

### Naval Weapons Station Yorktown Cheatham Annex

### Environmental Restoration Advisory Board Meeting November 10, 2022



- Logistics And Remarks From The Moderator
- > Welcome/Introductions
- Co-chair Opening Remarks
- CAX Environmental Restoration Program Update
- CAX Site 7 Field Work Update
- CAX AOC 8 Field Work Update
- Co-chair Closing Remarks
- Final Comments/Closing Remarks



# Logistics And Remarks From The Moderator Megghan Smith/CH2M

- > Welcome/Introductions
- Co-chair Opening Remarks
- CAX Environmental Restoration Program Update
- CAX Site 7 Field Work Update
- CAX AOC 8 Field Work Update
- > Co-chair Closing Remarks
- Final Comments/Closing Remarks



Please mute your phones and/or microphones

- Please do not interrupt the presentations, there will be time for questions following each presentation
- If connecting through the computer, questions may also be asked through the chat function

Click here to show the Chat Window



- Electronic copies of this presentation are available on the public website
- This is being recorded





- Logistics And Remarks From The Moderator
- Welcome/Introductions
   Bryan Peed/CAX Remedial Project Manager for the Navy
- Co-chair Opening Remarks
- CAX Environmental Restoration Program Update
- CAX Site 7 Field Work Update
- CAX AOC 8 Field Work Update
- > Co-chair Closing Remarks
- Final Comments/Closing Remarks



- > Logistics And Remarks From The Moderator
- > Welcome/Introductions
- Co-chair Opening Remarks
   Captain Horgan/NWS Yorktown CAX Commanding Officer
   Steven Oyer/RAB Community Co-Chair
- CAX Environmental Restoration Program Update
- CAX Site 7 Field Work Update
- > CAX AOC 8 Field Work Update
- Co-chair Closing Remarks
- Final Comments/Closing Remarks



- > Logistics And Remarks From The Moderator
- > Welcome/Introductions
- > Co-chair Opening Remarks
- CAX Environmental Restoration Program Update
   Bryan Peed/CAX Remedial Project Manager for the Navy
- CAX Site 7 Field Work Update
- CAX AOC 8 Field Work Update
- > Co-chair Closing Remarks
- Final Comments/Closing Remarks



### Cheatham Annex Environmental Restoration Program Overview and Update

## **Program Overview**



Cheatham Annex (CAX) Environmental Restoration Program (ERP)

- > 21 Sites and Areas of Concern (AOC)
  - 7 sites/AOCs currently under investigation
  - 14 sites/AOCs no further action required



# **21 ERP Sites**





- SI (2 sites)
- RI/FS (4 sites)
- > RA (1 site)
- Closed (14 sites)

## CAX ERP – Site 4 Outdated Medical Supply Disposal Area





Work Completed since last RAB: •Continued work on drafting Feasibility Study (FS) for all site media

Work In Progress: •Draft FS for all media



Water Body

Approximate Study Area (Active RI)(6.7 acres)

Storm Water Line

- Shallow Groundwater Contours (dashed where inferred)

11.66 - Groundwater Elevation (ft amsl) Imagery: Virginia Commonwealth, 2017

## CAX ERP – Site 7 Old DuPont Disposal Area





Work Completed since last RAB:

- Finalized a Vapor Intrusion (VI) Technical Memorandum (TM) summarizing VI Results
- Conducted Phase 1 groundwater delineation field activities.

Phase 1 Field Work Summary on Agenda for today



## CAX ERP – Site 9 Transformer Storage Area



### Work Completed since last RAB:

- Collaborated with the USEPA & VDEQ to determine a path forward for the site
- Drafted Draft Expanded Site Inspection (ESI) report documenting field investigations

#### Work In Progress:

 Submit ESI report to the EPA & DEQ documenting the field investigation





## CAX ERP – AOC 1 South Scrap Metal Dump



Work Completed since last RAB:

• Finalized RI report

Work In Progress:

Began drafting FS report





### **CAX ERP – AOC 6** Trinitrotoluene (TNT)/Ammonia Settling Pits Subareas





## CAX ERP – AOC 8 Area South of Site 7



#### Work Completed since last RAB:

 Conducted Phase 2 groundwater sampling activities as outlined in the groundwater delineation and sampling SAP

#### Phase 2 Field Work Summary on Agenda for today

#### Work In Progress:

• Preparing an RI Addendum report documenting groundwater delineation field activities





#### Legend

- Permanent Monitoring Well
- Removed/Abandoned Monitoring Well
- Approximate Study Area (Active RI)(2.5 acres)
  Final Excavation Limits
- Elevation Contour prior to Removal Action (feet) Inferred Groundwater Contour (feet)
- Groundwater Contour (feet)
- Approximate Direction of Groundwater Flow

5.34 - Groundwater Elevation Imagery: Virginia Commonwealth, 2017

## CAX ERP – AOC 9 Penniman Lake Historical Industrial Areas



#### Work Completed since last RAB:

- Completed Phase 2 field investigation activities
- Completed explosives contamination field activities

#### Work In Progress:

- Preparation for USEPA and VDEQ discussions to determine a path forward for the site
- Began preparing an ESI Report to document field investigation activities.





#### Legend



- Intermittent Creek
- ----> Underground Stormwater Pipe
- Overflow Pipe

- Catch and Release Fishing Restriction
- No Further Action Site Adjacent to AOC 9(13.1 acres)
- Active SI Historic Study Area (approximate)(170.9 acres) Active RI Sites Adjacent to AOC 9(1.4 acres)



- > Logistics And Remarks From The Moderator
- > Welcome/Introductions
- Co-chair Opening Remarks
- > CAX Environmental Restoration Program Update
- CAX Site 7 Field Work Update
   Stephanie Sawyer/CH2M
- CAX AOC 8 Field Work Update
- > Co-chair Closing Remarks
- Final Comments/Closing Remarks



### Cheatham Annex Site 7 – Old DuPont Disposal Area Field Work Update





- Background
- Environmental Investigation Objectives
- Field Investigation Approach, Activities, and Results
- Next steps
- Questions and Comments



# **Site 7 Location**





# Background



- CAX consists of 2,300 acres of land on the York-James Peninsula and was the location of the former Penniman Shell Loading Plant, a large powder and shell loading facility operated by E.I. DuPont de Nemours & Co. during World War I.
- Site 7 was 1-acre disposal area for wastes from the former City of Penniman and the former DuPont facility
- Environmental investigations at the site that started in 2004 found that soil and groundwater were impacted
- Soil and debris were removed in 2007 and 2008, site was backfilled, and shoreline regraded to a lesser slope

# **Site Pictures**





### Shoreline facing north - 2006



#### Shoreline facing south - 2008



Site facing west - 2008



#### Shoreline facing south - 2013



Site facing west - current

# **Environmental Investigation Objectives**



- After the debris and contaminated soil were removed, the NAVY, USEPA and VDEQ determined that an additional groundwater investigation was needed to evaluate groundwater contamination at the site
- The investigation objectives were to:
  - determine the horizontal and vertical extents of the volatile organic compounds tetrachloroethene (TCE) and its degradation products in groundwater
  - Determine if these constituents were present at concentrations posing potential risks to human health and ecological receptors.
  - Collect geochemical and geophysical data\* to support the evaluation of remedial alternatives, if needed.

\*grainsize, total oxygen demand, alkalinity, chloride, nitrate, nitrite, sulfate, sulfide, methane, ethane, ethene



### >Investigation is conducted in two phases:

- Phase I: Collected Direct Push Technology (DPT) groundwater samples and Hydraulic Profiling Tool (HPT) data to understand groundwater contamination and site hydrogeology (2021 and 2022)
- Phase II: Install and sample groundwater monitoring wells to confirm DPT results (2023)

# Phase I Field Activities (Nov 2021 and May 2022)



- HPT advanced at 8 locations (see Site 7 Groundwater Contaminant Distribution Figure)
- One shallow and one deep groundwater samples collected at 35 locations and analyzed for site contaminants



Hydrogeological data collection with HPT tooling



Groundwater sample collection with DPT rig

# **Phase I Preliminary Results**



- Highest TCE concentration was found at DW54 (550 ug/l) (see Site 7 Groundwater Contaminant Distribution Figure)
- TCE degradation products also found in groundwater (notably cis-1,2-DCE)
- Groundwater contamination present mostly in the deeper portion of the aquifer
- Presence of a high conductivity zone from the ground surface to approximately 45 feet below ground surface, which transitions into a low conductivity zone beyond 45 feet deep (see Site 7 Cross Section)

# Site 7 Groundwater Contaminant Distribution





# **Site 7 Cross Section**





# **HPT Log Example**



# Next steps



- Install, gauge and sample permanent groundwater monitoring wells (2023)
- Prepare a risk assessment based on monitoring well groundwater data to determine if contaminant concentrations in groundwater represent a potential risk to human health (2024)
- Prepare a report to document findings (2024)



- > Logistics And Remarks From The Moderator
- > Welcome/Introductions
- Co-chair Opening Remarks
- > CAX Environmental Restoration Program Update
- CAX Site 7 Field Work Update
- CAX AOC 8 Field Work Update
   Stephanie Sawyer/CH2M
- > Co-chair Closing Remarks
- Final Comments/Closing Remarks



### Cheatham Annex AOC 8 – Area South of Site 7 Field Work Update

# Agenda



- Background
- Environmental Investigation Objectives
- Environmental Investigation Activities and Results
- Next steps
- Questions and Comments



\brooksidefiles\GIS\_SHARE\ENBG\00\_ProlN\Navy\CLEAN\MIDLANT\CheathamAnnex\MapFiles\AOC\_&RIAddendumSAP\Fiqure1\_BaseLocationMap.mxd1/9/2019 icarr3



# Background



- CAX consists of 2,300 acres of land on the York-James Peninsula; it was the location of the former Penniman Shell Loading Plant, a large powder and shell loading facility operated by DuPont de Nemours & Co. during World War I.
- AOC 8 is a 1.5-acre site that was used as a borrow pit and then as a debris disposal once the borrow pit was no longer in use.
- Environmental investigations at the Site which started in 1999 found that soil and debris should be removed and that groundwater may be impacted
- 17.56 tons of debris (concrete, asphalt, wood/lumber, metal debris, bricks, and other inert debris) and 22,873 tons of nonhazardous soil were removed between 2017 and 2019
- Site was regraded and replanted with native species

## **Site Pictures**







AOC 8 shoreline facing north



AOC 8 facing west

AOC 8 facing northeast

# Environmental Investigation Objectives



- The investigation objectives were to:
  - Determine the horizontal and vertical extents of residual tetrachloroethylene, a volatile organic compound (VOC) in groundwater
  - Determine if this constituent was present at concentrations posing potential risks to human health and ecological receptors.
  - Collect geochemical and geophysical data\* to support the evaluation of remedial alternatives, if needed.

\*grainsize, total oxygen demand, alkalinity, chloride, nitrate, nitrite, sulfate, sulfide, methane, ethane, ethene

# 2021 Environmental Investigation Activities and Results (Phase I)



- Phase I activities and results were presented during the November 2021 RAB Meeting
- Collected Hydraulic Profiling Tool (HPT) data and Direct Push Technology (DPT) groundwater samples to understand site hydrogeology and groundwater contamination
- Groundwater was delineated, and hydrogeology characteristics were defined



Hydrogeological data collection with HPT tooling



# 2022 Environmental Investigation Activities (Phase 2)



- Installed and developed 6 permanent groundwater monitoring wells
- Collected groundwater samples and analyzed for VOCs
- Collected water quality, geochemical, and geophysical parameters
- Measured water level in existing and new monitoring wells
- Described and logged subsurface soil lithology during monitoring well installation



Installation of groundwater monitoring well

## 2022 Environmental Investigation Results



Only tetrachloroethene exceeded the project action limits in one groundwater monitoring well, all other analytes were not detected.

| Sample ID                | PAL   | CAA08-<br>GW03-<br>0622 |   | CAA08-<br>GW04-<br>0622 |   | CAA08-<br>GW05-<br>0622 |   | CAA08-<br>GW07-<br>0622 |   | CAA08-<br>GW08-<br>0622 |   | CAA08-<br>GW09-<br>0622 |   | CAA08-<br>GW10-<br>0622 |   | CAA08-<br>GW10P-<br>0622 |   | CAA08-<br>GW11-<br>0622 |   | CAA08-<br>GW12-<br>0622 |   |
|--------------------------|-------|-------------------------|---|-------------------------|---|-------------------------|---|-------------------------|---|-------------------------|---|-------------------------|---|-------------------------|---|--------------------------|---|-------------------------|---|-------------------------|---|
| 1,1-Dichloroethene       | 280   | 2                       | U | 2                       | U | 2                       | U | 2                       | U | 2                       | U | 2                       | U | 2                       | U | 2                        | U | 2                       | U | 2                       | U |
| cis-1,2-Dichloroethene   | 36    | 2                       | U | 2                       | U | 2                       | U | 2                       | U | 2                       | U | 2                       | U | 2                       | U | 2                        | U | 2                       | U | 2                       | U |
| Tetrachloroethene        | 11    | 0.91                    | J | 0.8                     | J | 2                       | U | 20                      |   | 4.3                     |   | 2                       | U | 2                       | J | 1.7                      | J | 2                       | U | 2                       | U |
| trans-1,2-Dichloroethene | 68    | 2                       | U | 2                       | U | 2                       | U | 2                       | U | 2                       | U | 2                       | U | 2                       | U | 2                        | U | 2                       | U | 2                       | U |
|                          |       |                         |   |                         |   |                         |   |                         |   |                         |   |                         |   |                         |   |                          |   |                         |   |                         |   |
| Trichloroethene          | 0.49  | 2                       | U | 2                       | U | 2                       | U | 2                       | U | 2                       | U | 2                       | U | 2                       | U | 2                        | U | 2                       | U | 2                       | U |
| Vinyl chloride           | 0.019 | 2                       | U | 2                       | U | 2                       | U | 2                       | U | 2                       | U | 2                       | U | 2                       | U | 2                        | U | 2                       | U | 2                       | U |

Notes:

Data is unvalidated

All data in micrograms per liter

J - Analyte present. Value may or may not be accurate or precise

U - The material was analyzed for, but not detected



# **Groundwater Sampling Results**







- Prepare a risk assessment to determine if residual tetrachloroethene concentrations in groundwater represent a potential risk to human health (currently under preparation)
- Prepare a Remedial Investigation Addendum Report to document the 2021 and 2022 field activities and risk assessment results (2023)



- > Logistics And Remarks From The Moderator
- > Welcome/Introductions
- Co-chair Opening Remarks
- CAX Environmental Restoration Program Update
- CAX Site 7 Field Work Update
- CAX AOC 8 Field Work Update
- Co-chair Closing Remarks
   Captain Horgan/NWS Yorktown CAX Commanding Officer
   Steven Oyer/RAB Community Co-Chair
- Final Comments/Closing Remarks



- > Logistics And Remarks From The Moderator
- > Welcome/Introductions
- Co-chair Opening Remarks
- CAX Environmental Restoration Program Update
- CAX Site 7 Field Work Update
- CAX AOC 8 Field Work Update
- > Co-chair Closing Remarks
- Final Comments/Closing Remarks
   Bryan Peed/CAX Remedial Project Manager for the Navy





For additional Information regarding the Naval Weapons Station Yorktown ERP at CAX, please contact:

Bryan Peed - Navy's ERP manager for CAX (757) 341-0480 or <u>bryan.peed@navy.mil</u>

Jeff Kissler – Environmental Director for Naval Weapons Station Yorktown (757) 887-4086 or john.j.kissler1@navy.mil

> Naval Weapons Station Yorktown Public Affairs Officer (757) 887-4939

> > Visit CAX's ERP Public Web Page at: https://go.usa.gov/xSvFA