44.481	46.5	-7.0	NO	0.997	NO	bb
8 8ter	$8190710 \mathrm{M} 2 \ldots 13$	Standard	100.000	2.20	27473.760	3455.963	99.371	103.8	3.8	NO	0.997	NO	MM

Dataset: F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: \quad Thursday, July 11, 2019 10:29:54 Pacific Daylight Time

Compound name: PFBS

Correlation coefficient: $\mathrm{r}=0.999402, \mathrm{r}^{\wedge} 2=0.998804$
Calibration curve: $2.32197^{*} x+-0.263256$
Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Sta. Cong	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. flag	CoD	CoD Flag	$x=$ excluded
\%	1 190710M2_6	Standard	0.250	2.47	11.926	545.502	0.273	0.2	-7.6	NO	0.999	NO	bb
2.tertut	2 190710M2_7	Standard	0.500	2.49	41.057	500.786	1.025	0.6	10.9	NO	0.999	NO	MM
$3{ }^{3}$.	3 190710M2_8	Standard	1.000	2.49	81.716	517.896	1.972	1.0	-3.7	NO	0.999	NO	bb
4	4 190710M2_9	Standard	2.000	2.49	202.334	589.041	4.294	2.0	-1.9	NO	0.999	NO	MM
5.\%"\#t	5 190710M2_10	Standard	5.000	2.49	599.924	676.534	11.085	4.9	-2.3	NO	0.999	NO	bb
6	6 190710M2_11	Standard	10.000	2.49	1018.812	516.663	24.649	10.7	7.3	NO	0.999	NO	bb
7	7 190710M2_12	Standard	50.000	2.49	8051.513	909.570	110.650	47.8	-4.5	NO	0.999	NO	MM
8.3idy	8 190710M2_13	Standard	100.000	2.49	9513.766	504.378	235.780	101.7	1.7	NO	0.999	NO	bb

Compound name: 4:2 FTS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999259$
Calibration curve: $0.000507604^{*} x^{\wedge} 2+2.44029$ * $x+-0.0250945$
Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std Conc	RT	Area	1S Area	Response	Conc:	\%Der	Conc. Flag	CoD	Cod Fl	$x=$ excluded
W	1 190710M2_6	Standard	0.250	2.91	44.323	1218.422	0.455	0.2	-21.4	NO	0.999	NO	bb
2	2 190710M2_7	Standard	0.500	2.90	116.573	1263.342	1.153	0.5	-3.4	NO	0.999	NO	bb
3 3	3 190710M2_8	Standard	1.000	2.90	268.414	1209.812	2.773	1.1	14.6	NO	0.999	NO	bb
$4{ }^{3}+3$	4 190710M2_9	Standard	2.000	2.90	504.618	1216.382	5.186	2.1	6.7	NO	0.999	NO	bb
5 FW	5 190710M2_10	Standard	5.000	2.90	1429.432	1338.061	13.354	5.5	9.5	NO	0.999	NO	bb
6.WIxH:	$6190710 \mathrm{M2}$ _11	Standard	10.000	2.91	2241.920	1216.987	23.027	9.4	-5.7	NO	0.999	NO	bb
$7 \Perp$ \%	7 190710M2_12	Standard	50.000	2.90	16650.355	1698.185	122.560	49.7	-0.6	NO	0.999	NO	bb
8\%3\#\#umy	$8190710 \mathrm{M} 2 _13$	Standard	100.000	2.90	19554.461	979.676	249.502	100.2	0.2	NO	0.999	NO	bb

Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN945 SCN960
Vista Analytical Laboratory

Dataset: F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:29:54 Pacific Daylight Time

Compound name: PFHxA

Correlation coefficient: $\mathrm{r}=0.999958, \mathrm{r}^{\wedge} 2=0.999917$
Calibration curve: $1.1618^{*} x+0.000973487$
Response type: Internal Std (Ref 52), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: $1 / \mathrm{x}$, Axis trans: None

	\# Name	Type	Std. Cone	RT	Area	15 Area	fesponse	Conc:	\%Dey	Conc. Flag	Cond	CoD Flag	
1terim	1 190710M2_6	Standard	0.250	2.98	190.647	3008.368	0.317	0.3	8.8	NO	1.000	NO	bb
12	2190710 M 2 _7	Standard	0.500	2.99	337.259	3012.537	0.560	0.5	-3.8	NO	1.000	NO	bb
3	3190710 M 2 _8	Standard	1.000	2.99	683.336	3100.750	1.102	0.9	-5.2	NO	1.000	NO	bb
4.5\%	4 190710M2_9	Standard	2.000	2.99	1378.962	2883.050	2.391	2.1	2.9	NO	1.000	NO	bb
5	$5190710 \mathrm{M} 2 _10$	Standard	5.000	2.99	4209.333	3670.589	5.734	4.9	-1.3	NO	1.000	NO	bb
6	6 190710M2_11	Standard	10.000	2.99	6548.668	2838.096	11.537	9.9	-0.7	NO	1.000	NO	bb
17	7 190710M2_12	Standard	50.000	2.99	53855.410	4670.029	57.661	49.6	-0.7	NO	1.000	NO	bb
8:	8 190710M2_13	Standard	100.000	2.99	63327.426	2711.879	116.759	100.5	0.5	NO	1.000	NO	bb

Compound name: PFPeS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998874$
Calibration curve: $0.000269775^{*} x^{\wedge} 2+2.12841^{*} x+0.0156908$
Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 10:29:54 Pacific Daylight Time

Compound name: HFPO-DA

Coefficient of Determination: $R^{\wedge} 2=0.998150$
Calibration curve: 0.000712906 * $x^{\wedge} 2+0.547378$ * $x+-0.00436396$
Response type: Internal Std (Ref 50), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

	\# Name	Type	Std. Cone	BT	Area	1S Area	Response	Conc.	9 \%Dev	Conc. Flag	Cop	Cod Flag	$x=e x c l u d e d$
14.ETH	1 190710M2_6	Standard	0.250	3.21	23.157	1155.989	0.100	0.2	-23.6	NO	0.998	NO	bb
2 2-w	2 190710M2_7	Standard	0.500	3.20	72.494	1192.405	0.304	0.6	12.6	NO	0.998	NO	bb
3:	3 190710M2_8	Standard	1.000	3.20	137.769	1184.265	0.582	1.1	6.9	NO	0.998	NO	bb
4	4 190710M2_9	Standard	2.000	3.20	237.149	1280.574	0.926	1.7	-15.2	NO	0.998	NO	bb
5 STME	5 190710M2_10	Standard	5.000	3.20	830.339	1293.869	3.209	5.8	16.5	NO	0.998	NO	bb
	6 190710M2_11	Standard	10.000	3.20	1336.519	1137.478	5.875	10.6	5.9	NO	0.998	NO	bb
$7=$	7 190710M2_12	Standard	50.000	3.20	9810.055	1756.626	27.923	48.0	-4.0	NO	0.998	NO	bb
8:	8190710 M 2 _13	Standard	100.000	3.20	12361.706	990.189	62.421	100.8	0.8	NO	0.998	NO	bb

Compound name: 5:3 FTCA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.995477$
Calibration curve: $0.000863776^{*} x^{\wedge} 2+0.248802{ }^{*} x+-0.0186935$
Response type: Internal Std (Ref 53), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

(3) cerrent is $\pm 30 \%$

r $2(11 / 19$

Dataset: F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:29:54 Pacific Daylight Time

Compound name: PFHpA

Correlation coefficient: $\mathrm{r}=0.999078, \mathrm{r}^{\wedge} 2=0.998158$
Calibration curve: $1.2318^{*} x+-0.044697$
Response type: Internal Std (Ref 53), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude,Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	1S Area	Response	Conc.	\% 4 Dev	Conc. Flag	Cob	CoD Flag	$x=$ excluded
1	1 190710M2_6	Standard	0.250	3.62	67.776	3685.756	0.230	0.2	-10.8	NO	0.998	NO	bb
22:N4\%	2 190710M2_7	Standard	0.500	3.61	158.246	3854.176	0.513	0.5	-9.4	NO	0.998	NO	bb
3	3 190710M2_8	Standard	1.000	3.61	374.010	3764.723	1.242	1.0	4.4	NO	0.998	NO	bb
4.	4 190710M2_9	Standard	2.000	3.61	764.547	3733.310	2.560	2.1	5.7	NO	0.998	NO	bb
5	5 190710M2_10	Standard	5.000	3.61	2275.237	4336.953	6.558	5.4	7.2	NO	0.998	NO	bb
6	6 190710M2_11	Standard	10.000	3.61	3432.809	3472.715	12.356	10.1	0.7	NO	0.998	NO	bb
$17=$	7 190710M2_12	Standard	50.000	3.61	29128.148	5609.557	64.907	52.7	5.5	NO	0.998	NO	bb
	8 190710M2_13	Standard	100.000	3.61	32516.168	3411.495	119.142	96.8	-3.2	NO	0.998	NO	bb

Compound name: ADONA

Correlation coefficient: $r=0.999468, \mathrm{r}^{\wedge} 2=0.998936$
Calibration curve: 4.33675 * $x+-0.0191729$
Response type: Internal Std (Ref 53), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: \quad Thursday, July 11, 2019 10:29:54 Pacific Daylight Time

Compound name: L-PFHxS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999253$
Calibration curve: 0.000954922 * $x^{\wedge} 2+0.833847$ * $x+-0.0703303$
Response type: Internal Std (Ref 54), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Stid. Cone:	RT.	Area	IS Area	Response	Conc.	\%Dev	Cone Flag:	CoD	Con Flag	x=excluded
t\%\%\%	1 190710M2_6	Standard	0.250	3.77	15.820	1304.722	0.152	0.3	6.4	NO	0.999	NO	bb
2	2 190710M2_7	Standard	0.500	3.76	26.272	1441.949	0.228	0.4	-28.5	NO	0.999	NO	bb
3	3 190710M2_8	Standard	1.000	3.75	70.632	1290.789	0.684	0.9	-9.6	NO	0.999	NO	MM
	4 190710M2_9	Standard	2.000	3.77	177.127	1321.664	1.675	2.1	4.4	NO	0.999	NO	MM
5	$5190710 \mathrm{M} 2 _10$	Standard	5.000	3.77	494.610	1652.108	3.742	4.5	-9.0	NO	0.999	NO	MM
6 6	6 190710M2_11	Standard	10.000	3.76	868.476	1279.918	8.482	10.1	1.4	NO	0.999	NO	MM
7	7 190710M2_12	Standard	50.000	3.76	7617.017	2127.934	44.744	50.8	1.6	NO	0.999	NO	MM
8 80\%	$8190710 \mathrm{M} 2 \ldots 13$	Standard	100.000	3.76	9131.280	1233.913	92.503	99.6	-0.4	NO	0.999	NO	MM

Compound name: 6:2 FTS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999098$
Calibration curve: -0.00219189 * $x^{\wedge} 2+2.96391^{*} x+-0.232571$
Response type: Internal Std (Ref 55), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conct	\% Der	Conc. Flag	Cod	CoDFrag	$x=$ excluded
,	1 190710M2_6	Standard	0.250	4.08	45.440	919.066	0.618	0.3	14.8	NO	0.999	NO	bb
2 24tute	$2190710 \mathrm{M} 2 _7$	Standard	0.500	4.07	74.459	992.943	0.937	0.4	-21.0	NO	0.999	NO	MM
3.2\%	3 190710M2_8	Standard	1.000	4.08	168.857	961.569	2.195	0.8	-18.0	NO	0.999	NO	bb
4.	4190710 M 2 _9	Standard	2.000	4.07	394.793	971.636	5.079	1.8	-10.3	NO	0.999	NO	bb
5.	$5190710 \mathrm{M} 2 \ldots 10$	Standard	5.000	4.08	1310.712	1089.051	15.044	5.2	3.5	NO	0.999	NO	bb
6.	$6190710 \mathrm{M} 2 _11$	Standard	10.000	4.08	2127.561	927.023	28.688	9.8	-1.7	NO	0.999	NO	bb
7 \% ${ }^{\text {\% }}$	7 190710M2_12	Standard	50.000	4.07	16187.466	1394.910	145.058	50.9	1.9	NO	0.999	NO	bb
8 BLS	$8190710 \mathrm{M2} 13$	Standard	100.000	4.08	17673.369	809.234	272.995	99.5	-0.5	NO	0.999	NO	bb

Dataset: F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 10:29:54 Pacific Daylight Time

Compound name: L-PFOA

Correlation coefficient: $\mathrm{r}=0.999875, \mathrm{r}^{\wedge} 2=0.999749$
Calibration curve: $1.84829^{*} x+0.038532$
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\#Name	Type	Stde Conc	RT	Area	IS Area	Response	Conc.	\% Deve	Conc Flag	COD	CoD Flag	$x=$ excluded
14.	1 190710M2_6	Standard	0.250	4.13	341.491	7718.956	0.553	0.3	11.3	NO	1.000	NO	bb
	2 190710M2_7	Standard	0.500	4.13	527.657	7963.359	0.828	0.4	-14.5	NO	1.000	NO	bb
3 3.	3 190710M2_8	Standard	1.000	4.13	1188.006	7400.191	2.007	1.1	6.5	NO	1.000	NO	bb
4.2x	4 190710M2_9	Standard	2.000	4.13	2263.133	7808.747	3.623	1.9	-3.0	NO	1.000	NO	bb
5:3\%	5 190710M2_10	Standard	5.000	4.13	7076.688	9244.864	9.568	5.2	3.1	NO	1.000	NO	bb
6	6190710 M 2 _11	Standard	10.000	4.13	10718.578	7521.740	17.813	9.6	-3.8	NO	1.000	NO	bb
7 \%	7 190710M2_12	Standard	50.000	4.13	84902.875	11432.653	92.829	50.2	0.4	NO	1.000	NO	bb
B6TMU:	$8190710 \mathrm{M2}$ _13	Standard	100.000	4.13	96793.156	6540.568	184.986	100.1	0.1	NO	1.000	NO	bb

Compound name: PFecHS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999465$
Calibration curve: $0.000151504^{*} x^{\wedge} 2+0.280359{ }^{*} x+-0.022501$
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT:	Area	TS Area	Response:	Conc.	\%Dev	Conc. Flag	- 4 CoD	CoDFlag	$x=$ exclinded
1	1 190710M2_6	Standard	0.250	4.14	27.214	7718.956	0.044	0.2	-5.0	NO	0.999	NO	bb
2	2190710 Mz _7	Standard	0.500	4.16	66.812	7963.359	0.105	0.5	-9.2	NO	0.999	NO	bb
3	$3190710 \mathrm{M} 2 _8$	Standard	1.000	4.16	192.885	7400.191	0.326	1.2	24.2	NO	0.999	NO	bb
4	4 190710M2_9	Standard	2.000	4.15	322.429	7808.747	0.516	1.9	-4.0	NO	0.999	NO	bb
5	5 190710M2_10	Standard	5.000	4.15	952.309	9244.864	1.288	4.7	-6.8	NO	0.999	NO	bb
6	6 190710M2_11	Standard	10.000	4.15	1686.971	7521.740	2.803	10.0	0.3	NO	0.999	NO	bb
17	7 190710M2_12	Standard	50.000	4.15	13248.463	11432.653	14.485	50.4	0.8	NO	0.999	NO	bb
8:	$8190710 \mathrm{M} 2 _13$	Standard	100.000	4.15	15423.572	6540.568	29.477	99.8	-0.2	NO	0.999	NO	bb

Last Altered: Thursday, July 11, 2019 10:56:26 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 10:58:41 Pacific Daylight Time

Method: F:|Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_071019.mdb 11 Jul 2019 10:07:19

Calibration: F:\Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_07-10-19.cdb 11 Jul 2019 10:56:26

Compound name: PFHpS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999024$
Calibration curve: $0.00125826^{*} x^{\wedge} 2+0.86234$ * $x+-0.0187748$
Response type: Internal Std (Ref 59), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

	FIName	Type	Std. Conte	8	Area	15 Area	Response	Conc.	\% Dev	Conc.flag	CoD	CoD flag	x excluded
1.	1 190710M2_6	Standard	0.250	4.26	10.447	1347.552	0.097	0.1	-46.4	YES	0.999	NO	bbX
2	2 190710M2_7	Standard	0.500	4.25	61.205	1416.736	0.540	0.6	29.5	NO	0.999	NO	bb
3	$3190710 \mathrm{M} 2 _8$	Standard	1.000	4.25	88.460	1422.413	0.777	0.9	-7.8	NO	0.999	NO	bb
14	4190710 M 2 _9	Standard	2.000	4.25	160.360	1341.699	1.494	1.7	-12.5	NO	0.999	NO	bb
5	$5190710 \mathrm{M} 2 _10$	Standard	5.000	4.25	492.234	1597.348	3.852	4.5	-10.8	NO	0.999	NO	bb
6	6 190710M2_11	Standard	10.000	4.25	915.017	1315.408	8.695	10.0	-0.4	NO	0.999	NO	bb
7	7 190710M2_12	Standard	50.000	4.25	7844.108	2063.788	47.510	51.3	2.6	NO	0.999	NO	bb
8 \%my	8 190710M2_13	Standard	100.000	4.25	8916.717	1135.065	98.196	99.5	-0.5	NO	0.999	NO	bb

Compound name: 7:3 FTCA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.995389$
Calibration curve: $5.99689 e-005{ }^{*} x^{\wedge} 2+0.135121 * x+-0.0173495$ Response type: Internal Std (Ref 56), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type:	Std. Cone	RT	Area	IS Area	onse	Cone	\%Dev	Conc. Fras	Cod	CoD Flag	x exeledod
14 LE	1 190710M2_6	Standard	0.250			7600.508				NO	0.995	NO	
2 2.	$2190710 \mathrm{M} 2 _7$	Standard	0.500	4.56	46.620	7970.221	0.073	0.7	33.9	YES	0.995	NO	bb
3\%	3 190710M2_8	Standard	1.000	4.56	46.549	7932.063	0.073	0.7	-32.9	YES	0.995	NO	bb
4 2	4 190710M2_9	Standard	2.000	4.55	137.996	1851.595	0.220	1.8	-12.4	NO	0.995	NO	bb
5.	5 190710M2_10	Standard	5.000	4.56	461.092	9320.955	0.618	4.7	-6.1	NO	0.995	NO	bb
	6190710 M 2 _11	Standard	10.000	4.56	696.622	7587.184	1.148	8.6	-14.1	NO	0.995	NO	bb
17	7 190710M2_12	Standard	50.000	4.56	7057.776	11887.996	7.421	53.8	7.5	NO	0.995	NO	bb
BEW	8190710 M 2 _13	Standard	100.000	4.56	7559.312	6822.277	13.850	98.3	-1.7	NO	0.995	NO	bb

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:29:54 Pacific Daylight Time

Compound name: PFNA

Correlation coefficient: $\mathrm{r}=0.999712, \mathrm{r}^{\wedge} 2=0.999423$
Calibration curve: $1.09616^{*} x+0.0302511$
Response type: Internal Std (Ref 56), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\#Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc:	\%Dev	Conc. Flag	CoD	Cod Flag	$x=e x c l u d e d$
	1 190710M2_6	Standard	0.250	4.57	209.476	7600.508	0.345	0.3	14.7	NO	0.999	NO	bb
2	2 190710M2_7	Standard	0.500	4.57	370.645	7970.221	0.581	0.5	0.5	NO	0.999	NO	bb
3\% ${ }^{\text {\% }}$	3 190710M2_8	Standard	1.000	4.58	684.983	7932.063	1.079	1.0	-4.3	NO	0.999	NO	bb
4.	4 190710M2_9	Standard	2.000	4.57	1332.024	7851.595	2.121	1.9	-4.7	NO	0.999	NO	bb
5\%	5 190710M2_10	Standard	5.000	4.57	4077.807	9320.955	5.469	5.0	-0.8	NO	0.999	NO	bd
6 6\%	6190710 M 2 _11	Standard	10.000	4.57	6336.875	7587.184	10.440	9.5	-5.0	NO	0.999	NO	bb
7 7:	$7190710 \mathrm{M} 2 _12$	Standard	50.000	4.57	50993.352	11887.996	53.619	48.9	-2.2	NO	0.999	NO	bb
	8 190710M2_13	Standard	100.000	4.57	60890.855	6822.277	$111.56 €$	101.8	1.8	NO	0.999	NO	bb

Compound name: PFOSA

Correlation coefficient: $\mathrm{r}=0.999643, \mathrm{r}^{\wedge} 2=0.999286$
Calibration curve: $1.27955^{*} x+-0.0326972$
Response type: Internal Std (Ref 57), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time

Printed:

 Thursday, July 11, 2019 10:29:54 Pacific Daylight Time
Compound name: L-PFOS

Correlation coefficient: $\mathrm{r}=0.997967, \mathrm{r}^{\wedge} 2=0.995937$
Calibration curve: 1.26946 * $x+-0.175183$
Response type: Internal Std (Ref 59), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: $1 / x$, Axis trans: None

	F Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc:	\% 6 dev	Conc. Flag	Cob	Cop Flag	$x=$ excluded
1-\#\#\%	1 190710M2_6	Standard	0.250	4.67	11.018	1347.552	0.102	0.2	-12.6	NO	0.996	NO	bb
2	2 190710M2_7	Standard	0.500	4.66	46.686	1416.736	0.412	0.5	-7.5	NO	0.996	NO	MM
3	3 190710M2_8	Standard	1.000	4.66	145.239	1422.413	1.276	1.1	14.3	NO	0.996	NO	MM
4	4 190710M2_9	Standard	2.000	4.66	192.269	1341.699	1.791	1.5	-22.5	NO	0.996	NO	MM
5	$5190710 \mathrm{M} 2 _10$	Standard	5.000	4.66	690.094	1597.348	5.400	4.4	-12.2	NO	0.996	NO	MM
66	$6190710 \mathrm{M} 2 _11$	Standard	10.000	4.66	1089.682	1315.408	10.355	8.3	-17.1	NO	0.996	NO	MM
7	7 190710M2_12	Standard	50.000	4.66	10372.741	2063.788	62.826	49.6	-0.7	NO	0.996	NO	MM
	8 190710M2_13	Standard	100.000	4.66	11864.368	1135.065	130.657	103.1	3.1	NO	0.996	NO	MM

Compound name: 9CI-PF30NS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999653$
Calibration curve: 0.0017864 * $x^{\wedge} 2+3.15352$ * $x+-0.22686$
Response type: Internal Std (Ref 59), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Sta. Conc	B7	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	x-excluded
1	1 190710M2_6	Standard	0.250	4.88	57.131	1347.552	0.530	0.2	-4.0	NO	1.000	NO	bb
$2{ }^{\text {2 }}$	$2190710 \mathrm{M2}$ _7	Standard	0.500	4.88	176.989	1416.736	1.562	0.6	13.4	NO	1.000	NO	bb
	3 190710M2_8	Standard	1.000	4.88	273.179	1422.413	2.401	0.8	-16.7	NO	1.000	NO	bb
$4{ }^{4} \mathrm{~F}$	4 190710M2_9	Standard	2.000	4.88	666.084	1341.699	6.206	2.0	1.9	NO	1.000	NO	bb
5	5 190710M2_10	Standard	5.000	4.88	2112.807	1597.348	16.534	5.3	6.0	NO	1.000	NO	bb
6 6tw	6190710 M 2 _11	Standard	10.000	4.88	3319.091	1315.408	31.541	10.0	0.2	NO	1.000	NO	bb
	7 190710M2_12	Standard	50.000	4.88	26494.578	2063.788	160.473	49.6	-0.9	NO	1.000	NO	bb
8	$8190710 \mathrm{M} 2=13$	Standard	100.000	4.88	30298.004	1135.065	333.659	100.2	0.2	NO	1.000	NO	bb

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:29:54 Pacific Daylight Time

Compound name: PFDA

Correlation coefficient: $r=0.998522, r^{\wedge} 2=0.997046$
Calibration curve: $1.67351^{*} x+-0.11586$
Response type: Internal Std (Ref 60), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: 8:2 FTS

Correlation coefficient: $\mathrm{r}=0.997198, \mathrm{r}^{\wedge} 2=0.994405$
Calibration curve: $2.24647^{*} x+0.0322693$
Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Sld. Conc	RT	Area	IS.Area	Response	Cone:	\%Dev	Conc. Flag	CoD	CodFlag	x-excluded
T낸․	1 190710M2_6	Standard	0.250	4.92	35.266	888.285	0.496	0.2	-17.4	NO	0.994	NO	bb
2	2 190710M2_7	Standard	0.500	4.93	78.589	921.949	1.066	0.5	-8.0	NO	0.994	NO	bb
	3 190710M2_8	Standard	1.000	4.93	136.249	954.638	1.784	0.8	-22.0	NO	0.994	NO	bb
4 4.3x	4 190710M2_9	Standard	2.000	4.92	386.257	900.043	5.364	2.4	18.7	NO	0.994	NO	bb
5\%\%	5 190710M2_10	Standard	5.000	4.92	1103.913	944.165	14.615	6.5	29.8	NO	0.994	NO	bb
6	6 190710M2_11	Standard	10.000	4.92	1688.582	901.200	23.421	10.4	4.1	NO	0.994	NO	bb
7	7 190710M2_12	Standard	50.000	4.92	11984.012	1269.481	118.001	52.5	5.0	NO	0.994	NO	bb
88, \%ilus	8 190710M2_13	Standard	100.000	4.92	13640.808	794.537	214.603	95.5	-4.5	NO	0.994	NO	bb

Last Altered: Thursday, July 11, 2019 10:56:26 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 11:06:48 Pacific Daylight Time

Method: F:|Projects\PFAS.PROMMethDB\PFAS_FULL_80C_071019.mdb 11 Jul 2019 10:07:19

 Calibration: F:|Projects|PFAS.PRO|CurveDBIC18_VAL-PFAS_Q4_07-10-19.cdb 11 Jul 2019 10:56:26
Compound name: PFNS

Coefficient of Determination: $R^{\wedge} 2=0.998948$
Calibration curve: $0.0012104{ }^{*} x^{\wedge} 2+0.869148{ }^{*} x+-0.063694$
Response type: Internal Std (Ref 59), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

	f Name	Type	Sta. Cone	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COO	CoD Fla	$x=$ excluded
\%	1 190710M2_6	Standard	0.250	5.01	19.637	1347.552	0.182	0.3	13.1	NO	0.999	NO	bb
2 2mentil	2190710 M 2 _7	Standard	0.500	5.01	42.411	1416.736	0.374	0.5	0.7	NO	0.999	NO	bb
3 3. ${ }^{\text {a }}$	3 190710M2_8	Standard	1.000	5.02	66.216	1422.413	0.582	0.7	-25.8	NO	0.999	NO	bb
4^{4}. ${ }^{3}$	4 190710M2_9	Standard	2.000	5.02	145.714	1341.699	1.358	1.6	-18.4	NO	0.999	NO	bb
5	5 190710M2_10	Standard	5.000	5.02	557.274	1597.348	4.361	5.1	1.1	NO	0.999	NO	bb
6.	6 190710M2_11	Standard	10.000	5.01	902.201	1315.408	8.573	9.8	-2.0	NO	0.999	NO	bb
7.	7 190710M2_12	Standard	50.000	5.01	7868.190	2063.788	47.656	51.2	2.5	NO	0.999	NO	bb
8UNTK4\%	8190710 M 2 _13	Standard	100.000	5.02	8931.655	1135.065	98.361	99.5	-0.5	NO	0.999	NO	bb

Compound name: L-MeFOSAA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998887$
Calibration curve: $0.003255^{*} x^{\wedge} 2+2.95538{ }^{*} x+-0.018678$
Response type: Internal Std (Ref 62), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Typer	Sld. Conc	RT	Area	IS Area	Response	Conc:	\%Dev	Conc. Flag	Cob	CoD Flag	x=excluded
\%	1 190710M2_6	Standard	0.250	5.10	110.489	1483.081	0.931	0.3	28.5	NO	0.999	NO	MM
2.2\%	$2190710 \mathrm{M2}$ _7	Standard	0.500	5.10	127.066	1539.354	1.032	0.4	-28.9	NO	0.999	NO	MM
3\%\%	$3190710 \mathrm{M} 2 _8$	Standard	1.000	5.11	397.646	1534.459	3.239	1.1	10.1	NO	0.999	NO	MM
4.3 (1)	4 190710M2_9	Standard	2.000	5.11	672.372	1568.547	5.358	1.8	-9.2	NO	0.999	NO	MM
5	5 190710M2_10	Standard	5.000	5.10	2246.927	1786.803	15.719	5.3	5.9	NO	0.999	NO	MM
6	6 190710M2_11	Standard	10.000	5.10	3245.832	1481.031	27.395	9.2	-8.2	NO	0.999	NO	MM
7	7 190710M2_12	Standard	50.000	5.11	29639.494	2321.898	159.565	51.1	2.2	NO	0.999	NO	MM
8	8 190710M2_13	Standard	100.000	5.10	35897.949	1374.590	326.442	99.5	-0.5	NO	0.999	NO	MM

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:30:27 Pacific Daylight Time

Method: F:|Projects|PFAS.PROMMethDB\PFAS_FULL_80C_071019.mdb 11 Jul 2019 10:07:19 Calibration: F:IProjects|PFAS.PRO\CurveDBIC18_VAL-PFĀS_Q4_07-10-19.cdb 11 Jul 2019 10:22:28

Compound name: L-EtFOSAA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999414$
Calibration curve: 0.000968179 * $x^{\wedge} 2+1.99529$ * $x+-0.24728$
Response type: Internal Std (Ref 64), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\#N Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc	\%Dev	Cone. Flag	CoD	Codrlag	x excluded
1	$1190710 \mathrm{M2}$ _6	Standard	0.250	5.26	52.427	1930.980	0.339	0.3	17.6	NO	0.999	NO	MM
	2 190710M2_7	Standard	0.500	5.26	66.737	1750.672	0.477	0.4	-27.5	NO	0.999	NO	MM
3 ${ }^{\text {a }}$	3 190710M2_8	Standard	1.000	5.27	275.709	1820.030	1.894	1.1	7.2	NO	0.999	NO	MM
	4 190710M2_9	Standard	2.000	5.27	487.290	1715.865	3.550	1.9	-4.9	NO	0.999	NO	MM
$5: 3$	5 190710M2_10	Standard	5.000	5.27	1730.527	2099.478	10.303	5.3	5.5	NO	0.999	NO	MM
6.1	6190710 M 2 _11	Standard	10.000	5.27	2630.015	1603.905	20.497	10.3	3.4	NO	0.999	NO	MM
	7 190710M2_12	Standard	50.000	5.26	20822.275	2599.831	100.114	49.1	-1.7	NO	0.999	NO	MM
8.2.2\%	8190710 M 2 _13	Standard	100.000	5.27	24331.580	1449.809	209.783	100.4	0.4	NO	0.999	NO	MM

Compound name: PFUdA

Correlation coefficient: $\mathrm{r}=0.999664, \mathrm{r}^{\wedge} 2=0.999328$
Calibration curve: 0.930582 * $x+0.0128571$
Response type: Internal Std (Ref 63), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc:	\% Dev	Conc. Flag	Cod	CoD Flag	$x=$ excluded
Y\%	1 190710M2_6	Standard	0.250	5.27	209.962	10308.564	0.255	0.3	3.9	NO	0.999	NO	bb
2\%	2 190710M2_7	Standard	0.500	5.27	365.858	9874.773	0.463	0.5	-3.2	NO	0.999	NO	bb
3	3 190710M2_8	Standard	1.000	5.28	844.203	10153.241	1.039	1.1	10.3	NO	0.999	NO	bb
4	4 190710M2_9	Standard	2.000	5.28	1478.163	10535.049	1.754	1.9	-6.5	NO	0.999	NO	bb
5	5 190710M2_10	Standard	5.000	5.27	4474.803	12195.073	4.587	4.9	-1.7	NO	0.999	NO	bb
6	6 190710M2_11	Standard	10.000	5.28	7063.031	9619.693	9.178	9.8	-1.5	NO	0.999	NO	bb
17	7 190710M2_12	Standard	50.000	5.28	56901.484	15781.931	45.069	48.4	-3.2	NO	0.999	NO	bb
8.3WETM	$8190710 \mathrm{M2}$ _13	Standard	100.000	5.28	66131.688	8720.392	94.795	101.9	1.9	NO	0.999	NO	bb

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:30:27 Pacific Daylight Time

Compound name: PFDS

Correlation coefficient: $\mathrm{r}=0.997649, \mathrm{r}^{\wedge} 2=0.995303$
Calibration curve: 2.06378 * $x+-0.389745$
Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: 11CI-PF30UdS

Coefficient of Determination: R^2 $=0.990993$
Calibration curve: $5.10585 \mathrm{e}-005^{*} \mathrm{x}^{\wedge} 2+0.0636606{ }^{*} x+0.00127315$
Response type: Internal Std (Ref 65), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	ISArea	Response	Pono	9 pev	Conc. Flag	CoD	CoD Flag	$x=$ excluded
1*"\#\#\#\#\%	1 190710M2_6	Standard	0.250	5.50	15.036	11849.361	0.016	0.2	-8.4	NO	0.991	NO	bb
2:*"\#	2 190710M2_7	Standard	0.500	5.50	51.761	11696.822	0.855	0.8	69.7	YES	0.991	NO	bb
3. Whete	3 190710M2_8	Standard	1.000	5.50	30.014	12098.984	0.031	0.5	-53.3	YES	0.991	NO	bb
$4{ }^{4}$	4 190710M2_9	Standard	2.000	5.50	135.930	12100.947	0.140	2.2	9.1	NO	0.991	NO	bb
5.W\%	5 190710M2_10	Standard	5.000	5.49	368.903	14176.77	0.325	5.1	1.4	NO	0.991	NO	bb
6.	6 190710M2_11	Standard	10.000	5.49	437.921	11395.97	0.480	7.5	-25.2	NO	0.991	NO	bb
7:	7 190710M2_12	Standard	50.000	5.50	5206.060	18089. 182	3.599	54.2	8.3	NO	0.991	NO	bb
8,	$8190710 \mathrm{M} 2 \ldots 13$	Standard	100.000	5.50	5656.417	109/4.394	6.750	98.3	-1.7	NO	0.991	NO	bb

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:30:27 Pacific Daylight Time

Compound name: 10:2 FTS

Coefficient of Determination: $R^{\wedge} 2=0.998698$

Calibration curve: $-0.003973722^{*} x^{\wedge} 2+2.69789$ * $x+-0.0745551$
Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Sta. Conc	RT	Area	IS Area	Response	Conc:	\% Der	Conc, Flag	Cob	CODF	x-excluded
1te\%	1 190710M2_6	Standard	0.250	5.55	45.291	888.285	0.637	0.3	5.6	NO	0.999	NO	bb
$2{ }^{2} 4$	$2190710 \mathrm{M2} 3$	Standard	0.500	5.55	89.307	921.949	1.211	0.5	-4.6	NO	0.999	NO	bb
3	3 190710M2_8	Standard	1.000	5.55	176.181	954.638	2.307	0.9	-11.6	NO	0.999	NO	bb
4.	4 190710M2_9	Standard	2.000	5.55	404.641	900.043	5.620	2.1	5.9	NO	0.999	NO	bb
5.2\%\%\%	$5190710 \mathrm{M} 2 \ldots 10$	Standard	5.000	5.55	1131.636	944.165	14.982	5.6	12.5	NO	0.999	NO	bb
6: ${ }^{\text {2 }}$	6 190710M2_11	Standard	10.000	5.55	1754.811	901.200	24.340	9.2	-8.3	NO	0.999	NO	bb
7 mes	7 190710M2_12	Standard	50.000	5.55	12763.050	1269.481	125.672	50.3	0.7	NO	0.999	NO	bb
8^{2+3}	$8190710 \mathrm{M} 2 _13$	Standard	100.000	5.55	14601.342	794.537	229.715	99.9	-0.1	NO	0.999	NO	bb

Compound name: PFDoA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999847$

Calibration curve: $-0.000390936{ }^{*} x^{\wedge} 2+0.961264 * x+-0.0303905$
Response type: Internal Std (Ref 65), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RTI	Area	TS Area	Response	Conc:	\%Dev	Conc. Flag	Cob	Cob Flag	x=excluded
1\%	1190710 M 2 _6	Standard	0.250	5.57	227.053	11849.361	0.240	0.3	12.3	NO	1.000	NO	bb
2	$2190710 \mathrm{M2} \mathbf{7}^{7}$	Standard	0.500	5.56	412.587	11696.822	0.441	0.5	-1.9	NO	1.000	NO	bb
3	$3190710 \mathrm{M} 2 _8$	Standard	1.000	5.57	843.887	12098.984	0.872	0.9	-6.1	NO	1.000	NO	bb
4	4190710 M 2 _9	Standard	2.000	5.56	1814.495	12100.947	1.874	2.0	-0.8	NO	1.000	NO	bb
5	5 190710M2_10	Standard	5.000	5.56	5220.757	14176.774	4.603	4.8	-3.4	NO	1.000	NO	bb
6	6 190710M2_11	Standard	10.000	5.56	8611.083	11395.914	9.445	9.9	-1.0	NO	1.000	NO	bb
7 7\%	7 190710M2_12	Standard	50.000	5.57	68919.000	18080.182	47.648	50.6	1.3	NO	1.000	NO	bb
8 8\%	8 190710M2_13	Standard	100.000	5.56	77015.367	10474.394	91.909	99.7	-0.3	NO	1.000	NO	bb

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 10:30:27 Pacific Daylight Time

Compound name: N -MeFOSA

Coefficient of Determination: $R^{\wedge} 2=0.999075$
Calibration curve: $-0.000216151^{*} x^{\wedge} 2+1.299233^{*} x+-0.534727$
Response type: Internal Std (Ref 66), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

	\# Name	Type	Sti. Conc	RT	Area	IS Area	Response	Conc:	\%Dev	Conc. Flag	CoD	Cob Flag	$x=$ excluded
1. : :	1 190710M2_6	Standard	1.250	5.70	21.123	3054.399	1.037	1.2	-3.2	NO	0.999	NO	bb
2	2 190710M2_7	Standard	2.500	5.71	60.346	3277.438	2.762	2.5	1.5	NO	0.999	NO	bb
3	$3190710 \mathrm{M2}$ _8	Standard	5.000	5.71	101.673	3115.206	4.896	4.2	-16.3	NO	0.999	NO	bb
	4 190710M2_9	Standard	10.000	5.71	208.321	3084.938	10.129	8.2	-17.8	NO	0.999	NO	bb
5	5190710 M 2 _10	Standard	25.000	5.70	794.928	3716.070	32.087	25.2	0.9	NO	0.999	NO	bb
6 6\%	$6190710 \mathrm{M} 2 _11$	Standard	50.000	5.70	1250.184	2913.632	64.362	50.4	0.7	NO	0.999	NO	bb
7	7 190710M2_12	Standard	250.000	5.70	10117.369	4802.480	316.005	254.4	1.8	NO	0.999	NO	bb
8,	$8190710 \mathrm{M} 2 _13$	Standard	500.000	5.71	11808.107	2989.823	592.415	497.6	-0.5	NO	0.999	NO	bb

Compound name: PFTrDA

Coefficient of Determination: $R^{\wedge} 2=0.999791$
Calibration curve: -0.000400083 * $x^{\wedge} 2+1.06843$ * $x+-0.0442094$
Response type: Internal Std (Ref 65), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT	Area	IS Area	Riesponse	Conc.	\% Dev	Conc. Flag	CoD	CoD Flag	x-excluded
14\%	1 190710M2_6	Standard	0.250	5.81	212.303	11849.361	0.224	0.3	0.4	NO	1.000	NO	bb
2 2\%	$2190710 \mathrm{M} 2 _7$	Standard	0.500	5.81	404.091	11696.822	0.432	0.4	-10.9	NO	1.000	NO	bb
$3{ }^{3}$	3 190710M2_8	Standard	1.000	5.81	1110.50 ¢	12098.984	1.147	1.1	11.6	NO	1.000	NO	bb
4.	4 190710M2_9	Standard	2.000	5.81	1960.829	12100.947	2.025	1.9	-3.1	NO	1.000	NO	bb
5	5 190710M2_10	Standard	5.000	5.81	6228.645	14176.774	5.492	5.2	3.8	NO	1.000	NO	bb
6	6190710 M 2 _11	Standard	10.000	5.81	9489.233	11395.914	10.409	9.8	-1.8	NO	1.000	NO	bb
	7 190710M2_12	Standard	50.000	5.82	75692.906	18080.182	52.331	50.0	-0.1	NO	1.000	NO	bb
8: ${ }^{\text {din }}$	8190710 M 2 _13	Standard	100.000	5.81	86166.516	10474.394	102.830	100.0	0.0	NO	1.000	NO	bb

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 10:30:27 Pacific Daylight Time

Compound name: PFDoS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998596$
Calibration curve: $-6.19262 \mathrm{e}-005^{*} x^{\wedge} 2+0.244112^{*} x+-0.0199214$
Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFTeDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999560$
Calibration curve: $0.000924303{ }^{*} x^{\wedge} 2+1.48528{ }^{*} x+0.0369753$
Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Stid. Cone	RT	Area	IS Area	Response	Conc.	\% Dev	Conc. Flag	CoD	CoDFlag	$x=$ excluded
$1+2$	1 190710M2_6	Standard	0.250	6.03	187.955	5988.523	0.392	0.2	-4.3	NO	1.000	NO	bb
2	2 190710M2_7	Standard	0.500	6.04	432.303	6370.549	0.848	0.5	9.2	NO	1.000	NO	bb
3	3 190710M2_8	Standard	1.000	6.04	641.228	6280.262	1.276	0.8	-16.6	NO	1.000	NO	bb
4	4 190710M2_9	Standard	2.000	6.03	1538.406	6033.232	3.187	2.1	5.9	NO	1.000	NO	bb
5: ${ }^{\text {2 }}$	5 190710M2_10	Standard	5.000	6.04	4416.243	6836.236	8.075	5.4	7.9	NO	1.000	NO	bb
6	6190710 M 2 _11	Standard	10.000	6.04	6755.284	5715.887	14.773	9.9	-1.4	NO	1.000	NO	bb
7	7 190710M2_12	Standard	50.000	6.04	57140.523	9409.312	75.910	49.6	-0.9	NO	1.000	NO	bb
8.	$8190710 \mathrm{M2}$ _13	Standard	100.000	6.04	67063.367	5300.635	158.149	100.2	0.2	NO	1.000	NO	bb

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:30:27 Pacific Daylight Time

Compound name: N-EtFOSA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999705$
Calibration curve: $4.67147 \mathrm{e}-005^{*} \mathrm{x}^{\wedge} 2+0.924219$ * $x+-0.422102$
7:30FTCA He inct olilka
Response type: Internal Std (Ref 68), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

	f Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	Cob	CoD Flag	$x=$ excluded
1\%	1 190710M2_6	Standard	1.250	6.12	23.128	4439.246	0.781	1.3	4.2	NO	1.000	NO	bb
	2 190710M2_7	Standard	2.500	6.13	55.711	4462.217	1.873	2.5	-0.7	NO	1.000	NO	bb
3	3 190710M2_8	Standard	5.000	6.13	128.995	4330.604	4.468	5.3	5.8	NO	1.000	NO	bb
14	4 190710M2_9	Standard	10.000	6.12	224.014	4383.917	7.665	8.7	-12.5	NO	1.000	NO	bb
5	5 190710M2_10	Standard	25.000	6.13	838.738	5295.154	23.760	26.1	4.5	NO	1.000	NO	bb
	6 190710M2_11	Standard	50.000	6.13	1279.052	4247.957	45.165	49.2	-1.6	NO	1.000	NO	bb
7	7 190710M2_12	Standard	250.000	6.13	10501.848	6715.452	234.575	251.1	0.4	NO	1.000	NO	bb
	8190710 M 2 _13	Standard	500.000	6.13	12798.550	4059.624	472.897	499.5	-0.1	NO	1.000	NO	bb

Compound name: PFHxDA

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999745$
Calibration curve: $-0.000493807^{*} x^{\wedge} 2+0.756486{ }^{*} x+0.0537783$
Response type: Internal Std (Ref 69), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

25	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	Cob Frag	k=excluded
\#\#ix	1 190710M2_6	Standard	0.250	6.39	181.705	3440.496	0.264	0.3	11.2	NO	1.000	NO	bb
2.	2 190710M2_7	Standard	0.500	6.39	311.225	3551.527	0.438	0.5	1.7	NO	1.000	NO	bb
3	$3190710 \mathrm{M} 2 _8$	Standard	1.000	6.39	547.227	3591.524	0.762	0.9	-6.3	NO	1.000	NO	bb
4	4 190710M2_9	Standard	2.000	6.39	1046.898	3403.188	1.538	2.0	-1.8	NO	1.000	NO	bb
5	$5190710 \mathrm{M} 2 \ldots 10$	Standard	5.000	6.39	2985.637	4071.111	3.667	4.8	-4.2	NO	1.000	NO	bb
6	6 190710M2_11	Standard	10.000	6.39	4843.048	3262.578	7.422	9.8	-2.0	NO	1.000	NO	bb
7	7 190710M2_12	Standard	50.000	6.39	40627.480	5446.172	37.299	50.9	1.9	NO	1.000	NO	bb
8	$8190710 \mathrm{M} 2 _13$	Standard	100.000	6.39	43788.574	3107.337	70.460	99.5	-0.5	NO	1.000	NO	bb

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 10:30:27 Pacific Daylight Time

Compound name: PFODA

Correlation coefficient: $r=0.999748, r^{\wedge} 2=0.999496$
Calibration curve: $0.835341^{*} x+0.00579687$
Response type: Internal Std (Ref 69), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: $1 / x$, Axis trans: None

	\# Name	Type	Sld. Colle	RT	Area	IS Area	sponse	Cone.	\% Dev	Conc. Flas	CoD	CoDFlag	$x=e x c l u d e d$
W\%	1 190710M2_6	Standard	0.250	6.63	144.032	3440.496	0.209	0.2	-2.5	NO	0.999	NO	bb
2-2\%	2 190710M2_7	Standard	0.500	6.63	312.756	3551.527	0.440	0.5	4.0	NO	0.999	NO	bb
3 3 ${ }^{\text {2 }}$	$3190710 \mathrm{M2}$ _8	Standard	1.000	6.63	594.852	3591.524	0.828	1.0	-1.6	NO	0.999	NO	bb
	4 190710M2_9	Standard	2.000	6.63	1122.281	3403.188	1.649	2.0	-1.7	NO	0.999	NO	bb
5	5 190710M2_10	Standard	5.000	6.63	3537.889	4071.111	4.345	5.2	3.9	NO	0.999	NO	bb
4	6 190710M2_11	Standard	10.000	6.63	5598.238	3262.578	8.579	10.3	2.6	NO	0.999	NO	bb
7.	7 190710M2_12	Standard	50.000	6.63	44035.457	5446.172	40.428	48.4	-3.2	NO	0.999	NO	bb
8:	8190710 M 2 _13	Standard	100.000	6.63	52533.277	3107.337	84.531	101.2	1.2	NO	0.999	NO	bb

Compound name: $\mathbf{N}-\mathrm{MeFOSE}$

Correlation coefficient: $\mathrm{r}=0.999631, \mathrm{r}^{\wedge} 2=0.999263$
Calibration curve: 1.11841 * $x+0.165536$
Response type: Internal Std (Ref 70), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Sta. Conc	RT	Area	IS Area	Response	Conc:	\% Dev:	Conc. Flag	Cob	Cod riac	$x=$ excluded
+	1 190710M2_6	Standard	1.250	6.31	37.031	4007.611	1.386	1.1	-12.7	NO	0.999	NO	bb
2. ${ }^{\text {2 }}$	$2190710 \mathrm{M2}{ }^{\text {-7 }}$	Standard	2.500	6.30	85.698	3785.716	3.396	2.9	15.5	NO	0.999	NO	bb
	$3190710 \mathrm{M} 2 _8$	Standard	5.000	6.31	167.209	3922.123	6.395	5.6	11.4	NO	0.999	NO	bb
4 \#\#\#\#:	4 190710M2_9	Standard	10.000	6.30	259.229	3727.673	10.431	9.2	-8.2	NO	0.999	NO	bb
	5190710 M 2 _10	Standard	25.000	6.31	836.294	4820.834	26.021	23.1	-7.5	NO	0.999	NO	bb
	6 190710M2_11	Standard	50.000	6.31	1404.172	3765.545	55.935	49.9	-0.3	NO	0.999	NO	bb
7. ${ }^{\text {\% }}$	7 190710M2_12	Standard	250.000	6.30	11978.623	6250.164	287.479	256.9	2.8	NO	0.999	NO	bb
8.	8 190710M2_13	Standard	500.000	6.30	14010.419	3793.865	553.937	495.1	-1.0	NO	0.999	NO	bb

Dataset: F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 10:30:27 Pacific Daylight Time

Compound name: N-EtFOSE

Correlation coefficient: $\mathrm{r}=0.999930, \mathrm{r}^{\wedge} 2=0.999860$
Calibration curve: 1.41132 * $x+-0.260677$
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

	\# Name	Type	Std. Conc	RT.	Area	IS Area	Response	Conc:	\%Dev	Cone Flag	COD	Cod Flag	x=excluded
	1 190710M2_6	Standard	1.250	6.46	37.607	3845.157	1.467	1.2	-2.1	NO	1.000	NO	bb
2	2 190710M2_7	Standard	2.500	6.46	83.843	3839.792	3.275	2.5	0.2	NO	1.000	NO	bb
3	3 190710M2_8	Standard	5.000	6.46	173.873	3944.296	6.612	4.9	-2.6	NO	1.000	NO	bb
4	4 190710M2_9	Standard	10.000	6.46	371.200	3790.164	14.691	10.6	5.9	NO	1.000	NO	bb
5	5 190710M2_10	Standard	25.000	6.46	1033.909	4610.654	33.637	24.0	-3.9	NO	1.000	NO	bb
6	6 190710M2_11	Standard	50.000	6.46	1783.965	3714.178	72.047	51.2	2.5	NO	1.000	NO	bd
7	7 190710M2_12	Standard	250.000	6.46	14491.547	6151.757	353.351	250.6	0.2	NO	1.000	NO	bb
	8 190710M2_13	Standard	500.000	6.46	17047.996	3634.249	703.639	498.8	-0.2	NO	1.000	NO	bb

Compound name: 13C3-PFBA

Response Factor: 0.650021
RRF SD: 0.0190623 , Relative SD: 2.93256
Response type: Internal Std (Ref 72), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	d. Conc	RT	Area	IS Area	Response	Conc.	9 \% Dev	Conc. Flag	CoD	Cob Flag	x=excluded
11-1\%	1 190710M2_6	Standard	12.500	1.21	1930.395	2921.156	8.260	12.7	1.7	NO		NO	MM
2 2-	2 190710M2_7	Standard	12.500	1.21	2093.751	3200.857	8.177	12.6	0.6	NO		NO	bb
3	3190710 M 2 _8	Standard	12.500	1.21	1877.004	3042.829	7.711	11.9	-5.1	NO		NO	bb
4 HWMSHE	4 190710M2_9	Standard	12.500	1.21	1948.465	3054.028	7.975	12.3	-1.8	NO		NO	bb
5	5 190710M2_10	Standard	12.500	1.21	2587.624	3825.142	8.456	13.0	4.1	NO		NO	bb
6	6 190710M2_11	Standard	12.500	1.21	1944.651	2935.893	8.280	12.7	1.9	NO		NO	bb
7	7 190710M2_12	Standard	12.500	1.22	3149.437	4789.874	8.219	12.6	1.2	NO		NO	bb
	8190710 M 2 _13	Standard	12.500	1.21	1784.566	2814.827	7.925	12.2	-2.5	NO		NO	bb

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: \quad Thursday, July 11, 2019 10:30:27 Pacific Daylight Time

Compound name: 13C3-PFPeA

Response Factor: 0.407627
RRF SD: 0.0308474 , Relative SD: 7.56756
Response type: Internal Std (Ref 73), Area * (IS Conc. / IS Area)
Curve type: RF

Wresker	\# Name	Type	Std. Conc	PT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	Cod flag	$x=$ excluded
12F\%	1 1907:10M2_6	Standard	12.500	2.19	3451.527	9214.552	4.682	11.5	-8.1	NO		NO	bb
12	$2190710 \mathrm{M2}$ _7	Standard	12.500	2.19	4278.600	9744.537	5.488	13.5	7.7	NO		NO	MM
3	3 190710M2_8	Standard	12.500	2.20	3455.927	9533.288	4.531	11.1	-11.1	NO		NO	bb
4	4 190710M2_9	Standard	12.500	2.20	3752.667	9794.559	4.789	11.7	-6.0	NO		NO	MM
5	$5190710 \mathrm{M} 2 _10$	Standard	12.500	2.20	4918.636	11219.285	5.480	13.4	7.6	NO		NO	bb
6	6 190710M2_11	Standard	12.500	2.20	3981.248	9088.471	5.476	13.4	7.5	NO		NO	db
7.	7 190710M2_12	Standard	12.500	2.20	6077.235	14844.347	5.117	12.6	0.4	NO		NO	db
8 ${ }^{\text {dentu }}$	8190710 M 2 _13	Standard	12.500	2.20	3455.963	8310.527	5.198	12.8	2.0	NO		NO	MM

Compound name: 13C3-PFBS

Response Factor: 1.03514
RRF SD: 0.0705751 , Relative SD: 6.81793
Response type: Internal Std (Ref 74), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	15 Area	Response	Conc.	\%Dev	Conc. Flag	COD	Cob Fl	x $=$ exchilded
	1 190710M2_6	Standard	12.500	2.49	545.502	506.480	13.463	13.0	4.0	NO		NO	MM
2 W	2 190710M2_7	Standard	12.500	2.49	500.786	530.060	11.810	11.4	-8.7	NO		NO	bb
3.5	3 190710M2_8	Standard	12.500	2.49	517.896	516.799	12.527	12.1	-3.2	NO		NO	MM
4 ${ }^{\text {2 }}$	4 190710M2_9	Standard	12.500	2.49	589.041	567.821	12.967	12.5	0.2	NO		NO	MM
5.	5 190710M2_10	Standard	12.500	2.49	676.534	643.362	13.145	12.7	1.6	NO		NO	bb
	6 190710M2_11	Standard	12.500	2.49	516.663	448.826	14.389	13.9	11.2	NO		NO	bb
7	7 190710M2_12	Standard	12.500	2.49	909.570	964.996	11.782	11.4	-8.9	NO		NO	MM
8 8) ${ }^{\text {den }}$	8190710 Mz _13	Standard	12.500	2.49	504.378	469.394	13.432	13.0	3.8	NO		NO	bb

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: \quad Thursday, July 11, 2019 10:30:27 Pacific Daylight Time

Compound name: 13C3-HFPO-DA

Response Factor: 0.306485
RRF SD: 0.0121995, Relative SD: 3.98045
Response type: Internal Std (Ref 73), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RTIm	Area	IS Area	Response	Conce:	\%Dev	Conc. Flag	CoD $=$ CoD Flag	$x=$ excluded
1.5:	1 190710M2_6	Standard	5.000	3.20	1155.989	9214.552	1.568	5.1	2.3	NO	NO	bb
2	$2190710 \mathrm{M2} \mathrm{_7}$	Standard	5.000	3.20	1192.405	9744.537	1.530	5.0	-0.2	NO	NO	bb
	$3190710 \mathrm{M2}$ _8	Standard	5.000	3.20	1184.265	9533.288	1.553	5.1	1.3	NO	NO	bb
4	4 190710M2_9	Standard	5.000	3.20	1280.574	9794.559	1.634	5.3	6.6	NO	NO	bb
5	5190710 M 2 _10	Standard	5.000	3.20	1293.869	11219.285	1.442	4.7	-5.9	NO	NO	bb
6	$6190710 \mathrm{M} 2 _11$	Standard	5.000	3.20	1137.478	9088.471	1.564	5.1	2.1	NO	NO	bb
7 7 Mine	7 190710M2_12	Standard	5.000	3.20	1756.626	14844.347	1.479	4.8	-3.5	NO	NO	bb
B	8190710 M 2 _13	Standard	5.000	3.20	990.189	8310.527	1.489	4.9	-2.8	NO	NO	bb

Compound name: 13C2-4:2 FTS

Response Factor: 2.2388
RRF SD: 0.285284, Relative SD: 12.7427
Response type: Internal Std (Ref 74), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.:	\% \% Dev	Conc. Flag	CoDunsum flag	x=excluded
11	1 190710M2_6	Standard	12.500	2.90	1218.422	506.480	30.071	13.4	7.5	NO	NO	bb
2	2 190710M2_7	Standard	12.500	2.90	1263.342	530.060	29.792	13.3	6.5	NO	NO	bb
3	3 190710M2_8	Standard	12.500	2.90	1209.812	516.799	29.262	13.1	4.6	NO	NO	bb
4 4	4 190710M2_9	Standard	12.500	2.90	1216.382	567.821	26.777	12.0	-4.3	NO	NO	bb
5	5 190710M2_10	Standard	12.500	2.90	1338.061	643.362	25.997	11.6	-7.1	NO	NO	bb
6	6 190710M2_11	Standard	12.500	2.90	1216.987	448.826	33.894	15.1	21.1	NO	NO	bb
7	7190710 M 2 _12	Standard	12.500	2.90	1698.185	964.996	21.997	9.8	-21.4	NO	NO	bb
8:3\% \%	8190710 M 2 _13	Standard	12.500	2.90	979.676	469.394	26.089	11.7	-6.8	NO	NO	bb

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:30:27 Pacific Daylight Time

Compound name: 13C2-PFHxA

Response Factor: 0.792375
RRF SD: 0.0291369, Relative SD: 3.67716
Response type: Internal Std (Ref 73), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C4-PFHpA

Response Factor: 0.39108
RRF SD: 0.0111122, Relative SD: 2.84141
Response type: Internal Std (Ref 73), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Stdeconc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	Cobl	CoDiflag	x=excluded
14\%	1 190710M2_6	Standard	12.500	3.61	3685.756	9214.552	5.000	12.8	2.3	NO		NO	bb
2.3\%\#\#	2 190710M2_7	Standard	12.500	3.61	3854.176	9744.537	4.944	12.6	1.1	NO		NO	bb
3.	3 190710M2_8	Standard	12.500	3.61	3764.723	9533.288	4.936	12.6	1.0	NO		NO	bb
4 ${ }^{\text {2 }}$	4 190710M2_9	Standard	12.500	3.61	3733.310	9794.559	4.765	12.2	-2.5	NO		NO	bb
5. ${ }^{5}$	5 190710M2_10	Standard	12.500	3.61	4336.953	11219.285	4.832	12.4	-1.2	NO		NO	bb
6.	6 190710M2_11	Standard	12.500	3.61	3472.715	9088.471	4.776	12.2	-2.3	NO		NO	bb
7 F	7 190710M2_12	Standard	12.500	3.61	5609.557	14844.347	4.724	12.1	-3.4	NO		NO	bd
8 8\%	8 190710M2_13	Standard	12.500	3.61	3411.495	8310.527	5.131	13.1	5.0	NO		NO	bb

Compound name: 13C2-6:2 FTS

Response Factor: 0.736156
RRF SD: 0.0571117 , Relative SD: 7.7581
Response type: Internal Std (Ref 77), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	COD Cob Flag	$x=$ exctuded
	1190710 Mz _6	Standard	12.500	4.07	919.066	1327.903	8.651	11.8	-6.0	NO	NO	bb
2 \%	2 190710M2_7	Standard	12.500	4.07	992.943	1384.299	8.966	12.2	-2.6	NO	NO	bb
3.4\%	3 190710M2_8	Standard	12.500	4.08	961.569	1176.867	10.213	13.9	11.0	NO	NO	bb
4	4 190710M2_9	Standard	12.500	4.07	971.636	1368.032	8.878	12.1	-3.5	NO	NO	bb
5 \% ${ }^{\text {\% }}$	5 190710M2_10	Standard	12.500	4.07	1089.051	1460.771	9.319	12.7	1.3	NO	NO	bb
6	$6190710 \mathrm{M} 2 _11$	Standard	12.500	4.07	927.023	1148.475	10.090	13.7	9.6	NO	NO	bb
7	7 190710M2_12	Standard	12.500	4.08	1394.910	2155.362	8.090	11.0	-12.1	NO	NO	bb
8,	8190710 M 2 -13	Standard	12.500	4.07	809.234	1075.188	9.408	12.8	2.2	NO	NO	bb

Dataset: F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: \quad Thursday, July 11, 2019 10:30:27 Pacific Daylight Time

Compound name: 13C5-PFNA

Response Factor: 0.982718
RRF SD: 0.042308, Relative SD: 4.30521
Response type: Internal Std (Ref 76), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	\% Dev	Conc. Flag	Coner Cob Flag	$x=$ excluded
	1 190710M2_6	Standard	12.500	4.57	7600.508	7993.476	11.885	12.1	-3.2	NO	NO	bb
2	2 190710M2_7	Standard	12.500	4.57	7970.221	7664.316	12.999	13.2	5.8	NO	NO	bb
3	3 190710M2_8	Standard	12.500	4.57	7932.063	8436.873	11.752	12.0	-4.3	NO	NO	bb
14	4 190710M2_9	Standard	12.500	4.57	7851.595	8295.519	11.831	12.0	-3.7	NO	NO	bb
5	5 190710M2_10	Standard	12.500	4.57	9320.955	9350.003	12.461	12.7	1.4	NO	NO	bb
6	$6190710 \mathrm{M2}$ _11	Standard	12.500	4.57	7587.184	7605.623	12.470	12.7	1.5	NO	NO	bb
7	7 190710M2_12	Standard	12.500	4.57	11887.996	12539.574	11.850	12.1	-3.5	NO	NO	bb
8.2.entu	8 190710M2_13	Standard	12.500	4.57	6822.277	6548.345	13.023	13.3	6.0	NO	NO	bb

Compound name: 13C8-PFOSA

Response Factor: 0.130277
RRF SD: 0.00591568 , Relative SD: 4.54086
Response type: Internal Std (Ref 79), Area * (IS Conc. / IS Area)
Curve type: RF

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 10:30:27 Pacific Daylight Time

Compound name: 13C2-PFOA

Response Factor: 0.564255

RRF SD: 0.0209217, Relative SD: 3.70784
Response type: Internal Std (Ref 75), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	IS Area	ponse	Conc.	\%Dev	Conc. Flag	Cob	Cod Flag	x=excluded
14:3:	1 190710M2_6	Standard	12.500	4.13	7718.956	13388.436	7.207	12.8	2.2	NO		NO	bb
2	2 190710M2_7	Standard	12.500	4.13	7963.359	14093.044	7.063	12.5	0.1	NO		NO	bb
3.	3 190710M2_8	Standard	12.500	4.13	7400.191	13963.202	6.625	11.7	-6.1	NO		NO	bb
4, ${ }^{\text {antw }}$	4 190710M2_9	Standard	12.500	4.13	7808.747	14249.977	6.850	12.1	-2.9	NO		NO	bb
5	5 190710M2_10	Standard	12.500	4.13	9244.864	16413.971	7.040	12.5	-0.2	NO		NO	bb
6.	6 190710M2_11	Standard	12.500	4.13	7521.740	12992.551	7.237	12.8	2.6	NO		NO	bb
7	7 190710M2_12	Standard	12.500	4.13	11432.653	20632.490	6.926	12.3	-1.8	NO		NO	bb
8. ${ }^{2}$ W\%	$8190710 \mathrm{M} 2 \ldots 13$	Standard	12.500	4.13	6540.568	10933.404	7.478	13.3	6.0	NO		NO	bb

Compound name: 13C8-PFOS

Response Factor: 1.05996
RRF SD: 0.0850923, Relative SD: 8.02788
Response type: Internal Std (Ref 77), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	SId Cone	RT	Area	ISArea	Response	Conc.	\%Dev	ne. Flag	CoD	CoDFlag	$\mathrm{x}=$ excluded
13:	1 190710M2_6	Standard	12.500	4.66	1347.552	1327.903	12.685	12.0	-4.3	NO		NO	bb
2	$2190710 \mathrm{M2}$-7	Standard	12.500	4.66	1416.736	1384.299	12.793	12.1	-3.4	NO		NO	bb
3\%	3 190710M2_8	Standard	12.500	4.66	1422.413	1176.867	15.108	14.3	14.0	NO		NO	bb
$4{ }^{4}$ W ${ }^{\text {de }}$	4 190710M2_9	Standard	12.500	4.66	1341.699	1368.032	12.259	11.6	-7.5	NO		NO	bb
5:	5 190710M2_10	Standard	12.500	4.66	1597.348	1460.771	13.669	12.9	3.2	NO		NO	bb
6.	6 190710M2_11	Standard	12.500	4.66	1315.408	1148.475	14.317	13.5	8.1	NO		NO	bb
74	7 190710M2_12	Standard	12.500	4.66	2063.788	2155.362	11.969	11.3	-9.7	NO		NO	bb
8.EMTH:	$8190710 \mathrm{M2}$ _13	Standard	12.500	4.66	1135.065	1075.188	13.196	12.4	-0.4	NO		NO	bb

Dataset: F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: \quad Thursday, July 11, 2019 10:30:27 Pacific Daylight Time

Compound name: 13C2-PFDA

Response Factor: 0.662196
RRF SD: 0.016931, Relative SD: 2.55679
Response type: Internal Std (Ref 78), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	d. Conc	RT	Area	IS Area	ponse	Conc	\%Dev	Conc. Fiag	CoD	CoD Flag	$x=$ excluded
	1 190710M2_6	Standard	12.500	4.95	6483.450	9534.204	8.500	12.8	2.7	NO		NO	bb
2	$2190710 \mathrm{M} 2 _7$	Standard	12.500	4.95	6513.090	9602.725	8.478	12.8	2.4	NO		NO	bb
3	3 190710M2_8	Standard	12.500	4.95	6815.267	10121.342	8.417	12.7	1.7	NO		NO	bb
4	4 190710M2_9	Standard	12.500	4.95	6311.901	9866.013	7.997	12.1	-3.4	NO		NO	bb
5	5 190710M2_10	Standard	12.500	4.95	7586.322	11475.027	8.264	12.5	-0.2	NO		NO	bb
6	6 190710M2_11	Standard	12.500	4.95	6184.109	9251.279	8.356	12.6	0.9	NO		NO	bb
7	7 190710M2_12	Standard	12.500	4.95	9816.599	14828.290	8.275	12.5	-0.0	NO		NO	bb
8.tew	8 190710M2_13	Standard	12.500	4.95	5260.100	8289.135	7.932	12.0	-4.2	NO		NO	bb

Compound name: 13C2-8:2 FTS

Response Factor: 0.695378

RRF SD: 0.0755684, Relative SD: 10.8672
Response type: Internal Std (Ref 77), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Sta. Conc	RT	Area	IS Area	Response	Conce	\%Dev	Conc. Flag	CoD	x=excluded
	1 190710M2_6	Standard	12.500	4.92	888.285	1327.903	8.362	12.0	-3.8	NO	NO	bb
2	2190710 M 27	Standard	12.500	4.92	921.949	1384.299	8.325	12.0	-4.2	NO	NO	bb
3	3 190710M2_8	Standard	12.500	4.92	954.638	1176.867	10.140	14.6	16.7	NO	NO	bb
4	4 190710M2_9	Standard	12.500	4.92	900.043	1368.032	8.224	11.8	-5.4	NO	NO	bb
5	5 190710M2_10	Standard	12.500	4.92	944.165	1460.771	8.079	11.6	-7.1	NO	NO	MM
6	6 190710M2_11	Standard	12.500	4.92	901.200	1148.475	9.809	14.1	12.8	NO	NO	bb
17	7 190710M2_12	Standard	12.500	4.92	1269.481	2155.362	7.362	10.6	-15.3	NO	NO	bb
8	8 190710M2_13	Standard	12.500	4.92	794.537	1075.188	9.237	13.3	6.3	NO	NO	bb

Dataset: F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.ald
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:30:27 Pacific Daylight Time

Compound name: d3-N-MeFOSAA

Response Factor: 0.129049
RRF SD: 0.00513885 , Relative SD: 3.98209
Response type: Internal Std (Ref 79), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: 13C2-PFUdA

Response Factor: 0.857069
RRF SD: 0.0312507, Relative SD: 3.64622
Response type: Internal Std (Ref 79), Area * (IS Conc. / IS Area)
Curve type: RF

Dataset: F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qId
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:30:27 Pacific Daylight Time

Compound name: d5-N-EtFOSAA

Response Factor: 0.147407
RRF SD: 0.00759524, Relative SD: 5.15256
Response type: Internal Std (Ref 79), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	PT	Area	IS Area	Response	Conc.	\% bev	Conc. Flag	CoD	CoD Flag	x-exclided
1 L	1 190710M2_6	Standard	12.500	5.26	1930.980	11912.648	2.026	13.7	10.0	NO		NO	bb
2\%	$2190710 \mathrm{M2} 27$	Standard	12.500	5.26	1750.672	12146.531	1.802	12.2	-2.2	NO		NO	bd
3	3 190710M2_8	Standard	12.500	5.26	1820.030	11943.670	1.905	12.9	3.4	NO		NO	bb
$4{ }^{4}$	4190710 M 2 _9	Standard	12.500	5.26	1715.865	11915.969	1.800	12.2	-2.3	NO		NO	bb
	5 190710M2_10	Standard	12.500	5.26	2099.478	14305.879	1.834	12.4	-0.4	NO		NO	bb
	$6190710 \mathrm{M} 2 _11$	Standard	12.500	5.26	1603.905	11831.388	1.695	11.5	-8.0	NO		NO	bb
7	7 190710M2_12	Standard	12.500	5.26	2599.831	17696.068	1.836	12.5	-0.3	NO		NO	bb
	8 190710M2_13	Standard	12.500	5.26	1449.809	9834.856	1.843	12.5	0.0	NO		NO	bb

Compound name: 13C2-PFDoA

Response Factor: 1.22913
RRF SD: 0.0199595, Relative SD: 1.62388
Response type: Internal Std (Ref 78), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std.Conc	RT	Area	IS Area	Riesponse	Conc:	\% Dey	Conc. Flag	CoD	Cob F	$\mathrm{x}=$ excluided
1.	1 190710M2_6	Standard	12.500	5.56	11849.361	9534.204	15.535	12.6	1.1	NO		NO	bb
2. 2 3	2 190710M2_7	Standard	12.500	5.56	11696.822	9602.725	15.226	12.4	-0.9	NO		NO	bb
3 3	3 190710M2_8	Standard	12.500	5.56	12098.984	10121.342	14.942	12.2	-2.7	NO		NO	bb
4 W	4 190710M2_9	Standard	12.500	5.56	12100.947	9866.013	15.332	12.5	-0.2	NO		NO	bb
5.2.tw	5 190710M2_10	Standard	12.500	5.56	14176.774	11475.027	15.443	12.6	0.5	NO		NO	bb
6.	6 190710M2_11	Standard	12.500	5.56	11395.914	9251.279	15.398	12.5	0.2	NO		NO	bb
7	7 190710M2_12	Standard	12.500	5.57	18080.182	14828.290	15.241	12.4	-0.8	NO		NO	bb
	8 190710M2_13	Standard	12.500	5.56	10474.394	8289.135	15.795	12.9	2.8	NO		NO	bb

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:30:27 Pacific Daylight Time

Compound name: d3-N-MeFOSA

Response Factor: 0.0221599
RRF SD: 0.00143849, Relative SD: 6.4914
Response type: Internal Std (Ref 79), Area * (IS Conc. / IS Area)
Curve type: RF

	F Name	Type	Sld. Conc	RT	Area	IS Area	Response:	Conc.	9\%Dev:	Conc. Flag	CoD ${ }^{\text {coD Flag }}$	x-excluded
1	$1190710 \mathrm{M} 2 _6$	Standard	150.000	5.73	3054.399	11912.648	3.205	144.6	-3.6	NO	NO	bd
2	2 190710M2_7	Standard	150.000	5.73	3277.438	12146.531	3.373	152.2	1.5	NO	NO	bb
3	3 190710M2_8	Standard	150.000	5.74	3115.206	11943.670	3.260	147.1	-1.9	NO	NO	bb
$4{ }^{4}$	4 190710M2_9	Standard	150.000	5.73	3084.938	11915.969	3.236	146.0	-2.6	NO	NO	bb
5	5 190710M2_10	Standard	150.000	5.73	3716.070	14305.879	3.247	146.5	-2.3	NO	NO	bb
6	6 190710M2_11	Standard	150.000	5.73	2913.632	11831.388	3.078	138.9	-7.4	NO	NO	bb
7	7190710 M 2 _12	Standard	150.000	5.73	4802.480	17696.068	3.392	153.1	2.1	NO	NO	bb
8:\#\#\#tu=\%	8 190710M2_13	Standard	150.000	5.73	2989.823	9834.856	3.800	171.5	14.3	NO	NO	bb

Compound name: 13C2-PFTeDA

Response Factor: 0.511371
RRF SD: 0.0226087, Relative SD: 4.42119
Response type: Internal Std (Ref 79), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type:	Std. Conc:	RT	Area	IS Area	Pesponse	Conc.	\%Dev	Conc. Flag	COD	CoD Flag	$\mathrm{x}=$ excluded
11	1 190710M2_6	Standard	12.500	6.04	5988.523	11912.648	6.284	12.3	-1.7	NO		NO	bb
$2{ }^{2}$	$2190710 \mathrm{M} 2 _7$	Standard	12.500	6.04	6370.549	12146.531	6.556	12.8	2.6	NO		NO	bb
3)	3 190710M2_8	Standard	12.500	6.04	6280.262	11943.670	6.573	12.9	2.8	NO		NO	bb
$4{ }^{4}$	4 190710M2_9	Standard	12.500	6.04	6033.232	11915.969	6.329	12.4	-1.0	NO		NO	bb
5\%	5 190710M2_10	Standard	12.500	6.03	6836.236	14305.879	5.973	11.7	-6.6	NO		NO	bb
6	6 190710M2_11	Standard	12.500	6.04	5715.887	11831.388	6.039	11.8	-5.5	NO		NO	bb
7.	7 190710M2_12	Standard	12.500	6.04	9409.312	17696.068	6.646	13.0	4.0	NO		NO	bb
	8190710 M 2 _13	Standard	12.500	6.04	5300.635	9834.856	6.737	13.2	5.4	NO		NO	bb

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: \quad Thursday, July 11, 2019 10:30:27 Pacific Daylight Time

Compound name: d5-N-ETFOSA

Response Factor: 0.0311662

RRF SD: 0.00140362, Relative SD: 4.50369
Response type: Internal Std (Ref 79), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Cone	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD $\operatorname{CoDFlag~}$	x=excluded
1. ${ }^{\text {denem }}$	1 190710M2_6	Standard	150.000	6.15	4439.246	11912.648	4.658	149.5	-0.4	NO	NO	bb
2	2 190710M2_7	Standard	150.000	6.15	4462.217	12146.531	4.592	147.3	-1.8	NO	NO	bb
3	$3190710 \mathrm{M2} 8$	Standard	150.000	6.15	4330.604	11943.670	4.532	145.4	-3.1	NO	NO	bb
4	4 190710M2_9	Standard	150.000	6.15	4383.917	11915.969	4.599	147.6	-1.6	NO	NO	bb
5	5 190710M2_10	Standard	150.000	6.15	5295.154	14305.879	4.627	148.5	-1.0	NO	NO	bb
6	6 190710M2_11	Standard	150.000	6.15	4247.957	11831.388	4.488	144.0	-4.0	NO	NO	bb
7	7 190710M2_12	Standard	150.000	6.15	6715.452	17696.068	4.744	152.2	1.5	NO	NO	bb
8EMtMEY发	$8190710 \mathrm{M2}$ _13	Standard	150.000	6.15	4059.624	9834.856	5.160	165.6	10.4	NO	NO	bb

Compound name: 13C2-PFHxDA

Response Factor: 0.734859

RRF SD: 0.033246, Relative SD: 4.52414
Response type: Internal Std (Ref 79), Area * (IS Conc. / IS Area)
Curve type: RF

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:30:27 Pacific Daylight Time

Compound name: d7-N-MeFOSE

Response Factor: 0.0279532
RRF SD: 0.00205848 , Relative SD: 7.36404
Response type: Irternal Std (Ref 79), Area * (IS Conc. / IS Area)
Curve type: RF

Compound name: d9-N-EtFOSE

Response Factor: 0.0275062
RRF SD: 0.00159928 , Relative SD: 5.81424
Response type: Internal Std (Ref 79), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Sid. Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	cod Flag	$x=$ excluded
12.	1 190710M2_6	Standard	150.000	6.45	3845.157	11912.648	4.035	146.7	-2.2	NO		NO	bb
2.Whetix	2 190710M2_7	Standard	150.000	6.45	3839.792	12146.531	3.952	143.7	-4.2	NO		NO	bb
3.\%\%\%	3 190710M2_8	Standard	150.000	6.45	3944.296	11943.670	4.128	150.1	0.1	NO		NO	bb
43	4 190710M2_9	Standard	150.000	6.45	3790.164	11915.969	3.976	144.5	-3.6	NO		NO	bb
$5{ }^{5}$	5 190710M2_10	Standard	150.000	6.45	4610.654	14305.879	4.029	146.5	-2.4	NO		NO	bb
66	6 190710M2_11	Standard	150.000	6.45	3714.178	11831.388	3.924	142.7	-4.9	NO		NO	bb
7	7 190710M2_12	Standard	150.000	6.45	6151.757	17696.068	4.345	158.0	5.3	NO		NO	bb
8.	8 190710M2_13	Standard	150.000	6.45	3634.249	9834.856	4.619	167.9	12.0	NO		NO	bb

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 10:30:27 Pacific Daylight Time

Compound name: 13C4-PFBA

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 72), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Typersilil	Std. Conte	RT	Area	S Area	sponse	Conc.		Cone. Flag	Cob	CoD Flag	$x=$ excluded
1	1 190710M2_6	Standard	12.500	1.21	2921.156	2921.156	12.500	12.5	0.0	NO		NO	bb
$2{ }^{2}$	2 190710M2_7	Standard	12.500	1.21	3200.857	3200.857	12.500	12.5	0.0	NO		NO	bb
3. ${ }^{3}$	3 190710M2_8	Standard	12.500	1.21	3042.829	3042.829	12.500	12.5	0.0	NO		NO	bb
4	4 190710M2_9	Standard	12.500	1.21	3054.028	3054.028	12.500	12.5	0.0	NO		NO	bb
5:	$5190710 \mathrm{M} 2 \ldots 10$	Standard	12.500	1.21	3825.142	3825.142	12.500	12.5	0.0	NO		NO	bb
6	6190710 M 2 _11	Standard	12.500	1.21	2935.893	2935.893	12.500	12.5	0.0	NO		NO	bb
7.@	7190710 M 2 _12	Standard	12.500	1.21	4789.874	4789.874	12.500	12.5	0.0	NO		NO	bb
B	8190710 M 2 _13	Standard	12.500	1.21	2814.827	2814.827	12.500	12.5	0.0	NO		NO	db

Compound name: 13C5-PFHxA

Response Factor: 1

RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 73), Area * (IS Conc. / IS Area)
Curve type: RF

W	\# Name	Type	Sta. Conc	RT	Area	IS Area	Response	Conc:	\% Dev	Conc. Flag	COD	CoD Flag	x=excluded
1-3\%	1 190710M2_6	Standard	12.500	2.99	9214.552	9214.552	12.500	12.5	0.0	NO		NO	bb
2 ${ }^{2}$ Wem	$2190710 \mathrm{M2} 3$	Standard	12.500	2.99	9744.537	9744.537	12.500	12.5	0.0	NO		NO	bb
3	3 190710M2_8	Standard	12.500	2.99	9533.288	9533.288	12.500	12.5	0.0	NO		NO	bb
4 4\% ${ }^{\text {\% }}$	$4190710 \mathrm{M2}$ _9	Standard	12.500	2.99	9794.559	9794.559	12.500	12.5	0.0	NO		NO	bb
5	5 190710M2_10	Standard	12.500	2.99	11219.285	11219.285	12.500	12.5	0.0	NO		NO	bb
6	6190710 M 2 _11	Standard	12.500	2.99	9088.471	9088.471	12.500	12.5	0.0	NO		NO	bb
7	7 190710M2_12	Standard	12.500	2.99	14844.347	14844.347	12.500	12.5	0.0	NO		NO	bb
	8190710 M 2 _13	Standard	12.500	2.99	8310.527	8310.527	12.500	12.5	0.0	NO		NO	bb

Dataset: \quad F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:30:27 Pacific Daylight Time

Compound name: 1802-PFHxS

Response Factor: 1

RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 74), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	AT	Area	1 S Area	Response	Conc.	\%Dav	Conc. Flag	CoD	CoDFlag	x=excluded
$\frac{1}{4}=$	1 190710M2_6	Standard	12.500	3.76	506.480	506.480	12.500	12.5	0.0	NO		NO	bb
2	2190710 M 2 _7	Standard	12.500	3.76	530.060	530.060	12.500	12.5	0.0	NO		NO	bb
3	$3190710 \mathrm{M} 2 _8$	Standard	12.500	3.76	516.799	516.799	12.500	12.5	0.0	NO		NO	bb
$4^{* 3}$	4 190710M2_9	Standard	12.500	3.76	567.821	567.821	12.500	12.5	0.0	NO		NO	bb
15	$5190710 \mathrm{M} 2 _10$	Standard	12.500	3.76	643.362	643.362	12.500	12.5	0.0	NO		NO	bb
6	6190710 M 2 _11	Standard	12.500	3.76	448.826	448.826	12.500	12.5	0.0	NO		NO	bb
7 CN	7 190710M2_12	Standard	12.500	3.76	964.996	964.996	12.500	12.5	0.0	NO		NO	bb
814	8190710 M 2 _13	Standard	12.500	3.76	469.394	469.394	12.500	12.5	0.0	NO		NO	bb

Compound name: 13C8-PFOA

Response Factor: 1

RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 75), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Sta Cone	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD CoD Flag	ex=excluded
1. ${ }^{\text {P }}$	1 190710M2_6	Standard	12.500	4.13	13388.436	13388.436	12.500	12.5	0.0	NO	NO	bb
2% \%	$2190710 \mathrm{M2}$ _7	Standard	12.500	4.13	14093.044	14093.044	12.500	12.5	0.0	NO	NO	bb
3	3 190710M2_8	Standard	12.500	4.13	13963.202	13963.202	12.500	12.5	0.0	NO	NO	bb
14	4190710 M 2 _9	Standard	12.500	4.13	14249.977	14249.977	12.500	12.5	0.0	NO	NO	bb
5	5 190710M2_10	Standard	12.500	4.13	16413.971	16413.971	12.500	12.5	0.0	NO	NO	bb
6	$6190710 \mathrm{M} 2 _11$	Standard	12.500	4.13	12992.551	12992.551	12.500	12.5	0.0	NO	NO	bb
17	7 190710M2_12	Standard	12.500	4.13	20632.490	20632.490	12.500	12.5	0.0	NO	NO	bb
	8190710 M 2 _13	Standard	12.500	4.13	10933.404	10933.404	12.500	12.5	0.0	NO	NO	bb

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time

$$
\text { Printed: } \quad \text { Thursday, July 11, } 2019 \text { 10:30:27 Pacific Daylight Time }
$$

Compound name: 13C9-PFNA

Response Factor: 1

RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 76), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Std. Conc	RT	Area	1 SArea	Response	Conc.	\% Dev	nc. Flag	CoDineme CoD flag	$x=$ excluded
1	1 190710M2_6	Standard	12.500	4.57	7993.476	7993.476	12.500	12.5	0.0	NO	NO	bb
2	2 190710M2_7	Standard	12.500	4.57	7664.316	7664.316	12.500	12.5	0.0	NO	NO	bb
3	3 190710M2_8	Standard	12.500	4.57	8436.873	8436.873	12.500	12.5	0.0	NO	NO	bb
4: ${ }^{\text {2 }}$	4 190710M2_9	Standard	12.500	4.57	8295.519	8295.519	12.500	12.5	0.0	NO	NO	bb
5	5 190710M2_10	Standard	12.500	4.57	9350.003	9350.003	12.500	12.5	0.0	NO	NO	bb
6.	6 190710M2_11	Standard	12.500	4.57	7605.623	7605.623	12.500	12.5	0.0	NO	NO	bb
7	7 190710M2_12	Standard	12.500	4.57	12539.574	12539.574	12.500	12.5	0.0	NO	NO	bb
8,tmetuex	8 190710M2_13	Standard	12.500	4.57	6548.345	6548.345	12.500	12.5	0.0	NO	NO	bb

Compound name: 13C4-PFOS

Response Factor: 1

RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 77), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Sta. Conc	RT	Area	IS Area	Response	Conc.	\%6Dev	Conc. flag	Cob	CoD Flag	x=excluded
1\%	1 190710M2_6	Standard	12.500	4.66	1327.903	1327.903	12.500	12.5	0.0	NO		NO	bb
12	2 190710M2_7	Standard	12.500	4.66	1384.299	1384.299	12.500	12.5	0.0	NO		NO	bb
3.4EMU	3 190710M2_8	Standard	12.500	4.66	1176.867	1176.867	12.500	12.5	0.0	NO		NO	bb
4.3\%"\#\#	$4190710 \mathrm{Mz} \mathrm{_} 9$	Standard	12.500	4.66	1368.032	1368.032	12.500	12.5	0.0	NO		NO	bb
5	5 190710M2_10	Standard	12.500	4.66	1460.771	1460.771	12.500	12.5	0.0	NO		NO	bb
6	6 190710M2_11	Standard	12.500	4.66	1148.475	1148.475	12.500	12.5	0.0	NO		NO	bb
7 T	7 190710M2_12	Standard	12.500	4.66	2155.362	2155.362	12.500	12.5	0.0	NO		NO	bb
	8 190710M2_13	Standard	12.500	4.66	1075.188	1075.188	12.500	12.5	0.0	NO		NO	bb

Dataset: F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qId
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: \quad Thursday, July 11, 2019 10:30:27 Pacific Daylight Time

Compound name: 13C6-PFDA

Response Factor: 1
RRF SD: 0, Relative SD: 0
Response type: Internal Std (Ref 78), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Sta Conc	RT	Area	IS Area	Response	Conc.	\%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1.	1 190710M2_6	Standard	12.500	4.95	9534.204	9534.204	12.500	12.5	0.0	NO		NO	bb
2	2 190710M2_7	Standard	12.500	4.95	9602.725	9602.725	12.500	12.5	0.0	NO		NO	bb
3.	3 190710M2_8	Standard	12.500	4.95	10121.342	10121.342	12.500	12.5	0.0	NO		NO	bb
4	4 190710M2_9	Standard	12.500	4.95	9866.013	9866.013	12.500	12.5	0.0	NO		NO	bb
5	5190710 M 2 _10	Standard	12.500	4.95	11475.027	11475.027	12.500	12.5	0.0	NO		NO	bb
	6 190710M2_11	Standard	12.500	4.95	9251.279	9251.279	12.500	12.5	0.0	NO		NO	bb
7	7 190710M2_12	Standard	12.500	4.95	14828.290	14828.290	12.500	12.5	0.0	NO		NO	bb
8	8190710 M 2 _13	Standard	12.500	4.95	8289.135	8289.135	12.500	12.5	0.0	NO		NO	bb

Compound name: 13C7-PFUdA

Response Factor: 1

RRF SD: 0 , Relative SD: 0
Response type: Internal Std (Ref 79), Area * (IS Conc. / IS Area)
Curve type: RF

	\# Name	Type	Sta. Conc	RI	Area	IS Area	sponse	Cone.	Dev	Conc. Flag	Cob	Cob Flag	x=excluded
4	1 190710M2_6	Standard	12.500	5.27	11912.648	11912.648	12.500	12.5	0.0	NO		NO	bb
2	2 190710M2_7	Standard	12.500	5.27	12146.531	12146.531	12.500	12.5	0.0	NO		NO	bb
3.\% ${ }^{3} \mathrm{H}$	3 190710M2_8	Standard	12.500	5.28	11943.670	11943.670	12.500	12.5	0.0	NO		NO	bb
	4190710 M 2.9	Standard	12.500	5.28	11915.969	11915.969	12.500	12.5	0.0	NO		NO	bb
5.	$5190710 \mathrm{M} 2 _10$	Standard	12.500	5.27	14305.879	14305.879	12.500	12.5	0.0	NO		NO	bb
6 6\%	$6190710 \mathrm{M} 2 _11$	Standard	12.500	5.28	11831.388	11831.388	12.500	12.5	0.0	NO		NO	bb
7 7 Wevevil	7190710 M 2 _12	Standard	12.500	5.28	17696.068	17696.068	12.500	12.5	0.0	NO		NO	bb
8\% ${ }^{2}$	$8190710 \mathrm{M2}$ _13	Standard	12.500	5.27	9834.856	9834.856	12.500	12.5	0.0	NO		NO	bb

Method: F:IProjectsIPFAS.PRO\MethDB\PFAS_FULL_80C_070719_ICV.mdb 08 Jul 2019 08:37:29 Calibration: F:IProjects|PFAS.PRO\CurveDBIC18_VAL-PFAS_Q4_07-10-19.cdb 11 Jul 2019 10:22:28

Compound name: PFBA

Last Altered: Thursday, July 11, 2019 10:56:26 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:59:12 Pacific Daylight Time

Method: F:IProjects\PFAS.PRO\MethDB\PFAS_FULL_80C_071019.mdb 11 Jul 2019 10:07:19

Calibration: F:/Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_07-10-19.cdb 11 Jul 2019 10:56:26

Name: 190710M2_6, Date: 10-Jul-2019, Time: 13:43:47, ID: ST190710M2-1 PFC CS-2 19G0801, Description: PFC CS-2 19G0801

Dataset: F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: \quad Thursday, July 11, 2019 10:33:50 Pacific Daylight Time

Method: F:IProjects\PFAS.PRO\MethDB\PFAS_FULL_80C_071019.mdb 11 Jul 2019 10:07:19 Calibration: F:/Projects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_07-10-19.cdb 11 Jul 2019 10:22:28

Name: 190710M2_6, Date: 10-Jul-2019, Time: 13:43:47, ID: ST190710M2-1 PFC CS-2 19G0801, Description: PFC CS-2 19G0801

	$\sqrt{2}$	\# Name	15\#	CoD		\%ASD
1.	W\%	31 L-EtFOSAA	64	0.9994	NO	
2	\#	33 PFUdA	63	0.9993	NO	
3	+	34 PFDS	61	0.9953	NO	
4	W-5	$3511 \mathrm{Cl}-\mathrm{PF} 30 \mathrm{UdS}$	65	0.9910	NO	
5	Wh\%	$3610: 2 \mathrm{FTS}$	61	0.9987	NO	
6	\% ${ }^{3}$	37 PFDoA	65	0.9998	NO	
7.	+5:	38 N-MeFOSA	66	0.9991	NO	
8	W	39 PFTrDA	65	0.9998	NO	
9		40 PFDoS	67	0.9986	NO	
10	\#\#\#	41 PFTeDA	67	0.9996	NO	
11	+	42 N -EtFOSA	68	0.9997	NO	
12		43 PFHxDA	69	0.9997	NO	
13.		44 PFODA	69	0.9995	NO	
14	3:	45 N-MeFOSE	70	0.9993	NO	
15.		46 N -EtFOSE	71	0.9999	NO	
16	2et:	47 13C3-PFBA	72		NO	2.933
17.	\%	48 13C3-PFPeA	73		NO	7.568
18	+5:	49 13C3-PFBS	74		NO	6.818
19.	[40	50 13C3-HFPO-DA	73		NO	3.980
20.	Whe	51 13C2-4:2 FTS	74		NO	12.743
$21:$	3 ${ }^{3}$	52 13C2-PFHxA	73		NO	3.677
22	net	53 13C4-PFHpA	73		NO	2.841
23	W\%:	54 13C3-PFHxS	74		NO	8.105
24	eext	55 13C2-6:2 FTS	77		NO	7.758
25.	\%	56 13C5-PFNA	76		NO	4.305
26	+	57 13C8-PFOSA	79		NO	4.541
27.		58 13C2-PFOA	75		NO	3.708
28		59 13C8-PFOS	77		NO	8.028
29		60 13C2-PFDA	78		NO	2.557
30	-	61 13C2-8:2 FTS	77		NO	10.867
31	(is	$62 \mathrm{~d} 3-\mathrm{N}-\mathrm{MeFOSAA}$	79		NO	3.982
32	Wx\%	63 13C2-PFUdA	79		NO	3.646

Dataset: F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:33:50 Pacific Daylight Time

Name: 190710M2_6, Date: 10-Jul-2019, Time: 13:43:47, ID: ST190710M2-1 PFC CS-2 19G0801, Description: PFC CS-2 19G0801

-2x	7 Name	IS\#	CoD	CoD Flag	\%RSD
$33=$	64 d5-N-EtFOSAA	79		NO	5.153
34	65 13C2-PFDoA	78		NO	1.624
35.	66 d3-N-MeFOSA	79		NO	6.491
36	67 13C2-PFTeDA	79		NO	4.421
37	68 d5-N-ETFOSA	79		NO	4.504
$38 \times$	69 13C2PFHxDA	79		No	4.524
39	$70 \mathrm{d7}$-N-MeFOSE	79		NO	7.364
40	71 d9-N-EtFOSE	79		NO	5.814
41	72 13C4-PFBA	72		NO	0.000
42	73 13C5-PFHxA	73		NO	0.000
43	74 1802-PFHxS	74		NO	0.000
$44=3$	75 13C8-PFOA	75		NO	0.000
45	76 13C9-PFNA	76		NO	0.000
46	77 13C4-PFOS	77		NO	0.000
47	78 13C6-PFDA	78		NO	0.000
$48 \div$	79 13C7-PFUdA	79		NO	0.000

Dataset: F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qId
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:35:12 Pacific Daylight Time

Method: F:IProjects|PFAS.PRO\MethDB\PFAS_FULL_80C_071019.mdb 11 Jul 2019 10:07:19 Calibration: F:IProjects\PFAS.PRO\CurveDBIC18_VAL-PFAS_Q4_07-10-19.cdb 11 Jul 2019 10:22:28

Name: 190710M2_11, Date: 10-Jul-2019, Time: 14:36:42, ID: ST190710M2-6 PFC CS3 19G0806, Description: PFC CS3 19G0806

-	Name	Pred.RT	RT	Pred. Ratio	Ion Ratio	Ratio out?
12-5:	PFBA	1.21	1.21			
2	PFPrS	1.57	1.57	2.705	2.705	NO
33	3:3 FTCA	2.06	2.04	2.165	2.165	NO
$4{ }^{4}=$	PFPeA	2.20	2.20			
	PFBS	2.49	2.49	3.037	3.037	NO
6	4:2 FTS	2.90	2.91	1.792	1.792	NO
\%	PFHXA	2.99	2.99	15.832	15.832	NO
8 8	PFPeS	3.19	3.19	1.560	1.560	NO
9	HFPO-DA	3.20	3.20	2.415	2.415	NO
10	5:3 FTCA	3.53	3.54	1.572	1.572	NO
11	PFHpA	3.61	3.61	5.429	5.429	NO
12	ADONA	3.72	3.72	3.002	3.002	NO
13	L-PFHxS	3.76	3.76	2.036	2.036	NO
14	6.2 FTS	4.07	4.08	2.148	2.148	NO
15	L-PFOA	4.13	4.13	3.683	3.683	NO
16	PFechS	4.15	4.15	0.908	0.908	NO
17	PFHpS	4.25	4.25	1.746	1.746	NO
18	7:3 FTCA	4.57	4.56	1.658	1.658	NO
19	PFNA	4.57	4.57	2.983	2.983	NO
$20=$	PFOSA	4.63	4.63	41.487	41.487	NO
21.	L-PFOS	4.66	4.66	2.058	2.058	NO
22	9 Cl -PF30NS	4.88	4.88	24.430	24.430	NO
23	PFDA	4.95	4.95	4.278	4.278	NO
24	8:2 FTS	4.92	4.92	1.509	1.509	NO
25	PFNS	5.01	5.01	1.715	1.715	NO
26 - 2	L-MeFOSAA	5.10	5.10	2.376	2.376	NO

Quantify Sample Summary Report \quad MassLynx MassLynx V4.1 SCN945 SCN960	
Vista Analytical Laboratory	
Dataset:	F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered:	Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:	Thursday, July 11, 2019 10:35:32 Pacific Daylight Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_071019.mdb 11 Jul 2019 10:07:19 Calibration: F:IProjects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_07-10-19.cdb 11 Jul 2019 10:22:28

Name: 190710M2_11, Date: 10-Jul-2019, Time: 14:36:42, ID: ST190710M2-6 PFC CS3 19G0806, Description: PFC CS3 $19 G 0806$

	Name	d.RT	RT	Ratio	Ratio	Ratio out?
1. ${ }^{\text {W }}$	L-EtFOSAA	5.26	5.27	1.336	1.336	NO
2.	PFUdA	5.28	5.28	6.095	6.095	NO
3.	PFDS	5.33	5.33	1.629	1.629	NO
	11Cl-PF30UdS	5.49	5.49	4.658	4.658	NO
5.	10:2 FTS	5.55	5.55	1.474	1.474	NO
6 \% ${ }^{2}$	PFDoA	5.56	5.56	7.462	7.462	NO
7 TH	N-MeFOSA	5.70	5.70	1.760	1.760	NO
8.4	PFTrDA	5.81	5.81	14.360	14.360	NO
9.2.	PFDoS	5.84	5.84	1.916	1.916	NO
10	PFTeDA	6.04	6.04	14.838	14.838	NO
11	N-EtFOSA	6.13	6.13	1.854	1.854	NO
12%	PFHxDA	6.39	6.39	17.070	17.070	NO
13W	PFODA	6.63	6.63			
	N-MeFOSE	6.31	6.31			
15U\#\#	N-EtFOSE	6.46	6.46			

Last Altered: Thursday, July 11, 2019 10:56:26 Pacific Daylight Time
Printed: Thursday, July 11, 2019 11:09:57 Pacific Daylight Time

Method: F:|Projects\PFAS.PRO\MethDB\PFAS_FULL_80C 071019.mdb 11 Jul 2019 10:07:19
Calibration: F:|Projects\PFAS.PRO\CurveDBIC18_VAL-PFAS_Q4_07-10-19.cdb 11 Jul 2019 10:56:26
Compound name: PFBA
Correlation coefficient: $\mathrm{r}=0.999710, \mathrm{r}^{\wedge} 2=0.999420$
Calibration curve: 1.42744 * $x+-0.0673711$
Response type: Internal Std (Ref 47), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFPrS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997891$
Calibration curve: 0.000772076 * $x^{\wedge} 2+1.04403^{*} x+0.0148423$
Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 10:36:58 Pacific Daylight Time

Compound name: 3:3 FTCA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.997073$
Calibration curve: $-1.28403 e-005^{*} x^{\wedge} 2+0.0420476{ }^{*} x+-0.00551054$
Response type: Internal Std (Ref 48), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: PFPeA
Correlation coefficient: $\mathrm{r}=0.998647, \mathrm{r}^{\wedge} 2=0.997296$
Calibration curve: $0.957887^{*} x+-0.0507044$
Response type: Internal Std (Ref 48), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:36:58 Pacific Daylight Time

Compound name: PFBS
Correlation coefficient: $\mathrm{r}=0.999402, \mathrm{r}^{\wedge} 2=0.998804$
Calibration curve: $2.32197^{*} x+-0.263256$
Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: 4:2 FTS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999259$
Calibration curve: 0.000507604 * $x^{\wedge} 2+2.44029$ * $x+-0.0250945$
Response type: Internal Std (Ref 51), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results1190710M2\190710M2-CRV.qId

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:36:58 Pacific Daylight Time

Compound name: PFHxA
Correlation coefficient: $\mathrm{r}=0.999958, \mathrm{r}^{\wedge} 2=0.999917$
Calibration curve: 1.1618 * $x+0.000973487$
Response type: Internal Std (Ref 52), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: PFPeS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998874$
Calibration curve: $0.000269775{ }^{*} x^{\wedge} 2+2.12841$ * $x+0.0156908$
Response type: Internal Std (Ref 49), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: \quad Thursday, July 11, 2019 10:36:58 Pacific Daylight Time

Compound name: HFPO-DA
Coefficient of Determination: $R^{\wedge} 2=0.998150$
Calibration curve: 0.000712906 * $x^{\wedge} 2+0.547378$ * $x+-0.00436396$
Response type: Internal Std (Ref 50), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

Compound name: 5:3 FTCA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.995477$
Calibration curve: 0.000863776 * $x^{\wedge} 2+0.248802$ * $x+-0.0186935$
Response type: Internal Std (Ref 53), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Vista Analytical Laboratory Q1

Dataset: F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 10:36:58 Pacific Daylight Time

Compound name: PFHpA
Correlation coefficient: $\mathrm{r}=0.999078, \mathrm{r}^{\wedge} 2=0.998158$
Calibration curve: 1.2318 * $x+-0.044697$
Response type: Internal Std (Ref 53), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: ADONA
Correlation coefficient: $\mathrm{r}=0.999468, \mathrm{r}^{\wedge} 2=0.998936$
Calibration curve: 4.33675 * $x+-0.0191729$
Response type: Internal Std (Ref 53), Area * IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 10:36:58 Pacific Daylight Time

Compound name: L-PFHxS

Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999253$
Calibration curve: $0.000954922^{*} x^{\wedge} 2+0.833847^{*} x+-0.0703303$
Response type: Internal Std (Ref 54), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Compound name: 6:2 FTS
Coefficient of Determination: $R^{\wedge} 2=0.999098$
Calibration curve: $-0.00219189^{*} x^{\wedge} 2+2.96391^{*} x+-0.232571$
Response type: Internal Std (Ref 55), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / \mathrm{x}$, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:36:58 Pacific Daylight Time

Compound name: L-PFOA

Correlation coefficient: $\mathrm{r}=0.999875, \mathrm{r}^{\wedge} 2=0.999749$
Calibration curve: 1.84829 * x +0.038532
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFecHS
Coefficient of Determination: R^2 $=0.999465$
Calibration curve: $0.000151504^{*} x^{\wedge} 2+0.280359$ * $x+-0.022501$
Response type: Internal Std (Ref 58), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\190710M21190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:56:26 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:57:45 Pacific Daylight Time

Method: F:IProjects|PFAS.PROMMethDBIPFAS_FULL_80C_071019.mdb 11 Jul 2019 10:07:19
Calibration: F:IProjectsIPFAS.PROICurveDBIC18_VAL-PFAS_Q4_07-10-19.cdb 11 Jul 2019 10:56:26
Compound name: PFHpS
Coefficient of Determination: $R^{\wedge} 2=0.999024$
Calibration curve: 0.00125826 * $x^{\wedge} 2+0.86234$ * $x+-0.0187748$
Response type: Internal Std (Ref 59), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: 7:3 FTCA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.995389$
Calibration curve: $5.99689 \mathrm{e}-005^{*} x^{\wedge} 2+0.135121^{*} \mathrm{x}+-0.0173495$
Response type: Internal Std (Ref 56), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 10:36:58 Pacific Daylight Time

Compound name: PFNA
Correlation coefficient: $\mathrm{r}=0.999712, \mathrm{r}^{\wedge} 2=0.999423$
Calibration curve: 1.09616 * $x+0.0302511$
Response type: Internal Std (Ref 56), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

Compound name: PFOSA
Correlation coefficient: $r=0.999643, r^{\wedge} 2=0.999286$
Calibration curve: $1.27955^{*} x+-0.0326972$
Response type: Internal Std (Ret 57), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 10:36:58 Pacific Daylight Time

Compound name: L-PFOS
Correlation coefficient: $r=0.997967, r^{\wedge} 2=0.995937$
Calibration curve: 1.26946 * $x+-0.175183$
Response type: Internal Std (Ret 59), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: $1 / x$, Axis trans: None

Compound name: 9CI-PF30NS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999653$
Calibration curve: 0.0017864 * $x^{\wedge} 2+3.15352$ * $x+-0.22686$
Response type: Internal Std (Ref 59), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFDA
Correlation coefficient: $\mathrm{r}=0.998522, \mathrm{r}^{\wedge} 2=0.997046$
Calibration curve: $1.67351^{*} x+-0.11586$
Response type: Internal Std (Ref 60), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: 8:2 FTS
Correlation coefficient: $\mathrm{r}=0.997198, \mathrm{r}^{\wedge} 2=0.994405$
Calibration curve: $2.24647^{*} \mathrm{x}+0.0322693$
Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PROIResultsI190710M21190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:56:26 Pacific Daylight Time
Printed: \quad Thursday, July 11, 2019 11:05:39 Pacific Daylight Time

Method: F:IProjects|PFAS.PROMMethDBIPFAS_FULL_80C_071019.mdb 11 Jul 2019 10:07:19
Calibration: F:IProjectsIPFAS.PROICurveDBIC18_VAL-PFAS_Q4_07-10-19.cdb 11 Jul 2019 10:56:26
Compound name: PFNS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998948$
Calibration curve: $0.0012104{ }^{*} x^{\wedge} 2+0.869148{ }^{*} x+-0.063694$
Response type: Internal Std (Ref 59), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: 1/x, Axis trans: None

Compound name: L-MeFOSAA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998887$
Calibration curve: $0.003255^{*} x^{\wedge} 2+2.95538$ * $x+-0.018678$
Response type: Internal Std (Ref 62), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_071019.mdb 11 Jul 2019 10:07:19

Calibration: F:(Projects\PFAS.PROCurveDBIC18_VAL-PFAS Q4 07-10-19.cdb 11 Jul 2019 10:22:28

Compound name: L-EtFOSAA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999414$
Calibration curve: $0.000968179^{*} x^{\wedge} 2+1.99529^{*} x+-0.24728$
Response type: Internal Std (Ref 64), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFUdA
Correlation coefficient: $\mathrm{r}=0.999664, \mathrm{r}^{\wedge} 2=0.999328$
Calibration curve: 0.930582 * $x+0.0128571$
Response type: Internal Std (Ref 63), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:37:15 Pacific Daylight Time

Compound name: PFDS
Correlation coefficient: $\mathrm{r}=0.997649, \mathrm{r}^{\wedge} 2=0.995303$
Calibration curve: 2.06378 * $x+-0.389745$
Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: $11 \mathrm{CI}-\mathrm{PF} 30 \mathrm{UdS}$
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.990993$
Calibration curve: $5.10585 \mathrm{e}-005^{*} x^{\wedge} 2+0.0636606{ }^{*} x+0.00127315$
Response type: Internal Std (Ref 65), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

Dataset: F:IProjectsIPFAS.PRO\Results1190710M21190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: \quad Thursday, July 11, 2019 10:37:15 Pacific Daylight Time

Compound name: 10:2 FTS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998698$
Calibration curve: $-0.00397372^{*} x^{\wedge} 2+2.69789$ * $x+-0.0745551$
Response type: Internal Std (Ref 61), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFDoA
Coefficient of Determination: $R^{\wedge} 2=0.999847$
Calibration curve: $-0.000390936^{*} x^{\wedge} 2+0.9612644^{*} x+-0.0303905$
Response type: Internal Std (Ref 65), Area * IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qid
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:37:15 Pacific Daylight Time

Compound name: N-MeFOSA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999075$
Calibration curve: $-0.000216151^{*} x^{\wedge} 2+1.29923$ * $x+-0.534727$
Response type: Internal Std (Ref 66), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Include, Weighting: $1 / x$, Axis trans: None

Compound name: PFTrDA
Coefficient of Determination: $R^{\wedge} 2=0.999791$
Calibration curve: $-0.000400083^{*} x^{\wedge} 2+1.06843$ * $x+-0.0442094$
Response type: Internal Std (Ref 65), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset:
F:IProjects\PFAS.PRO\Results1190710M2\190710M2-CRV.ald
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: \quad Thursday, July 11, 2019 10:37:15 Pacific Daylight Time

Compound name: PFDoS
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.998596$
Calibration curve: -6.19262e-005 * $x^{\wedge} 2+0.244112$ * x +-0.0199214
Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Compound name: PFTeDA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999560$
Calibration curve: $0.000924303^{*} x^{\wedge} 2+1.48528{ }^{*} x+0.0369753$
Response type: Internal Std (Ref 67), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Quantify Calibration Report Vista Analytical Laboratory Q1

Dataset: \quad F:IProjects\PFAS.PRO\ResultsI190710M2\190710M2-CRV.qId

Last Altered:
Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 10:37:15 Pacific Daylight Time

Compound name: N-EtFOSA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999705$
Calibration curve: $4.67147 \mathrm{e}-005^{*} x^{\wedge} 2+0.924219^{*} x+-0.422102$
Response type: Internal Std (Ref 68), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: $1 / x$, Axis trans: None

Compound name: PFHxDA
Coefficient of Determination: $\mathrm{R}^{\wedge} 2=0.999745$
Calibration curve: $-0.000493807^{*} x^{\wedge} 2+0.756486{ }^{*} x+0.0537783$
Response type: Internal Std (Ref 69), Area * (IS Conc. / IS Area)
Curve type: 2nd Order, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: \quad Thursday, July 11, 2019 10:37:15 Pacific Daylight Time

Compound name: PFODA
Correlation coefficient: $r=0.999748, r^{\wedge} 2=0.999496$
Calibration curve: $0.835341^{*} x+0.00579687$
Response type: Internal Std (Ref 69), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Include, Weighting: $1 / x$, Axis trans: None

Compound name: N-MeFOSE
Correlation coefficient: $\mathrm{r}=0.999631, \mathrm{r}^{\wedge} 2=0.999263$
Calibration curve: $1.11841^{*} x+0.165536$
Response type: Internal Std (Ref 70), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Dataset: F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.ald
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:37:15 Pacific Daylight Time

Compound name: N-EtFOSE
Correlation coefficient: $\mathrm{r}=0.999930, \mathrm{r}^{\wedge} 2=0.999860$
Calibration curve: 1.41132 * $x+-0.260677$
Response type: Internal Std (Ref 71), Area * (IS Conc. / IS Area)
Curve type: Linear, Origin: Exclude, Weighting: 1/x, Axis trans: None

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Method: F:\Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_071019.mdb 11 Jul 2019 10:07:19

Calibration: F:IProjects\PFAS.PRO\CurveDB\C18_VAL-PFAS_Q4_07-10-19.cdb 11 Jul 2019 10:22:28

Name: 190710M2_6, Date: 10-Jul-2019, Time: 13:43:47, ID: ST190710M2-1 PFC CS-2 19G0801, Description: PFC CS-2 $19 G 0801$

13C3-PFBS F12:MRM of 1 channel,ES-

13C3-PFBS

Dataset:
F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qid
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_6, Date: 10-Jul-2019, Time: 13:43:47, ID: ST190710M2-1 PFC CS-2 19G0801, Description: PFC CS-2 $19 G 0801$

PFHxA

| F13:MRM of 2 channels,ES- | |
| ---: | :--- | ---: |
| | $313.0>269.0$ |
| 100 | |

PFPeS

13C3-PFBS F12:MRM of 1 channel,ES-
$302.0>98.8$

HFPO-DA

F9:MRM of 3 channels,ES-

1007 | $285.1>168.9$ |
| ---: |
| $6.172 \mathrm{e}+002$ |

F9:MRM of 3 channels,ES-

13C3-HFPO-DA
F10:MRM of 2 channels,ES-
$287.0>168.9$

5:3 FTCA

PFHpA

13C4-PFHpA
F21:MRM of 1 channel,ES-
$367.2>321.8$
$9.452 \mathrm{e}+004$

Dataset:	F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qId
Last Altered:	Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:	Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_6, Date: 10-Jul-2019, Time: 13:43:47, ID: ST190710M2-1 PFC CS-2 19G0801, Description: PFC CS-2 19G0801

13C3-PFHxS

F24:MRM of 1 channel,ES-
$401.8>79.9$ $401.8>79.9$
$3.395 \mathrm{e}+004$

13C2-6:2 FTS

F30:MRM of 1 channel,ES-

13C2-PFOA

F33:MRM of 2 channess,ES-

Dataset:

F:IProjects\PFAS.PRO\Results\190710M21190710M2-CRV.qId
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_6, Date: 10-Jul-2019, Time: 13:43:47, ID: ST190710M2-1 PFC CS-2 19G0801, Description: PFC CS-2 19G0801

F34:MRM of 2 channels,ES-		
	$463.0>418.8$	
100	PFNA	$4.468 \mathrm{e}+003$
4.57		
2.09 e		

F34:MRM of 2 channeis,ES-	
100 PFNA	$\begin{array}{r} 463.0>219.0 \\ 2.084 \mathrm{e}+003 \end{array}$
10074.58	
6.94 e 1	
\%- 2080	
$\%$ bb	
2080.00	
T1.71	T mi
4.500	5.000

13C8-PFOSA

13C8-PFOS
$\begin{aligned} & \text { F42:MRM of } 1 \text { channel, ES- } \\ & 507.0>79.9\end{aligned}$

13C2-PFDA
F45:MRM of 1 channel, ES-
$515.1>469.9$

Dataset: F:IProjects\PFAS.PRO\Results\190710M21190710M2-CRV.qld

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_6, Date: 10-Jul-2019, Time: 13:43:47, ID: ST190710M2-1 PFC CS-2 19G0801, Description: PFC CS-2 19G0801

13C8-PFOS

d5-N-EtFOSAA
F60:MRM of 1 channel,ES-
$589.3>419$

F54:MRM of 2 channels,ES$563.0>269$
$5.727 \mathrm{e}+002$

13C2-PFUdA

F61:MRM of 2 channels,ES$598.8>98.9$ $1.032 \mathrm{e}+002$

F68:MRM of 2 channels,ES-
$632.6>450.7$ $632.6>450.7$
$7.968 \mathrm{e}+001$

13C2-PFDoA

F63:MRM of 1 channel,ES$614.7>569.7$

Dataset: F:\Projects\PFAS.PRO\Results\190710M21190710M2-CRV.qId

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: \quad Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_6, Date: 10-Jul-2019, Time: 13:43:47, ID: ST190710M2-1 PFC CS-2 19G0801, Description: PFC CS-2 19G0801

F70:MRM of 2 channels,ES-

F72:MRM of 2 channels,ES713. > 369.0

13C2-PFTeDA

F73:MRM of 2 channels,ES$715.1>669.7$ $1.422 \mathrm{e}+005$

Vista Analytical Laboratory

Dataset: F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_6, Date: 10-Jul-2019, Time: 13:43:47, ID: ST190710M2-1 PFC CS-2 19G0801, Description: PFC CS-2 19G0801

Dataset: F:IProjects\PFAS.PRO\Results\190710M21190710M2-CRV.qld

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: \quad Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_6, Date: 10-Jul-2019, Time: 13:43:47, ID: ST190710M2-1 PFC CS-2 19G0801, Description: PFC CS-2 19G0801

Dataset:
F:\Projects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_7, Date: 10-Jul-2019, Time: 13:54:21, ID: ST190710M2-2 PFC CS-1 19G0802, Description: PFC CS-1 $19 G 0802$

PFBA

13C3-PFBS

13C3-PFPeA

PFPeA

13C3-PFBS
F12:MRM of 1 channel,ES-
$302.0>98.8$
$7.840 \mathrm{e}+003$

Dataset: F:IProjects\PFAS.PRO\Results\190710M21190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_7, Date: 10-Jul-2019, Time: 13:54:21, ID: ST190710M2-2 PFC CS-1 19G0802, Description: PFC CS-1 $19 G 0802$

PFHxA

F13:MRM of 2 channels, ES-		
		$313.0>269.0$
100	PFHxA	$7.161 e+003$
	2.99	
	3.37e2	
\%-	7097	
	bb	
	466.44	
		3.40

PFPeS

F19:MRM of 2 channels, ES-
$349.1>99$

13C3-PFBS

HFPO-DA
F9:MRM of 3 channels,ES-
$285.1>168.9$

F9:MRM of 3 channels,ES-

13C3-HFPO-DA

5:3 FTCA

13C4-PFHpA
F21:MRM of 1 channet,ES-
$367.2>321.8$

PFHpA

13C4-PFHpA
F21:MRM of 1 channel,ES-
$367.2>321.8$
$9.668+004$

ADONA
F22:MRM of 2 channels, ES$376.8>250.9$ $1.478 \mathrm{e}+004$

F22:MRM of 2 channels,ES-
$376.8>85.0$

13C4-PFHpA
F21:MRM of 1 channel,ES$367.2>321.8$ $9.668 \mathrm{e}+004$

Dataset:
F:IProjects\PFAS.PRO\Results\190710M21190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_7, Date: 10-Jul-2019, Time: 13:54:21, ID: ST190710M2-2 PFC CS-1 19G0802, Description: PFC CS-1 $19 G 0802$

Dataset:
F:IProjects\PFAS.PRO\Results\190710M21190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_7, Date: 10-Jul-2019, Time: 13:54:21, ID: ST190710M2-2 PFC CS-1 19G0802, Description: PFC CS-1 $19 G 0802$

Dataset:
F:\Projects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_7, Date: 10-Jul-2019, Time: 13:54:21, ID: ST190710M2-2 PFC CS-1 19G0802, Description: PFC CS-1 $19 G 0802$

Dataset: F:IProjects\PFAS.PRO\Results\190710M21190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_7, Date: 10-Jul-2019, Time: 13:54:21, ID: ST190710M2-2 PFC CS-1 19G0802, Description: PFC CS-1 $19 G 0802$

d3-N-MeFOSA

F46:MRM of 1 channel, ES-
F46.MRM
$515.2>168.9$
$7.334 \mathrm{e}+004$

13C2-PFDoA

> 13C2-PFTeDA
> F73:MRM of 2 channels,ES-
$715.1>669.7$

13C2-PFTeDA
F73:MRM of 2 channels,ES-

Dataset:
F:\Projects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_7, Date: 10-Jul-2019, Time: 13:54:21, ID: ST190710M2-2 PFC CS-1 19G0802, Description: PFC CS-1 19G0802

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_7, Date: 10-Jul-2019, Time: 13:54:21, ID: ST190710M2-2 PFC CS-1 19G0802, Description: PFC CS-1 $19 G 0802$

13C7-PFUdA
F57:MRM of 1 channel,ES$570.1>524.8$ $2.882 \mathrm{e}+0.05$

Dataset:

F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_8, Date: 10-Jul-2019, Time: 14:04:59, ID: ST190710M2-3 PFC CS0 19G0803, Description: PFC CS0 $19 G 0803$

13C3-PFBA

13C3-PFBS
F12:MRM of 1 channel,ES-

13C3-PFPeA

13C3-PFPeA
F8:MRM of 1 channel,ES$266.0>221.8$ $6.873 \mathrm{e}+004$

F11:MRM of 2 channels,ES
$299.0>99.0$

13C3-PFBS
F12:MRM of 1 channel,ES-

Dataset:
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_8, Date: 10-Jul-2019, Time: 14:04:59, ID: ST190710M2-3 PFC CS0 19G0803, Description: PFC CS0 19 G0803

Dataset:
F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_8, Date: 10-Jul-2019, Time: 14:04:59, ID: ST190710M2-3 PFC CS0 19G0803, Description: PFC CS0 19 G0803

Dataset:
F:\Projects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_8, Date: 10-Jul-2019, Time: 14:04:59, ID: ST190710M2-3 PFC CS0 19G0803, Description: PFC CS0 $19 G 0803$

Dataset:

F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_8, Date: 10-Jul-2019, Time: 14:04:59, ID: ST190710M2-3 PFC CS0 19G0803, Description: PFC CS0 $19 G 0803$

Dataset:

F:\Projects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_8, Date: 10-Jul-2019, Time: 14:04:59, ID: ST190710M2-3 PFC CS0 19G0803, Description: PFC CS0 $19 G 0803$

d3-N-MeFOSA
F46:MRM of 1 channel,ES-
$\begin{array}{rr} & 515.2>168.9 \\ 100- & 6.987 \mathrm{e}+004\end{array}$

13C2-PFDOA
F63:MRM of 1 channel,ES-
$614.7>569.7$
$3.098 \mathrm{e}+005$

F71:MRM of 2 channels,ES-

13C2-PFTeDA
F73:MRM of 2 channels,ES$715.1>669.7$

Dataset: F:\Projects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: \quad Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_8, Date: 10-Jul-2019, Time: 14:04:59, ID: ST190710M2-3 PFC CSO 19G0803, Description: PFC CS0 19G0803

Dataset:

F:IProjects\PFAS.PRO\Resultsi190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: \quad Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_8, Date: 10-Jul-2019, Time: 14:04:59, ID: ST190710M2-3 PFC CS0 19G0803, Description: PFC CS0 $19 \mathrm{G0803}$

13C9-PFNA
F36:MRM of 1 channel,ES-

13C4-PFOS
F40:MRM of 1 channel,ES-

Dataset: F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered:
Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_9, Date: 10-Jul-2019, Time: 14:15:32, ID: ST190710M2-4 PFC CS1 19G0804, Description: PFC CS1 $19 G 0804$

F6:MRM of 2 channels,ES-

13C3-PFBS

F12:MRM of 1 channel,ES-

F5:MRM of 2 channels,ES-
$240.9>116.9$

13C3-PFPeA
F8:MRM of 1 channel,ES
$\quad 266.0>221.8$

Dataset:
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_9, Date: 10-Jul-2019, Time: 14:15:32, ID: ST190710M2-4 PFC CS1 19G0804, Description: PFC CS1 $19 G 0804$

PFHxA

F13:MRM of 2 channels,ES-

		$313>118.9$
1007	PFHxA	$1.669 \mathrm{e}+003$
	2.99	
	7.35 e 1	
	1669	
	bb	
	1669.00	

13C2-PFHxA
F14:MRM of 1 channel,ES-
$315.0>270.0$ $6.627 e+004$

PFPeS

13C3-PFBS F12:MRM of 1 channel,ES-

13C3-HFPO-DA
F10:MRM of 2 channels,ES-

13C4-PFHpA

Dataset: F:IProjects\PFAS.PRO\Results\190710M21190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_9, Date: 10-Jul-2019, Time: 14:15:32, ID: ST190710M2-4 PFC CS1 19G0804, Description: PFC CS1 $19 G 0804$

Dataset:

F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_9, Date: 10-Jul-2019, Time: 14:15:32, ID: ST190710M2-4 PFC CS1 19G0804, Description: PFC CS1 $19 G 0804$

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_9, Date: 10-Jul-2019, Time: 14:15:32, ID: ST190710M2-4 PFC CS1 19G0804, Description: PFC CS1 $19 G 0804$

Dataset: F:IProjects\PFAS.PRO\Results\190710M21190710M2-CRV.qId
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_9, Date: 10-Jul-2019, Time: 14:15:32, ID: ST190710M2-4 PFC CS1 19G0804, Description: PFC CS1 $19 G 0804$

Dataset:
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: \quad Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_9, Date: 10-Jul-2019, Time: 14:15:32, ID: ST190710M2-4 PFC CS1 19G0804, Description: PFC CS1 $19 G 0804$

Dataset:
F:IProjects\PFAS.PRO\Results\190710M21190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_9, Date: 10-Jul-2019, Time: 14:15:32, ID: ST190710M2-4 PFC CS1 19G0804, Description: PFC CS1 $19 G 0804$

1802-PFHxS
13C9-PFNA
F36:MRM of 1 channel,ES$472.2>426.9$ $1.875 \mathrm{e}+005$

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_10, Date: 10-Jul-2019, Time: 14:26:10, ID: ST190710M2-5 PFC CS2 19G0805, Description: PFC CS2 19G0805

3:3 FTCA
F5:MRM of 2 channels,ES-

F5:MRM of 2 channels,ES$240.9>116.9$ $6.791 \mathrm{e}+002$

13C3-PFPeA

F11:MRM of 2 channels, ES
$299.0>99.0$ $3.697 \mathrm{e}+003$

Dataset:	F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered:	Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:	Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_10, Date: 10-Jul-2019, Time: 14:26:10, ID: ST190710M2-5 PFC CS2 19G0805, Description: PFC CS2 $19 G 0805$

13C3-HFPO-DA
F10:MRM of 2 channels,ES-
F10:MRM of 2 channels,ES-
$287.0>168.9$

13C4-PFHpA
F21:MRM of 1 channel,ES-
$367.2>321.8$
F21:MRM of 1 channel,ES-
$367.2>321.8$
$1.064 \mathrm{e}+005$

ADONA

13C4-PFHpA

Dataset:
F:IProjects\PFAS.PRO\Results\190710M21190710M2-CRV.qid
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_10, Date: 10-Jul-2019, Time: 14:26:10, ID: ST190710M2-5 PFC CS2 19G0805, Description: PFC CS2 $19 G 0805$

F23:MRM of 2 channels,ES-

13C2-PFOA
F27:MRM of 1 channel,ES-
$414.9>369.7$
$2.221 \mathrm{e}+005$

PFEChS
F33:MRM of 2 channels,ES-

13C2-PFOA

13C8-PFOS

F42:MRM of 1 channel,ES

7:3 FTCA
F31:MRM of 2 channels,ES$440.9>336.9$ $1.006 \mathrm{e}+004$

$$
\text { F31:MRM of } 2 \text { channels,ES- }
$$

$440.9>316.9$

13C5-PFNA
F35:MRM of 1 channel,ES-

Dataset:

F:IProjects\PFAS.PRO\Results\190710M21190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_10, Date: 10-Jul-2019, Time: 14:26:10, ID: ST190710M2-5 PFC CS2 19G0805, Description: PFC CS2 $19 G 0805$

Dataset: F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_10, Date: 10-Jul-2019, Time: 14:26:10, ID: ST190710M2-5 PFC CS2 19G0805, Description: PFC CS2 $19 G 0805$

Dataset:

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_10, Date: 10-Jul-2019, Time: 14:26:10, ID: ST190710M2-5 PFC CS2 19G0805, Description: PFC CS2 19G0805

F66:MRM of 2 channels,ES$627.0>80.9$

PFDoA
F62:MRM of 4 channels,ES$612.9>569.0$ $1.303 e+005$

PFTrDA

$\begin{array}{r}\text { F70:MRM of } 2 \text { channels,ES- } \\ 662.9>618.9 \\ 1.492 \mathrm{e}+005 \\ \hline 100\end{array}$
F70:MRM of 2 channels, ES-
$662.9>319$

13C2-PFDoA
F63:MRM of 1 channel,ES-
$614.7>569.7$

Dataset:

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_10, Date: 10-Jul-2019, Time: 14:26:10, ID: ST190710M2-5 PFC CS2 19G0805, Description: PFC CS2 19G0805

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_10, Date: 10-Jul-2019, Time: 14:26:10, ID: ST190710M2-5 PFC CS2 19G0805, Description: PFC CS2 $19 G 0805$

Dataset: F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: \quad Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_11, Date: 10-Jul-2019, Time: 14:36:42, ID: ST190710M2-6 PFC CS3 19G0806, Description: PFC CS3 $19 G 0806$

13C3-PFPeA
F8:MRM of 1 channel,ES-
$266.0>221.8$

13C3-PFPeA
F8:MRM of 1 channel,ES-
$266.0>221.8$

F11:MRM of 2 channels,ES-
$299.0>99.0$ $6.704 \mathrm{e}+003$

Dataset:

F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_11, Date: 10-Jul-2019, Time: 14:36:42, ID: ST190710M2-6 PFC CS3 19G0806, Description: PFC CS3 $19 G 0806$

Dataset:
F:\Projects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_11, Date: 10-Jul-2019, Time: 14:36:42, ID: ST190710M2-6 PFC CS3 19G0806, Description: PFC CS3 19 G0806

F23:MRM of 2 channels,ES-

F24:MRM of 1 channel,ES$401.8>79.9$ $3.174 \mathrm{e}+004$

F29:MRM of 3 channels,ES-

13C2-6:2 FTS
F30:MRM of 1 channel,ES

L-PFOA

F26:MRM of 2 channels,ES-

13C2-PFOA
F27:MRM of 1 channel,ES-
$414.9>369.7$
$1.848 \mathrm{e}+005$

PFEChS

13C2-PFOA
F27:MRM of 1 channel,ES.

PFHpS

F32:MRM of 2 channels,ES-		
1007	PFHpS	$2.097 \mathrm{e}+004$
	4.25	
	9.15 e 2	
\%	20936	
	bb	
	20936.00	

13C8-PFOS

F42:MRM of 1 channel,ES
$507.0>79.9$

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_11, Date: 10-Jul-2019, Time: 14:36:42, ID: ST190710M2-6 PFC CS3 19G0806, Description: PFC CS3 19G0806

Dataset:

F:\Projects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: \quad Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_11, Date: 10-Jul-2019, Time: 14:36:42, ID: ST190710M2-6 PFC CS3 19G0806, Description: PFC CS3 19 G0806

PFNS

F53:MRM of 2 channels,ES-
$549.1>99.1$

d3-N-MeFOSAA
F58:MRM of 1 channel,ESchannel, ES
$573.3>419$ $3.352 \mathrm{e}+004$

d5-N-EtFOSAA
F60:MRM of 1 channel, ES-
$589.3>419$

$$
\mathbf{P}
$$

FFUdA

13C2-8:2 FTS
F50:MRM of 1 channel, ES-
$529>79.9$
$2.140 \mathrm{e}+004$

F68:MRM of 2 channels,ES-

13C2-PFDOA
F63:MRM of 1 channel,ES$614.7>569.7$

Dataset: F:IProjects\PFAS.PRO\Results\190710M21190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_11, Date: 10-Jul-2019, Time: 14:36:42, ID: ST190710M2-6 PFC CS3 19G0806, Description: PFC CS3 $19 G 0806$

F66:MRM of 2 channels,ES$627.0>80.9$ $3.046 \mathrm{e}+004$

F71:MRM of 2 channels, ES

13C2-PFTeDA
F73:MRM of 2 channels,ES

13C2-PFTeDA

F73:MRM of 2 channels,ES715.1 > 669.7 $1.354 \mathrm{e}+005$

Dataset:
F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_11, Date: 10-Jul-2019, Time: 14:36:42, ID: ST190710M2-6 PFC CS3 19G0806, Description: PFC CS3 19 G0806

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_11, Date: 10-Jul-2019, Time: 14:36:42, ID: ST190710M2-6 PFC CS3 19G0806, Description: PFC CS3 $19 G 0806$

13C4-PFOS
F40:MRM of 1 channel,ES-

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_12, Date: 10-Jul-2019, Time: 14:47:21, ID: ST190710M2-7 PFC CS4 19G0807, Description: PFC CS4 $19 G 0807$

13C3-PFBA

F3:MRM of 1 channel,ES$216.1>171.8$ $4.776 \mathrm{e}+004$

F6:MRM of 2 channels, ES-

13C3-PFBS
F12:MRM of 1 channel,ES-
$302.0>98.8$

Dataset: F:IProjects\PFAS.PRO\Results\190710M21190710M2-CRV.qId
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_12, Date: 10-Jul-2019, Time: 14:47:21, ID: ST190710M2-7 PFC CS4 19G0807, Description: PFC CS4 $19 G 0807$

F9:MRM of 3 channels,ES $285.1>184.9$

13C3-HFPO-DA
F10:MRM of 2 channels,ES-

13C4-PFHpA
F21:MRM of 1 channel,ES$367.2>321.8$

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_12, Date: 10-Jul-2019, Time: 14:47:21, ID: ST190710M2-7 PFC CS4 19G0807, Description: PFC CS4 $19 G 0807$

F26:MRM of 2 channels,ES-
$412.8>169$

13C2-PFOA
F27:MRM of 1 channel,ES-
$414.9>369.7$
F27:MRM of 1 channel,ES-
$414.9>369.7$
$2.708 \mathrm{e}+005$

13C8-PFOS

Dataset:

F:\Projects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_12, Date: 10-Jul-2019, Time: 14:47:21, ID: ST190710M2-7 PFC CS4 19G0807, Description: PFC CS4 $19 G 0807$

Dataset:

F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_12, Date: 10-Jul-2019, Time: 14:47:21, ID: ST190710M2-7 PFC CS4 19G0807, Description: PFC CS4 19 G0807

Dataset:
F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_12, Date: 10-Jul-2019, Time: 14:47:21, ID: ST190710M2-7 PFC CS4 19G0807, Description: PFC CS4 $19 G 0807$

PFTrDA

13C2-PFDoA

Dataset:

F:IProjects\PFAS.PRO\Results\190710M21190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_12, Date: 10-Jul-2019, Time: 14:47:21, ID: ST190710M2-7 PFC CS4 19G0807, Description: PFC CS4 $19 G 0807$

Dataset: F:IProjects\PFAS.PRO\Results\190710M21190710M2-CRV.qId
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_12, Date: 10-Jul-2019, Time: 14:47:21, ID: ST190710M2-7 PFC CS4 19G0807, Description: PFC CS4 19 G0807

Dataset:
F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_13, Date: 10-Jul-2019, Time: 14:57:59, ID: ST190710M2-8 PFC CS5 19G0808, Description: PFC CS5 19G0808

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_13, Date: 10-Jul-2019, Time: 14:57:59, ID: ST190710M2-8 PFC CS5 19G0808, Description: PFC CS5 19G0808

Dataset: F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: \quad Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_13, Date: 10-Jul-2019, Time: 14:57:59, ID: ST190710M2-8 PFC CS5 19G0808, Description: PFC CS5 $19 G 0808$

Dataset: F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_13, Date: 10-Jul-2019, Time: 14:57:59, ID: ST190710M2-8 PFC CS5 19G0808, Description: PFC CS5 $19 G 0808$

PFNA

F34:MRM of 2 channels,ES-

13C8-PFOSA
F41:MRM of 1 channel,ES $506.1>77.7$

13C8-PFOS

9CI-PF30NS
F51:MRM of 2 channels,ES-
$530.7>350.8$
$7.452 e+005$

Dataset:

F:\Projects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_13, Date: 10-Jul-2019, Time: 14:57:59, ID: ST190710M2-8 PFC CS5 19G0808, Description: PFC CS5 $19 G 0808$

Dataset:
F:\Projects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_13, Date: 10-Jul-2019, Time: 14:57:59, ID: ST190710M2-8 PFC CS5 19G0808, Description: PFC CS5 19G0808

Dataset: F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld
Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_13, Date: 10-Jul-2019, Time: 14:57:59, ID: ST190710M2-8 PFC CS5 19G0808, Description: PFC CS5 $19 G 0808$

d5-N-ETFOSA
F52:MRM of 1 channel,ES$531.1>168.9$ $9.009 \mathrm{e}+004$

13C2-PFHxDA
F75:MRM of 1 channel,ES-
$815>769.7$
7929 .

PFODA

F76:MRM of 1 channel,ES-

d7-N-MeFOSE
F65:MRM of 1 channel, ES-

13C4-PFBA
F4:MRM of 1 channel,ES$217.0>172.0$ $4.086 e+004$

13C5-PFHXA
F15:MRM of 1 channel,ES$318.0>272.9$ $1.862 e+005$

Dataset: F:IProjects\PFAS.PRO\Results\190710M2\190710M2-CRV.qld

Last Altered: Thursday, July 11, 2019 10:22:28 Pacific Daylight Time
Printed: Thursday, July 11, 2019 10:25:24 Pacific Daylight Time

Name: 190710M2_13, Date: 10-Jul-2019, Time: 14:57:59, ID: ST190710M2-8 PFC CS5 19G0808, Description: PFC CS5 19G0808

Name: 190710M2_17, Date: 10-Jul-2019, Time: 15:40:21, ID: ST190710M2-1 PFC ICV 19G0811, Description: PFC ICV $19 G 0811$

Last Altered: Thursday, July 11, 2019 11:22:53 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 11:22:57 Pacific Daylight Time

Name: 190710M2_17, Date: 10-Jul-2019, Time: 15:40:21, ID: ST190710M2-1 PFC ICV 19G0811, Description: PFC ICV 19G0811

Work Order 1901922

Last Altered: Thursday, July 11, 2019 11:22:53 Pacific Daylight Time
Printed:
Thursday, July 11, 2019 11:22:57 Pacific Daylight Time

Name: 190710M2_17, Date: 10-Jul-2019, Time: 15:40:21, ID: ST190710M2-1 PFC ICV 19G0811, Description: PFC ICV $19 G 0811$

Method: F:IProjects|PFAS.PROMMethDBIPFAS_FULL_80C_071019_ICV.mdb 11 Jul 2019 11:19:41
Calibration: F:IProjectsIPFAS.PROICurveDBIC18_VAL-PFĀ__Q4_07-10-19.cdb 11 Jul 2019 10:56:26
Name: 190710M2_17, Date: 10-Jul-2019, Time: 15:40:21, ID: ST190710M2-1 PFC ICV 19G0811, Description: PFC ICV 19G0811

13C3-PFBA

Work Order 1901922

F6:MRM of 2 channels,ES-

13C3-PFBS

13C3-PFPeA
F8:MRM of 1 channel,ES-

13C3-PFBS

F16:MRM of 2 channels,ES-

13C2-4:2 FTS
F17:MRM of 2 channels,ES-

Dataset: F:IProjects\PFAS.PRO\Resultsi190710M21190710M2-ICV.qld

Last Altered: Thursday, July 11, 2019 11:22:53 Pacific Daylight Time
Printed: \quad Thursday, July 11, 2019 11:22:57 Pacific Daylight Time

Name: 190710M2_17, Date: 10-Jul-2019, Time: 15:40:21, ID: ST190710M2-1 PFC ICV 19G0811, Description: PFC ICV $19 G 0811$

PFHxA	
F13:MRM of 2 channels,ES-	
100 PFHxA	$1.263 \mathrm{e}+005$
10072.99	
-5.54e3	
\%-125898	
f bb	
-4822.03	
$0-1$ тотит	TITTIT min

F13:MRM of 2 channels,ES-$313>118.9$	
$100 \mathrm{PFHxA} \quad 9.313 \mathrm{e}+003$	
10072.99	
4.06 e 2	
\%-9303	
0 -	

F9:MRM of 3 channels,ES-

Dataset: F:IProjects\PFAS.PROIResults\190710M21190710M2-ICV.qld

Last Altered: Thursday, July 11, 2019 11:22:53 Pacific Daylight Time
Printed: \quad Thursday, July 11, 2019 11:22:57 Pacific Daylight Time

Name: 190710M2 17, Date: 10-Jul-2019, Time: 15:40:21, ID: ST190710M2-1 PFC ICV 19G0811, Description: PFC ICV $19 G 0811$

L-PFHxS
 F23:MRM of 2 channels,ESchannels, ES- $398.9>79.6$ $1.465 \mathrm{e}+004$
 1007

F23:MRM of 2 channels,ES-

13C3-PFHxS

13C5-PFNA

F35:MRM of 1 channel,ES-
$468.2>422.9$
$1.831 \mathrm{e}+005$

Name: 190710M2_17, Date: 10-Jul-2019, Time: 15:40:21, ID: ST190710M2-1 PFC ICV 19G0811, Description: PFC ICV $19 G 0811$

F34:MRM of 2 channels,ES$463.0>219.0$ $4.329 \mathrm{e}+004$

13C5-PFNA
F35:MRM of 1 channel,ES$468.2>422.9$ $1.831 \mathrm{e}+005$

F37:MRM of 2 channels,ES497.9 > 168.9 $5.439 \mathrm{e}+002$

F41:MRM of 1 channel,ES$506.1>77.7$ $3.670 \mathrm{e}+004$

13C8-PFOS

F42:MRM of 1 channel,ES-
$507.0>79.9$

9CI-PF30NS	
F51:MRM of 2 channels,ES-	
100	$530.7>350.8$
	$1.000 \mathrm{e}-003$

PFDA
F44:MRM of 2 channels,ES-
$513>468.8$
100

13C2-PFDA
F45:MRM of 1 channel,ES-

F49:MRM of 2 channels,ES$527>80.9$

13C2-8:2 FTS
F50:MRM of 1 channel,ES$529>79.9$
$2.056 e+004$
Printed: \quad Thursday, July 11, 2019 11:22:57 Pacific Daylight Time

Name: 190710M2_17, Date: 10-Jul-2019, Time: 15:40:21, ID: ST190710M2-1 PFC ICV 19G0811, Description: PFC ICV $19 G 0811$

F53:MRM of 2 channels,ES-
549.1 > 99.1 $1.047 \mathrm{e}+004$

13C8-PFOS

d3-N-MeFOSAA
F58:MRM of 1 channel,ES-

F60:MRM of 1 channel,ES-
$589.3>419$
$3.859 \mathrm{e}+004$

d5-N-EtFOSAA

13C2-8:2 FTS
F50:MRM of 1 channel,ES-
$529>79.9$

F68:MRM of 2 channels,ES-
$632.6>450.7$

13C2-PFDoA
F63:MRM of 1 channel,ES$614.7>569.7$

Dataset: F:IProjects\PFAS.PRO\Results\190710M21190710M2-ICV.qld

Last Altered:	Thursday, July 11, 2019 11:22:53 Pacific Daylight Time
Printed:	Thursday, July 11, 2019 11:22:57 Pacific Daylight Time

Name: 190710M2_17, Date: 10-Jul-2019, Time: 15:40:21, ID: ST190710M2-1 PFC ICV 19G0811, Description: PFC ICV $19 G 0811$

F66:MRM of 2 channels,ESF66:MRM of 2 channels, ES-
$627.0>80.9$ 100年

d3-N-MeFOSA

Dataset: F:IProjects\PFAS.PROIResults\190710M21190710M2-ICV.qld

Last Altered: \quad Thursday, July 11, 2019 11:22:53 Pacific Daylight Time
Printed: Thursday, July 11, 2019 11:22:57 Pacific Daylight Time

Name: 190710M2_17, Date: 10-Jul-2019, Time: 15:40:21, ID: ST190710M2-1 PFC ICV 19G0811, Description: PFC ICV $19 G 0811$

13C2-PFHxDA
F75:MRM of 1 channel,ES-

d7-N-MeFOSE

d9-N-EtFOSE

Printed: \quad Thursday, July 11, 2019 11:22:57 Pacific Daylight Time

Name: 190710M2_17, Date: 10-Jul-2019, Time: 15:40:21, ID: ST190710M2-1 PFC ICV 19G0811, Description: PFC ICV $19 G 0811$
13C8-PFOA
F28:MRM of 1 channel,ES-
$420.9>376.0$
$3.354 \mathrm{e}+005$

Dataset: Untitled

Last Altered: Thursday, July 11, 2019 11:00:15 Pacific Daylight Time
Printed: \quad Thursday, July 11, 2019 11:00:25 Pacific Daylight Time

Name: 190710M2_16, Date: 10-Jul-2019, Time: 15:29:49, ID: IB, Description: IB

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
1	1 PFBA	$213.0>168.8$		3665.172	1.00					NO		
2	2 PFPrS	$248.9>79.9$		564.050	1.00					NO		
3	3 3:3 FTCA	$240.9>176.9$		4395.620	1.00					NO		
4	4 PFPeA	$263.1>218.9$		4395.620	1.00					NO		
5	5 PFBS	$299.0>79.7$		564.050	1.00					NO		
6	6 4:2 FTS	$327.0>306.9$		1123.940	1.00					NO		
7	47 13C3-PFBA	$216.1>171.8$	3665.172	5748.722	1.00	1.21	7.970	12.3	98.1	NO		
8	49 13C3-PFBS	$302.0>98.8$	564.050	553.194	1.00	2.49	12.745	12.3	98.5	NO		
9	48 13C3-PFPeA	$266.0>221.8$	4395.620	9796.685	1.00	2.20	5.609	13.8	110.1	NO		
10	48 13C3-PFPeA	$266.0>221.8$	4395.620	9796.685	1.00	2.20	5.609	13.8	110.1	NO		
11	49 13C3-PFBS	$302.0>98.8$	564.050	553.194	1.00	2.49	12.745	12.3	98.5	NO		
12	51 13C2-4:2 FTS	$329.0>79.9$	1123.940	553.194	1.00	2.91	25.397	11.3	90.8	NO		
13	-1											
14	7 PFHxA	$313.0>269.0$	7.800	3103.105	1.00	2.86	0.013	0.0		NO		
15	8 PFPeS	$349.1>80.1$		564.050	1.00					NO		
16	9 HFPO-DA	$285.1>168.9$		1212.091	1.00					NO		
17	10 5:3 FTCA	$340.9>236.9$		3834.397	1.00					NO		
18	11 PFHpA	$363.0>318.9$		3834.397	1.00					NO		
19	12 ADONA	$376.8>250.9$		3834.397	1.00					NO		
20	52 13C2-PFHxA	$315.0>270.0$	3103.105	9796.685	1.00	2.99	3.959	5.0	99.9	NO		
21	49 13C3-PFBS	$302.0>98.8$	564.050	553.194	1.00	2.49	12.745	12.3	98.5	NO		
22	50 13C3-HFPO-DA	$287.0>168.9$	1212.091	9796.685	1.00	3.20	1.547	5.0	100.9	NO		
23	53 13C4-PFHpA	$367.2>321.8$	3834.397	9796.685	1.00	3.61	4.892	12.5	100.1	NO		
24	53 13C4-PFHpA	$367.2>321.8$	3834.397	9796.685	1.00	3.61	4.892	12.5	100.1	NO		
25	53 13C4-PFHpA	$367.2>321.8$	3834.397	9796.685	1.00	3.61	4.892	12.5	100.1	NO		
26	-1											
27	13 L-PFHxS	$398.9>79.6$		1448.751	1.00					NO		
28	15 6:2 FTS	$427.0>406.9$		1044.706	1.00					NO		
29	16 L-PFOA	$412.8>368.9$	37.351	8031.595	1.00	4.14	0.058	0.0		NO	4.911	NO
30	18 PFechS	$460.8>381.0$		8031.595	1.00					NO		
31	19 PFHpS	$449.0>80.0$		1410.610	1.00					NO		
32	20 7:3 FTCA	$440.9>336.9$		7616.705	1.00					NO		
33	54 13C3-PFHxS	$401.8>79.9$	1448.751	553.194	1.00	3.76	32.736	12.9	102.8	NO		
34	55 13C2-6:2 FTS	$429.0>79.9$	1044.706	1293.104	1.00	4.08	10.099	13.7	109.7	NO		
35	58 13C2-PFOA	$414.9>369.7$	8031.595	13655.097	1.00	4.13	7.352	13.0	104.2	NO		
36	58 13C2-PFOA	$414.9>369.7$	8031.595	13655.097	1.00	4.13	7.352	13.0	104.2	NO		

Work Order 1901922

Dataset: Untitled
Last Altered: Thursday, July 11, 2019 11:00:15 Pacific Daylight Time
Printed: \quad Thursday, July 11, 2019 11:00:25 Pacific Daylight Time

Name: 190710M2_16, Date: 10-Jul-2019, Time: 15:29:49, ID: IB, Description: IB

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
37	59 13C8-PFOS	$507.0>79.9$	1410.610	1293.104	1.00	4.66	13.636	12.9	102.9	NO		
38	56 13C5-PFNA	468.2 > 422.9	7616.705	8145.557	1.00	4.57	11.688	11.9	95.2	NO		
39	-1											
40	21 PFNA	$463.0>418.8$	8.783	7616.705	1.00	4.56	0.014			NO		
41	22 PFOSA	$497.9>77.9$		549.882	1.00					NO		
42	23 L-PFOS	$498.9>79.9$		1410.610	1.00					NO		
43	259 Cl -PF30NS	$530.7>350.8$		1410.610	1.00					NO		
44	26 PFDA	$513>468.8$		6263.837	1.00					NO		
45	27 8:2 FTS	$527.0>506.9$		946.606	1.00					NO		
46	56 13C5-PFNA	$468.2>422.9$	7616.705	8145.557	1.00	4.57	11.688	11.9	95.2	NO		
47	57 13C8-PFOSA	$506.1>77.7$	549.882	8175.738	1.00	4.63	0.841	6.5	51.6	NO		
48	59 13C8-PFOS	$507.0>79.9$	1410.610	1293.104	1.00	4.66	13.636	12.9	102.9	NO		
49	59 13C8-PFOS	$507.0>79.9$	1410.610	1293.104	1.00	4.66	13.636	12.9	102.9	NO		
50	60 13C2-PFDA	$515.1>469.9$	6263.837	9421.503	1.00	4.95	8.311	12.6	100.4	NO		
51	61 13C2-8:2 FTS	$529>79.9$	946.606	1293.104	1.00	4.92	9.151	13.2	105.3	NO		
52	-1											
53	28 PFNS	$549.1>80.1$		1410.610	1.00					NO		
54	29 L-MeFOSAA	$570>419$		1235.898	1.00					NO		
55	31 L-EtFOSAA	$584.1>419$		1426.384	1.00					NO		
56	33 PFUdA	$563.0>518.9$	16.167	7494.523	1.00	5.27	0.027	0.0		NO		
57	34 PFDS	$598.8>79.9$		946.606	1.00					NO		
58	3511 Cl PFF30UdS	$632.6>452.7$		3698.353	1.00					NO		
59	59 13C8-PFOS	$507.0>79.9$	1410.610	1293.104	1.00	4.66	13.636	12.9	102.9	NO		
60	62 d3-N-MeFOSAA	$573.3>419$	1235.898	8175.738	1.00	5.10	1.890	14.6	117.1	NO		
61	64 d5-N-EtFOSAA	$589.3>419$	1426.384	8175.738	1.00	5.26	2.181	14.8	118.4	NO		
62	63 13C2-PFUdA	$565>519.8$	7494.523	8175.738	1.00	5.28	11.458	13.4	107.0	NO		
63	61 13C2-8:2 FTS	$529>79.9$	946.606	1293.104	1.00	4.92	9.151	13.2	105.3	NO		
64	65 13C2-PFDoA	614.7 > 569.7	3698.353	9421.503	1.00	5.56	4.907	4.0	31.9	YES		
65	-1											
66	36 10:2 FTS	$627.0>606.9$		946.606	1.00					NO		
67	37 PFDoA	$612.9>569.0$		3698.353	1.00					NO		
68	38 N-MeFOSA	$512.1>168.9$			1.00					NO		
69	39 PFTrDA	$662.9>618.9$	6.069	3698.353	1.00	5.89	0.021	0.1		NO		
70	40 PFDoS	$698.8>79.9$		362.476	1.00					NO		
71	41 PFTeDA	713.0 > 669.0		362.476	1.00					NO		
72	65 13C2-PFDoA	$614.7>569.7$	3698.353	9421.503	1.00	5.56	4.907	4.0	31.9	YES		

[^3]| Dataset: | Untitled |
| :--- | :--- |
| | |
| Last Altered: | Thursday, July 11, 2019 11:00:15 Pacific Daylight Time |
| Printed: | Thursday, July 11, 2019 11:00:25 Pacific Daylight Time |

Name: 190710M2_16, Date: 10-Jul-2019, Time: 15:29:49, ID: IB, Description: IB

	\# Name	Trace	Area	IS Area	wt/vol	RT	Response	Conc.	\%Rec	Recovery ...	Ion Ratio	Ratio Out?
73	65 13C2-PFDoA	614.7 > 569.7	3698.353	9421.503	1.00	5.56	4.907	4.0	31.9	YES		
74	66 d3-N-MeFOSA	$515.2>168.9$		8175.738	1.00					NO		
75	65 13C2-PFDoA	$614.7>569.7$	3698.353	9421.503	1.00	5.56	4.907	4.0	31.9	YES		
76	67 13C2-PFTeDA	$715.1>669.7$	362.476	8175.738	1.00	6.04	0.554	1.1	8.7	YES		
77	67 13C2-PFTeDA	$715.1>669.7$	362.476	8175.738	1.00	6.04	0.554	1.1	8.7	YES		
78	-1											
79	$42 \mathrm{~N}-\mathrm{EtFOSA}$	$526.1>168.9$			1.00					NO		
80	43 PFHxDA	$813.1>768.6$	12.580	384.845	1.00	6.40	0.163	0.1		NO		
81	44 PFODA	$913.1>868.8$	20.252	384.845	1.00	6.63	0.263	0.3		NO		
82	45 N -MeFOSE	$616.1>58.9$		287.485	1.00					NO		
83	$46 \mathrm{~N}-\mathrm{EtFOSE}$	$630.1>58.9$	9.122	214.581	1.00	6.56	6.377	4.7		NO		
84	72 13C4-PFBA	$217.0>172.0$	5748.722	5748.722	1.00	1.21	12.500	12.5	100.0	NO		
85	68 d5-N-ETFOSA	$531.1>168.9$		8175.738	1.00					NO		
86	69 13C2-PFHxDA	$815>769.7$	384.845	8175.738	1.00	6.39	0.588	0.8	16.0	YES		
87	69 13C2-PFHxDA	$815>769.7$	384.845	8175.738	1.00	6.39	0.588	0.8	16.0	YES		
88	70 d7-N-MeFOSE	$623.1>58.9$	287.485	8175.738	1.00	6.30	0.440	15.7	10.5	YES		
89	71 d9-N-EtFOSE	$639.2>58.8$	214.581	8175.738	1.00	6.45	0.328	11.9	8.0	YES		
90	73 13C5-PFHxA	318.0 > 272.9	9796.685	9796.685	1.00	2.99	12.500	12.5	100.0	NO		
91	-1											
92	75 13C8-PFOA	$420.9>376.0$	13655.097	13655.097	1.00	4.13	12.500	12.5	100.0	NO		
93	74 1802-PFHxS	$403.0>102.6$	553.194	553.194	1.00	3.76	12.500	12.5	100.0	NO		
94	76 13C9-PFNA	$472.2>426.9$	8145.557	8145.557	1.00	4.57	12.500	12.5	100.0	NO		
95	77 13C4-PFOS	$503>79.9$	1293.104	1293.104	1.00	4.66	12.500	12.5	100.0	NO		
96	78 13C6-PFDA	$519.1>473.7$	9421.503	9421.503	1.00	4.95	12.500	12.5	100.0	NO		
97	79 13C7-PFUdA	$570.1>524.8$	8175.738	8175.738	1.00	5.27	12.500	12.5	100.0	NO		

Dataset:	Untitled
Last Altered:	Thursday, July 11, 2019 11:00:15 Pacific Daylight Time
Printed:	Thursday, July 11, 2019 11:00:25 Pacific Daylight Time

Method: F:|Projects\PFAS.PRO\MethDB\PFAS_FULL_80C_071019.mdb 11 Jul 2019 10:07:19

Calibration: F:|Projects|PFAS.PRO\CurveDB\C18_VAL-PFĀA__Q4_07-10-19.cdb 11 Jul 2019 10:56:26

Name: 190710M2_16, Date: 10-Jul-2019, Time: 15:29:49, ID: IB, Description: IB

13C3-PFBA

IB IB F3:MRM of 1 channel,ES$216.1>171.8$ $8.971 \mathrm{e}+004$

IB IB F6:MRM of 2 channels,ES248.9 > 98.9

13C3-PFBS

IB IBF12:MRM of 1 channel,ES-

IB IB F5:MRM of 2 channels,ES-

13C3-PFPeA
IB IB F8:MRM of 1 channel,ES$266.0>221.8$ $1.271 \mathrm{e}+005$

13C3-PFPeA
IB IB F8:MRM of 1 channel,ES266.0 > 221.8 $1.271 \mathrm{e}+005$

13C3-PFBS
IB IBF12:MRM of 1 channel,ES-

$$
\begin{array}{r}
302.0>98.8 \\
1.404 \mathrm{e}+004
\end{array}
$$

F17:MRM of 2 channels,ES-
$329.0>79.9$

Dataset: Untitled

Last Altered: Thursday, July 11, 2019 11:00:15 Pacific Daylight Time
Printed: \quad Thursday, July 11, 2019 11:00:25 Pacific Daylight Time

Name: 190710M2_16, Date: 10-Jul-2019, Time: 15:29:49, ID: IB, Description: IB

13C2-PFHxA

IB IBF14:MRM of 1 channel,ES$315.0>270.0$ $8.161 e+004$

13C3-PFBS
IB IBF12:MRM of 1 channel,ES-

13C3-HFPO-DA
F10:MRM of 2 channels,ES-

13C4-PFHpA
IB IBF21:MRM of 1 channel,ES$367.2>321.8$

PFHpA
F20:MRM of 2 channels, ES

F20:MRM of 2 channels,ES-

13C4-PFHpA
IB IBF21:MRM of 1 channel,ES$367.2>321.8$ $9.887 \mathrm{e}+004$

ADONA

F22:MRM of 2 channels,ES-
$376.8>250.9$
$1.000 \mathrm{e}-003$

F22:MRM of 2 channels,ES$376.8>85.0$

13C4-PFHpA
IB IBF21:MRM of 1 channel,ES-
$367.2>321.8$

Dataset: Untitled

Last Altered: Thursday, July 11, 2019 11:00:15 Pacific Daylight Time
Printed: \quad Thursday, July 11, 2019 11:00:25 Pacific Daylight Time

Name: 190710M2_16, Date: 10-Jul-2019, Time: 15:29:49, ID: IB, Description: IB

13C3-PFHxS

IB IBF24:MRM of 1 channel,ES$401.8>79.9$ $3.848 \mathrm{e}+004$

13C2-6:2 FTS
IB IBF30:MRM of 1 channel,ES-

13C2-PFOA

IB IBF27:MRM of 1 channel,ES$414.9>369.7$ $1.965 \mathrm{e}+005$

13C2-PFOA
IB IBF27:MRM of 1 channel,ES$414.9>369.7$ $1.965 \mathrm{e}+005$

13C8-PFOS
IB IBF42:MRM of 1 channel,ES$507.0>79.9$

13C5-PFNA
IB IBF35:MRM of 1 channel,ES$468.2>422.9$

Dataset: Untitled

Last Altered: Thursday, July 11, 2019 11:00:15 Pacific Daylight Time
Printed: \quad Thursday, July 11, 2019 11:00:25 Pacific Daylight Time

Name: 190710M2_16, Date: 10-Jul-2019, Time: 15:29:49, ID: IB, Description: IB

13C5-PFNA

IB IBF35:MRM of 1 channel,ES$468.2>422.9$ $1.758 \mathrm{e}+005$

PFOSA
F37:MRM of 2 channels,ES-

F37:MRM of 2 channels,ES-

13C8-PFOSA
IB IBF41:MRM of 1 channel,ES

13C8-PFOS
IB IBF42:MRM of 1 channel,ES-

13C8-PFOS
IB IBF42:MRM of 1 channel,ES-

F44:MRM of 2 channels, ES-

13C2-PFDA

IB IBF45:MRM of 1 channel,ES$515.1>469.9$ $1.492 \mathrm{e}+005$

13C2-8:2 FTS
IB IBF50:MRM of 1 channel,ES$529>79.9$

Dataset:	Untitled
Last Altered:	Thursday, July 11, 2019 11:00:15 Pacific Daylight Time
Printed:	Thursday, July 11, 2019 11:00:25 Pacific Daylight Time

Name: 190710M2_16, Date: 10-Jul-2019, Time: 15:29:49, ID: IB, Description: IB

PFNS
 F53:MRM of 2 channels,ES- $549.1>80.1$ $1.000 \mathrm{e}-003$

13C8-PFOS

IB IBF42:MRM of 1 channel,ES$507.0>79.9$ $3.418 \mathrm{e}+004$

d3-N-MeFOSAA
IB IBF58:MRM of 1 channel,ES-

d5-N-EtFOSAA
IB IBF60:MRM of 1 channel,ES-

13C2-PFUdA
IB IBF55:MRM of 1 channel,ES-

13C2-8:2 FTS
IB IBF50:MRM of 1 channel,ES-

11CI-PF30UdS
F68:MRM of 2 channels,ES-
$632.6>452.7$
$1.000 \mathrm{e}-003$
F68:MRM of 2 channels,ES-

13C2-PFDoA
IB IBF63:MRM of 1 channel,ES-

Dataset:	Untitled
Last Altered:	Thursday, July 11, 2019 11:00:15 Pacific Daylight Time
Printed:	Thursday, July 11, 2019 11:00:25 Pacific Daylight Time

Name: 190710M2_16, Date: 10-Jul-2019, Time: 15:29:49, ID: IB, Description: IB

13C2-PFDoA

IB IBF63:MRM of 1 channel,ES$614.7>569.7$ $9.278 \mathrm{e}+004$

13C2-PFDoA

IB IBF63:MRM of 1 channel,ES-
IB IBF63:MRM of 1 channel,ES-

d3-N-MeFOSA
IB IBF46:MRM of 1 channel,ES-

F70:MRM of 2 channels,ES$662.9>319$

13C2-PFDoA
IB IBF63:MRM of 1 channel,ES-

F71:MRM of 2 channels,ES$698.8>98.9$

13C2-PFTeDA

PFTeDA

13C2-PFTeDA

Dataset:	Untitled
Last Altered:	Thursday, July 11, 2019 11:00:15 Pacific Daylight Time
Printed:	Thursday, July 11, 2019 11:00:25 Pacific Daylight Time

Name: 190710M2_16, Date: 10-Jul-2019, Time: 15:29:49, ID: IB, Description: IB
N-EtFOSA
F48:MRM of 2 channels,ES-
$526.1>168.9$
$1.000 \mathrm{e}-003$

d5-N-ETFOSA

IB IBF52:MRM of 1 channel,ES$\begin{array}{rr}5.70 & 531.1>168.9\end{array}$

13C2-PFHxDA
IB IBF75:MRM of 1 channel,ES-

13C2-PFHxDA
IB IBF75:MRM of 1 channel,ES-

d7-N-MeFOSE

N-EtFOSE

IB IBF67:MRM of 1 channel,ES-

d9-N-EtFOSE
IB IBF69:MRM of 1 channel,ES-
$639.2>58.8$

13C4-PFBA
IB IB F4:MRM of 1 channel,ES$217.0>172.0$

13C5-PFHxA
IB IBF15:MRM of 1 channel,ES-
318.0 > 272.9

Dataset:	Untitled
Last Altered:	Thursday, July 11, 2019 11:00:15 Pacific Daylight Time
Printed:	Thursday, July 11, 2019 11:00:25 Pacific Daylight Time

Name: 190710M2_16, Date: 10-Jul-2019, Time: 15:29:49, ID: IB, Description: IB

13C8-PFOA
 IB IBF28:MRM of 1 channel,ES $420.9>376.0$ 3.282e+005

 13C9-PFNA
 IB IBF36:MRM of 1 channel,ES-channel,ES- $472.2>426.9$ $1.875 \mathrm{e}+005$

13C4-PFOS
IB IBF40:MRM of 1 channel,ES$503>79.9$ $3.027 \mathrm{e}+004$

13C6-PFDA
IB IBF47:MRM of 1 channel,ES-
1 channel,ES-
$519.1>473.7$ $2.291 \mathrm{e}+005$

13C7-PFUdA
IB IBF57:MRM of 1 channel,ES $570.1>524.8$

TUNE CHECKS

Printed: Wed Jul 10 07:45:09 2019

Data file: SCNMS1V - Calibrated
23 matches of 23 tested references
(1007
Reference: c:Imasslynx\refIESI Calibration TQ ResCal.ref
Mean residual $=0.0656 \mathrm{amu}$

Printed: Wed Jul 10 07:46:20 2019

Data file: FASTMS1V - Calibrated
23 matches of 23 tested references

Reference: c:lmasslynx|refIESI Calibration TQ ResCal.ref Mean residual $=0.0675 \mathrm{amu}$

Calibration Verification Report - MS2 Static
Printed: \quad Wed Jul 10 07:47:29 2019

Reference: c:\masslynx\refIESI Calibration TQ ResCal.ref
Mean residual $=0.0542 \mathrm{amu}$

Printed: Wed Jul 10 07:48:37 2019

Data file: SCNMS2V - Calibrated 23 matches of 23 tested references
Reference: c:\masslynxirefIESI Calibration TQ ResCal.ref
Mean residual $=0.0969 \mathrm{amu}$

Printed: Wed Jul 10 07:50:03 2019

Data file: FASTMS2V - Calibrated
23 matches of 23 tested references

Reference: c:ImasslynxlreflesI Calibration TQ ResCal.ref
Mean residual $=0.121 \mathrm{amu}$

Q4(M) 07-11-19

Calibration Verification Report - MS 1 Static	OF $/ 03 / 19$	CRIt	Fall c

Printed:
Thu Jul 11 09:16:11 2019

Data file: STATMS1V - Calibrated
100

23 matches of 23 tested references
1521.88

Reference: c:\masslynx\refIESI Calibration TQ ResCal.ref
Mean residual $=0.0721 \mathrm{amu}$

Calibration Verification Report - MS1 Scanning
Page 2 of 6
Printed: \quad Thu Jul 11 09:17:19 2019

Data file: SCNMS1V - Calibrated
23 matches of 23 tested references
(
Reference: c:Imasslynx\refIESI Calibration TQ ResCal.ref
Mean residual $=0.0717 \mathrm{amu}$

Printed:
Thu Jul 11 09:18:30 2019

Reference: c:\masslynx\refIESI Calibration TQ ResCal.ref

$$
\text { Mean residual }=0.13 \mathrm{amu}
$$

Printed: \quad Thu Jul 11 09:19:39 2019
Data file: STATMS2V - Calibrated

Reference: c:Imasslynx\refIESI Calibration TQ ResCal.ref
Mean residual $=0.0609 \mathrm{amu}$

Printed: \quad Thu Jul 11 09:20:47 2019

Data file: SCNMS2V - Calibrated
23 matches of 23 tested references

Reference: c:Imasslynx\refIESI Calibration TQ ResCal.ref
Mean residual $=0.127 \mathrm{amu}$

Printed:
Thu Jul 11 09:22:13 2019

Data file: FASTMS2V - Calibrated
23 matches of 23 tested references

Reference: c:ImasslynxireflESI Calibration TQ ResCal.ref
Mean residual $=0.127 \mathrm{amu}$

STANDARDS

Analyte	CAS Number	Concentration
13C3-PFBA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-6:2 FTS	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-8:2 FTS	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFDA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFDoA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFHxA	0.5	$\mathrm{ug} / \mathrm{mL}$
13C2-PFHxDA	0.5	$\mathrm{ug} / \mathrm{mL}$
13C2-PFOA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-PFTeDA	1.25	$\mathrm{ug} / \mathrm{mL}$
13C2-4:2 FTS	1.25	$\mathrm{ug} / \mathrm{mL}$
13C3-HFPO-DA	1.25	$\mathrm{ug} / \mathrm{mL}$
d5-EtFOSAA	1.25	$\mathrm{ug} / \mathrm{mL}$

Analytical Standard Record

Vista Analytical Laboratory

19E2201

Description:	PFC-IS	Expires:	28-May-21	
Standard Type:	Reagent	Prepared:	28 -May-19	
Solvent:	MeOH	Prepared By:	Giana R. Bilotta	
Final Volume (mls):	40	Department:	LCMS	
Vials:	Last Edit:	28-May-19 09:02 by GRB		
Analyte		CAS Number	Concentration	Units
13C3-PFBS		1.25	$\mathrm{ug} / \mathrm{mL}$	
13C3-PFHxS		1.25	$\mathrm{ug} / \mathrm{mL}$	
13C3-PFPeA		1.25	$\mathrm{ug} / \mathrm{mL}$	
13C4-PFHpA		1.25	$\mathrm{ug} / \mathrm{mL}$	
13C5-PFNA		1.25	$\mathrm{ug} / \mathrm{mL}$	
13C8-PFOS		1.25	$\mathrm{ug} / \mathrm{mL}$	
13C8-PFOSA		1.25	$\mathrm{ug} / \mathrm{mL}$	
d3-MeFOSAA		1.25	$\mathrm{ug} / \mathrm{mL}$	
13C2-PFUnA		1.25	$\mathrm{ug} / \mathrm{mL}$	

PRODUCT CODE:
COMPOUND:

STRUCTURE:

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/ddyyy)
EXPIRY DATE: (mm/ddymy)
RECOMMENDED STORAGE: Refrigerate ampoule

LOT NUMBER: M242FTS0817
Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluoro- $\left[1,2-{ }^{13} \mathrm{C}_{2}\right]$ hexane sulfonate

CAS \#: Not available
$\begin{array}{ll}{ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~F}_{9} \mathrm{SO}_{3} \mathrm{Na} \\ 50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} & \text { (Na salt) } \\ 46.7 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml} & \text { (M2-4:2FTS anion) }\end{array}$
MOLECULAR WEIGHT: 352.12
SOLVENT(S): Methanol

ISOTOPIC PURITY:
$\geq 99 \%{ }^{13} \mathrm{C}$
(1,2- ${ }^{13} \mathrm{C}_{2}$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- \quad See page 2 for further details.
- The native $4: 2 \mathrm{FTS}$ contains 4.22% of ${ }^{34} \mathrm{~S}$ (due to natural isotopic abundance) therefore both native 4:2FTS and M2-4:2FTS will produce signals in the $\mathrm{m} / \mathrm{z} 329$ to $\mathrm{m} / \mathrm{z} 309$ channel during SRM analysis. We recommend using the $\mathrm{m} / \mathrm{z} 329$ to $\mathrm{m} / \mathrm{z} 81$ transition to monitor for M2-4:2FTS during quantitative analysis as it will be free of any native contribution (see Figure 2).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

Figure 1: M2-4:2FTS; LC/MS Data (TIC and Mass Spectrum)

$\begin{array}{llrl}\text { 01sept2017_M242FTS_001 } & 110(1.850) & 01-S e p-2017 & \text { 15:38:00 } \\ \text { M242FTS0817 } 25 \mathrm{ug} / \mathrm{ml} & & \\ \text { l }\end{array}$			Scan ES 1.17e6

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50\% (80:20 MeOH:ACN) / $50 \% \mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH} 4 \mathrm{OAc}^{\text {Offfer) }}$	Cone Voltage (V) $=25.00$
	Ramp to 90% organic over 8 min and hold for 1 min before returning to initial conditions in 0.5 min . Time: 10 min	Cone Gas Flow (I/hr) $=100$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 2: \quad M2-4:2FTS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ M2-4:2FTS)
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: A C N$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Flow:	$300 \mu / / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.28 \mathrm{e}-3$
Collision Energy (eV) $=25$

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE: COMPOUND:

M2-6:2FTS
Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluoro- $\left[1,2-{ }^{13} \mathrm{C}_{2}\right]$ octane sulfonate

STRUCTURE:

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY: LAST TESTED: (mm/dd/yyy) EXPIRY DATE: (mm/ddyyyy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{13} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \quad$ (Na salt)
$47.5 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml} \quad$ (M2-6:2FTS anion)
>98\%
11/22/2018
11/22/2023
Refrigerate ampoule

MOLECULAR WEIGHT: 452.13
SOLVENT(S):
Methanol

ISOTOPIC PURITY:
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- The native 6:2FTS contains 4.22% of ${ }^{34} \mathrm{~S}$ (due to natural isotopic abundance) therefore both native 6:2FTS and M2-6:2FTS will produce signals in the $\mathrm{m} / \mathrm{z} 429$ to $\mathrm{m} / \mathrm{z} 409$ channel during SRM analysis. We recommend using the $\mathrm{m} / \mathrm{z} 429$ to $\mathrm{m} / \mathrm{z} 81$ transition to monitor for M2-6:2FTS during quantitative analysis as it will be free of any native contribution (see Figure 2).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M2-6:2FTS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Waters Xevo TQ-S micro MS

Figure 2: M2-6:2FTS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: On-column (M2-6:2FTS)
Mobile phase: Same as Figure 1
Flow: $\quad 300 \mu / / m i n$

MS Parameters

Collision Gas (bar) $=2.97 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=20$

PRODUCT CODE: COMPOUND:

M2-8:2FTS
Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluoro- $\left[1,2-{ }^{13} \mathrm{C}_{2}\right.$]decane sulfonate
CAS \#: Not available

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- The native $8: 2 \mathrm{FTS}$ contains 4.22% of ${ }^{34} \mathrm{~S}$ (due to natural isotopic abundance) therefore both native $8: 2 \mathrm{FTS}$ and M2-8:2FTS will produce signals in the $\mathrm{m} / \mathrm{z} 529$ to $\mathrm{m} / \mathrm{z} 509$ channel during SRM analysis. We recommend using the $\mathrm{m} / \mathrm{z} 529$ to $\mathrm{m} / \mathrm{z} 81$ transition to monitor for M2-8:2FTS during quantitative analysis as it will be free of any native contribution (see Figure 2).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: $\frac{01 / 26 / 2018}{\left(m m^{2} / d x y m y\right)}$

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M2-8:2FTS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient Start: 50% ($80: 20 \mathrm{MeOH}: A C N) / 50 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer) Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min . Time: 10 min	Source:Electrospray (negative) Capillary Voltage (kV) $=3.00$ Cone Voltage (V) $=30.00$ Cone Gas Flow (l/hr) $=100$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: \quad M2-8:2FTS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{ll}(500 \mathrm{ng} / \mathrm{ml} \mathrm{M2-8:2FTS})$
Mobile phase:	Isocratic $80 \%(80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH $\mathrm{H}_{4} \mathrm{OAc}$ buffer)

MS Parameters

Collision Gas $(\mathrm{mbar})=3.43 \mathrm{e}-3$
Collision Energy (eV) $=25$

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE:
 COMPOUND:

STRUCTURE:
M3PFBA
Perfluoro-n-[2,3,4- $\left.{ }^{13} \mathrm{C}_{3}\right]$ butanoic acid

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmoddyyy) EXPIRY DATE: (mmoddyyy) RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{3}{ }^{12} \mathrm{CHF}_{7} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
12/14/2017
12/14/2022
Store ampoule in a cool, dark place

LOT NUMBER: M3PFBA1217

CAS \#: \quad Not available

MOLECULAR WEIGHT: 217.02
SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$ (2,3,4- ${ }^{13} \mathrm{C}_{3}$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.2 \%$ of perfluoro-n- $\left[{ }^{13} \mathrm{C}_{3}\right]$ propanoic acid and also contains $\sim 1.0 \%$ of perfluoro-n-[1,2,3,4- $\left.{ }^{13} \mathrm{C}_{4}\right]$ butanoic acid due to the naturally occurring isotopic abundance of ${ }^{13} \mathrm{C}$ in the unlabelled carbon atom.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value (s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{i}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

ANA

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M3PFBA; LC/MS Data (TIC and Mass Spectrum)

14dec2017_M3PFBA_001
M3PFBA1217 $25 \mathrm{ug} / \mathrm{ml}$
100

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Micromass Quattro micro API MS

Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP_{18}
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm} \quad$ Experiment: Full Scan ($150-850 \mathrm{amu}$)
Mobile phase: Gradient
Start: 30% ($80: 20 \mathrm{MeOH}: A C N$) / $70 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min

MS Parameters

Source: Electrospray (negative)
Capillary Voltage (kV) $=3.00$
Cone Voltage (V) $=10.00$
Cone Gas Flow (I/hr) $=100$
Desolvation Gas Flow (l/hr) $=750$
$18 L 2004$

Figure 2: M3PFBA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ M3PFBA)
Mobile phase:	Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$
(both with 10 mM NH	

MS Parameters

Collision Gas (mbar) $=3.39 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=10$

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE: COMPOUND:

MPFDA
Perfluoro-n-[1,2- ${ }^{13} \mathrm{C}_{2}$]decanoic acid

LOT NUMBER: MPFDA1218

CAS \#: \quad Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmoduryy)
EXPIRY DATE: (mmidarmys)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{8} \mathrm{HF}_{19} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
12/06/2018
12/06/2023
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 516.07
SOLVENT(S): Methanol
Water (<1\%)
$\geq 99 \%{ }^{13} \mathrm{C}$
(1,2- ${ }^{13} \mathrm{C}_{2}$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: MPFDA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC Waters Xevo TQ-S micro MS	
MS:	Chromatographic Conditions	
Column:	Acquity UPLC BEH Shield RP_{18} $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	MS Parameters

Figure 2: MPFDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:
Injection: On-column (MPFDA)

Mobile phase: Same as Figure 1
Flow: $\quad 300 \mu / / \mathrm{min}$

MS Parameters

Collision Gas $($ mbar $)=3.27 \mathrm{e}-3$
Collision Energy (eV) $=10$

PRODUCT CODE: COMPOUND:

STRUCTURE:

MPFUdA
Perfluoro-n-[1,2- ${ }^{13} \mathrm{C}_{2}$]undecanoic acid

LOT NUMBER: MPFUdA0518

CAS \#: Not available

MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mmoddrym)
EXPIRY DATE: (mmodymy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{9} \mathrm{HF}_{21} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
05/11/2018
05/11/2023
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 566.08
SOLVENT(S): Methanol
Water ($<1 \%$)
$\geq 99 \%{ }^{13} \mathrm{C}$
($1,2-{ }^{13} \mathrm{C}_{2}$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Presence of $1-{ }^{13} \mathrm{C}_{1}-$ PFUdA $(\sim 1 \%$; see Figure 2$), 2{ }^{13} \mathrm{C}_{1}-\mathrm{PFUdA}(\sim 1 \%)$, and PFUdA $(\sim 0.2 \%$; see Figure 2) are due to the isotopic purity of the ${ }^{13} \mathrm{C}$-precursor.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

> Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: MPFUdA; LC/MS Data (TIC and Mass Spectrum)
11may2018_MPFUdA_001
MPFUdA0518 $500 \mathrm{ng} / \mathrm{ml}$
100

Conditions for Figure 1:	
LC: Waters Acquity Ultra Performance LC	
MS: Waters Xevo TQ-S micro MS	
Chromatographic Conditions	MS Parameters
Column: \quad Acquity UPLC BEH Shield RP $_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase: Gradient	Source: Electrospray (negative)
Start: 50% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=0.50$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=5.00$
Ramp to 80% organic over 8 min and hold for	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
2 min before returning to initial conditions in 0.75 min . Time: 12 min	Desolvation Gas Flow $(1 / h r)=750$
Flow: $\quad 300 \mu / / \mathrm{min}$	

Figure 2: MPFUdA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	On-column (MPFUdA)
Mobile phase:	Same as Figure 1
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.51 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=12$

PRODUCT CODE:
COMPOUND:

M2PFTeDA
Perfluoro-n-[1,2- ${ }^{13} \mathrm{C}_{2}$]tetradecanoic acid

LOT NUMBER: M2PFTeDA1117

CAS \#: \quad Not available

MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mndodrym)
EXPIRY DATE: (mmbddymy)
RECOMMENDED STORAGE:

$$
{ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{12} \mathrm{HF}_{27} \mathrm{O}_{2}
$$

$$
50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}
$$

>98\%
11/30/2017
11/30/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S):
ISOTOPIC PURITY:
716.10

Methanol Water (<1\%) $\geq 99 \%{ }^{13} \mathrm{C}$ (1,2- $\left.{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).
For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M2PFTeDA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC:	Waters Acquits Ultra Performance LC
MS:	Micromass Quattro micro API MS

Figure 2: M2PFTeDA; LC/MS/MS Data (Selected MRM Transitions)

WELLINGTON LABORATORIES

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE:
COMPOUND:
STRUCTURE:

MPFNA
Perfluoro-n-[1,2,3,4,5- ${ }^{13} \mathrm{C}_{5}$]nonanoic acid

LOT NUMBER: MPFNA1217

CAS \#: \quad Not available

MOLECULAR FORMULA: CONCENTRATION:	$\begin{aligned} & { }^{13} \mathrm{C}_{5}{ }_{5} \mathrm{C}_{4} \mathrm{HF}_{17} \mathrm{O}_{2} \\ & 50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \end{aligned}$
CHEMICAL PURITY:	>98\%
LAST TESTED: (mmodrymy	12/14/2017
EXPIRY DATE: (mmddshmy)	12/14/2022
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 469.04
SOLVENT(S): Methanol
Water (<1\%)
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2,3,4,5-{ }^{13} \mathrm{C}_{5}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
(mm/dd/yysy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned values), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

CAL

Acoumincontre aus
For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: MPFNA; LC/MS Data (TIC and Mass Spectrum)
14dec2017_MPFNA_001
MPFNA1217 $25 \mathrm{ug} / \mathrm{ml}$
100

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 55\% (80:20 MeOH:ACN) / 45\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=15.00$
	Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min . Time: 10 min	Cone Gas Flow (I/hr) $=50$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu / / m i n$	

Figure 2: MPFNA; LC/MS/MS Data (Selected MRM Transitions)

CERTIFICATE OF ANALYSIS
DOCUMENTATION

PRODUCT CODE:
COMPOUND:

MPFDoA
Perfluoro-n-[1,2- ${ }^{13} \mathrm{C}_{2}$]dodecanoic acid

STRUCTURE:

LOT NUMBER: MPFDoA0218

CAS \#: \quad Not available

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/dd/ysy)
EXPIRY DATE: (mm/ddyyys)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{10} \mathrm{HF}_{23} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
$>98 \%$
02/16/2018
02/16/2023
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 616.08
SOLVENT(S): Methanol
Water ($<1 \%$)
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: MPFDoA; LC/MS Data (TIC and Mass Spectrum)
16feb2018_MPFDoA_001
MPFDoA0218 $25 \mathrm{ug} / \mathrm{ml}$
100

Figure 2: MPFDoA; LC/MS/MS Data (Selected MRM Transitions)

PRODUCT CODE:
 COMPOUND:

STRUCTURE:

M4PFHpA
Perfluoro-n-[1,2,3,4- ${ }^{13} \mathrm{C}_{4}$]heptanoic acid

LOT NUMBER: M4PFHpA0618

CAS \#: Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmddyymy)
EXPIRY DATE: (mm/ddryyy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{4}{ }^{12} \mathrm{C}_{3} \mathrm{HF}_{13} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
07/06/2018
07/06/2023

Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 368.03
SOLVENT(S): Methanol
Water ($<1 \%$)
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
(1,2,3,4- ${ }^{13} \mathrm{C}_{4}$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.04 \%$ of perfluoro-n-heptanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).
For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M4PFHpA; LC/MS Data (TIC and Mass Spectrum)

Figure 2: M4PFHpA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: \quad On-column (M4PFHpA)	MS Parameters	
Mobile phase:	Same as Figure 1	Collision Gas $(\mathrm{mbar})=3.89 \mathrm{e}-3$
		Collision Energy $(\mathrm{eV})=8$

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE: COMPOUND:

STRUCTURE:

M2PFOA
Perfluoro-n-[1,2- ${ }^{13} \mathrm{C}_{2}$]octanoic acid

LOT NUMBER: M2PFOA1018

CAS \#: \quad Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiddrys)
EXPIRY DATE: (mmddalymy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{6} \mathrm{HF}_{15} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
10/10/2018
10/10/2023
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 416.05
SOLVENT(S): Methanol
Water (<1\%)
$\geq 99 \%{ }^{13} \mathrm{C}$
(1,2- ${ }^{13} \mathrm{C}_{2}$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $<0.1 \%$ of perfluoro-n- $\left[{ }^{13} \mathrm{C}_{1}\right]$ heptanoic acid (${ }^{13} \mathrm{C}_{1}-$ PFHpA $)$.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE Certified By:

Date: $\frac{10 / 17 / 2018}{\text { (minddrysy) }}$
\qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M2PFOA; LC/MS Data (TIC and Mass Spectrum)
10oct2018_M2PFOA_001
M2PFOA1018 $250 \mathrm{ng} / \mathrm{ml}$
100

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Pamatar
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=10.00$
	Ramp to 90% organic over 8 min and hold for	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
	2 min before returning to initial conditions in 0.75 min . Time: 12 min	Desolvation Gas Flow (l/hr) $=1000$
Flow:	$300 \mu 1 / \mathrm{min}$	

Figure 2: M2PFOA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: \quad On-column (M2PFOA)	MS Parameters	
Mobile phase:	Same as Figure 1	Collision Gas (mbar) $=2.97 \mathrm{e}-3$
	Collision Energy $(\mathrm{eV})=8$	

Flow: $\quad 300 \mu / / \mathrm{min}$

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE:

COMPOUND:
STRUCTURE:

M3PFPeA
Perfluoro-n-[3,4,5- $\left.{ }^{13} \mathrm{C}_{3}\right]$ pentanoic acid

LOT NUMBER: M3PFPeA0417

CAS \#: \quad Not available

MOLECULAR FORMULA:	${ }^{13} \mathrm{C}_{3}{ }^{12} \mathrm{C}_{2} \mathrm{HF}_{9} \mathrm{O}_{2}$	MOLECULAR WEIGHT:	267.02
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT(S):	Methanol
			Water (<1\%)
CHEMICAL PURITY:	>98\%	ISOTOPIC PURITY:	$\geq 99 \%{ }^{13} \mathrm{C}$
LAST TESTED: (mmddolmy)	04/20/2017		$\left(3,4,5-{ }^{13} \mathrm{C}_{3}\right)$
EXPIRY DATE: (mmbdyrys)	04/20/2022		
RECOMMENDED STORAGE:	Store ampoule		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.95 \%$ of perfluoro- $n-\left[{ }^{[3} \mathrm{C}_{3}\right.$ butanoic acid and 0.05% of perfluoro- 1 -pentanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad 04/24/2017
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).
For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M3PFPeA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 40% (80:20 MeOH:ACN) / 60\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=15.00$
	Ramp to 90% organic over 7 min and hold for	Cone Gas Flow (l/hr) $=60$
	2 min before returning to initial conditions in 0.5 min . Time: 10 min	Desolvation Gas Flow (1/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: M3PFPeA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loo
$10 \mu \mathrm{l}(500$	

Mobile phase: | Isocratic |
| :--- |
| (both with |

Flow: $\quad 300 \mu \mathrm{l} / \mathrm{m}$

MS Parameters

Collision Gas (mbar) $=3.31 \mathrm{e}-3$
Collision Energy (eV) $=9$

PRODUCT CODE:
COMPOUND:

STRUCTURE:

M8FOSA-I
Perfluoro-1-[${ }^{3} \mathrm{C}_{\beta}$]octanesulfonamide

LOT NUMBER: M8FOSA1018I

CAS \#: 1365803-60-6

MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mm/dd/myy)
EXPIRY DATE: (mm/dod/yns)
RECOMMENDED STORAGE: Refrigerate ampoule
${ }^{13} \mathrm{C}_{8} \mathrm{H}_{2} \mathrm{~F}_{17} \mathrm{NO}_{2} \mathrm{~S}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
$>98 \%$
10/10/2018
10/10/2023

MOLECULAR WEIGHT: 507.09
SOLVENT(S): Isopropanol
ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$
$\left({ }^{13} \mathrm{C}_{8}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 1.1 \%$ of perfluoro- 1 - $\left[{ }^{13} \mathrm{C}_{4}\right]$ loctanesulfonamide, $\sim 0.5 \%$ of perfluoro-n-
$\left[{ }^{13} \mathrm{C}_{8}\right]$ loctanoic acid (M8PFOA), and $\sim 0.02 \%$ of perfluoro- $1-\left[{ }^{13} \mathrm{C}_{7}\right]$ heptanesulfonamide.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date:
$\frac{10 / 15 / 2018}{(m \text { midd } d \text { mhy })}$

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned values), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M8FOSA-I; LC/MS Data (TIC and Mass Spectrum)

| 10oct2018_M8FOSAI_001 |
| :--- | :--- | :--- |
| M8FOSA10181 $250 \mathrm{ng} / \mathrm{ml}$ |
| 100 |

Figure 2: M8FOSA-I; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: \quad On-column (M8FOSA-I)	MS Parameters	
Mobile phase:	Same as Figure 1	Collision Gas $(\mathrm{mbar})=2.97 \mathrm{e}-3$
		Collision Energy $(\mathrm{eV})=30$

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE: COMPOUND:

STRUCTURE:
d3-N-MeFOSAA
N -methyl-d3-perfluoro-1-octanesulfonamidoacetic acid
CAS \#: \quad Not available

MOLECULAR FORMULA:
CONCENTRATION:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mmoddyys)
EXPIRY DATE: (mmddarmy)
RECOMMENDED STORAGE: Refrigerate ampoule

MOLECULAR WEIGHT: 574.23
SOLVENT(S): Methanol Water ($<1 \%$)
ISOTOPIC PURITY:

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent the conversion of the acetic acid moiety to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

B.G. Chittim, General Manager

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: d3-N-MeFOSAA; LC/MS Data (TIC and Mass Spectrum)

Figure 2:
d3-N-MeFOSAA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:
Injection: On-column (d3-N-MeFOSAA)

MS Parameters

$$
\begin{aligned}
& \text { Collision Gas }(\mathrm{mbar})=3.43 \mathrm{e}-3 \\
& \text { Collision Energy }(\mathrm{eV})=18
\end{aligned}
$$

PRODUCT CODE:
COMPOUND:
d5-N-EtFOSAA
N -ethyl-d5-perfluoro-1-octanesulfonamidoacetic acid

CAS \#:
Not available
CAS N Notale

STRUCTURE:

MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mmodurym) EXPIRY DATE: (mmpdodsyy) RECOMMENDED STORAGE:
$\mathrm{C}_{12} \mathrm{D}_{5} \mathrm{H}_{3} \mathrm{~F}_{17} \mathrm{NO}_{4} \mathrm{~S}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
08/23/2018
08/23/2023
Refrigerate ampoule

MOLECULAR WEIGHT: 590.26
SOLVENT(S): Methanol Water ($<1 \%$)
ISOTOPIC PURITY: $\geq 98 \%{ }^{2} H_{5}$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent the conversion of the acetic acid moiety to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (250-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=20.00$
	Ramp to 90% organic over 8 min and hold for	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
	2 min before returning to initial conditions in 0.75 min . Time: 12 min	Desolvation Gas Flow (1/hr) $=1000$
Flow:	$300 \mu / / m i n$	

Figure 2: $\quad \mathrm{d} 5-\mathrm{N}-E t F O S A A ;$ LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: On-column (d5-N-EtFOSAA)
Mobile phase: Same as Figure 1
Flow: $\quad 300 \mu 1 / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.43 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=18$

PRODUCT CODE: COMPOUND:

M3PFBS
Sodium perfluoro-1-[2,3,4- $\left.{ }^{13} \mathrm{C}_{3}\right]$ butanesulfonate
LOT NUMBER: M3PFBS1218

CAS \#: \quad Not available

MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mulddyyy)
EXPIRY DATE: (mmddymy)
RECOMMENDED STORAGE: Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 325.06
SOLVENT(S): Methanol
ISOTOPIC PURITY:
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(2,3,4-{ }_{-13} \mathrm{C}_{3}\right)$

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M3PFBS; LC/MS Data (TIC and Mass Spectrum)
10dec2018_M3PFBS_001
M3PFBS1218 $250 \mathrm{ng} / \mathrm{ml}$
100

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Waters Xevo TQ-S micro MS

Chromatographic Conditions MS Parameters
Column: \quad Acquity UPLC BEH Shield RP ${ }_{18}$

Mobile phase: Gradient
Start: 40% (80:20 MeOH:ACN) / 60\% $\mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 8 min and hold for 2 min before returning to initial conditions in 0.75 min . Time: 12 min

Flow: $\quad 300 \mu / / m i n$

Figure 2: M3PFBS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: On-column (M3PFBS)
Mobile phase: Same as Figure 1
Flow: $\quad 300 \mu 1 / \mathrm{min}$

MS Parameters

Collision Gas (bar) $=2.90 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=30$

PRODUCT CODE:
COMPOUND:

M8PFOS
Sodium perfluoro-1-[$\left.{ }^{13} \mathrm{C}_{8}\right]$ octanesulfonate

LOT NUMBER: M8PFOS0918

CAS \#: \quad Not available

CHEMICAL PURITY:
LAST TESTED: (mm/dd/smy)
EXPIRY DATE: (mm/ddysyy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt) $47.8 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (M8PFOS anion) $>98 \%$
09/20/2018
09/20/2023
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 530.05
SOLVENT(S): Methanol

ISOTOPIC PURITY:
$>99 \%{ }^{13} \mathrm{C}$
$\left({ }^{13} \mathrm{C}_{8}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- \quad See page 2 for further details.
- Contains $\sim 0.2 \%$ of sodium perfluoro- $1-\left[{ }^{[13} \mathrm{C}_{7}\right]$ heptanesulfonate $\left({ }^{13} \mathrm{C}_{7}-\mathrm{PFHpS}\right)$ and $\sim 1.0 \%$ of sodium perfluoro-1-[$\left.{ }^{13} \mathrm{C}_{4}\right]$ octanesulfonate (MPFOS).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAl Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M8PFOS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18} $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (250-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH} \mathrm{H}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=10.00$
	Ramp to 90% organic over 8 min and hold for 2 min	Desolvation Temperature (${ }^{\text {C }}$) $=500$
	before returning to initial conditions in 0.75 min . Time: 12 min	Desolvation Gas Flow (1/hr) $=1000$
Flow:	$300 \mu 1 / \mathrm{min}$	

Figure 2: M8PFOS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: On-column (M8PFOS)
Mobile phase: Same as Figure 1
MS Parameters
Collision Gas (mbar) $=2.97 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=42$

Flow: $\quad 300 \mu / / m i n$

PRODUCT CODE:
COMPOUND:

STRUCTURE:

MPFHxA
Perfluoro-n-[1,2- ${ }^{13} \mathrm{C}_{2}$ hexanoic acid

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (midodrym) EXPIRY DATE: (mmdaysyy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{4} \mathrm{HF}_{11} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
05/22/2018
05/22/2023
Store ampoule in a cool, dark place

LOT NUMBER: MPFHXA0518

CAS \#: Not available

MOLECULAR WEIGHT:
SOLVENT(S): Methanol
Water (<1\%)
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2-{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $<0.1 \%$ of perfluoro-n-hexanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. GueIph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 2: MPFHxA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	On-column (MPFHXA)	MS Parameters
Mobile phase:	Same as Figure 1	Collision Gas $(\mathrm{mbar})=3.55 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=8$		

PRODUCT CODE:
COMPOUND:

M2PFHxDA
Perfluoro-n-[1,2-13 C_{2} hexadecanoic acid

LOT NUMBER: M2PFHxDA1018

CAS \#: Not available

STRUCTURE:

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/ddyyy)
EXPIRY DATE: (mm/dd/yyy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{2}{ }^{12} \mathrm{C}_{14} \mathrm{HF}_{31} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
$>98 \%$
10/11/2018
10/11/2023
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S):

ISOTOPIC PURITY:
816.11

Methanol
Water (<1\%)
$\geq 99 \%{ }^{13} \mathrm{C}$
(1,2- $\left.{ }^{13} \mathrm{C}_{2}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.3 \%$ of native perfluoro-n-hexadecanoic acid and $\sim 0.2 \%$ of perfluoro-n-
$\left[{ }^{13} \mathrm{C}_{1}\right]$ pentadecanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

Actreataluon tho Atran

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M2PFHxDA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP $_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60\% (80:20 MeOH:ACN) / 40\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) = 10.00
	Ramp to 90\% organic over 7 min and hold for	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
	3 min before returning to initial conditions in 0.75 min . Time: 12 min	Desolvation Gas Flow (l/hr) $=1000$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: M2PFHxDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 2:

Injection:	On-column (M2PFHxDA)	MS Parameters
Mobile phase:	Same as Figure 1	Collision Gas $(\mathrm{mbar})=2.97 \mathrm{e}-3$
Flow:	300	Collision Energy $(\mathrm{eV})=15$

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodurym) EXPIRY DATE: (mmddaryy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{3}{ }^{12} \mathrm{C}_{3} \mathrm{~F}_{13} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$47.3 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (M3PFHxS anion) >98\%
06/20/2018
06/20/2023
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 425.07
SOLVENT(S): Methanol

ISOTOPIC PURITY:
$\geq 99 \%{ }^{13} \mathrm{C}$
(1,2,3- ${ }^{13} \mathrm{C}_{3}$)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.1 \%$ perfluoro- $1-\left[1,2-{ }^{13} \mathrm{C}_{2}\right]$ pentanesulfonate, $\sim 0.1 \%$ perfluoro-1-octanesulfonate, and $\sim 0.05 \%$ of perfluoro-1-hexanesulfonate.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

[^4]
INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: \quad M3PFHxS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 am
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50% (80:20 MeOH:ACN) / $50 \% \mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=0.50$
	(both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=5.00$
	Ramp to 80% organic over 8 min and hold for	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
	2 min before returning to initial conditions in 0.75 min . Time: 12 min	Desolvation Gas Flow (1/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: M3PFHxS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	On-column (M3PFHxS)	MS Parameters
Mobile phase:	Same as Figure 1	Collision Gas $(\mathrm{mbar})=3.43 \mathrm{e}-3$
Flow:		Collision Energy $(\mathrm{eV})=36$

PRODUCT CODE:
COMPOUND:

STRUCTURE:

MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mmuddymy)
EXPIRY DATE: (mm(ddymy)
RECOMMENDED STORAGE:

M3HFPO-DA
2,3,3,3-Tetrafluoro-2-(1,1,2,2,3,3,3-heptafluoropropoxy)- ${ }^{13} \mathrm{C}_{3}$-propanoic acid
CAS \#: Not available

${ }^{13} \mathrm{C}_{3}{ }^{12} \mathrm{C}_{3} \mathrm{HF}_{11} \mathrm{O}_{3}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
10/24/2018
10/24/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 333.03
SOLVENT(S): Methanol ISOTOPIC PURITY: $\quad \geq 99 \%{ }^{13} \mathrm{C}$ $\left({ }^{13} \mathrm{C}_{3}\right)$

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 1.9 \%$ of the linear M3HFPO-DA isomer.
- Product is commercially known as GenX.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE
Certified By:

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: M3HFPO-DA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 45\% (80:20 MeOH:ACN) / 55\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=15.00$
	Ramp to 90% organic over 8 min and hold for	Desolvation Temperature (${ }^{\text {C }}$) $=325$
	2 min before returning to initial conditions in 0.75 min . Time: 12 min	Desolvation Gas Flow (l/hr) $=1000$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: M3HFPO-DA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: On-column (M3HFPO-DA)
Mobile phase: Same as Figure 1
Flow: $\quad 300 \mu / / m i n$

MS Parameters

Collision Gas (mbar) $=3.02 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=6$

Parent Standards used in this standard:					
Standard	Description	Prepared	Prepared By	Expires	(mls)
18C0911	PFECHS	09-Mar-18	** Vendor **	20-Feb-22	0.435
18L2034	PFDoA	20-Dec-18	** Vendor **	18-Apr-23	0.4
18L2035	PFBA	20-Dec-18	** Vendor **	28-Nov-23	0.4
18L2036	PFPeA	20-Dec-18	** Vendor **	16-Feb-23	0.4
18L2037	PFHxA	20-Dec-18	** Vendor **	18-May-23	0.4
18L2038	PFDA	20-Dec-18	** Vendor **	12-Nov-23	0.4
18L2039	PFUdA	20-Dec-18	** Vendor **	23-Aug-23	0.4
18L2040	PFTrDA	20-Dec-18	** Vendor **	16-Feb-23	0.4
18L2041	PFHpA	20-Dec-18	** Vendor **	12-Jul-23	0.4
18L2042	PFOA	20-Dec-18	** Vendor **	23-Aug-23	0.4
18L2043	PFNA	20-Dec-18	** Vendor **	16-Feb-23	0.4
18L2044	PFTeDA	20-Dec-18	** Vendor **	23-Aug-23	0.4
18L2045	PFHxDA	20-Dec-18	** Vendor **	13-Jul-22	0.4
18L2046	PFODA	20-Dec-18	** Vendor **	13-Jul-22	0.4
18L2047	L-PFBS	20-Dec-18	** Vendor **	04-May-23	0.454
18L2048	L-PFPeS	20-Dec-18	** Vendor **	12-Jul-23	0.428
18L2049	L-PFHpS	20-Dec-18	** Vendor **	04-May-23	0.42
18L2050	L-PFNS	20-Dec-18	** Vendor **	13-Jul-23	0.418
18L2051	L-PFDS	20-Dec-18	** Vendor **	$05-O c t-23$	0.415
18L2052	br-PFHxSK	20-Dec-18	** Vendor **	$02-$ Oct-23	0.44
18L2053	br-PFOSK anion	20-Dec-18	** Vendor **	18-Apr-23	0.431
18L2054	4:2 FTS	20-Dec-18	** Vendor **	03-Jul-23	0.43
18L2055	6:2FTS	20-Dec-18	** Vendor **	03-Apr-23	0.422
18L2056	8:2FTS	20-Dec-18	** Vendor **	28-Nov-23	0.418
18L2057	FOSA-I	20-Dec-18	** Vendor **	20-Jun-23	0.4
18L2058	br-NMeFOSAA	20-Dec-18	** Vendor **	17-Jan-23	0.4
18L2059	br-NEtFOSAA	20-Dec-18	** Vendor **	26-Jul-23	0.4
18L2060	N-MeFOSA-M	20-Dec-18	** Vendor **	31-May-23	2
18L2061	N-EtFOSA-M	20-Dec-18	** Vendor **	31-May-23	2
18L2062	N-MeFOSE-M	20-Dec-18	** Vendor **	17-May-23	2
18L2063	N-EtFOSE-M	20-Dec-18	** Vendor **	04-Jun-23	2
18L2071	HFPO-DA	20-Dec-18	** Vendor **	24-Oct-21	0.4
18L2072	11Cl-PF3OUdS	20-Dec-18	** Vendor **	23-Nov-23	0.425
18L2073	9Cl-PF3ONS	20-Dec-18	** Vendor **	22-Nov-23	0.43
18L2074	NaDONA	20-Dec-18	** Vendor **	26-Mar-23	0.4
18L2076	L-PFPrS	20-Dec-18	** Vendor **	14-Dec-22	0.438
18L2078	10:2FTS	20-Dec-18	** Vendor **	13-Jul-21	0.415
19B0712	L-PFDoS	07-Feb-19	** Vendor **	30-Sep-21	0.415

Analytical Standard Record
Vista Analytical Laboratory
19E2204

Description:	PFC NS Stock	Expires:	29-May-21	
Standard Type:	Analyte Spike	Prepared:	29-May-19	
Solvent:	MeOH	Prepared By:	Giana R. Bilotta	
Final Volume (mls):	20	Department:	LCMS	
Vials:	1	Last Edit:	28-May-19 09:03	y GRB
Analyte		CAS Number	Concentration	Units
L-PFHpA			1	$\mathrm{ug} / \mathrm{mL}$
10:2 FTS		120226-60-0	1	$\mathrm{ug} / \mathrm{mL}$
L-MeFOSA		31506-32-8	5	$\mathrm{ug} / \mathrm{mL}$
L-MeFOSAA		2355-31-9	0.76	$\mathrm{ug} / \mathrm{mL}$
L-MeFOSE		24448-09-7	5	$\mathrm{ug} / \mathrm{mL}$
L-PFBA			1	$\mathrm{ug} / \mathrm{mL}$
L-PFBS			1	$\mathrm{ug} / \mathrm{mL}$
L-PFDA			1	$\mathrm{ug} / \mathrm{mL}$
L-PFDoA			1	$\mathrm{ug} / \mathrm{mL}$
L-EtFOSAA		2991-50-6	0.776	$\mathrm{ug} / \mathrm{mL}$
L-PFDS			1	$\mathrm{ug} / \mathrm{mL}$
L-EtFOSA		4151-50-2	5	$\mathrm{ug} / \mathrm{mL}$
L-PFHpS			1	$\mathrm{ug} / \mathrm{mL}$
L-PFHxA			1	$\mathrm{ug} / \mathrm{mL}$
L-PFHxDA			1	$\mathrm{ug} / \mathrm{mL}$
L-PFHxS			0.812	$\mathrm{ug} / \mathrm{mL}$
L-PFNA			1	$\mathrm{ug} / \mathrm{mL}$
L-PFNS		68259-12-1	1	$\mathrm{ug} / \mathrm{mL}$
L-PFOA			1	$\mathrm{ug} / \mathrm{mL}$
L-PFODA			1	$\mathrm{ug} / \mathrm{mL}$
L-PFDoS			1	$\mathrm{ug} / \mathrm{mL}$
EtFOSAA		2991-50-6	1	$\mathrm{ug} / \mathrm{mL}$
4:2 FTS		757124-72-4	1	$\mathrm{ug} / \mathrm{mL}$
6:2 FTS		27619-97-2	1	$\mathrm{ug} / \mathrm{mL}$
8:2 FTS		39108-34-4	1	$\mathrm{ug} / \mathrm{mL}$
ADONA		919005-14-4	1	$\mathrm{ug} / \mathrm{mL}$
Br-EtFOSAA			0.224	$\mathrm{ug} / \mathrm{mL}$
Br-MeFOSAA			0.24	$\mathrm{ug} / \mathrm{mL}$
Br-PFHxS		3871-99-6	0.189	$\mathrm{ug} / \mathrm{mL}$
Br-PFOS		2795-39-3	0.211	$\mathrm{ug} / \mathrm{mL}$
L-EtFOSE		1691-99-2	5	$\mathrm{ug} / \mathrm{mL}$
EtFOSA		4151-50-2	5	$\mathrm{ug} / \mathrm{mL}$
L-PFPeA			1	$\mathrm{ug} / \mathrm{mL}$
EtFOSE		1691-99-2	5	$\mathrm{ug} / \mathrm{mL}$

Analytical Standard Record
Vista Analytical Laboratory
19E2204

Description:	PFC NS Stock	Expires:	29-May-21
Standard Type:	Analyte Spike	Prepared:	29-May-19
Solvent:	MeOH	Prepared By:	Giana R. Bilotta
Final Volume $(\mathrm{mls}):$	20	Department:	LCMS
Vials:	1	Last Edit:	28-May-19 09:03 by GRB

Analyte	CAS Number	Concentration	Units
F-53B Major (9Cl-PF3ONS)	756426-58-1	1	$\mathrm{ug} / \mathrm{mL}$
F-53B Minor (11Cl-PF3OUdS)	763051-92-9	1	$\mathrm{ug} / \mathrm{mL}$
F-53B Total		2	$\mathrm{ug} / \mathrm{mL}$
HFPO-DA (GenX)	13252-13-6	1	$\mathrm{ug} / \mathrm{mL}$
L-4:2 FTS	75124-72-4	1	$\mathrm{ug} / \mathrm{mL}$
L-6:2 FTS		1	$\mathrm{ug} / \mathrm{mL}$
L-8:2FTS		1	$\mathrm{ug} / \mathrm{mL}$
cis-PFECHS		0.668	$\mathrm{ug} / \mathrm{mL}$
Total 6:2 FTS		1	$\mathrm{ug} / \mathrm{mL}$
PFOA	335-67-1	1	$\mathrm{ug} / \mathrm{mL}$
PFODA	16517-11-6	1	$\mathrm{ug} / \mathrm{mL}$
PFOS	1763-23-1	1	$\mathrm{ug} / \mathrm{mL}$
PFOSA	754-91-6	1	$\mathrm{ug} / \mathrm{mL}$
PFPeA	2706-90-3	1	$\mathrm{ug} / \mathrm{mL}$
PFPeS	2706-91-4	1	$\mathrm{ug} / \mathrm{mL}$
PFPrS	423-41-6	1	$\mathrm{ug} / \mathrm{mL}$
PFTeDA	376-06-7	1	$\mathrm{ug} / \mathrm{mL}$
L-PFOS		0.789	$\mathrm{ug} / \mathrm{mL}$
PFUnA	2058-94-8	1	$\mathrm{ug} / \mathrm{mL}$
PFHxS	355-46-4	1	$\mathrm{ug} / \mathrm{mL}$
Total EtFOSAA		1	$\mathrm{ug} / \mathrm{mL}$
Total MeFOSAA		1	$\mathrm{ug} / \mathrm{mL}$
Total PFDS		1	$\mathrm{ug} / \mathrm{mL}$
Total PFHpS		1	$\mathrm{ug} / \mathrm{mL}$
Total PFHxS		1	$\mathrm{ug} / \mathrm{mL}$
Total PFOA		1	$\mathrm{ug} / \mathrm{mL}$
Total PFOS		1	$\mathrm{ug} / \mathrm{mL}$
Total PFUnA		1	$\mathrm{ug} / \mathrm{mL}$
PFTrDA	72629-94-8	1	$\mathrm{ug} / \mathrm{mL}$
PFDA	335-76-2	1	$\mathrm{ug} / \mathrm{mL}$
trans-PFECHS		0.335	$\mathrm{ug} / \mathrm{mL}$
L-PFPeS	2706-91-4	1	$\mathrm{ug} / \mathrm{mL}$
L-PFTeDA		1	$\mathrm{ug} / \mathrm{mL}$
L-PFTrDA		1	$\mathrm{ug} / \mathrm{mL}$

Analytical Standard Record

Vista Analytical Laboratory
19E2204

Description:	PFC NS Stock	Expires:	29-May-21	
Standard Type:	Analyte Spike	Prepared:	29-May-19	
Solvent:	MeOH	Prepared By:	Giana R. Bilotta	
Final Volume (mls):	20	Department:	LCMS	
Vials:	1	Last Edit:	28-May-19 09:03	b GRB
Analyte		CAS Number	Concentration	Units
L-PFUnA			1	$\mathrm{ug} / \mathrm{mL}$
MeFOSA		31506-32-8	5	$\mathrm{ug} / \mathrm{mL}$
MeFOSAA		2355-31-9	1	$\mathrm{ug} / \mathrm{mL}$
MeFOSE		24448-09-7	5	$\mathrm{ug} / \mathrm{mL}$
PFNS		68259-12-1	1	ug/mL
PFBS		375-73-5	1	$\mathrm{ug} / \mathrm{mL}$
PFNA		375-95-1	1	$\mathrm{ug} / \mathrm{mL}$
PFDoA		307-55-1	1	$\mathrm{ug} / \mathrm{mL}$
PFDoS		79780-39-5	1	$\mathrm{ug} / \mathrm{mL}$
PFDS		335-77-3	1	$\mathrm{ug} / \mathrm{mL}$
PFecHS		646-83-3	1	$\mathrm{ug} / \mathrm{mL}$
PFHpA		375-85-9	1	$\mathrm{ug} / \mathrm{mL}$
PFHpS		375-92-8	1	$\mathrm{ug} / \mathrm{mL}$
PFHxA		307-24-4	1	ug/mL
PFHxDA		67905-19-5	1	ug/mL
L-PFOSA			1	ug/mL
PFBA		375-22-4	1	$\mathrm{ug} / \mathrm{mL}$

PRODUCT CODE: COMPOUND:

PFECHS
Potassium perfluoro-4-ethylcyclohexanesulfonate (isomeric mixture)

STRUCTURE:

cis-isomer

trans-isomer

MOLECULAR FORMULA:	$\mathrm{C}_{8} \mathrm{~F}_{15} \mathrm{SO}_{3} \mathrm{~K}$	MOLECULAR WEIGHT:	500.22
CONCENTRATION:	$50.0 \pm 2.5 \mathrm{\mu g} / \mathrm{ml}$ (K salt)	SOLVENT (S):	Methanol
	$46.1 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}$ (PFECHS anion)		
CHEMICAL PURITY:	$>98 \%$		
LAST TESTED: (mmddosmy)	$02 / 20 / 2017$		
EXPIRY DATE: (mmidsysy)	$02 / 20 / 2022$		
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains a mixture of the cis/trans isomers of PFECHS at a ratio of 2:3 (cis:trans).
- Contains $\sim 1.5 \%$ of other isomeric impurities.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, \lambda_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{r}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFECHS; LC/MS Data (TIC and Mass Spectrum)
20FEB2017_PFECHS_009A
PFECHS0217 $25 \mathrm{ug} / \mathrm{ml}$
100

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatograp	phic Conditions	MS Parameters
Column:	Acquity CSH Fluoro-Phenyl $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient Start: 35\% (80:20 MeOH:ACN) / $65 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH} \mathrm{N}_{4} \mathrm{OAc}$ buffer) Hold for 13 min . Ramp to 50% organic over 1.5 min and hold for 2.5 min . Ramp to 80% organic over 1 min and hold for 1 min before returning to initial conditions in 0.5 min . Time: 20 min	Source: Electrospray (negative) Capillary Voltage (kV) $=3.50$ Cone Voltage (V) $=35.00$ Cone Gas Flow (l/hr) $=50$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: PFECHS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 2:

Injection:	Direct loop injection
	$10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ PFECHS

Mobile phase: Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)

Flow: $\quad 300 \mu / / m i n$

PRODUCT CODE:
COMPOUND:

PFDoA
Perfluoro-n-dodecanoic acid

LOT NUMBER: PFDoA0418

CAS \#:
307-55-1

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiddyyy)
EXPIRY DATE: (mmpddymy)
RECOMMENDED STORAGE:
$\mathrm{C}_{12} \mathrm{HF}_{23} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
04/18/2018
04/18/2023
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S):
614.10

Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (SIR)
Figure 2: LC/MS Data (Mass Spectrum)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad (mm/dd/yyyy)

[^5]
INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: \quad PFDoA; LC/MS Data (SIR)

Figure 2: \quad PFDoA; LC/MS Data (Mass Spectrum)

Conditions for Figures 1 \& 2:		
LC:	Waters Acquity Ultra Performance LC	
MS: W	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column: A	Acquity UPLC BEH Shield RP_{18}	
		Full Scan (250-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60\% (80:20 MeOH:ACN) / 40\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=0.50$
	(both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=5$ (variable for SIR (2-12))
	Ramp to 85% organic over 7 min and hold for	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
	3 min before returning to initial conditions in 0.75 min .	Desolvation Gas Flow (l/hr) $=750$
	Time: 12 min	
Flow:	$300 \mu 1 / \mathrm{min}$	

Figure 3: PFDoA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 3:
Injection: On-column (PFDoA)
MS Parameters
Collision Gas (mbar) $=3.47 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=12$

WELLINGTON LAB ORATORIES

CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE:

COMPOUND:

PEBA
Perfluoro-n-butanoic acid

STRUCTURE:

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/ddrymy)
EXPIRY DATE: (mmoddyyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{4} \mathrm{HF}_{7} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
11/28/2018
11/28/2023
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 214.04
SOLVENT(S): Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFBA; LC/MS Data (TIC and Mass Spectrum)
28nov2018_PFBA_001
PFBA1118 $250 \mathrm{ng} / \mathrm{ml}$
100

Conditions for Figure 1:
 LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Waters Xevo TQ-S micro MS

Chromatograp	phic Conditions	MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient Start: 40% ($80: 20 \mathrm{MeOH}: A C N) / 60 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer) Ramp to 90% organic over 8 min and hold for 2 min before returning to initial conditions in 0.75 min . Time: 12 min	Source: Electrospray (negative) Capillary Voltage (kV) $=2.00$ Cone Voltage $(\mathrm{V})=10.00$ Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$ Desolvation Gas Flow (l/hr) = 1000
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

$18 L 2035$

Figure 2: \quad PFBA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: On-column (PFBA)
Mobile phase: Same as Figure 1
Flow: $\quad 300 \mu / / \mathrm{min}$

CERTIFICATE OF ANALYSIS

PRODUCT CODE: COMPOUND:
STRUCTURE:

PFPeA
Perfluoro-n-pentanoic acid

LOT NUMBER: PFPeA0218

CAS \#:
2706-90-3

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/dodmy)
EXPIRY DATE: (mm/dd/yyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{5} \mathrm{HF}_{9} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
02/16/2018
02/16/2023
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S): Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.3 \%$ of Perfluoro-n-heptanoic acid (PFHpA) and $\sim 0.2 \%$ of $\mathrm{C}_{5} \mathrm{H}_{2} \mathrm{~F}_{8} \mathrm{O}_{2}$ (hydrido - derivative) as measured by ${ }^{19} \mathrm{~F}$ NMR.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

[^6]
INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFPeA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 30\% (80:20 MeOH:ACN) / 70\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.50$
	(both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=15.00$
	Ramp to 90% organic over 7 min and hold for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min	Cone Gas Flow (I/hr) $=100$ Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: PFPeA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ PFPeA)
Mobile phase:	Isocratic 80% ($80: 20 \mathrm{MeOH}: \mathrm{ACN}$) / $20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.28 \mathrm{e}-3$
Collision Energy (eV) $=9$

CERTIFICATE OF ANALYSIS
 DOCUMENTATION

PRODUCT CODE:
COMPOUND:
\section*{PFHxA}
Perfluoro-n-hexanoic acid
STRUCTURE:

LOT NUMBER: PFHxA0518

MOLECULAR FORMULA:	$\mathrm{C}_{6} \mathrm{HF}_{11} \mathrm{O}_{2}$	MOLECULAR WEIGHT:	314.05
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT(S):	Methanol Water $(<1 \%)$
CHEMICAL PURITY:	$>98 \%$		
LAST TESTED: $(m m / d d / y s y)$	$05 / 18 / 2018$		
EXPIRY DATE: $(m m / d d / y y y)$	$05 / 18 / 2023$		
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 1.0 \%$ of branched isomers.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFHxA; LC/MS Data (TIC and Mass Spectrum)

18may2018_PFHxA_001	18-May-2018 $16: 14: 32$
PFHxA0518 $500 \mathrm{ng} / \mathrm{ml}$	
100	

1812037

Figure 2: \quad PFHxA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	On-column (PFHxA)
Mobile phase:	Same as Figure 1
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.50 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=8$

CERTIFICATE OF ANALYSIS

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.2 \%$ of perfluoro-n-nonanoic acid (PFNA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2} \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFDA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
 LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Waters Xevo TQ-S micro MS

Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (250-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50\% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=10.00$
	Ramp to 90% organic over 8 min and hold for	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
	2 min before returning to initial conditions in 0.75 min . Time: 12 min	Desolvation Gas Flow (1/hr) $=1000$
Flow:	$300 \mu / / \mathrm{min}$	

Figure 2: PFDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	On-column (PFDA)	MS Parameters
Mobile phase: Same as Figure 1	Collision Gas $(\mathrm{mbar})=3.04 \mathrm{e}-3$	
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	Collision Energy $(\mathrm{eV})=10$

PRODUCT CODE:
COMPOUND:
STRUCTURE:
Perfluoro-n-undecanoic acid
MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is: $\quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}$
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: \quad PFUdA; LC/MS Data (TIC and Mass Spectrum)
23aug2018_PFUdA_001
PFUdA0818 $250 \mathrm{ng} / \mathrm{ml}$
100

Figure 2: \quad PFUdA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	On-column (PFUdA)	MS Parameters
Mobile phase: Same as Figure 1	Collision Gas $(\mathrm{mbar})=3.45 \mathrm{e}-3$	
	Collision Energy $(\mathrm{eV})=12$	

PRODUCT CODE: COMPOUND:

PFTrDA
Perfluoro-n-tridecanoic acid

LOT NUMBER: PFTrDA0218

CAS \#:
72629-94-8

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmidarmys)
EXPIRY DATE: (mmddurw)
RECOMMENDED STORAGE:
$\mathrm{C}_{13} \mathrm{HF}_{25} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
02/16/2018
02/16/2023
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S):
664.11

Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.1 \%$ of PFUdA $\left(\mathrm{C}_{11} \mathrm{HF}_{21} \mathrm{O}_{2}\right), \sim 0.4 \%$ of PFDoA $\left(\mathrm{C}_{12} \mathrm{HF}_{23} \mathrm{O}_{2}\right)$, and $\sim 0.1 \%$ of PFTeDA $\left(\mathrm{C}_{14} \mathrm{HF}_{27} \mathrm{O}_{2}\right)$.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: 02/20/2018
(mm/dd/yyyy)

[^7]
INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFTrDA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Fiqure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Micromass Quattro micro API MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (150-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50\% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=22.00$
	Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min . Time: 10 min	Cone Gas Flow ($/ / \mathrm{hr}$) $=60$ Desolvation Gas Flow (l/hr) $=650$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: PFTrDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}$ ($500 \mathrm{ng} / \mathrm{ml}$ PFTrDA)
Mobile phase:Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH OAc_{4} buffer)	

MS Parameters

Collision Gas (mbar) $=3.43 \mathrm{e}-3$
Collision Energy (eV) $=15$

CERTIFICATE OF ANALYSIS

PRODUCT CODE:
COMPOUND:

STRUCTURE:

PFHpA
Perfluoro-n-heptanoic acid

LOT NUMBER: PFHpA0718

CAS \#:
375-85-9

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmoddyyy)
EXPIRY DATE: (mmddusmy)
RECOMMENDED STORAGE:
$\mathrm{C}_{7} \mathrm{HF}_{13} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
07/12/2018
07/12/2023
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S): Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: $\underbrace{07 / 18}_{(m / 18 / d)(2018)}$

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyse of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned values), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFHpA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP_{18}	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=0.50$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=5.00$
	Ramp to 80% organic over 8 min and hold for	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
	2 min before returning to initial conditions in 0.75 min . Time: 12 min	Desolvation Gas Flow (l/hr) $=1000$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: PFHpA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: On-column (PFHpA)
Mobile phase: Same as Figure 1

MS Parameters

Collision Gas (mbar) $=3.47 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=8$

CERTIFICATE OF ANALYSIS

PRODUCT CODE:

COMPOUND:

PFOA
Perfluoro-n-octanoic acid

STRUCTURE:

MOLECULAR FORMULA:

 CONCENTRATION:CHEMICAL PURITY:
LAST TESTED: (mmodrsmy)
EXPIRY DATE: (mmoddryys)
RECOMMENDED STORAGE:
$\mathrm{C}_{8} \mathrm{HF}_{15} \mathrm{O}_{2}$ $50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
08/23/2018
08/23/2023
Store ampoule in a cool, dark place

LOT NUMBER: PFOA0818

CAS \#:
335-67-1

MOLECULAR WEIGHT: 414.07
SOLVENT(S): Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: $\frac{08 / 24 / 2018}{\text { (mm/d } / \mathrm{y} y \mathrm{y})} \mathrm{L}$

[^8]
INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFOA; LC/MS Data (TIC and Mass Spectrum)

Figure 2: PFOA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:
Injection: On-column (PFOA)
Mobile phase: Same as Figure 1

MS Parameters

Collision Gas (bar) $=3.45 \mathrm{e}-3$
Collision Energy (eV) $=8$ LABORATORIES

CERTIFICATE OF ANALYSIS

 DOCUMENTATION
PRODUCT CODE:

COMPOUND:

STRUCTURE:

PFNA
Perfluoro-n-nonanoic acid

LOT NUMBER: PFNA0218

CAS \#:
375-95-1

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodumy)
EXPIRY DATE: (mmoddryy)
RECOMMENDED STORAGE:
$\mathrm{C}_{9} \mathrm{HF}_{17} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
02/16/2018
02/16/2023
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S): Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.2 \%$ of perfluoro-n-octanoic acid (PFOA), < 0.1% of perfluoro-n-heptanoic acid (PFHpA), and $<0.1 \%$ of perfluoro-n-undecanoic acid (PFUdA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
(mm/dd/yyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

$18 L 2043$

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is: $\quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}$
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFNA; LC/MS Data (TIC and Mass Spectrum)
16feb2108_PFNA_001
PFNA02 $1825 \mathrm{ug} / \mathrm{ml}$
100

Figure 2: PFNA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ PFNA)
Mobile phase:	Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$
(both with 10 mM NH	

MS Parameters

Collision Gas (mbar) $=3.24 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=11$

PRODUCT CODE: COMPOUND:

PFTeDA
Perfluoro-n-tetradecanoic acid

LOT NUMBER: PFTeDA0818

CAS \#:
376-06-7

MOLECULAR FORMULA:	$\mathrm{C}_{14} \mathrm{HF}_{27} \mathrm{O}_{2}$	MOLECULAR WEIGHT:	714.11
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	SOLVENT(S):	Methanol Water $(<1 \%)$
CHEMICAL PURITY:	$>98 \%$		
LAST TESTED: $(m m /(d d y y y y)$	$08 / 23 / 2018$		
EXPIRY DATE: $(m m / d d d y y y)$	$08 / 23 / 2023$		
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place		

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.3 \%$ of PFDoA $\left(\mathrm{C}_{12} \mathrm{HF}_{23} \mathrm{O}_{2}\right), \sim 0.1 \%$ of PFTrDA $\left(\mathrm{C}_{13} \mathrm{HF}_{25} \mathrm{O}_{2}\right)$, and $\sim 0.1 \%$ of PFPeDA $\left(\mathrm{C}_{15} \mathrm{HF}_{29} \mathrm{O}_{2}\right)$.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: $\frac{09 / 05 / 2018}{(\text { mm/dd } / \text { ysy })}$

INTENDED USE:
The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Fiqure 1: PFTeDA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:	
LC: \quad Waters Acquity Ultra Performance LC	
MS: \quad Waters Xevo TQ-S micro MS	
Chromatographic Conditions	MS Parameters
Column: \quad Acquity UPLC BEH Shield RP_{18}	Priment: Full Scan (250-850 amu)
Mobile phase: Gradient	Source: Electrospray (negative)
Start: 50% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=2.00$
(both with $10 \mathrm{mM} \mathrm{NH} 4 \mathrm{OAc}^{\text {b buffer) }}$	Cone Voltage (V) $=5.00$
Ramp to 90% organic over 8 min and hold for 2 min before returning to initial conditions in 0.75 min . Time: 12 min	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$ Desolvation Gas Flow (l/hr) $=1000$
Flow: $\quad 300 \mu / / \mathrm{min}$	

Figure 2: PFTeDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	On-column (PFTeDA)	MS Parameters
Mobile phase:	Same as Figure 1	Collision Gas $(\mathrm{mbar})=3.45 \mathrm{e}-3$
Flow:	$300 \mathrm{\mu} / \mathrm{min}$	Collision Energy $(\mathrm{eV})=12$

CERTIFICATE OF ANALYSIS

PRODUCT CODE:
 COMPOUND:

PFHxDA
Perfluoro-n-hexadecanoic acid

LOT NUMBER: PFHxDA0717

STRUCTURE:
GAS \#:
67905-19-5

MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mm(ddrymy)
EXPIRY DATE: (mmddalyyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{18} \mathrm{HF}_{31} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
07/13/2017
07/13/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT (S):
814.13

Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: $\frac{08 / 04 / 2017}{(\text { mmidadymy })}$

INTENDED USE:
The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is: $\quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}$
where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFHxDA; LC/MS Data (TIC and Mass Spectrum)

Figure 2: \quad PFHxDA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ PFHxDA)
Mobile phase:	$\left.\begin{array}{l}\text { Isocratic } 80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O} \\ \text { (both with } 10 \mathrm{mM} \mathrm{NH}\end{array}\right)$
Flow: buffer)	$300 \mu \mathrm{~L} / \mathrm{min}$

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE: COMPOUND:

PFODA
Perfluoro-n-octadecanoic acid

LOT NUMBER: PFODA0717

CAS \#:
16517-11-6

MOLECULAR FORMULA:
CONCENTRATION: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmdduryy) EXPIRY DATE: (mmddaysy)
RECOMMENDED STORAGE:
$\mathrm{C}_{18} \mathrm{HF}_{35} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
07/13/2017
07/13/2022
Store ampoule in a cool, dark place

MOLECULAR WEIGHT:
SOLVENT(S):
914.14

Methanol
Water (<1\%)

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: PFODA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:	
LC: \quad Waters Acquity Ultra Performance LC	
MS: \quad Micromass Quattro micro API MS	
Chromatographic Conditions	MS Parameters
Column: Acquity UPLC BEH Shield RP_{18}	
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (250-1250 amu)
Mobile phase: Gradient	Source: Electrospray (negative)
Start: 55% (80:20 MeOH:ACN) / 45\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=3.00$
(both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=25.00$
Ramp to 90% organic over 7 min and hold for 2 min before returning to initial conditions in 0.5 min . Time: 10 min	Cone Gas Flow (l/hr) $=100$ Desolvation Gas Flow (l/hr) $=750$
Flow: $\quad 300 \mu / / \mathrm{min}$	

Figure 2: PFODA; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{PFODA)}$	MS Parameters
Mobile phase:	Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH 4 OAc buffer)	Collision Gas $(\mathrm{mbar})=3.31 \mathrm{e}-3$ Collision Energy $(\mathrm{eV})=15$
Flow:	$300 \mu / / \mathrm{min}$	

PRODUCT CODE:
 COMPOUND:

STRUCTURE:

L-PFBS
Potassium perfluoro-1-butanesulfonate

MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/ddyyy)
EXPIRY DATE: (mmddd/yMy)
RECOMMENDED STORAGE:
$\mathrm{C}_{4} \mathrm{~F}_{9} \mathrm{SO}_{3} \mathrm{~K}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (K salt)
$44.2 \pm 2.2 \mu \mathrm{~g} / \mathrm{ml}$ (PFBS anion)
>98\%
05/04/2018
05/04/2023
Store ampoule in a cool, dark place

LOT NUMBER: LPFBS0418

CAS \#: 29420-49-3

MOLECULAR WEIGHT: 338.19
SOLVENT(S): Methanol

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
05/25/2018
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: L-PFBS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (250-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50% ($80: 20 \mathrm{MeOH}: A C N$) / $50 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Capillary Voltage (kV) $=0.50$ Cone Voltage (V) $=5.00$
	Ramp to 80% organic over 7 min and hold for	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
	3 min before returning to initial conditions in 0.75 min . Time: 12 min	Desolvation Gas Flow (1/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: L-PFBS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:	
Injection: \quad On-column (L-PFBS)	MS Parameters
Mobile phase:	Same as Figure 1
Flow: $\quad 300 \mu / / \mathrm{min}$	Collision Gas (mbar) $=3.45 \mathrm{e}-3$ Collision Energy $(\mathrm{eV})=30$

PRODUCT CODE:
COMPOUND:
STRUCTURE:

MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mmodrymy)
EXPIRY DATE: (mmddyyyy)
RECOMMENDED STORAGE:

L-PFPeS
Sodium perfluoro-1-pentanesulfonate
CHEMICAL PURITY:
LAST TESTED: (mmoddryy)
EXPIRY DATE: (mmodolyyy)
RECOMMENDED STOR
$\mathrm{C}_{5} \mathrm{~F}_{11} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$46.9 \pm 2.3 \mu \mathrm{gg} / \mathrm{ml}$ (PFPeS anion)
>98\%
07/12/2018
07/12/2023
Store ampoule in a cool, dark place

LOT NUMBER: LPFPeS0718

CAS \#:
630402-22-1

MOLECULAR WEIGHT: 372.09
SOLVENT(S): Methanol

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{i}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).
For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: L-PFPeS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC:	Waters Acquity Ultra Performance LC
MS:	Waters Xevo TQ-S micro MS

Chromatographic Conditions

Column:
Acquity UPLC BEH Shield RP_{18} $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm} \quad$ Experiment: Full Scan (225-850 amu)

Mobile phase: Gradient
Start: 50% ($80: 20 \mathrm{MeOH}: A C N$) / $50 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 80% organic over 8 min and hold for 2 min before returning to initial conditions in 0.75 min . Time: 12 min

MS Parameters

Source: Electrospray (negative)
Capillary Voltage (kV) $=0.50$
Cone Voltage (V) $=5.00$
Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
Desolvation Gas Flow (l/hr) $=1000$

Flow:
$300 \mu \mathrm{l} / \mathrm{min}$

Figure 2: L-PFPeS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: On-column (L-PFPeS)
Mobile phase: Same as Figure 1

MS Parameters

Collision Gas (mbar) $=3.47 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=32$

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE:

COMPOUND:

STRUCTURE:

OLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (muldadysy)
EXPIRY DATE: (mmpdolymy)
RECOMMENDED STORAGE:

L-PFHpS
Sodium perfluoro-1-heptanesulfonate

LOT NUMBER: LPFHpS0418

CAS \#: Not available

MOLECULAR WEIGHT: 472.10
SOLVENT(S):
Methanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.2 \%$ of $\mathrm{L}-\mathrm{PFHxS}\left(\mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{SO}_{3} \mathrm{Na}\right)$ and $\sim 0.1 \%$ of $\mathrm{L}-\mathrm{PFOS}\left(\mathrm{C}_{8} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}\right)$.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

[^9]
INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{0}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: L-PFHpS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (250-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=0.50$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=5.00$
	Ramp to 80% organic over 7 min and hold for	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
	3 min before returning to initial conditions in 0.75 min . Time: 12 min	Desolvation Gas Flow (1/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: L-PFHpS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection:	On-column (L-PFHpS)
Mobile phase:	Same as Figure 1
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

```
MS Parameters
    Collision Gas (mbar) = 3.45e-3
    Collision Energy (eV) = 42
```


PRODUCT CODE:

COMPOUND:

STRUCTURE:

L-PFNS
Sodium perfluoro-1-nonanesulfonate

LOT NUMBER: LPFNS0718

CAS \#: 98789-57-2

MOLECULAR WEIGHT: 572.12
SOLVENT(S): Methanol

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS, The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).
For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: L-PFNS; LC/MS Data (TIC and Mass Spectrum)

Figure 2: L-PFNS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:
Injection: On-column (L-PFNS)

Mobile phase: Same as Figure 1
Flow: $\quad 300 \mu 1 / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.45 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=64$

PRODUCT CODE:
 COMPOUND:

STRUCTURE:

L-PFDS
Sodium perfluoro-1-decanesulfonate

MOLECULAR FORMULA:	$\mathrm{C}_{10} \mathrm{~F}_{21} \mathrm{SO}_{3} \mathrm{Na}$	MOLECULAR WEIGHT:	622.13	
CONCENTRATION:	$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)	SOLVENT(S):	Methanol	
	$48.2 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (PFDS anion)			
CHEMICAL PURITY:	$>98 \%$			
LAST TESTED: (mm/dd/yyy)	$10 / 05 / 2018$			
EXPIRY DATE: (mm/dd/yyy)	$10 / 05 / 2023$			
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place			

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- \quad See page 2 for further details.
- Contains $\sim 0.9 \%$ of sodium perfluoro-1-dodecanesulfonate (L-PFDoS).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: L-PFDS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	
		Experiment: Full Scan (250-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative) Capillary Voltage (kV) $=2.00$ Cone Voltage (V) $=10.00$ Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$ Desolvation Gas Flow (l/hr) $=1000$
	Start: 60% (80:20 MeOH:ACN) / $40 \% \mathrm{H}_{2} \mathrm{O}$	
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	
	Ramp to 90% organic over 7 min and hold for	
	3 min before returning to initial conditions in 0.75 min . Time: 12 min	
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

Figure 2: L-PFDS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 2:			
Injection: \quad On-column (L-PFDS)	MS Parameters		
Mobile phase:	Same as Figure 1		
Flow:	$300 \mu l / \mathrm{min}$		Collision Gas (mbar) $=2.97 \mathrm{e}-3$
:---			
Collision Energy $(\mathrm{eV})=56$			

CERTIFICATE OF ANALYSIS DOCUMENTATION

br-PFHxSK

Potassium Perfluorohexanesulfonate Solution/Mixture of Linear and Branched Isomers

```
PRODUCT CODE:
LOT NUMBER:
CONCENTRATION:
SOLVENT(S):
DATE PREPARED: (mm(d)/ymy)
LAST TESTED: (mmodymy)
EXPIRY DATE: (mmlddymy)
RECOMMENDED STORAGE:
```

br-PFHxSK
brPFHxSK1018
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (total potassium salt)
$45.5 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}$ (total PFHxS anion)
Methanol
10/01/2018
10/02/2018
10/02/2023
Store ampoule in a cool, dark place

DESCRIPTION:

The chemical purity has been determined to be $\geq 98 \%$ perfluorohexanesulfonate linear and branched isomers. The full name, structure and percent composition for each of the identified isomeric components are given in Table A.

DOCUMENTATION/ DATA ATTACHED:

Table A: Isomeric Components and Percent Composition by ${ }^{19} \mathrm{~F}$-NMR
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (SIR)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.3 \%$ of perfluoro-n-hexanoic acid and $\sim 0.15 \%$ of perfluoro- 1 -pentanesulfonate.
- CAS\#: 3871-99-6 (for linear isomer; potassium salt).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

[^10]
INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products, as well as mixtures and calibration solutions, are compared to older lots in a similar manner. This further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Table A: br-PFHxSK; Isomeric Components and Percent Composition (by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$)*

Isomer	Name		$\begin{array}{c}\text { Structure } \\ \text { Percent } \\ \text { Composition } \\ \text { by }\end{array}$
1	Potassium perfluoro-1-hexanesulfonate		

* \quad Percent of total perfluorohexanesulfonate isomers only.
** Systematic Name: Potassium perfluorohexane-2-sulfonate.
Certified By:
B.G. Chittim, General Manager

Date: 10/05/2018
(mm/dd/yyy)

Figure 1: br-PFHxSK; LC/MS Data (TIC and Mass Spectrum)

Figure 2: br-PFHxSK; LC/MS Data (SIR)

Conditions for Figure 2:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: SIR (9 channels)
Mobile phase:	Gradient Start: 50% ($80: 20 \mathrm{MeOH}: A C N$) / $50 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer) Ramp to 90% organic over 8 min . Hold for 2 min before returning to initial conditions in 0.75 min . Time: 12 min	Source: Electrospray (negative) Capillary Voltage (kV) $=2.00$ Cone Voltage (V) = variable (2-6) Desolvation Temperature $\left({ }^{\circ} \mathrm{C}\right)=500$ Desolvation Gas Flow $(1 / \mathrm{hr})=1000$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

1812052

Figure 3: br-PFHxSK; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 3:

Injection: On-column (br-PFHxSK)
Mobile phase: Same as Figures 1 and 2

MS Parameters

Collision Gas (bar) $=2.87 \mathrm{e}-3$
Collision Energy (aV) $=42$

Flow: $\quad 300 \mu \mathrm{l} / \mathrm{min}$

WELLINGTON LA B OR A T ORIES

CERTIFICATE OF ANALYSIS
 DOCUMENTATION

br-PFOSK

Potassium Perfluorooctanesulfonate
Solution/Mixture of Linear and Branched Isomers

PRODUCT CODE:	br-PFOSK
LOT NUMBER:	brPFOSK0418
CONCENTRATION:	$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (total potassium salt)
	$46.4 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}$ (total PFOS anion)
SOLVENT(S):	Methanol
DATE PREPARED: (mm/dd/yyy)	$04 / 09 / 2018$
LAST TESTED: (mm/dd/yyy)	$04 / 18 / 2018$
EXPIRY DATE: (mm/ddyyy)	$04 / 18 / 2023$
RECOMMENDED STORAGE:	Store ampoule in a cool, dark place

DESCRIPTION:

The chemical purity has been determined to be $\geq 98 \%$ perfluorooctanesulfonate linear and branched isomers. The full name, structure and percent composition for each of the isomeric components are given in Table A.

DOCUMENTATION/ DATA ATTACHED:

Table A: Isomeric Components and Percent Composition by ${ }^{19} \mathrm{~F}$-NMR
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (SIR)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- A 5-point calibration curve was generated using linear PFOS (potassium salt) and mass-labelled PFOS as an internal standard to enable quantitation of br-PFOSK using isotopic dilution.
- CAS\#: 2795-39-3 (for linear isomer; potassium salt).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products, as well as mixtures and calibration solutions, are compared to older lots in a similar manner. This further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{t}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y_{1}, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

CALA
scrustiation to Aluas

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Table A: br-PFOSK; Isomeric Components and Percent Composition (by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$)*

** Percent of total perfluorooctanesulfonate isomers only. Isomers are labelled in Figure 2.
** Systematic Name: Potassium perfluorooctane-2-sulfonate.
Certified By:

Date: 04/23/2018 (mm/dd/yyyy)

Figure 1: br-PFOSK; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC Waters Xevo TQ-S micro MS	
MS:		
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP $_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (250-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 60\% (80:20 MeOH:ACN) / 40\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=0.50$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=5.00$
	Ramp to 85% organic over 7 min and hold for 3 min .	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
	Return to initial conditions over 0.75 min .	Desolvation Gas Flow (/Vrr) $=750$
	Time: 12 min	
Flow:	$300 \mu / / m i n$	

Figure 2: \quad br-PFOSK; LC/MS Data (SIR)


```
Conditions for Fiqure 2:
LC: Waters Acquity Ultra Performance LC
MS: Waters Xevo TQ-S micro MS
```


Chromatographic Conditions:

```
Column: \(\quad\) Acquits UPLC BEH Shield \(\mathrm{RP}_{18}(1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm})\)
Injection: \(\quad 50 \mathrm{ng} / \mathrm{ml}\) of br-PFOSK
Mobile Phase: Gradient
\(60 \%(80: 20 \mathrm{MeOH}: A C N) / 40 \% \mathrm{H}_{2} \mathrm{O}\) (both with \(10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}\) buffer)
Ramp to \(85 \%\) organic over 7 min and hold for 3 min .
Return to initial conditions over 0.75 min .
Time: 12 min
Flow: \(\quad 300 \mu 1 / \mathrm{min}\)
MS Conditions:
SIR (ES)
Source \(=150^{\circ} \mathrm{C}\)
Desolvation \(=500^{\circ} \mathrm{C}\)
Cone Voltage \(=2-20 \mathrm{~V}\) (variable)
```

Figure 3: br-PFOSK; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 3:
Injection: On-column (br-PFOSK)

Mobile phase: Same as Figure 2
Flow: $\quad 300 \mu / / m i n$

MS Parameters

Collision Gas (mbar) $=3.47 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=64$

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE:
COMPOUND:

STRUCTURE:
4:2FTS
LOT NUMBER: 42FTS0718
Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluorohexane sulfonate
CAS \#: \quad Not available

MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmiduyyy)
EXPIRY DATE: (mmodrymy)
RECOMMENDED STORAGE:
$\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{~F}_{8} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \quad$ (Na salt)
$46.7 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml} \quad$ (4:2FTS anion)
>98\%
07/03/2018
07/03/2023
Refrigerate ampoule

MOLECULAR WEIGHT: 350.13
SOLVENT(S): Methanol

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (SIR)
Figure 2: LC/MS Data (Mass Spectrum)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad
Date: $\frac{07 / 05 / 2018}{(\text { mm/dd } / \text { mon })}$
(mm/dd/yyyy)

[^11]
INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: $\quad 4: 2 \mathrm{FTS}$; LC/MS Data (SIR)

Figure 2: \quad 4:2FTS; LC/MS Data (Mass Spectrum)

Figure 3: \quad 4:2FTS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 3:

Injection:	On-column (4:2FTS)
Mobile phase:	Same as Figures $1 \& 2$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters
Collision Gas (mbar) $=3.55 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=18$

PRODUCT CODE:
COMPOUND:

STRUCTURE:

6:2FTS
Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluorooctane sulfonate

CAS \#:
Not available

MOLECULAR FORMULA:	$\mathrm{C}_{8} \mathrm{H}_{4} \mathrm{~F}_{13} \mathrm{SO}_{3} \mathrm{Na}$		MOLECULAR WEIGHT:	450.15
CONCENTRATION:	$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$	(Na salt)	SOLVENT(S):	Methanol
	$47.4 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$	(6:2FTS anion)		
CHEMICAL PURITY:	>98\%			
LAST TESTED: (mm/didyyy)	04/03/2018			
EXPIRY DATE: (mm/dd/yny)	04/03/2023			
RECOMMENDED STORAGE:	Refrigerate ampo			

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- \quad See page 2 for further details.
- Contains $\sim 0.3 \%$ of sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluorodecane sulfonate (8:2FTS).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{\mathrm{c}}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).
For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: \quad 6:2FTS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:		
LC:	Waters Acquity Ultra Performance LC	
MS:	Waters Xevo TQ-S micro MS	
Chromatographic Conditions		MS Parameters
Column:	Acquity UPLC BEH Shield RP ${ }_{18}$	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	Experiment: Full Scan (225-850 amu)
Mobile phase:	Gradient	Source: Electrospray (negative)
	Start: 50\% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$	Capillary Voltage (kV) $=0.50$
	(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)	Cone Voltage (V) $=25.00$
	Ramp to 80\% organic over 7 min and hold for	Desolvation Temperature (${ }^{\circ} \mathrm{C}$) $=500$
	3 min before returning to initial conditions in 0.75 min . Time: 12 min	Desolvation Gas Flow (l/hr) $=750$
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$	

1822055

Figure 2: \quad 6:2FTS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Fiqure 2:

Injection:	On-column (6:2FTS)
Mobile phase:	Same as Figure 1
Flow:	$300 \mu \mathrm{l} / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.39 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=20$
Flow: $\quad 300 \mu 1 / \mathrm{min}$

CERTIFICATE OF ANALYSIS DOCUMENTATION

PRODUCT CODE:

COMPOUND:
8:2FTS
LOT NUMBER: 82 FTS1118
Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluorodecane sulfonate

STRUCTURE:
GAS \#:
Not available

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{t}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: \quad 8:2FTS; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:
 LC: \quad Waters Acquity Ultra Performance LC
 MS: \quad Waters Xevo TQ-S micro MS

Chromatographic Conditions
Column:
Acquity UPLC BEH Shield RP_{18}
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: 50% ($80: 20 \mathrm{MeOH}: A C N$) / $50 \% \mathrm{H}_{2} \mathrm{O}$
(both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer)
Ramp to 90% organic over 8 min and hold for 2 min
before returning to initial conditions in 0.75 min .
Time: 12 min
Flow: $\quad 300 \mu / / m i n$

MS Parameters

Experiment: Full Scan (225-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=0.50$
Cone Voltage (V) $=25.00$
Desolvation Temperature $\left({ }^{\circ} \mathrm{C}\right)=500$
Desolvation Gas Flow (l/hr) $=750$
$18 L 2056$

Figure 2: \quad 8:2FTS; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: On-column (8:2FTS)
Mobile phase: Same as Figure 1
Flow: $\quad 300 \mu / / \mathrm{min}$

WELLINGTON LA B ORATORIES

CERTIFICATE OF ANALYSIS

PRODUCT CODE:

 COMPOUND:FOSA-I
Perfluoro-1-octanesulfonamide

STRUCTURE:

MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mm/dd/yyy)
EXPIRY DATE: (mm/dd/yyy)
RECOMMENDED STORAGE: Refrigerate ampoule
$\mathrm{C}_{8} \mathrm{H}_{2} \mathrm{~F}_{17} \mathrm{NO}_{2} \mathrm{~S}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
$>98 \%$
06/20/2018
06/20/2023

LOT NUMBER: FOSA0618I

CAS \#:
754-91-6

DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.

MOLECULAR WEIGHT: 499.14
SOLVENT(S): Isopropanol

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: \qquad
(mm/dd/yyyy)

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Figure 1: \quad FOSA-I; LC/MS Data (TIC and Mass Spectrum)

Figure 2: \quad FOSA-I; LC/MS/MS Data (Selected MRM Transitions)

Conditions for Figure 2:

Injection: On-column (FOSA-I)
Mobile phase: Same as Figure 1
Flow: $\quad 300 \mu / / \mathrm{min}$

MS Parameters

Collision Gas (mbar) $=3.43 \mathrm{e}-3$
Collision Energy (eV) $=30$

br-NMeFOSAA

N-Methylperfluorooctanesulfonamidoacetic

Acid Solution/Mixture of Linear and
Branched Isomers

PRODUCT CODE:
 LOT NUMBER:
 CONCENTRATION:
 SOLVENT(S):
 DATE PREPARED:
 (mmiddylyyy)
 LAST TESTED: (mm/ddyyyy)
 EXPIRY DATE: (mmdddyyy)
 RECOMMENDED STORAGE:

```
br-NMeFOSAA
brNMeFOSAA0118
50.0\pm2.5 \mug/ml
Methanol/Water (<1%)
01/10/2018
01/17/2018
01/17/2023
Refrigerate ampoule
```


DESCRIPTION:

The chemical purity has been determined to be $\geq 98 \% \mathrm{~N}$-methylperfluorooctanesulfonamidoacetic acid (linear and branched isomers). The full name, structure and percent composition for each of the identified isomeric components are given in Table A.

DOCUMENTATION/ DATA ATTACHED:

Table A: Isomeric Components and Percent Composition by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (SIR)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the acetic acid moiety to its respective methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains.

HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products, as well as mixtures and calibration solutions, are compared to older lots in a similar manner. This further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value y and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of 95%) is stated on the Certificate of Analysis for all of our products.

TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com

Table A: br-NMeFOSAA; Isomeric Components and Percent Composition (by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$)*

Isomer	Name	Structure	Percent Composition by ${ }^{19} \mathrm{~F}$-NMR
1	N -methylperfluoro-1-octanesulfonamidoacetic acid		76.0
2	N-methylperfluoro-3-methylheptanesulfonamidoacetic acid		0.7
3	N-methylperfluoro-4-methylheptanesulfonamidoacetic acid	$\underset{\substack{ \\\mathrm{CF}_{3}\left(\mathrm{CF}_{2}\right)_{2} \mathrm{CF}\left(\mathrm{CF}_{2}\right)_{3} \mathrm{SO}_{2} \mathrm{NCH}_{2} \mathrm{CO}_{2} \mathrm{H} \\ \mathrm{CH}_{3}}}{\text { and }}$	2.0
4	N-methylperfluoro-5-methylheptanesulfonamidoacetic acid		6.0
5	N-methylperfluoro-6-methylheptanesulfonamidoacetic acid		14.0
6	N-methylperfluoro-5,5-dimethylhexanesulfonamidoacetic acid		0.2
7	Other Unidentified Isomers		1.1

* Percent of total N-methylperfluorooctanesulfonamidoacetic acid isomers only.

Certified By:

Date: 03/22/2018
(mm/dd/yyyy)

Figure 1: br-NMeFOSAA; LC/MS Data (TIC and Mass Spectrum)

Conditions for Figure 1:

LC: \quad Waters Acquits Ultra Performance LC
MS: \quad Micromass Quattro micro API MS

Chromatographic Conditions	MS Parameters	
Column:	Acquits UPLC BEH Shield RP_{18}	
	$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$	

Figure 2: $\quad b r-N M e F O S A A ; ~ L C / M S ~ D a t a ~(S I R) ~$

Figure 3: br-NMeFOSAA; LC/MS/MS Data (Selected MRM Transitions)

*Note: N-MeFOSA is formed by in-source fragmentation.

Conditions for Figure 3:	
Injection: \quad On-column	MS Parameters
Mobile phase:	Same as Figure 2
Collision Gas (mbar) $=3.39 \mathrm{e}-3$	
Collision Energy $(\mathrm{eV})=11-40$ (variable)	

CERTIFICATE OF ANALYSIS

br-NEtFOSAA

N -Ethylperfluorooctanesulfonamidoacetic

 Acid Solution/Mixture of Linear and Branched Isomers```
PRODUCT CODE:
LOT NUMBER:
CONCENTRATION:
SOLVENT(S):
DATE PREPARED:(mm/d/lygy)
LAST TESTED: (mm/dd/yyy)
EXPIRY DATE:(mm/ddyyyy)
RECOMMENDED STORAGE:
```

```
br-NEtFOSAA
brNEtFOSAA0718
50.0\pm2.5 \mu\textrm{g}/\textrm{ml}
Methanol/Water (<1%)
07/25/2018
07/26/2018
07/26/2023
Refrigerate ampoule
```


## DESCRIPTION:

The chemical purity has been determined to be $\geq 98 \% \mathrm{~N}$-ethylperfluorooctanesulfonamidoacetic acid (linear and branched isomers). The full name, structure and percent composition for each of the identified isomeric components are given in Table A.

## DOCUMENTATION/ DATA ATTACHED:

Table A: Isomeric Components and Percent Composition by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (SIR)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the acetic acid moiety to its respective methyl ester.
- Contains $\sim 0.6 \%$ of perfluoro-n-octanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

[^12]
## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compounds it contains.

## HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products, as well as mixtures and calibration solutions, are compared to older lots in a similar manner. This further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Table A: br-NEtFOSAA; Isomeric Components and Percent Composition (by ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ )*

| Isomer | Name | Structure | Percent Composition by ${ }^{19} \mathrm{~F}$-NMR |
| :---: | :---: | :---: | :---: |
| 1 | N -ethylperfluoro-1-octanesulfonamidoacetic acid | $\begin{gathered} \mathrm{CF}_{3}\left(\mathrm{CF}_{2}\right)_{7} \mathrm{SO}_{2} \mathrm{NCH}_{2} \mathrm{CO}_{2} \mathrm{H} \\ \mathrm{C}_{2} \mathrm{H}_{5} \end{gathered}$ | 77.5 |
| 2 | N-ethylperfluoro-3-methylheptanesulfonamidoacetic acid | $\begin{gathered} \mathrm{CF}_{3}\left(\mathrm{CF}_{2}\right)_{3} \mathrm{CF}\left(\mathrm{CF}_{2}\right)_{2} \mathrm{SO}_{2} \mathrm{NCH}_{2} \mathrm{CO}_{2} \mathrm{H} \\ \mathrm{CF}_{3} \quad \mathrm{C}_{2} \mathrm{H}_{5} \end{gathered}$ | 2.3 |
| 3 | N-ethylperfluoro-4-methylheptanesulfonamidoacetic acid |  | 2.2 |
| 4 | N-ethylperfluoro-5-methylheptanesulfonamidoacetic acid | $\begin{gathered} \mathrm{CF}_{3} \mathrm{CF}_{2} \mathrm{CF}\left(\mathrm{CF}_{2}\right)_{4} \mathrm{SO}_{2} \mathrm{NCH}_{2} \mathrm{CO}_{2} \mathrm{H} \\ \mathrm{CF}_{3} \quad \mathrm{C}_{2} \mathrm{H}_{5} \end{gathered}$ | 5.4 |
| 5 | N-ethylperfluoro-6-methylheptanesulfonamidoacetic acid |  | 10.4 |
| 6 | N -ethylperfluoro-5,5-dimethylhexanesulfonamidoacetic acid |  | 0.3 |
| 7 | N-ethylperfluoro-4,5-dimethylhexanesulfonamidoacetic acid |  | 0.3 |
| 8 | N-ethylperfluoro-3,5-dimethylhexanesulfonamidoacetic acid |  | 0.3 |
| 9 | Other Unidentified Isomers |  | 1.3 |

* Percent of total N -ethylperfluorooctanesulfonamidoacetic acid isomers only.

Certified By:


Date: 07/27/2018 (mm/dd/yyyy)

Figure 1: br-NEtFOSAA; LC/MS Data (TIC and Mass Spectrum)




## - Figure 2: br-NEtFOSAA; LC/MS Data (SIR)




Figure 3: br-NEtFOSAA; LC/MS/MS Data (Selected MRM Transitions)

*Note: N-EtFOSA is formed by in-source fragmentation.
Conditions for Figure 3:

| Injection: | On-column (br-NEtFOSAA) | MS Parameters |
| :--- | :--- | :--- |
| Mobile phase: | Same as Figure 1 | Collision Gas $(\mathrm{mbar})=3.76 \mathrm{e}-3$ |
| Flow: | $300 \mu \mathrm{l} / \mathrm{min}$ | Collision Energy $(\mathrm{eV})=18$ |

WELLINGTON LABORATORIES

## CERTIFICATE OF ANALYSIS DOCUMENTATION

## PRODUCT CODE:

COMPOUND:

STRUCTURE:

N-MeFOSA-M
N -methylperfluoro-1-octanesulfonamide

LOT NUMBER: NMeFOSA0518M

CAS \#: 31506-32-8


MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mm/dd/sysy)
EXPIRY DATE: (mm/ddynys)
RECOMMENDED STORAGE:
$\mathrm{C}_{9} \mathrm{H}_{4} \mathrm{~F}_{17} \mathrm{NO}_{2} \mathrm{~S}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
05/31/2018
05/31/2023
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 513.17
SOLVENT(S):
Methanol

## DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date $\qquad$

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: $\quad$ N-MeFOSA-M; LC/MS Data (TIC and Mass Spectrum)



| Conditions for Figure 1: |  |  |
| :---: | :---: | :---: |
| LC: | Waters Acquity Ultra Performance LC |  |
| MS: | Waters Xevo TQ-S micro MS |  |
| Chromatographic Conditions |  | MS Parameters |
| Column: | Acquity UPLC BEH C ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$ | Experiment: Full Scan (225-850 amu) |
| Mobile phase: | Gradient | Source: Electrospray (negative) |
|  | Start: 60\% (80:20 MeOH:ACN) / 40\% H2O | Capillary Voltage (kV) $=1.00$ |
|  | (both with $10 \mathrm{mM} \mathrm{NH} 4_{4} \mathrm{OAc}$ buffer) | Cone Voltage (V) $=44.00$ |
|  | Ramp to $85 \%$ organic over 7 min and hold for | Desolvation Temperature ( ${ }^{\circ} \mathrm{C}$ ) $=500$ |
|  | 3 min before returning to initial conditions in 0.75 min . Time: 12 min | Desolvation Gas Flow (1/hr) = 750 |
| Flow: | $300 \mu \mathrm{l} / \mathrm{min}$ |  |

## $18 L 2060$

Figure 2: $\quad$ N-MeFOSA-M; LC/MS/MS Data (Selected MRM Transitions)


## Conditions for Figure 2:

Injection: On-column (N-MeFOSA-M)
Mobile phase: Same as Figure 1
Flow: $\quad 300 \mu \mathrm{l} / \mathrm{min}$

## MS Parameters

Collision Gas (mbar) $=3.37 \mathrm{e}-3$
Collision Energy (aV) $=24$

## CERTIFICATE OF ANALYSIS

PRODUCT CODE:<br>COMPOUND:

N -EtFOSA-M
N -ethylperfluoro-1-octanesulfonamide

LOT NUMBER: NEtFOSA0518M

CAS \#:
4151-50-2


MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mm/dd/ysy)
EXPIRY DATE: (mm/dd/yny)
RECOMMENDED STORAGE:
$\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~F}_{17} \mathrm{NO}_{2} \mathrm{~S}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
05/31/2018
05/31/2023
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 527.20
SOLVENT(S): Methanol

## DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- $\quad$ See page 2 for further details.
- Contains $\sim 0.5 \%$ branched isomers of N -ethylperfluorooctanesulfonamide.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: $\frac{06 / 12 / 2018}{(m m / d d / y y y)}$

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

${ }^{* *}$ For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: $\quad \mathrm{N}-E t F O S A-M ;$ LC/MS Data (TIC and Mass Spectrum)


| Conditions for Figure 1: |  |  |
| :---: | :---: | :---: |
| LC: | Waters Acquity Ultra Performance LC |  |
| MS: | Waters Xevo TQ-S micro MS |  |
| Chromatographic Conditions |  | MS Parameters |
| Column: | Acquity UPLC BEH $\mathrm{C}_{18}$ <br> $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$ | Experiment: Full Scan (225-850 amu) |
| Mobile phase: | Gradient | Source: Electrospray (negative) |
|  | Start: $60 \%$ ( 80:20 MeOH:ACN) / 40\% $\mathrm{H}_{2} \mathrm{O}$ | Capillary Voltage (kV) $=1.00$ |
|  | (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer) | Cone Voltage (V) $=44.00$ |
|  | Ramp to $85 \%$ organic over 7 min and hold for | Desolvation Temperature ( ${ }^{\circ} \mathrm{C}$ ) $=500$ |
|  | 3 min before returning to initial conditions in 0.75 min . Time: 12 min | Desolvation Gas Flow (l/hr) $=750$ |
| Flow: | $300 \mu 1 / \mathrm{min}$ |  |

Figure 2: $\quad$ N-EtFOSA-M; LC/MS/MS Data (Selected MRM Transitions)


## Conditions for Figure 2:

| Injection: | On-column (N-EtFOSA-M) |
| :--- | :--- |
| Mobile phase: | Same as Figure 1 |
| Flow: | $300 \mu \mathrm{l} / \mathrm{min}$ |

## MS Parameters

Collision Gas (mbar) $=3.37 \mathrm{e}-3$
Collision Energy (eV) $=24$


## DOCUMENTATION/ DATA ATTACHED:

Figure 1: HRGC/LRMS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (TIC and Mass Spectrum)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- $\quad$ See page 2 for further details.
- In order to see the molecular ion (adduct free), the LC mobile phase should be free of ammonium acetate buffer.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: $\qquad$

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{i}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

## $18 L 2062$

Figure 1: $\quad$ N-MeFOSE-M; HRGC/LRMS Data (TIC and Mass Spectrum)


## HRGC/LRMS:

Agilent 7890A (HRGC)
Agilent 5975C (LRMS)

## Chromatographic Conditions:

Column: $\quad 30 \mathrm{~m}$ DB-5 ( 0.25 mm id, $0.25 \mu \mathrm{~m}$ film thickness) Agilent J\&W

```
Injector: }\quad250\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ (Splitless Injection)
Oven: }\quad100\mp@subsup{}{}{\circ}\textrm{C}(5\textrm{min}
 10 %}\textrm{C}/\textrm{min}\mathrm{ to }325\mp@subsup{5}{}{\circ}\textrm{C
 325 '}\textrm{C}(20\textrm{min}
lonization: El+
Detector: }\quad250\mp@subsup{}{}{\circ}\textrm{C
 Full Scan (50-1000 amu)
```



Figure 2: $\quad$ N-MeFOSE-M; LC/MS Data (TIC and Mass Spectrum)


Conditions for Figure 2:

```
LC: Waters Acquity Ultra Performance LC
```

MS: $\quad$ Waters Xevo TQ-S micro MS

## Chromatographic Conditions

Column: Acquity UPLC BEH Shield RP ${ }_{18}$
$1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$
Mobile phase: Gradient
Start: $65 \% \mathrm{MeOH} / 35 \% \mathrm{H}_{2} \mathrm{O}$
Ramp to $85 \%$ organic over 8 min and hold for
2 min before returning to initial conditions in 0.75 min .
Time: 12 min
Flow: $\quad 300 \mu / / m i n$

## MS Parameters

Experiment: Full Scan (250-850 amu)
Source: Electrospray (negative)
Capillary Voltage (kV) $=2.00$
Cone Voltage ( V ) $=65.00$
Desolvation Temperature ( ${ }^{\circ} \mathrm{C}$ ) $=450$
Desolvation Gas Flow (l/hr) $=750$

Figure 3: $\quad$ N-MeFOSE-M; LC/MS/MS Data (Selected MRM Transitions)


| Conditions for Figure 3: |  |
| :--- | :--- |
| Injection: $\quad$ On-column (N-MeFOSE-M) | MS Parameters |
| Mobile phase: | Same as Figure 2 |
| Flow: $\quad 300 \mu l / \mathrm{min}$ | Collision Gas $(\mathrm{mbar})=3.47 \mathrm{e}-3$ <br> Collision Energy $(\mathrm{eV})=36$ |

PRODUCT CODE: COMPOUND:

## STRUCTURE:

N-EtFOSE-M
2-(N-ethylperfluoro-1-octanesulfonamido)-ethanol
CAS \#:
1691-99-2



EXPIRY DATE: (mmldaysys)
RECOMMENDED STORAGE:
$\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~F}_{17} \mathrm{NO}_{3} \mathrm{~S}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
06/04/2018 (HRGC/LRMS)
05/30/2018 (LC/MS)
06/04/2023
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 571.25
SOLVENT(S): Methanol

## DOCUMENTATION/ DATA ATTACHED:

Figure 1: HRGC/LRMS Data (TIC and Mass Spectrum)
Figure 2: LC/MS Data (TIC and Mass Spectrum)
Figure 3: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.
- In order to see the molecular ion (adduct free), the LC mobile phase should be free of ammonium acetate buffer.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE
Certified By:


Date: $\qquad$

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

## Figure 1: $\quad$ N-EtFOSE-M; HRGC/LRMS Data (TIC and Mass Spectrum)



## HRGC/LRMS:

Agilent 7890A (HRGC)
Agilent 5975C (LRMS)

## Chromatographic Conditions:

Column: $\quad 30 \mathrm{~m}$ DB-5 ( 0.25 mm id, $0.25 \mu \mathrm{~m}$ film thickness) Agilent J\&W
Injector: $\quad 250^{\circ} \mathrm{C}$ (Splitless Injection)
Oven: $\quad 100^{\circ} \mathrm{C}(5 \mathrm{~min})$
$10^{\circ} \mathrm{C} / \mathrm{min}$ to $325^{\circ} \mathrm{C}$ $325^{\circ} \mathrm{C}$ (20 min)
Ionization: El+
Detector: $\quad 250^{\circ} \mathrm{C}$
Full Scan (50-1000 amu)

Figure 2: $\quad$ N-EtFOSE-M; LC/MS Data (TIC and Mass Spectrum)




Figure 3: N-EtFOSE-M; LC/MS/MS Data (Selected MRM Transitions)


| Conditions for Fiqure 3: |  | | |
|---|---|---|---|
| Injection: | On-column (N-EtFOSE-M) |$\quad$| MS Parameters |
| :--- |
| Mobile phase: |
| Same as Figure 2 |$\quad$| Collision Gas $(m b a r)=3.45 \mathrm{e}-3$ |
| :--- |
| Collision Energy $(\mathrm{eV})=32$ |

## CERTIFICATE OF ANALYSIS

## PRODUCT CODE:

 COMPOUND:HFPO-DA
2,3,3,3-Tetrafluoro-2-(1,1,2,2,3,3,3-heptafluoropropoxy)-propanoic acid

GAS \#:
13252-13-6


MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mm/dd/yyy)
EXPIRY DATE: (mm/ddyyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{6} \mathrm{HF}_{11} \mathrm{O}_{3}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
10/24/2018
10/24/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 330.05
SOLVENT(S): Methanol

## DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.
- Product is commercially known as Gen.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: $\qquad$
(mm/dd/yyyy)

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).


**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: $\quad$ HFPO-DA; LC/MS Data (TIC and Mass Spectrum)
$240 c t 2018 \_$HFPODA_001
HFPODA1018 $1 \mathrm{ug} / \mathrm{ml}$
100



Figure 2: HFPO-DA; LC/MS/MS Data (Selected MRM Transitions)


## Conditions for Figure 2:

| Injection: | On-colum |
| :--- | :--- |
| Mobile phase: | Same as |
| Flow: | $300 \mu \mathrm{l} / \mathrm{min}$ |
|  |  |
| Form\#:27, Issued $2004-11-10$ |  |

## MS Parameters

Collision Gas (mbar) $=3.02 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=6$

PRODUCT CODE:
COMPOUND:

11CI-PF3OUdS
Potassium 11-chloroeicosafluoro-3-oxaundecane-1-sulfonate

## STRUCTURE:

CAS \#:
83329-89-9


| MOLECULAR FORMULA: | $\mathrm{C}_{10} \mathrm{~F}_{20} \mathrm{ClSO}_{4} \mathrm{~K}$ | MOLECULAR WEIGHT: | 670.69 |
| :---: | :---: | :---: | :---: |
| CONCENTRATION: | $50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (K Salt) | SOLVENT(S): | Methanol |
|  | $47.1 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (11Cl-PF3OUdS anion) |  |  |
| CHEMICAL PURITY: | >98\% |  |  |
| LAST TESTED: (mmodyrys) | 11/23/2018 |  |  |
| EXPIRY DATE: (mmddismy) | 11/23/2023 |  |  |
| RECOMMENDED STORAGE: | Store ampoule in a cool, dark place |  |  |

## DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.
- This compound is a minor component of the commercial formulation known as F-53B.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE
Certified By:


Date: $\qquad$

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).


**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: $\quad 11 \mathrm{CI}-\mathrm{PF} 30 \mathrm{UdS}$; LC/MS Data (TIC and Mass Spectrum)



| Conditions for Figure 1: |  |  |
| :---: | :---: | :---: |
| LC: | Waters Acquity Ultra Performance LC |  |
| MS: | Waters Xevo TQ-S micro MS |  |
| Chromatographic Conditions |  | MS Parameters |
| Column: | Acquity UPLC BEH Shield RP ${ }_{18}$ <br> $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$ | Experiment: Full Scan (250-850 amu) |
| Mobile phase: | Gradient | Source: Electrospray (negative) |
|  | Start: $50 \%$ ( $80: 20 \mathrm{MeOH}: A C N) / 50 \% \mathrm{H}_{2} \mathrm{O}$ (both with 10 mM NH OAc buffer) | Capillary Voltage (kV) $=2.00$ <br> Cone Voltage $(\mathrm{V})=70.00$ |
|  | Ramp to $90 \%$ organic over 8 min and hold for | Desolvation Temperature ( ${ }^{\circ} \mathrm{C}$ ) $=500$ |
|  | 2 min before returning to initial conditions in 0.75 min . <br> Time: 12 min | Desolvation Gas Flow (1/hr) $=750$ |
| Flow: | $300 \mu / / m i n$ |  |

Figure 2: 11CI-PF3OUdS; LC/MS/MS Data (Selected MRM Transitions)


## Conditions for Figure 2:

| Injection: | On-colum |
| :--- | :--- |
| Mobile phase: | Same as |
| Flow: | $300 \mu 1 / \mathrm{min}$ |
|  |  |
| Form\#:27, Issued $2004-11-10$ |  |

## MS Parameters

Collision Gas $(\mathrm{mbar})=2.84 \mathrm{e}-3$
Collision Energy (aV) $=24$

PRODUCT CODE:
COMPOUND:
STRUCTURE:
9CI-PF3ONS
Potassium 9-chlorohexadecafluoro-3-oxanonane-1-sulfonate


MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mmddarym)
EXPIRY DATE: (mmoddmyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{8} \mathrm{~F}_{16} \mathrm{ClSO}_{4} \mathrm{~K}$
MOLECULAR WEIGHT: 570.67
SOLVENT(S): Methanol
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (K Salt)
$46.6 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}$ (9Cl-PF3ONS anion)
>98\%
11/22/2018
11/22/2023
Store ampoule in a cool, dark place


CAS \#:
73606-19-6

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.
- This compound is the major component of the commercial formulation known as F-53B.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: $\qquad$

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: $\quad 9 \mathrm{CI}-\mathrm{PF} 30 \mathrm{NS} ;$ LC/MS Data (TIC and Mass Spectrum)




Figure 2: $\quad 9 \mathrm{CI}-\mathrm{PF} 30 \mathrm{NS}$; LC/MS/MS Data (Selected MRM Transitions)


## Conditions for Figure 2:

| Injection: | On-column (9CI-PF3ONS) | MS Parameters |
| :--- | :--- | :--- |
| Mobile phase: | Same as Figure 1 | Collision Gas $(\mathrm{mbar})=3.16 \mathrm{e}-3$ |
| Flow: | $300 \mu \mathrm{l} / \mathrm{min}$ | Collision Energy $(\mathrm{eV})=20$ |

PRODUCT CODE:
COMPOUND:

## STRUCTURE:

NaDONA
Sodium dodecafluoro-3H-4,8-dioxanonanoate


CAS \#: 958445-44-8
(ammonium salt)

MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mmiddyyy)
EXPIRY DATE: (mmdddyyy)
RECOMMENDED STORAGE: Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 400.05
SOLVENT(S): Methanol Water (<1\%)

## DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.
- Product is commercially known as ADONA.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

B.G. Chittim, General Manager

Date: $\qquad$

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: $\quad$ NaDONA; LC/MS Data (TIC and Mass Spectrum)




Figure 2: NaDONA; LC/MS/MS Data (Selected MRM Transitions)


## Conditions for Figure 2:

| Injection: | On-column (NaDONA) | MS Parameters |
| :--- | :--- | :--- |
| Mobile phase: | Same as Figure 1 | Collision Gas $(\mathrm{mbar})=3.65 \mathrm{e}-3$ |
|  | Collision Energy $(\mathrm{eV})=10$ |  |

Flow: $\quad 300 \mu / / m i n$

## PRODUCT CODE: <br> COMPOUND:

## STRUCTURE:



## MOLECULAR FORMULA: <br> CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/dodyyy)
EXPIRY DATE: (mmldalmw)
$\mathrm{C}_{3} \mathrm{~F}_{7} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$45.8 \pm 2.3 \mu \mathrm{~g} / \mathrm{ml}$ (PFPrS anion)
>98\%
12/14/2017

RECOMMENDED STORAGE:

L-PFPrS
Sodium perfluoro-1-propanesulfonate

LOT NUMBER: LPFPrS1217

CAS \#: Not available

MOLECULAR WEIGHT: 272.07
SOLVENT(S): Methanol

## DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Date: $\qquad$

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).


CALA

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: L-PFPrS; LC/MS Data (TIC and Mass Spectrum)
14dec2017_LPFPrS_001
LPFPrS1217 $10 \mathrm{ug} / \mathrm{ml}$
100



1812076

Figure 2: L-PFPrS; LC/MS/MS Data (Selected MRM Transitions)


## Conditions for Figure 2:

| Injection: | Direct loop injection <br> $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{L-PFPrS})$ |
| :--- | :--- |
| Mobile phase: |  |
| Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ |  |
| (both with 10 mM NH |  |

## MS Parameters

Collision Gas (mbar) $=3.43 \mathrm{e}-3$
Collision Energy (eV) $=25$

WELLINGTON LABORATORIES

## CERTIFICATE OF ANALYSIS DOCUMENTATION

| PRODUCT CODE: | 10:2FTS LOT NUMBER: | 102FTS0718 |
| :---: | :---: | :---: |
| COMPOUND: | Sodium $1 \mathrm{H}, 1 \mathrm{H}, 2 \mathrm{H}, 2 \mathrm{H}$-perfluorododecane sulfonate |  |
| STRUCTURE: | CAS \#: | Not available |



MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm/dd/ysy)
EXPIRY DATE: (mm/ddyyyy)
RECOMMENDED STORAGE:
$\mathrm{C}_{12} \mathrm{H}_{4} \mathrm{~F}_{21} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml} \quad$ (Na salt)
$48.2 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml} \quad$ (10:2FTS anion)
>98\%
07/13/2018
07/13/2021
Refrigerate ampoule

## DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: $\qquad$

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: $\quad$ 10:2FTS; LC/MS Data (TIC and Mass Spectrum)



| Conditions for Figure 1: |  |  |
| :---: | :---: | :---: |
| LC: | Waters Acquity Ultra Performance LC |  |
| MS: | Waters Xevo TQ-S micro MS |  |
| Chromatographic Conditions |  | MS Parameters |
| Column: | Acquity UPLC BEH Shield $\mathrm{RP}_{18}$ <br> $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$ | Experiment: Full Scan (225-850 amu) |
| Mobile phase: | Gradient <br> Start: 60\% (80:20 MeOH:ACN) / 40\% $\mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer) <br> Ramp to $90 \%$ organic over 7 min and hold for 3 min before returning to initial conditions in 0.75 min . Time: 12 min | Source: Electrospray (negative) <br> Capillary Voltage (kV) $=0.50$ <br> Cone Voltage $(\mathrm{V})=25.00$ <br> Desolvation Temperature $\left({ }^{\circ} \mathrm{C}\right)=500$ <br> Desolvation Gas Flow (l/hr) $=750$ |
| Flow: | $300 \mu \mathrm{l} / \mathrm{min}$ |  |

Figure 2: $\quad$ 10:2FTS; LC/MS/MS Data (Selected MRM Transitions)


## Conditions for Figure 2:

| Injection: | On-column (10:2FTS) |
| :--- | :--- |
| Mobile phase: | Same as Figure 1 |
| Flow: $\quad 300 \mu \mathrm{l} / \mathrm{min}$ |  |

## MS Parameters

Collision Gas (mbar) $=3.47 \mathrm{e}-3$
Collision Energy (eV) $=25$

## CERTIFICATE OF ANALYSIS <br> DOCUMENTATION

## PRODUCT CODE:

COMPOUND:

L-PFDoS
Sodium perfluoro-1-dodecanesulfonate

LOT NUMBER: LPFDoS0916

CAS \#: Not available


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodaysy)
EXPIRY DATE: (mmidduysy)
RECOMMENDED STORAGE:

$$
\mathrm{C}_{12} \mathrm{~F}_{25} \mathrm{SO}_{3} \mathrm{Na}
$$

$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$48.4 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (PFDoS anion)
98\%
09/30/2016
09/30/2021
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 722.14
SOLVENT(S): Methanol

## DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.7 \%$ of sodium perfluoro-1-tetradecanesulfonate and $\sim 0.7 \%$ of perfluoro-n-dodecanoic acid (PFDoA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: $\qquad$

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using NIST and/or NRC traceable external weights. All volumetric glassware used is of Class A tolerance and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: L-PFDoS; LC/MS Data (TIC and Mass Spectrum)



| Conditions for Figure 1: |  |  |
| :---: | :---: | :---: |
| LC: | Waters Acquity Ultra Performance LC |  |
| MS: | Micromass Quattro micro API MS |  |
| Chromatographic Conditions |  | MS Parameters |
| Column: | Acquity UPLC BEH Shield RP ${ }_{18}$ <br> $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$ | Experiment: Full Scan (225-850 amu) |
| Mobile phase: | Gradient | Source: Electrospray (negative) |
|  | Start: 65\% (80:20 MeOH:ACN) / 35\% $\mathrm{H}_{2} \mathrm{O}$ | Capillary Voltage (kV) $=3.00$ |
|  | (both with $10 \mathrm{mM} \mathrm{NH} \mathrm{H}_{4} \mathrm{OAc}$ buffer) | Cone Voltage (V) $=80.00$ |
|  | Ramp to $90 \%$ organic over 7.5 min and hold for 1.5 min before returning to initial conditions in 0.5 min . | Cone Gas Flow ( $/ / \mathrm{hr}$ ) $=50$ <br> Desolvation Gas Flow (l/hr) $=750$ |
|  | Time: 10 min ( | Desolvation Gas Flow (l/r) $=750$ |
| Flow: | $300 \mu \mathrm{l} / \mathrm{min}$ |  |

Figure 2:

## L-PFDoS; LC/MS/MS Data (Selected MRM Transitions)



## Conditions for Fiqure 2:

| Injection: | Direct loop injection <br> $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{L-PFDoS})$ |
| :--- | :--- |
| Mobile phase: $\left.\begin{array}{l}\text { Isocratic } 80 \%(80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O} \\ \text { (both with } 10 \mathrm{mM} \mathrm{NH}\end{array}\right)$ |  |
| Flow: $\quad 300 \mu \mathrm{OAc}$ buffer) |  |

## MS Parameters

Collision Gas (mbar) $=3.35 \mathrm{e}-3$
Collision Energy ( eV ) $=50$

## Analytical Standard Record

Vista Analytical Laboratory

## 19E2202

| Parent Standards used in this standard: |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Standard Desc |  | Prepared | Prepared By | Expires | (mls) |
| 18L2018 1802 |  | 20-Dec-18 | ** Vendor ** | 22-Mar-23 | 1.06 |
| 18L2021 13C2 |  | 20-Dec-18 | ** Vendor ** | 14-Nov-19 | 1 |
| 18L2022 13C |  | 20-Dec-18 | ** Vendor ** | 16-Feb-23 | 1 |
| 18L2023 13C6 |  | 20-Dec-18 | ** Vendor ** | 20-Sep-23 | 1 |
| 18L2024 13C |  | 20-Dec-18 | ** Vendor ** | 23-May-22 | 1 |
| 18 L 2025 13C |  | 20-Dec-18 | ** Vendor ** | 20-Sep-23 | 1 |
| 18L2026 13C5 |  | 20-Dec-18 | ** Vendor ** | 27-Sep-23 | 1 |
| 18L2028 13C |  | 20-Dec-18 | ** Vendor ** | 11-Sep-23 | 1.05 |
| 18L2029 13C8 |  | 20-Dec-18 | ** Vendor ** | 29-Jun-23 | 1.02 |
| Description: | PFC-RS | Expires: | 14-Nov-19 |  |  |
| Standard Type: | Reagent | Prepared: | 23-May-19 |  |  |
| Solvent: | MeOH | Prepared By: | Giana R. Bil |  |  |
| Final Volume (mls): | 40 | Department: | LCMS |  |  |
| Vials: | 1 | Last Edit: | 28-May-19 | GRB |  |

Expiration date set to expiration date of standard being used to create this one. GRB 05/22/19

| 18L2021 | 13C2-FOUEA | EXP. 11/14/19 | CASNumber |
| :--- | :--- | ---: | :--- |
| analyte | Concentration_ | Units |  |
| 18O2-PFHxS |  | 1.25 | $\mathrm{ug} / \mathrm{mL}$ |
| 13C9-PFNA |  | 1.25 | $\mathrm{ug} / \mathrm{mL}$ |
| 13C8-PFOA | 1.25 | $\mathrm{ug} / \mathrm{mL}$ |  |
| 13C7-PFUnA | 1.25 | $\mathrm{ug} / \mathrm{mL}$ |  |
| 13C6-PFDA | 1.25 | $\mathrm{ug} / \mathrm{mL}$ |  |
| 13C5-PFHxA | 1.25 | $\mathrm{ug} / \mathrm{mL}$ |  |
| 13C4-PFOS | 1.25 | $\mathrm{ug} / \mathrm{mL}$ |  |
| 13C4-PFBA | 1.25 | $\mathrm{ug} / \mathrm{mL}$ |  |
| 13C2-FOUEA | 1.25 | $\mathrm{ug} / \mathrm{mL}$ |  |

## CERTIFICATE OF ANALYSIS DOCUMENTATION

## PRODUCT CODE: <br> COMPOUND: <br> STRUCTURE:

MPFHxS
Sodium perfluoro-1-hexane $\left[{ }^{18} \mathrm{O}_{2}\right]$ sulfonate


MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY: LAST TESTED: (mm/dd/yyy)
EXPIRY DATE: (mm/dd/ysyy)
RECOMMENDED STORAGE: Store ampoule in a cool, dark place

LOT NUMBER: MPFHxS0318

CAS \#:
1585941-14-5

MOLECULAR WEIGHT: $\quad 426.10$
SOLVENT(S): Methanol

ISOTOPIC PURITY: $\quad>94 \%\left({ }^{18} \mathrm{O}_{2}\right)$

## DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.
- The response factor for MPFHxS $\left(\mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{~S}^{18} \mathrm{O}_{2}{ }^{16} \mathrm{O}\right)$ has been observed to be up to $10 \%$ lower than for PFHxS $\left(\mathrm{C}_{6} \mathrm{~F}_{13} \mathrm{~S}^{16} \mathrm{O}_{3}\right)$ when both compounds are injected together. This difference may vary between instruments.
- Contains $\sim 1.0 \%$ of sodium perfluoro-1-octane $\left[{ }^{18} \mathrm{O}_{2}\right]$ sulfonate $\left({ }^{18} \mathrm{O}_{2}\right.$-PFOS $)$ and $\sim 0.3 \%$ of sodium perfluoro-1-heptane $\left[{ }^{18} \mathrm{O}_{2}\right]$ sulfonate ( ${ }^{18} \mathrm{O}_{2}$-PFHpS).
- Due to the isotopic purity of the starting material $\left({ }^{18} \mathrm{O}_{2}>94 \%\right)$, MPFHxS contains $\sim 0.3 \%$ of PFHxS. This value agrees with the theoretical percent relative abundance that is expected based on the stated isotopic purity.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE
Certified By:
Date: 06/07/2018
(mm/dd/yyyy)

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 . Fax: 519-822-2849 • info@well-labs.com

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned values), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: MPFHxS; LC/MS Data (TIC and Mass Spectrum)

| 22mar2018_MPFHxS_004 |
| :--- |
| MPFHxS0318 $100 \mathrm{ng} / \mathrm{ml}$ |
| 100 |



| Conditions for Figure 1: |  |  |
| :---: | :---: | :---: |
| LC: |  |  |
| MS: | Waters Acquity Ultra Performance LC Waters Xevo TQ-S micro MS |  |
| Chromatographic Conditions |  | MS Parameters |
| Column: | Acquity UPLC BEH Shield $\mathrm{RP}_{18}$ |  |
|  | $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$ | Experiment: Full Scan (225-850 amu) |
| Mobile phase: | Gradient | Source: Electrospray (negative) |
|  | Start: $50 \%$ (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$ | Capillary Voltage (kV) $=0.50$ |
|  | (both with $10 \mathrm{mM} \mathrm{NH} \mathrm{H}_{4} \mathrm{OAc}$ buffer) | Cone Voltage (V) $=5.00$ |
|  | Ramp to $80 \%$ organic over 7 min and hold for 3 min before returning to initial conditions in 0.75 min . <br> Time: 12 min | Desolvation Temperature $\left({ }^{\circ} \mathrm{C}\right)=500$ <br> Desolvation Gas Flow (l/hr) $=750$ |
| Flow: | $300 \mu 1 / \mathrm{min}$ |  |

Figure 2: MPFHxS; LC/MS/MS Data (Selected MRM Transitions)


## Conditions for Figure 2:

| Injection: | On-column (MPFHxS) |
| :--- | :--- |
| Mobile phase: | Same as Figure 1 |
| Flow: | $300 \mu \mathrm{l} / \mathrm{min}$ |

## MS Parameters <br> Collision Gas (mbar) $=3.64 \mathrm{e}-3$ <br> Collision Energy $(\mathrm{eV})=32$

## CERTIFICATE OF ANALYSIS

DOCUMENTATION

| PRODUCT CODE: | MFOUEA |
| :--- | :--- |
| COMPOUND: | $2 H$-Perfluoro- $\left[1,2-{ }^{13} \mathrm{C}_{2}\right]$-2-decenoic acid |

LOT NUMBER: MFOUEA1117

CAS \#: Not available



## DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.
- Dilution of this standard in methanol may lead to the formation of 2H-3-methoxy-perfluoro-
[1,2- $\left.{ }^{13} \mathrm{C}_{2}\right]$-2-decenoic acid. This reaction can be catalyzed by the presence of acid or base. All dilutions should be routinely checked for degradation.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: $\qquad$

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters

$$
x_{i}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: MFOUEA; LC/MS Data (TIC and Mass Spectrum)



Conditions for Figure 1:
LC: $\quad$ Waters Acquity Ultra Performance LC
MS: $\quad$ Micromass Quattro micro API MS

| Chromatographic Conditions |  | MS Parameters |
| :---: | :---: | :---: |
| Column: | Acquity UPLC BEH Shield $\mathrm{RP}_{18}$ |  |
|  | $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$ | Experiment: Full Scan (225-850 amu) |
| Mobile phase: | Gradient | Source: Electrospray (negative) |
|  | Start: $55 \%$ (80:20 MeOH:ACN) / 45\% $\mathrm{H}_{2} \mathrm{O}$ | Capillary Voltage (kV) $=3.00$ |
|  | (both with 10 mM NH | Cone Voltage ( V ) $=14.00$ |
|  | Ramp to $90 \%$ organic over 7.5 min and hold | Cone Gas Flow (l/hr) $=60$ |
|  | for 1.5 min before returning to initial conditions in 0.5 min . Time: 10 min | Desolvation Gas Flow (1/hr) $=750$ |
| Flow: | $300 \mu \mathrm{l} / \mathrm{min}$ |  |

Fiqure 2: MFOUEA; LC/MS/MS Data (Selected MRM Transitions)


| Conditions for Figure 2: |  |  |
| :---: | :---: | :---: |
| Injection: | Direct loop injection $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ MFOUEA) | MS Parameters |
| Mobile phase: | Isocratic $80 \%$ ( $80: 20 \mathrm{MeOH}: A C N) / 20 \% \mathrm{H}_{2} \mathrm{O}$ (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer) | $\begin{aligned} & \text { Collision Gas }(\mathrm{mbar})=3.39 \mathrm{e}-3 \\ & \text { Collision Energy }(\mathrm{eV})=21 \end{aligned}$ |
| Flow: | $300 \mu /$ min |  |

# CERTIFICATE OF ANALYSIS DOCUMENTATION 

PRODUCT CODE:
COMPOUND:
STRUCTURE:
MPFBA
Perfluoro-n-[1,2,3,4- ${ }^{13} \mathrm{C}_{4}$ ]butanoic acid

LOT NUMBER: MPFBA0218

CAS \#: Not available


| MOLECULAR FORMULA: |  |
| :--- | :--- |
|  | ${ }^{13} \mathrm{C}_{4} \mathrm{HF}_{7} \mathrm{O}_{2}$ |
| CONCENTRATION: | $50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ |
| CHEMICAL PURITY: | $>98 \%$ |
| LAST TESTED: (mmmlddymys) | $02 / 16 / 2018$ |
| EXPIRY DATE: (mmddyyyy) | $02 / 16 / 2023$ |
| RECOMMENDED STORAGE: | Store ampoule in a cool, dark place |

MOLECULAR WEIGHT: 218.01
SOLVENT(S): Methanol
Water (<1\%)
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2,3,4-{ }^{13} \mathrm{C}_{4}\right)$

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: $\qquad$

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: MPFBA; LC/MS Data (TIC and Mass Spectrum)

| 16feb2018_MPFBA_001 | 16-Feb-2018 | 13:15:19 |
| :--- | :--- | :--- |
| MPFBA0218 $25 \mathrm{ug} / \mathrm{ml}$ |  |  |
| 100 |  |  |




1812022

Figure 2: MPFBA; LC/MS/MS Data (Selected MRM Transitions)


| Conditions for Figure 2: |  |  |
| :--- | :--- | :--- |
| Injection: | Direct loop injection <br> $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml} \mathrm{MPFBA})$ | MS Parameters |
| Mobile phase:Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ <br> (both with 10 mM NH <br> 4 | Collision Gas (mbar) $=3.31 \mathrm{e}-3$ <br> Collision Energy $(\mathrm{eV})=10$ |  |
| Flow: | $300 \mu \mathrm{l} / \mathrm{min}$ |  |

PRODUCT CODE: COMPOUND:

M6PFDA
Perfluoro-n-[1,2,3,4,5,6- ${ }^{13} \mathrm{C}_{6}$ ]decanoic acid

LOT NUMBER: M6PFDA0918

CAS \#: $\quad$ Not available

## MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmddadmy)
EXPIRY DATE: (mmudarmy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{6}{ }^{12} \mathrm{C}_{4} \mathrm{HF}_{19} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
09/20/2018
09/20/2023
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 520.04
SOLVENT(S): Methanol
Water (<1\%)
$\geq 99 \%{ }^{13} \mathrm{C}$
(1,2,3,4,5,6- ${ }^{13} \mathrm{C}_{6}$ )

## DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: $\qquad$

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).


CALA

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: M6PFDA; LC/MS Data (TIC and Mass Spectrum)


| Conditions for Figure 1: |  |
| :---: | :---: |
| LC: Waters Acquity Ultra Performance LC |  |
| MS: Waters Xevo TQ-S micro MS |  |
| Chromatographic Conditions | MS Parameters |
| Column: Acquity UPLC BEH Shield RP $_{18}$ <br>  $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$ | Experiment: Full Scan (250-850 amu) |
| Mobile phase: Gradient | Source: Electrospray (negative) |
| Start: 50\% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$ | Capillary Voltage (kV) $=2.00$ |
| (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer) | Cone Voltage (V) $=10.00$ |
| Ramp to $90 \%$ organic over 8 min and hold for | Desolvation Temperature ( ${ }^{\circ} \mathrm{C}$ ) $=500$ |
| 2 min before returning to initial conditions in 0.75 min . Time: 12 min | Desolvation Gas Flow (l/hr) $=1000$ |
| Flow: $\quad 300 \mu \mathrm{l} / \mathrm{min}$ |  |

Figure 2: M6PFDA; LC/MS/MS Data (Selected MRM Transitions)


## Conditions for Figure 2:

| Injection: | On-column (M6PFDA) | MS Parameters |
| :--- | :--- | :--- |
| Mobile phase: | Same as Figure 1 | Collision Gas (mbar) $=2.97 \mathrm{e}-3$ |
| Flow: | $300 \mathrm{\mu l} / \mathrm{min}$ | Collision Energy $(\mathrm{eV})=10$ |

## PRODUCT CODE:

COMPOUND:

M9PFNA
Perfluoro-n-[ ${ }^{13} \mathrm{C}_{9}$ ]nonanoic acid

LOT NUMBER: M9PFNA0517

GAS \#: $\quad$ Not available



## DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $\sim 0.9 \%$ of ${ }^{13} \mathrm{C}_{5}^{12} \mathrm{C}_{4} \mathrm{HF}_{17} \mathrm{O}_{2}$ (MPFNA).

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: $\qquad$

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HAZARDS:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Where possible, all of our products are synthesized using single-product unambiguous routes. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters
$x_{1}, x_{2}, \ldots x_{n}$ on which it depends is:

$$
u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly tested by an external ISO/IEC 17025 accredited calibration company. In addition, their calibration is verified prior to each weighing using calibrated NIST and/or NRC traceable external weights. All volumetric glassware used is calibrated, of Class A tolerance, and has been tested according to the appropriate ASTM procedures, which are ultimately traceable to NIST. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO GUIDE 34 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).


CALA

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Fiqure 1: M9PFNA; LC/MS Data (TIC and Mass Spectrum)


| Conditions for Figure 1: |  |  |
| :---: | :---: | :---: |
| LC: | Waters Acquity Ultra Performance LC |  |
| MS: | Micromass Quattro micro API MS |  |
| Chromatographic Conditions |  | MS Parameters |
| Column: | Acquity UPLC BEH Shield $\mathrm{RP}_{18}$ |  |
|  | $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$ | Experiment: Full Scan (225-850 amu) |
| Mobile phase: | Gradient | Source: Electrospray (negative) |
|  | Start: $60 \%$ ( 80:20 MeOH:ACN) / $40 \% \mathrm{H}_{2} \mathrm{O}$ | Capillary Voltage (kV) $=2.00$ |
|  | (both with 10 mM NH | Cone Voltage ( V ) $=15.00$ |
|  | Ramp to $90 \%$ organic over 7 min and hold for 1.5 min | Cone Gas Flow (l/hr) $=50$ |
|  | before returning to initial conditions in 0.5 min . <br> Time: 10 min | Desolvation Gas Flow (1/hr) $=750$ |
| Flow: | $300 \mu \mathrm{l} / \mathrm{min}$ |  |

## 18L2024

Figure 2: M9PFNA; LC/MS/MS Data (Selected MRM Transitions)


## Conditions for Figure 2:

| Injection: | Direct loop injection <br> $10 \mu \mathrm{l}(500 \mathrm{ng} / \mathrm{ml}$ M9PFNA) |
| :--- | :--- |
| Mobile phase: | Isocratic $80 \%(80: 20 \mathrm{MeOH}: \mathrm{ACN}) / 20 \% \mathrm{H}_{2} \mathrm{O}$ <br> (both with 10 mM NH 4 |
|  | OAc buffer) <br> Flow: |
|  | $300 \mu \mathrm{l} / \mathrm{min}$ |

## MS Parameters

Collision Gas (mbar) $=3.20 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=11$

PRODUCT CODE: COMPOUND: STRUCTURE:

M7PFUdA
Perfluoro-n-[1,2,3,4,5,6,7- ${ }^{13} \mathrm{C}_{7}$ ]undecanoic acid
CAS \#: Not available


MOLECULAR FORMULA: CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mm(darym) EXPIRY DATE: (mmoddyyy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{7}{ }^{12} \mathrm{C}_{4} \mathrm{HF}_{21} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
09/20/2018
09/20/2023
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 571.04
SOLVENT(S): Methanol
Water ( $<1 \%$ )
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2,3,4,5,6,7-{ }^{13} \mathrm{C}_{7}\right)$

## DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE


Date: $\qquad$

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned values), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).


**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**


Figure 1: M7PFUdA; LC/MS Data (TIC and Mass Spectrum)



| Conditions for Figure 1: |  |  |
| :---: | :---: | :---: |
| LC: | Waters Acquity Ultra Performance LC |  |
| MS: | Waters Xevo TQ-S micro MS |  |
| Chromatographic Conditions |  | MS Parameters |
| Column: | Acquity UPLC BEH Shield RP ${ }_{18}$ <br> $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$ | Experiment: Full Scan (250-850 amu) |
| Mobile phase: | Gradient | Source: Electrospray (negative) |
|  | Start: $50 \%$ (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$ | Capillary Voltage (kV) $=2.00$ |
|  | (both with $10 \mathrm{mM} \mathrm{NH}_{4} \mathrm{OAc}$ buffer) | Cone Voltage (V) $=10.00$ |
|  | Ramp to $90 \%$ organic over 8 min and hold for | Desolvation Temperature ( ${ }^{\circ} \mathrm{C}$ ) $=500$ |
|  | 2 min before returning to initial conditions in 0.75 min . <br> Time: 12 min | Desolvation Gas Flow (l/hr) $=1000$ |
| Flow: | $300 \mu \mathrm{l} / \mathrm{min}$ |  |

Figure 2: M7PFUdA; LC/MS/MS Data (Selected MRM Transitions)


## Conditions for Figure 2:

| Injection: | On-column (M7PFUdA) | MS Parameters |
| :--- | :--- | :--- |
| Mobile phase: Same as Figure 1 | Collision Gas $(\mathrm{mbar})=2.97 \mathrm{e}-3$ <br> Collision Energy $(\mathrm{eV})=12$ |  |
| Flow: | $300 \mu \mathrm{l} / \mathrm{min}$ |  |

## CERTIFICATE OF ANALYSIS

PRODUCT CODE:
COMPOUND:

STRUCTURE:

M5PFHxA
Perfluoro-n-[1,2,3,4,6- $\left.{ }^{13} \mathrm{C}_{5}\right]$ hexanoic acid

LOT NUMBER: M5PFHxA0918

## CAS \#: Not available



MOLECULAR FORMULA:
CONCENTRATION:
CHEMICAL PURITY:
LAST TESTED: (mmodump)
EXPIRY DATE: (mmodrymy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{5}{ }^{12} \mathrm{C}_{1} \mathrm{HF}_{11} \mathrm{O}_{2}$
$50 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$
>98\%
09/27/2018
09/27/2023

MOLECULAR WEIGHT: 319.02
SOLVENT(S): Methanol
Water (<1\%)
ISOTOPIC PURITY:
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2,3,4,6-{ }^{13} \mathrm{C}_{5}\right)$

## DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

## Certified By:



Date: $\frac{10 / 01 / 2018}{(\text { mmidad } \text { Wh) })}$

Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: $\quad$ M5PFHxA; LC/MS Data (TIC and Mass Spectrum)


$18 し 2026$

Figure 2: M5PFHxA; LC/MS/MS Data (Selected MRM Transitions)


## Conditions for Figure 2:

| Injection: | On-column (M5PFHXA) | MS Parameters |
| :--- | :--- | :--- |
| Mobile phase: | Same as Figure 1 | Collision Gas $(\mathrm{mbar})=2.97 \mathrm{e}-3$ |
| Flow: | $300 \mu \mathrm{l} / \mathrm{min}$ | Collision Energy $(\mathrm{eV})=8$ |

## CERTIFICATE OF ANALYSIS

DOCUMENTATION

PRODUCT CODE: COMPOUND:

MPFOS
Sodium perfluoro-1-[1,2,3,4- ${ }^{13} \mathrm{C}_{4}$ ]octanesulfonate

STRUCTURE:
CAS \#: Not available


MOLECULAR FORMULA:
CONCENTRATION:

CHEMICAL PURITY:
LAST TESTED: (mmodrymy)
EXPIRY DATE: (mmoddryy)
RECOMMENDED STORAGE:
${ }^{13} \mathrm{C}_{4}{ }^{12} \mathrm{C}_{4} \mathrm{~F}_{17} \mathrm{SO}_{3} \mathrm{Na}$
$50.0 \pm 2.5 \mu \mathrm{~g} / \mathrm{ml}$ (Na salt)
$47.8 \pm 2.4 \mu \mathrm{~g} / \mathrm{ml}$ (MPFOS anion)
>98\% ISOTOPIC PURITY:
09/11/2018
09/11/2023
0э112023
Store ampoule in a cool, dark place

MOLECULAR WEIGHT: 526.08
SOLVENT(S): Methanol
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left(1,2,3,4-{ }^{13} \mathrm{C}_{4}\right)$

DOCUMENTATION/ DATA ATTACHED:
Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains $\sim 0.3 \%$ Sodium perfluoro- $1-\left[1,2,3-{ }^{-13} \mathrm{C}_{3}\right]$ heptanesulfonate.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: $\qquad$
(mm/dd/yyyy)

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS.

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned value(s), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: MPFOS; LC/MS Data (TIC and Mass Spectrum)



| Conditions for Figure 1: |  |  |
| :---: | :---: | :---: |
| LC: | Waters Acquity Ultra Performance LC |  |
| MS: | Waters Xevo TQ-S micro MS |  |
| Chromatographic Conditions |  | MS Parameters |
| Column: | Acquity UPLC BEH Shield RP ${ }_{18}$ $1.7 \mu \mathrm{~m}, 2.1 \times 100 \mathrm{~mm}$ | Experiment: Full Scan (250-850 amu) |
| Mobile phase: | Gradient | Source: Electrospray (negative) |
|  | Start: 50\% (80:20 MeOH:ACN) / 50\% $\mathrm{H}_{2} \mathrm{O}$ | Capillary Voltage (kV) $=2.00$ |
|  | (both with $10 \mathrm{mM} \mathrm{NH}{ }_{4} \mathrm{OAc}$ buffer) | Cone Voltage (V) $=10.00$ |
|  | Ramp to $90 \%$ organic over 8 min and hold for | Desolvation Temperature ( ${ }^{\circ} \mathrm{C}$ ) $=500$ |
|  | 2 min before returning to initial conditions in 0.75 min . Time: 12 min | Desolvation Gas Flow (1/hr) $=1000$ |
| Flow: | $300 \mu \mathrm{l} / \mathrm{min}$ |  |

Figure 2: MPFOS; LC/MS/MS Data (Selected MRM Transitions)


## Conditions for Figure 2:

Injection: On-column (MPFOS)
Mobile phase: Same as Figure 1
Flow: $\quad 300 \mu l / m i n$

## MS Parameters

Collision Gas (mbar) $=2.99 \mathrm{e}-3$
Collision Energy $(\mathrm{eV})=42$

## PRODUCT CODE:

COMPOUND:

M8PFOA
Perfluoro-n-[ $\left[{ }^{13} \mathrm{C}_{8}\right]$ octanoic acid

STRUCTURE:

LOT NUMBER: M8PFOA0618

CAS \#: Not available

MOLECULAR WEIGHT: 422.01
SOLVENT(S): Methanol
Water (<1\%)
$\geq 99 \%{ }^{13} \mathrm{C}$
$\left({ }^{13} \mathrm{C}_{8}\right)$

## DOCUMENTATION/ DATA ATTACHED:

Figure 1: LC/MS Data (TIC and Mass Spectrum)
Figure 2: LC/MS/MS Data (Selected MRM Transitions)

## ADDITIONAL INFORMATION:

- See page 2 for further details.
- Contains 4 mole eq. of NaOH to prevent conversion of the carboxylic acid to the methyl ester.
- Contains $<0.1 \%$ of native perfluoro-n-octanoic acid (PFOA) and $\sim 1.9 \%$ of $[M+4]$ perfluoro-n-octanoic acid.

FOR LABORATORY USE ONLY: NOT FOR HUMAN OR DRUG USE

Certified By:


Date: $\qquad$
(mm/dd/yyyy)

## Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA <br> 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

## INTENDED USE:

The products prepared by Wellington Laboratories Inc. are for laboratory use only. This certified reference material (CRM) was designed to be used as a standard for the identification and/or quantification of the specific chemical compound it contains.

## HANDLING:

This product should only be used by qualified personnel familiar with its potential hazards and trained in the handling of hazardous chemicals. Due care should be exercised to prevent unnecessary human contact or ingestion. All procedures should be carried out in a well-functioning fume hood and suitable gloves, eye protection, and clothing should be worn at all times. Waste should be disposed of according to national and regional regulations. Safety Data Sheets (SDSs) are available upon request.

## SYNTHESIS / CHARACTERIZATION:

Our products are synthesized using single-product unambiguous routes whenever possible. They are then characterized, and their structures and purities confirmed, using a combination of the most relevant techniques, such as NMR, GC/MS, LC/MS/MS, SFC/UV/MS/MS, x-ray crystallography, and melting point. Isotopic purities of mass-labelled compounds are also confirmed using HRGC/HRMS and/or LC/MS/MS

## HOMOGENEITY:

Prior to solution preparation, crystalline material is tested for homogeneity using a variety of techniques (as stated above) and its solubility in a given diluent is taken into consideration. Duplicate solutions of a new product are prepared from the same crystalline lot and, after the addition of an appropriate internal standard, they are compared by GC/MS, LC/MS/MS, and/or SFC/UV/MS/MS. The relative response factors of the analyte of interest in each solution are required to be $<5 \%$ RSD. New solution lots of existing products are compared to older lots in the same manner, which further confirms the homogeneity of the crystalline material as well as the stability and homogeneity of the solutions in the storage containers. In order to maintain the integrity of the assigned values), and associated uncertainty, the dilution or injection of a subsample of this product should be performed using calibrated measuring equipment.

## UNCERTAINTY:

The maximum combined relative standard uncertainty of our reference standard solutions is calculated using the following equation:

The combined relative standard uncertainty, $u_{c}(y)$, of a value $y$ and the uncertainty of the independent parameters

$$
x_{1}, x_{2}, \ldots x_{n} \text { on which it depends is: } \quad u_{c}\left(y\left(x_{1}, x_{2}, \ldots x_{n}\right)\right)=\sqrt{\sum_{i=1}^{n} u\left(y, x_{i}\right)^{2}}
$$

where x is expressed as a relative standard uncertainty of the individual parameter.
The individual uncertainties taken into account include those associated with weights (calibration of the balance) and volumes (calibration of the volumetric glassware). An expanded maximum combined percent relative uncertainty of $\pm 5 \%$ (calculated with a coverage factor of 2 and a level of confidence of $95 \%$ ) is stated on the Certificate of Analysis for all of our products.

## TRACEABILITY:

All reference standard solutions are traceable to specific crystalline lots. The microbalances used for solution preparation are regularly calibrated by an external ISO/IEC 17025 accredited laboratory. In addition, their calibration is verified prior to each weighing using calibrated external weights traceable to an ISO/IEC 17025 accredited laboratory. All volumetric glassware used is calibrated, of Class A tolerance, and traceable to an ISO/IEC 17025 accredited laboratory. For certain products, traceability to international interlaboratory studies has also been established.

## EXPIRY DATE / PERIOD OF VALIDITY:

Ongoing stability studies of this product have demonstrated stability in its composition and concentration, until the specified expiry date, in the unopened ampoule. Monitoring for any degradation or change in concentration of the listed analyte(s) is performed on a routine basis.

## LIMITED WARRANTY:

At the time of shipment, all products are warranted to be free of defects in material and workmanship and to conform to the stated technical and purity specifications.

## QUALITY MANAGEMENT:

This product was produced using a Quality Management System registered to the latest versions of ISO 9001 by SAI Global, ISO/IEC 17025 by the Canadian Association for Laboratory Accreditation Inc. (CALA; A 1226), and ISO 17034 by ANSI-ASQ National Accreditation Board (ANAB; AR-1523).

**For additional information or assistance concerning this or any other products from Wellington Laboratories Inc., please visit our website at www.well-labs.com or contact us directly at info@well-labs.com**

Figure 1: M8PFOA; LC/MS Data (TIC and Mass Spectrum)




Figure 2: $\quad$ M8PFOA; LC/MS/MS Data (Selected MRM Transitions)


Conditions for Figure 2:
Injection: On-column (M8PFOA)

Mobile phase: Same as Figure 1
Flow: $\quad 300 \mu / / \mathrm{min}$

## MS Parameters

Collision Gas (mbar) $=3.39 \mathrm{e}-3$
Collision Energy ( eV ) $=8$
"FRB-07022019","537 MOD","RES","1901922-01","Vista","375-73-
5","PFBS","0.00467","ug/L","U","0.00467","CRDL","","TRG","',"","0.00934","CRDL","YES","0.00320" "FRB-07022019","537 MOD","RES","1901922-01","Vista","307-244","PFHxA","0.00467","ug/L","U","0.00467","CRDL","',"TRG","","","0.00934","CRDL","YES","0.00320" "FRB-07022019","537 MOD","RES","1901922-01","Vista","375-859","PFHpA","0.00467","ug/L","U","0.00467","CRDL","","TRG","","","0.00934","CRDL","YES","0.00320" "FRB-07022019","537 MOD","RES","1901922-01","Vista","355-464","PFHxS","0.00467","ug/L","U","0.00467","CRDL","","TRG","',"',"0.00934","CRDL","YES","0.00320" "FRB-07022019","537 MOD","RES","1901922-01","Vista","335-671","PFOA","0.00467","ug/L","U","0.00467","CRDL","","TRG","',"',"0.00934","CRDL","YES","0.00320" "FRB-07022019","537 MOD","RES","1901922-01","Vista","375-951","PFNA","0.00467","ug/L","U","0.00467","CRDL","","TRG","","',"0.00934","CRDL","YES","0.00320" "FRB-07022019","537 MOD","RES","1901922-01","Vista","1763-231","PFOS","0.00467","ug/L","U","0.00467","CRDL","","TRG","","","0.00934","CRDL","YES","0.00320" "FRB-07022019","537 MOD","RES","1901922-01","Vista","335-762","PFDA","0.00467","ug/L","U","0.00467","CRDL","","TRG","',"',"0.00934","CRDL","YES","0.00320" "FRB-07022019","537 MOD","RES","1901922-01","Vista","2355-319","NMeFOSAA","0.00467","ug/L","U","0.00467","CRDL","","TRG","","',"0.00934","CRDL","YES","0.00320" "FRB-07022019","537 MOD","RES","1901922-01","Vista","2991-50-
6","NEtFOSAA","0.00467","ug/L","U","0.00467","CRDL","","TRG","","","0.00934","CRDL","YES","0.00320" "FRB-07022019","537 MOD","RES","1901922-01","Vista","2058-948","PFUnA","0.00467","ug/L","U","0.00467","CRDL","',"TRG","","","0.00934","CRDL","YES","0.00320" "FRB-07022019","537 MOD","RES","1901922-01","Vista","307-55-
1","PFDoA","0.00467","ug/L","U","0.00467","CRDL","","TRG","',"',"0.00934","CRDL","YES","0.00320"
"FRB-07022019","537 MOD","RES","1901922-01","Vista","72629-94-
8","PFTrDA","0.00467","ug/L","U","0.00467","CRDL","","TRG","","","0.00934","CRDL","YES","0.00320" "FRB-07022019","537 MOD","RES","1901922-01","Vista","376-06-
7","PFTeDA","0.00467","ug/L","U","0.00467","CRDL","","TRG","',"',"0.00934","CRDL","YES","0.00320"
"FRB-07022019","537 MOD","RES","1901922-01","Vista","13C3-PFBS","13C3-
PFBS","95.0","\%R","","","CRDL","","IS","95.0","',"',"CRDL","","'
"FRB-07022019","537 MOD","RES","1901922-01","Vista","13C2-PFHxA","13C2-
PFHxA","90.0","\%R","',"',"CRDL","","IS","90.0","',"',"CRDL","',"'
"FRB-07022019","537 MOD","RES","1901922-01","Vista","13C4-PFHpA","13C4PFHpA","88.0","\%R","',"',"CRDL","',"IS","88.0","',"',"CRDL","',"'
"FRB-07022019","537 MOD","RES","1901922-01","Vista","13C3-PFHxS","13C3-
PFHxS","89.2","\%R","","',"CRDL","","IS","89.2","","","CRDL","',"'
"FRB-07022019","537 MOD","RES","1901922-01","Vista","13C2-PFOA","13C2-
PFOA","93.3","\%R","","',"CRDL","","IS","93.3","","',"CRDL","',"'
"FRB-07022019","537 MOD","RES","1901922-01","Vista","13C5-PFNA","13C5PFNA","88.1","\%R","","","CRDL","","IS","88.1","","',"CRDL","","'
"FRB-07022019","537 MOD","RES","1901922-01","Vista","13C8-PFOS","13C8-
PFOS","87.9","\%R","","',"CRDL","',"IS","87.9","',"',"CRDL","',"'
"FRB-07022019","537 MOD","RES","1901922-01","Vista","13C2-PFDA","13C2-
PFDA","76.8","\%R","","","CRDL","","IS","76.8","","","CRDL","",""
"FRB-07022019","537 MOD","RES","1901922-01","Vista","d3-MeFOSAA","d3-
MeFOSAA","66.5","\%R","',"","CRDL","","IS","66.5","',"","CRDL","',"'"
"FRB-07022019","537 MOD","RES","1901922-01","Vista","d5-EtFOSAA","d5-
EtFOSAA","72.8","\%R","',"","CRDL","',"IS","72.8","',"',"CRDL","',"'
"FRB-07022019","537 MOD","RES","1901922-01","Vista","13C2-PFUnA","13C2-
PFUnA","85.0","\%R","',"',"CRDL","","IS","85.0","',"',"CRDL","',"'
"FRB-07022019","537 MOD","RES","1901922-01","Vista","13C2-PFDoA","13C2-
PFDoA","75.1","\%R","',"',"CRDL","","IS","75.1","","","CRDL","',"'"
"FRB-07022019","537 MOD","RES","1901922-01","Vista","13C2-PFTeDA","13C2-

PFTeDA","83.9","\%R","","","CRDL","","IS","83.9","","","CRDL","",""
"CAOA-B02-GW","537 MOD","RES","1901922-02","Vista","375-73-
5","PFBS","0.0233","ug/L","","0.00413","CRDL","","TRG","","","0.00830","CRDL","YES","0.00284"
"CAOA-B02-GW","537 MOD","RES","1901922-02","Vista","307-24-
4","PFHxA","0.0807","ug/L","","0.00413","CRDL","","TRG","","","0.00830","CRDL","YES","0.00284"
"CAOA-B02-GW","537 MOD","RES","1901922-02","Vista","375-85-
9","PFHpA","0.0191","ug/L","","0.00413","CRDL","","TRG","","","0.00830","CRDL","YES","0.00284"
"CAOA-B02-GW","537 MOD","RES","1901922-02","Vista","355-46-
4","PFHxS","0.259","ug/L","","0.00413","CRDL","","TRG","","","0.00830","CRDL","YES","0.00284"
"CAOA-B02-GW","537 MOD","RES","1901922-02","Vista","335-67-
1","PFOA","0.0776","ug/L","","0.00413","CRDL","","TRG","","","0.00830","CRDL","YES","0.00284"
"CAOA-B02-GW","537 MOD","RES","1901922-02","Vista","375-95-
1","PFNA","0.0712","ug/L","","0.00413","CRDL","","TRG","","","0.00830","CRDL","YES","0.00284"
"CAOA-B02-GW","537 MOD","RES","1901922-02","Vista","1763-23-
1","PFOS","0.168","ug/L","","0.00413","CRDL","","TRG","","","0.00830","CRDL","YES","0.00284"
"CAOA-B02-GW","537 MOD","RES","1901922-02","Vista","335-76-
2","PFDA","0.00366","ug/L","J","0.00413","CRDL","","TRG","","","0.00830","CRDL","YES","0.00284"
"CAOA-B02-GW","537 MOD","RES","1901922-02","Vista","2355-31-
9","NMeFOSAA","0.00413","ug/L","U","0.00413","CRDL","","TRG","","","0.00830","CRDL","YES","0.00284"
"CAOA-B02-GW","537 MOD","RES","1901922-02","Vista","2991-50-
6","NEtFOSAA","0.00413","ug/L","U","0.00413","CRDL","","TRG","","","0.00830","CRDL","YES","0.00284"
"CAOA-B02-GW","537 MOD","RES","1901922-02","Vista","2058-94-
8","PFUnA","0.00490","ug/L","J","0.00413","CRDL","","TRG","","","0.00830","CRDL","YES","0.00284"
"CAOA-B02-GW","537 MOD","RES","1901922-02","Vista","307-55-
1","PFDoA","0.00413","ug/L","U","0.00413","CRDL","","TRG","","","0.00830","CRDL","YES","0.00284"
"CAOA-B02-GW","537 MOD","RES","1901922-02","Vista","72629-94-
8","PFTrDA","0.00413","ug/L","U","0.00413","CRDL","","TRG","","","0.00830","CRDL","YES","0.00284"
"CAOA-B02-GW","537 MOD","RES","1901922-02","Vista","376-06-
7","PFTeDA","0.00413","ug/L","U","0.00413","CRDL","","TRG","","","0.00830","CRDL","YES","0.00284"
"CAOA-B02-GW","537 MOD","RES","1901922-02","Vista","13C3-PFBS","13C3-
PFBS","94.8","\%R","","","CRDL","","IS","94.8","","","CRDL","",""
"CAOA-B02-GW","537 MOD","RES","1901922-02","Vista","13C2-PFHxA","13C2-
PFHxA","100","\%R","","","CRDL","","IS","100","","","CRDL","",""
"CAOA-B02-GW","537 MOD","RES","1901922-02","Vista","13C4-PFHpA","13C4-
PFHpA","96.5","\%R","","","CRDL","","IS","96.5","","","CRDL","",""
"CAOA-B02-GW","537 MOD","RES","1901922-02","Vista","13C3-PFHxS","13C3-
PFHxS","86.2","\%R","","","CRDL","","IS","86.2","","","CRDL","",""
"CAOA-B02-GW","537 MOD","RES","1901922-02","Vista","13C2-PFOA","13C2-
PFOA","102","\%R","","","CRDL","","IS","102","","","CRDL","",""
"CAOA-B02-GW","537 MOD","RES","1901922-02","Vista","13C5-PFNA","13C5-
PFNA","92.7","\%R","","","CRDL","","IS","92.7","","","CRDL","",""
"CAOA-B02-GW","537 MOD","RES","1901922-02","Vista","13C8-PFOS","13C8-
PFOS","103","\%R","","","CRDL","","IS","103","","","CRDL","",""
"CAOA-B02-GW","537 MOD","RES","1901922-02","Vista","13C2-PFDA","13C2-
PFDA","86.3","\%R","","","CRDL","","IS","86.3","","","CRDL","",""
"CAOA-B02-GW","537 MOD","RES","1901922-02","Vista","d3-MeFOSAA","d3-
MeFOSAA","59.1","\%R","","","CRDL","","IS","59.1","","","CRDL","",""
"CAOA-B02-GW","537 MOD","RES","1901922-02","Vista","d5-EtFOSAA","d5-
EtFOSAA","80.6","\%R","","","CRDL","","IS","80.6","","","CRDL","",""
"CAOA-B02-GW","537 MOD","RES","1901922-02","Vista","13C2-PFUnA","13C2-
PFUnA","80.4","\%R","","","CRDL","","IS","80.4","","","CRDL","",""
"CAOA-B02-GW","537 MOD","RES","1901922-02","Vista","13C2-PFDoA","13C2-
PFDoA","65.9","\%R","","","CRDL","","IS","65.9","","","CRDL","",""
"CAOA-B02-GW","537 MOD","RES","1901922-02","Vista","13C2-PFTeDA","13C2-

PFTeDA","75.5","\%R","","","CRDL","","IS","75.5","","","CRDL","","" "B9G0062-BLK1","537 MOD","RES","B9G0062-BLK1","Vista","375-735","PFBS","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274" "B9G0062-BLK1","537 MOD","RES","B9G0062-BLK1","Vista","307-244","PFHxA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274" "B9G0062-BLK1","537 MOD","RES","B9G0062-BLK1","Vista","375-859","PFHpA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274" "B9G0062-BLK1","537 MOD","RES","B9G0062-BLK1","Vista","355-464","PFHxS","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274" "B9G0062-BLK1","537 MOD","RES","B9G0062-BLK1","Vista","335-671","PFOA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274" "B9G0062-BLK1","537 MOD","RES","B9G0062-BLK1","Vista","375-951","PFNA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274" "B9G0062-BLK1","537 MOD","RES","B9G0062-BLK1","Vista","1763-231","PFOS","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274" "B9G0062-BLK1","537 MOD","RES","B9G0062-BLK1","Vista","335-762","PFDA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274" "B9G0062-BLK1","537 MOD","RES","B9G0062-BLK1","Vista","2355-319","NMeFOSAA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274" "B9G0062-BLK1","537 MOD","RES","B9G0062-BLK1","Vista","2991-506","NEtFOSAA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274" "B9G0062-BLK1","537 MOD","RES","B9G0062-BLK1","Vista","2058-948","PFUnA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274" "B9G0062-BLK1","537 MOD","RES","B9G0062-BLK1","Vista","307-551","PFDoA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274" "B9G0062-BLK1","537 MOD","RES","B9G0062-BLK1","Vista","72629-948","PFTrDA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274" "B9G0062-BLK1","537 MOD","RES","B9G0062-BLK1","Vista","376-067","PFTeDA","0.00400","ug/L","U","0.00400","CRDL","","TRG","","","0.00800","CRDL","YES","0.00274" "B9G0062-BLK1","537 MOD","RES","B9G0062-BLK1","Vista","13C3-PFBS","13C3PFBS","103","\%R","","","CRDL","","IS","103","","","CRDL","","" "B9G0062-BLK1","537 MOD","RES","B9G0062-BLK1","Vista","13C2-PFHxA","13C2PFHxA","93.3","\%R","","","CRDL","","IS","93.3","","","CRDL","","" "B9G0062-BLK1","537 MOD","RES","B9G0062-BLK1","Vista","13C4-PFHpA","13C4PFHpA","86.3","\%R","","","CRDL","","IS","86.3","","","CRDL","","" "B9G0062-BLK1","537 MOD","RES","B9G0062-BLK1","Vista","13C3-PFHxS","13C3PFHxS","95.6","\%R","","","CRDL","","IS","95.6","","","CRDL","","" "B9G0062-BLK1","537 MOD","RES","B9G0062-BLK1","Vista","13C2-PFOA","13C2PFOA","78.8","\%R","","","CRDL","","IS","78.8","","","CRDL","","" "B9G0062-BLK1","537 MOD","RES","B9G0062-BLK1","Vista","13C5-PFNA","13C5PFNA","77.7","\%R","","","CRDL","","IS","77.7","","","CRDL","","" "B9G0062-BLK1","537 MOD","RES","B9G0062-BLK1","Vista","13C8-PFOS","13C8PFOS","73.5","\%R","","","CRDL","","IS","73.5","","","CRDL","","" "B9G0062-BLK1","537 MOD","RES","B9G0062-BLK1","Vista","13C2-PFDA","13C2PFDA","70.1","\%R","","","CRDL","","IS","70.1","","","CRDL","","" "B9G0062-BLK1","537 MOD","RES","B9G0062-BLK1","Vista","d3-MeFOSAA","d3MeFOSAA","63.6","\%R","","","CRDL","","IS","63.6","","","CRDL","","" "B9G0062-BLK1","537 MOD","RES","B9G0062-BLK1","Vista","d5-EtFOSAA","d5EtFOSAA","65.1","\%R","","","CRDL","","IS","65.1","","","CRDL","","" "B9G0062-BLK1","537 MOD","RES","B9G0062-BLK1","Vista","13C2-PFUnA","13C2PFUnA","71.1","\%R","","","CRDL","","IS","71.1","","","CRDL","","" "B9G0062-BLK1","537 MOD","RES","B9G0062-BLK1","Vista","13C2-PFDoA","13C2PFDoA","59.6","\%R","","","CRDL","","IS","59.6","","","CRDL","","" "B9G0062-BLK1","537 MOD","RES","B9G0062-BLK1","Vista","13C2-PFTeDA","13C2-

PFTeDA","46.6","\%R","H","","CRDL","","IS","46.6","","","CRDL","",""
"B9G0062-BS1","537 MOD","RES","B9G0062-BS1","Vista","375-73-
5","PFBS","0.0806","ug/L","","0.00400","CRDL","","SPK","101","","0.00800","CRDL","YES","0.00274"
"B9G0062-BS1","537 MOD","RES","B9G0062-BS1","Vista","307-24-
4","PFHxA","0.0850","ug/L","","0.00400","CRDL","","SPK","106","","0.00800","CRDL","YES","0.00274"
"B9G0062-BS1","537 MOD","RES","B9G0062-BS1","Vista","375-85-
9","PFHpA","0.0930","ug/L","","0.00400","CRDL","","SPK","116","","0.00800","CRDL","YES","0.00274" "B9G0062-BS1","537 MOD","RES","B9G0062-BS1","Vista","355-46-
4","PFHxS","0.0995","ug/L","","0.00400","CRDL","","SPK","124","","0.00800","CRDL","YES","0.00274" "B9G0062-BS1","537 MOD","RES","B9G0062-BS1","Vista","335-67-
1","PFOA","0.0870","ug/L","","0.00400","CRDL","","SPK","109","","0.00800","CRDL","YES","0.00274"
"B9G0062-BS1","537 MOD","RES","B9G0062-BS1","Vista","375-95-
1","PFNA","0.0840","ug/L","","0.00400","CRDL","","SPK","105","","0.00800","CRDL","YES","0.00274" "B9G0062-BS1","537 MOD","RES","B9G0062-BS1","Vista","1763-23-
1","PFOS","0.0880","ug/L","","0.00400","CRDL","","SPK","110","","0.00800","CRDL","YES","0.00274" "B9G0062-BS1","537 MOD","RES","B9G0062-BS1","Vista","335-762","PFDA","0.0844","ug/L","","0.00400","CRDL","","SPK","106","","0.00800","CRDL","YES","0.00274" "B9G0062-BS1","537 MOD","RES","B9G0062-BS1","Vista","2355-319","NMeFOSAA","0.103","ug/L","","0.00400","CRDL","","SPK","129","","0.00800","CRDL","YES","0.00274" "B9G0062-BS1","537 MOD","RES","B9G0062-BS1","Vista","2991-506","NEtFOSAA","0.0901","ug/L","","0.00400","CRDL","","SPK","113","","0.00800","CRDL","YES","0.00274" "B9G0062-BS1","537 MOD","RES","B9G0062-BS1","Vista","2058-948","PFUnA","0.0827","ug/L","","0.00400","CRDL","","SPK","103","","0.00800","CRDL","YES","0.00274" "B9G0062-BS1","537 MOD","RES","B9G0062-BS1","Vista","307-55-
1","PFDoA","0.0925","ug/L","","0.00400","CRDL","","SPK","116","","0.00800","CRDL","YES","0.00274" "B9G0062-BS1","537 MOD","RES","B9G0062-BS1","Vista","72629-94-
8","PFTrDA","0.0869","ug/L","","0.00400","CRDL","","SPK","109","","0.00800","CRDL","YES","0.00274" "B9G0062-BS1","537 MOD","RES","B9G0062-BS1","Vista","376-06-
7","PFTeDA","0.0906","ug/L","","0.00400","CRDL","","SPK","113","","0.00800","CRDL","YES","0.00274"
"B9G0062-BS1","537 MOD","RES","B9G0062-BS1","Vista","13C3-PFBS","13C3-
PFBS","95.8","\%R","","","CRDL","","IS","95.8","","","CRDL","",""
"B9G0062-BS1","537 MOD","RES","B9G0062-BS1","Vista","13C2-PFHxA","13C2-
PFHxA","97.5","\%R","","","CRDL","","IS","97.5","","","CRDL","",""
"B9G0062-BS1","537 MOD","RES","B9G0062-BS1","Vista","13C4-PFHpA","13C4-
PFHpA","85.1","\%R","","","CRDL","","IS","85.1","","","CRDL","",""
"B9G0062-BS1","537 MOD","RES","B9G0062-BS1","Vista","13C3-PFHxS","13C3-
PFHxS","82.4","\%R","","","CRDL","","IS","82.4","","","CRDL","",""
"B9G0062-BS1","537 MOD","RES","B9G0062-BS1","Vista","13C2-PFOA","13C2-
PFOA","82.8","\%R","","","CRDL","","IS","82.8","","","CRDL","",""
"B9G0062-BS1","537 MOD","RES","B9G0062-BS1","Vista","13C5-PFNA","13C5-
PFNA","78.9","\%R","","","CRDL","","IS","78.9","","","CRDL","",""
"B9G0062-BS1","537 MOD","RES","B9G0062-BS1","Vista","13C8-PFOS","13C8-
PFOS","67.8","\%R","","","CRDL","","IS","67.8","","","CRDL","","'
"B9G0062-BS1","537 MOD","RES","B9G0062-BS1","Vista","13C2-PFDA","13C2-
PFDA","70.9","\%R","","","CRDL","","IS","70.9","","","CRDL","",""
"B9G0062-BS1","537 MOD","RES","B9G0062-BS1","Vista","d3-MeFOSAA","d3-
MeFOSAA","60.3","\%R","","","CRDL","","IS","60.3","","","CRDL","",""
"B9G0062-BS1","537 MOD","RES","B9G0062-BS1","Vista","d5-EtFOSAA","d5-
EtFOSAA","69.6","\%R","","","CRDL","","IS","69.6","","","CRDL","",""
"B9G0062-BS1","537 MOD","RES","B9G0062-BS1","Vista","13C2-PFUnA","13C2-
PFUnA","63.0","\%R","","","CRDL","","IS","63.0","","","CRDL","",""
"B9G0062-BS1","537 MOD","RES","B9G0062-BS1","Vista","13C2-PFDoA","13C2-
PFDoA","52.5","\%R","","","CRDL","","IS","52.5","","","CRDL","",""
"B9G0062-BS1","537 MOD","RES","B9G0062-BS1","Vista","13C2-PFTeDA","13C2-

PFTeDA","52.0","\%R","","","CRDL","","IS","52.0","","","CRDL","","" "B9G0062-BSD1","537 MOD","RES","B9G0062-BSD1","Vista","375-735","PFBS","0.0817","ug/L","","0.00400","CRDL","","SPK","102","1.31","0.00800","CRDL","YES","0.00274" "B9G0062-BSD1","537 MOD","RES","B9G0062-BSD1","Vista","307-244","PFHxA","0.0890","ug/L","","0.00400","CRDL","","SPK","111","4.67","0.00800","CRDL","YES","0.00274" "B9G0062-BSD1","537 MOD","RES","B9G0062-BSD1","Vista","375-859","PFHpA","0.0834","ug/L","","0.00400","CRDL","","SPK","104","10.9","0.00800","CRDL","YES","0.00274" "B9G0062-BSD1","537 MOD","RES","B9G0062-BSD1","Vista","355-464","PFHxS","0.0894","ug/L","","0.00400","CRDL","","SPK","112","10.7","0.00800","CRDL","YES","0.00274" "B9G0062-BSD1","537 MOD","RES","B9G0062-BSD1","Vista","335-671","PFOA","0.0846","ug/L","","0.00400","CRDL","","SPK","106","2.89","0.00800","CRDL","YES","0.00274" "B9G0062-BSD1","537 MOD","RES","B9G0062-BSD1","Vista","375-951","PFNA","0.0831","ug/L","","0.00400","CRDL","","SPK","104","1.12","0.00800","CRDL","YES","0.00274" "B9G0062-BSD1","537 MOD","RES","B9G0062-BSD1","Vista","1763-231","PFOS","0.0817","ug/L","","0.00400","CRDL","","SPK","102","7.33","0.00800","CRDL","YES","0.00274" "B9G0062-BSD1","537 MOD","RES","B9G0062-BSD1","Vista","335-762","PFDA","0.0808","ug/L","","0.00400","CRDL","","SPK","101","4.37","0.00800","CRDL","YES","0.00274" "B9G0062-BSD1","537 MOD","RES","B9G0062-BSD1","Vista","2355-319","NMeFOSAA","0.0845","ug/L","","0.00400","CRDL","","SPK","106","19.8","0.00800","CRDL","YES","0.00274" "B9G0062-BSD1","537 MOD","RES","B9G0062-BSD1","Vista","2991-50-
6","NEtFOSAA","0.0910","ug/L","","0.00400","CRDL","","SPK","114","1.06","0.00800","CRDL","YES","0.00274" "B9G0062-BSD1","537 MOD","RES","B9G0062-BSD1","Vista","2058-948","PFUnA","0.0860","ug/L","","0.00400","CRDL","","SPK","108","4.01","0.00800","CRDL","YES","0.00274" "B9G0062-BSD1","537 MOD","RES","B9G0062-BSD1","Vista","307-55-
1","PFDoA","0.0862","ug/L","","0.00400","CRDL","","SPK","108","7.04","0.00800","CRDL","YES","0.00274" "B9G0062-BSD1","537 MOD","RES","B9G0062-BSD1","Vista","72629-94-
8","PFTrDA","0.0817","ug/L","","0.00400","CRDL","","SPK","102","6.11","0.00800","CRDL","YES","0.00274" "B9G0062-BSD1","537 MOD","RES","B9G0062-BSD1","Vista","376-06-
7","PFTeDA","0.0883","ug/L","","0.00400","CRDL","","SPK","110","2.54","0.00800","CRDL","YES","0.00274" "B9G0062-BSD1","537 MOD","RES","B9G0062-BSD1","Vista","13C3-PFBS","13C3-
PFBS","100","\%R","","","CRDL","","IS","100","","","CRDL","",""
"B9G0062-BSD1","537 MOD","RES","B9G0062-BSD1","Vista","13C2-PFHxA","13C2PFHxA","100","\%R","","","CRDL","","IS","100","","","CRDL","",""
"B9G0062-BSD1","537 MOD","RES","B9G0062-BSD1","Vista","13C4-PFHpA","13C4PFHpA","97.7","\%R","","","CRDL","","IS","97.7","","","CRDL","","" "B9G0062-BSD1","537 MOD","RES","B9G0062-BSD1","Vista","13C3-PFHxS","13C3PFHxS","84.2","\%R","","","CRDL","","IS","84.2","","","CRDL","","" "B9G0062-BSD1","537 MOD","RES","B9G0062-BSD1","Vista","13C2-PFOA","13C2PFOA","80.0","\%R","","","CRDL","","IS","80.0","","","CRDL","","" "B9G0062-BSD1","537 MOD","RES","B9G0062-BSD1","Vista","13C5-PFNA","13C5PFNA","71.0","\%R","","","CRDL","","IS","71.0","","","CRDL","","" "B9G0062-BSD1","537 MOD","RES","B9G0062-BSD1","Vista","13C8-PFOS","13C8PFOS","72.8","\%R","","","CRDL","","IS","72.8","","","CRDL","","" "B9G0062-BSD1","537 MOD","RES","B9G0062-BSD1","Vista","13C2-PFDA","13C2PFDA","67.0","\%R","","","CRDL","","IS","67.0","","","CRDL","","" "B9G0062-BSD1","537 MOD","RES","B9G0062-BSD1","Vista","d3-MeFOSAA","d3MeFOSAA","68.3","\%R","","","CRDL","","IS","68.3","","","CRDL","","" "B9G0062-BSD1","537 MOD","RES","B9G0062-BSD1","Vista","d5-EtFOSAA","d5EtFOSAA","59.3","\%R","","","CRDL","","IS","59.3","","","CRDL","","" "B9G0062-BSD1","537 MOD","RES","B9G0062-BSD1","Vista","13C2-PFUnA","13C2PFUnA","59.0","\%R","","","CRDL","","IS","59.0","","","CRDL","","" "B9G0062-BSD1","537 MOD","RES","B9G0062-BSD1","Vista","13C2-PFDoA","13C2PFDoA","45.8","\%R","H","","CRDL","","IS","45.8","","","CRDL","","" "B9G0062-BSD1","537 MOD","RES","B9G0062-BSD1","Vista","13C2-PFTeDA","13C2-

PFTeDA","41.4","\%R","H","","CRDL","","IS","41.4","","","CRDL","",""
"4663.3803","CTO 17F3803 Yuma","FRB-07022019","07/02/2019 12:30","AQ","1901922-01","","","","537
MOD","Gen Prep","RES","07/10/2019 06:42","07/12/2019
03:48","Vista","COA","","","1","","","","","B9G0062","B9G0062","S9G0025","S9G0025","1901922","07/03/2019
09:10","07/16/2019 00:00"
"4663.3803","CTO 17F3803 Yuma","CAOA-B02-GW","07/02/2019 13:15","AQ","1901922-02","","","","537
MOD","Gen Prep","RES","07/10/2019 06:42","07/12/2019
03:59","Vista","COA","","","1","","","","","B9G0062","B9G0062","S9G0025","S9G0025","1901922","07/03/2019
09:10","07/16/2019 00:00"
"4663.3803","CTO 17F3803 Yuma","B9G0062-BLK1","","AQ","B9G0062-BLK1","MB","","","537 MOD","Gen
Prep","RES","07/10/2019 06:42","07/12/2019
03:38","Vista","COA","","","1","","","","","B9G0062","B9G0062","S9G0025","S9G0025","1901922","","07/16/2019 00:00"
"4663.3803","CTO 17F3803 Yuma","B9G0062-BS1","","AQ","B9G0062-BS1","LCS","","","537 MOD","Gen Prep","RES","07/10/2019 06:42","07/12/2019
03:16","Vista","COA","","","1","","","","","B9G0062","B9G0062","S9G0025","S9G0025","1901922","","07/16/2019 00:00"
"4663.3803","CTO 17F3803 Yuma","B9G0062-BSD1","","AQ","B9G0062-BSD1","LCSD","","","537 MOD","Gen
Prep","RES","07/10/2019 06:42","07/12/2019
03:27","Vista","COA","","","1","","","","","B9G0062","B9G0062","S9G0025","S9G0025","1901922","","07/16/2019 00:00"

SUBJECT: Revised MCAS Yuma, CTO 17F3803, Data Validation
Dear Ms. Bienkowski,
Enclosed are the revised validation reports for the fraction listed below. These SDGs were received on July 23,2019 . Attachment 1 is a summary of the samples that were reviewed for each analysis.

- A: Updated the validation references. Corrected the LCS/OPR section.
- B: Updated the validation references. Removed the PFTrDA OPR qualifier since the compound recovered within laboratory limits.
- C: Updated the validation references. Corrected the LCS/OPR section. Corrected the 13C2-PFTeDA concentration listed in the "Labeled Compounds" section.
- D: Updated the validation references. Added the field blank qualifier to sample SAOA-B08GW for PFDA. Corrected the LCS/OPR section.
- E: Updated the validation references.


## LDC Project \#45580_RV1:

SDG \#
1901705, 1901766, 1901857
1901920, 1901922

## Fraction

Perfluoroalkyl \& Polyfluoroalkyl Substances

The data validation was performed under Stage 4 guidelines. The analyses were validated using the following documents, as applicable to each method:

- Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan), Site Inspection for Per- and Polyfluoroalkyl Substances, Marine Corps Air Station Yuma, Arizona; May 2019,
- U.S. Department of Defense Quality Systems Manual for Environmental Laboratories, Version 5.1; 2017
- USEPA National Functional Guidelines for Superfund Organic Methods Data Review; January 2017

Please feel free to contact us if you have any questions.
Sincerely,

## Chistina Rink

Christina Rink
crink@lab-data.com
Project Manager/Senior Chemist


# Laboratory Data Consultants, Inc. Data Validation Report 

Project/Site Name:
LDC Report Date:

## Parameters:

## Validation Level:

Laboratory:

MCAS Yuma, CTO 17F3803
August 22, 2019
Perfluoroalkyl \& Polyfluoroalkyl Substances
Stage 4
Vista Analytical Laboratory

Sample Delivery Group (SDG): 1901705

| Sample Identification | Laboratory Sample <br> Identification | Matrix | Collection <br> Date |
| :--- | :--- | :---: | :---: |
| NAOA-B05-SO | $1901705-01$ | Soil | $06 / 18 / 19$ |
| FRB-06182019 | $1901705-02$ | Water | $06 / 18 / 19$ |
| NAOA-B10-SO-20-20.5 | $1901705-03$ | Soil | $06 / 19 / 19$ |
| NAOA-B10-SO-0.5-1 | $1901705-04$ | Soil | $06 / 19 / 19$ |
| NAOA-B11-SO-0.5-1 | $1901705-05$ | Soil | $06 / 19 / 19$ |
| NAOA-B11-SO-20-20.5 | $1901705-06$ | Soil | $06 / 19 / 19$ |
| NAOA-B15-SO-0.5-1 | $1901705-07$ | Soil | $06 / 19 / 19$ |
| EB-06192019 | $1901705-08$ | Water | $06 / 19 / 19$ |
| NAOA-B15-SO-20-20.5 | $1901705-09$ | Soil | $06 / 19 / 19$ |
| NAOA-B12-SO-0.5-1 | $1901705-10$ | Soil | $06 / 20 / 19$ |
| NAOA-B12-SO-20-20.5 | $1901705-11$ | Soil | $06 / 20 / 19$ |
| NAOA-B13-SO-0.5-1 | $1901705-12$ | Soil | $06 / 20 / 19$ |
| NAOA-B13-SO-20-20.5 | $1901705-13$ | Soil | $06 / 20 / 19$ |
| NAOA-B14-SO-0.5-1 | $1901705-14$ | Soil | $06 / 20 / 19$ |
| NAOA-B14-SO-20-20.5 | $1901705-15$ | Soil | $06 / 20 / 19$ |
| FRB-06192019 | $1901705-16$ | Water | $06 / 19 / 19$ |
| EB-06202019 | $1901705-17$ | Water | $06 / 20 / 19$ |
| FRB-06202019 | $1901705-18$ | Water | $06 / 20 / 19$ |
| NAOA-B07-GW | $1901705-19$ | Water | $06 / 20 / 19$ |

## Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan), Site Inspection for Per- and Polyfluoroalkyl Substances, Marine Corps Air Station Yuma, Arizona (May 2019), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) by Environmental Protection Agency (EPA) Method 537 Modified

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as $P$ (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

## I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

## II. LC/MS Instrument Performance Check

Instrument performance was checked and the requirements were met.

## III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.
A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination ( $\mathrm{r}^{2}$ ) was greater than or equal to 0.990 .

For each calibration standard, all compounds were within $70-130 \%$ of their true value.
The signal to noise $(\mathrm{S} / \mathrm{N})$ ratio was within validation criteria for all compounds.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to $30.0 \%$ for all compounds.

## IV. Continuing Calibration

Continuing calibration was performed at required frequencies.
The percent differences (\%D) were less than or equal to $30.0 \%$ for all compounds.
The signal to noise $(\mathrm{S} / \mathrm{N})$ ratio was within validation criteria for all compounds.

## V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

## VI. Field Blanks

Samples EB-GW-06202019 (from SDG 1901766), EB-06192019, and EB-06202019 were identified as equipment blanks. No contaminants were found with the following exceptions:

| Blank ID | Collection <br> Date | Compound | Concentration | Associated <br> Samples In This SDG |
| :---: | :---: | :--- | :--- | :--- |
| EB-06202019 | $06 / 20 / 19$ | PFOS | $0.0582 \mathrm{ug} / \mathrm{L}$ | NAOA-B12-SO-0.5-1 <br> NAOA-B13-SO-0.5-1 <br> NAOA-B14-SO-0.5-1 |

Samples FRB-06182019, FRB-06192019, and FRB-06202019 were identified as field reagent blanks. No contaminants were found.

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>5X for contaminants) than the concentrations found in the associated field blanks.

## VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

## VIII. Laboratory Control Samples/Ongoing Precision Recovery

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits with the following exceptions:

| LCS ID <br> (Associated Samples) | Compound | LCS <br> \%R (Limits) | LCSD <br> \%R (Limits) | Flag | A or P |
| :---: | :---: | :---: | :---: | :---: | :---: |
| B9F0278-BS1/BSD1 <br> (All soil samples in SDG 1901705) | PFTrDA | - | $131(60-130)$ | NA | - |

NA (Not Applicable): The percent recovery demonstrates a high bias and the affected compound was not detected in the associated samples. Sample qualification was not necessary.

Relative percent differences (RPD) were within QC limits.
Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (\%R) were within QC limits with the following exceptions:

| OPR ID | Compound | \%R (Limits) | Associated Samples | Flag | A or P |
| :---: | :---: | :---: | :---: | :---: | :---: |
| B9F0253-BS1 | PFTrDA | 56.4 (60-130) | All water samples in SDG 1901705 | UJ (all non-detects) | P |

## IX. Field Duplicates

No field duplicates were identified in this SDG.

## X. Labeled Compounds

All percent recoveries (\%R) for labeled compounds used to quantitate target compounds were within QC limits with the following exceptions:

| Sample | Labeled Compound | \%R (Limits) | Affected <br> Compound | Flag | A or P |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NAOA-B05-SO | 13C2-PFDoA | 44.9 (50-150) | $\begin{aligned} & \text { PFDoA } \\ & \text { PFTrDA } \end{aligned}$ | UJ (all non-detects) <br> UJ (all non-detects) | P |
| NAOA-B10-SO-20-20.5 | d5-EtFOSAA 13C2-PFUnA 13C2-PFDoA | $\begin{aligned} & 49.1(50-150) \\ & 47.8(50-150) \\ & 46.9(50-150) \end{aligned}$ | EtFOSAA <br> PFUnA <br> PFDoA <br> PFTrDA | UJ (all non-detects) UJ (all non-detects) UJ (all non-detects) UJ (all non-detects) | P |
| NAOA-B12-SO-20-20.5 | 13C5-PFNA 13C2-PFDA d3-MeFOSAA d5-EtFOSAA 13C2-PFUnA 13C2-PFDoA 13C2-PFTeDA | $\begin{aligned} & 47.6(50-150) \\ & 38.0(50-150) \\ & 40.7(50-150) \\ & 41.4(50-150) \\ & 33.4(50-150) \\ & 33.8(50-150) \\ & 40.3(50-150) \end{aligned}$ | PFNA <br> PFDA <br> MeFOSAA <br> EtFOSAA <br> PFUnA <br> PFDoA <br> PFTrDA <br> PFTeDA | UJ (all non-detects) <br> UJ (all non-detects) | P |
| NAOA-B11-SO-0.5-1 | d3-MeFOSAA d5-EtFOSAA 13C2-PFUnA 13C2-PFDoA | $\begin{aligned} & 43.3(50-150) \\ & 47.5(50-150) \\ & 45.9(50-150) \\ & 40.9(50-150) \end{aligned}$ | MeFOSAA <br> EtFOSAA <br> PFUnA <br> PFDoA <br> PFTrDA | UJ (all non-detects) <br> UJ (all non-detects) <br> UJ (all non-detects) <br> UJ (all non-detects) <br> UJ (all non-detects) | P |
| NAOA-B14-SO-0.5-1 | d3-MeFOSAA | 49.2 (50-150) | MeFOSAA | UJ (all non-detects) | P |
| NAOA-B07-GW | 13C2-PFTeDA | 25.8 (50-150) | PFTeDA | UJ (all non-detects) | P |

## XI. Compound Quantitation

All compound quantitations met validation criteria.
All compounds reported below the limit of quantitation (LOQ) were qualified as follows:

| Sample |  |  |  |
| :--- | :--- | :--- | :---: |
| NAOA-B10-SO-20-20.5 | Finding | Flag | A or P |
| NAOA-B10-SO-0.5-1 |  | J (all detects) | A |
| NAOA-B11-SO-20-20.5 |  |  |  |
| NAOA-B15-SO-0.5-1 |  |  |  |
| NAOA-B15-SO-20-20.5 |  |  |  |
| NAOA-B12-SO-0.5-1 |  |  |  |
| NAOA-B12-SO-20-20.5 |  |  |  |

## XII. Target Compound Identifications

All target compound identifications met validation criteria.

## XIII. System Performance

The system performance was acceptable.

## XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to OPR \%R, labeled compound \%R, and results below the LOQ, data were qualified as estimated in seventeen samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

MCAS Yuma, CTO 17F3803 Perfluoroalkyl \& Polyfluoroalkyl Substances - Data Qualification Summary - SDG 1901705

| Sample | Compound | Flag | A or P | Reason |
| :---: | :---: | :---: | :---: | :---: |
| FRB-06182019 EB-06192019 FRB-06192019 EB-06202019 FRB-06202019 NAOA-B07-GW | PFTrDA | UJ (all non-detects) | P | Ongoing precision and recovery (\%R) |
| NAOA-B05-SO | $\begin{aligned} & \text { PFDoA } \\ & \text { PFTrDA } \end{aligned}$ | UJ (all non-detects) <br> UJ (all non-detects) | P | Labeled compounds (\%R) |
| NAOA-B10-SO-20-20.5 | EtFOSAA <br> PFUnA <br> PFDoA <br> PFTrDA | UJ (all non-detects) <br> UJ (all non-detects) <br> UJ (all non-detects) <br> UJ (all non-detects) | P | Labeled compounds (\%R) |
| NAOA-B12-SO-20-20.5 | PFNA PFDA <br> MeFOSAA <br> EtFOSAA <br> PFUnA <br> PFDoA <br> PFTrDA <br> PFTeDA | UJ (all non-detects) UJ (all non-detects) UJ (all no-detects) UJ (all non-detects) | P | Labeled compounds (\%R) |
| NAOA-B11-SO-0.5-1 | MeFOSAA <br> EtFOSAA <br> PFUnA <br> PFDoA <br> PFTrDA | UJ (all non-detects) <br> UJ (all non-detects) <br> UJ (all non-detects) <br> UJ (all non-detects) <br> UJ (all non-detects) | P | Labeled compounds (\%R) |
| NAOA-B14-SO-0.5-1 | MeFOSAA | UJ (all non-detects) | P | Labeled compounds (\%R) |
| NAOA-B07-GW | PFTeDA | UJ (all non-detects) | P | Labeled compounds (\%R) |
| NAOA-B10-SO-20-20.5 NAOA-B10-SO-0.5-1 NAOA-B11-SO-20-20.5 NAOA-B15-SO-0.5-1 NAOA-B15-SO-20-20.5 NAOA-B12-SO-0.5-1 NAOA-B12-SO-20-20.5 NAOA-B13-SO-0.5-1 | All compounds reported below the LOQ. | $J$ (all detects) | A | Compound quantitation |

## MCAS Yuma, CTO 17F3803 <br> Perfluoroalkyl \& Polyfluoroalkyl Substances - Laboratory Blank Data Qualification Summary - SDG 1901705

MCAS Yuma, CTO 17F3803
Perfluoroalkyl \& Polyfluoroalkyl Substances - Field Blank Data Qualification Summary - SDG 1901705

No Sample Data Qualified in this SDG

LDC \#: 45580A96
VALIDATION COMPLETENESS WORKSHEET
Date: $\frac{08 / 12 / 19}{1}$
SD \#: 1901705
Laboratory: Vista Analytical Laboratory
Stage 4

METHOD: LC/MS Perfluoroalkyl \& Polyfluoroalkyl Substances (EPA Method 537)M )
Page: $\frac{1}{}$ of $\frac{2}{2}$
Reviewer: $\quad 5 \sqrt{4}$ 2nd Reviewer: $\qquad$

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

Note: $\quad \mathrm{A}=$ Acceptable
$\mathrm{N}=$ Not provided/applicable
SW = See worksheet

* $\mathrm{ND}=$ No compounds detected $\mathrm{R}=$ Reinstate
FB = Field blank
$\mathrm{D}=$ Duplicate
$\mathrm{TB}=\mathrm{Trip}$ blank
$\mathrm{EB}=$ Equipment blank
SB=Source blank

FR B $=$ Field Reagent Blond


LDC \#: 45580A96
SDG \#: 1901705
Laboratory: Vista Analytical Laboratory

## Stage 4

METHOD: LC/MS Perfluoroalkyl \& Polyfluoroalkyl Substances (EPA Method 537)
Page: $\gamma$ of $\gamma$
Reviewer: $\mathbb{O}$
2nd Reviewer:


|  | Client ID | Lab ID | Matrix | Date |
| :--- | :--- | :--- | :--- | :--- |
| $16^{2}$ | FRB-06192019 | $1901705-16$ | Water | $06 / 19 / 19$ |
| 172 | EB-06202019 | $1901705-17$ | Water | $06 / 20 / 19$ |
| $18^{2}$ | FRB-06202019 | $1901705-18$ | Water | $06 / 20 / 19$ |
| $19^{2}$ | NAOA-B07-GW | $1901705-19$ | Water | $06 / 20 / 19$ |
| 20 |  |  |  |  |
| 21 |  |  |  |  |
| 22 |  |  |  |  |
| 23 |  |  |  |  |
| 24 |  |  |  |  |

Notes:

| 1 | B9F0278-BCK1 |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\gamma$ | $B 9 F 0253-1$ |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

LDC \#:
45580 A 96
Reviewer: JV 2nd Reviewer:


Method: LCMS (EPA Method 537M)



## VALIDATION FINDINGS WORKSHEET

METHOD: Perfluorinated Alkyl Acids (EPA Method 537)

| A. PFBA | $375-22-4$ |
| :--- | :--- |
| B. PFPeA | $2706-90-3$ |
| C. PFBS | $375-73-5$ |
| D. PFHxA | $307-24-4$ |
| E. PFHPA | $375-85-9$ |
| F. PFHxS | $355-46-4$ |
| G. PFOA | $335-67-1$ |
| H. PFHpS | $375-92-8$ |
| I. PFNA | $375-95-1$ |
| J. PFOSA | $754-91-6$ |
| K. PFOS | $1763-23-1$ |
| L. PFDA | $335-76-2$ |
| M. PFUnA | $2058-94-8$ |
| N. PFDS | $335-77-3$ |
| O. PFDoA | $307-55-1$ |
| P. MeFOSA | $31506-32-8$ |
| Q. PFTrDA | $72629-94-8$ |
| R. PFTeDA | $376-06-7$ |
| S. EtFOSA | $4151-50-2$ |
| T. MeFOSE | $24448-09-7$ |
| U. EtFOSE | $1691-99-2$ |
| V. MeFOSAA | $2355-31-9$ |
| W. EtFOSAA | $2991-50-6$ |
|  |  |
|  |  |

[^13][^14]Y N N/A Were field blanks identified in this SDG?
Y N N/A Were target compounds detected in the field blanks?
Blank units: $\quad$ ug $/ \mathrm{L}$ Associated sample units: $u g \mathrm{~kg}$ Sampling date: $06 / 20 / 19$ $\qquad$
Field blank type: (circle one) Trip Blank/Field Blank / Rinsate / Other:_EB

| Compound | Blank ID |  |  |  | mple Identifica | ation |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 17 | (5x) | +7 |  |  |  |  |  |  |
| K | 0.0582 | 0.291 | 2,118/J |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |

Blank units: $\qquad$ Associated sample units:_____

## Sampling date:

Field blank type: (circle one) Field Blank / Rinsate / Other: Associated Samples:

| Compound | Blank ID |  |  |  |  | ample Identificatio |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

Page: _ 1 of __
Reviewer: JVG


METHOD: LC/MS PFCs (EPA Method 537)
Ptease see qualifications below for all questions answered " N ". Not applicable questions are identified as "N/A".
Y I N/A Was a LCS required?
$Y$ N N/A Were the LCS percent recoveries (\%R) and relative percent difference (RPD) within the QC limits?

| \# | LCS/LCSD ID | Compound | $\begin{gathered} \text { LCS } \\ \text { \%R (Limits) } \end{gathered}$ | $\begin{gathered} \text { LCSD } \\ \text { \%R (Limits) } \end{gathered}$ | RPD (Limits) | Associated Samples | Qualifications |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | B9F0278-BS1/BS | $Q$ | ( | $131(76-130)$ | ( ) | All S, M1 | J dets/9 |
|  |  |  | ( ) | (60) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  | B9F0253-351 | $Q$ | $56.4(76-130)$ | ( ) | ( ) | All W MAB2 (ND) | $5 / 45 / 9$ |
|  | (0QR) |  | (60) | ( ) | ( ) |  |  |
|  | $)$ |  | ( | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | 1 | 1 | 1 |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( | ( ) |  |  |
|  |  |  | $(1)$ | $(\quad)$ | $(\quad)$ |  |  |
|  |  |  | ( ) | ( ) | $(1)$ |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | $(\quad)$ | $(\quad)$ | 1 |  |  |

## VALIDATION FINDINGS WORKSHEET

 Labeled Compound
## METHOD: LC/MS PFAS (EPA Method 537)

Please see qualifications below for all questions answered " N ". Not applicable questions are identified as "N/A".
Y N N/A


METHOD: LC/MS PFCs (EPA Method 537Mod)

| $\begin{aligned} & \hline \text { Calibration } \\ & \text { Date } \end{aligned}$ | System | Compound | Standard | (V) <br> Area ratio | (X) <br> Conc ratio |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7/1/2019 | SCN945 <br> 190701M1-CRV | PFOA | 0.25 | 0.03318 | 3.125 |
|  |  |  | 0.5 | 0.05895 | 6.250 |
|  |  |  | 1 | 0.11824 | 12.500 |
|  |  | 13C2-PFOA | 2 | 0.21986 | 25.000 |
|  |  |  | 5 | 0.57756 | 62.500 |
|  |  |  | 10 | 1.11263 | 125.000 |
|  |  |  | 50 | 5.66807 | 625.000 |
|  |  |  | 100 | 11.64186 | 1250.000 |
|  |  |  | 250 | 27.00102 | 3125.000 |
|  |  |  | 500 | 58.36004 | 6250.000 |
|  |  |  |  |  |  |


| Regression Output | Calculated | Reported WLR |
| :---: | :---: | :---: |
| Constant | -0.117761 | 0.031497 |
| Std Err of Y Est |  |  |
| R Squared | 0.999111 | 0.998858 |
| Degrees of Freedom |  |  |
|  |  |  |
| X Coefficient(s) | 0.00922723 | 1.425390 |
| Std Err of Coef. |  |  |
|  |  |  |
| Correlation Coefficient | 0.999555 |  |
| Coefficient of Determination ( $\mathrm{r}^{\wedge} \mathrm{N}$ ) | 0.999111 | 0.998858 |

$\qquad$

METHOD: LC/MS PFCs (EPA Method 537Mod)

| $\begin{gathered} \text { Calibration } \\ \text { Date } \\ \hline \end{gathered}$ | Instrument | Compound | Standard | (M) <br> Response ratio | $\overline{(X)}$ <br> Conc. Ratio | $\left(X^{\wedge} 2\right)$ <br> Conc. Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7/1/2019 | SCN945190701M1-CRV | PFOS | 0.25 | 0.0123 | 0.02 | 0.00040 |
|  |  |  | 0.5 | 0.0295 | 0.04 | 0.0016 |
|  |  | 13C8-PFOS | 1 | 0.0651 | 0.08 | 0.0064 |
|  |  |  | 2 | 0.1540 | 0.16 | 0.0256 |
|  |  |  | 5 | 0.3969 | 0.40 | 0.1600 |
|  |  |  | 10 | 0.9108 | 0.80 | 0.6400 |
|  |  |  | 50 | 4.3887 | 4.00 | 16.0000 |
|  |  |  | 100 | 9.6322 | 8.00 | 64.0000 |
|  |  |  | 250 | 22.4459 | 20.00 | 400.0000 |
|  |  |  | 500 | 45.9623 | 40.00 | 1600.0000 |
|  |  |  |  |  |  |  |


| Regression Output | Calculated |  | Reported WQR |  |
| :---: | :---: | :---: | :---: | :---: |
| Constant | $c$ | 0.00905 | $c$ | -0.0827669 |
| Std Err of Y Est |  |  |  |  |
| R Squared |  | 0.9998336 |  | 0.9992030 |
| Degrees of Freedom |  |  |  |  |
|  | m1 | m2 | m1 | m2 |
| X Coefficient(s) | 1.1286105 | 0.0004752 | 1.0321200 | 0.00169096 |
| Std Err of Coef. |  |  |  |  |
| Correlation Coefficient |  | 0.999917 |  |  |
| Coefficient of Determination ( $\wedge^{\wedge} 2$ ) |  | 0.999834 |  |  |

$\qquad$ $\square$

METHOD: LC/MS PFCs (EPA Method 537Mod)

| $\begin{gathered} \hline \hline \text { Calibration } \\ \text { Date } \\ \hline \end{gathered}$ | System | Compound | Standard | (V) <br> Area ratio | (X) <br> Conc ratio |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7/8/2019 | SCN945190707M2-CRV | PFOA | 0.25 | 0.03026 | 3.125 |
|  |  |  | 0.5 | 0.05635 | 6.250 |
|  |  |  | 1 | 0.12819 | 12.500 |
|  |  | 13C2-PFOA | 2 | 0.23652 | 25.000 |
|  |  |  | 5 | 0.56342 | 62.500 |
|  |  |  | 10 | 1.13496 | 125.000 |
|  |  |  | 50 | 5.69897 | 625.000 |
|  |  |  | 100 | 11.70763 | 1250.000 |
|  |  |  | 250 | 27.83374 | 3125.000 |
|  |  |  | 500 | 58.24964 | 6250.000 |
|  |  |  |  |  |  |


| Regression Output | Calculated | Reported WLR |
| :---: | :---: | :---: |
| Constant | -0.064747 | 0.024985 |
| Std Err of Y Est |  |  |
| R Squared | 0.999685 | 0.999567 |
| Degrees of Freedom |  |  |
|  |  |  |
| $\times$ Coefficient(s) | 0.00925494 | 1.437000 |
| Std Err of Coef. |  |  |
|  |  |  |
| Correlation Coefficient | 0.999843 |  |
| Coefficient of Determination ( $\mathrm{r} \wedge 2$ ) | 0.999685 | 0.999567 |

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_4_of_4_
Reviewer:_JVG
2nd Reviewer: $\qquad$ $\longrightarrow$

METHOD: LC/MS PFCs (EPA Method 537Mod)

| $\begin{gathered} \hline \hline \text { Calibration } \\ \text { Date } \\ \hline \end{gathered}$ | System | Compound | Standard |  | $\begin{gathered} (X) \\ \text { Conc ratio } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7/8/2019 | SCN945 | PFOS | 0.25 | 0.01762 | 3.125 |
|  |  |  | 0.5 | 0.03271 | 6.250 |
|  |  |  | 1 | 0.07312 | 12.500 |
|  | 190707M2-CRV | 13C8-PFOS | 2 | 0.16106 | 25.000 |
|  |  |  | 5 | 0.42655 | 62.500 |
|  |  |  | 10 | 0.82050 | 125.000 |
|  |  |  | 50 | 4.47916 | 625.000 |
|  |  |  | 100 | 9.43586 | 1250.000 |
|  |  |  | 250 | 20.96613 | 3125.000 |
|  |  |  | 500 | 47.95613 | 6250.000 |
|  |  |  |  |  |  |


| Regression Output | Calculated | Reported WLR |
| :---: | :---: | :---: |
| Constant | -0.206548 | -0.104113 |
| Std Err of Y Est |  |  |
| R Squared | 0.997431 | 0.996565 |
| Degrees of Freedom |  |  |
|  |  |  |
| X Coefficient(s) | 0.00752625 | 1.149010 |
| Std Err of Coef. |  |  |
|  |  |  |
| Correlation Coefficient | 0.998715 |  |
| Coefficient of Determination ( $\mathrm{r}^{\wedge} 2$ ) | 0.997431 | 0.996565 |

VALIDATION FINDINGS WORKSHEET
Page: 1 of 1
Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

METHOD: LC/MS PFAS (EPA Method 537M)
The percent recoveries (\%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

```
% Recovery = 100* (SC/SA Where: SSC = Spike concentration
 SA= Spike added
RPD \(=\) ILCSC \(-\operatorname{LCSDC} I^{*} 2 /(\) LCSC + LCSDC \() \quad\) LCSC \(=\) Laboratory control sample concentration LCSDC \(=\) Laboratory control sample duplicate concentration LCS/LCSD samples: \(\beta 9 \neq 0278-35 / \beta 501\)
```



Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within $10.0 \%$ of the recalculated results.

VALIDATION FINDINGS WORKSHEET Continuing Calibration Calculation Verification

Page: 1 of 1 Reviewer: $\qquad$ JVG
2nd Reviewer: $\qquad$ $\infty$

## METHOD: LC/MS PFCs (EPA Method 537Mod)

The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

Where:
\% Difference $=100$ * (ave. RRF - RRF)/ave. RRF ave. RRF $=$ initial calibration average RRF RRF $=($ Ax $)($ Cis $) /($ Ais $)(C x)$

RRF = continuing calibration RRF
Ax = Area of compound
$\mathrm{Cx}=$ Concentration of compound,
Ais = Area of associated internal standard
Cis = Concentration of internal standard

| \# | Standard ID | $\begin{aligned} & \text { Calibration } \\ & \text { Date } \end{aligned}$ | Compound (IS) |  | Conc | Reported | Recalculated | $\begin{gathered} \text { Reported } \\ \text { \% R } \end{gathered}$ | Recalculated \% R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\begin{gathered} \hline \hline 190702 \mathrm{M} 2-4 \\ \text { ISC } \\ \hline \end{gathered}$ | 7/2/2019 | PFOA | (13C2-PFOA) | 1.000 | 0.960 | 0.960 | 96.0 | 96.0 |
|  |  |  | PFOS | (13C8-PFOS) | 1.000 | 0.936 | 0.936 | 93.6 | 93.6 |
| 2 | $\begin{gathered} 190707 \mathrm{M} 2-14 \\ \mathrm{ICV} \\ \hline \hline \end{gathered}$ | 7/7/2019 | PFOA | (13C2-PFOA) | 10.000 | 7.882 | 7.882 | 78.8 | 78.8 |
|  |  |  | PFOS | (13C8-PFOS) | 9.240 | 7.150 | 7.150 | 77.4 | 77.4 |

VALIDATION FINDINGS WORKSHEET
Sample Calculation Verification
Page: 1 of 1
Reviewer:_JVG 2nd reviewer: $\qquad$
METHOD: LC/MS PFAS (EPA Method 537M)
Were all reported results recalculated and verified for all level IV samples?
Were all recalculated results for detected target compounds agree within $10.0 \%$ of the reported results?


# Laboratory Data Consultants, Inc. Data Validation Report 

Project/Site Name:
LDC Report Date:
Parameters:
Validation Level:
Laboratory:

MCAS Yuma, CTO 17F3803
August 22, 2019
Perfluoroalkyl \& Polyfluoroalkyl Substances
Stage 4
Vista Analytical Laboratory

Sample Delivery Group (SDG): 1901766

| Sample Identification | Laboratory Sample <br> Identification | Matrix | Collection <br> Date |
| :--- | :--- | :--- | :---: |
| EB-GW-06202019 | $1901766-01$ | Water | $06 / 20 / 19$ |
| SAOA-B06-GW | $1901766-02$ | Water | $06 / 24 / 19$ |
| FRB-06242019 | $1901766-03$ | Water | $06 / 24 / 19$ |
| SAOA-B07-GW | $1901766-04$ | Water | $06 / 25 / 19$ |
| SAOA-B04-SO-5-5.5 | $1901766-05$ | Soil | $06 / 25 / 19$ |
| SAOA-B04-SO-20-20.5 | $1901766-06$ | Soil | $06 / 25 / 19$ |
| SAOA-B04-SO-47-47.5 | $1901766-07$ | Soil | $06 / 25 / 19$ |
| SAOA-B04-GW | $1901766-08$ | Water | $06 / 25 / 19$ |
| EB-06252019 | $1901766-09$ | Water | $06 / 25 / 19$ |
| FRB-06252019 | $1901766-10$ | Water | $06 / 25 / 19$ |
| SAOA-B06-GWMS | $1901766-02 M S$ | Water | $06 / 24 / 19$ |
| SAOA-B06-GWMSD | $1901766-02 M S D$ | Water | $06 / 24 / 19$ |
| SAOA-B04-SO-5-5.5MS | $1901766-05 M S$ | Soil | $06 / 25 / 19$ |
| SAOA-B04-SO-5-5.5MSD | $1901766-05 M S D$ | Soil | $06 / 25 / 19$ |

## Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan), Site Inspection for Per- and Polyfluoroalkyl Substances, Marine Corps Air Station Yuma, Arizona (May 2019), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) by Environmental Protection Agency (EPA) Method 537 Modified

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

## I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

## II. LC/MS Instrument Performance Check

Instrument performance was checked and the requirements were met.

## III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.
A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination $\left(r^{2}\right)$ was greater than or equal to 0.990 .

For each calibration standard, all compounds were within $70-130 \%$ of their true value.
The signal to noise ( $\mathrm{S} / \mathrm{N}$ ) ratio was within validation criteria for all compounds.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to $30.0 \%$ for all compounds.

## IV. Continuing Calibration

Continuing calibration was performed at required frequencies.
The percent differences (\%D) were less than or equal to $30.0 \%$ for all compounds.
The signal to noise ( $\mathrm{S} / \mathrm{N}$ ) ratio was within validation criteria for all compounds.

## V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

## VI. Field Blanks

Samples EB-GW-06202019 and EB-06252019 were identified as equipment blanks. No contaminants were found.

Samples FRB-06242019 and FRB-06252019 were identified as field reagent blanks. No contaminants were found.

## VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (\%R) were within QC limits with the following exceptions:

| Spike ID <br> (Associated Samples) | Compound | MS (\%R) (Limits) | $\begin{gathered} \text { MSD (\%R) } \\ \text { (Limits) } \end{gathered}$ | Flag | A or P |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SAOA-B04-SO-5-5.5MS/MSD <br> (SAOA-B04-SO-5-5.5) | PFHxA PFHpA PFHxS PFOA | $\begin{aligned} & 139(70-130) \\ & 140(70-130) \\ & 152(70-130) \\ & 140(70-130) \end{aligned}$ | - | $J$ (all detects) <br> $J$ (all detects) <br> $J$ (all detects) <br> $J$ (all detects) | A |

For SAOA-B04-SO-5-5.5MS/MSD, no data were qualified for PFOS percent recoveries (\%R) and relative percent differences (RPD) outside the QC limits since the MS/MSD was analyzed at greater than or equal to a 5 X dilution.

Relative percent differences (RPD) were within QC limits with the following exceptions:

| Spike ID <br> (Associated Samples) | Compound | RPD <br> (Limits) | Flag | A or P |
| :---: | :--- | :--- | :--- | :--- |
|  |  |  |  |  |
| SAOA-B04-SO-5-5.5MS/MSD | PFHxA | $59.2(\leq 30)$ | J (all detects) | A |
| (SAOA-B04-SO-5-5.5) | PFHpA | $45.1(\leq 30)$ | J (all detects) |  |
|  | PFHxS | $68.3(\leq 30)$ | J (all detects) |  |
|  | PFOA | $38.2(\leq 30)$ | J (all detects) |  |

## VIII. Laboratory Control Samples/Ongoing Precision Recovery

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (\%R) were within QC limits.

## IX. Field Duplicates

No field duplicates were identified in this SDG.

## X. Labeled Compounds

All percent recoveries (\%R) for labeled compounds used to quantitate target compounds were within QC limits with the following exceptions:

| Sample | Labeled <br> Compound | \%R (Limits) | Affected <br> Compound |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
| SAOA-B06-GW | 13C2-PFTeDA | $38.4(50-150)$ | PFTeDA | Flag |

## XI. Compound Quantitation

All compound quantitations met validation criteria.
All compounds reported below the limit of quantitation (LOQ) were qualified as follows:

| Sample | Finding | Flag | A or P |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { SAOA-B07-GW } \\ & \text { SAOA-B04-SO-5-5.5 } \\ & \text { SAOA-B04-SO-20-20.5 } \\ & \text { SAOA-B04-GW } \end{aligned}$ | All compounds reported below the LOQ. | $J$ (all detects) | A |

## XII. Target Compound Identifications

All target compound identifications met validation criteria.

## XIII. System Performance

The system performance was acceptable.

## XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to MS/MSD \%R and RPD, labeled compound \%R, and results below the LOQ, data were qualified as estimated in six samples.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

MCAS Yuma, CTO 17F3803
Perfluoroalkyl \& Polyfluoroalkyl Substances - Data Qualification Summary - SDG 1901766

| Sample | Flag | A or P |
| :--- | :--- | :--- | :--- | :--- |

MCAS Yuma, CTO 17F3803
Perfluoroalkyl \& Polyfluoroalkyl Substances - Laboratory Blank Data Qualification Summary - SDG 1901766

## No Sample Data Qualified in this SDG

MCAS Yuma, CTO 17F3803
Perfluoroalkyl \& Polyfluoroalkyl Substances - Field Blank Data Qualification Summary - SDG 1901766

No Sample Data Qualified in this SDG

LDC \#: $45580 B 96$ VALIDATION COMPLETENESS WORKSHEET
SDG \#: 1901766
Stage 4 Page: 1 of 1
Reviewer 2nd Reviewer
METHOD: LC/MS Perfluoroalkyl \& Polyfluoroalkyl Substances (EPA Method 537M)


The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.


-2 B9F0280 - 1

LDC \#: 45530 B96
VALIDATION FINDINGS CHECKLIST
Page: 1 of 2
Reviewer: JVG 2nd Reviewer: $\qquad$
Method: LCMS (EPA Method 537M)

| Validation Area | Yes | No | NA | Findings/Comments |
| :---: | :---: | :---: | :---: | :---: |
| 1. Technical holding times |  |  |  |  |
| Were all technical holding times met? |  |  |  |  |
| Was cooler temperature criteria met? |  |  |  |  |
| II. LC/MS Instrument performance check |  |  |  |  |
| Were the instrument performance reviewed and found to be within the validation criteria? | $1$ |  |  |  |
| Illa. Initial calibration |  |  |  |  |
| Did the laboratory perform a 5 point calibration prior to sample analysis? |  |  |  |  |
| Were all percent relative standard deviations (\%RSD) $\leq 30 \%$ ? |  |  |  |  |
| Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of $\geq 0.990$ ? |  |  |  |  |
| Were all analytes within $70-130 \%$ or percent differences (\%D) $\leq 30 \%$ of their true value for each calibration standard except the lowest point ( $50-150 \%$ )? |  |  |  |  |
| IIIb. Initial Calibration Verification |  |  |  |  |
| Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | $\checkmark$ |  |  |  |
| Were all percent differences (\%D) $\leq 30 \%$ ? |  |  |  |  |
| IV. Continuing calibration |  |  |  |  |
| Was a continuing calibration analyzed daily? |  |  |  |  |
| Were all percent differences (\%D) of the continuing calibration $\leq 30 \%$ ? |  |  |  |  |
| V. Laboratory Blanks |  |  |  |  |
| Was a laboratory blank associated with every sample in this SDG? |  |  |  |  |
| Was a laboratory blank analyzed for each matrix and concentration? |  |  |  |  |
| Was there contamination in the laboratory blanks? |  |  |  |  |
| VI. Field blanks |  |  |  |  |
| Were field blanks identified in this SDG? |  |  |  |  |
| Were target compounds detected in the field blanks? |  |  |  |  |
| VIII. Matrix spike/Matrix spike duplicates |  |  |  |  |
| Were matrix spike (MS) and matrix spike duplicate (MSD) analyzedin this SDG? |  |  |  |  |
| Were the MS/MSD percent recoveries (\%R) and the relative percent differences (RPD) within the QC limits? |  |  |  |  |
| IX. Laboratory control samples |  |  |  |  |
| Was an LCS analyzed per extraction batch in this SDG? | $\angle$ |  |  |  |
| Were the LCS percent recoveries (\%R) and relative percent difference (RPD) within the QC limits? |  |  |  |  |

Page: 2 of 2
Reviewer: JVG 2nd Reviewer:



## VALIDATION FINDINGS WORKSHEET

METHOD: Perfluorinated Alkyl Acids (EPA Method 537)

| A. PFBA | $375-22-4$ |
| :--- | :--- |
| B. PFPeA | $2706-90-3$ |
| C. PFBS: | $375-73-5$ |
| D. PFHxA | $307-24-4$ |
| E. PFHpA | $375-85-9$ |
| F. PFHxS | $355-46-4$ |
| G. PFOA | $335-67-1$ |
| H. PFHPS | $375-92-8$ |
| I. PFNA | $375-95-1$ |
| J. PFOSA | $754-91-6$ |
| K. PFOS | $1763-23-1$ |
| L. PFDA | $335-76-2$ |
| M. PFUnA | $2058-94-8$ |
| N. PFDS | $335-77-3$ |
| O. PFDoA | $307-55-1$ |
| P. MeFOSA | $31506-32-8$ |
| Q. PFTrDA | $72629-94-8$ |
| R. PFTeDA | $376-06-7$ |
| S. EtFOSA | $4151-50-2$ |
| T. MeFOSE | $24448-09-7$ |
| U. EtFOSE | $1691-99-2$ |
| V. MeFOSAA | $2355-31-9$ |
| W. EtFOSAA | $2991-50-6$ |
|  |  |
|  |  |

Notes: $\qquad$

VALIDATION FINDINGS WORKSHEET Matrix Spike/Matrix Spike Duplicates

Page: 1 of 1
Reviewer:_JVG 2nd Reviewer:

METHOD: LC/MS PFCs (EPA Method 537M)
Please see qualifications below for all questions answered " N ". Not applicable questions are identified as "N/A".
Y N N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) or duplicate sample analyzed in this SDG?
(N N/A Were the MS/MSD percent recoveries (\%R) and the relative percent differences (RPD) within the QC limits?


VALIDATION FINDINGS WORKSHEET
Labeled Compound

Page:_ㄴㅇ﹎﹎ㅣ
Reviewer: JVG 2nd Reviewer:

METHOD: LC/MS PFAS (EPA Method 537M)
Please see qualifications below for all questions answered " N ". Not applicable questions are identified as " $\mathrm{N} / \mathrm{A}$ ".
Y(N)N/A Were all labeled compounds within -50 to $+150 \%$ of the associated calibration standard?

| \# | Date | Sample ID | Labeled | \%R | Limits $\%$ ) | Qualifications |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 2 (ND) | 13C2-R | 38.4 | 50-150 | 5/4J/p Cqual |
|  |  |  |  |  |  |  |
|  |  | 6 (ND) | $13 \mathrm{C2}-2$ | 48.6 |  | gual 1 |
|  |  |  | $\mathrm{d}_{3}-\mathrm{V}$ | 48.2 |  | 1 v |
|  |  |  | ds-W | 46.7 |  | w |
|  |  |  | $13 \mathrm{C2}-\mathrm{M}$ | 41.1 |  | m |
|  |  |  | $13 \mathrm{Cz}-0$ | 41.0 |  | 0 |
|  |  | 1 | $13 C_{2}-\mathrm{R}$ | 36.6 |  | R |
|  |  |  |  |  |  |  |
|  |  | 8 ( NO ) | $13 C 2-R$ | 26.5 |  | (qual R |
|  |  |  |  |  |  | (quar |
|  |  | 10 (ND) | d $3-V$ | 43.8 |  | gual $v$ |
|  |  |  |  |  |  |  |
|  |  | 11 | $13 C 2-R$ | 25.7 |  | $N Q \quad(Q C)$ |
|  |  |  |  |  |  |  |
|  |  | 12 | 13C2-R | 33.4 |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_1_of_4
Reviewer:_JVG
2nd Reviewer: $\qquad$

METHOD: LC/MS PFCs (EPA Method 537Mod)

| Calibration <br> Date | System | Compound | Standard | (Y) <br> Area ratio | $\begin{gathered} (X) \\ \text { Conc ratio } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7/1/2019 | SCN945190701M1-CRV | PFOA | 0.25 | 0.03318 | 3.125 |
|  |  |  | 0.5 | 0.05895 | 6.250 |
|  |  |  | 1 | 0.11824 | 12.500 |
|  |  | 13C2-PFOA | 2 | 0.21986 | 25.000 |
|  |  |  | 5 | 0.57756 | 62.500 |
|  |  |  | 10 | 1.11263 | 125.000 |
|  |  |  | 50 | 5.66807 | 625.000 |
|  |  |  | 100 | 11.64186 | 1250.000 |
|  |  |  | 250 | 27.00102 | 3125.000 |
|  |  |  | 500 | 58.36004 | 6250.000 |
|  |  |  |  |  |  |


| Regression Output | Calculated | Reported WLR |
| :---: | :---: | :---: |
| Constant | -0.117761 | 0.031497 |
| Std Err of Y Est |  |  |
| R Squared | 0.999111 | 0.998858 |
| Degrees of Freedom |  |  |
|  |  |  |
| X Coefficient(s) | 0.00922723 | 1.425390 |
| Std Err of Coef. |  |  |
|  |  |  |
| Correlation Coefficient | 0.999555 |  |
| Coefficient of Determination ( $\mathrm{r}^{2} 2$ ) | 0.999111 | 0.998858 |

$\qquad$

METHOD: LC/MS PFCs (EPA Method 537Mod)

| Calibration Date | Instrument | Compound | Standard | (M) <br> Response ratio | $(X)$ <br> Conc. Ratio | $\left(\mathrm{X}^{\wedge} 2\right)$ <br> Conc. Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 7/1/2019 | SCN945 | PFOS | 0.25 | 0.0123 | 0.02 | 0.00040 |
|  |  |  | 0.5 | 0.0295 | 0.04 | 0.0016 |
|  | 190701M1-CRV | 13C8-PFOS | 1 | 0.0651 | 0.08 | 0.0064 |
|  |  |  | 2 | 0.1540 | 0.16 | 0.0256 |
|  |  |  | 5 | 0.3969 | 0.40 | 0.1600 |
|  |  |  | 10 | 0.9108 | 0.80 | 0.6400 |
|  |  |  | 50 | 4.3887 | 4.00 | 16.0000 |
|  |  |  | 100 | 9.6322 | 8.00 | 64.0000 |
|  |  |  | 250 | 22.4459 | 20.00 | 400.0000 |
|  |  |  | 500 | 45.9623 | 40.00 | 1600.0000 |
|  |  |  |  |  |  |  |


| Regression Output | Calculated |  | Reported WQR |  |
| :---: | :---: | :---: | :---: | :---: |
| Constant | $c$ | 0.00905 | $c$ | -0.0827669 |
| Std Err of Y Est |  |  |  |  |
| R Squared |  | 0.9998336 |  | 0.9992030 |
| Degrees of Freedom |  |  |  |  |
|  | m1 | m2 | $m 1$ | m2 |
| X Coefficient(s) | 1.1286105 | 0.0004752 | 1.0321200 | 0.00169096 |
| Std Err of Coef. |  |  |  |  |
| Correlation Coefficient |  | 0.999917 |  |  |
| Coefficient of Determination ( $\mathrm{r}^{2} 2$ ) |  | 0.999834 |  |  |

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_3_of_4_
Reviewer:_JVG
2nd Reviewer: $\qquad$

METHOD: LC/MS PFCs (EPA Method 537Mod)

| Calibration Date | System | Compound | Standard | $\begin{gathered} (Y) \\ \text { Area ratio } \end{gathered}$ | (X) <br> Conc ratio |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7/10/2019 | SCN945 | PFOA | 0.25 | 0.04424 | 3.125 |
|  |  |  | 0.5 | 0.06626 | 6.250 |
|  |  |  | 1 | 0.16054 | 12.500 |
|  |  | 13C2-PFOA | 2 | 0.28982 | 25.000 |
|  |  |  | 5 | 0.76540 | 62.500 |
|  |  |  | 10 | 1.42501 | 125.000 |
|  |  |  | 50 | 7.42635 | 625.000 |
|  |  |  | 100 | 14.79889 | 1250.000 |
|  |  |  |  |  |  |


| Regression Output | Calculated | Reported WLR |
| :---: | :---: | :---: |
| Constant | -0.001555 | 0.038532 |
| Std Err of Y Est |  |  |
| R Squared | 0.999983 | 0.999749 |
| Degrees of Freedom |  |  |
|  |  |  |
| X Coefficient(s) | 0.01184661 | 1.848290 |
| Std Err of Coef. |  |  |
|  |  |  |
| Correlation Coefficient | 0.999992 |  |
| Coefficient of Determination ( $\mathrm{r}^{\wedge} 2$ ) | 0.999983 | 0.999749 |

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

METHOD: LC/MS PFCs (EPA Method 537Mod)

| $\begin{gathered} \text { Calibration } \\ \text { Date } \end{gathered}$ | System | Compound | Standard | (Y) <br> Area ratio | (X) <br> Conc ratio |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7/10/2019 | SCN945190710M2-CRV | PFOS | 0.25 | 0.00818 | 3.125 |
|  |  |  | 0.5 | 0.03295 | 6.250 |
|  |  |  | 1 | 0.10211 | 12.500 |
|  |  | 13C8-PFOS | 2 | 0.14330 | 25.000 |
|  |  |  | 5 | 0.43202 | 62.500 |
|  |  |  | 10 | 0.82840 | 125.000 |
|  |  |  | 50 | 5.02607 | 625.000 |
|  |  |  | 100 | 10.45259 | 1250.000 |
|  |  |  |  |  |  |


| Regression Output | Calculated | Reported WLR |
| :---: | :---: | :---: |
| Constant | -0.076994 | -0.175183 |
| Std Err of Y Est |  |  |
| R Squared | 0.999354 | 0.995937 |
| Degrees of Freedom |  |  |
|  |  |  |
| X Coefficient(s) | 0.00836341 | 1.269460 |
| Std Err of Coet. |  |  |
|  |  |  |
| Correlation Coefficient | 0.999677 |  |
| Coefficient of Determination ( $\mathrm{r}^{2}$ 2) | 0.999354 | 0.995937 |

VALIDATION FINDINGS WORKSHEET

## Continuing Calibration Calculation Verification

Page: $\qquad$ of 1

Reviewer: $\qquad$ JV
2nd Reviewer: $\qquad$ $\square$

## METHOD: LC/MS RFCs (EPA Method 537Mod)

The percent difference (\%D) of the initial calibration average Relative Response Factors (REFs) and the continuing calibration REFs were recalculated for the compounds identified below using the following calculation:

Where:
\% Difference $=100$ * (ave. RRF - RRF)/ave. RRF ave. RRF $=$ initial calibration average RRF RR $=(\mathrm{Ax})(\mathrm{Cis}) /($ Ais $)(\mathrm{Cx})$

RRF = continuing calibration RRF
Ax = Area of compound

Cu = Concentration of compound,
Ais = Area of associated internal standard
Cis = Concentration of internal standard


Reviewer:_JVG
2nd Reviewer:

## METHOD: LC/MS PFAS (EPA Method 537Mod)

The percent recoveries (\%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

| \% Recovery $=100^{*}(S S C-S C) / S A$ | Where: | SSC = Spiked sample concentration |
| :--- | :--- | :--- |
|  | $S A=$ Spike added | SC = Sample concentation |
| RPD $=1$ MSC - MSC $1 * 2 /(M S C+M S D C)$ | MSC $=$ Matrix spike concentration | MSDC = Matrix spike duplicate concentration |
| MS/MSD samples: $\quad 1 / 2$ |  |  |


| Compound |  |  | Sample Conc | Spiked Sample Concentration (vg /L) |  | Matrix Snike |  | Matrix Spike Duplicate |  | MSIMSD |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | ( Wg/L) |  |  | Percent Recovery |  | Percent Recovery |  | RPD |  |
|  | Ms | msn | $\underline{\square}$ | MS | Msn | Renarted | Recalc | Reponted | Recalc. | Reparted | Recale |
| PFOA | 0.0847 | 0.0876 | 0.177 | 0.276 | 0.290 | 117 | 117 | 129 | 129 | 9.76 | 9.76 |
| PFOS | 1 | 1 | 0.0677 | 0.159 | 0.165 | 108 | 108 | 112 | 112 | 3.64 | 3.64 |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within $10.0 \%$ of the recalculated results.

$$
\text { TorpD vaced on } 7_{0} K
$$

METHOD: LC/MS PFAS (EPA Method 537M)
The percent recoveries (\%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:
\% Recovery $=100$ * (SC/SA
$\begin{array}{ll}\text { Where: } & \text { SSC }=\text { Spike concentration } \\ & \text { SA }=\text { Spike added }\end{array}$
$R P D=1 \operatorname{LCSC}-\operatorname{LCSDC} 1 * 2 /(\operatorname{LCSC}+\operatorname{LCSDC})$
LCSC $=$ Laboratory control sample concentration LCSDC $=$ Laboratory control sample duplicate concentration
LCS/LCSD samples: $\quad$ B9F $0280-\beta 59$


Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within $10.0 \%$ of the recalculated results.

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page: 1 of 1
Reviewer: JVG
and reviewer:


METHOD: LC/MS PFAS (EPA Method 537M)
Y N N/A Were all reported results recalculated and verified for all level IV samples?
Y/N N/A Were all recalculated results for detected target compounds agree within $10.0 \%$ of the reported results?


# Laboratory Data Consultants, Inc. Data Validation Report 

Project/Site Name:
LDC Report Date:
Parameters:
Validation Level:
Laboratory:

MCAS Yuma, CTO 17F3803
August 22, 2019
Perfluoroalkyl \& Polyfluoroalkyl Substances
Stage 4
Vista Analytical Laboratory

Sample Delivery Group (SDG): 1901857

| Sample Identification | Laboratory Sample <br> ddentification | Matrix | Collection <br> Date |
| :--- | :--- | :---: | :---: |
| SAOA-B05-GW | $1901857-01$ | Water | $06 / 26 / 19$ |
| SAOA-B09-SO-1-1.5 | $1901857-02$ | Soil | $06 / 26 / 19$ |
| SAOA-B09-SO-20-20.5 | $1901857-03$ | Soil | $06 / 26 / 19$ |
| SAOA-B09-GW | $1901857-04$ | Water | $06 / 26 / 19$ |
| FRB-06262019 | $1901857-05$ | Water | $06 / 26 / 19$ |
| EB-06262019 | $1901857-06$ | Water | $06 / 26 / 19$ |
| SAOA-B11-SO-1-1.5 | $1901857-07$ | Soil | $06 / 27 / 19$ |
| SAOA-B11-SO-20-20.5 | $1901857-08$ | Soil | $06 / 27 / 19$ |
| SAOA-B11-GW | $1901857-09$ | Water | $06 / 27 / 19$ |
| SAOA-B08-SO-1-1.5 | $1901857-10$ | Soil | $06 / 27 / 19$ |
| EB-06272019 | $1901857-11$ | Water | $06 / 27 / 19$ |
| FRB-06272019 | $1901857-12$ | Water | $06 / 27 / 19$ |

## Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan), Site Inspection for Per- and Polyfluoroalkyl Substances, Marine Corps Air Station Yuma, Arizona (May 2019), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) by Environmental Protection Agency (EPA) Method 537 Modified

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

## I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

## II. LC/MS Instrument Performance Check

Instrument performance was checked and the requirements were met.

## III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.
A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination ( $r^{2}$ ) was greater than or equal to 0.990 .

For each calibration standard, all compounds were within 70-130\% of their true value.
The signal to noise $(\mathrm{S} / \mathrm{N})$ ratio was within validation criteria for all compounds.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to $30.0 \%$ for all compounds.

## IV. Continuing Calibration

Continuing calibration was performed at required frequencies.
The percent differences (\%D) were less than or equal to $30.0 \%$ for all compounds.
The signal to noise $(\mathrm{S} / \mathrm{N})$ ratio was within validation criteria for all compounds.

## V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

## VI. Field Blanks

Samples EB-06272019-GW (from SDG 1901920), EB-06262019, and EB-06272019 were identified as equipment blanks. No contaminants were found with the following exceptions:

| Blank ID | Collection <br> Date | Compound | Concentration | Associated <br> Samples In This SDG |
| :---: | :---: | :---: | :---: | :---: |
| EB-06272019-GW | $06 / 27 / 19$ | PFOS | $0.0103 \mathrm{ug} / \mathrm{L}$ | SAOA-B11-GW |
|  |  | PFDA | $0.00428 \mathrm{ug} / \mathrm{L}$ |  |

Samples FRB-06262019 and FRB-06272019 were identified as field reagent blanks. No contaminants were found.

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>5X for contaminants) than the concentrations found in the associated field blanks with the following exceptions:

| Sample |  | Reported <br> Concentration | Modified Final <br> Concentration |
| :---: | :---: | :---: | :---: |
| SAOA-B11-GW | PFOS | $0.00941 \mathrm{ug} / \mathrm{L}$ | $0.00941 \mathrm{Jug} / \mathrm{L}$ |

Sample results were qualified as follows:

- If sample concentration was < $5 X$ the blank concentration and the sample was <limit of quantitation (LOQ), the sample result was qualified as nondetect (U).
- If sample concentration was $<5 X$ the blank concentration and the sample was $>L O Q$, the sample result was qualified as estimated (J).


## VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

## VIII. Laboratory Control Samples/Ongoing Precision Recovery

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (\%R) were within QC limits with the following exceptions:

| OPR ID | Compound | $\% R$ (Limits) | Associated <br> Samples | Flag | A or $\mathbf{P}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |$|$| NA |
| :--- |

NA (Not Applicable): The percent recovery demonstrates a high bias and the affected compound was not detected in the associated samples. Sample qualification was not necessary.

## IX. Field Duplicates

No field duplicates were identified in this SDG.

## X. Labeled Compounds

All percent recoveries (\%R) for labeled compounds used to quantitate target compounds were within QC limits with the following exceptions:

| Sample | Labeled <br> Compound | \%R (Limits) | Affected <br> Compound | Flag | A or P |
| :--- | :--- | :--- | :--- | :--- | :--- |
| SAOA-B05-GW | d5-EtFOSAA | $49.4(50-150)$ | EtFOSAA | UJ (all non-detects) | P |
|  | 13C2-PFUnA | $43.1(50-150)$ | PFUnA | UJ (all non-detects) |  |
|  | 13C2-PFDoA | $35.9(50-150)$ | PFDoA | UJ (all non-detects) <br> UJ (all non-detects) <br> UJ (all non-detects) |  |
|  | 13C2-PFTeDA | $17.0(50-150)$ | PFTrDA <br> PFTeDA | UJ (all non-detects) | P |
| SAOA-B11-GW | 13C2-PFTeDA | $47.2(50-150)$ | PFTeDA |  |  |

## XI. Compound Quantitation

All compound quantitations met validation criteria.
All compounds reported below the limit of quantitation (LOQ) were qualified as follows:

|  |  |  |  |
| :--- | :--- | :---: | :---: |
| Sample | Finding | Flag | A or $\mathbf{P}$ |
| SAOA-B09-SO-1-1.5 | All compounds reported below the LOQ. | J (all detects) | A |
| SAOA-B09-GW |  |  |  |
| SAOA-B11-SO-1-1.5 |  |  |  |
| SAOA-B11-GW |  |  |  |
| SAOA-B08-SO-1-1.5 |  |  |  |

## XII. Target Compound Identifications

All target compound identifications met validation criteria.

## XIII. System Performance

The system performance was acceptable.

## XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to labeled compound \%R and results below the LOQ, data were qualified as estimated in six samples.

Due to equipment blank contamination, data were qualified as estimated in one sample.
The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

MCAS Yuma, CTO 17F3803
Perfluoroalkyl \& Polyfluoroalkyl Substances - Data Qualification Summary - SDG 1901857

| Sample | Compound | Flag | A or P | Reason |
| :--- | :--- | :---: | :---: | :---: |
| SAOA-B05-GW | EtFOSAA <br> PFUnA <br> PFDoA <br> PFTrDA <br> PFTeDA | UJ (all non-detects) <br> UJ (all non-detects) <br> UJ (all non-detects) <br> UJ (all non-detects) <br> UJ (all non-detects) | P | Labeled compounds (\%R) |
| SAOA-B11-GW | PFTeDA | UJ (all non-detects) | P | Labeled compounds (\%R) |
| SAOA-B09-SO-1-1.5 <br> SAOA-B09-GW <br> SAOA-B11-SO-1-1.5 <br> SAOA-B11-GW <br> SAOA-B08-SO-1-1.5 | All compounds reported below <br> the LOQ. | J (all detects) | A | Compound quantitation |

MCAS Yuma, CTO 17F3803
Perfluoroalkyl \& Polyfluoroalkyl Substances - Laboratory Blank Data Qualification Summary - SDG 1901857

No Sample Data Qualified in this SDG
MCAS Yuma, CTO 17F3803
Perfluoroalkyl \& Polyfluoroalkyl Substances - Field Blank Data Qualification Summary - SDG 1901857

|  |  |  | Modified Final <br> Concentration |
| :--- | :--- | :--- | :--- |
| Sample | Compound | A or P |  |
| SAOA-B11-GW | PFOS | $0.00941 \mathrm{Jug} / \mathrm{L}$ |  |

SDG \#: 1901857
Laboratory: Vista Analytical Laboratory
METHOD: LC/MS Perfluoroalkyl \& Polyfluoroalkyl Substances (EPA Method 537M)
Page: 1 of 1 Reviewer: 56 2nd Reviewer:

The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.

|  | Validation Area |  | Comments |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1. | Sample receipt/Technical holding times | $A / A$ |  |  |  |
| II. | LC/MS Instrument performance check | $A$ |  |  |  |
| III. | Initial calibration/ICV | $A / A$ | $r^{2}$ | Individual $\leq 30 \%$ | 10 |
| IV. | Continuing calibration/ISC | $A$ | $c a \leq 301$ |  |  |
| V. | Laboratory Blanks | $A$ |  |  |  |
| VI. | Field blanks | SW | $F_{F R B}=5,12$ | $E B=6, \stackrel{*}{\#} E B$ | -6u |
| VII. | Matrix spike/Matrix spike duplicates | N |  |  |  |
| VIII. | Laboratory control samples | SW | LCS/D | OPR |  |
| IX. | Field duplicates | N |  |  |  |
| X. | Labeled Compounds | SW |  |  |  |
| XI. | Compound quantitation RLLLOQ/LODs | $A$ |  |  |  |
| XII. | Target compound identification | A |  |  |  |
| XIII. | System performance | $A$ |  |  |  |
| XIV. | Overall assessment of data | $A$ |  |  |  |

Note: $\quad$ A $=$ Acceptable
$\mathrm{N}=$ Not provided/applicable
SW = See worksheet
ND = No compounds detected
R = Rinsate
FB = Field blank
D = Duplicate
$T B=$ Trip blank
$E B=$ Equipment blank
SB=Source blank
OTHER:
FRB = Field Reagent Blank

|  | Client ID | Lab ID | Matrix | Date |
| :---: | :---: | :---: | :---: | :---: |
| 1 | SAOA-B05-GW | 1901857-01 | Water | 06/26/19 |
| 2 | SAOA-B09-SO-1-1.5 | 1901857-02 | Soil | 06/26/19 |
| 3 | SAOA-B09-SO-20-20.5 | 1901857-03 | Soil | 06/26/19 |
| 4 | SAOA-B09-GW | 1901857-04 | Water | 06/26/19 |
| 5 | FRB-06262019 | 1901857-05 | Water | 06/26/19 |
| 6-1 | EB-06262019 | 1901857-06 | Water | 06/26/19 |
| 7 | SAOA-B11-SO-1-1.5 | 1901857-07 | Soil | 06/27/19 |
| 8 | SAOA-B11-SO-20-20.5 | 1901857-08 | Soil | 06/27/19 |
| 91 | SAOA-B11-GW | 1901857-09 | Water | 06/27/19 |
| 10 | $\text { SAOA-BO }{ }_{8}^{8} \text {-SO-1-1.5 }$ | 1901857-10 | Soil | 06/27/19 |
| $11^{-1}$ | EB-06272019 | 1901857-11 | Water | 06/27/19 |
| $12^{-1}$ | FRB-06272019 | 1901857-12 | Water | 06/27/19 |
| 13 |  |  |  |  |
| 141. | BaG0050-3Lk1 |  |  |  |
| 152. | B9GO116-1 |  |  |  |

LDC \#: 45580 Cq 96

Page: 1 of 2 Reviewer: JVG 2nd Reviewer: $\qquad$

Method: LCMS (EPA Method 537M)

| Validation Area | Yes | No | NA | Findings/Comments |
| :---: | :---: | :---: | :---: | :---: |
| f. Technical holding times |  |  |  |  |
| Were all technical holding times met? | 7 |  |  |  |
| Was cooler temperature criteria met? |  |  |  |  |
| II. LC/MS Instrument performance check |  |  |  |  |
| Were the instrument performance reviewed and found to be within the validation criteria? |  |  |  |  |
| Illa. Initial calibration |  |  |  |  |
| Did the laboratory perform a 5 point calibration prior to sample analysis? |  |  |  |  |
| Were all percent relative standard deviations (\%RSD) $<30 \%$ ? |  |  |  |  |
| Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of $\geq 0.990$ ? |  |  |  |  |
| Were all analytes within $70-130 \%$ or percent differences (\%D) $\leq 30 \%$ of their true value for each calibration standard except the lowest point ( $50-150 \%$ )? | $r$ |  |  |  |
| IIIb. Initial Calibration Verification |  |  |  |  |
| Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | 7 |  |  |  |
| Were all percent differences (\%D) $\leq 30 \%$ ? |  |  |  |  |
| IV. Continuing calibration |  |  |  |  |
| Was a continuing calibration analyzed daily? |  |  |  |  |
| Were all percent differences (\%D) of the continuing calibration $<30 \%$ ? |  |  |  |  |
| V. Laboratory Blanks |  |  |  |  |
| Was a laboratory blank associated with every sample in this SDG? |  |  |  |  |
| Was a laboratory blank analyzed for each matrix and concentration? |  |  |  |  |
| Was there contamination in the laboratory blanks? |  |  |  |  |
| VI. Field blanks |  |  |  |  |
| Were field blanks identified in this SDG? | 7 | - |  |  |
| Were target compounds detected in the field blanks? |  |  |  |  |
| VIII. Matrix spike/Matrix spike duplicates |  |  |  |  |
| Were matrix spike (MS) and matrix spike duplicate (MSD) analyzedin this SDG? |  |  |  |  |
| Were the MS/MSD percent recoveries (\%R) and the relative percent differences (RPD) within the QC limits? |  |  |  |  |
| IX. Laboratory control samples |  |  |  |  |
| Was an LCS analyzed per extraction batch in this SDG? |  |  |  |  |
| Were the LCS percent recoveries (\%R) and relative percent difference (RPD) within the QC limits? |  |  |  |  |

## VALIDATION FINDINGS CHECKLIST

Page: 2 of 2 Reviewer: $\qquad$ 2nd Reviewer: $\qquad$


## VALIDATION FINDINGS WORKSHEET

METHOD: Perfluorinated Alkyl Acids (EPA Method 537)

| A. PFBA | $375-22-4$ |
| :--- | :--- |
| B. PFPeA | $2706-90-3$ |
| C. PFBS | $375-73-5$ |
| D. PFHXA | $307-24-4$ |
| E. PFHPA | $375-85-9$ |
| F. PFHxS | $355-46-4$ |
| G. PFOA | $335-67-1$ |
| H. PFHPS | $375-92-8$ |
| I. PFNA | $375-95-1$ |
| J. PFOSA | $754-91-6$ |
| K. PFOS | $1763-23-1$ |
| L. PFDA | $335-76-2$ |
| M. PFUnA | $2058-94-8$ |
| N. PFDS | $335-77-3$ |
| O. PFDoA | $307-55-1$ |
| P. MeFOSA | $31506-32-8$ |
| Q. PFTrDA | $72629-94-8$ |
| R. PFTeDA | $376-06-7$ |
| S. EtFOSA | $4151-50-2$ |
| T. MeFOSE | $24448-09-7$ |
| U. EtFOSE | $1691-99-2$ |
| V. MeFOSAA | $2355-31-9$ |
| W. EtFOSAA | $2991-50-6$ |
|  |  |
|  |  |

Notes: $\qquad$

V:WosephinelMisclCOMPNDList 537m_vista.wpd
$\qquad$
$\qquad$
METHOD: LC/MS PFAS (EPA Method 537M)
Y N N/A Were field blanks identified in this SDG?
Y/N N/A Were target compounds detected in the field blanks?
Blank units: $\operatorname{ug} / \mathrm{L}$ Associated sample units: ug $/ \mathrm{L}$
Sampling date: $06 / 27 / 19$
Associated Samples: 9


Blank units: $\qquad$ Associated sample units:
Sampling date:
Field blank type: (circle one) Field Blank / Rinsate / Other: Associated Samples:

| Compound | Blank ID | Sample Identification |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

METHOD: LC/MS PFCs (EPA Method 537)
Pease see qualifications below for all questions answered " N ". Not applicable questions are identified as "N/A".
Y N N/A Was a LCS required?
$N$ N/A Were the LCS percent recoveries (\%R) and relative percent difference (RPD) within the QC limits?

| \# | LCS/LCSD ID | Compound | $\begin{gathered} \text { LCS } \\ \text { \%R (Limits) } \\ \hline \end{gathered}$ | $\begin{gathered} \text { LCSD } \\ \% \text { (Limits) } \\ \hline \end{gathered}$ | RPD (Limits) | Associated Samples | Qualifications |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | B9G0116-851 | W | 137 (70-130) | ( ) | 1 ) | $2,3,78,16$ MP2 | $J$ dets /f |
|  | COPR |  | ( ) | ( ) | ( ) | $(N D)^{\top}$ |  |
|  |  |  | $(1)$ | $(\quad)$ | $(\quad)$ |  |  |
|  |  |  | ( ) | ( ) | 1 ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | 1 | 1 | 1 |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( | ( |  |  |
|  |  |  | $(1)$ | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( $)$ | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( 1 | $(1)$ |  |  |  |
|  |  |  | ( ) | $(\ldots)$ | ( ) |  |  |
|  |  |  | $(1)$ | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) | , |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |

VALIDATION FINDINGS WORKSHEET
Labeled Compound

Page: $\quad 1$ of 1

> Reviewer: JVC and Reviewer $\xrightarrow{\infty}$

METHOD: LC/MS PFAS (EPA Method 537)
Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".


VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_1_of_4_
Reviewer:_JVG 2nd Reviewer: $\qquad$ $\longrightarrow$

METHOD: LC/MS PFCs (EPA Method 537Mod)

| $\begin{gathered} \text { Calibration } \\ \text { Date } \\ \hline \end{gathered}$ | System | Compound | Standard | (Y) <br> Area ratio | (X) Conc ratio |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7/8/2019 | SCN945 | PFOA | 0.25 | 0.03026 | 3.125 |
|  |  |  | 0.5 | 0.05635 | 6.250 |
|  |  |  | 1 | 0.12819 | 12.500 |
|  |  | 13C2-PFOA | 2 | 0.23652 | 25.000 |
|  |  |  | 5 | 0.56342 | 62.500 |
|  |  |  | 10 | 1.13496 | 125.000 |
|  |  |  | 50 | 5.69897 | 625.000 |
|  |  |  | 100 | 11.70763 | 1250.000 |
|  |  |  | 250 | 27.83374 | 3125.000 |
|  |  |  | 500 | 58.24964 | 6250.000 |
|  |  |  |  |  |  |


| Regression Output | Calculated | Reported WLR |
| :---: | :---: | :---: |
| Constant | -0.064747 | 0.024985 |
| Std Err of Y Est |  |  |
| R Squared | 0.999685 | 0.999567 |
| Degrees of Freedom |  |  |
|  |  |  |
| X Coefficient(s) | 0.00925494 | 1.437000 |
| Std Err of Coef. |  |  |
|  |  |  |
| Correlation Coefficient | 0.999843 |  |
| Coefficient of Determination (r $\mathrm{n}^{2}$ ) | 0.999685 | 0.999567 |

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

METHOD: LC/MS PFCs (EPA Method 537Mod)

| Calibration Date | System | Compound | Standard | (V) <br> Area ratio | $(X)$ Conc ratio |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7/8/2019 | SCN945 | PFOS | 0.25 | 0.01762 | 3.125 |
|  |  |  | 0.5 | 0.03271 | 6.250 |
|  |  |  | 1 | 0.07312 | 12.500 |
|  |  | 13C8-PFOS | 2 | 0.16106 | 25.000 |
|  |  |  | 5 | 0.42655 | 62.500 |
|  |  |  | 10 | 0.82050 | 125.000 |
|  |  |  | 50 | 4.47916 | 625.000 |
|  |  |  | 100 | 9.43586 | 1250.000 |
|  |  |  | 250 | 20.96613 | 3125.000 |
|  |  |  | 500 | 47.95613 | 6250.000 |
|  |  |  |  |  |  |


| Regression Output | Calculated | Reported WLR |
| :---: | :---: | :---: |
| Constant | -0.206548 | -0.104113 |
| Std Err of Y Est |  |  |
| R Squared | 0.997431 | 0.996565 |
| Degrees of Freedom |  |  |
|  |  |  |
| X Coefficient(s) | 0.00752625 | 1.149010 |
| Std Err of Coef. |  |  |
|  |  |  |
| Correlation Coefficient | 0.998715 |  |
| Coefficient of Determination (r^2) | 0.997431 | 0.996565 |

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_3_of_4_
Reviewer:_JVG 2nd Reviewer: $\qquad$

METHOD: LC/MS PFCs (EPA Method 537Mod)

| Calibration <br> Date | System | Compound | Standard | M <br> Area ratio | $\begin{gathered} (X) \\ \text { Conc ratio } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7/12/2019 | SCN945 | PFOA | 0.25 | 0.03226 | 3.125 |
|  |  |  | 0.5 | 0.06127 | 6.250 |
|  |  |  | 1 | 0.11149 | 12.500 |
|  |  | 13C2-PFOA | 2 | 0.22345 | 25.000 |
|  |  |  | 5 | 0.55250 | 62.500 |
|  |  |  | 10 | 1.13393 | 125.000 |
|  |  |  | 50 | 5.63506 | 625.000 |
|  |  |  | 100 | 10.95602 | 1250.000 |
|  |  |  | 250 | 26.97489 | 3125.000 |
|  |  |  | 500 | 54.69562 | 6250.000 |
|  |  |  |  |  |  |


| Regression Output | Calculated | Reported WLR |
| :---: | :---: | :---: |
| Constant | 0.014494 | 0.073917 |
| Std Err of Y Est |  |  |
| R Squared | 0.999962 | 0.999890 |
| Degrees of Freedom |  |  |
|  |  |  |
| X Coefficient(s) | 0.00872764 | 1.364860 |
| Std Err of Coef. |  |  |
|  |  |  |
| Correlation Coefficient | 0.999981 |  |
| Coefficient of Determination (r^2) | 0.999962 | 0.999890 |

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_4_of_4_
Reviewer:_JVG
2nd Reviewer:


METHOD: LC/MS PFCs (EPA Method 537Mod)

| $\begin{gathered} \hline \hline \text { Calibration } \\ \text { Date } \\ \hline \end{gathered}$ | System | Compound | Standard | ( $)$ <br> Area ratio | $\begin{gathered} (X) \\ \text { Conc ratio } \\ \hline \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7/12/2019 | SCN945 | PFOS | 0.25 | 0.02715 | 3.125 |
|  |  |  | 0.5 | 0.02748 | 6.250 |
|  |  |  | 1 | 0.07680 | 12.500 |
|  |  | 13C8-PFOS | 2 | 0.14878 | 25.000 |
|  |  |  | 5 | 0.44086 | 62.500 |
|  |  |  | 10 | 0.85959 | 125.000 |
|  |  |  | 50 | 4.21093 | 625.000 |
|  |  |  | 100 | 8.30061 | 1250.000 |
|  |  |  | 250 | 22.46399 | 3125.000 |
|  |  |  | 500 | 45.30008 | 6250.000 |
|  |  |  |  |  |  |


| Regression Output | Calculated | Reported WLR |
| :---: | :---: | :---: |
| Constant | -0.133686 | -0.160592 |
| Std Err of Y Est |  |  |
| R Squared | 0.999751 | 0.999099 |
| Degrees of Freedom |  |  |
|  |  |  |
| X Coefficient(s) | 0.00724403 | 1.115200 |
| Std Err of Coef. |  |  |
|  |  |  |
| Correlation Coefficient | 0.999876 |  |
| Coefficient of Determination ( $\mathrm{r}^{2}$ 2) | 0.999751 | 0.999099 |

VALIDATION FINDINGS WORKSHEET Continuing Calibration Calculation Verification

Page: 1 of 1
Reviewer: $\qquad$ JVG 2nd Reviewer: $\qquad$ a趿

## METHOD: LC/MS PFCs (EPA Method 537Mod)

The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

Where:
ave. RRF = initial calibration average RRF RRF = continuing calibration RRF
Ax = Area of compound

Cx = Concentration of compound,
Ais = Area of associated internal standard
Cis = Concentration of internal standard

| \# | Standard ID | Calibration <br> Date | Compound (IS) |  | Conc | Reported | Recalculated | $\begin{gathered} \text { Reported } \\ \% \text { R } \end{gathered}$ | Recalculated \% R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 090708M3_2 | 7/8/2020 | PFOA | (13C2-PFOA) | 1.000 | 1.033 | 1.033 | 103.3 | 103.3 |
|  |  |  | PFOS | (13C8-PFOS) | 1.000 | 0.998 | 0.998 | 99.8 | 99.8 |
| 2 | $\begin{gathered} \text { 190712M2_17 } \\ \text { ICV } \end{gathered}$ | 7/12/2019 | PFOA | (13C2-PFOA) | 10.000 | 7.535 | 7.535 | 75.3 | 75.3 |
|  |  |  | PFOS | (13C8-PFOS) | 9.240 | 6.554 | 6.554 | 70.9 | 70.9 |

VALIDATION FINDINGS WORKSHEET Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

Page: 1 of 1
Reviewer:JVG 2nd Reviewer $\qquad$

METHOD: LC/MS PFAS (EPA Method 537M)
The percent recoveries (\%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:

| \% Recovery $=100$ * (SC/SA | Where: | SSC = Spike concentration SA $=$ Spike added |  |
| :---: | :---: | :---: | :---: |
| RPD $=1$ LCSC - LCSDC ${ }^{*}$ * 2 (LCSC + LCSDC) |  | LCSC = Laboratory control sample concentration | LCSDC = Laboratory control sample duplicate concentration |
| LCS/LCSD samples: |  |  |  |


| Compound | $\begin{gathered} \text { Spike } \\ \text { Added } \\ \left(4 g^{\prime} / L\right. \\ \hline \end{gathered}$ |  | Concentration ( $25 / 2$ ) |  | Lcs |  | LCSD |  | LCSILCSD |  | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  | Percent Recovery | Percent Recovery |  | RPD |  |
|  | LCS | LCSD |  |  | LCS | LCSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalc. |
| PFOA | 0.040 | 0.040 | 0.0418 | 0.0425 | 104 | 104 | 106 | 106 | 1.84 | 1.7 |
| PFOS | 1 | $\delta$ | 0.0378 | 0.0434 | 94.4 | 94.4 | 109 | 109 | 13.1 | 13.6 |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within $10.0 \%$ of the recalculated results.

VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page: 1 of 1
Reviewer:_JVG
2nd reviewer: $\qquad$

METHOD: LC/MS PFAS (EPA Method 537M)
Y N N/A Were all reported results recalculated and verified for all level IV samples?
Y N N/A Were all recalculated results for detected target compounds agree within $10.0 \%$ of the reported results?

$$
\text { Concentration }=\frac{(A)\left(I_{1}\right)\left(V_{0}\right)(D F)(2.0)}{(2)}
$$ $\left(A_{i s}\right)(R R F)\left(V_{0}\right)\left(V_{i}\right)(\% S)$

$A_{x}=$ Area of the characteristic ion (EICP) for the compound to be measured
$\mathrm{A}_{\text {is }} \quad=\quad$ Area of the characteristic ion (EICP) for the specific internal standard
$\mathrm{I}_{\mathrm{s}} \quad=\quad$ Amount of internal standard added in nanograms (ing)
$V_{0}=\quad$ Volume or weight of sample extract in milliliters (ml) or grams (g).
$V_{1}=$ Volume of extract injected in microliters (ul)
$V_{t}=$ Volume of the concentrated extract in microliters (ul)
bf $=$ Dilution Factor.
\%S $=$ Percent solids, applicable to soil and solid matrices only.
$2.0=$ Factor of 2 to account for GPC cleanup

| Sample ID | Compound | Reported <br> Concentration <br> (ugh) | Calculated <br> Concentration <br> ( | Qualification |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  | 16.0 |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |

# Laboratory Data Consultants, Inc. Data Validation Report 

## Project/Site Name:

LDC Report Date:
Parameters:
Validation Level:
Laboratory:

MCAS Yuma, CTO 17F3803
August 22, 2019
Perfluoroalkyl \& Polyfluoroalkyl Substances
Stage 4
Vista Analytical Laboratory

Sample Delivery Group (SDG): 1901920

| Sample Identification | Laboratory Sample <br> Identification | Matrix | Collection <br> Date |
| :--- | :--- | :---: | :---: |
| SAOA-B08-SO-30-30.5 | $1901920-01$ | Soil | $06 / 27 / 19$ |
| SAOA-B08-GW | $1901920-02$ | Water | $06 / 27 / 19$ |
| EB-06272019-GW | $1901920-03$ | Water | $06 / 27 / 19$ |
| FRB-06282019 | $1901920-04$ | Water | $06 / 28 / 19$ |
| SAOA-B12-GW | $1901920-05$ | Water | $06 / 28 / 19$ |
| SAOA-B12-GW-D | $1901920-06$ | Water | $06 / 28 / 19$ |
| NAOA-B08-SO-1-1.5 | $1901920-07$ | Soil | $07 / 01 / 19$ |
| NAOA-B08-SO-20-20.5 | $1901920-08$ | Soil | $07 / 01 / 19$ |
| NAOA-B09-SO-1-1.5 | $1901920-09$ | Soil | $07 / 01 / 19$ |
| NAOA-B09-SO-20-20.5 | $1901920-10$ | Soil | $07 / 01 / 19$ |
| NAOA-B02-GW | $1901920-11$ | Water | $07 / 01 / 19$ |
| EB-07012019 | $1901920-12$ | Water | $07 / 01 / 19$ |
| NAOA-B01-SO-1-1.5 | $1901920-13$ | Soil | $07 / 01 / 19$ |
| FRB-07012019 | $1901920-14$ | Water | $07 / 01 / 19$ |
| NAOA-B01-SO-20-20.5 | $1901920-15$ | Soil | $07 / 01 / 19$ |
| NAOA-B01-GW | $1901920-16$ | Water | $07 / 02 / 19$ |
| NAOA-B01-GW-D | $1901920-17$ | Water | $07 / 02 / 19$ |
| CAOA-B02-SO-0.5-1 | $1901920-18$ | Soil | $07 / 02 / 19$ |
| CAOA-B02-SO-20-20.5 | $1901920-19$ | Soil | $07 / 02 / 19$ |
| EB-07022019 | $1901920-20$ | Water | $07 / 02 / 19$ |
| CAOA-B02-SO-0.5-1MS | $1901920-18 M S$ | Soil | $07 / 02 / 19$ |
| CAOA-B02-SO-0.5-1MSD | $1901920-18 M S D$ | Soil | $07 / 02 / 19$ |

## Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan), Site Inspection for Per- and Polyfluoroalkyl Substances, Marine Corps Air Station Yuma, Arizona (May 2019), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) by Environmental Protection Agency (EPA) Method 537 Modified

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

## I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

## II. LC/MS Instrument Performance Check

Instrument performance was checked and the requirements were met.

## III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.
A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination $\left(r^{2}\right)$ was greater than or equal to 0.990 .

For each calibration standard, all compounds were within 70-130\% of their true value.
The signal to noise $(\mathrm{S} / \mathrm{N})$ ratio was within validation criteria for all compounds.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to $30.0 \%$ for all compounds.

## IV. Continuing Calibration

Continuing calibration was performed at required frequencies.
The percent differences (\%D) were less than or equal to $30.0 \%$ for all compounds.
The signal to noise $(\mathrm{S} / \mathrm{N})$ ratio was within validation criteria for all compounds.

## V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

## VI. Field Blanks

Samples EB-06272019-GW, EB-07012019, and EB-07022019 were identified as equipment blanks. No contaminants were found with the following exceptions:

| Blank ID | Collection <br> Date | Compound | Concentration | Associated <br> Samples in this SDG |
| :---: | :---: | :---: | :---: | :---: |
| EB-06272019-GW | $06 / 27 / 19$ | PFOS | $0.0103 \mathrm{ug} / \mathrm{L}$ | SAOA-B08-GW |
|  |  | PFDA | $0.00428 \mathrm{ug} / \mathrm{L}$ |  |

Samples FRB-06272019 (from SDG 1901857), FRB-06282019, and FRB-07012019 were identified as field reagent blanks. No contaminants were found.

Sample concentrations were compared to concentrations detected in the field blanks. The sample concentrations were either not detected or were significantly greater (>5X for contaminants) than the concentrations found in the associated field blanks with the following exceptions:

| Sample | Compound | Reported <br> Concentration | Modified Final <br> Concentration |
| :---: | :---: | :---: | :---: |
| SAOA-B08-GW | PFDA | $0.00298 \mathrm{ug} / \mathrm{L}$ | $0.00298 \mathrm{ug} / \mathrm{L}$ |

Sample results were qualified as follows:

- If sample concentration was $<5 X$ the blank concentration and the sample was <limit of quantitation (LOQ), the sample result was qualified as nondetect (U).
- If sample concentration was $<5 X$ the blank concentration and the sample was $>L O Q$, the sample result was qualified as estimated (J).


## VII. Matrix Spike/Matrix Spike Duplicates

Matrix spike (MS) and matrix spike duplicate (MSD) sample analysis was performed on an associated project sample. Percent recoveries (\%R) were within QC limits with the following exceptions:

| Spike ID <br> (Associated Samples) | Compound | MS (\%R) <br> (Limits) | MSD (\%R) <br> (Limits) | Flag | A or P |
| :---: | :---: | :---: | :---: | :---: | :---: |
| CAOA-B02-SO-0.5-1MS/MSD <br> (CAOA-B02-SO-0.5-1) | PFHxA | - | $138(70-130)$ | J (all detects) | A |

Relative percent differences (RPD) were within QC limits.

## VIII. Laboratory Control Samples/Ongoing Precision Recovery

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

Ongoing precision recovery (OPR) samples were analyzed as required by the method. Percent recoveries (\%R) were within QC limits with the following exceptions:

| OPR ID | Compound | \%R (Limits) | Associated Samples | Flag | A or P |
| :---: | :---: | :---: | :---: | :---: | :---: |
| B9G0116-BS1 | EtFOSAA | 134 (70-130) | SAOA-B08-SO-30-30.5 NAOA-B08-SO-1-1.5 NAOA-B08-SO-20-20.5 NAOA-B09-SO-1-1.5 NAOA-B09-SO-20-20.5 NAOA-B01-SO-1-1.5 NAOA-B01-SO-20-20.5 CAOA-B02-SO-0.5-1 CAOA-B02-SO-20-20.5 | NA | - |

NA (Not Applicable): The percent recovery demonstrates a high bias and the affected compound was not detected in the associated samples. Sample qualification was not necessary.

## IX. Field Duplicates

Samples SAOA-B12-GW and SAOA-B12-GW-D and samples NAOA-B01-GW and NAOA-B01-GW-D were identified as field duplicates. No results were detected in any of the samples with the following exceptions:

| Compound | Concentration (ug/L) |  | RPD (Limits) | Flag | A or P |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | SAOA-B12-GW | SAOA-B12-GW-D |  |  |  |
| PFBS | 0.00758 | 0.00664 | Not calculable | - | - |
| PFHxA | 0.0178 | 0.0203 | Not calculable | - | - |
| PFHpA | 0.00410 U | 0.00361 | Not calculable | - | - |
| PFHxS | 0.00478 | 0.0157 | Not calculable | - | - |
| PFOA | 0.00410 U | 0.00635 | Not calculable | - | - |
| PFNA | 0.00410 U | 0.00302 | Not calculable | - | - |
| PFOS | 0.0127 | 0.0904 | Not calculable | - | - |
| PFDA | 0.00410 U | 0.00407 | Not calculable | - | - |


| Compound | Concentration (ug/L) |  | RPD (Limits) | Flag | A or P |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | NAOA-B01-GW | NAOA-B01-GW-D |  |  |  |
| PFBS | 0.0823 | 0.170 | 70 ( 530 ) | $J$ (all detects) | A |
| PFHxA | 0.176 | 0.613 | 111 ( $\leq 30$ ) | J (all detects) | A |
| PFHpA | 0.0307 | 0.0573 | 60 ( $\leq 30$ ) | $J$ (all detects) | A |


| Compound | Concentration (ug/L) |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | NAOA-B01-GW | NAOA-B01-GW-D | RPD (Limits) | Flag | A or P |
|  | 0.167 | 0.120 | $33(\leq 30)$ | J (all detects) | A |
| PFOA | 0.00628 | 0.00362 C | Not calculable |  | - |
| PFOS | 0.0664 | 0.0447 | $39(\leq 30)$ | J (all detects) | A |

Not calculable $=$ One or both results were less than $5 x$ the limit of quantitation.

## X. Labeled Compounds

All percent recoveries (\%R) for labeled compounds used to quantitate target compounds were within QC limits with the following exceptions:

| Sample | Labeled Compound | \%R (Limits) | Affected Compound | Flag | A or $\mathbf{P}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| SAOA-B08-GW | 13C2-PFTeDA | 44.1 (50-150) | PFTeDA | UJ (all non-detects) | P |
| SAOA-B12-GW-D | 13C2-PFTeDA | 30.7 (50-150) | PFTeDA | UJ (all non-detects) | P |
| NAOA-B02-GW | 13C2-PFTeDA | 45.7 (50-150) | PFTeDA | UJ (all non-detects) | P |
| NAOA-B01-GW | 13C2-PFTeDA | 47.7 (50-150) | PFTeDA | UJ (all non-detects) | P |
| NAOA-B01-GW-D | 13C2-PFTeDA | 39.8 (50-150) | PFTeDA | UJ (all non-detects) | P |
| CAOA-B02-SO-20-20.5 | 13C2-PFDoA | 46.3 (50-150) | $\begin{aligned} & \text { PFDoA } \\ & \text { PFTrDA } \end{aligned}$ | UJ (all non-detects) <br> UJ (all non-detects) | P |

## XI. Compound Quantitation

All compound quantitations met validation criteria.
All compounds reported below the limit of quantitation (LOQ) were qualified as follows:

| Sample | Finding | Flag | A or $P$ |
| :---: | :---: | :---: | :---: |
| SAOA-B08-GW <br> EB-06272019-GW <br> SAOA-B12-GW <br> SAOA-B12-GW-D <br> NAOA-B09-SO-1-1.5 <br> NAOA-B02-GW <br> NAOA-B01-SO-1-1.5 <br> NAOA-B01-GW <br> CAOA-B02-SO-0.5-1 <br> CAOA-B02-SO-20-20.5 | All compounds reported below the LOQ. | $J$ (all detects) | A |

## XII. Target Compound Identifications

All target compound identifications met validation criteria.

## XIII. System Performance

The system performance was acceptable.

## XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to MS/MSD \%R, field duplicate RPD, labeled compound \%R, and results below the LOQ, data were qualified as estimated in eleven samples.

Due to equipment blank contamination, data were qualified as not detected in one sample.

The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

MCAS Yuma, CTO 17F3803
Perfluoroalkyl \& Polyfluoroalkyl Substances - Data Qualification Summary - SDG 1901920

| Sample | Compound | Flag | A or P | Reason |
| :---: | :---: | :---: | :---: | :---: |
| CAOA-B02-SO-0.5-1 | PFHxA | $J$ (all detects) | A | Matrix spike/Matrix spike duplicate (\%R) |
| NAOA-B01-GW NAOA-B01-GW-D | PFBS PFHxA PFHpA PFHxS PFOS | $J$ (all detects) <br> $J$ (all detects) <br> $J$ (all detects) <br> $J$ (all detects) <br> $J$ (all detects) | A | Field duplicates (RPD) |
| SAOA-B08-GW <br> SAOA-B12-GW-D <br> NAOA-B02-GW <br> NAOA-B01-GW <br> NAOA-B01-GW-D | PFTeDA | UJ (all non-detects) | P | Labeled compounds (\%R) |
| CAOA-B02-SO-20-20.5 | PFDoA PFTrDA | UJ (all non-detects) <br> UJ (all non-detects) | P | Labeled compounds (\%R) |
| SAOA-B08-GW <br> EB-06272019-GW <br> SAOA-B12-GW <br> SAOA-B12-GW-D <br> NAOA-B09-SO-1-1.5 <br> NAOA-B02-GW <br> NAOA-B01-SO-1-1.5 <br> NAOA-B01-GW <br> CAOA-B02-SO-0.5-1 <br> CAOA-B02-SO-20-20.5 | All compounds reported below the LOQ. | $J$ (all detects) | A | Compound quantitation |

MCAS Yuma, CTO 17F3803
Perfluoroalkyl \& Polyfluoroalkyl Substances - Laboratory Blank Data Qualification Summary - SDG 1901920

## No Sample Data Qualified in this SDG

MCAS Yuma, CTO 17F3803
Perfluoroalkyl \& Polyfluoroalkyl Substances - Field Blank Data Qualification Summary - SDG 1901920

| Sample | Compound | Modified Final <br> Concentration | A or P |
| :---: | :---: | :---: | :---: |
| SAOA-B08-GW | PFDA | 0.00298 U ug/L | A |

LDC \#: 45580096
VALIDATION COMPLETENESS WORKSHEET
SD \#: 1901920
Stage 4
Laboratory: Vista Analytical Laboratory
METHOD: LC/MS Perfluoroalkyl \& Polyfluoroalkyl Substances (EPA Method 537M)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.



LDC \#: 45580D96
VALIDATION COMPLETENESS WORKSHEET


METHOD: LC/MS Perfluoroalkyl \& Polyfluoroalkyl Substances (EPA Method 537)

|  | Client ID | Lab ID | Matrix | Date |
| :---: | :---: | :---: | :---: | :---: |
| 16 | NAOA-B01-GW D | 1901920-16 | Water | 07/02/19 |
| 17 | NAOA-B01-GW-D D | 1901920-17 | Water | 07/02/19 |
| 7 1 <br> 18 1 | CAOA-B02-SO-0.5-1 | 1901920-18 | Soil | 07/02/19 |
| 19 <br> 19 | CAOA-B02-SO-20-20.5 | 1901920-19 | Soil | 07/02/19 |
| 20 | EB-07022019 | 1901920-20 | Water | 07/02/19 |
| 21 | CAOA-B02-SO-0.5-1MS | 1901920-18MS | Soil | 07/02/19 |
| $22^{1}$ | CAOA-B02-SO-0.5-1MSD | 1901920-18MSD | Soil | 07/02/19 |
| 23 |  |  |  |  |
| 24 |  |  |  |  |
| 25 |  |  |  |  |
| 26 |  |  |  |  |
| 27 |  |  |  |  |

Notes:

| BGGGO1/6-BLK1 |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 B $960062-1$ |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |

Page: 1 of 2
Reviewer:_JVG 2nd Reviewer: $\qquad$

Method: LCMS (EPA Method 537M)

| Validation Area | Yes | No | NA | Findings/Comments |
| :---: | :---: | :---: | :---: | :---: |
| I. Technical holding times |  |  |  |  |
| Were all technical holding times met? | 7 |  |  |  |
| Was cooler temperature criteria met? |  |  |  |  |
| II. LC/MS Instrument performance check |  |  |  |  |
| Were the instrument performance reviewed and found to be within the validation criteria? | $r$ |  |  |  |
| Illa. Initial calibration |  |  |  |  |
| Did the laboratory perform a 5 point calibration prior to sample analysis? |  |  |  |  |
| Were all percent relative standard deviations (\%RSD) $\leq 30 \%$ ? |  |  |  |  |
| Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of $\geq 0.990$ ? | $\square$ |  |  |  |
| Were all analytes within $70-130 \%$ or percent differences (\%D) $\leq 30 \%$ of their true value for each calibration standard except the lowest point ( $50-150 \%$ )? | 7 |  |  |  |
| IIIb. Initial Calibration Verification |  |  |  |  |
| Was an initial calibration verification standard analyzed after each initial calibration for each instrument? | 7 |  |  |  |
| Were all percent differences (\%D) $\leq 30 \%$ ? |  |  |  |  |
| IV. Continuing calibration |  |  |  |  |
| Was a continuing calibration analyzed daily? |  |  |  |  |
| Were all percent differences (\%D) of the continuing calibration $\leq 30 \%$ ? |  |  |  |  |
| V. Laboratóry Blanks |  |  |  |  |
| Was a laboratory blank associated with every sample in this SDG? |  |  |  |  |
| Was a laboratory blank analyzed for each matrix and concentration? |  |  |  |  |
| Was there contamination in the laboratory blanks? |  |  |  |  |
| VI. Field blanks |  |  |  |  |
| Were field blanks identified in this SDG? |  |  |  |  |
| Were target compounds detected in the field blanks? |  |  |  |  |
| VIII. Matrix spike/Matrix spike duplicates |  |  |  |  |
| Were matrix spike (MS) and matrix spike duplicate (MSD) analyzedin this SDG? |  |  |  |  |
| Were the MS/MSD percent recoveries (\%R) and the relative percent differences (RPD) within the QC limits? |  |  |  |  |
| IX. Laboratory control samples |  |  |  |  |
| Was an LCS analyzed per extraction batch in this SDG? |  |  |  |  |
| Were the LCS percent recoveries (\%R) and relative percent difference (RPD) within the QC limits? |  |  |  |  |



| Validation Area | Yes | No | NA | Findings/Comments |
| :---: | :---: | :---: | :---: | :---: |
| X. Field duplicates |  |  |  |  |
| Were field duplicate pairs identified in this SDG? | 7 |  |  |  |
| Were target compounds detected in the field duplicates?. | 1 |  |  |  |
| XI. Labeled Compounds |  |  |  |  |
| Were labeled compound percent recoveries (\%R) within the QC limits? |  | $\triangle$ |  |  |
| XII. Compound quantitation |  |  |  |  |
| Did the laboratory reporting limits (RL) meet the QAPP RLs? | 7 | , |  |  |
| Did reported results include both branched and linear isomers? | 7 |  |  |  |
| Were the correct ion transition, labeled compound and relative response factor (RRF) used to quantitate the compound? | 7 |  |  |  |
| Were compound quantitation and RLs adjusted to reflect all sample dilutions and dry weight factors applicable to level IV validation? | $/$ |  |  |  |
| XIII. Target compound identification |  |  |  |  |
| Was $\mathrm{m} / \mathrm{z} 499$ to $\mathrm{m} / \mathrm{z} 80$ transition used as the quantitation transition for PFOS? | $\triangle$ |  |  |  |
| Were chromatogram peaks verified and accounted for? | , |  |  |  |
| XIV. System performance |  |  |  |  |
| System performance was found to be acceptable. | $\square$ |  |  |  |
| XIII. Overall assessment of data |  |  |  |  |
| Overall assessment of data was found to be acceptable. | 7 |  |  |  |

VALIDATION FINDINGS WORKSHEET
METHOD: Perfluorinated Alkyl Acids (EPA Method 537)

| A. PFBA | $375-22-4$ |
| :--- | :--- |
| B. PFPeA | $2706-90-3$ |
| C. PFBS | $375-73-5$ |
| D. PFHXA | $307-24-4$ |
| E. PFHpA | $375-85-9$ |
| F. PFHxS | $355-46-4$ |
| G. PFOA | $335-67-1$ |
| H. PFHpS | $375-92-8$ |
| I. PFNA | $375-95-1$ |
| J. PFOSA | $754-91-6$ |
| K. PFOS | $1763-23-1$ |
| L. PFDA | $335-76-2$ |
| M. PFUnA | $2058-94-8$ |
| N. PFDS | $335-77-3$ |
| O. PFDoA | $307-55-1$ |
| P. MeFOSA | $31506-32-8$ |
| Q. PFTrDA | $72629-94-8$ |
| R. PFTeDA | $376-06-7$ |
| S. EtFOSA | $4151-50-2$ |
| T. MeFOSE | $24448-09-7$ |
| U. EtFOSE | $1691-99-2$ |
| V. MeFOSAA | $2355-31-9$ |
| W. EtFOSAA | $2991-50-6$ |
|  |  |
|  |  |

Notes: $\qquad$

LDC \#: $45580 \quad D 96$

VALIDATION FINDINGS WORKSHEET
Field Blanks

Page: $\quad$ oof 1
Reviewer:_JVG and Reviewer $\longrightarrow$ $\qquad$

Y N N/A Were field blanks identified in this SDG?
Y N N/A Were target compounds detected in the field blanks?
Blank units: $\quad \operatorname{lng} / \mathrm{L}$ Associated sample units:__ug/L
Sampling date: $\quad 06 / 27 / 19$
EB Associated Samples: $2 \quad \begin{aligned} & 75 x \text { or } 2<\angle O Q \\ & \text { firth }<\text { or }>5 x)\end{aligned}$


Blank units: $\qquad$ Associated sample units:
$\qquad$
Sampling date:
Field blank type: (circle one) Field Blank / Rinsate / Other: Associated Samples:


FB_LCMS.wpd

METHOD: LC/MS PFCs (EPA Method 537M)
Please see qualifications below for all questions answered "N". Not applicable questions are identified as "N/A".
Y N N/A Were a matrix spike (MS) and matrix spike duplicate (MSD) or duplicate sample analyzed in this SDG?

| \# | Date | MS/MSD ID | Compound | $\begin{gathered} \text { MS } \\ \text { \%R (Limits) } \end{gathered}$ | $\begin{gathered} \text { MSD } \\ \text { \%R(Limits) } \end{gathered}$ | RPD (Limits) | Associated Samples | Qualifications |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $21 / 22$ | D | ( ) | 138 (70-130) | $($ ) | 18 (Det) | Idets/A |
|  |  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  |  | ( ) | ( ) | ( 1 |  |  |
|  |  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  |  | ( ) | $(1)$ | ( ) |  |  |
|  |  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  |  | ( | $1-1$ | ( ) |  |  |

VALIDATION FINDINGS WORKSHEET
Laboratory Control Samples (LCS)

Page: 1 of 1
Reviewer: _JVG 2nd Reviewer:
$\qquad$ —

METHOD: LC/MS PFCs (EPA Method 537)
Pease see qualifications below for all questions answered " $N$ ". Not applicable questions are identified as "N/A".
$Y N$ N/A Was a LCS required?

| \# | LCS/LCSD ID | Compound | $\begin{gathered} \text { LCS } \\ \text { \%R (Limits) } \\ \hline \end{gathered}$ | $\begin{gathered} \text { LCSD } \\ \text { \%R (Limits) } \\ \hline \end{gathered}$ | RPD (Limits) | Associated Samples | Qualifications |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | B9G0116-851 | W | 134 ( $70-130)$ | ( ) | 1 | 1,7-10, 13,15,18 | J dets/P |
|  | (088) |  | ( ) | ( ) | ( ) | $19, M B 1$ |  |
|  | () |  | ( 1 | $(\ldots)$ | ( ) | (ND) |  |
|  |  |  | ( ) | ( ) | ( ) | 7 |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | 1 ) | $1 \quad 1$ | 1 |  |  |
|  |  |  | ( | ( ) | ( ) |  |  |
|  |  |  | ( $\quad 1$ | $(1)$ | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | $(1)$ | $(\quad)$ | $(1)$ |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( | ( $)$ | ( |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | ( ) | ( ) | ( ) |  |  |
|  |  |  | $(\quad)$ | $(\quad)$ | $(\quad)$ |  |  |

VALIDATION FINDINGS WORKSHEET Field Duplicates

Page:_1_of_1
Reviewer:JVG 2nd Reviewer:


METHOD: LCMS PFAS (EPA Method 537M)
Y N NA Were field duplicate pairs identified in this SDG?
Y N NA Were target analytes detected in the field duplicate pairs?

| Compound | Concentration (ug/L) |  | $\begin{gathered} \text { RPD } \\ (\leq 30 \%) \end{gathered}$ | Qualifications (Parent only) |
| :---: | :---: | :---: | :---: | :---: |
|  | 5 | 6 |  |  |
| C | 0.00758 | 0.00664 | NC |  |
| D | 0.0178 | 0.0203 | NC |  |
| E | 0.00410 U | 0.00361 | NC |  |
| F | 0.00478 | 0.0157 | NC |  |
| G | 0.00410 U | 0.00635 | NC |  |
| I | 0.00410 U | 0.00302 | NC |  |
| K | 0.0127 | 0.0904 | NC |  |
| L | 0.00410 U | 0.00407 | NC |  |


| Compound | Concentration (ug/L) |  | $\begin{gathered} \text { RPD } \\ (\leq 30 \%) \end{gathered}$ | Qualifications (Parent only) |
| :---: | :---: | :---: | :---: | :---: |
|  | 16 | 17 |  |  |
| C | 0.0823 | 0.170 | 70 | Jdets/A |
| D | 0.176 | 0.613 | 111 | Jdets/A |
| $E$ | 0.0307 | 0.0573 | 60 | Jdets/A |
| F | 0.167 | 0.120 | 33 | Jdets/A |
| G | 0.00628 | 0.00362 U | NC |  |
| K | 0.0664 | 0.0447 | 39 | Jdets/A |

NC (<5XLOQ)

VALIDATION FINDINGS WORKSHEET Labeled Compound

Page: 1 of 1
Reviewer: JVG 2nd Reviewer: $\longrightarrow$

METHOD: LC/MS PFAS (EPA Method 537M)


VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_1_of_4Reviewer:__JVG__
2nd Reviewer: 9

METHOD: LC/MS PFCs (EPA Method 537Mod)

| Calibration Date | System | Compound | Standard | (Y) <br> Area ratio |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7/10/2019 | SCN945 | PFOA | 0.25 | 0.04424 | 3.125 |
|  |  |  | 0.5 | 0.06626 | 6.250 |
|  |  |  | 1 | 0.16054 | 12.500 |
|  |  | 13C2-PFOA | 2 | 0.28982 | 25.000 |
|  |  |  | 5 | 0.76540 | 62.500 |
|  |  |  | 10 | 1.42501 | 125.000 |
|  |  |  | 50 | 7.42635 | 625.000 |
|  |  |  | 100 | 14.79889 | 1250.000 |
|  |  |  |  |  |  |


| Regression Output | Calculated | Reported WLR |
| :---: | :---: | :---: |
| Constant | -0.001555 | 0.038532 |
| Std Err of Y Est |  |  |
| R Squared | 0.999983 | 0.999749 |
| Degrees of Freedom |  |  |
|  |  |  |
| X Coefficient(s) | 0.01184661 | 1.848290 |
| Std Err of Coef. |  |  |
|  |  |  |
| Correlation Coefficient | 0.999992 |  |
| Coefficient of Determination (r^2) | 0.999983 | 0.999749 |

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

METHOD: LC/MS PFCs (EPA Method 537Mod)

| $\begin{aligned} & \text { Calibration } \\ & \text { Date } \end{aligned}$ | System | Compound | Standard |  | (X) <br> Conc ratio |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7/10/2019 | $\qquad$ | PFOS | 0.25 | 0.00818 | 3.125 |
|  |  |  | 0.5 | 0.03295 | 6.250 |
|  |  |  | 1 | 0.10211 | 12.500 |
|  |  | 13C8-PFOS | 2 | 0.14330 | 25.000 |
|  |  |  | 5 | 0.43202 | 62.500 |
|  |  |  | 10 | 0.82840 | 125.000 |
|  |  |  | 50 | 5.02607 | 625.000 |
|  |  |  | 100 | 10.45259 | 1250.000 |
|  |  |  |  |  |  |


| Regression Output | Calculated | Reported WLR |
| :---: | :---: | :---: |
| Constant | -0.076994 | -0.175183 |
| Std Err of Y Est |  |  |
| R Squared | 0.999354 | 0.995937 |
| Degrees of Freedom |  |  |
|  |  |  |
| X Coefficient(s) | 0.00836341 | 1.269460 |
| Std Err of Coef. |  |  |
|  |  |  |
| Correlation Coefficient | 0.999677 |  |
| Coefficient of Determination ( $\mathrm{r}^{2}$ 2) | 0.999354 | 0.995937 |

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

METHOD: LC/MS PFCs (EPA Method 537Mod)

| Calibration <br> Date | System | Compound | Standard | (V) <br> Area ratio | $\begin{gathered} \hline(X) \\ \text { Conc ratio } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7/12/2019 | SCN945190712M-CRV | PFOA | 0.25 | 0.03226 | 3.125 |
|  |  |  | 0.5 | 0.06127 | 6.250 |
|  |  |  | 1 | 0.11149 | 12.500 |
|  |  | 13C2-PFOA | 2 | 0.22345 | 25.000 |
|  |  |  | 5 | 0.55250 | 62.500 |
|  |  |  | 10 | 1.13393 | 125.000 |
|  |  |  | 50 | 5.63506 | 625.000 |
|  |  |  | 100 | 10.95602 | 1250.000 |
|  |  |  | 250 | 26.97489 | 3125.000 |
|  |  |  | 500 | 54.69562 | 6250.000 |
|  |  |  |  |  |  |


| Regression Output | Calculated | Reported WLR |
| :---: | :---: | :---: |
| Constant | 0.014494 | 0.073917 |
| Std Err of Y Est |  |  |
| R Squared | 0.999962 | 0.999890 |
| Degrees of Freedom |  |  |
|  |  |  |
| X Coefficient(s) | 0.00872764 | 1,364860 |
| Std Err of Coef. |  |  |
|  |  |  |
| Correlation Coefficient | 0.999981 |  |
| Coefficient of Determination ( $\mathrm{r}^{2} 2$ ) | 0.999962 | 0.999890 |

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_4_of_4_ Reviewer:_JVG 2nd Reviewer: $\qquad$
 -

METHOD: LC/MS PFCs (EPA Method 537Mod)

| Calibration <br> Date | System | Compound | Standard | (Y) <br> Area ratio | (X) Conc ratio |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7/12/2019 | SCN945 | PFOS | 0.25 | 0.02715 | 3.125 |
|  |  |  | 0.5 | 0.02748 | 6.250 |
|  |  |  | 1 | 0.07680 | 12.500 |
|  | 190712M-CRV | 13C8-PFOS | 2 | 0.14878 | 25.000 |
|  |  |  | 5 | 0.44086 | 62.500 |
|  |  |  | 10 | 0.85959 | 125.000 |
|  |  |  | 50 | 4.21093 | 625.000 |
|  |  |  | 100 | 8.30061 | 1250.000 |
|  |  |  | 250 | 22.46399 | 3125.000 |
|  |  |  | 500 | 45.30008 | 6250.000 |
|  |  |  |  |  |  |


| Regression Output | Calculated | Reported WLR |
| :---: | :---: | :---: |
| Constant | -0.133686 | -0.160592 |
| Std Err of Y Est |  |  |
| R Squared | 0.999751 | 0.999099 |
| Degrees of Freedom |  |  |
|  |  |  |
| $\times$ Coefficlent(s) | 0.00724403 | 1.115200 |
| Std Err of Coet. |  |  |
|  |  |  |
| Correlation Coefficient | 0.999876 |  |
| Coefficient of Determination ( $\wedge^{\prime}$ ) | 0.999751 | 0.999099 |

VALIDATION FINDINGS WORKSHEET Continuing Calibration Calculation Verification

Page: $\qquad$ 1 of 1
Reviewer: $\qquad$ G 2nd Reviewer: $\qquad$

## METHOD: LC/MS PFCs (EPA Method 537Mod)

The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

## Where:

\% Difference $=100$ * (ave. RRF - RRF)/ave. RRF RRF $=(A x)(C i s) /(A i s)(C x)$
ave. RRF = initial calibration average RRF RRF = continuing calibration RRF
$A x=$ Area of compound

Cx = Concentration of compound,
Ais = Area of associated internal standard
Cis = Concentration of internal standard

| \# | Standard ID | Calibration Date | Compound (IS) |  | Conc | Reported | Recalculated | Reported \% R | Recalculated \% R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 190711M3-32 | 7/12/2019 | PFOA | (13C2-PFOA) | 1.000 | 0.937 | 0.937 | 93.7 | 93.7 |
|  |  |  | PFOS | (13C8-PFOS) | 1.000 | 1.090 | 1.090 | 109.0 | 109.0 |
| 2 | 190712M2-17 | 7/12/2019 | PFOA | (13C2-PFOA) | 10.000 | 7.535 | 7.535 | 75.3 | 75.3 |
|  | ICV |  | PFOS | (13C8-PFOS) | 9.240 | 6.554 | 6.554 | 70.9 | 70.9 |
| 3 | 190712M2-35 | 7/12/2019 | PFOA | (13C2-PFOA) | 10.000 | 10.172 | 10.172 | 101.7 | 101.7 |
|  | CCV |  | PFOS | (13C8-PFOS) | 10.000 | 9.410 | 9.410 | 94.1 | 94.1 |

VALIDATION FINDINGS WORKSHEET
Page: $\perp$ of 1
Reviewer:_JVG 2nd Reviewer:

## METHOD: LC/MS PFAS (EPA Method 537Mod)

The percent recoveries (\%R) and Relative Percent Difference (RPD) of the matrix spike and matrix spike duplicate were recalculated for the compounds identified below using the following calculation:

| \% Recovery $=100^{*}(S S C-S C) / S A$ | Where: | $S S C=$ Spiked sample concentration <br> $S A=S p i k e ~ a d d e d ~$ |
| :--- | :--- | :--- |
| RPD = I MSC - MSC I * $2 /$ MSC + MSDC $)$ | MSC = Matrix spike concentration | SC = Sample concentation |
| MS/MSD samples: | $21 / 22$ |  |


| Compound | $\begin{gathered} \text { Spike } \\ \text { Added } \\ \left(\begin{array}{l} \mathrm{kg} \end{array}\right) \end{gathered}$ |  | $\begin{aligned} & \begin{array}{c} \text { Sample } \\ \text { Connc } \\ \text { Ug/kg } \end{array} \end{aligned}$ | Spiked Sample Concentration ( 45 kg ) |  | Matrix Spike <br> Percent Recovery |  | Matrix Spike Duplicate <br> Percent Recovery |  | MS/MSD <br> RPD |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  | MS | $P_{\text {msn }}$ |  | MS | ${ }_{\text {MSn }}$ | Reporter | Recar | Reported | Recalc. | Renorted | Recalc |
| PFOA | 9.92 | 9.73 | 1.56 | 137 | 12.7 | 122 | 122 | 115 | 115 | 5.91 | 5,91 |
| PFOS | 1 | 1 | 8.16 | $19 . \gamma$ | 19.1 | 11 | III | 112 | 112 | 0.897 | 0.98 |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |

Comments: Refer to Matrix Spike/Matrix Spike Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within $10: 0 \%$ of the recalculated results. $\qquad$

METHOD: LC/MS PFAS (EPA Method 537M)
The percent recoveries (\%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:


|  | Spike <br> Added <br> Hg |  | $\begin{gathered} \text { Spike } \\ \text { Concentration } \\ \text { (ug } / \mathbf{k g} \end{gathered}$ |  | Lcs |  | LCsD |  | LCSILCsD |  | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Compound |  |  | Percent Recovery | Percent Recovery |  | RPD |  |
|  | LCS | LCSD |  |  | LCS | LCSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalc. |
| PFOA | 10.0 | NA | 10.8 | NA | 108 | 108 |  |  |  |  |
| PFOS | 1 | 1 | 10.5 | 1 | 105 | 105 | - |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within $10.0 \%$ of the recalculated results.

## VALIDATION FINDINGS WORKSHEET Sample Calculation Verification

Page: 1 of 1
Reviewer:_JVG 2nd reviewer:



# Laboratory Data Consultants, Inc. Data Validation Report 

| Project/Site Name: | MCAS Yuma, CTO 17F3803 |
| :--- | :--- |
| LDC Report Date: | August 22, 2019 |
| Parameters: | Perfluoroalkyl \& Polyfluoroalkyl Substances |
| Validation Level: | Stage 4 |
| Laboratory: | Vista Analytical Laboratory |
| Sample Delivery Group (SDG): | 1901922 |


| Sample Identification | Laboratory Sample <br> Identification | Matrix | Collection <br> Date |
| :--- | :--- | :--- | :---: |
| FRB-07022019 | $1901922-01$ | Water | $07 / 02 / 19$ |
| CAOA-B02-GW | $1901922-02$ | Water | $07 / 02 / 19$ |

## Introduction

This Data Validation Report (DVR) presents data validation findings and results for the associated samples listed on the cover page. Data validation was performed in accordance with the Final Sampling and Analysis Plan (Field Sampling Plan and Quality Assurance Project Plan), Site Inspection for Per- and Polyfluoroalkyl Substances, Marine Corps Air Station Yuma, Arizona (May 2019), the U.S. Department of Defense (DoD) Quality Systems Manual (QSM) for Environmental Laboratories, Version 5.1 (2017), and a modified outline of the USEPA National Functional Guidelines (NFG) for Organic Superfund Methods Data Review (January 2017). Where specific guidance was not available, the data has been evaluated in a conservative manner consistent with industry standards using professional experience.

The analyses were performed by the following method:
Perfluoroalkyl and Polyfluoroalkyl Substances (PFAS) by Environmental Protection Agency (EPA) Method 537 Modified

All sample results were subjected to Stage 4 data validation, which is comprised of the quality control (QC) summary forms as well as the raw data, to confirm sample quantitation and identification.

The following are definitions of the data qualifiers utilized during data validation:
J (Estimated): The compound or analyte was analyzed for and positively identified by the laboratory; however the reported concentration is estimated due to nonconformances discovered during data validation.

U (Non-detected): The compound or analyte was analyzed for and positively identified by the laboratory; however the compound or analyte should be considered non-detected at the reported concentration due to the presence of contaminants detected in the associated blank(s).

UJ (Non-detected estimated): The compound or analyte was reported as not detected by the laboratory; however the reported quantitation/detection limit is estimated due to non-conformances discovered during data validation.

R (Rejected): The sample results were rejected due to gross non-conformances discovered during data validation. Data qualified as rejected is not usable.

NA (Not Applicable): The non-conformance discovered during data validation demonstrates a high bias, while the affected compound or analyte in the associated sample(s) was reported as not detected by the laboratory and did not warrant the qualification of the data.

A qualification summary table is provided at the end of this report if data has been qualified. Flags are classified as P (protocol) or A (advisory) to indicate whether the flag is due to a laboratory deviation from a specified protocol or is of technical advisory nature.

## I. Sample Receipt and Technical Holding Times

All samples were received in good condition and cooler temperatures upon receipt met validation criteria.

All technical holding time requirements were met.

## II. LC/MS Instrument Performance Check

Instrument performance was checked and the requirements were met.

## III. Initial Calibration and Initial Calibration Verification

Initial calibration was performed as required by the method.
A curve fit, based on the initial calibration, was established for quantitation. The coefficient of determination ( $\mathrm{r}^{2}$ ) was greater than or equal to 0.990 .

For each calibration standard, all compounds were within 70-130\% of their true value.
The signal to noise $(\mathrm{S} / \mathrm{N})$ ratio was within validation criteria for all compounds.
The percent differences (\%D) of the initial calibration verification (ICV) standard were less than or equal to $30.0 \%$ for all compounds.

## IV. Continuing Calibration

Continuing calibration was performed at required frequencies.
The percent differences (\%D) were less than or equal to $30.0 \%$ for all compounds.
The signal to noise $(\mathrm{S} / \mathrm{N})$ ratio was within validation criteria for all compounds.

## V. Laboratory Blanks

Laboratory blanks were analyzed as required by the method. No contaminants were found in the laboratory blanks.

## VI. Field Blanks

Sample FRB-07022019 was identified as a field reagent blank. No contaminants were found.

## VII. Matrix Spike/Matrix Spike Duplicates

The laboratory has indicated that there were no matrix spike (MS) and matrix spike duplicate (MSD) analyses specified for the samples in this SDG, and therefore matrix spike and matrix spike duplicate analyses were not performed for this SDG.

## VIII. Laboratory Control Samples

Laboratory control samples (LCS) and laboratory control samples duplicates (LCSD) were analyzed as required by the method. Percent recoveries (\%R) were within QC limits. Relative percent differences (RPD) were within QC limits.

## IX. Field Duplicates

No field duplicates were identified in this SDG.

## X. Labeled Compounds

All percent recoveries (\%R) for labeled compounds used to quantitate target compounds were within QC limits.

## XI. Compound Quantitation

All compound quantitations met validation criteria.
All compounds reported below the limit of quantitation (LOQ) were qualified as follows:

| Sample |  |  |  |
| :--- | :--- | :---: | :---: |
| CAOA-BO2-GW | Finding | Flag | A or $\mathbf{P}$ |

## XII. Target Compound Identifications

All target compound identifications met validation criteria.

## XIII. System Performance

The system performance was acceptable.

## XIV. Overall Assessment of Data

The analysis was conducted within all specifications of the method. No results were rejected in this SDG.

Due to results below the LOQ, data were qualified as estimated in one sample.
The quality control criteria reviewed, other than those discussed above, were met and are considered acceptable.

MCAS Yuma, CTO 17F3803
Perfluoroalkyl \& Polyfluoroalkyl Substances - Data Qualification Summary - SDG 1901922

| Sample | Compound | Flag | A or P | Reason |
| :---: | :---: | :---: | :---: | :---: |
| CAOA-B02-GW | All compounds reported below the LOQ. | $J$ (all detects) | A | Compound quantitation |

MCAS Yuma, CTO 17F3803
Perfluoroalkyl \& Polyfluoroalkyl Substances - Laboratory Blank Data Qualification Summary - SDG 1901922

No Sample Data Qualified in this SDG
MCAS Yuma, CTO 17F3803
Perfluoroalkyl \& Polyfluoroalkyl Substances - Field Blank Data Qualification Summary - SDG 1901922

No Sample Data Qualified in this SDG

LDC \#: 45580E96
VALIDATION COMPLETENESS WORKSHEET
SDG \#: 1901922
Laboratory: Vista Analytical Laboratory


METHOD: LC/MS Perfluoroalkyl \& Polyfluoroalkyl Substances (EPA Method 537)
The samples listed below were reviewed for each of the following validation areas. Validation findings are noted in attached validation findings worksheets.


| Note: | $A=$ Acceptable | $N D=$ No compounds detected | $D=$ Duplicate | SB=Source blank |
| :--- | :--- | :--- | :--- | :--- |
|  | $N=$ Not provided/applicable | $R=$ Rinsate | TB $=$ Trip blank | OTHER: |
|  | $S W=$ See worksheet |  |  |  |
|  |  |  |  |  |
|  |  |  |  | Fiequipment blank |



VALIDATION FINDINGS CHECKLIST
Page: 1 of 2
Reviewer: JVG 2nd Reviewer: $\qquad$
Method: LCMS (EPA Method 537M )

| Validation Area | Yes | No | NA | Findings/Comments |
| :---: | :---: | :---: | :---: | :---: |
| 1. Technical holding times |  |  |  |  |
| Were all technical holding times met? |  |  |  |  |
| Was cooler temperature criteria met? |  |  |  |  |
| II. LC/MS Instrument performance check |  |  |  |  |
| Were the instrument performance reviewed and found to be within the validation criteria? | $\bigcirc$ |  |  |  |
| Illa. Initial calibration |  |  |  |  |
| Did the laboratory perform a 5 point calibration prior to sample analysis? |  |  |  |  |
| Were all percent relative standard deviations (\%RSD) $\leq 30 \%$ ? $\quad$ ? |  |  |  |  |
| Was a curve fit used for evaluation? If yes, did the initial calibration meet the curve fit criteria of $\geq 0.990$ ? |  |  |  |  |
| Were all analytes within $70-130 \%$ or percent differences (\%D) $\leq 30 \%$ of their true value for each calibration standard except the lowest point ( $50-150 \%$ )? |  |  |  |  |
| IIIb. Initial Calibration Verification |  |  |  |  |
| Was an initial calibration verification standard analyzed after each initial calibration for each instrument? |  |  |  |  |
| Were all percent differences (\%D) $\leq 30 \%$ ? |  |  |  |  |
| IV. Continuing calibration |  |  |  |  |
| Was a continuing calibration analyzed daily? | 7 |  |  |  |
| Were all percent differences (\%D) of the continuing calibration $\leq 30 \%$ ? |  |  |  |  |
| V. Laboratory Blanks |  |  |  |  |
| Was a laboratory blank associated with every sample in this SDG? |  |  |  |  |
| Was a laboratory blank analyzed for each matrix and concentration? |  |  |  |  |
| Was there contamination in the laboratory blanks? |  |  |  |  |
| VI. Field blanks |  |  |  |  |
| Were field blanks identified in this SDG? |  |  |  |  |
| Were target compounds detected in the field blanks? |  |  |  |  |
| VIII. Matrix spike/Matrix spike duplicates |  |  |  |  |
| Were matrix spike (MS) and matrix spike duplicate (MSD) analyzedin this SDG? |  |  |  |  |
| Were the MS/MSD percent recoveries (\%R) and the relative percent differences (RPD) within the QC limits? | 1 |  |  |  |
| IX. Laboratory control samples |  |  |  |  |
| Was an LCS analyzed per extraction batch in this SDG? | / |  |  |  |
| Were the LCS percent recoveries (\%R) and relative percent difference (RPD) within the QC limits? |  |  |  |  |



VALIDATION FINDINGS WORKSHEET Labeled Compound

Page: 1 of 1
Reviewer: JVG 2nd Reviewer:

METHOD: LC/MS PFAS (EPA Method 537)
Please see qualifications below for all questions answered " N ". Not applicable questions are identified as "N/A".

| \# | Date | Sample id | Labeled Compound | \% R | Limits $\%$ ) | Qualitications |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | B9G0062-B6) | 13C2-PFTeDA | 46.6 | 50-150 | J/4J/p |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_1_of_2_ Reviewer:_JVG_ 2nd Reviewer: $\qquad$ -

METHOD: LC/MS PFCs (EPA Method 537Mod)

| Calibration Date | System | Compound | Standard | (V) <br> Area ratio | (X) Conc ratio |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 711/19 | SCN945 | PFOA | 0.25 | 0.04424 | 3.125 |
|  |  |  | 0.5 | 0.06626 | 6.250 |
|  |  |  | 1 | 0.16054 | 12.500 |
|  |  | 13C2-PFOA | 2 | 0.28982 | 25.000 |
|  |  |  | 5 | 0.76540 | 62.500 |
|  |  |  | 10 | 1.42501 | 125.000 |
|  |  |  | 50 | 7.42635 | 625.000 |
|  |  |  | 100 | 14.79889 | 1250.000 |
|  |  |  |  |  |  |


| Regression Output | Calculated | Reported WLR |
| :---: | :---: | :---: |
| Constant | -0.001555 | 0.038532 |
| Std Err of Y Est |  |  |
| R Squared | 0.999983 | 0.999749 |
| Degrees of Freedom |  |  |
|  |  |  |
| X Coefficient(s) | 0.01184661 | 1.848290 |
| Std Err of Coef. |  |  |
|  |  |  |
| Correlation Coefficient | 0.999992 |  |
| Coefficient of Determination ( $\mathrm{r}^{2}$ 2) | 0.999983 | 0.999749 |

VALIDATION FINDINGS WORKSHEET Initial Calibration Calculation Verification

Page:_2_of_2 Reviewer: JVG 2nd Reviewer: $\xrightarrow{\text { JVG }}$ $\stackrel{\square}{\square}$

METHOD: LC/MS PFCs (EPA Method 537Mod)

| Calibration Date | System | Compound | Standard | (V) <br> Area ratio | (X) Conc ratio |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 7/11/2019 | SCN945 | PFOS | 0.25 | 0.00818 | 3.125 |
|  |  |  | 0.5 | 0.03295 | 6.250 |
|  |  |  | 1 | 0.10211 | 12.500 |
|  |  | 13C8-PFOS | 2 | 0.14330 | 25.000 |
|  |  |  | 5 | 0.43202 | 62.500 |
|  |  |  | 10 | 0.82840 | 125.000 |
|  |  |  | 50 | 5.02607 | 625.000 |
|  |  |  | 100 | 10.45259 | 1250.000 |
|  |  |  |  |  |  |


| Regression Output | Calculated | Reported WLR |
| :---: | :---: | :---: |
| Constant | -0.076994 | -0.175183 |
| Std Err of Y Est |  |  |
| R Squared | 0.999354 | 0.995937 |
| Degrees of Freedom |  |  |
|  |  |  |
| X Coefficient(s) | 0.00836341 | 1.269460 |
| Std Err of Coef. |  |  |
|  |  |  |
| Correlation Coefficient | 0.999677 |  |
| Coefficient of Determination (r r 2) | 0.999354 | 0.995937 |

LDC \# _ 45580E96

## VALIDATION FINDINGS WORKSHEET

## Continuing Calibration Calculation Verification

Page:_1_of 1
Reviewer:_JVG

METHOD: LC/MS PFCs (EPA Method 537Mod)
The percent difference (\%D) of the initial calibration average Relative Response Factors (RRFs) and the continuing calibration RRFs were recalculated for the compounds identified below using the following calculation:

|  | Where: | Cx = Concentration of compound, |
| :--- | :--- | :--- |
| \% Difference $=100^{*}($ ave. RRF - RRF $) /$ ave. RRF | ave. RRF = initial calibration average RRF | Ais = Area of associated internal standard |
| RRF $=(\mathrm{Ax})(\mathrm{Cis}) /($ Ais $)(\mathrm{Cx})$ | RRF $=$ continuing calibration RRF | Cis = Concentration of internal standard |


| \# | Standard ID | $\begin{gathered} \text { Calibration } \\ \text { Date } \\ \hline \end{gathered}$ | Compound (IS) |  | Conc | Reported | Recalculated | Reported \% R | Recalculated \% R |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 190711M3_32 | 7/11/2019 | PFOA | (13C2-PFOA) | 10.000 | 10.329 | 10.329 | 103.3 | 103.3 |
|  |  |  | PFOS | (13C8-PFOS) | 10.000 | 10.227 | 10.227 | 102.3 | 102.3 |

VALIDATION FINDINGS WORKSHEET
Laboratory Control Sample/Laboratory Control Sample Duplicates Results Verification

## METHOD: LC/MS PFAS (EPA Method 537M)

The percent recoveries (\%R) and Relative Percent Difference (RPD) of the laboratory control sample and laboratory control sample duplicate were recalculated for the compounds identified below using the following calculation:


| Compound | Spike Added (lg/L) |  | $\begin{gathered} \text { Spike } \\ \text { Concentration } \\ \text { (und/) } \end{gathered}$$\operatorname{lug} / L$ |  | Lcs |  | LCSD |  | LCSILCSD |  | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  | Percent Recovery | Percent Recovery |  | RPD |  |
|  | LCS | LCSD |  |  | LCS | LCSD | Reported | Recalc. | Reported | Recalc. | Reported | Recalc. |
| PFOA | 0.080 | 0.080 | 0,0887 | 0.0846 | 109 | $\log$ | 106 | 106 | 2.89 | 2.80 |
| PFOS | 1 | 1 | 0.0880 | 0.0817 | 110 | 110 | 102 | 102 | 7.33 | 7.42 |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

Comments: Refer to Laboratory Control Sample/Laboratory Control Sample Duplicates findings worksheet for list of qualifications and associated samples when reported results do not agree within $10.0 \%$ of the recalculated results.

## VALIDATION FINDINGS WORKSHEET <br> Sample Calculation Verification

Page: 1 of 1
Reviewer: $\qquad$ 2nd reviewer:

METHOD: LC/MS PFAS (EPA Method 537M)

| Y N N/A | Were all reported results recalculated and verified for all level IV samples? |
| :--- | :--- |
| Were all recalculated results for detected target compounds agree within $10.0 \%$ of the reported |  |
| results? |  |

Concentration $=\left(A_{0}\right)\left(I_{2}\right)\left(V_{1}\right)(D F)(2.0)$
( $\left.A_{i s}\right)(R R F)\left(V_{0}\right)\left(V_{i}\right)(\% S)$
$A_{x}=$ Area of the characteristic ion (EICP) for the compound to be measured
$\mathrm{A}_{\mathrm{is}}=$ Area of the characteristic ion (EICP) for the specific internal standard
$I_{s} \quad=\quad$ Amount of internal standard added in nanograms (hg)
$V_{0}=\quad$ Volume or weight of sample extract in milliliters ( ml ) or grams (g).
$V_{1}=$ Volume of extract injected in microliters (ul)
$V_{t}=$ Volume of the concentrated extract in microliters (ul)
If $=$ Dilution Factor.
\%S = Percent solids, applicable to soil and solid matrices only.
$2.0=$ Factor of 2 to account for GPC cleanup

| $\#$ | Sample ID | Compound | Reported <br> Concentration <br> (w, $/$, | Calculated <br> Concentration <br> ( | Qualification |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 0.168 |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |


[^0]:    Work Order 1901922

[^1]:    Work Order 1901922

[^2]:    Work Order 1901922

[^3]:    Work Order 1901922

[^4]:    Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
    519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

[^5]:    Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

[^6]:    Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
    519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

[^7]:    Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

[^8]:    Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

[^9]:    Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

[^10]:    Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

[^11]:    Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA 519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

[^12]:    Wellington Laboratories Inc., 345 Southgate Dr. Guelph ON N1G 3M5 CANADA
    519-822-2436 • Fax: 519-822-2849 • info@well-labs.com

[^13]:    Notes:

[^14]:    METHOD: LC/MS PFAS (EPA Method 537)

