
Definitions Sheet

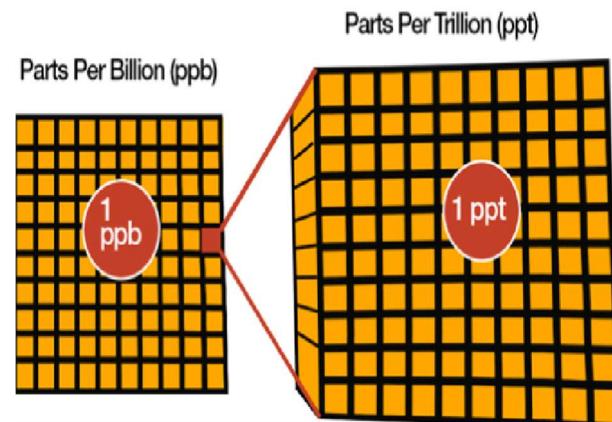
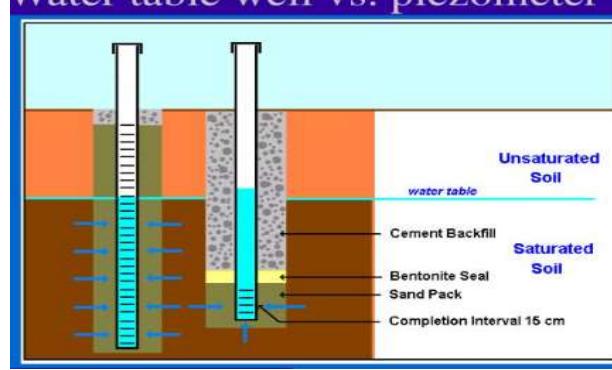
<p>1,4- dioxane</p> <ul style="list-style-type: none"> • Organic compound, colorless liquid with a faint sweet odor • Used in inks, adhesives and well as consumer products 	
<p>Air Sparge:</p> <ul style="list-style-type: none"> • Groundwater remediation technique that pumps air into groundwater through wells to circulate and aerate the water • Speeds up the removal of VOCs by increasing oxygen levels for biodegradation. 	<p>A schematic diagram illustrating method of air sparging.</p>
<p>Air Stripper</p> <ul style="list-style-type: none"> • Process of moving air through impacted water to remove volatile chemicals from the water. This process is a remedy for VOC contamination in groundwater 	
<p>ARAR</p> <ul style="list-style-type: none"> • CERCLA cleanups must attain all Applicable or Relevant and Appropriate Requirements (ARARs) of <ul style="list-style-type: none"> ○ Other Federal environmental laws, ○ More stringent State laws, and ○ State facility-siting laws 	<ul style="list-style-type: none"> <input checked="" type="checkbox"/>

Definitions Sheet

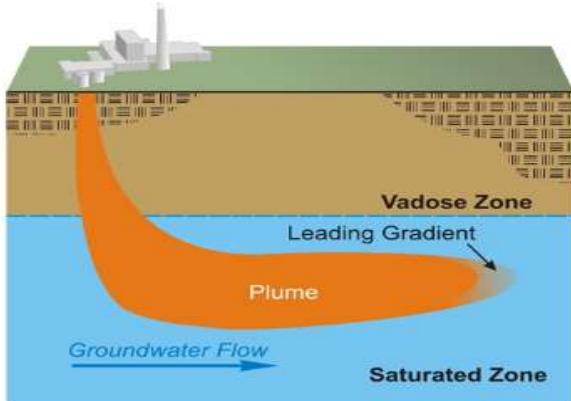
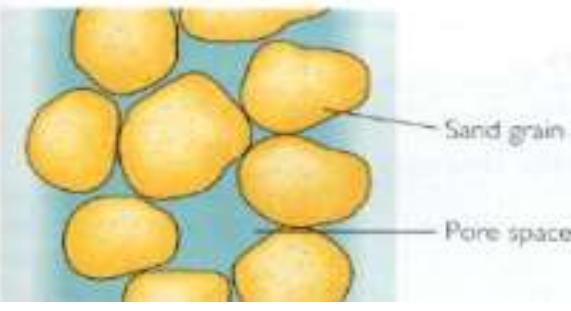
Biosparge System <ul style="list-style-type: none"> Uses microorganisms to naturally break down (or biodegrade) organic chemicals in impacted water 	
Capture Zone <ul style="list-style-type: none"> The underground area around a well that may contribute water to the well when it is pumped Capture zones take into consideration well pumping rates and underground geology (sand, clay, etc) 	
CERCLA <ul style="list-style-type: none"> Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA), enacted in 1980 by Congress Responds directly to releases or threatened releases of hazardous substances that may endanger public health or the environment Also known as Superfund, is a federal law that gives the government the authority to respond to hazardous substance releases and clean up contaminated sites 	
Degradation <ul style="list-style-type: none"> Process of breaking down a substance over a period of time Can be natural or assisted with external forces such as a chemical or antibiotics 	

Definitions Sheet

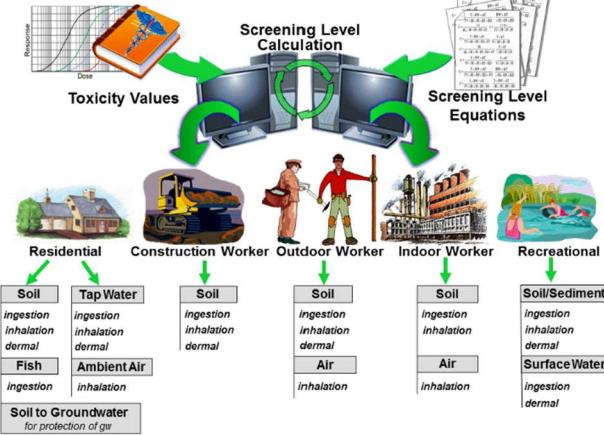
<p>Department of Environmental Conservation (DEC)</p> <ul style="list-style-type: none"> Department of New York State government that guides and regulates the conservation, improvement, and protection of New York's natural resources 	
<p>Department of Health (DOH)</p> <ul style="list-style-type: none"> State department responsible for public health 	
<p>Detection Limit (DL)</p> <ul style="list-style-type: none"> Lowest concentration of an analyte in a sample that the lab can say is present <p>Limit of Detection (LoD)</p> <ul style="list-style-type: none"> Smallest concentration of an analyte in a test sample that the lab can easily distinguish from zero <p>Limit of Quantitation (LoQ)</p> <ul style="list-style-type: none"> Smallest concentration of an analyte in a test sample that the lab can determine with acceptable accuracy Usually higher than LoD and requires more precise measurements and greater degree of accuracy 	<p>29</p> <p>23</p> <p>9</p> <p>High Certainty</p> <p>Less Uncertainty</p> <p>High Uncertainty</p> <p>Noise</p> <p>.. LOQ – The limit of quantitation is the lowest level the laboratory can reliably measure with a known degree of confidence and accuracy.</p> <p>.. LOD – The limit of detection is the lowest level the laboratory can reliably say the chemical is not present.</p> <p>.. DL – The detection limit is the lowest level the laboratory can reliably say the chemical is present.</p>
<p>Downgradient</p>	



Definitions Sheet

<ul style="list-style-type: none"> Wells located downgradient detects impacts from the contaminants. <ul style="list-style-type: none"> Groundwater flows at different rates and directions, when something is downgradient, it is located within the groundwater's traveling direction. Similar to downwind in air 																																			
Fate and Transport <ul style="list-style-type: none"> Refers to how the nature of contaminants might change or break down and where they go as they move through the environment 																																			
Feasibility Study <ul style="list-style-type: none"> A comparative process that uses information gathered and analyzed during the RI phase to find the most effective option that eliminates or reduces contamination 																																			
Fence Line Treatment System <ul style="list-style-type: none"> Designed to catch and treat VOC impacted groundwater from Site 6A before it enters the Peconic River 																																			
Hazard Index	<p>Hazard Index MCL Calculation Examples</p> <table border="1"> <thead> <tr> <th></th> <th>HFPO-DA</th> <th>PFBS</th> <th>PFNA</th> <th>PFHxS</th> <th>Hazard Index</th> </tr> </thead> <tbody> <tr> <td>• Example 1</td> <td>$\left(\frac{0 \text{ ppt}}{10 \text{ ppt}}\right)$</td> <td>$\left(\frac{200 \text{ ppt}}{2000 \text{ ppt}}\right)$</td> <td>$\left(\frac{4 \text{ ppt}}{10 \text{ ppt}}\right)$</td> <td>$\left(\frac{4 \text{ ppt}}{10 \text{ ppt}}\right)$</td> <td>0.9</td> <td>No exceedance of final Hazard Index MCL</td> </tr> <tr> <td>• Example 2</td> <td>$\left(\frac{5 \text{ ppt}}{10 \text{ ppt}}\right)$</td> <td>$\left(\frac{200 \text{ ppt}}{2000 \text{ ppt}}\right)$</td> <td>$\left(\frac{16 \text{ ppt}}{10 \text{ ppt}}\right)$</td> <td>$\left(\frac{15 \text{ ppt}}{10 \text{ ppt}}\right)$</td> <td>3</td> <td>Exceedance of final Hazard Index MCL (and exceedance of PFHxS MCL)</td> </tr> <tr> <td>• Example 3</td> <td>$\left(\frac{14 \text{ ppt}}{10 \text{ ppt}}\right)$</td> <td>$\left(\frac{0 \text{ ppt}}{2000 \text{ ppt}}\right)$</td> <td>$\left(\frac{0 \text{ ppt}}{10 \text{ ppt}}\right)$</td> <td>$\left(\frac{0 \text{ ppt}}{10 \text{ ppt}}\right)$</td> <td>1</td> <td>No exceedance of final Hazard Index MCL</td> </tr> <tr> <td>• Example 4</td> <td>$\left(\frac{9 \text{ ppt}}{10 \text{ ppt}}\right)$</td> <td>$\left(\frac{100 \text{ ppt}}{2000 \text{ ppt}}\right)$</td> <td>$\left(\frac{4 \text{ ppt}}{10 \text{ ppt}}\right)$</td> <td>$\left(\frac{3 \text{ ppt}}{10 \text{ ppt}}\right)$</td> <td>2</td> <td>Exceedance of final Hazard Index MCL (no individual MCL)</td> </tr> </tbody> </table>		HFPO-DA	PFBS	PFNA	PFHxS	Hazard Index	• Example 1	$\left(\frac{0 \text{ ppt}}{10 \text{ ppt}}\right)$	$\left(\frac{200 \text{ ppt}}{2000 \text{ ppt}}\right)$	$\left(\frac{4 \text{ ppt}}{10 \text{ ppt}}\right)$	$\left(\frac{4 \text{ ppt}}{10 \text{ ppt}}\right)$	0.9	No exceedance of final Hazard Index MCL	• Example 2	$\left(\frac{5 \text{ ppt}}{10 \text{ ppt}}\right)$	$\left(\frac{200 \text{ ppt}}{2000 \text{ ppt}}\right)$	$\left(\frac{16 \text{ ppt}}{10 \text{ ppt}}\right)$	$\left(\frac{15 \text{ ppt}}{10 \text{ ppt}}\right)$	3	Exceedance of final Hazard Index MCL (and exceedance of PFHxS MCL)	• Example 3	$\left(\frac{14 \text{ ppt}}{10 \text{ ppt}}\right)$	$\left(\frac{0 \text{ ppt}}{2000 \text{ ppt}}\right)$	$\left(\frac{0 \text{ ppt}}{10 \text{ ppt}}\right)$	$\left(\frac{0 \text{ ppt}}{10 \text{ ppt}}\right)$	1	No exceedance of final Hazard Index MCL	• Example 4	$\left(\frac{9 \text{ ppt}}{10 \text{ ppt}}\right)$	$\left(\frac{100 \text{ ppt}}{2000 \text{ ppt}}\right)$	$\left(\frac{4 \text{ ppt}}{10 \text{ ppt}}\right)$	$\left(\frac{3 \text{ ppt}}{10 \text{ ppt}}\right)$	2	Exceedance of final Hazard Index MCL (no individual MCL)
	HFPO-DA	PFBS	PFNA	PFHxS	Hazard Index																														
• Example 1	$\left(\frac{0 \text{ ppt}}{10 \text{ ppt}}\right)$	$\left(\frac{200 \text{ ppt}}{2000 \text{ ppt}}\right)$	$\left(\frac{4 \text{ ppt}}{10 \text{ ppt}}\right)$	$\left(\frac{4 \text{ ppt}}{10 \text{ ppt}}\right)$	0.9	No exceedance of final Hazard Index MCL																													
• Example 2	$\left(\frac{5 \text{ ppt}}{10 \text{ ppt}}\right)$	$\left(\frac{200 \text{ ppt}}{2000 \text{ ppt}}\right)$	$\left(\frac{16 \text{ ppt}}{10 \text{ ppt}}\right)$	$\left(\frac{15 \text{ ppt}}{10 \text{ ppt}}\right)$	3	Exceedance of final Hazard Index MCL (and exceedance of PFHxS MCL)																													
• Example 3	$\left(\frac{14 \text{ ppt}}{10 \text{ ppt}}\right)$	$\left(\frac{0 \text{ ppt}}{2000 \text{ ppt}}\right)$	$\left(\frac{0 \text{ ppt}}{10 \text{ ppt}}\right)$	$\left(\frac{0 \text{ ppt}}{10 \text{ ppt}}\right)$	1	No exceedance of final Hazard Index MCL																													
• Example 4	$\left(\frac{9 \text{ ppt}}{10 \text{ ppt}}\right)$	$\left(\frac{100 \text{ ppt}}{2000 \text{ ppt}}\right)$	$\left(\frac{4 \text{ ppt}}{10 \text{ ppt}}\right)$	$\left(\frac{3 \text{ ppt}}{10 \text{ ppt}}\right)$	2	Exceedance of final Hazard Index MCL (no individual MCL)																													



Definitions Sheet

<ul style="list-style-type: none"> The Hazard Index (HI) maximum contaminant level (MCL) is calculated using the data for certain PFAS. 	
JP-4 <ul style="list-style-type: none"> Jet fuel Developed in 1952, known as "AVTAG" Used by the U.S military from 1951-1995 	
JP-5 <ul style="list-style-type: none"> Jet fuel. Developed in 1952, known as "AVCAT" Developed for aircraft stationed aboard aircraft carriers 	
Leachability <ul style="list-style-type: none"> Natural process of transfer a chemical from a solid material into water that contact it An example is a chemical in soil leaching to groundwater 	
Maximum Contaminant Level <ul style="list-style-type: none"> Legal threshold limit on amount of a substance that is allowed in public water systems Applicable to water providers/purveyors (RWD, SCWA, etc) Standards set by the EPA or states for different chemicals 	<div style="background-color: #0070C0; color: white; padding: 10px; text-align: center;"> <p>MCL</p> <p>«««««««««« = »»»»»»»»»»»»»»»»</p> <p>Maximum Contaminant Level</p> </div>


Definitions Sheet

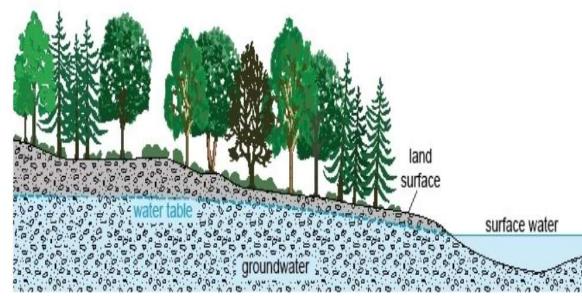
<p>Parts Per Trillion (ppt)</p> <ul style="list-style-type: none"> • A part of set of units to describe small values of dimensionless quantities • Equivalent to nanogram per kilogram • Number of units of a given substance that exists as a portion of a greater substance comprised of one trillion parts <p>Parts Per Billion (ppb)</p> <ul style="list-style-type: none"> • Number of units of a given substance that exist as a portion of a greater substance comprised of one billion parts 	
<p>Piezometer Well</p> <ul style="list-style-type: none"> • A well that is designed and installed for the purpose of monitoring water levels within a specific depth interval based on water pressure 	<p>Water table well vs. piezometer</p>
<p>PFAS</p> <ul style="list-style-type: none"> • Synthetic manufactured chemicals found in many household items • Found in the environment in air, soil, rain, animals, plants, as well as in people • Widely used since 1950s in many products 	
<p>Plume</p>	

Definitions Sheet

<ul style="list-style-type: none"> • Body of water within a groundwater aquifer that has been impacted with chemicals 	
Porewater <ul style="list-style-type: none"> • Water that is contained in pores of soil or in between small rocks • Very small quantities 	
Preliminary Assessment (PA) <ul style="list-style-type: none"> • First step in a CERCLA investigation • Conducted to identify and evaluate additional areas of potential releases on each installation 	
Record Of Decision (ROD) <ul style="list-style-type: none"> • A document that provides recommendation on remedial action and clarification on roles and responsibilities in decision documents • Explains how to address changes made to proposed and selected remedies 	<h1>Record Of Decision</h1>

Definitions Sheet

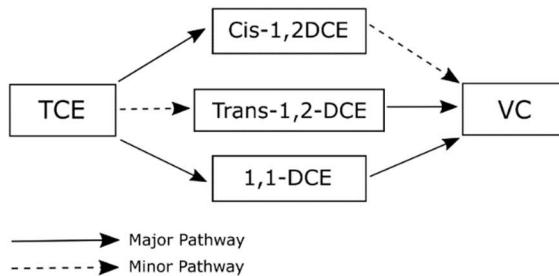
<p>Regional Screening Level</p> <ul style="list-style-type: none"> Screening tool used in investigations to determine where further evaluation is needed Derived from combining exposure information from EPA toxicity database Not cleanup standards 	
<p>Remedial Investigation (RI)</p> <ul style="list-style-type: none"> Comes after the SI in the CERCLA process if releases are confirmed. A detailed on-site investigation to fully characterize: <ul style="list-style-type: none"> The Nature and extent of the release- how wide, how deep, and where contamination may be. The fate and transport- how a contaminant may move within the environment. The potential risks to human and environmental health. 	
<p>Site Inspection (SI)</p> <ul style="list-style-type: none"> Comes after the PA in the CERCLA process. An on-site sampling event to determine if there was a release. This initial phase starts the characterization of a release and identifies potential threats to human health and the environment associated with the release. 	


Definitions Sheet

Surface Water

- Water that collects on the surface of the ground.

Ground Water


- Water that is held underneath surface in soil pores and rock.

TCE

- Chemical used as an industrial degreasing solvent
- Colorless, non-flammable with chloroform like mild smell.
- TCE, when exposed to the environment breaks down into predictable daughter products
- These daughter products are VOCs as shown on the figure

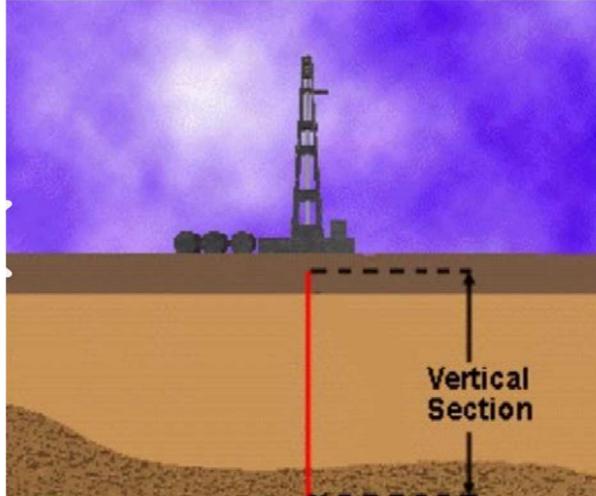

Trichloroethene Breakdown

TCE = Trichloroethene
 Cis-1,2-DCE = Cis-1,2Dichloroethene
 Trans-1,2-DCE = Trans-1,2-Dichloroethene
 1,1-DCE = 1,1-Dichloroethene
 VC = Vinyl Chloride

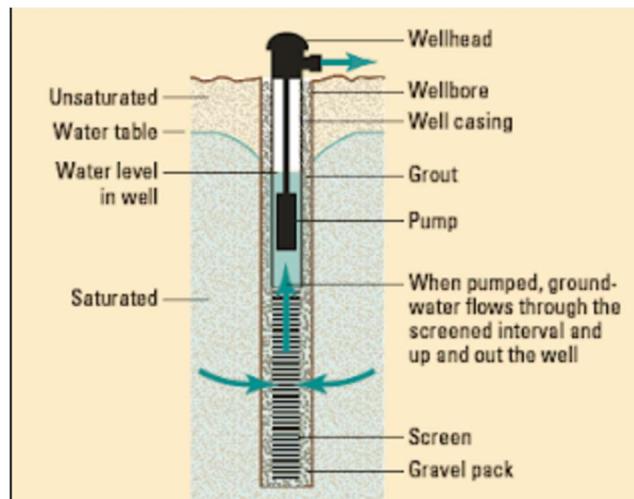
Turbidity

The quality of being cloudy, opaque with suspended matter in water.

United States Geological Survey (USGS)


- A government agency that provides scientific information about natural resources, hazards, and physical features of the earth (topography).

Upgradient



Definitions Sheet

<ul style="list-style-type: none"> Upgradient wells reflect natural groundwater conditions not affected by the contaminants. <ul style="list-style-type: none"> Groundwater flows at different rates and directions, when something is upgradient, it is located before the plume. Similar to upwind in air 	
Vertical Profile Borings (VPBs) <ul style="list-style-type: none"> Drilling method used to collect various samples such as soil and water Causes minimal disturbances to the ground surface and provides detailed information regarding the local geology Can be used to better understand underground plume fate and transport 	
VOCs <ul style="list-style-type: none"> Volatile organic compounds Transitions into gases or vapors very easily Also common in household items. 	
Well Development	

Definitions Sheet

- Process which removes well drilling fluids, mud, cutting, from a newly installed well.
- Completed by pumping or surging compressed air to get the material from the well out.

