

#### **FINAL**

# Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

# Naval Support Activity Crane Crane, Indiana



#### Naval Facilities Engineering Command Midwest

Contract Number N62470-08-D-1001 Contract Task Order F279

September 2013

# FINAL BASEWIDE PENNSYLVANIAN BEDROCK BACKGROUND GROUNDWATER EVALUATION REPORT

#### NAVAL SUPPORT ACTIVITY CRANE CRANE, INDIANA

#### COMPREHENSIVE LONG-TERM ENVIRONMENTAL ACTION NAVY (CLEAN) CONTRACT

Submitted to:
Naval Facilities Engineering Command Midwest
201 Decatur Avenue Building 1A, Code EV
Great Lakes, Illinois 60088

Submitted by:
Tetra Tech
234 Mall Boulevard, Suite 260
King of Prussia, Pennsylvania 19406

CONTRACT NUMBER N62470-08-D-1001 CONTRACT TASK ORDER F279

SEPTEMBER 2013

PREPARED UNDER THE DIRECTION OF:

TIMOTHY S. EVANS PROJECT MANAGER

**TETRA TECH** 

PITTSBURGH, PENNSYLVANIA

APPROVED FOR SUBMISSION BY:

JOHN T. TREPANOWSKI, P.E.

PROGRAM MANAGER

**TETRA TECH** 

KING OF PRUSSIA, PENNSYLVANIA

Section: Table of Contents and Abbreviations and Acronyms
Page 1 of 4

#### **TABLE OF CONTENTS**

| SECT | <u> ION</u> |                                                             | PAGE NO. |
|------|-------------|-------------------------------------------------------------|----------|
| ABB  | REVIATIO    | NS AND ACRONYMS                                             | 9        |
| 1.0  | INTROI      | DUCTION                                                     | 1-1      |
|      | 1.1         | PURPOSE AND SCOPE                                           |          |
|      | 1.2         | REPORT ORGANIZATION                                         | 1-3      |
| 2.0  | BACK        | BROUND INFORMATION                                          | 2-1      |
|      | 2.1         | FACILITY LOCATION AND DESCRIPTION                           | 2-1      |
|      | 2.2         | FACILITY HISTORY                                            | 2-1      |
|      | 2.3         | GEOLOGY                                                     | 2-2      |
|      | 2.3.1       | Unconsolidated Deposits                                     | 2-2      |
|      | 2.3.2       | Bedrock                                                     |          |
|      | 2.4         | HYDROGEOLOGY                                                |          |
|      | 2.5         | PREVIOUS BACKGROUND AND PENNSYLVANIAN BEDROCK STUDIES       | 32-5     |
| 3.0  | METHO       | DDOLOGY                                                     | 3-1      |
|      | 3.1         | DATA SET SELECTION AND RATIONALE                            | 3-1      |
|      | 3.1.1       | SWMU 01, Mustard Gas Burial Ground                          | 3-2      |
|      | 3.1.2       | SWMU 08, Building 106 Pond                                  | 3-3      |
|      | 3.1.3       | SWMU 09, Pesticide Control Area/R-150 Tank                  |          |
|      | 3.1.4       | SWMU 10, Rockeye                                            |          |
|      | 3.1.5       | SWMU 12, Mine Fill A                                        |          |
|      | 3.1.6       | SWMU 13, Mine Fill B                                        |          |
|      | 3.1.7       | SWMU 16, Cast High Explosives Fill/Building 146 Incinerator | 3-5      |
|      | 3.1.8       | SWMU 18, Load and Fill Area                                 |          |
|      | 3.1.9       | SWMU 22, Lead Azide Pond                                    |          |
|      | 3.2         | DATA USABILITY                                              |          |
|      | 3.2.1       | Sampling and Analyses                                       |          |
|      | 3.2.2       | Data Quality Review                                         |          |
|      | 3.3         | STATISTICAL ANALYSIS                                        | 3-10     |
| 4.0  |             | ATION OF BACKGROUND CONCENTRATIONS                          | 4-1      |
|      | 4.1         | STATISTICAL EVALUATION SUMMARY                              |          |
|      | 4.2         | COMPARISON OF SITE TO BACKGROUND CONCENTRATIONS             | 4-1      |
| REFE | RENCES      |                                                             | R-1      |

NSA Crane
Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report
Revision: 0
Date: September 2013

Section: Table of Contents and Abbreviations and Acronyms
Page 2 of 4

#### **TABLE OF CONTENTS (Continued)**

#### **APPENDICES**

| Α | 1989 INDIANA GEOLOGICAL SURVEY STUDY INFORMATION |
|---|--------------------------------------------------|
| В | BORING LOGS AND WELL CONSTRUCTION DIAGRAMS       |
| С | CORRELATION PLOTS OF METALS AND pH               |
| D | GROUNDWATER POTENTIOMETRIC SURFACE MAPS          |
| Е | STATISTICAL ANALYSIS                             |

#### **TABLES**

#### **NUMBER**

| 3-1 | Monitoring Well Information |
|-----|-----------------------------|
| 3-2 | Analytical Data Set         |

4-1 **Summary Statistics** 

#### **FIGURES**

#### **NUMBER**

| 2-1 | Facility Location and Bedrock Geologic Map |
|-----|--------------------------------------------|
| 2-2 | Solid Waste Management Units               |
| 0 0 | Conform Conton Man                         |

2-3 Surface Geology Map

- 2-4 Stratigraphic Column for Crane Area
- 3-1 Monitoring Well Location Map

021304/P CTO F279

Revision: 0

Date: September 2013

Section: Table of Contents and Abbreviations and Acronyms

Page 3 of 4

#### ABBREVIATIONS AND ACRONYMS

ABG Ammunition Burning Grounds

AOC Area of Concern

ASD Applied Science Department

B&R Environmental Brown and Root Environmental

bgs below ground surface

CLEAN Comprehensive Long-Term Environmental Action Navy

COC Chemical of concern

COPC Chemical of potential concern

CTO Contract Task Order

DoD Department of Defense

DQI Data quality indicator

EAD Explosive Actuating Device

FOD Frequency of detection

IA Initial Assessment

IAS Initial Assessment Study

IDEM Indiana Department of Environmental Management

IGS Indiana Geological Survey

KM Kaplan-Meier

NACIP Navy Assessment and Control of Installation Pollutants

NAD Naval Ammunition Depot

NAD83 North American Datum of 1983

NAVD88 North American Vertical Datum of 1988 NAVFAC Naval Facilities Engineering Command

NEESA Naval Energy and Environmental Support Activity

NSA Naval Support Activity

NSWC Naval Surface Warfare Center
ORP Oxidation-Reduction Potential

Plz Pennsylvanian bedrock (lower zone)

Pmz Pennsylvanian bedrock (middle zone)

Puz Pennsylvanian bedrock (upper zone)

RCRA Resource Conservation and Recovery Act

RFI RCRA Facility Investigation

SP Special Program

SWMU Solid Waste Management Unit

021304/P CTO F279

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report
Revision: 0
Date: September 2013

Section: Table of Contents and Abbreviations and Acronyms
Page 4 of 4

TAL Target Analyte List Tetra Tech Tetra Tech, Inc. μg/L Micrograms per liter

**USACE** United States Army Corps of Engineers

U.S. EPA United States Environmental Protection Agency

UTL Upper tolerance limit

WES Waterways Experiment Station

CTO F279 021304/P

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 1 Page 1 of 3

#### 1.0 INTRODUCTION

This report presents results and conclusions of the Basewide Pennsylvanian Bedrock Background Groundwater Evaluation at Naval Support Activity (NSA) Crane, Crane, Indiana. This report has been prepared for the U.S. Department of the Navy by Tetra Tech, Inc., for the Naval Facilities Engineering Command (NAVFAC) Midwest under Contract Task Order (CTO) F279 of the Comprehensive Long-Term Environmental Action Navy (CLEAN) Contract Number N62470-08-D-1001.

This background groundwater evaluation was conducted to support applicable Resource Conservation and Recovery Act (RCRA) Corrective Action requirements, including RCRA Facility Investigations (RFIs) and other related environmental investigations to be conducted at NSA Crane under the Navy's Installation Restoration Program. The environmental investigations are the basis for determining whether groundwater conditions at a particular SMWU represent unacceptable risks to human health if exposure occurs. The background groundwater evaluation provides data on metals concentrations in groundwater in the Pennsylvanian-age aquifer at NSA Crane not impacted by site operations at Solid Waste Management Units (SWMUs) or Areas of Concern (AOCs). The first step when evaluating the risk of inorganic chemicals is generally a comparison of the chemical concentrations measured in site groundwater to their background concentrations. Background concentrations are those concentrations that would be naturally occurring in the absence of impact from site operations. These comparisons are made because many inorganic chemicals occur naturally in the environment. Concentrations associated with specific SWMUs may then be compared with background concentrations to determine if a contaminant release has potentially occurred as a result of the site operations. In accordance with RCRA (U.S. EPA, 1989a) and risk assessment guidance (U.S. EPA, 1989b), if measured site concentrations are not significantly greater than background concentrations, it may be inferred that an operationally related release of those contaminants has not occurred, and the site investigation is often terminated at that point if inorganics are the only issue. If site concentrations exceed background concentrations, additional assessment and/or remediation may be warranted.

#### 1.1 PURPOSE AND SCOPE

This evaluation was initiated because metals in groundwater in Pennsylvanian-age bedrock throughout NSA Crane have consistently been identified as chemicals of concern (COCs), but the concentrations are generally consistent across NSA Crane. Based on the ubiquity of the specific metals detected and the similarity of concentrations, a problem statement was developed for this evaluation: Are metals concentrations detected in groundwater from Pennsylvanian bedrock at various SWMUs and AOCs at

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 1 Page 2 of 3

NSA Crane representative of natural background levels, or are they attributable, either directly or indirectly, to contaminant releases associated with SWMU or AOC operations or other past uses? If chemicals are released to the environment, groundwater metals concentrations can potentially increase as a result. This could occur as direct contamination if released chemicals migrate directly to groundwater or indirectly if organic chemicals released to the environment alter the local geochemical conditions [e.g., pH and oxidation-reduction (redox) potential] to increase the rate of leaching of inorganic constituents from the geologic matrix of the bedrock. In general, a reduction in pH or redox potential increases the potential for leaching. Each inorganic constituent in the geologic matrix, usually in the form of metal salts or chemical complexes, is affected differently by a given change in geochemical conditions. Another factor for consideration is that Pennsylvanian-age bedrock at NSA Crane is relatively high in organic carbon and that this naturally occurring carbon could lead to the same geochemical conditions

The primary objective of this evaluation was to establish a statistically based data set of concentrations of inorganic constituents in groundwater in Pennsylvanian-age bedrock at NSA Crane for comparison with site data to determine whether detected constituents are site-related or background conditions and to identify chemicals of potential concern (COPCs) to be further evaluated in a risk assessment. The secondary objective of this investigation was to compile the background data so that a minimum detectable concentration difference between contaminated groundwater and background groundwater data sets could be computed for individual site investigations. The intent was that the background data set would enable the detection of concentration differences between data sets equal to two standard deviations of the background metal concentrations.

conducive to metals leaching as a chemical contaminant release.

The background data set presented in this report is intended to be a benchmark to which past, current, and future NSA Crane SWMU and AOC investigation groundwater data will be compared. The background data set is to be applied to investigations of groundwater in Pennsylvanian-age bedrock at NSA Crane. Furthermore, the data set is intended to be representative of and comparable for total metals concentrations rather than dissolved metals concentrations from filtered samples. Total metals values represents the sum of metals concentrations in the dissolved and suspended solids phases of a groundwater sample that are recoverable by standard sample digestion processes for environmental investigations. This evaluation has been limited to the metals analyzed for [i.e., Target Analyte Metals (TAL) metals and tin], as these are the metals evaluated in RFIs at NSA Crane.

This evaluation was an observational study that used available groundwater data from RFIs that have been conducted throughout NSA Crane to date. Because the data sets from these RFIs were validated

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 1 Page 3 of 3

and used for decision-making purposes, no data collection was conducted specifically for the purpose of

characterizing basewide groundwater conditions.

1.2 REPORT ORGANIZATION

The remaining sections of this report are organized as follows:

• Section 2.0 provides a description of NSA Crane physical characteristics, brief summaries of the

SWMUs and AOCs at the facility, and the geology and hydrogeology of the Pennsylvanian-age

bedrock at NSA Crane.

• Section 3.0 describes the methodology used in this evaluation. It includes the data set development

methodology, including monitoring well selection and rationale, and the statistical methodology for

evaluation of the data set.

Section 4.0 provides the results of the evaluation and a methodology for use of the findings of this

report for data comparisons in future site investigations.

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 2 Page 1 of 6

#### 2.0 BACKGROUND INFORMATION

This section provides a discussion of site characteristics at the NSA Crane facility, including site location, physiography, topography, and land use; site history; and, geology and hydrogeology. It also includes a discussion of previous background and Pennsylvania bedrock studies.

#### 2.1 FACILITY LOCATION AND DESCRIPTION

NSA Crane is situated in a rural area of south-central Indiana. NSA Crane is located in the southern portion of Indiana, approximately 75 miles southwest of Indianapolis, 60 miles northwest of Louisville, Kentucky, and immediately east of Burns City and Crane Village, Indiana. NSA Crane encompasses approximately 62,463 acres or approximately 98 square miles of the northern portion of Martin County and smaller portions of Greene, Daviess, and Lawrence Counties. A location map of the NSA Crane facility is presented as Figure 2-1.

NSA Crane is located in the unglaciated area of the Crawford Upland Physiographic Province of the Southern Hills and Lowlands Region of Indiana. This province is characterized as a rugged, highly vegetated, dissected plateau bounded by the Mitchell Plain Physiographic Province to the east and the Wabash Lowland Physiographic Province to the west (Murphy and Wade, 1998). The terrain of NSA Crane is predominantly rolling, with moderately incised stream valleys throughout and occasional flat areas in the central and northern portions of the facility. Ground surface elevations across NSA Crane range from approximately 500 feet to 850 feet relative to the North American Vertical Datum of 1988 (NAVD88).

#### 2.2 FACILITY HISTORY

The facility was commissioned in 1941 as the Naval Ammunition Depot (NAD) Burns City to serve as an inland munitions production and storage center for the Navy. Operations at the facility originally included production, testing, and storage of ordnance. The facility was constructed on land publicly acquired under the White River Land Utilization Project (35,000 acres) and land purchased from private ownership (26,830 acres) beginning in 1934. Prior to its acquisition by the Navy, the land was largely used for timber and agriculture (Tetra Tech, 2001). The name of the facility was changed in 1943 to NAD Crane, in 1975 to the Naval Weapons Support Center, and in 1992 to Naval Weapons Support Center (NSWC) Crane. In 2003, NSWC Crane operations fell under the command structure of NSA Crane during regional reorganization by the Navy. Department of Defense (DoD) ammunition procurement responsibility was transferred to the Army in 1977. The Army assumed ordnance production, storage, and related responsibilities at the facility, which continues to the present.

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 2 Page 2 of 6

Initial environmental investigations performed at NSA Crane were the Initial Assessment (IA) (U.S. Army,

1978) and Initial Assessment Study (IAS) (NEESA, 1983). The purpose of the IA was to investigate

potential contaminant releases to the environment from past operations and to determine the potential of

these releases to migrate beyond the facility boundaries. It was completed in 1977 and consisted of a

records search and interviews with former and present employees at NSA Crane. The intent of the IAS

was to identify and assess sites posing a potential threat to human health and the environment from past

hazardous materials operations. It began in response to the Navy Assessment and Control of Installation

Pollutants (NACIP) Program and was completed in 1983 by the Naval Energy and Environmental Support

Agency (NEESA) with assistance from the Ordnance Environmental Support Agency and United States

Army Corps of Engineers (USACE) Waterways Experiment Station (WES). Although none of the sites

investigated were determined to represent immediate human health or environmental threats, 14 sites

were recommended for further study to evaluate potential long-term impacts.

Based on these initial assessments and subsequent investigations, 34 SWMUs and a small number of

AOCs requiring environmental investigation have been identified at NSA Crane. Figure 2-2 shows the

locations of the SWMUs with currently active or completed environmental corrective actions. Because

NSA Crane operates under a RCRA Part B permit, investigation and remediation activities at the SWMUs

are conducted under RCRA corrective action, administered by Indiana Department of Environmental

Management (IDEM).

2.3 GEOLOGY

The geology at NSA Crane is generally characterized by thin overburden deposits overlying bedrock.

The overburden deposits at NSA Crane generally consist of two types, Quaternary-age unconsolidated

deposits and unconsolidated residual soil derived from underlying bedrock. With the exception of minor

outwash and lacustrine deposits in the northwestern comer of the facility, NSA Crane was unglaciated

during the Pleistocene epoch. Bedrock underlying NSA Crane consists of sedimentary rocks from the

Lower Pennsylvanian-age Raccoon Creek Group and Upper Mississippian-age Stephensport and West

Baden Groups.

2.3.1 <u>Unconsolidated Deposits</u>

The Quaternary-age deposits consist of alluvial (stream-derived sediments), colluvial (sediments

deposited at the foot of a slope via gravity), and glacial outwash deposits consisting of silt, sand, and

021304/P 2-2 CTO 0083

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 2 Page 3 of 6

gravel; lacustrine deposits consisting of clay, silt, and sand; and loess deposits consisting of clay and silt.

Unconsolidated deposits at NSA Crane can be found as deep as 65 feet bgs (Nohrstedt et al., 1998).

Soils at NSA Crane were derived from underlying sedimentary rocks of the Lower Pennsylvanian

Raccoon Creek Group and Upper Mississippian Stephensport and West Baden Groups and consist of

clay, silt, sand, and fragmented and/or weathered bedrock.

2.3.2 Bedrock

NSA Crane is located on the eastern edge of the Illinois Structural Basin. The Pennsylvanian- and

Mississippian-age bedrocks dip to the west-southwest and southwest at approximately 30 to 35 feet per mile

(Kvale, 1992). Bedrock underlying NSA Crane consists of sedimentary rocks from the Lower

Pennsylvanian-age Raccoon Creek Group and Upper Mississippian-age Stephensport and West Baden

Groups. Figure 2-1 shows the geology of Indiana, and Figure 2-3 shows the surficial geology of NSA

Crane. A generalized stratigraphic column of bedrock in the NSA Crane area is shown on Figure 2-4.

The Lower Pennsylvanian-age bedrock (Raccoon Creek Group) at the facility primarily consists of

interbedded sandstone, siltstone, shale, and coal with total thicknesses varying from 0 to more than

300 feet (Fisher, 1996). The underlying Missisippian-age bedrock consists of limestone, shale, and

sandstone (Murphy and Wade, 1995 and Palmer, 1969). The Raccoon Group lies unconformably on the

Mississippian-age bedrock units; the relief of the unconformity has been measured to be as much as

100 feet (Kvale, 1992).

Pennsylvanian-age bedrock is the uppermost bedrock unit across most of NSA Crane, with approximately

74 percent (46,280 acres or 72 square miles) of NSA Crane covered by the Raccoon Creek Group.

Mississippian-age bedrock is principally exposed in the major drainages in the eastern half of NSA Crane,

where streams have eroded the Pennsylvanian-age bedrock caprock. A large number of SWMUs are

located on ridges or other topographically high areas, primarily on Pennsylvanian-age bedrock. One

exception to this generalization is the Ammunition Burning Ground (ABG), which is located over

Mississippian bedrock (Fisher, 1996).

The Raccoon Creek Group at NSA Crane is interpreted to be interbedded clastic sediments of the

Mansfield Formation (Kvale, 1994). The sedimentary facies of the Mansfield Formation at NSA Crane

have been interpreted to be of tide-dominated estuarine depositional environments (Kvale, 1992). The

Mansfield Formation at NSA Crane is characterized by abundant shale and siltstone with thinly

interbedded sandstone and mudstone and thin discontinuous coal units (Kvale, 1994; Shaver et al.,

1986). The lower section of the Mansfield Formation is dominated by sandstone (Shaver et al., 1986).

021304/P 2-3 CTO 0083

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 2 Page 4 of 6

2.4 HYDROGEOLOGY

At NSA Crane, groundwater is encountered in surficial unconsolidated units and the underlying bedrock; however, the occurrence of groundwater in the overburden is limited to Quaternary-age units in the northwestern corner of NSA Crane and in alluvial deposits along the major drainages or water bodies. Commonly, groundwater is not encountered in the overburden along ridges or hillslopes, where only a thin residuum of soil is present. If present, groundwater in the overburden in these areas occurs as isolated perched zones.

Groundwater in bedrock at NSA Crane occurs in the Pennsylvanian and Mississippian units. Because shallow bedrock at NSA Crane is primarily Pennsylvanian-age units and the majority of investigations are within these units, this evaluation is limited to Pennsylvanian-age bedrock units. Groundwater in the Pennsylvanian-age bedrock is present in the secondary porosity of the rock units (i.e., jointing, fractures, or bedding contacts), with groundwater entering the bedrock through infiltration. Groundwater flow in the shallow bedrock generally mimics topography, with flow toward the crop line, and groundwater discharging to gullies or hillslopes on the sides of ridges or to surface soils and gradually evaporates. Groundwater in deeper zones flows to regional groundwater discharge areas or base levels; the direction of flow in the deeper zones may be different than in shallow zones.

Groundwater in Pennsylvanian-age bedrock occurs in several individual zones at different depths in the formation sequence. The zones are generally distinguished by marked head elevation differences and are generally isolated from one another vertically by less permeable shale or siltstone units. The zones are typically grouped into three water-bearing zones in the Pennsylvanian-age rock units: upper (Puz), middle (Pmz), and lower zones (Plz). At individual sites, the first encountered water-bearing zone is identified as the Puz; subsequent zones encountered with depth are identified as the Pmz and Plz, accordingly. These zones have not been correlated across NSA Crane, except for cases where sites are in close proximity. For example, a water-bearing zone identified as Puz at one site may correlate stratigraphically with a zone identified as Pmz at an adjacent site. For the purposes of this evaluation, the statistical analyses were performed for the entire data set for wells screened in the Pennsylvanian-age, regardless of zone identification (i.e., Puz, Pmz, or Plz). The rationale for this was primarily that the groundwater geochemistry of the Pennsylvanian-age water-bearing zones was considered to be similar between zones, given the similar lithologies. This also allows for a larger data set and as a result less uncertainty in the statistical evaluation.

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 2 Page 5 of 6

#### 2.5 PREVIOUS BACKGROUND AND PENNSYLVANIAN BEDROCK STUDIES

Background concentrations of select inorganics in soils at NSA Crane were evaluated during a base-wide background soils investigation in 2001 (Tetra Tech, 2001). The objective of the investigation was to identify and chemically characterize native soils based on three factors: depositional environment, grain size, and depth. A total of 16 soil types were identified and evaluated in the report, based on combinations of these three factors. Four depositional environments were identified at NSA Crane, based on the mapped geologic parent material: Pennsylvanian bedrock, Mississippian bedrock, alluvium, and loess. Three predominant grain sizes (clay, silt, and sand) and two depths (surface and subsurface) were also identified as factors possibly contributing to soil chemical characteristics. Soil samples were collected to establish representative background metals concentrations for each of the 16 soil types. The background soil data sets can be used for direct comparison of site data to background data descriptive statistics [minimum, maximum, and average values in a data set as well as upper tolerance limit (UTL) values] or through direct comparison of background and site data distributions using a statistical comparison.

Multiple studies have been conducted at NSA Crane related to characterization of Pennsylvanian-age bedrock and groundwater. These studies, however, have focused principally on the hydrogeological properties and sedimentology of the Pennsylvanian-age aquifers. These studies were completed by the Indiana Geological Survey (with cooperation from USACE WES) and include those by Barnhill (1992); Barnhill and Hansley (1993); Fisher (1996); Fisher, Barnhill, and Revenaugh (1998); and, Kvale (1994).

An assessment of metals in bedrock groundwater in southern Indiana was conducted by the Indiana Geological Survey (IGS) in 1989 to evaluate concentrations of lead exceeding U.S. EPA guidelines in a number of domestic wells in southern Indiana. The study attempted to relate water chemistry to aquifer mineralogy and chemistry through association of analytical results with lithology. The study covered three bedrock regions in southern Indiana. Region 1 included an area where wells were completed in the Devonian-Mississippian-age New Albany Shale, Region 2 covered an area with wells completed in Mississippian-age Salem and/or St. Louis Limestones, and Region 3 covered an area with wells completed in Mississippian and/or Pennsylvanian-age rock in the Wabash Lowland Physiographic Province. Three areas in Region 3 were tested. These areas (Epsom, Odon-Elnora, and Linton) are located in Daviess and Greene Counties. These areas in Region 3 were selected based on mining activities, both surface and subsurface and historical and current (as of 1988). Twenty-eight wells were identified in the study as being screened solely in Pennsylvanian-age bedrock.

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 2 Page 6 of 6

Analyses in the 1989 IGS study included metals (arsenic, barium, cadmium, calcium, chromium, iron,

lead, magnesium, manganese, mercury, potassium, selenium, silver, sodium, strontium, and zinc),

chloride, fluoride, nitrate, sulfate, total dissolved solids, hardness, alkalinity, bicarbonate and carbonate,

as well as water quality parameters of pH, temperature, specific conductance, dissolved oxygen, and Eh.

Appendix A includes the 1989 IGS study results for Region 3, which includes the wells in Pennsylvanian-

age bedrock (shown as highlighted).

The results of the IGS study were not included in the data set for this evaluation. The samples collected

for the 1989 IGS study were field-filtered prior to sample preservation; therefore, the study results

represent dissolved metals. As environmental investigations and risk assessments at NSA Crane are

based on unfiltered samples results (i.e., total metals), the results of the IGS study were not considered

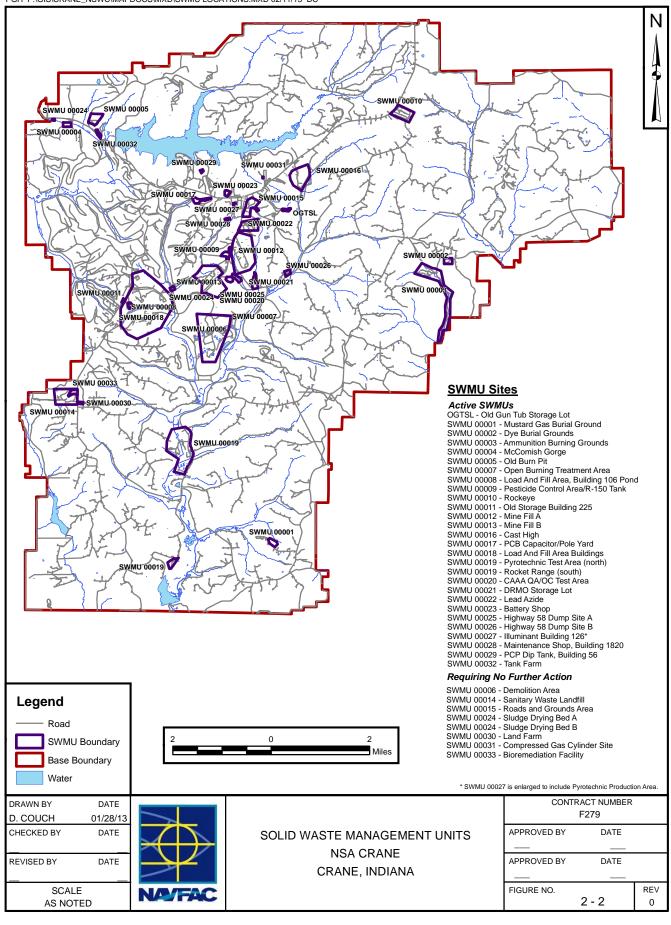
comparable and could not be included in the data set for this evaluation.

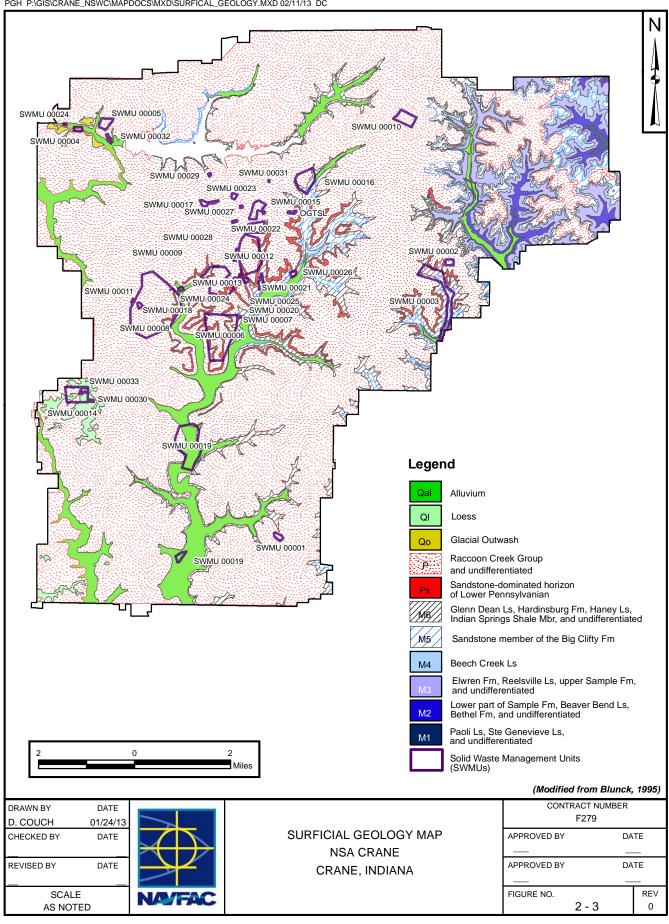
In addition, several chemical (arsenic, iron, and manganese) and geochemical [pH and oxidation-

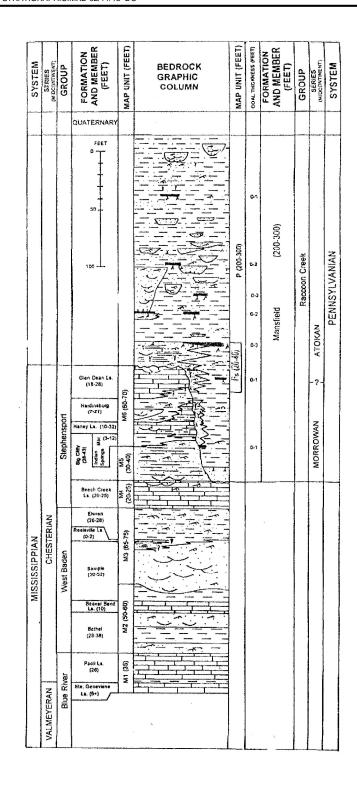
reduction potential (ORP)] parameters were plotted for the 1989 IGS study data against the NSA Crane

background data set (discussed in detail in Sections 3 and 4 of this report). The plots are provided in

Appendix A. The plots indicate that the two data sets represent two separate populations, based on the


clustering of the data. The pH values of the NSA Crane are also lower than those from the 1989 IGS


study. The pH can directly influence potential solubility of metals, with lower pH generally promoting


leaching of metals (discussed in Section 3.1). These differences in the data sets further support

exclusion of the 1989 IGS study data from the current evaluation.

021304/P 2-6 CTO F279







Source: Kvale, 1992; Kvale, 1994

DRAWN BY DATE
D. COUCH 01/24/13
CHECKED BY DATE

REVISED BY DATE

SCALE
AS NOTED



STRATIGRAPHIC COLUMN
FOR CRANE AREA
NSA CRANE
CRANE, INDIANA

| CONTRACT NUMBER<br>F279 |          |  |  |  |  |  |  |
|-------------------------|----------|--|--|--|--|--|--|
| APPROVED BY             | DATE     |  |  |  |  |  |  |
| APPROVED BY             | DATE     |  |  |  |  |  |  |
| FIGURE NO.              | REV<br>0 |  |  |  |  |  |  |

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 3

Page 1 of 10

3.0 METHODOLOGY

This section presents a discussion of the selection and rationale of the groundwater data set and

methods used in the statistical evaluation of the background data.

3.1 DATA SET SELECTION AND RATIONALE

The data set for the background evaluation included data from existing monitoring wells installed in

Pennsylvanian-age bedrock at NSA Crane. No new wells were installed and no samples were collected

for this evaluation.

The background areas and locations for inclusion in the data set were selected to ensure that the data

used represented natural conditions that are unaffected by site-specific operations. The criteria used to

ensure representativeness, followed by a brief description, were as follows:

· Groundwater monitoring wells screened within Pennsylvanian-age bedrock. The wells may be

screened in any of the three water-bearing zones (upper, middle, or lower), but the entire screened

interval must be within the Pennsylvanian bedrock.

Located hydraulically upgradient of or vertically separated from potential site contaminant releases

from a site that has been identified as a potential source of either inorganic or organic contaminants.

Although organic contaminants are not the subject of this evaluation, the presence of organic

contaminants in groundwater could potentially alter chemical oxidation-reduction conditions and

cause metals to leach from the geologic matrix that would otherwise not leach or would not leach as

rapidly. Background well locations were identified by reviewing existing RFI reports and related

information, specifically groundwater elevation contour and flow depictions.

Metals concentration data spanning several years of sampling to ensure that a thoroughly

representative cross-section of groundwater chemistry is included in the statistical analysis.

Metals concentration data representing as much area of NSA Crane as possible to ensure that spatial

variations in the Pennsylvanian aquifer are represented and minimize potential no spatial correlation.

Information regarding monitoring wells at NSA Crane was reviewed to: (1) identify wells screened in the

Pennsylvanian bedrock and (2) determine the wells located in hydraulically upgradient locations and not

021304/P 3-1 CTO F279

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 3

Page 2 of 10

affected by site-specific operations or contamination. The principal sources of information were RFI

reports for individual SWMUs. Twenty-one wells in nine SWMUs were identified that met the criteria

discussed above. Well construction information for these wells is provided in Table 3-1, and the locations

of these wells are shown on Figure 3-1. Boring logs and well construction diagrams for the wells are

provided in Appendix B. Seventeen of the wells selected are screened in the Puz. One well (12MWT33)

is screened in the Pmz, and three wells (01-06, 10C52, and 13MWT28) are screened in the Plz. The four

wells from SWMU 09 did not have a zone identified in the investigation reports; however, based on the

shallow depths of the screened intervals (less than 25 feet bgs), it is assumed that these wells are

screened in the Puz.

Background groundwater data are available for NSA Crane from 1981 to 2012. The quality of the metals

data collected by the U.S. Army Corps of Engineers prior to 2000, however, has been questioned by U.S.

EPA Region 5. Therefore, this data was eliminated from consideration for this evaluation. Data from

filtered samples (i.e., dissolved results) and data for field duplicates, which are only used for quality

control purposes, were also eliminated from consideration. Table 3-2 presents the data set used for this

evaluation. Results from 29 groundwater samples were included in this evaluation. The numbers of

metals per sample varied depending on the SWMU-specific requirements for data quality objectives and

intended use of the data; therefore, the number of total metals results varies by metal. Because the data

were collected over approximately 12 years, the data are considered to encompass natural variations in

groundwater chemistry.

In addition, metals may be susceptible to leaching depending on geochemical conditions, particularly pH.

Therefore, to evaluate whether a correlation exists between concentrations and pH, the concentrations of

individual metals for the background groundwater data were plotted against the measured pH values for

the samples. The plots are provided in Appendix C. No correlations with pH were observed in the data.

Therefore, no further consideration was given to pH in this evaluation.

The following subsections discuss the SWMUs with wells included in the data set. Potentiometric surface

maps for individual SWMUs are provided in Appendix D.

3.1.1 <u>SWMU 01, Mustard Gas Burial Ground</u>

One well from SWMU 01 was selected for inclusion in the background data set, 01-06. SWMU 01 is

located in the southeastern portion of NSA Crane (Figure 2-2). SWMU 01 was originally a 2-acre area

surrounded by a fence. This area was used between the end of World War II and 1956 for disposal of

hazardous materials. Disposal was in the form of shallow burials (pits), typically within 6 feet of the

021304/P 3-2 CTO F279

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 3

Page 3 of 10

ground surface. These burials occurred in a small area within the 2-acre site. The smaller area is

approximately 0.2 acres in size and is called the Primary Burial Area. Additional information related to

past operations, environmental investigation history, and COCs is available in the RFI documents for

SWMU 01 (Tetra Tech NUS, 2004).

The location of well 01-06 is shown on Figure 3-1. The potentiometric surface map from the RFI is

provided in Appendix D. Well 01-06 is situated northeast of SWMU 01. Groundwater flow in the Plz at

SWMU 01 is to the southwest. The screened interval of well 01-06 is separated vertically from the Puz at

SWMU 01. No other potential sites have been identified in the Plz upgradient of this well.

3.1.2 <u>SWMU 08, Building 106 Pond</u>

One well from SWMU 08 was selected for inclusion in the background data set, 08MWT07. SWMU 08 is

located in the west-central portion of NSA Crane (Figure 2-2). SWMU 08 includes Building 106, which

was used for the phosphatizing of steel and a cleaning process that consisted of a caustic wash, a

degreaser, and an acid wash. SWMU 08 also includes Building 107, which was originally used to refinish

wooden and metal boxes. Overflow and floor drainage from Buildings 106 and 107 flowed into the

Building 106 Pond. Additional information related to past operations, environmental investigation history,

and COCs is available in the RFI documents for SWMU 08 (Tetra Tech NUS, 2008).

The location of well 08MWT07 is shown on Figure 3-1. The potentiometric surface map from the RFI is

provided in Appendix D. Well 08MWT07 is situated in the north-central portion of SWMU 08.

Groundwater flow is to the southeast. Well 08MWT07 is cross gradient to upgradient of potential site-

related contamination at SWMU 08, and no other potential sites have been identified in the vicinity of this

well.

3.1.3 SWMU 09, Pesticide Control Area/R-150 Tank

Four wells from SWMU 09 were selected for inclusion in the background data set, 09-10, 09-WTP6,

09T01, and 09T05. SWMU 09 is located in the central portion of NSA Crane, on the western side of

Highway 45 (Figure 2-2). Former Building 55, Building 2189, and the R-150 Tank Area, were originally

defined as SWMU 09. Following initial RFI activities, the actual location of Former Building 55 (the

pesticide control building) was discovered to be further south than thought, and three other potential

source areas of contamination were also identified in the southern section of SWMU 9. Subsequently,

the area was subdivided into three areas for the purposes of investigation: SWMU 09 Pesticide

Control/R-150 Tank Area, SWMU 09 North, and SWMU 09 South. Additional information related to past

021304/P 3-3 CTO F279

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 3

Page 4 of 10

operations, environmental investigation history, and COCs is available in the RFI documents for

SWMU 09 (Tetra Tech NUS, 2005a, and Tetra Tech, 2013).

The locations of these wells are shown on Figure 3-1. In Table 3-1, the screened interval is identified as

"Pennsylvanian" only. The water-bearing zones of these wells were not identified in the RFI; however,

based on the relatively shallow well depths (i.e., less than 25 feet bgs), these wells are interpreted to be

screened in the Puz. The potentiometric surface map from the RFI (Tetra Tech NUS, 2005a) is provided

in Appendix D.

The four wells are situated along a ridgeline that trends north-south, with groundwater flow to the west

and southwest across SWMU 09, away from the ridgeline. The wells are upgradient of potential site-

related contamination at SWMU 09, and no other potential sites have been identified in the vicinity of

these wells.

3.1.4 <u>SWMU 10, Rockeye</u>

One well from SWMU 10, 10C52, was selected for inclusion in the background data set. SWMU 10 is

located in the northeastern portion of NSA Crane, on the eastern side of Highway 45 (Figure 2-2).

Rockeye, an operational ammunition facility, is a 10-acre site located on a flattened ridge crest that

separates the Sulphur Creek and Turkey Creek drainage basins. Additional information related to

operations, environmental investigation history, and COCs is available in the RFI for SWMU 10 (Tetra

Tech NUS, 2005a).

The location of well 10C52 is shown on Figure 3-1. The potentiometric surface map from the RFI is

provided in Appendix D. Well 10C52 is situated at the southeastern corner of SWMU 10. Groundwater

flow is to the north and west across SWMU 10, and there is a northeastern component of flow in the area

of 10C52, toward a tributary to Sulphur Creek. Well 10C52 is upgradient of potential site-related

contamination at SWMU 10, and no other potential sites have been identified upgradient of this well.

3.1.5 SWMU 12, Mine Fill A

Four wells from SWMU 12 were selected for inclusion in the background data set, 12MWT25, 12MWT26,

12MWT27, and 12MWT33. SWMU 12 is located in the central portion of NSA Crane, on the eastern side

of Highway 45 (Figure 2-2). Mine Fill A was used for the production of large mines, depth charges, rocket

heads, aerial bombs, and projectiles. Mine Fill A also includes a battery and soil disposal area that is

located at the extreme southern end of the SWMU. Additional information related to past operations,

021304/P 3-4 CTO F279

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 3 Page 5 of 10

environmental investigation history, and COCs is available in the RFI and other corrective action

documents for SWMU 12 (Tetra Tech NUS, 2010a, 2011a, and 2011b).

The locations of the SWMU 12 wells are shown on Figure 3-1. The potentiometric surface maps for the

Puz and Pmz at SWMU 12 from the RFI (Tetra Tech NUS, 2011a) are provided in Appendix D.

Mine Fill A is located on top of a ridge that was flattened to some extent in the 1940s in preparation for

site development (roads, rail lines, buildings, parking lots). The four wells are situated in the

northernmost area of the north-south trending ridge. Groundwater flow in the Puz and Pmz at SWMU 12

is to the southeast, with components to the east and southwest, away from the ridgeline. The wells are

upgradient of potential site-related contamination at SWMU 12, and no other potential sites have been

identified in the vicinity of these wells.

3.1.6 SWMU 13, Mine Fill B

Three wells from SWMU 13 were selected for inclusion in the background data set, 13MWT01,

13MWT03, and 13MWT28. Mine Fill B is located in the central portion of NSA Crane, on the western side

of Highway 45 (Figure 2-2). Mine Fill B was used for the preparation of nitrate and the production of large

mines, depth charges, rocket heads, aerial bombs, and projectiles. Additional information related to past

operations, environmental investigation history, and COCs is available in the RFI and other corrective

action documents for SWMU 13 (Tetra Tech NUS, 2007, 2010b, and 2011c).

The locations of the SWMU 13 wells are shown on Figure 3-1. The potentiometric surface maps for the

Puz and Plz at SWMU 13 from the RFI (Tetra Tech, 2007) are provided in Appendix D.

Mine Fill B lies on top of a ridge that was flattened to some extent in the 1940s in preparation for the

construction of buildings, roads, and associated parking and staging areas. The four wells are situated in

the northeasternmost area of Mine Fill B, along Highway 45. Groundwater flow in the Puz at SWMU 13 is

to the southwest, with components to the northwest and southeast, away from the ridgeline. The wells

are upgradient of potential site-related contamination at SWMU 13, and no other potential sites have

been identified in the vicinity of these wells.

3.1.7 SWMU 16, Cast High Explosives Fill/Building 146 Incinerator

Two wells from SWMU 16 were selected for inclusion in the background data set, 16MW02 and

16MWT17. SWMU 16 is located in the north-central portion of NSA Crane, on the southern side of

021304/P 3-5 CTO F279

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 3

Page 6 of 10

Highway 45 (Figure 2-2). Building 146, the largest building at SWMU 16, was an explosives fill and

pressure washout facility. Additional information related to past operations, environmental investigation

history, and COCs is available in the RFI and other corrective action documents for SWMU 16 (Tetra

Tech NUS, 2005b, 2010c, and 2011d).

The locations of the SWMU 16 wells are shown on Figure 3-1. The potentiometric surface map for the

Puz at SWMU 16 from the RFI (Tetra Tech NUS, 2011d) is provided in Appendix D.

SWMU 16 is situated along a northwest-southeast trending ridge, and the selected wells are situated in

the northwestern portion of SWMU 16. Groundwater flow in the Puz at SWMU 16 is to the southeast, with

components to the northeast and southwest, away from the ridgeline. The wells are upgradient of

potential site-related contamination at SWMU 16, and no other potential sites have been identified

upgradient of these wells.

3.1.8 SWMU 18, Load and Fill Area

SWMU 18 is located in the west-central portion of NSA Crane, encompasses approximately 1 square

mile, and includes over 100 buildings (Figure 2-2). Projectile load and fill operations, powder operations,

and propellant testing have been conducted at SWMU 18 since the early 1940s and continued throughout

its operational history. Load and fill operations were conducted in the northern portion of SWMU 18,

principally in Buildings 101, 102, 103, 104, 105, and 189 and also in Buildings 200 and 198 in the

southern portion of SWMU 18. The remaining area of the southern portion of SWMU 18 was used for

research, development, and testing and was referred to as the Applied Science Department Complex.

Current operations within SWMU 18 include renovation, rework, and loading of munitions items; research

and development; and testing. Due to its large size, SWMU 18 was subdivided into the following 10

subareas based on similar operations or use and geographic proximity to facilitate more efficient and

effective investigation:

Subarea A: Building 105 Area

Subarea B: Buildings 101, 102, and 103 Area

Subarea C: Inert Operation Area

Subarea D: Special Program (SP) Area

Subarea E: Building 104 Area

Subarea F: Buildings 2084, 2085, and 2540 Area

Subarea G: ASD I Area

Subarea H: Building 198 Area

021304/P 3-6 CTO F279

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 3

Page 7 of 10

Subarea I: Building 200 Area

Subarea J: ASD II Area

RFI activities were conducted at SWMU 18 in 2011. Additional characterization of media in several

subareas is pending.

Four wells from SWMU 18 were selected for inclusion in the background data set, 18AMWT001,

18DMWT001, 18GMWT004, and 18IMWT001. The locations of these wells are shown on Figures 3-1.

Preliminary potentiometric surface maps from the RFI conducted in 2011 (in preparation) are provided in

Appendix D.

Highway 45 generally bisects SWMU 18 into northern and southern areas along two east-west trending

ridges. The tops of the ridges are generally cleared and level, whereas the slopes are wooded and steep,

with buildings within SWMU 18 generally situated along the two east-west trending ridges. Groundwater

flow in the Puz in the four subareas with wells included in the background evaluation generally follows

topography. The wells are upgradient of potential site-related contamination at SWMU 18, and no other

potential sites have been identified upgradient of these wells.

3.1.9 SWMU 22, Lead Azide Pond

One well from SWMU 22, 22MWT001, was selected for inclusion in the background dataset. SWMU 22

is located in the central portion of NSA Crane, east of Highway 45, and is referred to as the Explosive

Actuated Device (EAD)/Booster Area or the "Backline." The Booster Area was designed and constructed

to load 5-inch rockets during World War II. EADs were loaded with explosives such as lead azide, lead

styphnate, tetryl, RDX, and black powder. Building 136 was used for the propellant portion, Building 138

was the pressing building for warheads, and Building 2520 was the final assembly building. The area is

currently operated by the Army and is involved in the production of small explosive charges and fuse

maintenance. The buildings associated with the Backline are planned to be demolished in 2011. An

unlined retention pond previously located at the northern end of the Backline, received overflow

wastewater from sumps associated with the process buildings. The retention pond was removed in 1981.

RFI activities were conducted at SWMU 22 in 2011, 2012, and 2013. Preparation of the RFI Report is

pending.

The location of the well from SWMU 22 is shown on Figure 3-1. A preliminary potentiometric surface map

from the RFI activities conducted in 2012 is provided in Appendix D.

3-7 021304/P CTO F279

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 3

Page 8 of 10

SWMU 22 is situated on a portion of the top of a flattened topographic high, and well 22MWT001 is

situated in the northwestern portion of SWMU22, north of Building 138. Groundwater flow in the Puz at

SWMU 22 is to the south toward the drainages. The well is upgradient of potential site-related

contamination at SWMU 22. No other potential sites have been identified upgradient of these well;

however, a potentially impacted area may exist northeast of Building 138 (and northeast of well

22MWT006), in an area not previously investigated. Well 22MWT006 was excluded from the statistical

evaluation based on potential impacts from this area.

3.2 DATA USABILITY

The background data set were collected from environmental investigations at NSA Crane in accordance

with IDEM- and U.S. EPA-approved work plans. The following sections discuss data sampling and

analyses and data quality reviews as they relate to data usability for this evaluation.

3.2.1 Sampling and Analyses

The groundwater samples included in this evaluation were collected using low-flow purging and sampling

techniques to minimize turbidity. Groundwater samples were analyzed using SW-846 Methods 6010 or

6020 (all metals except mercury) or Method 7470 (mercury only), depending on the investigation with

which the samples are associated. Method 6020 is generally less prone to analytical interferences than

Method 6010, and it is also generally more sensitive than Method 6010, depending on the metal being

analyzed. The precision and accuracy of the data are comparable for the two methods, and mixing of

data from two analytical methods was considered to be acceptable for this evaluation.

Specific sampling methods and analyses and additional information related to sampling and analysis may

be found in the SWMU-specific documents listed in the reference section if this report.

3.2.2 <u>Data Quality Review</u>

The data quality objectives and requirements for the data used in this evaluation were investigation

specific and established for each investigation. Data collected for environmental investigations

underwent data quality review to ensure the usability of the data. The review includes data verification

and validation. Verification is a process used to ensure that contractual requirements were satisfied.

Validation is a comparison of data quality indicators (DQIs) to prescribed acceptance criteria to assess

analytical method performance. The DQIs used are measures to assess the bias and precision of the

analytical calibrations and sample analyses. Together, verification and validation are the first steps in

evaluating data completeness, accuracy, sensitivity, comparability, and representativeness. The data

021304/P 3-8 CTO F279

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 3

Page 9 of 10

review process culminated with a data usability assessment presented in the SWMU-specific report

during which the final usability of the data is established relative to the intended data use. All data used

in this background evaluation have undergone data quality review for individual SWMU investigations and

are considered acceptable for use in this evaluation.

Additional information regarding data quality is provided in the following subsections.

3.2.2.1 Data Validation

As part of their respective environmental investigations, the groundwater analytical data were subjected

to data validation and a data usability evaluation, which included assessments of bias, precision,

representativeness, comparability, completeness, and sensitivity. Data validation is an objective

systematic process in which analytical data are reviewed to ascertain the validity of the reported results

and to identify for the data user some possible limitations of these results. Data usability considers the

data validation outputs but includes additional assessments that consider whether the data are usable for

the intended purpose.

Data validation was performed for all samples analyzed. Data validation was completed in accordance

with the procedures for data validation as outlined in Navy guidance (NFESC, 1999 and DOD, 2009).

The data from investigations were validated in accordance with U.S. EPA Contract Laboratory Program

National Functional Guidelines for Inorganic Data Review, as amended (1993 and 2004). The results of

the validation process were summarized in technical memoranda describing qualified analytical results.

All data validation documentation is currently retained on file by Tetra Tech. Investigation reports also

may include copies of the validation memoranda.

The data used for this evaluation are considered usable based on the results of data validation.

3.2.2.2 Bias, Accuracy, and Precision Evaluation

Bias and accuracy of the background groundwater data were found to be acceptable for their intended

investigation-specific use; therefore, the data were used without qualification for this background

evaluation.

021304/P 3-9 CTO F279

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 3

Page 10 of 10

3.2.2.3 Analytical Sensitivity

In general, the investigation-specific detection limits were achieved; therefore, groundwater data from

selected background wells was used without regard to the detection limits that were attained. Table 4-1

presents minimum and maximum detection limits attained.

3.2.2.4 Data Comparability, Completeness, and Representativeness

Sampling methods, sample preservation, and sample storage practices that preserved the integrity of the

groundwater samples were consistent from one investigation to another. The samples selected for this

background groundwater evaluation were collected from wells screened in the upper, middle, and lower

water-bearing zones within the Pennsylvanian bedrock and are therefore considered representative of the

entire aquifer. Analytical methods based on similar techniques and exhibiting similar performance

characteristics were used for all environmental investigations from which background groundwater data

were used. These factors ensured that all groundwater data collected from the background locations are

comparable and representative of the Pennsylvanian bedrock groundwater. This representativeness

spans several years and a large spatial expanse within the NSA Crane boundary, and the data set is

therefore considered a comprehensive set of background groundwater quality data that can be applied to

environmental groundwater investigations of Pennsylvanian bedrock groundwater.

3.3 STATISTICAL ANALYSIS

A series of statistical analyses were conducted to determine a representative background data set for

groundwater data from the selected Pennsylvanian aquifer wells. The conclusions of the statistical

analysis are presented in Section 4, and the methodology and full results of the analysis are discussed in

detail in Appendix E.

Table 3-2 presents the concentrations of metals (total) in samples from the Pennsylvanian aquifer wells

selected for this background evaluation. For the statistical evaluation, the concentration of each metal in

the data set was considered to carry equal weight in terms of characterizing the concentration distribution

of metals in the Pennsylvanian aquifer. Concentrations less than detection limits (i.e., non-detect values)

were replaced with the value of the detection limit.

021304/P 3-10 CTO F279

**TABLE 3-1** 

#### MONITORING WELL INFORMATION BASEWIDE PENNSYLVANIAN BEDROCK BACKGROUND GROUNDWATER EVALUATION **NSA CRANE, INDIANA**

| Monitoring Well <sup>(1)</sup>               | Date of<br>Installation | Coordi      | nates <sup>(2)</sup> | _      | ation<br>AVD88) | Total<br>Depth <sup>(3)</sup> | Screened Interval<br>(feet bgs) |      | Water-<br>Bearing<br>Zone    |  |
|----------------------------------------------|-------------------------|-------------|----------------------|--------|-----------------|-------------------------------|---------------------------------|------|------------------------------|--|
|                                              | IIIStaliation           | Northing    | Easting              | Ground | Ref. Point      | (feet bgs)                    | Top Bottom                      |      |                              |  |
| SWMU 01 - Mustard Gas Burial Ground          |                         |             |                      |        |                 |                               |                                 |      |                              |  |
| 01-06 (WES-1-6-82)                           | 11/10/1982              | 3045143.95  | 1327648.67           | 595.38 | 597.98          | 93.05                         | 75.0                            | 84.4 | Pennsylvanian (Lower)        |  |
| SWMU 08 - Building 106 Pond                  |                         |             |                      |        |                 |                               |                                 |      |                              |  |
| 08MWT07                                      | 5/13/2005               | 1306840.18  | 3014993.62           | 699.73 | 701.31          | 33.0                          | 18.0                            | 33.0 | Pennsylvanian (Upper)        |  |
| SWMU 09 - Pesticide Control Area /R-150 Tank | (                       |             |                      |        |                 | •                             |                                 |      |                              |  |
| 09-10 (WES-9-10-83)                          | 8/18/1983               | 1312055.42  | 3025373.75           | 723.83 | 726.51          | 27.0                          | 11.5                            | 20.6 | Pennsylvanian <sup>(4)</sup> |  |
| 09-WTP6 (WES-WTP6-86)                        | 7/28/1986               | 1312307.48  | 3025423.99           | 733.10 | 735.09          | 26.7                          | 20.7                            | 25.7 | Pennsylvanian <sup>(4)</sup> |  |
| 09T01                                        | 12/04/2000              | 1312804.34  | 3025759.95           | 737.56 | 740.02          | 26.0                          | 11.0                            | 26.0 | Pennsylvanian <sup>(4)</sup> |  |
| 09T05                                        | 12/04/2000              | 1311681.50  | 3025540.48           | 716.73 | 719.19          | 17.0                          | 7.0                             | 17.0 | Pennsylvanian <sup>(4)</sup> |  |
| SWMU 10 - Rockeye                            |                         |             |                      |        |                 | •                             | •                               |      |                              |  |
| 10C52 (WES-10-52C-88)                        | 06/08/1989              | 1326218.319 | 3044737.357          | 809.42 | 811.73          | 83.0                          | 58.0                            | 68.0 | Pennsylvanian (Lower)        |  |
| SWMU 12 - Mine Fill A                        |                         |             |                      |        |                 | _                             | _                               |      |                              |  |
| 12MWT25                                      | 09/12/2004              | 1313924.59  | 3026269.42           | 746.55 | 748.66          | 26.0                          | 15.0                            | 25.0 | Pennsylvanian (Upper)        |  |
| 12MWT26                                      | 09/12/2004              | 1313638.57  | 3025981.12           | 741.64 | 743.72          | 25.0                          | 14.0                            | 24.0 | Pennsylvanian (Upper)        |  |
| 12MWT27                                      | 09/02/2004              | 1313736.63  | 3026477.23           | 738.42 | 740.52          | 26.0                          | 15.0                            | 25.0 | Pennsylvanian (Upper)        |  |
| 12MWT33                                      | 09/02/2004              | 1313725.86  | 3026481.26           | 738.32 | 740.49          | 95.0                          | 74.0                            | 94.0 | Pennsylvanian (Middle)       |  |
| SWMU 13 - Mine Fill B                        |                         |             |                      |        |                 |                               |                                 |      |                              |  |
| 13MWT01                                      | 03/30/2003              | 1310541.57  | 3025015.94           | 713.10 | 715.34          | 15.0                          | 5.0                             | 15.0 | Pennsylvanian (Upper)        |  |
| 13MWT03                                      | 03/30/2003              | 1310240.95  | 3024891.66           | 718.34 | 721.10          | 15.0                          | 5.0                             | 15.0 | Pennsylvanian (Upper)        |  |
| 13MWT28                                      | 11/19/2003              | 1309678.62  | 3024066.67           | 703.54 | 705.55          | 88.0                          | 78.0                            | 88.0 | Pennsylvanian (Lower)        |  |
| SWMU 16 - Cast High                          |                         |             |                      |        |                 |                               |                                 |      |                              |  |
| 16MW02 (WES-14-02-83)                        | 1983                    | 1321319.90  | 3032647.27           | 763.69 | 766.54          | 25.8                          | 11.4                            | 20.4 | Pennsylvanian (Upper)        |  |
| 16MWT17                                      | 11/08/2003              | 1321235.88  | 3032675.07           | 764.78 | 766.53          | 24.0                          | 14.0                            | 24.0 | Pennsylvanian (Upper)        |  |
| SWMU 18 - Load and Fill Area                 |                         |             |                      |        |                 | ·                             |                                 |      | ·                            |  |
| 18AMWT001                                    | 12/05/2011              | 1309581.89  | 3015573.81           | 684.49 | 687.08          | 24.0                          | 13.0                            | 23.0 | Pennsylvanian (Upper)        |  |
| 18DMWT001                                    | 11/07/2011              | 1307840.00  | 3016101.97           | 681.01 | 683.78          | 18.5                          | 8.0                             | 18.0 | Pennsylvanian (Upper)        |  |
| 18GMWT004                                    | 12/16/2011              | 1305244.05  | 3016493.37           | 654.09 | 656.72          | 28.5                          | 17.0                            | 27.0 | Pennsylvanian (Upper)        |  |
| 18IMWT001                                    | 11/22/2011              | 1304198.16  | 3015031.33           | 695.63 | 698.06          | 31.0                          | 21.0                            | 31.0 | Pennsylvanian (Upper)        |  |
| SWMU 22 - Lead Azide Pond                    |                         |             |                      |        |                 |                               |                                 | ·    |                              |  |
| 22MWT01                                      | 05/11/2012              | 1315811.32  | 3027409.14           | 766.47 | 768.74          | 25.0                          | 15.0                            | 25.0 | Pennsylvanian (Upper)        |  |

#### **NOTES**

- (1) Original well designation in parantheses.(2) Indiana State Plane Coordinate System, NAD83.
- (3) Total boring depth.
- (4) Pennsylvanian = zone not specified; assumed to be Pennsylvanian (Upper).

bgs = below ground surface. NAD83 = North American Datum if 1983.

NAVD88 = North American Vertical Datum of 1988.

TABLE 3-2

# ANALYTICAL DATA SET BASEWIDE PENNSYLVANIA BEDROCK BACKGROUND GROUNDWATER EVALUATION NSA CRANE, INDIANA PAGE 1 OF 3

| SWMU/WELL                                   | WATER-<br>BEARING ZONE | SAMPLE DATE | ALUMINUM | ANTIMONY | ARSENIC | BARIUM | BERYLLIUM | CADMIUM | CALCIUM  | CHROMIUM | COBALT | COPPER |
|---------------------------------------------|------------------------|-------------|----------|----------|---------|--------|-----------|---------|----------|----------|--------|--------|
| SWMU 01 - Must                              | ard Gas Burial Gro     | ound        |          |          |         |        |           |         |          |          |        |        |
| 01-06                                       | Plz                    | 09/04/2001  | 40.2 U   | 1.6 U    | 3.2 U   | 21.3   | 0.4 U     | 0.3 U   | 170000   | 0.6 U    | 1 U    | 0.9 U  |
| SWMU 08 - Build                             | ling 106 Pond          |             |          |          |         |        |           |         |          |          |        |        |
| 08MWT07                                     | Puz                    | 06/02/2005  | 463 J    | 0.2 U    | 0.45 U  | 19.5 J | 0.05 U    | 0.08 J  | 9640 J   | 0.58 J   | 5.3 J  | 2.1 U  |
| SWMU 09 - Pesticide Control Area/R-150 Tank |                        |             |          |          |         |        |           |         |          |          |        |        |
| 09-10                                       | Puz                    | 01/31/2001  | 200 U    | 1 U      | 0.75    | 68.4   | 1 U       | 1 U     | 25800    | 5 U      | 3 U    | 2 U    |
| 09T01                                       | Puz                    | 01/31/2001  | 200 U    | 1 U      | 2.9     | 52.6   | 1 U       | 1 U     | 39400    | 5 U      | 3 U    | 4.4    |
| 09T05                                       | Puz                    | 01/30/2001  | 200 U    | 1 U      | 1.5     | 90.7   | 1 U       | 1 U     | 24000    | 5 U      | 18.2   | 2      |
| 09-WTP6                                     | Puz                    | 01/23/2001  | 200 U    | 1 U      | 1 U     | 19.3   | 1 U       | 1 U     | 59300    | 5 U      | 3 U    | 2 U    |
| SWMU 10 - Rock                              | eye                    |             |          |          |         |        |           |         |          |          |        |        |
| 10C52                                       | Plz                    | 01/18/2001  | 200 U    | 1 U      | 1 U     | 17.9   | 1 U       | 1 U     | 17000    | 5 U      | 3 U    | 2 U    |
| SWMU 12 - Mine                              | Fill A                 |             |          | _        |         |        |           |         |          |          |        |        |
| 12MWT25                                     | Puz                    | 10/10/2004  | 479      | 0.085 U  | 1.1 J   | 26.2 J | 0.1 J     | 0.14 U  | 216000 J | 1.4 U    | 53.2 J | 3 J    |
|                                             |                        | 02/04/2005  | 192 J    | 0.085 U  | 0.27 U  | 21.8 J | 0.04 U    | 0.04 U  | 125000 J | 0.74 U   | 12.9 J | 3.4 J  |
| 12MWT26                                     | Puz                    | 09/26/2004  | 565 J    | 0.24 U   | 2.3 J   | 38.4 J | 0.07 U    | 0.11 U  | 92600 J  | 1.7 J    | 31.3 J | 0.84 J |
|                                             |                        | 02/17/2005  | 126 J    | 0.54 U   | 0.67 U  | 12.8 U | 0.03 U    | 0.13 U  | 77900 J  | 0.72 U   | 5.6 J  | 3.5 J  |
| 12MWT27                                     | Puz                    | 09/25/2004  | 323 J    | 0.22 U   | 0.58 U  | 39.1 J | 0.03 U    | 0.05 U  | 21200 J  | 1.2 J    | 11.2 J | 0.67 J |
|                                             |                        | 02/07/2005  | 205 J    | 0.1 U    | 0.22 U  | 20.6 J | 0.02 U    | 0.04 U  | 16300 J  | 0.62 U   | 1.2 U  | 2 J    |
| 12MWT33                                     | Pmz                    | 09/26/2004  | 37.1 U   | 0.52 U   | 2.7 J   | 13.2 J | 1.3 J     | 0.039 U | 61100 J  | 0.52 U   | 44.4 J | 0.7 J  |
|                                             |                        | 02/18/2005  | 200 J    | 0.085 U  | 1.2 U   | 15.6 U | 2.2 J     | 0.18 U  | 56400 J  | 0.76 U   | 40 J   | 2.5 J  |
| SWMU 13 - Mine                              | Fill B                 |             |          |          |         |        |           |         |          |          |        |        |
| 13MWT01                                     | Puz                    | 04/26/2003  | 598 J    | 0.24 U   | 0.23 U  | 55.4 J | 1.2 U     | 0.18 U  | 9720 J   | 0.2 U    | 36 J   | 2.9 J  |
|                                             |                        | 11/23/2003  | 699 J    | 0.02 U   | 0.17 U  | 46.8 J | 1.2 U     | 0.06 U  | 7190 J   | 0.73 U   | 29.9 J | 1.4 U  |
| 13MWT03                                     | Puz                    | 04/26/2003  | 3990 J   | 0.13 U   | 1 J     | 74.5 J | 1.2 U     | 0.82 U  | 34800 J  | 7.1 J    | 48.8 J | 5.6 J  |
|                                             |                        | 11/11/2003  | 627 J    | 0.02 U   | 0.31 U  | 62.1 J | 1.8 U     | 0.37 U  | 26100 J  | 1.4 U    | 25 J   | 3.2 J  |
| 13MWT28                                     | Plz                    | 12/07/2003  | 6270 J   | 2.9 J    | 15.2 J  | 65.3 J | 0.27 U    | 0.04 U  | 10600 J  | 11.7 J   | 2 J    | 1.4 U  |
| SWMU 16 - Cast                              | High                   |             |          |          |         |        |           |         |          |          |        |        |
| 16MW02                                      | Puz                    | 04/24/2003  | 85.6     | 0.1 U    | 0.16 U  | 21.6 J | 0.42 U    | 0.31 U  | 99400 J  | 0.43 U   | 12.9 J | 0.87 J |
|                                             |                        | 05/11/2003  | 60.6 U   | 0.03 U   | 0.33 U  | 18 J   | 0.34 U    | 0.22 U  | 97300 J  | 0.29 U   | 9.2 J  | 0.15 U |
|                                             |                        | 10/25/2003  | 8.3 U    | 0.02 U   | 0.66 J  | 17.8 J | 0.06 U    | 0.04 U  | 212000 J | 0.17 U   | 18.7 J | 0.12 U |
| 16MWT17                                     | Puz                    | 12/05/2003  | 187 J    | 0.05 U   | 1.3 U   | 42.7 J | 0.69 U    | 0.53 U  | 42200 J  | 0.39 U   | 64.4 J | 0.56 U |
| SWMU 18 - Load                              | and Fill Area          |             |          |          |         |        |           |         |          |          |        |        |
| 18AMWT001                                   | Puz                    | 01/20/2012  | 3110 J   | 2 UJ     | 1.5 U   | 35.6   | 3.01      | 0.462 J | 12300    | 0.816 J  | 62     | 12.3   |
| 18DMWT001                                   | Puz                    | 01/17/2012  | 28.5 J   | 2 U      | 1.5 U   | 75.6   | 0.5 U     | 0.5 U   | 43900    | 1 U      | 2.5 U  | 2 U    |
| 18GMWT004                                   | Puz                    | 01/19/2012  | 6210 J   | 4 UJ     | 8.61 J  | 74.6 J | 1.16 J    | 1 U     | 24200 J  | 11.4 J   | 34 J   | 21.6 J |
| 18IMWT001                                   | Puz                    | 01/23/2012  | 8500     | 4 U      | 8.28    | 97.5   | 0.591 J   | 1 U     | 61000    | 26.2     | 27.2   | 16.6   |
| SWMU 22 - Lead                              | Azide Pond             | •           | •        | •        | •       |        | •         | •       |          | •        | :      |        |
| 22MWT01                                     | Puz                    | 05/22/2012  | NA       | NA       | 1.4     | 34.2   | NA        | 0.9     | NA       | 4        | NA     | NA     |

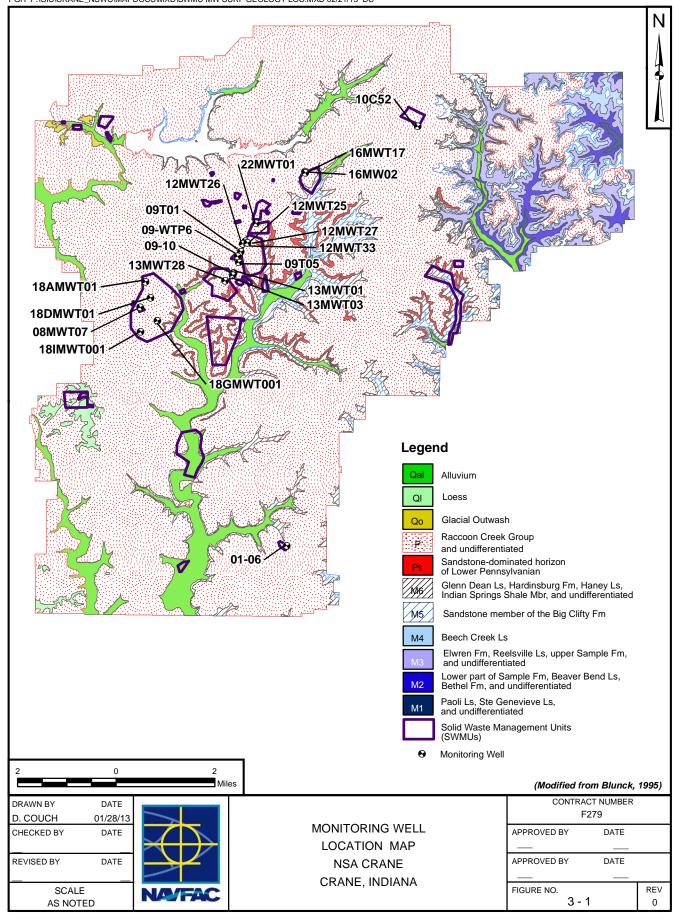
#### TABLE 3-2

# ANALYTICAL DATA SET BASEWIDE PENNSYLVANIA BEDROCK BACKGROUND GROUNDWATER EVALUATION NSA CRANE, INDIANA PAGE 2 OF 3

| SWMU/WELL                                   | WATER-<br>BEARING ZONE | SAMPLE DATE | IRON    | LEAD    | MAGNESIUM | MANGANESE | MERCURY | NICKEL | POTASSIUM | SELENIUM | SILVER  |
|---------------------------------------------|------------------------|-------------|---------|---------|-----------|-----------|---------|--------|-----------|----------|---------|
| SWMU 01 - Musta                             | ard Gas Burial Gro     | ound        |         |         |           |           |         |        | •         |          |         |
| 01-06                                       | Plz                    | 09/04/2001  | 398     | 1.6 U   | 156000    | 37.9      | 0.1 U   | 2.6    | 2790      | 0.8 U    | 3       |
| SWMU 01 - Musta                             | ard Gas Burial Gro     | ound        |         |         |           |           |         |        |           |          |         |
| 08MWT07                                     | Puz                    | 06/02/2005  | 681 J   | 0.54 J  | 6750 J    | 93.9 J    | 0.03 U  | 7.8 J  | 518 J     | 0.33 J   | 0.028 U |
| SWMU 09 - Pesticide Control Area/R-150 Tank |                        |             |         |         |           |           |         |        |           |          |         |
| 09-10                                       | Puz                    | 01/31/2001  | 136     | 1 U     | 10600 J   | 164       | 0.2 U   | 10 U   | 5000 U    | 1 U      | 3 UJ    |
| 09T01                                       | Puz                    | 01/31/2001  | 144     | 1 U     | 26500 J   | 34.8      | 0.2 U   | 10 U   | 5000 U    | 1 U      | 3 UJ    |
| 09T05                                       | Puz                    | 01/30/2001  | 100 U   | 1 U     | 21900 J   | 178       | 0.2 U   | 51.2   | 5000 U    | 1 U      | 3 UJ    |
| 09-WTP6                                     | Puz                    | 01/23/2001  | 149     | 1 U     | 19800 J   | 15        | 0.2 U   | 10 U   | 5000 U    | 1.1 J    | 3 U     |
| SWMU 10 - Rocke                             | eye                    |             |         |         |           |           |         |        |           |          |         |
| 10C52                                       | Plz                    | 01/18/2001  | 22200   | 1 U     | 11800 J   | 897       | 0.2 U   | 10 U   | 5000 U    | 1 U      | 3 U     |
| SWMU 12 - Mine                              | Fill A                 |             |         |         |           |           |         |        | •         |          |         |
| 12MWT25                                     | Puz                    | 10/10/2004  | 1920 J  | 0.66 U  | 229000 J  | 4910 J    | 0.042 U | 103 J  | 5320 J    | 3.4 J    | 0.03 U  |
|                                             |                        | 02/04/2005  | 1110 J  | 0.425 U | 153000 J  | 2200 J    | 0.03 U  | 32 J   | 3320 J    | 1.9 J    | 0.028 U |
| 12MWT26                                     | Puz                    | 09/26/2004  | 2990 J  | 0.53 U  | 70000 J   | 2520 J    | 0.14 U  | 60.1 J | 3740 J    | 0.28 U   | 0.028 U |
|                                             |                        | 02/17/2005  | 2010 J  | 0.157 U | 50000 J   | 1020 J    | 0.051 U | 12.8 J | 1630 J    | 0.99 J   | 0.028 U |
| 12MWT27                                     | Puz                    | 09/25/2004  | 482 J   | 0.37 U  | 16400 J   | 701 J     | 0.03 U  | 30.7 J | 3710 J    | 0.61 U   | 0.028 U |
|                                             |                        | 02/07/2005  | 396 J   | 0.42 U  | 16500 J   | 160 J     | 0.03 U  | 7.3 J  | 1080 J    | 0.37 U   | 0.028 U |
| 12MWT33                                     | Pmz                    | 09/26/2004  | 41800 J | 0.34 U  | 33500 J   | 3010 J    | 0.043 U | 131 J  | 4520 J    | 0.094 U  | 0.028 U |
|                                             |                        | 02/18/2005  | 41700 J | 1 U     | 27200 J   | 1680 J    | 0.05 U  | 110 J  | 4770 J    | 0.31 U   | 0.028 U |
| SWMU 13 - Mine                              | Fill B                 |             |         |         |           |           |         |        |           |          |         |
| 13MWT01                                     | Puz                    | 04/26/2003  | 135 J   | 1.4 U   | 6790 J    | 689 J     | 0.16 J  | 26.6 J | 494 J     | 0.17 U   | 0.18 U  |
|                                             |                        | 11/23/2003  | 61.7 U  | 1.2 U   | 5850 J    | 566 U     | 0.39    | 21.1 J | 403 J     | 0.05 U   | 0.03 U  |
| 13MWT03                                     | Puz                    | 04/26/2003  | 1910 J  | 2 U     | 17000 J   | 302 J     | 0.02 U  | 99.7 J | 2860 J    | 0.32 U   | 0.43 U  |
|                                             |                        | 11/11/2003  | 344 U   | 0.67 U  | 15800 J   | 211 J     | 0.02 U  | 76.3 J | 1040 J    | 0.04 U   | 0.03 U  |
| 13MWT28                                     | Plz                    | 12/07/2003  | 2460 J  | 2.5 U   | 2950 J    | 66.7 J    | 0.007 U | 7.1 J  | 3670 J    | 4.1 J    | 0.03 U  |
| SWMU 16 - Cast I                            | High                   |             |         |         |           |           |         |        |           |          |         |
| 16MW02                                      | Puz                    | 04/24/2003  | 287 J   | 0.21 U  | 6240 J    | 916 J     | 0.02 U  | 34.2 J | 738 J     | 0.05 U   | 0.09 U  |
|                                             |                        | 05/11/2003  | 415 J   | 0.28 U  | 6480 J    | 864 J     | 0.2 U   | 27 J   | 3390 U    | 0.06 U   | 0.04 U  |
|                                             |                        | 10/25/2003  | 13700 J | 0.18 U  | 35200 J   | 2440 J    | 0.02 U  | 36.7 J | 2640 J    | 0.04 U   | 0.03 U  |
| 16MWT17                                     | Puz                    | 12/05/2003  | 27000 J | 0.24 U  | 16700 J   | 5940 J    | 0.007 U | 125 J  | 5380 J    | 0.07 U   | 0.03 U  |
| SWMU 18 - Load                              | and Fill Area          |             |         |         |           |           |         |        |           |          |         |
| 18AMWT001                                   | Puz                    | 01/20/2012  | 1970 J  | 0.75 U  | 5510      | 1270      | 0.2 U   | 76.1   | 2230      | 1.25 U   | 0.5 U   |
| 18DMWT001                                   | Puz                    | 01/17/2012  | 12.7 J  | 0.75 U  | 15100     | 6.89      | 0.2 U   | 1.56 J | 1170 J    | 1.25 U   | 0.5 U   |
| 18GMWT004                                   | Puz                    | 01/19/2012  | 11300 J | 11.7 J  | 10800 J   | 1180 J    | 0.2 UJ  | 88.1 J | 5000 J    | 2.5 UJ   | 1 U     |
| 18IMWT001                                   | Puz                    | 01/23/2012  | 22500   | 15.5    | 37100     | 1890      | 0.2 U   | 55.8   | 5370      | 2.5 U    | 1 U     |
| SWMU 22 - Lead                              | Azide Pond             |             |         |         |           |           |         |        | -         | <u> </u> |         |
| 22MWT01                                     | Puz                    | 05/22/2012  | NA      | 3.2     | NA        | NA        | 0.18 U  | NA     | NA        | 0.45 J   | 0.06 U  |

#### TABLE 3-2

### ANALYTICAL DATA SET BASEWIDE PENNSYLVANIA BEDROCK BACKGROUND GROUNDWATER EVALUATION NSA CRANE, INDIANA PAGE 3 OF 3


| SWMU/WELL                                   | WATER-<br>BEARING ZONE | SAMPLE DATE | SODIUM   | THALLIUM | TIN     | VANADIUM | ZINC   |  |  |  |
|---------------------------------------------|------------------------|-------------|----------|----------|---------|----------|--------|--|--|--|
| SWMU 01 - Musta                             | ard Gas Burial Gro     | ound        |          |          |         |          |        |  |  |  |
| 01-06                                       | Plz                    | 09/04/2001  | 17200    | 5        | 190 U   | 3 U      | 1.1 U  |  |  |  |
| SWMU 01 - Musta                             | ard Gas Burial Gro     | ound        |          |          |         |          |        |  |  |  |
| 08MWT07                                     | Puz                    | 06/02/2005  | 36500 J  | 0.26 U   | 0.1 U   | 1.14 U   | 12.4 J |  |  |  |
| SWMU 09 - Pesticide Control Area/R-150 Tank |                        |             |          |          |         |          |        |  |  |  |
| 09-10                                       | Puz                    | 01/31/2001  | 57600 J  | 1 U      | 10 U    | 2 U      | 10 U   |  |  |  |
| 09T01                                       | Puz                    | 01/31/2001  | 134000 J | 1 U      | 10 U    | 2.1      | 10 U   |  |  |  |
| 09T05                                       | Puz                    | 01/30/2001  | 102000 J | 1 U      | 10 U    | 2 U      | 25.4   |  |  |  |
| 09-WTP6                                     | Puz                    | 01/23/2001  | 48900 J  | 1 U      | 10 U    | 2 U      | 13.2   |  |  |  |
| SWMU 10 - Rocke                             | eye                    |             |          |          |         |          |        |  |  |  |
| 10C52                                       | Plz                    | 01/18/2001  | 15700 J  | 1 U      | 10 U    | 2 U      | 10 U   |  |  |  |
| SWMU 12 - Mine                              | Fill A                 |             |          | _        |         |          |        |  |  |  |
| 12MWT25                                     | Puz                    | 10/10/2004  | 152000 J | 0.08 J   | 0.24 U  | 1.14 U   | 20.8 J |  |  |  |
|                                             |                        | 02/04/2005  | 116000 J | 0.08 U   | 0.09 U  | 1.14 U   | 26.1 J |  |  |  |
| 12MWT26                                     | Puz                    | 09/26/2004  | 165000 J | 0.043 U  | 0.06 U  | 1.14 U   | 12.1 J |  |  |  |
|                                             |                        | 02/17/2005  | 143000 J | 0.06 U   | 0.33 U  | 1.14 U   | 8 J    |  |  |  |
| 12MWT27                                     | Puz                    | 09/25/2004  | 53600 J  | 0.043 U  | 0.69 U  | 1.14 U   | 11.3 J |  |  |  |
|                                             |                        | 02/07/2005  | 39200 J  | 0.043 U  | 0.15 U  | 1.14 U   | 3.3 U  |  |  |  |
| 12MWT33                                     | Pmz                    | 09/26/2004  | 40300 J  | 0.043 U  | 0.048 U | 1.14 U   | 96 J   |  |  |  |
|                                             |                        | 02/18/2005  | 32200 J  | 0.043 U  | 0.38 U  | 1.14 U   | 128 J  |  |  |  |
| SWMU 13 - Mine                              | Fill B                 |             |          |          |         |          |        |  |  |  |
| 13MWT01                                     | Puz                    | 04/26/2003  | 24300 J  | 0.11 U   | 0.1 U   | 0.08 U   | 29.7 J |  |  |  |
|                                             |                        | 11/23/2003  | 26100 J  | 0.08 U   | 0.1 U   | 0.06 U   | 29.9 J |  |  |  |
| 13MWT03                                     | Puz                    | 04/26/2003  | 37400 J  | 0.23 U   | 0.34 U  | 5.8 J    | 161 J  |  |  |  |
|                                             |                        | 11/11/2003  | 40700 J  | 0.04 U   | 0.1 U   | 0.76 U   | 97.7 J |  |  |  |
| 13MWT28                                     | Plz                    | 12/07/2003  | 124000 J | 0.06 U   | 0.63 U  | 12.5 J   | 6.7 J  |  |  |  |
| SWMU 16 - Cast I                            | High                   |             |          |          |         |          |        |  |  |  |
| 16MW02                                      | Puz                    | 04/24/2003  | 18000 J  | 0.1 U    | 0.06 U  | 0.3 U    | 50 J   |  |  |  |
|                                             |                        | 05/11/2003  | 17900 J  | 0.11 U   | 0.07 U  | 0.35 U   | 42.9 J |  |  |  |
|                                             |                        | 10/25/2003  | 20200 J  | 0.08 U   | 0.1 U   | 0.09 U   | 15.8 J |  |  |  |
| 16MWT17                                     | Puz                    | 12/05/2003  | 61300 J  | 0.12 U   | 0.1 U   | 0.17 U   | 122 J  |  |  |  |
| SWMU 18 - Load                              | and Fill Area          |             |          |          |         |          |        |  |  |  |
| 18AMWT001                                   | Puz                    | 01/20/2012  | 10100    | 1 U      | NA      | 2.5 U    | 63.1   |  |  |  |
| 18DMWT001                                   | Puz                    | 01/17/2012  | 34300    | 1 U      | NA      | 2.5 U    | 2.16 J |  |  |  |
| 18GMWT004                                   | Puz                    | 01/19/2012  | 89300    | 2 U      | NA      | 7.47 J   | 78.2 J |  |  |  |
| 18IMWT001                                   | Puz                    | 01/23/2012  | 50300    | 2 U      | NA      | 17.9     | 85     |  |  |  |
| SWMU 22 - Lead                              | Azide Pond             |             |          |          |         |          |        |  |  |  |
| 22MWT01                                     | Puz                    | 05/22/2012  | NA       | NA       | NA      | NA       | NA     |  |  |  |

#### **NOTES**

Results are for total metals (i.e., unfiltered samples) in micrograms per liter ( $\mu g/L$ ).

NA = Parameter not analyzed.

- J Indicates that the parameter was detected but the concentration is considered an estimate due to imprecision.
- U Indicates that the parameter was not detected at the numerical detection limit.
- UJ Indicates that the parameter was not detected and the result is estimated.
- Plz Pennsylvanian (lower zone).
- Pmz Pennsylvanian (middle zone).
- Puz Pennsylvanian (upper zone).



Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 4

Page 1 of 2

4.0 EVALUATION OF BACKGROUND CONCENTRATIONS

This section presents the results of the statistical evaluation performed to establish the background data

set for metals in groundwater within the Pennsylvanian bedrock at NSA Crane. It also discusses use of

the background data set in future investigations.

4.1 STATISTICAL EVALUATION SUMMARY

Table 4-1 presents the results of the statistical evaluation of metals in background groundwater at NSA

Crane. The calculated UTLs represent the background concentrations for groundwater within the

Pennsylvanian bedrock.

4.2 COMPARISON OF SITE TO BACKGROUND CONCENTRATIONS

For comparisons of site data to background data, either site-wide tests or individual comparison tests will

be used to compare site concentrations to background concentrations. Site-wide tests are used to

compare an average (for normal distributions)/median (for non-parametric distributions) site concentration

to an average/median background concentration. Individual comparison tests are used to compare

individual site concentrations to a representative background concentration. Site-wide comparisons are

generally the preferred method of comparison. If site-wide comparisons cannot be used, then the

alternative is to use individual comparison tests.

Site-wide comparison tests require that the site and background media data sets being compared meet

certain general assumptions. General requirements are that a specific minimum number of samples be

included in the site and background data sets so that there is sufficient confidence in the test conclusions.

A sample size calculation will be conducted prior to usage to ensure the desired level of confidence is

reached. The sample size determination will be in accordance with the project data quality objectives,

Navy guidance, or other appropriate methods. Enough site data are to be collected to evaluate the null

hypothesis that site conditions are not representative of background conditions against the alternative

hypothesis that site conditions are representative of background, with alpha and beta error levels of 0.05,

and a minimum detectable difference of two background standard deviations. If enough site data to meet

the criterion for site-wide comparisons cannot be obtained, the alternative is to perform a separate

comparison of each site sample to background using individual comparison tests.

U.S. EPA's ProUCL, Version 4.1.1, calculates multiple background values and accounts for non-detected

concentrations. One of the background threshold values calculated by ProUCL is a 95-percent UTL.

021304/P 4-1 CTO F279

**NSA Crane** 

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: 4

Page 2 of 2

UTLs were established for each metal based on the null hypothesis that individual site concentrations are within the background concentration range. For individual comparisons, concentrations of each metal from each site sample are compared to a UTL for that metal that represents a statistically derived upper limit on the average background concentration. Table 4-1 presents the 95-percent UTLs for groundwater from the Pennsylvanian aquifer at NSA Crane. (The data input for ProUCL used to calculate the UTLs is provided in Appendix E.)

#### TABLE 4-1

### SUMMARY STATISTICS BASEWIDE PENNSYLVANIAN BEDROCK BACKGROUND GROUNDWATER EVALUATION NSA CRANE, INDIANA

| PARAMETER <sup>(1)</sup> | FOD   | RANGE OF DETECTION<br>LIMITS | MINIMUM<br>DETECTED<br>CONCENTRATION | MAXIMUM<br>DETECTED<br>CONCENTRATION | MEAN <sup>(3)</sup> | STANDARD<br>DEVIATION <sup>(3)</sup> | DATA DISTRIBUTION <sup>(2)</sup> | UTL <sup>(4,5)</sup> |
|--------------------------|-------|------------------------------|--------------------------------------|--------------------------------------|---------------------|--------------------------------------|----------------------------------|----------------------|
| ALUMINUM                 | 19/28 | 8.3 - 200                    | 28.5                                 | 8,500                                | 1192                | 2220                                 | Log-Normal                       | 6,183                |
| ANTIMONY                 | 1/28  | 0.02 - 4                     | 2.9                                  | 2.9                                  | NA <sup>(5)</sup>   | NA <sup>(5)</sup>                    | Assumed Nonparametric            | NA <sup>(6)</sup>    |
| ARSENIC                  | 12/29 | 0.16 - 3.2                   | 0.66                                 | 15.2                                 | 2                   | 3.2                                  | Assumed Nonparametric            | 9.1                  |
| BARIUM                   | 27/29 | 12.8 - 15.6                  | 13.2                                 | 97.5                                 | 41.3                | 24.9                                 | Log-Normal                       | 96.9                 |
| BERYLLIUM                | 6/28  | 0.02 - 1.8                   | 0.1                                  | 3.01                                 | 0.40                | 0.70                                 | Assumed Nonparametric            | 2.0 (7)              |
| CADMIUM                  | 3/29  | 0.039 - 1                    | 0.08                                 | 0.9                                  | 0.14                | 0.19                                 | Assumed Nonparametric            | 0.55 <sup>(7)</sup>  |
| CALCIUM                  | 28/28 | NA                           | 7,190                                | 216,000                              | 39300               | 58500                                | Log-Normal                       | 216,000              |
| CHROMIUM                 | 9/29  | 0.17 - 5                     | 0.58                                 | 26.2                                 | 2.7                 | 5.3                                  | Assumed Nonparametric            | 14.6 <sup>(7)</sup>  |
| COBALT                   | 21/28 | 1 - 3                        | 2                                    | 64.4                                 | 21.7                | 19.5                                 | Nonparametric                    | 65.5                 |
| COPPER                   | 17/28 | 0.12 - 2.1                   | 0.67                                 | 21.6                                 | 3.4                 | 5                                    | Log-Normal                       | 14.6                 |
| IRON                     | 25/28 | 61.7 - 344                   | 12.7                                 | 41,800                               | 7070                | 12200                                | Log-Normal                       | 34,500               |
| LEAD                     | 4/29  | 0.157 - 2.5                  | 0.54                                 | 15.5                                 | 1.5                 | 3.4                                  | Assumed Nonparametric            | 9.0 <sup>(7)</sup>   |
| MAGNESIUM                | 28/28 | NA                           | 2,950                                | 229,000                              | 19400               | 53700                                | Log-Normal                       | 229,000              |
| MANGANESE                | 27/28 | 566 - 566                    | 6.89                                 | 5940                                 | 1200                | 1460                                 | Log-Normal                       | 4,470                |
| MERCURY                  | 2/29  | 0.007 - 0.2                  | 0.16                                 | 0.39                                 | 0.17                | 0.04                                 | Assumed Nonparametric            | NA <sup>(6)</sup>    |
| NICKEL                   | 24/28 | 10 - 10                      | 1.56                                 | 131                                  | 44.6                | 40.4                                 | Log-Normal                       | 135                  |
| POTASSIUM                | 22/28 | 3,390 - 5,000                | 403                                  | 5,380                                | 2690                | 1670                                 | Nonparametric                    | 6,450                |
| SELENIUM                 | 7/29  | 0.04 - 2.5                   | 0.33                                 | 4.1                                  | 0.70                | 0.91                                 | Assumed Nonparametric            | 2.7 <sup>(7)</sup>   |
| SILVER                   | 0/29  | 0.028 - 3                    | NA                                   | NA                                   | NA                  | NA                                   | Assumed Nonparametric            | NA <sup>(6)</sup>    |
| SODIUM                   | 28/28 | NA                           | 10,100                               | 165,000                              | 45800               | 46900                                | Log-Normal                       | 165,000              |
| THALLIUM                 | 1/28  | 0.04 - 5                     | 0.08                                 | 0.08                                 | NA <sup>(5)</sup>   | NA <sup>(5)</sup>                    | Assumed Nonparametric            | NA <sup>(6)</sup>    |
| TIN                      | 0/24  | 0.048 - 190                  | NA                                   | NA                                   | NA                  | NA                                   | Assumed Nonparametric            | NA <sup>(6)</sup>    |
| VANADIUM                 | 5/28  | 0.06 - 3                     | 2.1                                  | 17.9                                 | 3.4                 | 3.6                                  | Assumed Nonparametric            | 11.4 <sup>(7)</sup>  |
| ZINC                     | 23/28 | 1.1 - 10                     | 2.16                                 | 161                                  | 41.2                | 44.2                                 | Log-Normal                       | 140                  |

#### **NOTES**

- (1) Results for total metals (i.e., unfiltered samples)in micrograms per liter (µg/L).
- (2) Data distribution determined using Shaprio Wilk Test with a 5-percent significance level.
- (3) When non-detects are present the Kaplain-Meier mean and standard deviation are presented. The geometric mean is presented if the data are all detect and follow a log-normal distribution. 'Otherwise the arithmetic mean and standard deviation are presented.
- (4) UTLs are presented using three significant figures if the value is greater than 10; otherwise, two significant figures are presented.
- (5) UTLs were calculated using ProUCL, Version 4.1.1. For assumed nonparametric, the 95-percent KM UTL is presented.
- (6) There is two or less detected concentrations. Computing sumary statistics is not appropriate.
- (7) ProUCL warns that there may not be enough detected concentrations for the calculations to be reliable enough to draw conclusions.

#### Rationale for UTL Selected from ProUCL Output

If all data detected and data distribution are not Normal, use Nonparamtric 95-percent UTL with 95-percent Coverage.

If any data are non-detect, use 95-percent Kaplain Meier UTL with 95-percent Coverage.

FOD = Frequency of detection.

KM = Kaplan-Meier.

UTL = Upper tolerance limit.

NA = Not applicable.

NSA Crane

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013 Section: References

Page 1 of 4

**REFERENCES** 

Barnhill, M.L., 1992. Subsurface Sedimentology of the Pennsylvanian (Mansfield) Rocks, Naval Surface

Warfare Center, Crane Indiana, (Rockeye, Dye Burial Ground and Demolition). Indiana Geological Survey,

Open File Report 92-15.

Barnhill, M.L. and P.L. Hansley, 1993. Sedimentology and Reservoir Characteristics of the

Pennsylvanian Aquifer Bodies at the McComish Gorge, Old Burn Pit, Pest Control Site, and Mustard Gas

Burial Grounds: A Preliminary Investigation, Naval Surface Warfare Center, Crane Indiana. Indiana

Geological Survey, Open File Report 93-8.

Blunck, D.R. 1995. Earth Resources Geographic Information System (GIS) for NSWC-Crane, Indiana

Geological Survey and Indiana University, Final Report.

B&R Environmental (Brown & Root Environmental), 1997. Current Contamination Conditions Risk

Assessment. SWMU #03/10 (Ammunition Burning Ground), SWMU #07/09 (Old Rifle Range), SWMU

#06/09 (Demolition Range). November.

DoD (Department of Defense), 2009. Department of Defense Quality Systems Manual for Environmental

Laboratories. Version 4.1. April.

Fisher, A.T., 1996. The Hydrogeologic Properties and Sedimentary Facies Relations of Shallow

Pennsylvanian Bedrock Aquifers: Well tests, Lithologic Descriptions, and Gamma-ray Logs, NSWC

Crane, Indiana Geological Survey and Indiana University, Open File Report 96-3.

Fisher, A.T., 1996. The Hydrogeologic Properties and Sedimentary Facies Relations of Shallow

Pennsylvanian Bedrock Aquifers: Well tests, Lithologic Descriptions, and Gamma-ray Logs, NSWC

Crane, Indiana Geological Survey and Indiana University, Open File Report 96-3.

Fisher, A.T., M.L. Barnhill, and J. Revenaugh, 1998. The Relationship Between Hydrogeologic Properties

and Sedimentary Facies: An Example from Pennsylvanian Bedrock Aguifers, Southwestern Indiana.

Ground Water. Vol. 36, No. 6. November-December.

021304/P R-1 CTO F279

**NSA Crane** 

Basewide Pennsylvanian Bedrock Background Groundwater Evaluation Report

Revision: 0

Date: September 2013

Section: References Page 2 of 4

IGS (Indiana Geological Survey), 1989. Assessment of Lead, Arsenic, and Other Trace Elements In the

Ground Water From Bedrock Aquifers In Southern Indiana. Department of Natural Resources.

November 13.

Kvale, E.P., 1992. Report on the Surface Geological Mapping of Crane Naval Surface Warfare Center,

Crane Indiana. Indiana Geological Survey, Open File Report 92-10.

Kvale, E.P., 1994. Bedrock Facies Controls On Potential Constituent Migration-Pathwyas and Barriers,

Landfill and Application Sites, Naval Surface Warfare Control, Crane, Indiana. Indiana Geological

Survey, Open File Report No. 95-1. December.

Murphy, W.L., and R. Wade, 1995. Draft Report, RCRA Facility Investigation, Phase II Groundwater

Release Assessment, SWMU 06/09 Demolition Area and Phase III Release Characterization, SWMU

07/09 Old Rifle Range, Naval Surface Warfare Center, Crane, Indiana. U.S. Army Corps of Engineers,

Waterways Experiment Station, Vicksburg, MS.

Murphy, W.L., and R. Wade, 1998. Final Report, RCRA Facility Investigation, Phase II Groundwater

Release Assessment, SWMU 06/09 Demolition Area and Phase III Release Characterization, SWMU

07/09 Old Rifle Range, Naval Surface Warfare Center, Crane, Indiana. U.S. Army Corps of Engineers,

Waterways Experiment Station, Vicksburg, MS.

NEESA (Naval Energy and Environmental Support Activity), 1983. Initial Assessment Study of Naval

Weapons Support Center, Crane, Indiana. NEESA 13-003. May.

NFESC (Naval Facilities Engineering Services Command), 1999. Navy Installation Restoration Chemical

Data Quality Manual (IRCDQM). September.

Nohrstedt, J.S., E.M. Farr, R.W. Magee, P.E. Albertson, and J.H. May. September 1998. RCRA Facility

Investigation Phase II Soils Release Characterization, SWMU 04/02, McComish Gorge, NSWC Crane,

Technical Report GL98-21, Final Report, U.S. Army Corps of Engineers, Waterways Experimental

Station.

Palmer, A.N., 1969. A Hydrologic Study of Indiana Karst, Ph.D. Thesis, Indiana University, Indiana.

Shaver, R.H., C.H. Ault, A.M. Burger, D.D. Carr, J.B. Droste, D.L. Eggert, H.H. Gray, D. Harper, N.R.

Hasenmueller, W.A. Hasenmueller, A.S. Horowitz, H.C. Hutchison, B.D. Keith, S.J. Keller, J.B. Patton,

021304/P R-2 CTO F279

Revision: 0

Date: September 2013 Section: References

Page 3 of 4

C.B. Rexroad, C.E. Wier, 1986. Compendium of Paleozoic Rock-unit Stratigraphy in Indiana—A

Revision: Indiana Geological Survey Bulletin 59.

Tetra Tech, Inc., 2013. Draft Supplemental Resource Conservation and Recovery Act Facility

Investigation Addendum Report for Solid Waste Management Unit 9 South (Pesticide Control Area / R-

150 Tank Area), Naval Support Activity Crane, Crane, Indiana. January.

Tetra Tech NUS, Inc., 2001. Basewide Background Soil Investigation Report, Naval Surface Warfare

Center Crane, Crane, Indiana. January.

Tetra Tech NUS, Inc., 2004. Resource Conservation and Recovery Act Facility Investigation Report for

SWMU 01 - Mustard Burial Ground, Naval Surface Warfare Center, Crane Division, Crane, Indiana.

October.

Tetra Tech NUS, Inc. 2005a. Resource Conservation and Recovery Act Facility Investigation Report for

SWMUs 4 (Mccomish Gorge), 5 (Old Burn Pit), 9 (Pesticide Control/R-150 Tank Area), and 10 (Rockeye),

Naval Surface Warfare Center, Crane Division, Crane, Indiana. July.

Tetra Tech NUS, Inc. 2005b. Monitored Natural Attenuation Report for Cast High Explosives Fill/Building

146 (SWMU 16), Round No. 4, Naval Surface Warfare Center, Crane, Crane, Indiana. November.

Tetra Tech NUS, Inc., 2007. Resource Conservation and Recovery Act Facility Investigation Report for

Mine Fill B (SWMU 13) Naval Surface Warfare Center, Crane, Crane, Indiana. April.

Tetra Tech NUS, Inc. 2008. Resource Conservation and Recovery Act Facility Investigation Report for

Building 106 Pond (SWMU 8), Naval Surface Warfare Center, Crane Division, Crane, Indiana. January.

Tetra Tech NUS, Inc. 2010a. Corrective Measures Proposal Report For SWMU 12 - Mine Fill A, Naval

Surface Warfare Center, Crane, Crane, Indiana. July.

Tetra Tech NUS, Inc. 2010b. Corrective Measures Proposal Report For SWMU 13 - Mine Fill B, Naval

Surface Warfare Center, Crane, Crane, Indiana. July.

Tetra Tech NUS, Inc. 2010c. Draft Resource Conservation and Recovery Act Corrective Measures

Proposal Report for SWMU 16 - Cast High Explosives Fill/B146 Incinerator Naval Surface Warfare

Center Crane, Crane Division Crane, Indiana. April.

021304/P R-3 CTO F279

Revision: 0

Date: September 2013 Section: References

Page 4 of 4

Tetra Tech NUS, Inc. 2010d. Monitored Natural Attenuation, Final Report for Mine Fill B (SWMU 13),

Round No. 9, Naval Surface Warfare Center, Crane, Crane, Indiana. July.

Tetra Tech NUS, Inc., 2011a. Draft Resource Conservation and Recovery Act Facility Investigation

Report for Mine Fill A (SWMU 12) Naval Surface Warfare Center, Crane, Crane, Indiana. June.

Tetra Tech NUS, Inc., 2011b. Monitored Natural Attenuation Report for Mine Fill A (SWMU 12), Round

No. 8, Naval Support Activity Crane, Crane, Indiana. March.

Tetra Tech NUS, Inc., 2011c. Monitored Natural Attenuation Report for Mine Fill B (SWMU 13), Round

No. 10, Naval Support Activity Crane, Crane, Indiana. March.

Tetra Tech NUS, Inc., 2011d. Resource Conservation and Recovery Act Facility Investigation Report for

Cast High Explosives Fill/B146 Incinerator (SWMU 16), Naval Surface Warfare Center, Crane, Crane,

Indiana, March.

U.S. EPA (United States Environmental Protection Agency), 1989a. RCRA Facility Investigation (RFI)

Guidance – Volume 1. Interim Final. EPA/540/SW-89-031. May 1989.

U.S. EPA, 1989b. Risk Assessment Guidance for Superfund - Volume 1, Human Health Evaluation

Manual (Part A) [HHEM]. Interim Final. EPA/540/1-89-002. Office of Emergency and Remedial

Response. December 1989.

U.S. EPA, 1993. Region 5 Standard Operating Procedure for Validation of CLP Inorganic Data. U.S.

EPA Region 5 Environmental Sciences Division, Central Regional Laboratory, Chicago, IL. September.

U.S. EPA, 2004. Contract Laboratory Program National Functional Guidelines for Inorganic Data Review.

Office of Superfund Remediation and Technology Innovation (OSRTI). OSWER 9240.1-45. EPA 540-R-

04-004. October.

U.S. Army (Army), 1978. Installation Assessment of the NSWC Crane, Record of Evaluation Report No.

117. Aberdeen Proving Ground, Maryland, March.

021304/P R-4 CTO F279

#### **APPENDIX A**

## 1989 INDIANA GEOLOGICAL SURVEY STUDY INFORMATION

#### **APPENDIX A-1**

# PAGES FROM APPENDIX A FROM 1989 INDIANA GEOLOGICAL SURVEY STUDY (HIGHLIGHTING ADDED; INDICATES PENNSYLVANIAN-AGE BEDROCK WELL)

Appendix A:

| Well<br>ID | Date                   | Temp<br>Thrmometr | DO         | TEMP<br>Thrmistr | SpC               | рĦ           | Bh<br>Zobell | Eh<br>Sample | Alkalinity | HC03-      | C03=     |
|------------|------------------------|-------------------|------------|------------------|-------------------|--------------|--------------|--------------|------------|------------|----------|
|            | UNITS:<br>DET LIM:     | °C                | mg/L<br>.1 | °C               | 1 μmho<br>(25 °C) |              | Væ           | ₽V           | eq CaCO3   | ppn        | ppm      |
|            | PRECISION:             | ±0.1              | ±.1        | ±0.1             |                   | ±.01         | ±1           | ±1           | ±Ø.1%      |            |          |
| 105        | Ø8-Aug-88              | 15.0              | Ø.58       | 15.5             | 910               | 8.37         | 152          | 90           | 5Ø9        | 573        | 24       |
| 106        | Ø8-Aug-88              |                   | 0.50       |                  |                   | 8.89         | 148          | -31          |            | 1440       | 14       |
| 107        | Ø8-Aug-88              |                   | 0.59       |                  | 532               | 8.10         | 144          | -135         |            | 362        | Ø        |
| 108        | Ø9-Aug-88              |                   | 1.18       | 16.0             | 1174              | 8.93         | 153          | 133          | 657        | 764        | 18       |
| 109        | 09-Aug-88              | 14.9              | 0.63       | 15.4             | 726               | 7.88         | 150          | -188         | 407        | 497        | Ø        |
| 110        | 09-Aug-88              | 15.4              | Ø.86       | 15.9             | 491               | 8.04         | 141          | -182         | 267        | 326        | Ø        |
| 111        | Ø9-Aug-88              | 16.0              | 7.90       | 16.5             | 266               | 6.65         | 145          | 191          | 23         | 29         | Ø        |
| 112        | Ø9-Aug-88              | 17.6              | 2.50       | 18.4             | 561               | 7.80         | 143          | 88           | 3Ø2        | 369        | Ø        |
| 113        | 09-Aug-88              | 14.9              | 0.61       | 15.4             | 482               | 8.24         | 140          | -258         | 269        | 325        | 1        |
| 114        | 10-Aug-88              | 15.5              | Ø.42       | 16.0             | 601               | 8.02         | 156          | -168         | 312        | 369        | 6        |
| 115        | 10-Aug-88              |                   | 0.49       | 16.1             | 2401              | 8.39         | 155          | -36          |            | 1600       | 12       |
| 116        | 10-Aug-88              |                   | Ø.52       |                  | 1501              | 9.18         | 151          | -154         |            | 798        | 32       |
| 117        | 10-Aug-88              |                   | 0.49       |                  | 495               | 7.55         | 146          | -283         |            | 329        | Ø        |
| 118        | 10-Aug-88              |                   | 0.65       |                  | 562               | 8.50         | 138          | 128          |            | 380        | 4        |
| 119        | 10-Aug-88              |                   | 3.81       |                  | 443               | 6.67         | 137          | 275          |            | 156        | Ø        |
| 120        | 11-Aug-88              |                   | 0.43       |                  | 837               | 8.64         | 153          | -233         |            | 575        | 8        |
| 121        | 11-Aug-88              |                   | 0.87       |                  | 1066              | 9.18         | 148          | 72           |            | 660        | 26       |
| 122        | 11-Aug-88              |                   | 4.4        |                  |                   | 7.26         |              | -110         |            | 357        | Ø        |
| 123        | 11-Aug-88              |                   | 0.74       |                  |                   | 8.23         |              | 156          |            | 391        | 4        |
| 124        | 14-Aug-88              |                   | 0.49       |                  | 339               | 6.99         | 150          | -146         |            | 232        | Ø        |
| 125        | 14-Aug-88              |                   | Ø.44       |                  | 725               | 8.33         | 143          | -252         |            | 493        | Ø        |
| 126        | 15-Aug-88              |                   | 0.11       |                  | 1268              | 9.17         | 153          | -328         |            | 739        | 27       |
| 127        | 15-Aug-88              |                   | Ø.59       |                  | 640               | 6.43         | 144          | -71          |            | 169        | Ø        |
| 128        | 15-Aug-88              |                   | 0.45       |                  | 395               | 7.51         | 132          | -146         |            | 256        | Ø        |
| 129        | 15-Aug-88              |                   | Ø.61       |                  |                   | 7.30         |              | -89          |            | 371        | <b>Ø</b> |
| 130        | 15-Aug-88              |                   | 0.4        |                  | 652               | 7.44         | 128          | 106          |            | 459        | Ø        |
| 131        | 16-Aug-88              |                   | 6.85       |                  | 169               | 6.08         | 146          | 211          | 74         | 11         | Ø        |
| 132        | 16-Aug-88              |                   | 9.47       | 18.4             | 1229              | 9.29         | 134          | 75           | 609        | 618        | 61       |
| 133        | 16-Aug-88              |                   |            |                  |                   | 9.33         |              |              | 692        | 833        | 6        |
| 134        | 16-Aug-88              |                   | 0.49       |                  | 733               | 8.42         | 127          | 78           |            | 571        | Ø        |
| 135        | 16-Aug-88              |                   | Ø.39       |                  | 605               | 7.34         | 122          | -190         |            | 397        | 7        |
| 136<br>137 | 16-Aug-88              |                   | Ø.39       |                  | 776<br>48Ø        | 8.39<br>7.24 | 126<br>168   | 126<br>-31   |            | 524<br>333 | 0        |
| 138        | 17-Aug-88<br>17-Aug-88 |                   | Ø.42       |                  | 500               | 7.48         | 154          | -128         |            | 321        | Ø<br>Ø   |
| 139        | 17-Aug-88              |                   | Ø.51       |                  | 482               | 7.36         | 158          | -167         |            | 265        | Ø        |
| 140        | 17-Aug-88              | 15.0              | 3.82       | 15.5             | 492               | 7.14         | 145          | 237          | 228        | 278        | Ø        |
| 141        | 17-Aug-88              | 16.2              | 0.4        | 16.7             | 935               | 9.00         | 145          | -75          | 519        | 593        | 20       |
| 142        | 13-Sep-88              | 14.9              | Ø.49       | 15.3             | 150               | 6.34         | 183          | -10          | 82         | 100        | Ø        |
| 143        | 13-Sep-88              | 14.8              | 0.50       | 15.2             | 409               | 6.94         | 174          | -120         | 223        | 272        | ø        |
| 144        | 13-Sep-88              | 16.4              | 6.90       | 16.8             | 300               | 5.80         | 172          | 273          | 48         | 59         | Ø        |
| 145        | 13-Sep-88              | 16.2              | 0.30       | 16.6             | 1202              | 7.41         | 170          | -207         | 389        | 475        | ø        |
| 146        | 13-Sep-88              | 15.3              | 0.31       | 15.7             | 905               | 7.14         | 170          | -90          | 298        | 363        | ø        |
| 147        | 13-Sep-88              | 15.4              | Ø.28       | 15.7             | 1004              | 7.19         | 173          | -189         | 261        | 319        | ø        |
| 148        | 13-Sep-88              | 15.6              | Ø.21       | 15.3             | 750               | 8.13         | 174          | -154         | 416        | 506        | 1        |
| 149        | 14-Sep-88              | 15.7              | Ø.32       | 16.2             | 366Ø              | 8.60         | 183          | 33           | 1057       | 1251       | 19       |
| 150        | 14-Sep-88              | 16.4              | 0.17       | 17.0             | 1501              | 8.63         | 175          | -223         | 470        | 559        | 7        |
| 151        | 14-Sep-88              | 15.6              | 0.30       | 15.9             | 713               | 8.40         | 172          | -282         | 409        | 484        | 7        |

Appendix A:

Water Chemistry in Region 3 (Odon-Elnora Area)

| Well<br>ID | Date               | Temp<br>Thrmometr | DO         | TEMP<br>Thrmistr | SpC               | pH   | Eh<br>Zobell | Eh<br>Sample | Alkalinity | HC03- | CO3= |
|------------|--------------------|-------------------|------------|------------------|-------------------|------|--------------|--------------|------------|-------|------|
|            | UNITS:<br>DET LIM: | •C                | mg/L<br>.1 | °C               | 1 μmho<br>(25 °C) |      | ₽Ā           | ъV           | eq CaCO3   | ppm   | рр∎  |
|            | PRECISION:         | ±Ø.1              | ±.1        | ±0.1             |                   | ±.Ø1 | ±1           | ±1           | ±0.1%      |       |      |
| 152        | 14-Sep-88          | 15.6              | Ø.29       | 16.0             | 563               | 7.10 | 174          | -158         | 312        | 381   | Ø    |
| 153        | 14-Sep-88          | 14.6              | Ø.53       | 15.0             | 515               | 7.38 | 174          | -148         | 225        | 275   | Ø    |
| 154        | 14-Sep-88          | 15.6              | 0.17       | 15.9             | 547               | 7.03 | 174          | -147         | 300        | 366   | Ø    |
| 155        | 14-Sep-88          | 15.6              | 0.40       | 15.9             | 2248              | 8.12 | 176          | -260         |            | 762   | Ø    |
| 156        | 18-Sep-88          | 16.2              | 8.21       | 16.6             | 568               | 6.91 | 186          | 249          |            | 344   | Ø    |
| 157        | 18-Sep-88          | 14.8              | 0.28       | 15.1             | 623               | 7.34 | 184          | -152         | 343        | 419   | Ø    |
| 158        | 2Ø-Sep-88          | 15.6              | 0.51       | 16.0             | 480               | 6.96 | 183          | -78          | 265        | 323   | Ø    |
| 159        | 2Ø-Sep-88          | 15.8              | 0.42       | 16.1             | 507               | 7.14 | 174          | -83          | 275        | 335   | Ø    |
| 160        | 20-Sep-88          | 16.3              | 3.08       | 16.6             | 608               | 7.67 | 172          | 152          | 335        | 409   | 0    |
| 161        | 2Ø-Sep-88          | 14.9              | 0.62       | 15.2             | 439               | 6.88 | 172          | 141          | 245        | 299   | Ø    |
| 162        | 20-Sep-88          | 15.4              | 0.22       | 15.8             | 425               | 6.97 | 176          | -115         | 238        | 290   | Ø    |
| 163        | 21-Sep-88          | 14.9              | 0.19       | 15.2             | 407               | 7.14 | 191          | -126         | 249        | 293   | Ø    |
| 164        | 21-Sep-88          | 16.6              | 0.2        | 16.9             | 894               | 7.67 | 187          | -208         | 392        | 479   | Ø    |
| 165        | 21-Sep-88          | 16.3              | 0.19       | 16.5             | 458               | 7.14 | 187          | -141         | 213        | 260   | Ø    |
| 166        | 21-Sep-88          | 14.6              | 0.21       | 14.9             | 1090              | 7.58 | 179          | -85          | 427        | 521   | Ø    |
| 167        | 21-Sep-88          | 14.8              | 2.86       | 15.1             | 422               | 6.62 | 178          | 216          | 162        | 198   | Ø    |
| 168        | 21-Sep-88          | 15.0              | 8.11       | 15.4             | 3Ø7               | 5.99 | 176          | 254          |            | 6Ø    | Ø    |
|            | HEAN               | 15.7              | 1.34       | 16.2             | 797               | 7.67 | 158          | -47          | 370        | 440   | 5    |
|            | STD DEV            | 0.6               | 2.08       | 0.7              | 614               | Ø.86 | 19           | 162          | 242        | 285   | 11   |
|            | MAX                | 17.8              | 8.21       | 18.4             | 366Ø              | 9.33 | 191          | 275          | 1331       | 1600  | 61   |
|            | MIN                | 14.6              | 0.11       | 14.9             | 150               | 5.80 | 122          | -328         | 23         | 11    | Ø    |

| ID                          |                 | NO3-             | S04-                   | <b>F</b> -    | Ca                      | Mg                 | K              | Na                 | Fe                      | Zn             | Pb             | Sr                 | Ba                 |
|-----------------------------|-----------------|------------------|------------------------|---------------|-------------------------|--------------------|----------------|--------------------|-------------------------|----------------|----------------|--------------------|--------------------|
|                             | pp∎<br>1        | рр <b>в</b><br>1 | рр <b>в</b><br>1       | ррв<br>.1     | рр <b>њ</b><br>.02      | рр <b>в</b><br>.02 | ppm<br>.Ø3     | рр <b>в</b><br>.09 | ppb<br>3                | ppb<br>2       | ppb<br>2       | рр <b>в</b><br>.06 | рр <b>в</b><br>.04 |
|                             |                 |                  |                        |               | ,                       |                    |                |                    |                         |                |                |                    |                    |
| 105                         | 5               | 3                | <1                     | 2.7           | 0.964                   | Ø.282              | 5.208          | 275.3              | 15                      | 5              | 5              | 0.018              | 0.057              |
| 106                         | 25              | 4                | <1                     | 7.6           | 1.911                   | 1.012              | 12.43          | 688.2              | 26                      | 51             | 8              | 0.185              | Ø.121              |
| 107                         | 1               | <b>(1</b>        | 12                     | 0.7           | 10.37                   | 3.038              | 6.319          | 116.8              | 35                      | <2             | 3              | 0.165              | 0.110              |
| 1 <b>08</b><br>1 <b>0</b> 9 | 13              | 18               | <b>∢1</b><br><b>∢1</b> | 5.5<br>2.3    | 3.051<br>6.697          | 1.353<br>3.718     | 2.902<br>4.510 | 331.6<br>187.2     | <del>&lt;3</del><br>434 | 1 <b>0</b> 363 | <b>(2</b><br>4 | 0.035<br>0.144     | <b>0.038 0.428</b> |
| 110                         | 2               | <1               | 8                      | 0.1           | 7.887                   | 1.880              | 3.147          | 104.8              | 284                     | ⟨2             | 2              | 0.071              | Ø. 156             |
| 111                         | 64              | 76               | 6                      | Ø.1           | 17.42                   | 7.539              | 1.433          | 38.11              | 37                      | 3Ø             | 6              | 0.030              | 0.060              |
| 112                         | 5               | 1                | 15                     | Ø.2           | 73.65                   | 19.63              | Ø.419          | 5.231              | 21                      | 5              | 3              | 0.078              | 0.034              |
| 113                         | 2               | <1               | <1                     | 1.3           | 8.898                   | 2.364              | 1.713          | 102.5              | 243                     | 89             | 3              | 0.040              | 0.084              |
| 114                         | 2               | <b>&lt;1</b>     | 20                     | 0.8           | 13.05                   | 3.091              | 2.972          | 126.9              | 95                      | 25             | 2              | Ø.119              | 0.080              |
| 115                         | 59              | <1               | <1                     | 4.8           | 2.373                   | Ø.889              | 5.524          | 574.3              | 29                      | <2             | <2             | 0.139              | 0.195              |
| 116                         | 25              | <1               | <1                     | 6.0           | 1.393                   | 0.411              | 3.042          | 398.2              | 16                      | <2             | <2             | Ø.Ø36              | 0.055              |
| 117                         | 2               | 37               | <1                     | 0.5           | 42.55                   | 13.63              | 1.748          | 37.93              | 1315                    | 108            | ⟨2             | Ø.218              | Ø.159              |
| 118                         | 2               | <1               | 10                     | 1.2           | 5.337                   | 1.351              | 2.517          | 137.6              | 14                      | 52             | 2              | 0.064              | Ø.138              |
| 119                         | 20              | 41               | 35                     | 0.2           | 48.30                   | 1.304              | 1.224          | 18.44              | 7                       | 9              | <2             | 0.084              | 0.033              |
| 12 <b>0</b><br>121          | 9<br>12         | <1<br><1         | 5<br>4                 | 1.7<br>3.1    | 3.923<br>Ø.269          | 1.298<br>Ø.107     | 2.9Ø2<br>2.238 | 246.6<br>340.0     | 35<br>∢3                | <2<br>3Ø       | <2<br><2       | Ø.Ø83<br>Ø.Ø15     | Ø.145<br>Ø.019     |
| 122                         | 6               | <b>(1</b> )      | 3                      | Ø.8           | 39.53                   | 19.17              | 3.497          | 40.26              | 183                     | 244            | <b>&lt;2</b>   | Ø.406              | Ø.613              |
| 123                         | 6               | <1               | 13                     | 0.5           | 12.77                   | 4.595              | 2.273          | 129.7              | 4                       | 69             | <2             | 0.081              | Ø.149              |
| 124                         | 2               | <1               | ₹1                     | Ø.6           | 13.84                   | 5.792              | 2.797          | 46.51              | 2543                    | 415            | ⟨2             | 0.106              | 0.210              |
| 125                         | 4               | <1               | <1                     | 1.6           | 6.352                   | 2.242              | 2.587          | 176.2              | 36                      | 75             | <2             | 0.075              | 0.069              |
| 126                         | 44              | <1               | <1                     | 3.2           | 0.773                   | 0.227              | 2.727          | 388.9              | 8Ø                      | <2             | 3              | 0.028              | 0.052              |
| 127                         | 6               | <1               | 177                    | 0.1           | 59.69                   | 15.05              | 3.147          | 37.73              | 2884                    | 53             | 6              | 0.150              | 0.019              |
| 128                         | 1               | <1               | 2                      | Ø.8           | 8.513                   | 4.451              | 2.657          | 59.82              | 40                      | <2             | <2             | 0.137              | 0.100              |
| 129                         | 1               | (1)              | <1                     | 0.9           | 37.30                   | 22.01              | 3.951          | 34.61              | 82                      | 17             | 2              | 0.488              | 0.713              |
| 130                         | 21              | <1               | <1                     | 1.0           | 7.420                   | 2.517              | 3.636          | 170.6              | 13                      | 199            | <b>&lt;2</b>   | 0.080              | 0.106              |
| 131                         | 38              | 36               | <1<br><1               | Ø.1<br>2.5    | 21.73<br>1. <b>0</b> 71 | 9.998              | 1.223<br>2.552 | 22.17<br>358.3     | 8                       | 31             | <2 ~<br><2     | Ø.Ø36<br>Ø.Ø31     | 0.049<br>0.034     |
| 132<br>133                  | 3 <b>4</b><br>9 | <1<br><1         | <1                     | 3.6           | 0.774                   | Ø.477<br>Ø.286     | 2.552          | 36Ø.9              | 9<br>2 <b>4</b>         | 3<br><2        | <2             | 0.031              | Ø.028              |
| 134                         | 29              | <b>(1</b> )      | <b>(1</b> )            | 1.5           | 4.696                   | 1.319              | 3.811          | 236.0              | 21                      | 18             | 5              | 0.110              | 0.067              |
| 135                         | 2               | <1               | <1                     | Ø.9           | 60.91                   | 26.91              | 2.483          | 19.92              | 381                     | <2             | <2             | 0.609              | Ø.812              |
| 136                         | 3               | <1               | 2                      | 1.6           | 3.754                   | 2.692              | 2.797          | 189.2              | <b>&lt;3</b>            | 63             | <2             | 0.090              | 0.076              |
| 137                         | 1               | <b>&lt;1</b>     | <1                     | 0.5           | 54.51                   | 17.03              | 1.532          | 14.81              | 102                     | 24             | 2              | 0.291              | Ø.844              |
| 138                         | 1               | <b>&lt;1</b>     | <1                     | 0.2           | 53.83                   | 18.74              | 0.847          | 9.751              | 270                     | 158            | <b>(2)</b>     | 0.170              | 0.259              |
| 139                         | 1               | <1               | <1                     | $\emptyset.3$ | 53.71                   | 18.14              | 1.452          | 10.83              | 1661                    | 423            | <b>&lt;2</b>   | 0.251              | 0.403              |
| 140                         | 5               | 12               | 32                     | 0.7           | 65.05                   | 21.67              | 1.230          | 1.724              | <3                      | 7              | <2             | Ø.855              | 0.092              |
| 141                         | 3               | <1               | <b>&lt;1</b>           | 2.4           | 1.103                   | 0.357              | 2.822          | 250.2              | 34                      | 16             | <b>&lt;2</b>   | 0.027              | 0.032              |
| 142                         | 2               | <1               | 2                      | 0.1           | 12.58                   | 5.683              | 0.870          | 13.70              | 2740                    | 11             | <2             | 0.065              | Ø.Ø73<br>Ø.519     |
| 143                         | 9<br>15         | <1<br>68         | 32<br>5Ø               | Ø.2<br><Ø.1   | 59.08<br>28.00          | 21.92<br>12.61     | Ø.62Ø<br>1.351 | 9.637<br>32.22     | 3445<br>49              | 6<br>13        | <2<br><2       | Ø.458<br>Ø.046     | 0.313<br>0.654     |
| 144<br>145                  | 215             | <1               | 37                     | Ø.6           | 57.64                   | 20.46              | 3.736          | 285.4              | 4156                    | 230            | ⟨2             | Ø.516              | 0.591              |
| 146                         | 86              | ⟨1               | 6                      | Ø.4           | 56.35                   | 23.82              | 3.625          | 96.15              | 424                     | <2             | ⟨2             | Ø.158              | Ø.178              |
| 147                         | 210             | <1               | 60                     | Ø.4           | 71.06                   | 35.43              | 4.875          | 183.9              | 6456                    | 645            | ⟨2             | 0.281              | 0.331              |
| 148                         | 26              | <1               | 11                     | Ø.9           | 8.129                   | 3.025              | 3.226          | 189.4              | 128                     | 16             | <2             | 0.111              | 0.137              |
| 149                         | 484             | <1               | 98                     | 7.3           | 4.054                   | 3.551              | 5.457          | 791.9              | 41                      | 22             | <2             | 0.075              | 0.087              |
| 150                         | 184             | <1               | 5                      | 1.3           | 20.96                   | 9.158              | 3.123          | 344.0              | 43                      | 66             | 6              | 0.448              | 0.518              |
| 151                         | 19              | <1               | 2                      | 1.2           | 12.54                   | 6.162              | 2.058          | 178.1              | 199                     | 9              | <2             | Ø.169              | 0.194              |

Appendix A:

Water Chemistry in Region 3 (Odon-Elnora Area)

| Well |          |          |                  |            |                     |                    |                    |                     |          |          |          |            |            |
|------|----------|----------|------------------|------------|---------------------|--------------------|--------------------|---------------------|----------|----------|----------|------------|------------|
| ID   | C1-      | N03-     | S04-             | <b>F</b> - | Ca                  | Ng                 | K                  | Na                  | Рe       | Zn       | Pb       | Sr         | Ba         |
|      | ppm<br>1 | ррв<br>1 | рр <b>в</b><br>1 | pp∎<br>.1  | рр <b>в</b><br>. Ø2 | рр <b>п</b><br>.02 | рр <b>н</b><br>.03 | рр <b>в</b><br>. Ø9 | ppb<br>3 | ppb<br>2 | ppb<br>2 | pp∎<br>.Ø6 | ppm<br>.04 |
|      |          |          |                  |            |                     |                    |                    |                     |          |          |          |            |            |
| 152  | 2        | <1       | <1               | 0.3        | 51.51               | 19.97              | 1.933              | 41.69               | 1746     | 329      | <2       | Ø.183      | Ø.212      |
| 153  | 2        | <1       | 6                | Ø.6        | 54.34               | 22.24              | 1.862              | 39.81               | 1009     | 9        | 7        | Ø.168      | Ø.173      |
| 154  | 11       | <1       | <1               | 0.4        | 41.41               | 11.95              | 2.289              | 41.70               | 2031     | 160      | <2       | 0.159      | 0.166      |
| 155  | 318      | <1       | 18               | 2.8        | 38.59               | 15.46              | 3.346              | 562.5               | 676      | 16       | <2       | 0.251      | 0.261      |
| 156  | 12       | 31       | 27               | 0.2        | 89.05               | 31.49              | 1.212              | 4.474               | 15       | 3        | <2       | 0.454      | 0.025      |
| 157  | 6        | <1       | <1               | 1.3        | 29.03               | 14.64              | 3.168              | 97.08               | 471      | <2       | <2       | 0.836      | 0.979      |
| 158  | 2        | <1       | 2                | 0.7        | 39.44               | 21.91              | 3.067              | 25.07               | 430      | 27       | <2       | 0.513      | 0.255      |
| 159  | 1        | <1       | <1               | 0.7        | 49.49               | 0.729              | 2.663              | 24.14               | 272      | <2       | <2       | Ø.676      | 0.462      |
| 160  | 2        | <1       | 3                | 1.6        | 12.57               | 8.323              | 3.823              | 118.8               | 32       | 193      | <2       | 0.297      | 0.148      |
| 161  | 1        | <1       | 7                | Ø.5        | 54.36               | 24.81              | 1.586              | 9.906               | 33       | 289      | <2       | Ø.316      | 0.372      |
| 162  | 1        | <1       | 4                | 0.4        | 49.36               | 22.57              | 1.308              | 10.00               | 88Ø      | 23       | <2       | 0.224      | 0.349      |
| 163  | 1        | <1       | <1               | Ø.4        | 43.99               | 17.30              | 1.509              | 31.13               | 1170     | 595      | <2       | 0.209      | 0.641      |
| 164  | 60       | <1       | <1               | 2.4        | 28.47               | 12.11              | 3.644              | 175.8               | 1160     | 346      | <2       | 0.636      | 0.570      |
| 165  | 10       | <1       | 26               | 0.1        | 57.60               | 22.89              | 1.154              | 2.739               | 5278     | 231      | <2       | Ø.139      | 0.052      |
| 166  | 106      | <1       | 21               | 2.1        | 30.86               | 9.834              | 2.812              | 247.7               | 158      | 4        | 3        | 0.260      | 0.486      |
| 167  | 10       | 35       | 12               | Ø.3        | 45.73               | 16.96              | Ø.889              | 11.31               | 7        | 91       | <2       | 0.157      | 0.037      |
| 168  | 11       | 65       | 32               | 0.1        | 27.99               | 10.38              | Ø.928              | 5.928               | 14       | 77       | <2       | 0.070      | 0.021      |
|      | 36       | 7        | 13               | 1.4        | 28.59               | 10.66              | 2.765              | 154.1               | 688      | 94       | <2       | 0.210      | Ø.227      |
|      | 81       | 17       | 27               | 1.7        | 23.73               | 9.291              | 1.754              | 174.3               | 13Ø3     | 146      | 2        | 0.200      | 0.232      |
|      | 484      | 76       | 177              | 7.6        | 89.05               | 35.43              | 12.43              | 791.9               | 6456     | 645      | 8        | Ø.855      | 0.979      |
|      | 1        | <1       | <1               | <0.1       | Ø.269               | 0.107              | 0.419              | 1.724               | <3       | <2       | <2       | 0.015      | 0.019      |

|   |   |   |   |   | 1 |   |   |   |   |
|---|---|---|---|---|---|---|---|---|---|
| В | n | n | Δ | m | А | 1 | v | 1 | • |
|   |   |   |   |   |   |   |   |   |   |

| Well<br>ID                  | Mn           | Cr          | Cd                     | AA .            | Hg           | Ag            | Se              | ANION<br>SUM | CATION<br>SUM | EPM<br>Balance | TDS                 | HARDNESS | TDS/SpC<br>RATIO |
|-----------------------------|--------------|-------------|------------------------|-----------------|--------------|---------------|-----------------|--------------|---------------|----------------|---------------------|----------|------------------|
|                             | ppb<br>3     | ppb<br>2    | ppb<br>2               | ppb<br>2        | ppb<br>0.5   | ppb<br>1      | ppb<br>2        | meq/L        | meq/L         | *              | ppm                 | ppm      |                  |
|                             |              |             |                        |                 |              |               |                 | ±1%          | ±1%           |                |                     |          |                  |
| 105                         | 3            | <2          | ⟨2                     | ⟨2              | <.5          | <1            | ₹2              | 10.5         | 12.2          | 7.4            | 889                 | 4        | 1.0              |
| 106                         | 6            | <2          | <2                     | <2              | <.5          | <1            | <2              | 25.2         | 30.4          | 9.3            | 2194                | 9        | 0.8              |
| 107                         | 6            | <2          | <2                     | <2              | <.5          | <1            | <2              | 6.3          | 6.0           | -1.9           | 513                 | 38       | 1.0              |
| 1 <b>Ø8</b><br>1 <b>Ø</b> 9 | 6<br>24      | <b>₹2</b>   | <b>⟨2</b><br>⟨2        | <b>&lt;2</b> <2 | <.5<br><.5   | (1            | <b>⟨2</b><br>⟨2 | 13.8<br>8.7  | 14.8<br>8.9   | 3.4<br>1.7     | 114 <b>0</b><br>724 | 13<br>32 | 1.0              |
| 110                         | 15           | <2          | <2                     | <b>(2</b>       | ₹.5          | $\frac{1}{1}$ | <2              | 5.6          | 5.2           | -3.3           | 454                 | 32<br>27 | Ø.9              |
| 111                         | 7            | ⟨2          | <2                     | 2               | ₹.5          | (1            | ⟨2              | 3.6          | 3.2           | -6.7           | 242                 | 74       | Ø.9              |
| 112                         | 47           | <2          | <2                     | 2               | ₹.5          | (1            | <2              | 6.5          | 5.5           | -8.3           | 492                 | 265      | Ø.9              |
| 113                         | 22           | (2          | ⟨2                     | 2               | ₹.5          | <1            | ⟨2              | 5.5          | 5.2           | -3.1           | 447                 | 32       | Ø.9              |
| 114                         | 21           | ₹2          | <2                     | ₹2              | (.5          | (1)           | <2              | 6.8          |               | -1.8           | 544                 |          | Ø.9              |
| 115                         | 7            | <2          | <2                     | <2              | <.5          | <1            | <2              | 28.5         | 25.3          | -5.9           | 2259                | 10       | Ø.9              |
| 116                         | 7            | <2          | <2                     | <2              | <.5          | <1            | <2              | 15.2         | 17.5          | 7.1            | 1264                | 5        | Ø.8              |
| 117                         | 47           | <2          | <2                     | 21              | ₹.5          | <1            | <2              | 6.1          | 5.0           | -9.5           | 487                 | 162      | 1.0              |
| 118                         | 26           | <2          | <2                     | <2              | <.5          | <1            | <2              | 6.7          | 6.4           | -2.1           | 545                 | 19       | 1.0              |
| 119                         | 22           | <2          | <2                     | 2               | ₹.5          | (1            | <2              | 4.5          | 3.4           | -14.8          | 324                 | 126      | 0.7              |
| 120                         | 10           | <2          | (2                     | <2              | <.5          | (1            | <2              | 10.1         | 11.1          | 4.6            | 854                 | 15       | 1.0              |
| 121<br>122                  | 1Ø           | <2<br><2    | <2<br>4                | <2<br><2        | <.5<br><.5   | <1<br><1      | <2<br><2        | 12.3<br>6.1  | 14.9          | 9.5<br>-6.1    | 1049<br>471         | 1 177    | 1.0              |
| 123                         | 26           | <b>(2</b> ) | <b>4</b>               | (2)             | ₹.5          | (1)           | <2              | 7.0          | 6.7           | -2.6           | 564                 |          | Ø.9              |
| 124                         | 114          | <2          | <2                     | <2              | ₹.5          | (1            | <2              | 3.9          | 3.4           | -6.4           | 307                 | 58       | Ø.9              |
| 125                         | 62           | ⟨2          | <2                     | (2              | ₹.5          | (1            | ⟨2              | 8.3          | 8.2           | -0.3           | 687                 | 25       | Ø.9              |
| 126                         | 26           | <2          | (2                     | <2              | ₹.5          | <1            | <2              | 14.4         | 17.1          | 8.3            | 1206                | 3        | 1.0              |
| 127                         | 395          | ⟨2          | <2                     | <2              | ₹.5          | <1            | ⟨2              | 6.6          | 6.1           | -4.1           | 471                 | 211      | Ø.7              |
| 128                         | 44           | <2          | <2                     | 25              | <.5          | <1            | <2              | 4.3          | 3.5           | -10.9          | 361                 | 40       | Ø.9              |
| 129                         | 47           | <2          | <b>(2)</b>             | ₹2              | <b>(.5</b> ) | <1            | <2              | 6.2          | 5.3           | -7.4           | 472                 | 183      | 0.9              |
| 130                         | 37           | <2          | <2                     | <2              | <.5          | <1            | <2              | 8.2          | 8.1           | -Ø.5           | 666                 | 29       | 1.0              |
| 131                         | 3            | <2          | <2                     | 4               | <.5          | <1            | <2              | 3.1          | 2.9           | -3.9           | 183                 | 95       | 1.1              |
| 132                         | 3            | 3           | <2                     | <2              | <.5          | <1            | <2              | 13.3         | 15.7          | 8.5            | 1079                | 5        | Ø.9              |
| 133                         | 7            | 5           | <2                     | <2              | <.5          | (1            | <2              | 14.3         | 15.8          | 5.1            | 1216                | 3        | 1.0              |
| 134                         | 9            | 3           | (2)                    | <b>(2)</b>      | (.5)         | (1)           | <b>(2)</b>      | 10.3         | 10.7          | 2.2            | 848                 |          | 1.2<br>Ø.9       |
| 135<br>136                  | 2Ø <3        | <b>(2)</b>  | <b>⟨2</b><br><b>⟨2</b> | 5 (2            | <b>₹.5</b>   | <1<br><1      | <b>⟨2 ⟨2</b>    | 8.8          | 6.2<br>8.7    | -4.1<br>-Ø.4   | 524<br>729          |          | Ø.9              |
| 137                         | ⟨3           | 2           | <b>&lt;2</b>           | <2              | ₹.5          | <b>(1)</b>    | <b>&lt;2</b>    | 5.5          | 4.8           | -6.6           | 424                 |          | Ø.9              |
| 138                         | <b>&lt;3</b> | 2           | <2                     | 2               | ₹.5          | (1)           | <2              | 5.3          | 4.7           | -6.Ø           | 408                 |          | Ø.8              |
| 139                         | <b>&lt;3</b> | 3           | <2                     | 2               | ₹.5          | <1            | <2              | 4.4          | 4.8           | 4.5            | 355                 |          | 0.7              |
| 140                         | <3           | 4           | <2                     | <2              | ₹.5          | <1            | <2              | 5.6          | 5.2           | -4.3           | 419                 | 251      | Ø.9              |
| 141                         | <3           | 5           | <2                     | 2               | <.5          | <1            | <2              | 10.6         | 11.0          | 2.0            | 875                 | 4        | Ø.9              |
| 142                         | 170          | <2          | <2                     | 5               | <.5          | <1            | <2              | 1.8          | 1.9           | 3.3            | 145                 | 55       | 1.0              |
| 143                         | 205          | <2          | ₹2                     | 12              | <.5          | <1            | <2              | 5.4          | 5.4           | 0.1            | 421                 | 238      | 1.0              |
| 144                         | 5            | <2          | <2                     | 5               | ₹.5          | ₹1            | ₹2              | 3.5          | 3.9           | 4.4            | 272                 | 122      | Ø.9              |
| 145                         | 62           | <2          | ⟨2                     | 4               | <.5          | <1            | <2              | 14.7         | 17.3          | 8.3            | 1105                | 228      | Ø.9              |
| 146                         | 78           | <2          | <2                     | 2               | ⟨.5          | <1            | <2              | 8.5          | 9.1           | 3.1            | 638                 | 239      | Ø.7              |
| 147                         | 100          | <2          | <b>(2</b>              | 5               | (.5          | (1            | <b>(2</b>       | 12.4         | 15.0          | 9.3            | 897                 | 323      | Ø.9              |
| 148<br>149                  | 3<br>3       | 4           | <2<br>2                | <2<br>3         | <.5<br><.5   | <1<br><1      | <2<br>23        | 9.3<br>37.2  | 9.Ø<br>35.1   | -1.9<br>-3.0   | 749<br>2691         | 33<br>25 | 1.0<br>0.7       |
| 150                         | 11           | 3           | 2                      | 5               | ₹.5          | (1            | ∠3<br>⟨2        | 14.8         | 16.9          | 6.6            | 1140                | 9Ø       | Ø.1<br>Ø.7       |
| 151                         | 9            | <2          | ⟨2                     | 4               | Ø.5          | <1            | <2              | 8.8          | 9.0           | Ø.8            | 717                 | 57       | 1.0              |
| ***                         |              |             |                        | •               | 2.0          |               |                 |              |               | ~.0            |                     | •        |                  |

#### Appendix A:

#### Water Chemistry in Region 3 (Odon-Elnora Area)

| Well<br>ID | Mn       | Cr           | Cd         | As       | Hg          | Ag       | Se       | ANION<br>SUM | CATION SUM | EPM<br>Balance | TDS  | HARDNESS | TDS/SpC<br>RATIO |
|------------|----------|--------------|------------|----------|-------------|----------|----------|--------------|------------|----------------|------|----------|------------------|
|            | ppb<br>3 | ppb<br>2     | ppb<br>2   | ppb<br>2 | ррb<br>Ø.5  | ppb<br>1 | ppb<br>2 | meq/L        | meq/L      | *              | ppm  | рр∎      |                  |
|            |          |              |            |          |             |          |          | ±1%          | ±1%        |                |      |          |                  |
| 152        | 48       | ⟨2           | ⟨2         | 4        | <.5         | <1       | ⟨2       | 6.3          | 6.2        | -1.0           | 505  | 211      | Ø.9              |
| 153        | 63       | <b>&lt;2</b> | <2         | 7        | ₹.5         | <1       | <2       | 4.7          | 6.4        | 15.0           | 410  | 227      | Ø.8              |
| 154        | 76       | <2           | ₹2         | <2       | ₹.5         | <1       | ∢2       | 6.3          | 5.0        | -11.3          | 477  | 153      | 0.9              |
| 155        | 47       | <2           | <2         | 4        | <.5         | <1       | <2       | 22.0         | 27.8       | 11.7           | 1726 | 160      | Ø.8              |
| 156        | 21       | <2           | <2         | <2       | <.5         | <1       | <2       | 7.0          | 7.3        | 1.7            | 540  | 352      | 1.0              |
| 157        | 72       | <2           | <2         | 30       | ₹.5         | <1       | <2       | 7.1          | 7.0        | -0.6           | 602  | 133      | 1.0              |
| 158        | 96       | <2           | <2         | <2       | <.5         | <1       | <2       | 5.4          | 5.0        | -4.4           | 419  | 188      | 0.9              |
| 159        | 115      | <2           | <2         | <2       | <.5         | <1       | <2       | 5.6          | 3.7        | -20.2          | 415  | 127      | Ø.8              |
| 160        | 26       | <2           | <b>(2)</b> | <2       | <b>(.5)</b> | <1       | <2       | 6.9          | 6.6        | -2.3           | 559  | 66       | 0.9              |
| 161        | 141      | <2           | <2         | <2       | <.5         | <1       | <2       | 5.1          | 5.3        | 1.5            | 399  | 238      | Ø.9              |
| 162        | 257      | <2           | <2         | <2       | <.5         | <1       | <2       | 4.9          | 4.9        | -0.4           | 381  | 216      | Ø.9              |
| 163        | 69       | <2           | <2         | <2       | <.5         | <1       | <2       | 4.9          | 5.1        | 2.5            | 391  |          |                  |
| 164        | 27       | <2           | <2         | 8        | <.5         | <1       | <2       | 9.7          | 10.3       | 2.9            | 772  | 121      | Ø.9              |
| 165        | 231      | <2           | <2         | 3        | <.5         | <1       | <2       | 5.1          | 5.2        | 1.0            | 390  | 238      | 0.9              |
| 166        | 25       | <2           | <2         | 2        | <.5         | <1       | <2       | 12.1         | 13.2       | 4.6            | 943  | 117      | Ø.9              |
| 167        | 4        | <2           | 2          | <2       | <.5         | <1       | <2       | 4.3          | 4.2        | -1.6           | 330  | 184      | 0.8              |
| 168        | 4        | ₹2           | <2         | <2       | <.5         | <1       | <2       | 3.0          |            | -8.3           | 213  | 113      | 0.7              |
|            | 49       | <2           | <2         | 3        | <.5         | MA       | <2       | 8.8          | 9.1        | -0.4           | 702  | 115      |                  |
|            | 71       | 1            | 1          | 6        | Ø           | NA       | 3        | 6.1          | 6.8        | 6.5            | 485  | 95       |                  |
|            | 395      | 5            | 4          | 3Ø       | . 1         | NA       | 23       | 37.2         | 35.1       | 15.₽           | 2691 | 352      |                  |
|            | <3       | <2           | <2         | Ø        | <.5         | NA       | <2       | 1.8          | 1.9        | -20.2          | 145  | 1        |                  |

#### Appendix a:

#### Water Chemistry in Region 3 (Linton Area)

| Well<br>ID                             | Date                                                                       | Temp<br>Thrmometr            | DO                                           | TEMP<br>Throistr             | SpC                                        | pН                                           | Eh<br>Zobell                           | Eh<br>Sample                               | Alkalinity                | HC03-                                     | C03=               |
|----------------------------------------|----------------------------------------------------------------------------|------------------------------|----------------------------------------------|------------------------------|--------------------------------------------|----------------------------------------------|----------------------------------------|--------------------------------------------|---------------------------|-------------------------------------------|--------------------|
|                                        | ONITS:<br>DET LIN:                                                         | °C                           | mg/L<br>.1                                   | °C                           | 1 μmho<br>(25 °C)                          | ,                                            | ъV                                     | a V                                        | eq CaCO3                  | ррв                                       | ppm                |
|                                        | PRECISION:                                                                 | ±Ø.1                         | ±.1                                          | ±Ø.1                         |                                            | ±.Ø1                                         | ±1                                     | ±1                                         | ±0.1%                     |                                           |                    |
| 169<br>170<br>171<br>172<br>173<br>174 | 26-Sep-88<br>26-Sep-88<br>26-Sep-88<br>26-Sep-88<br>26-Sep-88<br>26-Sep-88 | 15.3<br>15.4<br>15.9<br>15.6 | Ø.22<br>Ø.19<br>Ø.32<br>Ø.50<br>Ø.20<br>Ø.39 | 15.6<br>15.8<br>16.3<br>16.0 | 3418<br>3112<br>1387<br>706<br>820<br>5915 | 8.12<br>8.34<br>7.92<br>7.22<br>8.37<br>7.96 | 183<br>180<br>176<br>177<br>179<br>179 | -178<br>120<br>-171<br>132<br>-116<br>-159 | 1047<br>317<br>391<br>471 | 1370<br>1251<br>387<br>477<br>560<br>1686 | 15<br>13<br>0<br>0 |
| HEAN<br>STD DEV<br>MAX<br>BIN          |                                                                            | 15.5<br>0.3<br>15.9<br>15.0  | 1.42<br>2.73<br>8.11<br>Ø.19                 | 15.9<br>Ø.3<br>16.3<br>15.4  | 2238<br>187Ø<br>5915<br>3Ø7                | 7.70<br>0.78<br>8.37<br>5.99                 | 179<br>2<br>183<br>176                 | -17<br>166<br>254<br>-178                  | 686<br>463<br>1382<br>49  | 827<br>559<br>1686<br>6Ø                  | 5<br>6<br>15<br>Ø  |

#### Appendix a:

#### Water Chemistry in Region 3 (Linton Area)

| Well<br>ID | C1-              | NO3-             | S04-             | <b>P</b> -    | Ca                 | Mg                 | K                  | Na                 | Fe       | Zn       | Pb       | Sr                 | Ba                 |
|------------|------------------|------------------|------------------|---------------|--------------------|--------------------|--------------------|--------------------|----------|----------|----------|--------------------|--------------------|
|            | рр <b>њ</b><br>1 | рр <b>в</b><br>1 | рр <b>в</b><br>1 | ppm<br>.1     | рр <b>в</b><br>.Ø2 | рр <b>п</b><br>.02 | рр <b>в</b><br>.Ø3 | рр <b>и</b><br>.09 | ppb<br>3 | ppb<br>2 | ppb<br>2 | рр <b>в</b><br>.Ø6 | рр <b>в</b><br>.04 |
| 100        | 545              | 3                |                  | 7-0           | 8.016              | 3.380              | 6.356              | 259.9              | 131      | 130      |          | 1,293              | Ø.644              |
| 169<br>170 | 508              | <b>(1</b> )      | 5                | 7.6<br>6.3    | 5.591              | 2.926              | 5.844              | 900.7              | 32       | 24       | 6        | 0.850              | Ø. 495             |
|            |                  |                  |                  |               |                    |                    |                    |                    |          |          |          |                    |                    |
| 171        | 3                | <b>(1</b>        | 401              | 0.3           | 25.99              | 19.27              | 4.414              | 326.9              | 368      | 8        | 11       | 0.997              | 0.043              |
| 172        | 3                | 2                | 20               | $\emptyset.3$ | 44.30              | 18.75              | 9.161              | 101.6              | 61       | 20       | <2       | 1.822              | 1.439              |
| 173        | 4                | <1               | 1                | $\emptyset.5$ | 2.063              | 0.649              | 1.443              | 216.2              | 112      | 16       | <2       | 0.034              | 0.099              |
| 174        | 1293             | 5                | <1               | 4.4           | 16.60              | 6.348              | 9.197              | 2187               | 162      | 235      | 5        | 2.407              | 4.295              |
| HEAN       | 338              | 11               | 66               | 2.8           | 18.65              | 8.815              | 5.335              | 571.2              | 126      | 73       | 4        | 1.068              | 1.005              |
| STD DEV    | 451              | 22               | 137              | 3.0           | 13.95              | 7.045              | 3.077              | 711.3              | 111      | 78       | 4        | 0.804              | 1.420              |
| MAX        | 1293             | 65               | 401              | 7.6           | 44.30              | 19.27              | 9.197              | 2187               | 368      | 235      | 11       | 2.407              | 4.295              |
| MIN        | 3                | <1               | <1               | 0.1           | 2.063              | 0.649              | Ø.928              | 5.928              | 14       | 8        | Ø        | 0.034              | 0.021              |

#### Appendix a:

#### Water Chemistry in Region 3 (Linton Area)

| Well<br>ID        | Mn            | Cr                 | Cd                       | Ås               | Hg                | Ag            | Se                     | ANION<br>SUN | CATION<br>SUM      | EPH<br>Balance     | TDS                | HARDNESS | TDS/SpC<br>RATIO |
|-------------------|---------------|--------------------|--------------------------|------------------|-------------------|---------------|------------------------|--------------|--------------------|--------------------|--------------------|----------|------------------|
|                   | ppb<br>3      | ppb<br>2           | ppb<br>2                 | ppb<br>2         | ppb<br>Ø.5        | ppb<br>1      | ppb<br>2               | meq/L        | meq/L              | *                  | ppm                | ppm      |                  |
|                   |               |                    |                          |                  |                   |               |                        | ±1%          | ±1%                |                    |                    |          |                  |
| 169<br>17Ø        | 12            | <b>&lt;2 &lt;2</b> | <b>2 &lt;2</b>           | 4 5              | <.5<br><.5        | <b>(1)</b>    | <b>₹2</b><br><b>₹2</b> | 38.8         | 12.2<br>39.9       | -52.2<br>5.5       | 2225               |          | Ø.7<br>Ø.9       |
| 171               | 33            | <2                 | 3                        | 55               | <.5               | <1            | <2                     | 14.8         | 17.3               | 7.7                | 1224               | 144      | 0.9              |
| 172<br>173<br>174 | 35<br>17<br>9 | <2<br><2<br><2     | <2<br><2<br>5            | <2<br><2<br><2   | <.5<br><.5<br><.5 | 2<br>(1<br>(1 | <2<br><2<br>52         | 9.6<br>64.4  | 8.5<br>9.6<br>96.9 | Ø.6<br>Ø.0<br>20.1 | 681<br>794<br>5267 | 8        | 1.0              |
| MEAN              | 16            | NA                 | 1                        | 9                | NA                | <1            | 7                      | 25.0         | 26.7               | -3.8               | 1873               | 83       | Ø.8              |
| STD DEV           | 12            | NA                 | 2                        | 19               | NA                | 1             | 18                     | 20.6         | 30.7               | 21.3               | 1608               | 62       | 0.1              |
| MAX<br>MIN        | 35<br>3       | na<br>Na           | <b>5</b><br><b>&lt;2</b> | 55<br><b>∢</b> 2 | na<br>Na          | 2<br><1       | 52<br><2               | 64.4<br>3.0  | 96.9<br>2.5        | 20.1<br>-52.2      | 5267<br>213        | 188      | 1.0<br>0.7       |

Appendix A:

Water Chemistry in Region 3 (Epsom Area)

| Well<br>ID | Date               | Temp<br>Thrmometr | DO         | TEMP<br>Thrmistr | SpC               | рĦ   | Eh<br>Zobell | Eh<br>Sample | Alkalinity | HCO3- | C03= |
|------------|--------------------|-------------------|------------|------------------|-------------------|------|--------------|--------------|------------|-------|------|
|            | ONITS:<br>DET LIM: | °C                | mg/L<br>.1 | •c               | 1 μmho<br>(25 °C) |      | æV           | m∀           | eq CaCO3   | ррв   | рр∎  |
|            | PRECISION:         | ±0.1              | ±.1        | ±Ø.1             |                   | ±.01 | ±1           | ±1           | ±0.1%      |       |      |
| 175        | 28-Sep-88          | 14.8              | Ø.69       | 15.1             | 582               | 6.82 | 179          | -95          | 325        | 396   | Ø    |
| 176        | 28-Sep-88          | 15.5              | Ø.18       | 15.8             | 2378              | 8.63 | 177          | 113          |            | 1119  | 23   |
| 177        | 30-Sep-88          | 15.8              | Ø.22       | 16.1             | 1164              | 8.96 | 183          | 136          | 582        | 664   | 23   |
| 178        | 3Ø-Sep-88          | 16.2              | 0.26       | 16.6             | 3357              | 8.43 | 179          | 117          | 1107       | 1324  | 13   |
| 179        | 3Ø-Sep-88          |                   | Ø.27       |                  | 1888              | 8.71 | 179          |              | 873        | 1022  | 22   |
| 180        | Ø2-0ct-88          |                   | Ø.23       | 16.5             | 4808              | 7.97 | 183          | -87          | 1390       | 1685  | 6    |
| 181        | Ø2-0ct-88          |                   | Ø.58       | 16.3             | 674               | 6.89 | 183          | -54          | 317        | 387   | Ø    |
| 182        | Ø2-0ct-88          |                   | Ø.3Ø       | 16.1             | 3Ø38              | 8.21 | 183          | 109          | 1106       | 1320  | 15   |
| 183        | Ø2-0ct-88          | 16.0              | Ø.26       | 16.4             | 929               | 7.57 | 187          | -112         | 558        | 678   | 1    |
| 184        | Ø3-0ct-88          | 15.5              | Ø.38       | 16.0             | 2999              | 7.71 | 193          | -146         | 8Ø6        | 984   | Ø    |
| 185        | Ø3-0ct-88          | 17.2              | 0.34       | 17.4             | 940               | 8.27 | 188          | 111          | 487        | 576   | 9    |
| 186        | Ø3-Oct-88          | 16.6              | 0.39       | 16.9             | 3436              | 8.20 | 187          | -238         | 1259       | 1512  | 12   |
| 187        | Ø3-0ct-88          | 16.8              | 0.70       | 17.1             | 2147              | 8.56 | 185          | 126          | 875        | 1026  | 21   |
| 188        | Ø3-0ct-88          | 15.4              | 0.30       | 15.7             | 1651              | 8.67 |              | 135          | 674        | 789   | 16   |
| 189        | Ø3-Oct-88          | 16.5              | 0.34       | 16.9             | 6586              | 7.93 | 184          | -99          | 1210       | 1476  | Ø    |
| 190        | Ø4-0ct-88          | 15.9              | 0.34       | 16.3             | 1504              | 8.36 | 200          | -99          | 745        | 893   | 8    |
| 191        | Ø4-0ct-88          | 16.4              | Ø.23       | 16.8             | 3857              | 7.84 | 197          | -32          | 952        | 1161  | Ø    |
| 192        | Ø4-0ct-88          | 14.8              | Ø.52       | 15.1             | 1928              | 8.34 | 193          | -138         | 848        | 1023  | 6    |
| 193        | Ø4-0ct-88          | 16.9              | Ø.31       | 17.4             | 2884              | 8.37 | 188          | -138         | 1370       | 1632  | 19   |
| 194        | Ø4-0ct-88          | 15.0              | Ø.53       | 15.3             | 961               | 7.83 | 188          | -61          | 307        | 375   | Ø    |
| 195        | Ø4-0ct-88          |                   | 0.70       |                  | 888               | 7.42 | 189          | -167         |            | 456   | Ø    |
| 196        | Ø5-0ct-88          |                   | 0.25       |                  | 2402              | 8.56 | 200          | 12           |            | 1426  | 22   |
| 197        | Ø5-0ct-88          |                   | Ø.52       |                  | 734               | 7.19 | 196          | -86          |            | 432   | Ø    |
| 198        | Ø5-0ct-88          |                   | 0.35       |                  | 841               | 8.29 | 194          | -170         |            | 526   | 11   |
| 199        | Ø5-0ct-88          |                   | 3.98       |                  | 722               | 8.18 | 188          | 149          |            | 503   | 3    |
| 200        | Ø5-0ct-88          | 15.9              | 0.20       | 15.6             | 916               | 7.51 | 190          | -110         | 428        | 523   | 0    |
| MEAN       |                    | 16.0              | Ø.51       | 16.3             | 2085              | 8.05 | 188          | -28          | 768        | 920   | 9    |
| STD DEV    |                    | 0.6               | 0.71       | ₩.6              | 1447              | Ø.55 | 6            | 118          | 348        | 417   | 9    |
| MAX        |                    | 17.2              | 3.98       | 17.4             | 6586              | 8.96 | 200          | 149          | 1390       | 1685  | 23   |
| MIN        |                    | 14.8              | 0.18       | 15.1             | 582               | 6.82 | 177          | -238         | 3Ø7        | 375   | Ø    |

Appendix A:

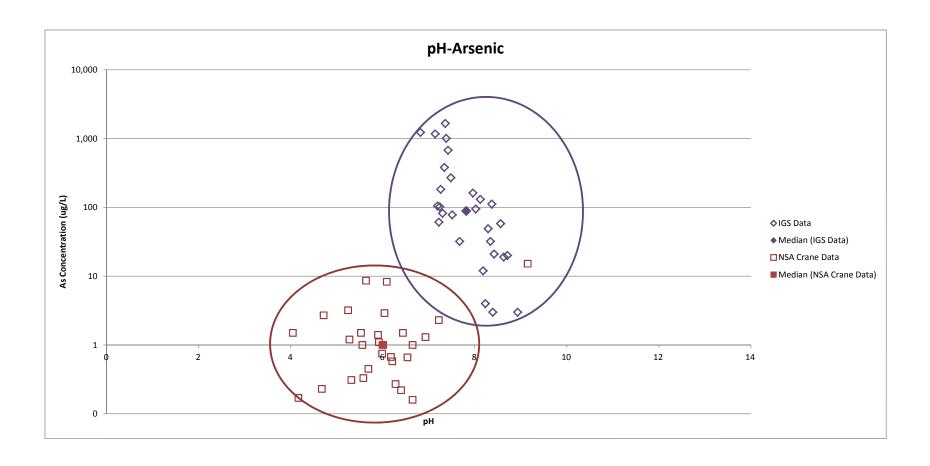
Water Chemistry in Region 3 (Epsom Area)

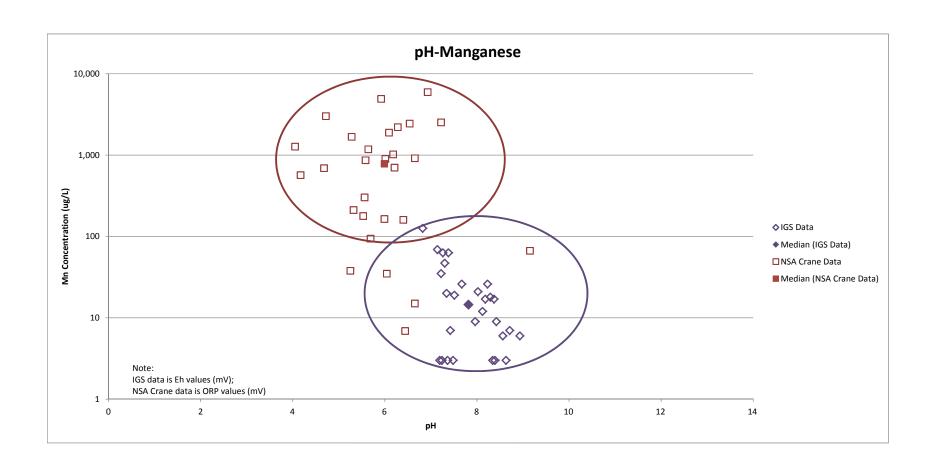
| Well<br>ID | C1-              | NO3-             | S04-             | <b>F</b> - | Ca                 | Mg                  | K          | Na                 | <b>F</b> e | Zn       | Pb       | Sr                 | Ba                         |
|------------|------------------|------------------|------------------|------------|--------------------|---------------------|------------|--------------------|------------|----------|----------|--------------------|----------------------------|
|            | рр <b>в</b><br>1 | рр <b>в</b><br>1 | рр <b>и</b><br>1 | ррв<br>.1  | рр <b>в</b><br>.02 | рр <b>в</b><br>. Ø2 | pp∎<br>.03 | рр <b>в</b><br>.09 | ppb<br>3   | ppb<br>2 | ppb<br>2 | рр <b>в</b><br>.Ø6 | рр <b>в</b><br>. <b>04</b> |
|            |                  |                  |                  |            |                    |                     |            |                    |            |          |          |                    |                            |
| 175        | 2                | <1               | 1                | 0.7        | 46.94              | 18.69               | 3.615      | 45.62              | 1231       | 60       | <2       | 0.642              | Ø.963                      |
| 176        | 269              | <1               | <1               | 8.1        | 3.234              | 1.247               | 3.496      | 712.1              | 19         | 11       | <2       | 0.370              | Ø.233                      |
| 177        | 46               | <1               | <1               | 4.1        | 4.024              | 0.462               | 1.889      | 337.5              | 10         | <2       | <2       | 0.090              | 0.099                      |
| 178        | 433              | <1               | <1               | 10.7       | 2.591              | 2.101               | 4.844      | 915.8              | 6.         |          | <2       | 0.694              | 0.400                      |
| 179        | 126              | <1               | <1               | 9.5        | 1.275              | 0.872               | 2.901      | 584.7              | 20         | 6        | <2       | Ø.246              | Ø.192                      |
| 180        | 942              | <1               | <1               | 3.3        | 6.881              | 4.697               | 8.017      | 1307               | 38         | 26       | 3        | 1.529              | 0.824                      |
| 181        | 2                | <1               | 60               | 0.4        | 3.314              | 3.130               | 3.258      | 155.9              | 175        | 2        | 3        | 0.242              | 0.123                      |
| 182        | 452              | <1               | <1               | 2.5        | 1.245              | 2.274               | 4.856      | 912.3              | 27         | 42       | 3        | 0.598              | 0.532                      |
| 183        | 20               | <1               | <1               | 2.3        | 8.672              | 0.391               | 1.848      | 290.2              | 88         | 22       | <2       | 0.069              | 0.095                      |
| 184        | 515              | <1               | <1               | 1.0        | 8.545              | 6.680               | 8.044      | 792.4              | 153        | 102      | <2       | 0.889              | 0.497                      |
| 185        | <1               | <1               | 14               | 1.8        | 1.187              | 0.689               | 2.631      | 219.9              | 11         | 67       | 3        | 0.068              | 0.045                      |
| 186        | 400              | <1               | <1               | 2.8        | 5.058              | 2.701               | 5.516      | 832.1              | 82         | 42       | 3        | 0.802              | 0.242                      |
| 187        | 185              | <1               | <1               | 4.5        | 1.301              | 0.967               | 2.979      | 632.4              | 77         | 24       | <2       | 0.288              | 0.084                      |
| 188        | 135              | <1               | 1                | 3.4        | 2.651              | 1.216               | 2.443      | 450.5              | 26         | 29       | <2       | 0.195              | 0.089                      |
| 189        | 1475             | 3                | 21               | 2.9        | 13.55              | 13.04               | 9.631      | 1381               | 42         | 40       | 15       | 4.428              | 2.992                      |
| 190        | 102              | <1               | 3                | 3.5        | 3.285              | 1.578               | 2.728      | 405.6              | 35         | 23       | <2       | 0.250              | 0.093                      |
| 191        | 700              | <1               | <1               | 1.5        | 7.594              | 4.862               | 7.080      | 1017               | 32         | 142      | 3        | 0.951              | 0.232                      |
| 192        | 195              | <1               | <1               | 3.0        | 2.893              | 0.885               | 2.697      | 621.3              | 33         | 74       | 2        | Ø. 256             | 0.091                      |
| 193        | 250              | <1               | <1               | 5.3        | 2.658              | 1.365               | 4.467      | 870.0              | 29         | 59       | 3        | 0.521              | 0.152                      |
| 194        | 1                | <1               | 204              | 0.5        | 1.257              | 0.474               | 1.463      | 217.7              | 42         | 324      | 13       | 0.097              | 0.033                      |
| 195        | 2                | <1               | 134              | Ø.7        | 35.30              | 13.10               | 2.012      | 154.4              | 677        | 50       | 6        | Ø.261              | 0.037                      |
| 196        | 158              | <b>&lt;1</b>     | <1               | 6.5        | 2.493              | 1.229               | 2.684      | 723.3              | 58         | 35       | 4        | Ø.333              | 0.098                      |
| 197        | 3                | <b>&lt;1</b>     | 67               | Ø.6        | 45.32              | 31.77               | 10.12      | 78.75              | 105        | 839      | 4        | 3.009              | Ø.391                      |
| 198        | 32               | <1               | <1               | 1.4        | 3.249              | 3.057               | 1.934      | 213.8              | 49         | 62       | 3        | 0.205              | 0.048                      |
| 199        | 3                | <1               | <1               | Ø.9        | 4.105              | 2.757               | 1.467      | 178.2              | 12         | 122      | 2        | Ø.149              | 0.040                      |
| 200        | 50               | <b>(1</b> )      | 14               | 0.8        | 11.59              | 5.979               | 1.479      | 202.3              | 78         | 21       | 2        | 0.230              | 0.070                      |
| MEAN       | 250              | <1               | 20               | 3.2        | 8.547              | 4.854               | 4.004      | 548.1              | 121        | 86       | 3        | 0.670              | 0.334                      |
| STD DEV    | 341              | 1                | 47               | 2.8        | 12.78              | 6.988               | 2.512      | 371.1              | 256        | 163      | 4        | 0.961              | 0.582                      |
| MAX        | 1475             | 3                | 204              | 10.7       | 46.94              | 31.77               | 10.12      | 1381               | 1231       | 839      | 15       | 4.428              | 2.992                      |
| MIN        | <1               | <1               | <1               | 0.4        | 0.672              | 0.391               | 1.463      | 45.62              | 6          | <2       | <2       | 0.068              | 0.033                      |
|            |                  |                  |                  |            |                    |                     |            |                    |            |          |          |                    |                            |

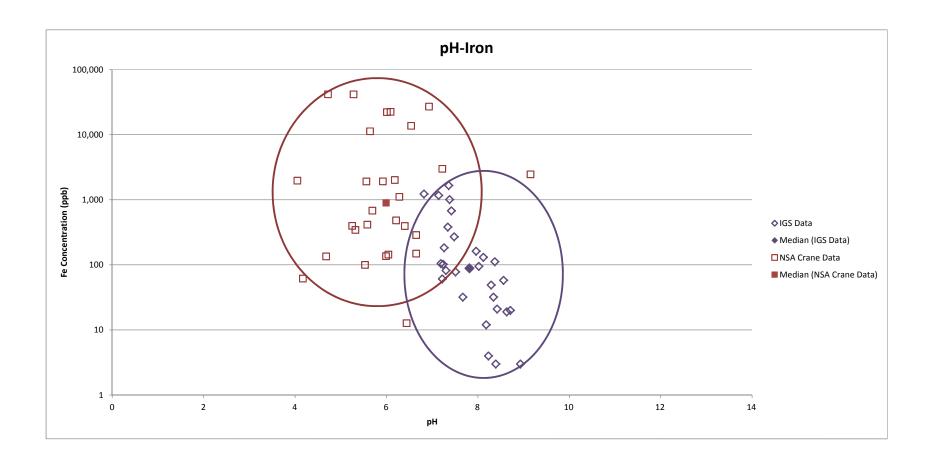
Appendix A:

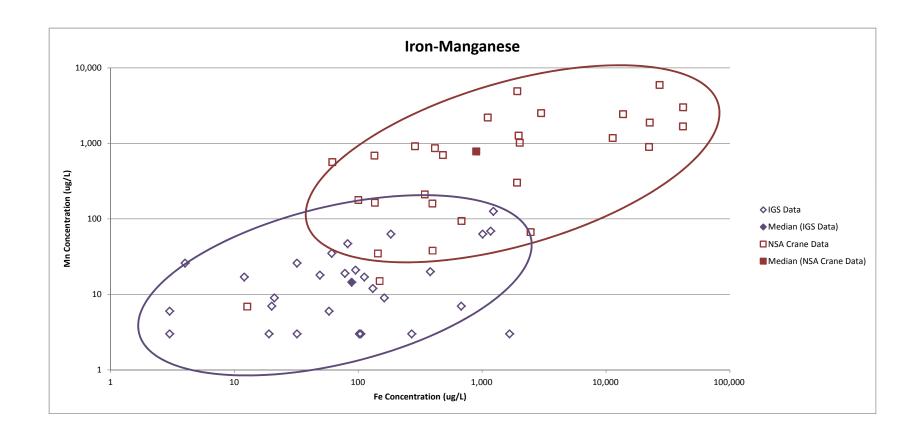
#### Water Chemistry in Region 3 (Epsom Area)

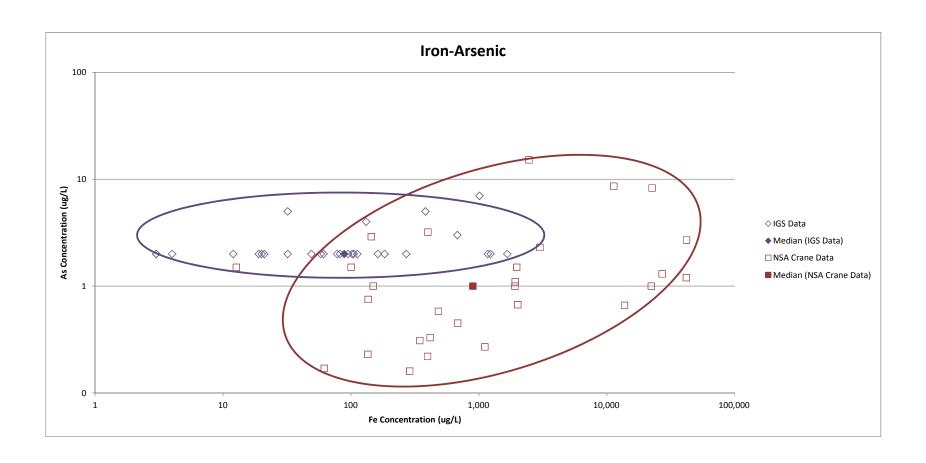
| Well<br>ID | Mn           | Cr           | Cd          | Ås       | Hg           | Ag         | Se           | ANION<br>SUN | CATION<br>SUM | EPM<br>Balance | TDS  | HARDNESS | TDS/SpC<br>RATIO |
|------------|--------------|--------------|-------------|----------|--------------|------------|--------------|--------------|---------------|----------------|------|----------|------------------|
|            | ppb<br>3     | ppb<br>2     | ppb<br>2    | ppb<br>2 | ppb<br>Ø.5   | ppb<br>1   | ppb<br>2     | meq/L        | meq/L         | *              | ppm  | ppm      | 9                |
|            |              |              |             |          |              |            |              | ±1%          | ±1%           |                |      |          |                  |
| 175        | 126          | <b>₹2</b>    | <b>(2</b> ) | ⟨2⟩      | ⟨.5          | <b>(1)</b> | ⟨⟨2⟩         | 6.6          | 6.1           | -4.5           | 518  | 194      | Ø.9              |
| 176        | <b>&lt;3</b> | <2           | <2          | <2       | ⟨.5          | <1         | <2           | 27.1         | 31.3          | 7.2            | 2140 |          | 0.9              |
| 177        | 7            | <2           | <2          | <2       | <.5          | <1         | <2           | 13.1         | 15.0          | 6.5            | 1080 | 12       | Ø.9              |
| 178        | ₹3           | <2           | <2          | <2       | <.5          | <1         | <2           | 34.9         | 40.3          | 7.1            | 2707 | 15       | 0.8              |
| 179        | 7            | 3            | <2          | <2       | ₹.5          | <1         | <2           | 21.5         | 25.7          | 8.8            | 1769 |          | 0.9              |
| 180        | <3           | 3            | <2          | <2       | <.5          | <1         | <2           | 54.5         | 57.8          | 2.9            | 3965 | 36       | Ø.8              |
| 181        | 17           | 2            | <2          | <2       | <.5          | <1         | <2           | 7.7          | 7.3           | -2.3           | 615  | 21       | 0.9              |
| 182        | 5            | 4            | <2          | <2       | <.5          | <1         | <2           | 35.Ø         | 40.1          | 6.8            | 2711 | 12       | Ø.9              |
| 183        | 9            | 3            | <2          | <2       | <.5          | <1         | <2           | 11.8         | 12.7          | 3.7            | 995  | 3        | 1.1              |
| 184        | 9            | <2           | <2          | <2       | <.5          | <1         | <2           | 30.7         | 35.7          | 7.5            | 2317 | 49       | 0.8              |
| 185        | 5            | <2           | <2          | <2       | <.5          | <1         | <2           | 10.1         | 9.8           | -1.9           | 826  | 6        | 0.9              |
| 186        | 10           | <2           | <2          | 3        | <.5          | <1         | <2           | 36.6         | 36.8          | Ø.3            | 2776 | 24       | ₿.8              |
| 187        | 7            | 6            | <2          | 4        | <.5          | <1         | <2           | 23.0         | 27.7          | 9.4            | 1879 | 7        | Ø.9              |
| 188        | 7            | 3            | <2          | 3        | <.5          | <1         | <2           | 17.5         | 19.9          | 6.5            | 1405 | 12       | Ø.9              |
| 189        | 16           | 2            | 5           | 16       | ₹.5          | <1         | <2           | 66.4         | 62.2          | -3.3           | 4419 | 87       | 0.7              |
| 190        | 7            | <2           | <2          | 12       | <.5          | <1         | <2           | 18.0         | 18.0          | -0.1           | 1435 | 15       | 1.0              |
| 191        | ⟨3           | <2           | <2          | 14       | <.5          | <1         | <2           | 38.8         | 45.2          | 7.6            | 2914 | 39       | Ø.8              |
| 192        | 7            | ⟨2           | <2          | <2       | <.5          | <1         | <2           | 22.6         | 27.3          | 9.4            | 1855 | 11       | 1.0              |
| 193        | ⟨3           | 2            | <2          | 2        | <.5          | <1         | <2           | 34.7         | 38.2          | 4.8            | 2788 | 12       | 1.0              |
| 194        | 4            | <2           | <2          | 4        | <.5          | <1         | <2           | 10.4         | 9.6           | -4.1           | 8Ø6  | 5        | Ø.8              |
| 195        | 7            | 2            | <2          | 3        | <b>(.5</b> ) | (1)        | <2           | 10.3         | 9.7           | -3.5           | 8Ø1  |          | Ø.9              |
| 196        | 6            | 2            | <2          | 2        | <b>(.5</b> ) | (1)        | <2           | 28.9         | 31.8          | 4.7            | 2344 |          | 1.0              |
| 197        | <b>(3)</b>   | 3            | <2          | 2        | (.5)         | (1)        | <2           | 8.6          | 8.7           | Ø.5            | 675  |          | Ø.9              |
| 198        | 18           | <2           | <2          | <2       | <b>(.5</b> ) | (1)        | <2           | 10.0         | 9.8           | -1.0           | 793  |          | 0.9              |
| 199        | 17           | <2           | (2)         | ₹2       | (.5          | (1)        | <2           | 8.5          | 8.2           | -1.5           | 697  |          | 1.0              |
| 200        | 19           | <b>&lt;2</b> | <b>(2)</b>  | 2        | ₹.5          | (1)        | <b>&lt;2</b> | 10.3         | 9.9           | -1.8           | 810  | 53       | 0.9              |
| MEAN       | 12           | 1            | <2          | 3        | NA           | NA         | NA           | 23.0         | 24.8          | 2.7            | 1771 | 41       | 0.9              |
| STD DEV    | 23           | 2            | 1           | 4        | NA           | NA         | NA           | 15.Ø         | 15.9          | 4.6            | 1055 | 59       | 0.1              |
| MAX        | 126          | 6            | 5           | 16       | NA           | NA         | NA           | 66.4         | 62.2          | 9.4            | 4419 | 244      | 1.1              |
| MIN        | <3           | <2           | <2          | <2       | NA           | NA         | NA           | 6.6          | 6.1           | -4.5           | 518  | 3        | 0.7              |

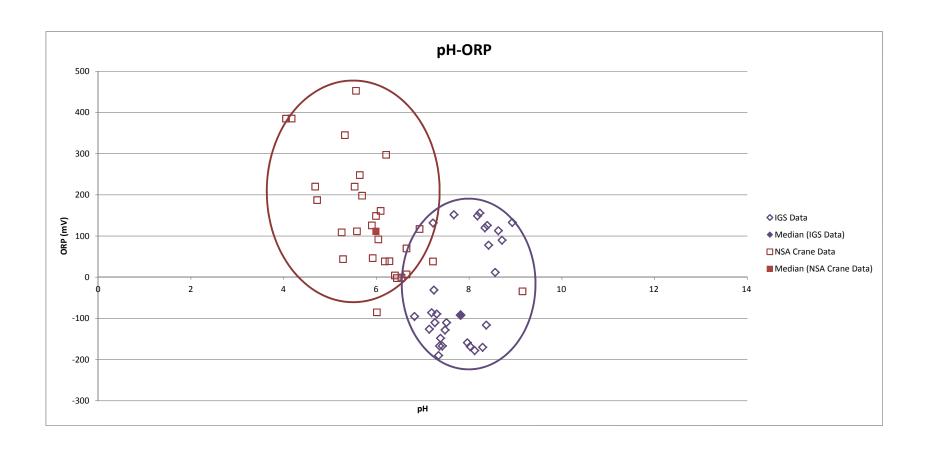

#### **APPENDIX A-2**

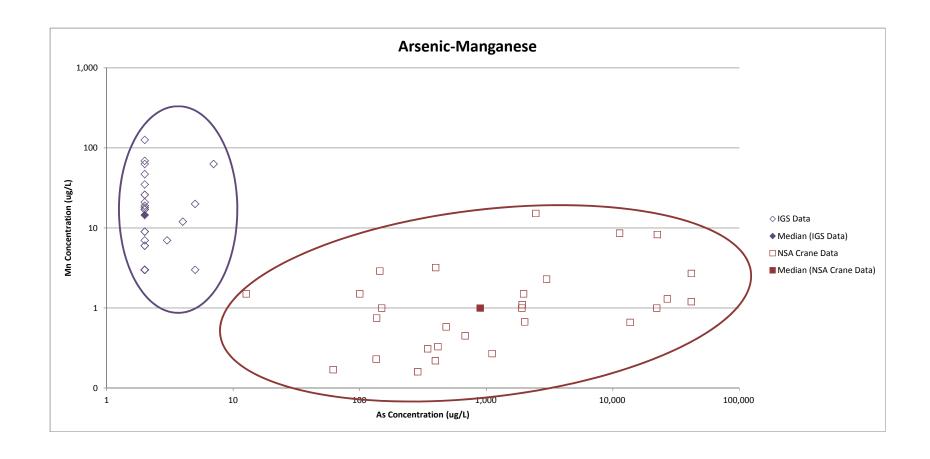

**PLOTS OF** 


1989 INDIANA GEOLOGICAL SURVEY STUDY DATA SET


TO


**NSA CRANE BACKGROUND DATA SET** 













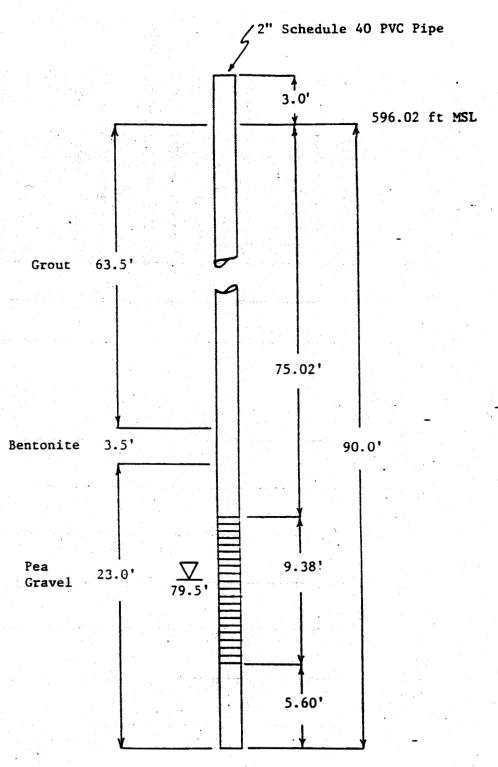

#### **APPENDIX B**

BORING LOGS
AND
WELL CONSTRUCTION DIAGRAMS

Sheet \_\_\_\_1\_\_

of 2 Sheets

|        |                                 |         |       | •    |      |      |           | ORING LOG    |       |    |                                                                                     |
|--------|---------------------------------|---------|-------|------|------|------|-----------|--------------|-------|----|-------------------------------------------------------------------------------------|
|        | NWSC                            |         |       |      |      |      |           | Site C       | rane, | IN | Date 10 November 82                                                                 |
|        | n <u>Must</u><br>lg <u>Fail</u> |         |       |      |      | 0    | perator . | D. Taylor    | Su    |    | Job No. <u>441-G150.13GR21/2</u> 2<br>El <u>596.02</u> Boring No. <u>WES-1-6-82</u> |
| SAMPLE | DATE                            | STRATUM |       | DRI  | VE   | SAM  | PLE       | TYPE OF      |       |    | CLASSIFICATION AND DELIABLE                                                         |
| NUMBER | TAKEN                           | FROM    | TO    | FROM | TO   | FROM | ΤÖ        | SAMPLER      |       |    | CLASSIFICATION AND REMARKS                                                          |
|        | 10 Nov                          |         |       | 0.0  | 1.5  |      |           | 6-3/4"Rock I | it    |    | 6" Casing-Stickup 0.5'                                                              |
| ,      |                                 | 0.0     | 11.7  | 0.0  | 26.0 |      |           | 5-5/8"Rock I | it    |    | Siltstone: reddish brown, grey,                                                     |
|        |                                 |         |       |      |      |      | ·         |              |       |    | soft, weathered, dry                                                                |
|        |                                 | 11.7    | 23.5  |      |      |      |           |              |       |    | Shale: grey, soft-medium, dry                                                       |
|        |                                 | 23.5    | 26.0  |      |      |      | <u></u>   |              |       |    | Shale: dark grey, black, dry                                                        |
|        | 10 Nov                          |         |       | 0.0  | 50.0 |      | ļ         | 5-5/8"Rock B | it_   |    | Air compressor filter went out                                                      |
|        |                                 |         |       | ·    |      |      |           |              |       |    | and pumped large quantity of oil                                                    |
|        |                                 |         |       |      |      |      |           |              |       |    | into hole. Traded air compressors                                                   |
|        |                                 | -       |       |      |      |      |           |              |       |    | and moved drilling rig 10 ft west                                                   |
|        |                                 |         |       |      |      |      |           |              |       |    | to drill another boring. Grouted                                                    |
|        |                                 |         |       |      |      |      |           |              |       |    | up contaminated hole.                                                               |
|        |                                 |         | 27.2  |      |      |      |           |              |       |    | Coal: black, soft                                                                   |
|        |                                 |         | _35.2 |      |      |      |           |              |       |    | Shale: grey, soft                                                                   |
|        |                                 | 35.2    |       |      |      |      |           |              |       |    | Coal: black, soft                                                                   |
|        | 11 Nov                          | 36.0    | 54.5  | 50.0 | 90.0 |      |           | 5-5/8"Rock I | it    |    | Sandstone: brown, red, fine-                                                        |
|        |                                 |         |       |      |      |      |           |              |       |    | grained, 75% quartz sand, hard                                                      |


WES JAN 74 819

EDITION OF NOV 1971 MAY BE USED

|          |        |      |         |      |    |      |          | ORING LOG | •        |                               |                                  |  |  |  |
|----------|--------|------|---------|------|----|------|----------|-----------|----------|-------------------------------|----------------------------------|--|--|--|
| Project  |        |      |         |      |    |      |          | Site      |          |                               | Date                             |  |  |  |
| Locatio  | n      |      |         |      |    |      |          |           |          | Job No                        |                                  |  |  |  |
| Drill Ri | g      |      | nspecto | ·    |    | 0    | Operator |           |          | Surface EI Boring No.WES-1-6- |                                  |  |  |  |
| SAMPLE   | DATE   | STRA | TUM     | DR   | VE | SAM  | PLE      | TYPE OF   |          |                               |                                  |  |  |  |
| NUMBER   | TAKEN  | FROM | 10      | FROM | то | FROM | то       | SAMPLER   | <u> </u> |                               | CLASSIFICATION AND REMARKS       |  |  |  |
|          | ·      |      |         |      |    |      |          |           |          |                               | Damp spot at 42 and 49 ft        |  |  |  |
|          |        |      |         |      |    |      |          |           |          |                               | No water overnight               |  |  |  |
|          |        | 54.5 | 82.5    |      |    |      |          |           |          | ,                             | Limestone: grey, white, hard     |  |  |  |
|          |        | 82.5 | 88.5    |      |    |      |          |           |          |                               | Shale: grey, soft                |  |  |  |
|          |        | 88.5 | 89.5    |      |    |      |          |           |          |                               | Limestone: grey, hard            |  |  |  |
|          |        | 89.5 | 90.0    |      |    |      |          |           | Į.       |                               | Shale: grey, soft                |  |  |  |
|          |        |      |         |      |    |      |          |           | İ        |                               | Water at 79.5 ft - Blew water    |  |  |  |
|          |        |      |         |      |    |      |          |           |          |                               | from hole several times and will |  |  |  |
|          |        |      |         |      |    |      |          |           |          |                               | monitor depth in morning before  |  |  |  |
|          |        |      |         |      |    |      |          |           |          |                               | installing screen.               |  |  |  |
|          | 12 Nov |      |         |      |    |      |          |           |          |                               | Water level at 69.87 ft -        |  |  |  |
| ·        |        |      |         |      |    |      |          |           |          | l                             | installed well screen            |  |  |  |
|          |        |      |         |      |    |      |          |           |          |                               |                                  |  |  |  |
|          |        |      |         |      |    |      |          |           |          |                               |                                  |  |  |  |
|          |        |      |         |      |    |      |          |           |          |                               |                                  |  |  |  |
|          |        |      |         |      |    |      |          |           |          |                               |                                  |  |  |  |

WES JAN 74 819 EDITION OF NOV 1971 MAY BE USED

Sheet 2 of 2 Sheets



Water depth at time of drilling

Well Screen

NWSC, Crane, Indiana Mustard Gas Burial Grounds Well Completion Boring Number: WES-1-6-82

|    | Ì     |      |      |      |
|----|-------|------|------|------|
| It | Tetra | Tech | NUS, | inc. |

#### **BORING LOG**

Page 1 of 2

|             |            | I NAM<br>T NUM |                  | Alla                                    | CRAL          | )Ł                                    |                                       | ORING No<br>ÁTE: | ). <u>.</u> | _O8 MWTOC                 | 7_             |                  | · ·                                          |
|-------------|------------|----------------|------------------|-----------------------------------------|---------------|---------------------------------------|---------------------------------------|------------------|-------------|---------------------------|----------------|------------------|----------------------------------------------|
|             | -          |                | PANY:            | NI2                                     |               | - MA                                  | ·                                     | AIE.<br>EOLOGIS  | T-          | 5-13-05<br>Jeff Schu      | 7              |                  |                                              |
|             |            | 3 RIG:         |                  | CN                                      |               |                                       |                                       | RILLER:          |             | Jim Wal                   |                | Y                | <del></del>                                  |
|             | 1          | Γ              | i                |                                         |               |                                       | RIAL DESCRIPTIO                       |                  |             |                           | PIOPHIO        |                  |                                              |
| Semp        | -          | Blows/         | Sample           | Lithology                               |               |                                       |                                       | - <del> </del>   | U           |                           |                |                  |                                              |
| Ma.<br>and  |            | 6° or<br>AGO   | Flecovery<br>/   | (Depthoft)                              | Suf Carely    |                                       |                                       |                  | S           |                           |                |                  |                                              |
| HO0         |            | (74            | Sample<br>Langth | or<br>Screened                          | Conditions    | Color                                 | Material Chicals                      | 4                | S           | Remarks                   |                |                  | 4                                            |
|             |            |                |                  | interval                                | (Nock         |                                       |                                       |                  | •           |                           | #              |                  | į                                            |
|             |            |                |                  |                                         |               | <b>.</b>                              |                                       |                  |             |                           | ×              |                  | K                                            |
|             | Ti         | 10/            | 12"/             | 6"                                      |               | 200                                   | wn sandy of                           | opsou            | _           |                           | ol             |                  |                                              |
| 1           | # <u></u>  | 92             |                  |                                         |               |                                       |                                       | <del>"</del> 1   |             |                           | H              |                  | 1                                            |
|             | 片          | 2              | /24              | 2                                       |               | -                                     | un sand wi                            |                  |             |                           | ##             | 111              | #                                            |
| 2           | 3          | $\sqrt{3}$     | 18"              |                                         | 1             | 000                                   | ·                                     |                  |             | yey stlf                  | Ш              | Ш                | Ц                                            |
| *           | 4          | 16             | 24               |                                         |               |                                       | dry to s                              | light            | 4           | modst)                    | H              |                  | $\Pi$                                        |
| -7          | 5          | 44             | 22"/             |                                         |               |                                       |                                       |                  |             |                           | $\Pi$          | П                | П                                            |
|             | 6          | 66             | 24               | 16                                      |               | •                                     |                                       |                  |             |                           | ĦĦ             | 11 1             | Ħ                                            |
|             |            | 42             | 22"              |                                         |               | bro                                   | wn sand                               | and pu           |             | es of weat                | lesto          | 1                | H                                            |
| ;4          | -          | 3              | -/-              | 11-1                                    |               |                                       | sandsta                               |                  | $\dashv$    | 0                         | - -            | 74               | ${f H}$                                      |
|             | 8          | Z50            | 124              | <u>8</u> ′                              |               | 1                                     | p of bodro                            | ek               | -           |                           |                | $\mathbb{H}^{1}$ | Ц                                            |
|             |            | /              | 0                |                                         |               | La.                                   | eved to                               | 10'11            |             | Land                      |                |                  | Ш                                            |
|             | 10         |                |                  |                                         | 5e            | 4                                     | temporar                              | cal              | .,          | ~?                        |                | Ш                | П                                            |
| ٦           |            |                |                  |                                         |               |                                       |                                       |                  |             | 1                         | TT             | Ħ                | Ħ                                            |
|             |            | 6              | 51               |                                         |               | fm                                    |                                       | , .              |             |                           | HF             |                  | H                                            |
| •           |            | 10%            |                  |                                         |               |                                       |                                       |                  |             | and stone                 |                | H                | H                                            |
| 1           | <b>!</b> — |                | /5/              |                                         | •             | <del>√</del> a                        |                                       | gray             |             |                           | 1              | 3                | H                                            |
|             |            |                |                  |                                         |               | ba                                    | · · · · · · · · · · · · · · · · · · · | Lidke            |             | <del></del>               | ا و            |                  | Ц                                            |
|             | 15         |                |                  |                                         |               | ro                                    | ck broke                              | m· e             | <u>.</u>    | ectally in                |                |                  |                                              |
|             |            |                |                  |                                         |               | 10                                    | -15' int                              | erva             | 8           |                           | 11             | $\Pi$            | $\Pi$                                        |
|             |            | 10             | 2/1              |                                         |               | 10                                    |                                       | - 04             |             | <del></del>               | 1111           | #                | Ħ                                            |
| ᆏ           |            | 196            | 3/               | •                                       |               |                                       |                                       |                  |             |                           | HH             | +                | H                                            |
| 2           |            |                | /5               |                                         |               |                                       |                                       |                  |             |                           | Ш              |                  | Щ.                                           |
|             | •          |                |                  |                                         |               |                                       |                                       |                  |             |                           |                |                  | ഥ                                            |
|             | 20         |                |                  | 20                                      |               |                                       |                                       |                  |             |                           |                |                  | $\prod$                                      |
|             |            |                |                  |                                         |               | mo                                    | dium sand                             | 12.1             | 1           |                           | HT             |                  | 广                                            |
| $\dashv$    |            |                |                  |                                         |               | Lo                                    | cause of                              | LON S            | <b>H</b>    | and a                     | HH             |                  | 廾                                            |
| 3           |            | 70%            | 5/               |                                         |               | -                                     | 1                                     | , 1              | 4           | 7                         | HH             | 4                | #                                            |
|             |            | $\angle$       | 15               |                                         |               | an                                    | glad bada                             | ing fo           | 4           | whatsons                  | Ш              |                  | $\parallel$                                  |
|             |            |                |                  |                                         |               |                                       |                                       | 0                |             |                           |                |                  | 11                                           |
|             | 25         |                |                  |                                         | ,             |                                       |                                       |                  | 1           |                           | 111            | ΙV               | 几                                            |
| Whe         | Frock co   | ring, ente     | r rock bro       | keness.                                 | ٠.            | نــــا                                |                                       | L                |             |                           | <u>', ', '</u> |                  | V.                                           |
| " Inch      | nom ebi    |                |                  |                                         | ) borehole. I | ncrease                               | reading frequency if eleval           | led reponse rea  | id.,        | <ul><li>Orillin</li></ul> | _              |                  |                                              |
| Rem         | arks:      | · · · · ·      | · .              | <u> </u>                                | · · · · ·     | · · · · · · · · · · · · · · · · · · · |                                       | •                | <u>.</u>    | Background                | (ppm)          |                  | <u>)                                    </u> |
|             |            |                |                  | . — — — — — — — — — — — — — — — — — — — |               |                                       |                                       |                  |             |                           | <del></del>    |                  |                                              |
| <b>io</b> m | verted     | to We          | H:               | Yes                                     | <u> </u>      |                                       | No                                    | Well I.D.        | #:_         | 08 MW TOO                 | 27             |                  |                                              |

|   |       | -    |     |      |
|---|-------|------|-----|------|
| 化 | Tetra | Tech | NUS | Inc. |

#### **BORING LOG**

Page 2 of 2

| Ho. (FL) or story or | G: Sample flacoury 20 Longth  2// 5/       | Lithology<br>Change                   | M<br>Sod (kendi)/          |         | X-ATV<br>RIAL DESCRIP        |                            | U S C S . | Flemarks         | -ds     |    | - |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|---------------------------------------|----------------------------|---------|------------------------------|----------------------------|-----------|------------------|---------|----|---|
| He. (FL) cr<br>and or flo<br>Type or flun<br>floor flu.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | or Recovery<br>20 1<br>34 Semple<br>Longth | Change<br>(DeptMFL)<br>or<br>Screened | Sod Country<br>Constanting |         |                              |                            | 5 8 C 8 - |                  | aguine. | -  |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 2'/<br>8 /51                               |                                       |                            |         |                              |                            |           | Con Tana Santana |         |    | C |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                            | 30'                                   |                            |         | Same a                       | s abo                      | <b>7</b>  |                  | 6 -     | 0  |   |
| 5 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3/5                                        | 35                                    |                            |         | gray to<br>coal, a<br>broken |                            |           | siltstone, very  |         |    |   |
| 35/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                            | <b>5</b> 5                            | 35                         | or      | camed and pack               | dapph<br>hole of<br>led gr | U<br>TO   | 33 bgs           |         |    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                       |                            | co      | rehole                       | with                       |           | roller bit       |         |    |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                            |                                       |                            |         |                              |                            |           |                  |         |    |   |
| *When rock coring,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                            |                                       | ) borehole. (              | ncrease | e reading frequency if o     | devated repanse o          | ead.      | • Orilin         | g Ar    | ea |   |

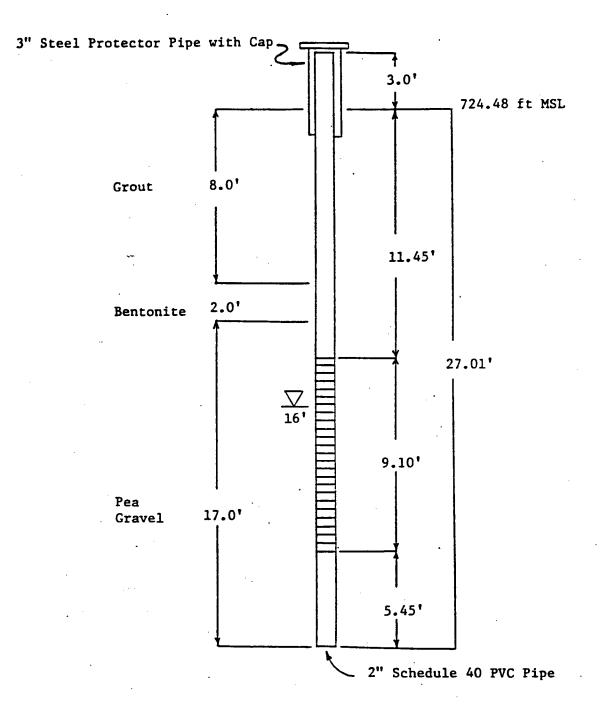
WELL NO .: D8MWTOO7



## BEDROCK MONITORING WELL SHEET WELL INSTALLED IN BEDROCK

Tetra Tech NUS, Inc.

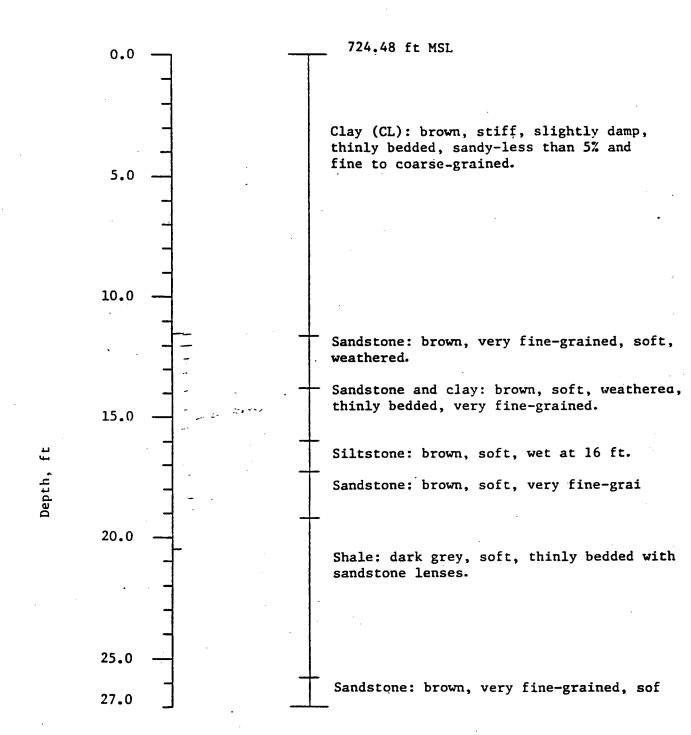
|            | Teua Teus 100, sic.                             |                                                                           |
|------------|-------------------------------------------------|---------------------------------------------------------------------------|
|            | PROJECT NSWC CRANE LOG                          | CATION SWMU 8 DRILLER Bowser Morne                                        |
|            | PROJECT NO. N 1245 BOI                          | RING ORMWT007 DRILLING 1100 / 01                                          |
|            | DATE BEGUN 5-13-05 DATE FIELD GEOLOGIST Teff Sc |                                                                           |
|            |                                                 | TUM A)A V.D 88 METHOD                                                     |
|            |                                                 |                                                                           |
| Z o        | •                                               | — ELEVATION/HEIGHT OF TOP OF SURFACE CASING:                              |
| 20/98      |                                                 |                                                                           |
| //0        |                                                 | — ELEVATION/HEIGHT TOP OF RISER:  701.31/1.58                             |
| Z.dwg      |                                                 | - TYPE OF SURFACE SEAL: 4/x4/x6" concrete                                 |
| MWINBR.    |                                                 |                                                                           |
|            |                                                 | - 1.D. OF SURFACE CASING: 4" x 4" Square \$ steel protective cooling with |
| ACAD: FORM |                                                 | steel protective cooling with                                             |
| ACA        |                                                 | - DIAMETER OF HOLE: Binches                                               |
|            |                                                 | from 0 to 9 ft bgs                                                        |
|            |                                                 | -RISER PIPE I.D.: 2 inches                                                |
|            |                                                 | TYPE OF RISER PIPE: PVC.                                                  |
|            |                                                 |                                                                           |
|            |                                                 | - TYPE OF BACKFILL: coment-bentonite                                      |
| ١          |                                                 | growt                                                                     |
|            |                                                 |                                                                           |
|            |                                                 | - ELEVATION/DEPTH TOP OF SEAL: 695.73, 4.0                                |
|            | T.O.R.                                          | -ELEVATION/DEPTH TOP OF BEDROCK: 687.73/10.0                              |
|            |                                                 | - TYPE OF SEAL: benton ite chips,                                         |
|            |                                                 | medium                                                                    |
|            |                                                 |                                                                           |
|            | 'E'                                             | — ELEVATION/DEPTH TOP OF SAND: 683.73, 16.0                               |
|            | **************************************          | - ELEVATION/DEPTH TOP OF SAND: 603.13/16.0                                |
|            |                                                 | — ELEVATION/DEPTH TOP OF SCREEN: 681.73/18.0                              |
|            |                                                 | TYPE OF SCREEN: PVC                                                       |
|            |                                                 | SLOT SIZE x LENGTH: 0,010 inches 15.0 feet                                |
| ļ          |                                                 | I.D. SCREEN: 2 Inches                                                     |
|            |                                                 | - TYPE OF SAND PACK: Silica Sand                                          |
|            |                                                 | No. 10-20 U.S. Standard Sieve Size                                        |
|            |                                                 | DIAMETER OF HOLE IN BEDROCK:                                              |
|            |                                                 | CORE/REAM: 2"/6" from 10 ft                                               |
|            |                                                 | to 35 feet bas: 2" core only                                              |
|            |                                                 | From 33 to 35 ft 69 666. 73 /33.0                                         |
|            |                                                 | ELEVATION/DEPTH BOTTOM OF SAND: 66 73 /37.0                               |
|            |                                                 | — ELEVATION/DEPTH BOTTOM OF HOLE: 664.73 /35.0                            |
|            |                                                 | BACKFILL MATERIAL BELOW SAND:                                             |
| ļ          |                                                 | up clay/shale dust shokesed into                                          |
|            |                                                 | Il 2" me hole with the voller                                             |


|                                                                                                                                                                                           | BORING LOG<br>FIELD DATA |              |      |      |          |       |           |                 |     |                                                                              |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------|------|------|----------|-------|-----------|-----------------|-----|------------------------------------------------------------------------------|--|--|--|
| Project NWSC Ground-Water Study  Location Pest Control Area  Dob No. 441-G150.13GR21/  Drill Rig Failing Inspector J. Dunbar Operator C. Drake  Surface El 727.48  Boring No. WES-9-10-83 |                          |              |      |      |          |       |           |                 |     |                                                                              |  |  |  |
| SAMPLE<br>NUMBER                                                                                                                                                                          | DATE<br>TAKEN<br>1983    | STRA<br>FROM | MUTA | DRI  | VE<br>TO | SAM   | PLE<br>TO | TYPE OF SAMPLER |     | CLASSIFICATION AND REMARKS                                                   |  |  |  |
|                                                                                                                                                                                           | 1 <u>8 Λυ</u>            | 0.0          | 11.6 | 0.0  | 11.6     |       |           | 5"Folding Λu    | er_ | Clay(CL): brown, stiff, slightly                                             |  |  |  |
|                                                                                                                                                                                           |                          |              |      |      |          | ·<br> |           |                 |     | damp, thinly bedded, sandy-less<br>than 5% fine to coarse-grained.           |  |  |  |
|                                                                                                                                                                                           | 18 Au                    | 11.6         | 13.8 | 11.6 | 27.0     |       |           | 6"Rock Bit      |     | Sandstone: brown, very fine-grained, soft, weathered.                        |  |  |  |
|                                                                                                                                                                                           |                          | 13.8         | 16.0 |      |          |       |           |                 |     | Sandstone and clay: brown, soft weathered, thinly bedded, very fine-grained. |  |  |  |
|                                                                                                                                                                                           | ······                   | 16.0         | 17.3 |      |          |       |           |                 |     | Siltstone: brown, soft, wet at 16 ft                                         |  |  |  |
|                                                                                                                                                                                           |                          | 17.3         | 19.2 |      | ·        |       |           |                 |     | Sandstone: brown, soft, very fine-grained.                                   |  |  |  |
|                                                                                                                                                                                           |                          | 19.2         | 25.8 |      |          |       |           |                 |     | Shale: dark grey, soft, thinly heade                                         |  |  |  |

WES FORM 819

EDITION OF NOV 1971 MAY BE USED

with sandstone lenses.
Sheet 1 \_\_\_\_\_of \_\_\_ 2 \_\_ Sheets


|                                |                     |       |      |  | <br>•            |          | ORING LOG          |                                       |         |                                           |
|--------------------------------|---------------------|-------|------|--|------------------|----------|--------------------|---------------------------------------|---------|-------------------------------------------|
| Project<br>Locatio<br>Drill Ri | Rig Inspector DRIVE |       |      |  | O <sub>i</sub>   | perator_ | Site               | Su                                    | rface E | Date  Job No  I Boring No.WES-9-10-83     |
| SAMPLE<br>NUMBER               |                     | TAVEN |      |  | <br>\$AM<br>FROM |          | TYPE OF<br>SAMPLER |                                       |         | CLASSIFICATION AND REMARKS                |
| -                              |                     | 25.8  | 27.0 |  |                  |          |                    |                                       |         | Sandstone: brown, very fine-grained soft. |
|                                | 18_Auş              | ,     |      |  | <br>             |          |                    |                                       |         | Installed monitoring well.                |
|                                |                     |       |      |  | <br>             |          |                    |                                       |         |                                           |
|                                |                     |       |      |  |                  |          |                    | · · · · · · · · · · · · · · · · · · · |         |                                           |
|                                |                     |       |      |  |                  |          |                    |                                       |         |                                           |
|                                |                     |       |      |  |                  |          |                    |                                       |         |                                           |
|                                |                     |       | ·    |  |                  |          |                    |                                       |         |                                           |
|                                |                     | i     |      |  | <br>             |          |                    |                                       |         |                                           |



 $\overline{\sum}$  Water Depth at Time of Drilling

Well Screen

NWSC, Crane, Indiana Pest Control Area Well Completion Boring Number: WES-9-10-83



NWSC, Crane, Indiana
Pest Control Area
Lithology
Boring Number: WES-9-10-83

| A LOCATIO  | WSS                                          | Gp       | unduder strang                                                                                                  | <b>∤</b> |           | -                 |                                                                                                                                 |
|------------|----------------------------------------------|----------|-----------------------------------------------------------------------------------------------------------------|----------|-----------|-------------------|---------------------------------------------------------------------------------------------------------------------------------|
|            | 7. P                                         | st Co    | Arol-Woods Stran Tonk                                                                                           | 12. 848  | UFACTUR   |                   | SAU                                                                                                                             |
| A WOLE MO  |                                              | 1.41     | <u> </u>                                                                                                        | 13,.707  |           |                   |                                                                                                                                 |
| L BALL OF  |                                              |          | WESOUTLA -06.                                                                                                   |          | AL WUNDE  | a coat (          | losts                                                                                                                           |
| 1          |                                              | Dar      | Taylor                                                                                                          | IL ELE   | VATION 61 | 1004D 44          | TER                                                                                                                             |
| D. VERT    |                                              |          | 044. FROM TEPT.                                                                                                 | 16. BAT  | E HOLE    | خا                | 126/86 7/20/                                                                                                                    |
| 7. THICKNE | 15 OF OV                                     | ROURDE   | N                                                                                                               |          | VATION TO |                   |                                                                                                                                 |
|            |                                              | 170 ROCE |                                                                                                                 |          | ATURE OF  | MITTEL            | Geologist                                                                                                                       |
| S. TOTAL D |                                              |          | 26.7 '                                                                                                          |          | & CORE    | 90 X 04           | CU. Hant                                                                                                                        |
| ELEVATION  | DEFTH                                        | reca0    | CLASSIFICATION OF MATERIA<br>(Promption)                                                                        |          | RECOV-    | 00.               | (Dellas) time, when been, death of<br>decidential, of a., if distributed                                                        |
|            | 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1      | 4 4 4 4  | Sithy clay (CL) y B  Growthing, vfir SI. moist, num incressed nod-los dia) in upper za  CCC was SS  Sdy w/depth | - w/     |           | ਰਵਾ<br>ਰਹਾਂ<br>ਵ  | Storted dr. Ming<br>when 8"die fold<br>auger. Tock spli<br>where pess blom<br>a 3" push tube<br>t cleaned hole mil<br>e" onger. |
| ENG FORM   | 7 8 9 10 11 11 11 11 11 11 11 11 11 11 11 11 | PAEVIOU  | Top of highly woo (See Next sheet                                                                               |          | PAGJECT   | ⊽ar<br>5?!<br># 2 | Set 9.8' of Temporary 6"sta Casins. + Cla. hole to 10.2' my nit                                                                 |

ENG FORM 1836 PREVIOUS EDITIONS ARE OMOLETE.

(TRAFILUCENT)

| LOCATIO        | · (                                          | 1000                                                                         | 12 640     | UFACTUR      | O C 10                  | SHATION OF DRILL                                                         |
|----------------|----------------------------------------------|------------------------------------------------------------------------------|------------|--------------|-------------------------|--------------------------------------------------------------------------|
| P DUILLING     | AEL WET                                      |                                                                              | <u>.</u>   | AL '00' D    |                         | <u> </u>                                                                 |
|                | (As were 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 | read mate                                                                    | -          |              |                         |                                                                          |
| L HAME OF      | ORILLEA                                      |                                                                              |            | AL MUMBE     |                         |                                                                          |
| & DIRECTIO     |                                              | <del></del>                                                                  | -          | E HOLE       | 1000                    |                                                                          |
|                |                                              |                                                                              | n. ELE     | VAT 100 TO   | > or no                 |                                                                          |
|                | LILLED MTO ACC                               |                                                                              |            |              |                         | 7 FOR BORING                                                             |
|                | FTH OF HOLE                                  |                                                                              | 10. 1464   | ATURE OF     | INSPECT                 | 04                                                                       |
| ELEVATION<br>• | DEPTH LEGEN                                  | (1)                                                                          |            | S COME       | DOI OF<br>DAMPLE<br>OA. | REMARKS (Display than more bear mays of mattering, while it appropriated |
|                |                                              | Substant , y & re friend , oxid mod had frieble, largely flattened           | חטים       | ,            | المارة المارة           | Storted aring w/a 4x5/2" con but at 10.2'                                |
| Ļ              |                                              | to firm clay inch<br>occ sub-organia<br>+ # bd obushele<br>( Zip-up Clast?). | chy<br>mel | 2.3          | 8~~<br>(Ser)            |                                                                          |
| ·              |                                              | CI to yy'in are isoloted wing the SS metile                                  | **         | 12.5<br>Runz |                         |                                                                          |
|                |                                              | conglomerate of ance). The Charles represent 30 to 50% of the                | grave.     |              |                         |                                                                          |
| -              | A. H.                                        | mass Vol                                                                     | ·          | 4.3          |                         | en e                                 |
|                |                                              |                                                                              |            | 7            | Ja 1<br>2-7 - 4/        |                                                                          |
|                | "                                            |                                                                              |            |              |                         |                                                                          |
|                |                                              |                                                                              |            | 16.8         |                         | •                                                                        |
|                |                                              | · .                                                                          |            | 5.0          |                         |                                                                          |
|                |                                              |                                                                              |            | 5.0          |                         |                                                                          |
|                | 20 -2:                                       | 1                                                                            |            |              |                         |                                                                          |

TO FORM 1836 PREVIOUS EDITIONS ARE DESOLET

(TRAFSLUCENT)

| L           |               |          |                                       | ··· ···     | ·- · · · · |          |                |                      |
|-------------|---------------|----------|---------------------------------------|-------------|------------|----------|----------------|----------------------|
| E. BAILTIAL |               |          |                                       | 12 040      | UFACTUR    | CH I DEL | CHATION OF D   | AILL .               |
| 4 HOLE WO   | •/• •         |          |                                       | 12,101      | 41 80.0    | -        |                |                      |
|             |               |          |                                       | 14 701      | 46 8080    | ER CORE  |                |                      |
| 6. SAME 01  |               |          |                                       | 16 EFE      | 44710H 6   | 40040 A  |                |                      |
| 4 DIRECTH   |               | ···CLME! | 044 FROM TEAT.                        | SL DAT      | Z moLZ     |          | M760           |                      |
| 7. THICKHE  |               |          | · · · · · · · · · · · · · · · · · · · |             |            | or or no |                |                      |
| a. 9697# D  |               |          |                                       |             |            | HECOVER  | T FOR SORING   |                      |
| S. TOTAL D  | CPTH OF       | HOLE     | CLASHFICATION OF MATERIA              |             | 3 5005     | 90X 08   |                | Reades               |
| ELEVATION   | OCPTH         | LEGEMO   | (Powerpton)                           |             | S COME     | MO.      | (Dyellow) (as- | , were box, days, of |
|             | 70 -          | ·:       | 55, highlyweal                        | mil)        |            |          |                |                      |
| l           | =             | . 1      | , , , ,                               |             |            | Jar Se   |                |                      |
|             |               | D.       | •                                     |             | i          | 5        | ·              |                      |
| l           | 21_           | 177      |                                       |             | 1          |          |                |                      |
| \           | =             |          |                                       |             |            |          |                |                      |
| l `         | ] =           |          |                                       |             |            |          |                |                      |
| l           | =             | 022      |                                       |             | 71.8       | 1        |                |                      |
|             | Z2            | 1        | •                                     |             | Run 3      |          |                | •                    |
|             | =             |          | •                                     |             |            |          |                |                      |
|             |               | 1        |                                       |             |            |          |                |                      |
|             | ]             | 30 ;     | ·                                     |             |            |          |                |                      |
|             | 27            | + +      | Coal, Blk, hd, bl                     | ocky,       |            |          |                |                      |
|             | =             | ++       | brittle.                              | ı           |            |          |                | •                    |
|             | -             | , 4 ±    |                                       | - 1         | 4.9        |          |                |                      |
|             | $\exists$     | ++       |                                       |             | 14.7       |          | •              |                      |
|             | 21-           | 30 +     | ÷ //- 4 // 6:::                       |             |            |          |                |                      |
|             | =             | 8 ::     | mass Ad Sliffied                      | 10          |            |          | •              |                      |
|             |               | <b>E</b> | pleat inclus that q                   | √`          |            |          |                |                      |
|             | 25-3          | : :      | an effect to the                      | ا وسم       |            |          |                |                      |
|             | "=            | 1 ::     | like realleds ox ken downward from H  |             |            | 30.50    |                | ,                    |
|             | 三             |          | Jorelying coal be                     |             |            | -        | Set u          | rell sciee.          |
|             | ∃             | ::       | 80° Jt 15 1/4 "ope                    |             |            |          | detern         | 20.7 + 25            |
|             | 26-           | ·  ::    | too in state become                   |             |            |          | f+. (s         | sae well             |
|             | $\exists$     |          | tight and fades o                     | لميمه مو سه | 10/4/1     | ~        | dowing         | for detail           |
|             | 一二            |          | Bot of boh is<br>top of shesu         | use.        | 76.7       |          |                |                      |
|             | =             | 1        | But Depth 26.                         | 7           |            |          |                |                      |
|             | <sup>27</sup> |          | 201. 7                                |             |            |          |                |                      |
|             | .∃            |          |                                       |             |            |          |                |                      |
|             | $\exists$     |          |                                       | ]           |            |          |                |                      |
|             | _=            |          |                                       |             |            |          |                |                      |
|             | 三             |          | ē.                                    | İ           |            |          |                |                      |
|             | 三             |          |                                       |             |            |          |                |                      |
|             | Ξ             |          |                                       |             |            |          |                |                      |
|             | 3             | į        |                                       |             |            |          |                |                      |
|             | 3             |          | •                                     |             |            |          |                |                      |
|             | 4             | l        |                                       | 1           |            |          |                |                      |
|             | ∃             |          |                                       |             |            |          |                |                      |
|             |               | 1        |                                       | - 1         |            | 1        |                |                      |

ENG FORM 18:36 PREVIOUS EXTRONS ARE DESCRIPE.

| L LOCATION  | (Caste    |                |                          |          |           |                  |                                                                |
|-------------|-----------|----------------|--------------------------|----------|-----------|------------------|----------------------------------------------------------------|
| 1 Dailline  | ACENCY    |                |                          | 12. 840  | UP ACTUR  | Cu.P OCP         | GRATION OF DRILL                                               |
|             | (4        |                |                          | 11 TOT   | AL MO. OF | DVER.<br>LES TAR |                                                                |
| -           | DAILLEA   |                |                          |          | AL BUMBE  |                  |                                                                |
| & DIRECTIO  | - 01 -01  |                |                          |          |           |                  | MTED   COMPLETED                                               |
|             | •••       | wc             | 944. Phon 7511.          | W. DAT   |           |                  |                                                                |
| 7. 741CE461 | 1 0/ 0ve  | -              | I.                       |          | AL CORE   |                  | T fan Boning                                                   |
| S. TOTAL DE |           |                |                          |          | ATURE OF  |                  |                                                                |
| ELEVATION   |           |                | CLAMIFICATION OF MATERIA | <u>.</u> | s cont    | 90x 04           | REWARKS                                                        |
| •           |           |                | 1                        |          | DAY       | MO.              | (Delias) the more tree dest of<br>machine, see, if experiences |
|             | 11        |                | WES-WTGT-E               | 2        |           |                  | Précometer Plan                                                |
|             | =         |                | - Z.5' (Approx El-       | 726.0    |           | l                | (External well                                                 |
|             | 11        |                | 2.5                      |          | ľ         | 1                | (acyana and                                                    |
|             | Ξ         | 11             | 0.0' Ground sur          | Foce     |           |                  | Puc Pipe to a                                                  |
| 1           | Ξ         | 11             |                          |          |           |                  | Depth of 6.7                                                   |
|             | _=        |                | }                        |          |           | 1                | Teflon P.c. beb                                                |
|             | $\exists$ |                |                          |          |           |                  | e.7'                                                           |
|             | <u>-</u>  |                | 1                        |          |           |                  |                                                                |
|             | ∃         |                | 1                        |          |           |                  | Set well screen                                                |
|             | =         |                |                          |          |           | ·                | 0 7/28/86                                                      |
|             | $\exists$ |                | Grout Mixtur             | •        |           |                  | water level on                                                 |
|             | -         |                |                          |          |           |                  | 7/29/26-13.9                                                   |
|             | $\exists$ |                | water level - 14.0       | .        |           |                  | (from Top Pieer)                                               |
|             | =         |                | 2/14/86 (From Top        |          |           |                  | Developed Well                                                 |
| 1           | ∃         |                | 17,70                    | 1        |           |                  | on 7/31/86                                                     |
|             | =         |                |                          |          |           |                  |                                                                |
|             | =         |                |                          |          | İ         |                  | The procedure t                                                |
|             | $\exists$ |                |                          | j        |           |                  | development c                                                  |
|             | _=        | JL             | 16.7'                    | 1        |           |                  | plan for WES                                                   |
| 1           | 7         | ΧÌΚ            | *                        | 1        |           |                  | LT17-66.                                                       |
|             | $\exists$ | 8 18           | Benknik Pellets          | ٠        |           |                  | •                                                              |
|             | ∄         | Q              | 1E.7'                    |          |           |                  | 77                                                             |
|             | 3         | :11.           | Filter Granel            | 1        |           |                  | The equipments                                                 |
| -           | ∃         | ·[]:           | (Pec s.ze)               | Ī        |           | ·                | nos steam cle                                                  |
|             | 크         | 11:            | 20.7                     |          |           |                  | /·····                                                         |
|             | ∃         | :11:           |                          | 1        |           |                  |                                                                |
|             | 크         | ,  ·           |                          |          |           |                  |                                                                |
|             | =         | :11:           | .,                       | - 1      |           |                  |                                                                |
|             | $\exists$ |                | well screen              |          |           |                  |                                                                |
|             | ∃         | 11.            | - '                      | 1        |           |                  |                                                                |
|             | $\exists$ | <b>'</b> { [ ] |                          |          |           |                  |                                                                |
|             | 7         |                |                          |          |           |                  |                                                                |
|             | 7         | : H:           | - Z5.7°                  | .        | - 1       |                  |                                                                |
|             | ∄         | :1 L:          | Trap                     |          |           |                  |                                                                |
| ŀ           |           | ·II            | 26.7'                    | 1        |           |                  |                                                                |
|             | ∄         |                | •                        |          |           |                  |                                                                |
|             | 크         |                |                          |          |           |                  |                                                                |
|             | $\exists$ |                | - A                      |          |           |                  |                                                                |
| ENC FORM    |           |                | l                        |          |           |                  |                                                                |

ENG. FORM 1836 PREVIOUS EDITIONS ARE OMOLET

FTR ARM DERRY

| PRO.                                   | JECT                               | NAME<br>NUME<br>COMF           | BER:                                     | NSWC C<br>7141 CT<br>Bowser N                                     | O 10                                                |                                                  | BORING NU<br>DATE:<br>GEOLOGIST       |           | 12-3-00<br>MATT COCHRAN | <u>A</u>       |             |               | <u>-</u>     |
|----------------------------------------|------------------------------------|--------------------------------|------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|---------------------------------------|-----------|-------------------------|----------------|-------------|---------------|--------------|
| DRIL                                   |                                    |                                |                                          |                                                                   | -59                                                 |                                                  | DRILLER:                              | •         | A WOLF                  |                |             |               | _            |
|                                        |                                    |                                |                                          |                                                                   |                                                     |                                                  | RIAL DESCRIPTION                      |           |                         | PIO/FID        | Reed        | ling (p       | pm)          |
| Semple<br>No.<br>end<br>Type or<br>RQD | Depth<br>(Pt.)<br>or<br>Run<br>No. | Blows /<br>6" or<br>RQD<br>(%) | Sample<br>Recovery /<br>Sample<br>Length | Lithology<br>Change<br>(Depth /Pt.)<br>or<br>Screened<br>Interval | Soil Density/<br>Consistency<br>or<br>Rock Hardness | Cdlor                                            | Material Classification               | U S C S · | Remarks                 | Sample         | Sampler 8.2 | Borehote"     | Driller BZ** |
|                                        |                                    |                                |                                          |                                                                   |                                                     |                                                  | SEE BORING                            |           |                         |                |             |               |              |
|                                        |                                    |                                |                                          |                                                                   |                                                     |                                                  | LOGS 95801,02                         | 4         |                         |                | $\Box$      | $\neg$        |              |
|                                        |                                    |                                |                                          |                                                                   |                                                     |                                                  | 03 FOR LITHOU                         | 1         |                         |                | П           | $\exists$     |              |
|                                        |                                    |                                |                                          |                                                                   |                                                     |                                                  |                                       |           |                         |                |             |               | ٦            |
|                                        |                                    |                                |                                          |                                                                   |                                                     |                                                  |                                       | $\top$    |                         |                |             | $\neg$        | $\neg$       |
|                                        |                                    |                                |                                          |                                                                   |                                                     |                                                  |                                       |           |                         | П              | 口           | $\neg$        | ヿ            |
|                                        |                                    |                                |                                          | 1                                                                 |                                                     |                                                  |                                       | $\top$    |                         |                | П           |               | $\neg$       |
|                                        |                                    |                                |                                          | 1                                                                 |                                                     |                                                  |                                       | +         |                         | Н              | П           | $\dashv$      | $\dashv$     |
|                                        | -                                  |                                |                                          |                                                                   |                                                     |                                                  |                                       | +         |                         | $\vdash$       | $\sqcap$    |               | 一            |
| -                                      | -                                  |                                |                                          |                                                                   |                                                     | BAN                                              | SANDSTONE                             | +         | 1.15A 2.162.5O          | +              |             | $\rightarrow$ | •            |
|                                        |                                    |                                | -                                        | 1                                                                 |                                                     | )                                                | 1.                                    | +         | WEATHERED .             |                | $\vdash$    |               |              |
| -                                      | -                                  |                                |                                          |                                                                   |                                                     | <b>*</b>                                         | · · · · · · · · · · · · · · · · · · · | +         | EASY PRILLING           | $\vdash$       | H           |               |              |
| -                                      |                                    |                                |                                          | ¥ 5WL                                                             | -                                                   |                                                  |                                       | ╅         | DRILL RATE              | +-             | $\vdash$    |               |              |
| $\vdash$                               | -                                  |                                | -                                        | 12-4-00                                                           |                                                     | <del>                                     </del> |                                       | +         | 15 SEC FOOT             | ╁              | Н           | Н             |              |
| $\vdash$                               | -                                  |                                | ļ                                        | 1                                                                 |                                                     | -                                                |                                       | -         | SWL DN 12-4,            | ╁              | H           | Н             | Н            |
| -                                      | -                                  |                                | -                                        | -                                                                 |                                                     | 1                                                |                                       | +         | OF DAY                  | ┼╌             | $\vdash$    | H             |              |
| -                                      | -                                  |                                | <del> </del>                             | <u> </u>                                                          |                                                     | -                                                |                                       | +         | <del> </del>            | ╀              | ╀           | H             |              |
| -                                      | -                                  | /                              |                                          |                                                                   |                                                     | ļ                                                |                                       | 4         |                         | ┼              | ₽           | _             |              |
|                                        | -                                  | 50                             | <b>_</b>                                 | 4                                                                 |                                                     | -                                                |                                       | _         |                         | ┼-             | $\vdash$    | _             | _            |
| <u> </u>                               | 19                                 | 50/                            | 1.1/                                     | 1                                                                 | SOFT                                                | BRN                                              | SANDSTONE                             | $\bot$    | ATTEMOTED               | 14             | NA          | WA            | NA           |
| 57                                     | <u> </u>                           | $\angle$                       | 2.0                                      | 4 .                                                               |                                                     | <u> </u>                                         |                                       |           | SPOON.                  | 4_             |             | <u> </u>      | _            |
| $\perp$                                | 21                                 |                                |                                          |                                                                   |                                                     | <u> </u>                                         |                                       | $\perp$   | REFUSAL, NO             | $\bot$         | $\perp$     | _             |              |
| L                                      |                                    |                                |                                          | _                                                                 |                                                     |                                                  |                                       |           |                         | $\perp$        |             |               |              |
|                                        |                                    |                                | 1                                        |                                                                   |                                                     |                                                  |                                       |           |                         | $\perp$        | L           |               | L            |
|                                        | 24                                 |                                | 1                                        |                                                                   |                                                     |                                                  |                                       | $\top$    |                         |                |             |               |              |
| T                                      | 1,                                 |                                | 1                                        | 1                                                                 | SOFT                                                | GREY                                             | SILTSTONE                             | -         | MENTHERING              | T              | T           |               |              |
|                                        |                                    | -                              | ter rock brok                            |                                                                   |                                                     |                                                  |                                       |           |                         | inc /          | 100         |               |              |
|                                        | lude mo<br>narks                   |                                | ing in 6 foot<br>DRIL                    | _                                                                 | orehole. Increa:<br>اکا ایما                        |                                                  | g frequency if elevated reponse read. | TTFA      |                         | ing A<br>d (pp |             |               | A            |
|                                        |                                    | To                             |                                          | RE                                                                |                                                     | ie.                                              | MAY GET POOR B                        | FCC       | VERY SINCE              |                |             |               | _            |
| Cor                                    | verte                              | d to W                         |                                          | Yes                                                               |                                                     |                                                  | No '\ Wel                             | I.D.      | #:                      | _              |             |               | _            |



|                                        |                                    | Tetra                          |                                          |                                                                     |                                                     | 므             | ORING L      | <u>ou</u>           |           |                                                                                                                                          |                        |                  |          |
|----------------------------------------|------------------------------------|--------------------------------|------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------|---------------|--------------|---------------------|-----------|------------------------------------------------------------------------------------------------------------------------------------------|------------------------|------------------|----------|
|                                        |                                    | NAME                           |                                          | NSWC C                                                              |                                                     |               |              | BORING NUM          | BER       | 12-3-00                                                                                                                                  | Α                      |                  |          |
|                                        |                                    | NUME                           |                                          | 7141 CT<br>Bowser                                                   |                                                     |               |              | DATE:<br>GEOLOGIST: |           | MATT COCHRAN                                                                                                                             | 2                      |                  |          |
|                                        |                                    | RIG:                           | ANT.                                     |                                                                     | 3-59                                                |               |              | DRILLER:            |           | A. WOLF                                                                                                                                  |                        |                  |          |
| JUIL                                   | LING                               | nia.                           |                                          |                                                                     |                                                     |               |              |                     |           |                                                                                                                                          |                        |                  | ==       |
| iemple<br>No.<br>and<br>'ype or<br>RGD | Depth<br>(Ft.)<br>or<br>Run<br>No. | Blows /<br>6" or<br>RQD<br>(%) | Semple<br>Recovery /<br>Semple<br>Length | · Lithology<br>Change<br>(Depth /Pt.)<br>or<br>Screened<br>Interval | Soil Density/<br>Consistency<br>or<br>Rock Hardness | MATE<br>Color | RIAL DESCRIF | TION                | U & C & • | Remarks                                                                                                                                  | PIOFIC                 | Read 28 Heldwiss |          |
|                                        |                                    |                                | 9.8/                                     |                                                                     |                                                     | 10111111      |              |                     |           | FE. STAINED<br>ALONG BEDDING<br>VERY THIN SHAL<br>BEDDING TOP I'<br>SANDY BEDDING<br>PLAMES TOP I'COM<br>ZIT - 33 ! LIKE<br>CONGLOWERATE | ae                     | 33333            | 55555    |
| <u>(-1</u>                             | :                                  |                                | 10.0                                     | ]                                                                   |                                                     |               |              |                     |           | CONCRETIONS                                                                                                                              |                        |                  |          |
| 9.0                                    |                                    | 40%                            |                                          |                                                                     |                                                     |               |              |                     | $\perp$   | BROKEN<br>THRU CORE                                                                                                                      |                        | $\sqcup$         | _        |
| 10.0                                   |                                    |                                |                                          | _                                                                   |                                                     |               |              |                     | +         | RUN LOOKS                                                                                                                                |                        | $oxed{\sqcup}$   | _        |
| +                                      | <u> </u>                           |                                | <u> </u>                                 | 33                                                                  | <u> </u>                                            | BLAC          | £ 6          |                     | +         | LOW & FRACTS                                                                                                                             | $\left  \cdot \right $ | $\vdash$         | $\dashv$ |
| <u>.</u>                               | 34                                 |                                | -                                        | -                                                                   |                                                     |               | COAL         | 7 / 1               | ╁╴        | (SEVERAL, THRUCOM                                                                                                                        | 1                      | H                | $\dashv$ |
|                                        | -                                  |                                |                                          | 1                                                                   |                                                     |               | 1_0          | 59                  | -         | H20@20.7                                                                                                                                 |                        | П                | $\neg$   |
|                                        |                                    |                                | 1                                        | 1                                                                   |                                                     |               |              |                     |           | BGS AFTER                                                                                                                                |                        |                  |          |
|                                        |                                    |                                |                                          |                                                                     |                                                     |               |              |                     |           |                                                                                                                                          |                        |                  |          |
|                                        | <u> </u>                           |                                |                                          | 4                                                                   | i                                                   | <u> </u>      |              |                     | $\perp$   | ļ                                                                                                                                        | igspace                | $\sqcup$         |          |
|                                        | _                                  | $\prec$                        |                                          | -                                                                   | <u> </u>                                            | ļ.<br>        |              |                     | +         |                                                                                                                                          | +                      | $oxed{H}$        | _        |
|                                        | -                                  | $\leftarrow$                   | -                                        | -                                                                   |                                                     |               |              |                     | ╁         |                                                                                                                                          | +                      | H                | -        |
|                                        | -                                  |                                |                                          | 1                                                                   |                                                     |               |              |                     | +         |                                                                                                                                          | +                      |                  | $\vdash$ |
|                                        | <u> </u>                           |                                | 1                                        | 1                                                                   |                                                     |               |              |                     | $\top$    |                                                                                                                                          | T                      |                  |          |
|                                        |                                    |                                |                                          |                                                                     |                                                     |               |              |                     |           |                                                                                                                                          |                        |                  |          |
|                                        |                                    |                                |                                          | 4                                                                   |                                                     |               |              |                     |           |                                                                                                                                          | $\perp$                |                  | _        |
|                                        | -                                  | $\prec$                        |                                          | -                                                                   |                                                     | _             | <u></u>      | ~                   | -         |                                                                                                                                          | +                      | +                | -        |
|                                        | -                                  | $\leftarrow$                   | -                                        | -                                                                   |                                                     | +             |              |                     | +         | <del>                                     </del>                                                                                         | +                      | +                | $\vdash$ |
|                                        | -                                  | <del>//</del>                  | +-                                       | $\dashv$                                                            |                                                     | +             |              |                     | +         |                                                                                                                                          | +                      | +                | $\vdash$ |
| * Whe                                  | en rock                            | coring. er                     | ter rock bro                             | keness.                                                             | <u> </u>                                            |               | 1            |                     |           |                                                                                                                                          |                        |                  | 1        |

ANNULUS AFTER HOLE PURGED

Well I.D. #: TRICKE Converted to Well: OFFSET RIG + DRILLED ZND BORING TO EVALUATE PRESENCE OF HZD AT DEATH. ABO UE CHALE HOLE BACKFILLED WILCEMENT/BENT GROW

| PROJECT NAME: NSWC CRANE PROJECT NUMBER: 7141 CTO 10 DRILLING COMPANY: Bowser Morner |            |                                |                                          |                                                                  |                                                      |           | ING NUME                              | ER:           | 09TC      | <u>) (</u>                      | B              |           |                                                  |
|--------------------------------------------------------------------------------------|------------|--------------------------------|------------------------------------------|------------------------------------------------------------------|------------------------------------------------------|-----------|---------------------------------------|---------------|-----------|---------------------------------|----------------|-----------|--------------------------------------------------|
|                                                                                      |            |                                |                                          |                                                                  |                                                      |           | DATI                                  | E:<br>LOGIST: | -         | MATT COCHRAN                    | <u> </u>       | <u> </u>  |                                                  |
|                                                                                      |            | RIG:                           | ĢIVI.                                    |                                                                  | 3-5 <b>9</b>                                         |           |                                       | LER:          | -         |                                 |                |           |                                                  |
| DAIL                                                                                 | LING       | nia.                           |                                          |                                                                  |                                                      |           |                                       | LEN.          | ;         | A. WOLF                         |                |           |                                                  |
| Sample<br>No.<br>and<br>Type or<br>RQD                                               | (Ft.)      | Blows /<br>6° or<br>RQD<br>(%) | Semple<br>Recovery /<br>Semple<br>Length | Lithology<br>Change<br>(Depth /FL)<br>or<br>Screened<br>Interval | Soil Density/<br>Consistency<br>or<br>Rock: Hardness | Color     | RIAL DESCRIPTION  Material Classifica | ilion         | U & C & • | ₩ ∦ r<br>Remarks                |                |           | Borehole** S<br>Oriller BZ**                     |
|                                                                                      |            |                                |                                          |                                                                  |                                                      |           | SEE BORING                            | LOGS          |           |                                 |                |           |                                                  |
|                                                                                      |            |                                | ,                                        |                                                                  |                                                      |           | 95001,02                              |               |           |                                 |                | П         | $\Box$                                           |
|                                                                                      |            | $\angle$                       |                                          |                                                                  |                                                      |           | FOR LIT                               |               |           |                                 |                |           |                                                  |
|                                                                                      |            |                                |                                          |                                                                  |                                                      |           |                                       |               |           |                                 |                |           |                                                  |
|                                                                                      |            |                                |                                          |                                                                  |                                                      |           | ·                                     |               |           |                                 |                |           |                                                  |
|                                                                                      | _          |                                |                                          |                                                                  |                                                      |           |                                       |               |           |                                 |                | Ц         |                                                  |
| <u></u>                                                                              |            |                                |                                          |                                                                  |                                                      |           |                                       |               |           | * SWL ON 124-00                 |                | $\sqcup$  |                                                  |
| <u></u>                                                                              | <u> </u>   |                                |                                          | *SWL                                                             |                                                      |           | ROCK @                                | 8′            |           | OF 8,20 BGS                     |                | $\sqcup$  | $\perp \perp \parallel$                          |
|                                                                                      | 9          | $\angle$                       |                                          | 12-4-00                                                          |                                                      |           |                                       | · · · · ·     | _         | END OF ISTRUM                   |                | $\sqcup$  | ַ '                                              |
| H                                                                                    | 100        |                                |                                          |                                                                  | SOFT                                                 | BRN       | SANDSTONE                             |               |           | 1 FOOT /MIN.                    |                | Ц         | 4                                                |
|                                                                                      | <u> </u>   |                                |                                          | 1                                                                |                                                      |           | (SILTY                                | )             | _         | BROKEN                          | L              | Ш         |                                                  |
| $\perp$                                                                              | <u> </u>   |                                |                                          |                                                                  |                                                      |           |                                       | <u></u> .     |           | HCL DAMP -                      |                | Ш         | $\perp$                                          |
| Ш                                                                                    | ,          |                                |                                          | _                                                                |                                                      |           |                                       |               |           | MOIST.                          | L_             |           |                                                  |
|                                                                                      |            |                                | 1                                        |                                                                  |                                                      |           |                                       | -             |           | 12, 13.5, 15; +<br>17.5; FRACTS |                |           | ,                                                |
| C-1                                                                                  | 1.         |                                | 9.1/                                     | ]                                                                |                                                      |           |                                       |               |           | FE. STAINING                    |                | П         | •                                                |
| 805                                                                                  | ,          | 180                            | 2.0                                      | 7                                                                |                                                      |           |                                       |               |           | BEDDING IS HORIZ                |                | П         |                                                  |
| 10                                                                                   | 1          | / 37                           | 1                                        | 1 .                                                              |                                                      | _         |                                       |               | t         | MODERATE ON                     | 十              | $\Box$    |                                                  |
| ľΥ                                                                                   | +-         |                                | 1                                        | 1                                                                |                                                      | +         |                                       |               | +-        | FRACTS OTHERWIS                 | <del>\$.</del> | ╂┤        | <del>                                     </del> |
|                                                                                      | 19         |                                | 1                                        | 1                                                                |                                                      |           |                                       |               | ┢         | A Q 18'-20'                     | +              | H         |                                                  |
| 19                                                                                   |            |                                | 1                                        | 1                                                                |                                                      |           |                                       | <del></del>   | +         | BROKEN,                         | $\dagger$      | 十一        |                                                  |
| H                                                                                    | 1          | 1                              |                                          | ╡                                                                | SOFT                                                 | LT        | <b>CA</b> 101 <b>T</b> 1              |               | T         | NO REACTION TO                  | ${}^{\dagger}$ | $\dagger$ |                                                  |
| C-2                                                                                  | ,          | 1                              | 1                                        | 1                                                                | 3071                                                 | BRN       |                                       |               | $\vdash$  | BEDDING & 20,                   | 十              | $\forall$ |                                                  |
|                                                                                      |            | 1                              | 70/                                      | 1                                                                | ,                                                    | +         | (SILT)                                | <u> </u>      | -         | ALONG BEODING.                  | 十              | $\top$    | $\vdash$                                         |
| 7.c<br>7.t                                                                           | _          | 100                            | 7                                        | 1                                                                |                                                      | -         |                                       | <del></del>   | +         | 20, DAMP-MOIS                   | +              | +         | -                                                |
| 110                                                                                  | +          |                                | 7.0                                      | 1                                                                |                                                      | CRE       |                                       | <del></del>   | +         |                                 | +              | +         | - -                                              |
| ·Wh                                                                                  | en rock    | coring, er                     | iter rock brok                           | ceness.                                                          |                                                      | BRO       | w/                                    |               |           |                                 |                |           |                                                  |
| ** Inc                                                                               | dude m     | onitor read                    | ting in 6 foot                           | intervals 🤁 b                                                    | orehole, Increa                                      | se readir | ng frequency if elevated repon        | se read.      |           | Drilli                          | -              |           |                                                  |
| Rei                                                                                  | marks      |                                | 5 PU1                                    | <u> </u>                                                         | "CAS                                                 |           |                                       | PLACE         |           | Background                      | i (pp          | ):<br>(m  | 0_                                               |
| <b>~</b>                                                                             | <b>.</b> 4 |                                | REP                                      | W                                                                |                                                      | REL       | INE                                   |               | A 5 /     |                                 |                |           |                                                  |
| Col                                                                                  | nverte     | ed to W                        | elf:                                     | Yes                                                              |                                                      | _         | No                                    | Welt I.       | D. #      | 0970                            |                |           |                                                  |



|                                        | t         | Tetra                          | Tech NU                                          | S, Inc.                                                           |                                                     | E                                                | BORING LO                 | <u>og</u>           | Page 2 of 2 |                |          |                       |               |               |
|----------------------------------------|-----------|--------------------------------|--------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------|--------------------------------------------------|---------------------------|---------------------|-------------|----------------|----------|-----------------------|---------------|---------------|
|                                        |           | NAME                           |                                                  | NSWC C                                                            |                                                     |                                                  |                           | BORING NUM<br>DATE: | BER         | : 09 To        |          | <u>B</u>              |               |               |
|                                        |           | COMF                           |                                                  | Bowser                                                            |                                                     |                                                  |                           | GEOLOGIST:          |             | MATT COCHRAN   | <u>ں</u> |                       |               | —             |
| DRIL                                   | LING      | RIG:                           |                                                  | ß                                                                 | -59                                                 |                                                  |                           | DRILLER:            |             | A. WOLF        | •        |                       |               | _             |
|                                        |           |                                |                                                  |                                                                   |                                                     | MATE                                             | RIAL DESCRIPT             | ION                 |             | 1              | PIDAFIC  | Read                  | ing (p        | ·Pm)          |
| Semple<br>No.<br>end<br>Type or<br>RQD | (Ft.)     | Blows /<br>6" or<br>RQD<br>(%) | Sample<br>Recovery /<br>Sample<br>Length         | Lithology<br>Change<br>(Depth /Ft.)<br>or<br>Screened<br>Interval | Soil Density/<br>Consistency<br>or<br>Rock Hardness | Color                                            |                           |                     | U s c s ·   | Remarks        | Semple   | Sampler BZ            |               | Drillier BZ** |
|                                        | 26        |                                | 1                                                |                                                                   |                                                     |                                                  | TO                        | 26'                 |             |                |          |                       |               |               |
|                                        |           |                                |                                                  | 1                                                                 |                                                     |                                                  | SEE BOR                   |                     |             | REMED HOLE     |          | $\sqcap$              | $\neg$        |               |
|                                        |           |                                | -                                                | 1                                                                 |                                                     | 1                                                | OPTOIA                    |                     | T           | TO TO + PUNPER |          | $\sqcap$              | $\dashv$      |               |
| <u> </u>                               |           |                                |                                                  | 1                                                                 |                                                     | <del>                                     </del> |                           |                     | +-          | 2 GALLONS HED  |          | $\vdash$              | $\dashv$      |               |
| <del> </del>                           |           |                                | <del>                                     </del> | 1                                                                 |                                                     |                                                  | LITHOLOGY                 |                     | +-          | MIN STANDBY    | -        | $\vdash$              | $\dashv$      | _             |
| <u> </u>                               | ├         |                                |                                                  | 4                                                                 |                                                     |                                                  | 26'                       | •                   | -           | TO BE SCREENED | 1_       | ${oxed}$              | -             |               |
| <u> </u>                               | _         | /_                             | <u> </u>                                         | 1                                                                 |                                                     |                                                  |                           |                     | ↓_          | SATURATED      | <u> </u> | Ц                     |               |               |
|                                        | ]         |                                |                                                  | ]                                                                 |                                                     |                                                  | ·                         |                     |             | THICK NESS,    |          |                       |               |               |
|                                        |           |                                | 1                                                | 7.                                                                |                                                     |                                                  |                           |                     | T           | 15 SEPERATE    |          | П                     |               |               |
|                                        |           |                                | 1                                                | 1                                                                 |                                                     |                                                  |                           |                     | 1           | UNDERLYING UND |          | П                     |               |               |
|                                        | -         |                                | 1                                                | 1                                                                 |                                                     | 1                                                |                           |                     | +           |                | $\vdash$ | H                     |               | $\vdash$      |
| -                                      | +         |                                | -                                                | 1                                                                 |                                                     | <del>                                     </del> |                           |                     | +-          |                | +-       | $\vdash$              |               | -             |
| <u> </u>                               | ┼         | <del>/</del>                   |                                                  | 4                                                                 | <u> </u>                                            | ┨                                                |                           |                     | +           |                | ┼-       | $\vdash \vdash$       |               | $\vdash$      |
| <u></u>                                |           | <u> </u>                       |                                                  | 4                                                                 |                                                     | 1                                                |                           |                     | 1           |                | <u> </u> | $\sqcup$              |               | <u> </u>      |
|                                        |           |                                |                                                  |                                                                   | <u></u>                                             |                                                  | ,                         |                     |             |                |          |                       |               |               |
|                                        |           |                                | 1                                                | 1                                                                 |                                                     | 1                                                |                           |                     |             |                |          |                       |               | 1             |
|                                        |           |                                | 1                                                | 7                                                                 |                                                     |                                                  |                           |                     |             |                | T        | $\prod$               |               | Γ             |
|                                        |           |                                | 1                                                | 1                                                                 |                                                     | 1                                                |                           |                     | $\top$      |                |          | П                     |               | Г             |
| $\vdash$                               | $\dagger$ | 17                             | 1 -                                              | -                                                                 |                                                     | +                                                |                           |                     | +           |                | +        | +-                    | $\vdash$      | 十             |
| $\vdash$                               | +         |                                | +                                                | -{                                                                | <u> </u>                                            | +-                                               | +                         | ····                | +           |                | ╀        | ╂╌┤                   | ⊢             | ╀             |
| $\vdash$                               | -         | <del>/</del>                   | <del> </del>                                     | -                                                                 |                                                     | +-                                               |                           |                     | +           |                | +-       | ┦                     | <del> -</del> | +             |
| <u></u>                                |           | $\swarrow$                     |                                                  | 4                                                                 |                                                     | _                                                |                           |                     | $\perp$     |                | 1        | <u> </u>              | <u> </u>      | 1_            |
|                                        |           |                                |                                                  |                                                                   |                                                     |                                                  |                           |                     |             |                |          |                       |               |               |
|                                        |           |                                | 1                                                |                                                                   |                                                     |                                                  |                           |                     |             |                |          |                       |               |               |
|                                        |           |                                | 1                                                | 1                                                                 |                                                     |                                                  |                           |                     | T           |                | $\top$   | T                     | Π             | Τ             |
|                                        | +         | 17                             | 1                                                | 7                                                                 | ·                                                   | +-                                               |                           |                     | 1.          |                | +        | +                     | T             | T             |
| -                                      | +         | /                              | +                                                | -                                                                 |                                                     | -                                                |                           |                     | +-          |                | +-       | +-                    | $\vdash$      | +             |
| -                                      | -         | +                              | -                                                | 4                                                                 |                                                     | $\perp$                                          |                           |                     | +           | -              | +        | +-                    | $\vdash$      | +             |
|                                        |           |                                | <u> </u>                                         |                                                                   | 1                                                   |                                                  |                           | <u> </u>            | $\perp$     |                | $\perp$  | ⊥_                    | 丄             | 上             |
| ** Inc                                 | m ebuk    | onitor rea                     | TOPPE                                            | intervals @ 1                                                     | z6' 01                                              | V 12                                             | ing frequency if elevated | 1 DN 17             | <u>- 4</u>  | 8.20 Backgroun | d (p     | Area<br>p <b>m</b> ): |               | 5_            |
|                                        |           | *                              | € 1 <u>F</u> )¢                                  | TOW .                                                             | WORKI                                               | NG                                               | ON 12-3.                  | WORKIN              | C           | PROPERLY O     | N        | 12-                   | 4             | _             |
| Coi                                    | nverte    | ed to W                        | eli:                                             | Yes                                                               |                                                     | <del>- "</del>                                   | No                        | Well                | I.D. ‡      | t: O9TOL       |          | _                     |               | _             |

| TŁ | Tetra Tech NUS, Inc. |
|----|----------------------|
|----|----------------------|

Page 1 of 1

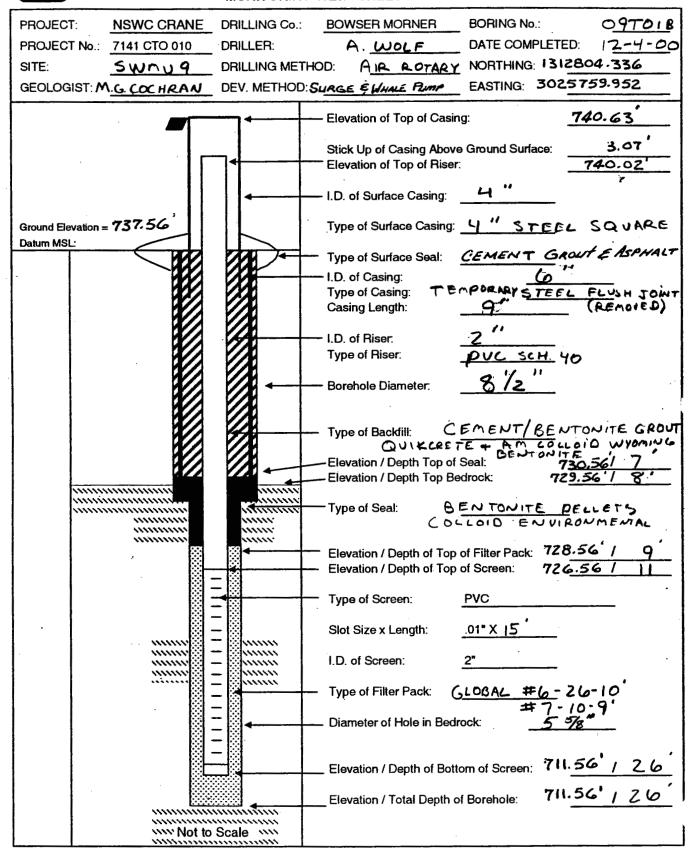
|                                        | ROJECT NAME: NSWC CRANE BORING NUMBER: ()9(5)3)1 ROJECT NUMBER: 7141 CTO 010 DATE: 11-30-00 RILLING COMPANY: Bowser Momer GEOLOGIST: BOB BALKOVEC |                                |                                          |                                                                  |                                                     |             |                                         |                            |              |                                 |          |               |          |             |
|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------|-------------|-----------------------------------------|----------------------------|--------------|---------------------------------|----------|---------------|----------|-------------|
|                                        |                                                                                                                                                   |                                |                                          |                                                                  |                                                     |             |                                         |                            | 7            | <u> ハ・30 つし</u><br>BOB BALKOVEC |          |               |          |             |
| DRIL                                   |                                                                                                                                                   |                                | , , , ,                                  | GEOPRO                                                           |                                                     |             |                                         | DRILLER:                   | -            | TED KEEN                        |          |               |          |             |
|                                        |                                                                                                                                                   |                                |                                          |                                                                  | N                                                   | <b>JATE</b> | RIAL DESCR                              | <del></del>                | ΤĪ           |                                 | PID/FID  | Reed          | na (pr   | m)          |
| Sample<br>No.<br>and<br>Type or<br>RQD | Depth<br>(Ft.)<br>or<br>Run<br>No.                                                                                                                | Blows /<br>6" or<br>RQD<br>(%) | Sample<br>Recovery /<br>Sample<br>Length | Lithology<br>Change<br>(Depth /PL)<br>or<br>Screened<br>Interval | Soli Density/<br>Consistency<br>or<br>Rock Herdness | Color       |                                         | l Classification           | U 8 C 8 ·    | Remarks                         | 1.0      |               |          | Driller 82- |
|                                        | 1                                                                                                                                                 |                                |                                          | 191                                                              | Luose                                               | 1001.       | N 811 60                                | Wiel Wysmo                 | EW           |                                 |          | Ue            |          | io.         |
|                                        | 2                                                                                                                                                 | /                              |                                          |                                                                  | Ŋ                                                   | 1           |                                         | במיף בטיהב                 | 1            |                                 | 0.0      | 7             |          | Ц           |
| 5-1                                    | 3                                                                                                                                                 | /                              | 25/                                      |                                                                  | SLS-cap                                             | 120.        | Dora 14" (                              | COME SHE POSTAL            | SL.          |                                 | Oe       |               | _        | $\coprod$   |
| (co)                                   | 4                                                                                                                                                 | /                              | ₹4′                                      | //                                                               | 1                                                   | 1           | }                                       | <u> </u>                   | 1            | ·                               | və       | Ш             | 0.0      | $\coprod$   |
| _                                      | 5                                                                                                                                                 |                                |                                          |                                                                  | STRE                                                | BBA         | CVAY                                    | 7-5227                     | <u>u</u>     |                                 | 0.0      | $\mathbb{H}$  | $\dashv$ | $\coprod$   |
| -                                      | 6                                                                                                                                                 |                                | -                                        |                                                                  |                                                     | UCAY<br>,   |                                         |                            | $\mathbb{H}$ | <del></del>                     | ა.ე      | $\mathbb{H}$  | $\dashv$ | +           |
| 53                                     | 7                                                                                                                                                 |                                | 4'/                                      |                                                                  |                                                     | H           |                                         |                            | ++           |                                 | Op       | H             | _        | H           |
| 104                                    | 8                                                                                                                                                 |                                | 4                                        |                                                                  | VSTAT                                               | H           |                                         |                            | H            |                                 | 00       | $\  \cdot \ $ | 00       | H           |
| 5-3<br>in1                             | 10                                                                                                                                                |                                | 3,                                       |                                                                  | 7                                                   | 7           |                                         |                            |              | <u> </u>                        | სა       |               | 02       | A           |
|                                        |                                                                                                                                                   |                                |                                          | 7010                                                             |                                                     |             |                                         |                            |              |                                 |          |               |          |             |
|                                        |                                                                                                                                                   | $\angle$                       |                                          |                                                                  |                                                     | <u> </u>    |                                         |                            |              |                                 |          |               |          |             |
| <u> </u>                               | -                                                                                                                                                 | /                              |                                          | 4                                                                |                                                     |             |                                         |                            | _            |                                 | _        |               |          |             |
| -                                      |                                                                                                                                                   | K                              | -                                        | -                                                                | Sampled                                             | 04          | 1000 000 000 000 000 000 000 000 000 00 | EN FROM 1-25               | -            |                                 | +        |               |          |             |
| -                                      | -                                                                                                                                                 | $V_{j}$                        | -                                        |                                                                  | -                                                   |             |                                         | -                          |              | +                               | -        | _             |          |             |
|                                        |                                                                                                                                                   |                                |                                          |                                                                  | Sampled                                             | ७५५         | ৪৩ ১৩৫৩                                 | £ 1120                     |              |                                 | $\perp$  |               |          |             |
| ** Inc                                 | lude mo                                                                                                                                           |                                |                                          |                                                                  | orehole. Increa                                     |             | Dri<br>Backgrou                         | illing <i>A</i><br>ınd (pp |              |                                 | <u>o</u> |               |          |             |
| Cor                                    | verte                                                                                                                                             | ed to W                        | /ell:                                    | Yes                                                              |                                                     | _           | No 💟                                    | .D. #:                     |              |                                 |          | _             | _        |             |

Page 1 of 1

| PRO                                    | JECT                              | NAME                           | <b>E</b> :                               | NSWC C                                                           | CRANE                                               |             |                          | BORING NUM    | BER              | ECESPO :             |                    |      |         |            |
|----------------------------------------|-----------------------------------|--------------------------------|------------------------------------------|------------------------------------------------------------------|-----------------------------------------------------|-------------|--------------------------|---------------|------------------|----------------------|--------------------|------|---------|------------|
| PRO                                    | JECT                              | NUM                            | BER:                                     | 7141 CT                                                          | O 010                                               |             |                          | DATE:         | _                | 11-30-00             |                    |      | _       |            |
| DRIL                                   | LING                              | COM                            | PANY:                                    | Bowser I                                                         | Morner                                              |             |                          | GEOLOGIST:    | ]                | BOB BALKOVEC         |                    |      |         |            |
| DRIL                                   | LING                              | RIG:                           |                                          | GEOPR                                                            | OBE                                                 |             |                          | DRILLER:      |                  | TED KEEN             |                    |      |         |            |
|                                        |                                   |                                |                                          |                                                                  |                                                     | MATE        | RIAL DESCRIP             | TION          |                  |                      | PIDAL              | Reac | ilng (ı | (mqc       |
| Sample<br>No.<br>and<br>Type or<br>RQD | Depth<br>(PL)<br>or<br>Run<br>No. | Blows /<br>6" or<br>RQD<br>(%) | Sample<br>Recovery /<br>Sample<br>Length | Lithology<br>Change<br>(Depth /PL)<br>or<br>Screened<br>Interval | Soil Density/<br>Consistency<br>or<br>Rook Hardness | Color       | Material Cla             |               | U<br>S<br>C<br>S | Remarks              |                    |      |         | Differ BZ* |
|                                        | 1                                 | $\angle$                       |                                          | 6/19                                                             | Loose                                               | BRZ         | RUP 4" GOAL              | 24 5mp =      | GM               |                      | 0-3                | oə   |         | ణ          |
|                                        | 2                                 | _                              |                                          |                                                                  | 1                                                   | 1           | 7wp 50-                  | ·             | 4                |                      |                    |      |         |            |
|                                        | 3                                 | /                              |                                          |                                                                  | STORE                                               | 82.         | Bril6 520                | ng Cidy       | u                |                      |                    |      |         |            |
| 5-1<br>1246                            | 4                                 | /                              | 30//                                     |                                                                  | 7                                                   | 1           | 7                        |               |                  |                      | il                 | Ш    | 0.0     | Ш          |
|                                        | 5                                 | 4                              |                                          | /                                                                | אניצטפע                                             | کوند<br>ناک | 20818 Szuz.              | « Cur         |                  |                      | ve                 |      |         | Ш          |
|                                        | 6                                 | Z,                             |                                          |                                                                  | 9                                                   |             | Barr                     |               |                  |                      | 00                 |      |         | 11         |
| ۶. ک                                   | 7                                 | Z,                             | ·                                        |                                                                  | STUR                                                | <u> </u>    | Sea Some John &          | Cur           |                  |                      | 03                 |      |         |            |
| 1352                                   | ı                                 | K,                             | 4/4                                      | 1717                                                             | <u>                                     </u>        | 1           | DOTT I WENT              | MERED S.S.    | *                |                      | 03                 | 1    | ા       | N          |
|                                        | 9                                 | K,                             |                                          |                                                                  |                                                     |             | REFUYLE                  | 3,            |                  |                      | _                  |      |         |            |
| 5.3<br>1257                            | 10                                | Z,                             | 3.                                       |                                                                  |                                                     | _           |                          |               |                  |                      |                    |      |         | _          |
| _                                      |                                   | /                              |                                          |                                                                  |                                                     | <u> </u>    |                          |               |                  |                      | _                  | _    | L       |            |
|                                        | ļ                                 | /                              |                                          |                                                                  |                                                     | _           |                          |               |                  |                      | _                  | _    |         | _          |
|                                        | _                                 | K,                             |                                          |                                                                  |                                                     |             |                          |               | _                |                      |                    |      |         | L          |
|                                        | _                                 | K,                             |                                          |                                                                  | Sampled                                             | 099         | 5000 0007<br>Vacis TAKEN | 61249         | _                |                      | $oldsymbol{\perp}$ |      |         | igspace    |
|                                        |                                   |                                |                                          |                                                                  |                                                     |             | VUCES TAKEN              | (CAMI)        |                  |                      | $\perp$            |      |         | L          |
|                                        |                                   |                                |                                          |                                                                  | Sampled                                             | 04          | 58020603                 | छ ।५७०        |                  | tein Frunciscos      |                    |      |         |            |
| " Incl                                 | ude mo                            | -                              |                                          |                                                                  | orehole. Increas                                    | se readir   | ng frequency if elevated | reponse read. | <i></i>          | Drilli<br>Background |                    |      |         | <u></u>    |
| Con                                    | verte                             | d to W                         | ell:                                     | Yes                                                              |                                                     |             | No 入                     | Well I.       | D. #:            |                      |                    |      | -       | _          |

Page 1 of 1

|                                                            | TNAME        |                                          | NSWC C                                                            |                                                     |             | BORING NUM                              | BER      | : ৩৭ <i>১</i> ৡ১৯       |                               |                          |           |               |
|------------------------------------------------------------|--------------|------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------|-------------|-----------------------------------------|----------|-------------------------|-------------------------------|--------------------------|-----------|---------------|
| ROJEC<br>RILLING                                           |              |                                          | 7141 CT<br>Bowser N                                               |                                                     |             | DATE:<br>GEOLOGIST:                     |          | いーシャーシロ<br>BOB BALKOVEC |                               |                          |           |               |
| RILLING                                                    |              |                                          | GEOPR                                                             |                                                     | -           | DRILLER:                                | •        | TED KEEN                |                               |                          |           |               |
| $\top$                                                     | T            |                                          |                                                                   | N                                                   | <b>MATE</b> | RIAL DESCRIPTION                        | Τİ       |                         | PID/FII                       | Res                      | iing (p   | (mak          |
| emple Depth<br>No. (Pt.)<br>and or<br>pe or Run<br>RQD No. | 6° or<br>RQD | Sample<br>Recovery /<br>Sample<br>Langth | Lithology<br>Change<br>(Depth /Ft.)<br>or<br>Screened<br>Interval | Solf Density/<br>Consistency<br>or<br>Rook Hardness | Color       | Material Classification                 | U        | Remarks                 | Bemple                        | 8empler BZ               | Borelrole | Criller BZ*   |
| 1                                                          |              |                                          | 14                                                                | SLSOAR                                              | BY5<br>UK   | שף מ" השבות נמו מן                      | U        |                         | 00                            | 9. <i>U</i>              |           | CO.           |
| 2                                                          |              |                                          |                                                                   | Þ                                                   |             | URLIMIZE T-F ZWE - LIMINIUM SMI         | <u> </u> |                         | $\downarrow \downarrow$       |                          |           |               |
| 3                                                          |              | 31"/                                     |                                                                   | Arte                                                | Kerr        | BOW Hy STICK COM                        | $\prod$  |                         | $\coprod$                     |                          |           |               |
| 344 4                                                      | K,           | si' u'                                   |                                                                   | ,                                                   |             | 4                                       |          |                         | A                             | $\prod$                  | υĴ        | $\parallel$   |
| 5                                                          | $\vee$       |                                          |                                                                   | 1                                                   |             | TUP / SALT CLAY                         | +        |                         | 25                            |                          |           | $\parallel$   |
| 6                                                          | $\angle$     | .                                        |                                                                   | -                                                   | 1           | <u>v</u>                                | 1        |                         | $\frac{\parallel}{\parallel}$ | $\left\{ \cdot \right\}$ |           | H             |
| 5-3-                                                       | /            | 7)5//                                    | 20.6.5                                                            | , <del>y</del>                                      |             | BUTT 15' Francis SAMON CALL             | -        |                         | +                             | 16                       | 00        | \frac{1}{2}   |
| 350 8                                                      | /            | 55'                                      |                                                                   |                                                     | -           | W/ WEATHERD S.S.                        | -        |                         | +                             | +                        |           | ig            |
| 9                                                          | 4            | -                                        |                                                                   |                                                     |             | REFUSIL 265"                            | -        |                         | +                             | +                        | $\vdash$  | $\vdash$      |
| 10                                                         |              |                                          | -                                                                 |                                                     | -           |                                         | +        |                         | +                             | +                        | -         | +             |
| _                                                          | +            | -                                        |                                                                   |                                                     |             |                                         | +        |                         | -                             | +                        |           | $\dagger$     |
|                                                            | 1            | -                                        |                                                                   |                                                     | 1           |                                         |          |                         | +                             | +                        | -         | $\dagger$     |
|                                                            |              | -                                        | 1                                                                 |                                                     |             | 9 12 17                                 | -        |                         |                               |                          | ╁         | $\dagger$     |
|                                                            |              | +                                        |                                                                   | Sampled                                             | 04          | COLLECTED WILLIAM FORESCO               |          | Jan Day See U.S         |                               | 1                        | 1         | $\dagger$     |
|                                                            |              |                                          |                                                                   | Sampled                                             | Da          | SBOTONG C1355                           | - 0 H    | MANUS OF 15 CALL        |                               |                          |           | †             |
|                                                            | monitor rea  | -                                        |                                                                   |                                                     |             | ing frequency if elevated reponse read. |          | Dri<br>Backgrou         | lling<br>nd (p                |                          |           | <u>۔</u><br>س |
|                                                            |              |                                          |                                                                   |                                                     |             | -                                       |          | <u> </u>                |                               |                          |           | _             |


# Tetra Tech NUS, Inc.

### **BEDROCK**

WELL No .:

09701

#### MONITORING WELL SHEET



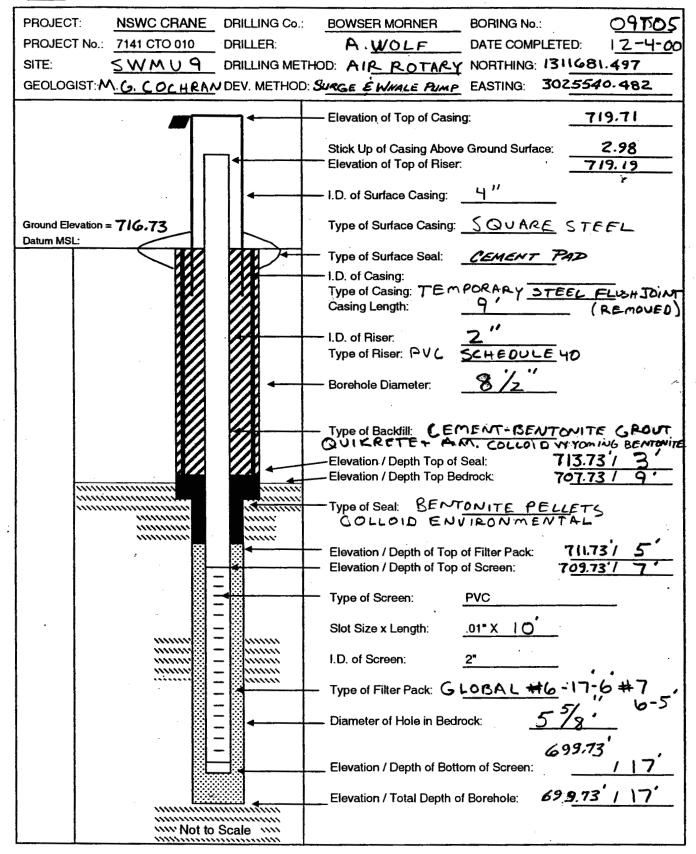


Page \_1\_ of \_1\_

| PROJECT NAME:     | NSWC CRANE    |        | BORING NUMBER | : O9T05      |  |
|-------------------|---------------|--------|---------------|--------------|--|
| PROJECT NUMBER:   | 7141 CTO 10   |        | DATE:         | 12-4-00      |  |
| DRILLING COMPANY: | Bowser Morner |        | GEOLOGIST:    | MATT COCHRAN |  |
| DRILLING RIG:     | B-59          | MOBILE | DRILLER:      | A. WOLF      |  |

| DRIL                                   | LING                               | RIG:                           |                                          | <u>B</u>                                                          | -59                                                 | Mc    | BILE DRILLER:                  |                       | A. WOLF                                        | _      |            |            |                    |
|----------------------------------------|------------------------------------|--------------------------------|------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------|-------|--------------------------------|-----------------------|------------------------------------------------|--------|------------|------------|--------------------|
|                                        |                                    |                                |                                          | MATE                                                              | RIAL DESCRIPTION                                    | -     | P                              | PID/FID Reading (ppm) |                                                |        |            |            |                    |
| Semple<br>No.<br>and<br>Type or<br>RQD | Depth<br>(Pt.)<br>or<br>Run<br>No. | Blows /<br>6" or<br>RQD<br>(%) | Semple<br>Recovery /<br>Semple<br>Length | Lithology<br>Change<br>(Depth /Pt.)<br>or<br>Screened<br>Interval | Soil Decsity/<br>Consistency<br>or<br>Rock Hardness | Coler | Material Classification        | 0 8 0 8 .             | Remarks                                        | Sample | Sample: BZ | Borehole** | Driller BZ**       |
|                                        |                                    | $\angle$                       |                                          |                                                                   | -                                                   |       | SEE BORING                     |                       |                                                |        |            |            |                    |
|                                        |                                    | /                              |                                          |                                                                   |                                                     |       | LOGS 095B09 AND                |                       |                                                |        |            |            | <u> </u>           |
|                                        |                                    | $\angle$                       |                                          |                                                                   | ·                                                   |       | 11 FOR LITHOLOGY               |                       |                                                |        |            |            |                    |
|                                        |                                    | $\leq$                         |                                          |                                                                   |                                                     |       | To 9'                          | _                     |                                                |        | Ц          |            | _                  |
|                                        |                                    |                                |                                          |                                                                   |                                                     |       |                                | _                     |                                                |        |            |            | Ŀ                  |
|                                        |                                    |                                |                                          |                                                                   |                                                     |       |                                |                       |                                                |        |            |            | _                  |
|                                        |                                    |                                |                                          |                                                                   |                                                     |       |                                | $\vdash$              |                                                |        |            |            | L                  |
|                                        |                                    |                                | <del>  ·        </del>                   |                                                                   |                                                     |       |                                | -                     |                                                |        | $\vdash$   |            | $\vdash$           |
|                                        | 9                                  | 30/                            | .7/                                      | 9.0<br>XXX                                                        |                                                     | GR    |                                | -                     |                                                |        |            |            | 1                  |
| 5 <u>-1</u>                            | -                                  | 30/6                           | <del></del>                              |                                                                   | V.DENSE                                             | SR    | SHALY SILTSTONE                | -                     | BEOROCKOA"                                     | 0      | 0          | ح          | Γ                  |
| +                                      | 111                                |                                | 2.0                                      |                                                                   |                                                     | BRN   | SHALY SANDSTONE                | -                     | HEOR SURF                                      | -      |            |            | ┝                  |
| +                                      | -                                  |                                | ┼                                        | \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                             | -                                                   | /     | INTERBEDDING                   | $\vdash$              | LOST ~ I FOOT REA                              |        |            | -          | H                  |
| C-1                                    |                                    |                                | 5.8/                                     |                                                                   |                                                     | BRN   | SHALL CHEST                    | $\vdash$              | AT TOP PER DRILLER                             |        |            |            | t                  |
| 5.6                                    |                                    | 43                             | 7.8                                      | <del> </del>                                                      |                                                     | GREY  | SHALY SILTSTONE<br>FE STAINS O | +                     | HOR FRACT ZONE<br>Q 10' SATURATED              | -      |            |            | T                  |
| 7.8                                    | _                                  | 7                              | 1.6                                      | 15.9                                                              |                                                     | BLACE | ,                              | T                     | ROCK BROKEN,                                   |        |            |            | T                  |
| Ť                                      | 16.8                               |                                |                                          | 10.0                                                              |                                                     | CREY  |                                | $\top$                | V BROKEN+<br>SEVERE WEATHER<br>Q 10, 13.2-13.8 | 1      | Τ          | Г          | T                  |
|                                        | 1,5,5                              |                                |                                          | 1                                                                 |                                                     | 1     | NO BEDDING                     | T                     | MOD. WEATHER.                                  |        | Τ          |            | T                  |
|                                        |                                    |                                | 1                                        | 1                                                                 |                                                     |       | T.D 17'                        | Τ                     | EXCEPT WHERE                                   |        |            |            | T                  |
|                                        |                                    |                                | 1                                        |                                                                   |                                                     |       |                                |                       | V. CROKEN                                      |        |            |            |                    |
| ·                                      |                                    |                                |                                          |                                                                   |                                                     |       |                                |                       |                                                |        |            |            |                    |
|                                        |                                    |                                |                                          |                                                                   |                                                     |       |                                |                       |                                                |        |            | L          |                    |
|                                        |                                    |                                | 1                                        | ]                                                                 |                                                     |       |                                |                       |                                                |        |            | L          |                    |
|                                        |                                    |                                | 1                                        | _                                                                 |                                                     |       |                                |                       |                                                |        |            | L          | $\perp$            |
| <u></u>                                | 1                                  |                                | 1                                        | <u> </u>                                                          |                                                     |       |                                |                       |                                                |        |            |            | $oldsymbol{\perp}$ |

| When rock coring, enter rock brokeness.                                                                                        |          |      |       |       |         |      |     |         |      |                      |              |   |
|--------------------------------------------------------------------------------------------------------------------------------|----------|------|-------|-------|---------|------|-----|---------|------|----------------------|--------------|---|
| " Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read.  Drilling Area_ |          |      |       |       |         |      |     |         |      |                      | _            |   |
| Remarks:                                                                                                                       | SET      | 6    | "TEM  | P     | CASING  | TO   | 9;  | POURED  | GRAN | wcA7F <b>®</b> ackgi | round (ppm): | U |
|                                                                                                                                | BENTO    | NITE | ALONG | . A ^ | WULUS + | - HY | DRA | FO, RES | UMFO | comince              | THEU         |   |
|                                                                                                                                | ROCK     | . R  | EAMED | BOG   | 21/16 W | .5   | 79  | ROLLER  | BIT  |                      |              |   |
| Converted                                                                                                                      | to Well: | · V  | 98    | . /   | No      |      |     | l HoW   | D #- |                      |              |   |


# Tetra Tech NUS, Inc.

### BEDROCK

WELL No.:

09705

#### MONITORING WELL SHEET



Hole No. WES-10-520-88 DRILLING LOG 45 Navy 10. SIZE AND TYPE OF BIT + Q Wirelus 12. MANUFACTURER'S DESIGNATION OF DRILL WES 10-52C 14. TOTAL NUMBER CORE BOXES 15. ELEVATION GROUND WATER THICKNESS OF OVERBURDEN DEPTH DRILLED INTO ROCK TOTAL DEPTH OF HOLE 03.0 CLASSIFICATION OF MATERIALS 5,1/4 clay , 48r, 0.0-7.5'- Augored Solt - mod Fin, moist, Sef 8" Puc becomes ed, w/ grit Casing to 7.3' + s= frogs w/depth 7.3- 12.0' - R.R. B. f. Auger **Z**3 Refusal Sandstono, y Br, mass f, micacons, carb R.R. frieblo B. + lim const along sie Harted Coring with Hawireline at 12.0' 12.0 Runi 101 10.2 - DV

HOLE NO.

2

ENG FORM 18 36 PREVIOUS FOLLOWS ARE ORDER ETE

Hole No. WES - 10- 520-88 INSTALLATION SHEET Z DRILLING LOG PROJECT 10. SIZE AND TYPE OF BIT 11. DATUM FOR ELEVATION SHOWN 2. LOCATION (Coordinates or Station) 12. MANUFACTURER'S DESIGNATION OF DRILL . DRILLING AGENCY UNDISTURBED 13. TOTAL NO. OF OVER-BURDEN SAMPLES TAKEN HOLE NO. (As shown on drawing title and file number) 10-520 14. TOTAL NUMBER CORE BOXES NAME OF DRILLER 15. ELEVATION GROUND WATER DIRECTION OF HOLE 16. DATE HOLE WERTICAL MINCLINED 17. ELEVATION TOP OF HOLE THICKNESS OF OVERBURDEN 18. TOTAL CORE RECOVERY FOR BORING DEPTH DRILLED INTO ROCK 19. SIGNATURE OF INSPECTOR S. TOTAL DEPTH OF HOLE REMARKS
(Drilling time, water loss, depth of weathering, etc., if significant) ELEVATION DEPTH LEGEND CLASSIFICATION OF MATERIALS (Description) <u>55</u> (cont.) 22.1 Pull dapth 22.Z riping she misst Sandstons, IGr, vf-f occ rippled shaley pts - - Gradatianal 103 Sondstano, (as above) 10.2 but low wy der shale in wavey rippled 184 6d, ore burrows. Sholey w/depth Reamed hole + sof 6" Pur Casing to 32.0! 32.4 Pun 3 Highly Bur Shaley Sandstone Lydeshale, d Go Blk, carb th bol, blocky, hd coal, Blk, hd Blocky 10.1 10.2 -0.1 5 halo d60; th 60 a how bed abundant Coib inclus, oce sider

1

ENG FORM 18 36 DREVIOUS EDITIONS ARE ORSOLETE

•

|                                                      |           |          |          |          |          |               |                        | INSTAL   | ATION                                   |                         | Hole I                         | SHEET                                             | -52e- |  |
|------------------------------------------------------|-----------|----------|----------|----------|----------|---------------|------------------------|----------|-----------------------------------------|-------------------------|--------------------------------|---------------------------------------------------|-------|--|
| DRILL                                                | ING LO    | G        | BIVI     | SION     |          |               |                        | INSTAL   | LATION                                  |                         |                                | OF -5 SI                                          |       |  |
| PROJECT                                              |           |          |          |          |          |               |                        |          | AND TYPE                                |                         | SHOWN (TEM or                  | 187                                               |       |  |
| LOCATION                                             | (Coordin  | eles or  | Stati    | on)      |          | <del></del> - |                        |          | Um run EL                               | IUN                     |                                |                                                   |       |  |
| DRILLING                                             |           |          |          |          |          |               |                        | 12. MAN  | 12. MANUFACTURER'S DESIGNATION OF DRILL |                         |                                |                                                   |       |  |
| HOLE NO. (As shown on drawing title and file number) |           |          |          |          |          | 13. TOT       | AL HO. OF<br>DEN SAMPI | OVER-    | DISTURBED                               | UNDISTUR                | BED                            |                                                   |       |  |
| and file number 10-52C  5. NAME OF DRILLER           |           |          |          |          |          |               | AL HUMBE               |          |                                         |                         |                                |                                                   |       |  |
| AME OF                                               | DRILLER   |          |          |          |          |               |                        |          | VATION GE                               | OUND WA                 | TER                            |                                                   |       |  |
| VERTI                                                |           |          | 450      |          |          | DEG. FR       | OM VER                 | 16. DAT  | E HOLE                                  | STA                     | RTED                           | COMPLETED                                         |       |  |
|                                                      |           |          |          |          |          |               |                        |          | VATION TO                               | P OF HO                 | LE                             |                                                   |       |  |
| THICKNES                                             |           |          | _        |          |          |               |                        |          |                                         |                         | Y FOR BORING                   |                                                   | *     |  |
| TOTAL DE                                             |           |          |          |          |          |               |                        | 19. SIGI | ATURE OF                                | INSPECT                 | OR                             |                                                   |       |  |
| EVATION                                              |           | LEGE     | ND       | CLA      | SSIFIC A |               | F MATES                | RIALS    | % CORE<br>RECOV-<br>ERY                 | BOX OR<br>SAMPLE<br>NO. | (Drilling time,<br>weathering, | EMARKS<br>water loss, dept<br>etc., if significat | h of  |  |
| • '                                                  | 70 -      |          | =+       |          | haln     | <u> </u>      | mf.                    |          | <del>  •</del>                          | -                       | -                              | 1                                                 |       |  |
|                                                      | =         | <u> </u> |          |          | NUID     | 9             | <b>n</b> F. ;          |          |                                         |                         |                                |                                                   |       |  |
|                                                      | <u> </u>  |          |          |          |          |               |                        |          |                                         |                         |                                |                                                   |       |  |
|                                                      | =         |          |          | (0.      | 7.1      | 16            | 3- 2<br>7.)            | cono     |                                         |                         |                                |                                                   |       |  |
|                                                      | 42-       |          |          | -/       |          | 6             | 3)                     |          |                                         |                         |                                |                                                   |       |  |
|                                                      | =         | 1 [      | -        | 9/1      | m 9      |               | . )                    |          | 1171                                    |                         |                                |                                                   |       |  |
|                                                      | =         | 1        |          |          |          |               |                        |          | 926                                     |                         |                                |                                                   |       |  |
|                                                      | _         | 1        |          |          |          |               |                        |          | Run 4                                   |                         |                                |                                                   |       |  |
|                                                      | =         | 1        |          |          |          |               |                        |          |                                         |                         |                                |                                                   |       |  |
|                                                      | 44        | 1 /      |          |          |          |               |                        |          |                                         |                         |                                |                                                   |       |  |
|                                                      | =         | 1        | -        |          |          |               |                        |          |                                         |                         |                                |                                                   |       |  |
|                                                      | =         |          |          |          |          |               |                        |          |                                         |                         |                                |                                                   |       |  |
|                                                      | =         | 1        |          |          |          |               | •                      |          |                                         |                         |                                |                                                   |       |  |
|                                                      | =         | 1 1      | _        |          |          |               |                        |          |                                         |                         |                                |                                                   |       |  |
|                                                      | 46 _      | 1        | -        |          |          |               |                        |          |                                         |                         |                                |                                                   |       |  |
|                                                      |           | 1        | _        |          |          |               |                        |          | 10.1                                    |                         |                                |                                                   |       |  |
|                                                      | =         | 1        | _        |          |          |               |                        |          | 10.2                                    |                         |                                |                                                   |       |  |
|                                                      | _         | 1 !      | -        |          |          |               |                        |          |                                         |                         |                                |                                                   |       |  |
|                                                      | =         | "        |          |          |          |               |                        |          | -811                                    |                         |                                |                                                   |       |  |
|                                                      | 46 -      |          | -        |          |          |               |                        |          |                                         |                         |                                |                                                   |       |  |
|                                                      | ″° =      | !        | -        |          |          |               |                        |          |                                         |                         |                                |                                                   |       |  |
|                                                      | =         | į i.     |          |          |          |               |                        |          |                                         |                         |                                |                                                   |       |  |
|                                                      | _         | 1        |          |          |          |               |                        |          | İ                                       |                         |                                |                                                   |       |  |
|                                                      | =         | 1        |          |          |          |               |                        |          |                                         |                         |                                |                                                   |       |  |
|                                                      | 50 -      |          | -        |          |          |               |                        |          |                                         |                         |                                |                                                   |       |  |
|                                                      |           | -        | -        |          |          |               |                        |          |                                         |                         |                                |                                                   |       |  |
|                                                      | =         |          | _        |          |          |               |                        |          |                                         |                         |                                |                                                   |       |  |
|                                                      |           |          | -        |          |          |               |                        |          |                                         |                         |                                |                                                   |       |  |
|                                                      | =         | -        |          |          |          |               |                        |          |                                         |                         |                                |                                                   |       |  |
|                                                      | 52        | _        |          |          |          |               |                        |          |                                         |                         |                                |                                                   |       |  |
|                                                      |           |          | -        |          |          |               |                        |          |                                         |                         |                                |                                                   |       |  |
|                                                      | =         |          | -        |          |          |               |                        |          | 57.0                                    |                         | 57.7 - Pa                      | 11 daste                                          |       |  |
|                                                      |           | -        | _        |          |          |               |                        |          | 57.8<br>Run 5                           |                         | /4                             | ·· ~ 7/ ~                                         |       |  |
|                                                      | =         |          | +        |          |          |               |                        |          |                                         |                         |                                |                                                   |       |  |
|                                                      | 51/_      | -        |          |          |          |               |                        |          |                                         |                         |                                |                                                   |       |  |
|                                                      | ′ =       | -        | -        |          |          |               |                        |          |                                         |                         |                                |                                                   |       |  |
|                                                      |           |          | _        |          |          |               |                        |          |                                         |                         |                                |                                                   |       |  |
|                                                      |           |          | -        |          |          |               |                        |          |                                         |                         |                                |                                                   |       |  |
|                                                      |           |          | _        |          |          |               |                        |          |                                         |                         |                                |                                                   |       |  |
|                                                      | 56-       | ١.       | -        |          |          |               |                        |          | 10.3                                    |                         |                                |                                                   |       |  |
|                                                      |           | - !-     | -        |          |          |               |                        |          | 103                                     |                         |                                |                                                   |       |  |
|                                                      | =         |          | -        |          |          |               |                        |          | 70.2                                    |                         |                                |                                                   |       |  |
|                                                      |           | i        |          |          |          |               |                        |          |                                         |                         |                                |                                                   |       |  |
| 1                                                    | 3         | -        | - ]      | Bo       | 1 4      | 60            | hos                    | Coa /    |                                         |                         |                                |                                                   |       |  |
|                                                      | 5g        | _        |          | 207      | /        |               |                        | /        | +01                                     |                         |                                |                                                   |       |  |
|                                                      |           |          |          | pts      |          |               |                        |          | 1                                       |                         |                                |                                                   |       |  |
|                                                      | Ξ         |          | 1        | PTS      |          |               |                        |          |                                         |                         |                                |                                                   |       |  |
|                                                      | 7         | į-       | _ ]      |          |          |               |                        |          |                                         |                         | 2                              |                                                   |       |  |
|                                                      | $\exists$ |          | - ]      |          |          |               |                        |          |                                         |                         |                                |                                                   |       |  |
|                                                      | 60        | i.       | $\dashv$ |          |          |               |                        |          |                                         |                         |                                |                                                   |       |  |
| FORM                                                 | 1024      |          |          | FOITIONS |          |               |                        |          | PROJECT                                 |                         |                                | THOLE                                             |       |  |

\* Charles

·<u>.</u>. •

Hole No. 4ES-10-587-85 SHEET 9 OF-S SHEETS NSTALLATION DRILLING LOG PROJECT 10. SIZE AND TYPE OF BIT 11. DATUM FOR ELEVATION SHOWN (TBM or MSL) 2. MANUFACTURER'S DESIGNATION OF DRILL DRILLING AGENCY 13. TOTAL NO. OF OVER-BURDEN SAMPLES TAKEN HOLE NO. (As shown on drawing title and file manber) 10.52C 14. TOTAL HUMBER CORE BOXES 15. ELEVATION GROUND WATER 16. DATE HOLE TVERTICAL TINCLINED 17. ELEVATION TOP OF HOLE 7. THICKNESS OF OVERBURDEN 18. TOTAL CORE RECOVERY FOR BORING DEPTH DRILLED INTO ROCK 19. SIGNATURE OF INSPECTOR S. TOTAL DEPTH OF HOLE REMARKS
(Drilling time, water loss, depth of weathering, etc., if significant) CLASSIFICATION OF MATERIALS ELEVATION DEPTH LEGEND 4 60 -Sh (cont.) elk rd blon Cost ++ Sh (05 above) w/coal ofs Sandtone 1-mGr, moss, if shale, 63.0 Run 6 + carb . - Grbr Cale ssw/ Small ungs. 9.7 Shalo Blk, th bd. stickensides fissilo, ("stick when wot"), homo \_0/3 72·7 Pull dath 73.0 Run7 10.0 alt lor so lens +X.3 Highla Bur 55 Shalo vdGr-Bit + bod occ 16, 5dy pls, abundan

HOLE NO.

Š.

ENG FORM 18 34 PREVIOUS POLITICAL ARE OPEN THE

Hole No. WES-10-524-80 SHEET S OF S SHEETS DRILLING LOG PROJECT 10. SIZE AND TYPE OF BIT 11. DATUM FOR ELEVATION SHOWN (TBM or MSL) 2. LOCATION (Coordinates or Station) 12. MANUFACTURER'S DESIGNATION OF DRILL 3. DRILLING AGENCY 13. TOTAL HO. OF OVER-BURDEN SAMPLES TAKEN HOLE NO. (As shown on drawing title and file number) 10-57C 14. TOTAL NUMBER CORE BOXES . NAME OF DRILLER 15. ELEVATION GROUND WATER . DIRECTION OF HOLE 16. DATE HOLE TVERTICAL TINCLINED 17. ELEVATION TOP OF HOLE 7. THICKNESS OF OVERBURDEN 18. TOTAL CORE RECOVERY FOR BORING DEPTH DRILLED INTO ROCK 19. SIGNATURE OF INSPECTOR S. TOTAL DEPTH OF HOLE % CORE RECOV-ERY BOX OR SAMPLE NO. REMARKS
(Drilling time, water loss, depth of weathering, etc., if significant) CLASSIFICATION OF MATERIALS (Description) ELEVATION DEPTH LEGEND inclus, hd, blocky arb <u>ez. 0</u> 83.0 Bot.

St. St.

ENG FORM 10 2/

Note No. WES-10-520-88 HSTALLATION DRILLING LOG . PROJECT 10. SIZE AND TYPE OF SIT LOCATION (Coordinates or Station) 12. MANUFACTURER'S DESIGNATION OF DRILL 10-52C IS. ELEVATION GROUND WATER COMPLETED M. DATE HOLE THERTICAL DINCLINED 17. ELEVATION TOP OF HOLE 7. THICKNESS OF OVERBURDEN 14. TOTAL CORE RECOVERY FOR BORING DEPTH DRILLED MITO ROCK 19. SIGNATURE OF INSPECTOR TOTAL DEPTH OF HOLE CLASSIFICATION OF MATERIALS ELEVATION DEPTH LEGEND Well No : WES-10-576-88 Date well screen was set: 6/8/89 812.16 +2.5 Ground surface 'ه.٥ Water love ! Just Prior to setting Grout mixture 33.0 Bentonik Pellets - 35.0 500' Filter Pack Bentonite Plug - 55.0' -58.0 Well Screen -68.0 Trap 69.0 (73.0.83.0 - Benton to plug) 83.0 Boring Depth ENG FORM 18 36 PREVIOUS EDITIONS ARE OBSOLETE.



| PROJECT NAME:     | NSWC CRANE-SWMU-12 | BORING No.: | IRMWT25  |     |
|-------------------|--------------------|-------------|----------|-----|
| PROJECT NUMBER:   | N6878              | DATE:       | 9-12-04  |     |
| DRILLING COMPANY: | BOWSER MORNER      | GEOLOGIST:  | CONTI    | •   |
| DRILLING RIG-     | CME SED ATV        | DBILLER:    | 111A1 CH | · · |

| DRIL                                   | LING                              | HIG:                           |                                             | CWE                                                              | 550                                                    | YT V                  | DRILLER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | WALSH                                         |         |            | ·           |
|----------------------------------------|-----------------------------------|--------------------------------|---------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|-----------------------------------------------|---------|------------|-------------|
|                                        |                                   | ,                              |                                             |                                                                  | М                                                      | ATE                   | RIAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                       | ·                                             | PID/FID | Reading    | (ppm)       |
| Sample<br>No.<br>and<br>Type or<br>RQD | Depth<br>(FL)<br>or<br>Run<br>No. | Blows /<br>6" or<br>RQD<br>(%) | Sample<br>Recovery<br>/<br>Sample<br>Length | Lithology<br>Change<br>(Depth/Ft.)<br>or<br>Screened<br>Interval | Sull Density/<br>Consistency<br>or<br>Rock<br>Hardness | Color                 | Majerial Classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ម<br>១<br>១<br>១<br>៖ | Remarks                                       | Sample  | Sampler Bz | a de Ollife |
|                                        |                                   |                                | 9,7                                         |                                                                  |                                                        | COLA                  | TOP 3" TOPSOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       |                                               |         |            |             |
| 5-1                                    | 0                                 | 84                             | 4/2                                         |                                                                  | MDENSE                                                 | GAY                   | SILT-SOME ROAD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ML                    | DAMP > DRY                                    | 0       |            |             |
| 1040                                   | 2                                 | ₹ <sub>12</sub>                |                                             | 2 _                                                              | м                                                      | UTTO                  | GPAVEL<br>D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                       | FILE<br>?                                     | 0       |            |             |
| 5-2                                    |                                   | 64                             | 1.6/2                                       |                                                                  | STIFF                                                  | (445)<br>1480<br>1488 | ר דווב צפיצבט                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ML                    | MOIST                                         | 0       |            |             |
| Mys                                    | 4                                 | 916                            |                                             |                                                                  |                                                        | 2445                  | TR ROOTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       |                                               | 0       | i k        |             |
| క్త3                                   | 100                               | 6/7                            | 2/2                                         | 10,7963                                                          | STIFF                                                  | <b>1888</b>           | CLAYEY SILT - SOME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | MOIST                                         | O       |            |             |
| 1050                                   | ب                                 | 8/2                            |                                             | 6                                                                |                                                        | 1000                  | SAUD AND SAUDSTON<br>FRAGMENTS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SC                    | 9 MAG                                         | 0       |            |             |
| 554                                    | 7±                                | 360                            | 1/1.1                                       | 71                                                               | V STIFF<br>M SOFT                                      | GRAY<br>Ben           | SAUDY SILT & SAUDST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1                     | A GIVE                                        | 0       |            | Г           |
| 1.0                                    | 8                                 | 50/2                           |                                             | ILENE                                                            |                                                        |                       | Asset to angel 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                       | refe71±                                       | O       |            |             |
|                                        |                                   |                                |                                             |                                                                  |                                                        | 17 4 7 12             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                                               | 0       |            |             |
| 9.5                                    | 95                                | $\overline{\mathcal{I}}$       | 9.5                                         |                                                                  | MOFT                                                   | FAY                   | SHALLY SANDSTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | VER                   | SEVERAL HORK                                  | 0       |            |             |
| - 97.7                                 |                                   |                                |                                             |                                                                  |                                                        |                       | (V.THIN STEEKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                       | BREAKS ALONG<br>BEDDING PLANE                 | 0       |            |             |
|                                        |                                   |                                | 3 (19)<br>1 (19)                            |                                                                  |                                                        | 3 4                   | (10.4 Fé<br>10.9 Stained                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | \                     | TIGHTLY SP.                                   | 0       |            |             |
| 2/55                                   | Θ                                 | 15%                            | 5.5                                         |                                                                  | MARD                                                   | 13944                 | Jings<br>Military Military To                    |                                               | 0       |            |             |
|                                        | in the second of                  |                                |                                             | 100                                                              | AT 13±                                                 | GRAY                  | Carcino in .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | BR                    |                                               | 0       |            |             |
| 1130                                   | 15                                |                                | 人                                           | 15                                                               |                                                        |                       | CHARLES TO THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA    |                       |                                               | 0       |            |             |
| 1140                                   |                                   |                                | Y                                           |                                                                  | SOFT                                                   |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VBR                   | SEVERAL HORIZ                                 | 0       |            |             |
|                                        |                                   |                                |                                             | l N                                                              | MARD                                                   | GRAY                  | Material of the state of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                       | BEDDING PLANE<br>JUTS BY TR<br>WATER THRU OUT | 0       |            |             |
|                                        | 1 may 2                           |                                |                                             |                                                                  | Si Marijani.                                           | : 146                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | BR                    |                                               | 0       |            |             |
|                                        |                                   |                                |                                             |                                                                  |                                                        | 1 6                   | Mark 1 - All 1 - 1-1 - 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 47                    |                                               | 0       |            |             |
| 476                                    | @                                 | 428                            | 10/10                                       |                                                                  |                                                        | 1.50                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                                               | 0       |            |             |
|                                        |                                   |                                |                                             |                                                                  |                                                        |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                     |                                               | 0       |            |             |
|                                        |                                   |                                |                                             | IN                                                               |                                                        |                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                                               | 0       | <u> </u>   | 1           |
| 81 pp.                                 |                                   |                                |                                             |                                                                  |                                                        | Align 19              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                       |                                               | 0       |            | $\bot$      |
|                                        |                                   |                                |                                             |                                                                  | 10 post 2 et                                           | 34                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | * .                   | 24.2 > 24.6 VERT                              | 0       | $\perp$    | 1           |
| 1210                                   |                                   |                                |                                             | 25                                                               |                                                        | . '                   | or 20 for the March                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                       | TUT TR HZO                                    | 0       |            |             |

| 1210            |                   | 125 N      |          |            |                       | El'WHER e 1380       |             |
|-----------------|-------------------|------------|----------|------------|-----------------------|----------------------|-------------|
| * When rock co  | oring, enter rock | brokeness. |          | 17         |                       |                      |             |
| ** Include moni |                   |            |          |            | elevated reponse read |                      |             |
| Remarks:        | 414               | " ID HS    | VA\W A   | STAMMAH OT | 1 2" SPOONS           | Background (ppm      | ): O        |
|                 | SET               | TEMP       | CAS TO   | 9.5        | A Wales               |                      |             |
|                 | NX                | IN ROC     | K - KEAN | 1 TO 36 W  | 5'2 BIT- 5            | CPEEN 15-25 SAND 10- | <u>- a6</u> |
| Converted       | to Well:          | Yes        | V        | No         | Well I.D. #           | 12 MWT25             |             |
|                 |                   |            |          |            |                       |                      |             |



### BEDROCK

WELL No.:

JAMWT25

MONITORING WELL SHEET

PERMIT No:

| PROJECT: NSWC CRANE PROJECT No.: N6878 SITE: SWMU-12 | DRILLING Co.: BOWS DRILLER: DRILLING METHOD: | H2JAW                                                                | BORING No.:<br>DATE COMPLET<br>NORTHING: | 12MWT25<br>ED: 9-12-04<br>1313 924.59     |
|------------------------------------------------------|----------------------------------------------|----------------------------------------------------------------------|------------------------------------------|-------------------------------------------|
| GEOLOGIST: CONTI                                     | DEV. METHOD: Swr                             | ge & Purge                                                           | EASTING:                                 | 302 62 69.42                              |
|                                                      |                                              | ion of Top of Casin                                                  |                                          | N A                                       |
|                                                      | Eleval                                       | ion of Top of Riser:<br>Surface Casing:                              |                                          | 748.86                                    |
| Ground Elevation = 746.55  Datum MSL:                |                                              | of Surface Casing:                                                   | steel                                    |                                           |
|                                                      | I.D. ar                                      | of Surface Seal:<br>and Depth of Permar<br>(if applicable)<br>Riser: | nent Casing: Th                          | EMP TO 9.5                                |
|                                                      |                                              | of Riser:                                                            | PVC                                      |                                           |
|                                                      | <b>←</b> Boreh                               | ole Diameter:                                                        | 81/2"                                    | Anna (1984)<br>Anna (1984)<br>Anna (1984) |
|                                                      |                                              | of Backfill:<br>tion / Depth Top of                                  | BENTONITE<br>CHIPS                       | 743.SS/ 3                                 |
| T.O.R.                                               | — Eleva                                      | tion / Depth Top of<br>of Seal:                                      | Bedrock: BENTONITE                       | 739.55/ 7/                                |
|                                                      | — Eleva                                      | tion / Depth of Top<br>tion / Depth of Top<br>tion / Depth of Top    | of Filter Pack:                          | NA / NA<br>736.55 / 10<br>731.55 / 15     |
|                                                      |                                              | of Screen:<br>Size x Length:                                         | PVC                                      |                                           |
|                                                      |                                              | Screen:                                                              | 20×10                                    |                                           |
|                                                      | _ Diam                                       | of Filter Pack:<br>eter of Hole in Bedt<br>/ Ream:                   | GLOBAL# 5                                |                                           |
|                                                      | Eleva                                        | tion / Depth of Bott                                                 | om of Screen:                            | 7211.55/ 25                               |
| Not the                                              | Eleva<br>o Scale                             | ation / Total Depth o                                                | of Borehole:                             | 740.55/ 26                                |

Page \_\_\_ of \_\_\_

PROJECT NAME: NSWC CRANE-SWMU-12 BORING No.: 12 MWTOC.
PROJECT NUMBER: N6878 DATE: 9-12-04
DRILLING COMPANY: BOWSER MORNER GEOLOGIST: CONTI

DRILLING RIG: CME S50 ATV DRILLER: WALSH

| LIIVO                             | HIG:                           |                                                                                                      | CWE                                                                                                                          | 550                                                                                                                | 174                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DRILLER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WALSH                                                                                                     | <del></del>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------|--------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   |                                |                                                                                                      |                                                                                                                              | N                                                                                                                  | ATE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | RIAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           | PID/FID                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Depth<br>(FL)<br>or<br>Run<br>No. | Blows /<br>6" or<br>RQD<br>(%) | Sample<br>Recovery<br>/<br>Sample<br>Length                                                          | Lithology<br>Change<br>(Depth/Ft.)<br>or<br>Screened                                                                         | Consistency<br>or                                                                                                  | Color                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Material Classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>U</b> S C S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Remarks                                                                                                   | ampley, c.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | iplorities                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | - /: O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                   | 2                              | 10.                                                                                                  | Interval                                                                                                                     | Hardness                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TOP 34 TOP SOIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | .a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           | Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | (OE) 3.78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0                                 | <b>∕</b> →                     | 1.8/2                                                                                                |                                                                                                                              | STIFF                                                                                                              | BEN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CLAYEY SILT - TR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ML                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | MOIST                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\perp$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2                                 | /4                             |                                                                                                      | 2                                                                                                                            |                                                                                                                    | ORAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                   | /2                             | 2/2                                                                                                  |                                                                                                                              | STIFF                                                                                                              | BRN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CLAYEY SIT/SITY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ヹ゙゙゙゙゙゙゙゙゚゚                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MOKT > WET                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $oldsymbol{\perp}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 4                                 | 4/3                            | :                                                                                                    |                                                                                                                              |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | CLAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ed agg                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                   | 3/2                            | 1.5/2                                                                                                |                                                                                                                              | STIFF                                                                                                              | GRAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | SICTY CLAY-TR SAND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Sta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | MOIST                                                                                                     | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 150                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 6                                 | 54                             |                                                                                                      | 6                                                                                                                            |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TR ROCK FRAGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WEATH ROCK IN                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                   | 1824                           | 1-5/2                                                                                                |                                                                                                                              | STIFF                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SUNTECLUAZ CESTHEREUNI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | V <sub>B</sub> S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | SHOE                                                                                                      | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 8                                 | 36/50                          |                                                                                                      | 8,                                                                                                                           | MSOFT                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                   | ,                              |                                                                                                      | III=IVI                                                                                                                      |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ide e & i Ŧ                                                                                               | o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 9.5                               | /                              | 9.5                                                                                                  | - 45. 고입!<br>                                                                                                                | MSCET                                                                                                              | Ben                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | WEATHERED<br>SAUDSTONE - TR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | VRR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                           | O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                   |                                |                                                                                                      |                                                                                                                              | MHARD                                                                                                              | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | RED BRN<br>CLAY SEAMS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | SEVERAL HOUS<br>BEDDING PLANE                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                   |                                | CEX                                                                                                  |                                                                                                                              |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | W RED BRN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | JUTS-SOME                                                                                                 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| $\Theta$                          | 9%                             | 375.5                                                                                                |                                                                                                                              |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <u> </u>                                                                                                  | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                   | /_                             |                                                                                                      | 14                                                                                                                           | ing file that is a                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7 mm ( )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 15                                | /                              | <b>A</b>                                                                                             | 15 5                                                                                                                         |                                                                                                                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                   |                                | Y                                                                                                    | - 1,                                                                                                                         | M                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | SANDSTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                           | 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                   | /_                             |                                                                                                      | 96 N                                                                                                                         | HAKO                                                                                                               | 1257)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 17.15 JNTS                                                                                                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2 Print 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| - 1                               | /_                             |                                                                                                      |                                                                                                                              |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ر در ا                                                                                                    | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 146                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                   | /_                             |                                                                                                      |                                                                                                                              |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 18' VUG<br>18.7 1"                                                                                        | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>②</b>                          | 762                            | 4.3%                                                                                                 |                                                                                                                              |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                   |                                |                                                                                                      | N                                                                                                                            |                                                                                                                    | CRY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SANDSTONE-LAMINA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <b>B</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 20.3 HORIZ JUT<br>20.8 TR H20                                                                             | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 丄                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                   |                                |                                                                                                      |                                                                                                                              |                                                                                                                    | 21'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | STREAKS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                   |                                |                                                                                                      |                                                                                                                              |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | W COM! THTERISON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                           | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                   |                                |                                                                                                      | 24                                                                                                                           |                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.50FT<br>24.3 TR H2O                                                                                     | Õ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25                                |                                |                                                                                                      |                                                                                                                              | SOFT                                                                                                               | BAY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SANDY SHALE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           | 19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                   | Depth (元 3 元 2 )               | Depth (F1) 6° or ROD (%) No. 80 34 2 2 4 3 4 3 4 5 4 8 36 50 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 9.5 | Depth (FL) 6° or ROD Run No. 1.8/2  0 34 1.8/2 2 2/2 4/3 1.5/2 8 360 9.5 9.5 15 9.5 15 15 15 15 15 15 15 15 15 15 15 15 15 1 | Depth (FL) 6" or RQD (%) Sample (Depth/FL) or RQD (%) Sample Length or Screened Interval  O 34 1.8/2 2 2/2 2/2 4 3 | Depth Blows / 6" or or RQD (%) Sample Length No.   Sample Length   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval   Soil Density or Screened Interval | Depth (Ft.) 6" or ROD (%) Sample Length (Depth/Ft.) Sample Length (Depth/Ft.) Sample Length (No.) (%) Sample Length (Depth/Ft.) Sample Length (Depth/Ft.) Sample Length (Depth/Ft.) Sample Length (Depth/Ft.) Sample Length (Depth/Ft.) Sample Collection (Screened Interval Strict (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection (Depth/Ft.) Sample Collection | Depth Blows / RPL Sample (PL) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sample (N) Sam | Depth (FL) Blows / (FL) Blows / (FL) Blows / (FL) Grappe / (Change or or or or or or or or or or or or or | Depth Blow/ Sample (Pri) 6" or ROD 100 (Depth) Blow/ Sample (Depth) Blow/ Sample (Depth) Blow/ Sample (Depth) Blow/ Sample (Depth) Blow/ Sample (Depth) Blow/ Sample (Depth) Blow/ Sample (Depth) Blow/ Sample (Depth) Blow/ Sample (Depth) Blow/ Sample (Depth) Blow/ Sample (Depth) Blow/ Sample (Depth) Blow/ Sample (Depth) Blow/ Sample (Depth) Blow/ Sample (Depth) Blow/ Sample (Depth) Blow/ Sample (Depth) Blow/ Sample (Depth) Blow/ Sample (Depth) Blow/ Sample (Depth) Blow/ Sample (Depth) Blow/ Sample (Depth) Blow/ Sample (Depth) Blow/ Sample (Depth) Blow/ Sample (Depth) Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow/ Blow | Depth Blow   Simple   Lithology   MATERIAL DESCRIPTION   U   Simple   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge   Conge | Depth Richard Sample (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17) of or. (17) of or no. (17) of or no. (17) of or no. (17) of or no. (17 |

| * When rock coring, enter rock brokeness.                                                         |                          |       |
|---------------------------------------------------------------------------------------------------|--------------------------|-------|
| ** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated | reponse read. Drilling A | rea   |
| Remarks: 44" HSA WI AUTO HAMMER   2" SPOONS                                                       | Background (pp           | m): 🖸 |
| SET 6" CAS TO 9-5                                                                                 |                          |       |
| NX CORE IN ROCK- REAM TO 51/21                                                                    |                          |       |
| Converted to Well: Yes No No                                                                      | Well I.D. #: LONALITE    |       |



### **BEDROCK**

WELL No.:

12MWT26

MONITORING WELL SHEET

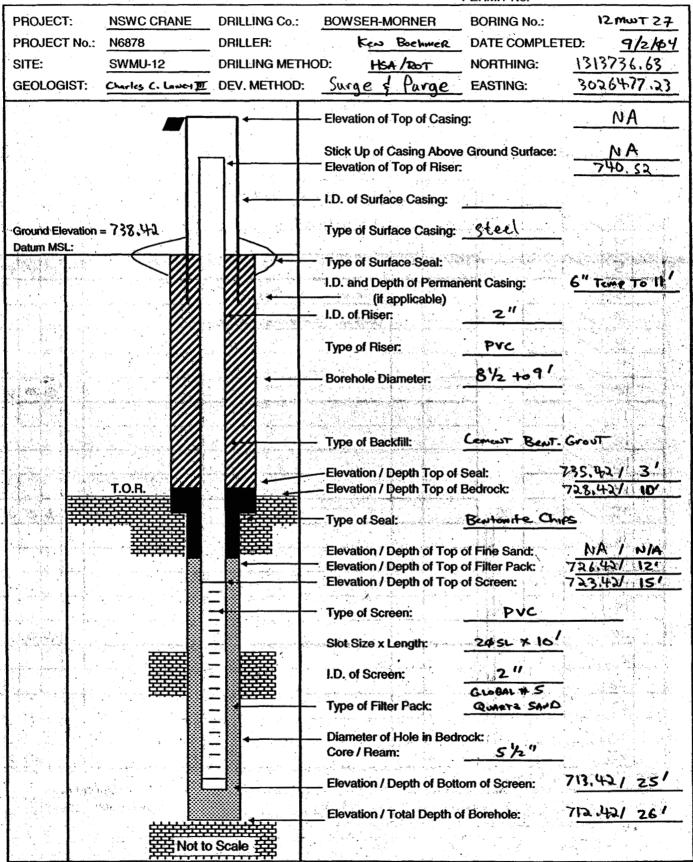
PERMIT No:

| PROJECT:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | NSWC CRANE | DRILLING Co.:  | BOWSER-MORNER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | BORING No.:       | 12MWT26                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|-------------------------|
| PROJECT No.:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | N6878      | DRILLER:       | WALSH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DATE COMPLET      | ED: 9 <u>-12-04</u>     |
| SITE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | SWMU-12    | DRILLING METHO | DE HSA-ROT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NORTHING:         | 1313638.57              |
| GEOLOGIST:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | CONTI      | DEV. METHOD:   | Surge & Purge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EASTING:          | 3025981. 12             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                | - Elevation of Top of Casing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>3</b> :        | NA                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                | Stick Up of Casing Above Elevation of Top of Riser.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Ground Surface:   | NA<br>743.72            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                | - I.D. of Surface Casing:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |                         |
| Ground Elevation Datum MSL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | =741.64    |                | Type of Surface Casing:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | steel             |                         |
| Datum MSL:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            |                | Type of Surface Seal:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                   |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                | 1.D. and Depth of Perman (if applicable)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ent Casing: TE    | MP TO 9.5               |
| And the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |            |                | I.D. of Riser:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2"                |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                | Type of Riser:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PVC               |                         |
| and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |            |                | - Borehole Diameter:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 812               |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                | Type of Backfill:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BENTON THE        |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | T.O.R.     |                | - Elevation / Depth Top of S<br>- Elevation / Depth Top of I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                   | 738.64/ 3/<br>733.68/8/ |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                | Type of Seal:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                   |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                | Elevation / Depth of Top of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | of Fine Sand:     | NA / NA                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                | Elevation / Depth of Top of Elevation / Depth of Top of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                   | 730.68/ 11              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | - 8            | Type of Screen:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | PvC               |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | = 📓            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                   |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>555</b> |                | Slot Size x Length:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 20 ×10'           |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                | I.D. of Screen:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2"                |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                | Type of Filter Pack:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GLOGAL#5          |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | =              | <ul> <li>Diameter of Hole in Bedre<br/>Core / Ream:</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ock: 51/2         |                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                | The second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of the second of th |                   | 717 (5.1.2)             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                | _ Elevation / Depth of Botto                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | se en la companya | 717.68 / 24             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u> </u>   |                | Elevation / Total Depth of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Borehole:         | 716.68/ 25              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Not to     | Scale 🛱        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 137               |                         |

Page 1 of ) **BORING LOG** 12 MWT 27 PROJECT NAME: NSWC CRANE-SWMU-12 BORING No.: PROJECT NUMBER: N6878 DATE: 9/2/44 DRILLING COMPANY: BOWSER MORNER Charles C. Lancy III GEOLOGIST: **DRILLING RIG:** TRUCK MOUNT B-59 DRILLER: Ken Bochmer MATERIAL DESCRIPTION PID/FID Reading (ppm) Lithology Depth Blows / Sample U No. (Ft.) 6" or Recovery Change s Soil Density/ RQD (Depth/Ft.) C Consistency Run Sample Remarks Type or (%) or Color **Material Classification** S NOD No. Length Screened Rock Interval Hardness ١ Sec Boring Log 0000 Z 12 MWTZS FOR 3 LITHOLOGY ч 5 ØØ 6 Boring was Drilled 7 Without Sampling /CORI ଞ 9 ΦΦ IΦ Top 11 12 松的 医物质二二素 13 3.7 30.79 14 15 do do 15 16 17 18 19 2\$ Ø Ø 21

| Remarks: 6" Temporary Casing Set to 11 bgs. Background (ppm): Ø | When rock con<br>Include monito<br>Remarks: | or reading in 6 | foot interve | als @ borehole |  |  |  | d reponse n | ead. | В |  | ing A<br>d (pp |  | Ø |  |
|-----------------------------------------------------------------|---------------------------------------------|-----------------|--------------|----------------|--|--|--|-------------|------|---|--|----------------|--|---|--|
|-----------------------------------------------------------------|---------------------------------------------|-----------------|--------------|----------------|--|--|--|-------------|------|---|--|----------------|--|---|--|




### BEDROCK

**WELL No.:** 

12 MINT 27

#### MONITORING WELL SHEET

PERMIT No:





Page \_\_\_ of \_\_\_\_

PROJECT NAME: NSWC CRANE-SWMU-12 BORING No.: 12 mwT 33
PROJECT NUMBER: N6878

DATE: 8/31/94

PROJECT NUMBER: N6878

DRILLING COMPANY: BOWSER MORNER

DATE: 8/31/44

GEOLOGIST: Charles C. Laney +++

DRILLING RIG: Truck mount B-59 DRILLER: Tom Boehmer

|                         | AILEING AIG.     |                  |                       |                                           |                                                        |           | PID/FID Reading (ppm)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |         |                                            |         |            |            |              |  |
|-------------------------|------------------|------------------|-----------------------|-------------------------------------------|--------------------------------------------------------|-----------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|--------------------------------------------|---------|------------|------------|--------------|--|
| Sample<br>No.           | Depth<br>(Ft.)   | Blows /<br>6" or | Sample<br>Recovery    | Lithology<br>Change                       | N                                                      | AIE       | RIAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | U       | · .                                        | PID/FIC | Rea        | ling (     | ppm)         |  |
| and<br>Type or<br>RQD   | or<br>Run<br>No. | RQD<br>(%)       | /<br>Sample<br>Length | (Depth/Ft.)<br>or<br>Screened<br>Interval | Soil Density/<br>Consistency<br>or<br>Rock<br>Hardness | Color     | Material Classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | S C S · | Remarks                                    | Sample  | Sampler BZ | Borehole** | Driller BZ** |  |
| V4 - L1 - X7            | 1                |                  |                       |                                           |                                                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                            | ø       |            |            |              |  |
|                         | 2                |                  |                       |                                           |                                                        |           | See Log 12 MWT25                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |         |                                            | ф       |            |            | L            |  |
|                         | 3                |                  |                       |                                           |                                                        |           | FOR LITHOLOGY FROM                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |         |                                            | ø       |            |            | <u></u>      |  |
|                         | 4                | $\angle$         |                       | .Atamena                                  |                                                        |           | φ-25'bas-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |         | and sometiment of the second second second | q       | 1          | 62%        |              |  |
|                         | 5                |                  |                       | r wick mid-                               | Marie et al.                                           |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | P. day                                     | ф       |            |            |              |  |
| Mark 1                  | 6                | $\angle$         |                       | 100                                       |                                                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                            | ø       | 4          | < 5        |              |  |
|                         | 7                | /_               |                       |                                           |                                                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                            | ø       |            |            |              |  |
|                         | 8                | $\angle$         |                       |                                           |                                                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                            | ø       |            |            |              |  |
|                         | 9                |                  |                       | and March                                 |                                                        |           | ***                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |         |                                            | ø       | 14         |            |              |  |
|                         | lφ               | /                | 14656                 | and the second                            |                                                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | to the second second second                | 4       | Heart      |            |              |  |
|                         | 11               |                  |                       | e de camero e e e                         |                                                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                            | ø       | , ,,,      | **         |              |  |
|                         | 12               | /_               |                       |                                           |                                                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                            | ø       |            |            |              |  |
| \$ 5.<br>\$ 5.<br>\$ 5. | 13               | $/\!\!/$         |                       | - America                                 |                                                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                            | Ø       | 2 m. s.y   |            |              |  |
|                         | 14               | /                |                       |                                           |                                                        | <i>\$</i> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         |                                            | Ø       |            |            | _            |  |
| , a 14 1 2 4 1 24       | ıs               |                  |                       | same, the first t                         |                                                        | 3,4%      | enthania etaeta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |         | A A                                        | ø       |            |            |              |  |
| 1.6                     | 16               |                  | <b>新花</b> 。           |                                           |                                                        | **        | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _       |                                            | ø       | 70.2       | A. A. C.   |              |  |
|                         | 17               |                  |                       |                                           |                                                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | _       | *                                          | ø       |            | 2          | H            |  |
|                         | 18               |                  | ***                   |                                           | e e transfer a lange                                   | 187       | a prima and a state of the spirits and a state of the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits and the spirits | -       |                                            | Ø       |            |            | -            |  |
|                         | 19               |                  |                       |                                           |                                                        | _         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ┝       |                                            | Ø       |            | : <u>:</u> | ├            |  |
|                         | Zø               |                  |                       | special for a const                       | e interese de la company                               |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -       |                                            | 9       | _          |            | L            |  |
|                         | 21               |                  |                       |                                           |                                                        | -3        | e 1980                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | -       |                                            | Ø       |            | -          | -            |  |
| *                       | 22               |                  | ├-                    |                                           |                                                        | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | -       |                                            | 8       | -          |            | $\vdash$     |  |
|                         | 23               |                  | <del> </del>          |                                           |                                                        | $\vdash$  | CONTRACTOR OF STREET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | -       | <u> </u>                                   | Ø       |            |            | -            |  |
|                         | 24               |                  |                       |                                           |                                                        | -         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1       |                                            |         |            | : (        | $\vdash$     |  |
| -                       | 25               |                  |                       | 1.5                                       |                                                        |           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1       |                                            | ø       |            |            | <u> </u>     |  |

|   | the transfer of | 190 |        | 19 r    | 2 2 1   |         |
|---|-----------------|-----|--------|---------|---------|---------|
| * | When            | mck | conna. | enter n | ock bro | keness. |

| •• | Include monito | r reading in 6 fo | oot intervals @ borehole. | Increase reading frequency | f elevated reponse read. |
|----|----------------|-------------------|---------------------------|----------------------------|--------------------------|
|    |                |                   |                           |                            |                          |

Remarks: Temporary Casing Scr To 10.5 695

Drilling Area
Background (ppm): 95

| Converted to Well: Yes | X | No | Well I.D. #: | E & TWM SI |  |
|------------------------|---|----|--------------|------------|--|
|                        |   |    | _            |            |  |



**DRILLING RIG:** 

## **BORING LOG**

|                 | · ·                |        |
|-----------------|--------------------|--------|
| PROJECT NAME:   | NSWC CRANE-SWMU-12 | BORING |
| PROJECT NUMBER: | N6878              | DATE:  |

DRILLING COMPANY: BOWSER MORNER

**GEOLOGIST:** Truck MOUNT 8-59

12 MWT 33 No.:

8/31/44

Charles C. Lawer III

DRILLER: Tom Boehmer

| Sample                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Depth                     | Blows /             | Sample                                           | Lithology     | I. IV                                                  | AIE        | RIAL DESCRIPTION               | ا ا       |                                       | PID/FII | Rea         | ding (              | (   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|---------------------|--------------------------------------------------|---------------|--------------------------------------------------------|------------|--------------------------------|-----------|---------------------------------------|---------|-------------|---------------------|-----|
| No.<br>and<br>Type or<br>RQD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | (Ft.)<br>or<br>Run<br>No. | 6" or<br>RQD<br>(%) | Recovery<br>/<br>Sample<br>Length                |               | Soil Density/<br>Consistency<br>or<br>Rock<br>Hardness |            | Material Classification        | U % C % * | Remarks                               | Sample  | Sampler BZ  | Borehole**          |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 26                        |                     |                                                  |               |                                                        |            |                                |           |                                       |         | ,           |                     | •   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 27                        |                     | •                                                |               |                                                        |            |                                |           |                                       |         |             |                     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 28                        |                     |                                                  |               | 1                                                      |            |                                |           |                                       |         |             |                     | -   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 29                        |                     |                                                  |               |                                                        |            |                                |           |                                       |         | 3)          |                     |     |
| 91,7<br>- 2,750                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>3</b> ¢                |                     |                                                  | 1.21          |                                                        |            | Book to the Adams of the traff | 186       |                                       |         | 198         | <i>y</i> .          | 100 |
| • • • • • • • • • • • • • • • • • • • •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 31                        |                     | 3742                                             |               |                                                        |            |                                |           |                                       |         | 100         |                     |     |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32                        |                     |                                                  |               |                                                        |            |                                |           |                                       |         |             |                     |     |
| i N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 33                        | $\angle$            |                                                  |               |                                                        |            |                                |           |                                       |         |             | ,                   | _   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 34                        | $\angle$            |                                                  |               |                                                        |            |                                |           |                                       |         |             |                     |     |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 35                        | $\leq$              |                                                  |               |                                                        |            |                                |           |                                       |         |             |                     |     |
| 1, 1, 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , 1 M , | 36                        | $\leq$              |                                                  |               |                                                        |            |                                |           |                                       |         | -law es     |                     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 37                        | /_                  |                                                  |               |                                                        |            |                                |           |                                       | 2.2     | e e         |                     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <i>3</i> 8                |                     |                                                  |               |                                                        |            |                                |           |                                       |         | 2,000       | 354<br>1317<br>2114 |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 39                        |                     |                                                  |               |                                                        |            |                                |           | · · · · · · · · · · · · · · · · · · · |         | 1           |                     |     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 40                        |                     |                                                  |               | MEDIUM                                                 | GRAY       | SANDSHONE                      |           |                                       | n in    | Nac         |                     |     |
| i i i i i i i i i i i i i i i i i i i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 42                        |                     |                                                  | en en fast de | HARD                                                   | 11         |                                | -         | V.BR.                                 | ø       | ante era de | -                   | -   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 42                        |                     |                                                  |               | 31                                                     | <i>n</i>   | <u> </u>                       | -         |                                       | 9       |             | _                   | _   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 43                        | $\leftarrow$        |                                                  | . ;           | Sorr                                                   | OLACK<br>" | COAL                           | 1-        | TRACE PYRITE                          | 9       | -           | _                   | -   |
| 594                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 44                        | 65%                 | 9/91                                             |               | 11                                                     | 11         |                                | $\vdash$  |                                       | 1       | -           | -                   | -   |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 46                        | 710                 | 191                                              |               | HARD                                                   |            | SAMOSTONE                      | -         |                                       | 1       | وعومة       |                     | -   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 47                        |                     | -  -                                             | 1             | 51                                                     | 6e4/       | 11                             | $\vdash$  |                                       | \$      | $\vdash$    | $\vdash$            | -   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 48                        |                     | -                                                |               | MEDIAN                                                 | sek        | CLAISTONE                      | -         |                                       | #       |             |                     | -   |
| <b>9</b> 446                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                           |                     | H                                                | 1             | SORT                                                   | GRAY       | 11                             | +         |                                       | ø       |             | -                   | -   |
| 77.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sp                        |                     | <del>                                     </del> |               | Medium                                                 | n          | SANDSTONE INTERESTO.           | 1         | Biocof                                | +       |             | H                   | -   |

\*\* Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Permanent Casing Set TO 35.5' bgs. Remarks:

**Drilling Area** Background (ppm): **Ø** 

Converted to Well:

Yes

No

Well I.D. #:

12MWT33

| <b>F</b>       | A-        | Tetra      | Tec               | :h N     | IUS, Inc             |                 | D.C             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | Pag                               |          | 3 ,        | of.           | 4            |
|----------------|-----------|------------|-------------------|----------|----------------------|-----------------|-----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------------------------------|----------|------------|---------------|--------------|
| C.             |           | Total      | • • •             |          | <b>1</b> 00, mo      | •               | $\overline{RC}$ | PRING LOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |        | ı ag                              | <u> </u> | (          | л             | _L_          |
|                |           | NAMI       |                   |          |                      | CRANE-          | SWM             | U-12 BORING N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | o.:    | 12 MWT 33                         |          |            |               |              |
|                |           | NUM        |                   |          | N6878                |                 | IE D            | DATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ~-     | 9/2/44                            |          |            |               | _            |
|                |           | •          | PAN               | 1Y:      |                      | ER MORI         |                 | GEOLOGIS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SI:    | Chirles C. Lan                    |          | <u>I</u>   |               |              |
| DHIL           | LING      | RIG:       |                   |          | Truck                | MOUNT           |                 | age of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of |        | Tom Boehme                        | _        |            |               | _            |
| Sample         | Depth     | Blows /    | S 200             | alan     | Lithology            | M               | ATE             | RIAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | P                                 | ID/FIL   | Read       | ling (        | ppm)         |
| No.            | (Ft.)     | 6" or      | Reco              | very     | Change               | Soil Density/   |                 | .*                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | U<br>S |                                   |          |            |               |              |
| and<br>Type or | Run       | RQD<br>(%) | San               | nple     | (Depth/Ft.)<br>or    | Consistency     |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | С      | Remarks                           | ple      | e 87       | 9io           | 82           |
| ROD            | No.       | ł          | Len               | gth      | Screened<br>Interval | or<br>Rock      | Color           | Material Classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | S      |                                   | Sample   | Sampler BZ | Borehole**    | Driller BZ** |
|                |           |            |                   |          |                      | Herdness        |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                   |          | S          | Ď             | ۵            |
|                |           |            | _                 | 7-       |                      | medium          |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                   |          | . :        |               |              |
| L              | 51        |            |                   |          |                      | HARA            | Durk<br>Gady    | sampsfore interacted wy surstane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |        | A lot of Bouling                  | φ        |            |               |              |
|                | 52        | 4          |                   |          |                      | 4               | "               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14 T   | ,                                 | ø        |            |               |              |
|                | 53        |            |                   |          |                      | ٦               | • •             | "                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                   | φ        |            |               | Ŀ            |
| BY             | 54        | 849        | 9.8               | <u>Y</u> | naghanasi.           | ``              | فه              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                   | 9        |            | . // .<br>/*t |              |
| 10             | کک        | 10         | /                 | 10       | . T.                 | ••              | 1               | the product of the second of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |        |                                   | ø        | ned d      | ×             | . 53         |
|                | 56        | 1500       | 30 mg/s<br>1235 m | -        |                      | "               | ,               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                   | ø        | e can      | ere a         |              |
|                | 57        |            |                   | L        |                      | 41              | 11              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                   | ø        | 1          | atticus on    |              |
|                | <b>S8</b> |            |                   |          |                      | 4               | •               | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                   | φ        |            | *             |              |
| ønø            | 59        |            | _                 | L        | 4                    | 4               | 11              | en en en en en en en en en en en en en e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |        |                                   | ø        | ., .       | A) (A)        |              |
|                | 6φ        |            |                   |          | namphilis i nath     | þ               | V               | SANDSIBNE INTERPEDIED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | V. B. R. FROM 61-62!              | ø        | 4          |               |              |
|                | 61        |            |                   |          |                      | ,,              | !)              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | Fam 62.5-63/                      | ф        |            | ik sa         |              |
|                | 62        |            | L                 | <u></u>  |                      | . 61            | 41              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1      | Rest . Blocky<br>A lot or Bonding | ø        |            | 40.00         |              |
|                | 63        | /          |                   |          | -401                 | 11              | y               | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        | ••                                | φ        |            |               |              |
| 14%            | вч        | 46%        | 9                 | /        | aya ji ne            | *1              | 11              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 3                                 | ø        |            |               |              |
|                | 65        |            | /k                | 2        |                      | 11              | 11              | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |        |                                   | ø        |            | X             |              |
|                | 66        |            |                   | L        |                      | - 11            | 11              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                   | ø        |            | Market .      |              |
|                | 67        |            |                   |          | in the second        | -11             | 11              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                   | ø        |            |               | 100          |
| 1              | 68        |            | L                 |          |                      | •1              | 11              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        | 4                                 | ø        |            |               |              |
| 6145           | 69        |            | /                 | 1        |                      | ч               | 11              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |        |                                   | ø        |            |               |              |
|                | 79        |            |                   |          |                      | ч               | n               | A SANTA CARREST AND AND AND AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARREST AND A SANTA CARRES |        | Brocky, Alotor<br>Bond ING        | ø        |            | 2.5           |              |
|                | 71        |            |                   |          |                      | FOFT            | #<br>BACK       | COAL (1017 -> 72/)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -      | v.8.e.                            | Ø        |            |               |              |
|                | 72        |            | T                 | T-       | I                    | И               | 11              | 11 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |        | 18                                | φ        |            |               |              |
|                | 73        |            | 1                 |          |                      | Medium<br>Hoyrd | Back            | SILTSTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Γ      | 11                                | ø        |            |               |              |
| 44             | 74        | 4196       | 9/                | 1        | 74_                  |                 | Bork            | SUPSTONE INTERMEDIAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |        | BLOCKY                            | Ø        |            |               |              |

\*When rock coring, enter rock brokeness.

"Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read.

Remarks: C-2 Core fell MTB Hole once & Hid to Be Retrieved

| and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |       |    | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Converted to Well:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Yes 🗶 | No | Well I.D. #: 12 M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | WT33 |

11



| DDA                                     | IECT  | NAME         | <b></b>       | NICINIC               | CRANE-        | CIMINA | U-12 BORING N                            | ٠.       | 12 mur 33           |                                               |           |                                         |      |
|-----------------------------------------|-------|--------------|---------------|-----------------------|---------------|--------|------------------------------------------|----------|---------------------|-----------------------------------------------|-----------|-----------------------------------------|------|
|                                         |       | NUM          |               | N6878                 | CHANE-        | SAAIAI | DATE:                                    | 0        | 9/2/04              | <u>,                                     </u> |           |                                         | _    |
|                                         |       |              |               |                       | ER MORI       | NER    | GEOLOGIS                                 | ST:      | Charles C. L        | اندم                                          | b) "      | TT -                                    | _    |
|                                         |       | RIG:         |               |                       | ck Mova       |        |                                          |          | Tom Brea            |                                               |           | _                                       | _    |
|                                         |       |              |               |                       |               |        | RIAL DESCRIPTION                         |          |                     | PID/FIL                                       |           | dina                                    | =    |
| Sample                                  | Depth | Blows /      | Sample        | Lithology             | 10            | IA I E | HAL DESCRIPTION                          | υ        |                     |                                               | T T       | Jing (                                  | ï    |
| No.<br>and                              | (Ft.) | 6" or<br>RQD | Recovery<br>/ | Change<br>(Depth/Ft.) | Soil Density/ |        |                                          | S        |                     |                                               | 28        |                                         | I    |
| Гуре от                                 | Run   | (%)          | Sample        | or                    | Consistency   | Calar  | Material Classification                  | C        | Remarks             | 흲                                             | 8         | 90                                      | 1    |
| RQD                                     | No.   |              | Length        | Screened<br>Interval  | or<br>Rock    | Color  | Material Classification                  | S        |                     | Sample                                        | Sampler ( | Borehole**                              |      |
|                                         |       |              |               |                       | Hardness      |        |                                          |          |                     |                                               | Š         | 200                                     | ١    |
|                                         |       |              | * I 's        |                       | medura        | D., K  | SALD STONE INTERBEORD W                  | <u> </u> |                     | <del> -</del>                                 | 1_        |                                         | ļ    |
|                                         | 76    |              |               |                       | Had           | Gay    | SILTSTONE                                | ·        | Brocks              | ø                                             |           |                                         |      |
|                                         | 77    |              |               | N                     | ٠,            | 11     |                                          |          | 4)                  | \$                                            |           |                                         |      |
|                                         | 78    |              |               | 1 11                  | 4             | )1     | •                                        | ·        | 80                  | ø                                             |           |                                         | 1    |
| PZIØ                                    | 79    |              |               |                       | 1,            | 11     | 15                                       |          |                     | 99                                            | (Dec.)    |                                         | I    |
| 13.4                                    | 84    |              | Y             | 2 4 19                |               | 11     |                                          |          | BLOCKY -> Brokeniyo | <b>674</b>                                    | - 1       |                                         | ١    |
|                                         | 81    |              |               | N                     | n             | 95     |                                          |          | Francis afferences  | ø                                             |           |                                         |      |
|                                         | 82    |              |               |                       | ч             | 4      |                                          |          |                     | ø                                             | .,        |                                         | ١    |
|                                         | 83    |              |               |                       | N             | •1     | •                                        |          | **                  | Ф                                             |           |                                         | 1    |
|                                         | 84    |              |               | 1                     | 14            | 11     |                                          |          | 1                   | ø                                             | (A)       |                                         | 1    |
| 4.2/                                    | 85    | Vac          | 95/           |                       | W Zin         | -11    |                                          |          |                     | ф                                             | 18        | 1                                       | 1    |
| 100                                     | 86    | 429          | 110           |                       | •             | 11     |                                          |          | •                   | 4                                             | 1         |                                         | I    |
|                                         | 87    |              |               |                       | 1)            | 1)     |                                          |          |                     | 0                                             |           |                                         | I    |
|                                         | 88    |              |               |                       | ¥             | 1)     | n territoria.                            |          |                     | à                                             |           | Section 200                             | 1    |
| <b>5</b> 234                            | 89    |              |               |                       | "             | 1)     | <b>J</b>                                 |          | 4                   | ø                                             |           |                                         | 1    |
|                                         | 90    |              | Y             |                       | į.            | [1     | 2. 3.5                                   |          |                     | ø                                             |           |                                         | 1    |
|                                         | 91    |              |               |                       | 11            | 11     | ļ. , , , , , , , , , , , , , , , , , , , |          | 4                   | φ                                             |           | 4                                       |      |
| 1.8/                                    | 12    | 38%          | 4.9           |                       | 11            | ¥r     |                                          |          | 10                  | ø                                             | 2004      |                                         |      |
| 75                                      | 93    |              | 10            |                       | 11            | 11     | 9                                        |          | W S                 | ø                                             |           | ****                                    |      |
| <b>1344</b>                             | 44    |              |               | 945                   | 14            | 1,     | <b>G</b>                                 |          | W. J. Carlot        | ø                                             |           | ક્                                      | 100  |
|                                         | 95    |              | , in          |                       |               |        |                                          |          |                     |                                               |           | \$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\ |      |
|                                         |       |              | 4             |                       |               |        | BORING TERMINATE                         | -        | <b>├</b> ──→        | 1                                             |           |                                         | 1000 |
| *************************************** |       |              | 11            |                       |               |        |                                          |          |                     | L                                             |           |                                         |      |
|                                         |       |              |               |                       |               |        |                                          |          |                     | L                                             |           |                                         |      |
|                                         |       |              |               |                       | 1111          |        |                                          |          |                     |                                               |           | 190                                     |      |
|                                         | a     |              |               |                       |               |        |                                          |          |                     |                                               |           |                                         |      |

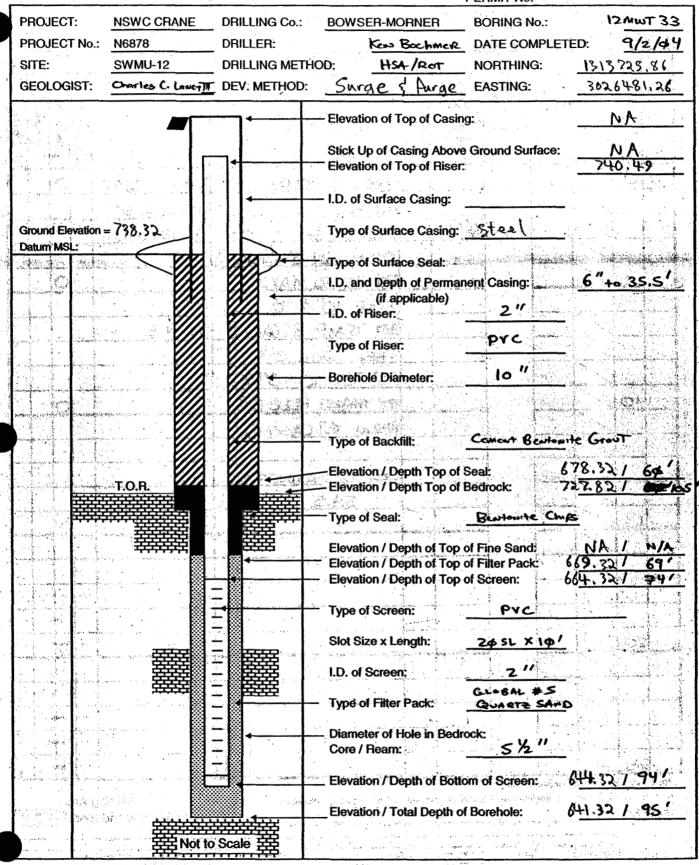
"Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated repense read.

Remarks: Hole Remark + 95 bes.

Yes

Converted to Well:




### **BEDROCK**

WELL No.:

12MWT33

#### MONITORING WELL SHEET

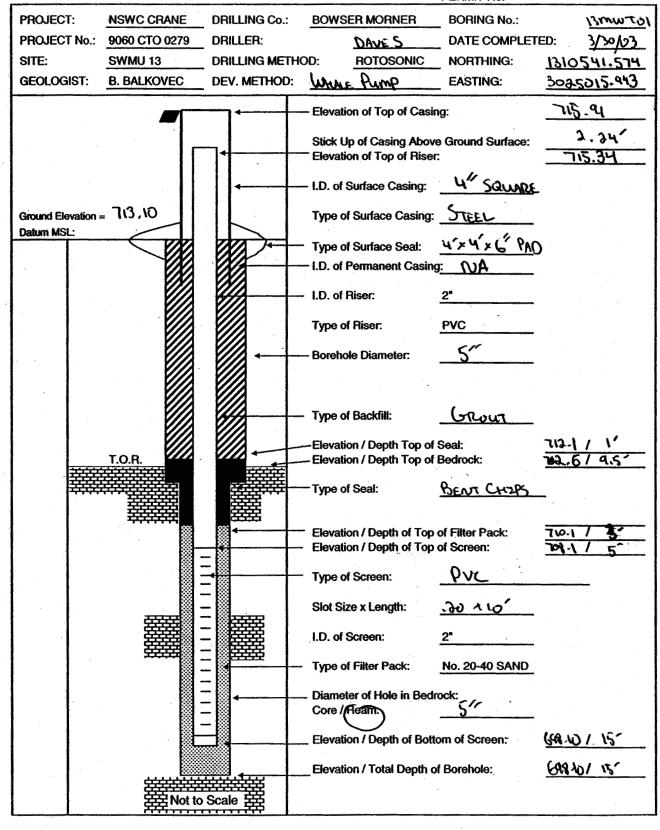
PERMIT No:





|                     | U         | Tetra       | Tech NU          | JS, Inc.             |                              | B           | ORING LOG                              |       | Pa                | ge _ <u>/</u>                                                       | of                       |                                         | -        |
|---------------------|-----------|-------------|------------------|----------------------|------------------------------|-------------|----------------------------------------|-------|-------------------|---------------------------------------------------------------------|--------------------------|-----------------------------------------|----------|
|                     |           | NAM         |                  | NSWC (               |                              |             | BORING NUME                            | BER:  |                   |                                                                     |                          |                                         |          |
|                     |           | NUM         |                  |                      | TO 0279                      |             | DATE:                                  |       | 3/30/03           |                                                                     |                          |                                         | _        |
|                     |           | COMI        | PANY:            |                      | R MORNEI                     | н           | GEOLOGIST:                             |       | BOB BALKOVEC      |                                                                     |                          |                                         | _        |
| DHIL                | LING      | RIG:        |                  | ROTOS                |                              |             | DRILLER:                               | _     | DAUES.            |                                                                     |                          | <del></del>                             | =        |
| Camala              | Depth     | Blows /     | Sample           | Lithology            |                              | MATE        | RIAL DESCRIPTION                       | U     |                   | PID/FID                                                             | ) Reading                | g (ppn                                  | n)       |
| Sample<br>No.       | (Ft.)     | 6" or       | Recovery /       | Change               |                              |             |                                        | s     |                   |                                                                     | N.                       |                                         |          |
| and<br>Type or      | or<br>Run | RQD<br>(%)  | Sample<br>Length | (Depth /Ft.)<br>or   | Soil Density/<br>Consistency |             | 22                                     | C     | Remarks           | <u>e</u>                                                            |                          | }                                       |          |
| RQD                 | No.       |             |                  | Screened<br>Interval | or<br>Rock Hardness          | Color       | Material Classification                | S     |                   | Sample                                                              | Sampler BZ<br>Borehole** | Driller 8Z**                            |          |
|                     |           |             |                  |                      | HOCK HAIGHESS                |             |                                        |       |                   |                                                                     | o u                      |                                         |          |
|                     |           |             |                  |                      |                              |             |                                        | -     |                   |                                                                     |                          | 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 - | 22222    |
|                     | 1         | <u>/_</u>   |                  | $1 \setminus 1$      |                              | 815         | 7 Tup Sozie                            | m     | 5" 0-6"           | 00                                                                  |                          | +                                       | 4        |
|                     | کر        |             |                  |                      |                              | 1           | 7                                      |       |                   |                                                                     |                          | $\perp$                                 | ╛        |
|                     | ን         |             |                  |                      | Der                          | Yete        | J-6 CLAYER SZUT                        | Ш     |                   |                                                                     |                          | 1                                       |          |
|                     | 4         |             |                  |                      |                              | UR          |                                        |       |                   | $\prod$                                                             |                          | T                                       | 1        |
| 51                  | 5         |             | 49-              | 1111                 |                              | 17.         |                                        | H     |                   | 11                                                                  |                          | 00                                      | 1        |
| 1025                |           |             | - 5              | k     <del> </del>   |                              | LETTE       | <u> </u>                               | H     |                   | +                                                                   |                          | +                                       | 4        |
|                     | م         |             | <u> </u>         | 19                   |                              | ויינים      | A CLAKEY STUT                          | 9     |                   | 0.0                                                                 | $\vdash \vdash$          | +                                       | 4        |
|                     | ٦         | <b>/</b> _, | ļ                | मुन्त य              | mozer                        | 820         | 6-9.5 STAK SHAM                        | Sm    | WEATHERED S.S.    | $+\!\!+\!\!\!+\!\!\!\!+$                                            | $\vdash \vdash$          | +                                       | 4        |
|                     | 8         |             |                  |                      |                              | reu         |                                        | 11    |                   | 44                                                                  |                          | $\bot$                                  | 4        |
|                     | 9         |             |                  |                      |                              |             |                                        | 1     | L                 | $\perp \! \! \! \! \! \perp \! \! \! \! \! \! \! \! \! \! \! \! \!$ |                          | $\perp$                                 | _        |
| 114 <b>2</b><br>2-5 | 10        |             | 4.81             |                      | HALO DOL                     | J           | 5 SAND STUNE                           | 2     | Roun = 4.5'       | V                                                                   |                          | $oldsymbol{\perp}$                      |          |
| 7                   | II.       |             |                  |                      |                              | LT<br>(GA4) | WLEG NAS                               |       |                   |                                                                     |                          |                                         |          |
|                     | 12        |             |                  |                      |                              | 1           | S" REAM TO 15"                         | Ш     |                   |                                                                     |                          | $\perp$                                 |          |
| Q-1                 | 13        |             |                  |                      |                              |             | JAMPY MATERIAL                         |       |                   |                                                                     |                          | $\perp$                                 |          |
| $\prod$             | 14        |             |                  | ]                    |                              | 1           | IN CUTTANKS                            |       |                   |                                                                     |                          |                                         |          |
| 1                   | 15        |             |                  |                      |                              | (mx)        | STUTY MATERIAL                         | 1     |                   | ,                                                                   |                          |                                         |          |
|                     |           |             |                  | 7.0.                 |                              |             | WELL SET @ 15 J'PUC                    |       |                   |                                                                     |                          |                                         |          |
|                     |           |             |                  | ] "                  |                              |             |                                        |       |                   |                                                                     |                          |                                         |          |
|                     |           |             |                  | 1                    |                              |             | Surgeongo 5-15"  SAMO TO 3"            |       |                   |                                                                     |                          |                                         |          |
|                     |           |             | 1                |                      |                              |             | BENT TO 1-                             |       |                   |                                                                     |                          |                                         |          |
|                     |           |             |                  |                      |                              |             |                                        |       |                   |                                                                     |                          |                                         |          |
|                     |           |             |                  | 1                    | . 1875                       |             |                                        |       |                   | 7                                                                   | П                        | T                                       |          |
|                     |           |             |                  | 1                    | ·                            |             |                                        |       |                   |                                                                     | П                        |                                         |          |
|                     |           |             | 1                | 1                    |                              |             |                                        |       |                   |                                                                     | П                        |                                         |          |
|                     |           |             |                  | 1 .                  |                              |             |                                        |       |                   |                                                                     | П                        | T                                       |          |
| 1                   |           |             | 1                |                      |                              |             |                                        | T     |                   | 1                                                                   |                          | T                                       |          |
| * Whe               | n rock c  | coring, ent | er rock brol     | keness.              | J                            | .1          | L                                      |       |                   |                                                                     |                          |                                         |          |
| *                   |           |             | ng in 6 foot     | intervals @ b        | orehole. Increas             | se readi    | ng frequency if elevated reponse read. |       | Dril<br>Backgroun | ling A                                                              |                          |                                         | $\neg$   |
| neir                | arks:     |             |                  |                      |                              |             |                                        |       |                   | <del>م (۱۲۲</del>                                                   |                          | <u></u>                                 | <u>ا</u> |
| Con                 | verte     | d to We     | ell:             | Yes                  | _×                           |             | No Well I.                             | D. #: | Bruton            |                                                                     |                          |                                         |          |

# Tetra Tech NUS, Inc.


#### **BEDROCK**

WELL No.:

13mw TOI

**MONITORING WELL SHEET** 

PERMIT No:



| Tetra Tech NUS, Inc. |
|----------------------|
|----------------------|

Converted to Well:

Yes

| PROJECT NAME: PROJECT NUMBER: DRILLING COMPAN' DRILLING RIG:  Sample No. (Ft.) 6" or Record RQD Type or Run No. (%)  1515 5 |                                    | TO 0279                                             |           | ROBING NUME                                |           |                                               |         |                          |   |
|-----------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------|-----------|--------------------------------------------|-----------|-----------------------------------------------|---------|--------------------------|---|
| No. and or RQD San Type or Run No. (%)  IS 15 5                                                                             |                                    |                                                     | 3         | DATE: GEOLOGIST: DRILLER:                  | BEH:      | 13mw7U3<br>3/30/03<br>BOB BALKOVEC<br>DAVE S. |         |                          |   |
| 15 IS S                                                                                                                     | very / Change<br>aple (Depth /Ft.) | Soil Density/<br>Consistency<br>or<br>Rock Hardness | Color     | ERIAL DESCRIPTION  Material Classification | ∪ % C % + | Remarks                                       | PIO/FIC | Sampler BZ<br>Borehole** |   |
|                                                                                                                             |                                    | •                                                   | YEAR OR   | SEE BAUTUL FOR LITHWOODY  STUTY MATERIAL   |           | 5" 0-15"                                      |         |                          |   |
| 1520 10                                                                                                                     |                                    | /                                                   | <b>→</b>  | SAMOY MATERIAL                             |           |                                               |         |                          | 1 |
| 1530 (0)                                                                                                                    |                                    |                                                     |           |                                            |           |                                               |         |                          |   |
|                                                                                                                             |                                    |                                                     | 1         | SANDY MANERALL                             |           | HARDER & LO                                   |         |                          | + |
| rs 15                                                                                                                       | 7.0.                               |                                                     | J.        | STAX MATERIAL  WELL SET & 15' 3"PVC        |           |                                               |         |                          | ‡ |
|                                                                                                                             | 15"                                |                                                     |           | SURLEWED 5-15' SAND TO 3' BENT TO 1'       |           |                                               |         |                          |   |
| *When rock coring, enter rock "Include monitor reading in 6                                                                 |                                    | orehole, Increas                                    | se readin | ng frequency if elevated reponse read.     |           | Dril<br>Backgrour                             | ling A  |                          |   |

No

Well I.D. #:

Brows



#### **BEDROCK**

**WELL No.:** 

Boom

**MONITORING WELL SHEET** 

PERMIT No:

PROJECT: **NSWC CRANE** DRILLING Co.: **BOWSER MORNER BORING No.:** Bowwio3 PROJECT No.: 9060 CTO 0279 DRILLER: DAVE S. DATE COMPLETED: SITE: **SWMU 13** ROTOSONIC **DRILLING METHOD: NORTHING: GEOLOGIST: B. BALKOVEC DEV. METHOD:** WHALE PLAMP **EASTING:** 3024891.661 Elevation of Top of Casing: 771.60 2.76 Stick Up of Casing Above Ground Surface: Elevation of Top of Riser: I.D. of Surface Casing: 4 SOURCE Ground Elevation = 718.34 Type of Surface Casing: Datum MSL: 4'x4'x6" PAD Type of Surface Seal: I.D. of Permanent Casing: I.D. of Riser: Type of Riser: PVC Borehole Diameter: Type of Backfill: GROWT Elevation / Depth Top of Seal: 717.34 / T.O.R. Elevation / Depth Top of Bedrock: BENT. CHIPS Type of Seal: Elevation / Depth of Top of Filter Pack: Elevation / Depth of Top of Screen: Type of Screen: Slot Size x Length: I.D. of Screen: Type of Filter Pack: No. 20-40 SAND Diameter of Hole in Bedrock: Core (Ream: Elevation / Depth of Bottom of Screen: Elevation / Total Depth of Borehole: Not to Scale

|    |   | •   |
|----|---|-----|
| •  | 4 |     |
| 1  |   |     |
| ı. |   | · J |

Tetra Tech NUS, Inc.

### **BORING LOG**

Page / of 3

PROJECT NAME: PROJECT NUMBER: DRILLING COMPANY:
DRILLING RIG:

Crane NSWC

BOWEER MORNER

BORING No.: 13 MWT28

DATE: GEOLOGIST:

FRED W MAMSEN

| DRILL                               | LING       | RIG:                | فرا دراه جارو                            | Koro -                                                        | Sovic                                                |         | DRILLER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <u></u> - | 10H KEIF                     | R        | *         |                | _    |
|-------------------------------------|------------|---------------------|------------------------------------------|---------------------------------------------------------------|------------------------------------------------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|------------------------------|----------|-----------|----------------|------|
|                                     | 1          |                     | 43.                                      |                                                               | M                                                    | ATE     | RIAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |           | 4,4                          | PIDA     | FID Re    | ading          | 9 (4 |
| Sample<br>No. and<br>Type or<br>RQD | (FL)       | 6" or<br>RQD<br>(%) | Sample<br>Recovery /<br>Sample<br>Langth | Change<br>Change<br>(Depth/Ft.)<br>or<br>Screened<br>Interval | Spill Density!<br>Consistency<br>or<br>Rock Hardness | Color   | Material Classification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | U S C S · | Remarks                      | Sentple  | SamplerBZ | Borehote**     |      |
| •                                   | 16         |                     |                                          | XXXXX                                                         |                                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sign      | DRILLENTO                    |          |           |                | 1    |
| •                                   | 17         |                     | ser vigo                                 | MANAX                                                         | 1                                                    |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           | 0-175w0spc                   | 1        |           |                | 1    |
| Ψ                                   | 18         |                     | 3.00                                     | TOPOF                                                         |                                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | t         | WET BRASK                    | 1        |           |                | 1    |
|                                     | 19         |                     |                                          | BORK                                                          | SOFT                                                 | DK.     | YEL BAN MUDSTONA<br>W COCK FRAG.<br>MOTTLED GREY                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ver       | + E 3 200 0+                 |          |           | 1-<br>1-<br>1- | 1    |
|                                     | 20         |                     |                                          | A                                                             | , विक्तिक्षा है।<br>इ.स.च्या                         | 1 2 2   | MOTILEO CUEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |           | MUTTLED LRRY<br>W-20 WEATHER |          |           |                | 1    |
|                                     |            |                     |                                          |                                                               | SOFT                                                 | BLE     | COAL, BRITTLE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1 Bal     | BORK COAL 7/8                | 10       | 8         | 3. ·           | 1    |
| s-'N'                               |            | 090                 | een en skriving.<br>Vojangij gel         | 10 - 10 - 10 - 10 - 10 - 10 - 10 - 10 -                       | MED                                                  | WE      | CREY SANDSTONE,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | BK        |                              | Ť        |           |                | 1    |
| i                                   |            |                     |                                          |                                                               |                                                      | 725     | and the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of the same of th | 1         |                              | 1        |           |                | 1    |
| 1                                   |            |                     | est, a grand land                        |                                                               | MED                                                  | ME      | o gret sampsione                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | YBA       |                              | , .      |           |                |      |
| 1_                                  | 25         |                     |                                          |                                                               | SOPT -                                               |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                              |          |           |                |      |
|                                     |            |                     |                                          |                                                               |                                                      |         | V.THIN BEODED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |           |                              |          |           |                | I    |
| <u>_</u>                            |            | I                   | 700                                      |                                                               |                                                      | *       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | å,        |                              | 8        |           |                |      |
|                                     |            |                     |                                          |                                                               | MED                                                  |         | W.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |           | *                            | 4        |           |                |      |
| े                                   | ~          |                     |                                          |                                                               | HARD                                                 | MED     | TO LIGHT GREY. SANDSTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BR        |                              |          |           |                | l    |
| $\perp$                             | <u>30</u>  | H.                  |                                          |                                                               |                                                      |         | IRRECULAR LENG.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                              |          |           | ·              | l    |
|                                     |            |                     |                                          |                                                               |                                                      |         | FOLL VULSE!                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |           |                              |          |           |                | l    |
| 2                                   |            | 500                 |                                          |                                                               |                                                      |         | HOR. FRAC.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |           |                              | 9        |           |                | L    |
| - '>                                |            | 14                  |                                          | 6, 3                                                          |                                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                              | ;;       |           |                | k    |
|                                     |            | 4                   |                                          | 11                                                            |                                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\coprod$ |                              |          |           |                | Ŀ    |
| 17.5                                | <u> 3S</u> | 4                   |                                          |                                                               |                                                      |         | *.47                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |           |                              |          | 4         |                | L    |
|                                     |            |                     | 75                                       |                                                               |                                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\coprod$ |                              | (2)      | $\perp$   | _              |      |
|                                     |            | 4                   | 10                                       | · A · A · :<br>! \( \) . \( \)                                |                                                      | $\perp$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4         |                              |          | _         | _              | L    |
|                                     |            |                     |                                          |                                                               |                                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _         | ene.<br>Historia             |          | _         | 4              |      |
|                                     |            |                     |                                          | - 1                                                           |                                                      |         | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1         |                              | $\sqcup$ | 1         | _              | _    |
| 火点                                  | 40         |                     |                                          |                                                               |                                                      |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |           |                              |          |           |                |      |

| 11110111001100  | ing, one rook broken       | · · · · · · · · · · · · · · · · · · · | •                          | 4.7.3                     | *** V      |                |
|-----------------|----------------------------|---------------------------------------|----------------------------|---------------------------|------------|----------------|
| ** Include moni | tor reading in 6 foot inte | ervals @ borehole.                    | Increase reading frequency | if elevated reponse read. | D          | rilling Area   |
| Remarks:        | CASING                     | TO 38.                                | 5, 68 Myson                | en 4 li ob                | Backgro    | und (ppm): 👽 🔊 |
| )               |                            |                                       |                            |                           |            |                |
|                 |                            |                                       |                            | 2                         |            |                |
| Converted       | to Well:                   | Yes                                   | No.                        | Well D                    | # 12M4/T28 |                |

Converted to Well:

Yes

|                               |                        | Tetr        | ra Tech N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | IUS, Inc.                                                       | E                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | BOR                                     | RING LOG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  |                                         |                                              |                | _                                     | of _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                      |
|-------------------------------|------------------------|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|-----------------------------------------|----------------------------------------------|----------------|---------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|
| PRC                           | JECT                   | NAME:       | ER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Crane N                                                         | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | BORING N<br>DATE:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | 13 ma                                   | 3                                            | 8              |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,                                      |
|                               |                        | COMP        | ANY:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BOWSE                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | GEOLOGI<br>DRILLER:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ST:              | Sicen                                   | <u>re</u>                                    |                |                                       | 84 <sub>2</sub> , (y                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | _                                      |
| DHII                          | LING                   | HIG:        | <u> </u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | VER                                                             | M-SONI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | RIAL DESCRIPTION                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ·                | 21.6011                                 | <u>=                                    </u> |                |                                       | 21 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                      |
| Samp<br>No. ar<br>Type<br>RQE | nd (FL)                | Blows /     | Sample<br>Recovery/<br>Sample<br>Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Lithology<br>Change<br>(DeptivFL)<br>or<br>Screened<br>Interval | Soff Tensity<br>Consistency<br>or<br>Apoly Herdnes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Color                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | U<br>S<br>C<br>S | Remai                                   | ks                                           | Seatible       | Zguejdus                              | Borehole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ************************************** |
|                               | 38                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | DACK                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 2571.00                                 |                                              | 9.             |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7/ 5                                   |
| Y                             | *                      |             | . 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                 | HATED WE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 160°Y                                   | 2.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                  | GEEY W/BV                               | te lans                                      | 0.0            | 1                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ø.                                     |
|                               |                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | BLACK LAND OF SILT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |                                         |                                              |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                        |
| $\top$                        | 1                      |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3                                                               | a parameter and the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4                | 3                                       |                                              |                | 2.0                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                                      |
|                               |                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 4/1/                                                          | VERY<br>HARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CAM                                     | SANDSTONE - SOFFW LENGS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                  | 4                                       |                                              |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                                      |
|                               | 15                     |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | MAH                                                             | The second of the second of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                         |                                              |                | 4                                     | e de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de l |                                        |
|                               |                        |             | partition in the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 16.37                                                           | Augustinian de des                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s |                  |                                         | ,                                            | 592.5          | 54 acr                                | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Contraction of                         |
|                               |                        |             | . 40. 40.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                 | HARO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BUCK                                    | SILTY SANDSTUNE<br>GREY 5.5. TO BLACK LAMS OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                  |                                         |                                              |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | -3                                     |
|                               |                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 | al Laboration                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and the second                          | incleasing silt                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                         | Order 1                                      | Andrew Control | 74.72                                 | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                      |
| di                            |                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 | es in the landscape of the landscape                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | of water in                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | N .                                     |                                              | 3 P            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.77                                   |
|                               | 48                     | 100         | 9/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 | and the Tentine Commission of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 20 May 1                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                         | emination in the                             | 90             |                                       | * (V)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 9                                      |
| Y                             |                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | : 4                                                             | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |                                         | A STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STATE OF THE STA |                  | Sec April Charles                       | rai:                                         | de che vers    |                                       | - Haddige                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 344                                    |
|                               |                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 | ar and a firm, new a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 111111111111111111111111111111111111111 | N. C. C. C. C. C. C. C. C. C. C. C. C. C.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                  |                                         |                                              |                | ***                                   | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                      |
|                               |                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ``                                                              | en is a company of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | the way one recipies?                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |                                              |                | *                                     | , mar. 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1                                      |
| 7                             | 1 1.                   |             | and the second section of the second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                               | A Marian report of Mary 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | A 44 A 44 A                             |                                              |                | ماند.<br>ا                            | 5. A.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                        |
|                               |                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 100                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .~               |                                         |                                              | ارد<br>الارداد | 1                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1,20,80                                |
|                               |                        |             | PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMINE TO THE PROMIN | months of a series                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - Artistans                             | The second and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second seco |                  | and the second second                   | -                                            |                | All and a second                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7                                      |
|                               | , ,                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.                                                              | gris cont. sin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                         |                                              | a seem of      | * * * * * * * * * * * * * * * * * * * | . [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Same of                                |
|                               |                        |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1.                                                              | T. Charles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - 1-             | 17                                      |                                              | 1              |                                       | -5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                      |
| 02                            | -                      |             | ANTER TRANSPORTER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                         | ₹                                            | 4              |                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ,                                      |
| *                             | 58                     | 5%          | 10/10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | A UT                                                            | 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | y                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                         |                                              | 110            |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                      |
| Y                             |                        |             | i i ku i ji ka sa sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                 | MED SOFT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BLAK                                    | BLACK SHALE<br>THINLY LAMINATED                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | FISSILE "<br>Third Lams                 | ** ** ***<br>1                               | 3              | · · · · · · · · · · · · · · · · · · · |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Sun's                                  |
|                               |                        |             | al Kale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ====                                                            | - Alleg Minari                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 7.0                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                         |                                              |                |                                       | *                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | - Per                                  |
|                               | 2.4                    |             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | N. Jakir                                                        | HARD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | GRPY                                    | SILTY SANDSTONE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  |                                         |                                              |                | 1                                     | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                        |
| T                             |                        |             | n with a marketik                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | \$MILT                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2187-3                                  | Property of the Control of Special Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the Control of the C |                  | 1                                       | 7                                            |                | *****<br>******                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 977<br>2                               |
| 1                             | The second             |             | an than sales s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                 | Met)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BACK                                    | SHALE<br>OCCHEMSING SHIT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | PISSILE<br>THIN LIMS                    | in the second                                |                | -                                     | i<br>i                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                        |
| * Inclu                       | rock cori<br>de monito | r reading i |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | rais @ borehole                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | uency if elevated reponse read.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1                |                                         | Drilling<br>pround (                         |                |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2                                      |

No

Well I.D. #: 13 MWT

| lt | Tetra |
|----|-------|

Converted to Well: Yes

Tetra Tech NUS, Inc.

#### **BORING LOG**

Page **3** of **3** 

13 MW Crane NSWC **BORING No.:** PROJECT NAME: 9060 DATE: PROJECT NUMBER: **GEOLOGIST:** DRILLING COMPANY: BOWSER MORNER KEIFER DRILLER: ON **DRILLING RIG:** VERSA-SONIC MATERIAL DESCRIPTION PID/FID Reading (ppr Lithology Sample Depth Sample Ü (FL) Recovery / Change No. and 6" or S RQD (DeptivFt.) Sample Type or or C (%) Remarks Run 10 Color S pr Rock Hardr No. Interval: 63 K+3 BLACK, BRUILLE SILTY SANDSTONE FISSILE - THIN LAWS BR SM DECREASING SILT Bo YERY GREY GREY SANDSTONE MEDSUA BAC THIN LAMINATIONS 65 SANDSTONE (VARUED) HARD MED SOPT BUKK SHALE THAN LHIMS FISSILE- THIN screen se @ 98'->78' SANOSIONE VARIED) BLAN HARD When rock coring, enter rock brokeness. Drilling Area \*Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. --Background (ppm): 0.8 Remarks: 1130 hole is blown out + Has level = 86

No

"Well I.D. #: 13 MWT 28

WELL NO .: 13 MWT 28



### MONITORING WELL SHEET WELL INSTALLED IN BEDROCK

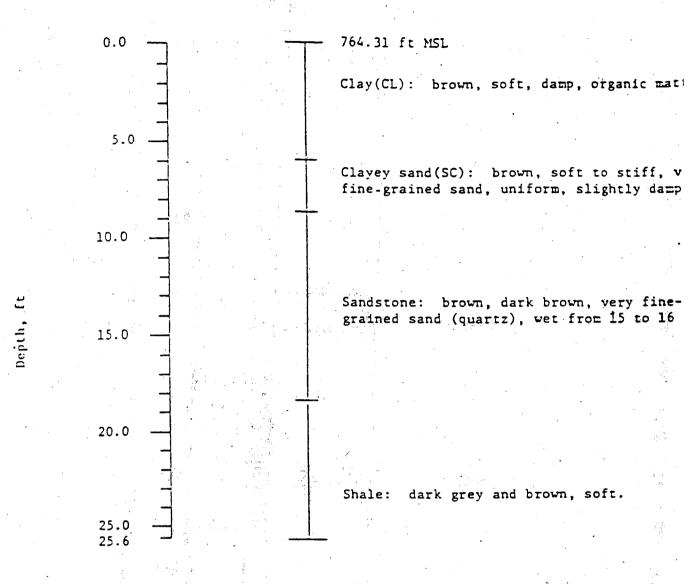
| Tetra Tech NUS, Inc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | i je na prijeka.<br><u>Dana prijeka prijeka prijeka prijeka prijeka prijeka prijeka prijeka prijeka prijeka prijeka prijeka prijeka p</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROJECT NSWC CR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ANE LOCAT                               | TON SWMU-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | DRILLER JON KENFER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| PROJECT NO. 7060<br>DATE BEGUN 1/1/19/6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | BORIN                                   | 1G 13 mw 28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| DATE BEGUN 11 19/0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3 DATE                                  | COMPLETED 11/19/03                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DRILLING POTO-SONIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| FIELD GEOLOGIST Sco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | M GRIER                                 | 1 (1) (1) (2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DEVELOPMENT BALLERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| GROUND ELEVATION 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.5 T DATUR                             | A <u>NAVD 88</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | METHOD SINCE PUMP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | defer broken how                        | ELEVATION /HEIGHT OF TOP O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | F SURFACE CASING: 105.53/ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| And Millian Company of the company of the same                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | no mari e o servicio vova i servicio a  | ر<br>در میران میراند. از آمیر مارسی معطور و ترکیب شاهد و در براید کشت و در در در در در در است.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ISER: 705.55/2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         | ELEVATION/HEIGHT TOP OF RI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ISER: 100.55/2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | TYPE OF SURFACE SEAL: CO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | UCRETE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | .D. of surface casing: 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | vy error                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | I.D. OF SURFACE CASING:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | * 1 STOOLS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | Common Support Common Anna Common March                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <b>//</b>                               | DIAMETER OF HOLE: 11 66                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | Isolation casing 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DIA. DEPTH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | RISER PIPE L.D.: 2"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | TYPE OF RISER PIPE: 284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | The second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second secon |
| to the profile of the control of the Section of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | PENSON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Carrier of the state of the state of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | TYPE OF BACKFILL: BENTON                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | LEVATION/DEPTH TOP OF SEA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | u. 700.54/3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| T.O.R.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | - <del></del>                           | LEVATION/DEPTH TOP OF BEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | DROCK: G85.04/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | TYPE OF SEAL! BENTONITE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | CHIPS GET CETOO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | 3.3.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | and the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second s | 75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - E                                     | LEVATION/DEPTH TOP OF SAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 10: 62 <u>8.54, 62</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | Company of the Company                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| a vita la la la companya di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di managan di manag |                                         | LEVATION/DEPTH TOP OF SCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C2554,78                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | YPE OF SCREEN: PVC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | LOT SIZE x LENGTH: 26)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | .D., SCREEN: $2'' - 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Slot                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | - III                                   | YPE OF SAND PACK: QTT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | e med shud                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Octob south descent of the control of the control                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                         | HAMETER OF HOLE IN BEDROC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Ken da la la la la la la la la la la la la la                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Service desirable of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | C                                       | CORE/REAM: $4"/5"$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <u> view (aparella de la de</u> n viene per mêmer)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | LEVATION/DEPTH BOTTOM SCR                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | KEEN: ~ 615.54 / 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Exercise 111                            | THE TOTAL STATE OF THE PROPERTY OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 和刑                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | E Limited                               | LEVATION/DEPTH BOTTOM OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | SAND: 615.54 / 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         | LEVATION/DEPTH BOTTOM OF LEVATION/DEPTH BOTTOM OF                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

1 ...

| Tt. | etra Tech NUS, Inc. |
|-----|---------------------|
|-----|---------------------|

| Page | of I |
|------|------|
|------|------|

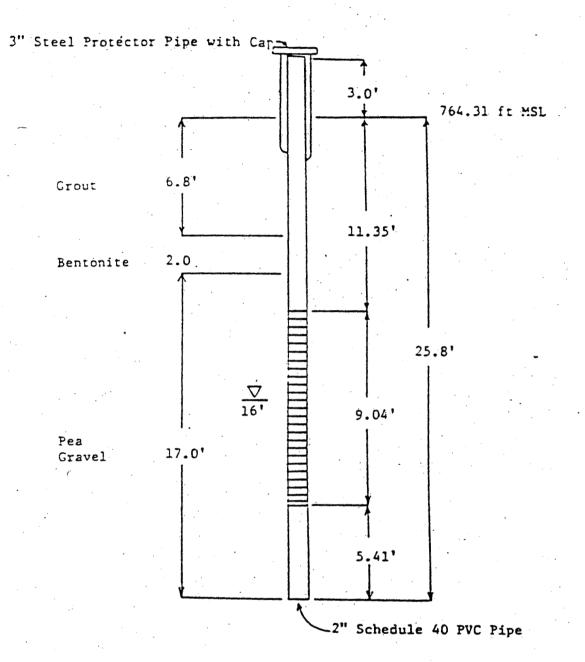
| $\subseteq$                                                            |                      |                         |                                |                                    | BOHING LO       | <u>u</u>                                       |         | 0                   |  |
|------------------------------------------------------------------------|----------------------|-------------------------|--------------------------------|------------------------------------|-----------------|------------------------------------------------|---------|---------------------|--|
| PROJECT NAME:<br>PROJECT NUMBER:<br>DRILLING COMPANY:<br>DRILLING RIG: |                      |                         | R:                             |                                    | DIAD MORNER     | BORING No.:<br>DATE:<br>GEOLOGIST:<br>DRILLER: | 11-8-03 |                     |  |
| Sample<br>No. and<br>Type or                                           | Depth<br>(Ft.)<br>or | Blows /<br>6" or<br>RQD | Sample<br>Recovery /<br>Sample | Lithology<br>Change<br>(DepttVFt.) | MATERIAL DESCRI | PTION US                                       | Domonto | PID/FID Reading (pp |  |


|                                     |                                    |                                |                                          |                                                   | M                                                   | ATEF        | IIAL DESCRIPTION        |                  |                     | PID/FI | D Rea      | ading      | (ppm)        |
|-------------------------------------|------------------------------------|--------------------------------|------------------------------------------|---------------------------------------------------|-----------------------------------------------------|-------------|-------------------------|------------------|---------------------|--------|------------|------------|--------------|
| Sample<br>No. and<br>Type or<br>RQD | Depth<br>(Ft.)<br>or<br>Run<br>No. | Blows /<br>6" or<br>RQD<br>(%) | Sample<br>Recovery /<br>Sample<br>Length | Lithology Change (BeptivFt.) or Screened Interval | Soll Density/<br>Consistency<br>or<br>Bock Hardness | Color       | Material Classification | U<br>S<br>C<br>S | Remarks             | Sample | Sampler BZ | Borehole** | Driller BZ** |
| SI                                  |                                    | 4/10                           | 1.2/                                     |                                                   | MDENSE                                              | GR          | SAND + GRAVEL           | SP               | FILL DAMP           | 0      | 0          | 0          |              |
| 31                                  |                                    | 4/                             |                                          |                                                   | MUDENSE                                             |             | SHIOD FORMULE           | JP.              | FILL TO             | ۲      | ۲          | ۲          | 2            |
|                                     | 2                                  | 37                             | 2.0                                      |                                                   |                                                     | DK.         |                         | 1 1 2 1          | FILL, PAMP.         | -      | -          | ├—         | $\vdash$     |
| SZ                                  |                                    | 24                             | 1,6/                                     | artis i                                           | LOOSE                                               | ORN         | CLAYEY SILT             | 51               | IN SPOON, GREY      | 0      | 0          | 0          | 9            |
|                                     | 4                                  | 35                             | 2.0                                      |                                                   |                                                     | <u>.</u> 2: |                         |                  | MOTTLING            | _      |            | L          |              |
| 53                                  |                                    | 32                             | .41                                      |                                                   | V LOOSE                                             | DK.<br>BRI. | SILTY CLAY              | sm               | GREYMOTTING,        | 0      | 0          | 0          | 0            |
|                                     | 6                                  | 3/2                            | 2.0                                      |                                                   | - 10 10 <sup>(*)</sup>                              |             |                         |                  |                     |        |            |            |              |
| 54                                  |                                    | 2/5                            | .9/                                      |                                                   | LOOSE                                               | BR          | SILT,                   |                  | RED-ER SS FRAG      | 0      | 0          | 0          | 0            |
| -                                   | 8                                  | 1827                           | 2.0                                      | 8.0                                               | 100 mg 100 mg                                       | U.N.        |                         |                  |                     |        |            | ۲          | Ħ            |
| -                                   | 0                                  | 115                            | 0/                                       | 11 y 5 X                                          | V DENSE                                             | C P         | C                       |                  | DAMP. LOOKSMATE     | 0      | 0          | _          |              |
| 55                                  |                                    | 50/5                           | 1 (1)                                    | 9.0                                               | A DEWSE                                             | <u> </u>    | SICT                    |                  |                     | 9      |            | 0          | 0            |
| 1                                   | 10                                 |                                | 1.9                                      |                                                   |                                                     | RD          |                         |                  | FE STAINED          | _      |            | ╀╌         |              |
| عكر                                 |                                    | 5%51                           | .3/                                      |                                                   | Y Const                                             | BEN         | SANOSTONE               |                  |                     | .6     | 0          | 6          | 0            |
|                                     | 12                                 | /                              | 04                                       |                                                   |                                                     | P.U         |                         | · .              |                     |        |            | <u> </u>   | Ш            |
| 57                                  |                                    | 50/1                           | .1/                                      |                                                   |                                                     | Ben         | SAUDSTONE               |                  |                     | 6      | 6          | 6          | .0           |
|                                     | 14                                 |                                | 11                                       | J. 1                                              |                                                     |             |                         |                  |                     |        |            |            |              |
| 58                                  |                                    | 50/20                          | . 1/.                                    |                                                   | 3. V . V                                            | GR<br>BR    | SANPSTONE               |                  |                     | 1.3    | 1,3        | 1.3        | 1.3          |
|                                     | No                                 |                                | . 2                                      |                                                   |                                                     |             |                         |                  |                     |        |            |            | П            |
| 0                                   | ,,,                                | 11/5                           |                                          |                                                   | ,                                                   | GR          |                         |                  | NEMMERED, SAT       | 7 A    | 12         | 12         | / 2          |
| <u>59</u>                           | 20                                 | 50/30                          | 1.3                                      |                                                   |                                                     |             | SANDSTONE               |                  | BLACK STREAKS       | טיכ    | 1.2        | 1.3        | -4           |
|                                     | 18                                 |                                |                                          |                                                   | 17.37                                               | RD          |                         |                  | INSPL               |        | -          |            | $\vdash$     |
| 510                                 | - : .                              | 50/5                           |                                          |                                                   |                                                     |             | SANDSTONE               |                  | SHALY, FESTAINING   | .92    | .9         | .9         | .7           |
|                                     | 20                                 | 1701                           | .5                                       |                                                   |                                                     |             |                         |                  |                     |        | Ш          |            |              |
| 511                                 |                                    | 50/3                           | ,2/                                      |                                                   |                                                     | GR.         | SHALE                   |                  | DAMP                | 0      | 0          | 0          | 2            |
|                                     | 22                                 |                                | -3                                       |                                                   |                                                     |             | west side               |                  |                     |        |            |            |              |
| 312                                 |                                    | 50/3                           | .3/                                      |                                                   |                                                     | GR          | SHALE                   |                  | UF LANS IN<br>WHITE | 0      | 0          | 0          | 6            |
|                                     | 24                                 |                                | . 3                                      |                                                   |                                                     |             | TD 24'                  |                  |                     |        |            |            |              |
|                                     |                                    |                                |                                          | nan                                               | <u> </u>                                            |             | 1 194.0                 |                  |                     |        |            | П          |              |
|                                     |                                    |                                |                                          |                                                   |                                                     |             |                         | بسينا            | \                   |        |            |            |              |

| <ul> <li>When rock cori</li> <li>Include monito</li> </ul> | -       |          | ole. Increase | reading frequency if elevated re | eponse read. | Drilling Area       |
|------------------------------------------------------------|---------|----------|---------------|----------------------------------|--------------|---------------------|
| Remarks:                                                   |         |          |               |                                  |              | Background (ppm): - |
|                                                            | Pio     | DRIFT IN | MEAS.         |                                  |              |                     |
| Converted t                                                | o Well: | Yes      |               | No                               | Well I.D. #: | 16MNT17             |



### **BEDROCK** MONITORING WELL SHEET WELL INSTALLED IN BEDROCK


| ietra iech NUS, Inc.    |                                         |                                           |
|-------------------------|-----------------------------------------|-------------------------------------------|
| PROJECT CRANE           | LOCATION CRAVE IN                       | DRILLER BOWSER-                           |
|                         | BORING 16 MWT17                         | DOILLING MORNER                           |
|                         | DATE COMPLETED 11-8-03                  | METHOD HSA                                |
| FIELD GEOLOGIST M.G.COC | HRAN                                    | DEVELOPMENT BALLER!                       |
| GROUND ELEVATION 764.79 | DATUM NAVD 88                           | METHOD SURGE                              |
| <b>A</b>                | ELEVATION/HEIGHT OF TOP OF              | SURFACE CASING:766,54 1. 7                |
|                         | ELEVATION/HEIGHT TOP OF RIS             | ER: 76653/47                              |
|                         | TYPE OF SURFACE SEAL: CO                | UCRETE.                                   |
|                         |                                         |                                           |
|                         | I.D. OF SURFACE CASING: 4"              | X Y' SQ. STEEL                            |
| -                       | DIAMETER OF HOLE: 8 /2                  |                                           |
|                         | RISER PIPE I.D.: 2 "                    |                                           |
|                         | TYPE OF RISER PIPE: PVC                 | SCHEOULE                                  |
|                         | TYPE OF BACKFILL: CETO                  | O DURE                                    |
|                         | GOLD MEDIUM                             |                                           |
|                         | ELEVATION/DEPTH TOP OF SEAL             | . 761.79 <sub>1</sub> 3                   |
| TOR                     | ELEVATION/DEPTH TOP OF BEDF             | the second of the second of               |
|                         | TYPE OF SEAL: CETCO                     |                                           |
|                         |                                         |                                           |
|                         | ELEVATION/DEPTH TOP OF SAND             | ): 7 <u>52.79/12</u>                      |
|                         | ELEVATION/DEPTH TOP OF SCRE             |                                           |
|                         | SLOT SIZE x LENGTH: 020 I.D. SCREEN: 2" |                                           |
|                         | TYPE OF SAND PACK: _ C LO               | BAL MEDIUM                                |
|                         | SAA                                     | 10 1. · · · · · · · · · · · · · · · · · · |
|                         | DIAMETER OF HOLE IN BEDROCK             |                                           |
|                         | CORE/REAM:                              |                                           |
|                         | ELEVATION/DEPTH BOTTOM SCRE             |                                           |
|                         | ELEVATION/DEPTH BOTTOM OF S             |                                           |
|                         | ELEVATION/DEPTH BOTTOM OF I             | •                                         |
|                         | BACKFILL MATERIAL BELOW SAN             | V:                                        |



issorial personal substi-

Service Control

NWSC, Crane, Indiana
Building 146-Ordnance Demil Facilit
Lithology
Boring Number: WES-14-2-83



 $\overline{\Sigma}$  Water Depth at Time of Drilling

Well Screen

NWSC, Crane, Indiana
Building 146-Ordnance
Demil Facility
Well Completion
Boring Number: WES-14-2-

Bent. 9-11

#### **BORING LOG**

Page \_\_\_ of \_\_\_

PROJECT NAME: NSA Crane - SWMU 18
PROJECT NUMBER: 112G01851
DRILLING COMPANY: Micah Group
DRILLING RIG: / W655

DRILLER: Ben Borth / IN # 2359 WD

|                                         | DRIELEN. Bell BOTTIT/ IN # 2539 WD |                                |                                             |                                                                  |         |             |                    |                  |                    |            |           |            |        |
|-----------------------------------------|------------------------------------|--------------------------------|---------------------------------------------|------------------------------------------------------------------|---------|-------------|--------------------|------------------|--------------------|------------|-----------|------------|--------|
|                                         |                                    |                                |                                             |                                                                  | N       | IATE        | RIAL DESCRIPTION   |                  | PID/FID Reading (p |            |           |            |        |
| Sampl<br>e No.<br>and<br>Type<br>or RQD | Depth<br>(Ft.)<br>or<br>Run<br>No. | Blows /<br>6" or<br>RQD<br>(%) | Sample<br>Recovery<br>/<br>Sample<br>Length | Lithology<br>Change<br>(Depth/Ft.)<br>or<br>Screened<br>Interval |         |             |                    | U<br>S<br>C<br>S | Remarks            | Sample     |           | Borehole** |        |
| 5-1                                     | Ų                                  | 2/2                            | 1.4/                                        |                                                                  |         | OV          |                    | <b>a</b> /       |                    |            |           | _          | -      |
| 2 !                                     |                                    | / /                            |                                             |                                                                  | M STIFF | BRN         | TOPSOIL            | 0.4              | 15 <i>1</i> 5      | 0.1        |           | 0          | 0      |
|                                         |                                    | 3/2                            | 120                                         |                                                                  |         | Ben         | Clay + + F Canoci  | Jec              |                    |            |           |            |        |
| 5-2                                     |                                    | <sup>1</sup> 2                 | / لا،                                       |                                                                  | M. SKH  | E'EN        | Clay + + F Cauce   |                  | 1520               |            |           |            |        |
|                                         |                                    | 3/5                            | 120                                         |                                                                  |         |             |                    |                  |                    |            |           |            |        |
| 5-3                                     | ی                                  | 3/4                            | 2.0/                                        |                                                                  | SKIFF   | BRN         | Silt some Clay     | mtt              | 1530               | <u>.</u> [ |           | 0          | 0      |
|                                         |                                    | 7/10                           | 120                                         |                                                                  |         |             |                    |                  | new bottom         |            |           |            |        |
| 3-4                                     |                                    | 20                             | 14/                                         |                                                                  | U 545AF | RRN         | Same as above      |                  | 20,700             | <u> </u>   |           |            |        |
|                                         |                                    | 13/                            | 2.0                                         | i                                                                |         | 11          | 70000              |                  |                    | _          |           |            |        |
| 5-5                                     |                                    | 214                            | 1.8/                                        |                                                                  | 1 - 150 | Berl        |                    | -                |                    | 0          | $\dashv$  | 0          | 0      |
| 1,75                                    |                                    | 30,1                           | _/_                                         |                                                                  | VSAFF   |             |                    |                  |                    |            |           |            |        |
|                                         | 10                                 | /51/c                          | 4/19                                        |                                                                  |         | BRN<br>arty | Wenth Sundstane    |                  | Shaleinsive        | 0          |           | 0          | 0      |
|                                         |                                    |                                |                                             | 11:21                                                            |         | BRN         | Sandstone          |                  | Chatterat 10.5'    |            |           |            |        |
|                                         |                                    |                                |                                             | ~ ~                                                              |         | gmy         | Shale              |                  |                    |            |           |            |        |
|                                         |                                    |                                |                                             |                                                                  |         | BRN         | Shale<br>Sandstone |                  |                    |            |           |            |        |
|                                         |                                    |                                |                                             |                                                                  |         |             |                    |                  | Chatterat 13'      |            |           |            |        |
|                                         | 15                                 |                                |                                             |                                                                  |         |             |                    |                  |                    |            |           |            |        |
|                                         |                                    |                                | :                                           |                                                                  |         |             |                    |                  |                    |            |           |            |        |
|                                         |                                    |                                | -                                           |                                                                  |         |             |                    |                  |                    |            | _         |            |        |
|                                         |                                    |                                |                                             | [7]                                                              |         | i e V       | Cul                | $\vdash$         | <i>(( n - :</i>    |            | $\dashv$  |            | _      |
| ┢╌┼                                     |                                    |                                |                                             |                                                                  |         | 9-7         | Silty Sandstone    |                  | Charter at 17'     |            |           |            |        |
| <b></b>                                 |                                    | -                              |                                             |                                                                  |         |             |                    | ļ                |                    |            | _         |            |        |
|                                         | λo                                 | /                              |                                             | H                                                                |         |             |                    |                  |                    |            |           |            |        |
|                                         |                                    |                                |                                             |                                                                  |         |             |                    |                  | Strong Cont.       |            | _         |            |        |
|                                         |                                    |                                |                                             |                                                                  |         |             |                    |                  | Uniter at 20-21    |            |           |            |        |
|                                         |                                    |                                |                                             |                                                                  |         |             |                    |                  | very Ital d        |            | 7         |            |        |
|                                         |                                    |                                |                                             |                                                                  |         |             | Coal               |                  |                    |            |           |            | $\neg$ |
|                                         | 25                                 |                                |                                             |                                                                  |         |             |                    |                  |                    |            | $\exists$ |            | $\neg$ |
|                                         | _                                  |                                |                                             |                                                                  |         |             |                    |                  |                    | _          |           |            |        |

| 25                                            |               |            |                 |              |                    |                  |                  |        |         |      |           |   | 1       |
|-----------------------------------------------|---------------|------------|-----------------|--------------|--------------------|------------------|------------------|--------|---------|------|-----------|---|---------|
| * When rock coring, e  ** Include monitor rea | ding in 6 foo |            | borehole. Incre | ease reading | g frequency if ele | vated reponse re | ead.             |        | Drillin |      |           |   | _       |
| Remarks: 3                                    | SPI           | 9 [4       | 10              | [†)A         | 0 - 10             | , AR 10          | <u>- 2</u> 4<br> | - Bac  | kground | (ppn | n):[_<br> | 0 | <u></u> |
| Converted to V                                |               | Yes<br>13  | 73              | No _         |                    | Well I.D         | ). #:            | 18 A M | 100 Tu  |      |           |   | _       |
| Suree                                         | 11-           | <b>3</b> 3 |                 |              |                    |                  |                  |        |         |      |           |   |         |

WELL NO .: 184 MWT 00 1



## BEDROCK MONITORING WELL SHEET WELL INSTALLED IN BEDROCK

Tetra Tech NUS, Inc.

|                       | PROJECT NSA Crane - SWMU 18 PROJECT NO. 112G01851  DATE BEGUN 11-18-11  FIELD GEOLOGIST K. LOSKAMF GROUND ELEVATION 634.4-7 | DATE COMPLETED 12-5-11 METHOD 15A + AR                                                                                                    |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------|
| /99 INL               |                                                                                                                             | ELEVATION/HEIGHT OF TOP OF SURFACE CASING: 687.37                                                                                         |
| 07/20/99              |                                                                                                                             | ELEVATION/HEIGHT TOP OF RISER: 637.03/                                                                                                    |
| ACAD: FORM_MWINBR.dwg | 6.34 , 4.97                                                                                                                 | TYPE OF SURFACE SEAL: Concrete Pad (4x 4x 6")  W/ 4 bolloids  I.D. OF SURFACE CASING: 6"                                                  |
| ACAD: FOF             |                                                                                                                             | DIAMETER OF HOLE:                                                                                                                         |
|                       |                                                                                                                             | TYPE OF RISER PIPE: Sch 40 PUC                                                                                                            |
|                       |                                                                                                                             | TYPE OF BACKFILL: Cement Bentonik                                                                                                         |
|                       | T.O.R.                                                                                                                      | ELEVATION/DEPTH TOP OF SEAL:  ELEVATION/DEPTH TOP OF BEDROCK:  TYPE OF SEAL:  Scatonite                                                   |
|                       |                                                                                                                             | ELEVATION/DEPTH TOP OF SAND:                                                                                                              |
|                       |                                                                                                                             | TYPE OF SAND PACK: 10-20                                                                                                                  |
|                       |                                                                                                                             | DIAMETER OF HOLE IN BEDROCK: $5.5''$ CORE/REAM: $10' - 24'$                                                                               |
|                       |                                                                                                                             | ELEVATION/DEPTH BOTTOM SCREEN:  ELEVATION/DEPTH BOTTOM OF SAND:  ELEVATION/DEPTH BOTTOM OF HOLE:  BACKFILL MATERIAL BELOW SAND: Benton te |

| TE | TETRA | TECH |
|----|-------|------|
|----|-------|------|

PROJECT NAME: NSA Crane - SWMU 18

#### **BORING LOG**

Page \_\_\_ of \_\_\_

|                       |                      | ΓNAMI<br>ΓNUM           |                         | NSA C                      | rane - SV<br>01851                    | VMU         | 18              |               | BORING N          | lo.:        | 18DMWT0                         | 01         |           |            |      |
|-----------------------|----------------------|-------------------------|-------------------------|----------------------------|---------------------------------------|-------------|-----------------|---------------|-------------------|-------------|---------------------------------|------------|-----------|------------|------|
|                       |                      |                         | PANY:                   |                            | Group                                 | - · · · ·   |                 |               | GEOLOGI           | ST:         | Y. Evars                        |            |           |            |      |
| DRIL                  | LING                 | RIG:                    |                         | (ME                        | S ATU                                 |             |                 |               | DRILLER:          |             | Ben Borth / IN # 2              | 359        | W         | )          |      |
| Sampi<br>e No.<br>and | Depth<br>(Ft.)<br>or | Blows /<br>6" or<br>RQD | Sample<br>Recovery<br>/ | (Depth/Ft.)                | Soil Density/                         |             | RIAL DE         | SCRIP         | TION              | US          |                                 | PID/FI     |           |            |      |
| Type<br>or RQD        | Run<br>No.           | (%)                     | Sample<br>Length        | or<br>Screened<br>Interval | Consistency<br>or<br>Rock<br>Hardness | Color       |                 | terial Clas   |                   | C<br>S<br>* | Remarks                         | Sample     | Headspace | Borehole** | BZ** |
|                       |                      |                         |                         |                            |                                       |             | ref             | er to         | DOI<br>DOI        |             | 1640-1645                       | _          | -         | Ø          | 7    |
|                       |                      |                         |                         |                            |                                       |             | 187             | MW            | NOI               |             | HSA 0-5'                        |            |           |            |      |
|                       |                      |                         |                         |                            |                                       |             | for             | 1:41          | no large          |             |                                 |            |           |            |      |
|                       |                      |                         |                         |                            | <del></del>                           |             | 0               | -5            | , 6 6             |             |                                 | $\vdash$   |           |            |      |
|                       | 7                    | $\angle$                |                         |                            |                                       |             | -               |               | <del></del>       |             |                                 |            |           |            |      |
|                       |                      |                         | ٠,                      | 111=11                     |                                       | ton         |                 |               |                   |             | 1 Start 1650                    | <u> </u>   | -         | ø          | 4    |
| 0.0                   | 9                    | 21%                     | 0.7.8                   | D.                         |                                       | 85          | Fyr             | Sand          | stne              | Br          | O Start 1650<br>End 1700        |            |           |            |      |
|                       | $\Diamond$           | /                       |                         |                            |                                       |             |                 |               |                   |             | 1710 WL=7.7'                    |            | Ш         |            |      |
|                       |                      | $\angle$                |                         | >                          |                                       |             |                 |               |                   |             | E) Stev+ 1710                   |            | _         | Ø          | ø    |
|                       | 15                   |                         |                         | 1                          | <u>+</u>                              | tray        | ς <u>'</u> : Ξ  | w. Cla        | ***               |             | (No put)                        |            |           |            |      |
| 0.0                   | <b>©</b>             | 0%                      | 12/5.0                  | - 7                        |                                       |             |                 | D-04/1        | EJ                |             |                                 |            |           |            |      |
|                       |                      |                         |                         |                            |                                       | 200         | Fav             | Sa            | dstre             | Br          |                                 |            |           |            |      |
|                       | 4                    |                         |                         |                            |                                       | 1           | <del></del> J - |               | -                 |             |                                 |            |           |            |      |
|                       | 1                    |                         |                         |                            |                                       |             |                 |               |                   | VBY         | 1725-1740<br>Replace Bit        | =          | Ξ         | 0          | ప    |
| 小工                    | 15                   |                         | 47                      |                            |                                       |             |                 |               |                   |             | 8 Start @ 1743                  |            |           |            |      |
| 210                   | (3)                  |                         | 15.0                    |                            |                                       |             |                 |               |                   |             | End @ 1748                      |            |           |            |      |
|                       |                      |                         |                         |                            |                                       |             |                 | L Fr          |                   | Bn          |                                 |            |           |            |      |
|                       | A                    |                         |                         |                            |                                       | y           |                 | 1 ~           | 16.8              |             | 17.4 to 17.5                    | -          | -         | 0          | ১    |
|                       |                      |                         |                         | 185                        |                                       |             |                 |               |                   |             | 11/7/11                         |            |           |            |      |
|                       | ટેક                  |                         |                         |                            |                                       |             |                 |               |                   |             | @130 WL= 6.7                    |            |           |            |      |
|                       |                      |                         |                         |                            |                                       |             | 2"PUCS          | Creen         | 8.0-18.0          |             | 60955 Ream to<br>hydraulic prob | 8          | 14        | hen        |      |
|                       |                      |                         |                         |                            |                                       |             | (20-            | 510+ )        |                   |             | hydraulic prob                  | In         | -         |            |      |
|                       |                      |                         |                         |                            |                                       |             |                 |               | 7.0 -18.5         |             | 11/8/11 @ 0855 R                |            | n         | le         | le   |
|                       |                      |                         |                         |                            |                                       |             | Bento           | vile.         | 4.5-7.0           |             | 81618.51                        |            |           |            |      |
|                       | 25                   |                         |                         | _                          |                                       |             |                 |               |                   |             | 20910 Se+ Well                  |            |           |            |      |
|                       |                      | -                       | r rock brok             |                            | harabala di                           |             | na adio : f     |               |                   |             | D.:00 -                         |            | <u></u>   |            |      |
|                       |                      | . 1                     | . A                     |                            | -7                                    |             |                 | quency if ele | evated reponse re | ead.        | Drillin<br>Background           |            |           | Z          | 5    |
| _                     | -                    | 57<br>57                | x (e)                   | O-5<br>Mr no<br>Yes        | -ary                                  | 17.9<br>5.1 | 0 — 18<br>No    | 5             |                   |             |                                 |            |           |            |      |
| Conve                 | erted                | to Wel                  | l:                      | Yes -                      |                                       |             | No              |               | . Well I.D        | . #:        | 18 DMWTO                        | <u>ງ</u> [ |           |            |      |

### TE TETRATECH BORING LOG

|                 |                                                                                                                                                                           | נ             |                                       |                       |               |          |                                |                                                  | Pag                                                | је _                                             | <u>-</u>  | OT _       | <u> </u>                                         |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------|---------------------------------------|-----------------------|---------------|----------|--------------------------------|--------------------------------------------------|----------------------------------------------------|--------------------------------------------------|-----------|------------|--------------------------------------------------|
|                 |                                                                                                                                                                           | ΓNAM          |                                       |                       | rane - SV     | VMU      |                                | 10.:                                             | 180 MWT0                                           | ပ                                                | · —       | A          |                                                  |
|                 |                                                                                                                                                                           | NUM           |                                       | 112G                  |               |          | DATE:                          |                                                  | 11/6/4                                             |                                                  |           |            |                                                  |
|                 |                                                                                                                                                                           |               | PANY:                                 | _                     | Group         |          | GEOLOGI                        | ST:                                              | T. Evans                                           |                                                  |           |            |                                                  |
| DRIL            | LING                                                                                                                                                                      | RIG:          |                                       | CVE:                  | ST ATV        | /Gu      | DRILLER:                       |                                                  | Ben Borth / IN # 2                                 | 359                                              | W         | )          |                                                  |
|                 |                                                                                                                                                                           |               |                                       | ļ                     | l N           | IATE     | RIAL DESCRIPTION               |                                                  | 1                                                  | PID/P                                            | D Rea     | dina (     | (nom                                             |
| Sampl           | Depth                                                                                                                                                                     | Blows /       | Sample                                | Lithology             | <del></del>   | <u> </u> |                                | l u                                              |                                                    |                                                  | Г         |            |                                                  |
| e No.<br>and    | (Ft.)<br>or                                                                                                                                                               | 6" or<br>RQD  | Recovery                              | Change<br>(Depth/Ft.) | Soil Density/ |          |                                | s                                                |                                                    |                                                  |           | ١.         |                                                  |
| Туре            | Run                                                                                                                                                                       | (%)           | Sample                                | or                    | Consistency   |          |                                | C                                                | Remarks                                            | 용                                                | ğ         | <u>*</u>   |                                                  |
| or RQD          | No.                                                                                                                                                                       | ŀ             | Length                                | Screened<br>Interval  | or<br>Rock    | Color    | Material Classification        | S                                                |                                                    | Sample                                           | Headspace | 3orehole** | BZ**                                             |
|                 | ŀ                                                                                                                                                                         |               |                                       | interval              | Hardness      |          |                                | *                                                |                                                    | S                                                | Ę         | ã          | ł                                                |
| İ               | 0                                                                                                                                                                         |               |                                       |                       |               |          |                                |                                                  | Time                                               |                                                  |           |            |                                                  |
| 9 1             |                                                                                                                                                                           | 3/1           | 2.0/                                  |                       |               | Pr.      | דטףנסיו                        | OL                                               |                                                    |                                                  |           | _          |                                                  |
| 5-1             |                                                                                                                                                                           | 5 4           |                                       |                       | W2titt        | D' V     | Silt TV Clar<br>Clar some Sall | MI                                               | 1455                                               | U                                                | _         | 0          | 0                                                |
|                 |                                                                                                                                                                           | 24            | 20                                    |                       |               | BYL      | Clar some Sand                 | CH                                               | Days                                               |                                                  |           |            |                                                  |
| 5-2             |                                                                                                                                                                           |               | 1.0/                                  |                       | N Dense       |          | C + C 1.                       |                                                  | ,                                                  |                                                  |           | 0          | U                                                |
| 1350            |                                                                                                                                                                           | 3/            | 20                                    | 1                     | 10 1701-34    | King     | Egr Soud(true                  | $\vdash$                                         | 1500                                               | 0                                                |           |            | 10                                               |
|                 |                                                                                                                                                                           | 77            | ~~                                    |                       |               |          |                                |                                                  |                                                    |                                                  |           |            | İ                                                |
| 5-3             | 5                                                                                                                                                                         | 24/26         | 1.7/                                  |                       | V Perse       | NA NA    | For Sandstone Weath to Bedden  |                                                  | 1510                                               | 0                                                | ,         | ΄.         | o                                                |
| 1               |                                                                                                                                                                           | 31/2/         | 71.7                                  | 5.7                   | V povac       | 40       | Bedde                          |                                                  | <del></del>                                        | $\vdash$                                         | _         | O          | -                                                |
|                 | 7                                                                                                                                                                         | /50/          | 2                                     | III € 111             | <u>-</u>      | white    | Org moscive                    | <u>.</u>                                         | Switch to Mx core                                  |                                                  |           |            |                                                  |
|                 |                                                                                                                                                                           |               | İ                                     | ¥                     |               |          | )                              | ŀ                                                | 1 Start @1527                                      |                                                  |           |            |                                                  |
| 0.4             | 0                                                                                                                                                                         | יאנוי         | 12/28                                 | 1                     |               | tan      |                                | <del>                                     </del> | End 1530                                           | $\vdash$                                         |           | _          | $\vdash$                                         |
| 128             | Ĭ                                                                                                                                                                         | 14%           | 128                                   |                       | ·             | Brn      | F Sandstone<br>HIX 7.0-7.4 W/n | 30                                               | No Dust Beginning                                  | *                                                |           |            |                                                  |
|                 | $\Theta$                                                                                                                                                                  |               |                                       |                       | ,             |          | H14 7.0-7.4 W/n                | <b>4</b> +                                       | Oscart 1540                                        |                                                  |           |            |                                                  |
|                 | (5)                                                                                                                                                                       |               |                                       | <b>1</b> ,            |               | Tan      |                                | VB/                                              | 15 90                                              |                                                  |           | _          | <del> </del>                                     |
| <u> </u>        |                                                                                                                                                                           | $\overline{}$ | 3/= /                                 | l i                   |               | 30       | F Sandstone                    |                                                  | Pust Agam                                          | $oxed{oxed}$                                     |           |            |                                                  |
| 1.7/40          | (2)                                                                                                                                                                       | 430%          | 5.40                                  |                       |               |          |                                | Br                                               | \$ NO Dust                                         |                                                  |           |            | ĺ                                                |
|                 |                                                                                                                                                                           |               | -                                     | 1                     |               |          | almi a                         |                                                  | Endel550                                           |                                                  |           |            | $\vdash$                                         |
| $\vdash$        | +                                                                                                                                                                         |               |                                       |                       |               |          | mud Atting Frace 813           | VE                                               | 1555 WL= 6.7'                                      |                                                  |           |            | <u> </u>                                         |
|                 |                                                                                                                                                                           |               |                                       |                       |               |          |                                | l                                                | (3,3.3 WL = 6,7                                    |                                                  |           |            |                                                  |
|                 |                                                                                                                                                                           |               |                                       |                       |               |          |                                |                                                  | Core bit broken                                    |                                                  |           |            | Г                                                |
|                 |                                                                                                                                                                           |               |                                       |                       |               |          |                                |                                                  | offin hole                                         | <del>                                     </del> |           |            | <u> </u>                                         |
|                 | 15                                                                                                                                                                        |               |                                       |                       | 4             |          |                                |                                                  | <u> </u>                                           | L I                                              |           |            | ĺ                                                |
|                 |                                                                                                                                                                           |               |                                       |                       |               |          |                                |                                                  | 1635 Plug                                          |                                                  |           |            |                                                  |
|                 |                                                                                                                                                                           |               | · · · · · · · · · · · · · · · · · · · |                       |               |          |                                |                                                  | 1035 133                                           |                                                  |           |            | <del>                                     </del> |
|                 |                                                                                                                                                                           | <u>/_</u> ,   |                                       |                       |               |          |                                | L_                                               | hole w/                                            |                                                  |           |            | l                                                |
|                 |                                                                                                                                                                           |               |                                       |                       |               |          |                                |                                                  | bentonite &                                        |                                                  |           |            |                                                  |
|                 |                                                                                                                                                                           |               |                                       |                       |               |          |                                |                                                  | hole w/<br>bentomite &<br>re-locato<br>approx 2 fs |                                                  |           |            |                                                  |
|                 | ا حرح                                                                                                                                                                     |               |                                       |                       |               |          |                                |                                                  | aganx 2 ft                                         |                                                  |           |            |                                                  |
|                 |                                                                                                                                                                           |               |                                       |                       |               |          |                                |                                                  | <u> </u>                                           |                                                  |           |            |                                                  |
|                 |                                                                                                                                                                           |               |                                       |                       |               |          |                                |                                                  |                                                    |                                                  |           |            |                                                  |
|                 |                                                                                                                                                                           |               |                                       |                       |               |          |                                | -                                                |                                                    | $\dashv$                                         | -         | -          |                                                  |
| $\vdash \vdash$ |                                                                                                                                                                           |               |                                       |                       |               |          |                                |                                                  |                                                    |                                                  | _         |            | <u> </u>                                         |
|                 | ĺ                                                                                                                                                                         | /             |                                       |                       |               |          |                                |                                                  |                                                    | Ì                                                |           |            |                                                  |
|                 | 22                                                                                                                                                                        |               |                                       |                       |               |          |                                |                                                  |                                                    |                                                  |           |            | _                                                |
| * When          | rock co                                                                                                                                                                   | ring, ente    | r rock bro                            | keness.               | 1             |          |                                | <u> </u>                                         |                                                    |                                                  |           | 1          |                                                  |
|                 | * When rock coring, enter rock brokeness.  ** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read.  Drilling Area |               |                                       |                       |               |          |                                |                                                  |                                                    |                                                  |           |            |                                                  |
| Rema            | arks: _                                                                                                                                                                   | 4             | 4"10                                  |                       | ر' ح          | 314      | 0 to 5.7'                      |                                                  | Background                                         | (ppr                                             | n):[      | Q          | 8                                                |
|                 | -                                                                                                                                                                         |               | X                                     | ore                   |               |          | 5,7 % 12.5                     |                                                  |                                                    |                                                  |           |            |                                                  |
| Conv            | erted                                                                                                                                                                     | to We         | ll:                                   | Yes                   |               |          | No V Well I.D                  | ). #:                                            |                                                    |                                                  |           |            |                                                  |
|                 |                                                                                                                                                                           |               |                                       | -                     |               |          |                                |                                                  | <del></del>                                        |                                                  |           |            |                                                  |

WELL NO .: 18 DMWTOOI



## BEDROCK MONITORING WELL SHEET WELL INSTALLED IN BEDROCK

Tetra Tech NUS, inc.

|            | PROJECT NSA Crane - SWMU 18 LO PROJECT NO. 112G01851 BC DATE BEGUN 1 - 6 - 11 DA FIELD GEOLOGIST T. E UMM S GROUND ELEVATION 6 3 7 0 DA | ATE COMPLETED 11-7-11                                                                                          | DRILLER Micah Group / DRILLING Ben Borth IN # 2359 WE HSA / A / Rotery DEVELOPMENT METHOD |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| AR INC     | •                                                                                                                                       | ELEVATION/HEIGHT OF TOP OF                                                                                     | SURFACE CASING:                                                                           |
| 07//0      |                                                                                                                                         | ELEVATION/HEIGHT TOP OF RIS                                                                                    | ER:                                                                                       |
| MUNDER OWG |                                                                                                                                         | TYPE OF SURFACE SEAL:                                                                                          |                                                                                           |
| ACT OF     |                                                                                                                                         | I.D. OF SURFACE CASING:                                                                                        |                                                                                           |
| ć          |                                                                                                                                         | DIAMETER OF HOLE:                                                                                              | 8                                                                                         |
|            |                                                                                                                                         | TYPE OF RISER PIPE: Sch                                                                                        | to PUC                                                                                    |
|            |                                                                                                                                         | TYPE OF BACKFILL: Cement                                                                                       | Bentonite<br>rout                                                                         |
|            | TOR                                                                                                                                     |                                                                                                                | L: 74.5                                                                                   |
|            |                                                                                                                                         | TYPE OF SEAL:                                                                                                  | <del></del>                                                                               |
|            |                                                                                                                                         | ELEVATION/DEPTH TOP OF SANI                                                                                    | D: <u>74.0, 7.0</u>                                                                       |
|            |                                                                                                                                         | TYPE OF SCREEN: SLOT SIZE × LENGTH: 0.03  I.D. SCREEN: 2'                                                      | 10 PVC                                                                                    |
|            |                                                                                                                                         | TYPE OF SAND PACK: # 2 (US Siene                                                                               | (ard<br>10-70)                                                                            |
|            |                                                                                                                                         | DIAMETER OF HOLE IN BEDROCK  CORE/REAM: NX Core  Rea w                                                         |                                                                                           |
|            |                                                                                                                                         | ELEVATION/DEPTH BOTTOM SCR ELEVATION/DEPTH BOTTOM OF S ELEVATION/DEPTH BOTTOM OF S BACKFILL MATERIAL BELOW SAN | SAND: / 18.5<br>HOLE: / 19.5                                                              |



|                                         |                                                                                                                                                                          | NAM                            |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | rane - SV        | /MU           |                                                | lo.:                  | 18EMW T                       | 00          | j         |            |              |
|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|---------------|------------------------------------------------|-----------------------|-------------------------------|-------------|-----------|------------|--------------|
|                                         |                                                                                                                                                                          | F NUMI                         |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 01851<br>n Group |               | DATE:<br>GEOLOGIS                              | 2Т∙                   | 11-1611<br>T.Evans            |             |           |            |              |
|                                         |                                                                                                                                                                          | RIG:                           | 73141.                                      | CME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                  | A st          | DRILLER:                                       | ٠,,                   | Ben Borth / IN # 2            | 359         | WE        | )          |              |
|                                         | 1                                                                                                                                                                        | Γ                              | T                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |               | RIAL DESCRIPTION                               |                       |                               | PIDţFIC     | ==        | ==         | nnm)         |
| Sampl<br>e No.<br>and<br>Type<br>or RQD | Depth<br>(Ft.)<br>or<br>Run<br>No.                                                                                                                                       | Blows /<br>6" or<br>RQD<br>(%) | Sample<br>Recovery<br>/<br>Sample<br>Length | Lithology<br>Change<br>(Depth/Ft.)<br>or<br>Screened<br>Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                  | Color         |                                                | U<br>S<br>C<br>S<br>* | Remarks                       | Sample      | Headspace | Borehole** | BZ**         |
| <u> </u>                                | 0                                                                                                                                                                        | 7                              |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |               |                                                |                       | Time                          |             |           |            |              |
| 5-1                                     |                                                                                                                                                                          | 1/2                            | 1.4                                         | 11/17 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                  | tev           | Grand Sit                                      | gn                    | 1545 wet                      | ပ           | ^         | 0          | ٥            |
| <u> </u>                                |                                                                                                                                                                          | 1/2                            | 2.3                                         | - <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                  | Ian B         | rn Silt Tr Fsand                               | 514                   |                               |             |           |            |              |
| 5-2                                     |                                                                                                                                                                          | 44                             | 1.4/                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | tan           | Silt Trosad                                    | NL                    | 1550 Day                      | 2           | ,         | િ          | ව            |
|                                         |                                                                                                                                                                          | 31                             | /2.0                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | Br ~          | Tr-Some Clay                                   |                       |                               |             |           |            |              |
| 5-3                                     | 5                                                                                                                                                                        | 6/7                            | 14                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |               |                                                |                       | 1600                          | Ó           | _         | O          | J            |
|                                         |                                                                                                                                                                          | 5/                             | 12.7                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | 1             | Pour Silk Sal Some                             | ¥<br>5∽               |                               |             |           |            |              |
| 54                                      |                                                                                                                                                                          | 2/9                            | 14/14                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | Gray          | Silty Sard<br>weath sandstone                  | 54-                   | 1605                          | 0           | -         | 0          | Ü            |
|                                         |                                                                                                                                                                          | 2/84                           | Ţ                                           | 11511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                  | LtBn          | n weath saudstone                              |                       | 1) Start 1670                 |             |           |            |              |
|                                         |                                                                                                                                                                          |                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | ijξ,          |                                                |                       | End 1640                      |             | ,         |            |              |
| 000                                     | 0                                                                                                                                                                        | 80%                            | 0%                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | ,             | · No Alecovery -<br>(Ousty 10-11'; sa          |                       |                               | ,           | 1         | C          | U            |
|                                         | $\mathcal{L}$                                                                                                                                                            |                                | 73.3                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | ٧             | ( ousty 10-11'; sa                             | d                     | 11/17/11 - water &            | 5           |           |            |              |
|                                         | Y                                                                                                                                                                        |                                |                                             | a construction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11-15<br>A Hand  | 705           |                                                |                       | 354×+ 0855                    | )           | -         | υ          | ر            |
| 0.0                                     |                                                                                                                                                                          | hoj                            | 4.9,                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |               |                                                | *(   1                | End 0940                      |             |           |            |              |
| 15.0                                    | (2)                                                                                                                                                                      | 0/                             | 15.0                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18-15            | tan           | Egandstone                                     | VBr                   | (Abundant with while correct) |             |           |            |              |
|                                         |                                                                                                                                                                          |                                |                                             | de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la companya de la |                  | . <i>91</i> 9 | <i>y • • • • • • • • • • • • • • • • • • •</i> |                       | Ų                             |             |           |            |              |
|                                         | A                                                                                                                                                                        |                                |                                             | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  |               |                                                |                       |                               |             |           |            | 7            |
| 0.0                                     | X                                                                                                                                                                        | /11                            | 1.7/                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Hard             | tv            | F Sand Stone                                   | VBr (                 | 3)Start 0155                  | ſ           |           | 0          | 7            |
| 2.5                                     | 3)                                                                                                                                                                       | 0%                             | 2.5                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  | Ban           |                                                |                       | and 1005                      |             |           |            |              |
|                                         |                                                                                                                                                                          |                                |                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                  | ,             | - Rust striving on com                         | 2 4                   |                               |             |           |            | $\exists$    |
|                                         | 20                                                                                                                                                                       |                                |                                             | 18.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                  |               |                                                |                       | 113. Ream bove                | <u>ل</u> ما |           | 4,         | <i>5</i> . 5 |
|                                         |                                                                                                                                                                          |                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |               |                                                |                       | 1145 @ 18:5'                  |             |           |            | Ť            |
|                                         |                                                                                                                                                                          |                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |               | 2 pac screen (20 slut)                         |                       | 8.5-18.5                      |             |           |            | $\exists$    |
|                                         |                                                                                                                                                                          |                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |               | # 2 Saml (3 huns)                              |                       |                               | ه ده        | 21        | #          | 2            |
|                                         |                                                                                                                                                                          |                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |               | #2 Sand (3 bags) Bentonite (Xbag)              |                       | 62-83                         |             |           | ·'         | 一            |
|                                         | 25                                                                                                                                                                       |                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |               | DUM, TO THE COUNTY                             |                       | •                             |             | _         |            | $\dashv$     |
|                                         | rock co                                                                                                                                                                  | ring, ente                     |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u> </u>         |               |                                                |                       |                               |             |           |            |              |
| ** Includ                               | ** Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read.  Remarks: 2" SPT 4" D FF () - 8 - 9" Background (ppm): 7 |                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |               |                                                |                       |                               |             |           |            |              |
|                                         | -                                                                                                                                                                        | <u> </u>                       | X A                                         | ir Co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | re,              |               | 7.47-18.5                                      | _                     |                               | ·~~'        |           |            | <u></u>      |
| Conv                                    | Converted to Well: Yes V No Well I.D. #: (FFM ~ TOU)                                                                                                                     |                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                  |               |                                                |                       |                               |             |           |            |              |

WELL NO .: 185 MWTOOL



# BEDROCK MONITORING WELL SHEET WELL INSTALLED IN BEDROCK

Tetra Tech NUS, Inc.

|                 | PROJECT NSA Crane - SWMU 18 LO PROJECT NO. 112G01851 BC DATE BEGUN (- ( ) ) DA FIELD GEOLOGIST T. EVANS GROUND ELEVATION 655, 89 DA | ATE COMPLETED 11-17-11                                                                                             | DRILLER Micah Group /  DRILLING Ben Borth IN # 2359 WD METHOD + (SA /A / Cotar)  DEVELOPMENT METHOD SURGE / PUMP |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|
| aa INL          |                                                                                                                                     | ELEVATION/HEIGHT OF TOP OF                                                                                         | SURFACE CASING: 659.4/3.5                                                                                        |
| 107/10          |                                                                                                                                     | ELEVATION/HEIGHT TOP OF RIS                                                                                        | SER: <u>659.1/3.2</u>                                                                                            |
| DAM WINDKING WO |                                                                                                                                     | TYPE OF SURFACE SEAL: ( o v ) w/  I.D. OF SURFACE CASING:                                                          | 17                                                                                                               |
| ACAU. T         |                                                                                                                                     | DIAMETER OF HOLE:                                                                                                  |                                                                                                                  |
|                 |                                                                                                                                     | RISER PIPE I.D.:  TYPE OF RISER PIPE: Sc.                                                                          | 40 PUC                                                                                                           |
|                 |                                                                                                                                     | TYPE OF BACKFILL: Comen                                                                                            | 1. Bentonite                                                                                                     |
|                 | I.O.R.                                                                                                                              |                                                                                                                    | L: $649.9 / 6.0$ ROCK: $648.5 / 7.4$                                                                             |
|                 |                                                                                                                                     | ELEVATION/DEPTH TOP OF SAN                                                                                         | id: 6 <u>47,9 / 8.3</u>                                                                                          |
|                 |                                                                                                                                     | ELEVATION/DEPTH TOP OF SCR TYPE OF SCREEN: SC L SLOT SIZE x LENGTH: 0.02, I.D. SCREEN:                             | 40 PUC                                                                                                           |
|                 |                                                                                                                                     | TYPE OF SAND PACK: #2 (US Sieve                                                                                    | 10-20)                                                                                                           |
|                 |                                                                                                                                     | DIAMETER OF HOLE IN BEDROC<br>CORE/REAM: NX Cove                                                                   |                                                                                                                  |
|                 |                                                                                                                                     | ELEVATION/DEPTH BOTTOM SCR<br>ELEVATION/DEPTH BOTTOM OF<br>ELEVATION/DEPTH BOTTOM OF<br>BACKFILL MATERIAL BELOW SA | SAND: 637.4/18 G37.4/18                                                                                          |

Page 1 of 2

PROJECT NAME: NSA Crane - SWMU 18 BORING No.: 186 NW TOOY PROJECT NUMBER: 112G01851 DATE: DRILLING COMPANY: Micah Group GEOLOGIST: T. EVALI DRILLING RIG: CNE ST Track Ben Borth / IN # 2359 WD DRILLER: MATERIAL DESCRIPTION PD/FID Reading (ppm) Depth Blows / Sample | Lithology Sampl U (Ft.) e No. 6" or Recovery Change S Soil Density/ and or RQD (Depth/Ft.) Borehole\*\* С Type Run (%) Sample Consistency Remarks BZ\*\* Color or RQD Length Screened **Material Classification** S Interval Rock Hardness 0 DK 8-2 TUP Suil 5-1 154 > 0 0 Ce Days-Dr 5-2 О 2 5-3 15 ME 1545 0 υk Brn Silt some (Tupsail) 5-4 1550 Э S C /2.0 Cm. 10 las weath Sandstone 5-5 1600 0 0 0 ۵ 1605 ں 10510 Sandstore in Swe 12/16-HSA+121 Install temp cas france stone 760 0 0 3176 Siltature w/ Black DStart 0905 End 0915 (2) Any 0925 00 End 0935 w/ lan vac @ Lotten VBR3) Start 1105 O6 Soulstne W/ BIK E-4 1110 BIK ( Hoser Seddin \* When rock coring, enter rock brokeness. \*\* Include monitor reading in 6 foot intervals @ borehole. Increase reading frequency if elevated reponse read. Remarks:  $\frac{4}{4}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1}{1}$   $\frac{1$ **Drilling Area** Background (ppm): Yes Converted to Well: Well I.D. #: 18GNW7804 Mill rett - ness-6-67

Jor Wart day



Page \_ 2 of \_ 2

| PRO<br>DRIL                             | JECT<br>LING                       | NAMI<br>NUMI<br>COMI<br>RIG:   |                                             | 112G0<br>Micah                                                   | rane - SV<br>01851<br>Group                            |       | <del></del>                         | BORING N<br>DATE:<br>GEOLOGIS<br>DRILLER: | o.:<br>ST: | 12-16-11<br>+ FURNS<br>Ben Borth / IN # 2 | بر ب<br>359 | WE        | )          |      |
|-----------------------------------------|------------------------------------|--------------------------------|---------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------|-------|-------------------------------------|-------------------------------------------|------------|-------------------------------------------|-------------|-----------|------------|------|
|                                         |                                    |                                |                                             | _                                                                | N                                                      | IATE  | RIAL DESCRIPT                       | ION                                       |            |                                           | PIDIJII     | ) Rea     | ding (     | ppm) |
| Sampl<br>e No.<br>and<br>Type<br>or RQD | Depth<br>(Ft.)<br>or<br>Run<br>No. | Blows /<br>6" or<br>RQD<br>(%) | Sample<br>Recovery<br>/<br>Sample<br>Length | Lithology<br>Change<br>(Depth/Ft.)<br>or<br>Screened<br>Interval | Soil Density/<br>Consistency<br>or<br>Rock<br>Hardness | Color | Material Class                      | sification                                | U S C S *  | Remarks                                   | Sample      | Headspace | Borehole** | BZ** |
|                                         |                                    |                                |                                             | +                                                                | ·                                                      |       |                                     |                                           | BR         | -                                         |             |           |            |      |
|                                         | 太                                  |                                |                                             |                                                                  |                                                        |       |                                     |                                           | 別          |                                           |             |           |            |      |
| 0.4                                     | $\Re$                              | 27%                            | 11/                                         | 9                                                                |                                                        | Gran  | SilyFSandsha                        | ~                                         |            | @ Start 1120                              | _           | -         | 0          | 0    |
| 11.5                                    |                                    | $\angle$                       | 11.5                                        |                                                                  | 4                                                      | sik   | Sily Frandsta<br>W/B/k lai          | in hedd                                   |            | Frd 1127                                  |             |           |            |      |
|                                         | 30                                 |                                |                                             |                                                                  |                                                        |       |                                     |                                           | _          |                                           |             |           |            |      |
|                                         |                                    | $\angle$                       |                                             |                                                                  |                                                        |       |                                     |                                           |            | 1245 WL= 18,21                            |             |           |            |      |
|                                         | 2.                                 |                                |                                             |                                                                  |                                                        |       | Natural Carely                      | 27-28.                                    |            | 1245 WL=18.21<br>1300 Kean BH             |             |           |            |      |
|                                         |                                    |                                |                                             |                                                                  |                                                        |       | 20-16+ sce                          | en 17-27                                  |            |                                           |             |           |            |      |
|                                         |                                    |                                |                                             |                                                                  |                                                        |       | 20-16+ scre<br>#2 Sand<br>Rendonite | 15-27                                     |            |                                           |             |           |            |      |
|                                         |                                    |                                |                                             |                                                                  |                                                        |       | Renton te                           | 10-15                                     |            |                                           |             |           |            |      |
|                                         |                                    |                                |                                             |                                                                  |                                                        |       |                                     |                                           |            |                                           |             |           |            |      |
|                                         |                                    |                                |                                             |                                                                  |                                                        |       |                                     |                                           |            |                                           |             |           |            |      |
|                                         |                                    |                                |                                             |                                                                  |                                                        |       |                                     |                                           |            |                                           |             |           |            |      |
|                                         |                                    |                                |                                             |                                                                  |                                                        |       |                                     | :<br>                                     |            |                                           |             |           |            |      |
|                                         |                                    |                                |                                             |                                                                  |                                                        |       |                                     |                                           |            |                                           |             |           |            |      |
|                                         |                                    |                                |                                             |                                                                  |                                                        |       |                                     |                                           |            |                                           |             |           |            |      |
|                                         |                                    |                                |                                             |                                                                  |                                                        |       |                                     |                                           |            |                                           |             |           |            |      |
|                                         |                                    |                                |                                             |                                                                  |                                                        |       |                                     |                                           |            |                                           |             |           |            |      |
|                                         |                                    |                                |                                             |                                                                  |                                                        |       |                                     |                                           |            |                                           |             |           |            |      |
|                                         |                                    |                                |                                             |                                                                  |                                                        |       |                                     |                                           |            |                                           |             |           |            |      |
|                                         |                                    |                                |                                             |                                                                  |                                                        |       |                                     |                                           |            |                                           |             |           |            |      |
|                                         |                                    |                                |                                             |                                                                  |                                                        |       |                                     |                                           |            |                                           |             |           |            |      |
|                                         |                                    |                                |                                             |                                                                  |                                                        |       |                                     |                                           |            |                                           |             |           |            |      |
|                                         |                                    |                                |                                             |                                                                  |                                                        |       |                                     |                                           |            |                                           |             |           |            |      |
|                                         |                                    |                                |                                             |                                                                  |                                                        |       |                                     |                                           |            |                                           |             |           |            |      |
| ** Includ                               | le moni<br>arks: _                 | -                              |                                             |                                                                  | borehole. Ir                                           |       | reading frequency if ele            | evated reponse re                         |            | Drillin<br>Background                     | (ppr        | n):[      |            |      |

WELL NO .: 186 MUTUSLY



## BEDROCK MONITORING WELL SHEET WELL INSTALLED IN BEDROCK

Tetra Tech NUS, inc.

|    | PROJECT NSA Crane - SWMU 18 LC PROJECT NO. 112G01851 BC DATE BEGUN /2/15/11 DA | OCATION Subarra                                 | DRILLER Micah Group /               |
|----|--------------------------------------------------------------------------------|-------------------------------------------------|-------------------------------------|
|    | PROJECT NO 112G01851 BC                                                        | ORING 186 MATTINE                               | DRILLING Ben Borth IN # 2359 WD     |
|    | DATE BEGUN /2/15/11 DA                                                         | ATE COMPLETED 12-11-11                          | METHOD HIA/AIT Latary               |
|    | FIELD GEOLOGIST + Eva us                                                       | •                                               |                                     |
|    | GROUND ELEVATION 654.09 DA                                                     | ATUM_NAVD 88                                    | DEVELOPMENT<br>METHOD PASSURGE/PUMP |
| _  |                                                                                |                                                 |                                     |
| Ξ  |                                                                                | ELEVATION/HEIGHT OF TOP OF                      | SURFACE CASING $65/.0/2.9$          |
| 8  | <b>—</b>                                                                       |                                                 |                                     |
| 8  |                                                                                | <br>                                            | SER: 656.7/2.6                      |
| 8  |                                                                                | ELLEVATION/HEIGHT TOP OF RIS                    | ER. <u>22172.0</u>                  |
| ₽  |                                                                                |                                                 |                                     |
| Ę. |                                                                                | TYPE OF SURFACE SEAL: Ch                        | erete that                          |
| 2  |                                                                                | (4'x4'x6") w                                    | 14 Bullards                         |
| ٦  |                                                                                | I.D. OF SURFACE CASING:                         | 11101001                            |
| 5  |                                                                                | 1.D. OF SURFACE CASING:                         | <u> </u>                            |
| Ş  |                                                                                |                                                 |                                     |
| ₹  |                                                                                | DIAMETER OF HOLE:                               | <i>"</i>                            |
|    |                                                                                |                                                 |                                     |
|    |                                                                                |                                                 |                                     |
|    |                                                                                | RISER PIPE I.D.: 21 TYPE OF RISER PIPE: 5044    | to All                              |
|    |                                                                                | TIFE OF RISER FIFE.                             | 70 700                              |
|    |                                                                                |                                                 |                                     |
|    |                                                                                | TYPE OF BACKFILL: Comen                         | r-Renturite                         |
|    |                                                                                |                                                 | <del>)</del>                        |
|    |                                                                                |                                                 |                                     |
|    |                                                                                |                                                 |                                     |
|    |                                                                                | +- ELEVATION/DEPTH TOP OF SEA                   | L: 644, 1/10.0                      |
|    | T.O.R.                                                                         | ELEVATION/DEPTH TOP OF BED                      | ROCK: 642,9/11,2                    |
|    |                                                                                | TYPE OF SEAL: Ben to                            |                                     |
|    |                                                                                | TIPE OF SEAL: 1300 181                          | 7.00                                |
|    |                                                                                |                                                 | <del></del>                         |
|    |                                                                                |                                                 |                                     |
|    |                                                                                | ELEVATION/DEPTH TOP OF SAN                      | D: 639.1/15.0                       |
|    |                                                                                |                                                 | 5. 5 1617 75                        |
|    |                                                                                |                                                 | (37)                                |
|    |                                                                                | ELEVATION/DEPTH TOP OF SCR                      | EEN: 637.1/17.0                     |
|    |                                                                                | TYPE OF SCREEN: Sch 4 SLOT SIZE x LENGTH: 0.020 | 7 101                               |
|    |                                                                                | I.D. SCREEN:                                    | <u> </u>                            |
|    |                                                                                |                                                 |                                     |
|    |                                                                                | TYPE OF SAND PACK: G 65                         | a1 # 5                              |
|    |                                                                                | (US Sieve 10                                    | -20)                                |
|    |                                                                                | DIAMETER OF HOLE IN DESCRIPTION                 | 5-"                                 |
|    |                                                                                | DIAMETER OF HOLE IN BEDROC                      | K:                                  |
|    |                                                                                | CORE/REAM: NO 11.2                              | 28.51                               |
|    |                                                                                | 5.5" \$ 11.2                                    | - 28,0                              |
|    |                                                                                | ELEVATION/DEPTH BOTTOM SCR                      | EEN: 627.1/27.0                     |
|    | <u></u>                                                                        | ELEVATION/DEPTH BOTTOM OF                       |                                     |
|    |                                                                                | ELEVATION/DEPTH BOTTOM OF                       |                                     |
|    |                                                                                | BACKFILL MATERIAL BELOW SAN                     |                                     |
| J  |                                                                                | 1                                               |                                     |

Page \_\_/ of \_ Z

PROJECT NAME: NSA Crane - SWMU 18
PROJECT NUMBER: 112G01851
DRILLING COMPANY: Micah Group
DRILLING RIG: CME 55 / DRILLER: Ben Borth / IN # 2359 WD

| DRILLING RIG. CML 3 \ / DRILLER: |                                    |                                |                                             |                                                                  |                                                        |            |                                               |                       | Ben Borth / IN # 2359 WD |          |           |            |           |  |
|----------------------------------|------------------------------------|--------------------------------|---------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------|------------|-----------------------------------------------|-----------------------|--------------------------|----------|-----------|------------|-----------|--|
|                                  |                                    |                                |                                             |                                                                  | N                                                      | IATE       | RIAL DESCRIPTION                              | Г                     |                          | PID/FII  | D Rea     | ding (     | (ppm)     |  |
| Sample e No. and Type or RQD     | Depth<br>(Ft.)<br>or<br>Run<br>No. | Blows /<br>6" or<br>RQD<br>(%) | Sample<br>Recovery<br>/<br>Sample<br>Length | Lithology<br>Change<br>(Depth/Ft.)<br>or<br>Screened<br>Interval | Soil Density/<br>Consistency<br>or<br>Rock<br>Hardness | Color      |                                               | U<br>S<br>C<br>S<br>* | Remarks                  | Sample   | Headspace | Borehole** | BZ**      |  |
| 5-1                              |                                    | 2/                             | 15/                                         |                                                                  |                                                        | OKB.       | Cla                                           | OL                    | 0435                     | 0        | _         | 0          | 0         |  |
|                                  |                                    | 3/                             | 12.0                                        |                                                                  |                                                        | PAA        | Cla                                           | د د                   |                          |          | -         | Ť          |           |  |
| 5-2                              |                                    | 4                              | 1.7                                         |                                                                  |                                                        | Bon        | Cla                                           | a                     | 0938                     | O        | _         | 0          | 0         |  |
|                                  |                                    | 2/3                            | 120                                         |                                                                  |                                                        | L+Brn      | Cill To C                                     | ML                    | 5778                     |          |           | $\vdash$   |           |  |
| 5:3                              | 5                                  | 1/2                            | 1.9,                                        |                                                                  |                                                        | H Brh      | Clar Day<br>Silt Tr-Some Clar<br>Silt tr Clar | ML                    | 0942 Dry to              |          |           | 0          | 0         |  |
|                                  | ,                                  | 6/0                            | 2.0                                         |                                                                  |                                                        | & Gran     | 7 17 (12)                                     | JAC.                  | 0942 Dry to              | <u> </u> | _         |            | Ť         |  |
| 5-4                              |                                    | 6/10                           | 1.47                                        |                                                                  |                                                        |            | Silt Tr VF sand                               | INL                   |                          | ├-       |           |            |           |  |
|                                  |                                    | 9/1                            | 2.0                                         |                                                                  |                                                        | 14 Bry     | Clay                                          |                       | Dang Dang                |          |           | υ          | 0         |  |
| 5-5                              |                                    | 3/6                            | 1.8/                                        |                                                                  |                                                        | 14 08/4    | 1 10                                          | CL                    | 0957                     | 0        | _         | υ          | 0         |  |
|                                  | 10                                 | 7/5                            | 12.0                                        |                                                                  |                                                        | ,          |                                               | T                     | 04 5 /                   | 0        |           | $\dashv$   |           |  |
| 5-6                              | `                                  |                                | 1.3/                                        |                                                                  |                                                        |            |                                               |                       | (000                     | 0        | _         | o          | 0         |  |
| , ŭ                              |                                    | 2/4                            | 12.0                                        | 1                                                                |                                                        |            |                                               | 1                     | (00)                     | 0        |           |            | Ť         |  |
| 5-7                              |                                    | 850/                           | m.c                                         | ,                                                                |                                                        | Tan        | (Weath saystac)                               | . 5H                  | 1005                     | O        | _         | ၂          | v         |  |
|                                  | 7                                  |                                | , , , , ,                                   | 1=14                                                             |                                                        |            | (WPATH (MODINE)                               |                       | Dx Core                  | Ů        |           |            | Ĭ         |  |
| 1.9                              | (5)                                |                                | 2.6/                                        | ~                                                                | BR                                                     | Tov        | Sity & sand thre                              |                       | 2501 to 1035             |          |           | $\neg$     |           |  |
| 13.0                             | 0                                  | 33%                            | 1300                                        |                                                                  |                                                        | Ben        |                                               |                       |                          | [ ]      | _         | 0          | 0         |  |
|                                  | Y                                  |                                |                                             |                                                                  | BL                                                     | Ton        | 1 W/Tawinge<br>(175-185)                      |                       | Stev4: 1050              |          |           |            |           |  |
| 2.º/<br>/5.0                     | 0                                  | 01                             | 48/                                         |                                                                  | UBA                                                    | Gin        | 1 w/the                                       |                       | End: 1100                |          |           |            |           |  |
| 15.0                             |                                    | 40%                            | 15.0                                        |                                                                  | e.c.                                                   | BIN BIN    | (175 - 185)                                   |                       |                          |          |           |            |           |  |
|                                  | 20                                 |                                |                                             |                                                                  | VBR                                                    | - 1        | -                                             |                       |                          | 0,5      | - 1       | 5          | 0         |  |
|                                  | $\overline{\lambda}$               |                                |                                             | 57                                                               | BR                                                     | Red<br>Brn | Sily & Sadstur                                |                       |                          |          |           |            | 一         |  |
|                                  | Y                                  |                                | 5.0                                         | 3                                                                | BR                                                     |            | (No lawiver)                                  |                       | 1.5                      |          |           | $\dashv$   | $\exists$ |  |
| 3.7                              | (B)                                | 78%                            | 50                                          | ==                                                               |                                                        | 4.0        |                                               |                       | (9) Stevil 1105          |          |           | $\dashv$   | $\dashv$  |  |
| الرا                             |                                    |                                |                                             | -                                                                |                                                        | ない         |                                               |                       | End: 1115                |          |           | $\dashv$   |           |  |
|                                  | 25                                 |                                |                                             |                                                                  |                                                        | 612        |                                               |                       | 1:30 MT= 5 A'VI          |          | _         | 0          | 0         |  |
|                                  |                                    |                                |                                             |                                                                  |                                                        |            | <del></del>                                   |                       |                          |          | _         | _          |           |  |

| " vvnen rock co. | ring, enter rock | brokeness.     |                   |                |                                   |                   |
|------------------|------------------|----------------|-------------------|----------------|-----------------------------------|-------------------|
| ** Include monit | or reading in 6  | foot intervals | @ bgrehole. Incre | ase reading fr | equency if elevated reponse read. | Drilling Area     |
| Remarks:         | フ " 、            | PT.            | 4/4 10            | HSA            | 0-12.9                            | Background (ppm): |
| _                | -NX              | Corre          |                   |                | 12.9 - 27.9                       |                   |
| _                | 5,5              | O AT           | WterT             |                | 129 - 21.0                        |                   |
| Converted        | to Well:         | ' Yes          |                   | No             | Well I.D. #:                      | 18TMWTO01         |
|                  |                  |                |                   |                |                                   |                   |



Page \_\_\_\_ of \_\_\_\_

| PRO                            | JEC <sup>-</sup>   |                     | BER:                              |             |                                                        | VMU                  | 18 BORING DATE: GEOLOG                       | No.:<br>IST:                                     | 18 1 MW TO.            | 01       |           |            |          |
|--------------------------------|--------------------|---------------------|-----------------------------------|-------------|--------------------------------------------------------|----------------------|----------------------------------------------|--------------------------------------------------|------------------------|----------|-----------|------------|----------|
| DRIL                           | LING               | RIG:                |                                   | CME         | 55 /G                                                  | wi P                 | <u>പ്</u> രാ DRILLER:                        | :                                                | Ben Borth / IN # 2     | 359      | WE        | )          |          |
| Sampl                          | Depth              | Blows /             | Sample                            | Lithology   | N                                                      | 1ATE                 | RIAL DESCRIPTION                             | J                                                |                        | PID/FIC  | ) Rea     | ding (     | ppm      |
| e No.<br>and<br>Type<br>or RQD | (Ft.)<br>or<br>Run | 6" or<br>RQD<br>(%) | Recovery<br>/<br>Sample<br>Length |             | Soil Density/<br>Consistency<br>or<br>Rock<br>Hardness |                      | Material Classification                      | U S C S *                                        | Remarks                | Sample   | Headspace | Borehole** | BZ**     |
|                                | 人                  |                     |                                   | 1.          |                                                        |                      |                                              | †                                                |                        |          |           |            | _        |
| 275                            | $\searrow$         |                     | 1.3/                              |             | Be                                                     | Y. 2                 | FSauls true                                  | $\top$                                           | 9) Start 1315          |          |           |            | $\vdash$ |
| 2.0                            | 43                 | 38/2                | 12.0                              |             |                                                        |                      |                                              | $\dagger$                                        | EVel 1330              |          | -         | 0          | ره       |
|                                |                    |                     |                                   |             |                                                        | pace on a principal  |                                              | <b> </b>                                         | swild to AN Ro         | ter      | ,         |            |          |
|                                | 30                 |                     |                                   | +1          |                                                        |                      |                                              |                                                  | 1500-1505<br>AN ROTERY |          |           |            |          |
|                                |                    | /                   |                                   | <u>+</u> :  |                                                        | ٧<br><u>ت</u> الد (ج | a - vale                                     |                                                  |                        |          |           |            |          |
|                                |                    |                     |                                   |             |                                                        |                      |                                              |                                                  | 1530 W= 15"            |          |           |            |          |
|                                |                    |                     |                                   |             |                                                        |                      |                                              |                                                  |                        |          |           |            |          |
|                                |                    |                     |                                   |             |                                                        |                      |                                              |                                                  | 1555 set well          |          |           |            |          |
|                                |                    | $\angle$            |                                   |             |                                                        |                      | 2 PVC sciention SI + 2 card (7/4/2) Bentonte | <u> </u>                                         | 21-31                  |          |           |            |          |
|                                |                    | $\angle$            |                                   |             |                                                        |                      | # 2 and 12/4/70                              |                                                  | 15-31                  |          |           |            |          |
|                                |                    |                     |                                   |             |                                                        |                      | Bentonite                                    | ľ                                                | 17-19                  |          |           |            |          |
|                                |                    | /                   |                                   |             |                                                        |                      |                                              | _                                                |                        |          |           |            |          |
|                                |                    |                     |                                   |             |                                                        |                      |                                              |                                                  |                        |          |           |            |          |
|                                |                    | $\leq$              |                                   |             |                                                        |                      |                                              | ļ.,                                              |                        |          | _         |            |          |
|                                |                    |                     |                                   |             |                                                        | _                    |                                              | ╁                                                |                        |          | _         |            |          |
|                                |                    | <                   |                                   |             |                                                        |                      |                                              | <b> </b>                                         |                        | $\vdash$ | _         |            |          |
| $\vdash$                       |                    | -                   |                                   |             |                                                        |                      |                                              | -                                                |                        |          | $\dashv$  | _          |          |
|                                |                    |                     |                                   |             |                                                        |                      |                                              | +                                                |                        | $\dashv$ |           | $\dashv$   |          |
|                                |                    | $\leftarrow$        |                                   |             |                                                        |                      |                                              | +                                                |                        | _        | 4         |            |          |
|                                |                    | $\leftarrow$        |                                   |             |                                                        |                      |                                              | <del>                                     </del> |                        | $\dashv$ | $\dashv$  | $\dashv$   |          |
|                                |                    |                     |                                   |             |                                                        |                      |                                              | -                                                |                        |          | $\dashv$  |            |          |
|                                |                    |                     |                                   |             |                                                        |                      |                                              | -                                                |                        | $\dashv$ | $\dashv$  | $\dashv$   |          |
|                                |                    |                     |                                   |             |                                                        |                      |                                              |                                                  |                        | $\dashv$ | $\dashv$  |            |          |
|                                |                    |                     | r rock bro                        |             |                                                        |                      |                                              | <u></u>                                          |                        |          |           |            |          |
| ** Includ                      |                    | tor readin          | g in 6 foot                       | intervals @ | borehole. Ir                                           | ncrease              | reading frequency if elevated reponse        | read.                                            | Drilling<br>Background |          |           | ø          |          |
| Conv                           | erted              | to We               | II:                               | Yes         | V                                                      | <del></del>          | No Well I.I                                  | D. #:                                            | 18 I.ML                | J7       | Dι        | ) [        |          |

WELL NO .: 18IMWTOOL



## BEDROCK MONITORING WELL SHEET WELL INSTALLED IN BEDROCK

Tetra Tech NUS, Inc.

|                             | ····                                                                    |             |
|-----------------------------|-------------------------------------------------------------------------|-------------|
| PROJECT NSA Crane - SWMU 18 | LOCATION Subaven I DRILLER Micah Group/                                 |             |
| PROJECT NO. 112G01851       | BORING 181 MW TOUL DRILLING Ben Borth IN # 2                            | 2359 WI     |
| DATE BEGUN 11-22-11         |                                                                         | DHAVY       |
| GROUND ELEVATION 695.63     |                                                                         | imp         |
| 2                           |                                                                         |             |
|                             | ELEVATION/HEIGHT OF TOP OF SURFACE CASING:698,47                        | <u>'Z.8</u> |
|                             | ELEVATION/HEIGHT TOP OF RISER: 698,17                                   | 12,5        |
|                             | TYPE OF SURFACE SEAL: Concrete (4'x4' x 6"                              | ′)          |
|                             | I.D. OF SURFACE CASING: 6" STEE!                                        |             |
|                             | DIAMETER OF HOLE: \( \cdot \frac{\chi'}{\chi}                           |             |
|                             |                                                                         |             |
|                             | TYPE OF RISER PIPE: SCL 40 DVC                                          |             |
|                             | TYPE OF RISER PIPE: SCL 40 DVC                                          |             |
|                             |                                                                         |             |
|                             | TYPE OF BACKFILL: <u>Coment-Benton to</u>                               |             |
|                             | Enut                                                                    |             |
|                             |                                                                         |             |
|                             | ELEVATION/DEPTH TOP OF SEAL: 678.67                                     | 17.0        |
| I.O.R.                      | ELEVATION/DEPTH TOP OF BEDROCK: 6917/                                   | 12,9        |
|                             | TYPE OF SEAL: Routonite                                                 |             |
|                             |                                                                         |             |
|                             | ELEVATION/DEPTH TOP OF SAND: 676,6/                                     | 19.5        |
|                             |                                                                         |             |
|                             | ELEVATION/DEPTH TOP OF SCREEN: 674.6/                                   | 151.0       |
|                             | SLOT SIZE x LENGTH: () . V 20 11 x 13 1                                 |             |
|                             | I.D. SCREEN:                                                            |             |
|                             | TYPE OF SAND PACK: # Z Sowd                                             |             |
|                             | (US Sie ue 10-20)                                                       |             |
|                             | DIAMETER OF HOLE IN BEDROCK: 5.5"                                       |             |
|                             | CORE/REAM: NY Core 12,9- 27,9                                           |             |
|                             | Ream 12.9-31.0                                                          |             |
|                             | ELEVATION/DEPTH BOTTOM SCREEN: (64.6)                                   | 31.0        |
|                             | ELEVATION/DEPTH BOTTOM OF SAND: 64,6/                                   | 131.3       |
|                             | ELEVATION/DEPTH BOTTOM OF HOLE: 69.6/ BACKFILL MATERIAL BELOW SAND: N/A | 31.0        |
|                             | DAONITE MATERIAL DELOW SAIND: 17/14                                     |             |



Page \_\_\_ of \_\_\_

|                                         |                                    | NAM                            |                                             |                                                                  | rane - SV                                              | VMU          |                                      | No.:               | 18J MWTS                     | 01       |           |                  |            |
|-----------------------------------------|------------------------------------|--------------------------------|---------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------|--------------|--------------------------------------|--------------------|------------------------------|----------|-----------|------------------|------------|
|                                         |                                    |                                | BEH:<br>PANY:                               | 112G(                                                            | Group                                                  |              | DATE: GEOLOG                         | GIST.              | 12/17/11                     |          |           |                  |            |
|                                         |                                    | RIG:                           |                                             |                                                                  | > 55                                                   | Tra          | <del></del>                          |                    | T, E UALS Ben Borth / IN # 2 | 359      | W[        | 5                |            |
|                                         |                                    |                                | Υ                                           |                                                                  |                                                        |              | RIAL DESCRIPTION                     | $\overline{}$      |                              | PID/P    |           |                  | (ppr       |
| Sampl<br>e No.<br>and<br>Type<br>or RQD | Depth<br>(Ft.)<br>or<br>Run<br>No. | Blows /<br>6" or<br>RQD<br>(%) | Sample<br>Recovery<br>/<br>Sample<br>Length | Lithology<br>Change<br>(Depth/Ft.)<br>or<br>Screened<br>Interval | Soil Density/<br>Consistency<br>or<br>Rock<br>Hardness |              |                                      | U S C S *          | Remarks                      | Sample   | Headspace | Borehole**       | Γ          |
|                                         | 0                                  | 1/1                            | 19                                          |                                                                  |                                                        | Bru          | Trpsuil                              | OL                 | line                         | ╁        | _         | -                | Ļ          |
| 5-1                                     |                                    | = 4                            | 1,9                                         |                                                                  |                                                        | 316          | Sit Tr VF Sad                        | ML                 | 1548<br>DV4                  | 0        |           | 0                | 0          |
|                                         |                                    | 26                             | 12.0                                        |                                                                  |                                                        |              |                                      |                    | DV <b>9</b>                  | ↓_       | Ш         |                  | L          |
| 5-2                                     |                                    | 5/5                            | 1.9                                         |                                                                  |                                                        | Tan          | Silt Tr UF Sand                      | MH                 | 1550                         | 0        | _         | 0                | ے          |
|                                         |                                    | 29                             | 12.0                                        |                                                                  | 1                                                      | کریم         | Silt Tr UF Sand<br>Sume VF Sand      | 0                  | Damp                         |          |           |                  |            |
| 9-3                                     | 5                                  | 46                             | 1.4                                         |                                                                  | _                                                      | Tan          | Cilt & F Sand                        | Sm                 | 1557 .                       | 0        |           | 0                | J          |
|                                         |                                    | 8/4                            | 12.0                                        |                                                                  |                                                        |              | Silt & F Sand<br>Dry-Dup             | ,                  |                              | Ť        |           |                  | Г          |
| 5-4                                     |                                    | 8/6                            | 1.51                                        |                                                                  |                                                        | Tan          | ~                                    | my                 | 1601                         | 0        | -         | 0                | ć          |
|                                         |                                    | 14/13                          | 20                                          |                                                                  | 4                                                      | Brn          | TI RED BINSS Frags                   | <del>- 1/4 -</del> |                              |          | П         |                  |            |
| 2-2                                     |                                    | <del>'</del>                   | رفاه و                                      |                                                                  | 7                                                      | Bry          | Weather Sandy Sit                    | Hs ma              | 1613 000                     | O        |           | v                | a          |
|                                         | 10                                 |                                | 10.8                                        | 111=11                                                           |                                                        | Gray         |                                      |                    | Install ten, Casin           |          | $\vdash$  | $\check{\vdash}$ | Ť          |
|                                         |                                    |                                | Ū                                           |                                                                  |                                                        | · /          | Silty Sandstone                      |                    | AL                           | 1        |           | -                | -          |
|                                         |                                    |                                |                                             |                                                                  |                                                        |              |                                      | -                  | 1632                         | $\vdash$ |           |                  | -          |
|                                         |                                    | $\leftarrow$                   |                                             |                                                                  |                                                        |              |                                      |                    | Chatte 2 12 5                |          | $\vdash$  |                  | -          |
|                                         |                                    |                                |                                             |                                                                  |                                                        | Carre        | Silf Flandstne                       |                    | Chamber 12.5                 |          |           |                  | <u> </u>   |
|                                         |                                    |                                |                                             |                                                                  |                                                        | Con          | w/ Blic law in                       |                    |                              |          |           |                  | _          |
|                                         | 15                                 |                                |                                             |                                                                  |                                                        | Bru          | sandy Shale                          |                    |                              | Ш        |           |                  |            |
|                                         |                                    |                                |                                             |                                                                  |                                                        | Brn          | sandy Shale                          |                    | 1640                         |          |           |                  | L          |
|                                         |                                    |                                |                                             |                                                                  |                                                        |              | <u> </u>                             |                    |                              |          |           |                  |            |
|                                         |                                    |                                |                                             | 7                                                                |                                                        |              |                                      |                    |                              |          |           |                  |            |
|                                         |                                    |                                |                                             | H -9-                                                            | -                                                      | 8214<br>8214 | Sandy Seam (CI" this                 | <b>د</b> ک         |                              |          |           |                  |            |
|                                         | 20                                 |                                |                                             |                                                                  |                                                        | Tau          | Flandstone                           |                    | chatle @ 195                 | F        |           |                  |            |
|                                         |                                    |                                |                                             |                                                                  |                                                        |              | Cottones Day                         | ુ "ે હ્વ           |                              |          |           |                  |            |
|                                         |                                    |                                |                                             |                                                                  |                                                        |              | •                                    |                    | U                            |          |           |                  |            |
|                                         |                                    |                                |                                             |                                                                  |                                                        |              |                                      |                    | Water After Ade              | e e      | d         |                  |            |
|                                         |                                    |                                |                                             |                                                                  |                                                        |              |                                      | <del></del>        |                              | $\vdash$ | $\dashv$  | $\dashv$         |            |
|                                         | 25                                 |                                |                                             |                                                                  |                                                        |              | <u> </u>                             | 1                  | ·                            |          |           |                  |            |
| * When                                  |                                    | ring, ente                     | r rock brol                                 | ceness.                                                          |                                                        |              |                                      |                    |                              |          |           |                  |            |
| ** Includ<br>Rema                       |                                    | tor reading                    | g in 6 foot                                 | intervals @                                                      | borehole. In                                           | ncrease      | reading frequency if elevated repons | e read.            | Drillir<br>Basksmann         | -        | _         | <del></del>      | _          |
| 1 101116                                |                                    | 5                              | 5"                                          | B A                                                              | v no)                                                  | Mry          | 0 - 8.8                              |                    | Background                   | (ppr     | n):[<br>  | g                | <u>-</u> _ |
| Conv                                    | erted                              | to Wel                         |                                             | Yes                                                              |                                                        |              |                                      | I.D. #:            | 18J Nu                       | 725      | <u></u>   |                  | _          |
|                                         |                                    |                                |                                             |                                                                  |                                                        |              | AACII I                              | π.                 | 100 15                       |          |           |                  |            |



Page \_\_\_\_ of \_\_\_\_\_\_

| PROJECT NAME:     | NSA Crane - SWMU 18 | BORING No.: | 18JMW 7801               |
|-------------------|---------------------|-------------|--------------------------|
| PROJECT NUMBER:   | 112G01851           | DATE:       | 12/17/11                 |
| DRILLING COMPANY: | Micah Group         | GEOLOGIST:  | T. Evass                 |
| DRILLING RIG:     | CT & SS Noch        | DRILLER:    | Ben Borth / IN # 2359 WD |

| DHIL                       | LINC                               | nia.                           |                                             | <u> </u>                                                         | <u> </u>                                               | - 177°         | DRILLER:                                                   |                  | bell burtil / liv # 2.  |        |                 |            |          |
|----------------------------|------------------------------------|--------------------------------|---------------------------------------------|------------------------------------------------------------------|--------------------------------------------------------|----------------|------------------------------------------------------------|------------------|-------------------------|--------|-----------------|------------|----------|
|                            |                                    |                                |                                             |                                                                  | M                                                      | IATE           | RIAL DESCRIPTION                                           |                  |                         | ID/FI  | ) Rea           | eading (pp | ppm)     |
| Sample No. and Type or RQD | Depth<br>(Ft.)<br>or<br>Run<br>No. | Blows /<br>6" or<br>RQD<br>(%) | Sample<br>Recovery<br>/<br>Sample<br>Length | Lithology<br>Change<br>(Depth/Ft.)<br>or<br>Screened<br>Interval | Soil Density/<br>Consistency<br>or<br>Rock<br>Hardness | Color          | Material Classification                                    | U S C S *        | Remarks                 | Sample | Headspace       | Borehole** | BZ**     |
|                            |                                    |                                |                                             | 17                                                               |                                                        | Svh            | f soudstone                                                |                  |                         |        |                 |            |          |
|                            |                                    |                                |                                             | - 1                                                              |                                                        |                |                                                            |                  | 1022                    |        |                 |            |          |
|                            |                                    | /                              |                                             |                                                                  |                                                        | and the second |                                                            |                  |                         |        |                 |            | Ш        |
|                            |                                    | _                              |                                             |                                                                  |                                                        | 7              |                                                            | _                | 1700 8 3 6 /            |        |                 |            | $\vdash$ |
|                            | 30                                 |                                |                                             |                                                                  |                                                        |                |                                                            |                  | 1700@ 291               |        |                 |            |          |
|                            |                                    | $\angle$                       |                                             |                                                                  |                                                        |                | ····                                                       |                  | 12/18 @0855<br>WL = 18' |        |                 |            | $\vdash$ |
|                            |                                    | <                              |                                             |                                                                  |                                                        |                | 11                                                         |                  | 10 = ( = (              |        |                 |            | $\vdash$ |
|                            |                                    | -                              |                                             |                                                                  |                                                        |                | 2" puc został screen                                       | +                | 18.5 - 28.5             |        |                 | -          |          |
|                            |                                    | $/\!\!-$                       |                                             |                                                                  |                                                        |                | 2" puc rostot screen<br># 2 Sand ( 15 Sent la<br>Centurite | 201              | 16.5 - 29.0             | _      | $\vdash$        |            | $\vdash$ |
| $\vdash$                   |                                    | $\overline{}$                  |                                             |                                                                  |                                                        |                | bentwite                                                   | -                | 15.8 - 16-3             |        |                 |            | Н        |
| $\vdash$                   |                                    | -                              |                                             |                                                                  |                                                        |                |                                                            | <del>  -  </del> |                         |        |                 |            | $\vdash$ |
| -                          |                                    | $\overline{}$                  |                                             |                                                                  |                                                        |                |                                                            |                  |                         | _      |                 |            | $\vdash$ |
|                            |                                    |                                |                                             |                                                                  |                                                        |                |                                                            |                  |                         |        |                 |            |          |
|                            |                                    |                                |                                             |                                                                  |                                                        |                |                                                            |                  |                         |        |                 |            |          |
|                            |                                    |                                |                                             |                                                                  |                                                        |                |                                                            |                  |                         |        |                 |            |          |
|                            |                                    |                                |                                             |                                                                  |                                                        |                |                                                            |                  |                         |        |                 |            |          |
|                            |                                    |                                |                                             |                                                                  |                                                        |                |                                                            |                  |                         |        |                 |            |          |
|                            |                                    | /                              |                                             |                                                                  |                                                        |                |                                                            | <u> </u>         |                         |        |                 |            |          |
|                            |                                    | $\leq$                         |                                             |                                                                  |                                                        |                |                                                            |                  |                         |        |                 |            |          |
|                            |                                    | $\angle$                       |                                             |                                                                  |                                                        |                |                                                            | _                |                         |        |                 |            | $\vdash$ |
|                            |                                    | /                              |                                             |                                                                  |                                                        | ,              |                                                            | -                |                         |        | $\vdash \vdash$ |            | $\vdash$ |
|                            |                                    |                                |                                             |                                                                  |                                                        |                |                                                            | -                |                         |        |                 |            | $\vdash$ |
|                            |                                    | $\langle \  \  \  \rangle$     |                                             |                                                                  |                                                        |                |                                                            | $\vdash$         |                         |        |                 |            | $\dashv$ |
|                            |                                    |                                |                                             |                                                                  |                                                        |                |                                                            |                  |                         |        |                 |            |          |

| When rock coring, enter rock Include monitor reading in 6 Remarks: |     | borehole. Inc. | ency if elevated reponse read. | Drilling Area<br>Background (ppm): |            |
|--------------------------------------------------------------------|-----|----------------|--------------------------------|------------------------------------|------------|
| Converted to Well:                                                 | Yes |                | No                             | Well I.D. #:                       | 18 JAW7001 |



# BEDROCK MONITORING WELL SHEET WELL INSTALLED IN BEDROCK

Tetra Tech NUS, Inc.

| PROJECT NSA Crane - SWMU 18 L( | OCATION Subarra T                                       | DRILLER Micah Group /    |
|--------------------------------|---------------------------------------------------------|--------------------------|
| PROJECT NO. 112G01851 B0       | ORING 19.7 MW TOO!                                      | Ben Borth IN # 2359 WD   |
| DATE BEGUN 12-17-11 DA         | ATE COMPLETED 12-18-11                                  | METHOD HISA / AIR ROTAY  |
| GROUND ELEVATION 650, 24 DA    | ATUM NAVD 88                                            | DEVELOPMENT SURGE/PUMP   |
|                                | ELEVATION/HEIGHT OF TOP OF                              | SURFACE CASING:653,473.2 |
|                                | ELEVATION/HEIGHT TOP OF RIS                             | SER: 653,1/2.9           |
|                                | TYPE OF SURFACE SEAL: COM                               |                          |
|                                | I.D. OF SURFACE CASING:                                 | 6"                       |
|                                | DIAMETER OF HOLE:                                       | 1'                       |
|                                | TYPE OF RISER PIPE: S. N.                               | o pvc                    |
|                                | TYPE OF BACKFILL: ( Fun f v                             | 1 - Bentonite            |
|                                | ELEVATION/DEPTH TOP OF SEA                              | L: 636.4/13.8            |
| I.O.R.                         | ELEVATION/DEPTH TOP OF BED TYPE OF SEAL: Benton         |                          |
|                                |                                                         |                          |
|                                | ELEVATION/DEPTH TOP OF SAN                              | D: 633.7/16.5            |
|                                | ELEVATION/DEPTH TOP OF SCR                              | to PUC                   |
|                                | SLOT SIZE × LENGTH: 0.020 I.D. SCREEN: 2 19             | <u></u>                  |
|                                | TYPE OF SAND PACK: Glob                                 | 20)                      |
|                                | DIAMETER OF HOLE IN BEDROC                              | к: <u>5,5''</u>          |
|                                |                                                         |                          |
|                                | ELEVATION/DEPTH BOTTOM SCR<br>ELEVATION/DEPTH BOTTOM OF | SAND: 621,2/29.0         |
|                                | ELEVATION/DEPTH BOTTOM OF BACKFILL MATERIAL BELOW SAI   |                          |



Page \_\_/\_ of \_\_/\_

PROJECT NAME: NSA CLAME SWM DD BORING No.: 22 MWTO 1
PROJECT NUMBER: 1/2602362 DATE: MAY 10. 2012

DRILLING COMPANY: MILAN GROUP / R. SIMANG

DRILLING RIG: CME 55 DRILLER: J. SMX A

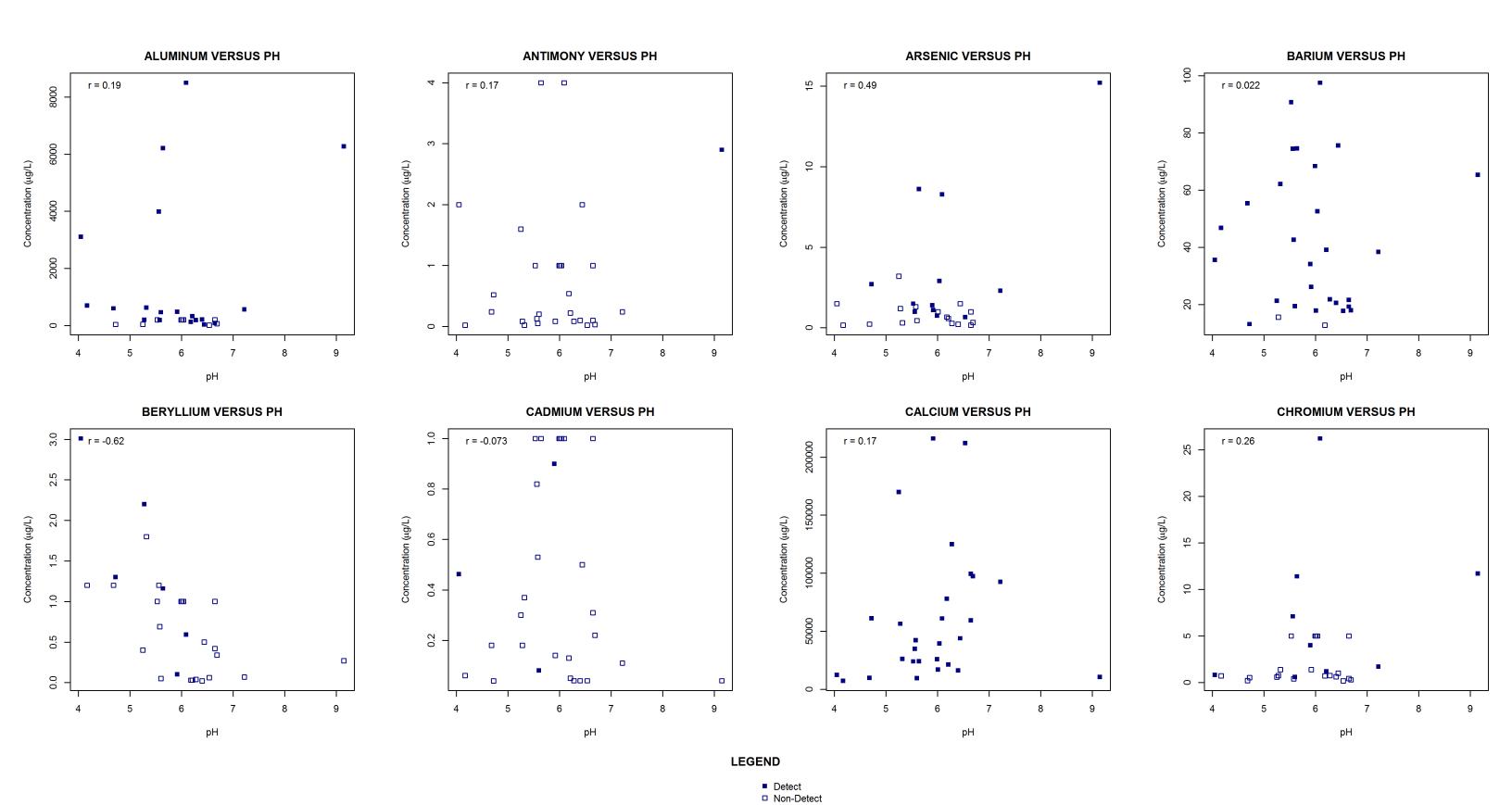
| DHIL                                   | LING                               | i RIG:                         |                                             | - CmE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 35                                                     |             | DRILLER:                           | J. SMY on           |          |             |            |              |
|----------------------------------------|------------------------------------|--------------------------------|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|-------------|------------------------------------|---------------------|----------|-------------|------------|--------------|
|                                        |                                    |                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M                                                      | ATE         | RIAL DESCRIPTION                   |                     | PID/FI   | D Rea       | ding (     | (ppm)        |
| Sample<br>No.<br>and<br>Type<br>or RQD | Depth<br>(Ft.)<br>or<br>Run<br>No. | Blows /<br>6" or<br>RQD<br>(%) | Sample<br>Recovery<br>/<br>Sample<br>Length | Lithology<br>Change<br>(Depth/Ft.)<br>or<br>Screened<br>Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Soil Density/<br>Consistency<br>or<br>Rock<br>Hardness | Color       | Material Classification S          | Remarks             | Sample   | Sampler BZ  | Borehole** | Driller BZ** |
| 51                                     | 0-1                                | 6/13                           |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V. Duse                                                | GRAI        | SILTY COMESE LS good. GF           | ,                   | ೦        | ပ           | O          | O            |
|                                        | 1-2                                | 23/25                          |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | Ban         | Sould (fu) 5.17 and 5. lby food 57 | 1 13:36 welled jack |          | Щ           |            |              |
| 5-2                                    | 2-3                                | 50/10                          |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | V. Dene                                                | - 600       | Whatted with give the soudston     | mother socie        |          | Ш           |            |              |
|                                        | 3-4                                |                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | 0147        |                                    | 13:46               |          |             | <u> </u>   | Н            |
| 5-3                                    | 4 4                                | AF                             |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 3061                                                   | RM          | MILALLOUS Sort S. 1/5/Two          | 13.54               | _        |             |            | Н            |
|                                        | 5-0                                |                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u></u>                                                | PW<br>01M   |                                    |                     | 0        | 0           | 0          | ٥            |
| 5-4                                    | 9-7                                | 1/1                            |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 301                                                    | Bin         | renthal silty tog soudshire        | 14:03               |          | _           |            |              |
|                                        | 7.3                                | 10 1                           |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | De m        | and in fac holded &. Its for       |                     | -        |             | _          |              |
| 5-5                                    | 3-1                                |                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 58 +                                                   | John Trains |                                    | 14:06               | _        | H           | -          | $\vdash$     |
|                                        | 3 ,                                | 1/1                            |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | orers       | /                                  |                     | ۵.       | 1           | _          | Н            |
| 36                                     | 12.1                               |                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 306+                                                   | Ben         | microcas, sorty (for) 5/bh         | 14:10               | 0        | 0           | 0          | 0            |
| 1.0                                    | 11:13                              |                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | Para        | weatherst.                         |                     |          |             | -          | Н            |
| 5-7                                    | 12-13<br>13-14                     |                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | that c                                                 | 612         | Micros silly for good              | 14:15               |          |             |            | Н            |
| 5º,                                    | 13-17                              |                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | 612         | Sondatent, maist                   |                     | ┢        |             |            | Н            |
| 23                                     |                                    | 1./                            |                                             | =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | HARD                                                   | 60          | Microcon, inter bolded state       | 19:20               | 0        | 0           | _          | Ţ            |
| 5-9                                    | 15.16                              |                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m. Hard .                                              | 600         | siltstore + Fig sondalure, moist   |                     |          | <i>C.</i> 3 | <u></u>    | $\cap$       |
|                                        | N-17<br>17-18                      |                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1tarà                                                  | Gra         |                                    |                     | $\vdash$ |             | $\vdash$   |              |
| <b>5</b> -10                           | _                                  | $\frac{1}{i}$                  |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M. Harl                                                |             | muncuus, sont (F) SHALY            | 14:25               |          |             |            | Н            |
|                                        | 19-20                              |                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | I or LIMAN                                             | 1           | 5.11store moint                    | ,,,,,,              |          |             |            |              |
| 5-11                                   |                                    |                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | m. Hart                                                |             |                                    | 19135               | 0        | 0           | 0          | 0            |
|                                        | 27:15                              |                                |                                             | Processing of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the control of the con |                                                        | 620         |                                    |                     |          |             |            |              |
| 5-12                                   |                                    |                                |                                             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | M. Hard                                                | -           |                                    | 14.35               |          |             |            |              |
|                                        | 18 M                               |                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                        | gir.        |                                    |                     |          |             |            |              |
|                                        | 1.535                              |                                |                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Milhori                                                | 28.0        |                                    | wito bese atten     |          |             |            |              |
| * When                                 | rook o                             | aring onto                     | er rock bro                                 | keness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                        |             |                                    | 60 May 1016         |          |             |            |              |

|             |                     |                | 7.7                 |                     |                           | - ( O De - 3  |               |   |
|-------------|---------------------|----------------|---------------------|---------------------|---------------------------|---------------|---------------|---|
| When rock   | coring, enter roc   | k brokeness.   |                     | _                   |                           | polling rolls |               |   |
| * Include m | onitor reading in 6 | foot intervals | @ borehole. Increas | e reading frequency | if elevated reponse read. |               | Drilling Area |   |
| Remarks     | s: ; 20             | 6-17 3         | : 24 365            | 48 = 15 ·           | must triline              | RJI LE Backg  | round (ppm):  | 0 |
|             | b. d.               | 2" 05 5        | C12 46 PVC          | screen o            | .010 SLOT (15             | 5'-25') DST   | 6PA 3,014     |   |
|             | sandpack            | 131-76         | Bernent             | 21 12 42/21         | 10'-13'                   |               |               |   |
| Converte    | ed to Well:         | Yes            | ×                   | No                  | Well I.D. #:              | DAMMEC        | 01            |   |



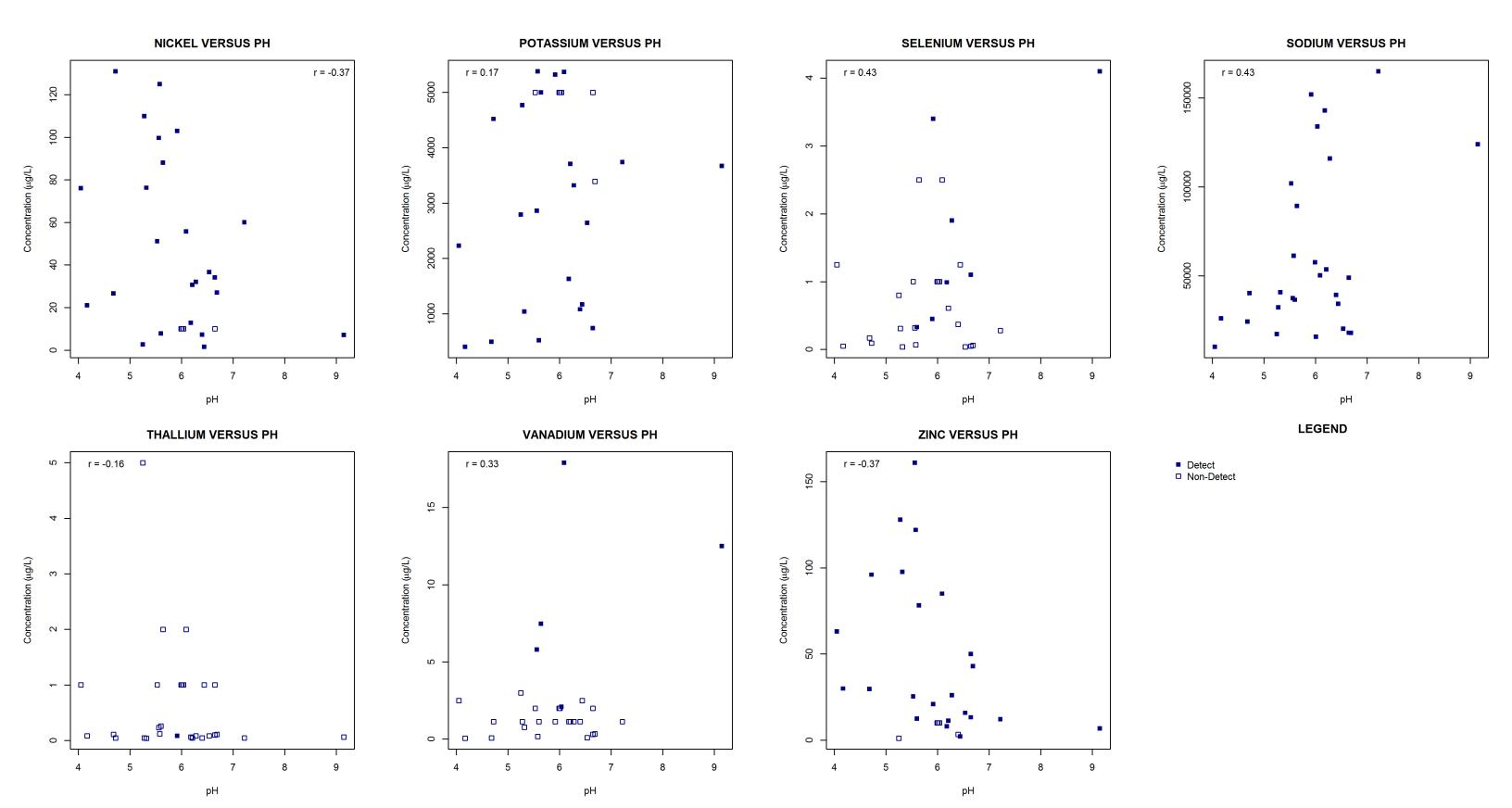
.....

WELL No.: 22-MWT01


MONITORING WELL SHEET PERMIT No:

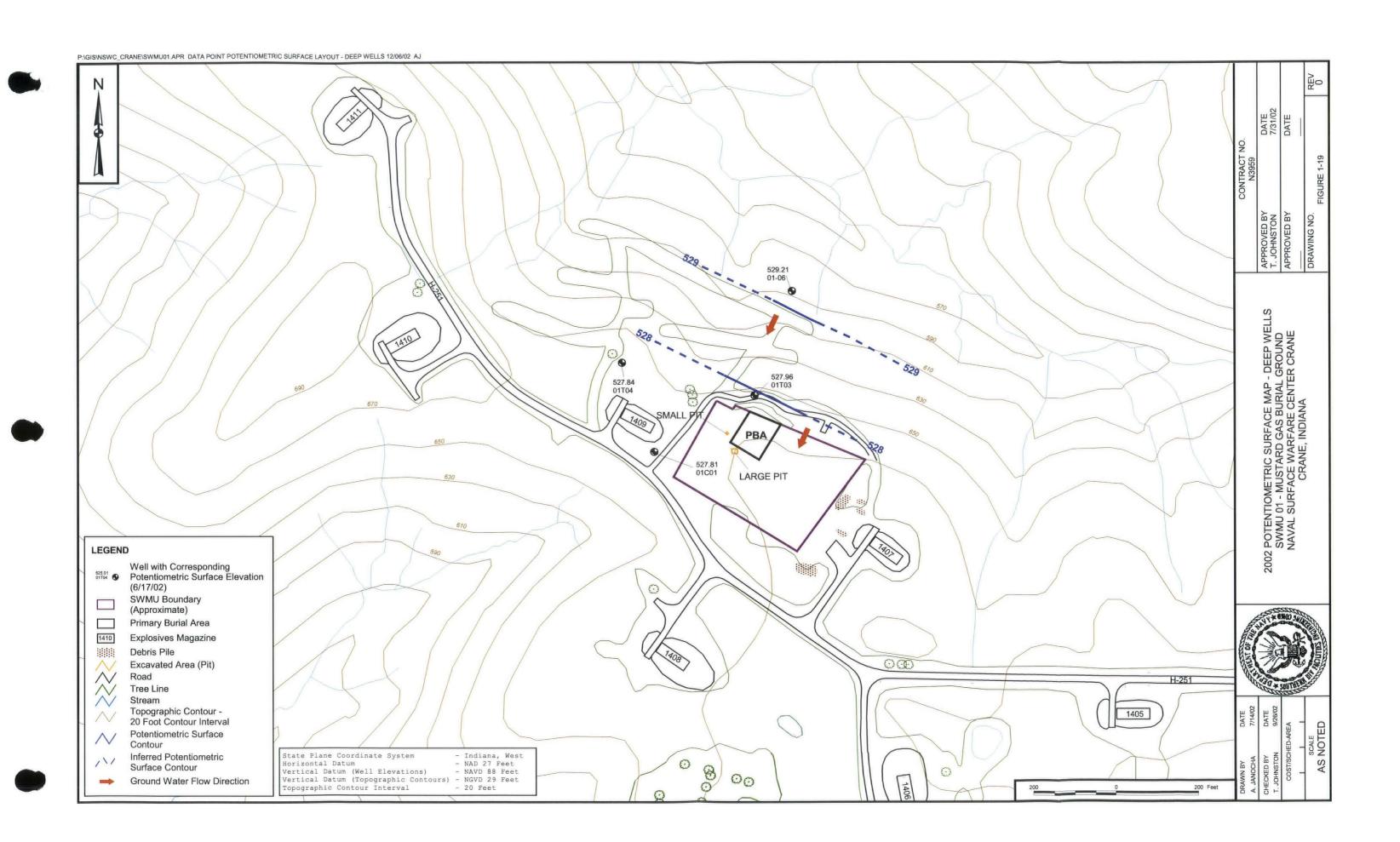
22-MWT01 PROJECT: NSA Crane SWMU 22 BORING No.: DRILLING Co.: Micah Group / R. Simmons DATE COMPLETED: 05/11/12 PROJECT No.: 112G02362 DRILLER: J. Russel SITE: Lead Azide Pond DRILLING METHOD: H.S.A. / Air Rotary NORTHING: 1315811.32 GEOLOGIST: J. Ferguson DEV. METHOD: Surge / Submersible pump **EASTING:** 3027409.14 768.94 / 2.77 Elevation / Depth of Top of Riser: Elevation / Height of Top of 768.74 Surface Casing: 2.47 I.D. of Surface Casing: 6 - inch Vertical Datum NAVD 88 Horizontal Datum: NAD 83 Type of Surface Casing: Schedule 40 Steel Ground Elevation: 766.47 Type of Surface Seal: Concrete I.D. of Riser: 2" ID, flush joint Type of Riser: Schedule 40 PVC Borehole Diameter: 8.25 inch Bentonite -cement Type of Backfill: mixture 756.47 / 10.0 Elevation / Depth of Seal: Type of Seal: Bentonite Pellet Elevation / Depth of Top of Filter Pack: 13.0 Elevation / Depth of Top of Screen: 751.47 15.0 6" ID Air Rotary Borehole Schedule 40 PVC Type of Screen: Slot size/ screen length: 0.010 Slot - 10' I.D. of Screen: 2" inside daimeter PVC Type of Filter Pack: DSI GP#2 Silica Sand Elevation / Depth of Bottom of Screen: 25.0 Elevation / Depth of Bottom of filter pack: 741.47 25.0 Type of Backfill Below Well: DSI GP#2 Silica Sand 741.47 Elevation / Total Depth of Borehole: 25.0 Not to Scale

#### **APPENDIX C**


CORRELATION PLOTS OF METALS AND pH

#### CORRELATION OF METALS AND PH SWMU 18 - LOAD AND FILL AREA NSA CRANE, CRANE, INDIANA PAGE 1 OF 3



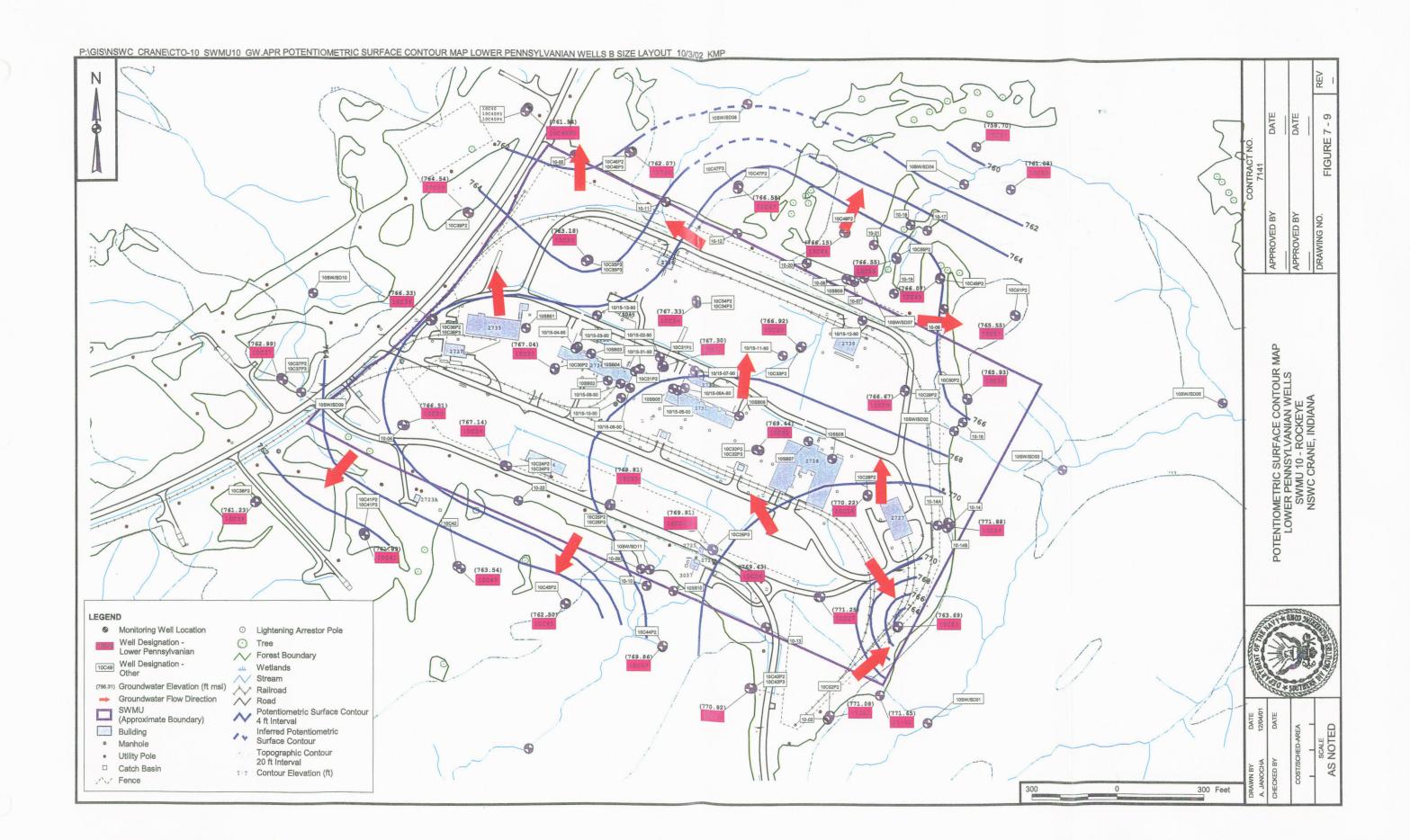

CORRELATION OF METALS AND PH SWMU 18 - LOAD AND FILL AREA NSA CRANE, CRANE, INDIANA PAGE 2 OF 3

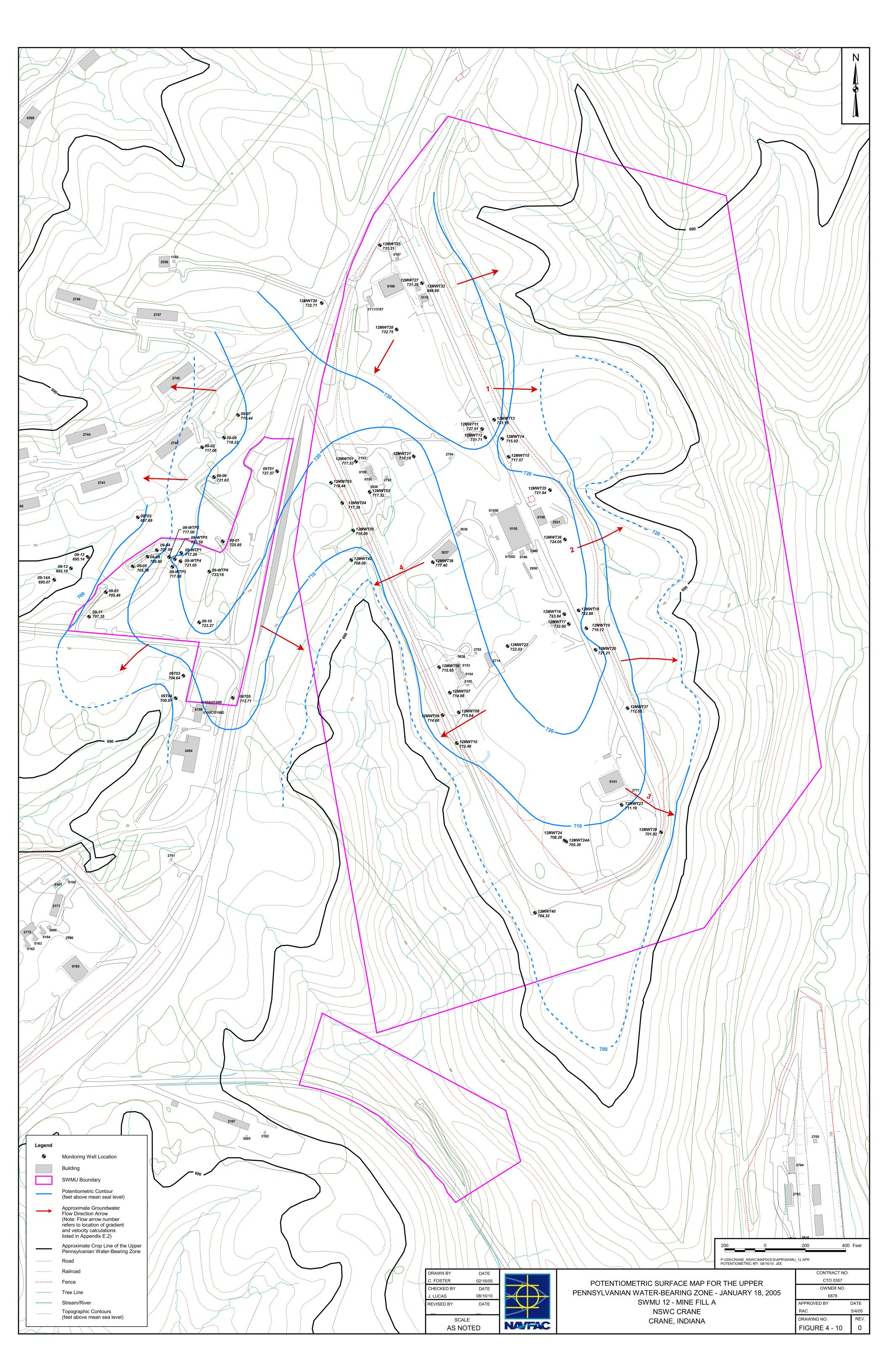
#### CORRELATION OF METALS AND PH SWMU 18 - LOAD AND FILL AREA NSA CRANE, CRANE, INDIANA PAGE 3 OF 3

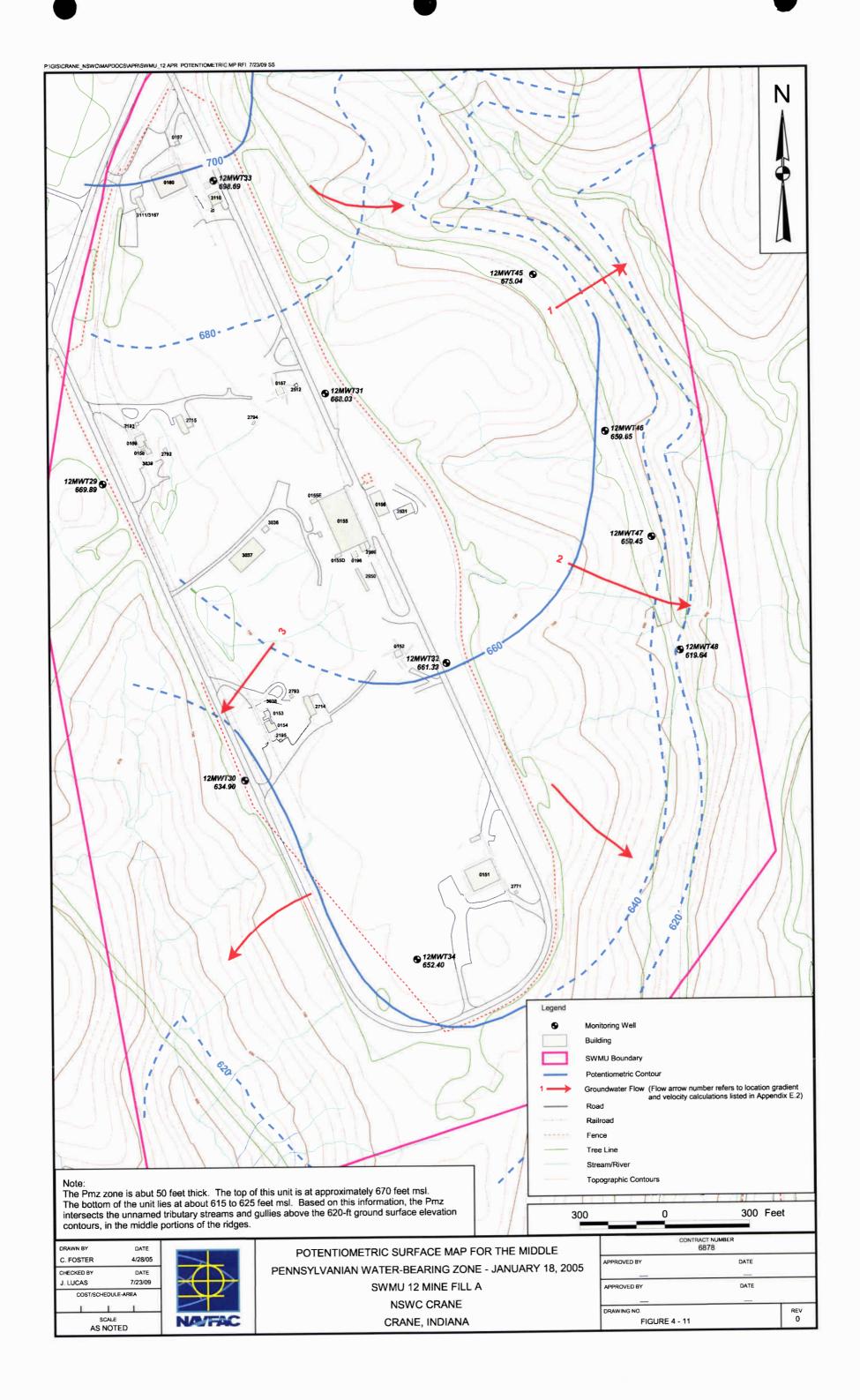


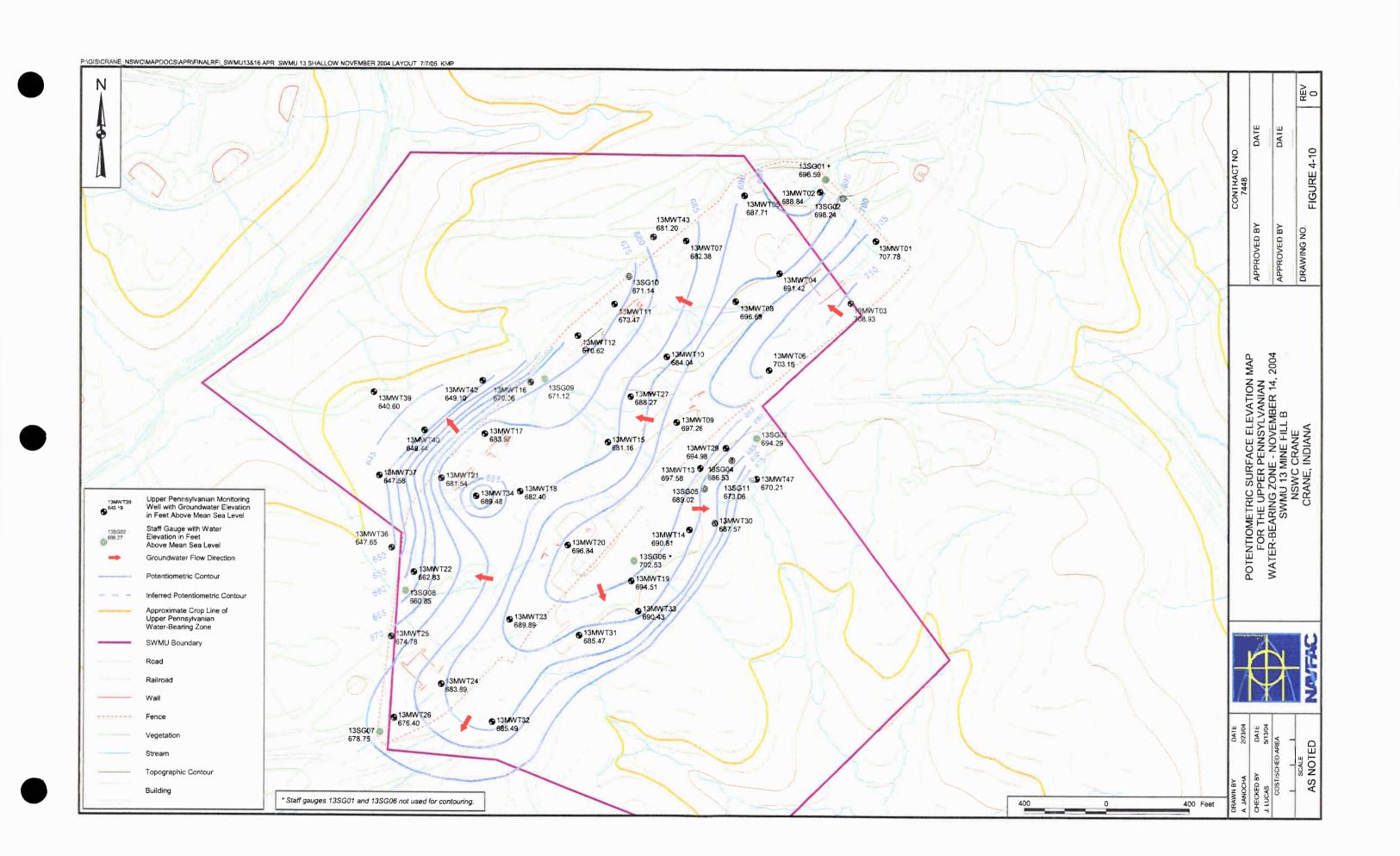
#### **APPENDIX D**

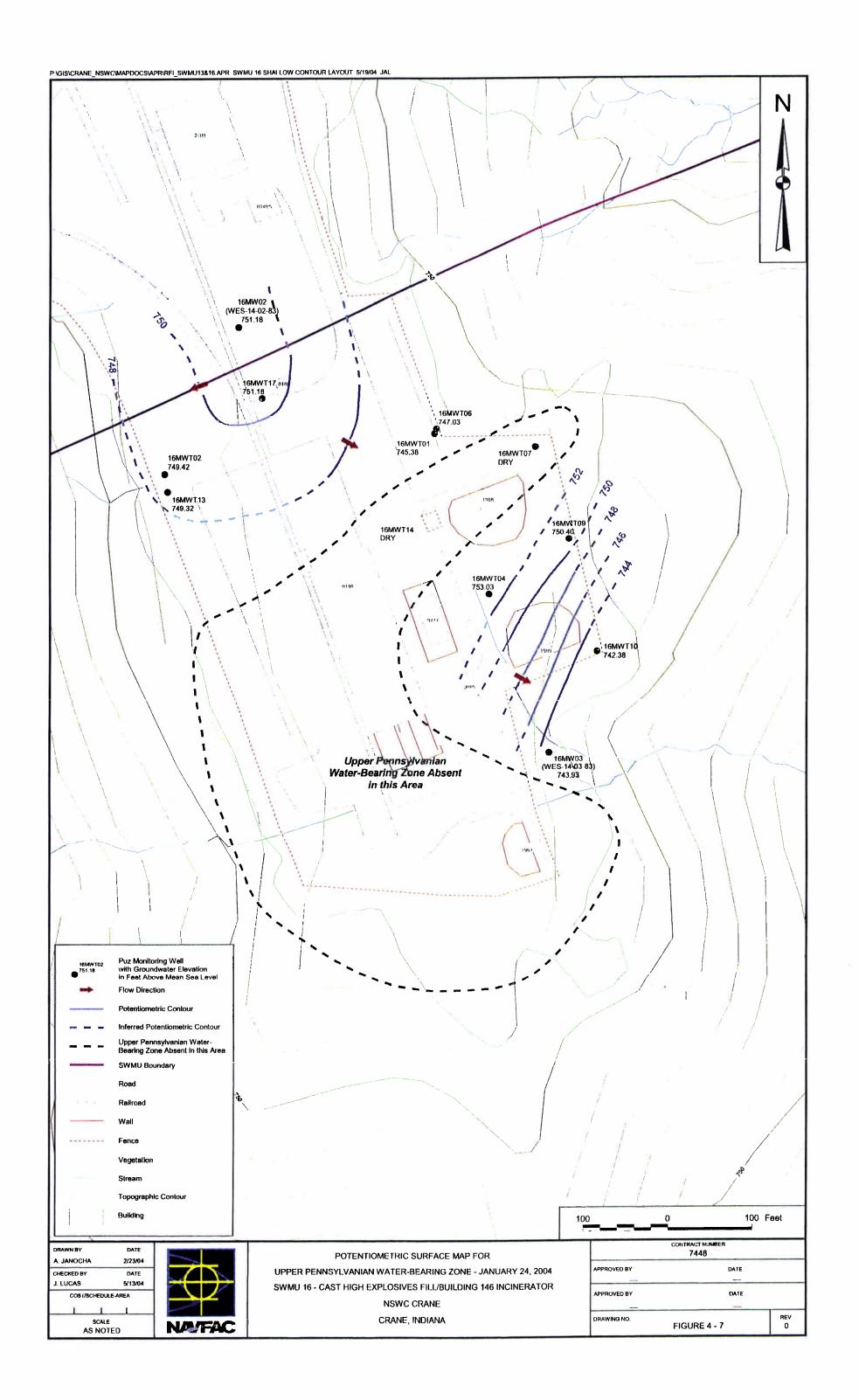
### GROUNDWATER POTENTIOMETRIC SURFACE MAPS

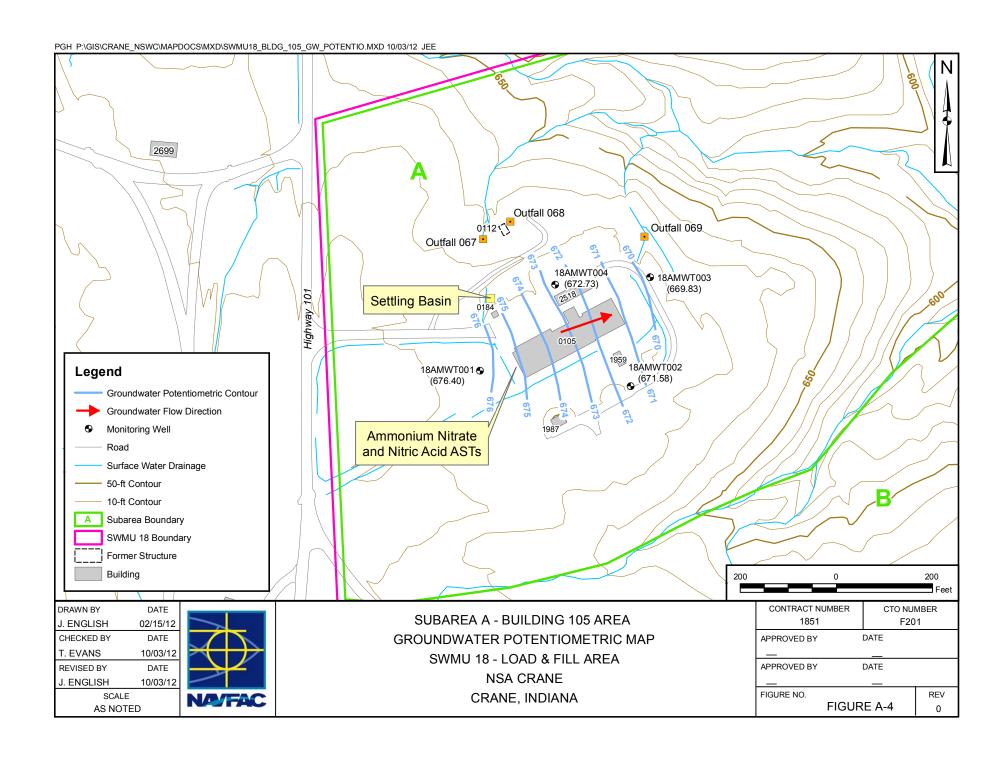


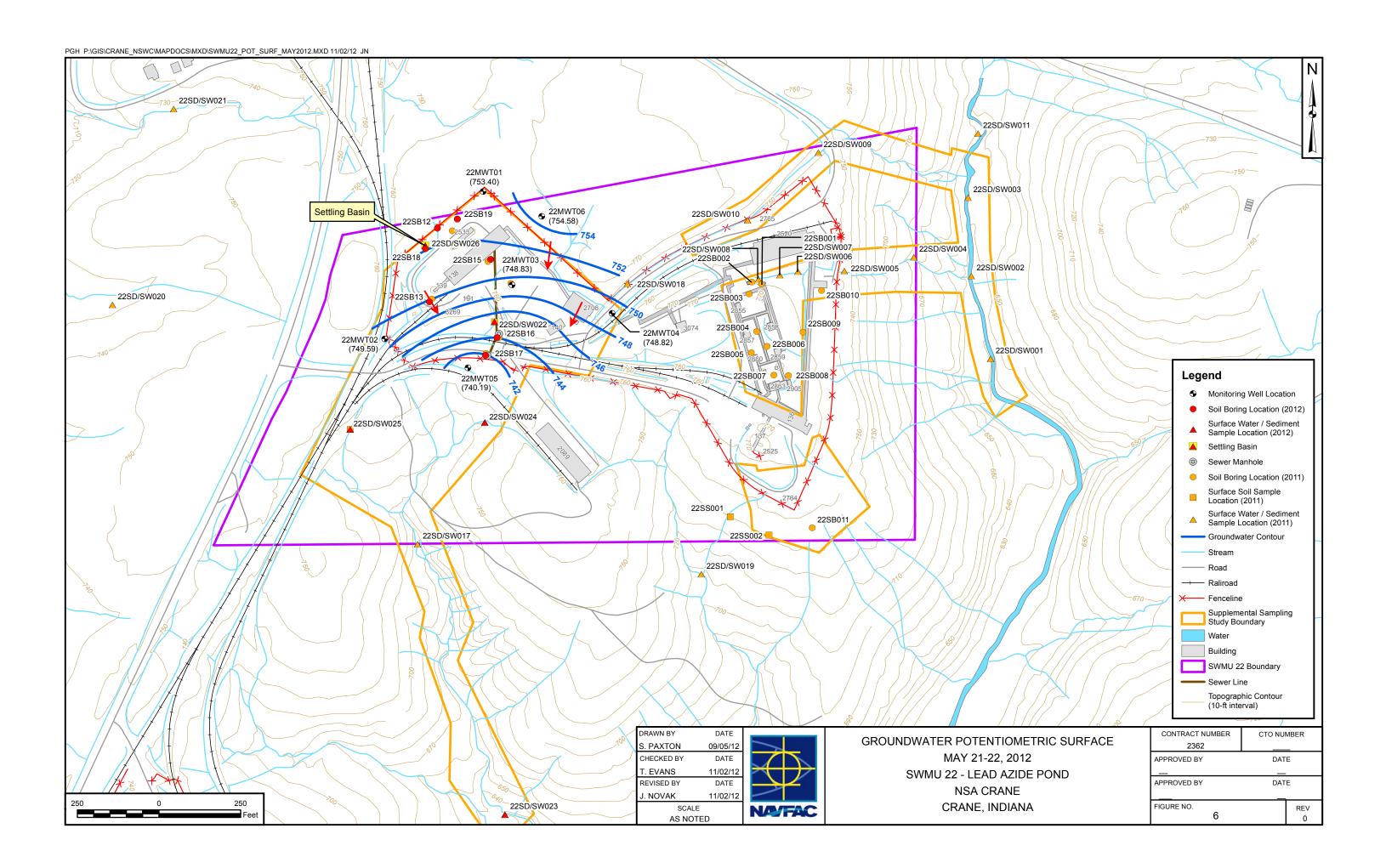


NSWC CRANE


CRANE, INDIANA


SCALE AS NOTED DRAWING NO. FIGURE 1 - 5


REV 0














#### APPENDIX E

STATISTICAL ANALYSIS

#### STATISTICAL EVALUATION

Total inorganics data from upgradient monitoring wells in the Pennsylvanian bedrock at NSA Crane were evaluated to determine background concentrations. This section presents the data analysis and results of the statistical evaluations performed to establish the background data set for groundwater in the Pennsylvanian bedrock at NSA Crane. The statistical software package R version 2.15.0 and ProUCL version 4.1.1 were used for the statistical evaluations presented in this section.

The first step in determining the background data set is to evaluate the data for potential outliers. Potential outliers are measurements that are extremely large or small relative to the rest of the data and therefore are suspected of misrepresenting the population from which they were collected. Potential outliers may be a result of transcription errors, data-coding errors, or measurement system problems. However, outliers may represent true extreme values of a distribution and indicate more variability in the population than was expected.

Potential outliers were identified using boxplots (see Figures 1 through 22). Boxplots show the central tendency, degree of symmetry, range of variation, and potential outliers of a data set. The data set is shown as a rectangular box that represents the middle 50 percent of the data. The upper value of the box represents the 75<sup>th</sup> percentile and the lower value of the box represents the 25<sup>th</sup> percentile. The median is represented by the middle line in the box. Outliers on the box and whisker plots were plotted as circles.

Potential outliers were investigated using a formal outlier test (Rosner's Test, or Nonparametric Test). The following rationale was used to determine which if any outlier hypothesis tests to use to investigate the points identified on the boxplots:

- If the data were more than 90% non-detect no evaluation and the data point was retained in the data set
- If the data were lognormal or normal, there were less than 15 % non-detects, and more than 25 samples Rosner's Test was computed.
- If the data were not normal or lognormal and all detected the non-parametric outlier test was computed.
- If the data were lognormal or normal and there were between 15 and 90 percent the nonparametric outlier test.

Details of Rosner's Test can be found in EPA's Data Quality Assessment: Statistical Methods for Practitioners and details of the nonparametric outlier test can be found in Handbook of Parametric and Nonparametric Statistical Procedures. Both hypothesis tests test the Null Hypothesis that there are outliers present versus the alternative hypothesis that outliers are not present. For the parametric tests a five percent significance level was used. For the non-parametric test outliers were considered statistically significant when the test statistic,  $\frac{|x_i-meidan|}{Median\ Absolute\ Difference}$ , was greater than 5.

The data distribution was determined using the following rationale:

- If the data were more than 50 percent non-detect assume nonparametric.
- If the Shapiro Wilk test on raw data concludes normal, data are normally distributed.
- If the Shapiro Wilk Test on natural log of data concludes lognormal, data are lognormally distributed.
- If the Shapiro Wilk test on raw and natural log data determined that the data are not normal or lognormally distributed then the data are nonparametric.

As noted in USEPA's Data Quality Assessment: Statistical Methods for Practitioners, "Statistical outlier test give the analyst probabilistic evidence that an extreme value does not "fit" with the distribution of the remainder of the data and is therefore a statistical outlier. These tests should only be used to identify data points that require further investigation. The tests alone cannot determine whether a statistical outlier should be discarded or corrected within a data set. This decision should be based on judgmental or scientific grounds."

Table 1 presents the frequency of detection (FOD), percent detected, number of outliers evaluated, the data distribution of the data without the suspected outlier, the outlier test computed, and the conclusion of the outlier test. Tables 2 and 3 present the results of Rosner's Test and the nonparametric test respectively.

After the statistically significant outliers were identified the wells with identified were investigated to see if there was a scientific reason (i.e., well location, turbidity) that identified outliers should not be included in the background dataset. Statistically significant outliers were identified in 7 samples (12GWT2501, 13GWT0301, 13GWT2801, 16GWT1701, 18IGWT001, 18AGWT001, 18GGWT004, and 22GWTW001).

- Data from sample 22GWTW001 was retained in the background dataset. The identified outlier
  was for lead, the majority of the data for lead are non-detect with low detections. However, there
  is no information that indicates that the outlier is not representative of actual background
  conditions.
- Data from sample 12GWT2501 was retained in the background dataset. The identified outlier
  was for selenium; the majority of the data for selenium are non-detect with low detections.
  However there is no information that indicates that the outlier is not representative of actual
  background conditions.
- Data from samples 13GWT0301 and 13GWT2801 were retained in the background dataset.
   There is no information that indicates that the outlier is not representative of actual background conditions.
- Data from sample 16GWT1701 were retained in the background dataset. There is no information that indicates that the outlier is not representative of actual background conditions.
- Data from samples18IGWT001, 18AGWT001, and 18GGWT004 were retained in the background dataset. There is no information that indicates that the outliers are not representative of actual background conditions.

After the data sets were evaluated for any potential outliers, basic summary statistics [FOD, range of non-detects, minimum detected concentration, maximum detected concentration, and 95% upper tolerance limit with 95 percent coverage(UTL)] were computed and are presented in Table 4. The 95% UTL is the upper value of the limit that covers 95 percent of the population with a 95%confidence. ProUCL version 4.1.1 was used to calculate the 95% UTLs. The following rationale was used to determine which UTL to use from the ProUCL output.

- If all data detected and data distribution is Normal 95% UTL with 95% coverage from normal statistics output is used.
- If all data are detected and data distribution is not Normal 95% UTL with 95% coverage from nonparametric output is used.

• If any data are non-detected 95% Kaplan Meier UTL with 95% coverage from nonparametric

output is used.

#### **REFERENCES**

R Development Core Team, 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org/.

Sheskin, David. 2004. Handbook of Parametric and Nonparametric Statistical Procedures, Third Edition.

USEPA, 2006. Data Quality Assessment: Statistical Methods for Practitioners EPA QA/G-9S. EPA/240/B-06/003Office of Environmental Information Washington D.C.

#### TABLE 1 OUTLIER TESTS AND CONCLUSIONS PENNSYLVANIAN WELL BACKGROUND GROUNDWATER EVALUATION

| PARAMETER       | FOD   | NUMBER OF<br>POTENTIAL<br>OUTLIERS | NORMAL<br>P-VALUE | LOGNORMAL P-<br>VALUE | DATA DISTRIBUTION     | OUTLIER TEST <sup>(1)</sup> | CONCLUSION                                                                                       |
|-----------------|-------|------------------------------------|-------------------|-----------------------|-----------------------|-----------------------------|--------------------------------------------------------------------------------------------------|
| TOTAL METALS    |       |                                    |                   |                       |                       |                             |                                                                                                  |
| TOTAL ALUMINUM  | 19/28 | 5                                  | 0.004944          | 0.02689               | Nonparametric         | Nonparametric Test          | 18IGWT001, 13GWT2801, 18GGWT004, 13GWT0301, and 18AGWT001 are statistically signficant outliers. |
| TOTAL ANTIMONY  | 1/28  | 3                                  | NA                | NA                    | Assumed Nonparametric | No Evaluation               | NA                                                                                               |
| TOTAL ARSENIC   | 12/29 | 4                                  | NA                | NA                    | Assumed Nonparametric | Nonparametric Test          | 13GWT2801, 18GGWT004, and 18IGWT001 are statistically significant outliers.                      |
| TOTAL BARIUM    | 27/29 | 0                                  | 0.005937          | 0.05668               | Log-Normal            | Parametric Test             | No Outliers                                                                                      |
| TOTAL BERYLLIUM | 6/28  | 1                                  | NA                | NA                    | Assumed Nonparametric | Nonparametric Test          | No Statistically Significant Outliers                                                            |
| TOTAL CADMIUM   | 3/29  | 0                                  | NA                | NA                    | Assumed Nonparametric | Nonparametric Test          | No Outliers                                                                                      |
| TOTAL CALCIUM   | 28/28 | 2                                  | 0.002309          | 0.6476                | Log-Normal            | Parametric Test             | No Statistically Significant Outliers                                                            |
| TOTAL CHROMIUM  | 9/29  | 2                                  | NA                | NA                    | Assumed Nonparametric | Nonparametric Test          | 18IGWT001 and 13GWT2801 are a Statistically Signifcant Outliers                                  |
| TOTAL COBALT    | 21/28 | 0                                  | 0.005057          | 0.03454               | Nonparametric         | Nonparametric Test          | No Outliers                                                                                      |
| TOTAL COPPER    | 17/28 | 3                                  | 0.1408            | 0.008892              | Normal                | Nonparametric Test          | 18GGWT004, 18IGWT001 and 18AGWT001 are statistically signifcant outliers                         |
| TOTAL IRON      | 25/28 | 5                                  | 2.12E-07          | 0.7755                | Log-Normal            | Parametric Test             | No Statistically Significant Outliers                                                            |
| TOTAL LEAD      | 4/29  | 4                                  | NA                | NA                    | Assumed Nonparametric | Nonparametric Test          | 18IGWT001, 18GGWT004, 22GWT001, and 13GWT2801 are Statistically Signficant Outliers.             |
| TOTAL MAGNESIUM | 28/28 | 3                                  | 0.001005          | 0.8603                | Log-Normal            | Parametric Test             | No Statistically Significant Outliers                                                            |
| TOTAL MANGANESE | 27/28 | 2                                  | 0.00287           | 0.03736               | Nonparametric         | Nonparametric Test          | 16GWT1701 and 12GWT2501 are Statistically Signficant Outliers.                                   |
| TOTAL MERCURY   | 2/29  | 0                                  | NA                | NA                    | Assumed Nonparametric | No Evaluation               | No Outliers                                                                                      |
| TOTAL NICKEL    | 24/28 | 0                                  | 0.002705          | 0.1035                | Log-Normal            | Parametric Test             | No Outliers                                                                                      |
| TOTAL POTASSIUM | 22/28 | 0                                  | 0.005042          | 0.0002762             | Nonparametric         | Nonparametric Test          | No Outliers                                                                                      |
| TOTAL SELENIUM  | 7/29  | 4                                  | NA                | NA                    | Assumed Nonparametric | Nonparametric Test          | 13TWT2801, 12GWT2501, 18IGWT001, and 18GGWT004 are Statistically Significant Outliers            |
| TOTAL SILVER    | 0/29  | 6                                  | NA                | NA                    | Assumed Nonparametric | No Evaluation               | NA                                                                                               |
| TOTAL SODIUM    | 28/28 | 0                                  | 0.0007477         | 0.3086                | Log-Normal            | Parametric Test             | No Outliers                                                                                      |
| TOTAL THALLIUM  | 1/28  | 1                                  | NA                | NA                    | Assumed Nonparametric | No Evaluation               | NA                                                                                               |
| TOTAL TIN       | 0/24  | 1                                  | NA                | NA                    | Assumed Nonparametric | No Evaluation               | NA                                                                                               |
| TOTAL VANADIUM  | 5/28  | 4                                  | NA                | NA                    | Assumed Nonparametric | Nonparametric Test          | 18IGWT001, 18GGWT004,13GW2801, and 13GWT0301 are Statistically Signficant Outliers.              |
| TOTAL ZINC      | 23/28 | 0                                  | 0.0001904         | 0.3981                | Log-Normal            | Nonparametric Test          | No Outliers                                                                                      |

#### Footnotes:

- (1) If the data were lognormal or normal and there were less than 15% non-detects and the sample size was 25 Extreme Value Test was computed. If the data were not lognormal or normal or if 10 to 50 percent of the data was detected the nonparametric outlier test was computed.
- (2) When at least 90 percent of the data is non-detect formal hypothesis tests are not appropriate.
- (3) There are additional uncertainties associated with hypothesis tests when between 50 and 90 percent of the data is non-detect.

#### Acronyms:

FOD = Frequency of Detection

NA = Not Applicable

#### TABLE 2 ROSNER'S OUTLIER TEST PENNSYLVANIAN WELL BACKGROUND GROUNDWATER EVALUATION

|                 | Outlier Sample | Outlier | Test      |                |             |
|-----------------|----------------|---------|-----------|----------------|-------------|
| PARAMETER       | ID             | result  | Statistic | Critical Value | Conclusion  |
| TOTAL CALCIUM   | 12GWT2501      | 216000  | 1.76      | 2.88           | No Outliers |
| TOTAL CALCIUM   | 16GW0203       | 212000  | 1.89      | 2.86           | No Outliers |
|                 | 12GWT3301      | 41800   | 1.66      | 2.88           | No Outliers |
|                 | 12GWT3302      | 41700   | 1.79      | 2.86           | No Outliers |
| TOTAL IRON      | 16GWT1701      | 27000   | 1.73      | 2.84           | No Outliers |
|                 | 18IGWT001      | 22500   | 1.79      | 2.82           | No Outliers |
|                 | 10GWC5201      | 2220    | 1.96      | 2.8            | No Outliers |
|                 | 12GWT2501      | 229000  | 2.3       | 2.89           | No Outliers |
| TOTAL MAGNESIUM | 01GW0601       | 156000  | 2.23      | 2.88           | No Outliers |
|                 | 12GWT2502      | 153000  | 2.52      | 2.86           | No Outliers |

A five percent signifcance level was used.

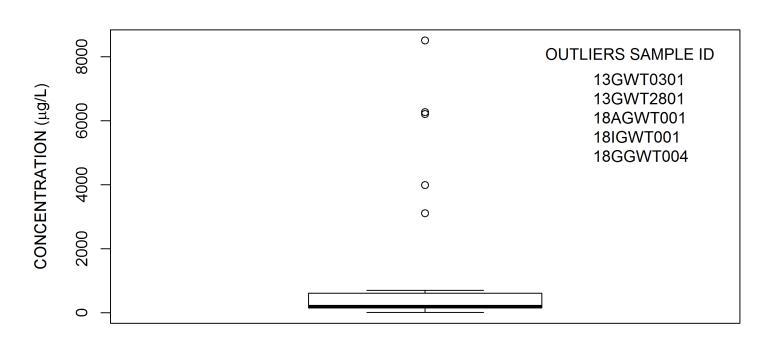
TABLE 3
NONPARAMETRIC OUTLIER TEST
PENNSYLVANIAN WELL BACKGROUND GROUNDWATER EVALUATION

| PARAMETER          | Outlier Sample ID | Outlier<br>result | Test Statistic | Critical Value                                                                                                                                                                                                                      | Conclusion                                                                                                                                                                                                                                                                                                                                                              |
|--------------------|-------------------|-------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | 18IGWT001         | 8500              | 51.4           | 5                                                                                                                                                                                                                                   | Outlier                                                                                                                                                                                                                                                                                                                                                                 |
|                    | 13GWT2801         | 6270              | 38             | 5                                                                                                                                                                                                                                   | Outlier                                                                                                                                                                                                                                                                                                                                                                 |
| TOTAL ALUMINUM     | 18GGWT004         | 6210              | 40.2           | 5                                                                                                                                                                                                                                   | Outlier                                                                                                                                                                                                                                                                                                                                                                 |
|                    | 13GWT0301         | 3990              | 27.2           | 5                                                                                                                                                                                                                                   | Outlier                                                                                                                                                                                                                                                                                                                                                                 |
|                    | 18AGWT001         | 3110              | 22.2           | 5                                                                                                                                                                                                                                   | Outlier                                                                                                                                                                                                                                                                                                                                                                 |
|                    | 13GWT2801         | 15.2              | 25.8           | 5                                                                                                                                                                                                                                   | Outlier                                                                                                                                                                                                                                                                                                                                                                 |
| TOTAL ARSENIC      | 18GGWT004         | 8.61              | 14.5           | 5                                                                                                                                                                                                                                   | Outlier                                                                                                                                                                                                                                                                                                                                                                 |
| TOTAL ARSENIC      | 18IGWT001         | 8.28              | 14.6           | 5                                                                                                                                                                                                                                   | Outlier                                                                                                                                                                                                                                                                                                                                                                 |
|                    | 01GW0601          | 3.2               | 4.4            | 5                                                                                                                                                                                                                                   | Not Outlier                                                                                                                                                                                                                                                                                                                                                             |
| TOTAL BERYLLIUM    | 18AGWT001         | 3.01              | 4.3            | 5                                                                                                                                                                                                                                   | Not Outlier                                                                                                                                                                                                                                                                                                                                                             |
| TOTAL CHROMIUM     | 18IGWT001         | 26.2              | 41.3           | 5                                                                                                                                                                                                                                   | Outlier                                                                                                                                                                                                                                                                                                                                                                 |
| TOTAL CHROIVIIOIVI | 13GWT2801         | 11.7              | 21.4           | 5                                                                                                                                                                                                                                   | Outlier                                                                                                                                                                                                                                                                                                                                                                 |
|                    | 18GGWT004         | 21.6              | 17.1           | 5                                                                                                                                                                                                                                   | Outlier                                                                                                                                                                                                                                                                                                                                                                 |
| TOTAL COPPER       | 18IGWT001         | 16.6              | 12.9           | 5                                                                                                                                                                                                                                   | Outlier                                                                                                                                                                                                                                                                                                                                                                 |
|                    | 18AGWT001         | 12.3              | 9.2            | 5                                                                                                                                                                                                                                   | Outlier                                                                                                                                                                                                                                                                                                                                                                 |
|                    | 18IGWT001         | 15.5              | 38.8           | 5                                                                                                                                                                                                                                   | Outlier<br>Outlier                                                                                                                                                                                                                                                                                                                                                      |
| TOTAL LEAD         | 18GGWT004         | 11.7              | 30.8           | 5                                                                                                                                                                                                                                   | Outlier                                                                                                                                                                                                                                                                                                                                                                 |
| TOTAL LEAD         | 22GWT001          | 3.2               | 7.4            | 5                                                                                                                                                                                                                                   | Outlier                                                                                                                                                                                                                                                                                                                                                                 |
|                    | 13GWT2801         | 2.5               | 6.1            | 5 Outlier 5 Outlier 5 Outlier 5 Outlier 5 Outlier 5 Outlier 5 Outlier 5 Outlier 5 Outlier 5 Not Outlier 5 Not Outlier 5 Outlier 5 Outlier 5 Outlier 5 Outlier 5 Outlier 5 Outlier 5 Outlier 5 Outlier 5 Outlier 5 Outlier 5 Outlier | Outlier                                                                                                                                                                                                                                                                                                                                                                 |
| TOTAL NAANCANIECE  | 16GWT1701         | 5940              | 7.9            | 5                                                                                                                                                                                                                                   | Outlier                                                                                                                                                                                                                                                                                                                                                                 |
| TOTAL MANGANESE    | 12GWT2501         | 4910              | 7.4            | 5                                                                                                                                                                                                                                   | Outlier Outlier Outlier Outlier Outlier Outlier Outlier Outlier Not Outlier Not Outlier Outlier Outlier Outlier Outlier Outlier Outlier Outlier Outlier Outlier Outlier Outlier Outlier Outlier Outlier Outlier Outlier Outlier Outlier Outlier Outlier Outlier Outlier Outlier Outlier Outlier Outlier Outlier Outlier Outlier Outlier Outlier Outlier Outlier Outlier |
|                    | 13GWT2801         | 4.1               | 7.1            | 5                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                         |
| TOTAL CELENIUM     | 12GWT2501         | 3.4               | 6.1            | 5                                                                                                                                                                                                                                   | Outlier                                                                                                                                                                                                                                                                                                                                                                 |
| TOTAL SELENIUM     | 18IGWT001         | 2.5               | 5.1            | 5                                                                                                                                                                                                                                   | Outlier                                                                                                                                                                                                                                                                                                                                                                 |
|                    | 18GGWT004 2       | 2.5               | 5.7            | 5                                                                                                                                                                                                                                   | Outlier                                                                                                                                                                                                                                                                                                                                                                 |
|                    | 18IGWT001         | 17.9              | 19.5           | 5                                                                                                                                                                                                                                   | Outlier                                                                                                                                                                                                                                                                                                                                                                 |
| TOTAL MANIADUMA    | 13GWT2801         | 12.5              | 13.2           | 5                                                                                                                                                                                                                                   | Outlier                                                                                                                                                                                                                                                                                                                                                                 |
| TOTAL VANADIUM     | 18GGWT004         | 7.47              | 7.4            | 5                                                                                                                                                                                                                                   | Outlier                                                                                                                                                                                                                                                                                                                                                                 |
|                    | 13GWT0301         | 5.8               | 5.4            | 5                                                                                                                                                                                                                                   | Outlier                                                                                                                                                                                                                                                                                                                                                                 |

#### TABLE 4 SUMMARY STATISTICS PENNSYLVANIAN WELL BACKGROUND GROUNDWATER EVALUATION

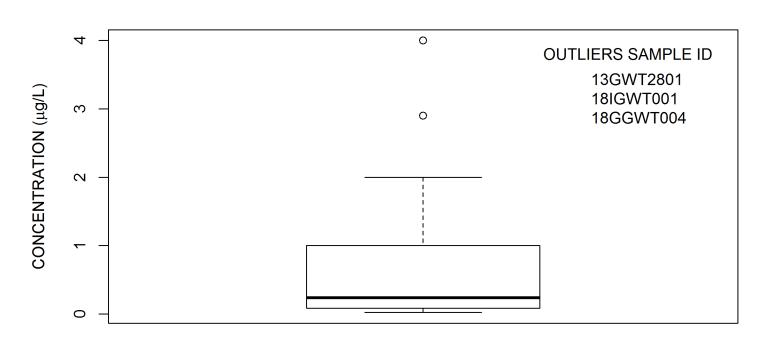
| PARAMETER       | FOD   | RANGE OF DETECTION<br>LIMITS | MINIMUM<br>DETECTED<br>CONCENTRATION | MAXIMUM<br>DETECTED<br>CONCENTRATION | LOCATION OF MAXIMUM DETECTED CONCENTRATION | DATA DISTRIBUTION <sup>(1)</sup> | UTL <sup>(2,3)</sup> |
|-----------------|-------|------------------------------|--------------------------------------|--------------------------------------|--------------------------------------------|----------------------------------|----------------------|
| TOTAL ALUMINUM  | 19/28 | 8.3 - 200                    | 28.5                                 | 8500                                 | 18IGWT001                                  | Log-Normal                       | 6183                 |
| TOTAL ANTIMONY  | 1/28  | 0.02 - 4                     | 2.9                                  | 2.9                                  | 13GWT2801                                  | Assumed Nonparametric            | NA                   |
| TOTAL ARSENIC   | 12/29 | 0.16 - 3.2                   | 0.66                                 | 15.2                                 | 13GWT2801                                  | Assumed Nonparametric            | 9.1                  |
| TOTAL BARIUM    | 27/29 | 12.8 - 15.6                  | 13.2                                 | 97.5                                 | 18IGWT001                                  | Log-Normal                       | 96.9                 |
| TOTAL BERYLLIUM | 6/28  | 0.02 - 1.8                   | 0.1                                  | 3.01                                 | 18AGWT001                                  | Assumed Nonparametric            | 2 (4)                |
| TOTAL CADMIUM   | 3/29  | 0.039 - 1                    | 0.08                                 | 0.9                                  | 22GWT001                                   | Assumed Nonparametric            | 0.55 (4)             |
| TOTAL CALCIUM   | 28/28 | NA                           | 7190                                 | 216000                               | 12GWT2501                                  | Log-Normal                       | 216000               |
| TOTAL CHROMIUM  | 9/29  | 0.17 - 5                     | 0.58                                 | 26.2                                 | 18IGWT001                                  | Assumed Nonparametric            | 14.6 <sup>(4)</sup>  |
| TOTAL COBALT    | 21/28 | 1 - 3                        | 2                                    | 64.4                                 | 16GWT1701                                  | Nonparametric                    | 65.5                 |
| TOTAL COPPER    | 17/28 | 0.12 - 2.1                   | 0.67                                 | 21.6                                 | 18GGWT004                                  | Log-Normal                       | 14.6                 |
| TOTAL IRON      | 25/28 | 61.7 - 344                   | 12.7                                 | 41800                                | 12GWT3301                                  | Log-Normal                       | 34500                |
| TOTAL LEAD      | 4/29  | 0.157 - 2.5                  | 0.54                                 | 15.5                                 | 18IGWT001                                  | Assumed Nonparametric            | 9 (4)                |
| TOTAL MAGNESIUM | 28/28 | NA                           | 2950                                 | 229000                               | 12GWT2501                                  | Log-Normal                       | 229000               |
| TOTAL MANGANESE | 27/28 | 566 - 566                    | 6.89                                 | 5940                                 | 16GWT1701                                  | Log-Normal                       | 4470                 |
| TOTAL MERCURY   | 2/29  | 0.007 - 0.2                  | 0.16                                 | 0.39                                 | 13GWT0102                                  | Assumed Nonparametric            | NA                   |
| TOTAL NICKEL    | 24/28 | 10 - 10                      | 1.56                                 | 131                                  | 12GWT3301                                  | Log-Normal                       | 135                  |
| TOTAL POTASSIUM | 22/28 | 3390 - 5000                  | 403                                  | 5380                                 | 16GWT1701                                  | Nonparametric                    | 6450                 |
| TOTAL SELENIUM  | 7/29  | 0.04 - 2.5                   | 0.33                                 | 4.1                                  | 13GWT2801                                  | Assumed Nonparametric            | 2.7 (4)              |
| TOTAL SILVER    | 0/29  | 0.028 - 3                    |                                      |                                      | All Non-Detect                             | Assumed Nonparametric            | NA                   |
| TOTAL SODIUM    | 28/28 | NA                           | 10100                                | 165000                               | 12GWT2601                                  | Log-Normal                       | 165000               |
| TOTAL THALLIUM  | 1/28  | 0.04 - 5                     | 0.08                                 | 0.08                                 | 12GWT2501                                  | Assumed Nonparametric            | NA                   |
| TOTAL TIN       | 0/24  | 0.048 - 190                  |                                      |                                      | All Non-Detect                             | Assumed Nonparametric            | NA                   |
| TOTAL VANADIUM  | 5/28  | 0.06 - 3                     | 2.1                                  | 17.9                                 | 18IGWT001                                  | Assumed Nonparametric            | 11.4 (4)             |
| TOTAL ZINC      | 23/28 | 1.1 - 10                     | 2.16                                 | 161                                  | 13GWT0301                                  | Log-Normal                       | 140                  |

- (1) Data distribution deteremined using Shaprio Wilk Test with a five percent significance level.
- (2) UTLS are presented using three significant figures if the value is greater than 10 otherwise 2 significant figures were presented.
- (3) UTLS were calculated using ProUCL version 4.1.1. For Assumed nonparametric the 95% KM UTL is presented.
- (4) ProUCL warns that there may not be enough detected concentrations for the calculations to be reliable enough to draw conclusions.
- (5) There is only one detected concentration. Computing sumary statistics is not approporiate.


Rationale for UTL Selected from ProUCL Output

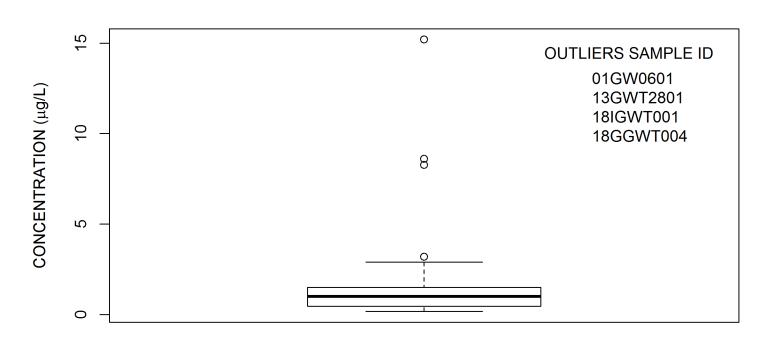
If all data detected and data distribution is not Normal use Nonparamtric 95% UTL with 95% Coverage.

If any data are non-detect 95% Kaplain Meier UTL with 95% Coverage.


UTL = Upper Tolerance Limit NA = Not Applicable

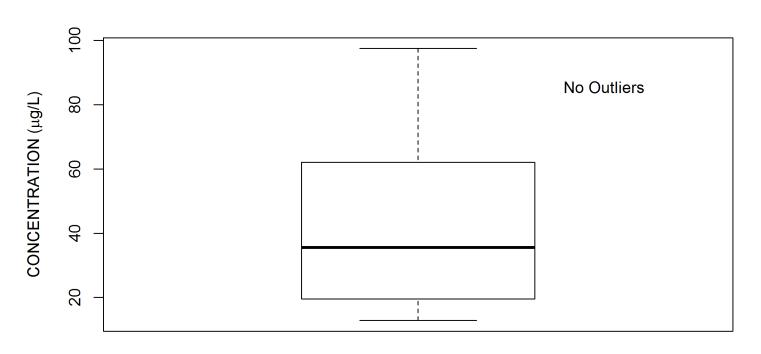
## FIGURE 1 TOTAL ALUMINUM BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA




**TOTAL ALUMINUM** 

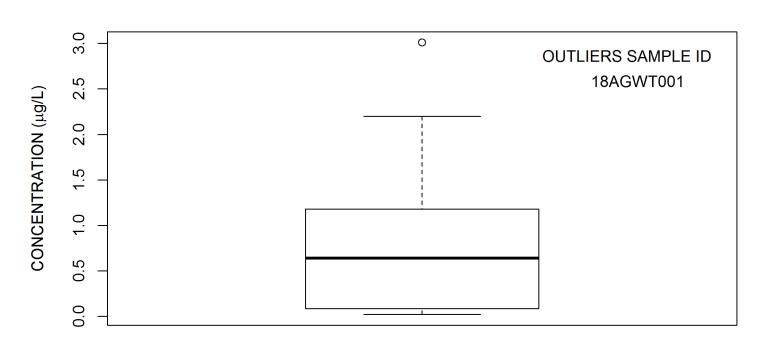
## FIGURE 2 TOTAL ANTIMONY BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA




**TOTAL ANTIMONY** 

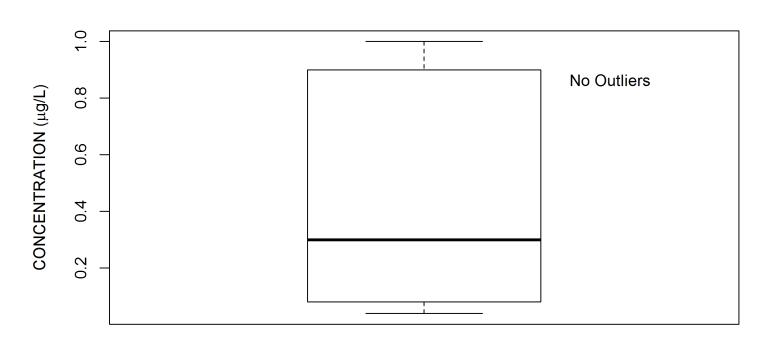
## FIGURE 3 TOTAL ARSENIC BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA




**TOTAL ARSENIC** 

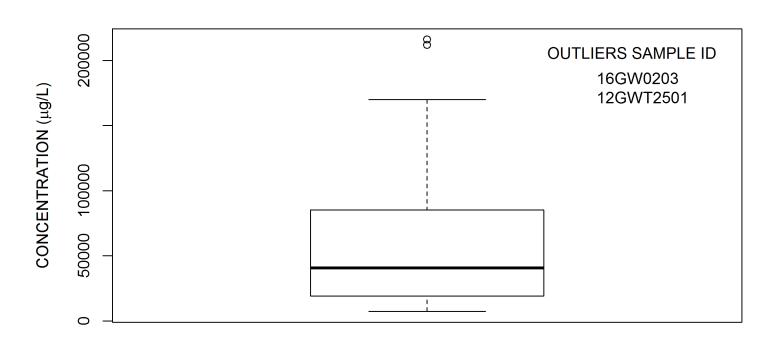
## FIGURE 4 TOTAL BARIUM BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA




**TOTAL BARIUM** 

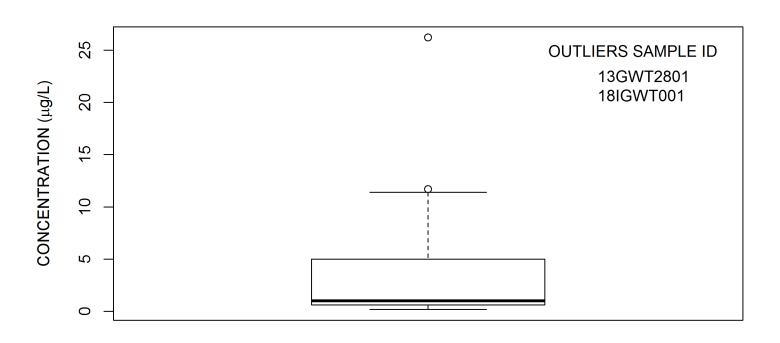
## FIGURE 5 TOTAL BERYLLIUM BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA




**TOTAL BERYLLIUM** 

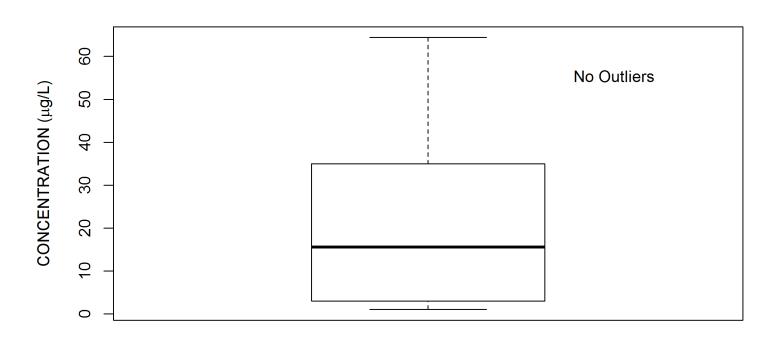
# FIGURE 6 TOTAL CADMIUM BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA




**TOTAL CADMIUM** 

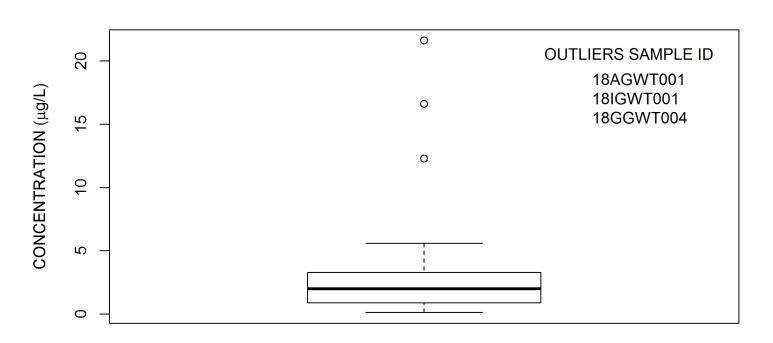
## FIGURE 7 TOTAL CALCIUM BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA




**TOTAL CALCIUM** 

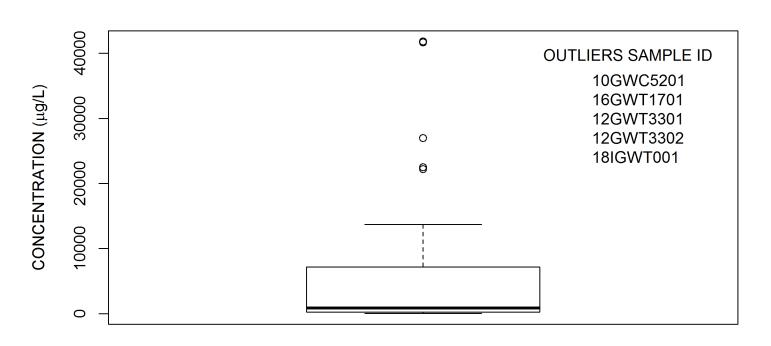
## FIGURE 8 TOTAL CHROMIUM BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA




**TOTAL CHROMIUM** 

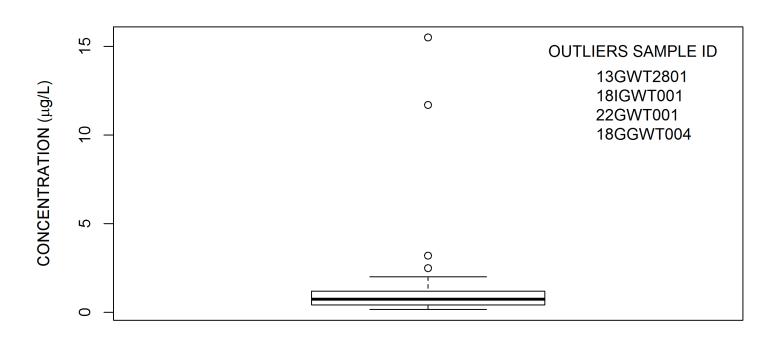
## FIGURE 9 TOTAL COBALT BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA




**TOTAL COBALT** 

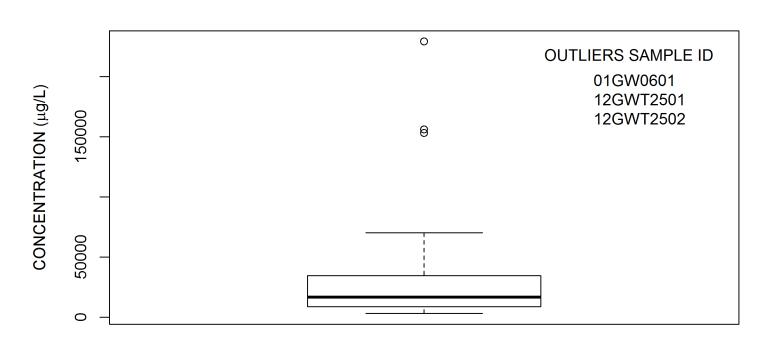
## FIGURE 10 TOTAL COPPER BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA




**TOTAL COPPER** 

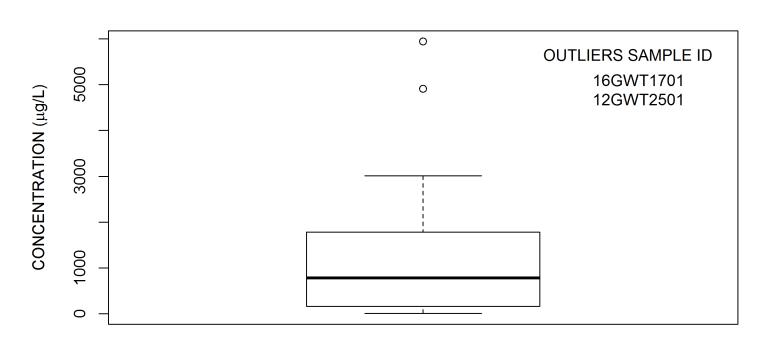
## FIGURE 11 TOTAL IRON BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA




**TOTAL IRON** 

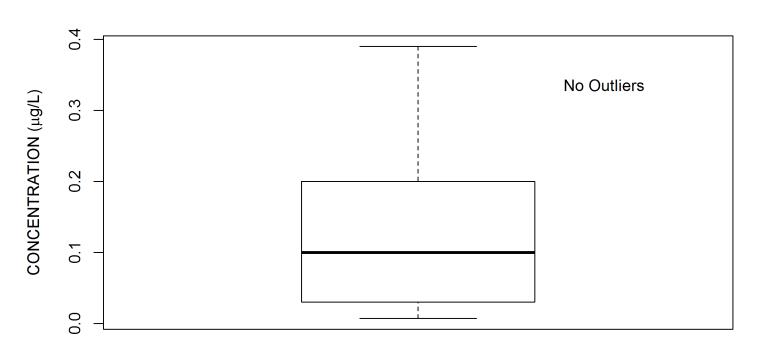
## FIGURE 12 TOTAL LEAD BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA




**TOTAL LEAD** 

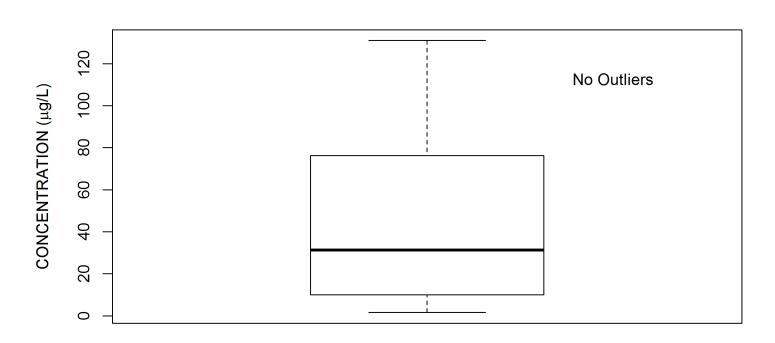
## FIGURE 13 TOTAL MAGNESIUM BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA




**TOTAL MAGNESIUM** 

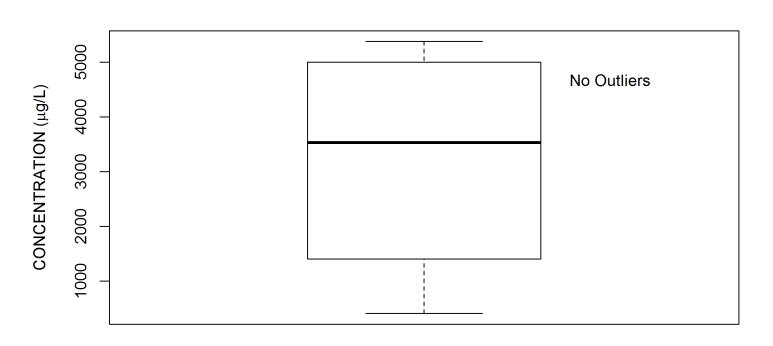
## FIGURE 14 TOTAL MANGANESE BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA




**TOTAL MANGANESE** 

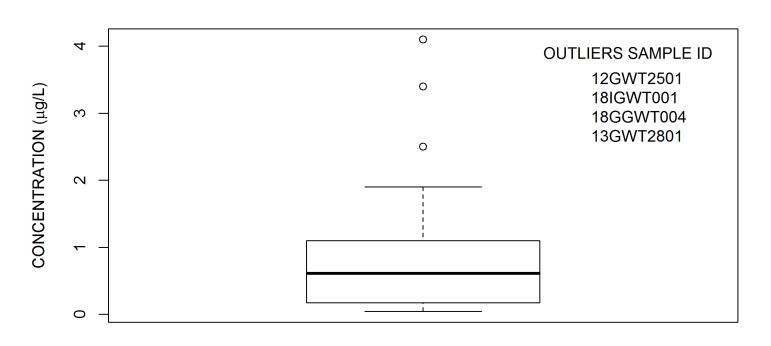
## FIGURE 15 TOTAL MERCURY BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA




**TOTAL MERCURY** 

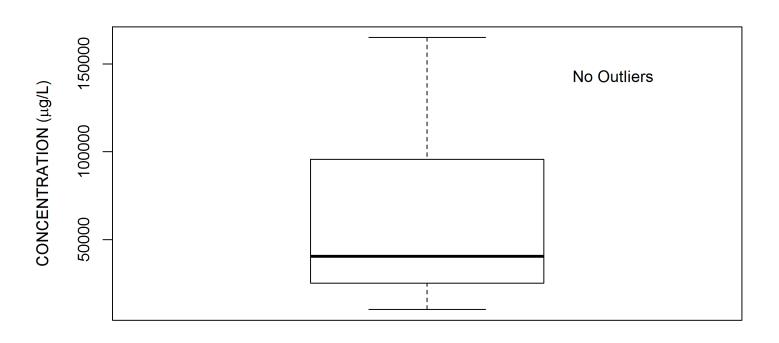
## FIGURE 16 TOTAL NICKEL BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA




**TOTAL NICKEL** 

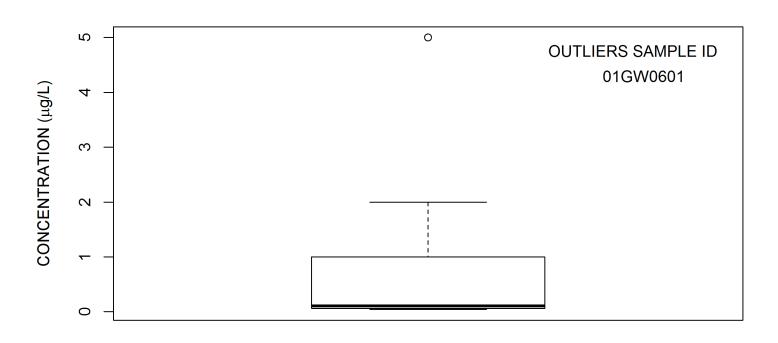
## FIGURE 17 TOTAL POTASSIUM BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA




**TOTAL POTASSIUM** 

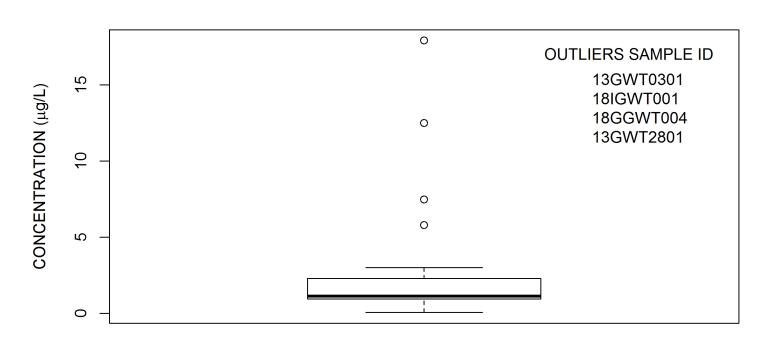
## FIGURE 18 TOTAL SELENIUM BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA




**TOTAL SELENIUM** 

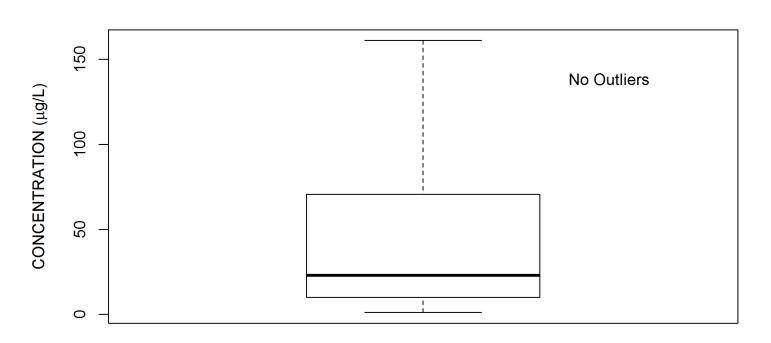
## FIGURE 19 TOTAL SODIUM BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA




**TOTAL SODIUM** 

## FIGURE 20 TOTAL THALLIUM BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA




**TOTAL THALLIUM** 

## FIGURE 21 TOTAL VANADIUM BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA



**TOTAL VANADIUM** 

## FIGURE 22 TOTAL ZINC BOXPLOT GROUNDWATER BACKGROUND EVALUATION NSA CRANE, CRANE, INDIANA



**TOTAL ZINC** 

| Samples    | SACODE | ALUMINUM | d_ALUMINUM | ANTIMONY | d_ANTIMONY | ARSENIC | d_ARSENIC | BARIUM | d_BARIUM |
|------------|--------|----------|------------|----------|------------|---------|-----------|--------|----------|
| 01GW0601   | NORMAL | 40.2     | 0          | 1.6      | 0          | 3.2     | 0         | 21.3   | 1        |
| 08GWT00701 | NORMAL | 463      | 1          | 0.2      | 0          | 0.45    | 0         | 19.5   | 1        |
| 09GW1001   | NORMAL | 200      | 0          | 1        | 0          | 0.75    | 1         | 68.4   | 1        |
| 09GWT0101  | NORMAL | 200      | 0          | 1        | 0          | 2.9     | 1         | 52.6   | 1        |
| 09GWT0501  | NORMAL | 200      | 0          | 1        | 0          | 1.5     | 1         | 90.7   | 1        |
| 09GWTP0601 | NORMAL | 200      | 0          | 1        | 0          | 1       | 0         | 19.3   | 1        |
| 10GWC5201  | NORMAL | 200      | 0          | 1        | 0          | 1       | 0         | 17.9   | 1        |
| 12GWT2501  | NORMAL | 479      | 1          | 0.085    | 0          | 1.1     | 1         | 26.2   | 1        |
| 12GWT2502  | NORMAL | 192      | 1          | 0.085    | 0          | 0.27    | 0         | 21.8   | 1        |
| 12GWT2601  | NORMAL | 565      | 1          | 0.24     | 0          | 2.3     | 1         | 38.4   | 1        |
| 12GWT2602  | NORMAL | 126      | 1          | 0.54     | 0          | 0.67    | 0         | 12.8   | 0        |
| 12GWT2701  | NORMAL | 323      | 1          | 0.22     | 0          | 0.58    | 0         | 39.1   | 1        |
| 12GWT2702  | NORMAL | 205      | 1          | 0.1      | 0          | 0.22    | 0         | 20.6   | 1        |
| 12GWT3301  | NORMAL | 37.1     | 0          | 0.52     | 0          | 2.7     | 1         | 13.2   | 1        |
| 12GWT3302  | NORMAL | 200      | 1          | 0.085    | 0          | 1.2     | 0         | 15.6   | 0        |
| 13GWT0101  | NORMAL | 598      | 1          | 0.24     | 0          | 0.23    | 0         | 55.4   | 1        |
| 13GWT0102  | NORMAL | 699      | 1          | 0.02     | 0          | 0.17    | 0         | 46.8   | 1        |
| 13GWT0301  | NORMAL | 3990     | 1          | 0.13     | 0          | 1       | 1         | 74.5   | 1        |
| 13GWT0302  | NORMAL | 627      | 1          | 0.02     | 0          | 0.31    | 0         | 62.1   | 1        |
| 13GWT2801  | NORMAL | 6270     | 1          | 2.9      | 1          | 15.2    | 1         | 65.3   | 1        |
| 16GW0201   | NORMAL | 85.6     | 1          | 0.1      | 0          | 0.16    | 0         | 21.6   | 1        |
| 16GW0202   | NORMAL | 60.6     | 0          | 0.03     | 0          | 0.33    | 0         | 18     | 1        |
| 16GW0203   | NORMAL | 8.3      | 0          | 0.02     | 0          | 0.66    | 1         | 17.8   | 1        |
| 16GWT1701  | NORMAL | 187      | 1          | 0.05     | 0          | 1.3     | 0         | 42.7   | 1        |
| 18AGWT001  | NORMAL | 3110     | 1          | 2        | 0          | 1.5     | 0         | 35.6   | 1        |
| 18DGWT001  | NORMAL | 28.5     | 1          | 2        | 0          | 1.5     | 0         | 75.6   | 1        |
| 18GGWT004  | NORMAL | 6210     | 1          | 4        | 0          | 8.61    | 1         | 74.6   | 1        |
| 18IGWT001  | NORMAL | 8500     | 1          | 4        | 0          | 8.28    | 1         | 97.5   | 1        |
| 22GWT001   | NORMAL |          |            |          |            | 1.4     | 1         | 34.2   | 1        |
|            |        |          |            |          |            |         |           |        |          |

| Samples    | BERYLLIUM | d_BERYLLIUM | CADMIUM | d_CADMIUM | CALCIUM | d_CALCIUM | CHROMIUM | d_CHROMIUM |
|------------|-----------|-------------|---------|-----------|---------|-----------|----------|------------|
| 01GW0601   | 0.4       | 0           | 0.3     | 0         | 170000  | 1         | 0.6      | 0          |
| 08GWT00701 | 0.05      | 0           | 0.08    | 1         | 9640    | 1         | 0.58     | 1          |
| 09GW1001   | 1         | 0           | 1       | 0         | 25800   | 1         | 5        | 0          |
| 09GWT0101  | 1         | 0           | 1       | 0         | 39400   | 1         | 5        | 0          |
| 09GWT0501  | 1         | 0           | 1       | 0         | 24000   | 1         | 5        | 0          |
| 09GWTP0601 | 1         | 0           | 1       | 0         | 59300   | 1         | 5        | 0          |
| 10GWC5201  | 1         | 0           | 1       | 0         | 17000   | 1         | 5        | 0          |
| 12GWT2501  | 0.1       | 1           | 0.14    | 0         | 216000  | 1         | 1.4      | 0          |
| 12GWT2502  | 0.04      | 0           | 0.04    | 0         | 125000  | 1         | 0.74     | 0          |
| 12GWT2601  | 0.07      | 0           | 0.11    | 0         | 92600   | 1         | 1.7      | 1          |
| 12GWT2602  | 0.03      | 0           | 0.13    | 0         | 77900   | 1         | 0.72     | 0          |
| 12GWT2701  | 0.03      | 0           | 0.05    | 0         | 21200   | 1         | 1.2      | 1          |
| 12GWT2702  | 0.02      | 0           | 0.04    | 0         | 16300   | 1         | 0.62     | 0          |
| 12GWT3301  | 1.3       | 1           | 0.039   | 0         | 61100   | 1         | 0.52     | 0          |
| 12GWT3302  | 2.2       | 1           | 0.18    | 0         | 56400   | 1         | 0.76     | 0          |
| 13GWT0101  | 1.2       | 0           | 0.18    | 0         | 9720    | 1         | 0.2      | 0          |
| 13GWT0102  | 1.2       | 0           | 0.06    | 0         | 7190    | 1         | 0.73     | 0          |
| 13GWT0301  | 1.2       | 0           | 0.82    | 0         | 34800   | 1         | 7.1      | 1          |
| 13GWT0302  | 1.8       | 0           | 0.37    | 0         | 26100   | 1         | 1.4      | 0          |
| 13GWT2801  | 0.27      | 0           | 0.04    | 0         | 10600   | 1         | 11.7     | 1          |
| 16GW0201   | 0.42      | 0           | 0.31    | 0         | 99400   | 1         | 0.43     | 0          |
| 16GW0202   | 0.34      | 0           | 0.22    | 0         | 97300   | 1         | 0.29     | 0          |
| 16GW0203   | 0.06      | 0           | 0.04    | 0         | 212000  | 1         | 0.17     | 0          |
| 16GWT1701  | 0.69      | 0           | 0.53    | 0         | 42200   | 1         | 0.39     | 0          |
| 18AGWT001  | 3.01      | 1           | 0.462   | 1         | 12300   | 1         | 0.816    | 1          |
| 18DGWT001  | 0.5       | 0           | 0.5     | 0         | 43900   | 1         | 1        | 0          |
| 18GGWT004  | 1.16      | 1           | 1       | 0         | 24200   | 1         | 11.4     | 1          |
| 18IGWT001  | 0.591     | 1           | 1       | 0         | 61000   | 1         | 26.2     | 1          |
| 22GWT001   |           |             | 0.9     | 1         |         |           | 4        | 1          |

| Samples    | COBALT | d_COBALT | COPPER | d_COPPER | IRON  | d_IRON | LEAD  | d_LEAD |
|------------|--------|----------|--------|----------|-------|--------|-------|--------|
| 01GW0601   | 1      | 0        | 0.9    | 0        | 398   | 1      | 1.6   | 0      |
| 08GWT00701 | 5.3    | 1        | 2.1    | 0        | 681   | 1      | 0.54  | 1      |
| 09GW1001   | 3      | 0        | 2      | 0        | 136   | 1      | 1     | 0      |
| 09GWT0101  | 3      | 0        | 4.4    | 1        | 144   | 1      | 1     | 0      |
| 09GWT0501  | 18.2   | 1        | 2      | 1        | 100   | 0      | 1     | 0      |
| 09GWTP0601 | 3      | 0        | 2      | 0        | 149   | 1      | 1     | 0      |
| 10GWC5201  | 3      | 0        | 2      | 0        | 22200 | 1      | 1     | 0      |
| 12GWT2501  | 53.2   | 1        | 3      | 1        | 1920  | 1      | 0.66  | 0      |
| 12GWT2502  | 12.9   | 1        | 3.4    | 1        | 1110  | 1      | 0.425 | 0      |
| 12GWT2601  | 31.3   | 1        | 0.84   | 1        | 2990  | 1      | 0.53  | 0      |
| 12GWT2602  | 5.6    | 1        | 3.5    | 1        | 2010  | 1      | 0.157 | 0      |
| 12GWT2701  | 11.2   | 1        | 0.67   | 1        | 482   | 1      | 0.37  | 0      |
| 12GWT2702  | 1.2    | 0        | 2      | 1        | 396   | 1      | 0.42  | 0      |
| 12GWT3301  | 44.4   | 1        | 0.7    | 1        | 41800 | 1      | 0.34  | 0      |
| 12GWT3302  | 40     | 1        | 2.5    | 1        | 41700 | 1      | 1     | 0      |
| 13GWT0101  | 36     | 1        | 2.9    | 1        | 135   | 1      | 1.4   | 0      |
| 13GWT0102  | 29.9   | 1        | 1.4    | 0        | 61.7  | 0      | 1.2   | 0      |
| 13GWT0301  | 48.8   | 1        | 5.6    | 1        | 1910  | 1      | 2     | 0      |
| 13GWT0302  | 25     | 1        | 3.2    | 1        | 344   | 0      | 0.67  | 0      |
| 13GWT2801  | 2      | 1        | 1.4    | 0        | 2460  | 1      | 2.5   | 0      |
| 16GW0201   | 12.9   | 1        | 0.87   | 1        | 287   | 1      | 0.21  | 0      |
| 16GW0202   | 9.2    | 1        | 0.15   | 0        | 415   | 1      | 0.28  | 0      |
| 16GW0203   | 18.7   | 1        | 0.12   | 0        | 13700 | 1      | 0.18  | 0      |
| 16GWT1701  | 64.4   | 1        | 0.56   | 0        | 27000 | 1      | 0.24  | 0      |
| 18AGWT001  | 62     | 1        | 12.3   | 1        | 1970  | 1      | 0.75  | 0      |
| 18DGWT001  | 2.5    | 0        | 2      | 0        | 12.7  | 1      | 0.75  | 0      |
| 18GGWT004  | 34     | 1        | 21.6   | 1        | 11300 | 1      | 11.7  | 1      |
| 18IGWT001  | 27.2   | 1        | 16.6   | 1        | 22500 | 1      | 15.5  | 1      |
| 22GWT001   |        |          |        |          |       |        | 3.2   | 1      |

| Samples    | LITHIUM | d_LITHIUM | MAGNESIUM | d_MAGNESIUM | MANGANESE | d_MANGANESE | MERCURY | d_MERCURY |
|------------|---------|-----------|-----------|-------------|-----------|-------------|---------|-----------|
| 01GW0601   |         |           | 156000    | 1           | 37.9      | 1           | 0.1     | 0         |
| 08GWT00701 |         |           | 6750      | 1           | 93.9      | 1           | 0.03    | 0         |
| 09GW1001   |         |           | 10600     | 1           | 164       | 1           | 0.2     | 0         |
| 09GWT0101  |         |           | 26500     | 1           | 34.8      | 1           | 0.2     | 0         |
| 09GWT0501  |         |           | 21900     | 1           | 178       | 1           | 0.2     | 0         |
| 09GWTP0601 |         |           | 19800     | 1           | 15        | 1           | 0.2     | 0         |
| 10GWC5201  |         |           | 11800     | 1           | 897       | 1           | 0.2     | 0         |
| 12GWT2501  |         |           | 229000    | 1           | 4910      | 1           | 0.042   | 0         |
| 12GWT2502  |         |           | 153000    | 1           | 2200      | 1           | 0.03    | 0         |
| 12GWT2601  |         |           | 70000     | 1           | 2520      | 1           | 0.14    | 0         |
| 12GWT2602  |         |           | 50000     | 1           | 1020      | 1           | 0.051   | 0         |
| 12GWT2701  |         |           | 16400     | 1           | 701       | 1           | 0.03    | 0         |
| 12GWT2702  |         |           | 16500     | 1           | 160       | 1           | 0.03    | 0         |
| 12GWT3301  |         |           | 33500     | 1           | 3010      | 1           | 0.043   | 0         |
| 12GWT3302  |         |           | 27200     | 1           | 1680      | 1           | 0.05    | 0         |
| 13GWT0101  | 21.1    | 1         | 6790      | 1           | 689       | 1           | 0.16    | 1         |
| 13GWT0102  |         |           | 5850      | 1           | 566       | 0           | 0.39    | 1         |
| 13GWT0301  | 74      | 1         | 17000     | 1           | 302       | 1           | 0.02    | 0         |
| 13GWT0302  |         |           | 15800     | 1           | 211       | 1           | 0.02    | 0         |
| 13GWT2801  |         |           | 2950      | 1           | 66.7      | 1           | 0.007   | 0         |
| 16GW0201   | 32.7    | 1         | 6240      | 1           | 916       | 1           | 0.02    | 0         |
| 16GW0202   | 33.6    | 1         | 6480      | 1           | 864       | 1           | 0.2     | 0         |
| 16GW0203   |         |           | 35200     | 1           | 2440      | 1           | 0.02    | 0         |
| 16GWT1701  |         |           | 16700     | 1           | 5940      | 1           | 0.007   | 0         |
| 18AGWT001  |         |           | 5510      | 1           | 1270      | 1           | 0.2     | 0         |
| 18DGWT001  |         |           | 15100     | 1           | 6.89      | 1           | 0.2     | 0         |
| 18GGWT004  |         |           | 10800     | 1           | 1180      | 1           | 0.2     | 0         |
| 18IGWT001  |         |           | 37100     | 1           | 1890      | 1           | 0.2     | 0         |
| 22GWT001   |         |           |           |             |           |             | 0.18    | 0         |

| Samples    | NICKEL | d_NICKEL | POTASSIUM | d_POTASSIUM | SELENIUM | d_SELENIUM | SODIUM | d_SODIUM |
|------------|--------|----------|-----------|-------------|----------|------------|--------|----------|
| 01GW0601   | 2.6    | 1        | 2790      | 1           | 0.8      | 0          | 17200  | 1        |
| 08GWT00701 | 7.8    | 1        | 518       | 1           | 0.33     | 1          | 36500  | 1        |
| 09GW1001   | 10     | 0        | 5000      | 0           | 1        | 0          | 57600  | 1        |
| 09GWT0101  | 10     | 0        | 5000      | 0           | 1        | 0          | 134000 | 1        |
| 09GWT0501  | 51.2   | 1        | 5000      | 0           | 1        | 0          | 102000 | 1        |
| 09GWTP0601 | 10     | 0        | 5000      | 0           | 1.1      | 1          | 48900  | 1        |
| 10GWC5201  | 10     | 0        | 5000      | 0           | 1        | 0          | 15700  | 1        |
| 12GWT2501  | 103    | 1        | 5320      | 1           | 3.4      | 1          | 152000 | 1        |
| 12GWT2502  | 32     | 1        | 3320      | 1           | 1.9      | 1          | 116000 | 1        |
| 12GWT2601  | 60.1   | 1        | 3740      | 1           | 0.28     | 0          | 165000 | 1        |
| 12GWT2602  | 12.8   | 1        | 1630      | 1           | 0.99     | 1          | 143000 | 1        |
| 12GWT2701  | 30.7   | 1        | 3710      | 1           | 0.61     | 0          | 53600  | 1        |
| 12GWT2702  | 7.3    | 1        | 1080      | 1           | 0.37     | 0          | 39200  | 1        |
| 12GWT3301  | 131    | 1        | 4520      | 1           | 0.094    | 0          | 40300  | 1        |
| 12GWT3302  | 110    | 1        | 4770      | 1           | 0.31     | 0          | 32200  | 1        |
| 13GWT0101  | 26.6   | 1        | 494       | 1           | 0.17     | 0          | 24300  | 1        |
| 13GWT0102  | 21.1   | 1        | 403       | 1           | 0.05     | 0          | 26100  | 1        |
| 13GWT0301  | 99.7   | 1        | 2860      | 1           | 0.32     | 0          | 37400  | 1        |
| 13GWT0302  | 76.3   | 1        | 1040      | 1           | 0.04     | 0          | 40700  | 1        |
| 13GWT2801  | 7.1    | 1        | 3670      | 1           | 4.1      | 1          | 124000 | 1        |
| 16GW0201   | 34.2   | 1        | 738       | 1           | 0.05     | 0          | 18000  | 1        |
| 16GW0202   | 27     | 1        | 3390      | 0           | 0.06     | 0          | 17900  | 1        |
| 16GW0203   | 36.7   | 1        | 2640      | 1           | 0.04     | 0          | 20200  | 1        |
| 16GWT1701  | 125    | 1        | 5380      | 1           | 0.07     | 0          | 61300  | 1        |
| 18AGWT001  | 76.1   | 1        | 2230      | 1           | 1.25     | 0          | 10100  | 1        |
| 18DGWT001  | 1.56   | 1        | 1170      | 1           | 1.25     | 0          | 34300  | 1        |
| 18GGWT004  | 88.1   | 1        | 5000      | 1           | 2.5      | 0          | 89300  | 1        |
| 18IGWT001  | 55.8   | 1        | 5370      | 1           | 2.5      | 0          | 50300  | 1        |
| 22GWT001   |        |          |           |             | 0.45     | 1          |        |          |

| Samples    | STRONTIUM | d_STRONTIUM | THALLIUM | d_THALLIUM | THORIUM-CALCI_THORIUM-CAL | TITANIUM | d_TITANIUM |
|------------|-----------|-------------|----------|------------|---------------------------|----------|------------|
| 01GW0601   | 958       | 1           | 5        | 0          | 0.328864 1                |          |            |
| 08GWT00701 |           |             | 0.26     | 0          |                           |          |            |
| 09GW1001   |           |             | 1        | 0          |                           |          |            |
| 09GWT0101  |           |             | 1        | 0          |                           |          |            |
| 09GWT0501  |           |             | 1        | 0          |                           |          |            |
| 09GWTP0601 |           |             | 1        | 0          |                           |          |            |
| 10GWC5201  |           |             | 1        | 0          |                           |          |            |
| 12GWT2501  |           |             | 0.08     | 1          |                           |          |            |
| 12GWT2502  |           |             | 0.08     | 0          |                           |          |            |
| 12GWT2601  |           |             | 0.043    | 0          |                           |          |            |
| 12GWT2602  |           |             | 0.06     | 0          |                           |          |            |
| 12GWT2701  |           |             | 0.043    | 0          |                           |          |            |
| 12GWT2702  |           |             | 0.043    | 0          |                           |          |            |
| 12GWT3301  |           |             | 0.043    | 0          |                           |          |            |
| 12GWT3302  |           |             | 0.043    | 0          |                           |          |            |
| 13GWT0101  | 53.3      | 1           | 0.11     | 0          |                           | 4        | 1          |
| 13GWT0102  |           |             | 0.08     | 0          |                           | 0.21     | 0          |
| 13GWT0301  | 97.8      | 1           | 0.23     | 0          |                           | 32       | 1          |
| 13GWT0302  |           |             | 0.04     | 0          |                           | 8.5      | 1          |
| 13GWT2801  |           |             | 0.06     | 0          |                           | 99       | 1          |
| 16GW0201   | 88.4      | 1           | 0.1      | 0          |                           | 3.8      | 1          |
| 16GW0202   | 98.4      | 1           | 0.11     | 0          |                           | 3        | 1          |
| 16GW0203   |           |             | 0.08     | 0          |                           | 0.17     | 0          |
| 16GWT1701  |           |             | 0.12     | 0          |                           | 0.74     | 0          |
| 18AGWT001  |           |             | 1        | 0          |                           |          |            |
| 18DGWT001  |           |             | 1        | 0          |                           |          |            |
| 18GGWT004  |           |             | 2        | 0          |                           |          |            |
| 18IGWT001  |           |             | 2        | 0          |                           |          |            |
| 22GWT001   |           |             |          |            |                           |          |            |

| Samples    | VANADIUM | d_VANADIUM | ZINC | d_ZINC |
|------------|----------|------------|------|--------|
| 01GW0601   | 3        | 0          | 1.1  | 0      |
| 08GWT00701 | 1.14     | 0          | 12.4 | 1      |
| 09GW1001   | 2        | 0          | 10   | 0      |
| 09GWT0101  | 2.1      | 1          | 10   | 0      |
| 09GWT0501  | 2        | 0          | 25.4 | 1      |
| 09GWTP0601 | 2        | 0          | 13.2 | 1      |
| 10GWC5201  | 2        | 0          | 10   | 0      |
| 12GWT2501  | 1.14     | 0          | 20.8 | 1      |
| 12GWT2502  | 1.14     | 0          | 26.1 | 1      |
| 12GWT2601  | 1.14     | 0          | 12.1 | 1      |
| 12GWT2602  | 1.14     | 0          | 8    | 1      |
| 12GWT2701  | 1.14     | 0          | 11.3 | 1      |
| 12GWT2702  | 1.14     | 0          | 3.3  | 0      |
| 12GWT3301  | 1.14     | 0          | 96   | 1      |
| 12GWT3302  | 1.14     | 0          | 128  | 1      |
| 13GWT0101  | 0.08     | 0          | 29.7 | 1      |
| 13GWT0102  | 0.06     | 0          | 29.9 | 1      |
| 13GWT0301  | 5.8      | 1          | 161  | 1      |
| 13GWT0302  | 0.76     | 0          | 97.7 | 1      |
| 13GWT2801  | 12.5     | 1          | 6.7  | 1      |
| 16GW0201   | 0.3      | 0          | 50   | 1      |
| 16GW0202   | 0.35     | 0          | 42.9 | 1      |
| 16GW0203   | 0.09     | 0          | 15.8 | 1      |
| 16GWT1701  | 0.17     | 0          | 122  | 1      |
| 18AGWT001  | 2.5      | 0          | 63.1 | 1      |
| 18DGWT001  | 2.5      | 0          | 2.16 | 1      |
| 18GGWT004  | 7.47     | 1          | 78.2 | 1      |
| 18IGWT001  | 17.9     | 1          | 85   | 1      |
| 22GWT001   |          |            |      |        |

### General Background Statistics for Data Sets with Non-Detects

### **User Selected Options**

From File Converted\_Data.wst

Full Precision OFF

Confidence Coefficient 95%

Coverage 95%

Different or Future K Values 1

Number of Bootstrap Operations 2000

### **ALUMINUM**

### **General Statistics**

Number of Valid Data 28

Number of Detected Data 19

Number of Distinct Detected Data 19

Number of Non-Detect Data 9

Tolerance Factor 2.246

Percent Non-Detects 32.14%

### Raw Statistics Log-transformed Statistics

Minimum Detected 28.5 Minimum Detected 3.35

Maximum Detected 8500 Maximum Detected 9.048

Mean of Detected 1729 Mean of Detected 6.338

SD of Detected 2595 SD of Detected 1.586

Minimum Non-Detect 8.3 Minimum Non-Detect 2.116

Maximum Non-Detect 200 Maximum Non-Detect 5.298

### **Data with Multiple Detection Limits**

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods),
Observations < Largest ND are treated as NDs

### Single Detection Limit Scenario

Number treated as Non-Detect with Single DL 14

Number treated as Detected with Single DL 14

Single DL Non-Detect Percentage 50.00%

### **Background Statistics**

Normal Distribution Test with Detected Values Only

Shapiro Wilk Test Statistic 0.671

Shapiro Wilk Test Statistic 0.939

5% Shapiro Wilk Critical Value 0.901

Data not Normal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

### **Assuming Normal Distribution**

DL/2 Substitution Method

Mean 1194

SD 2262

95% UTL 95% Coverage 6274

95% UPL (t) 5115

90% Percentile (z) 4093

95% Percentile (z) 4914

99% Percentile (z) 6456

### **Assuming Lognormal Distribution**

DL/2 Substitution Method

Mean (Log Scale) 5.507

SD (Log Scale) 1.891

95% UTL 95% Coverage 17207

95% UPL (t) 6529

90% Percentile (z) 2779

95% Percentile (z) 5522

99% Percentile (z) 20029

Maximum Likelihood Estimate(MLE) Method Log ROS Method

> Mean -263.6 Mean in Original Scale 1186

SD 3578 SD in Original Scale 2266

95% UTL with 95% Coverage 7772 95% UTL with 95% Coverage 19652

95% BCA UTL with 95% Coverage 8500

95% Bootstrap (%) UTL with 95% Coverage 8500

**Data Distribution Test with Detected Values Only** 

95% UPL (t) 5939 95% UPL (t) 6974

90% Percentile (z) 4322 90% Percentile (z) 2798 95% Percentile (z) 5622 95% Percentile (z) 5830

99% Percentile (z) 8060 99% Percentile (z) 23118

Gamma Distribution Test with Detected Values Only

k star (bias corrected) 0.505 Data appear Lognormal at 5% Significance Level

Theta Star 3421

nu star 19.21

A-D Test Statistic 1.228 Nonparametric Statistics

5% A-D Critical Value 0.797 Kaplan-Meier (KM) Method

K-S Test Statistic 0.284 Mean 1192 SD 2222

SE of Mean 431.5

95% KM UTL with 95% Coverage 6183

95% KM Chebyshev UPL 11050

95% KM UPL (t) 5044

Mean 1174 90% Percentile (z) 4040

95% Percentile (z) 4847 99% Percentile (z) 6362

Theta star 9537 Gamma ROS Limits with Extrapolated Data

Nu star 6.891 95% Wilson Hilferty (WH) Approx. Gamma UPL 5123

95% Hawkins Wixley (HW) Approx. Gamma UPL 6237 95% WH Approx. Gamma UTL with 95% Coverage 8533

95% HW Approx. Gamma UTL with 95% Coverage 11951

5% K-S Critical Value 0.209

Data not Gamma Distributed at 5% Significance Level

**Assuming Gamma Distribution** 

Gamma ROS Statistics with Extrapolated Data

Median 196

SD 2273

k star 0.123

95% Percentile of Chisquare (2k) 1.4

90% Percentile 3347

95% Percentile 6674

99% Percentile 16767

Note: DL/2 is not a recommended method.

**ANTIMONY** 

**General Statistics** 

Number of Valid Data 28

Number of Detected Data 1

Number of Distinct Detected Data 1

Number of Non-Detect Data 27

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set!

It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

### The data set for variable ANTIMONY was not processed!

### **ARSENIC**

### **General Statistics**

Number of Valid Data 29

Number of Detected Data 12

Number of Distinct Detected Data 12

Number of Non-Detect Data 17

Tolerance Factor 2.232

Number of Non-Detects 58.62%

### Raw Statistics

# Minimum Detected 0.66 Maximum Detected 15.2 Mean of Detected 3.867 SD of Detected 4.5 Minimum Non-Detect 0.16 Maximum Non-Detect 3.2

### Log-transformed Statistics

| a Statistics       |        |
|--------------------|--------|
| Minimum Detected   | -0.416 |
| Maximum Detected   | 2.721  |
| Mean of Detected   | 0.834  |
| SD of Detected     | 1.023  |
| Minimum Non-Detect | -1.833 |
| Maximum Non-Detect | 1.163  |

### **Data with Multiple Detection Limits**

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

### Single Detection Limit Scenario

Number treated as Non-Detect with Single DL 26

Number treated as Detected with Single DL 3

Single DL Non-Detect Percentage 89.66%

### **Background Statistics**

| Normal Distribution Test with Detected Values Only | Lognormal Distribution Test with Detected Values Only |
|----------------------------------------------------|-------------------------------------------------------|
| Shapiro Wilk Test Statistic 0.726                  | Shapiro Wilk Test Statistic 0.919                     |

5% Shapiro Wilk Critical Value 0.859

DL/2 Substitution Method

Data appear Lognormal at 5% Significance Level

### Data not Normal at 5% Significance Level

### **Assuming Normal Distribution**

| Mean                 | 1.843 |
|----------------------|-------|
| SD                   | 3.322 |
| 95% UTL 95% Coverage | 9.257 |
| 95% UPL (t)          | 7.59  |
| 90% Percentile (z)   | 6.1   |
| 95% Percentile (z)   | 7.307 |
| 99% Percentile (z)   | 9.571 |
|                      |       |

### **Assuming Lognormal Distribution**

| DL/2 Substitution Method |        |  |  |  |  |
|--------------------------|--------|--|--|--|--|
| Mean (Log Scale)         | -0.389 |  |  |  |  |
| SD (Log Scale)           | 1.401  |  |  |  |  |
| 95% UTL 95% Coverage     | 15.47  |  |  |  |  |
| 95% UPL (t)              | 7.656  |  |  |  |  |
| 90% Percentile (z)       | 4.083  |  |  |  |  |
| 95% Percentile (z)       | 6.793  |  |  |  |  |
| 99% Percentile (z)       | 17.65  |  |  |  |  |
|                          |        |  |  |  |  |

5% Shapiro Wilk Critical Value 0.859

### Maximum Likelihood Estimate(MLE) Method

|              | Mean         | -14.33 |
|--------------|--------------|--------|
|              | SD           | 14.06  |
| 95% UTL with | 95% Coverage | 17.06  |

SD in Original Scale 3.367 95% UTL with 95% Coverage 13.43

Log ROS Method

Mean in Original Scale 1.718

95% BCA UTL with 95% Coverage 15.2 95% Bootstrap (%) UTL with 95% Coverage 15.2 95% UPL (t) 10 95% UPL (t) 6.472 90% Percentile (z) 3.695 90% Percentile (z) 3.37 95% Percentile (z) 8.804 95% Percentile (z) 5.717 99% Percentile (z) 18.39 99% Percentile (z) 15.4

Gamma Distribution Test with Detected Values Only

k star (bias corrected) 0.882

Theta Star 4.383

nu star 21.17

A-D Test Statistic 0.733

5% A-D Critical Value 0.754

K-S Test Statistic 0.234

5% K-S Critical Value 0.252

Data appear Gamma Distributed at 5% Significance Level

**Assuming Gamma Distribution** 

Gamma ROS Statistics with Extrapolated Data

Mean 1.6

Median 0.000001

SD 3.422

k star 0.112

Theta star 14.33

Nu star 6.476

95% Percentile of Chisquare (2k) 1.285

90% Percentile 4.436

95% Percentile 9.206

99% Percentile 24.04

Data Distribution Test with Detected Values Only

Data appear Gamma Distributed at 5% Significance Level

**Nonparametric Statistics** 

Kaplan-Meier (KM) Method

Mean 2.009

SD 3.184

SE of Mean 0.618

95% KM Chebyshev UPL 16.13

95% KM UPL (t) 7.518 90% Percentile (z) 6.09

95% Percentile (z) 7.247

2070 : 0.00:..... (=) 7.1= 1.

99% Percentile (z) 9.416

Gamma ROS Limits with Extrapolated Data

95% Wilson Hilferty (WH) Approx. Gamma UPL 6.978 95% Hawkins Wixley (HW) Approx. Gamma UPL 8.027 95% WH Approx. Gamma UTL with 95% Coverage 12.1

95% HW Approx. Gamma UTL with 95% Coverage 16.43

Note: DL/2 is not a recommended method.

BARIUM

**General Statistics** 

Number of Valid Data 29

Number of Detected Data 27

Number of Distinct Detected Data 27

Number of Non-Detect Data 2

Tolerance Factor 2.232

Percent Non-Detects 6.90%

Raw Statistics Log-transformed Statistics

Minimum Detected 13.2 Minimum Detected 2.58

Maximum Detected 97.5 Maximum Detected 4.58

Mean of Detected 43.36 Mean of Detected 3.601

SD of Detected 25.03 SD of Detected 0.601

Minimum Non-Detect 12.8 Minimum Non-Detect 2.549

Maximum Non-Detect 15.6 Maximum Non-Detect 2.747

### **Data with Multiple Detection Limits**

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods),
Observations < Largest ND are treated as NDs

### Single Detection Limit Scenario

Number treated as Non-Detect with Single DL 3

Number treated as Detected with Single DL 26

Single DL Non-Detect Percentage 10.34%

Kaplan-Meier (KM) Method

Mean 41.28

SD 24.9

SE of Mean 4.712

### **Background Statistics**

| Normal Distribution Test with Detected Values Only | Lognormal Distribution Test with Detected Values Only |  |
|----------------------------------------------------|-------------------------------------------------------|--|
| Shapiro Wilk Test Statistic 0.898                  | Shapiro Wilk Test Statistic 0.927                     |  |
| 5% Shapiro Wilk Critical Value 0.923               | 5% Shapiro Wilk Critical Value 0.923                  |  |
| Data not Normal at 5% Significance Level           | Data appear Lognormal at 5% Significance Level        |  |
| Assuming Normal Distribution                       | Assuming Lognormal Distribution                       |  |
| DL/2 Substitution Method                           | DL/2 Substitution Method                              |  |
| Mean 40.86                                         | Mean (Log Scale) 3.488                                |  |
| SD 25.87                                           | SD (Log Scale) 0.719                                  |  |
| 95% UTL 95% Coverage 98.59                         | 95% UTL 95% Coverage 162.6                            |  |
| 95% UPL (t) 85.61                                  | 95% UPL (t) 113.4                                     |  |
| 90% Percentile (z) 74.01                           | 90% Percentile (z) 82.15                              |  |
| 95% Percentile (z) 83.41                           | 95% Percentile (z) 106.7                              |  |
| 99% Percentile (z) 101                             | 99% Percentile (z) 174                                |  |
| Maximum Likelihood Estimate(MLE) Method            | Log ROS Method                                        |  |
| Mean 40.02                                         | Mean in Original Scale 41.02                          |  |
| SD 26.84                                           | SD in Original Scale 25.65                            |  |
| 95% UTL with 95% Coverage 99.92                    | 95% UTL with 95% Coverage 151.4                       |  |
|                                                    | 95% BCA UTL with 95% Coverage 97.5                    |  |
|                                                    | 95% Bootstrap (%) UTL with 95% Coverage 97.5          |  |
| 95% UPL (t) 86.45                                  | 95% UPL (t) 107.8                                     |  |
| 90% Percentile (z) 74.41                           | 90% Percentile (z) 79.51                              |  |
| 95% Percentile (z) 84.16                           | 95% Percentile (z) 101.7                              |  |
| 99% Percentile (z) 102.5                           | 99% Percentile (z) 161.4                              |  |
| Gamma Distribution Test with Detected Values Only  | Data Distribution Test with Detected Values Only      |  |
| k star (bias corrected) 2.806                      | Data appear Lognormal at 5% Significance Level        |  |
| Theta Star 15.45                                   |                                                       |  |
| nu star 151.5                                      |                                                       |  |
| A-D Test Statistic 0.766                           | Nonparametric Statistics                              |  |
| E0/ A D Odd11/-1 0.751                             | IZ I M / (ZNA) NA II I                                |  |

5% A-D Critical Value 0.751

5% K-S Critical Value 0.169

Data not Gamma Distributed at 5% Significance Level

K-S Test Statistic 0.184

**Assuming Gamma Distribution** 

Gamma ROS Statistics with Extrapolated Data

Mean 40.37 Median 35.6 SD 26.58

k star 0.463

Theta star 87.19 Nu star 26.85

95% Percentile of Chisquare (2k) 3.656

90% Percentile 110.9

95% Percentile 159.4 99% Percentile 279.3 95% KM UTL with 95% Coverage 96.86

95% KM Chebyshev UPL 151.7

95% KM UPL (t) 84.36

90% Percentile (z) 73.19 95% Percentile (z) 82.24

99% Percentile (z) 99.2

Gamma ROS Limits with Extrapolated Data

95% Wilson Hilferty (WH) Approx. Gamma UPL 127.6 95% Hawkins Wixley (HW) Approx. Gamma UPL 163.9 95% WH Approx. Gamma UTL with 95% Coverage 173.8 95% HW Approx. Gamma UTL with 95% Coverage 241.8

Note: DL/2 is not a recommended method.

### **BERYLLIUM**

### **General Statistics**

Number of Valid Data 28 Number of Detected Data 6 Number of Distinct Detected Data 6 Number of Non-Detect Data 22 Tolerance Factor 2.246 Percent Non-Detects 78.57%

### **Raw Statistics**

Minimum Detected 0.1 Maximum Detected 3.01 Mean of Detected 1.394 SD of Detected 1.062 Minimum Non-Detect 0.02 Maximum Non-Detect 1.8

### Log-transformed Statistics

Minimum Detected -2.303 Maximum Detected 1.102 Mean of Detected -0.0879 SD of Detected 1.221 Minimum Non-Detect -3.912 Maximum Non-Detect 0.588

### **Data with Multiple Detection Limits**

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

### Single Detection Limit Scenario

Number treated as Non-Detect with Single DL 26 Number treated as Detected with Single DL 2 Single DL Non-Detect Percentage 92.86%

Warning: There are only 6 Detected Values in this data Note: It should be noted that even though bootstrap may be performed on this data set the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

### **Background Statistics**

### Normal Distribution Test with Detected Values Only

Shapiro Wilk Test Statistic 0.966

5% Shapiro Wilk Critical Value 0.788

Data appear Normal at 5% Significance Level

### **Assuming Normal Distribution**

DL/2 Substitution Method

Mean 0.536

SD 0.686

95% UTL 95% Coverage 2.076

95% UPL (t) 1.725

90% Percentile (z) 1.415

95% Percentile (z) 1.664

99% Percentile (z) 2.132

Maximum Likelihood Estimate(MLE) Method N/A

### Gamma Distribution Test with Detected Values Only

k star (bias corrected) 0.778

Theta Star 1.792

nu star 9.333

A-D Test Statistic 0.248

5% A-D Critical Value 0.71

K-S Test Statistic 0.203 5% K-S Critical Value 0.339

Data appear Gamma Distributed at 5% Significance Level

### Assuming Gamma Distribution

Gamma ROS Statistics with Extrapolated Data

Mean 0.299

Median 0.000001

SD 0.74

k star 0.1

Theta star 2.978

Nu star 5.615

95% Percentile of Chisquare (2k) 1.164

### Lognormal Distribution Test with Detected Values Only

Shapiro Wilk Test Statistic 0.884

5% Shapiro Wilk Critical Value 0.788

Data appear Lognormal at 5% Significance Level

### **Assuming Lognormal Distribution**

DL/2 Substitution Method

Mean (Log Scale) -1.518

SD (Log Scale) 1.615

95% UTL 95% Coverage 8.238

95% UPL (t) 3.601

90% Percentile (z) 1.736

95% Percentile (z) 3.121

99% Percentile (z) 9.379

Log ROS Method

Mean in Original Scale 0.329

SD in Original Scale 0.728

Mean in Log Scale -2.838

SD in Log Scale 1.711

95% UTL 95% Coverage 2.734

95% UPL (t) 1.137

90% Percentile (z) 0.525

95% Percentile (z) 0.977

99% Percentile (z) 3.137

### **Data Distribution Test with Detected Values Only**

Data appear Normal at 5% Significance Level

### Nonparametric Statistics

Kaplan-Meier (KM) Method

Mean 0.398

SD 0.698

SE of Mean 0.147

95% KM UTL with 95% Coverage 1.965 95% KM Chebyshev UPL 3.493

95% KM UPL (t) 1.608

200/ D ::: ( ) 4.00

90% Percentile (z) 1.292

95% Percentile (z) 1.546

99% Percentile (z) 2.021

### Gamma ROS Limits with Extrapolated Data

95% Wilson Hilferty (WH) Approx. Gamma UPL 1.04

95% Hawkins Wixley (HW) Approx. Gamma UPL 0.925

95% WH Approx. Gamma UTL with 95% Coverage 1.93

90% Percentile 0.796 95% Percentile 1.733

99% Percentile 4.737

Note: DL/2 is not a recommended method.

95% HW Approx. Gamma UTL with 95% Coverage 2.067

### **CADMIUM**

### **General Statistics**

Number of Valid Data 29

Number of Detected Data 3

Number of Distinct Detected Data 3

Number of Non-Detect Data 26

Warning: Data set has only 3 Detected Values.

This is not enough to compute meaningful and reliable test statistics and estimates.

No statistics will be produced!

Tolerance Factor 2.232

Percent Non-Detects 89.66%

### **Raw Statistics**

Minimum Detected 0.08 Maximum Detected 0.9 Mean of Detected 0.481 SD of Detected 0.41 Minimum Non-Detect 0.039 Maximum Non-Detect 1

### Log-transformed Statistics

Minimum Detected -2.526 Maximum Detected -0.105 Mean of Detected -1.134 SD of Detected 1.25 Minimum Non-Detect -3.244 Maximum Non-Detect 0

### **Data with Multiple Detection Limits**

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

### Single Detection Limit Scenario

Number treated as Non-Detect with Single DL 29 Number treated as Detected with Single DL 0 Single DL Non-Detect Percentage 100.00%

Warning: There are only 3 Distinct Detected Values in this data set The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods. Those methods will return a 'N/A' value on your output display!

> It is necessary to have 4 or more Distinct Values for bootstrap methods. However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

### **Background Statistics**

Normal Distribution Test with Detected Values Only

Lognormal Distribution Test with Detected Values Only

Shapiro Wilk Test Statistic 0.998

Shapiro Wilk Test Statistic 0.937

5% Shapiro Wilk Critical Value 0.767

5% Shapiro Wilk Critical Value 0.767

Data appear Normal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

| Assuming Normal Distribution                       |       | Assuming Lognormal Distribution                  |
|----------------------------------------------------|-------|--------------------------------------------------|
| DL/2 Substitution Method                           |       | DL/2 Substitution Method                         |
| Mean (                                             | ).241 | Mean (Log Scale) -2.049                          |
| SD (                                               | 0.233 | SD (Log Scale) 1.269                             |
| 95% UTL 95% Coverage (                             | ).761 | 95% UTL 95% Coverage 2.191                       |
| 95% UPL (t) 0                                      | 0.644 | 95% UPL (t) 1.159                                |
| 90% Percentile (z) 0                               | ).54  | 90% Percentile (z) 0.656                         |
| 95% Percentile (z) 0                               | 0.624 | 95% Percentile (z) 1.04                          |
| 99% Percentile (z) 0                               | ).783 | 99% Percentile (z) 2.469                         |
| Maximum Likelihood Estimate(MLE) Method N          | N/A   | Log ROS Method                                   |
|                                                    |       | Mean in Original Scale 0.0618                    |
|                                                    |       | SD in Original Scale 0.183                       |
|                                                    |       | Mean in Log Scale -4.645                         |
|                                                    |       | SD in Log Scale 1.644                            |
|                                                    |       | 95% UTL 95% Coverage 0.377                       |
|                                                    |       | 95% UPL (t) 0.165                                |
|                                                    |       | 90% Percentile (z) 0.079                         |
|                                                    |       | 95% Percentile (z) 0.144                         |
|                                                    |       | 99% Percentile (z) 0.44                          |
| Gamma Distribution Test with Detected Values Only  | ,     | Data Distribution Test with Detected Values Only |
| k star (bias corrected)                            | N/A   | Data appear Normal at 5% Significance Level      |
| Theta Star                                         | N/A   |                                                  |
| nu star                                            | N/A   |                                                  |
| A-D Test Statistic                                 | N/A   | Nonparametric Statistics                         |
| 5% A-D Critical Value                              | N/A   | Kaplan-Meier (KM) Method                         |
| K-S Test Statistic                                 | N/A   | Mean 0.138                                       |
| 5% K-S Critical Value                              | N/A   | SD 0.187                                         |
| Data not Gamma Distributed at 5% Significance Leve | el    | SE of Mean 0.0497                                |
|                                                    |       | 95% KM UTL with 95% Coverage 0.555               |
| Assuming Gamma Distribution                        |       | 95% KM Chebyshev UPL 0.967                       |
| Gamma ROS Statistics with Extrapolated Data        |       | 95% KM UPL (t) 0.461                             |
| Mean                                               | N/A   | 90% Percentile (z) 0.377                         |
| Median                                             | N/A   | 95% Percentile (z) 0.445                         |
| SD                                                 | N/A   | 99% Percentile (z) 0.573                         |
| k star                                             | N/A   |                                                  |
| Theta star                                         | N/A   | Gamma ROS Limits with Extrapolated Data          |
| Nu star                                            | N/A   | 95% Wilson Hilferty (WH) Approx. Gamma UPL N/A   |
| 95% Percentile of Chisquare (2k)                   | N/A   | 95% Hawkins Wixley (HW) Approx. Gamma UPL N/A    |
|                                                    |       | 95% WH Approx. Gamma UTL with 95% Coverage N/A   |
| 90% Percentile                                     | N/A   | 95% HW Approx. Gamma UTL with 95% Coverage N/A   |
| 95% Percentile                                     | N/A   |                                                  |
| 99% Percentile                                     | N/A   |                                                  |

### Note: DL/2 is not a recommended method.

### CALCIUM

### **General Statistics**

Total Number of Observations 28

Number of Distinct Observations 28

Tolerance Factor 2.246

Raw Statistics Log-Transformed Statistics

Minimum 7190 Minimum 8.88 Maximum 216000 Maximum 12.28 Second Largest 212000 Second Largest 12.26 First Quartile 20150 First Quartile 9.907 Median 40800 Median 10.62 Third Quartile 81575 Third Quartile 11.31 Mean 60441 Mean 10.58 Geometric Mean 39282 SD 0.97

SD 58521

Coefficient of Variation 0.968

Skewness 1.569

### **Background Statistics**

Normal Distribution Test Lognormal Distribution Test

Shapiro Wilk Test Statistic 0.799

Shapiro Wilk Critical Value 0.924

Shapiro Wilk Critical Value 0.924

Data not Normal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

**Assuming Lognormal Distribution** 

95% UTL with 95% Coverage 346839

95% UPL (t) 210986

90% Percentile (z) 136124

95% Percentile (z) 193618

99% Percentile (z) 374946

**Assuming Normal Distribution** 

95% UTL with  $\,\,95\%$  Coverage  $\,191879$ 

95% UPL (t) 161883 90% Percentile (z) 135439

95% Percentile (z) 156699 99% Percentile (z) 196581

**Gamma Distribution Test** 

Data Distribution Test

k star 1.186 Data appear Gamma Distributed at 5% Significance Level

Theta Star 50958

MLE of Mean 60441

MLE of Standard Deviation 55497

nu star 66.42

A-D Test Statistic 0.425 Nonparametric Statistics

5% A-D Critical Value 0.767 90% Percentile 138500 K-S Test Statistic 0.131 95% Percentile 197300

| 5% K-S Critical Value 0.16 | 59 |
|----------------------------|----|
|----------------------------|----|

### Data appear Gamma Distributed at 5% Significance Level

### 99% Percentile 214920

### **Assuming Gamma Distribution**

90% Percentile 133427 95% Percentile 170560

99% Percentile 255738

95% WH Approx. Gamma UPL 174449 95% HW Approx. Gamma UPL 179903 95% WH Approx. Gamma UTL with 95% Coverage 236352

95% HW Approx. Gamma UTL with 95% Coverage 251864

95% UTL with 95% Coverage 216000

95% Percentile Bootstrap UTL with 95% Coverage 216000 95% BCA Bootstrap UTL with 95% Coverage 216000

95% UPL 214200

95% Chebyshev UPL 320043

Upper Threshold Limit Based upon IQR 173713

### **CHROMIUM**

### **General Statistics**

Number of Valid Data 29 Number of Distinct Detected Data 9 Tolerance Factor 2.232

Number of Detected Data 9 Number of Non-Detect Data 20 Percent Non-Detects 68.97%

### **Raw Statistics**

| Minimum Detected 0.58   |
|-------------------------|
| Maximum Detected 26.2   |
| Mean of Detected 7.188  |
| SD of Detected 8.366    |
| Minimum Non-Detect 0.17 |
| Maximum Non-Detect 5    |

### Log-transformed Statistics

| od Otaliotics      |        |
|--------------------|--------|
| Minimum Detected   | -0.545 |
| Maximum Detected   | 3.266  |
| Mean of Detected   | 1.274  |
| SD of Detected     | 1.343  |
| Minimum Non-Detect | -1.772 |
| Maximum Non-Detect | 1.609  |

### **Data with Multiple Detection Limits**

### Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

### Single Detection Limit Scenario

Number treated as Non-Detect with Single DL 25 Number treated as Detected with Single DL 4 Single DL Non-Detect Percentage 86.21%

Warning: There are only 9 Detected Values in this data Note: It should be noted that even though bootstrap may be performed on this data set the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

### **Background Statistics**

Normal Distribution Test with Detected Values Only

Lognormal Distribution Test with Detected Values Only

Shapiro Wilk Test Statistic 0.798 5% Shapiro Wilk Critical Value 0.829

Shapiro Wilk Test Statistic 0.942 5% Shapiro Wilk Critical Value 0.829

### Data not Normal at 5% Significance Level

### Data appear Lognormal at 5% Significance Level

| Assuming Normal Distribution            | Assuming Lognormal Distribution |
|-----------------------------------------|---------------------------------|
| DL/2 Substitution Method                | DL/2 Substitution Method        |
| Mean 2.834                              | Mean (Log Scale) -0.101         |
| SD 5.43                                 | SD (Log Scale) 1.493            |
| 95% UTL 95% Coverage 14.95              | 95% UTL 95% Coverage 25.33      |
| 95% UPL (t) 12.23                       | 95% UPL (t) 11.97               |
| 90% Percentile (z) 9.793                | 90% Percentile (z) 6.126        |
| 95% Percentile (z) 11.77                | 95% Percentile (z) 10.54        |
| 99% Percentile (z) 15.47                | 99% Percentile (z) 29.16        |
| Maximum Likelihood Estimate(MLE) Method | Log ROS Method                  |
| Mean 16.23                              | Mean in Original Scale 2.335    |
| SD 7.219                                | SD in Original Scale 5.569      |
| 95% UTL with 95% Coverage 32.34         | 95% UTL with 95% Coverage 24.86 |

|                          | 95% Bootstrap (%) UTL with 95% Coverage 26.2 |
|--------------------------|----------------------------------------------|
| 95% UPL (t) 28.72        | 95% UPL (t) 9.108                            |
| 90% Percentile (z) 25.48 | 90% Percentile (z) 3.712                     |
| 95% Percentile (z) 28.1  | 95% Percentile (z) 7.678                     |
| 99% Percentile (z) 33.02 | 99% Percentile (z) 30.02                     |

### Gamma Distribution Test with Detected Values Only

k star (bias corrected) 0.637 Data appear Gamma Distributed at 5% Significance Level
Theta Star 11.29

|                          | nu star 11.47            |
|--------------------------|--------------------------|
| Nonparametric Statistics | A-D Test Statistic 0.321 |

K-S Test Statistic 0.196
5% K-S Critical Value 0.288

Data appear Gamma Distributed at 5% Significance Level

5% A-D Critical Value 0.748

### **Assuming Gamma Distribution**

Gamma ROS Statistics with Extrapolated Data

ted Data

Mean 2.253

Median 0.000001

SD 5.601

k star 0.101

Theta star 22.29 Nu star 5.862 95% Percentile of Chisquare (2k) 1.173

90% Percentile 6.02295% Percentile 13.07

### SD 5.344 SE of Mean 1.055 95% KM UTL with 95% Coverage 14.61 95% KM Chebyshev UPL 26.38

Kaplan-Meier (KM) Method

95% BCA UTL with 95% Coverage 26.2

95% KM UPL (t) 11.93 90% Percentile (z) 9.531 95% Percentile (z) 11.47 99% Percentile (z) 15.11

Mean 2.683

### Gamma ROS Limits with Extrapolated Data

**Data Distribution Test with Detected Values Only** 

95% Wilson Hilferty (WH) Approx. Gamma UPL 8.743 95% Hawkins Wixley (HW) Approx. Gamma UPL 9.012 95% WH Approx. Gamma UTL with 95% Coverage 15.57 95% HW Approx. Gamma UTL with 95% Coverage 19.08

### 99% Percentile 35.6

Note: DL/2 is not a recommended method.

### **COBALT**

### **General Statistics**

Number of Valid Data 28

Number of Detected Data 21

Number of Distinct Detected Data 20

Number of Non-Detect Data 7

Tolerance Factor 2.246

Percent Non-Detects 25.00%

### Raw Statistics

Minimum Detected 2 Minimum Detected 0.693

Maximum Detected 64.4 Maximum Detected 4.165

Mean of Detected 28.2 Mean of Detected 3.037

SD of Detected 18.78 SD of Detected 0.912

Minimum Non-Detect 1 Minimum Non-Detect 0

Maximum Non-Detect 3 Maximum Non-Detect 1.099

### **Data with Multiple Detection Limits**

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

### Single Detection Limit Scenario

Data appear Lognormal at 5% Significance Level

**Assuming Lognormal Distribution** 

**Log-transformed Statistics** 

Number treated as Non-Detect with Single DL 8

Number treated as Detected with Single DL 20

Single DL Non-Detect Percentage 28.57%

### **Background Statistics**

| Normal Distribution Test with Detected Values Only | Lognormal Distribution | Test with Detected Values Only |
|----------------------------------------------------|------------------------|--------------------------------|
|----------------------------------------------------|------------------------|--------------------------------|

Shapiro Wilk Test Statistic 0.95

Shapiro Wilk Critical Value 0.908

Shapiro Wilk Critical Value 0.908

Data appear Normal at 5% Significance Level

**Assuming Normal Distribution** 

| DL/2 Substitution Method   | DL/2 Substitution Method   |
|----------------------------|----------------------------|
| Mean 21.45                 | Mean (Log Scale) 2.3       |
| SD 20.08                   | SD (Log Scale) 1.534       |
| 95% UTL 95% Coverage 66.54 | 95% UTL 95% Coverage 313.2 |
| 95% UPL (t) 56.25          | 95% UPL (t) 142.6          |
| 90% Percentile (z) 47.18   | 90% Percentile (z) 71.3    |
| 95% Percentile (z) 54.47   | 95% Percentile (z) 124.5   |
| 99% Percentile (z) 68.15   | 99% Percentile (z) 354.3   |

| Maximum Likelihood Estimate(MLE) Method | Log ROS Method |
|-----------------------------------------|----------------|
|-----------------------------------------|----------------|

Mean 17.45 Mean in Original Scale 21.93
SD 25.22 SD in Original Scale 19.59
95% UTL with 95% Coverage 74.1 95% UTL with 95% Coverage 178.8
95% BCA UTL with 95% Coverage 64.4

95% Bootstrap (%) UTL with 95% Coverage 64.4 95% UPL (t) 61.18 95% UPL (t) 98 90% Percentile (z) 49.78 90% Percentile (z) 57.67 95% Percentile (z) 58.94 95% Percentile (z) 88.33 99% Percentile (z) 76.13 99% Percentile (z) 196.5 Gamma Distribution Test with Detected Values Only **Data Distribution Test with Detected Values Only** k star (bias corrected) 1.576 Data appear Normal at 5% Significance Level Theta Star 17.89 nu star 66.19 A-D Test Statistic 0.259 Nonparametric Statistics 5% A-D Critical Value 0.756 Kaplan-Meier (KM) Method K-S Test Statistic 0.109 Mean 21.65 5% K-S Critical Value 0.192 SD 19.51 Data appear Gamma Distributed at 5% Significance Level SE of Mean 3.778 95% KM UTL with 95% Coverage 65.47 **Assuming Gamma Distribution** 95% KM Chebyshev UPL 108.2 Gamma ROS Statistics with Extrapolated Data 95% KM UPL (t) 55.47 Mean 21.15 90% Percentile (z) 46.65 Median 15.55 95% Percentile (z) 53.74 SD 20.39 99% Percentile (z) 67.03 k star 0.182

Note: DL/2 is not a recommended method.

### COPPER

### **General Statistics**

Theta star 116.1

90% Percentile 63.82

95% Percentile 111.6 99% Percentile 245.1

95% Percentile of Chisquare (2k) 1.922

Nu star 10.2

Number of Valid Data 28

Number of Detected Data 17

Number of Distinct Detected Data 16

Number of Non-Detect Data 11

Tolerance Factor 2.246

Percent Non-Detects 39.29%

### Raw Statistics Log-transformed Statistics

Minimum Detected 0.67 Minimum Detected -0.4

Maximum Detected 21.6 Maximum Detected 3.073

Mean of Detected 5.064 Mean of Detected 1.096

SD of Detected 6.002 SD of Detected 1.039

Gamma ROS Limits with Extrapolated Data

95% Wilson Hilferty (WH) Approx. Gamma UPL 98.38

95% Hawkins Wixley (HW) Approx. Gamma UPL 138.2 95% WH Approx. Gamma UTL with 95% Coverage 152.7

95% HW Approx. Gamma UTL with 95% Coverage 244.7

Minimum Non-Detect 0.12 Maximum Non-Detect 2.1 Minimum Non-Detect -2.12 Maximum Non-Detect 0.742

SE of Mean 0.976

95% KM UTL with 95% Coverage 14.61

### **Data with Multiple Detection Limits**

Data not Gamma Distributed at 5% Significance Level

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods),
Observations < Largest ND are treated as NDs

### **Single Detection Limit Scenario**

Number treated as Non-Detect with Single DL 17

Number treated as Detected with Single DL 11

Single DL Non-Detect Percentage 60.71%

### **Background Statistics**

| Background                                            | Statistics                                            |
|-------------------------------------------------------|-------------------------------------------------------|
| Normal Distribution Test with Detected Values Only    | Lognormal Distribution Test with Detected Values Only |
| Shapiro Wilk Test Statistic 0.698 Shapiro Wilk Test S |                                                       |
| 5% Shapiro Wilk Critical Value 0.892                  | 5% Shapiro Wilk Critical Value 0.892                  |
| Data not Normal at 5% Significance Level              | Data appear Lognormal at 5% Significance Level        |
| Assuming Normal Distribution                          | Assuming Lognormal Distribution                       |
| DL/2 Substitution Method                              | DL/2 Substitution Method                              |
| Mean 3.336                                            | Mean (Log Scale) 0.375                                |
| SD 5.117                                              | SD (Log Scale) 1.373                                  |
| 95% UTL 95% Coverage 14.83                            | 95% UTL 95% Coverage 31.77                            |
| 95% UPL (t) 12.21                                     | 95% UPL (t) 15.72                                     |
| 90% Percentile (z) 9.894                              | 90% Percentile (z) 8.451                              |
| 95% Percentile (z) 11.75                              | 95% Percentile (z) 13.92                              |
| 99% Percentile (z) 15.24                              | 99% Percentile (z) 35.48                              |
| Maximum Likelihood Estimate(MLE) Method               | Log ROS Method                                        |
| Mean -1.041                                           | Mean in Original Scale 3.25                           |
| SD 9.016                                              | SD in Original Scale 5.161                            |
| 95% UTL with 95% Coverage 19.21                       | 95% UTL with 95% Coverage 27.39                       |
|                                                       | 95% BCA UTL with 95% Coverage 21.6                    |
|                                                       | 95% Bootstrap (%) UTL with 95% Coverage 21.6          |
| 95% UPL (t) 14.59                                     | 95% UPL (t) 13.75                                     |
| 90% Percentile (z) 10.51                              | 90% Percentile (z) 7.487                              |
| 95% Percentile (z) 13.79                              | 95% Percentile (z) 12.2                               |
| 99% Percentile (z) 19.93                              | 99% Percentile (z) 30.51                              |
| Gamma Distribution Test with Detected Values Only     | Data Distribution Test with Detected Values Only      |
| k star (bias corrected) 0.934                         | Data appear Lognormal at 5% Significance Level        |
| Theta Star 5.42                                       |                                                       |
| nu star 31.76                                         |                                                       |
| A-D Test Statistic 0.796                              | Nonparametric Statistics                              |
| 5% A-D Critical Value 0.764                           | Kaplan-Meier (KM) Method                              |
| K-S Test Statistic 0.218                              | Mean 3.36                                             |
| 5% K-S Critical Value 0.215                           | SD 5.008                                              |
|                                                       |                                                       |

**Assuming Gamma Distribution** 

Gamma ROS Statistics with Extrapolated Data

Mean 3.074 Median 0.855 SD 5.262

k star 0.142

Theta star 21.58 Nu star 7.977

95% Percentile of Chisquare (2k) 1.583

90% Percentile 9.045

95% Percentile 17.09 99% Percentile 40.67

95% KM Chebyshev UPL 25.58

95% KM UPL (t) 12.04 90% Percentile (z) 9.778 95% Percentile (z) 11.6

99% Percentile (z) 15.01

Gamma ROS Limits with Extrapolated Data

95% Wilson Hilferty (WH) Approx. Gamma UPL 14.48 95% Hawkins Wixley (HW) Approx. Gamma UPL 18.8 95% WH Approx. Gamma UTL with 95% Coverage 23.95 95% HW Approx. Gamma UTL with 95% Coverage 36.05

Note: DL/2 is not a recommended method.

**IRON** 

### **General Statistics**

Number of Valid Data 28

Number of Detected Data 25

Number of Distinct Detected Data 25

Number of Non-Detect Data 3

Tolerance Factor 2.246

Percent Non-Detects 10.71%

**Raw Statistics** 

Minimum Detected 12.7

Maximum Detected 41800

Mean of Detected 7912

SD of Detected 12906

Minimum Non-Detect 61.7

Maximum Non-Detect 344

### Log-transformed Statistics

Minimum Detected 2.542
Maximum Detected 10.64
Mean of Detected 7.288
SD of Detected 2.142
Minimum Non-Detect 4.122
Maximum Non-Detect 5.841

### **Data with Multiple Detection Limits**

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods),
Observations < Largest ND are treated as NDs

### Single Detection Limit Scenario

Number treated as Non-Detect with Single DL 9

Number treated as Detected with Single DL 19

Single DL Non-Detect Percentage 32.14%

### **Background Statistics**

Normal Distribution Test with Detected Values Only

Shapiro Wilk Test Statistic 0.652 5% Shapiro Wilk Critical Value 0.918

Data not Normal at 5% Significance Level

### Lognormal Distribution Test with Detected Values Only

Shapiro Wilk Test Statistic 0.95 5% Shapiro Wilk Critical Value 0.918

Data appear Lognormal at 5% Significance Level

### **Assuming Normal Distribution**

DL/2 Substitution Method

Mean 7074

### **Assuming Lognormal Distribution**

DL/2 Substitution Method

Mean (Log Scale) 6.953

SD 12415 SD (Log Scale) 2.259 95% UTL 95% Coverage 34957 95% UTL 95% Coverage 167271 95% UPL (t) 28594 95% UPL (t) 52538 90% Percentile (z) 22984 90% Percentile (z) 18926 95% Percentile (z) 27494 95% Percentile (z) 43008 99% Percentile (z) 35955 99% Percentile (z) 200568 Maximum Likelihood Estimate(MLE) Method Log ROS Method Mean 3382 Mean in Original Scale 7069 SD 15978 SD in Original Scale 12418 95% UTL with 95% Coverage 39268 95% UTL with 95% Coverage 197181 95% BCA UTL with 95% Coverage 41800 95% Bootstrap (%) UTL with 95% Coverage 41800 95% UPL (t) 31079 95% UPL (t) 58587 90% Percentile (z) 23858 90% Percentile (z) 20097 95% Percentile (z) 29663 95% Percentile (z) 47502 99% Percentile (z) 40552 99% Percentile (z) 238499

### Gamma Distribution Test with Detected Values Only

k star (bias corrected) 0.371 Theta Star 21336

nu star 18.54

A-D Test Statistic 1.122 5% A-D Critical Value 0.831 K-S Test Statistic 0.208

5% K-S Critical Value 0.187

### Data not Gamma Distributed at 5% Significance Level

### Assuming Gamma Distribution

Gamma ROS Statistics with Extrapolated Data

Mean 7064 Median 895.5 SD 12420 k star 0.196

Theta star 36034 Nu star 10.98

95% Percentile of Chisquare (2k) 2.031

99% Percentile 78646

90% Percentile 21362 95% Percentile 36589

Note: DL/2 is not a recommended method.

### Data Distribution Test with Detected Values Only

Data appear Lognormal at 5% Significance Level

### **Nonparametric Statistics**

Kaplan-Meier (KM) Method

Mean 7069 SD 12194

SE of Mean 2352

95% KM Chebyshev UPL 61161

95% KM UPL (t) 28206

90% Percentile (z) 22696

95% Percentile (z) 27126

99% Percentile (z) 35436

### Gamma ROS Limits with Extrapolated Data

95% Wilson Hilferty (WH) Approx. Gamma UPL 29620 95% Hawkins Wixley (HW) Approx. Gamma UPL 33579 95% WH Approx. Gamma UTL with 95% Coverage 47829 95% HW Approx. Gamma UTL with 95% Coverage 60315

### LEAD

### **General Statistics**

Number of Valid Data 29

Number of Detected Data 4

Number of Distinct Detected Data 4

Number of Non-Detect Data 25

Tolerance Factor 2.232

Percent Non-Detects 86.21%

### Raw Statistics Log-transformed Statistics

Minimum Detected 0.54 Minimum Detected -0.616

Maximum Detected 15.5 Maximum Detected 2.741

Mean of Detected 7.735 Mean of Detected 1.437

SD of Detected 7.032 SD of Detected 1.531

Minimum Non-Detect 0.157 Minimum Non-Detect -1.852

Maximum Non-Detect 2.5 Maximum Non-Detect 0.916

### **Data with Multiple Detection Limits**

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

### Single Detection Limit Scenario

Number treated as Non-Detect with Single DL 26

Number treated as Detected with Single DL 3

Single DL Non-Detect Percentage 89.66%

Warning: There are only 4 Distinct Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set
the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

### **Background Statistics**

| Normal Distribution Test with Detected Values Only  Lognormal Distribution Test with Detected Values |                                      |
|------------------------------------------------------------------------------------------------------|--------------------------------------|
| Shapiro Wilk Test Statistic 0.924                                                                    | Shapiro Wilk Test Statistic 0.906    |
| 5% Shapiro Wilk Critical Value 0.748                                                                 | 5% Shapiro Wilk Critical Value 0.748 |

Data appear Normal at 5% Significance Level

### Data appear Lognormal at 5% Significance Level

| Assuming Normal Distribution          | Assuming Lognormal Distribution |
|---------------------------------------|---------------------------------|
| DL/2 Substitution Method              | DL/2 Substitution Method        |
| Mean 1.423                            | Mean (Log Scale) -0.78          |
| SD 3.46                               | SD (Log Scale) 1.249            |
| 95% UTL 95% Coverage 9.147            | 95% UTL 95% Coverage 7.436      |
| 95% UPL (t) 7.41                      | 95% UPL (t) 3.974               |
| 90% Percentile (z) 5.858              | 90% Percentile (z) 2.27         |
| 95% Percentile (z) 7.115              | 95% Percentile (z) 3.573        |
| 99% Percentile (z) 9.473              | 99% Percentile (z) 8.366        |
| ximum Likelihood Estimate(MLE) Method | Log ROS Method                  |

Maximum Likelihood Estimate(MLE) Method

Mean -16.52

SD 15.16

Log ROS Method

Mean in Original Scale 1.079

SD in Original Scale 3.555

95% UTL with 95% Coverage 17.32 95% UTL with 95% Coverage 5.368 95% BCA UTL with 95% Coverage 15.5 95% Bootstrap (%) UTL with 95% Coverage 15.5 95% UPL (t) 9.711 95% UPL (t) 1.384 90% Percentile (z) 2.908 90% Percentile (z) 0.412 95% Percentile (z) 8.417 95% Percentile (z) 1.099 99% Percentile (z) 18.75 99% Percentile (z) 6.926

Gamma Distribution Test with Detected Values Only **Data Distribution Test with Detected Values Only** 

> k star (bias corrected) 0.405 Data appear Normal at 5% Significance Level Theta Star 19.1

nu star 3.24

A-D Test Statistic 0.31 **Nonparametric Statistics** 5% A-D Critical Value 0.667 Kaplan-Meier (KM) Method

K-S Test Statistic 0.279 Mean 1.532 SD 3.357 5% K-S Critical Value 0.403

Data appear Gamma Distributed at 5% Significance Level

Assuming Gamma Distribution

Gamma ROS Statistics with Extrapolated Data

95% KM UPL (t) 7.341 Mean 1.067 90% Percentile (z) 5.835 Median 0.000001 95% Percentile (z) 7.055 99% Percentile (z) 9.343

Gamma ROS Limits with Extrapolated Data

95% Wilson Hilferty (WH) Approx. Gamma UPL 2.754

SE of Mean 0.72

95% KM UTL with 95% Coverage 9.026

95% KM Chebyshev UPL 16.42

SD 3.559 k star 0.0873 Theta star 12.22

Nu star 5.062

95% Percentile of Chisquare (2k) 1.017

95% Hawkins Wixley (HW) Approx. Gamma UPL 1.921 95% WH Approx. Gamma UTL with 95% Coverage 5.225 95% HW Approx. Gamma UTL with 95% Coverage 4.427 90% Percentile 2.662

95% Percentile 6.217 99% Percentile 18.12

Note: DL/2 is not a recommended method.

### **MAGNESIUM**

### **General Statistics**

**Total Number of Observations 28** Number of Distinct Observations 28 Tolerance Factor 2.246

**Raw Statistics Log-Transformed Statistics** 

> Minimum 2950 Minimum 7.99 Maximum 229000 Maximum 12.34 Second Largest 156000 Second Largest 11.96

| First Quartile 9648                      | First Quartile 9.157                           |
|------------------------------------------|------------------------------------------------|
| Median 16600                             | Median 9.717                                   |
| Third Quartile 33925                     | Third Quartile 10.43                           |
| Mean 36803                               | Mean 9.873                                     |
| Geometric Mean 19398                     | SD 1.071                                       |
| SD 53719                                 |                                                |
| Coefficient of Variation 1.46            |                                                |
| Skewness 2.593                           |                                                |
| Backaro                                  | ound Statistics                                |
| Normal Distribution Test                 | Lognormal Distribution Test                    |
| Shapiro Wilk Test Statistic 0.601        | Shapiro Wilk Test Statistic 0.948              |
| Shapiro Wilk Critical Value 0.924        | Shapiro Wilk Critical Value 0.924              |
| Data not Normal at 5% Significance Level | Data appear Lognormal at 5% Significance Level |

| Assuming Normal Distribution     | Assuming Lognormal Distribution  |  |
|----------------------------------|----------------------------------|--|
| 95% UTL with 95% Coverage 157455 | 95% UTL with 95% Coverage 215057 |  |
| 95% UPL (t) 129921               | 95% UPL (t) 124200               |  |
| 90% Percentile (z) 105646        | 90% Percentile (z) 76544         |  |
| 95% Percentile (z) 125162        | 95% Percentile (z) 112957        |  |
| 99% Percentile (z) 161771        | 99% Percentile (z) 234384        |  |

| Data Distribution Test                         |
|------------------------------------------------|
| Data appear Lognormal at 5% Significance Level |
|                                                |
|                                                |
|                                                |
|                                                |
|                                                |

| A-D Test Statistic 1.565    | Nonparametric Statistics |
|-----------------------------|--------------------------|
| 5% A-D Critical Value 0.778 | 90% Percentile 94900     |
| K-S Test Statistic 0.183    | 95% Percentile 154950    |
| 5% K-S Critical Value 0.171 | 99% Percentile 209290    |

### D

| 5% K-S Critical Value 0.171                         | 99% Percentile 209290                                 |
|-----------------------------------------------------|-------------------------------------------------------|
| Data not Gamma Distributed at 5% Significance Level |                                                       |
| Assuming Gamma Distribution                         | 95% UTL with 95% Coverage 229000                      |
| 90% Percentile 88498                                | 95% Percentile Bootstrap UTL with 95% Coverage 229000 |
| 95% Percentile 117432                               | 95% BCA Bootstrap UTL with 95% Coverage 203450        |
| 99% Percentile 185514                               | 95% UPL 196150                                        |
|                                                     | 95% Chebyshev UPL 275102                              |
| 95% WH Approx. Gamma UPL 115881                     | Upper Threshold Limit Based upon IQR 70341            |
| 95% HW Approx. Gamma UPL 116015                     |                                                       |
| 95% WH Approx. Gamma UTL with 95% Coverage 163521   |                                                       |
| 95% HW Approx. Gamma UTL with 95% Coverage 169605   |                                                       |

### MANGANESE

### **General Statistics**

Number of Valid Data 28

Number of Detected Data 27

Number of Distinct Detected Data 27

Number of Non-Detect Data 1

Tolerance Factor 2.246

Percent Non-Detects 3.57%

Raw Statistics Log-transformed Statistics

Minimum Detected 6.89 Minimum Detected 1.93

Maximum Detected 5940 Maximum Detected 8.689

Mean of Detected 1237 Mean of Detected 6.115

SD of Detected 1498 SD of Detected 1.798

Minimum Non-Detect 566 Minimum Non-Detect 6.339

Maximum Non-Detect 566 Maximum Non-Detect 6.339

### **Background Statistics**

Normal Distribution Test with Detected Values Only

Lognormal Distribution Test with Detected Values Only

Shapiro Wilk Test Statistic 0.781 Shapiro Wilk Test Statistic 0.937

5% Shapiro Wilk Critical Value 0.923

5% Shapiro Wilk Critical Value 0.923

Data not Normal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Assuming Normal Distribution Assuming Lognormal Distribution

DL/2 Substitution Method

 Mean 1203
 Mean (Log Scale) 6.098

 SD 1481
 SD (Log Scale) 1.767

 95% UTL 95% Coverage 4528
 95% UTL 95% Coverage 23532

 95% UPL (t) 3770
 95% UPL (t) 9514

 90% Percentile (z) 3100
 90% Percentile (z) 4282

 95% Percentile (z) 3638
 95% Percentile (z) 8136

 99% Percentile (z) 4647
 99% Percentile (z) 27121

Maximum Likelihood Estimate(MLE) Method Log ROS Method

Mean 728.7Mean in Original Scale 1196SD 2006SD in Original Scale 1485

95% UTL with 95% Coverage 5235 95% UTL with 95% Coverage 23792 95% BCA UTL with 95% Coverage 5940

95% Bootstrap (%) UTL with 95% Coverage 5940

DL/2 Substitution Method

95% UPL (t) 4206 95% UPL (t) 9510 90% Percentile (z) 3300 90% Percentile (z) 4237 95% Percentile (z) 4029 95% Percentile (z) 8116 99% Percentile (z) 5396 99% Percentile (z) 27470

Gamma Distribution Test with Detected Values Only

Data Distribution Test with Detected Values Only

k star (bias corrected) 0.569 Data appear Gamma Distributed at 5% Significance Level

Theta Star 2173 nu star 30.73

A-D Test Statistic 0.249

5% A-D Critical Value 0.797

K-S Test Statistic 0.103

5% K-S Critical Value 0.177

Data appear Gamma Distributed at 5% Significance Level

**Assuming Gamma Distribution** 

Gamma ROS Statistics with Extrapolated Data

Mean 1193 Median 782.5

SD 1488

k star 0.374

Theta star 3186 Nu star 20.96

95% Percentile of Chisquare (2k) 3.182

90% Percentile 3408

95% Percentile 5070

99% Percentile 9280

Nonparametric Statistics

Kaplan-Meier (KM) Method

Mean 1197

SD 1458

SE of Mean 280.8

95% KM UTL with 95% Coverage 4472

95% KM Chebyshev UPL 7666

95% KM UPL (t) 3725

90% Percentile (z) 3066

95% Percentile (z) 3595

99% Percentile (z) 4589

Gamma ROS Limits with Extrapolated Data

95% Wilson Hilferty (WH) Approx. Gamma UPL 4664

95% Hawkins Wixley (HW) Approx. Gamma UPL 5410

95% WH Approx. Gamma UTL with 95% Coverage 6974 95% HW Approx. Gamma UTL with 95% Coverage 8768

Note: DL/2 is not a recommended method.

### **MERCURY**

### **General Statistics**

Number of Valid Data 29 Number of Distinct Detected Data 2

Number of Detected Data 2 Number of Non-Detect Data 27

Warning: Data set has only 2 Detected Values.

This is not enough to compute meaningful and reliable test statistics and estimates.

No statistics will be produced!

Tolerance Factor 2.232

Minimum Detected 0.16

Mean of Detected 0.275

Minimum Non-Detect 0.007

Maximum Non-Detect 0.2

SD of Detected 0.163

Percent Non-Detects 93.10%

Minimum Detected -1.833

**Raw Statistics** 

**Log-transformed Statistics** 

Maximum Detected 0.39 Maximum Detected -0.942

Mean of Detected -1.387

SD of Detected 0.63 Minimum Non-Detect -4.962

Maximum Non-Detect -1.609

**Data with Multiple Detection Limits** 

Single Detection Limit Scenario

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs Number treated as Non-Detect with Single DL 28

Number treated as Detected with Single DL 1

Single DL Non-Detect Percentage 96.55%

Warning: Data set has only 2 Distinct Detected Values.

This may not be adequate enough to compute meaningful and reliable test statistics and estimates.

The Project Team may decide to use alternative site specific values to estimate environmental parameters (e.g., EPC, BTV).

Unless Data Quality Objectives (DQOs) have been met, it is suggested to collect additional observations.

The number of detected data may not be adequate enough to perform GOF tests, bootstrap, and ROS methods.

Those methods will return a 'N/A' value on your output display!

It is necessary to have 4 or more Distinct Values for bootstrap methods. However, results obtained using 4 to 9 distinct values may not be reliable.

It is recommended to have 10 to 15 or more observations for accurate and meaningful results and estimates.

### **Background Statistics**

| Normal Distribution Test with Detected Values Only | Lognormal Distribution Test with Detected Values Only |  |
|----------------------------------------------------|-------------------------------------------------------|--|
| Shapiro Wilk Test Statistic N/A                    | Shapiro Wilk Test Statistic N/A                       |  |
| 5% Shapiro Wilk Critical Value N/A                 | 5% Shapiro Wilk Critical Value N/A                    |  |
| Data not Normal at 5% Significance Level           | Data not Lognormal at 5% Significance Level           |  |
| Assuming Normal Distribution                       | Assuming Lognormal Distribution                       |  |
| DL/2 Substitution Method                           | DL/2 Substitution Method                              |  |
| Mean 0.0676                                        | Mean (Log Scale) -3.291                               |  |
| SD 0.0766                                          | SD (Log Scale) 1.21                                   |  |
| 95% UTL 95% Coverage 0.239                         | 95% UTL 95% Coverage 0.554                            |  |
| 95% UPL (t) 0.2                                    | 95% UPL (t) 0.302                                     |  |
| 90% Percentile (z) 0.166                           | 90% Percentile (z) 0.175                              |  |
| 95% Percentile (z) 0.194                           | 95% Percentile (z) 0.272                              |  |
| 99% Percentile (z) 0.246                           | 99% Percentile (z) 0.621                              |  |
| Maximum Likelihood Estimate(MLE) Method N/A        | Log ROS Method                                        |  |
|                                                    | Mean in Original Scale N/A                            |  |
|                                                    | SD in Original Scale N/A                              |  |
|                                                    | Mean in Log Scale N/A                                 |  |
|                                                    | SD in Log Scale N/A                                   |  |
|                                                    | 95% UTL 95% Coverage N/A                              |  |
|                                                    | 95% UPL (t) N/A                                       |  |
|                                                    | 90% Percentile (z) N/A                                |  |
|                                                    | 95% Percentile (z) N/A                                |  |
|                                                    | 99% Percentile (z) N/A                                |  |
| Gamma Distribution Test with Detected Values Only  | Data Distribution Test with Detected Values Only      |  |

k star (bias corrected) N/A Data do not follow a Discernable Distribution (0.05)

Theta Star N/A

nu star N/A

A-D Test Statistic N/A Nonparametric Statistics

5% A-D Critical Value N/A Kaplan-Meier (KM) Method

K-S Test Statistic N/A Mean 0.168
5% K-S Critical Value N/A SD 0.042

Data not Gamma Distributed at 5% Significance Level

**Assuming Gamma Distribution** 

Gamma ROS Statistics with Extrapolated Data

95% Percentile of Chisquare (2k)

SE of Mean 0.011

95% KM UTL with 95% Coverage 0.262

95% KM Chebyshev UPL 0.354

95% KM UPL (t) 0.241

90% Percentile (z) 0.222

95% Percentile (z) 0.237

99% Percentile (z) 0.266

k star N/A

SD

N/A

N/A

N/A

N/A

N/A

N/A

Mean

Median

Nu star

Theta star N/A Gamma ROS Limits with Extrapolated Data

95% Wilson Hilferty (WH) Approx. Gamma UPL N/A

95% Hawkins Wixley (HW) Approx. Gamma UPL N/A 95% WH Approx. Gamma UTL with 95% Coverage N/A

95% HW Approx. Gamma UTL with 95% Coverage N/A

95% Percentile N/A 99% Percentile N/A

90% Percentile

Note: DL/2 is not a recommended method.

### **NICKEL**

### **General Statistics**

Number of Valid Data 28

Number of Detected Data 24

Number of Distinct Detected Data 24

Number of Non-Detect Data 4

Tolerance Factor 2.246

Percent Non-Detects 14.29%

Raw Statistics Log-transformed Statistics

Minimum Detected 1.56 Minimum Detected 0.445

Maximum Detected 131 Maximum Detected 4.875

Mean of Detected 50.99 Mean of Detected 3.435

SD of Detected 40.89 SD of Detected 1.224

Minimum Non-Detect 10 Minimum Non-Detect 2.303

Maximum Non-Detect 10 Maximum Non-Detect 2.303

### **Background Statistics**

Normal Distribution Test with Detected Values Only

Lognormal Distribution Test with Detected Values Only

Shapiro Wilk Test Statistic 0.911 Shapiro Wilk Test Statistic 0.906

5% Shapiro Wilk Critical Value 0.916

5% Shapiro Wilk Critical Value 0.916

| 570 Onapho Wilk Onlical Value 0.510                    | 370 Orlapilo Wilk Orlical Value 0.310                  |  |
|--------------------------------------------------------|--------------------------------------------------------|--|
| Data not Normal at 5% Significance Level               | Data not Lognormal at 5% Significance Level            |  |
| Assuming Normal Distribution                           | Assuming Lognormal Distribution                        |  |
| DL/2 Substitution Method                               | DL/2 Substitution Method                               |  |
| Mean 44.42                                             | Mean (Log Scale) 3.174                                 |  |
| SD 41.15                                               | SD (Log Scale) 1.303                                   |  |
| 95% UTL 95% Coverage 136.8                             | 95% UTL 95% Coverage 446.5                             |  |
| 95% UPL (t) 115.7                                      | 95% UPL (t) 228.9                                      |  |
| 90% Percentile (z) 97.15                               | 90% Percentile (z) 127                                 |  |
| 95% Percentile (z) 112.1                               | 95% Percentile (z) 204                                 |  |
| 99% Percentile (z) 140.1                               | 99% Percentile (z) 495.8                               |  |
| Maximum Likelihood Estimate(MLE) Method                | Log ROS Method                                         |  |
| Mean 34.89                                             | Mean in Original Scale 44.62                           |  |
| SD 53.09                                               | SD in Original Scale 40.96                             |  |
| 95% UTL with 95% Coverage 154.1                        | 95% UTL with 95% Coverage 441.1                        |  |
|                                                        | 95% BCA UTL with 95% Coverage 131                      |  |
|                                                        | 95% Bootstrap (%) UTL with 95% Coverage 131            |  |
| 95% UPL (t) 126.9                                      | 95% UPL (t) 227.9                                      |  |
| 90% Percentile (z) 102.9                               | 90% Percentile (z) 127.4                               |  |
| 95% Percentile (z) 122.2                               | 95% Percentile (z) 203.4                               |  |
| 99% Percentile (z) 158.4                               | 99% Percentile (z) 489.2                               |  |
| Gamma Distribution Test with Detected Values Only      | Data Distribution Test with Detected Values Only       |  |
| k star (bias corrected) 1.03                           | Data appear Gamma Distributed at 5% Significance Level |  |
| Theta Star 49.53                                       |                                                        |  |
| nu star 49.42                                          |                                                        |  |
| A-D Test Statistic 0.356                               | Nonparametric Statistics                               |  |
| 5% A-D Critical Value 0.769                            | Kaplan-Meier (KM) Method                               |  |
| K-S Test Statistic 0.111                               | Mean 44.46                                             |  |
| 5% K-S Critical Value 0.182                            | SD 40.38                                               |  |
| Data appear Gamma Distributed at 5% Significance Level | SE of Mean 7.799                                       |  |
|                                                        | 95% KM UTL with 95% Coverage 135.2                     |  |
| Assuming Gamma Distribution                            | 95% KM Chebyshev UPL 223.6                             |  |
| Gamma ROS Statistics with Extrapolated Data            | 95% KM UPL (t) 114.5                                   |  |
| Mean 43.99                                             | 90% Percentile (z) 96.21                               |  |
| Median 31.35                                           | 95% Percentile (z) 110.9                               |  |
| SD 41.61                                               | 99% Percentile (z) 138.4                               |  |
| k star 0.297                                           |                                                        |  |
| Theta star 148.1                                       | Gamma ROS Limits with Extrapolated Data                |  |
| Nu star 16.64                                          | 95% Wilson Hilferty (WH) Approx. Gamma UPL 174.8       |  |
| 95% Percentile of Chisquare (2k) 2.727                 | 95% Hawkins Wixley (HW) Approx. Gamma UPL 224.7        |  |
| • • •                                                  | 95% WH Approx. Gamma UTL with 95% Coverage 258.3       |  |
| 000/ D :: 100.0                                        |                                                        |  |
| 90% Percentile 129.9                                   | 95% HW Approx. Gamma UTL with 95% Coverage 366.3       |  |

95% Percentile 201.9 99% Percentile 389.1

Note: DL/2 is not a recommended method.

### **POTASSIUM**

### **General Statistics**

Number of Valid Data 28

Number of Detected Data 22

Number of Distinct Detected Data 22

Number of Non-Detect Data 6

Tolerance Factor 2.246

Percent Non-Detects 21.43%

### Raw Statistics Log-transformed Statistics

Minimum Detected 403 Minimum Detected 5.999

Maximum Detected 5380 Maximum Detected 8.59

Mean of Detected 2836 Mean of Detected 7.675

SD of Detected 1759 SD of Detected 0.852

Minimum Non-Detect 3390 Minimum Non-Detect 8.129

Maximum Non-Detect 5000 Maximum Non-Detect 8.517

### **Data with Multiple Detection Limits**

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

### Single Detection Limit Scenario

Number treated as Non-Detect with Single DL 24

Number treated as Detected with Single DL 4

Single DL Non-Detect Percentage 85.71%

### **Background Statistics**

| Normal Distribution Test with Detected Values Only | Lognormal Distribution Test with Detected Values Only |
|----------------------------------------------------|-------------------------------------------------------|
| •                                                  | · · · · · · · · · · · · · · · · · · ·                 |

Shapiro Wilk Test Statistic 0.916 Shapiro Wilk Test Statistic 0.883 5% Shapiro Wilk Critical Value 0.911 5% Shapiro Wilk Critical Value 0.911

Data appear Normal at 5% Significance Level Data not Lognormal at 5% Significance Level

### Assuming Normal Distribution Assuming Lognormal Distribution

DL/2 Substitution Method DL/2 Substitution Method Mean 2735 Mean (Log Scale) 7.693 SD 1570 SD (Log Scale) 0.756 95% UTL 95% Coverage 6261 95% UTL 95% Coverage 11970 95% UPL (t) 5457 95% UPL (t) 8126 90% Percentile (z) 4747 90% Percentile (z) 5776 95% Percentile (z) 5318 95% Percentile (z) 7600 99% Percentile (z) 6387 99% Percentile (z) 12719

Maximum Likelihood Estimate(MLE) Method

Log ROS Method

 Mean 4493
 Mean in Original Scale 2607

 SD 481.2
 SD in Original Scale 1656

 95% UTL with 95% Coverage 5574
 95% UTL with 95% Coverage 11910

95% BCA UTL with 95% Coverage 5380

95% Bootstrap (%) UTL with 95% Coverage 5380

95% UPL (t) 7946

90% Percentile (z) 5562

95% Percentile (z) 7410

99% Percentile (z) 12689

Gamma Distribution Test with Detected Values Only

k star (bias corrected) 1.73

A-D Test Statistic 0.73

K-S Test Statistic 0.147

5% A-D Critical Value 0.756

5% K-S Critical Value 0.188

Theta Star 1639

95% UPL (t) 5327

90% Percentile (z) 5110

95% Percentile (z) 5285

99% Percentile (z) 5612

nu star 76.12

Nonparametric Statistics

Data Distribution Test with Detected Values Only

Data appear Normal at 5% Significance Level

Kaplan-Meier (KM) Method

Mean 2689

SD 1673

SE of Mean 351.5

95% KM UTL with 95% Coverage 6446

95% KM Chebyshev UPL 10110

95% KM UPL (t) 5589

90% Percentile (z) 4833

95% Percentile (z) 5441

99% Percentile (z) 6581

**Assuming Gamma Distribution** 

Data appear Gamma Distributed at 5% Significance Level

Gamma ROS Statistics with Extrapolated Data

Mean 2719

Median 2715

SD 1656

k star 1.899

Theta star 1432

Nu star 106.4

95% Percentile of Chisquare (2k) 9.159

90% Percentile 5353

95% Percentile 6557

99% Percentile 9234

Gamma ROS Limits with Extrapolated Data

95% Wilson Hilferty (WH) Approx. Gamma UPL 6753

95% Hawkins Wixley (HW) Approx. Gamma UPL 7065

95% WH Approx. Gamma UTL with95% Coverage 870995% HW Approx. Gamma UTL with95% Coverage 9367

Note: DL/2 is not a recommended method.

**SELENIUM** 

**General Statistics** 

Number of Valid Data 29

Number of Distinct Detected Data 7

Tolerance Factor 2.232

Number of Detected Data 7

Number of Non-Detect Data 22

Percent Non-Detects 75.86%

**Raw Statistics** 

Minimum Detected 0.33

Maximum Detected 4.1

Mean of Detected 1.753

Log-transformed Statistics

Minimum Detected -1.109

Maximum Detected 1.411

Mean of Detected 0.208

SD of Detected 1.47 Minimum Non-Detect 0.04 Maximum Non-Detect 2.5 SD of Detected 0.955
Minimum Non-Detect -3.219
Maximum Non-Detect 0.916

### **Data with Multiple Detection Limits**

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods),
Observations < Largest ND are treated as NDs

### Single Detection Limit Scenario

**Assuming Lognormal Distribution** 

Number treated as Non-Detect with Single DL 27

Number treated as Detected with Single DL 2

Single DL Non-Detect Percentage 93.10%

Warning: There are only 7 Detected Values in this data

Note: It should be noted that even though bootstrap may be performed on this data set
the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

### **Background Statistics**

| Normal Distribution Test with Detected Values Only | Lognormal Distribution Test with Detected Values Only |
|----------------------------------------------------|-------------------------------------------------------|
|                                                    |                                                       |

Shapiro Wilk Test Statistic 0.876 Shapiro Wilk Test Statistic 0.945 5% Shapiro Wilk Critical Value 0.803 5% Shapiro Wilk Critical Value 0.803

Data appear Normal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

### Assuming Normal Distribution

 DL/2 Substitution Method
 DL/2 Substitution Method

 Mean 0.678
 Mean (Log Scale) -1.34

 SD 0.972
 SD (Log Scale) 1.567

 95% UTL 95% Coverage 2.847
 95% UTL 95% Coverage 8.658

 95% UPL (t) 2.359
 95% UPL (t) 3.943

 90% Percentile (z) 1.923
 90% Percentile (z) 1.952

 95% Percentile (z) 2.276
 95% Percentile (z) 3.45

 99% Percentile (z) 2.938
 99% Percentile (z) 10.04

Maximum Likelihood Estimate(MLE) Method N/A

# Mean in Original Scale 0.495 SD in Original Scale 0.994 Mean in Log Scale -1.897 SD in Log Scale 1.396 95% UTL 95% Coverage 3.388 95% UPL (t) 1.681

Log ROS Method

90% Percentile (z) 0.899 95% Percentile (z) 1.492 99% Percentile (z) 3.865

### Gamma Distribution Test with Detected Values Only

k star (bias corrected) 0.987 Theta Star 1.776 Data appear Normal at 5% Significance Level

Page 28 of 34

Data Distribution Test with Detected Values Only

nu star 13.82

k star 0.1

A-D Test Statistic 0.268 **Nonparametric Statistics** 

5% A-D Critical Value 0.72 Kaplan-Meier (KM) Method

K-S Test Statistic 0.175 Mean 0.696 SD 0.906 5% K-S Critical Value 0.317

Data appear Gamma Distributed at 5% Significance Level SE of Mean 0.184

95% KM UTL with 95% Coverage 2.717

95% KM Chebyshev UPL 4.71 **Assuming Gamma Distribution** 

Gamma ROS Statistics with Extrapolated Data 95% KM UPL (t) 2.262

> Mean 0.423 90% Percentile (z) 1.856 Median 0.000001 95% Percentile (z) 2.185

SD 1.023 99% Percentile (z) 2.802

Theta star 4.213 Gamma ROS Limits with Extrapolated Data

Nu star 5.825 95% Wilson Hilferty (WH) Approx. Gamma UPL 1.552

95% Percentile of Chisquare (2k) 1.166 95% Hawkins Wixley (HW) Approx. Gamma UPL 1.461

95% WH Approx. Gamma UTL with 95% Coverage 2.822

90% Percentile 1.128 95% HW Approx. Gamma UTL with 95% Coverage 3.183 95% Percentile 2.455

Note: DL/2 is not a recommended method.

### SODIUM

### **General Statistics**

Total Number of Observations 28 Number of Distinct Observations 28

Tolerance Factor 2.246

99% Percentile 6.706

**Raw Statistics Log-Transformed Statistics** 

> Minimum 10100 Minimum 9.22

Maximum 12.01 Maximum 165000 Second Largest 152000 Second Largest 11.93

First Quartile 25650 First Quartile 10.15

Third Quartile 92475 Third Quartile 11.43

Median 10.61

Mean 60968 Mean 10.73

Geometric Mean 45803 SD 0.783

SD 46930

Coefficient of Variation 0.77

Skewness 1.004

Median 40500

**Background Statistics** 

**Normal Distribution Test Lognormal Distribution Test** 

Shapiro Wilk Test Statistic 0.843 Shapiro Wilk Critical Value 0.924

Shapiro Wilk Test Statistic 0.955 Shapiro Wilk Critical Value 0.924

Data not Normal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

### **Assuming Normal Distribution**

95% UTL with 95% Coverage 166373

95% UPL (t) 142318

90% Percentile (z) 121111

95% Percentile (z) 138161

99% Percentile (z) 170144

### **Assuming Lognormal Distribution**

95% UTL with 95% Coverage 265626

95% UPL (t) 177852

90% Percentile (z) 124874

95% Percentile (z) 165940

99% Percentile (z) 282865

### **Gamma Distribution Test**

k star 1.718

Theta Star 35479

MLE of Mean 60968

MLE of Standard Deviation 46509

nu star 96.23

### **Data Distribution Test**

Data appear Gamma Distributed at 5% Significance Level

### A-D Test Statistic 0.686

5% A-D Critical Value 0.759

K-S Test Statistic 0.142

5% K-S Critical Value 0.168

### Nonparametric Statistics

95% Percentile 148850

### Data appear Gamma Distributed at 5% Significance Level

### **Assuming Gamma Distribution**

90% Percentile 122931

95% Percentile 151839

99% Percentile 216554

95% WH Approx. Gamma UPL 155563

95% HW Approx. Gamma UPL 159367

95% WH Approx. Gamma UTL with 95% Coverage 202800

95% HW Approx. Gamma UTL with 95% Coverage 212950

90% Percentile 136700

99% Percentile 161490

### 95% UTL with 95% Coverage 165000

95% Percentile Bootstrap UTL with 95% Coverage 165000

95% BCA Bootstrap UTL with 95% Coverage 165000

95% UPL 159150

95% Chebyshev UPL 269153

Upper Threshold Limit Based upon IQR 192713

### **THALLIUM**

### **General Statistics**

Number of Valid Data 28

Number of Distinct Detected Data 1

Number of Detected Data 1

Number of Non-Detect Data 27

Warning: Only one distinct data value was detected! ProUCL (or any other software) should not be used on such a data set! It is suggested to use alternative site specific values determined by the Project Team to estimate environmental parameters (e.g., EPC, BTV).

The data set for variable THALLIUM was not processed!

### **VANADIUM**

### General Statistics

Number of Valid Data 28 Number of Detected Data 5 Number of Distinct Detected Data 5 Number of Non-Detect Data 23 Tolerance Factor 2.246 Percent Non-Detects 82.14%

### **Raw Statistics**

### Minimum Detected 2.1 Maximum Detected 17.9 Mean of Detected 9.154 SD of Detected 6.155 Minimum Non-Detect 0.06 Maximum Non-Detect 3

### Log-transformed Statistics

| ioa otationioo     |        |
|--------------------|--------|
| Minimum Detected   | 0.742  |
| Maximum Detected   | 2.885  |
| Mean of Detected   | 1.984  |
| SD of Detected     | 0.822  |
| Minimum Non-Detect | -2.813 |
| Maximum Non-Detect | 1.099  |

### **Data with Multiple Detection Limits**

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

### Single Detection Limit Scenario

Number treated as Non-Detect with Single DL 24 Number treated as Detected with Single DL 4 Single DL Non-Detect Percentage 85.71%

Warning: There are only 5 Detected Values in this data Note: It should be noted that even though bootstrap may be performed on this data set the resulting calculations may not be reliable enough to draw conclusions

It is recommended to have 10-15 or more distinct observations for accurate and meaningful results.

### **Background Statistics**

| Normal Distribution Test with Detected Values Only | Lognormal Distribution Test with Detected Values Only |
|----------------------------------------------------|-------------------------------------------------------|
| Shapiro Wilk Test Statistic 0.969                  | Shapiro Wilk Test Statistic 0.96                      |
| 5% Shapiro Wilk Critical Value 0.762               | 5% Shapiro Wilk Critical Value 0.762                  |
| Data appear Normal at 5% Significance Level        | Data appear Lognormal at 5% Significance Level        |

| Assuming | Normal | Distribution |
|----------|--------|--------------|
|----------|--------|--------------|

| ormal Distribution         | Assuming Lognormal Distribution |
|----------------------------|---------------------------------|
| DL/2 Substitution Method   | DL/2 Substitution Method        |
| Mean 2.136                 | Mean (Log Scale) -0.399         |
| SD 4.106                   | SD (Log Scale) 1.575            |
| 95% UTL 95% Coverage 11.36 | 95% UTL 95% Coverage 23.04      |
| 95% UPL (t) 9.254          | 95% UPL (t) 10.28               |
| 90% Percentile (z) 7.398   | 90% Percentile (z) 5.046        |
| 95% Percentile (z) 8.89    | 95% Percentile (z) 8.941        |
| 99% Percentile (z) 11.69   | 99% Percentile (z) 26.15        |
|                            |                                 |

Maximum Likelihood Estimate(MLE) Method

Log ROS Method

Mean N/A Mean in Original Scale 1.867 SD N/A SD in Original Scale 4.202 95% UTL with 95% Coverage N/A 95% UTL with 95% Coverage 17.84 95% BCA UTL with 95% Coverage 17.9 95% Bootstrap (%) UTL with 95% Coverage 17.9 95% UPL (t) 95% UPL (t) 7.26 N/A 90% Percentile (z) 3.286 90% Percentile (z) N/A 95% Percentile (z) N/A 95% Percentile (z) 6.215 99% Percentile (z) 99% Percentile (z) 20.54 N/A Gamma Distribution Test with Detected Values Only **Data Distribution Test with Detected Values Only** k star (bias corrected) 1.064 Data appear Normal at 5% Significance Level Theta Star 8.601 nu star 10.64 A-D Test Statistic 0.189 Nonparametric Statistics 5% A-D Critical Value 0.684 Kaplan-Meier (KM) Method K-S Test Statistic 0.163 Mean 3.36 5% K-S Critical Value 0.36 SD 3.565 Data appear Gamma Distributed at 5% Significance Level SE of Mean 0.753 95% KM UTL with 95% Coverage 11.37 **Assuming Gamma Distribution** 95% KM Chebyshev UPL 19.18

Gamma ROS Statistics with Extrapolated Data

Mean 1.635 Median 0.000001 SD 4.285

k star 0.0893 Theta star 18.31

Nu star 5

95% Percentile of Chisquare (2k) 1.041

90% Percentile 4.127 95% Percentile 9.524

99% Percentile 27.46

95% KM UPL (t) 9.54

90% Percentile (z) 7.929

95% Percentile (z) 9.224

99% Percentile (z) 11.65

Gamma ROS Limits with Extrapolated Data

95% Wilson Hilferty (WH) Approx. Gamma UPL 5.341 95% Hawkins Wixley (HW) Approx. Gamma UPL 4.45 95% WH Approx. Gamma UTL with 95% Coverage 10.04

95% HW Approx. Gamma UTL with 95% Coverage 10.18

Note: DL/2 is not a recommended method.

ZINC

**General Statistics** 

Number of Valid Data 28 Number of Distinct Detected Data 23 Tolerance Factor 2.246

Number of Detected Data 23 Number of Non-Detect Data 5 Percent Non-Detects 17.86%

**Raw Statistics** 

Log-transformed Statistics

| Minimum Detected 2.16  | Minimum Detected 0.77     |
|------------------------|---------------------------|
| Maximum Detected 161   | Maximum Detected 5.081    |
| Mean of Detected 49.45 | Mean of Detected 3.406    |
| SD of Detected 45.66   | SD of Detected 1.115      |
| Minimum Non-Detect 1.1 | Minimum Non-Detect 0.0953 |
| Maximum Non-Detect 10  | Maximum Non-Detect 2.303  |

### **Data with Multiple Detection Limits**

Note: Data have multiple DLs - Use of KM Method is recommended For all methods (except KM, DL/2, and ROS Methods), Observations < Largest ND are treated as NDs

### Single Detection Limit Scenario

Number treated as Non-Detect with Single DL 8

Number treated as Detected with Single DL 20

Single DL Non-Detect Percentage 28.57%

Kaplan-Meier (KM) Method

| Background Statistics                              |                                                        |  |  |  |
|----------------------------------------------------|--------------------------------------------------------|--|--|--|
| Normal Distribution Test with Detected Values Only | Lognormal Distribution Test with Detected Values Only  |  |  |  |
| Shapiro Wilk Test Statistic 0.861                  | Shapiro Wilk Test Statistic 0.962                      |  |  |  |
| 5% Shapiro Wilk Critical Value 0.914               | 5% Shapiro Wilk Critical Value 0.914                   |  |  |  |
| Data not Normal at 5% Significance Level           | Data appear Lognormal at 5% Significance Level         |  |  |  |
| Assuming Normal Distribution                       | Assuming Lognormal Distribution                        |  |  |  |
| DL/2 Substitution Method                           | DL/2 Substitution Method                               |  |  |  |
| Mean 41.24                                         | Mean (Log Scale) 2.967                                 |  |  |  |
| SD 44.96                                           | SD (Log Scale) 1.441                                   |  |  |  |
| 95% UTL 95% Coverage 142.2                         | 95% UTL 95% Coverage 494.9                             |  |  |  |
| 95% UPL (t) 119.2                                  | 95% UPL (t) 236.4                                      |  |  |  |
| 90% Percentile (z) 98.86                           | 90% Percentile (z) 123.3                               |  |  |  |
| 95% Percentile (z) 115.2                           | 95% Percentile (z) 208.1                               |  |  |  |
| 99% Percentile (z) 145.8                           | 99% Percentile (z) 555.7                               |  |  |  |
| Maximum Likelihood Estimate(MLE) Method            | Log ROS Method                                         |  |  |  |
| Mean 32.35                                         | Mean in Original Scale 41.26                           |  |  |  |
| SD 55.23                                           | SD in Original Scale 44.94                             |  |  |  |
| 95% UTL with 95% Coverage 156.4                    | 95% UTL with 95% Coverage 418.2                        |  |  |  |
|                                                    | 95% BCA UTL with 95% Coverage 161                      |  |  |  |
|                                                    | 95% Bootstrap (%) UTL with 95% Coverage 161            |  |  |  |
| 95% UPL (t) 128.1                                  | 95% UPL (t) 209.4                                      |  |  |  |
| 90% Percentile (z) 103.1                           | 90% Percentile (z) 113.8                               |  |  |  |
| 95% Percentile (z) 123.2                           | 95% Percentile (z) 185.8                               |  |  |  |
| 99% Percentile (z) 160.8                           | 99% Percentile (z) 466.1                               |  |  |  |
| Gamma Distribution Test with Detected Values Only  | Data Distribution Test with Detected Values Only       |  |  |  |
| k star (bias corrected) 1.028                      | Data appear Gamma Distributed at 5% Significance Level |  |  |  |
| Theta Star 48.1                                    |                                                        |  |  |  |
| nu star 47.29                                      |                                                        |  |  |  |
| A-D Test Statistic 0.381                           | Nonparametric Statistics                               |  |  |  |

5% A-D Critical Value 0.767

K-S Test Statistic 0.134 5% K-S Critical Value 0.186

Data appear Gamma Distributed at 5% Significance Level SE of Mean 8.535

Mean 41.23

SD 44.16

95% KM UTL with 95% Coverage 140.4

95% Percentile 205 99% Percentile 428.4

Assuming Gamma Distribution 95% KM Chebyshev UPL 237.1
Gamma ROS Statistics with Extrapolated Data 95% KM UPL (t) 117.8

 Mean 40.62
 90% Percentile (z) 97.82

 Median 23.1
 95% Percentile (z) 113.9

SD 45.5 99% Percentile (z) 144 k star 0.216

Theta star 187.8 **Gamma ROS Limits with Extrapolated Data**Nu star 12.11 95% Wilson Hilferty (WH) Approx. Gamma UPL 175.6

95% Percentile of Chisquare (2k) 2.183 95% Hawkins Wixley (HW) Approx. Gamma UPL 233.8

95% Percentile of Chisquare (2k) 2.183 95% Hawkins Wixley (HW) Approx. Gamma UPL 233.8 95% WH Approx. Gamma UTL with 95% Coverage 268.3 90% Percentile 122.8 95% HW Approx. Gamma UTL with 95% Coverage 401

Note: DL/2 is not a recommended method.