

RESTORATION ADVISORY BOARD (RAB) MEETING NAVAL WEAPON'S INDUSTRIAL RESERVE PLANT CALVERTON NAVY BUILDING 170, NWIRP CALVERTON, NEW YORK AUGUST 4, 1998

The second meeting of the RAB began at 7:30 pm and ended at 9:45 pm. RAB members attending were: community members Sid Bail, Lorraine Collins, Louis Cork, Herb Golden, Bill Gunther, Sherry Johnson, Randolph Manning, Ann Miloski, Joe Pannone, Vanie Tuthill, and Warren Voegelin; Joe Maiorana representing the Town of Riverhead; Martin Simonson representing DCMC; and Navy members Judith Hare, and Jim Colter. Members absent included community members Henry Bookout, Jean Mannhaupt, Bob Pohlman, and John Quinn and representatives from New York State Department of Environmental Conservation (NYSDEC), New York State Department of Health (NYSDOH), Suffolk County Department of Health Services (SCDHS), U.S. EPA Region II, and the Nature Conservancy.

In addition, there were approximately 20 people from the general public attending the meeting.

WELCOME AND AGENDA REVIEW

Judith Hare, the Navy Co-Chair, welcomed everyone and introduced Sherry Johnson, the Community Co-Chair for the RAB. RAB members and other attendees of the meeting were given copies of the presentation materials. In addition, RAB members were given larger binders for their RAB Workbooks to replace the smaller binders handed out at the April 1998 RAB meeting. Materials handed out to date should be moved from the smaller binder to the larger binder.

REVIEW AND APPROVAL OF MINUTES

The stenographer transcripts from the April 28, 1998 RAB meeting were paraphrased and summarized into meeting minutes. The minutes were mailed out to all the RAB

members for review. No comments were made on the April 28, 1998 RAB meeting minutes and the minutes were approved as written. It was noted that the stenographer's transcript and the meeting minutes are available for review in the NWIRP Calverton Information Repository at Riverhead Free Library (behind the Reference Desk). The Information Repository has been recently updated and historical documents and an updated index are available at the library.

RAB OPERATING PROCEDURES AND WORKBOOK APPROVAL

Comments were made by the RAB that the operating procedures in the RAB Workbook were general and could be loosely interpreted. It was noted that the operating procedures are generic to start with and the community needs to mold the procedures to best serve their needs. The operating procedures can be amended by future consent of the membership.

After some discussion on the functions of two proposed subcommittees, a motion was made and approved to establish a steering subcommittee and a membership subcommittee. The steering subcommittee will meet at least once in between regular RAB meetings to discuss questions the RAB members may want to raise at the RAB meetings, agenda items they want to see on the agenda, and any concerns that they have encountered in between RAB meetings. The membership subcommittee will meet as necessary and will consider requests for membership and look for new members to fill vacancies, as necessary.

RAB members present were asked to sign and date a sign off sheet indicating their approval of the RAB operating procedures and workbook. It was indicated that the operating procedures may be changed in the future by vote of the RAB, but by signing the sheet, RAB members were showing approval for the initial procedures provided in the RAB Workbook. The signed sheet will be incorporated into the RAB Workbook.

RAB members were asked to review their address and phone numbers provided in Section 1 of the RAB Workbook (Revision 1 dated August 1998 of Section 1 was

provided at the meeting) to confirm that the information provided is correct. Corrections and changes should be given to Debbie Cohen of Tetra Tech NUS, Inc.

ELECTION OF NEW MEMBER

The RAB received a request for membership from the Montaukett Indian tribe. Although it was felt that the RAB may want to limit membership, it is early enough in the establishment of the RAB to add a new member. It was also noted that the Montaukett tribe had a legitimate request to be represented on the RAB. The tribe had selected Ms. Lorraine Collins to be their representative on the RAB. A motion was made and approved to accept Ms. Collins as a community member on the RAB. Ms. Collins was welcomed aboard and participated in the remainder of the meeting as a RAB member. The total number of RAB members is now 24.

DoD's TECHNICAL ASSISTANCE FOR PUBLIC PARTICIPATION (TAPP) PROGRAM

Jim Colter of the Northern Division of the Naval Facilities Engineering Command provided a presentation on the Department of Defense (DoD) Technical Assistance for Public Participation (TAPP) program. A copy of the presentation is provided as an attachment to these meeting minutes. The TAPP program is a new initiative that the DoD has established which is similar to the U.S. EPA's Technical Assistance Grant (TAG) program (available for sites listed on the National Priorities List [NPL]). The National Defense Authorization Act of 1996, passed in February 1998, provides for the DoD to provide technical support to community members of RABs and Technical Review Committees (TRCs). The goal of the program is to enhance the public's understanding and acceptance of what the Navy is doing in its environmental cleanup program by providing funds for community members to obtain objective, independent — (third party) scientific and engineering support concerning the restoration process.

The program has a \$25,000 annual and \$100,000 lifetime limit per facility so the RAB will need to select which projects they want to pursue. Eligible projects include

interpretation of technical documents, technical training (e.g., risk assessment training), and review of proposed remedial technologies. Ineligible projects include use of funds for political activities and lobbying, litigation, legal action, or legal representation, generation of new data (sampling), health studies, and community outreach fact sheets. Eligible projects must meet one of two criteria provided in the National Defense Authorization Act: the RAB must demonstrate that the Federal, state and local agencies responsible for overseeing environmental restoration at the installation do not have the technical expertise to provide the training or information the RAB requires; or the assistance will likely contribute to the efficiency, effectiveness, and timeliness of the Navy cleanup program and is likely to contribute to the RAB overall acceptance of the Navy's plan. In addition, the request for assistance must represent the majority of the RAB. When the RAB requests assistance, the Navy is responsible for contract management and assisting the RAB in selecting a provider for the training or technical interpretation. However, the final selection is up to the RAB.

Before pursuing assistance for a project, it is important for the RAB to first evaluate whether the information (training or technical interpretation) can be provided without the assistance. Can the Navy, their contractors, or other available agencies provide the information? If the answer is no, than a TAPP request form is filled out and submitted. Although the Navy hopes they are doing an adequate job to provide the RAB the information they need, there are situations where the RAB may feel a third party is necessary to provide the information they require for evaluation of the environmental restoration.

NAVY'S SITE RISK RANKING

Dunnie Wingo of the Northern Division of the Naval Facilities Engineering Command provided a presentation of the Navy's site risk ranking and relative risk site evaluation model. A copy of the presentation is provided as an attachment to these meeting minutes. The Navy started this program in 1993 to provide a program to rank the over 5,000 DoD sites to determine funding priority. It is one tool used to establish on a priority basis, which sites to address first. Other sources of input in the determination of priority include regulator and RAB input. Therefore, a site ranked as low or medium

may be addressed before a high ranked site if regulator or RAB input indicate this is important.

The relative risk looks at maximum chemical concentrations detected in surface soil (0 to 2 feet below ground surface), groundwater, sediment, and surface water and at the people and environment potentially exposed to those chemicals. Three key factors are evaluated; contaminant hazard factor (CHF), migration pathway factor (MPF), and receptor factor (RF). The relative potential hazard related to the chemical and it's concentration at the site, the potential for the chemicals to move from one place to another or from one media to another, and the likelihood that people or the environment are or could be exposed to the chemicals at the site are evaluated to determine the ranking of the site.

The relative risk is not a substitute for a risk assessment and the process/input parameters used in the relative risk evaluation differ from those used for risk assessment. The relative risk evaluation is simply one mechanism to compare sites to determine which sites should be addressed first. A risk assessment is necessary to determine whether chemicals are present at a site that may be a risk to human health and the environment (and therefore require remedial action).

The latest round of data from the Phase 2 RRCA Facility Investigation (RFI) was used in the evaluation of NWIRP Calverton sites. The ranking for Sites 1, 2, 6, and 7 was high, for Site 9 was medium, and for Site 10 was low (see presentation handout attached to these minutes). The Navy plans to provide the RAB with the Phase 2 RFI reports for the sites and the relative risk evaluation for review and comment.

The Navy noted that the program is revisited as necessary as new data is available for a site. Generally the ranking is conducted at the initial investigation stage (preliminary assessment or site investigation) and then revised as necessary based on data collected in subsequent investigations.

Regulator agencies have input into the priority of a site, however, it was noted that no regulators were in attendance at the meeting. In answer to a question of who is

responsible for making sure the regulators show up at the RAB meetings, it was indicated that the regulators receive the same announcement of the RAB meetings as the community RAB members and it is up to the regulators whether they chose to participate in the RAB meetings. However, the regulators and Navy meet at technical meetings to make environmental decisions and the results are presented at RAB meetings.

DATES AND DISCUSSION TOPICS FOR FUTURE MEETINGS

Presenting the data and results of the Phase 2 RFI reports was suggested as a potential topic for the next RAB meeting. The steering subcommittee will also be looking at possible discussion topics. A meeting of the steering subcommittee will be held the end of September/beginning of October. Sherry Johnson will arrange the meeting. Also, RAB members can make suggestions for discussion topics to Sherry Johnson or the Navy.

The RAB meetings are held quarterly and the RAB members present discussed holding the meeting on the first Wednesday of the month. The next meeting was tentatively scheduled for November 4, 1998. Possibly meeting locations include the Masonic Lodge (1246 Roanoke Avenue) and Suffolk County Community College.

CLOSING REMARKS

In closing, Judith Hare thanked everyone for attendance at the RAB meeting and was very pleased to see the good community turnout at the meeting.

ATTACHMENTS

- Agenda
- Presentation of the DoD's Technical Assistance Public Participation (TAPP) Program
- Presentation of the Navy's Site Risk Ranking Program

Agenda

Restoration Advisory Board Naval Weapons Industrial Reserve Plant Calverton

August 4, 1998 NWIRP Calverton, Calverton, NY 7:30 p.m.

Welcome and Agenda Review

Judithanne Hare Naval Air Systems Command

Review and Approval of Minutes

All Members

RAB Operating Procedures and Workbook Approval All Members

Election of New Member

All Members

DoD's Technical Assistance for Public Participation (TAPP) Program

Jim Colter

Naval Facilities Engineering Command - Northern Division

Navy's Site Risk Ranking

Dunnie Wingo Naval Facilities Engineering Command - Northern Division

Dates and Discussion Topics for Future Meetings

All Members

Closing Remarks

Judithanne Hare Naval Air Systems Command

Presenters will be available after the program for questions.

Technical Assistance for Public Participation (TAPP) in DoDs Environmental Restoration Program

Overview of the TAPP Program

Environmental Security-Defending our Future

The Basics of the TAPP Program

- What is it?
- What is the purpose behind TAPP?
- Who is it for?
- How does it benefit DoD?
- How is assistance provided?
- What kinds of projects are eligible?
- Roles and Responsibilities

TAPP - What is it?

From National Defense Authorization Act of 1996:

- Technical Assistance for Public Participation is a program that can provide independent assistance in interpreting scientific and engineering issues with regard to the nature of environmental hazards and restoration activities at an installation.
- The goal of the program is to enhance the public's ability to participate in the decision-making process by improving their understanding of overall conditions and activities

Environmental Security-Defending our Future

TAPP - Why have it?

- Involve the public they have a right to be involved
- Demonstrate commitment to the community
- Enable community to participate in technical aspects of restoration program
- Provide community a source of credible expertise
- Restore Trust if Navy credibility is low

Trust and Credibility on Environmental Issues

Most credible

- Local citizen/advisory panelperceived to be neutral, respected, and well informed
- Non-management employees
- Health/safety professionals
- Media
- Environmental Groups
- Industry
- · Federal Government
- Environmental Consultants from "for profit" firms

Least Credible

Environmental Security-Defending our Future

TAPP - Who is it for?

- Community members of RABs
 - Residents of community affected by installation with a "demonstrated" need for technical assistance

TAPP - How does it benefit DoD?

- Promotes DoD as a good neighbor
- Increased confidence in DoD's program by allowing it to be subjected to outside review
- Increases the community's confidence in DoD's program as they see DoD's willingness to share information and listen to an outside point of view
- More responsive cleanups

Environmental Security-Defending our Future

TAPP - How is the Assistance Provided?

- The DoD will provide the technical assistance by:
 - Procuring a Technical Assistance Contractor
 - Will utilize community member input in selection
 - Uses existing environmental restoration funds
 - Limits on dollar value of TAPP contracts (allows the use of simpler aquisition procedures)
 - \$25,000 or 1% of Cost to Complete annual limit (whichever is less)
 - \$100,000 lifetime limit

Benefits of DoD Managing TAPP Contract

- Eliminates burden of contract administration on RAB members
- Only responsibility of RAB members is to complete simple application form
- Incorporation as a "citizen group" not required
- No in-kind matching required

Environmental Security-Defending our Future

Eligible Projects

- Interpretation of technical documents
- Review of proposed restoration technologies
- Participate in relative risk site evaluations
- Understand health and environmental implications of sites and cleanup strategies
- Training, as appropriate

Interpretation of Technical Documents

- Installation restoration program site investigation, engineering, and decisions documents
- Risk assessments, including baseline and ecological risk assessments
- · Human health assessments

Environmental Security-Defending our Future

Review of Proposed Restoration Technologies

- Understanding the function or implication of technologies selected to investigate or clean up sites
- Consider alternate remedial technologies

Participate in Relative Risk Site Evaluations

- Understand the relative risk site evaluation process
- Develop inputs into the relative risk site evaluation

Environmental Security-Defending our Future

Understand the Implications of Cleanup Strategies

- Interpret the potential health implications of cleanup levels or remedial technologies
- Explain the health implications of site contaminants and exposure scenarios
- Explain the implications of residual contaminants left after the completion of a cleanup strategy.

Training

- Indendent review of DoD legal requirements
- How to evaluate sampling plans
- Risk assessment procedures
- Elements of technology evaluations

Environmental Security-Defending our Future

Ineligible Projects

- Political activities and lobbying
- Litigation or underwriting legal actions
- The generation of new primary data
- Reopening final DoD decisions or conducting disputes with DoD
- Epidemiological or health studies
- Community outreach

Criteria to Justify if a TAPP Project is Required

Criteria Language contained in NDAA-96:

1 The RAB must demonstrate that the Federal, State, and local agencies responsible for overseeing environmental restoration at the installation do not have the technical expertise necessary for achieving the objective for which the technical assistance is to be obtained;

OR

- 2 The technical assistance:
 - a Is likely to contribute to the efficiency, effectiveness, or timeliness of environmental restoration activities at the installation; and
 - b Is likely to contribute to community acceptance of environmental restoration activities at the installation.

Environmental Security-Defending our Future

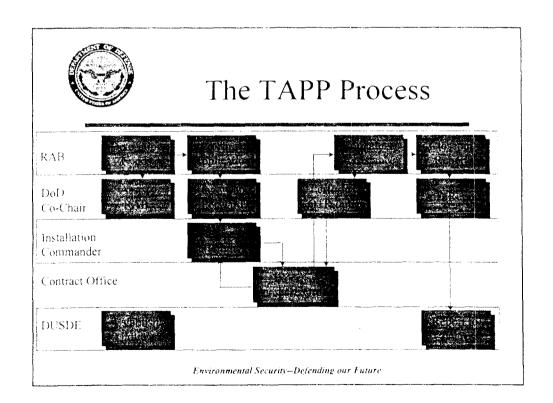
Criteria to Justify if a TAPP Project is Required

A Must meet ONE of the NDAA-96 criteria items:

1 Technical expertise is not available elsewhere;

OR

2 Technical assistance will contribute positively to installation restoration program and will enhance community acceptance of restoration activities


AND

B TAPP request must represent a majority of the RABs community membership

Other Sources of Technical Support

- Installation Restoration Program contractors
- Local, State, and Federal staff
- Universities
- Volunteers
- Environmental Protection Agency
 - Technical Assistance Grants (NPL)
 - Technical Outreach Services for Communities (non-NPL)

Key Individuals and Responsibilities

- Installation Commanding Officer
- DoD Representatives (DoD Co-Chair)
- Community Members (Community Co-Chair)

Environmental Security-Defending our Future

Technical Assistance for Public Participation (TAPP) In DoDs Environmental Restoration Program

Roles and Responsibilities of the Installation Commander

Installation Commander Responsibilities

- Implementing NDAA-96 requirements
 - Already accomplished by RAB
 - An ineligible project will not be forwarded to CO
- Approving projects
- Recommending waivers
- Appeals

Environmental Security-Defending our Future

Approving Projects

- Projects meet the need defined in the RAB community members' request
- Projects meet eligibility criteria
- Adequate funding is available

Disapproving Projects

- Circumstances warranting disapproval
 - Failure to meet eligibility criteria
 - Funding priorities
 - Alternate available source exists
- Responsibilities to RAB upon disapproval
 - Rationale
 - Alternatives

Environmental Security-Defending our Future

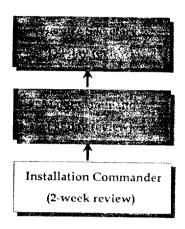
Waivers

- TAPP rules set an annual limit on purchase orders at an installation to \$25,000 or 1 % of cost to complete, whichever is less, and \$100,000 over the life of the program
- Waivers may be granted at the discretion of the Deputy Assistant Service Secretary

The Appeals Process

 Established to provide a process to allow RAB community members to appeal DoD decisions regarding the approval or disapproval of a TAPP project

Environmental Security-Defending our Future



The Appeals Process

- Ground rules for appeal
 - Majority of RAB community members must agree
 - RAB must appoint single spokesperson
 - Written justification must accompany appeal
 - Appeals must follow the chain-of-command and cannot skip levels
 - Goal is to try and resolve at the lowest level possible

The Appeals Process

Environmental Security-Defending our Future

Technical Assistance for Public Participation (TAPP) in DoDs Environmental Restoration Program

Roles and Responsibilities of the DoD Representatives and DoD Co-Chair

DoD Responsibilities

- Informing and training the RAB
- Ensuring that funds are available
- Contract Management
- Working with the RAB
- Working with the Commanding Officer
- Reporting of Results
- Act as "moderator" to reach concensus
- Appeals

Environmental Security-Defending our Future

Working with the RAB

- Determine if the TAPP criteria items in NDAA-96 have been met
- Certifying majority request
- Defining and scoping an eligible project
- Certifying search for alternate support
- Proposing a technical assistance provider
- Completing the TAPP request form

Working with the Commanding Officer

- Recommending project approval/denial
- Recommending waiver decisions regarding funding limitations

Environmental Security-Defending our Future

Working with Project Results

- Information repository
- · Other publications
 - Newsletters
 - Other public relations efforts
- · Public meeting
 - Devote RAB meeting to TAPP results
- Restoration program
 - Incorporate results into the IR Program

Helping to Aid in Reaching RAB Consensus

- What should the TAPP project be?
 - Pursue top priorities first
- Scope of Work (SOW)
 - What should the TAPP project provide?
 - What selection criteria should be used?
- Preferred provider (or selected provider)
 - Review qualifications required in SOW
 - Review provider qualifications

Environmental Security-Defending our Future

DoD Co-Chair's Role in the Appeals Process

- Keep RAB community members informed of process and progress
- Be an advocate for community members
- Brief Commanding Officer
- Be ready with alternatives

Technical Assistance for Public Participation (TAPP) in DoDs Environmental Restoration Program

Guidance for Community Members of Restoration Advisory Boards

Environmental Security-Defending our Future

Developing a Project

- Understanding DoD's Installation Restoration Program
- Focusing on your needs
- Coming to Agreement
- Meeting the Requirements of NDAA-96

Developing a Project

- Understanding the Installation Restoration Program
- Focusing on your needs
 - Eligible projects
 - Ineligible projects
- Coming to Agreement
- Meeting the Requirements of NDAA-96

Environmental Security-Defending our Future

Developing a Project

- Understanding the Installation Restoration Program
- Focusing on your needs
- Coming to Agreement
- Meeting the Requirements of NDAA-96

Developing a Project

- Understanding the Installation Restoration Program
- Developing a Project
- Coming to Agreement
- Meeting the Requirements of NDAA-96
 - Can the information be provided without TAPP; or
 - Will the TAPP project aid in the RABs understanding and/or acceptance of the issue

Environmental Security-Defending our Future

Preparing a TAPP Request The TAPP Request Form

Nominating a Provider

- Minimum qualifications are specified in NDAA-96
- RAB can determine additional qualifications

Environmental Security-Defending our Future

Nominating a Provider

- Examples of minimum credentials in which the technical assistance provider "must" possess:
 - Demonstrated knowledge of hazardous or toxic waste issues and/or laws.
 - Academic training in a relevant discipline (e.g., biochemistry, toxicology, environmental sciences, engineering, law).
 - Ability to translate technical information into terms understandable to lay persons.

Nominating a Provider

- Examples of other credentials in which the RAB may want to specify that a technical assistance provider "should" possess:
 - Experience working on hazardous or toxic waste problems.
 - Knowledge in local geology
 - Experience in making technical presentations.
 - Demonstrated writing skills.
 - Previous experience working with affected individuals or community groups or other groups of individuals.

Environmental Security-Defending our Future

Publicizing Results

- Information repository
- Public meetings (RAB meetings)
- Regulatory notification
- Incorporate into IR program

Completing the Project

- RAB responsibilities for information dissemination
 - All final written documents developed by the technical advisor must be made available to the installation for distribution
- RAB reporting requirement
 - Yearly progress report
 - Final report

Environmental Security-Defending our Future

QUESTIONS

AND

ANSWERS

Relative Risk Site Evaluation Framework:

Background, Concept Description, and Guidelines

Defense Environmental Restoration Program: New Directions – Relative Risk Site Evaluations

- DoD Management Guidance promotes use of a Relative Risk site evaluation framework to group sites into high, medium, and low relative risk categories
- Framework for accomplishing Relative Risk evaluations developed by interservice work group
- Site evaluation framework to be used by Installation and public and regulatory community representatives to identify high, medium, and low sites
- Concept accommodates legal obligations to meet regulatory agreements
- Concept description and guidelines contained in Relative Risk Site Evaluation Primer

Benefits of Relative Risk Site Evaluations

- Framework provides common approach in DoD for categorizing sites by relative risk
- Most urgent sites identified
- Rating serves as basis for dialogue with stakeholder on sequencing work at sites and formerly used Defense sites
- Aids in focusing of resources on high relative risk sites first

Relative Risk Site Evaluation Framework: Description

Framework is:

- A method for placing sites or areas of concern into a high, medium, or low relative risk category
- An evaluation of site information at a point in time based on three key factors: CHF, MPF, RF
- Framework is not:
 - An absolute expression of risk
 - A substitute for a baseline risk assessment
 - A substitute for a health assessment

Relative Risk Site Evaluation Framework

- Used to assign a high, medium, or low relative risk to each site or area of concern
- Provides a qualitative assessment of contaminant, pathway, receptor relationships
- Simple and easy to understand
- Does not rely on "Black Boxes" for evaluations
- Establish common approach for categorizing sites across DoD Components
- Serves as a basis for discussing relative site risks with stakeholders

Relative Risk Site Evaluation Framework

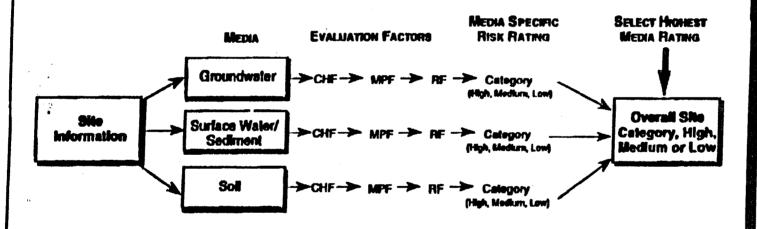
- Evaluates source, pathway, receptor relationships in three media
 - Groundwater
 - Surface water/sediment
 - Surface soils
- Based on three factors
 - Contaminant Hazard Factor (CHF): How much contamination?
 - Migration Pathway Factor (MPF):
 Is contamination moving, will it move?
 - Receptor factor

 Are there humans or sensitive environments nearby?

Contaminant Hazard Factor (CHF)

• Comparison of maximum site contaminant concentrations in each media to Relative Risk concentration standards

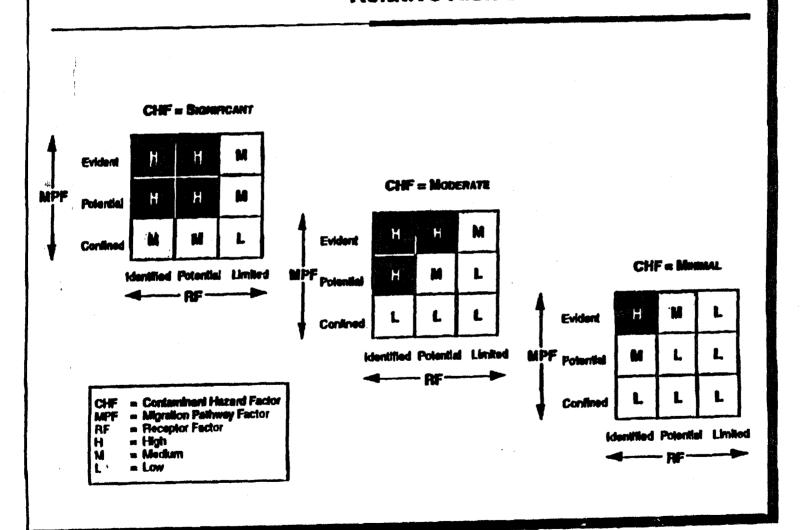
- Three tiers
 - Significant = CHF > 100
 - Moderate = CHF of 2 100
 - Minimal = CHF < 2


Migration Pathway Factor (MPF)

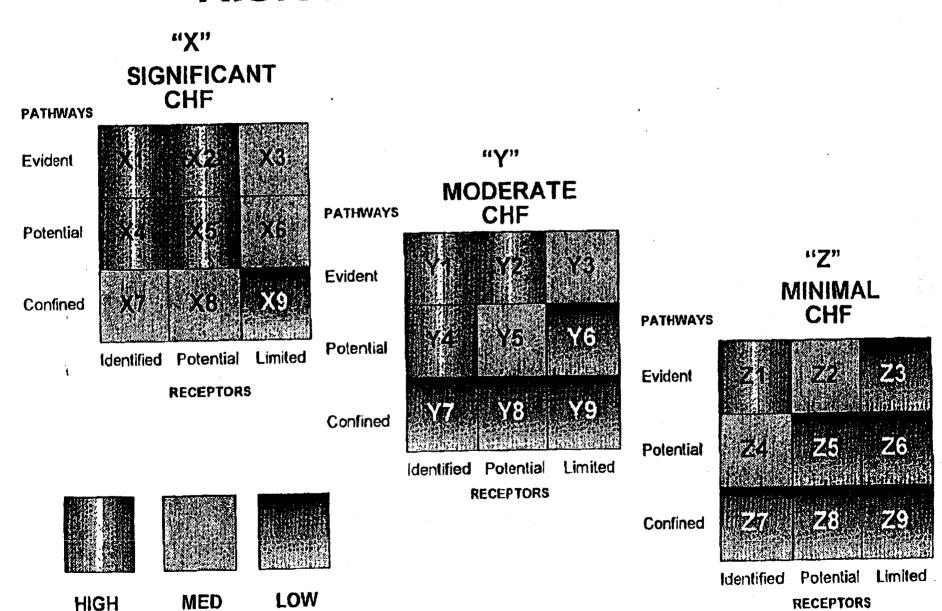
- Each media pathway evaluated (groundwater, surface water/sediment, soil)
- Three tiers (using groundwater as an example)
 - Evident: Contamination in media moving away from source
 - Potential: Possibility for contamination to be present at or migrate to a point of exposure; or information not sufficient to make determination of Evident of Confined
 - Confined: Potential for contaminant migration from source is limited due to geological structures or physical controls
- Opportunity for input from regulators and community

Receptor Factor

- Receptors (human or sensitive ecological species/ environments) evaluated for each media
- Three tiers (using soil as an example)
 - Identified: Receptors have access to contaminated soil
 - Potential: Receptors have potential access to contaminated soil
 - Limited: Receptors have little or no access to contaminated media
- Opportunity for input from regulators and community


Relative Risk Site Evaluation Framework: Structure and Organization

CHF = Contaminant Hazard Factor


MPF = Migration Pathway Factor RF = Receptor Factor

Relative Risk Site Evaluation Matrix

P.273

RISK EVALUATION MATRIX

To:

FRANCO A LAGRECA@CODE 18@NAVFAC EFDNORTH Michael J Pound@Code 180@NAVFAC EFDSWEST Paul J Campbell@Code 18@NAVFAC EFDSOUTH Byron C Brant@CODE 18@NAVFAC EFDLANT Liane Rosen@Code 18@NAVFAC EFDPAC John G Woodburn@Code 18@NAVFAC EFACHES DUNNIE R WINGO@CODE 18@NAVFAC EFDNORTH Bela J Varga@Code 09E@NAVFAC EFANW Jim Brown@Code 18@NAVFAC EFDWEST

Cc: 3cc:

From: Subject: Mike Green@CODE 41@NAVFACHQ

RRSEM (revised): Delivery of Disks

Date:

Tuesday, September 26, 1995 14:16:10 EDT

Attach:

Certify: Forwarded by:

Revised program has been sent via overnight mail, leaving Washington this afternoon. Two disks sent to each EFD and EFA by Federal Express (except mail to EFA Midwest was by standard postal service); copies sent to CNO(N-45) and CMC-LFL and NFESC.

Also, i promised you a cross-reference list to the "priority" field now on the "worksheet". That field will not be calculated and enterred into your main.mdb until something changes the ranking for a particular site. You can force such calculation by (for example) changing the MPF or RF for one of the ranked media, or by updating the contaminant concentrations, etc. Again, note that you can get the number by "exporting data" and selecting the "SYS RESERVE" field. See list below for corresponding matrix code for the site:

```
X1
2
            Yl
3
           X4
4
            Y4
5
           X2
6
            Y2
7
           X5
8
            Z1
9
            Y5
10
            Z4
11
            \mathbf{z}_{2}
            X3
12
13
            Y3
            X6
15
            X7
16
            X8
17
            Z5
            Y6
18
            z_3
19
20
            26
            Y7
21
            Y8
22
23
            Z7
            X9
24
25
            Y9
26
            Z8
            Z9
27
```

I have not reviewed the output of the above portion of the program yet, other than to test three examples and see that it does indeed work. Let me know if you have any problems with it.

CALVERTON, NY IR SITE RANKING

SITE	NAME	RANK	MATRIX*	MEDIA EVAL	RANK SOURCE
1	Northeast Disposal Area	High	4	GW SWEF SEDEF SOIL	SEDEF
2	Fire Rescue Training Area	High	4	GW SOIL	GW SOIL
6	Fuel Calibration Area	High	5	GW SOIL	GW
7	Fuel Depot	High	5	GW SOIL	GW
9	ECM Area	Med	11	GW	GW
10	Cess Pool/ Leach Fields	Low	17	GW	GW

*Matrix

Number from 1 to 27. 1 is the highest of the highs and 27 is the lowest of the lows.

Installation/Site Name for FUDS CALVERTON NY NPRO	Date Entered (Day, Month, Year)	: 7/30/98		
Location (State): NY	Media Evaluated (GW, SW, Sedin	nent, Soil): <u>GW S</u>	WEF SEDEF SOIL	
Site (Name/RMIS ID) / Project for FUDS: SITE 00001	Phase of Exec. (SI, RI, FS, Remv,	RD/RA, or equiv. RC	CRA Stage): CMS	
RMIS Site Type: LANDFILL	Agr. Status (Y/N, If yes, type of a	greement e.g., FFA, P	ermit, Order) Yes	
Point of Contact (Name/Phone): JIM COLTER	National Priority List (Y/N):	No	Site Rank:	High
	SITE SUMMARY			
(Include only key elements of information used	d to conduct the relative risk site evalua	ation. Attach map view	w of site if desired.)	
Brief Site Description (Include site type, materials disposed of, dates of operation, The northeast pond disposal area is located approximately 1,000 feet south of Middle Conorth gate. Site 1 was used primarily for the disposal of demolition debris until 1948 w material. The disposal area measures approximately 400 feet by 200 feet. Site 1 is adjulate no outlet.	Country Road (NY Route 25) and about when a final soil cover was placed over	the disposed		
Brief Description of Pathways (Groundwater, Surface Water, Sediment, Soil): Pathways to be considered at Site 1 include on site surface water/sediment and surface water/sediment, the pathway is through direct dermal contact. For the on site and substantial Another pathway to consider is through future use of on-site groundwater.	• •			
Brief Description of Receptors (Human and Ecological): Receptors include future on site workers through direct contact, future residents (both c are also potential ecological receptors in the form of a wetland area (pond) as well as an Salamander).				

⁽¹⁾ Use to record information on Sites and Areas of Concern (AOC) for Relative Risk Site Evaluation. The term Site is defined as a discrete area for which suspected contamination has been verified and req A Site by definition has been, or will be, entered into RMIS. For the FUDS Program, "projects" equates to sites for current installations. An AOC is a discrete area of contamination, or suspected contamination (or RFA) phase that has not been entered into RMIS.

CONTAMINAN	T		Maximum Conc.	Standard		
HAZARD		Contaminant	ug/L	ug/L	Ratio (2)	
FACTOR (1)		Lead	88,8	4.0	22,200	
CHF)		Manganese	1,875.0	180.0	10.420	(Place an "X" next to one below)
		Arsenic (noncancer)	15.95	4.5	3,540	(tribe are it next to one polary)
		Iron	14,500.0	11,000.0	1,320	Significant (If Total > 100):
		Beryllium and compounds	1.9	1.6	1.190	organisami (il romi - 100).
	•	Aluminum	25,600.0	37,000.0	0,690	Moderate (If Total 2 - 100):
		Antimony and compounds	8.8	15.0	0.590	
		Cadmium and compounds	8.9	18.0	0,490	Minimal (If Total < 2):
		Mercury and compounds (inorganic)	2.95	11.0	0.270	
		Chromium VI and compounds	47.0	180.0	0.260	
		(1) Evaluate for human contaminants only (2) Ratio = Maximum Concentration/Standard Note: Only top ten contaminants are displayed		Total:	41.537	
IIGRATION ATHWAY ACTOR	Evident -	Analytical data or observable evidence indicat contamination in the media is moving away from th		 Information indicates that the potential contaminant migration from the source geological structures or physical contaminant 	e is limited (due to	(Place an "X" next to one below) Evident:
MPF)	Potential -	Possibility for contamination to be present at o	•			Potential: X
	•	to a point of exposure; or information is not su to make a determination of Evident or Confine				Confined:
		e for Selection: Contamination present in Groucontaminants are not migrating.	nd water slightly above MCL's. Dov	vn gradient monitoring well -		•
ACTOR			water supply Limited	vn gradient monitoring well - - There is no potentially threatened wat the source. The groundwater is not co		(Place an "X" next to one below) Identified:
ACTOR	s indicate that	contaminants are not migrating. There is a threatened or potentially threatened	water supply Limited not) is a current	- There is no potentially threatened wat	nsidered a potential source of	•
ACTOR	s indicate that Identified -	There is a threatened or potentially threatened downgradient of the source. The GW (cont. or drinking water source or is equiv. to (Class I or	water supply Limited not) is a current IIA aquifer).	- There is no potentially threatened wat the source. The groundwater is not co	nsidered a potential source of	•
ACTOR	s indicate that	There is a threatened or potentially threatened downgradient of the source. The GW (cont. or	water supply Limited not) is a current IIA aquifer). well downgradient sable for DW,	- There is no potentially threatened wat the source. The groundwater is not co	nsidered a potential source of	Identified:
ACTOR	s indicate that Identified - Potential -	There is a threatened or potentially threatened downgradient of the source. The GW (cont. or drinking water source or is equiv. to (Class I or There is no potentially threatened water supply of the source. The groundwater is potentially to	water supply not) is a current IIA aquifer). well downgradient sable for DW, (Class IIB aquifer).	There is no potentially threatened wat the source. The groundwater is not co DW or is of limited benificial use (III.)	nsidered a potential source of	Identified: Potential: X
ACTOR	s indicate that Identified - Potential -	There is a threatened or potentially threatened downgradient of the source. The GW (cont. or drinking water source or is equiv. to (Class I or There is no potentially threatened water supply of the source. The groundwater is potentially urrigation or agriculture, but not presently used	water supply not) is a current IIA aquifer). well downgradient sable for DW, (Class IIB aquifer).	There is no potentially threatened wat the source. The groundwater is not co DW or is of limited benificial use (III.)	nsidered a potential source of	Identified: Potential: X
RECEPTOR PACTOR RF)	s indicate that Identified - Potential -	There is a threatened or potentially threatened downgradient of the source. The GW (cont. or drinking water source or is equiv. to (Class I or There is no potentially threatened water supply of the source. The groundwater is potentially urrigation or agriculture, but not presently used	water supply not) is a current IIA aquifer). well downgradient sable for DW, (Class IIB aquifer).	There is no potentially threatened wat the source. The groundwater is not co DW or is of limited benificial use (III.)	nsidered a potential source of	Identified: Potential: X

			Surface Water I	Cco Fresh		
CONTAMINAN HAZARD FACTOR (1) (CHF)	T	Contaminant Iron Cadmium and compounds Toluene DDD,4,4- (1) Evaluate for human contaminants only (2) Ratio = Maximum Concentration/Standard	Maximum Cone, ug/L 1,470.0 0.2 1.0 0.02	Standard ug/L 1,000.0 1.1 0.0 0.0 Total:	Ratio (2) 1.470 0.180 0.000 0.000	(Place an "X" next to one below) Significant (If Total > 100): Moderate (If Total 2 - 100): Minimal (If Total < 2):
MIGRATION PATHWAY FACTOR (MPF)	Evident - Potential - Brief Rational	Note: Only top ten contaminants are displayed. Analytical data or observable evidence indicate contamination in the media is present at, is mov toward, or has moved to a point of exposure Possibility for contamination to be present at or to a point of exposure; or information is not suf to make a determination of Evident or Confined to the present at or to a point of exposure; or information is not suf to make a determination of Evident or Confined to the present at or to a point of exposure; or information is not sufficient to make a determination of Evident or Confined to the present at the pres	ing migrate ficient	ed - Information indicates a low pote to a potential point of exposure presence of geological structures	(could be due to the	(Place an "X" next to one below) Evident: Potential: Confined: X
RECEPTOR FACTOR (RF)	Identified -	Receptors identified that have access to surface Potential for receptors to have access to surface		ed - Little or no potential for receptor surface water	rs to have access to	(Place an "X" next to one below) Identified: Potential: X Limited:
au 180 - 1	Brief Rationale	e for Selection: There is a potential for receptor.	s to have access to surface water.			
Activity Name	CALVERTON	NY NPRO	Site Name: SITE 00001	Surf	ace Water Fresh Categor	

			Sediment Eco F	resh		
CONTAMINANT			Maximum Conc.	Standard		
HAZARD FACTOR (1)		Contaminant	ug/L	mg/Kg	Ratio (2)	
(CHF)		DDE Arochlor 1248	0.38	0.005	76.000	
(CHF)		Dieldrin	0.38	0.03	12.670	(Place an "X" next to one below)
		Aldrin	0.0044	0.002	2.200	
		HCH (beta)	0.0053 0.0024	0.003	1.770	Significant (If Total > 100):
		beta-Pyrene	}	0.005	0.480	
		Benz(a)anthracene	0.2	0.49	0.410	Moderate (If Total 2 - 100): X
		Fluoranthene	0.073	0.32	0.230	
			0.066	0.75	0.190	Minimal (If Total < 2):
		Benzo[a]pyrene Phenanthrene	0.000		0.180	
		rnenanurene	0.099	0.56	0.180	
e e e e e e e e e e e e e e e e e e e		 Evaluate for human contaminants only Ratio = Maximum Concentration/Standard Note: Only top ten contaminants are displayed. 		Total:	94.303	
MIGRATION PATHWAY FACTOR MPF)	Evident - Potential -	Analytical data or observable evidence indicate contamination in the media is present at, is most toward, or has moved to a point of exposure Possibility for contamination to be present at or	ring	Information indicates a low potential point of exposure (could be of geological structures or or physical structures or or or physical structures or or physical structures or	be due to the presence	(Place an "X" next to one below) Evident: Potential: X
		to a point of exposure; or information is not suf to make a determination of Evident or Confined	ficient			Confined:
		for Selection: Chemicals in the landfill materi impact ecological receptors.	al are continuing to erode into the NE	Pond and will poten -		
						(Place an "X" next to one below)
ECEPTOR ACTOR	ldentified -	Receptors identified that have access to sedimen	t Limited -	Little or no potential for receptors to	o have access to sediment	11 05 1 V
F)						Identified: X
-,						Potential:
	Potential -	Potential for receptors to have access to sedimen	ıt .			
						Limited:
1	Brief Rationale 6	or Selection: Tiger Salamendar identified as r	ecentors			
			ecopiois.			
	ŧ					
tivity Name <u>c</u>	CALVERTON N	Y NPRO	Site Name: SITE 00001	Se	ediment Fresh Category: (High, Medium, Low)	High

			Soil			
CONTAMINAN	Γ		Maximum Conc.	Standard	D. d. (2)	
HAZARD		Contaminant	mg/Kg	mg/Kg	Ratio (2) 0.060	l
FACTOR (1)		Cadmium and compounds	2.1	38.0 400.0	0.050	(Place an "X" next to one below)
(CHF)		Lead	19.9	2,800.0	0.040	(Trace all A hear to one below)
		Copper and compounds	31.3	3,000.0	0.010	Significant (If Total > 100):
		Chromium (total)	139.0	23,000.0	0.010	Significant (it rotal - 100).
,		Zinc	0.081	24.0	0.000	Moderate (If Total 2 - 100):
1		Chrysene	0.067	61.0	0.000	1720ucinic (17 2001 2 100).
		Benz[a]anthracene	0.007	44.0	0.000	Minimal (If Total < 2): X
		Dichloroethane, 1,2- (EDC)	1.0	13,000.0	0.000	
		Butyl benzyl phthalate	0.13	2,000.0	0.000	
		Pyrene	0.13	2,000.0		
		(1) Evaluate for human contaminants only (2) Ratio = Maximum Concentration/Standa Note: Only top ten contaminants are displayed		Total:	0.163	
MIGRATION PATHWAY FACTOR (MPF)	Evident -	Analytical data or observable evidence indic contamination is present at, is moving toward moved to a point of exposure		- Low possibility for contamination to or migrate to a point of exposure	be present at	(Place an "X" next to one below)
(,	Potential -	Possibility for contamination to be present at to a point of exposure; or information is not to make a determination of Evident or Confi	ufficient			Potential: X Confined:
	Brief Rationale	for Selection: Minimal contamination presonant	ent. Insufficient evidence to support evi	ident or confined.		
			II too taa d	- Little or no potential for receptors to	have access to	(Place an "X" next to one below)
RECEPTOR FACTOR	Identified -	Receptors identified that have access to contaminated soil	Limited	contaminated soil	nave access to	Identified:
(RF)						Potential: X
	Potential -	Potential for receptors to have access to contaminated soil				Limited:
	Brief Rationale	for Selection: Site access not restricted. Po	tential exist for direct contact exposure			
	A					
Activity Name	CALVERTON	NY NPRO	Site Name: SITE 00001		Soil Category: (High, Medium, Low)	Low

•

Installation/Site Name for FUDS BETHPAGE NY NWIRP	Date Entered (Day, Month, Year): 10/21/97			
Location (State): NY	Media Evaluated (GW, SW, Sedi	ment, Soil): GW S	SWH SWEF SEDH SOI	L	
Site (Name/RMIS ID) / Project for FUDS: SITE 00002	Phase of Exec. (SI, RI, FS, Remy,	, RD/RA, or equiv. R	CRA Stage): NFA		
RMIS Site Type: SURFACE IMPOUNDMENT/LAGOON	Agr. Status (Y/N, If yes, type of a	greement e.g., FFA, l	Permit, Order) Yes		
Point of Contact (Name/Phone): AL TAORMINA	National Priority List (Y/N):	No	Site Rank:	Low	
	SITE SUMMARY				
(Include only key elements of information use	ed to conduct the relative risk site evalu	nation. Attach map vie	ew of site if desired.)		
Brief Site Description (Include site type, materials disposed of, dates of operation, Surface water drainage on Long Island is, for the most part, locally controlled, with nu back to the ground water. These basins also receive storm water run off. Several such adjacent to the recharge basins are the former sludge drying beds. Sludge from the Pla Complex) was dewatered in the drying beds before off site disposal. Site 2 occupies a basins and former sludge drying beds. Brief Description of Pathways (Groundwater, Surface Water, Sediment, Soil): Pathways to be considered at Site 2 include off site ground water as well as on site sur The pathway for the off site groundwater is through the down gradient public wells.	imerous recharge basins used to channed in recharge basins are located at NWIRF ant No. 2 Industrial Waste Treatment Figure area of approximately 16 acres, included as a second second and surface and surface water/sediment, and surface and surface on site surface water/sediment, to	P Bethpage. Also, acility (south Grumma ding the recharge ubsurface soils. he pathway is	an		
throuveh direct dermal contact. For the on site surface and subsurface soils, the patyw of fugitive dust.	vays are through direct dermal contact a	and inhalation			
Brief Description of Receptors (Human and Ecological): Receptors to be considered at Site 2 include on site workers and off site residents.					
	÷				

⁽¹⁾ Use to record information on Sites and Areas of Concern (AOC) for Relative Risk Site Evaluation. The term Site is defined as a discrete area for which suspected contamination has been verified and req A Site by definition has been, or will be, entered into RMIS. For the FUDS Program, "projects" equates to sites for current installations. An AOC is a discrete area of contamination, or suspected contamination (or RFA) phase that has not been entered into RMIS.

			Ground Wa	ter		
CONTAMINAN	T		Maximum Conc.	Standard		
HAZARD		Contaminant	ug/L	ug/L	Ratio (2)	
FACTOR (1)		Lead	3.6	4.0	0.900	
CHF)		Manganese and compounds	63.1	180.0	0.350	(Place an "X" next to one below)
		Cadmium and compounds	1.8	18.0	0.100	
		Vanadium	23.6	260.0	0.090	Significant (If Total > 100):
		Chromium (total)	13.8	180.0	0.080	
		Tetrachloroethylene (PCE)	6.0	110.0	0.050	Moderate (If Total 2 - 190):
		Aluminum	1,860.0	37,000.0	0.050	
		Trichloroethylene (TCE)	6.0	160.0	0.040	Minimal (If Total < 2): X
		Barium and compounds	52.2	2,600.0	0.020	
		Toluene	10.0	720.0	0.010	
	ý.	 Evaluate for human contaminants only Ratio = Maximum Concentration/Standard Note: Only top ten contaminants are displayed. 		Total:	1.721	
IIGRATION ATHWAY ACTOR MPF)	Evident -	Analytical data or observable evidence indicate contamination in the media is moving away from		Information indicates that the potent contaminant migration from the sour geological structures or physical con	rce is limited (due to	(Place an "X" next to one below) Evident: X
,	Potential -	Possibility for contamination to be present at or to a point of exposure; or information is not suf to make a determination of Evident or Confined	ficient			Potential: Confined:
	Brief Rationals		ontamination in the groundwater is m	noving or has moved awa -		
		Ý				(Place an "X" next to one below)
RECEPTOR FACTOR RF)	Identified -	There is a threatened or potentially threatened of downgradient of the source. The GW (cont. or drinking water source or is equiv. to (Class I or	not) is a current	- There is no potentially threatened wa the source. The groundwater is not on DW or is of limited benificial use (II	considered a potential source of	•
rcr)		drinking water source or is equiv. to (Class) or	IIA aquiter).	DW of is of illimited behiticial use (ii	inA, find of percheu aquiter).	Potential:
	Potential -	There is no potentially threatened water supply of the source. The groundwater is potentially u irrigation or agriculture, but not presently used	sable for DW,			Limited: X
	Brief Rationale		wngradient of the source that has tre	atment installed for -		
Activity Name	BETHPAGE N	IY NWIRP	Site Name: SITE 00002		Groundwater Category:	Low

•

			Surface Water	Human		
CONTAMINAN HAZARD	T , '	Contaminant	Maximum Conc.	Standard	D. (1. 42)	
FACTOR (1)		Tetrachloroethane, 1,1,2,2-	ug/L. 3.0	ug/L 5.5	Ratio (2)	
(CHF)	'4	Trichloroethylene (TCE)	35.0	160.0	0.550 0.220	(Place on "V" mout to any halous)
, ,	•	Dichloroethylene, 1,1-	1.0	4.6	0.220	(Place an "X" next to one below)
		Copper and compounds	99.2	1,400.0	0.070	Significant (If Total > 100):
		Manganese and compounds	6.2	180.0	0.030	Significant (II 10thi > 100):
		Trichloroethane, 1,1,1-	6.0	1,300.0	0.000	Moderate (If Total 2 100).
		Barium and compounds	10.6	2,600.0	0.000	Moderate (If Total 2 - 100):
		Zinc	31.0	11,000.0	0.000	Between Little Want of the No.
		Calcium	0.0	11,000.0		Minimal (If Total < 2): X
		Calcium	0.0	11,000.0	0.000	
		(1) Evaluate for human contaminants only (2) Ratio = Maximum Concentration/Standar Note: Only top ten contaminants are displayed		Total:	1.098	
MIGRATION PATHWAY FACTOR (MPF)	Evident - Potential -	Analytical data or observable evidence indica contamination in the media is present at, is motoward, or has moved to a point of exposure Possibility for contamination to be present at to a point of exposure; or information is not so to make a determination of Evident or Confine	oving or migrate afficient ed	d - Information indicates a low potentia to a potential point of exposure (cou presence of geological structures or	d by due to the	(Place an "X" next to one below) Evident: Potential: X Confined:
	Brief Rationale und water aquif	for Selection: Low-level VOC's detected in see.	surface water/sediment. This water w	vill recharge into the gro-		
RECEPTOR " FACTOR RF)	Identified -	Receptors identified that have access to surface	e water Limited	Little or no potential for receptors to surface water	have access to	(Place an "X" next to one below)
	Potential -	Potential for receptors to have access to surfac	e water			Potential: Limited: X
	Brief Rationale alled at the extra		h towards public water supply wells	which has treatment inst -		
Activity Name	BETHPAGE NY	Y NWIRP .	Site Name: SITE 00002	Surface W	ater Human Category	: Low

Surface Water Eco Fresh CONTAMINANT Maximum Conc. Standard HAZARD Contaminant Ratio (2) ug/L ug/L FACTOR(1) 8.270 Copper and compounds 99.2 12.0 31.0 0.280 (Place an "X" next to one below) 110.0 0.000 Trichloroethylene (TCE) 350 21,900.0 0.000 Tetrachloroethane, 1.1.2.2-3.0 2,400.0 Significant (If Total > 100): 6.0 0.000 Trichloroethane, 1,1,1-0.0 Manganese and compounds 6.2 0.0 0.000 Moderate (If Total 2 - 100): Dichloroethylene, 1,1-0.0 0.000 1.0 0.000 Minimal (If Total < 2): 0.0 110.0 Calcium 0.000 Barium and compounds 10.6 0.0 (1) Evaluate for human contaminants only Total: 8.551 (2) Ratio = Maximum Concentration/Standard Note: Only top ten contaminants are displayed. MIGRATION _ Evident -(Place an "X" next to one below) Analytical data or observable evidence indicates that Confined - Information indicates a low potential for contamination PATHWAY to a potential point of exposure (could be due to the contamination in the media is present at, is moving FACTOR presence of geological structures or physical controls) Evident: toward, or has moved to a point of exposure Potential: Potential -Possibility for contamination to be present at or migrate to a point of exposure; or information is not sufficient to make a determination of Evident or Confined Confined: Brief Rationale for Selection: Low-level VOC's detected in surface water/sediment. This water will recharge into the ground water aquifer. (Place an "X" next to one below) RECEPTOR Identified -Receptors identified that have access to surface water Limited - Little or no potential for receptors to have access to FACTOR surface water Identified: (RF) Potential: Potential -Potential for receptors to have access to surface water Limited: Brief Rationale for Selection: The ground water aquifer which is used for drinking water has treatment installed at the p oint of extraction.

Site Name:

SITE 00002

Surface Water Fresh Category: Low

(High, Medium, Low)

(CHF)

(MPF)

Activity Name BETHPAGE NY NWIRP

			Sediment Hun	nan		
CONTAMINANT	r		Maximum Conc.	Standard		7
IAZARD		Contaminant	mg/Kg	mg/Kg	Ratio (2)	
ACTOR (1)		Aroclor-1248	2.6	0.0	0.370	1
CHF)		Manganese and compounds	74.7	380.0	0.200	(Place an "X" next to one below)
		Arsenic (cancer endpoint)	2.8	22.0	0.130	1
		Copper and compounds	89.9	2,800.0	0.030	Significant (If Total > 100):
		Benzo[a]pyrene	0.118	6.1	0.020	
		Lead	5.78	400.0	0.010	Moderate (If Total 2 - 100):
		Calcium	165.5	23,000.0	0.010	
		Chromium (total)	18.0	3,000,0	0.010	Minimal (If Total < 2): X
		Chrysene	0.125	24.0	0.010	
		Dieldrin	0.008	2.8	0.000	1
					0.000	1
		(1) Evaluate for human contaminants only		Total:	0.792	
		(2) Ratio = Maximum Concentration/Stand Note: Only top ten contaminants are display		L		J
ATHWAY ACTOR IPF)		contamination in the media is present at, is toward, or has moved to a point of exposure Possibility for contamination to be present a to a point of exposure; or information is not to make a determination of Evident or Confee for Selection: Analytical data indicates that	at or migrate sufficient ined	potential point of exposure (could be of geological structures or or physica oward a point of expos	•	Evident: X Potential: Confined:
ĺ.	ure. Identified -	Receptors identified that have access to sedi	ment Limited -	- Little or no potential for receptors to	have access to sediment	(Place an "X" next to one below)
	Potential -	Potential for receptors to have access to sedi	ment			Potential: Limited: X
	Brief Rationale sediments at th	•	it is unlikely that human population will d	come in contact with -		
ctivity Name	BETHPAGE N	Y NWIRP	Site Name: SITE 00002	Sedin	nent Human Categor	

樂 - 7 - 7

			Soil			
ONTAMINAN'I IAZARD ACTOR (1)	r .,	Contaminant	Maximum Conc. mg/Kg 10.45	Standard mg/Kg 22.0	Ratio (2) 0.470	
		Arsenic (cancer endpoint)			0.250	(Diago on "V" pout to any holow)
CHF)		Aluminum	19,500.0	77,000.0	0.230	(Place an "X" next to one below)
		Benzo[a]pyrene	1.2	6.1		C:: C (IC T-+-! > 100).
		Vanadium	87.7	540.0	0.160	Significant (If Total > 100):
		Chromium (total)	419.0	3,000.0	0.140	54 1 (44m) (19 100)
•		Beryllium and compounds	0.88	14.0	0.060	Moderate (If Total 2 - 100):
		Dibenz[ah]anthracene	0.31	6.1	0.050	
		Chrysene	1.1	24.0	0.050	Minimal (If Total < 2):
		Cobalt	15.2	380.0	0.040	
		Anthracene	0.76	19.0	0.040	
		(1) Evaluate for human contaminants only (2) Ratio = Maximum Concentration/Standal Note: Only top ten contaminants are displaye		Total:	1.598	
IGRATION ATHWAY ACTOR IPF)		Analytical data or observable evidence indica contamination is present at, is moving toward moved to a point of exposure Possibility for contamination to be present at to a point of exposure; or information is not s to make a determination of Evident or Confiner of Selection: 7.239 tons of soil were removingulatory levels of remaining PCB concentration	s, or has or migrate ufficient ed ed from the site. After excavation, san	 Low possibility for contamination to or migrate to a point of exposure mpling results indicat - 	be present at	(Place an "X" next to one below) Evident: Potential: X Confined:
CEPTOR "	Identified -	Receptors identified that have access to		- Little or no potential for receptors to	have access to	(Place an "X" next to one below)
CTOR F)		contaminated soil		contaminated soil		Identified:
,						Potential:
	Potential -	Potential for receptors to have access to contaminated soil				Limited: X
	Brief Rational	for Selection: Due to soil excavation, a reep	tor factor for PCB is non-existant.			
tivity Name	BETHPAGE N	Y NWIRP	Site Name: SITE 00002		Soil Category:	Low

Installation/Site Name for FUDS CALVERTON NY NPRO	Date Entered (Day, Month, Year): 7/31/98 Media Evaluated (GW, SW, Sediment, Soil): GW SOIL				
Location (State): NY					
Site (Name/RMIS ID) / Project for FUDS: SITE 00006	Phase of Exec. (SI, RI, FS, Remv, RD/RA, or equiv. RCRA Stage): CMS				
RMIS Site Type: SPILL SITE AREA	Agr. Status (Y/N, If yes, type of agreement e.g., FFA, Permit, Order) Yes				
Point of Contact (Name/Phone): JIM COLTER	National Priority List (Y/N): No Site Rank: High				
(Include only key elements of information used	SITE SUMMARY d to conduct the relative risk site evaluation. Attach map view of site if desired.)				
Brief Site Description (Include site type, materials disposed of, dates of operation, The fuel calibration area is located approximately 2,000 feet north of River Road and 2 area consists of a concrete pad which is roughly 250 feet wide by 250 feet long. The meastern edge of the concrete pad. The southern edge of the pad was formerly used for t in size, is located immediately south of the pad and is included as part of site 6A. This engine systems which resulted in frequent but small fuel spills. Brief Description of Pathways (Groundwater, Surface Water, Sediment, Soil): Pathways to be considered at Site 6A include surface and subsurface soils. For the on site direct dermal contact. Another pathway to consider is through future use of the on site	2,000 feet west of the south gate. The fuel calibration ew Fuel Calibration Facility is currently located on the the same activity. An open field, approximately 10 acres site was used for the testing of aircrast fuel and site surface and subsurface soils, the pathways are through				
Brief Description of Receptors (Human and Ecological): Receptors to be considered at Site 6A include on site workers and future residents.					

⁽¹⁾ Use to record information on Sites and Areas of Concern (AOC) for Relative Risk Site Evaluation. The term Site is defined as a discrete area for which suspected contamination has been verified and req A Site by definition has been, or will be, entered into RMIS. For the FUDS Program, "projects" equates to sites for current installations. An AOC is a discrete area of contamination, or suspected contamination (or RFA) phase that has not been entered into RMIS.

			Groun	d Water		
ONTAMINAN	т	<u></u>	Maximum Conc.	Standard		
AZARD	•	Contaminant	ug/L	ug/L	Ratio (2)	
ACTOR (1)		Lead	1,740.0	4.0	435,000	
HF)		Methylnaphthalene, 2-	7,500.0	0.0	41.670	(Place an "X" next to one below)
,		Naphthalene	2,800.0	240.0	11.670	,
		Ethyl chloride (Chloroethane)	2,600.0	710.0	3.660	Significant (If Total > 100): X
		Dichloroethane, 1,1-	300.0	810.0	0,370	
		Xylene (mixed)	450.0	1,400.0	0.320	Moderate (If Total 2 - 100):
		Toluene	140.0	720.0	0.190	,
		Benzene	4.0	39.0	0.100	Minimal (If Total < 2):
		Trichloroethane, 1,1,1-	23.0	1,300.0	0,020	
•		Dichlorobenzene, 1,2-	3.0	370.0	0.010	
		Dictiorocenzene, 1,2-	3.0		0.010	
		(1) Evaluate for human contaminants onl (2) Ratio = Maximum Concentration/Sta	-	Total:	493.016	
		Note: Only top ten contaminants are displ		L		
			.,			
MIGRATION PATHWAY PACTOR MPF)	Evident -	Analytical data or observable evidence in contamination in the media is moving award	ential for source is limited (due to controls)	(Place an "X" next to one below) Evident: X		
	Potential -	Possibility for contamination to be present to a point of exposure; or information is n to make a determination of Evident or Co	Potential: Confined:			
	Brief Rational	e for Selection: Ground water contaminat		urce.		
'n.						(Place an "X" next to one below)
ECEPTOR	Identified -	There is a threatened or potentially threate	ened water supply L	.imited - There is no potentially threatened	water supply well downgradient of	,
ACTOR		downgradient of the source. The GW (co	Identified:			
F) .		drinking water source or is equiv. to (Clas				
-,		(Potential: X			
	Potential -	There is no potentially threatened water so				
		of the source. The groundwater is potenti- irrigation or agriculture, but not presently	Limited:			
		e for Selection: Aquifer is a sole source acutly extracted for potable use.	juifer with drinking water capabilit	ties. However, GW at this si-		
ctivity Name	CALVERTON	I NY NPRO	Site Name: SITE 00	0006	Groundwater Category:	High

				Soil			
CONTAMINAN'	T		Maximum Cor	ic.	Standard		
HAZARD		Contaminant	mg/Kg		mg/Kg	Ratio (2)	
FACTOR (1)		Lead	34.2		400.0	0.090	
CHF)		Benzo[a]pyrene	0.11		6.1	0.020	(Place an "X" next to one below)
		Chrysene ,	0.12		24.0	0.000	
		Benzo[b]fluoranthene	0.19		61.0	0.000	Significant (If Total > 100):
,		Indeno[1,2,3-cd]pyrene	0.085		61.0	0.000	
		Anthracene	0.02		19.0	0,000	Moderate (If Total 2 - 100):
		Benzo[k]fluoranthene	0.12		610.0	0.000	
		Pyrene	0.25		2,000.0	0.000	Minimal (If Total < 2):
		Fluorene	0.025		300.0	0.000	
		Fluoranthene	0.21		2,600.0	0.000	
		(1) Evaluate for human contaminants only			Total:	0.115	
		(2) Ratio = Maximum Concentration/Standar Note: Only top ten contaminants are displayed			Ł		
IGRATION ATHWAY ACTOR	Evident - Analytical data or observable evidence indicates that contamination is present at, is moving towards, or has moved to a point of exposure Confined - Low possibility for contamination to be present at or migrate to a point of exposure					(Place an "X" next to one below) Evident:	
1PF)	Potential -	Possibility for contamination to be present at	Potential:				
) 4 (to a point of exposure; or information is not sufficient to make a determination of Evident or Confined						Confined: X
		e for Selection: Various chemicals detected in for these chemicals to move to a point of exposu	_	w concentrations.	There is also a -		
ECEPTOR	Identified -	Receptors identified that have access to		Limited - Lit	tte or no potential for receptors	to have access to	(Place an "X" next to one below)
ACTOR (F)		Identified - Receptors identified that have access to contaminated soil Limited - Little or no potential for receptors to have access to contaminated soil				10 11210 1100055 10	Identified:
	Potential - Potential for receptors to have access to						Potential: X
		contaminated soil					Limited:
	Brief Rationale site soils.	for Selection: Future occupants of this area v	would have the potential t	o be exposed to the	e chemicals ion -		
	W.						
ctivity Name		NIVADDO	Site Name: Si	ITE 00006		Soil Category:	Low

Installation/Site Name for FUDS CALVERTON NY NPRO	Date Entered (Day, Month, Year)	7/31/98							
Location (State): NY	Media Evaluated (GW, SW, Sedin	nent, Soil): <u>GW</u>	SOIL						
Site (Name/RMIS ID) / Project for FUDS: SITE 00007	Phase of Exec. (SI, RI, FS, Remv,	RD/RA, or equiv. F	CRA Stage): CMS						
MIS Site Type: SPILL SITE AREA Agr. Status (Y/N, 1f yes, type of agreement e.g., FFA, Permit, Order) Yes									
Point of Contact (Name/Phone): JIM COLTER	National Priority List (Y/N): No Site Rank: High								
(Include only key elements of information use	SITE SUMMARY	ation. Attach map vi	ew of site if desired.)						
Brief Site Description (Include site type, materials disposed of, dates of operation, The fuel depot is located approximately 3,000 feet north of the south gate and is rough and distribution of fuel products, such as JP-4 and JP-5 jet fuel. Contamination due to overfilling, and spills over the years, currently all UST and AST have been removed for the Calverton Facility.	ly 2 acres in size. The fuel depot was u these activities was the result of tank a	nd pipe leaks,							
Brief Description of Pathways (Groundwater, Surface Water, Sediment, Soil): The main pathway to consider is through future use of the on site ground water.									
Brief Description of Receptors (Human and Ecological): Receptors to be considered at Site 7 include future on site workers and/or residents.									

⁽¹⁾ Use to record information on Sites and Areas of Concern (AOC) for Relative Risk Site Evaluation. The term Site is defined as a discrete area for which suspected contamination has been verified and req A Site by definition has been, or will be, entered into RMIS. For the FUDS Program, "projects" equates to sites for current installations. An AOC is a discrete area of contamination, or suspected contamination (or RFA) phase that has not been entered into RMIS.

Ground Water CONTAMINANT Maximum Conc. Standard Contaminant ug/L ug/L Ratio (2) Lead 692.0 4.0 173.000 Benzo[a]pyrene 10.0 0.92 10,870 (Place an "X" next to one below) Benzene 390.0 39.0 10.000 Benzo[b]fluoranthene 13.0 9.2 1.410 Significant (If Total > 100): Benz[a]anthracene 9.0 9.2 0.980 Toluene 540.0 720,0 0.750 Moderate (If Total 2 - 100): Xylene (mixed) 970.0 1,400.0 0.690 Naphthalene 110.0 240.0 0.460 Minimal (If Total < 2): Methylnaphthalene, 2-77.0 0.0 0.430 Ethylbenzene 120.0 1,300.0 0.090 (1) Evaluate for human contaminants only Total: 198.826 (2) Ratio = Maximum Concentration/Standard Note: Only top ten contaminants are displayed. Evident -Analytical data or observable evidence indicates that Confined - Information indicates that the potential for (Place an "X" next to one below) contamination in the media is moving away from the source. contaminant migration from the source is limited (due to geological structures or physical controls) Evident: Potential -Possibility for contamination to be present at or migrate Potential: to a point of exposure; or information is not sufficient to make a determination of Evident or Confined Confined: Brief Rationale for Selection: GW contamination confirmed down gradient of source indicating evident migration. (Place an "X" next to one below) Identified -There is a threatened or potentially threatened water supply Limited - There is no potentially threatened water supply well downgradient of downgradient of the source. The GW (cont. or not) is a current the source. The groundwater is not considered a potential source of Identified: drinking water source or is equiv. to (Class I or IIA aquifer). DW or is of limited benificial use (IIIA, IIIB or perched aquifer). Potential: Potential -There is no potentially threatened water supply well downgradient of the source. The groundwater is potentially usable for DW. Limited: irrigation or agriculture, but not presently used (Class IIB aquifer). Brief Rationale for Selection: Aquifer is sole-source aquifer with drinking water capabilities. However, GW at this site is not currently extracted for potable use.

HAZARD

(CHF)

FACTOR (1)

MIGRATION

PATHWAY

FACTOR

RECEPTOR

FACTOR

(RF)

(MPF)

Activity Name CALVERTON NY NPRO Site Name: SITE 00007 Groundwater Category: High (High, Medium, Low)

			Soil	***************************************		
CONTAMINAN HAZARD FACTOR (1) (CHF)		Contaminant Lead Dichloroethane, 1,2- (EDC)	Maximum Conc. mg/Kg 8.9 0.001	Standard mg/Kg 400.0 44.0	Ratio (2) 0.020 0.000	(Place an "X" next to one below) Significant (If Total > 100): Moderate (If Total 2 - 100): Minimal (If Total < 2): X
		(1) Evaluate for human contaminants only (2) Ratio = Maximum Concentration/Standard Note: Only top ten contaminants are displayed		Total:	2.23E-02	
MIGRATION PATHWAY FACTOR (MPF)	Evident - Potential -	Analytical data or observable evidence indicate contamination is present at, is moving towards, moved to a point of exposure Possibility for contamination to be present at or to a point of exposure; or information is not suf to make a determination of Evident or Confined	, or has r migrate fficient	ed - Low possibility for contamination or migrate to a point of exposure	n to be present at	(Place an "X" next to one below) Evident: Potential: Confined: X
		for Selection: Various chemicals detected in some these chemicals to move to a point of exposure		tions. There is also a -		
RECEPTOR FACTOR (RF)	Identified -	Receptors identified that have access to contaminated soil	Limite	ed - Little or no potential for receptors contaminated soil	s to have access to	(Place an "X" next to one below) Identified:
	Potential -	Potential for receptors to have access to contaminated soil		·		Potential: X Limited:
	Brief Rationale ite soils.	for Selection: Future occupants of this area w	ould have the potential to be expose	ed to the chemicals in s -		
A -42-24- BT-	:#	,	Ov. N		0.11.0	
Activity Name	CALVERTON	NY NPRO	Site Name: SITE 00007		Soil Category: (High, Medium, Low)	Low

·•

Installation/Site Name for FUDS CALVERTON NY NPRO	Date Entered (Day, Month, Year):	7/31/98			
Location (State): NY	Media Evaluated (GW, SW, Sedin	nent, Soil): GW			
Site (Name/RMIS ID) / Project for FUDS: SITE 00009	Phase of Exec. (SI, RI, FS, Remv,	RD/RA, or equiv. RC	RA Stage): RFA		
RMIS Site Type: SPILL SITE AREA	Agr. Status (Y/N, If yes, type of ag	reement e.g., FFA, P	ermit, Order) Yes		
Point of Contact (Name/Phone): JIM COLTER	National Priority List (Y/N):	No	Site Rank:	Med	
	SITE SUMMARY				
(Include only key elements of information used	I to conduct the relative risk site evalua	ition. Attach map view	v of site if desired.)		
Brief Site Description (Include site type, materials disposed of, dates of operation, The ECM Area is located in the northeast corner of the facility and was used for the tes routinely used as cleaning agents at this area.		ed solvents were			9
Brief Description of Pathways (Groundwater, Surface Water, Sediment, Soil): The main pathway to consider is through future use of on-site groundwater.					
Brief Description of Receptors (Human and Ecological): Receptors to be considered at this site include future on-site workers and/or residents.					
•					

⁽¹⁾ Use to record information on Sites and Areas of Concern (AOC) for Relative Risk Site Evaluation. The term Site is defined as a discrete area for which suspected contamination has been verified and req A Site by definition has been, or will be, entered into RMIS. For the FUDS Program, "projects" equates to sites for current installations. An AOC is a discrete area of contamination, or suspected contamination (or RFA) phase that has not been entered into RMIS.

			Gr	round Wate	r				
CONTAMINAN	NT		Maximum Conc.	•	Standard				
HAZARD		Contaminant	ug/L		ug/L	Ratio (2)			
FACTOR (1)		Dichloroethane, 1,2- (EDC)	15.0		12.0	1.250			
(CHF)		Trichloroethane, 1,1,1-	35.0		1,300.0	0.030	(Place an "X" next to one below)		
(0.1.2)		Methylene chloride	8.0		430.0	0.020	,		
		Chloromethan	1.0		150.0	0.010	Significant (If Total > 100):		
Í							Moderate (If Total 2 - 100):		
							Minimal (If Total < 2): X		
					<u> La companya da managana da m</u>				
ĺ									
		(1) Evaluate for human contaminants only			Total:	1.302			
-		(2) Ratio = Maximum Concentration/Stand			•				
	À	Note: Only top ten contaminants are display	red.						
	•								
l									
MIGRATION	Evident -	·			Information indicates that the potential for		(Place an "X" next to one below)		
PATHWAY	Evident -				contaminant migration from the	(1 late all 12 lient to one very)			
FACTOR		Contamination in the mount is moving array	HOIII die Source.	geological structures or physical controls)			Evident: X		
(MPF)				geological suluciones or physical	Evident. A				
(war a)	Potential -	Possibility for contamination to be present a				Potential:			
	t oten	to a point of exposure; or information is not		4 711					
İ		to make a determination of Evident or Confi		Confined:					
		to make a description of a contract of a con							
1									
i		Brief Rationale for Selection: Relatively low levels of VOCs detected in GW and also in downgradient wells indicating evi-							
	dent migration	of chemicals. Horizontal extent of plume not y	yet delineated.						
		\					(Disease NVIII most to one helow)		
	* 3 A167 3	mi - atad		T. I Idea al	77 i	4	(Place an "X" next to one below)		
RECEPTOR	Identified -	There is a threatened or potentially threatened	** *	Limitea -		ed water supply well downgradient of			
FACTOR		downgradient of the source. The GW (cont.			_	not considered a potential source of	Identified:		
(RF)		drinking water source or is equiv. to (Class I	of IIA aquiter).		DW or is of limited benificial us	e (IIIA, IIIB or perched aquiter).	We a catally NA		
	W	em and the control of the above and decrease and	•				Potential: X		
	Potential -	There is no potentially threatened water supp	• •				w toota ag		
Í		of the source. The groundwater is potentiall	-				Limited:		
		irrigation or agriculture, but not presently us	ed (Class IIB aquiter).						
	Daire Dationale	- 5 5-lastian . A suifer is a sale course say							
i		Brief Rationale for Selection: Aquifer is a sole-source aquifer with drinking water capabilities. However, GW at this site is not currently extracted for potable use.							
ı	ic is not current	ly extracted for polatole use.							
i									
	·								
ı									
Activity Nam	e CALVERTON	NIN YIBDU	Site Name: SIT	TE 00009		Groundwater Category:	Med		
Atterney comme	CALVERION	NI NIKO	Ditt i ame.	E VVVV3		(High Medium Low)	Med		

Installation/Site Name for FUDS CALVERTON NY NPRO	Date Entered (Day, Month, Year): 7/31/98						
Location (State): NY	Media Evaluated (GW, SW, Sediment, Soil): GW						
Site (Name/RMIS ID) / Project for FUDS: SITE 00010	Phase of Exec. (SI, RI, FS, Remv, RD/RA, or equiv. RCRA Stage): RFA						
RMIS Site Type: SPILL SITE AREA	Agr. Status (Y/N, If yes, type of agreement e.g., FFA, Permit, Order) Yes						
Point of Contact (Name/Phone): JIM COLTER	National Priority List (Y/N): No Site Rank: Low						
(Include only key elements of information use	SITE SUMMARY d to conduct the relative risk site evaluation. Attach map view of site if desired.)						
Brief Site Description (Include site type, materials disposed of, dates of operation, There are approximately twenty-two cesspool/leach fields throughout the facility. Of ochemicals, including solvents, were used in only eight areas. These eight areas are whadjacent to the building which they service. Due to the impending transfer of the facility sampling conducted. Areas adjacent to two cesspools required further characterization Lab (Site 10A) and the Engine Test House (Site 10B). Brief Description of Pathways (Groundwater, Surface Water, Sediment, Soil): The main pathway to be consider is through future use of on-site groundwater.	those twenty-two areas it was determined that industrial at make up Site 10. The cesspools are generally located ty, all of the cesspools were cleaned out and confirmation						
Brief Description of Receptors (Human and Ecological): Receptors to be considered include future on-site workers and/or residents.							

⁽¹⁾ Use to record information on Sites and Areas of Concern (AOC) for Relative Risk Site Evaluation. The term Site is defined as a discrete area for which suspected contamination has been verified and req A Site by definition has been, or will be, entered into RMIS. For the FUDS Program, "projects" equates to sites for current installations. An AOC is a discrete area of contamination, or suspected contamination (or RFA) phase that has not been entered into RMIS.

			Ground Wat	er		
CONTAMINAN' HAZARD FACTOR (1) (CHF)	Contaminant Dichloroethane, 1,2- (EDC) Xylene Ethylbenzene Methylene chloride Methyl ethyl ketone		Maximum Conc. ug/L 14.0 900.0 200.0 9.0 19.0	Standard ug/L Ratio (2) 12.0 1.170 1,400.0 0.640 1,300.0 0.150 430.0 0.020 1,900.0 0.010		(Place an "X" next to one below) Significant (If Total > 100): Moderate (If Total 2 - 100): Minimal (If Total < 2):
		(1) Evaluate for human contaminants only (2) Ratio = Maximum Concentration/Standard Note: Only top ten contaminants are displayed.		Total:	1.994	
MIGRATION PATHWAY FACTOR (MPF)	Evident - Potential - Brief Rationale area.	Analytical data or observable evidence indicates to contamination in the media is moving away from the Possibility for contamination to be present at or mean to a point of exposure; or information is not sufficient to make a determination of Evident or Confined for Selection: The potential exists for the chemical ex	the source. igrate ient	- Information indicates that the poter contaminant migration from the so geological structures or physical contaminant migration from the source -	urce is limited (due to	(Place an "X" next to one below) Evident: Potential: X Confined:
RECEPTOR FACTOR (RF)	Identified - Potential - Brief Rationale	There is a threatened or potentially threatened wat downgradient of the source. The GW (cont. or not drinking water source or is equiv. to (Class I or IIA) There is no potentially threatened water supply we of the source. The groundwater is potentially usab irrigation or agriculture, but not presently used (Cl for Selection: Aquifer is a sole-source aquifer with extracted for potable use.) is a current A aquifer). Il downgradient le for DW, ass IIB aquifer).	There is no potentially threatened we the source. The groundwater is not DW or is of limited benificial use (considered a potential source of	(Place an "X" next to one below) Identified: Potential: Limited:
Activity Name	CALVERTON I	NY NPRO Si	te Name: <u>SITE 00010</u>		Groundwater Category: (High, Medium, Low)	Low

SENSITIVE RECORD

PORTIONS OF THIS RECORD ARE CONSIDERED SENSITIVE AND ARE NOT AVAILABLE FOR PUBLIC VIEWING

THIS INFORMATION IS BEING WITHHELD BECAUSE IT CONTAINS AN:

ADDRESS OF A PRIVATE CITIZEN

FOR ADDITIONAL INFORMATION, CONTACT:

PUBLIC AFFAIRS OFFICER NAVAL FACILITIES ENGINEERING COMMAND MID ATLANTIC 9742 MARYLAND AVE. NORFOLK, VA 23511

757-445-8732