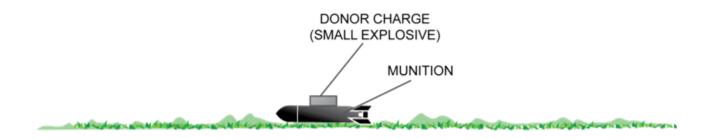


Time Critical Removal Action (TCRA)

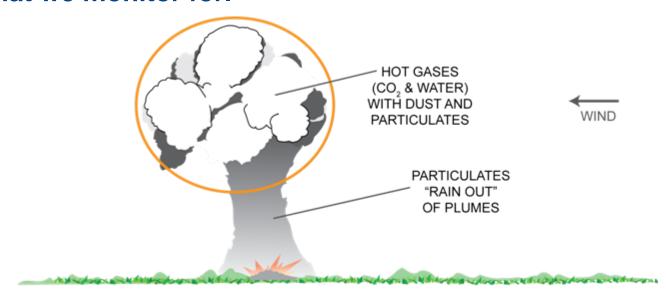
 To meet the TCRA clean-up objectives, old ordnance is destroyed by blowing it up on the target area; Blow-in-Place or BIP

- We have looked at the emissions from the BIPs by two methods:
 - Air monitoring for the BIP emissions
 - Dispersion modeling for the BIP emissions

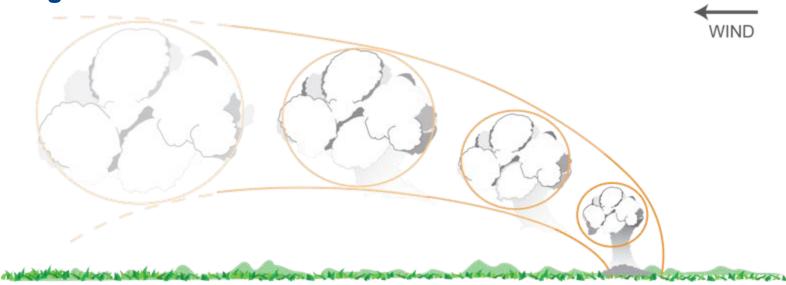

BIP Monitoring Approach

- Understand the BIP process
- Identify possible emissions
- Develop action levels for those compounds in air
- Identify monitoring equipment, analysis methods and appropriate locations for the equipment
- Operate and optimize the monitoring equipment

 A small explosive donor charge is used to break open the case of the item and ignite the explosive inside.

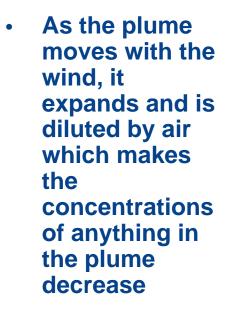


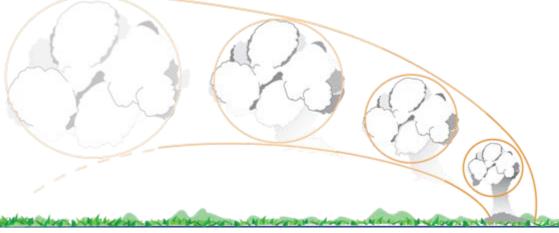
- The explosive inside then burns and splits the case (usually iron) into fragments.
- The case fragments are large enough to quickly fall to the ground.



- The burning explosive forms a visible cloud mostly of water vapor, carbon dioxide, and dust.
- There can also be very small residues of explosives and traces of metals in the cloud (plume); these compounds are what we monitor for.

- As the plume moves with the wind, it expands and is diluted by air which makes the concentrations of anything in the plume decrease
- During the same time, the particulates and dust fall to the ground





During the same time, the particulates and dust fall to the ground

Identify Possible BIP Emissions

- List of items actually destroyed at site was used as basis of estimate
- Potential air emissions identified for items destroyed (examples: particulates, lead, TNT, etc.)

Requirements: Equipment, Methods, and Locations for Monitoring

Sampling Equipment

- Particulates (PM10) by recognized method
- Time intervals consistent with operations and Action Levels (8 hrs, not 24 hrs for some compounds)
- Address multiple Compounds of Concern
- Unattended operation

Explosives/Metals Analysis Methods

Sensitive enough to measure concentrations to below action levels

Location

 Get as close as possible to the BIPs to measure the highest possible concentrations

BIP Monitoring Stations

- E-BAM particulate monitor
 - Same principle as
 Equivalent method, used in
 USFS and EPA studies
 - Operates on solar power; unattended & continuous
 - Collects 8 hour samples on tape
 - Tape is analyzed for metals and explosives using EPA methods
- Located on ridge along SIA-LIA boundary
- New location near community as requested by community and approved by EQB

Identify Action Levels

- Action levels are the concentrations in air for a given compound where we do additional analysis to see if there are concerns for health and if we should have additional restrictions
- Standard EPA guidance levels were used if available (e.g. NAAQS for PM10 & lead)
- If EPA guidance was not available for a compound of concern, the most reasonably protective action levels were developed
 - Action levels were developed using EPA accepted methods and data for all HHRAs and ERAs developed in the US
 - Action levels were based on people being exposed 350 days per year for 30 years
 - Action levels that were developed are based on the most sensitive population groups

Compounds for BIP Monitoring

TNT

Explosives/Energetics

Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine	НМХ
Hexahydro-1,3,5-trinitro-1,3,5-triazine	RDX
Nitrobenzene	NB
1,3-Dinitrobenzene	1,3-DNB
1,3,5-Trinitrobenzene	1,3,5-TNB
2,4-Dinitrotoluene	2,4,DNT
2,6-Dinitrotoluene	2,6-DNT

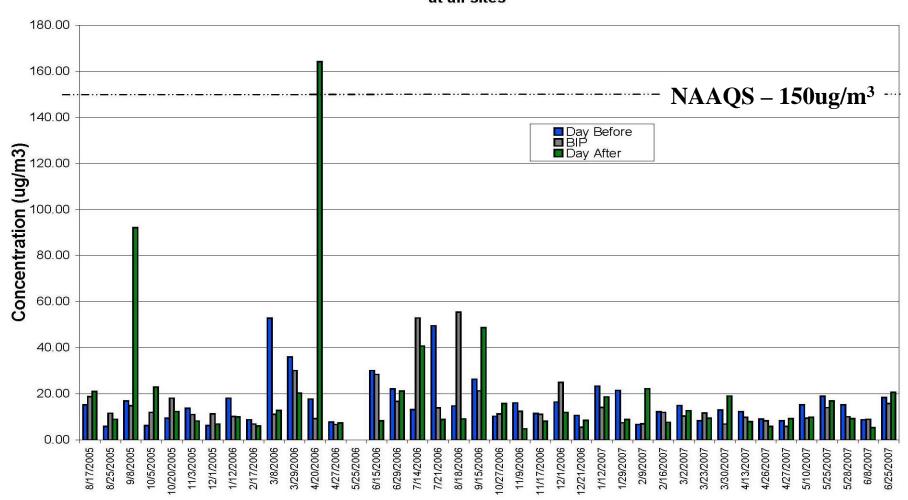
Metals

Phosphorus	Р
Chromium	Cr
lron*	Fe
Nickel*	Ni
Copper*	Cu
Arsenic	As
Cadmium	Cd
Tin	Sn
Mercury	Hg
Lead	Pb

2,4,6-Trinitrotoluene

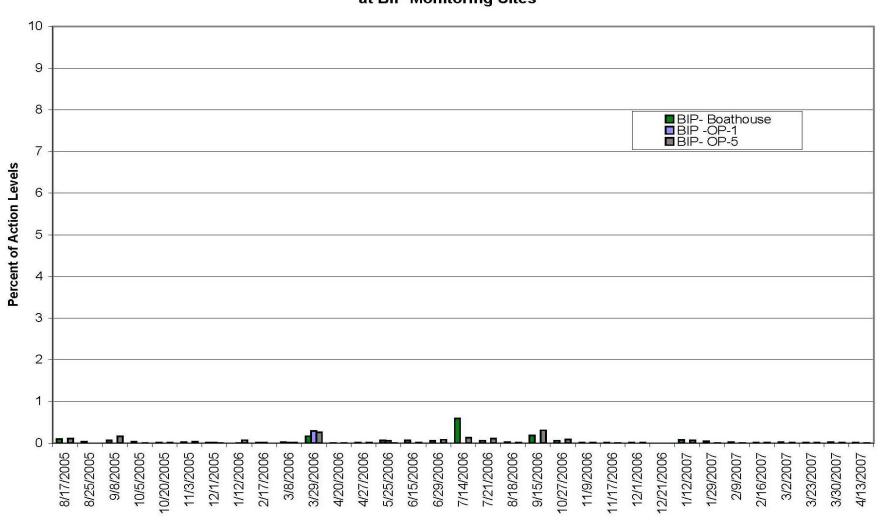
^{*} detected during monitoring

BIP Air Monitoring Summary



- Air monitoring data available since August 2005
 - 39 BIP events
- No explosives have been detected in air
- Some metal concentrations (iron, copper, nickel) were detected;
 <1% of action levels.
- On one occasion, particulate levels on the SIA-LIA boundary slightly exceeded regulatory criteria
 - Associated with brush fire following detonations
 - Not likely to impact the populated areas the plume undergoes significant dilution before reaching public access areas (>90% reduction)
- Based on the results of air monitoring, air emissions from BIP detonations do not have a negative impact on the ambient air quality in or around the populated areas of Vieques.
 - Here are the data:

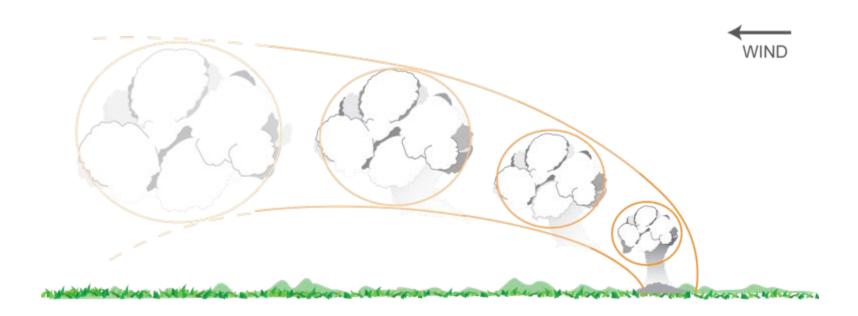
BIP Air Monitoring Results – Particulates


Maximum of PM10 Concentrations at all sites

BIP Air Monitoring Results – Metals

Maximum Concentration of Any Metal at BIP Monitoring Sites

BIP Modeling Approach



- Understand the BIP process
- Estimate possible emissions
- Choose the appropriate dispersion model and weather data for the area
- Run the model using the weather data
- Compare the results to action levels or regulatory thresholds

BIP Dispersion Modeling

- The plume from a BIP is diluted and disperses as it travels with the wind
- The predominant wind directions are from the easterly quadrant

Estimating BIP Emissions

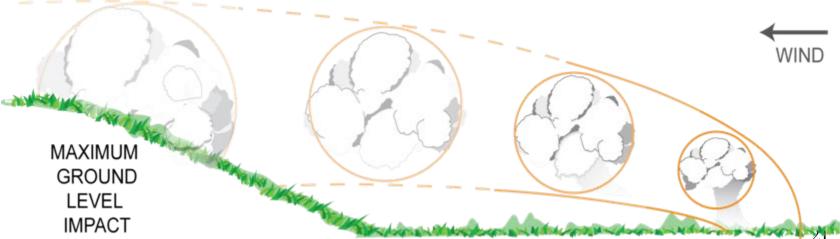
- List of items actually destroyed at site was used as basis of estimate
- Emission factors for the most significant compounds were identified for each item destroyed
 - Some emission factors were developed experimentally by blowing up a munition item in a closed chamber (at a research facility) and sampling the air inside
 - Some emission factors are developed by modeling the combustion of the explosive

BIP Model & Weather Data

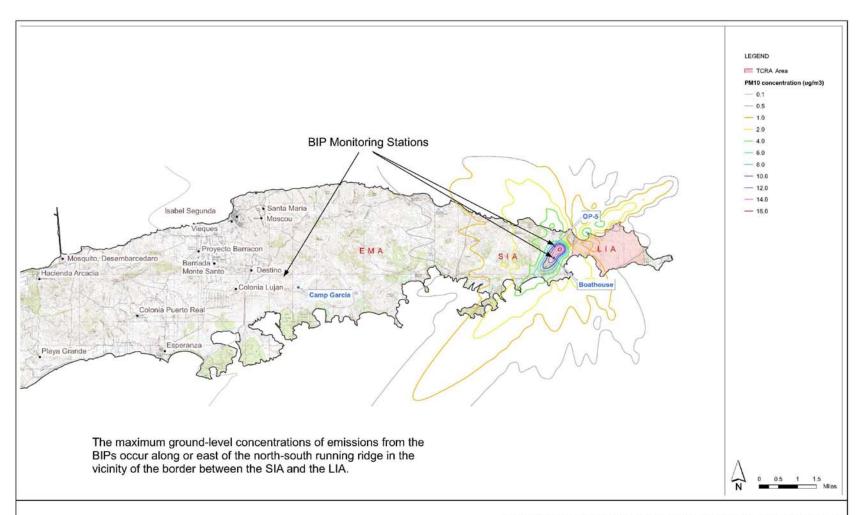
The OBODM dispersion model was chosen because:

- It is a commonly used model for open detonations, developed at Dugway Proving Grounds
- OBODM is accepted by the EPA
- It has been used in many regulatory applications across the US
- It is a very conservative (or protective) model
- OBODM can use weather data from a single local source (data from Camp Garcia was used)

BIP Modeling Assumptions



To be even more protective, it was assumed that small particles do not 'rain out' of the plume even though we know they do fall out of the plume


BIP Dispersion Modeling Results

- The BIP modeling was designed to be conservative and significantly over-estimates the actual average downwind concentrations of emissions.
- The maximum ground-level concentrations of emissions from the BIPs occur in or near the LIA.
- All Compounds of Concern are predicted to be well below regulatory standards or action levels – even at the maximum ground level impact areas.

BIP Modeling Results; PM₁₀

BIP Air Modeling Summary

- BIP modeling completed
 - Shows that the highest air emission concentrations would occur in close proximity to the BIPs – on the LIA or SIA
 - Demonstrates that particulate or dust (PM10) levels detected on the LIA would decrease to well below NAAQS before reaching the populated areas.
- Based on the results of air modeling, air emissions from BIP detonations do not have a negative impact on the ambient air quality in or around the populated areas of Vieques.

BIP Conclusions

- Air Monitoring has shown that the particulates from the BIPs do not exceed regulatory standards
- Air Monitoring has shown that the Metal concentrations from the BIPs do not exceed action levels
- Air Monitoring has shown that there are no detectible levels of explosives in the air
- Dispersion Modeling has shown that the particulate emissions from the BIPs should not exceed regulatory standards
- Dispersion Modeling has shown that emissions from the BIPs should not exceed action levels
- BIP Modeling and Monitoring agree with each other