

Naval Facilities Engineering Systems Command Washington Washington, D.C.

Final

Engineering Evaluation and Cost Analysis Report Munitions Response Site UXO-002, Former Small Arms Ranges, OU-2 Former Skeet Ranges

Naval Air Station Patuxent River St. Mary's County, Maryland

August 2024

Naval Facilities Engineering Systems Command Washington Washington, D.C.

Final

Engineering Evaluation and Cost Analysis Report Munitions Response Site UXO-002, Former Small Arms Ranges, OU-2 Former Skeet Ranges

Naval Air Station Patuxent River St. Mary's County, Maryland

August 2024

Prepared for NAVFAC Washington by CH2M HILL, Inc. Reston, Virginia Contract N62470-16-D-9000 CTO N4008020F5208

Executive Summary

This Engineering Evaluation and Cost Analysis (EE/CA) was prepared by CH2M HILL, Inc., a wholly owned subsidiary of Jacobs, under Naval Facilities Engineering Systems Command (NAVFAC) Atlantic's Comprehensive Long-term Environmental Action–Navy (CLEAN) Contract Number N62470-16-D-9000, Contract Task Order N4008020F5208 for submittal to NAVFAC Washington.

This EE/CA evaluates potential response actions at Operable Unit (OU)-2 (Former Skeet Ranges) of Munitions Response Site UXO-002 (Former Small Arms Ranges) at Naval Air Station (NAS) Patuxent River, St. Mary's County, Maryland. The EE/CA is for a Non-time Critical Removal Action to address unacceptable risk in soil at OU-2, Former Skeet Ranges (FSR).

UXO-002 consists of three former Small Arms Ranges, including one former Pistol Range (OU-1) and two former Skeet Ranges (OU-2), all in the northwestern portion of NAS Patuxent River. The FSR, which are adjacent to each other and north of the intersection of Cedar Point Road and Sully Road, were reportedly used for training between approximately 1943 and 1993. Although details about the construction and use of the FSR are not available, typical skeet ranges consist of multiple shooting positions along a semicircular boundary. Clay targets are typically launched into the air from "houses" at each of the open ends of the semicircular feature; fragments of the clay targets fall to the ground after being shot.

The EE/CA aims to present the removal action objectives (RAOs), identify removal action alternatives that satisfy those objectives, and evaluate the effectiveness, implementability, and cost of those alternatives. The RAO for OU-2 is as follows:

• **Prevent Unacceptable Human Health and Ecological Exposure:** Prevent the exposure of human and ecological receptors to concentrations of contaminants in soil that pose an unacceptable risk across all current and potential future complete exposure pathways.

Based on the results of soil, sediment, and groundwater sampling conducted during the 2010 Site Inspection and 2018 to 2020 Remedial Investigation (RI) field events, along with the Human Health Risk Assessment and Ecological Risk Assessment evaluations documented in the RI, polycyclic aromatic hydrocarbons (PAHs) in soil were identified as posing potentially unacceptable risk to future residents, and lead and PAHs in surface soil in an isolated area near the northern FSR were identified as posing potentially unacceptable risk to lower trophic level ecological receptors (soil invertebrates and potentially terrestrial plants). Potentially unacceptable human health and ecological risks were not identified in sediment and groundwater. Based on these conclusions, groundwater, surface water, and sediment are not part of this EE/CA.

To satisfy the RAO, the following three removal action alternatives were identified and evaluated:

- Alternative 1—No Action: No action would be conducted, and the site would be left as is. This
 alternative was included because the National Oil and Hazardous Substances Pollution Contingency
 Plan (NCP) requires a no action alternative be included as a baseline against which to compare the
 performance and effectiveness of the other alternatives.
- Alternative 2—Stabilization and Engineered Cover with Land Use Controls (LUCs): Excavation and
 onsite stabilization of impacted soil exceeding the remedial goals (RGs) for lead and PAHs and
 constructing an engineered, evapotranspiration soil cover over the stabilized soil mixture to
 eliminate human and ecological exposure and prevent surface water from percolating into the
 stabilized soil mass and underlying groundwater at OU-2. LUCs will be implemented to control
 potential exposure to the stabilized soil and ensure compatible land usage. Operations and
 maintenance (O&M) will be conducted to verify continued effectiveness and protectiveness of the

alternative, including maintenance of the engineered cap, LUC maintenance (such as sign maintenance, administrative reviews, and annual inspections), and routine monitoring of site conditions. Annual inspections and Five-Year Reviews for a period of 30 years are anticipated for this remedy.

• Alternative 3—Removal Acton with Stabilization and Offsite Disposal: Excavation and onsite stabilization of impacted soil exceeding the RGs and offsite disposal of the stabilized soil mixture in a permitted Resource Conservation and Recovery Act Subtitle D landfill to eliminate human and ecological exposure at the FSR. No LUCs or O&M are required for this alternative.

Alternative 1 does not meet the objective of the RAO; however, it is provided as a basis for comparison, as required by the NCP. Alternatives 2 and 3 are comparable in their ability to protect human health and the environment, to achieve the RAO, ease of implementability, and compliance with applicable or relevant and appropriate requirements.

Alternative 3 is more implementable and technically feasible, and the removal action is expected to be completed in less than 1 year. Administrative feasibility and the availability of resources are expected to be similar for Alternatives 2 and 3. Alternatives 2 and 3 are comparable in cost over an estimated 30-year timeline. Alternative 3 requires an estimated \$11,000 less in initial capital costs and has approximately \$9,000 additional future costs. Alternative 2 requires approximately \$940,000 more than Alternative 3 in O&M and periodic costs for LUCs and Five-Year Reviews. Relative to each other, Alternative 2 is considered more sustainable than Alternative 3.

Based on the evaluation of tradeoffs between the alternatives, the recommended removal alternative for OU-2, FSR is *Alternative 3: Removal Action with Stabilization and Offsite Disposal.*

Alternative 3 results in the removal of impacted soil from OU-2, provides for unlimited use/unrestricted exposure, and does not require inspection, maintenance, or monitoring activities to ensure long-term protectiveness of human health and the environment. The Department of the Navy, U.S. Environmental Protection Agency, and Maryland Department of the Environment representatives were involved with developing the recommended alternative through the Tier I Partnering Team process.

Contents

Exec	utive Sur	mmary		iii					
Acro	nyms an	d Abbrev	viations	vii					
1	Intro	duction .		1-1					
	1.1	Regula	atory Framework	1-1					
	1.2	Object	tives of the Engineering Evaluation/Cost Analysis	1-2					
	1.3	Organ	ization of the Engineering Evaluation/Cost Analysis	1-2					
2	Site C	haracter	ization						
_	2.1	Site D	escription and Background						
		2.1.1	Physiology, Topography, and Climate						
		2.1.2	Surface Water Hydrology						
		2.1.3	Geology						
		2.1.4	Hydrogeology	2-3					
		215	Fcological Setting	2-3					
		216	Cultural and Historical Resources	2-3					
		217	Current and Potential Future Land and Resources	2-4					
	22	Conce	ntual Site Model	2-4					
	2.2	2 2 1	Potential Source Areas and Affected Media	2-5					
		2.2.1	Transport Pathways	2-5					
		2.2.2	Fynosure Pathways	2-5					
	23	Previo	Linvestigations	2-7					
	2.5	2 2 1	Area F Remedial Investigation Feasibility Study and Remedial Action	n (1996 –					
		2.3.1	2008)						
		2.3.2	Former Skeet Range Site Inspection (2010)						
	2.4	Risk A	ssessment	2-9					
		2.4.1	Human Health Risk Assessment	2-9					
		2.4.2	Ecological Risk Assessment	2-9					
3	Remo	oval Actio	on Objective, ARARs, and Media of Interest	3-1					
	3.1	Remo	val Action Objective						
	3.2	Applic	able or Relevant and Appropriate Requirements						
	3.3	Reme	diation Goals						
	3.4	Media	and Areas Requiring Remediation						
	3.5	Risk R	eduction						
	3.6	Statut	ory Limits on Removal Actions	3-3					
4	Desci	ription of	Removal Action Alternatives						
	4.1	Altern	ative 1 – No Action						
	4.2	4.2 Alternative 2 – Stabilization and Engineered Cover with Land Use Control							
		term I	Vonitoring						
	4.3	Altern	ative 3 - Removal Action with Stabilization and Offsite Disposal	4-3					
5	Asses	sment o	f Removal Action Alternatives	5-1					
	5.1	5.1 Individual Analysis							
		5.1.1	Effectiveness						
		5.1.2	Implementability						
		5.1.3	Cost						
		5.1.4	Sustainability						

	5.2	Comparative Analysis	5-3
6	Recom	mended Removal Action Alternative	6-1
7	Referer	nces	7-1

Appendices

- A Human Health Risk Assessment
- B Ecological Risk Assessment
- C Applicable or Relevant and Appropriate Requirements
- D Engineer's Cost Estimates
- E Sustainability Analysis
- F Regulatory Correspondence

Tables

- 3-1 Calculation of Human-Health Based Remediation Goals for Soil
- 3-2 Summary of Human-Health Based Remediation Goals for Soil
- 5-1 Individual Analysis of Removal Action Alternatives
- 5-2 Comparative Analysis of Removal Action Alternatives

Figures

- 1 Naval Air Station Patuxent River and Vicinity
- 2 Site Location
- 3 Typical Skeet Range Layout
- 4 OU-2 Location and Theoretical Shotfall Zone Map
- 5 Groundwater Contours June 2020
- 6 Conceptual Site Model
- 7 Lead and PAH Proposed Surface Soil Excavation Boundary

Acronyms and Abbreviations

°F	degree(s) Fahrenheit
µg/kg	microgram(s) per kilogram
bgs	below ground surface
ARAR	applicable or relevant and appropriate requirements
Bgs	below ground surface
CERCLA	Comprehensive Environmental Response, Compensation, and Liability Act
CFR	Code of Federal Regulations
CH2M	CH2M HILL, Inc.
СОС	constituent of concern
СОРС	constituent of potential concern
CSM	conceptual site model
Eco-SSL	ecological soil screening level
EE/CA	Engineering Evaluation/Cost Analysis
EPA	U.S. Environmental Protection Agency
ERA	ecological risk assessment
ERS	ecological risk screening
FS	Feasibility Study
FSR	Former Skeet Ranges
HHRA	human health risk assessment
HHRS	human health risk screening
HMW	high molecular weight
LMW	low molecular weight
LTM	long-term monitoring
LUC	land use control
MCL	maximum contaminant level
MDE	Maryland Department of the Environment
mgd	million gallon(s) per day
mg/kg	milligram(s) per kilogram
NAS	Naval Air Station
NAVFAC	Naval Facilities Engineering Systems Command
Navy	Department of the Navy
NCP	National Oil and Hazardous Substance Pollution Contingency Plan
NTCRA	Non-time Critical Removal Action

ENGINEERING EVALUATION AND COST ANALYSIS REPORT MUNITIONS RESPONSE SITE UXO-002, FORMER SMALL ARMS RANGES, OU-2 FORMER SKEET RANGES NAVAL AIR STATION PATUXENT RIVER, ST. MARY'S COUNTY, MARYLAND

0&M	operations and maintenance
OU-1	Operable Unit 1
OU-2	Operable Unit 2
РАН	polycyclic aromatic hydrocarbon
RAO	remedial action goals
RG	remediation goal
RI	Remedial Investigation
SI	Site Inspection
SVOC	semivolatile organic compound
TCLP	Toxicity Characteristic Leaching Procedure
U.S.C.	United States Code

Introduction

This Engineering Evaluation and Cost Analysis (EE/CA) was prepared by CH2M HILL, Inc. (CH2M), a wholly owned subsidiary of Jacobs, under Naval Facilities Engineering Systems Command (NAVFAC) Atlantic's Comprehensive Long-term Environmental Action–Navy (CLEAN) Contract Number N62470-16-D-9000, Contract Task Order N4008020F5208 for submittal to NAVFAC Washington.

This EE/CA evaluates potential removal actions at Operable Unit 2 (OU-2), Former Skeet Range of Munitions Response Site UXO-002 (Former Small Arms Ranges) at Naval Air Station (NAS) Patuxent River, St. Mary's County, Maryland. This EE/CA presents potential removal actions for a Non-time Critical Removal Action (NTCRA) to address unacceptable risk in soil at OU-2.

NAS Patuxent River is at the confluence of the Patuxent River and Chesapeake Bay in St. Mary's County, Maryland (Figure 1). NAS Patuxent River began operating in 1942. Since its inception, NAS Patuxent River has been one of the main centers for testing naval aircraft and equipment for the Navy. OU-2 is owned by the Navy under the operational control of NAS Patuxent River (Figure 2).

1.1 Regulatory Framework

This document was prepared under the authority of the Navy in accordance with the January 1987 Executive Order 12580. This Executive Order delegated the President's authority under the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Superfund Amendments and Reauthorization Act to federal agencies such as the Department of Defense and the Navy. As a result, the Navy was given responsibility for conducting response actions to cleanup actual or potential releases of hazardous substances, pollutants, or contaminants at its facilities. Section 104 of CERCLA allows an authorized agency to remove or arrange for removal and provide for remedial action relating to hazardous substances, pollutants, or contaminants at any time, or take any other response measures consistent with the National Oil and Hazardous Substance Pollution Contingency Plan (NCP) as deemed necessary to protect public health or welfare and the environment.

The NCP, Title 40 of the Code of Federal Regulations (CFR), Part 300.415, provides regulations specific to removal actions and requires the lead agency to conduct an EE/CA when an NTCRA is planned for a site. The NCP defines a removal action as:

"...cleanup or removal of released hazardous substances from the environment, such actions as may be necessary to monitor, assess, and evaluate the threat of release of hazardous substances; the disposal of removed material; or the taking of such other actions as may be necessary to prevent, minimize, or mitigate damage to the public health or welfare or to the environment, which may otherwise result from a release or threat of release."

The EE/CA aims to present the removal action objectives (RAOs), identify removal action alternatives that satisfy those objectives, and evaluate the effectiveness, implementability, and cost of those alternatives. An EE/CA, therefore, documents the removal action alternatives and evaluation process. Where contamination is well-defined and limited in extent, NTCRAs also allow for the expedited cleanup of sites in comparison to developing a Feasibility Study and Record of Decision. This EE/CA has been prepared in accordance with *Guidance on Conducting Non-Time Critical Removal Actions under CERCLA* (EPA, 1993).

The NCP requires a 30-day public comment period for the alternatives presented in the EE/CA. An announcement of the 30-day public comment period is required in a local newspaper. All documents supporting the NTCRA are placed in the Administrative Record. The Administrative Record contains

information about CERCLA activities at NAS Patuxent River. Written responses to comments are summarized in an Action Memorandum, signed by the Navy, and placed within the Administrative Record to document the selected removal action for the site.

The Navy, U.S. Environmental Protection Agency (EPA) Region 3, and the Maryland Department of the Environment (MDE) jointly issue this document.

1.2 Objectives of the Engineering Evaluation/Cost Analysis

This EE/CA discusses the development and comparison of three removal action alternatives, based on the following criteria:

- Effectiveness
- Implementability
- Cost

The objectives of this EE/CA are the following:

- Satisfy environmental review and public relations requirements for removal actions.
- Satisfy administrative record requirements for documenting the removal action selection.
- Establish RAOs and provide a framework for evaluating and selecting removal action alternatives to achieve those objectives.

1.3 Organization of the Engineering Evaluation/Cost Analysis

This EE/CA is divided into the following sections:

- Section 1: Introduction. This section explains the purpose, regulatory framework, and organization of the EE/CA.
- Section 2: Site Characterization. This section provides the descriptions, history, environmental setting, current and future land uses, previous investigations, and risk evaluation summary for the Former Skeet Ranges (FSR).
- Section 3: Removal Action Objective, ARARs, and Media of Interest. This section describes the objectives and scope of the removal action, as well as the applicable or relevant and appropriate requirements (ARARs).
- Section 4: Description of Removal Action Alternatives. This section describes the removal action alternatives.
- Section 5: Assessment of Removal Action Alternatives. This section compares the removal action alternatives through evaluation against effectiveness, implementability, and cost criteria.
- Section 6: Recommended Removal Action Alternative. This section recommends a removal action alternative based on the evaluation and comparative analysis described in Section 5.
- Section 7: References. This section presents references used to prepare this EE/CA

Site Characterization

This section presents information that forms the basis for the site characterization. This information, which includes a site description, history, previous investigations, and conceptual site model (CSM) at the FSR, is based on the Site Inspection (SI) Report (CH2M, 2013) and the Final Remedial Investigation (RI) (CH2M, 2023). This section also includes a summary of the Human Health Risk Assessment (HHRA) and Ecological Risk Assessment (ERA) performed for the RI.

2.1 Site Description and Background

NAS Patuxent River is in St. Mary's County, Maryland, at the confluence of the Patuxent River and Chesapeake Bay (Figure 1). Since its inception in 1942, NAS Patuxent River has been one of the main centers for flight testing, pilot training, and development of weapons and avionics systems and radar applications for the Navy (General Physics Corporation, 1996). NAS Patuxent River was listed on the National Priorities List on June 30, 1994, and assigned EPA Identification No. MD7170024536. In December 2000, the Navy and EPA signed a Federal Facility Agreement. As part of the Federal Facility Agreement , the Navy formally identified Environmental Restoration Program sites at NAS Patuxent River requiring investigation and potential remediation under CERCLA.

The FSR (OU-2) are part of Munitions Response Site UXO-002, Former Small Arms Ranges (Figure 2). The FSR are north of the intersection of Cedar Point Road and Sully Road adjacent to the Former Pistol Range, which is referred to as Operable Unit 1 (OU-1).

Review of aerial photographs suggests use of the FSR began between 1943 and 1952 (a semicircular feature for skeet range shooting positions is visible on the 1952 aerial photograph but not on the 1943 photograph). The firing lines are still visible on the 1964 aerial photograph, but they appear overgrown and were purportedly out of use by that time. Although details about the construction and use of the FSR are unavailable, typical skeet ranges consist of multiple shooting positions along a semicircular boundary. Clay targets are typically launched into the air from "houses" at each of the open ends of the semicircular feature; fragments of the clay targets fall to the ground after being shot. A conceptual model of a typical skeet range illustrating what is believed to have been the former general layout and use of the FSR is provided on Figure 3.

The positions of the shooters along the semicircular firing line and the angles at which skeet targets are thrown results in a fan-shaped shotfall zone. Depending on the load, the angle at which the shot was fired, and the wind direction, typical lead skeet loads can reach approximately 680 feet from the shooter, with the highest density of shotfall expected between 375 to 600 feet from the shooter (ITRC, 2003). At the FSR, the direction of fire was toward the Patuxent River, and the highest density of shotfall would be expected to be in the river, while the clay target fragments would be expected to be on the terrestrial portion of the range and possibly the near-shore area in front of the range.

Potential munitions constituents typically consist of lead from the lead shot used in the shotguns and polycyclic aromatic hydrocarbons (PAHs) from the tar pitch used to hold the clay targets together. Lead is the primary constituent of small arms projectiles (more than 85 percent of the weight of the projectile) and constitutes the greatest environmental concern (ITRC, 2003). Small percentages of other metals such as antimony, arsenic, copper, and zinc may be present in specific types of projectiles; therefore, these metals may also be present at small arms ranges and are anticipated to be co-located with lead, which is the primary risk driver. As a result, characterizing the site for lead is anticipated to provide a conservative estimate of the nature and extent of the other metals.

2.1.1 Physiology, Topography, and Climate

The Patuxent River Basin occupies approximately 930 square miles and receives drainage from seven counties in Maryland. Near NAS Patuxent River, the river is estuarine, so tidal action overrides stream flow and is a major influence on river stage and stream velocity. Average flow in the Patuxent River at the Installation ranges from 620 to 876 million gallons per day (mgd), with a low flow between 36 and 94 mgd and a high flow between 4,000 and 4,550 mgd (Fred C. Hart Associates, Inc., 1984).

The drainage divide between the Potomac River and the Patuxent River closely follows Route 235, which borders portions of NAS Patuxent River to the southwest. Most streams draining to the Installation originate on the northeastern side of Route 235. Streams that originate on the Installation stay within the facility boundaries until draining directly or indirectly into the Patuxent River or Chesapeake Bay.

Surface drainage at NAS Patuxent River is to short streams that dissect the upland plateau. The streams occupy small valleys that descend rapidly toward the Patuxent River and Chesapeake Bay. Flow in these streams typically is intermittent, but several streams have continuous flow and discharge into ponds, the Patuxent River, or Chesapeake Bay. The largest stream on the Installation is Pine Hill Run (PHR), which flows along the base of the upland plateau. Both upland and lowland habitats drain into PHR, which is shallow and drains toward Chesapeake Bay (Fred C. Hart Associates, Inc., 1984).

Most of NAS Patuxent River is on a generally flat plain that protrudes into the Chesapeake Bay at the mouth of the Patuxent River. Elevations in the lowland areas range from sea level to 40 feet but are typically less than 20 feet. Elevations refer to North American Vertical Datum of 1988 (NAVD88). Units are in U.S. survey feet. In the southwestern part of NAS Patuxent River, the land rises to an upland plateau, where elevations range from 40 to 120 feet. The area of the FSR is relatively flat, with a shallow slope toward the river (Figure 4).

The climate of St. Mary's County is moderated by its proximity to Chesapeake Bay and the Atlantic Ocean. The climate is predominantly continental and characterized by seasonal and daily fluctuations. According to the Maryland State Office of Climatology, the average winter temperature is 36.6 degrees Fahrenheit (°F), whereas the average summer temperature is 74.9°F. The warmest and coldest months of the year are July (mean temperature of 77°F) and January (mean temperature of 35.5°F), respectively.

Annual precipitation averages 42 inches. July is typically the wettest month of the year, averaging 4.8 inches of precipitation. October is the driest month of the year, averaging 2.7 inches of precipitation. In general, precipitation is distributed evenly throughout the year.

2.1.2 Surface Water Hydrology

Surface water drainage channels were not observed at the FSR or in the surrounding area. Surface water drainage near the FSR would be expected to drain toward the Patuxent River. As shown on Figure 4, the theoretical shotfall zone for the FSR extends into the adjacent Patuxent River.

2.1.3 Geology

Based on observations made by General Physics Corporation during the 1996 sampling event for OU-1, surface soil near the FSR consists of unnamed Holocene formations deposited by the Patuxent River and Chesapeake Bay. These lowland deposits were characterized as poorly sorted gravelly sands to well sorted sands and are believed to range from 3 to 20 feet thick. Similar geology was observed during the 2020 monitoring well installations in support of the RI at the FSR. The Holocene deposits lie unconformably on the Upper Pleistocene Omar Formation. The Omar Formation consists of predominantly sandy clay and clayey sand and is believed to range in thickness from 10 feet to 50 feet.

At adjacent Site 1, previously installed wells encountered the St. Mary's Formation at depths ranging from 45 to 65 feet below ground surface (bgs).

2.1.4 Hydrogeology

The FSR is adjacent to the shoreline of the Patuxent River. Historical groundwater elevations, measured during prior investigations at a former landfill (Site 1) north of the FSR, indicate the primary groundwater flow direction is west and north toward the Patuxent River. Groundwater gauging data collected in April 2020 and June 2020 from seven monitoring wells installed during the RI field efforts also indicate a groundwater flow direction toward the Patuxent River; based on similarities between the two gauging efforts, only the June 2020 results are illustrated (Figure 5). Groundwater flow volume calculations documented in the 1998 RI Report for Sites 1 and 12, northeast of the FSR, suggest groundwater discharging into the Patuxent River is diluted approximately 10,000 times upon discharge (CH2M, 1998).

2.1.5 Ecological Setting

A site visit to observe the ecological setting was performed on February 19, 2009. Based on field observations, open grassy upland currently comprises the primary habitat in the areas of the FSR where shooting occurred. The gravel access road for the 2007/2008 Area E Excavation (discussed in Section 2.3.1) is also present in these areas, as shown on Figure 4. Because the grass and weeds around the FSR are still regularly maintained by mowing, there is limited refuge offered for upper trophic level receptors (such as birds, mammals, reptiles, and amphibians). However, this area is expected to maintain significant populations of soil invertebrates and provides foraging space for numerous upper trophic level receptors, especially because of its proximity to the Patuxent River and adjacent strip of heavily vegetated habitat to the west of the FSR and along the Patuxent River, which consists of a mixture of woodland, scrub/shrubland, and edge habitats. Including vegetated land within the shotfall zone but excluding the previous removal area at the former Rifle Range (northeast of the FSR, as shown on Figure 4), this area is approximately 7 acres in size. Minimal wildlife was observed during the site visit, but a wide variety of wildlife, such as birds, mammals, reptiles, amphibians, and invertebrates, are expected to live in or use habitats as that observed at the FSR. These types of habitats support a mixture of upland plant species that also frequently occur in various locations in the area (such as red cedar, multi-flora rose, blackberries, arrowwood, goldenrod, golden bamboo, red maple, persimmon, white pine, black cherry, sweet gum, mulberry, American holly, northern bayberry, autumn olive, sea myrtle, trumpet vine, and poison ivy).

As previously mentioned, the Patuxent River is directly adjacent to the FSR and within the theoretical shotfall zone. This river is one of the most significant aquatic habitats at NAS Patuxent River. Because of the proximity to Chesapeake Bay, the river is a slightly brackish, tidally influenced water body. Significant populations of aquatic biota occur within the river, including fish, benthic macroinvertebrates, and other invertebrates. Furthermore, wildlife such as raccoon, heron, or ducks are expected to reside close to the river and use it for foraging, especially in the shallow area of the river where it meets land (littoral zone).

2.1.6 Cultural and Historical Resources

Prehistoric use of the Patuxent River and Lexington Park area was generally light, and before the arrival of Europeans, the region of the lower Patuxent River was occupied by a variety of Algonquin groups (Ecology and Environment, 1996). The first English colony in Maryland was established in 1634 at the mouth of the St. Mary's River. The regional economy was based on tobacco farming throughout the seventeenth and eighteenth centuries. The area remained primarily agricultural in the nineteenth century, with the first major commercial fishery on the Patuxent River established at Solomon's Island in 1867. Small shoreline communities sprang up as the maritime industry was developed.

ENGINEERING EVALUATION AND COST ANALYSIS REPORT MUNITIONS RESPONSE SITE UXO-002, FORMER SMALL ARMS RANGES, OU-2 FORMER SKEET RANGES NAVAL AIR STATION PATUXENT RIVER, ST. MARY'S COUNTY, MARYLAND

Naval development of the area began after the construction of a Flight Test Center, authorized by the Secretary of the Navy on December 22, 1941, with subsequent site commissioning on April 1, 1943. As the flight-testing program expanded, the U.S. Naval Test Pilot School was established in 1958. Test facilities were upgraded in the late 1970s, and in 1975, the Naval Air Test Center began to assume its role as the Naval Air Systems Command's principal site for development testing. Beginning in 1991, the Navy began consolidating its technical capabilities, in part with the relocation of the Naval Air Warfare Center to NAS Patuxent River and construction of new state-of-the-art laboratories, test facilities, the U.S. Naval Test Pilot School academic building, and the Aviation Survival Training Center.

Several pre–World War II-era structures remain standing at NAS Patuxent River (Ecology and Environment, 1996), including the Mattapany, the Trimble house, the Bell house, the Chapel, and early twentieth century farmhouses and summer homes. No cultural or historical resources have been identified at the FSR.

2.1.7 Current and Potential Future Land and Resources

The FSR are currently unused. Review of aerial photographs suggests use of the FSR began between 1943 and 1952. The firing lines are visible on the 1964 aerial photograph but appear overgrown and were purportedly out of use by the time the 1984 aerial photograph was taken. There are currently no structures related to the FSR. The western portions of the FSR are primarily wooded; the eastern portions are primarily grass covered.

Access to the FSR is unrestricted (other than being within the NAS Patuxent River boundaries, which are restricted to authorized personnel and visitors). Before entering the area, visitors to the former ranges are required to check in with NAS Patuxent River personnel at the Former Engine Test Facility. The Navy's objective is to achieve unrestricted use of the area occupied by UXO-002, including the FSR; however, there are no current plans for development, and future land use of the property is unknown at this time.

2.2 Conceptual Site Model

The CSM relates potentially exposed human and ecological receptor populations with potential source areas based on physical site characteristics and complete exposure pathways. Important components of the CSM are the identification of potential source areas, transport pathways, exposure media, exposure pathways and routes, and receptor groups. Actual or potential exposures of human health and ecological receptors associated with a site are determined by identifying the most likely, and most important, pathways of contaminant release and transport.

Actual or potential exposures of receptors are identified by identifying the most likely and most important pathways of contaminant release and transport. A complete exposure pathway has three components: (1) a source of constituents resulting in a release to the environment, (2) a pathway of constituent transport through an environmental medium, and (3) an exposure or contact point for human and ecological receptors.

The main objective of the CSM is to identify any complete and critical exposure pathways that may be present. Potentially complete and primary exposure pathways exist for human and ecological receptors at the FSR. Figure 3 presents a typical skeet range layout, and Figure 6 presents information pertinent to the CSM for the FSR. The following subsections discuss and present key human health and ecological components of the CSM. The CSM can be used to support potential risk management decisions and aid in evaluating the effectiveness of remedial alternatives, if necessary.

2.2.1 Potential Source Areas and Affected Media

Based on historical site background information, the primary source of potential contamination at the FSR is believed to be shotgun pellets (lead shot) and clay target fragments. A potential secondary source of contamination is believed to be soil in the impact and shotfall areas, which is potentially contaminated by constituents associated with shotgun pellets and clay targets used during previous shooting activities. These items potentially could release metals (lead, antimony, arsenic, copper, tin, and zinc) or PAHs (associated with tar pitch typically used to bind clay targets at skeet ranges) to soil/sediment via direct deposits and groundwater via leaching. Lead is typically considered the primary constituent of concern (COC) at shotgun range sites based on its prevalence and risk-driving potential (ITRC, 2003); concentrations of other metals and PAH compounds are expected to be collocated with lead. Although the theoretical shotfall zones associated with the FSR extend into the Patuxent River, if shot landed in the river when these ranges were in use, it is likely it is substantially buried in the sediment because of the dynamic nature of the river. However, investigation activities focused on onshore soils and offshore sediments (including shotgun pellet counts) to adequately characterize the Patuxent River sediments as a potential source area.

An RI at Site OU-2 conducted between 2018 and 2020 consisted of sampling surface and subsurface soil, surface and subsurface sediment, and groundwater. The RI was conducted to characterize the nature and extent of lead and PAHs in soil, sediment, and groundwater that may pose unacceptable risk to human health and the environment. Based on the findings of the RI, soil associated with portions of the FSR were identified as requiring action. As discussed in Section 2.4, groundwater and sediment were not identified in the RI as requiring action.

2.2.2 Transport Pathways

A transport pathway describes the release mechanisms whereby site-related constituents, once released, may be transported from a source area to exposure media (such as surface soil) where receptor exposures may occur. These transport pathways are shown on the OU-2 CSM presented on Figure 6. The primary mechanisms for chemical release and transport at the FSR include the following:

- Direct deposit of lead shot and clay target fragments across the shotfall zone into soils in the upland, vegetated, and wetland areas and into sediments of the Patuxent River
- Transport of impacted soil particulates via overland surface runoff to downgradient terrestrial areas or surface water bodies
- Transport of impacted soil particulates via wind- or soil-disturbing activities to surrounding terrestrial areas or surface water bodies
- Uptake by biota from soil (for example, vegetation, soil invertebrates) and trophic transfer to upper trophic level receptors (for example, birds and mammals)
- Surface runoff from the FSR to the Patuxent River
- Particulate emission emanating from surface soil to ambient air

2.2.3 Exposure Pathways

An exposure pathway links a source with one or more receptors through exposure via one or more media and exposure routes. Exposure, and thus potential risk, can only occur if complete exposure pathways exist. Potentially complete exposure pathways exist for human and ecological receptors at OU-2.

2.2.3.1 Human Receptors

Access to the FSR is not restricted, and humans can be exposed to site soil, surface water, and sediment under current and future exposure scenarios and potentially to groundwater under future exposure scenarios. Potential current receptors include industrial workers and trespassers/visitors exposed to surface soil through incidental ingestion, dermal contact, and inhalation. Potential future receptors include the current receptors and construction workers and, assuming hypothetical future development for residential use, future residents exposed to surface and subsurface soil through incidental ingestion, dermal contact, and inhalation. Future residential use is considered unlikely; however, future residential use was evaluated because the residential exposure scenario is the most conservative scenario and used to assess unrestricted land use. Future receptors could be exposed to surface soil and subsurface soil if future development activities occur at the site (such as future construction of residential housing or industrial buildings), or if piping or excavation work results in exposure to subsurface soil.

Shallow groundwater is not used as a water supply at NAS Patuxent River because the Base water supply is obtained from deep confined aquifers (that is, greater than 500 feet bgs). However, future residential exposure to groundwater was evaluated as the most conservative scenario for human exposure to site-related constituents to assess risks associated with unrestricted future land use. Hypothetical future residents could be exposed to shallow groundwater used as a potable water supply through ingestion, dermal contact, and inhalation of volatile compounds while showering/bathing. Additionally, future construction workers could be exposed to shallow groundwater in an excavation during construction activities because the depth to groundwater is within 10 to 15 feet of the ground surface through dermal contact and inhalation of volatile compounds during excavation and construction activities.

2.2.3.2 Ecological Receptors

Based on the ecological setting at the FSR, ecological receptors are expected to be supported by the habitats present on or adjacent to the site (open grassy upland near the skeet ranges and a mixture of woodland, scrub/shrubland, and edge habitats along the edge of the adjacent Patuxent River). In additional to an array of terrestrial plants, the terrestrial portions of the site are expected to support a diversity of soil invertebrates (for example, insects, spiders, and earthworms) and wildlife such as birds, mammals, reptiles, and amphibians that most likely live, take refuge, or forage within these areas. A diversity of aquatic biota is also expected to reside in the river, such as benthic macroinvertebrates (for example, aquatic insects, worms, and crustaceans), as well as fish and amphibians. Furthermore, wildlife such as birds and mammals are also likely using the river for foraging and as a drinking water source.

Based on the presence of the terrestrial and aquatic habitats, potentially complete exposure pathways exist for ecological receptors (plants, invertebrates, amphibians, birds, and mammals); however, surface water and groundwater are not media of concern. For lower trophic receptors, the primary exposure route is direct exposure to contaminated surface soil (terrestrial plants and soil invertebrates), surface water (aquatic plants, fish, invertebrates, and amphibians), and sediment (aquatic plants, fish, benthic macroinvertebrates, and amphibians). For plants, additional exposure can occur through roots during water and nutrient uptake. For upper trophic level receptors (birds and mammals), potential exposures can occur via the following:

- Incidental ingestion of contaminated abiotic media (soil or sediment) during feeding activities
- Ingestion of contaminated water
- Ingestion of contaminated plant or animal tissues for bioaccumulative constituents that have entered food webs
- Direct (dermal) contact with contaminated abiotic media

2.3 Previous Investigations

Previous investigations and remedial actions relevant to the FSR include an RI, Feasibility Study (FS), and remedial action conducted at adjacent Sites 1 and 12 (commonly referred to as Area E) from 1996 to 2008 and an SI conducted at the FSR in 2010.

The following sections summarize the activities and results of these previous investigations at OU-2.

2.3.1 Area E Remedial Investigation, Feasibility Study, and Remedial Action (1996–2008)

Sites 1 (Fishing Point Landfill) and 12 (Landfill Behind the Rifle Range) are in the northern portion of the Installation, adjacent to the Patuxent River and immediately north of the FSR. Sampling completed in Area E overlaps into the FSR shotfall area (Figure 4). Area E consists of approximately 2.5 acres of freshwater wetlands, and investigations targeted a former rifle range southeast of Area E and east of the FSR. The former rifle range, used for rifle training and target practice from 1943 until the early 1980s, consisted of an impact berm, a forward berm, and a low-lying area between the berms. Because the theoretical shotfall zones associated with the FSR overlap with the area impacted by the former rifle range, the Area E investigations and removal action are summarized in this section.

An RI conducted between 1996 and 1999 at Area E (CH2M, 1998) included sampling and analyses of soil, soil gas, sediment, surface water, and groundwater, in addition to a geophysical survey conducted over 3,850 linear feet along 10 transects to identify subsurface anomalies indicative of the presence of the landfill. Between 1996 and 1997, surface soil, soil gas, sediment, surface water, and groundwater samples were collected and analyzed for total lead and semivolatile organic compounds (SVOCs), which included the full list of PAH compounds. Samples collected from locations within the portion of Area E overlapping the FSR theoretical shotfall zone included one sediment sample, one surface water sample, and four groundwater samples. Between 1998 and 1999, an additional 30 surface soil and 26 subsurface soil samples collected to support the Area E RI were within the theoretical shotfall zone of the FSR and analyzed for total lead or Toxicity Characteristic Leaching Procedure (TCLP) lead.

Overall, RI sampling results demonstrated the wetland sediments and associated surface water in Area E were impacted by lead. The levels of lead detected in the wetland surface water exceeded the federal Ambient Water Quality Criteria. An FS was conducted to identify and evaluate appropriate actions to mitigate the lead contamination at Area E (CH2M, 2005a). The FS recommended the removal of known sources of lead to the Area E wetland, including the presumed source (the former rifle range impact berms) and sediment in the southern portion of the wetland. The selected remedy for Sites 1 and 12 (OU-2 Area E), documented in a Record of Decision in 2005 (CH2M, 2005b), consisted of: (1) excavation, stabilization, and offsite disposal of wetland sediments from an identified hot spot containing lead concentrations of more than the EPA residential soil Regional Screening Level of 400 milligrams per kilogram (mg/kg); (2) excavation, stabilization, and offsite disposal of soil with lead concentrations in excess of 400 mg/kg from the upland area of the wetland (the target area of the rifle range backstop berm); (3) application of a soil amendment to excavated areas to stabilize any residual lead and prevent further migration of residual lead to the wetland from the upland areas (up to 2 percent by volume of Apatite II[™] to a depth of 18 inches); and (4) application of a surface layer of Apatite II[™] to the remaining (unexcavated) wetland as a preventative measure against any future lead contamination (CH2M, 2005a).

The removal action at Area E was conducted in 2007 and 2008. The total excavated volume of soil and sediment was 5,775 cubic yards, and part of the excavation overlapped the theoretical shotfall zone of the FSR (Figure 4). All wetland areas, which include part of the FSR shotfall area, were backfilled to the original grade and restored to a wetland habitat. The disturbed wetland area was seeded with a wetland seed mix. As shown on Figure 4, the material handling area and gravel access road constructed for the

Area E removal action overlap with features of the FSR. The material handling area, which consisted of a bermed area underlain by an impermeable liner, was used to mix the excavated material with a stabilizing agent before offsite disposal. The material handling area was dismantled when the removal action was complete. The gravel road, which runs through the FSR and consists of 12 inches of Number 1 stone underlain by geotextile, is still present at the site.

2.3.2 Former Skeet Range Site Inspection (2010)

An SI was conducted at the FSR in 2010 (CH2M, 2013) to assess whether past activities at the FSR resulted in a release of munitions constituents to soil. Surface soil samples were collected from 0 to 6 inches bgs using stainless steel trowels and bowls at 26 locations throughout the FSR. Soil was carefully inspected and screened using a Number 10 sieve to remove debris and lead fragments prior to filling the sample containers. Lead fragments and clay target debris were not observed during sieving of samples at the FSR; however, clay target debris was observed in other locations near the FSR.

All samples collected at the FSR were analyzed for total lead. In addition, samples collected from 11 locations were analyzed for PAHs. Because PAHs would have potentially been derived from the skeet targets (material containing PAHs may have been used to bind the clay targets), these samples were in the area immediately west of the former shooting positions, where the clay targets and associated fragments would be expected to fall. Samples collected at four locations were also analyzed for pH, total organic carbon, and grain size to provide a representative measurement of these parameters to evaluate the lead and PAHs data. Three duplicate samples were collected.

Lead was detected at all 26 surface soil sample locations at concentrations ranging from 5.8 mg/kg to 330 mg/kg. The maximum concentration of lead (330 mg/kg) was detected at PX-FSR-SO-22, located in the wooded area immediately west of the northern former skeet range.

A total of 17 different PAH compounds were analyzed and all 17 compounds were detected, with 12 of the PAH compounds detected at all 11 sample locations. The maximum concentration for most PAH compounds was reported in the sample collected at PX-FSR-SO-22. This sample location was placed in the area that, based on typical skeet range setup, may have been directly under the crossing point where a large portion of the fragments from broken clay targets may have fallen. In general, lead and PAHs concentrations were greater in the samples collected from the locations closest to the FSR.

A human health risk screening (HHRS) evaluation performed based on the results of the SI sampling identified seven PAHs, including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, chrysene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene, as constituents of potential concern (COPCs) for human receptors at the FSR in surface soil (CH2M, 2013). Both the maximum detected concentrations and the 95 percent upper confidence limits of these PAHs exceeded the regional screening level for residential soil and the background threshold values. Eight of the 11 locations analyzed for PAHs had concentrations exceeding the human health screening level. Based on the SI data, lead was not identified as a COPC for human receptors at the FSR during the HHRS evaluation.

An ecological risk screening (ERS) evaluation also was performed based on the results of the SI sampling. The ERS evaluated direct exposure risks from range-related constituents (lead and PAHs) for lower trophic level receptors, such as soil invertebrates and terrestrial plant populations. Low molecular weight (LMW) and high molecular weight (HMW) PAHs were identified as ecological COPCs for surface soil at the FSR. Because of the coincidental nature of these constituents when dispersed in the environment and because the ecotoxicological data in the scientific literature are reported in the same manner, the ecological soil screening level (Eco-SSL) guidance recommends PAHs be screened on a cumulative (that is, total) concentration basis for two individual compound subgroupings according to molecular weight (EPA, 2007a). Therefore, compound concentrations were segregated for each sample into the following LMW PAHs and HMW PAHs subgroups:

- LMW PAHs: 2-methylnaphthalene; acenaphthene; acenaphthylene; anthracene; fluorine; phenanthrene; and naphthalene
- HMW PAHs: benzo(g,h,i)perylene; benzo(a)anthracene; benzo(a)pyrene; benzo(b)fluoranthene; benzo(k)fluoranthene; chrysene; dibenzo(a,h)anthracene; fluoranthene; indeno(1,2,3-cd)pyrene; and pyrene

Concentrations of LMW PAHs and HMW PAHs were compared to the corresponding soil invertebrate Eco-SSLs of 29,000 and 18,000 micrograms per kilogram (μ g/kg), respectively (EPA, 2007b). There is no PAHs Eco-SSL available for terrestrial plants. Concentrations of both LMW PAHs and HMW PAHs at the FSR exceeded their soil invertebrate Eco-SSLs. The surface soil Eco-SSL exceedances for both LMW PAHs and HMW PAHs and HMW PAHs and HMW PAHs at the FSR exceeded their soil invertebrate Eco-SSLs. The surface soil Eco-SSL exceedances for both LMW PAHs and HMW PAHs occurred in the theoretical shotfall zone immediately west of the FSR firing line. Based on the SI data, lead was not identified as a COPC for ecological receptors at the FSR during the ERS evaluation.

2.4 Risk Assessment

2.4.1 Human Health Risk Assessment

A baseline HHRA was conducted as part of the RI (CH2M, 2021) for Site OU-2 (FSR). The baseline HHRA was conducted using surface soil data collected during the 2010 SI field activities along with surface and subsurface soil, surface and subsurface sediment, and groundwater data collected during the 2018 to 2020 RI field activities. The HHRA evaluated the current and future potential human health risks associated with exposure to site-related constituents in environmental media at the FSR. Based on information provided in Section 2.1.7, current receptors evaluated in the HHRA included industrial workers and trespassers/visitors. Future receptors evaluated in the HHRA included residents, industrial workers, construction workers, and trespassers/visitors.

Benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene were identified as COCs for soil because they contributed to potentially unacceptable risks to future residents. No unacceptable risks were identified for current industrial workers, current trespasser/visitors, future industrial workers, future construction workers, and future trespassers/visitors. Also, the HHRA did not identify unacceptable risks associated with exposure to sediment or groundwater. The HHRA for the FSR is provided in its entirety as Appendix A.

2.4.2 Ecological Risk Assessment

As part of the RI, separate ERAs were prepared for both the terrestrial habitat (site soil) and aquatic habitat (Patuxent River sediment) associated with OU-2 FSR, included as Appendix B. The terrestrial and aquatic ERAs for the FSR are provided their entirety as Appendix B1 and Appendix B2, respectively. Both ERAs were conducted in accordance with Navy policy for ERAs (CNO, 1999) and Navy guidance for implementing this policy (NAVFAC, 2003). No risks were identified for the aquatic habitat. However, the terrestrial ERA identified lead and HMW PAHs as COPCs for lower trophic level receptors (soil invertebrates and potentially terrestrial plants) in an isolated area near the northern former skeet range (Appendix B1). Therefore, lead and HMW PAHs were carried forward as ecological Step 3A COPCs for lower trophic level receptors.

SECTION 3

Removal Action Objective, ARARs, and Media of Interest

This section presents information that forms the basis for the RAO at the FSR.

3.1 Removal Action Objective

RAOs are specific goals for protecting human health and the environment from risks and hazards associated with site-related contamination. RAOs can be accomplished by ensuring exposure pathways are not completed or reducing concentrations of COCs at exposure points to less than protective concentrations. RAOs define the extent to which sites require cleanup to meet the objectives of protecting human health.

The RAO developed for the FSR is as follows:

• **Prevent Unacceptable Human Health and Ecological Exposure:** Prevent the exposure of human and ecological receptors to concentrations of contaminants in soil that pose an unacceptable risk across all current and potential future complete exposure pathways.

Based on the results of the HHRA and ERA, unacceptable risks from lead and select PAHs in soil may exist at the FSR; therefore, a removal action is warranted to prevent potential exposure to human and ecological receptors.

3.2 Applicable or Relevant and Appropriate Requirements

As set forth in the NCP and EPA guidance, ARARs are either applicable to or relevant and appropriate to a specific response action being implemented at a site based on site-specific conditions (40 CFR 300). The distinctions are critical to understanding the constraints imposed on remedial alternatives by environmental regulations. ARARs can include any promulgated standard, requirement, criterion, or limitation under a state environmental or facility-siting law more stringent than the associated federal standard, requirements, criterion, or limitation. Both the applicable requirements and the relevant and appropriate requirements pertain to a site, to the extent practicable. The definitions of ARARs presented as follows are from the *CERCLA Compliance with Other Laws Manual* (EPA, 1988):

- Applicable requirements are standards, standards of control, and other substantive environmental protection requirements, criteria, or limitations promulgated under federal or state environmental law that specifically address a hazardous substance, pollutant, contaminant, removal action, location, or other circumstance, as defined in the NCP, 40 CFR 300.5. For a requirement to be applicable, the removal action or the circumstances at the site must satisfy all the jurisdictional prerequisites of that requirement. Only those state standards identified by a state in a timely manner and more stringent than federal requirements may be considered as applicable requirements.
- Relevant and appropriate requirements are standards, standards of control, and other substantive
 environmental protection requirements, criteria, or limitations promulgated under federal and state
 law that (although not applicable to a hazardous substance, a pollutant, a contaminant, a removal
 action, or other circumstances at a CERCLA site) addresses problems or situations sufficiently similar
 to those encountered at the CERCLA site so their use is well suited to a site. Relevant and
 appropriate requirements also are defined in the NCP (40 CFR 300.5). For example, although

Resource Conservation and Recovery Act regulations are not applicable to closing in-place hazardous waste disposed of before 1980, they may be deemed relevant and appropriate for landfill closure with in-place hazardous substances. Only those state standards identified by a state in a timely manner and more stringent than federal requirements may be considered as relevant and appropriate requirements.

• Other "to be considered" criteria, such as federal and state non-promulgated policy and guidance documents, may also be useful in directing a response action at a site. To be considered criteria are not legally binding and do not have the status of potential ARARs (that is, they have not been promulgated in statutes or regulations). However, if there are no specific ARARs for a chemical or site condition, or if ARARs are deemed insufficiently protective, then guidance or advisory criteria should be identified and used to ensure the protection of human health and the environment.

Three classifications are defined by EPA in the ARAR determination process: chemical-specific, action-specific, and location-specific ARARs.

- Chemical-specific ARARs are health- or risk management-based numbers or methodologies that result in the establishment of numerical values for a given media that would meet the NCP "threshold criterion" of overall protection of human health and the environment. These requirements generally set protective cleanup concentrations for the COCs in the designated media or set safe concentrations of discharge for remedial activity. Chemical-specific ARARs may be concentration-based cleanup goals or may provide the basis for calculating such levels. In cases where no chemical-specific ARAR exists, chemical advisories may be used to develop remedial goals.
- Location-specific ARARs restrict remedial activities based on the geographic location of the site or characteristics of the surrounding environments. These ARARs are intended to limit activities within designated areas, zones, or regions. Location-specific ARARs may include restrictions on actions within at sensitive or hazard-prone locations such as populated areas; near or within wetlands, floodplains, and protected waterways; or adjacent to known endangered species and associated habitat.
- Action-specific ARARs are requirements that define acceptable procedures or technologies related specifically to the type of activity being performed and the hazardous substance being managed. These ARARs control or restrict hazardous substance- or pollutant-related management activities. These controls are considered when specific removal activities are planned for a site.

The project ARARs are summarized in Appendix C.

3.3 Remediation Goals

The remediation goals (RGs) are used to prevent the exposure of human and ecological receptors to COCs and COPCs in soils that pose an unacceptable risk across all current and potential future complete exposure pathways. The selected RG for each COC or COPC is the lower of the human health and ecological risk-based value.

The RGs for at-risk lower trophic level ecological receptors (soil invertebrates and potentially terrestrial plants) are 504 mg/kg for lead and 72,250 μ g/kg for HMW PAHs, which are Apparent Effects Threshold values based on site-specific toxicity testing performed for the ERA (Appendix BB1).

Even though lead was not identified as a COC based on the results of the HHRA, it was decided that due to the few exceedances of MDE residential lead screening level, the value of 200 mg/kg would be used as the RG. Additionally, on January 17, 2024, EPA announced updated guidance for lead in residential soil at CERCLA sites. The new guidance recommends screening lead at 200 mg/kg. This value is lower than the ecological RG of 504 mg/kg for lead and, therefore, protective of ecological receptors. The

human health RGs for the five HMW PAHs are calculated in Table 3-1 using the results from the HHRA included in the RI (CH2M, 2023) and a target cumulative cancer risk of 1E-04. A summary of the PAH human-health based remediation goals for soil are provided in Table 3-2. The RGs are as follows:

- Benzo(a)anthracene: 22,571 μg/kg based on calculated human health risk-based RG
- Benzo(a)pyrene: 2,296 µg/kg based on calculated human health risk-based RG
- Benzo(b)fluoranthene: 21,464 µg/kg based on calculated human health risk-based RG
- Dibenz(a,h)anthracene: 2,296 µg/kg based on calculated human health risk-based RG
- Indeno(1,2,3-cd)pyrene: 22,964 µg/kg based on calculated human health risk-based RG
- Lead: 200 mg/kg based on MDE and EPA residential soil cleanup level

The human health RGs for PAHs were selected because they are protective of both human health and ecological receptors and meet the criteria. Human health RGs address the protectiveness of ecological receptors because the summed total of the five individual PAHs (71,600 μ g/kg) is less than the ecological RGs for summed total HWM PAHs (72,250 μ g/kg).

3.4 Media and Areas Requiring Remediation

The media and areas requiring remediation are referred to as the target treatment zones. The target treatment zones are the areas with COCs concentrations exceeding the RGs in surface soil. This has been identified for PAHs and lead in the area immediately adjacent to the west of the FSR, and two areas for lead south and southwest of the FSR. COCs at all three areas go down to a depth of 1 foot bgs (Figure 7).

3.5 Risk Reduction

With the proposed removal of soil with lead and PAH concentrations exceeding the RGs, potential risks to current and future human receptors will be reduced to acceptable levels.

Potential risks to ecological receptors will also be reduced considerably with the removal of soil with lead and PAH concentrations exceeding the RGs. The soil removal would result in risk reductions for lower trophic level receptors (soil invertebrates and potentially terrestrial plants also) to acceptable levels. The post-removal average lead and PAH concentrations for soil would not exceed the RGs of 200 mg/kg for lead and five individual PAH RGs listed in Section 3.3.

3.6 Statutory Limits on Removal Actions

The NCP (40 CFR Part 300.415) dictates statutory limits of \$2 million and a 12-month duration for EPA fund-financed removal actions, with statutory exemptions for emergencies and actions consistent with the removal action to be taken. However, this removal action will not be financed with EPA funding. The *Department of the Navy Environmental Restoration Program Manual* (NAVFAC, 2018) does not limit the cost or duration of the removal action; however, cost-effectiveness is a recommended criterion for evaluation of removal action alternatives. No other statutory limit exists for the proposed NTCRA.

Table 3-1. Calculation of Human-Health Based Remediation Goals for Soil

Site UXO-002, OU2 Engineering Evaluation and Cost Analysis NAS Patuxent River, Maryland

Residential Adult, Noncarcinogenic based RG

	Exposure Point		Hazard Quotient ¹		RG, HQ=0.1	RG, HQ=1.0	RG, HQ=3.0	Target Organ	Target HQ ²	RG based on	
Chemical	Concentration ¹ (MG/KG)	Inh	Ing	Der	Total	(mg/kg)	(mg/kg)	(mg/kg)			Target HQ
Benzo(a)anthracene	1.6E+01	NA	NA	NA	NA	NA	NA	NA			
Benzo(a)pyrene	1.2E+01	4.2E-03	4.8E-02	2.6E-02	7.8E-02	1.5E+01	1.5E+02	4.6E+02	Developmental	1	1.5E+02
Benzo(b)fluoranthene	2.2E+01	NA	NA	NA	NA	NA	NA	NA			
Dibenz(a,h)anthracene	3.0E+00	NA	NA	NA	NA	NA	NA	NA			
Indeno(1,2,3-cd)pyrene	1.4E+01	NA	NA	NA	NA	NA	NA	NA			

Residential Child, Noncarcinogenic based RG

	Exposure Point		Hazard Quotient ¹			RG, HQ=0.1	RG, HQ=1.0	RG, HQ=3.0	Target Organ	Target HQ ²	RG based on
Chemical	Concentration ¹ (mg/kg)	Inh	Ing	Der	Total	(mg/kg)	(mg/kg)	(mg/kg)			Target HQ
Benzo(a)anthracene	1.6E+01		NA	NA	0.0E+00	NA	NA	NA			
Benzo(a)pyrene	1.2E+01		5.1E-01	1.6E-01	6.7E-01	1.8E+00	1.8E+01	5.4E+01	Developmental	1	1.8E+01
Benzo(b)fluoranthene	2.2E+01		NA	NA	0.0E+00	NA	NA	NA			
Dibenz(a,h)anthracene	3.0E+00		NA	NA	0.0E+00	NA	NA	NA			
Indeno(1,2,3-cd)pyrene	1.4E+01		NA	NA	0.0E+00	NA	NA	NA			

Lifetime Resident, Carcinogenic based RG

	Exposure Point		Carcinogenic Risk ¹ F		RG, CR=10-6	RG, CR=10-5	RG, CR=10-4	Target Risk ³	RG based on	
Chemical	Concentration ¹ (MG/KG)	Inh	Ing	Der	Total	(mg/kg)	(mg/kg)	(mg/kg)		Target Risk
Benzo(a)anthracene	1.6E+01	2.4E-07	1.0E-05	3.4E-06	1.4E-05	1.1E+00	1.1E+01	1.1E+02	2.0E-05	2.3E+01
Benzo(a)pyrene	1.2E+01	5.2E-09	7.8E-05	2.6E-05	1.0E-04	1.1E-01	1.1E+00	1.1E+01	2.0E-05	2.3E+00
Benzo(b)fluoranthene	2.2E+01	1.3E-06	1.4E-05	4.8E-06	2.0E-05	1.1E+00	1.1E+01	1.1E+02	2.0E-05	2.1E+01
Dibenz(a,h)anthracene	3.0E+00	1.3E-09	2.0E-05	6.6E-06	2.7E-05	1.1E-01	1.1E+00	1.1E+01	2.0E-05	2.3E+00
Indeno(1,2,3-cd)pyrene	1.4E+01	6.3E-10	9.5E-06	3.2E-06	1.3E-05	1.1E+00	1.1E+01	1.1E+02	2.0E-05	2.3E+01

Notes:

For noncarcinogens: RG = (Exposure Point Concentration x Target Hazard Quotient)/ Total Hazard Quotient

For carcinogens: RG = (Exposure Point Concentration x Target Risk)/Total Carcinogenic Risk

1. Exposure point concentrations, hazard quotients, and carcinogenic risks are from the human health risk assessment in the June 2023 Final Remedial Investigation Report,

Munitions Response Site UXO-002, Former Small Arms Ranges, OU-2 Former Skeet Ranges, Naval Air Station Patuxent River, St. Mary's County, Maryland.

2. Target HQ chosen so that target organ/effect hazards do not exceed 1.

3. Target carcinogenic risk chosen so that total carcinogenic risk does not exceed 10^{-4} .

CR = cancer risk

Der = dermal

HQ = hazard quotient

Inh = inhalation

Ing = ingestion

mg/kg = milligram(s) per kilogram

NA = not applicable/not available

RG = remediation Goal

Table 3-2. Summary of Human-Health Based Remediation Goals for Soil

Site UXO-002, OU2 Engineering Evaluation and Cost Analysis NAS Patuxent River, Maryland

Soil

		Background		
Constituent	RG (MG/KG)	Basis of RG	Concentration (MG/KG)	
Benzo(a)anthracene	2.3E+01	Lifetime Resident, CR = 2.0E-05	1.3E-01	
Benzo(a)pyrene	2.3E+00	Lifetime Resident, CR = 2.0E-05	1.7E-01	
Benzo(b)fluoranthene	2.1E+01	Lifetime Resident, CR = 2.0E-05	2.9E-01	
Dibenz(a,h)anthracene	2.3E+00	Lifetime Resident, CR = 2.0E-05	1.2E+00	
Indeno(1,2,3-cd)pyrene	2.3E+01	Lifetime Resident, CR = 2.0E-05	1.9E-01	

Soil background concentration is surface soil background threshold value from October 2008 Final,

Facility-Wide Background Study, Naval Air Station Patuxent River, St. Mary's County, Maryland. Target carcinogenic risk chosen so that total carcinogenic risk does not exceed 10-4.

Gray shading indicates selected PRG.

SECTION 4

Description of Removal Action Alternatives

A range of removal action alternatives have been identified to achieve the RAO and corresponding RGs. The No Action Alternative was included for comparative purposes, per the NCP.

4.1 Alternative 1 – No Action

Alternative 1 provides a baseline against which to compare the performance and effectiveness of the other alternatives. With this alternative, no action would be conducted to address impacted media at the site, and no controls would be implemented to control or monitor potential receptor exposures to site COCs. The area would be left as is, leaving soil in place that may pose unacceptable risks to current and potential future human and ecological receptors. Therefore, in accordance with CERCLA (Section 121[c]), as amended by Superfund Amendments and Reauthorization Act, the site would be reviewed every 5 years. It is assumed the current level of maintenance would be sustained. The No Action Alternative will not meet the RAO.

4.2 Alternative 2 – Stabilization and Engineered Cover with Land Use Controls and Long-term Monitoring

Alternative 2 consists of excavation and removal of soil in three areas with impacted soil exceeding the human health and ecological RGs onsite, stabilizing the impacted soil ex situ, disposing of the stabilized soil mixture in an offsite landfill, and placing an engineered soil cover to eliminate direct human and ecological exposure at the FSR. Figure 7 shows the proposed extent of excavation of Alternative 2. LUCs will be implemented to control potential future exposure to stabilized soil, ensure land usage is compatible with agreed upon land use determinations and remedial design assumptions, warn of potential site dangers, prevent impacted media from being transported offsite, and educate the public of access restrictions. Operations and maintenance (O&M) will be conducted to verify continued effectiveness or protectiveness of the remedial technology and ensure assumptions made during remedy selection remain valid. SiteWise® Version 3.2 (Battelle, 2018) was used to assess the sustainability footprint of this alternative, and the results will be used to help identify optimization opportunities to be considered in the design phase for the selected alternative. "Green" and sustainable remediation best management practices will be evaluated for excavation and considered for inclusion in the remedy.

The major components and assumptions for this alternative are as follows:

• Excavation

- Clear vegetation in forested areas and access roadway planned for excavation.
- Removal of soil at one area immediately adjacent to the FSR with concentrations of lead and PAHs above RGs; and removal of soil at two smaller areas to the south and southwest of the main area with lead exceeding RGs. The excavation in all three areas would be to a depth of 1 foot bgs and possibly more if overexcavation is needed to reach the RGs (Section 3.3). A total of 1,008 bank cubic yards of soil is estimated for excavation in the largest excavation area (Figure 7).
- A total of 1,512 loose cubic yards (ex situ volume) has been estimated for the removal action.

- Erosion and sedimentation controls will be implemented during excavation activities to prevent erosion of contaminated materials and sediment into the adjacent river.
- The water table at the site is approximately 7 to 9 feet bgs and should not be encountered during excavation; therefore, no dewatering of the soil removal areas has been included.

• Stabilization

 To stabilize lead such that TCLP analysis will characterize the soil as nonhazardous for offsite disposal, mix contaminated soil with 10 percent Portland cement. Then place the soil slurry within an onsite treatment cell to allow it to stiffen into a stabilized soil mass.

• Engineered Cover

- The stabilized mass within the onsite treatment cell will then be covered with an engineered, evapotranspiration soil cover consisting of a minimum of 2 feet of clean soil cover or topsoil to allow for site restoration and revegetation. Imported fill for the "clean soil cover and/or topsoil" will be documented as "certified clean fill" determined by analysis.
- After final grading, the engineered soil cover will be planted with suitable, native grass species to provide evapotranspiration and minimize erosion. Habitat restoration will consider native species based on the removal action contractor's site restoration plan.
- The engineered soil cover will be designed to eliminate direct human and ecological exposure and prevent surface water from percolating into the stabilized soil mass and underlying groundwater.

• Offsite Disposal and Waste Characterization

- Collect characterization samples of the stockpiled soils and analyze samples using TCLP to verify the waste is nonhazardous. For cost estimating purposes, it was assumed waste characterization sampling would be conducted at a frequency of 1 sample per 100 cubic yards (four samples) and analyzed using the full TCLP (VOCs, SVOCs, metals, herbicides, mercury, and pesticides), reactivity (cyanide and sulfide), ignitability, and corrosivity.
- Transport of 3/4 full rolloff containers of nonhazardous, stabilized soil mixture offsite and dispose at a permitted Resource Conservation and Recovery Act Subtitle D landfill.
- LUCs
 - LUCs consisting of engineering controls, including signage and institutional controls such as deed
 restrictions, will be implemented at the FSR. LUCs will be used to control potential future
 exposure to soil remaining in place with concentrations exceeding human health and ecological
 RGs, ensure land usage is compatible with agreed upon land use determinations and remedial
 design assumptions (that is, land use remains industrial), warn of potential site dangers, prevent
 impacted media from being transported offsite, and educate the public of access restrictions.
 - Annual inspections and Five-Year Reviews for a period of 30 years are anticipated for this remedy.
- Operation and Maintenance
 - O&M will focus on verifying the continued effectiveness or protectiveness of the remedial technology and ensuring assumptions made during remedy selection remain valid. O&M will consist of maintenance of the engineered cap, LUC maintenance (such as sign maintenance, administrative reviews, and annual inspections), and routine monitoring of site conditions.
- Long-term Monitoring (LTM)

 LTM generally focuses on verifying the continued effectiveness or protectiveness of the remedial technology and ensuring assumptions made during remedy selection remain valid.
 LTM consists of maintenance of the engineered cap, LUC maintenance (such as sign maintenance, administrative reviews, and annual inspections), routine review of site conditions, and monitoring of residual contamination through additional soil sampling (if necessary).

4.3 Alternative 3 - Removal Action with Stabilization and Offsite Disposal

Alternative 3 consists of excavation and removal of soil at three areas to eliminate direct human and ecological exposure at the FSR. No LUCs or O&M are required for this alternative because the impacted soil with concentrations exceeding unrestricted use criteria would be removed from the site. SiteWise[®] Version 3.1 (Battelle, 2018) was used to assess the sustainability footprint of this alternative, and the results will be used to help identify optimization opportunities to be considered in the design phase for the selected alternative. "Green" and sustainable remediation best management practices will be evaluated for excavation and considered for inclusion in the remedy.

The major components and assumptions for this alternative are as follows:

• Excavation

- Clear vegetation in forested areas and access roadway planned for excavation.
- Removal of soil at one area immediately adjacent to the FSR with concentrations of lead and PAHs exceeding RGs, and removal of soil at two smaller areas to the south and southwest of the main area with lead exceeding RGs. The excavation in all three areas would be to a depth of 1 foot bgs and possibly more if overexcavation is needed to reach the RGs (Section 3.3). A total of 1,008 bank cubic yards of soil is estimated for excavation in the largest excavation area (Figure 7).
- A total of 1,512 loose cubic yards (ex situ volume) has been estimated for the removal action.
- Erosion and sedimentation controls will be implemented during excavation activities to prevent erosion of contaminated materials and sediment into the adjacent river.
- The water table at the site is approximately 7 to 9 feet bgs and should not be encountered during excavation; therefore, no dewatering of the soil removal areas has been included.
- Post-excavation Confirmation Sampling
 - Before backfilling of the excavation occurs, post-excavation confirmation samples would be collected to confirm the horizontal and vertical extent soil concentrations in the floor and sidewalls of the excavations are less than the RGs (Section 3.3). For cost estimating purposes, it was assumed confirmation sampling would be conducted at the excavation floor and sidewalls per the following frequency and locations based upon previous detections of COCs:

Soil Analysis	Frequency	Number of Samples (plus Quality Control)	Location Area
Lead/PAHs	Floor Samples: 30 by 30-foot grid; Sidewall Samples: every 40 linear feet	50	At combined lead/PAH excavation area (near FSR)

	Floor Samples: center of		At both lead only excavation
Lead	excavation area;	11	areas (south/southeast of the
	Sidewall Samples: one per sidewall		larger excavation area)

Stabilization

 To stabilize lead such that TCLP analysis will characterize the soil as nonhazardous for offsite disposal, mix contaminated soil with 10 percent Portland cement. Then place the soil slurry within an onsite treatment cell to allow it to stiffen into a stabilized soil mass.

• Offsite Disposal and Waste Characterization

- Collect characterization samples of the stockpiled soils and analyze samples using TCLP to verify the waste is nonhazardous. For cost estimating purposes, it was assumed waste characterization sampling would be conducted at a frequency of 1 sample per 100 cubic yards (12 samples) and analyzed using the full TCLP (VOCs, SVOCs, metals, herbicides, mercury, and pesticides), reactivity (cyanide and sulfide), ignitability, and corrosivity.
- Transport of 3/4 full rolloff containers of nonhazardous, stabilized soil mixture offsite and dispose at a permitted Resource Conservation and Recovery Act Subtitle D landfill.

Assessment of Removal Action Alternatives

Three removal action alternatives, including the No Action Alternative, were developed for evaluation against the RAOs. The alternatives were initially evaluated individually based on effectiveness, implementability, and cost, and then the results were compared and qualitatively ranked to ascertain their relative merits in accordance with *Guidance on Conducting Non-Time-Critical Removal Action Under CERCLA* (EPA, 1993). Additionally, in support of Navy and EPA guidance, the sustainability of each alternative was estimated and evaluated for comparison.

5.1 Individual Analysis

The removal action alternatives initially were evaluated individually regarding their overall effectiveness, implementability, and cost. Sustainability is not one of the evaluation criteria but was also evaluated. The findings from the individual analyses are qualitatively presented in Table 5-1.

5.1.1 Effectiveness

The *effectiveness* criterion addresses the expected results of the removal action alternatives and its ability to meet the RAO within the scope of the removal action. It includes five subcategories that address both protectiveness and the ability to achieve the RAO.

- **Protection of human health and the environment:** Evaluates how the alternative achieves and maintains the protection of human health and the environment and achieves site-specific objectives both during and after implementation.
- **Compliances with ARARs**: Evaluates the compliance with ARARs, or if a waiver is required, how it is justified.
- Short-term effectiveness: Evaluates the effectiveness in protecting human health and the environment during implementation of an alternative before the RAO has been met. The duration of time until the RAO has been met also is factored into this criterion. Protection of the community and workers, environmental impacts, and time until the RAO is achieved are all considered.
- Long-term effectiveness and permanence: Evaluates the long-term effectiveness in maintaining protection of human health and environment after the RAO has been met. The magnitude of residual risk and adequacy and reliability of post-removal site controls are taken into consideration.
- Reduction of toxicity, mobility, or volume through treatment: Evaluates the anticipated performance of the specific treatment technologies and methods it employs. As defined by the NCP, EPA expects the use of treatment to address principal threats posed by a site, wherever practicable (40 CFR 300.430[a][1][iii][A]). Removal is not the same as treatment (remedial action), which permanently reduces the toxicity, mobility, or volume of contamination (42 United States Code [USC] 9601[23]; 42 USC 6903[34]). Thus, CERCLA includes a statutory preference for alternatives that treat contaminants rather than disposing of them offsite. When considering treatment, factors such as volume of materials destroyed or treated, the degree of expected reductions, the degree to which treatment is irreversible, and the type and quantity of remaining residuals are taken into consideration.

5.1.2 Implementability

The *implementability* criterion encompasses the technical and administrative feasibility implementing an alternative and the availability of various services and materials required during it. It includes the following three subcategories that address both feasibility and availability of resources:

- **Technical feasibility**: Evaluates the ability of the technology to implement the remedy. Factors to be considered include reliability of the technology, constructability and operation, demonstrated performance and useful life, adaptability to environmental conditions, contribution to performance of long-term remedy effectiveness (42 U.S.C. 9604[a][2]), implementation within the allotted schedule, east of undertaking additional remedial action if necessary.
- Administrative feasibility: Evaluates those activities needed to coordinate with other stakeholders, agencies, and organizations. The need for permits, waivers, easements or rights-of-way, and adherence to applicable non-environmental laws are to be assessed. Statutory limits, impacts on adjoining property, the ability to impose LUCs, and concerns of other regulatory agencies should be considered.
- Availability of resources: Evaluates if necessary resources are available to implement the scope and schedule of an alternative. The availability of equipment; personnel; services; materials; prospective technology; treatment, storage, and disposal capacity; funding; and other resources should be assessed.

5.1.3 Cost

The *cost* criterion encompasses the life-cycle costs of a project, including the projected implementation costs and the long-term O&M costs of the removal action. It includes three subcategories that address overall cost of an alternative: capital costs, O&M costs, and periodic costs.

For the detailed cost analysis, the expenditures required to complete each alternative were estimated in terms of capital costs, including direct and indirect costs, to complete initial construction activities. Direct costs include the cost of construction, equipment, land and site development, treatment, transportation, and disposal. Indirect costs include engineering expenses, startup and turndown costs, permit costs, and contingency allowances. O&M costs include the cost of operation and maintenance, annual monitoring and reporting costs, and auxiliary support costs. Periodic costs include the cost of conducting periodic Five-Year Reviews, if needed.

The alternatives were analyzed using present value, which discounts all future costs to the expected value at present (in 2021 base year dollars). Present-value analysis allows the cost of the removal action to be compared based on a single figure representing the amount of money that, if invested in the base year (2021) and disbursed as needed, would be sufficient to cover all costs associated with the life of the removal action. The present-value calculations included an assumed discount rate of 2 percent (White House OMB, 2022).

The estimated costs are provided to an expected accuracy of +50 percent and -30 percent. The alternative cost estimates are in 2024 dollars, and the unit pricing is based on costs from similar projects, vendor quotes, or engineering estimates. The Engineer's Cost Estimates for each alternative are presented in Appendix E and summarized in Table 5-1.

5.1.4 Sustainability

This criterion addresses the impacts the technology could have on the surrounding environment and the ability of the technology to resist external impacts. To evaluate sustainability, an assessment was

conducted using SiteWise[®] Version 3.2, a stand-alone tool that assesses the environmental footprint of a remedial alternative to compare the overall life-cycle environmental impacts of each alternative.

in terms of a consistent set of sustainability metrics: greenhouse gas emissions, energy use, criteria air emissions (including nitrogen oxides, sulfur oxides, and particulate matter less than 10 microns in diameter), water consumption, and worker safety. SiteWise[®] provides a comparative assessment of different remedial alternatives based on the significant life-cycle impacts of each alternative, including material production (soil, gravel, sand, and so forth); transportation of equipment, personnel, and materials to the site; use of equipment during implementation; and residuals handling (Battelle, 2018) (Appendix E).

5.2 Comparative Analysis

The purpose of the comparative analysis is to identify the relative technical advantages and disadvantages of each alternative so key tradeoffs affecting the selection of a removal action alternative can be identified. The findings of the individual analysis of the removal action alternatives are used to weigh and compare the alternatives relative to each another. Table 5-2 summarizes the comparative analysis of the removal alternatives, including the overall levels of conformance/desirability. Though not an evaluation criterion, the overall sustainability ranking initially presented in Table 5-1 is reiterated in Table 5-2 to aid in decision-making.

Evaluation Criterion	Ranking / Subcategories	Alternative 1 – No Action	Alternative 2 – Stabilization and Engineered Cover with Land Use Controls and Long-Term Monitoring	Alternative
Effectiveness	Ranking	Unacceptable	High	
	Protection of human health and the environment	 Does not protect human and ecological receptors from unacceptable exposure to COCs in soil. Does not achieve the RAO. 	 Protects current and future human and ecological receptors from unacceptable exposure at the site by: 1) reducing the mobility of COCs in the soil through soil stabilization and 2) restricting direct access to contaminated soil and limiting migration-to-groundwater by installing an engineered, evapotranspiration soil cover and implementing LUCs. 	Protects curre exposure by: 2 mobility of CC
	Compliance with ARARs	- Doos not comply with APAPs	Achieves the RAU	Achieves the f
		Does not comply with AKARS.	Complies with themical-, location- and action-specific AKARS	Complies with
	Short-term effectiveness	Does not provide protectiveness of the community or environment during	• Provides protectiveness of the community and environment during implementation by constructing an engineered cap and implementing LUCs.	 Provides prote implementation
		implementation of the alternative.Provides worker protection by limiting potential	 Reduces worker protections by increasing the likelihood of worker exposure during implementation of the alternative. 	 Reduces work during implen
		 Does not create additional environmental 	Creates additional environmental impacts by excavation, construction earthwork, and possible migration of contaminated sediments/dust.	 Creates additi earthwork, an
		impacts.The time until the RAO is achieved is infinite.	• Will achieve the RAO within approximately 1-2 years.	Will achieve the second s
	Long-term effectiveness and permanence	Does not provide long-term effectiveness, adequacy, and reliability in maintaining	• Maintains protectiveness of the community and environment after the RAO is achieved.	 Maintains pro achieved.
		protection to human health and the environment.	The magnitude of residual risk remaining is minimal.	• The magnitud
		Residual risk to human health and the	• Provides adequate long-term measures for maintaining the protection of human health and the environment.	 Provides adeq health and the
		environment remain unchanged.	Long-term reliability of the technology and control measures are high.	Long-term rel
	Reduction of toxicity, mobility or volume	• Does not reduce the toxicity, mobility, or volume of contamination through treatment.	 Reduces the toxicity of COCs by physically segregating metal bullets and fragments from the soil (removes the sources of metals contamination). 	 Reduces the t fragments fro
	through treatment	• The type and quantity of remaining residuals is unchanged.	Reduces the mobility of COCs by stabilizing dispersed concentrations within the soil matrix.	Reduces the n soil matrix
			 Reduces the mobility of COCs by mitigating leaching and offsite transport implementing and maintaining an engineered, evapotranspiration soil cover and LUCs. 	Reduces the r permitted RCI
Implementability	Ranking	Low	Moderate	
	Technical Feasibility	• Does not require implementing technology, construction, or operation.	• Is an established technology with a moderate level of reliability and few delays during implementation.	 Is an establish during implen
		• Does not contribute to the efficient performance of any long-term remedial action of the contaminated soil onsite.	• Stabilization and construction of engineered covers are relatively common construction elements with moderate to high constructability and moderate follow-on operation and maintenance of the cover.	Removal, stab to moderate o
		No construction and follow-on operation and	Performance of the technology and methods have been well demonstrated.	Performance
		maintenance is required,Implementation is expected to be complete	• The technology will contribute to the efficient performance of any long-term remedial action of the contaminated soil onsite.	The technolog remedial action
		immediately once decisions documents are finalized.	• Implementation is expected to be complete in approximately 1-2 years with an useful design life of 30 years or more.	Implementation useful life.
		Implementation of the alternative will have no construction impacts on the local community.	• Potential impacts on the local community during construction operations is expected to be low.	Potential impa expected to b

e 3 – Removal Action with Stabilization and Offsite Disposal

High

ent and future human and ecological receptors from unacceptable 1) removing the contaminated soil at the site and 2) reducing the DCs in the soil through soil stabilization and landfill containment.

RAO

n chemical-, location- and action-specific ARARs

- ectiveness of the community and environment during on by removing onsite contamination from the site.
- ker protections by increasing the likelihood of worker exposure nentation of the alternative.
- ional environmental impacts by excavation, construction nd possible migration of contaminated sediments/dust.
- he RAO in less than 1 year.

otectiveness of the community and environment after the RAO is

- le of residual risk remaining is negligible.
- quate long-term measures for maintaining the protection of human e environment.
- iability of the technology is very high.
- coxicity of COCs by physically segregating metal bullets and om the soil (removes the sources of metals contamination).
- nobility of COCs by stabilizing dispersed concentrations within the

mobility of COCs by containing the contaminated soil within a RA Subtitle D landfill.

High

ned technology with a high level of reliability and minimal delays nentation.

bilization, and disposal are common construction methods with low constructability and minimal follow-on operation.

of the technology and methods have been well demonstrated.

gy will contribute to the efficient performance of any long-term on of the contaminated soil onsite.

on is expected to be complete in less than 1 year with an indefinite

acts on the local community during construction operations is be moderate due to the additional truck traffic required.

Table 5-1. Individual Ana	ysis of Removal	Action Alternatives
---------------------------	-----------------	---------------------

Evaluation CriterionRanking / SubcategoriesAlternative 1 - No Action		Alternative 1 – No Action	Alternative 2 – Stabilization and Engineered Cover with Land Use Controls and Long-Term Monitoring	Alternative 3 – Removal Action with Stabilization and Offsite Disposal	
		 Does not provide effectiveness and protectiveness, therefore environmental conditions will have no change on the alternative. If necessary, additional remedial action could be easily implemented. 	• Environmental conditions have the potential to impact the effectiveness and protectiveness of the alternative because the source of contamination, though stabilized and covered, will remain onsite. For example, heavy precipitation and/or flooding may erode the engineered cover. Therefore, the site would be moderately adaptable to changing conditions.	• Environmental conditions will not impact the effectiveness and protectiveness of the alternative because the source of contamination has been removed. Therefore, the site would be highly adaptable to changing conditions.	
			• Environmental and geographic conditions will have little effect on the set-up and construction phases.	• Environmental and geographic conditions will have little effect on the set-up and construction phases.	
			• If necessary, additional remedial action could be easily implemented.	• If necessary, additional remedial action could be very easily implemented.	
	Administrative Feasibility	 Requires coordination with USEPA, MDE, US Navy, and potentially other stakeholders. 	 Requires coordination with USEPA, MDE, US Navy, and potentially other stakeholders. 	Requires coordination with USEPA, MDE, US Navy, and potentially other stakeholders.	
		Does not require any permits and/or waivers.Statutory limits do not apply.	• May require a Storm Water Pollution Prevention Plan (SWPPP) and potentially other permits and/or waivers.	• May require a Storm Water Pollution Prevention Plan (SWPPP) and potentially other permits and/or waivers.	
		 Impacts on adjoining property will not occur. 	 The alternative will be not be USEPA funded, therefore no statutory limits apply. Impacts on adjoining property will be minimal. 	• The alternative will be not be USEPA funded, therefore no statutory limits apply.	
			 The site is owned by the US Navy which has full authority to impose LUCs on NAS Patuxent River property. 	 Impacts on adjoining property will be minimal. The site is owned by the US Navy which has full authority to impose LUCs on NAS Patuxent River property. 	
	Availability of Resources	 Does not require any equipment, materials, or technology. May requires specialized professionals and/or vendors, including lawyers, engineers, and consultants which are reasonably available. Does not required treatment, storage, and disposal (TSD) capacity. Funding is adequate 	• Requires common construction equipment and materials which are readily available.	Requires common construction equipment and materials which are readily available.	
			• Stabilization and soil cover technology is well-understood and available for full- scale implementation.	 Removal, stabilization, and landfilling technology is well-understood and available for full-scale implementation. 	
			Some site-specific stabilization treatability studies are recommended.	• Some site-specific stabilization treatability studies are recommended.	
			 Requires specialized professionals and/or vendors, including engineers, consultants, and specialized tradesman, which are reasonably available. 	 Requires specialized professionals and/or vendors, including engineers, consultants, and specialized tradesman, which are reasonably available. 	
			• Requires personnel, equipment, and materials for installation of LUC engineering controls and conducting LTM, including the maintenance of the engineered cap, LUC maintenance, routine review of site conditions, and monitoring of residual contamination.	• Several permitted RCRA D landfills are located nearby including in St. Mary's and Calvert Counties.	
			 Contaminated soil will be stabilized and disposed onsite, so TSD capacity is expected to be sufficient. 	Offsite TSD capacity is expected to be sufficient.	
			Funding is adequate	Funding is adequate	
Costs	Ranking	No Cost	Moderate	Moderate	
	Total Present Worth	\$0	\$1,690,006	\$1,600,000	
	Estimated Cost Range	\$0	\$1,376,684 to \$2,950,038	\$1,120,000 to \$2,400,000	
	Estimated Total Cost	\$O	\$1,966,692	\$1,600,000	
	Capital Costs	\$0	\$1,275,000	\$1,600,000	
	O&M Costs	\$O	\$601,692	\$0	
	Periodic Costs	\$0	\$90,000	\$0	

	Evaluation Criterion	Ranking / Subcategories Alternative 1 – No Action		Alternative 2 – Stabilization and Engineered Cover with Land Use Controls and Long-Term Monitoring	
	Sustainability	Ranking	High	Moderate	
		Greenhouse Gases (GHGs)	 None. No GHGs (carbon dioxide, methane, and nitrous oxide) are produced 	 470 metric tons of GHGs produced The majority of the GHG production was associated with material production (cement and soil) 	561 metric toThe majority
		Energy Usage	None. Does not require energy use	 3,001 million British Thermal Units (MMBTU) of energy used The majority of the energy use was associated with material production (cement and soil) 	4,503 MMBTThe majority
		Water Usage	None. Does not require water use	 10,000 gallons of water used 100% of the water use from this alternative was attributed to dust suppression 	 10,000 gallon 100% of the v
		Air Emissions	 None. No air emissions of criteria pollutants (nitrogen oxides, sulfur oxides, and particulate matter) are produced 	 1.01 metric tons of NOx emitted 1.82 metric tons of SOx emitted 0.389 metric tons of PM10 emitted Material production accounted for approximately 92% of the NOx, approximately 99% of the SOx, and 98% of the PM10 footprints. Equipment use and other activities contributed the remaining air pollutant footprints. 	 1.31 metric to 192 metric to 1.31 metric to Material procession Approximatel Residual hand air pollutant to
		Accident Risk / Worker Safety	 None. No additional accidental risk of worker injury or fatality 	 The risk of accidental fatality is 1 in 3,784 (0.000264) The risk of accidental injury is 1 in 2,299 (0.000435) The majority of accident risk is from onsite labor hours and personnel transportation. 	The risk of acThe risk of acThe risk of acThe majority

Table 5-1. Individual Analysis of Removal Action Alternatives

ve 3 – Removal Action with Stabilization and Offsite Disposal						
Moderate						
ons of GHGs produced						
of the GHG production was associated with cement production						
TU of energy used						
of the energy use was associated with cement production						
ns of water use						
water use from this alternative was attributed to dust suppression d						
cons of NOx emitted						
tons of SOx emitted						
cons of PM10 emitted						
duction accounted for approximately 65% of the NO _x , ely 88% of the SO _x , and 26% of the PM ₁₀ footprints.						
ding, equipment use, and other activities contributed the remaining footprints.						
ccidental fatality is 1 in 22 (0.0450)						
ccidental injury is 1 in 19 (0.0531)						
of accident risk is from equipment use and residual handling.						

Table 5-2. Comparative Analysis of Removal Action Alternatives

		Evaluation Criteria			
Alternative	Effectiveness	Implementation	Cost	Sustainability ¹	
Alternative 1 – No Action	Unacceptable	Low	No Cost	High	
Alternative 2 – Stabilization and Engineered Cover with Land Use Controls and Long- Term Monitoring	High	Moderate	Moderately Expensive and Most Expensive of These Three Alternatives	Moderate	
Alternative 3 – Removal with Stabilization and Offsite Disposal	High	High	Moderately Expensive	Moderate	

¹ Sustainability is considered but is not an evaluation criterion. However, the overall qualitative level of sustainability conformance/desirability for each alternative is presented to aid in decision-making.

SECTION 6

Recommended Removal Action Alternative

Alternative 1 does not protect human and ecological receptors from unacceptable exposure to human health COCs or ecological Step 3A COPCs in soil and does not meet the objective of the RAO.

Alternatives 2 and 3 both protect human health and the environment and are comparable in their implementability, technical feasibility, and short-term effectiveness. The removal action for either Alternatives 2 or 3 is expected to be complete in less than 1 year. Alternative 3 has a higher rating for long-term effectiveness and reduction of the toxicity and mobility of site contaminants through removal because no soil with concentrations more than the human health or ecological RGs would be left onsite. Both alternatives achieve the RAO. Administrative feasibility and the availability of resources are expected to be similar for Alternatives 2 and 3.

Alternative 3 is more implementable and technically feasible, and the removal action is expected to be completed in less than 1 year. Administrative feasibility and the availability of resources are expected to be similar for Alternatives 2 and 3. Alternatives 2 and 3 are comparable in cost over an estimated 30-year timeline. Alternative 3 requires an estimated \$11,000 less in initial capital costs and has approximately \$9,000 additional future costs. Alternative 2 requires approximately \$940,000 more than Alternative 3 in O&M and periodic costs for LUCs and Five-Year Reviews. Relative to each other, Alternative 2 is considered more sustainable than Alternative 3.

Relative to each other, Alternative 2 has a lower environmental footprint than Alternative 3 in all categories except water use (which has the same impact. Alternative 2 emits 41 percent less greenhouse gases, uses 14 percent less energy, produces between 25 to 60 percent less criteria air pollutants (nitrogen oxides, sulfur oxides, and particulate matter less than 10 microns in diameter), has a 38 percent lower risk of accidental fatality, and a 25 percent lower risk of accidental injury.

Based on the evaluation of the tradeoffs between the alternatives, the recommended removal alternative for the FSR is *Alternative 3: Removal Action with Stabilization and Offsite Disposal.*

Alternative 2 does not allow for unlimited use/unrestricted exposure and will require LUCs and LTM. Alternative 3 consists of excavating soil exceeding the human health and ecological RGs for lead and PAHs, stabilizing the impacted soil, and disposing of the stabilized soil mixture in an offsite landfill. Alternative 3 provides for unlimited use/unrestricted exposure and does not require inspection, maintenance, or monitoring activities to ensure long-term protectiveness of human health and the environment. The removal of soil with elevated concentrations exceeding the RGs would reduce the risks to human and ecological receptors to acceptable levels.

Navy, EPA, and MDE representatives were involved with developing the recommended alternative through the Tier I Partnering Team process and will have the opportunity to comment on the recommendation during the regulatory review period for this EE/CA. Appendix F provides a copy of regulatory correspondence from EPA and MDE. Following the regulatory review period, a 30-day public comment period will be held to assess public acceptance of the recommended alternative. If comments are received, a Responsive Summary addressing significant comments will be prepared as part of the Action Memorandum and included in the Administrative Record, along with the final EE/CA report.
References

Battelle. 2018. SiteWise® Version 3.2. NAVFAC Engineering Service Center. October.

CH2M HILL, Inc. (CH2M). 2005a. Final Feasibility Study for Sites 1 & 12, OU-2 (Area E), Naval Air Station Patuxent River, Patuxent River, Maryland. May.

CH2M. 2005b. Record of Decision for Sites 1 and 12, Operable Unit 2, Naval Air Station Patuxent River, Patuxent River, Maryland. September.

CH2M. 2013. Final Site Inspection Report for Site UXO-0002 Former Small Arms Ranges. Naval Air Station, Patuxent River, Maryland. April.

CH2M. 2023. Final Remedial Investigation Report for Site UXO-0002 Former Small Arms Ranges. OU-2 Former Skeet Ranges, Naval Air Station, Patuxent River, Maryland. June.

Chief of Naval Operations (CNO). 1999. Navy Policy for Conducting Ecological Risk Assessments. Memorandum from Office of the Chief of Naval Operations, Washington, D.C. to Commander, Naval Facilities Engineering Command. Ser N453E/9U595355. April.

Ecology and Environment. 1996. Draft Historic and Archaeological Resources Protection Plan (HARP) for Naval Air Station Patuxent River, Patuxent River, Maryland.

Fred C. Hart Associates, Inc. 1984. Initial Assessment Study, Naval Air Station, Patuxent River, Maryland.

General Physics Corporation (General Physics). 1996. *Final Report Site Characterization of Small Arms Ranges, Naval Air Station Patuxent River, St. Mary's County, Maryland*. June.

Interstate Technology and Regulatory Council (ITRC). 2003. *Characterization and Remediation of Soils at Closed Small Arms Firing Ranges*. January.

Naval Facilities Engineering Systems Command (NAVFAC). 2018. *Department of the Navy Environmental Restoration Program Manual*. February.

U.S. Environmental Protection Agency (EPA). 1988. *CERCLA Compliance with Other Laws Manual, Interim Final*. Office of Emergency and Remedial Response. USEPA/540/G-89/006. August.

EPA. 1993. *Guidance on Conducting Non-Time-Critical Removal Action Under CERCLA*. Office of Solid Waste and Emergency Response [OSWER]. USEPA/540-R-93-057. Publication 9360.0-32. August.

EPA. 2007a. *Guidance for Developing Ecological Soil Screening Levels*. Attachment 4-1. OSWER Directive 9285.7-55. April.

EPA. 2007b. *Ecological Soil Screening Levels for Polycyclic Aromatic Hydrocarbons (PAHs)*. OSWER Directive 9285.7-78. June.

White House Office of Management and Budget (White House OMB). 2018. Circular No. A-94 Appendix C, Revised November 2018. *Discount Rates for Cost-Effectiveness, Lease Purchase, and Related Analyses* – *Nominal Discount Rates: Nominal Interest Rates on Treasury Notes and Bonds of Specified Maturities*. https://www.whitehouse.gov/wp-content/uploads/2018/12/Appendix-C.pdf.

Figures

Particulate lead in soil; lead dust created during fragmentation of bullet deposited on soil; weathering of bullets/fragments resulting in release of lead into soil. PAHs from tar pitch used in clay targets.

Lead dust/residue released during firing and deposited on soil.

Figure 3 Typical Skeet Range Layout UXO-002, OU-2 Former Skeet Ranges Engineering Evaluation and Cost Analysis Report NAS Patuxent River St. Mary's County, Maryland

4

\DC1VS01\GISNAVYCLEAN\WASHINGTON\NASPATUXENTRIVER\MAPFILES\SITE UXO 002\9000NVP4 EECA\FIGURE 4 - OU2 LOCATION AND THEORETICAL SHOTFALL.MXD AM038876 4/19/2024 10:29:04 AM

Legend

--- Shoreline

- Access Road for 2007/2008 Area E Excavation
- Material Handling Area for 2007/2008 Area E Excavation
- Sites 1/12 OU-2 "Area E" Excavation Boundary
- Theoretical Shotfall Zone
- Z Theoretical Area with Maximum Density of Shotfall
- Theoretical Shotfall Zone
- C Theoretical Area with Maximum Density of Shotfall
 - Elevation Contour (5ft interval)

Figure 4 OU-2 Location and Theoretical Shotfall Zone Map UXO-002, OU-2 Former Skeet Ranges Engineering Evaluation and Cost Analysis Report NAS Patuxent River St. Mary's County, Maryland

\DC1VS01\GISNAVYCLEAN\WASHINGTON\NASPATUXENTRIVER\MAPFILES\SITE UX0_002\9000NVP4_EECA\FIGURE 5 - GW CONTOURS JUNE 2020.MXD_AM038876 4/19/2024 10:49:43 AM

Legend

- Monitoring Well Location
- Potentiometric contour, dashed where inferred
- -> Approximate Groundwater Flow Direction
- --- Shoreline
- Former Skeet Range Location

Notes:

Contours are approximate representations of the general spatial variation in groundwater elevations that existed at the time of measurements. Actual conditions may vary from point.

Figure 5 June 2020 Potentiometric Surface UXO-002, OU-2 Former Skeet Ranges Engineering Evaluation and Cost Analysis Report NAS Patuxent River St. Mary's County, Maryland

ch2m:

Aquatic Habita	ats
Features	Patuxent River; littoral zone along edge of Patuxent River; drainage channels
Potential Receptors	Plants (submerged); fish; benthic macroinvertebrates (worms, insects, crustaceans); birds (great blue beron
	and osprey); mammals (muskrat)

Terrestrial Habitats

Semi-Aquatic H	labitats		Features	All upland areas; edges of shrub/scrub land; open grassy areas
Features Potential Receptors	 Seasonal (ephemeral) drainages/pools; along the edge of the Patuxent River) Amphibians (frogs, salamanders); reptiles (spakes_turtles);birds 		Potential Receptors	Plants (grasses, shrubs, trees); invertebrates (earthworms, insects); reptiles (snakes, turtles); birds (American robin, mourning dove, red-tailed hawk); mammals (white-
Legend Sites 1/12 OU Former Skeet Theoretical Sh Theoretical Sh Shoreline	-2 "Area E" Excavation Boundary Range Location hotfall Zone, Northern Former Skeet Range hotfall Zone, Southern Former Skeet Range	0 100 2 2016 Aerial Phot	Engir Poo Feet ograph	footed mouse, short-tailed shrew) Figure 6 Former Skeet Range Conceptual Site Model UXO-002, OU-2 Former Skeet Ranges neering Evaluation and Cost Analysis Report NAS Patuxent River St. Mary's County, Maryland

PX-FSR-SO-21 12	2/15/2010 11	/15/2018			1			No.	
Benzo(a)anthracene	2,800	ND			P)	CFSR-SO-53	State of the		
Benzo(a)pyrene	3,300	ND		PX-FSR PX-FSR	-50-15	PX-FSR-S0-2/ PX-FSR-S0-35		Sect and	-
Benzo(b)fluoranthene	4,700	ND		PX-FSR-	SO-25	PX-FSR-SO-26 PX-FSR-SO-54			A A Law M
Indeno(1,2,3-cd)pyrene	620 J 2.500			PX-FSR-SO	-50	PX-FSR-SO-55	PX-FSR-S	320	504
				PX-FSR-SO-2 PX-FSR-SO-49 PX-FSR-SO-57		PX-FSR-SO-2	Benzo(a)anth Benzo(a)pyre Benzo(b)fluor Dibenz(a,h)ar	racene 62,000 ne 81,000 J ranthene 110,000 J nthracene 15,000	7,320 8,250 10,40 1,410
PX-FSR-SO-19 12	2/15/2010 11,	/15/2018	PX:FSR:SO	-56	PX-FSR-SO-36	PX-FSR-SO-28	mueno(1,2,3-		3730
Benzo(a)anthracene	7,900	2,580	PX-FSR PX-FSR-SO	-48		PX-FSR-S	0-13	PX-FSK-SO-29 Benzo(a)anthracene	11/13/2 18 90
Benzo(a)pyrene	8,200	2,760	PX-FSR-S0 PX-FSR-S0-47	0-20		PX-ESR-SO	34	Benzo(a)pyrene	23,20
Dibenz(a,h)anthracene	1,400 J	428 J	PX-FSR-SO-38-	6	9 4	PX-FSR-SO	0-12	Benzo(b)fluoranthene	30,80
Indeno(1,2,3-cd)pyrene	5,400	1,800 J	EV ESB SO 45				Vit	Dibenz(a,h)anthracen	e 3,150
PX-FSR-SO-43 11	1/14/2018		PX-FSR-SO-45 PX-FSR-SO-	39	ex 1	X	PX-FSR-SO-11	Indeno(1,2,3-cd)pyrer	ie 13,40
Benzo(a)anthracene	1,410		PX-FSR-SS16	•	XX		PX-FSR-SO-31	PX-FSR-SO-30	11/13/2
Benzo(a)pyrene	2,310		PX-FSR-SO-07 PX-FSR-SO-4	4	PX-FSR-SO-18	O-08	X-FSR-SO-09	Benzo(a)anthracene	52,40
Benzo(b)fluoranthene	3,110	P)	(FSR-SO-05			PX-FSR-SO-32	2 11/13/2018	Benzo(a)pyrene	69,20
Indeno(1,2,3-cd)pyrene	2,110		PX-FSR-SO-04 PX-FSR-SO-04 PX-F	-FSR-SO-42) SR-SO-03	PX-FSR-SO-41	Benzo(a)anthrace Benzo(a)pyrene Benzo(b)fluoranth	ne 11,000 14,400 ene 17,400	Benzo(b)fluoranthene Dibenz(a,h)anthracen Indeno(1,2,3-cd)pyrer	84,20 e 8,080 e 48,20
Lead	258		PX-FSR-SO-02 PX-FSR-SO-01 PX-FSR-SO-17 Lead Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Dibenz(a,h)anthracene	12/15/2010 231 J 660 980 1,400 200 J	PX-FSR-SO Benzo(a)anthra Benzo(a)pyrene Benzo(b)fluoran Dibenz(a,h)anth Indeno(1,2,3-cd	Dibenz(a,h)anthra Indeno(1,2,3-cd)p -33 11/14/2 cene 5,240 9,660 thene 11,80 tracene 1,820)pyrene 8,710	cene 2,340 J yrene 9,050 J 018 0 0 0 0 0		
	Rem e diat Goals	ion	Indeno(1,2,3-cd)pyrene	770	K-				-
Lead	200 mg/	kg	and Company and the	Carrier Contraction	//	and the state of the state			5
Benzo(a)anthracene	22,571 μg	/kg		The second		Notes:		is shown	
Benzo(a)pyrene	2,296 µg	/kg			The marker	Highest of nati	ve and field duplicate es results exceeding F	is shown. Iuman Health Soil remed	ation goals.
Benzo(b)fluoranthene	21,464 µg	/kg			teres States	Data are provide per kilogram (µg	ed in milligrams per kil J/kg) for PAHs.	ogram (mg/kg) for lead a	nd microgra
Dibenz(a,h)anthracene	2,296 µg	/kg				J = estimated va	alue ed	_	
Legend Surface Soil Sample Lo Clead PAH Lead and PAHs	οcation Analyz	ed For	and hope and			Lead and PA	H Proposed Su UXO-00	rface Soil Excavati)2, OU-2 Former S Remedial Investio	Figu on Boun keet Rar jation Re
 Access Road for 200 Former Skeet Range Proposed Excavatio Proposed Excavatio 	07/2008 Area e Location n Boundary - n Boundary -	E Excavat Lead (1 ft PAH (1 ft o	ion depth) depth)	0	N 75 150			NAS Pa St. Mary's Cour	nty, Mary

Appendix A Human Health Risk Assessment

Human Health Risk Assessment

A.1 Introduction

This appendix presents the human health risk assessment (HHRA) for Munitions Response Site (MRS) UXO-002 Former Small Arms Ranges, Operable Unit (OU)-2 Former Skeet Ranges, located at Naval Air Station (NAS) Patuxent River, St. Mary's County, Maryland. MRS UXO-002 consists of three Former Small Arms Ranges, including one Former Pistol Range (OU-1) and two Former Skeet Ranges (OU-2), which are located adjacent to each other in the northwest portion of the NAS. The HHRA was conducted to assess the nature, magnitude, and probability of potential harm to public health posed by exposure to site-related constituents in soil, sediment, and groundwater at MRS UXO-002, OU-2. The data evaluated in the HHRA are discussed in **Section 4** of the Remedial Investigation (RI) report (CH2M, 2023) and presented in **Appendix F** of the RI report. The HHRA incorporates the general methodology described in the following U.S. Environmental Protection Agency (EPA) documents:

- Risk Assessment Guidance for Superfund (RAGS), Volume I, Human Health Evaluation Manual (Part A) (EPA, 1989)
- RAGS: Volume I, Human Health Evaluation Manual (Part D, Standardized Planning, Reporting, and Review of Superfund Risk Assessments) (EPA, 2001)
- *RAGS, Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment)* (EPA, 2004)
- *RAGS, Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment)* (EPA, 2009a)
- EPA Region 3 Selecting Exposure Routes and Contaminants of Concern by Risk-Based Screening (EPA, 1993)
- Conducting Human Health Risk Assessments Under the Environmental Restoration Program (CNA, 2001)

There are differences between Navy and EPA guidance for conducting HHRAs; the most notable are related to the screening approaches used to identify chemicals of potential concern (COPCs). The Navy policy (Navy, 2008) allows for risk management decisions at earlier stages of the risk assessment (i.e., during any stage of the risk assessment process, including using background data to identify the COPCs). Once the COPCs are identified, both risk assessment approaches follow the EPA approach. The EPA approach does not involve making risk management decisions, including use of background data, until after the risks are calculated. For this RI, the EPA approach for conducting risk assessments was followed.

The HHRA consists of the following components:

- Data Evaluation and COPC Identification
- Exposure Assessment
- Toxicity Assessment
- Risk Characterization
- Uncertainty Assessment

The subsequent HHRA discussions were organized by the HHRA components above. Risk calculation spreadsheets for MRS UXO-002, OU-2 were prepared in accordance with *RAGS, Volume 1, Human*

Health Evaluation Manual, Part D (EPA, 2001) to identify COPCs and to estimate health risks associated with the COPCs. These spreadsheets are presented in **Attachment A-1**.

A.2 Data Evaluation and Constituent of Potential Concern Identification

The identification of COPCs includes data collection, evaluation, and screening steps. The data collection and evaluation steps involve gathering and reviewing the available site data and identifying a set of data for the risk assessment that meets project-specific data quality objectives. This data set is then further screened against concentrations that are protective of human health to reduce the data set to those constituents and media of potential concern.

A.2.1 Data Summary

All data used in the risk assessment were fully validated and are assumed to represent current conditions. Soil data collected in December 2010 and November 2018, sediment data collected in June 2019, and groundwater data collected in April and June 2020 were included in the HHRA. Trespasser/visitors were assumed to contact shallow sediment while wading in the water in Patuxent River; therefore, the sediment samples collected from the locations where surface water is relatively shallow (assumed to be around 3 feet deep) were used for the HHRA. Eleven sediment samples were evaluated in this HHRA. **Attachment A-2 (Table 1)** lists the samples evaluated in the HHRA and the analytes for each sample.

The data collected during site investigations were evaluated to assess their reliability for use in the quantitative risk assessments. The following criteria were used to assess data usability based on past discussions with EPA and the Navy:

- Data qualified with a J or L (estimated) were treated as unqualified detected concentrations.
- Data qualified with a B (blank contamination) were used in the risk assessment as if the results were non-detects, with the blank-related concentrations of each constituent used as the sample detection limit. For duplicate samples, the maximum concentration between the two samples was used as the sample concentration. If the analyte was only detected in one of the samples, the detected concentration was used as the sample concentration. If the analyte was not detected in either of the samples, the higher detection limit was used as the sample detection limit.

Details regarding sampling that was performed at UXO-002, OU-2 are provided in **Section 3** of the RI Report.

A.2.2 Selection of Constituents of Potential Concern

The detected constituents were screened following the procedures described below. The selection of COPCs was based on the criteria presented in the EPA Region 3 technical guidance manual (EPA, 1993) and *RAGS: Volume I, Human Health Evaluation Manual (Part D)* (EPA, 2001).

The maximum detected concentration of each constituent in each medium was compared to the criteria discussed below to select the COPCs. If the maximum detected concentration exceeded the criteria, the constituent was identified as a COPC. Constituents that were not detected in any of the samples or were detected at concentrations less than the criteria were not retained as COPCs. The following screening criteria were used in the HHRA, as presented in **Attachment A-1, Tables 2.1 through 2.6**:

• **Comparison with Risk-based Criteria for Soil:** Soil data were compared to the EPA residential soil Regional Screening Levels (RSLs) (EPA, 2021a). RSLs based on noncarcinogenic effects were based on a target hazard quotient (HQ) of 0.1 to account for exposure to multiple constituents with the same

target organ or target effect. RSLs based on carcinogenic effects were based on a target excess lifetime cancer risk (ELCR) of 1×10^{-6} . Lead concentrations in soil were compared to the EPA residential child soil screening value of 400 mg/kg (EPA, 2021a) and Maryland Department of the Environment (MDE) lead residential soil screening level of 200 mg/kg (2020).

- Comparison with Risk-based Criteria for Sediment: Sediment data were compared to 10 times the EPA residential soil RSLs based on a target HQ of 0.1 and a target ELCR of 1 x 10⁻⁶ (EPA, 2021a). This was done following EPA Region 3 guidance because exposure to sediment is expected to be significantly less than exposure to soil, and there are no human health screening levels for sediment. Lead concentrations in sediment were compared to the EPA residential child soil screening value of 400 mg/kg (EPA, 2021a) and MDE lead residential soil screening level of 200 mg/kg (2020).
- Comparison with Risk-based Criteria for Groundwater: Groundwater data were compared to the EPA RSLs for tap water (EPA, 2021a). RSLs that are based on noncarcinogenic effects were based on a target HQ of 0.1 to account for exposure to multiple constituents. RSLs based on carcinogenic effects were based on a target ELCR of 1x10⁻⁶. Lead concentrations in groundwater were compared to the federal action level of 15 µg/L (EPA, 2021a, 2021b). Although Maximum Contaminant Levels (MCLs) are presented in the COPC selection table (Attachment A-1, Table 2-4), MCLs were not used to identify the COPCs.
- Comparison with Risk-based Criteria for Vapor Intrusion from Groundwater to Indoor Air: Groundwater data were compared to residential and commercial screening levels for protection of indoor air based on vapor intrusion (VI) from groundwater, obtained from the EPA's Vapor Intrusion Screening Level (VISL) Calculator (EPA, 2021c). VISLs for noncarcinogenic effects are based on a target HQ of 0.1 to account for exposure to multiple constituents. VISLs for carcinogenic effects are based on a target ELCR of 1 x 10⁻⁶. A default groundwater temperature of 25 degrees Celsius was used to calculate the VISLs. If the maximum detected groundwater concentration was greater than the VISL, the constituent was identified as a COPC for the VI pathway. For the purpose of this evaluation, constituents with a Henry's Law constant greater than 1 x 10⁻⁵ atm-m³/mole or a vapor pressure greater than 1 millimeter Hg are considered volatile and evaluated for this exposure pathway.

Some of the constituents detected in soil at UXO-002, OU-2 are not included on the EPA RSL table because toxicity values are not available. When possible, appropriate surrogate constituents were selected and their RSLs were used as the screening values, as noted in the RAGS Part D **Table 2 series** in **Attachment A-1**. The uncertainties associated with this screening approach are discussed in **Section A.6**.

A.2.3 Constituents of Potential Concern

Attachment A-2 (Table 2) lists the constituents identified as COPCs for each medium, as summarized below.

Surface Soil (0 to 0.5 foot below ground surface [bgs]):

- Six polycyclic aromatic hydrocarbons (PAHs) (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene)
- One metal (lead)

Combined Surface and Subsurface Soil (0 to 1 foot bgs):

- Six PAHs (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(k)fluoranthene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene)
- One metal (lead)

Sediment:

• None

Groundwater (Tap Water):

- One PAH (benzo(a)anthracene)
- One metal (lead)
- No COPC for potential VI pathway

A.3 Exposure Assessment

Exposure refers to the potential contact of an individual with a constituent. The exposure assessment identifies pathways and routes by which an individual may be exposed to the COPCs, and estimates the magnitude, frequency, and duration of potential exposure. COPC intakes and associated health risks are only quantified for complete exposure pathways.

The components of exposure assessment include the following:

- Development of the conceptual site model for human health
- Calculation of exposure point concentrations (EPCs)
- Development of exposure assumptions for potentially complete exposure pathways
- Calculation of intake for COPCs using calculated EPCs and exposure assumptions

A.3.1 Conceptual Site Model for Human Health

The human health conceptual site model (CSM), showing potential human health exposure scenarios for current and potential future site use, is provided in **Attachment A-1**, **Table 1** and shown in **Attachment A-2** (**Figure 1**). The CSM provides a current understanding of the source(s) of contamination, release and transport mechanisms, current and potential future land use, and identifies potentially complete human exposure pathways for UXO-002, OU-2.

A.3.1.1 Potential Source Areas

The primary source of potential contamination at the Former Skeet Ranges are lead shot and clay target fragments, as presented in **Section 5** of the RI Report. Potential secondary sources of contamination are soil, sediment, water in excavation trench, and groundwater in the shotfall areas, which are potentially contaminated by constituents associated with lead shot (metals) and clay target fragments (PAHs associated with tar pitch typically used to bind clay targets used at skeet ranges). Because these constituents have a relatively high adsorption to solids, this potential transport of contamination to the liquid phase is expected to be minimal. At range sites, lead is typically considered the primary constituent of concern based on its prevalence and risk-driving potential (ITRC, 2003).

A.3.1.2 Release Mechanisms and Environmental Transport Media

A transport pathway describes the mechanisms whereby site-related constituents, once released, may be transported from a source area to exposure media (such as surface soil) where receptor exposures may occur. These transport pathways are presented in **Section 5** of the RI Report.

The mechanisms for transport of the COPCs from the source through environmental media and to potential receptors include:

- Direct deposit of lead shot and clay target fragments into soils in the upland vegetated areas and direct deposit of lead shot into sediment in the near shore areas of the Patuxent River
- Transport of contaminated soil particulates via overland surface runoff to downgradient terrestrial and aquatic areas

- Particulate emission and volatilizing chemicals emanating from soil to ambient air
- Transport of contaminated soil particulates via wind- or soil-disturbing activities to surrounding terrestrial areas
- Leaching of chemicals from surface and subsurface soils into groundwater via infiltrating precipitation, although this is expected to be negligible based on the relatively high adsorption to solids of potential contaminants
- Future household use of groundwater from wells, including volatilization of chemicals in groundwater from showering or household activities (groundwater is not currently used as a potable water supply)
- Volatilizing chemicals emanating from groundwater in an excavation trench during construction/excavation activities
- Volatilizing chemicals emanating from groundwater to indoor air in potential future residential and industrial buildings constructed at the site (there are currently no buildings at the site)

A.3.1.3 Characterization of Current and Future Land Use

The terrestrial area potentially affected by past use of the site is mostly grassy, wooded, or sandy and is adjacent to the Patuxent River. The site is in an area of the NAS with land use that is mostly undeveloped and in proximity to some mission-related operational facilities. Based on past site use, the media of potential concern for human exposure under the current land use is surface soil and sediment.

The terrestrial portion of the site is not fenced and access to the site is not restricted; therefore, potential current receptors include employees of the adjacent industrial facility and trespassers exposed to surface soil through incidental ingestion, dermal contact, and inhalation of particulates and volatile emissions. For persons with authorized access to the base, the beach area of the site is not officially designated as a restricted area, but it is also not located in a recreational area and generally is not accessed (the public beach area at NAS Patuxent River is located at Cedar Point, east of the site at the intersection of the Patuxent River and Chesapeake Bay).

Groundwater at the site is not currently used as a potable water supply; therefore, there are no current complete exposure pathways for groundwater. As volatile constituents are not detected in soil and groundwater sampling locations within 30 feet of current site buildings, there is no potential for VI from soil and groundwater into current site buildings and inhalation of indoor air by current site workers. Additionally, the target analytes for the site (lead and PAHs associated with tar pitch) are typically not considered highly volatile compounds.

In summary, the current site use exposure routes for quantitative evaluation are as follows:

- Industrial Worker: Incidental ingestion, dermal contact, and inhalation of COPCs in surface soil
- Trespasser/Visitor (adult and adolescent): incidental ingestion, dermal contact, and inhalation of COPCs in surface soil; Incidental ingestion and dermal contact of COPCs in sediment (however, since no COPC is identified in sediment, a quantitative evaluation of sediment exposure was not performed)

There are no plans for future site development; however, future site use is unknown. Potential future receptors who could be exposed to surface soil include the current receptors, and if the site is developed for future use, future residents, construction workers, and industrial workers. Exposure characteristics for future exposure to surface soil are considered the same as those for current exposure to surface soil at the Former Skeet Ranges could be a medium for future human exposure if intrusive work is performed in the future or if the site is converted to residential or industrial

use and development activities result in exposing subsurface soil. Exposure routes for subsurface soil are the same as those for surface soil.

Potential future receptors who could be exposed to groundwater include future residents and construction workers, if the site is developed for future use. Therefore, although unlikely, unrestricted land use (residential land use) was included to evaluate the most conservative future site use. Shallow groundwater from the site is not used as a current potable water supply, and it is unlikely that it will be used as a future water supply based on the characteristics of the surficial aquifer (that is, likely brackish and tidally influenced because of its proximity to the Patuxent River and thus is not potable). Furthermore, use of the surficial aquifer for potable supply is not permitted by the St. Mary's County Health Department, as outlined in a letter received from the St. Mary's County Health Department which states that "with the exception of Amish and Mennonite properties, the construction of shallow surface wells for drinking water has not been permitted in St. Mary's County since 1976" (Rose, 1998). However, it was conservatively assumed that groundwater from the surficial aquifer could be used as a future potable water supply and risks associated with residential potable use were evaluated in the HHRA.

Although the exposure pathways associated with potable use of groundwater are likely incomplete for future human receptor populations at the site, there is potential for VI of volatile constituents in groundwater into future buildings. Future residents and site workers could be exposed to the groundwater through VI into a building and subsequent inhalation of indoor air if a building is constructed at the site. Therefore, groundwater concentrations were screened against VISLs but no COPCs were identified.

Exposure to groundwater was also evaluated for construction workers as groundwater at the site ranges from approximately 4 to 10 feet bgs. Construction workers may be exposed to the shallow groundwater during excavation and construction activities.

To summarize, potential future exposure pathways are as follows:

- Resident (adult and child): Incidental ingestion, dermal contact, and inhalation of COPCs in combined surface and subsurface soil; Ingestion of and dermal contact with groundwater, and inhalation of volatile COPC from groundwater while showering (adult exposure only). Inhalation of volatile COPC in indoor air from VI from groundwater (however, since no COPC is identified in groundwater for the VI to indoor air pathway, no further evaluation of this exposure pathway was performed).
- Industrial worker: Incidental ingestion, dermal contact, and inhalation of COPCs in combined surface and subsurface soil; Inhalation of volatile COPC in indoor air from VI from groundwater (however, since no COPC is identified in groundwater for the VI to indoor air pathway, no further evaluation of this exposure pathway was performed).
- **Trespasser/Visitor (adult and adolescent):** Incidental ingestion, dermal contact, and inhalation of COPCs in combined surface and subsurface soil; Incidental ingestion and dermal contact of COPCs in sediment; however, because no COPC is identified in sediment, a quantitative evaluation of sediment exposure was not performed).
- **Construction worker:** Incidental ingestion, dermal contact, and inhalation of COPCs in combined surface and subsurface soil; Dermal contact with shallow groundwater and inhalation of volatile emissions from shallow groundwater in an open excavation.

Although the site is not expected to be developed for residential use, an unrestricted land use scenario (i.e., residential land use) was conservatively evaluated in the HHRA.

A.3.2 Calculation of Exposure Point Concentrations

Exposure is quantified by estimating the EPCs for COPCs in environmental media and COPC intake by the receptor. EPCs are the estimated COPC concentrations that a receptor may contact. The EPCs for UXO-002, OU-2 are provided in **Attachment A-1**, **Tables 3.1.RME through 3.5.RME**.

EPCs may be directly measured or estimated using environmental fate and transport models. Measured COPC concentrations in each exposure medium were used to estimate exposure through ingestion and dermal contact exposure routes. Fate and transport modeling was used to estimate COPC concentrations for the following inhalation exposure pathways:

- COPCs in ambient air resulting from particulate and volatile emissions from soil
- COPCs in water vapors from groundwater while showering
- COPCs in ambient air volatilized from groundwater in an open excavation

Concentrations in particulate emissions from soil were estimated using the PEF approach presented in EPA's Soil Screening Guidance (EPA, 2002). EPA's default PEF value of 1.36 x 10⁹ cubic meters per kilogram (m³/kg) was used in the calculation (SEPA, 2002). One COPC (benzo(a)anthracene) was identified as a volatile constituent; therefore, a PEF and a volatilization factor (VF) were used to estimate the potential ambient air concentrations for benzo(a)anthracene. The VF was calculated using site-specific input parameters, and the calculation is provided in **Attachment A-1, Table 3.2.RME** (surface soil) and **3.4.RME** (combined surface and subsurface soil).

One of the groundwater COPCs (benzo(a)anthracene) is a volatile constituent. The concentration of benzo(a)anthracene in water vapors while showering was estimated using the Foster and Chrostowski shower model (Foster and Chrostowski, 1987), as provided in **Attachment A-1**, **Table 7.4.RME Supplement B**. The concentration of benzo(a)anthracene in ambient air resulting from volatilization from shallow groundwater in an open excavation was calculated using a two-film volatilization model, as provided in **Attachment A-1**, **Table 7.10.RME Supplement B**.

ProUCL software Version 5.1.001 (EPA, 2016a) was used to calculate the EPCs. ProUCL was used to determine the distribution of the data and calculate upper confidence levels (UCLs) on the mean concentrations (typically 95% UCL) that were used as the EPCs. The recommendations outlined in the ProUCL software documentation (EPA, 2015) were followed to select the appropriate UCL on the mean concentration. The arithmetic mean concentration was used as the EPC for lead.

A.3.3 Estimation of Chemical Intakes for Individual Pathways

Chemical intake is the amount of the COPC entering the receptor's body. The quantification of exposure is based on an estimate of the chronic or subchronic daily intake (DI), the average amount of the COPC entering the receptor's body per day. Chemical intake estimates for the ingestion exposure pathway are expressed as follows:

DI =	<u>C × IR × EF × ED</u>
	BW × AT

Where:

DI	=	daily intake (milligrams per kilogram per day [mg/kg-day])
С	=	chemical concentration in exposure medium (mg/kg or micrograms per liter $[\mu g/L]$)
IR	=	ingestion rate (milligrams per day [mg/day] or liters per day [L/day])
EF	=	exposure frequency (days/year)
ED	=	exposure duration (years)
BW	=	body weight (kilograms [kg])
AT	=	averaging time (days)

The DI of COPCs in soil for the dermal contact pathway is calculated as follows:

$$DI = \frac{C \times SA \times SSAF \times DABS \times EF \times ED}{BW \times AT}$$

Where:

DI	=	daily intake (mg/kg-day)
С	=	chemical concentration in soil (mg/kg)
SA	=	skin surface area (square centimeter [cm ²])
SSAF	=	soil to skin adherence factor (milligram per square centimeter per day [mg/cm ² -day])
DABS	=	dermal absorption factor (unitless)
EF	=	exposure frequency (days/year)
ED	=	exposure duration (years)
BW	=	body weight (kg)
AT	=	averaging time (days)

The absorption fractions for soil were obtained from EPA guidance (2004), which recommends 13 percent for PAHs. The intake equation for the dermal exposure pathway is shown in the RAGS Part D **Table 4 series** in **Attachment A-1**.

The DI of COPCs in groundwater for the dermal contact pathway is calculated as follows:

Where:

DI = daily intake (mg/kg-day)

DAevent = Absorbed dose per event (mg/cm² per event)

- SA = surface area (cm²)
- EV = event frequency (events/day)
- EF = exposure frequency (days/year)
- ED = exposure duration (years)
- BW = body weight (kg)
- AT = averaging time (days)

Dermally absorbed dose per event (DAevent) is calculated based primarily on chemical concentration in groundwater (µg/L converted to mg/cm³), exposure time/duration per event (hours/event), and chemical-specific dermal permeability coefficient in water (cm/hour), in accordance with EPA's Dermal Exposure Assessment Guidance (EPA, 2004). The DAevent is calculated in **Attachment A-1, Tables 7.4.RME Supplement A, 7.5.RME Supplement A, and 7.10.RME Supplement A**.

Chemical exposure estimates for the inhalation pathway are expressed as follows:

$$EC = \frac{Ca \times ET \times EF \times ED \times CF}{AT}$$

Where:

EC = exposure concentration (milligrams per cubic meter $[mg/m^3]$)

- Ca = chemical concentration in air (mg/m^3)
- ET = exposure time (hours per day [hours/day])
- EF = exposure frequency (days/year)
- ED = exposure duration (years)
- CF = conversion factor (days/hour)
- AT = averaging time (days)

The intake and exposure equations require exposure parameters that are specific to each exposure pathway. Many of the exposure parameters used in the HHRA are default exposure values (e.g., body

weights, media intake levels, and exposure frequencies and duration) obtained from EPA guidance (EPA, 1989; 1991; 2002; 2004; 2011; 2014). Other assumptions (for example, for the trespasser and construction worker scenarios) require consideration of scenario-specific information and were determined using professional judgment. The HHRA assumed potential trespassers/visitors would be exposed to soil four hours per day, one day per week throughout the year (52 days/year). It was also assumed that adolescent trespassers/visitors are 9 to 18 years of age. Additionally, it was assumed a future worker would work on construction projects for 125 days per year for 1 year.

Attachment A-1, Tables 4.1.RME through 4.7.RME and Attachment A-1, Tables 4.1.CTE and 4.2.CTE present the exposure parameters that were used for the exposure scenarios evaluated in the HHRA. Reasonable maximum exposure (RME) scenario exposure parameters were compiled for all scenarios. Central tendency exposure (CTE) parameters were compiled only for scenarios where the RME noncarcinogenic hazard or carcinogenic risk for an environmental medium was greater than the noncarcinogenic hazard or carcinogenic risk target levels (cumulative noncarcinogenic hazard index [HI] > 1, and carcinogenic risk > 1×10^{-4}).

A.4 Toxicity Assessment

Toxicity assessment defines the relationship between the magnitude of exposure and possible severity of adverse effects and weighs the quality of available toxicological evidence. Toxicity assessment generally consists of two steps: hazard identification and dose-response assessment. Hazard identification is the process of determining the potential adverse effects from exposure to the chemical and the type of health effect involved. Dose-response assessment is the process of quantitatively evaluating the toxicity information and characterizing the relationship between the dose of the constituent administered or received and the incidence of adverse health effects in the exposed population. Toxicity criteria (for example, reference doses [RfDs], inhalation reference concentrations [RfCs], cancer slope factors [CSFs], and inhalation unit risk factors [IURs] are derived from the dose-response relationship.

EPA recommends that a tiered approach be used to obtain the toxicity values (such as RfDs and CSFs) that are used to estimate noncarcinogenic hazards and carcinogenic risks (EPA, 2003a). The hierarchy of toxicity value sources is the following:

- 1. Integrated Risk Information System (IRIS) (EPA, 2021d)
- 2. Provisional Peer-Reviewed Toxicity Values
- 3. Other EPA and non-EPA sources (as referenced in the RSL table [EPA, 2021a]), including the Agency for Toxic Substances and Disease Registry Minimum Risk Levels (MRLs), California Office of Environmental Health Hazard Assessment Chemical Database, the Health Effects Assessment Summary Tables (HEAST).

One COPC (benzo(a)pyrene) elicits both noncarcinogenic and carcinogenic effects and was evaluated for both toxicological endpoints. The health risks for noncarcinogenic and carcinogenic effects were estimated separately based on different toxicity values.

A.4.1 Toxicity Information for Noncarcinogenic Effects

Noncarcinogenic health effects include a variety of toxic effects on body systems, ranging from toxicity to the kidneys to central nervous system disorders. The toxicity of a chemical is assessed through a review of toxic effects noted in short-term (acute) animal studies, long-term (chronic) animal studies, and epidemiological investigations.

EPA (1989) defines the chronic RfD as a dose that is likely to be without appreciable risk of deleterious effects during a lifetime of exposure. A chronic RfC is defined as an estimate of a continuous inhalation

exposure to the human population that is likely to be without appreciable risk of deleterious effects during a lifetime (EPA, 2009a). Chronic RfDs and RfCs are specifically developed to be protective for long-term exposure to a compound (for example, 7 years to a lifetime), and consider uncertainty in the toxicological database and sensitive receptors. Subchronic RfDs and RfCs are applicable for exposures from two weeks to less than 7 years. Chronic toxicity values were available for one COPC (benzo(a)pyrene) and subchronic toxicity values were not available for any of the COPCs. Therefore, the chronic RfD and RfC for benzo(a)pyrene were used to estimate potential noncarcinogenic hazards for subchronic exposures to future construction workers. Additionally, the chronic RfD and RfC values were used to evaluate noncarcinogenic hazards to all other receptors evaluated in the HHRA.

In the development of RfDs and RfCs, all available studies examining the toxicity of a chemical following exposure are considered on the basis of scientific merit. The lowest dose level at which an observed toxic effect occurs is identified as the lowest observed adverse effect level (LOAEL), and the dose at which no effect is observed is identified as the no observed adverse effect level (NOAEL). Several uncertainty factors (UFs) may be applied to account for uncertainties such as limited data, extrapolation of data from animal studies to human exposures, or the use of subchronic studies to develop chronic criteria. These UFs generally range from 10 to 10,000 and are based on professional judgment. Consequently, there are varying degrees of uncertainty in the toxicity criteria, which range from 300 to 3,000 for the COPCs identified for this site.

Per EPA (2004) guidance, the oral RfDs are adjusted from administered dose (oral) to absorbed dose (dermal) to evaluate dermal toxicity. This adjustment is performed only when a chemical has a gastrointestinal absorption factor of less than 50 percent. PAHs selected as COPCs have a gastrointestinal absorption factor ranging from 58% to 89% (EPA, 2004); therefore, the oral RfD was used as the dermal RfD without adjustment, as shown in **Attachment A-1, Table 5.1**.

A.4.2 Toxicity Information for Carcinogenic Effects

Potential carcinogenic effects are quantified as CSFs that convert estimated exposures directly to incremental lifetime carcinogenic risks.

CSFs may be derived from the results of chronic animal bioassays, human epidemiological studies, or both. Animal bioassays are usually conducted at dose levels that are much higher than are likely to be encountered in the environment. This design detects possible adverse effects in the relatively small test populations used in the studies. The actual risks from exposure to a potential carcinogen are not likely to exceed the estimated risks.

As was done for the oral RfD for benzo(a)pyrene, the oral CSFs for the PAHs were used as the dermal CSFs, without adjustment, because the gastrointestinal absorption factors for the PAHs ranged from 58% to 89% (EPA, 2004). The oral and dermal CSFs are provided in **Attachment A-1**, **Table 6.1**.

A.4.3 Approach for Potential Mutagenic Effects

Consistent with the Cancer Guidelines and Supplemental Guidance (EPA, 2005a; 2005b), carcinogenic risks were estimated using age-dependent adjustment factors (ADAFs) for COPCs which act via a mutagenic mode of action (MMOA). The six carcinogenic PAHs were COPCs that are categorized as chemicals with a MMOA.

The calculation of cancer risk using ADAFs is presented in **Attachment A-1, Table 7.6.RME**. As chemicalspecific data are not available for the carcinogenic PAHs, default ADAFs, as included in the EPA Region 3 Memorandum, *Derivation of RBCs for Carcinogens that Act Via a Mutagenic Mode of Action and Incorporate Default ADAFs* (EPA, 2006), were used for the MMOA evaluation. The default ADAFs used to adjust the CSF and IUR are 10 for newborns to 2-year-olds, 3 for 2- to 6-year-olds, 3 for 6- to 12-yearolds, and 1 for 16- to 26-year-olds. The CSF (and IUR) were multiplied by the appropriate ADAF to derive the age-specific CSF (and IUR) for a receptor to calculate the total carcinogenic risk. Additionally, the exposure factors for children 0 to 2 years old and 2 to 6 years old were assumed to be the same as the parameters for a child 0 to 6 years old, except for the exposure durations, which were 2 years and 4 years, respectively. The exposure factors for the adult residential receptor were used for residents 6 to 16 years old and 16 to 26 years old, except for the exposure duration, which was 10 years for both age ranges. For the adolescent receptors, the exposure factors for the 9- to 16-year-old adolescents were used, and an ADAF of 3 (for 6- to 12-year-olds) was used to adjust the CSFs and IUR.

A.4.4 Constituents for Which EPA Toxicity Values Are Not Available

Detected chemicals that did not have RSLs were compared to RSLs for appropriate surrogate chemicals during the COPC selection process. Surrogates were selected based on previous recommendations from EPA Region 3. The surrogates are identified in the RAGS Part D **Table 2 series** in **Attachment A-1**.

Quantitative oral toxicity criteria are not available for lead. Lead is screened against 400 mg/kg (EPA, 2021a) and 200 mg/kg (MDE, 2020) in soil and 15 μ g/L in groundwater (EPA, 2021a; 2021b), based on residential exposure. Lead was identified as a COPC in surface soil, combined surface and subsurface soil, and groundwater at UXO-002, OU-2. A discussion of lead exposure analysis is included in **Section A.5.2**. Detected lead concentrations exceed the residential soil screening levels of 400 mg/kg and 200 mg/kg in two surface soil samples (504 mg/kg in the 0 to 0.5-foot bgs interval at SO-22 [PX-FSR-SS22-000H] and 621 mg/kg in the 0 to 0.5-foot bgs interval at SO-30 [PX-FSR-SS30-000H]) among 48 combined surface and subsurface samples analyzed for lead. Detected lead concentrations exceed the drinking water action level of 15 μ g/L in two groundwater samples collected at MW07 (60.2 and 29.5 μ g/L) among 12 groundwater samples analyzed for lead.

A.5 Risk Characterization

Risk characterization combines the results of the previous elements of the risk assessment to evaluate the potential health risks associated with exposure to the COPCs. The risk characterization is then used as an integral component in remedial decision making and selection of potential remedies or actions, as necessary.

A.5.1 Methods for Estimating Risks

Potential human health risks are discussed independently for carcinogenic and noncarcinogenic constituents because of the different toxicological endpoints, relevant exposure duration, and methods used to characterize effects. Exposure to a COPC may result in both noncarcinogenic and carcinogenic effects (that is, benzo(a)pyrene), and therefore, it was evaluated for both health endpoints. The methodology used to estimate noncarcinogenic hazards and carcinogenic risks are described below.

A.5.1.1 Noncarcinogenic Hazard Estimation

Noncarcinogenic hazard is estimated by comparing the calculated COPC exposures to RfDs or the exposure concentrations to RfCs. The calculated intake divided by the RfD, or exposure concentration divided by RfC, is equal to the HQ:

HQ = Intake/RfD or Exposure Concentration/RfC

The intake and RfD, or exposure concentration and RfC, represent the same exposure route (i.e., oral intakes are divided by oral RfDs, inhalation exposure concentrations are divided by inhalation RfCs). An HQ that exceeds 1 (i.e., intake exceeds the RfD) indicates that there is a potential for adverse health effects associated with exposure to that chemical.

To assess the potential for noncarcinogenic health effects posed by exposure to multiple COPCs, an HI approach is used (EPA, 1986). This approach assumes that noncarcinogenic hazards associated with exposure to more than one COPC are additive (HI = sum of the HQs). Synergistic or antagonistic

interactions between multiple COPCs are not considered. The HI may exceed 1 even if all of the individual HQs are less than 1. HIs may be added across exposure routes to estimate the total noncarcinogenic health effects to a receptor posed by exposure through multiple routes. Additionally, separate HIs are estimated for each target organ to assess whether the HI for a specific target organ is greater than 1. A target organ-specific HI greater than 1 indicates there is some potential for adverse noncarcinogenic health effects associated with exposure to the COPCs, possibility warranting remedial action. If the HI for each target organ does not exceed 1, noncarcinogenic hazards are not expected.

A.5.1.2 Carcinogenic Risk Estimation

The potential for carcinogenic effects due to exposure to site-related chemicals is evaluated by estimating the ELCR. ELCR is the incremental increase in the probability of developing cancer during one's lifetime in addition to developing cancer associated with exposure to all non-site-related sources of carcinogens. Carcinogenic risk is calculated by multiplying the intake by the CSF or multiplying the exposure concentration by the IUR.

ELCR = Intake × CSF or Exposure Concentration x IUR

The combined risk from exposure to multiple COPCs was evaluated by adding the risks from individual COPCs. Risks were also added across the exposure routes if an individual would be exposed through multiple routes.

As required under the National Contingency Plan (EPA, 1994b), "for known or suspected carcinogens, acceptable exposure levels are generally concentration levels that represent an excess upper-bound lifetime cancer risk to an individual of between 10⁻⁴ to 10⁻⁶ using information on the relationship between dose and response." When a cumulative carcinogenic risk to a receptor under the assumed RME exposure conditions exceeds 1 in 10 thousand (i.e., 10⁻⁴ ELCR), the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) generally requires remedial action to reduce risks at the site.

A.5.1.3 Approach for Lead

Lead was identified as a COPC for surface soil, combined surface and subsurface soil, and groundwater. Lead does not have available published toxicity factors, and therefore, potential risks associated with exposure to lead are evaluated differently than the other COPCs. The potential impacts from exposure to lead are evaluated by EPA based on blood-lead uptake using a physiologically based pharmacokinetic model called the Integrated Exposure Uptake Biokinetic (IEUBK) model. To estimate potential risks from exposure to lead in the HHRA, exposure to children was evaluated using the IEUBK, and nonresidential adult exposure to lead in soil was estimated using the adult lead methodology (ALM).

The potential risks associated with residential child exposures to lead were addressed using the IEUBK Lead Model for Windows, Version 2.0, Build 1 (EPA, 2021e). The IEUBK model provides predictions of the probability of elevated blood-lead levels for children from ages 0 to 7 years with potential exposure to lead in various media. This model addresses three components of environmental risk assessments: the multimedia nature of exposures to lead, lead pharmacokinetics, and significant variability in exposure and risk, through estimation of probability distributions of blood-lead levels for children exposed to similar environmental concentrations. The IEUBK model was used to evaluate potential risks associated with future residential child exposures to lead in surface and subsurface soil and groundwater. The arithmetic mean of the lead concentration in combined surface and subsurface soil (82.7 mg/kg in **Attachment A-1, Table 3.2.RME**) and groundwater (9.06 µg/L in **Attachment A-1, Table 3.5.RME**) was used with the default input parameters to represent site-specific exposures to lead. All the other default model input parameters were used in the model. Additionally, following current EPA guidance (OLEM Directive 9200.2-177, EPA, 2017b), the lead exposure was assessed for a child age range of 12 to 72 months. The IEUBK model results are expressed as the predicted geometric mean blood-lead level for children and the percent of the population potentially experiencing blood-lead levels above EPA's current recommended level of 10 micrograms per deciliter (μ g/dL) as described in the 1994 Office of Solid Waste and Emergency Response (OSWER) directive (EPA, 1994a). Additionally, the percent of the population potentially experiencing blood-lead levels above the reference level of 5 μ g/dL used by the Centers for Disease Control and Prevention (CDC) and MDE (2020) was estimated.

An interim approach to assessing risks associated with adult exposures to lead in soil was developed by EPA's Technical Review Workgroup for Lead (EPA, 2003b). This methodology is a variation of the IEUBK model used to evaluate lead exposures to children. The ALM is used to evaluate risks to the fetus of a nonresidential adult exposed to lead in soil. The model focuses on estimating fetal blood concentrations in women exposed to lead in soil (EPA, 2003b). Because the lead model is a probabilistic model, several of the EPA default parameters are based on central tendency (that is, average) values (EPA, 2003b). Therefore, the arithmetic mean lead concentration in surface soil or in combined surface and subsurface soil served as the input value for the soil concentration. Additionally, central tendency values for ingestion rate and exposure frequency were used in the ALM, as recommended in the ALM frequently asked questions (FAQs) accessed online via the EPA website

(http://www.epa.gov/superfund/lead/almfaq.htm). A central tendency soil ingestion rate of 50 mg/day was used for the industrial worker and trespasser/visitor, and a central tendency soil ingestion rate of 100 mg/day was used for the construction worker. An exposure frequency of 52 days/year was used for the trespasser/visitor, and an exposure frequency of 125 days/year was used for the construction worker. The CTE frequency of 219 days/year was used for the industrial worker. Following the the ALM FAQs accessed online via the EPA webite (http://www.epa.gov/superfund/lead/almfaq.htm), an averaging time of one-half of a year was used for the construction worker, as this was the expected duration of a construction/excavation project.

The ALM uses a geometric standard deviation (GSD) and baseline blood-lead level for U.S. women of child-bearing age. The GSD is a measure of the inter-individual variability in blood-lead concentrations in a population whose members are exposed to the same nonresidential environmental lead levels. The baseline blood-lead concentration is intended to represent the best estimate of a reasonable central value of blood-lead concentrations in women of child-bearing age that are not exposed to lead-contaminated nonresidential soil or dust at the site (EPA, 2003b). The GSD and baseline blood-lead concentrations from the most recent 6 years (2009-2014) of blood-lead data from the National Health and Nutrition Examination Survey, as recommended in OLEM Directive 9285.6-56 (EPA, 2017a), were used in the ALM model. The GSD and baseline blood-lead concentrations to provide a range of blood-lead concentrations.

ALM spreadsheets provided by EPA (2017c) were used to calculate blood-lead levels for the various scenarios. The model results are expressed as the predicted geometric mean blood-lead level for adults (that is, women of child-bearing age) and the corresponding 95th percentile fetal blood-lead concentrations and the percent of the population potentially experiencing concentrations above EPA's current recommended level of 10 μ g/dL as described in the 1994 OSWER directive (EPA, 1994a). Additionally, the percent of the population potentially experiencing blood-lead levels above the reference level of 5 μ g/dL used by the CDC and MDE (2020) was estimated.

A.5.2 Risk Assessment Results

The results of the risk estimates for MRS UXO-002, OU-2 are summarized below by receptor. Summaries of the RME and CTE risk results are presented in **Attachment G-2** (**Table 3** and **Table 4**, respectively). The RME risk calculations are presented in **Attachment A-1**, **Tables 7.1.RME through 7.10.RME**. **Attachment A-1**, **Tables 9.1.RME through 9.10.RME** summarize the RME hazards and risks to each receptor. The CTE risk calculations are presented in **Attachment A-1**, **Table 7.1.CTE**. **Attachment A-1**, **Table 9.1.CTE** summarizes the CTE hazards and risks to each receptor. The constituents of concern (COCs) are identified below for each receptor. The COCs are those COPCs that contribute an HI greater than 0.1 to a cumulative target

organ HI that exceeds 1, or a carcinogenic risk greater than 1×10^{-6} to a cumulative carcinogenic risk that exceeds 1×10^{-4} . Additionally, when the lead exposure analysis indicates that the percent of the population potentially experiencing blood-lead levels above 10 µg/dL (EPA, 1994) or 5 µg/dL (the reference level used by the CDC and MDE [2020]) exceeds 5 percent, lead is identified as a COC.

Factors such as nature of contamination source (i.e., site relatedness), data quality (i.e., laboratory contamination), and common pesticide use (unrelated to spills, improper storage disposal or use) are also considered when identifying COCs.

A.5.2.1 Current/Future Industrial Worker (Attachment A-1, Table 9.1.RME)

The HHRA assumed that a current/future industrial worker could be exposed to surface soil through incidental ingestion, dermal contact, and inhalation. The cumulative RME noncarcinogenic hazard (HI = 0.02) is less than the target HI of 1 and the cumulative RME carcinogenic risk (3×10^{-6}) is within the target risk range of 1×10^{-6} to 1×10^{-4} .

Lead was identified as a COPC in surface soil. Exposure to the average concentration of lead in surface soil was evaluated using the ALM. The model results are presented in **Attachment A-1, Tables 11.1a and 11.1b**. The probabilities that the fetal blood-lead levels exceed 10 μ g/dL are below 1 percent. The probabilities that the fetal blood-lead levels exceed 5 μ g/dL are all below 5. These values are less than the current blood-lead goal as described in the 1994 OSWER directive (EPA, 1994a) of no more than 5 percent of children (fetuses of exposed women) exceeding the 10 μ g/dL blood-lead level and the 5 μ g/dL blood-lead reference level used by the CDC and MDE (2020). Additionally, no detected concentration of lead in surface soil exceeds the current industrial soil RSL of 800 mg/kg (EPA, 2019).

A.5.2.2 Current/Future Adult Trespasser/Visitor (Attachment A-1, Table 9.2.RME)

The HHRA assumed that a current/future adult trespasser could be exposed to surface soil via incidental ingestion, dermal contact, and inhalation. The RME noncarcinogenic hazard (HI = 0.02) is less than the target HI of 1. The RME carcinogenic risk (ELCR = 2×10^{-6}) is within the regulatory target risk range of 1×10^{-6} to 1×10^{-4} .

Lead was identified as a COPC in surface soil. Exposure to the average concentration of lead in surface soil was evaluated using the ALM. The model results are presented in **Attachment A-1**, **Tables 11.2a and 11.2b**. The probabilities that the fetal blood-lead levels exceed 10 μ g/dL are below 0.5 percent. The probabilities that the fetal blood-lead levels exceed 5 μ g/dL are all below 5. These values are less than the current blood-lead goal as described in the 1994 OSWER directive (EPA, 1994a) of no more than 5 percent of children (fetuses of exposed women) exceeding the 10 μ g/dL blood-lead level and the 5 μ g/dL blood-lead reference level used by the CDC and MDE (2020).

A.5.2.3 Current/Future Adolescent Trespasser/Visitor (Attachment A-1, Table 9.3.RME)

The HHRA assumed that a current adolescent trespasser could be exposed to surface soil through incidental ingestion, dermal contact, and inhalation. The RME noncarcinogenic hazard (HI = 0.04) is less than the target HI of 1. The RME carcinogenic risk (ELCR = 7×10^{-6}) is within the regulatory target risk range of 1×10^{-6} to 1×10^{-4} . Lead was identified as a COPC for surface soil. Exposure to lead in surface soil was evaluated using the ALM for the adult trespasser/visitor, as presented in **Section A.5.2.2**.

A.5.2.4 Future Adult Resident (Noncarcinogenic Hazard, Attachment A-1, Table 9.4.RME)

The HHRA assumed that a future adult resident could be exposed to combined surface and subsurface soil through incidental ingestion, dermal contact, and inhalation and groundwater through ingestion, dermal contact, and inhalation during showering. Carcinogenic risks were not calculated for an adult resident because they were calculated for a lifetime child/adult resident following EPA guidance. The RME noncarcinogenic hazard (HI = 0.08) is less than the target HI of 1.

Lead was identified as a COPC for combined surface and subsurface soil. Exposure to lead in combined surface and subsurface soil was evaluated using the IEUBK for the child resident, as presented in **Section A.5.2.5**.

A.5.2.5 Future Child Resident (Noncarcinogenic Hazard, Attachment A-1, Table 9.5.RME)

The HHRA assumed that a future child resident could be exposed to combined surface and subsurface soil through incidental ingestion, dermal contact, and inhalation and groundwater through ingestion, dermal contact, and inhalation during showering. Carcinogenic risks were not calculated for a child resident because they were calculated for a lifetime child/adult resident in accordance with EPA guidance. The RME noncarcinogenic hazard (HI = 0.7) does not exceed the target HI of 1.

Lead was identified as a COPC in combined surface and subsurface soil. Exposure to the average concentration of lead in combined surface and subsurface soil was evaluated using the IEUBK model. The results of the model, along with the probability distribution plot are presented in **Attachment A-1 (Tables 11.3a and 11.3b; Figures 11.1a and 11.1b)**. The predicted geometric mean blood-lead level for a young child was 2.3 μ g/dL with 0.09 percent of the population potentially experiencing concentrations exceeding 10 μ g/dL and 4.9 % of children above a blood-lead level of 5 μ g/dL. This is below the current blood-lead goal as described in the 1994 OSWER directive (EPA, 1994a) of no more than 5 percent of children exceeding the 10 μ g/dL blood-lead level and the 5 μ g/dL blood-lead reference level used by the CDC and MDE (2020). Detected lead concentrations exceed the residential soil screening levels of 400 mg/kg and 200 mg/kg in two surface soil samples (504 mg/kg in 0 to 0.5-foot bgs at SO-22 [PX-FSR-SS22-000H] and 621 mg/kg in 0 to 0.5 foot bgs at SO-30 [PX-FSR-SS30-000H]) among 48 combined surface and subsurface samples analyzed for lead.

A.5.2.6 Future Lifetime Resident (Carcinogenic Risk, Attachment A-1, Tables 9.6.RME and 9.1.CTE)

The HHRA assumed that a future lifetime child/adult resident could be exposed to combined surface and subsurface soil through ingestion, dermal contact, and inhalation and groundwater through ingestion, dermal contact, and inhalation during showering. The cumulative RME carcinogenic risk (ELCR = 2×10^{-4}) exceeds the upper end of the acceptable risk range of 1×10^{-6} to 1×10^{-4} . The majority of the estimated carcinogenic risk originates from exposure to soil (ELCR = 2×10^{-4}), while the contribution from groundwater exposure is minimal (ELCR = 2×10^{-6}). The cumulative CTE carcinogenic risk (ELCR = 5×10^{-5}) is within the acceptable risk range of 1×10^{-6} to 1×10^{-4} .

A.5.2.7 Future Industrial Worker (Attachment A-1, Table 9.7.RME)

The HHRA assumed that a future industrial worker could be exposed to combined surface and subsurface soil through ingestion, dermal contact, and inhalation. The cumulative RME noncarcinogenic hazard (HI = 0.05) is less than the target HI of 1 and the cumulative RME carcinogenic risk (1×10^{-5}) is within the target risk range of 1×10^{-6} to 1×10^{-4} .

Lead was identified as a COPC in combined surface and subsurface soil. Exposure to the average concentration of lead in combined surface and subsurface soil was evaluated using the ALM. The model results are presented in **Attachment A-1**, **Tables 11.4a and 11.4b**. The probabilities that the fetal blood-lead levels exceed 10 μ g/dL are below 1 percent. The probabilities that the fetal blood-lead levels exceed 5 μ g/dL are all below 5. These values are less than the current blood-lead goal as described in the 1994 OSWER directive (EPA, 1994a) of no more than 5 percent of children (fetuses of exposed women) exceeding the 10 μ g/dL blood-lead level and the 5 μ g/dL blood-lead reference level used by the CDC and MDE (2020). Additionally, no detected concentration of lead in surface soil exceeds the current industrial soil RSL of 800 mg/kg (EPA, 2019).

A.5.2.8 Future Adult Trespasser/Visitor (Attachment A-1, Table 9.8.RME)

The HHRA assumed that a future adult trespasser could be exposed to combined surface and subsurface soil via incidental ingestion, dermal contact, and inhalation. The cumulative RME noncarcinogenic hazard (HI = 0.01) is less than the target HI of 1. The cumulative RME carcinogenic risk (ELCR = 2×10^{-6}) is within the target risk range of 1×10^{-6} to 1×10^{-4} .

Lead was identified as a COPC in combined surface and subsurface soil. Exposure to the average concentration of lead in combined surface and subsurface was evaluated using the ALM. The model results are presented in **Attachment A-1**, **Tables 11.5a and 11.5b**. The probabilities that the fetal blood-lead levels exceed 10 μ g/dL are below 0.5 percent. The probabilities that the fetal blood-lead levels exceed 5 μ g/dL are all below 5. These values are less than the current blood-lead goal as described in the 1994 OSWER directive (EPA, 1994a) of no more than 5 percent of children (fetuses of exposed women) exceeding the 10 μ g/dL blood-lead level and the 5 μ g/dL blood-lead reference level used by the CDC and MDE (2020).

A.5.2.9 Future Adolescent Trespasser/Visitor (Attachment A-1, Table 9.9.RME)

The HHRA assumed that a future adolescent trespasser could be exposed to combined surface and subsurface soil via incidental ingestion, dermal contact, and inhalation. The cumulative RME noncarcinogenic hazard (HI = 0.03) is less than the target HI of 1. The cumulative RME carcinogenic risk (ELCR = 5×10^{-6}) is within the target risk range of 1×10^{-6} to 1×10^{-4} . Lead was identified as a COPC for combined surface and subsurface soil. Exposure to lead in combined surface and subsurface soil was evaluated using the ALM for the adult trespasser/visitor, as presented in **Section A.5.2.8**.

A.5.2.10 Future Construction Worker (Attachment A-1, Table 9.10.RME)

The HHRA assumed that a future construction worker could be exposed to combined surface and subsurface soil through incidental ingestion, dermal contact, and inhalation and shallow groundwater in an excavation through dermal contact and inhalation of volatile emissions.

The cumulative RME noncarcinogenic hazard (HI = 0.08) is less than the target HI of 1. The cumulative RME carcinogenic risk (ELCR = 6×10^{-7}) is less than the target risk range of 1×10^{-6} to 1×10^{-4} .

Lead was identified as a COPC in combined surface and subsurface soil. Exposure to the average concentration of lead in combined surface and subsurface was evaluated using the ALM. The model results are presented in **Attachment A-1, Tables 11.6a and 11.6b**. The probabilities that the fetal blood-lead levels exceed 10 μ g/dL are below 1 percent. The probabilities that the fetal blood-lead levels exceed 5 μ g/dL are below 5 percent except when calculated using the GSDi and PbBo from the NHANES III (Phase 1&2), the oldest NHANES study. The values based on the NHANES III study are below the blood-lead goal as described in the 1994 OSWER Directive of no more than 5 percent of children (fetuses of exposed women) exceeding the 10 μ g/dL blood-lead level but above the 5 μ g/dL blood-lead reference level used by the CDC and MDE (2020). Since results using more recent NHANES study data are within acceptable levels, it is assumed there are no unacceptable risks associated with exposure to lead in soil by future construction workers.

A.6 Uncertainty Associated with Human Health Assessment

The risk measures used in site risk assessments are not fully probabilistic estimates of risk, but are conditional estimates given that a set of assumptions about exposure and toxicity are realized. Thus, it is important to specify the assumptions and uncertainties inherent in the risk assessment to place the risk estimates in proper perspective.

A.6.1 Uncertainty in Data Evaluation and COPC Selection

The sampling of site media focused on areas most likely impacted by past site activities. Therefore, the uncertainty associated with missing a contaminated location is expected to be minimal, as the investigation was focused to find the most likely and potentially highest areas of contamination. The uncertainty associated with the data analysis is minimal, and all of the data were validated prior to being used in the HHRA. A data quality evaluation was performed on all analytical data evaluated in the HHRA, as discussed in **Section 3** of the RI Report.

The general assumptions used in the COPC selection process were conservative to ensure that true COPCs were not eliminated from the quantitative risk assessment, and that the greatest possible risk was estimated. RSLs based on residential assumptions were used to select the COPCs for all exposure scenarios, including nonresidential scenarios.

A comparison of site concentrations to background concentrations was not used to select the COPCs in accordance with EPA Region 3 guidance. It is noted that Navy policy (2008) does allow such comparisons to be performed during the COPC screening process. Following the EPA approach may result in the inclusion of risks that may be associated with background conditions and are not necessarily site related. If warranted, a background comparison and discussion is performed for the constituents identified as risk drivers in the risk characterization and risk summary sections.

Chemical surrogates were used in the COPC screening step because screening levels were not available for some detected chemicals. Chemical surrogates were selected based on structural similarity, chemical activity, and mechanisms of toxicity. Use of a surrogate chemical relies on the toxicological principle that chemicals having similar structures will often share a similar mechanism of toxic action and produce similar types of toxic responses. This principle allows the toxicity of a chemical for which toxicity criteria are not available to be predicted based on the data that exist for a structurally similar compound. The types of structural similarities used to identify surrogates included functional groups, elements present in the compounds, bond order and types of bonds (for example, single or double bonds) between elements, and aromaticity. Based on these criteria, the following surrogates were used in the COPC screening:

Chemicals without Screening Levels	Surrogate Chemicals Used for Screening
Acenaphthylene	Acenaphthene
Benzo(g,h,i)perylene	Pyrene
Phenanthrene	Anthracene

Although chemical surrogates were selected using best professional judgment and are based on structural similarities between compounds, using chemical surrogates could underestimate or overestimate the toxicity of chemicals that lack published screening levels.

A.6.2 Uncertainty Associated with Exposure Assessment

Uncertainty in the exposure assessment was generally treated with conservative decision rules and assumptions, and therefore the uncertainty likely overestimates actual exposure to COPCs. Several exposure pathways evaluated by this HHRA, such as residential land use, are hypothetical and are not anticipated to occur in the future at MRS UXO-002, OU-2. Most of the exposure factors used for quantitation of exposure are generally conservative and reflect worst-case, or upper-bound, assumptions for the exposure.

In accordance with EPA guidance, an upper-bound estimate (i.e., the UCL of the arithmetic mean) was used as the EPC for each COPC, except for lead, in site media. This approach likely results in an

overestimation of actual exposure because receptors are assumed to be exposed to the UCL of the mean for the entire exposure duration.

The percent of a constituent absorbed through the skin is another source of uncertainty and is likely to be affected by many parameters, including soil loading, moisture content, organic content, pH, and presence of other constituents. The availability of a constituent for absorption through the skin depends on site-specific fate and transport properties of the chemical species available for eventual absorption. Constituent concentrations, specific properties of the constituent, and the kinetics of constituents being released from sediment all affect the amount of a constituent that is absorbed. These factors contribute to the uncertainty associated with dermal absorption estimates and make it difficult to quantify the number of certain constituents absorbed through the skin from soil, and even more for sediment.

A.6.3 Uncertainty Associated with Toxicity Assessment

Uncertainty associated with the noncarcinogenic toxicity factors is included in the toxicity tables for MRS UXO-002, OU-2 in **Attachment A-1**. Several UFs were applied to extrapolate dose levels from animal studies to humans. These UFs range between 300 and 3,000 for benzo(a)pyrene. Therefore, there is a varying degree of uncertainty in the noncarcinogenic toxicity criteria for benzo(a)pyrene based on the available scientific data. Additional uncertainty lies in the prediction of relative sensitivities of different species of animals and the applicability of animal data to humans. The noncarcinogenic toxicity rotations for benzo(a)pyrene are most likely an overestimate of actual toxicity. Noncancer toxicity values were not available for the other carcinogenic PAHs, which could lead to an underestimation of noncancer hazards, although the extent cannot be determined.

The uncertainty associated with CSFs is mostly due to the low dose extrapolation where carcinogenicity at low doses is assumed to be a linear response. This is a conservative assumption, which introduces a high uncertainty into CSFs that are extrapolated from this area of the dose-response curve. The CSFs are based on the assumption that there is no threshold level for carcinogenicity; however, most of the experimental studies indicate the existence of a threshold level. Therefore, CSFs developed by EPA represent upper-bound estimates. Carcinogenic risks generated in this assessment should be regarded as an upper-bound estimate on potential carcinogenic risks, rather than an accurate representation of carcinogenic risk. The true carcinogenic risk is likely to be less than the predicted value (EPA, 1989). Uncertainty is also associated with the application of the MMOA for carcinogenic PAHs; this may overestimate or underestimate risks. Additionally, generic ADAFs were used in the MMOA calculations, as no chemical-specific ADAFs are available for the COPCs.

A large degree of uncertainty is associated with the ELCR estimates for the dermal contact exposure. EPA (1989) states that "It is inappropriate to use the oral slope factor to evaluate the risks associated with dermal exposure to carcinogens such as benzo(a)pyrene, which cause skin cancer through a direct action at the point of application. These types of skin carcinogens and other locally active compounds must be evaluated separately from the above method." However, in this HHRA, cancer risks associated with dermal exposure to carcinogenic PAHs were evaluated based on the oral slope factor, following the methodology used in the development of the EPA RSLs (2019). According to EPA's toxicological review of benzo(a)pyrene (2017d), "Carcinogenicity studies in animals by the dermal route of exposure are available for benzo[a]pyrene and are supportive of the overall cancer hazard. A quantitative estimate of skin cancer risk from dermal exposure is not included in this assessment, as methodology for interspecies extrapolation of dermal toxicokinetics and carcinogenicity are still under development."

EPA released a memorandum (OLEM Directive 9200.2-167) in December 2016 (2016b) indicating that the current scientific literature on lead toxicology and epidemiology provides evidence that adverse health effects are associated with blood-lead levels less than the current target blood-lead level of 10 μ g/dL, and the current target blood-lead level is no longer considered health-protective; however, formal policy regarding the implementation of a target blood-lead level less than 10 μ g/dL has yet to be

released by the EPA. However, use of a revised target blood-lead level of 5 μ g/dL would not change the results of the HHRA. Exposures to the average lead concentration in soil would not result in exceedance of this revised blood-lead goal.

A large degree of uncertainty is associated with the oral-to-dermal adjustment factors (based on constituent-specific gastrointestinal absorption factors) used to transform the oral RfDs based on administered doses to dermal RfDs based on absorbed doses. It is not known if the adjustment factor results in an underestimate or overestimate of the actual toxicity associated with dermal exposure.

A.6.4 Uncertainty in Risk Characterization

The uncertainties identified in each component of risk assessment ultimately contribute to uncertainty in risk characterization. The addition of risks and HIs across pathways and constituents contributes to uncertainty based on chemical interactions such as additivity, synergism, potentiation, and susceptibility of exposed receptors.

The potential risk of adverse health effects is characterized based on potential exposures and potential dose-response relationships. An important additional source of uncertainty is introduced in this phase of the HHRA—the combination of upper-bound intake estimates with upper-bound toxicity values. Generally, the goal of a baseline risk assessment is to estimate an upper-bound, but reasonable, potential risk. HHRAs combine several upper-bound assumptions to estimate potential risk. The result of combining several such upper-bound assumptions is that the final estimate of potential exposure or potential risk is often conservative.

A.7 Human Health Risk Summary

The HHRA was conducted to evaluate the current and future potential human health risks associated with exposure to surface soil, combined surface and subsurface soil, sediment, and groundwater at MRS UXO-002, OU-2 based on potential but unlikely and conservative receptor populations and exposure scenarios assuming no additional remedial action is implemented at the site.

Attachment G-2 (Table 3 and Table 4) and Attachment A-1, Tables 9.1.RME through 9.10.RME and 9.1.CTE summarize the RME and CTE potential hazards and risks to each receptor scenario. The COCs are defined as those COPCs that contribute an HI greater than 0.1 to a cumulative target organ HI that exceeds 1 or a carcinogenic risk greater than 1×10^{-6} to a cumulative carcinogenic risk that exceeds 1×10^{-4} . Five COCs (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, dibenz(a,h)anthracene, and indeno(1,2,3-cd)pyrene) were identified in soil for the future residential exposure scenario evaluated at MRS UXO-002, OU-2. A summary of the HHRA results for each receptor scenario are summarized below:

- Industrial Worker
 - Current exposure to surface soil and future exposure to combined surface and subsurface soil.
 - HIs and ELCRs (RME) for both current and future exposures are within target regulatory levels.
- Trespasser/visitor receptors (adult and adolescent):
 - Current exposure to surface soil and sediment and future exposure to combined surface and subsurface soil and sediment.
 - HIs and ELCRs (RME) for both current and future exposures are within regulatory target levels.
- Resident (adult and child)
 - Future exposure to combined surface and subsurface soil and groundwater.

- HIs (RME) for future exposure are within target regulatory levels but the ELCR (RME) exceeds the regulatory carcinogenic risk target level.
- ELCR (CTE) for future exposure is within regulatory target levels.
- Construction Worker
 - Future exposure to combined surface and subsurface soil and shallow groundwater in an excavation.
 - HIs and ELCRs (RME) are within target regulatory levels.

A.8 References

Chief of Naval Operations (CNO). 2001. *Conducting Human Health Risk Assessments Under the Environmental Restoration Program*. Memorandum from Office of the Chief of Naval Operations, Washington, D.C. to Commander, Naval Facilities Engineering Command dated February 12.

CH2M HILL, Inc. (CH2M). 2023. Final Remedial Investigation Report for Site UXO-0002 Former Small Arms Ranges. OU-2 Former Skeet Ranges, Naval Air Station, Patuxent River, Maryland. June.

Department of the Navy (Navy). 2008. U.S. Navy Human Health Risk Assessment Guidance. December.

Maryland Department of the Environment (MDE). 2020. Fact Sheet: Lead (Pb) Soil Screening Update Effective July 1, 2020. What You Need to Know. July.

Rose. 1998. Correspondence dated December 1, 1998, from A. Rose, St. Mary's County Health Department, to R. Tarr, NAS Patuxent River.

U.S. Environmental Protection Agency (EPA). 1989. *Risk Assessment Guidance for Superfund, Volume I, Human Health Evaluation Manual (Part A), Interim Final*. Office of Solid Waste and Emergency Response. EPA/540/1-89/002. December.

EPA. 1991. *Human Health Evaluation Manual, Supplemental Guidance: Standard Default Exposure Factors.* Office of Solid Waste and Emergency Response. OSWER Directive No. 9285.6-03, March 25.

EPA. 1993. *Selecting Exposure Routes and Contaminants of Concern by Risk-Based Screening*. EPA/903/R-93-001. Region 3, Hazardous Waste Management Division, Office of Superfund Programs. January.

EPA. 1994a. *Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities,* OSWER Directive 9355.4-12

EPA. 1994b. National Oil and Hazardous Substances Contingency Plan. September 15.

EPA. 2001. *Risk Assessment Guidance for Superfund: Volume I, Human Health Evaluation Manual (Part D, Standardized Planning, Reporting, and Review of Superfund Risk Assessment) Final.* Publication 9285.7-47. Office Emergency and Remedial Response, U.S. Environmental Protection Agency, Washington, D.C. December.

EPA. 2002. Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. OSWER 9355.4-24.

EPA. 2003a. *Human Health Toxicity Values in Superfund Risk Assessments*. OSWER Directive 9285.7-53. December.

EPA. 2003b. Recommendations of the Technical Review Workgroup for Lead for an Approach to Assessing Risks Associated with Adult Exposure to Lead in Soil. Office of Solid Waste and Emergency Response. OSWER 9285.7-54. January.

EPA. 2004. *Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) (Final*). Office of Emergency and Remedial Response, Washington, D.C. EPA/540/R/99/005. July.

EPA. 2005a. Guidelines for Carcinogenic Risk Assessment. EPA/630/P-03/001F. March 2005.

EPA. 2005b. *Supplemental Guidance for Assessing Susceptibility from Early-Life Exposure to Carcinogens.* EPA/630/R-03/003F. March 2005.

EPA. 2006. Derivation of RBCs for Carcinogens that Act Via a Mutagenic Mode of Action and Incorporate Default ADAFs. Region 3. October.

EPA. 2009a. *Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part F, Supplemental Guidance for Inhalation Risk Assessment)*. Office of Superfund Remediation and Technology Innovation. EPA-540-R-07-002. OSWER 9285.7-82. January. EPA. 2010a. Regional Screening Levels for Chemicals at Superfund Sites. November.

EPA. 2009b. *2009 Edition of the Drinking Water Standards and Health Advisories* U.S. Environmental Protection Agency. Office of Water. EPA 816-F-09-004.

EPA 2011. Exposure Factors Handbook: 2011 Edition. National Center for Environmental Assessment, Washington, DC; EPA/600/R-09/052F. September.

EPA. 2014. Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors, OSWER Directive 9200.1-120. February.

EPA. 2015. ProUCL Version 5.1. User Guide: Statistical Software for Environmental Applications for Data Sets with and without Nondetect Observations. EPA/600/R-07/041. October

EPA. 2016a. ProUCL, Version 5.1.002. Prepared by Lockheed Martin Environmental Services. May.

EPA. 2016b. *Updated Scientific Considerations for Lead in Soil Cleanups*. OLEM Directive 9200.2-167. December.

EPA. 2017a. Update to the Adult Lead Methodology's Default Baseline Blood Lead Concentration and Geometric Standard Deviation Parameters. OLEM Directive 9285.6-56. May.

EPA. 2017b. *Recommendations for Default Age Range in the IEUBK Model*. OLEM Directive 9200.2-177. November.

EPA. 2017c. Spreadsheet for Calculation of PRGs: Appendix B of ALM document (MS Excel). Version date 06/14/2017. Accessed online:

http://www.epa.gov/superfund/health/contaminants/lead/products.htm#alm.

EPA. 2017d. *Toxicological Review of Benzo[a]pyrene [CASRN 50-32-8]*. EPA/635/R-17/003Fa. January.

EPA. 2021a. Regional Screening Levels for Chemicals at Superfund Sites. May.

EPA. 2021b. National Primary Drinking Water Regulations. Ground Water and Drinking Water. Accessed June 8, 2021. https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations.

EPA. 2021c. Vapor Intrusion Screening Level (VISL) Calculator. https://www.epa.gov/vaporintrusion/vapor-intrusion-screening-level-calculator. May.

EPA. 2021d. Integrated Risk Information System (IRIS) (Accessed May 2021).

EPA. 2021e. Integrated Exposure Uptake Biokinetic Model for Lead in Children, Windows version (IEUBK win v2.0 build 1). http://epa.gov/superfund/lead/products.htm#user.

Attachment A-1 RAGS Tables

TABLE 1 SELECTION OF EXPOSURE PATHWAYS UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

		l l	1	1					
Scenario	Medium	Exposure	Exposure	Receptor	Receptor	Exposure	On-Site/	Type of	Rationale for Selection or Exclusion
Timeframe		Medium	Point	Population	Age	Route	Off-Site	Analysis	of Exposure Pathway
		<u> </u>	ļ'	<u> </u>					
Current/Future	Surface Soil	Surface Soil	Surface Soil	Industrial Worker	Adult	Dermal	On-site	Quant	Industrial workers of the adjacent industrial facility may visit the site and
	(0-0.5 foot bgs)	l l	1	· · · · · · · · · · · · · · · · · · ·		Ingestion	On-site	Quant	contact surface soil on the site.
		l l	1	Trespasser/Visitor ¹	Adult	Dermal	On-site	Quant	
		l l	1	1		Ingestion	On-site	Quant	Trespassers/visitors may contact surface soil while on the site.
		l l	1	1 '	Adolescent	Dermal	On-site	Quant	
		!	ļ'	↓ '		Ingestion	On-site	Quant	
		Air	Emissions from Surface Soil	Industrial Worker	Adult	Inhalation	On-site	Quant	Industrial workers of the adjacent industrial facility may visit the site and inhale dust emanating from surface soil while on the site.
		Í I	1	Trespasser/Visitor ¹	Adult	Inhalation	On-site	Quant	Trespassers/visitors may inhale dust emanating from surface soil while on the
	l		í <u> </u>	1'	Adolescent	Inhalation	On-site	Quant	site.
	Sediment	Sediment	Sediment	Trespasser/Visitor ¹	Adult	Dermal	On-site	Quant	
		l l	1	1		Ingestion	On-site	Quant	T/visiters may contest adiment in Datuyont Divor
		l l	1	1	Adolescent	Dermal	On-site	Quant	I respassers/visitors may contact sediment in Patuxent River.
		l l	1	'		Ingestion	On-site	Quant	
Future	Soil*	Soil*	Soil*	Resident ²	Adult	Dermal	On-site	Quant	
	(0-1 foot bgs)	l l	1	'		Ingestion	On-site	Quant	The site is set surplated to be developed for regidential uses beyond the
		l l	1	1 '	Child	Dermal	On-site	Quant	residential scenario is included for a conservative evaluation of unrestricted
		l l	1	1		Ingestion	On-site	Quant	land use. Exposure to resident could occur if surface and subsurface soil are
		l l	1	1	Child/Adult	Dermal	On-site	Quant	mixed during excavation.
		l l	1	1		Ingestion	On-site	Quant	
		ļ		Industrial Worker	Adult	Dermal	On-site	Quant	If the site is developed for future industrial use, industrial workers may be exposed to surface and subsurface soil that are mixed during site
		ļ	1			Ingestion	On-site	Quant	development. Additionally, industrial workers of the adjacent industrial facility may visit the site and contact soil on the site.
		l l	1	Trespasser/Visitor ¹	Adult	Dermal	On-site	Quant	
		l l	1	1		Ingestion	On-site	Quant	Trespassers/visitors may contact soil while on the site.
		l l	1	1	Adolescent	Dermal	On-site	Quant	
		Í I	1	'		Ingestion	On-site	Quant	
		l l	1	Construction Worker	Adult	Ingestion	On-site	Quant	Construction workers could contact soil while performing construction.
		Ĺ!	<u> </u>	<u> </u>		Dermal	On-site	Quant	
		Air	Emissions from Soil*	Resident ²	Adult	Inhalation	On-site	Quant	The site is not expected to be developed for residential use; however, the
		l l	1	1	Child	Inhalation	On-site	Quant	residential scenario is included for a conservative evaluation of unrestricted
		l l	1	<u> </u>	Child/Adult	Inhalation	On-site	Quant	land use. Residents could innale dust emanating from soli.
				Industrial Worker	Adult	Inhalation	On-site	Quant	If the site is developed for future industrial use, industrial workers may inhale dust emanating from soil. Additionally, industrial workers of the adjacent industrial facility may visit the site and inhlale dust emanating from soil.
		ļ	1	Trespasser/Visitor ¹	Adult	Inhalation	On-site	Quant	Trespassers/visitors may inhale dust emanating from soil while on the site.
		l l	1	ļ'	Adolescent	Inhalation	On-site	Quant	
	ļ!	Cadimant	Į'	Construction Worker	Adult	Inhalation	On-site	Quant	Construction workers may inhale dust emanating from soil.
	Sediment	Sediment	Sediment	Trespasser/Visitor ¹	Adult	Dermal	On-site	Quant	
		l l	1	1		Ingestion	On-site	Quant	Trespassers/visitors may contact surface sediment in Patuxent River.
		l l	1	1	Adolescent	Dermal	On-site	Quant	
		1 1	1 '	1 '		Ingestion	On-site	Quant	

TABLE 1 SELECTION OF EXPOSURE PATHWAYS UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe	Medium	Exposure Medium	Exposure Point	Receptor Population	Receptor Age	Exposure Route	On-Site/ Off-Site	Type of Analysis	Rationale for Selection or Exclusion of Exposure Pathway
Future	Groundwater	Groundwater	Tap Water	Resident ²	Adult	Dermal	On-site	Quant	
(cont.)						Ingestion	On-site	Quant	Water supply wells are not installed in the surficial aquifer at NAS Patuxent
					Child	Dermal	On-site	Quant	River because such wells are not permitted [*] . Although the site is not expected to be developed for residential use, future potable use of groundwater in a
						Ingestion	On-site	Quant	residential scenario is included for a conservative evaluation of unrestricted
					Child/Adult	Dermal	On-site	Quant	land use.
						Ingestion	On-site	Quant	
			Water in Excavation Trench	Construction Worker	Adult	Dermal	On-site	Quant	Construction workers could be exposed to shallow groundwater during excavation activities.
						Ingestion	On-site	None	Incidental ingestion of groundwater by construction workers would be minimal during construction or excavation activities.
		Air	Water Vapors at Showerhead	Resident ²	Adult	Inhalation	On-site	Quant	Groundwater is not currently used on-site as a water supply and the site is not expected to be developed for residential use; however, the residential scenario is included for a conservative evaluation of unrestricted land use, and future adult residents could inhale VOCs from groundwater while showering.
					Child	Inhalation	On-site	None	Children not expected to shower, inhalation of VOCs from groundwater while bathing considered minimal. Therefore, inhalation of water vaces at
					Child/Adult	Inhalation	On-site	Quant	showerhead is evaluated for adult only.
			Vapor Intrusion to Indoor Air	Resident ²	Adult	Inhalation	On-site	Qual ³	The site is not expected to be developed for residential use; however, the
					Child	Inhalation	On-site	Qual ³	residential scenario, including inhalation of volatiles from groundwater and soil
					Child/Adult	Inhalation	On-site	Qual ³	
				Industrial Worker	Adult	Inhalation	On-site	Qual ³	The site is not expected to be developed in the future; however, inhalation of volatiles from groundwater and soil in indoor air is included for a conservative evaluation for potential industrial buildings.
			Volatiles in Air in Excavation Trench	Construction Worker	Adult	Inhalation	On-site	Quant	Construction workers could inhale VOCs from groundwater in air in an excavation during construction and excavation activities.

¹ Access to Naval Air Station (NAS) limited to base residents and workers.

² Noncarcinogenic hazard evaluated separately for adult and child residential receptors, combined lifetime carcinogenic risk evaluated on an age-adjusted basis for residential scenario.

³ A screening assessment of groundwater data was performed to identify COPCs for potential vapor intrusion (VI) pathway. However, a quantitative evaluation of health risks was not performed because no COPCs were identified for this exposure pathway.

* Combined surface and subsurface soil.

bgs = below ground surface

COPC = chemical of potential concern.

Quant: the pathway is quantitatively evaluated.

Qual = the pathway is qualitatively evaluated.

VOC = volatile organic compounds

TABLE 2.1 OCCURRENCE, DISTRIBUTION AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Current/Future Medium: Surface Soil (0-0.5 foot bgs) Exposure Medium: Surface Soil / Air

Exposure	CAS	Chemical	Minimum	Maximum	Units	Location	Detection	Range of	Concentration	Background	Screening	Potential	Potential	COPC	Rationale for
Point	Number		Concentration	Concentration		of Maximum	Frequency	Detection	Used for	Value	Toxicity Value	ARAR/TBC	ARAR/TBC	Flag	Contaminant
			Qualifier	Qualifier		Concentration		Limits	Screening			Value	Source		Deletion or Selection
			[1]	[2]					[2]	[3]	[4]				[5]
Surface Soil	90-12-0	1-Methylnaphthalene	9.0E-04 J	3.7E-01	mg/kg	PX-FSR-SS30-000H	14/39	0.0034 - 4.05	3.7E-01	N/A	1.8E+01 C	6.0E-03	SSL	NO	BSL
and Emissions	91-57-6	2-Methylnaphthalene	9.5E-04 J	4.1E-01	mg/kg	PX-FSR-SS30-000H	21/50	0.0034 - 4.05	4.1E-01	2.1E-01	2.4E+01 N	1.9E-02	SSL	NO	BSL
from Surface	83-32-9	Acenaphthene	2.3E-03 J	2.5E+00	mg/kg	PX-FSR-SS30-000H	26/50	0.0034 - 14	2.5E+00	4.1E-01	3.6E+02 N	5.5E-01	SSL	NO	BSL
Soil	208-96-8	Acenaphthylene	2.2E-03 J	5.5E-03	mg/kg	PX-FSR-SS54-000H	3/50	0.0034 - 4.05	5.5E-03	1.4E-01	3.6E+02 N	5.5E-01	SSL	NO	BSL
	120-12-7	Anthracene	4.0E-04 J	9.4E+00	mg/kg	PX-FSR-SS22-0001	48/50	0.0034 - 14	9.4E+00	1.1E+00	1.8E+03 N	5.8E+00	SSL	NO	BSL
	56-55-3	Benzo(a)anthracene	2.3E-03 J	6.2E+01	mg/kg	PX-FSR-SS22-0001	50/50	0.0034 - 14	6.2E+01	1.3E-01	1.1E+00 C	1.1E-02	SSL	YES	ASL
	50-32-8	Benzo(a)pyrene	1.9E-03 J	8.1E+01 J	mg/kg	PX-FSR-SS22-0001	50/50	0.0034 - 14	8.1E+01	1.7E-01	1.1E-01 C	2.9E-02	SSL	YES	ASL
	205-99-2	Benzo(b)fluoranthene	3.3E-03 J	1.1E+02 J	mg/kg	PX-FSR-SS22-0001	48/50	0.0034 - 14	1.1E+02	2.9E-01	1.1E+00 C	3.0E-01	SSL	YES	ASL
	191-24-2	Benzo(g,h,i)perylene	1.6E-03 J	5.1E+01	mg/kg	PX-FSR-SS22-0001	48/50	0.0034 - 14	5.1E+01	2.7E-01	1.8E+02 N	1.3E+00	SSL	NO	BSL
	207-08-9	Benzo(k)fluoranthene	1.1E-03 J	4.3E+01 J	mg/kg	PX-FSR-SS22-0001	49/50	0.0034 - 14	4.3E+01	1.9E-01	1.1E+01 C	2.9E+00	SSL	YES	ASL
	218-01-9	Chrysene	2.9E-03 J	7.6E+01 J	mg/kg	PX-FSR-SS22-0001	50/50	0.0034 - 14	7.6E+01	2.2E-01	1.1E+02 C	9.0E+00	SSL	NO	BSL
	53-70-3	Dibenz(a,h)anthracene	1.2E-03 J	1.5E+01	mg/kg	PX-FSR-SS22-0001	42/50	0.0034 - 14	1.5E+01	1.2E+00	1.1E-01 C	9.6E-02	SSL	YES	ASL
	206-44-0	Fluoranthene	4.6E-03	8.6E+01	mg/kg	PX-FSR-SS22-0001	50/50	0.0034 - 14	8.6E+01	2.5E-01	2.4E+02 N	8.9E+00	SSL	NO	BSL
	86-73-7	Fluorene	1.7E-03 J	1.5E+00	mg/kg	PX-FSR-SS30-000H	27/50	0.0034 - 4.05	1.5E+00	3.5E-01	2.4E+02 N	5.4E-01	SSL	NO	BSL
	193-39-5	Indeno(1,2,3-cd)pyrene	1.9E-03 J	5.9E+01	mg/kg	PX-FSR-SS22-0001	49/50	0.0034 - 14	5.9E+01	1.9E-01	1.1E+00 C	9.8E-01	SSL	YES	ASL
	91-20-3	Naphthalene	2.2E-03 J	1.3E+00	mg/kg	PX-FSR-SS30-000H	23/50	0.0034 - 4.05	1.3E+00	1.2E-01	2.0E+00 C	3.8E-04	SSL	NO	BSL
	85-01-8	Phenanthrene	2.2E-03 J	3.3E+01	mg/kg	PX-FSR-SS22-0001 : PX-FSR-SS30P-000H	50/50	0.0034 - 14	3.3E+01	1.7E-01	1.8E+03 N	5.8E+00	SSL	NO	BSL
	129-00-0	Pyrene	3.9E-03	7.8E+01	mg/kg	PX-FSR-SS22-0001	50/50	0.0034 - 14	7.8E+01	2.6E-01	1.8E+02 N	1.3E+00	SSL	NO	BSL
	7439-92-1	Lead	5.4E+00	6.2E+02	mg/kg	PX-FSR-SS30-000H	41/41	0.29 - 1.06	6.2E+02	4.4E+01	4.0E+02 / 2.0E+02 NL	N/A	N/A	YES	ASL

[1] Minimum/Maximum detected concentrations.

[2] Maximum concentration is used for screening.

[3] CH2M HILL. 2008. Final, Facility-Wide Background Study, Naval Air Station Patuxent River, St. Mary's County, Maryland. October. Surface soil background levels were selected.

 USEPA. May, 2021. Regional Screening Levels for Chemical Contaminants at Superfund Sites (RSLs). Residential soil RSLs (based on target risk of 10⁻⁶ for carcinogens and HQ of 0.1 for noncarcinogens). https://www.epa.gov/risk/regional-screening-levels-rsls. Accessed May 12, 2021.

RSL value for acenaphthene used as surrogate for acenaphthylene.

RSL value for pyrene used as surrogate for benzo(g,h,i)perylene.

RSL value for anthracene used as surrogate for phenanthrene.

The residential soil RSL of 400 mg/kg for lead is from the Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities, USEPA, July 14, 1994.

RCRA Corrective Action Facilities, USEPA, July 14, 1994.

The soil value of 200 mg/kg for lead is Maryland Department of Environment (MDE) residential soil screening level (2020).

[5] Rationale Codes

 Selection Reason:
 Above Screening Levels (ASL)

 Deletion Reason:
 Below Screening Level (BSL)

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered bgs = below ground surface C = Carcinogenic COPC = Chemical of Potential Concern HQ = Hazard Quotient J = Estimated Value mg/kg = milligram per kilogram N = Noncarcinogenic N/A = Not Available NL = lead residential soil RSL SSL = Soil Screening Levels from RSL table (based on HQ = 0.1)

TABLE 2.2 OCCURRENCE, DISTRIBUTION AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Future Medium: Soil* (0-1 foot bgs) Exposure Medium: Soil* / Air

Eveneure	CA8	Chemical	Minimum	Maximum	Linite	Location	Detection	Dongo of	Concentration	Beelveround	Corooning	Detential	Detential	CORC	Dationals for
Exposure	CA5	Chemical	Minimum O		Units	Location	Detection	Range of	Concentration	Dackground	Screening			CUPC	Rationale for
Point	Number		Concentration	Concentration		of Maximum	Frequency	Detection	Used for	value	I oxicity value	ARAR/TBC	ARAR/TBC	Flag	Contaminant
			Qualifier	Qualifier		Concentration		Limits	Screening			Value	Source		Deletion or Selection
			[1]	[2]					[2]	[3]	[4]				[5]
Soil* and	90-12-0	1-Methylnaphthalene	5.9E-04 J	3.7E-01	mg/kg	PX-FSR-SS30-000H	28/60	0.0034 - 4.05	3.7E-01	N/A	1.8E+01 C	6.0E-03	SSL	NO	BSL
Emissions from	91-57-6	2-Methylnaphthalene	7.0E-04 J	4.1E-01	mg/kg	PX-FSR-SS30-000H	35/71	0.0034 - 4.05	4.1E-01	2.1E-01	2.4E+01 N	1.9E-02	SSL	NO	BSL
Soil*	83-32-9	Acenaphthene	2.3E-03 J	2.5E+00	mg/kg	PX-FSR-SS30-000H	40/71	0.0034 - 14	2.5E+00	4.1E-01	3.6E+02 N	5.5E-01	SSL	NO	BSL
	208-96-8	Acenaphthylene	2.2E-03 J	5.5E-03	mg/kg	PX-FSR-SS54-000H	4/71	0.0034 - 4.05	5.5E-03	1.4E-01	3.6E+02 N	5.5E-01	SSL	NO	BSL
	120-12-7	Anthracene	4.0E-04 J	9.4E+00	mg/kg	PX-FSR-SS22-0001	68/71	0.0034 - 14	9.4E+00	1.1E+00	1.8E+03 N	5.8E+00	SSL	NO	BSL
	56-55-3	Benzo(a)anthracene	2.3E-03 J	6.2E+01	mg/kg	PX-FSR-SS22-0001	71/71	0.0034 - 14	6.2E+01	1.3E-01	1.1E+00 C	1.1E-02	SSL	YES	ASL
	50-32-8	Benzo(a)pyrene	1.9E-03 J	8.1E+01 J	mg/kg	PX-FSR-SS22-0001	71/71	0.0034 - 14	8.1E+01	1.7E-01	1.1E-01 C	2.9E-02	SSL	YES	ASL
	205-99-2	Benzo(b)fluoranthene	3.3E-03 J	1.1E+02 J	mg/kg	PX-FSR-SS22-0001	69/71	0.0034 - 14	1.1E+02	2.9E-01	1.1E+00 C	3.0E-01	SSL	YES	ASL
	191-24-2	Benzo(a.h.i)pervlene	1.6E-03 J	5.1E+01	ma/ka	PX-FSR-SS22-0001	69/71	0.0034 - 14	5.1E+01	2.7E-01	1.8E+02 N	1.3E+00	SSL	NO	BSL
	207-08-9	Benzo(k)fluoranthene	1 1E-03 J	4.3E+01 J	ma/ka	PX-FSR-SS22-0001	70/71	0 0034 - 14	4.3E+01	1.9E-01	1.1E+01 C	2.9E+00	SSI	YES	ASI
	218-01-0	Chrysene	2.95-03	7.6E+01	ma/ka	PX-ESP-SS22-0001	71/71	0.0034 - 14	7.6E+01	2 2E-01	1 1E+02	9.0E+00	991	NO	RSI
	210-01-9	Dihana(a h)anthrasana	2.9E-03 J	7.0E+01 J	ma/ka	PX-F3R-3322-0001	62/74	0.0034 - 14	1.02+01	1 25+00	1.1E+02 C	9.02+00	SOL	VEC	BOL
	53-70-3	Dibenz(a,n)anthracene	1.2E-03 J	1.52+01	mg/kg	PX-F3R-5322-0001	03/71	0.0034 - 14	1.52701	1.20700	1.1E-01 C	9.62-02	33L	TES	ASL
	206-44-0	Fluoranthene	4.6E-03	8.6E+01	mg/kg	PX-FSR-SS22-0001	71/71	0.0034 - 14	8.6E+01	2.5E-01	2.4E+02 N	8.9E+00	SSL	NO	BSL
	86-73-7	Fluorene	7.4E-04 J	1.5E+00	mg/kg	PX-FSR-SS30-000H	42/71	0.0034 - 4.05	1.5E+00	3.5E-01	2.4E+02 N	5.4E-01	SSL	NO	BSL
	193-39-5	Indeno(1,2,3-cd)pyrene	1.9E-03 J	5.9E+01	mg/kg	PX-FSR-SS22-0001	70/71	0.0034 - 14	5.9E+01	1.9E-01	1.1E+00 C	9.8E-01	SSL	YES	ASL
	91-20-3	Naphthalene	2.2E-03 J	1.3E+00	mg/kg	PX-FSR-SS30-000H	35/71	0.0034 - 4.05	1.3E+00	1.2E-01	2.0E+00 C	3.8E-04	SSL	NO	BSL
	85-01-8	Phenanthrene	2.2E-03 J	3.3E+01	mg/kg	PX-FSR-SS22-0001 : PX-FSR-SS30P-000H	71/71	0.0034 - 14	3.3E+01	1.7E-01	1.8E+03 N	5.8E+00	SSL	NO	BSL
	129-00-0	Pyrene	3.9E-03	7.8E+01	mg/kg	PX-FSR-SS22-0001	71/71	0.0034 - 14	7.8E+01	2.6E-01	1.8E+02 N	1.3E+00	SSL	NO	BSL
	7439-92-1	Lead	5.4E+00	6.2E+02	mg/kg	PX-FSR-SS30-000H	48/48	0.29 - 1.06	6.2E+02	4.4E+01	4.0E+02 / 2.0E+02 NL	N/A	N/A	YES	ASL

[1] Minimum/Maximum detected concentrations.

[2] Maximum concentration is used for screening.

[3] CH2M HILL. 2008. Final, Facility-Wide Background Study, Naval Air Station Patuxent River, St. Mary's County, Maryland. October. Surface soil background levels were selected.

USEPA. May, 2021. Regional Screening Levels for Chemical Contaminants at Superfund Sites (RSLs).
 Residential soil RSLs (based on target risk of 10⁻⁶ for carcinogens and HQ of 0.1 for noncarcinogens).
 https://www.epa.gov/risk/regional-screening-levels-rsls. Accessed May 12, 2021.

RSL value for acenaphthene used as surrogate for acenaphthylene.

RSL value for pyrene used as surrogate for benzo(g,h,i)perylene.

 $\ensuremath{\mathsf{RSL}}$ value for anthracene used as surrogate for phenanthrene.

The residential soil RSL of 400 mg/kg for lead is from the Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities, USEPA, July 14, 1994.

RCRA Corrective Action Facilities, USEPA, July 14, 1994.

The soil value of 200 mg/kg for lead is Maryland Department of Environment (MDE) residential soil screening level (2020).

[5] Rationale Codes

Selection Reason: Above Screening Levels (ASL) Deletion Reason: Below Screening Level (BSL) To Be Considered

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

bgs = below ground surface C = Carcinogenic COPC = Chemical of Potential Concern HQ = Hazard Quotient J = Estimated Value mg/kg = milligram per kilogram N = Noncarcinogenic N/A = Not Available NL = lead residential soil RSL SSL = Soil Screening Levels from RSL table (based on HQ = 0.1)

* Combined surface and subsurface soil.
TABLE 2.3 OCCURRENCE, DISTRIBUTION AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Current/Future Medium: Sediment Exposure Medium: Sediment

Exposure Point	CAS Number	Chemical	Minimum Concentration Qualifier	Maximum Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration Used for Screening	Background Value	Screening Toxicity Value	Potential ARAR/TBC Value	Potential ARAR/TBC Source	COPC Flag	Rationale for Contaminant Deletion or Selection
	1		[1]	[2]					[2]	[3]	[4]				[5]
Sediment	120-12-7 56-55-3	Anthracene Benzo(a)anthracene	4.0E-03 J 5.3E-03	4.5E-03 1.1E-02	mg/kg mg/kg	PX-FSR-SD33-000H PX-FSR-SD47-000H	2/6 4/6	0.00194 - 0.00205 0.00194 - 0.00205	4.5E-03 1.1E-02	N/A N/A	1.8E+04 N 1.1E+01 C	N/A N/A	N/A N/A	NO NO	BSL BSL
	50-32-8	Benzo(a)pyrene	6.8E-03	1.2E-02	ma/ka	PX-FSR-SD47-000H	4/6	0.00194 - 0.00205	1.2E-02	N/A	1.1E+00 C	N/A	N/A	NO	BSL
	205-99-2	Benzo(h)fluoranthene	6.7E-03	1 1E-02	ma/ka	PX-ESR-SD47-000H	4/6	0.00194 - 0.00205	1 1E-02	N/A	1 1E+01 C	N/A	N/A	NO	BSI
	191-24-2	Benzo(g h i)pervlene	5.1E-03	1.1E 02	ma/ka	PX-ESR-SD10-000H	4/6	0.00194 - 0.00205	1.1E 02	N/A	1.8E+03 N	N/A	N/A	NO	BSI
	207-08-9	Benzo(k)fluoranthene	5.3E-03	8.7E-03	mg/kg	PX-ESR-SD47-000H	4/6	0.00194 - 0.00205	8.7E-03	N/A	1.0E+00 N	N/A	N/A	NO	BSL
	219 01 0	Christon	5.5E-03	1.2E.02	mg/kg		4/6	0.00104 0.00205	1.2E.02	N/A	1.1E+02 C	N/A	N/A	NO	BOL
	210-01-9		0.0E-03	1.22-02	iiig/kg	PX-F3R-3D47-00011	4/0	0.00194 - 0.00203	1.2E-02	IN/75	1.1E+03 C			NO	DOL
	53-70-3	Dibenz(a,n)anthracene	6.8E-03	1.4E-02	mg/kg	PX-FSR-SD10-000H	3/6	0.00194 - 0.00205	1.4E-02	N/A	1.1E+00 C	N/A	N/A	NO	BSL
	206-44-0	Fluoranthene	3.7E-03 J	2.1E-02	mg/kg	PX-FSR-SD33-000H	3/6	0.00194 - 0.00205	2.1E-02	N/A	2.4E+03 N	N/A	N/A	NO	BSL
	86-73-7	Fluorene	1.8E-03 J	1.8E-03 J	mg/kg	PX-FSR-SD47-000H	1/6	0.00194 - 0.00205	1.8E-03	N/A	2.4E+03 N	N/A	N/A	NO	BSL
	193-39-5	Indeno(1,2,3-cd)pyrene	4.6E-03	1.4E-02	mg/kg	PX-FSR-SD10-000H	4/6	0.00194 - 0.00205	1.4E-02	N/A	1.1E+01 C	N/A	N/A	NO	BSL
	85-01-8	Phenanthrene	1.2E-02	1.2E-02	mg/kg	PX-FSR-SD33-000H	2/6	0.00194 - 0.00205	1.2E-02	N/A	1.8E+04 N	N/A	N/A	NO	BSL
	129-00-0	Pyrene	3.1E-03 J	1.5E-02	mg/kg	PX-FSR-SD33-000H	3/6	0.00194 - 0.00205	1.5E-02	N/A	1.8E+03 N	N/A	N/A	NO	BSL
	7439-92-1	Lead	1.3E+00 J	3.3E+00 J	mg/kg	PX-FSR-SD47-000H	11/11	0.2 - 0.25	3.3E+00	N/A	4.0E+02 / 2.0E+02 NL	N/A	N/A	NO	BSL

[1]	Minimum/Maximum detected concentrations.	ARAR/TBC = Applicable or Relevant and
[2]	Maximum concentration is used for screening.	To Be Considered
[3]	Background values not available.	C = Carcinogenic
[4]	USEPA. May, 2021. Regional Screening Levels for Chemical Contaminants at Superfund Sites (RSLs).	COPC = Chemical of Potential Concern
	Residential soil RSLs were multiplied by 10 for exposures to sediment. Concentrations based on non-carcinogenic health effects are based on HQ=0.1	HQ = Hazard Quotient
	https://www.epa.gov/risk/regional-screening-levels-rsls.	J = Estimated Value
	RSL value for pyrene used as surrogate for benzo(g,h,i)perylene.	mg/kg = milligram per kilogram
	RSL value for anthracene used as surrogate for phenanthrene.	N = Noncarcinogenic
	The residential soil RSL of 400 mg/kg for lead is from the Revised Interim Soil Lead Guidance for CERCLA Sites and RCRA Corrective Action Facilities, USEPA, July 14,	1994. N/A = Not Available
	RCRA Corrective Action Facilities, USEPA, July 14, 1994.	NL = lead residential soil RSL
	The soil value of 200 mg/kg for lead is Maryland Department of Environment (MDE) residential soil screening level (2020).	
[5]	Rationale Codes	

Selection Reason: Above Screening Levels (ASL) Deletion Reason: Below Screening Level (BSL)

and Appropriate Requirement/

TABLE 2.4 OCCURRENCE, DISTRIBUTION AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Future
Medium: Groundwater
Exposure Medium: Groundwater / Air

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration [2] Used for Screening	Background [3] Value	Screening [4] Toxicity Value	Potential ARAR/TBC Value	Potential ARAR/TBC Source	COPC Flag	Rationale for [5] Contaminant Deletion or Selection
Ten Minten (Demon (c) and have a set	0.75.00	245.00			0/40	0.05 0.050	2 45 02	N/A		N /A		VEO	4.01
rap water /	30-33-3	Benzo(a)anthracene	2./E-U2 J	3.1E-02 J	µg/i	PX-F5R-GW03-0420	2/12	0.05 - 0.052	3.1E-02	N/A	3.0E-02 C	N/A		TES	ASL
Water Vapors at	205-99-2	Benzo(b)fluoranthene	3.8E-02 J	3.8E-02 J	µg/l	PX-FSR-GW03-0620	1/12	0.05 - 0.052	3.8E-02	N/A	2.5E-01 C	N/A		NO	BSL
Showerhead	191-24-2	Benzo(g,h,i)perylene	2.6E-02 J	2.6E-02 J	µg/l	PX-FSR-GW03-0620	1/12	0.05 - 0.052	2.6E-02	N/A	1.2E+01 N	N/A		NO	BSL
and	218-01-9	Chrysene	3.1E-02 J	3.2E-02 J	µg/l	PX-FSR-GW03-0420	2/12	0.05 - 0.052	3.2E-02	N/A	2.5E+01 C	N/A		NO	BSL
Water in	206-44-0	Fluoranthene	5.9E-02 J	1.2E-01	µg/l	PX-FSR-GW03-0420	2/12	0.05 - 0.052	1.2E-01	N/A	8.0E+01 N	N/A		NO	BSL
Excavation Trench /	193-39-5	Indeno(1,2,3-cd)pyrene	2.6E-02 J	2.6E-02 J	µg/l	PX-FSR-GW03-0620	1/12	0.05 - 0.052	2.6E-02	N/A	2.5E-01 C	N/A		NO	BSL
Volatiles in Air in	85-01-8	Phenanthrene	9.0E-02 J	9.0E-02 J	µg/l	PX-FSR-GW03-0420	1/12	0.05 - 0.052	9.0E-02	N/A	1.8E+02 N	N/A		NO	BSL
Excavation Trench	129-00-0	Pyrene	5.0E-02 J	9.2E-02 J	µg/l	PX-FSR-GW03-0420	2/12	0.05 - 0.052	9.2E-02	N/A	1.2E+01 N	N/A		NO	BSL
	7439-92-1	Lead	2.8E-01 J	6.0E+01	µg/l	PX-FSR-GW07-0420	9/12	0.5 - 0.5	6.0E+01	N/A	1.5E+01 AL	1.5E+01	AL	YES	ASL

- [1] Minimum/Maximum detected concentrations.
- [2] Maximum concentration is used for screening.
- [3] Background values not available.
 - USEPA. May, 2021. Regional Screening Levels for Chemical Contaminants at Superfund Sites (RSLs). Tap water RSLs (based on target risk of 10⁻⁶ for carcinogens and HQ of 0.1 for noncarcinogens).
 - https://www.epa.gov/risk/regional-screening-levels-rsls. Accessed May 12, 2021.
 - RSL value for pyrene used as surrogate for benzo(g,h,i)perylene.
 - RSL value for anthracene used as surrogate for phenanthrene.

[5] Rationale Codes

[4]

Selection Reason: Deletion Reason: Above Screening Levels (ASL) Below Screening Level (BSL)

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered

- J = Estimated Value
- C = Carcinogenic
- N = Noncarcinogenic
- AL = EPA Action Level in water
- µg/l = microgram per liter

TABLE 2.5 OCCURRENCE, DISTRIBUTION AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Future
Medium: Groundwater
Exposure Medium: Air (Residential)

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration [2] Used for Screening	Background [3] Value	Screening [4] Toxicity Value	Potential ARAR/TBC Value	Potential ARAR/TBC Source	COPC Flag	Rationale for [5] Contaminant Deletion or Selection
Vapor Intrusion to	56-55-3	Benzo(a)anthracene	2.7E-02 J	3.1E-02 J	µg/l	PX-FSR-GW03-0420	2/12	0.05 - 0.052	3.1E-02	N/A	3.4E+01 C	N/A		NO	BSL
Indoor Air	129-00-0	Pyrene	5.0E-02 J	9.2E-02 J	µg/l	PX-FSR-GW03-0420	2/12	0.05 - 0.052	9.2E-02	N/A	N/A	N/A		NO	NTX

[1] Minimum/Maximum detected concentrations.

[2] Maximum concentration is used for screening.

[3] Background values not available.

[4] U.S. Environmental Protection Agency (USEPA). Vapor Intrusion Screening Level (VISL) Calculator. Accessed on May 20, 2021.

Target groundwater concentrations for residential scenario (based on target risk of 10⁻⁶ for carcinogens and HQ of 0.1 for noncarcinogens, default groundwater temperature of 25 °C).

[Online]. https://www.epa.gov/vaporintrusion/vapor-intrusion-screening-level-calculator

[5] Rationale Codes

Selection Reason: Deletion Reason:

Below Screening Level (BSL) No Toxicity Information (NTX)

Above Screening Levels (ASL)

COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered J = Estimated Value

C = Carcinogenic

µg/l = microgram per liter

TABLE 2.6 OCCURRENCE, DISTRIBUTION AND SELECTION OF CHEMICALS OF POTENTIAL CONCERN UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Future	
Medium: Groundwater	
Exposure Medium: Air (Industrial)	

Exposure Point	CAS Number	Chemical	Minimum [1] Concentration Qualifier	Maximum [1] Concentration Qualifier	Units	Location of Maximum Concentration	Detection Frequency	Range of Detection Limits	Concentration [2] Used for Screening	Background [3] Value	Screening [4] Toxicity Value	Potential ARAR/TBC Value	Potential ARAR/TBC Source	COPC Flag	Rationale for [5] Contaminant Deletion or Selection
Vapor Intrusion to	56-55-3	Benzo(a)anthracene	2.7E-02 J	3.1E-02 J	µg/l	PX-FSR-GW03-0420	2/12	0.05 - 0.052	3.1E-02	N/A	4.2E+02 C	N/A		NO	BSL
Indoor Air	129-00-0	Pyrene	5.0E-02 J	9.2E-02 J	µg/l	PX-FSR-GW03-0420	2/12	0.05 - 0.052	9.2E-02	N/A	N/A	N/A		NO	NTX

[1] Minimum/Maximum detected concentrations.

[2] Maximum concentration is used for screening.

[3] Background values not available.

U.S. Environmental Protection Agency (USEPA). Vapor Intrusion Screening Level (VISL) Calculator. Accessed on May 20, 2021.
Target groundwater concentrations for industrial scenario (based on target risk of 10⁻⁶ for carcinogens and HQ of 0.1 for noncarcinogens,

default groundwater to indoor air attenuation factor of 0.001, and default groundwater temperature of 25 °C).

[Online]. https://www.epa.gov/vaporintrusion/vapor-intrusion-screening-level-calculator

[5] Rationale Codes

Selection Reason: Deletion Reason: Above Screening Levels (ASL) Below Screening Level (BSL) No Toxicity Information (NTX) COPC = Chemical of Potential Concern

ARAR/TBC = Applicable or Relevant and Appropriate Requirement/

To Be Considered J = Estimated Value

C = Carcinogenic

µg/l = microgram per liter

TABLE 3.1.RME MEDIUM-SPECIFIC EXPOSURE POINT CONCENTRATION SUMMARY REASONABLE MAXIMUM EXPOSURE UXO 002, OU2 Remedial Investigation

NAS Patuxent River, Maryland

Scenario Timeframe: Current/Future Medium: Surface Soil (0-0.5 foot bgs) Exposure Medium: Surface Soil

Exposure Point	Chemical of	Units	Arithmetic Mean	95% UCL (Distribution)	Maximum Concentration	Exposure Point Concentration						
	Potential Concern				(Qualifier)	Value	Units	Statistic	Rationale			
Surface Soil	Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Lead	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	4.5E+00 5.8E+00 6.6E+00 2.8E+00 8.9E-01 3.9E+00 9.2E+01	1.6E+01 2.0E+01 1.9E+01 9.9E+00 2.5E+00 1.4E+01 1.3E+02 G	6.2E+01 8.1E+01 J 1.1E+02 J 4.3E+01 J 1.5E+01 5.9E+01 6.2E+02	1.6E+01 2.0E+01 1.9E+01 9.9E+00 2.5E+00 1.4E+01 9.2E+01	mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg	97.5% Cheb-m 97.5% Cheb-m 95% KM-c 97.5% KM-c 95% KM-c 97.5% KM-c Mean	1 1 1 1 1 1 2			

ProUCL, Version 5.1.002 used to determine distribution of data using the Shapiro-Wilk W Test. ProUCL used to calculate RME EPC, following recommendations

based on distribution and standard deviation in users guide (EPA. June, 2016. ProUCL, Version 5.1 Prepared by Lockheed Martin Environmental Services).

Options: 97.5% Chebyshev (Mean, Sd) UCL (97.5% Cheb-m); 95% Kaplan-Meier Chebyshev UCL (95% KM-c);

97.5% Kaplan-Meier Chebyshev UCL (97.5% KM-c); Mean

UCL Rationale:

(1) Distribution tests are inconclusive (data are not normal, log-normal, or gamma-distributed).

(2) Mean concentration used for lead.

- bgs = below ground surface
- G = gamma distribution
- J = Estimated Value

mg/kg = milligrams per kilogram

UCL = Upper confidence limit on mean concentration

TABLE 3.2.RME MEDIUM-SPECIFIC EXPOSURE POINT CONCENTRATION SUMMARY REASONABLE MAXIMUM EXPOSURE UXO 002, OU2 Remedial Investigation

NAS Patuxent River, Maryland

Scenario Timeframe: Current/Future Medium: Surface Soil (0-0.5 foot bgs) Exposure Medium: Air

Exposure Point	Chemical of	Units	Arithmetic Mean	95% UCL (Distribution)	Maximum Concentration	Exposure Point Concentration						
	Potential Concern				(Qualifier)	Value	Units	Statistic	Rationale			
Emissions from Surface Soil	Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Lead	mg/m ³ mg/m ³ mg/m ³ mg/m ³ mg/m ³ mg/m ³	1.2E-06 4.2E-09 4.9E-09 2.1E-09 6.5E-10 2.8E-09 6.8E-08	4.1E-06 1.5E-08 1.4E-08 7.3E-09 1.8E-09 1.0E-08 9.4E-08 G	1.6E-05 6.0E-08 J 8.1E-08 J 3.2E-08 J 1.1E-08 4.3E-08 4.6E-07	4.1E-06 1.5E-08 1.4E-08 7.3E-09 1.8E-09 1.0E-08 6.8E-08	mg/m ³ mg/m ³ mg/m ³ mg/m ³ mg/m ³ mg/m ³	97.5% Cheb-m 97.5% Cheb-m 95% KM-c 97.5% KM-c 95% KM-c 97.5% KM-c Mean	1 1 1 1 1 1 2			

Ambient air exposure point concentrations (EPCs) were calculated based on soil EPCs, particulate emission factors (PEFs), and volatilization factors (VFs). PEF from USEPA's Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. (USEPA, December 2002). VF was calculated using site-specific parameters and is shown on Table 3.2 Supplement A. Only one chemical (benzo(a)anthracene) is considered sufficiently volatile. The following equation was used to calculate the ambient air EPCs:

Air EPC (mg/m³) = Soil EPC (mg/kg) x (1/PEF + 1/VF) (m³/kg)

ProUCL, Version 5.1.002 used to determine distribution of data and calculate 95% UCL, following recommendations in users guide (USEPA. June, 2016. Prepared by Lockheed Martin Environmental Services).

Options: 97.5% Chebyshev (Mean, Sd) UCL (97.5% Cheb-m); 95% Kaplan-Meier Chebyshev UCL (95% KM-c);

97.5% Kaplan-Meier Chebyshev UCL (97.5% KM-c); Mean

UCL Rationale:

(1) Distribution tests are inconclusive (data are not normal, log-normal, or gamma-distributed).

(2) Mean concentration used for lead.

bgs = below ground surface G = gamma distribution J = Estimated Value UCL = Upper confidence limit on mean concentration mg/m³ = milligram per cubic meter

TABLE 3.2.RME SUPPLEMENT A

Calculation of Volatilization Factor - Surface Soil and Subsurface Soil

UXO 002, OU2 Remedial Investigation

NAS Patuxent River, Maryland

Chemical	Diffusivity in Air (D _i) (cm ² /s)	Henry's Law Constant (H') (unitless)	Diffusivity in Water (D _w) (cm ² /s)	Soil Organic Carbon Partition Coeff. (K _{oc}) (cm ^{3/} g)	Soil Water Partition Coeff. (K _{d =} K _{oc} x F _{oc}) (g/cm ³)	Solubility in Water (S) (mg/L)	Apparent Diffusivity (D _A) (cm ² /s)	Volatilization Factor (VF) (m ³ /kg)
Benzo(a)anthracene	2.6E-02	4.9E-04	6.7E-06	1.8E+05	1.1E+03	9.4E-03	6.8E-10	3.9E+06
Volatilization factor (VF) =	Q/C * (3.1	14 * D _A * T) ^{1/2} * 1	0 ^{-₄} m²/cm²					
(m³/kg)		2 * r _b * D _A						
Apparent Diffusivity (D _A) = (cm²/s)	[(Qa ^{10/3} * (r _b *	$\frac{1}{2} \mathbf{D}_{i} * \mathbf{H}' + \mathbf{Q}_{w}^{10/3}$ $\frac{1}{2} \mathbf{K}_{d} + \mathbf{Q}_{w} + \mathbf{Q}_{z}^{2}$	³ * D _w)/n ²] * H')					
Parameters			Values]			
Q/Cvol - Inverse of the geometric mean air concentratio	n to the volatilization	on flux at the center	56					
of a 0.5-acre-square source (g/m2-s per kg/m3)								
T - Exposure interval(s)			9.5E+08					
r _b - Soil bulk density (g/cm ³)			1.5					:
Q_a - Air-filled soil porosity (L_{air}/L_{water}) = n - Q_w			0.28					
n - Total soil porosity (Lpore/Lsoil) = 1 - (r_b/r_s)			0.43					
Q _w - Water-filled soil porosity (Lwater/Lsoil)			0.15					
r _s - Soil particle density (g/cm ³)			2.65					
$f_{\rm oc}$ - fraction organic carbon in soil (g/g)			0.006					

Equations from USEPA, 1996. Soil Screening Guidance: User's Guide. EPA/540/R-96/018.

Physical/chemical properties from Oak Ridge National Laboratory (ORNL). November 2019. Regional Screening Levels for Chemical Contaminants at Superfund Sites.

TABLE 3.3.RME MEDIUM-SPECIFIC EXPOSURE POINT CONCENTRATION SUMMARY REASONABLE MAXIMUM EXPOSURE UXO 002, OU2 Remedial Investigation

NAS Patuxent River, Maryland

Scenario Timeframe: Future Medium: Soil* (0-1 foot bgs) Exposure Medium: Soil*

Exposure Point	Chemical of	Units	Arithmetic Mean	95% UC (Distributio	L on)	Maximum Concentration (Qualifier)		Exposure Point Concentration						
	Potential Concern							Value	Units	Statistic	Rationale			
Soil*	Benzo(a)anthracene	mg/kg	3.6E+00	1.6E+01	Т	6.2E+01		1.6E+01	mg/kg	95% H-UCL	1			
	Benzo(a)pyrene	mg/kg	4.7E+00	1.2E+01		8.1E+01	J	1.2E+01	mg/kg	95% Cheb-m	2			
	Benzo(b)fluoranthene	mg/kg	5.2E+00	2.2E+01	Т	1.1E+02	J	2.2E+01	mg/kg	KM H-UCL	1			
	Benzo(k)fluoranthene	mg/kg	2.3E+00	9.2E+00	Т	4.3E+01	J	9.2E+00	mg/kg	KM H-UCL	1			
	Dibenz(a,h)anthracene	mg/kg	7.2E-01	3.0E+00	Т	1.5E+01		3.0E+00	mg/kg	KM H-UCL	1			
	Indeno(1,2,3-cd)pyrene	mg/kg	3.1E+00	1.4E+01	Т	5.9E+01		1.4E+01	mg/kg	KM H-UCL	1			
	Lead	mg/kg	8.3E+01	1.3E+02	Т	6.2E+02		8.3E+01	mg/kg	Mean	3			

ProUCL, Version 5.1.002 used to determine distribution of data using the Shapiro-Wilk W Test. ProUCL used to calculate RME EPC, following recommendations

based on distribution and standard deviation in users guide (EPA. June, 2016. ProUCL, Version 5.1 Prepared by Lockheed Martin Environmental Services).

Options: 95% H-UCL; 95% Chebyshev (Mean, Sd) UCL (95% Cheb-m); Kaplan-Meier H-UCL (KM H-UCL); Mean

UCL Rationale:

(1) Shapiro-Wilk W Test/Lilliefors test indicates data are log-normally distributed.

(2) Distribution tests are inconclusive (data are not normal, log-normal, or gamma-distributed).

(3) Mean concentration used for lead.

bgs = below ground surface

J = Estimated Value

mg/kg = milligrams per kilogram

T = lognormal distribution

UCL = Upper confidence limit on mean concentration

* Combined surface and subsurface soil.

TABLE 3.4.RME MEDIUM-SPECIFIC EXPOSURE POINT CONCENTRATION SUMMARY REASONABLE MAXIMUM EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Future Medium: Soil* (0-1 foot bgs) Exposure Medium: Air

Exposure Point	Chemical of	Units	Arithmetic Mean	95% UCL (Distribution)		Maximum Concentration		Exposure Point Concentration				
	Potential Concern					(Qualifier)	Value	Units	Statistic	Rationale	
Emissions from Soil*	Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Lead	mg/m ³ mg/m ³ mg/m ³ mg/m ³ mg/m ³ mg/m ³	9.3E-07 3.4E-09 3.8E-09 1.7E-09 5.3E-10 2.3E-09 6.1E-08	4.1E-06 8.8E-09 1.6E-08 6.8E-09 2.2E-09 1.1E-08 9.3E-08	T T T T T	1.6E-05 6.0E-08 8.1E-08 3.2E-08 1.1E-08 4.3E-08 4.6E-07	ſſ	4.1E-06 8.8E-09 1.6E-08 6.8E-09 2.2E-09 1.1E-08 6.1E-08	mg/m ³ mg/m ³ mg/m ³ mg/m ³ mg/m ³ mg/m ³	95% H-UCL 95% Cheb-m KM H-UCL KM H-UCL KM H-UCL KM H-UCL Mean	1 2 1 1 1 1 3	

Ambient air exposure point concentrations (EPCs) were calculated based on soil EPCs, particulate emission factors (PEFs), and volatilization factors (VFs). PEF from USEPA's Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. (USEPA, December 2002). VF was calculated using site-specific parameters and is shown on Table 3.2 Supplement A. Only one chemical (benzo(a)anthracene) is considered sufficiently volatile. The following equation was used to calculate the ambient air EPCs:

Air EPC (mg/m³) = Soil EPC (mg/kg) x (1/PEF + 1/VF) (m³/kg)

ProUCL, Version 5.1.002 used to determine distribution of data and calculate 95% UCL, following recommendations in users guide (USEPA. June, 2016. Prepared by Lockheed Martin Environmental Services).

Options: 95% H-UCL; 95% Chebyshev (Mean, Sd) UCL (95% Cheb-m); Kaplan-Meier H-UCL (KM H-UCL); Mean

UCL Rationale:

(1) Shapiro-Wilk W Test/Lilliefors test indicates data are log-normally distributed.

(2) Distribution tests are inconclusive (data are not normal, log-normal, or gamma-distributed).

(3) Mean concentration used for lead.

bgs = below ground surface

J = Estimated Value

T = lognormal distribution

UCL = Upper confidence limit on mean concentration

mg/m³ = milligram per cubic meter

* Combined surface and subsurface soil.

TABLE 3.5.RME

MEDIUM-SPECIFIC EXPOSURE POINT CONCENTRATION SUMMARY

UXO 002, OU2 Remedial Investigation

NAS Patuxent River, Maryland

Scenario Timeframe: Future Medium: Groundwater Exposure Medium: Groundwater / Air

Exposure Point	Chemical Ur of Potential Concern	Units	Arithmetic Mean	95% UCL (Distribution)	Maximum Concentration		Exposure Poir	nt Concentration	
					(Qualifier)	Value	Units	Statistic	Rationale
Tap Water / Water Vapors at Showerhead and Water in Excavation Trench / Volatiles in Air in Excavation Trench	Benzo(a)anthracene Lead	hð\I	2.9E-02 9.1E+00	N/A N/A	3.1E-02 6.0E+01	3.1E-02 9.1E+00	μg/l μg/l	Max Mean	1 2

(1) The maximum detected concentration was used as the EPC because there were too few detected concentrations (only two detected concentrations).

(2) Mean concentration used for lead. Non-detected concentrations are estimated using a proxy value of 1/2 of detection limit.

Scenario Timeframe: Current/Future Medium: Surface Soil (0-0.5 foot bgs) Exposure Medium: Surface Soil

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Rationale/ Reference	Intake Equation/ Model Name
Ingestion	Industrial Worker	Adult	Surface Soil	CS	Chemical Concentration in Soil	See Table 3.1.RME	mg/kg	See Table 3.1.RME	Chronic Daily Intake (CDI) (mg/kg-day) =
				IR-S	Ingestion Rate of Soil	100	mg/day	EPA, 2014	CS x IR-S x EF x ED x CF1 x 1/BW x 1/AT
				EF	Exposure Frequency	52	days/year	(1)	
				ED	Exposure Duration	25	years	EPA, 2014	
				CF1	Conversion Factor 1	0.000001	kg/mg		
				BW	Body Weight	80	kg	EPA, 2014	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	9,125	days	EPA, 1989	
	Trespasser/Visitor	Adult	Surface Soil	CS	Chemical Concentration in Soil	See Table 3.1.RME	mg/kg	See Table 3.1.RME	CDI (mg/kg-day) =
				IR-S	Ingestion Rate of Soil	100	mg/day	EPA, 2014 (2)	CS x IR-S x EF x ED x CF1 x 1/BW x 1/AT
				EF	Exposure Frequency	52	days/year	(3)	
				ED	Exposure Duration	20	years	EPA, 2014 (2)	
				CF1	Conversion Factor 1	0.000001	kg/mg		
				BW	Body Weight	80	kg	EPA, 2014	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	7,300	days	EPA, 1989	
		Adolescent	Surface Soil	CS	Chemical Concentration in Soil	See Table 3.1.RME	mg/kg	See Table 3.1.RME	CDI (mg/kg-day) =
				IR-S	Ingestion Rate of Soil	100	mg/day	EPA, 2014 (2)	CS x IR-S x EF x ED x CF1 x 1/BW x 1/AT
				EF	Exposure Frequency	52	days/year	(3)	
				ED	Exposure Duration	9	years	(4)	
				CF1	Conversion Factor 1	0.000001	kg/mg		
				BW	Body Weight	55	kg	EPA, 2011 (5)	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	3,285	days	EPA, 1989	
Dermal	Industrial Worker	Adult	Surface Soil	CS	Chemical Concentration in Soil	See Table 3.1.RME	mg/kg	See Table 3.1.RME	CDI (mg/kg-day) =
				SA	Skin Surface Area Available for Contact	3,527	cm ²	EPA, 2014 (6)	CS x SA x SSAF x DABS x CF1 x EF x
				SSAF	Soil to Skin Adherence Factor	0.12	mg/cm ² -day	EPA, 2014	ED x 1/BW x 1/AT
				DABS	Dermal Absorption Factor Solids	Chemical-specific	-	EPA, 2004	
				CF1	Conversion Factor 1	0.000001	kg/mg		
				EF	Exposure Frequency	52	days/year	(1)	
				ED	Exposure Duration	25	years	EPA, 2014	
				BW	Body Weight	80	kg	EPA, 2014	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	9,125	days	EPA, 1989	

Scenario Timeframe: Current/Future
Medium: Surface Soil (0-0.5 foot bgs)
Exposure Medium: Surface Soil

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Rationale/ Reference	Intake Equation/ Model Name
Dermal	Trespasser/Visitor	Adult	Surface Soil	CS	Chemical Concentration in Soil	See Table 3.1.RME	mg/kg	See Table 3.1.RME	CDI (mg/kg-day) =
(cont.)				SA	Skin Surface Area Available for Contact	6,032	cm ²	EPA, 2014 (2, 8)	CS x SA x SSAF x DABS x CF1 x EF x
				SSAF	Soil to Skin Adherence Factor	0.07	mg/cm ² -day	EPA, 2014 (2)	ED x 1/BW x 1/AT
				DABS	Dermal Absorption Factor Solids	Chemical-specific		EPA, 2004	
				CF1	Conversion Factor 1	0.000001	kg/mg		
				EF	Exposure Frequency	52	days/year	(3)	
				ED	Exposure Duration	20	years	EPA, 2014	
				BW	Body Weight	80	kg	EPA, 2014	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	7,300	days	EPA, 1989	
		Adolescent	Surface Soil	CS	Chemical Concentration in Soil	See Table 3.1.RME	mg/kg	See Table 3.1.RME	CDI (mg/kg-day) =
				SA	Skin Surface Area Available for Contact	3,600	cm ²	EPA, 2011 (7)	CS x SA x SSAF x DABS x CF1 x EF x
				SSAF	Soil to Skin Adherence Factor	0.3	mg/cm ² -day	EPA, 2004 (9)	ED x 1/BW x 1/AT
				DABS	Dermal Absorption Factor Solids	Chemical-specific		EPA, 2004	
				CF1	Conversion Factor 1	0.000001	kg/mg		
				EF	Exposure Frequency	52	days/year	(3)	
				ED	Exposure Duration	9	years	(4)	
				BW	Body Weight	55	kg	EPA, 2011 (5)	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	3,285	days	EPA, 1989	

Notes:

(1) Professional judgment assuming 1 day per week for 52 weeks per year.

(2) Assumed same value as for adult resident.

(3) Professional judgment assuming 2 day per week for 26 weeks per year.

(4) Professional judgment assuming adolescents from 9 to 18 years of age.

(5) Body weight is average value for the 9 year old to 18 year old male and female body weight.

(6) Surface area includes head, forearms, and hands.

(7) Surface area includes face, forearms, hands, and lower legs for children 9 to 18 years of age.

(8) Surface area includes head, forearms, hands, and lower legs .

(9) Soil to skin adherence factor is based on 95th percentile adherence factor for soccer players #1 (13 to 15 years of age).

Sources:

EPA, 1989: Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual, Part A. OERR. EPA/540/1-89/002.

EPA, 2004 . Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment (Final). EPA/540/R/99/005. July 2004.

EPA, 2011. Exposure Factors Handbook: 2011 Edition. National Center for Environmental Assessment, Washington, DC; EPA/600/R-09/052F. Available from the National Technical Information Service, Springfield, VA.

EPA, 2014: Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors, OSWER Directive 9200.1-120, February 6, 2014.

Scenario Timeframe: Current/Future
Medium: Surface Soil (0-0.5 foot bgs)
Exposure Medium: Air

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Rationale/ Reference	Intake Equation/ Model Name
Inhalation	Industrial Worker	Adult	Emissions from Surface Soil	CS CA PEF ET EF ED CF AT-C AT-N	Chemical Concentration in Soil Chemical Concentration in Air Particulate Emissions Factor Exposure Time Exposure Frequency Exposure Duration Conversion Factor Averaging Time (Cancer) Averaging Time (Non-Cancer)	See Table 3.1 See Table 3.2 1.36E+09 8 52 25 1/24 25,550 9,125	mg/kg mg/m ³ hr/day days/year years day/hr days days	See Table 3.1 See Table 3.2 EPA, 2002 EPA, 2014 (1) EPA, 2014 EPA, 1989 EPA, 1989	Exposure Concentration (EC) (mg/m ^s) = CA x ET x EF x ED x CF x 1/AT For chemicals not sufficently volatile: CA (mg/m ³) = CS x (1/PEF) For sufficiently volatile chemicals: CA (mg/m ³) = CS x (1/PEF + 1/VF)
	Trespasser/Visitor	Adult	Emissions from Surface Soil	CS CA PEF ET EF ED CF AT-C AT-N	Chemical Concentration in Soil Chemical Concentration in Air Particulate Emissions Factor Exposure Time Exposure Frequency Exposure Duration Conversion Factor Averaging Time (Cancer) Averaging Time (Non-Cancer)	See Table 3.1 See Table 3.2 1.36E+09 4 52 20 1/24 25,550 7,300	mg/kg mg/m ³ m ³ /kg hr/day days/year years day/hr days days	See Table 3.1 See Table 3.2 EPA, 2002 (2) EPA, 2014 EPA, 1989 EPA, 1989	EC (mg/m ³) = CA x ET x EF x ED x CF x 1/AT For chemicals not sufficently volatile: CA (mg/m ³) = CS x (1/PEF) For sufficiently volatile chemicals: CA (mg/m ³) = CS x (1/PEF + 1/VF)
		Adolescent	Emissions from Surface Soil	CS CA PEF ET EF ED CF AT-C AT-N	Chemical Concentration in Soil Chemical Concentration in Air Particulate Emissions Factor Exposure Time Exposure Frequency Exposure Duration Conversion Factor Averaging Time (Cancer) Averaging Time (Non-Cancer)	See Table 3.1 See Table 3.2 1.36E+09 4 52 9 1/24 25,550 3,285	mg/kg mg/m ³ m ³ /kg hr/day days/year years day/hr days days	See Table 3.1 See Table 3.2 EPA, 2002 (2) (2) (3) EPA, 1989 EPA, 1989	EC (mg/m ³) = CA x ET x EF x ED x CF x 1/AT For chemicals not sufficently volatile: CA (mg/m ³) = CS x (1/PEF) For sufficiently volatile chemicals: CA (mg/m ³) = CS x (1/PEF + 1/VF)

Scenario Timeframe: Current/Future
Medium: Surface Soil (0-0.5 foot bgs)
Exposure Medium: Air

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Rationale/ Reference	Intake Equation/ Model Name
----------------	---------------------	--------------	----------------	-------------------	----------------------	-------	-------	-------------------------	--------------------------------

Notes:

(1) Professional judgment assuming 1 day per week for 52 weeks per year, for 8 hours each event.

(2) Professional judgment assuming 2 day per week for 26 weeks per year, for 4 hours each event.

(3) Professional judgment assuming adolescents from 9 to 18 years of age.

Sources:

EPA, 1989: Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual, Part A. OERR. EPA/540/1-89/002.

EPA, 2014: Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors, OSWER Directive 9200.1-120, February 6, 2014.

Scenario Timeframe: Future	
Medium: Soil* (0-1 foot bgs)	
Exposure Medium: Soil*	

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Rationale/ Reference	Intake Equation/ Model Name
Ingestion	Resident	Adult	Soil*	CS	Chemical Concentration in Soil	See Table 3.3.RME	mg/kg	See Table 3.3.RME	Chronic Daily Intake (CDI) (mg/kg-day) =
				IR-S	Ingestion Rate of Soil	100	mg/day	EPA, 2014	CS x IR-S x EF x ED x CF1 x 1/BW x 1/AT
				EF	Exposure Frequency	350	days/year	EPA, 2014	
				ED	Exposure Duration	20	years	EPA, 2014	
				CF1	Conversion Factor 1	0.000001	kg/mg		
				BW	Body Weight	80	kg	EPA, 2014	
				AT-N	Averaging Time (Non-Cancer)	7,300	days	EPA, 1989	
		Child	Soil*	CS	Chemical Concentration in Soil	See Table 3.3.RME	mg/kg	See Table 3.3.RME	CDI (mg/kg-day) =
				IR-S	Ingestion Rate of Soil	200	mg/day	EPA, 2014	CS x IR-S x EF x ED x CF1 x 1/BW x 1/AT
				EF	Exposure Frequency	350	days/year	EPA, 2014	
				ED	Exposure Duration	6	years	EPA, 2014	
				CF1	Conversion Factor 1	0.000001	kg/mg		
				BW	Body Weight	15	kg	EPA, 2014	
				AT-N	Averaging Time (Non-Cancer)	2,190	days	EPA, 1989	
		Child/Adult	Soil*	CS	Chemical Concentration in Soil	See Table 3.3.RME	mg/kg	See Table 3.3.RME	CDI (mg/kg-day) =
				IR-S-A	Ingestion Rate of Soil, Adult	100	mg/day	EPA, 2014	CS x IR-S-Adj x EF x CF1 x 1/AT
				IR-S-C	Ingestion Rate of Soil, Child	200	mg/day	EPA, 2014	
				IR-S-Adj	Ingestion Rate of Soil, Age-adjusted	105	mg-year/kg-day	Calculated	IR-S-Adj (mg-year/kg-day) =
				EF	Exposure Frequency	350	days/year	EPA, 2014	(ED-C x IR-S-C / BW-C) + (ED-A x IR-S-A / BW-A)
				ED-A	Exposure Duration, Adult	20	years	EPA, 2014	
				ED-C	Exposure Duration, Child	6	years	EPA, 2014	
				CF1	Conversion Factor 1	0.000001	kg/mg		
				BW-A	Body Weight , Adult	80	kg	EPA, 2014	
				BW-C	Body Weight, Child	15	kg	EPA, 2014	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	

Scenario Timeframe: Future	
Medium: Soil* (0-1 foot bgs)	
Exposure Medium: Soil*	

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter	Parameter Definition	Value	Units	Rationale/	Intake Equation/
				Code				Reference	woder name
Ingestion	Industrial Worker	Adult	Soil*	CS	Chemical Concentration in Soil	See Table 3.3.RME	mg/kg	See Table 3.3.RME	CDI (mg/kg-day) =
				IR-S	Ingestion Rate of Soil	100	mg/day	EPA, 2014	CS x IR-S x EF x ED x CF1 x 1/BW x 1/AT
				EF	Exposure Frequency	250	days/year	EPA, 2014	
				ED	Exposure Duration	25	years	EPA, 2014	
				CF1	Conversion Factor 1	0.000001	kg/mg		
				BW	Body Weight	80	kg	EPA, 2014	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	9,125	days	EPA, 1989	
	Trespasser/Visitor	Adult	Soil*	CS	Chemical Concentration in Soil	See Table 3.3.RME	mg/kg	See Table 3.3.RME	CDI (mg/kg-day) =
				IR-S	Ingestion Rate of Soil	100	mg/day	EPA, 2014 (1)	CS x IR-S x EF x ED x CF1 x 1/BW x 1/AT
				EF	Exposure Frequency	52	days/year	(2)	
				ED	Exposure Duration	20	years	EPA, 2014 (1)	
				CF1	Conversion Factor 1	0.000001	kg/mg		
				BW	Body Weight	80	kg	EPA, 2014	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	7,300	days	EPA, 1989	
		Adolescent	Soil*	CS	Chemical Concentration in Soil	See Table 3.3.RME	mg/kg	See Table 3.3.RME	CDI (mg/kg-day) =
				IR-S	Ingestion Rate of Soil	100	mg/day	EPA, 2014 (1)	CS x IR-S x EF x ED x CF1 x 1/BW x 1/AT
				EF	Exposure Frequency	52	days/year	(2)	
				ED	Exposure Duration	9	years	(3)	
				CF1	Conversion Factor 1	0.000001	kg/mg		
				BW	Body Weight	55	kg	EPA, 2011 (4)	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	3,285	days	EPA, 1989	
	Construction Worker	Adult	Soil*	CS	Chemical Concentration in Soil	See Table 3.3.RME	mg/kg	See Table 3.3.RME	Subchronic Daily Intake (SDI) (mg/kg-day) =
				IR-S	Ingestion Rate of Soil	330	mg/day	EPA, 2002	CS x IR-S x EF x ED x CF1 x 1/BW x 1/AT
				EF	Exposure Frequency	125	days/year	(5)	
				ED	Exposure Duration	1	years	EPA, 1991	
				CF1	Conversion Factor 1	0.000001	kg/mg		
				BW	Body Weight	80	kg	EPA, 2014	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	365	days	EPA, 1989	
Dermal	Resident	Adult	Soil*	CS	Chemical Concentration in Soil	See Table 3.3.RME	mg/kg	See Table 3.3.RME	CDI (mg/kg-day) =
				SA	Skin Surface Area Available for Contact	6,032	cm²	EPA, 2014	CS x SA x SSAF x DABS x CF1 x EF x
				SSAF	Soil to Skin Adherence Factor	0.07	mg/cm ⁻ -day	EPA, 2014	ED x 1/BW x 1/AT
				DABS	Dermal Absorption Factor Solids	Chemical-specific		EPA, 2004	
				CF1	Conversion Factor 1	0.000001	kg/mg		
				EF	Exposure Frequency	350	days/year	EPA, 2014	
				ED	Exposure Duration	20	years	EPA, 2014	
				AT-N	Averaging Time (Non-Cancer)	7 300	kg	EPA, 2014 EPA 1080	
				AI-N	Averaging Time (Non-Cancer)	7,300	days	EPA, 1989	

Scenario Timeframe: Future	
Medium: Soil* (0-1 foot bgs)	
Exposure Medium: Soil*	

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Rationale/ Reference	Intake Equation/ Model Name
Dermal	Resident	Child	Soil*	CS	Chemical Concentration in Soil	See Table 3.3.RME	mg/kg	See Table 3.3.RME	CDI (mg/kg-day) =
(cont.)	(cont).			SA	Skin Surface Area Available for Contact	2,373	cm ²	EPA, 2014	CS x SA x SSAF x DABS x CF1 x EF x
				SSAF	Soil to Skin Adherence Factor	0.2	mg/cm2-day	EPA, 2014	ED x 1/BW x 1/AT
				DABS	Dermal Absorption Factor Solids	Chemical-specific		EPA, 2004	
				CF1	Conversion Factor 1	0.000001	kg/mg		
				EF	Exposure Frequency	350	days/year	EPA, 2014	
				ED	Exposure Duration	6	years	EPA, 2014	
				BW	Body Weight	15	kg	EPA, 2014	
				AT-N	Averaging Time (Non-Cancer)	2,190	days	EPA, 1989	
		Child/Adult	Soil*	CS	Chemical Concentration in Soil	See Table 3.3.RME	mg/kg	See Table 3.3.RME	CDI (mg/kg-day) =
				SA-A	Skin Surface Area Available for Contact, Adult	6,032	cm ²	EPA, 2014	CS x DA-Adj x DABS x CF1 x EF x 1/AT
				SA-C	Skin Surface Area Available for Contact, Child	2,373	cm ²	EPA, 2014	
				SSAF-A	Soil to Skin Adherence Factor, Adult	0.07	mg/cm2-day	EPA, 2014	DA-Adj (mg-year/kg-day) =
				SSAF-C	Soil to Skin Adherence Factor, Child	0.2	mg/cm2-day	EPA, 2014	
				DA-Adj	Dermal Absorption, Age-adjusted	295	mg-year/kg-day	Calculated	(ED-C x SA-C x SSAF-C / BW-C) + (ED-A x SA-A x SSAF-A / BW-A)
				DABS	Dermal Absorption Factor Solids	Chemical-specific		EPA, 2004	
				CF1	Conversion Factor 1	0.000001	kg/mg		
				EF	Exposure Frequency	350	days/year	EPA, 2014	
				ED-A	Exposure Duration, Adult	20	years	EPA, 2014	
				ED-C	Exposure Duration, Child	6	years	EPA, 2014	
				BW-A	Body Weight , Adult	80	kg	EPA, 2014	
				BW-C	Body Weight, Child	15	kg	EPA, 2014	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
	Industrial Worker	Adult	Soil*	CS	Chemical Concentration in Soil	See Table 3.3.RME	mg/kg	See Table 3.3.RME	CDI (mg/kg-day) =
				SA	Skin Surface Area Available for Contact	3,527	cm ²	EPA, 2014 (6)	CS x SA x SSAF x DABS x CF1 x EF x
				SSAF	Soil to Skin Adherence Factor	0.12	mg/cm ² -day	EPA, 2014	ED x 1/BW x 1/AT
				DABS	Dermal Absorption Factor Solids	Chemical-specific		EPA, 2004	
				CF1	Conversion Factor 1	0.000001	kg/mg		
				EF	Exposure Frequency	250	days/year	EPA, 2014	
				ED	Exposure Duration	25	years	EPA, 2014	
				BW	Body Weight	80	kg	EPA, 2014	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	9,125	days	EPA, 1989	

Scenario Timeframe: Future
Medium: Soil* (0-1 foot bgs)
Exposure Medium: Soil*

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Rationale/ Reference	Intake Equation/ Model Name
	Trespasser/Visitor	Adult	Soil*	CS	Chemical Concentration in Soil	See Table 3.3.RME	mg/kg	See Table 3.3.RME	CDI (mg/kg-day) =
				SA	Skin Surface Area Available for Contact	6,032	cm ²	EPA, 2014 (1, 6)	CS x SA x SSAF x DABS x CF1 x EF x
				SSAF	Soil to Skin Adherence Factor	0.07	mg/cm2-day	EPA, 2014 (1)	ED x 1/BW x 1/AT
				DABS	Dermal Absorption Factor Solids	Chemical-specific		EPA, 2004	
				CF1	Conversion Factor 1	0.000001	kg/mg		
				EF	Exposure Frequency	52	days/year	(2)	
				ED	Exposure Duration	20	years	EPA, 2014	
				BW	Body Weight	80	kg	EPA, 2014	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	7,300	days	EPA, 1989	
		Adolescent	Soil*	CS	Chemical Concentration in Soil	See Table 3.3.RME	mg/kg	See Table 3.3.RME	CDI (mg/kg-day) =
				SA	Skin Surface Area Available for Contact	3,600	cm ²	EPA, 2011 (7)	CS x SA x SSAF x DABS x CF1 x EF x
				SSAF	Soil to Skin Adherence Factor	0.3	mg/cm2-day	EPA, 2004 (8)	ED x 1/BW x 1/AT
				DABS	Dermal Absorption Factor Solids	Chemical-specific		EPA, 2004	
				CF1	Conversion Factor 1	0.000001	kg/mg		
				EF	Exposure Frequency	52	days/year	(2)	
				ED	Exposure Duration	9	years	(3)	
				BW	Body Weight	55	kg	EPA, 2011 (4)	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	3,285	days	EPA, 1989	
	Construction Worker	Adult	Soil*	CS	Chemical Concentration in Soil	See Table 3.3.RME	mg/kg	See Table 3.3.RME	SDI (mg/kg-day) =
				SA	Skin Surface Area Available for Contact	3,527	cm²	EPA, 2014 (9)	CS x SA x SSAF x DABS x CF1 x EF x
				SSAF	Soil to Skin Adherence Factor	0.3	mg/cm2-day	EPA, 2004 (10)	ED x 1/BW x 1/AT
				DABS	Dermal Absorption Factor Solids	Chemical-specific		EPA, 2004	
				CF1	Conversion Factor 1	0.000001	kg/mg		
				EF	Exposure Frequency	125	days/year	(5)	
				ED	Exposure Duration	1	years	EPA, 1991	
				BW	Body Weight	80	kg	EPA, 2014	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	365	days	EPA, 1989	

Scenario Timeframe: Future
Medium: Soil* (0-1 foot bgs)
Exposure Medium: Soil*

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Rationale/ Reference	Intake Equation/ Model Name
----------------	---------------------	--------------	----------------	-------------------	----------------------	-------	-------	-------------------------	--------------------------------

Notes:

(1) Assumed same value as for adult resident.

(2) Professional judgment assuming 2 day per week for 26 weeks per year.

(3) Professional judgment assuming adolescents from 9 to 18 years of age.

(4) Body weight is average value for the 9 year old and 18 year old male and female body weight.

(5) Assumed a worker working on a construction project for 125 days per year for 1 year.

(6) Surface area includes head, forearms, hands, and lower legs .

(7) Surface area includes face, forearms, hands, and lower legs for children 9 to 18 years of age.

(8) Soil to skin adherence factor is based on 95th percentile adherence factor for soccer players #1 (13 to 15 years of age).

(9) Surface area includes head, forearms, and hands.

(10) Soil to skin adherence factor is based on 95th percentile adherence factor for construction workers.

* Combined surface and subsurface soil.

Sources:

EPA, 1989: Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual, Part A. OERR. EPA/540/1-89/002.

EPA, 1991: Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual - Supplemental Guidance, Standard Default Exposure Factors. Interim Final. OSWER Directive 9285.6-03.

EPA, 2002: Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. OSWER 9355.4-24.

EPA, 2004. Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment (Final). EPA/540/R/99/005. July 2004.

EPA, 2011. Exposure Factors Handbook: 2011 Edition. National Center for Environmental Assessment, Washington, DC; EPA/600/R-09/052F. Available from the National Technical Information Service, Springfield, VA.

EPA, 2014: Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors, OSWER Directive 9200.1-120, February 6, 2014.

Scenario Timeframe: Future	
Medium: Soil* (0-1 foot bgs)	
Exposure Medium: Air	

Exposure Route Receptor Population Exposure Point Parameter Definition Value Units Rationale/ Intake Equation/ Receptor Age Paramete Reference Model Name Code See Table 3.3 Emissions from Chemical Concentration in Soil See Table 3.3 Exposure Concentration (EC) (mg/m³) = Inhalation Resident Adult CS mg/kg Chemical Concentration in Air See Table 3.4 mg/m³ CA x ET x EF x ED x CF x 1/AT Soil* CA See Table 3.4 Particulate Emissions Factor m³/kg PFF 136E+09 EPA, 2002 For chemicals not sufficently volatile: $CA (mg/m^3) = CS \times (1/PEF)$ ΕT Exposure Time 24 hour/day EPA, 2014 For sufficiently volatile chemicals: EF Exposure Frequency 350 EPA. 2014 days/year Exposure Duration $CA (mg/m^3) = CS \times (1/PEF + 1/VF)$ ED 20 years EPA, 2014 Conversion Factor CF 1/24 day/hr - -Averaging Time (Non-Cancer) AT-N 7,300 EPA, 1989 days Child Emissions from Chemical Concentration in Soil See Table 3.3 See Table 3.3 EC (mg/m³) = CS mg/kg Chemical Concentration in Air CA x ET x EF x ED x CF x 1/AT mg/m³ Soil* CA See Table 3.4 See Table 3.4 m³/kg PFF Particulate Emissions Factor 1.36E+09 EPA, 2002 For chemicals not sufficently volatile: $CA (mg/m^3) = CS \times (1/PEF)$ Exposure Time EPA, 2014 ΕT 24 hour/day Exposure Frequency EF 350 days/year EPA, 2014 For sufficiently volatile chemicals: CA (mg/m³) = CS x (1/PEF + 1/VF) ED Exposure Duration 6 EPA, 2014 years Conversion Factor CF 1/24 dav/hr - -Averaging Time (Non-Cancer) AT-N 2,190 days EPA, 1989 Emissions from EC $(mg/m^3) =$ Child/Adult Chemical Concentration in Soil See Table 3.3 See Table 3.3 CS mg/kg Chemical Concentration in Air See Table 3.4 See Table 3.4 CA x ET x EF x ED x CF x 1/AT mg/m³ Soil* CA Particulate Emissions Factor m³/kg PEF 1.36E+09 EPA, 2002 For chemicals not sufficently volatile: Exposure Frequency $CA (mg/m^3) = CS \times (1/PEF)$ EF 350 EPA. 2014 davs/vear EPA, 2014 For sufficiently volatile chemicals: ΕT Exposure Time 24 hr/day Exposure Duration EPA, 2014 CA (mg/m³) = CS x (1/PEF + 1/VF) ED 26 vears CF Conversion Factor 1/24 dav/hr - -Averaging Time (Cancer) AT-C 25,550 days EPA, 1989 Emissions from See Table 3.3 See Table 3.3 EC (mg/m³) = Industrial Worker Adult CS Chemical Concentration in Soil mg/kg CA x ET x EF x ED x CF x 1/AT Soil* CA Chemical Concentration in Air See Table 3.4 mg/m³ See Table 3.4 Particulate Emissions Factor m³/kg PEF 1.36E+09 EPA, 2002 For chemicals not sufficently volatile: $CA (mg/m^3) = CS \times (1/PEF)$ ΕT Exposure Time 8 hr/day EPA, 2014 EF Exposure Frequency 250 EPA. 2014 For sufficiently volatile chemicals: days/year CA (mg/m³) = CS x (1/PEF + 1/VF) Exposure Duration EPA, 2014 ED 25 years CF Conversion Factor 1/24 day/hr Averaging Time (Cancer) EPA, 1989 AT-C 25.550 days Averaging Time (Non-Cancer) AT-N 9,125 days EPA, 1989

Scenario Timeframe: Future
Medium: Soil* (0-1 foot bgs)
Exposure Medium: Air

Exposure Route Exposure Point Parameter Definition Value Units Rationale/ Intake Equation/ Receptor Population Receptor Age Paramete Reference Model Name Code Emissions from See Table 3.3 See Table 3.3 EC (mg/m³) = Inhalation Trespasser/Visitor Adult CS Chemical Concentration in Soil mg/kg mg/m³ CA x ET x EF x ED x CF x 1/AT Soil* CA Chemical Concentration in Air See Table 3.4 See Table 3.4 (cont.) Particulate Emissions Factor m³/kg PFF 136E+09 EPA, 2002 For chemicals not sufficently volatile: $CA (mg/m^3) = CS \times (1/PEF)$ ΕT Exposure Time 4 hr/day (2) For sufficiently volatile chemicals: EF Exposure Frequency (2) 52 days/year Exposure Duration $CA (mg/m^3) = CS \times (1/PEF + 1/VF)$ ED 20 years EPA, 2014 Conversion Factor CF 1/24 day/hr - -Averaging Time (Cancer) AT-C 25.550 EPA, 1989 davs Averaging Time (Non-Cancer) AT-N 7,300 days EPA, 1989 Emissions from See Table 3.3 See Table 3.3 EC (mg/m³) = Adolescent CS Chemical Concentration in Soil mg/kg CA x ET x EF x ED x CF x 1/AT mg/m³ Soil* CA Chemical Concentration in Air See Table 3.4 See Table 3.4 PFF Particulate Emissions Factor 1.36E+09 m³/kg EPA, 2002 For chemicals not sufficently volatile: $CA (mg/m^3) = CS \times (1/PEF)$ ΕT Exposure Time 4 hr/day (2) Exposure Frequency (2) For sufficiently volatile chemicals: FF 52 days/year $CA (mg/m^3) = CS \times (1/PEF + 1/VF)$ Exposure Duration ED (3) 9 years Conversion Factor CF 1/24 day/hr Averaging Time (Cancer) AT-C 25.550 EPA, 1989 davs Averaging Time (Non-Cancer) AT-N 3,285 days EPA, 1989 Emissions from See Table 3.3 See Table 3.3 EC $(mg/m^3) =$ Construction Worker Adult CS Chemical Concentration in Soil mg/kg Soil* CA Chemical Concentration in Air See Table 3.4 mg/m³ See Table 3.4 CA x ET x EF x ED x CF x 1/AT Particulate Emissions Factor m³/kg 1.36E+09 EPA, 2002 For chemicals not sufficently volatile: PEF $CA (mg/m^3) = CS \times (1/PEF)$ ΕT Exposure Time 8 hr/day EPA, 2014 EF Exposure Frequency For sufficiently volatile chemicals: 125 days/year (4) EPA, 2002 CA (mg/m³) = CS x (1/PEF + 1/VF) Exposure Duration ED years 1 CF Conversion Factor 1/24 - day/hr Averaging Time (Cancer) AT-C 25.550 EPA, 1989 days Averaging Time (Non-Cancer) AT-N 365 days EPA, 1989

Notes:

(1) Professional judgment assuming 1 day per week for 52 weeks per year, for 8 hours each event.

(2) Professional judgment assuming 2 day per week for 26 weeks per year, for 4 hours each event.

(3) Professional judgment assuming adolescents from 9 to 18 years of age.

(4) Assumed a worker working on a construction project for 125 days per year for 1 year.

* Combined surface and subsurface soil.

Sources:

EPA, 1989: Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual, Part A. OERR. EPA/540/1-89/002.

EPA, 2002: Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. OSWER 9355.4-24.

EPA, 2014: Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors, OSWER Directive 9200.1-120, February 6, 2014.

Scenario Timeframe: Future Medium: Groundwater Exposure Medium: Groundwater

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Rationale/ Reference	Intake Equation/ Model Name
la na stian	Desident	A -1-14	Tan Madan	0.14		Out Table 0.5		Ore Table 0.5	Obarria Dalla Istalia (ODI) (mallar das) -
Ingestion	Resident	Aduit	rap water	CVV		See Table 3.5	µg/i	See Table 3.5	Chronic Daily Intake (CDI) (mg/kg-day) =
						2.5	niters/day	EPA, 2014	CW X IR-W X EF X ED X CF I X I/BW X I/AT
				EF	Exposure Prequency	350	uays/year	EPA, 2014	
				ED	Exposure Duration	20	years	EPA, 2014	
				CF1		0.001	mg/µg		
				BW	Body Weight	80	кg	EPA, 2014	
				AI-N	Averaging Time (Non-Cancer)	7,300	days	EPA, 2014	
		Child	Tap Water	CW	Chemical Concentration in Water	See Table 3.5	µg/l	See Table 3.5	CDI (mg/kg-day) =
				IR-W	Ingestion Rate of Water	0.78	liters/day	EPA, 2014	CW x IR-W x EF x ED x CF1 x 1/BW x 1/AT
				EF	Exposure Frequency	350	days/year	EPA, 2014	
				ED	Exposure Duration	6	years	EPA, 2014	
				CF1	Conversion Factor 1	0.001	mg/µg		
				BW	Body Weight	15	kg	EPA, 2014	
				AT-N	Averaging Time (Non-Cancer)	2,190	days	EPA, 1989	
		Child/Adult	Tap Water	CW	Chemical Concentration in Water	See Table 3.5	ug/l	See Table 3.5	CDI (mg/kg-day) =
			•	IR-W-A	Ingestion Rate of Water, Adult	2.5	liters/day	EPA. 2014	CW x IR-W-Adi x EF x CF1 x 1/AT
				IR-W-C	Ingestion Rate of Water. Child	0.78	liters/day	EPA, 2014	
				IR-W-Adj	Ingestion Rate of Water, Age-adjusted	0.94	liter-year/kg-day	calculated	IR-W-Adj (liter-year/kg-day) =
				EF	Exposure Frequency	350	days/year	EPA, 2014	(ED-C x IR-W-C / BW-C) +
				ED-A	Exposure Duration, Adult	20	years	EPA, 2014	(ED-A x IR-W-A / BW-A)
				ED-C	Exposure Duration, Child	6	years	EPA, 2014	
				CF1	Conversion Factor 1	0.001	mg/µg		
				BW-A	Body Weight , Adult	80	kg	EPA, 2014	
				BW-C	Body Weight, Child	15	kg	EPA, 2014	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	

Scenario Timeframe: Future Medium: Groundwater Exposure Medium: Groundwater

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Rationale/ Reference	Intake Equation/ Model Name
Dermal	Resident	Adult	Tap Water	CW DAevent FA K _p t t B t _{event} SA EV EF ED BW AT-N CF1 CF2	Chemical Concentration in Water Dermally Absorbed Dose per Event Fraction absorbed water Permeability Coefficient Lag Time Time to Reach Steady-state Ratio of Permeability of Stratum Corneum to Epidermis Event Time Skin Surface Area Available for Contact Event Frequency Exposure Frequency Exposure Frequency Exposure Duration Body Weight Averaging Time (Non-Cancer) Conversion Factor 1 Conversion Factor 2	See Table 3.5 Calculated Chemical-specific Chemical-specific Chemical-specific Chemical-specific O.71 19,652 1 350 20 80 7,300 0.001 0.001	µg/l mg/cm ² -event dimensionless cm/hr hr/event hours dimensionless hr/event cm ² events/day days/year years kg days mg/µg l/cm ³	See Table 3.5 calculated EPA, 2004 EPA, 2004 EPA, 2004 EPA, 2004 EPA, 2004 EPA, 2014 EPA, 2014 EPA, 2014 EPA, 2014 EPA, 2014 EPA, 2014 EPA, 2014 EPA, 2014 	$ \begin{array}{l} \text{CDI} (mg/kg-day) = \\ \text{DAevent x SA x EV x EF x ED x 1/BW x 1/AT} \\ \text{Inorganics: DAevent (mg/cm^2-event) =} \\ \text{Kp x CW x t_{event} x CF1x CF2} \\ \text{Organics:} \\ t_{event} < t^*: DAevent (mg/cm^2-event) = \\ 2 x FA x Kp x CW x (sqrt((6 x t x t_{event})/p)) \\ x CF1 x CF2 \\ t_{event} > t^*: DAevent (mg/cm^2-event) = \\ FA x Kp x CW x (t_{event}/(1+B) + 2 x t x \\ ((1 + 3B + 3B^2)/(1+B)^2)) x CF1 x CF2 \\ \end{array} $
		Child	Tap Water	CW DAevent FA K _p t t B t vent SA EV EF ED BW AT-N CF1 CF2	Chemical Concentration in Water Dermally Absorbed Dose per Event Fraction absorbed water Permeability Coefficient Lag Time Time to Reach Steady-state Ratio of Permeability of Stratum Corneum to Epidermis Event Time Skin Surface Area Available for Contact Event Frequency Exposure Frequency Exposure Frequency Exposure Duration Body Weight Averaging Time (Non-Cancer) Conversion Factor 1 Conversion Factor 2	See Table 3.5 Calculated Chemical-specific Chemical-specific Chemical-specific Chemical-specific 0.54 6,365 1 350 6 15 2,190 0.001 0.001	µg/l mg/cm ² -event dimensionless cm/hr hr/event hours dimensionless hr/event cm ² events/day days/year years kg days mg/µg l/cm ³	See Table 3.5 calculated EPA, 2004 EPA, 2004 EPA, 2004 EPA, 2004 EPA, 2004 EPA, 2014 EPA, 2014 EPA, 2014 EPA, 2014 EPA, 2014 EPA, 2014 EPA, 2014 EPA, 2014	CDI (mg/kg-day) = DAevent x SA x EV x EF x ED x 1/BW x 1/AT Inorganics: DAevent (mg/cm ² -event) = Kp x CW x t _{event} x CF1x CF2 Organics: t_{event} <t<sup>*: DAevent (mg/cm²-event) = 2 x FA x Kp x CW x (sqrt((6 x t x t_{event})/p)) x CF1 x CF2 t_{event}>t[*]: DAevent (mg/cm²-event) = FA x Kp x CW x (t_{event}/(1+B) + 2 x t x ((1 + 3B + 3B²)/(1+B)²)) x CF1 x CF2</t<sup>

Scenario Timeframe: Future Medium: Groundwater Exposure Medium: Groundwater

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Rationale/ Reference	Intake Equation/ Model Name
Dermal (cont'd)	Resident (cont'd)	Child/Adult	Tap Water	CW DAevent-A DAevent-C DA-Adj FA K _p t t t t t event-A t _{ovent} -C SA-A SA-C EV EF ED-A ED-C BW-A BW-C	Chemical Concentration in Water Dermally Absorbed Dose per Event, Adult Dermally Absorbed Dose per Event, Child Dermally Absorbed Dose, Age-adjusted Fraction absorbed water Permeability Coefficient Lag Time Time to Reach Steady-state Ratio of Permeability of Stratum Corneum to Epidermis Event Time, Adult Event Time, Child Skin Surface Area, Adult Skin Surface Area, Adult Skin Surface Area, Child Event Frequency Exposure Frequency Exposure Frequency Exposure Duration, Adult Exposure Duration, Child Body Weight, Adult	See Table 3.5 Calculated Calculated Chemical-specific Chemical-specific Chemical-specific Chemical-specific Chemical-specific O.71 0.54 19,652 6,365 1 350 20 6 80 15	μg/l mg/cm ² -event mg-year/event-kg dimensionless cm/hr hr/event hours dimensionless hr/event cm ² cm ² events/day days/year years years kg kg	See Table 3.5 calculated calculated EPA, 2004 EPA, 2004 EPA, 2004 EPA, 2004 EPA, 2004 EPA, 2014 EPA, 2014 EPA, 2014 EPA, 2014 EPA, 2014 EPA, 2014 EPA, 2014 EPA, 2014 EPA, 2014	$ \begin{array}{l} \label{eq:constraint} \label{eq:constraint} CDI (mg/kg-day) = DA-Adj x EF x 1/AT \\ DA-Adj = (DAevent-A x SA-A x ED-A x 1/BW-A) \\ + (DAevent-C x SA-C x ED-C x 1/BW-C) \\ \mbox{Inorganics:} DAevent (mg/cm^2-event) = \\ Kp x CW x t_{event} x CF1 x CF2 \\ \mbox{Organics:} \\ \mbox{t_{event}} x^{t^*}: DAevent (mg/cm^2-event) = \\ 2 x FA x Kp x CW x (sqrt((6 x t x t_{event})/p)) \\ x CF1 x CF2 \\ \mbox{t_{event}} x^{t^*}: DAevent (mg/cm^2-event) = \\ FA x Kp x CW x (t_{event}/(1+B) + 2 x t x \\ ((1 + 3B + 3B^2)/(1+B)^2)) x CF1 x CF2 \\ \end{array} $
				AT-C CF1 CF2	Averaging Time (Cancer) Conversion Factor 1 Conversion Factor 2	25,550 0.001 0.001	days mg/µg I/cm ³	EPA, 1989 	

Scenario Timeframe: Future Medium: Groundwater Exposure Medium: Groundwater

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Rationale/ Reference	intake Equation/ Model Name
Dermal	Construction Worker	Adult	Water in Excavation	CW	Chemical Concentration in Water	See Table 3.5	µg/I	See Table 3.5	CDI (mg/kg-day) =
(cont'd)			Trench	DAevent	Dermally Absorbed Dose per Event	calculated	mg/cm2-event	calculated	DAevent x SA x EV x EF x ED x 1/BW x 1/AT
				FA	Fraction absorbed water	chemical specific	dimensionless	EPA, 2004	
				K _p	Permeability Coefficient	chemical specific	cm/hr	EPA, 2004	Inorganics: DAevent (mg/cm ² -event) =
				t	Lag Time	chemical specific	hr/event	EPA, 2004	Kp x CW x t _{event} x CF1 x CF2
				ť*	Time to Reach Steady-state	chemical specific	hours	EPA, 2004	
				В	Ratio of Permeability of Stratum Corneum to Epidermis	chemical specific	dimensionless	EPA, 2004	Organics :
				t _{event}	Event Time	8	hr/day	EPA, 2014 (1)	t _{event} <t*: (mg="" cm<sup="" daevent="">2-event) =</t*:>
				SA	Skin Surface Area Available for Contact	6,032	cm ²	EPA, 2014 (2)	2 x FA x Kp x CW x (sqrt((6 x t x t _{event})/p))
				EV	Event Frequency	1	events/day	EPA, 2004	x CF1 x CF2
				EF	Exposure Frequency	125	days/year	(3)	
				ED	Exposure Duration	1	years	EPA, 1991	t _{event} >t*: DAevent (mg/cm ² -event) =
				BW	Body Weight	80	kg	EPA, 2014	FA x Kp x CW x (t _{event} /(1+B) + 2 x t x
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	((1 + 3B + 3B ²)/(1+B) ²)) x CF1 x CF2
				AT-N	Averaging Time (Non-Cancer)	365	days	EPA, 1989	
				CF1	Conversion Factor 2	0.001	mg/µg		
				CF2	Conversion Factor 3	0.001	l/cm ³		

(1) Professional judgment based on construction activities that would occur 8 hrs per day for the Reasonable Maximum Exposure (RME) scenario.

(2) Assumed surface area for construction worker exposed to groundwater is same as surface area for adult resident exposed to soil from EPA, 2014, includes weighted average of mean values for head, hands, forearms, and lower legs. (3) Assumed duration of construction project is 1/2 the working days in a year.

Sources:

EPA, 1989: Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual, Part A. OERR. EPA/540/1-89/002.

EPA, 1991: Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual - Supplemental Guidance, Standard Default Exposure Factors. Interim Final. OSWER Directive 9285.6-03.

EPA, 2004 . Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment (Final). EPA/540/R/99/005. July 2004.

EPA, 2014: Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors, OSWER Directive 9200.1-120, February 6, 2014.

Scenario Timeframe: Future Medium: Groundwater Exposure Medium: Air

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Rationale/ Reference	Intake Equation/ Model Name
Inhalation	Industrial Worker	Adult	Shallow Aquifer -	CW	Chemical Concentration in Water	See Table 3.3	µg/l	See Table 3.3	(EC) (mg/m ³) =
			Indoor Air	CA	Chemical Concentration in Air	See Table 3.5	mg/m ³	See Table 3.5	CA x ET x EF x ED x CF x 1/AT
				ET	Exposure Time	8	hr/day	(1)	
				EF	Exposure Frequency	250	days/year	EPA, 2014	CA calculated using an attenuation factor and Henry's Law
				ED	Exposure Duration	25	years	EPA, 2014	Constant at site groundwater temperature (refer to Table 3.5
				CF	Conversion Factor	1/24	day/hour		Supplement A).
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	9,125	days	EPA, 1989	
Inhalation	Resident	Adult	Water Vapors	CW	Chemical Concentration in Water	See Table 3.5	µg/l	See Table 3.5	Exposure Concentration (EC) (mg/m ³) =
			at Showerhead	CA	Chemical Concentration in Air	Calculated	mg/m ³	Calculated	CA x EF x ED x ET x CF x 1/AT
				ET	Exposure Time (for shower model)	0.71	hours/day	EPA, 2014	Use Foster & Chrostowski Shower model to
				EF	Exposure Frequency	350	days/year	EPA, 2014	calculate CA.
				ED	Exposure Duration , Adult	20	years	EPA, 2014	
				CF	Conversion Factor	1/24	day/hour		
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	7,300	days	EPA, 2014	
Inhalation	Construction Worker	Adult	Volatiles in Air in	CW	Chemical Concentration in Water	See Table 3.5	µg/l	See Table 3.5	Chronic Daily Intake (CDI) (mg/m ³) =
			Excavation Trench	CA	Chemical Concentration in Air	Calculated	mg/m ³	Calculated	CA x ET x EF x ED x CF x 1/AT
				ET	Exposure Time	8	hr/day	(1)	CA calculated using two-film model
				EF	Exposure Frequency	125	days/year	(2)	ů –
				ED	Exposure Duration	1	years	EPA, 1991	
				CF	Conversion Factor	1/24	dav/hour		
				AT-C	Averaging Time (Cancer)	25.550	davs	EPA, 1989	
				AT-N	Averaging Time (Non-Cancer)	365	days	EPA, 1989	

Notes:

(1) Professional Judgment based on construction activities that would occur 8 hrs per day for the Reasonable Maximum Exposure (RME) scenario.

(2) Assumed duration of construction project is 1/2 the working days in a year.

Sources:

EPA, 1989: Risk Assessment Guidance for Superfund. Vol.1: Human Health Evaluation Manual, Part A. OERR. EPA/540/1-89/002.

EPA, 1991: Risk Assessment Guidance for Superfund. Vol.1: Human Health Evaluation Manual - Supplemental Guidance, Standard Default Exposure Factors. Interim Final. OSWER Directive 9285.6-03.

EPA, 1997: Exposure Factors Handbook. EPA/600/P-95/002Fa.

EPA, 2014: Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors, OSWER Directive 9200.1-120, February 6, 2014.

TABLE 4.1.CTE VALUES USED FOR DAILY INTAKE CALCULATIONS CENTRAL TENDENCY EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Future
Medium: Soil* (0-1 foot bgs)
European Mariliana Opilit

Exposure Medium: Soil*

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Rationale/ Reference	Intake Equation/ Model Name
Ingestion	Resident	Adult	Soil*	CS	Chemical Concentration in Soil	See Table 3.3.RME	mg/kg	See Table 3.3.RME	Chronic Daily Intake (CDI) (mg/kg-day) =
				IR-S	Ingestion Rate of Soil	30	mg/day	EPA, 2017 (1)	CS x IR-S x EF x ED x CF1 x 1/BW x 1/AT
				EF	Exposure Frequency	350	days/year	EPA, 2014	
				ED	Exposure Duration	9	years	EPA, 2011 (2)	
				CF1	Conversion Factor 1	0.000001	kg/mg		
				BW	Body Weight	80	kg	EPA, 2014	
				AT-N	Averaging Time (Non-Cancer)	3,285	days	EPA, 1989	
		Child	Soil*	CS	Chemical Concentration in Soil	See Table 3.3.RME	mg/kg	See Table 3.3.RME	CDI (mg/kg-day) =
				IR-S	Ingestion Rate of Soil	64	mg/day	EPA, 2017 (3)	CS x IR-S x EF x ED x CF1 x 1/BW x 1/AT
				EF	Exposure Frequency	350	days/year	EPA, 2014	
				ED	Exposure Duration	6	years	EPA, 2014	
				CF1	Conversion Factor 1	0.000001	kg/mg		
				BW	Body Weight	15	kg	EPA, 2014	
				AT-N	Averaging Time (Non-Cancer)	2,190	days	EPA, 1989	
		Child/Adult	Soil*	CS	Chemical Concentration in Soil	See Table 3.3.RME	mg/kg	See Table 3.3.RME	CDI (mg/kg-day) =
				IR-S-A	Ingestion Rate of Soil, Adult	30	mg/day	EPA, 2017 (1)	CS x IR-S-Adj x EF x CF1 x 1/AT
				IR-S-C	Ingestion Rate of Soil, Child	64	mg/day	EPA, 2017 (3)	
				IR-S-Adj	Ingestion Rate of Soil, Age-adjusted	29	mg-year/kg-day	Calculated	IR-S-Adj (mg-year/kg-day) =
				EF	Exposure Frequency	350	days/year	EPA, 2014	(ED-C x IR-S-C / BW-C) + (ED-A x IR-S-A / BW-A)
				ED-A	Exposure Duration, Adult	9	years	EPA, 2011 (2)	
				ED-C	Exposure Duration, Child	6	years	EPA, 2014	
				CF1	Conversion Factor 1	0.000001	kg/mg		
				BW-A	Body Weight , Adult	80	kg	EPA, 2014	
				BW-C	Body Weight, Child	15	kg	EPA, 2014	
				AT-C	Averaging Time (Cancer)	25,550	days	EPA, 1989	

TABLE 4.1.CTE VALUES USED FOR DAILY INTAKE CALCULATIONS CENTRAL TENDENCY EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Future	
Medium: Soil* (0-1 foot bgs)	
Exposure Medium: Soil*	

Exposure Route Receptor Population Receptor Age Exposure Point Parameter Parameter Definition Value Units Rationale/ Intake Equation/ Code Reference Model Name Soil* See Table 3.3.RME See Table 3.3.RME Resident Adult Chemical Concentration in Soil CDI (mg/kg-day) = Dermal CS mg/kg cm² SA Skin Surface Area Available for Contact 6,032 EPA, 2014 CS x SA x SSAF x DABS x CF1 x EF x mg/cm2-day SSAF Soil to Skin Adherence Factor 0.01 EPA, 2004 ED x 1/BW x 1/AT DABS Dermal Absorption Factor Solids Chemical-specific EPA, 2004 CF1 Conversion Factor 1 0.000001 kg/mg - -EF Exposure Frequency 350 EPA, 2014 davs/vear ED Exposure Duration 9 years EPA, 2011 (2) Body Weight вw 80 EPA, 2014 kg AT-N Averaging Time (Non-Cancer) 3,285 days EPA, 1989 Child Soil* See Table 3.3.RME See Table 3.3.RME CS Chemical Concentration in Soil mg/kg CDI (mg/kg-day) = SA Skin Surface Area Available for Contact 2.373 cm² EPA, 2014 CS x SA x SSAF x DABS x CF1 x EF x mg/cm2-day SSAF Soil to Skin Adherence Factor 0.04 EPA, 2004 ED x 1/BW x 1/AT DABS Dermal Absorption Factor Solids Chemical-specific EPA, 2004 CE1 Conversion Factor 1 0.000001 kg/mg - -Exposure Frequency EPA, 2014 FF 350 days/year FD Exposure Duration 6 EPA, 2014 years BW Body Weight 15 kg EPA, 2014 AT-N Averaging Time (Non-Cancer) 2.190 EPA, 1989 davs Soil* See Table 3.3.RME See Table 3.3.RME Child/Adult CS Chemical Concentration in Soil mg/kg CDI (mg/kg-day) = SA-A Skin Surface Area Available for Contact. Adult 6.032 cm² EPA, 2014 CS x DA-Adj x DABS x CF1 x EF x 1/AT cm² Skin Surface Area Available for Contact, Child SA-C 2,373 EPA, 2014 mg/cm2-day SSAF-A Soil to Skin Adherence Factor, Adult 0.01 EPA, 2004 DA-Adj (mg-year/kg-day) = SSAF-C Soil to Skin Adherence Factor, Child 0.04 mg/cm2-day EPA, 2004 (ED-C x SA-C x SSAF-C / BW-C) + (ED-A x SA-A x SSAF-A / BW-A) Dermal Absorption, Age-adjusted Calculated DA-Adj 45 mg-year/kg-day DABS Dermal Absorption Factor Solids Chemical-specific EPA, 2004 CF1 Conversion Factor 1 0.000001 kg/mg Exposure Frequency FF EPA, 2014 350 days/year Exposure Duration, Adult EPA, 2011 (2) ED-A 9 years ED-C Exposure Duration, Child 6 years EPA, 2014 BW-A Body Weight , Adult 80 EPA, 2014 kg EPA, 2014 BW-C Body Weight, Child 15 kg AT-C Averaging Time (Cancer) 25,550 days EPA, 1989

TABLE 4.1.CTE VALUES USED FOR DAILY INTAKE CALCULATIONS CENTRAL TENDENCY EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Future Medium: Soil* (0-1 foot bgs) Exposure Medium: Soil*

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Rationale/ Reference	Intake Equation/ Model Name
----------------	---------------------	--------------	----------------	-------------------	----------------------	-------	-------	-------------------------	--------------------------------

Notes:

(1) Table 5-1, general population central tendency value for adult.

(2) Table 16-108, 50th percentile value for both sexes. This is the 50th percentile exposure duration for a resident and includes exposure as a child and/or adult. However, for the lifetime resident exposure (child/adult), it is conservatively assumed the ED is 6 years as a child and 9 years as an adult, for a total ED of 15 years.

(3) Table 5-1, calculated using the general population central tendency values for birth to <6 years, based on time-weighted average, as follows: ((0.5 years x 40 mg/day)+(0.5 years x 70 mg/day)+ (1 year x 90 mg/day)+ (4 years x 60 mg/day))/6 years.

* Combined surface and subsurface soil.

Sources:

EPA, 1989: Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual, Part A. OERR. EPA/540/1-89/002.

EPA, 2004 . Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment (Final). EPA/540/R/99/005. July 2004.

EPA, 2011. Exposure Factors Handbook: 2011 Edition. National Center for Environmental Assessment, Washington, DC; EPA/600/R-09/052F. Available from the National Technical Information Service, Springfield, VA.

EPA, 2014: Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors, OSWER Directive 9200.1-120, February 6, 2014.

EPA, 2017. Update for Chapter 5 of the Exposure Factors Handbook. Soil and Dust Ingestion. EPA/600/R-17/384F. September.

TABLE 4.2.CTE VALUES USED FOR DAILY INTAKE CALCULATIONS CENTRAL TENDENCY EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Future
Medium: Soil* (0-1 foot bgs)
Exposure Medium: Air

Exposure Route	Receptor Population	Receptor Age	Exposure Point	Parameter Code	Parameter Definition	Value	Units	Rationale/ Reference	Intake Equation/ Model Name
Inhalation	Resident	Adult	Emissions from Soil*	CS CA PEF ET EF ED CF	Chemical Concentration in Soil Chemical Concentration in Air Particulate Emissions Factor Exposure Time Exposure Frequency Exposure Duration Conversion Factor Averaging Time (Non-Cancer)	See Table 3.3 See Table 3.4 1.36E+09 24 350 9 1/24 3.285	mg/kg mg/m ³ m ³ /kg hour/day days/year years day/hr daye	See Table 3.3 See Table 3.4 EPA, 2002 EPA, 2014 EPA, 2014 EPA, 2011 (1)	Exposure Concentration (EC) $(mg/m^3) =$ CA x ET x EF x ED x CF x 1/AT For chemicals not sufficiently volatile: CA $(mg/m^3) = CS x (1/PEF)$ For sufficiently volatile chemicals: CA $(mg/m^3) = CS x (1/PEF + 1/VF)$
		Child	Emissions from Soil*	CS CA PEF ET EF ED CF AT-N	Chemical Concentration in Soll Chemical Concentration in Air Particulate Emissions Factor Exposure Time Exposure Frequency Exposure Duration Conversion Factor Averaging Time (Non-Cancer)	3,203 See Table 3.3 See Table 3.4 1.36E+09 24 350 6 1/24 2,190	mg/kg mg/m ³ m ³ /kg hour/day days/year years day/hr days	See Table 3.3 See Table 3.4 EPA, 2002 EPA, 2014 EPA, 2014 EPA, 2014 EPA, 1989	EC (mg/m ³) = CA x ET x EF x ED x CF x 1/AT For chemicals not sufficently volatile: CA (mg/m ³) = CS x (1/PEF) For sufficiently volatile chemicals: CA (mg/m ³) = CS x (1/PEF + 1/VF)
		Child/Adult	Emissions from Soil*	CS CA PEF EF ET ED CF AT-C	Chemical Concentration in Soil Chemical Concentration in Air Particulate Emissions Factor Exposure Frequency Exposure Time Exposure Duration Conversion Factor Averaging Time (Cancer)	See Table 3.3 See Table 3.4 1.36E+09 350 24 15 1/24 25,550	mg/kg mg/m ³ m ³ /kg days/year hr/day years day/hr days	See Table 3.3 See Table 3.4 EPA, 2002 EPA, 2014 EPA, 2014 (2) EPA, 1989	EC (mg/m ³) = CA x ET x EF x ED x CF x 1/AT For chemicals not sufficently volatile: CA (mg/m ³) = CS x (1/PEF) For sufficiently volatile chemicals: CA (mg/m ³) = CS x (1/PEF + 1/VF)

Notes:

(1) Table 16-108, 50th percentile value for both sexes.

(2) ED for the child/adult resident is equal to the sum of the ED for child resident and the ED for adult resident.

* Combined surface and subsurface soil.

Sources:

EPA, 1989: Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual, Part A. OERR. EPA/540/1-89/002.

EPA, 2002: Supplemental Guidance for Developing Soil Screening Levels for Superfund Sites. OSWER 9355.4-24.

EPA, 2014: Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors, OSWER Directive 9200.1-120, February 6, 2014.

TABLE 5.1 NON-CANCER TOXICITY DATA -- ORAL/DERMAL UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Chemical of Potential	Chronic/ Subchronic	Oral RfD		Oral Absorption Efficiency for Dermal	Absorbed RfI	D for Dermal (2)	Primary Target	Combined Uncertainty/Modifying	RfD:Target Organ(s)	
Concern		Value	Units	(1)	Value	Units	Organ(s)	Factors	Source(s)	Date(s) (MM/DD/YYYY)
Benzo(a)anthracene	Chronic/Subchronic	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(a)pyrene	Chronic	3.0E-04	mg/kg-day	58 - 89%	3.0E-04	mg/kg-day	Developmental	300	IRIS	05/18/2021
	Subchronic	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(b)fluoranthene	Chronic/Subchronic	NA	NA	NA	NA	NA	NA	NA	NA	NA
Benzo(k)fluoranthene	Chronic/Subchronic	NA	NA	NA	NA	NA	NA	NA	NA	NA
Dibenz(a,h)anthracene	Chronic/Subchronic	NA	NA	NA	NA	NA	NA	NA	NA	NA
Indeno(1,2,3-cd)pyrene	Chronic/Subchronic	NA	NA	NA	NA	NA	NA	NA	NA	NA
Lead	Chronic/Subchronic	NA	NA	NA	NA	NA	NA	NA	NA	NA

Definitions:

Notes:

 Source: Risk Assessment Guidance for Superfund. Volume 1: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final. Section 4.2 and Exhibit 4-1. EPA recommends that the oral RfD should not be adjusted to

estimate the absorbed dose for compounds when the absorption efficiency is greater than 50%.

Constituents that do not have oral absorption efficiencies reported on this table

were assumed to have an oral absorption efficiency of 100%.

(2) Adjusted based on RAGS Part E.

IRIS = Integrated Risk Information System

mg/kg-day = milligram per kilogram per day

NA = Not Available/Not Applicable

RfD = Reference Dose

TABLE 5.2 NON-CANCER TOXICITY DATA -- INHALATION UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Chemical of Potential	Chronic/ Subchronic	Inhalat	ion RfC	Primary Target	Combined Uncertainty/Modifying	RfC : Target Organ(s)		
Concern		Value	Units	Organ(s)	Factors	Source(s)	Date(s) (MM/DD/YYYY)	
Benzo(a)anthracene	Chronic/Subchronic	NA	NA	NA	NA	NA	NA	
Benzo(a)pyrene	Chronic	2.0E-06	mg/m ³	Developmental	3000	IRIS	05/18/2021	
	Subchronic	NA	NA	NA	NA	NA	NA	
Benzo(b)fluoranthene	Chronic/Subchronic	NA	NA	NA	NA	NA	NA	
Benzo(k)fluoranthene	Chronic/Subchronic	NA	NA	NA	NA	NA	NA	
Dibenz(a,h)anthracene	Chronic/Subchronic	NA	NA	NA	NA	NA	NA	
Indeno(1,2,3-cd)pyrene	Chronic/Subchronic	NA	NA	NA	NA	NA	NA	
Lead	Chronic/Subchronic	NA	NA	NA	NA	NA	NA	

Definitions:

IRIS = Integrated Risk Information System

mg/m³ = milligram per cubic meter

NA = Not Available/Not Applicable

RfC = Reference Concentration

TABLE 6.1 CANCER TOXICITY DATA -- ORAL/DERMAL UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Chemical of Potential	Oral Cancer	Slope Factor	Oral Absorption Efficiency for Dermal	Absorbed Cancer Slope Factor for Dermal (2)		Weight of Evidence/ Cancer Guideline	Oral CSF	
Concern	Value	Units	(1)	Value	Units	Description	Source(s)	Date(s) (MM/DD/YYYY)
Benzo(a)anthracene (3)	1.0E-01	(mg/kg-day)⁻¹	58 - 89%	1.0E-01	(mg/kg-day) ⁻¹	B2	RSL (4)	05/2021
Benzo(a)pyrene (3)	1.0E+00	(mg/kg-day) ⁻¹	58 - 89%	1.0E+00	(mg/kg-day)⁻¹	Carcinogenic to humans	IRIS	05/18/2021
Benzo(b)fluoranthene (3)	1.0E-01	(mg/kg-day) ⁻¹	58 - 89%	1.0E-01	(mg/kg-day)⁻¹	B2	RSL (4)	05/2021
Benzo(k)fluoranthene (3)	1.0E-02	(mg/kg-day) ⁻¹	58 - 89%	1.0E-02	(mg/kg-day) ⁻¹	B2	RSL (4)	05/2021
Dibenz(a,h)anthracene (3)	1.0E+00	(mg/kg-day) ⁻¹	58 - 89%	1.0E+00	(mg/kg-day) ⁻¹	B2	RSL (4)	05/2021
Indeno(1,2,3-cd)pyrene (3)	1.0E-01	(mg/kg-day) ⁻¹	58 - 89%	1.0E-01	(mg/kg-day)⁻¹	B2	RSL (4)	05/2021
Lead	NA	NA	NA	NA	NA	B2	IRIS	05/18/2021

Notes:

 (1) Source: Risk Assessment Guidance for Superfund. Volume 1: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment) Final.
Section 4.2 and Exhibit 4-1. USEPA recommends that the oral slope factor should not be adjusted to estimate the absorbed dose for compounds when the absorption efficiency is greater than 50%. Constituents that do not have oral absorption efficiencies reported on this table were assumed to have an oral absorption efficiency of 100%. Definitions:

CSF = Cancer Slope Factor

IRIS = Integrated Risk Information System

mg/kg-day = milligram per kilogram per day

NA = Not Available/Not Applicable

RSL = regional screening level

(2) Adjusted based on RAGS Part E.

(3) This chemical operates with a mutagenic mode of action.

Chemical-specific data are not available; therefore, default age-dependent adjustment factors (ADAF) will be applied to the CSF as follows:

AGE	AGE ADAF	EXPOSURE DURATION (years)
0-<2	10	2
2-<6	3	4
6-<16	3	10
16-<26	1	10

(4) CSF was calculated using relative potency factors based on to the carcinogenic potency of the compound relative to that of benzo(a)pyrene.

Weight of Evidence definitions:

Group B2 chemicals (probable human carcinogens) are agents for which there is sufficient evidence of carcinogenicity in animals but inadequate or a lack of evidence in humans.

TABLE 6.2 CANCER TOXICITY DATA -- INHALATION UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Chemical of Potential	Unit	Risk	Weight of Evidence/ Cancer Guideline	Unit Risk			
Concern	Value	Units	Description	Source(s)	Date(s) (MM/DD/YYYY)		
Benzo(a)anthracene (1)	6.0E-05	(µg/m ³) ⁻¹	В2	RSL (2)	05/2021		
Benzo(a)pyrene (1)	6.0E-04	(µg/m ³) ⁻¹	Carcinogenic to humans	IRIS	05/18/2021		
Benzo(b)fluoranthene (1)	6.0E-05	(µg/m ³) ⁻¹	B2	RSL (2)	05/2021		
Benzo(k)fluoranthene (1)	6.0E-06	(µg/m ³) ⁻¹	B2	RSL (2)	05/2021		
Dibenz(a,h)anthracene (1)	6.0E-04	(µg/m ³) ⁻¹	B2	RSL (2)	05/2021		
Indeno(1,2,3-cd)pyrene (1))pyrene (1) 6.0E-05 (μg/m ³) ⁻¹		B2	RSL (2)	05/2021		
ead NA		NA	B2	IRIS	05/18/2021		

Notes:

(1) This chemical operates with a mutagenic mode of action.

Chemical-specific data are not available; therefore, default age-dependent adjustment factors (ADAF) will be applied to the slope factor as follows:

AGE	AGE ADAF	EXPOSURE DURATION (years)
0-<2	10	2
2-<6	3	4
6-<16	3	10
16-<26	1	10

(2) Unit risk factor was calculated using relative potency factors based on to the carcinogenic potency of the compound relative to that of benzo(a)pyrene.

Weight of Evidence definitions:

Group B2 chemicals (probable human carcinogens) are agents for which there is sufficient evidence of carcinogenicity in animals but inadequate or a lack of evidence in humans.

Definitions:

IRIS = Integrated Risk Information System

NA = Not Available/Not Applicable

RSL = regional screening level

 μ g/m³ = microgram per cubic meter

TABLE 7.1.RME CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timefram	e: Current/Future
Receptor Population	n: Industrial Worker
Receptor Age: Adul	t

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	E	PC	Cancer Risk Calculations					Non-Cancer Hazard Calculations				
				Potential Concern	Value	Units	Intake/Exposu	Intake/Exposure Concentration CSF/Unit Risk		Cancer Risk	Intake/Exposu	e Concentration	on RfD/RfC		Hazard Quotient	
							Value	Units	Value	Units		Value	Units	Value	Units	
Surface Soil	Surface Soil	Surface Soil	Ingestion	Benzo(a)anthracene	1.6E+01	mg/kg	1.0E-06	mg/kg/day	1.0E-01	1/(mg/kg/day)	1E-07	2.8E-06	mg/kg/day	NA	NA	NA
(0 to 0.5 feet bgs)				Benzo(a)pyrene	2.0E+01	mg/kg	1.3E-06	mg/kg/day	1.0E+00	1/(mg/kg/day)	1E-06	3.6E-06	mg/kg/day	3.0E-04	mg/kg/day	1.2E-02
				Benzo(b)fluoranthene	1.9E+01	mg/kg	1.2E-06	mg/kg/day	1.0E-01	1/(mg/kg/day)	1E-07	3.4E-06	mg/kg/day	NA	NA	NA
				Benzo(k)fluoranthene	9.9E+00	mg/kg	6.3E-07	mg/kg/day	1.0E-02	1/(mg/kg/day)	6E-09	1.8E-06	mg/kg/day	NA	NA	NA
				Dibenz(a,h)anthracene	2.5E+00	mg/kg	1.6E-07	mg/kg/day	1.0E+00	1/(mg/kg/day)	2E-07	4.4E-07	mg/kg/day	NA	NA	NA
				Indeno(1,2,3-cd)pyrene	1.4E+01	mg/kg	8.8E-07	mg/kg/day	1.0E-01	1/(mg/kg/day)	9E-08	2.5E-06	mg/kg/day	NA	NA	NA
				Lead	9.2E+01	mg/kg	5.9E-06	mg/kg/day	NA	NA	NA	1.6E-05	mg/kg/day	NA	NA	NA
			Exp. Route Total								2E-06					1E-02
Surface Soil	Surface Soil	Surface Soil	Dermal	Benzo(a)anthracene	1.6E+01	mg/kg	5.5E-07	mg/kg/day	1.0E-01	1/(mg/kg/day)	6E-08	1.5E-06	mg/kg/day	NA	NA	NA
(0 to 0.5 feet bgs)				Benzo(a)pyrene	2.0E+01	mg/kg	7.1E-07	mg/kg/day	1.0E+00	1/(mg/kg/day)	7E-07	2.0E-06	mg/kg/day	3.0E-04	mg/kg/day	6.7E-03
				Benzo(b)fluoranthene	1.9E+01	mg/kg	6.6E-07	mg/kg/day	1.0E-01	1/(mg/kg/day)	7E-08	1.8E-06	mg/kg/day	NA	NA	NA
				Benzo(k)fluoranthene	9.9E+00	mg/kg	3.5E-07	mg/kg/day	1.0E-02	1/(mg/kg/day)	3E-09	9.7E-07	mg/kg/day	NA	NA	NA
				Dibenz(a,h)anthracene	2.5E+00	mg/kg	8.7E-08	mg/kg/day	1.0E+00	1/(mg/kg/day)	9E-08	2.4E-07	mg/kg/day	NA	NA	NA
				Indeno(1,2,3-cd)pyrene	1.4E+01	mg/kg	4.8E-07	mg/kg/day	1.0E-01	1/(mg/kg/day)	5E-08	1.4E-06	mg/kg/day	NA	NA	NA
				Lead	9.2E+01	mg/kg	2.5E-07	mg/kg/day	NA	NA	NA	6.9E-07	mg/kg/day	NA	NA	NA
			Exp. Route Total	Ĭ					-	·	1E-06			•		7E-03
		Exposure Point Total	н-								3E-06					2E-02
	Exposure Medium Tota	al									3E-06					2E-02
	ĺ															
Surface Soil	Ambient Air	Emissions from	Inhalation	Benzo(a)anthracene	4.1E-06	mg/m ³	6.9E-08	mg/m ³	6.0E-05	1/(ug/m ³)	4E-09	1.9E-07	mg/m ³	NA	NA	NA
(0 to 0.5 feet bgs)		Surface Soil		Benzo(a)pyrene	1.5E-08	mg/m ³	2.5E-10	mg/m ³	6.0E-04	1/(ug/m ³)	2E-10	7.1E-10	mg/m ³	2.0E-06	mg/m ³	4E-04
				Benzo(b)fluoranthene	1.4E-08	mg/m ³	2.4E-10	mg/m ³	8.4E-02	1/(ug/m ³)	2E-08	6.6E-10	mg/m ³	NA	NA	NA
				Benzo(k)fluoranthene	7.3E-09	mg/m ³	1.2E-10	mg/m ³	6.0E-06	1/(ug/m ³)	7E-13	3.5E-10	mg/m ³	NA	NA	NA
				Dibenz(a,h)anthracene	1.8E-09	ma/m ³	3.1E-11	ma/m ³	6.0E-04	1/(ug/m ³)	2E-11	8.7E-11	ma/m ³	NA	NA	NA
				Indeno(1,2,3-cd)pyrene	1.0E-08	ma/m ³	1.7E-10	ma/m ³	6.0E-05	1/(ug/m ³)	1E-11	4.8E-10	ma/m ³	NA	NA	NA
				Lead	6.8E-08	ma/m ³	1.1E-09	ma/m ³	NA	NA	NA	3.2E-09	ma/m ³	NA	NA	NA
						3		3					3			
			Exp. Route Total)							2E-08					4E-04
		Exposure Point Total)							2E-08					4E-04
	Exposure Medium Tota	al)[2E-08		4E-04			
Soil Total)[3E-06					2E-02
Receptor Total										3E-06		2E-02				

Notes:

bgs = below ground surface

CSF = Cancer slope factor

EPC = Exposure point concentration

NA = Not applicable/Not available RfC = Reference concentration

RfD = Reference dose

TABLE 7.2.RME CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Current/Future Receptor Population: Trespasser/Visitor Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	E	PC		ancer Risk Calculati	ons		Non-Cancer Hazard Calculations			ulations		
				Potential Concern	Value	Units	Intake/Exposure Concentration CSF/Unit Risk		Cancer Risk	Intake/Exposure Concentration RfD/RfC)/RfC	Hazard Quotient			
							Value	Units	Value	Units		Value	Units	Value	Units	
Surface Soil	Surface Soil	Surface Soil	Ingestion	Benzo(a)anthracene	1.6E+01	mg/kg	8.0E-07	mg/kg/day	1.0E-01	1/(mg/kg/day)	8E-08	2.8E-06	mg/kg/day	NA	NA	NA
(0 to 0.5 feet bgs)				Benzo(a)pyrene	2.0E+01	mg/kg	1.0E-06	mg/kg/day	1.0E+00	1/(mg/kg/day)	1E-06	3.6E-06	mg/kg/day	3.0E-04	mg/kg/day	1.2E-02
				Benzo(b)fluoranthene	1.9E+01	mg/kg	9.6E-07	mg/kg/day	1.0E-01	1/(mg/kg/day)	1E-07	3.4E-06	mg/kg/day	NA	NA	NA
				Benzo(k)fluoranthene	9.9E+00	mg/kg	5.1E-07	mg/kg/day	1.0E-02	1/(mg/kg/day)	5E-09	1.8E-06	mg/kg/day	NA	NA	NA
				Dibenz(a,h)anthracene	2.5E+00	mg/kg	1.3E-07	mg/kg/day	1.0E+00	1/(mg/kg/day)	1E-07	4.4E-07	mg/kg/day	NA	NA	NA
				Indeno(1,2,3-cd)pyrene	1.4E+01	mg/kg	7.0E-07	mg/kg/day	1.0E-01	1/(mg/kg/day)	7E-08	2.5E-06	mg/kg/day	NA	NA	NA
				Lead	9.2E+01	mg/kg	4.7E-06	mg/kg/day	NA	NA	NA	1.6E-05	mg/kg/day	NA	NA	NA
			Exp. Route Total								1E-06					1E-02
Surface Soil	Surface Soil	Surface Soil	Dermal	Benzo(a)anthracene	1.6E+01	mg/kg	4.4E-07	mg/kg/day	1.0E-01	1/(mg/kg/day)	4E-08	1.5E-06	mg/kg/day	NA	NA	NA
(0 to 0.5 feet bgs)				Benzo(a)pyrene	2.0E+01	mg/kg	5.7E-07	mg/kg/day	1.0E+00	1/(mg/kg/day)	6E-07	2.0E-06	mg/kg/day	3.0E-04	mg/kg/day	6.6E-03
				Benzo(b)fluoranthene	1.9E+01	mg/kg	5.3E-07	mg/kg/day	1.0E-01	1/(mg/kg/day)	5E-08	1.8E-06	mg/kg/day	NA	NA	NA
				Benzo(k)fluoranthene	9.9E+00	mg/kg	2.8E-07	mg/kg/day	1.0E-02	1/(mg/kg/day)	3E-09	9.7E-07	mg/kg/day	NA	NA	NA
				Dibenz(a,h)anthracene	2.5E+00	mg/kg	6.9E-08	mg/kg/day	1.0E+00	1/(mg/kg/day)	7E-08	2.4E-07	mg/kg/day	NA	NA	NA
				Indeno(1,2,3-cd)pyrene	1.4E+01	mg/kg	3.9E-07	mg/kg/day	1.0E-01	1/(mg/kg/day)	4E-08	1.4E-06	mg/kg/day	NA	NA	NA
				Lead	9.2E+01	mg/kg	2.0E-07	mg/kg/day	NA	NA	NA	6.9E-07	mg/kg/day	NA	NA	NA
			Exp. Route Total								8E-07					7E-03
		Exposure Point Total									2E-06					2E-02
	Exposure Medium Tota	al	-		-				-	T	2E-06				-	2E-02
Surface Sail	Ambient Air	Emissions from	Inholation	Ponzo(a)anthracana	4 15 06								2			
O to 0 E feet here)	Ambient All	Emissions from	Innaiauon	Benze (a)numacene	4.12-00	mg/m [°]	2.8E-08	mg/m ³	6.0E-05	1/(ug/m³)	2E-09	9.6E-08	mg/m ³	NA	NA	NA
(0 to 0.5 leet bgs)		Surface Soli		Benze(h)fluerenthene	1.5=-00	mg/m [°]	1.0E-10	mg/m ³	6.0E-04	1/(ug/m³)	6E-11	3.6E-10	mg/m ³	2.0E-06	mg/m°	2E-04
				Benze(k)fluerenthene	7.25.00	mg/m [°]	9.4E-11	mg/m ³	8.4E-02	1/(ug/m³)	8E-09	3.3E-10	mg/m ³	NA	NA	NA
				Dihonz(a b)anthracono	1.3E-09	mg/m ³	5.0E-11	mg/m ³	6.0E-06	1/(ug/m ³)	3E-13	1.7E-10	mg/m ³	NA	NA	NA
				Indeped(1,2,2, ad)pyrane	1.00-09	mg/m [°]	1.2E-11	mg/m ³	6.0E-04	1/(ug/m³)	7E-12	4.3E-11	mg/m ³	NA	NA	NA
				Indeno(1,2,3-cd)pyrene	1.0E-00	mg/m [°]	6.9E-11	mg/m ³	6.0E-05	1/(ug/m³)	4E-12	2.4E-10	mg/m ³	NA	NA	NA
				Leau	0.0E-U0	mg/m³	4.6E-10	mg/m°	NA	NA	NA	1.6E-09	mg/m°	NA	NA	NA
			Exp. Route Total	<u></u>			i	1	1		1E-08		1		•	2E-04
		Exposure Point Total		ĵ							1E-08					2E-04
	Exposure Medium Tota	al)							1E-08					2E-04
Soil Total)							2E-06					2E-02
Receptor Total											2E-06					2E-02

Notes:

bgs = below ground surface

CSF = Cancer slope factor

EPC = Exposure point concentration NA = Not applicable/Not available

RfC = Reference concentration

RfD = Reference dose
TABLE 7.3.RME CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe:	Current/Future
Receptor Population:	Trespasser/Visitor
Receptor Age: Adoles	cent

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	E	PC		Ca	ancer Risk Calculati	ons			Non-C	ancer Hazard Calc	ulations	
				Potential Concern	Value	Units	Intake/Exposu	e Concentration	CSF/L	Jnit Risk	Cancer Risk	Intake/Exposu	e Concentration	RfD	/RfC	Hazard Quotient
							Value	Units	Value	Units		Value	Units	Value	Units	
Surface Soil	Surface Soil	Surface Soil	Ingestion	Benzo(a)anthracene	1.6E+01	mg/kg	5.3E-07	mg/kg/day	3.0E-01	1/(mg/kg/day)	2E-07	4.1E-06	mg/kg/day	NA	NA	NA
(0 to 1 foot bgs)				Benzo(a)pyrene	2.0E+01	mg/kg	6.8E-07	mg/kg/day	3.0E+00	1/(mg/kg/day)	2E-06	5.3E-06	mg/kg/day	3.0E-04	mg/kg/day	1.8E-02
				Benzo(b)fluoranthene	1.9E+01	mg/kg	6.3E-07	mg/kg/day	3.0E-01	1/(mg/kg/day)	2E-07	4.9E-06	mg/kg/day	NA	NA	NA
				Benzo(k)fluoranthene	9.9E+00	mg/kg	3.3E-07	mg/kg/day	3.0E-02	1/(mg/kg/day)	1E-08	2.6E-06	mg/kg/day	NA	NA	NA
				Dibenz(a,h)anthracene	2.5E+00	mg/kg	8.3E-08	mg/kg/day	3.0E+00	1/(mg/kg/day)	2E-07	6.5E-07	mg/kg/day	NA	NA	NA
				Indeno(1,2,3-cd)pyrene	1.4E+01	mg/kg	4.6E-07	mg/kg/day	3.0E-01	1/(mg/kg/day)	1E-07	3.6E-06	mg/kg/day	NA	NA	NA
				Lead	9.2E+01	mg/kg	3.1E-06	mg/kg/day	NA	NA	NA	2.4E-05	mg/kg/day	NA	NA	NA
			Exp. Route Total								3E-06					2E-02
Surface Soil	Surface Soil	Surface Soil	Dermal	Benzo(a)anthracene	1.6E+01	mg/kg	7.5E-07	mg/kg/day	3.0E-01	1/(mg/kg/day)	2E-07	5.8E-06	mg/kg/day	NA	NA	NA
(0 to 1 foot bgs)				Benzo(a)pyrene	2.0E+01	mg/kg	9.6E-07	mg/kg/day	3.0E+00	1/(mg/kg/day)	3E-06	7.5E-06	mg/kg/day	3.0E-04	mg/kg/day	2.5E-02
				Benzo(b)fluoranthene	1.9E+01	mg/kg	8.9E-07	mg/kg/day	3.0E-01	1/(mg/kg/day)	3E-07	6.9E-06	mg/kg/day	NA	NA	NA
				Benzo(k)fluoranthene	9.9E+00	mg/kg	4.7E-07	mg/kg/day	3.0E-02	1/(mg/kg/day)	1E-08	3.6E-06	mg/kg/day	NA	NA	NA
				Dibenz(a,h)anthracene	2.5E+00	mg/kg	1.2E-07	mg/kg/day	3.0E+00	1/(mg/kg/day)	4E-07	9.1E-07	mg/kg/day	NA	NA	NA
				Indeno(1,2,3-cd)pyrene	1.4E+01	mg/kg	6.5E-07	mg/kg/day	3.0E-01	1/(mg/kg/day)	2E-07	5.1E-06	mg/kg/day	NA	NA	NA
				Lead	9.2E+01	mg/kg	3.3E-07	mg/kg/day	NA	NA	NA	2.6E-06	mg/kg/day	NA	NA	NA
			Exp. Route Total								4E-06					2E-02
		Exposure Point Total									7E-06					4E-02
	Exposure Medium Tota	al	-						-	-	7E-06			-		4E-02
Surface Soil	Ambient Air	Emissions from	Inhalation	Benzo(a)anthracene	4.1E-06	mg/m ³	1.2E-08	mg/m ³	1.8E-04	1/(ug/m ³)	2E-09	9.6E-08	mg/m ³	NA	NA	NA
(0 to 1 foot bgs)		Surface Soil		Benzo(a)pyrene	1.5E-08	mg/m ³	4.6E-11	mg/m ³	1.8E-03	1/(ug/m ³)	8E-11	3.6E-10	mg/m ³	2.0E-06	mg/m ³	2E-04
				Benzo(b)fluoranthene	1.4E-08	mg/m ³	4.2E-11	mg/m ³	2.5E-01	1/(ug/m ³)	1E-08	3.3E-10	mg/m ³	NA	NA	NA
				Benzo(k)fluoranthene	7.3E-09	mg/m ³	2.2E-11	mg/m ³	1.8E-05	1/(ug/m ³)	4E-13	1.7E-10	mg/m ³	NA	NA	NA
				Dibenz(a,h)anthracene	1.8E-09	mg/m ³	5.6E-12	mg/m ³	1.8E-03	1/(ug/m ³)	1E-11	4.3E-11	mg/m ³	NA	NA	NA
				Indeno(1,2,3-cd)pyrene	1.0E-08	mg/m ³	3.1E-11	mg/m ³	1.8E-04	1/(ug/m ³)	6E-12	2.4E-10	mg/m ³	NA	NA	NA
				Lead	6.8E-08	mg/m ³	2.1E-10	mg/m ³	NA	NA	NA	1.6E-09	mg/m ³	NA	NA	NA
							ļ			<u> </u>						<u> </u>
			Exp. Route Total	Į							1E-08					2E-04
		Exposure Point Total		Į							1E-08					2E-04
	Exposure Medium Tota	al		Į							1E-08					2E-04
Soil Total	stal construction of the second se				4E-02											
Receptor Total				I <u></u>			I				7E-06					4E-02

Notes:

bgs = below ground surface

CSF = Cancer slope factor

EPC = Exposure point concentration NA = Not applicable/Not available

RfC = Reference concentration

RfD = Reference dose

TABLE 7.4.RME CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe:	Future
Receptor Population:	Resident
Receptor Age: Adult	

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	E	PC		Ca	ncer Risk Calculati	ions			Non-C	Cancer Hazard Calc	ulations	
				Potential Concern	Value	Units	Intake/Exposu	e Concentration	CSF/L	Jnit Risk	Cancer Risk	Intake/Exposur	re Concentration	RfE	/RfC	Hazard Quotient
							Value	Units	Value	Units		Value	Units	Value	Units	
Collt	Collt	Collt	la an atlan	Panza/a)anthrasana	1.65.01	malla					NA	4.05.05				NA
(0 to 1 foot box)	301	301	Ingestion	Benzo(a)antinacene	1.00+01	mg/kg	NA	NA	NA	NA	NA	1.9E-05	mg/kg/day	NA 2.0E.04	NA	1 95 02
(0 to 1 toot bgs)				Benze(b)fluerenthene	2.25.01	mg/kg	NA	NA	NA	NA	NA	1.4E-05	mg/kg/day	3.0E-04	mg/kg/day	4.0E=U2
				Benze(l/)fluerenthene	2.201	mg/kg	NA	NA	NA	NA	NA	2.6E-05	mg/kg/day	NA	NA	NA NA
				Dihenz(a, b)enthresene	9.207.00	mg/kg	NA	NA	NA	NA	N/A	1.1E-05	mg/kg/day	NA	NA	NA NA
				Dibenz(a,n)anthracene	3.0E+00	mg/kg	NA	NA	NA	NA	NA	3.6E-06	mg/kg/day	NA	NA	NA
				Indeno(1,2,3-cd)pyrene	1.4E+01	mg/kg	NA	NA	NA	NA	NA	1.7E-05	mg/kg/day	NA	NA	NA
				Lead	8.3E+01	mg/kg	NA	NA	NA	NA	NA	9.9E-05	mg/kg/day	NA	NA	NA
			Exp. Route Total	i			<u> </u>	1			NA			1		5E-02
)				1					
Soil*	Soil*	Soil*	Dermal	Benzo(a)anthracene	1.6E+01	mg/kg	NA	NA	NA	NA	NA	1.0E-05	mg/kg/day	NA	NA	NA
(0 to 1 foot bgs)				Benzo(a)pyrene	1.2E+01	mg/kg	NA	NA	NA	NA	NA	7.9E-06	mg/kg/day	3.0E-04	mg/kg/day	2.6E-02
				Benzo(b)fluoranthene	2.2E+01	mg/kg	NA	NA	NA	NA	NA	1.4E-05	mg/kg/day	NA	NA	NA
				Benzo(k)fluoranthene	9.2E+00	mg/kg	NA	NA	NA	NA	NA	6.0E-06	mg/kg/day	NA	NA	NA
				Dibenz(a,h)anthracene	3.0E+00	mg/kg	NA	NA	NA	NA	NA	2.0E-06	mg/kg/day	NA	NA	NA
				Indeno(1,2,3-cd)pyrene	1.4E+01	mg/kg	NA	NA	NA	NA	NA	9.5E-06	mg/kg/day	NA	NA	NA
				Lead	8.3E+01	mg/kg	NA	NA	NA	NA	NA	4.2E-06	mg/kg/day	NA	NA	NA
			Exp. Pouto Total				J				NA					3E 02
		Exposure Point Total	Exp. Noule Total								NA					7E-02
	Exposure Medium Tota	al		l							NA					7E-02
	1			1												
Soil*	Ambient Air	Emissions from	Inhalation	Benzo(a)anthracene	4.1E-06	mg/m ³	NA	NA	NA	NA	NA	3.9E-06	mg/m ³	NA	NA	NA
(0 to 1 foot bgs)		Soil*		Benzo(a)pyrene	8.8E-09	ma/m ³	NA	NA	NA	NA	NA	8.4E-09	mg/m ³	2.0E-06	ma/m ³	4E-03
				Benzo(b)fluoranthene	1.6E-08	ma/m ³	NA	NA	NA	NA	NA	1.5E-08	mg/m ³	NA	NA	NA
				Benzo(k)fluoranthene	6.8E-09	ma/m ³	NA	NA	NA	NA	NA	6.5E-09	mg/m ³	NA	NA	NA
				Dibenz(a,h)anthracene	2.2E-09	ma/m ³	NA	NA	NA	NA	NA	2.1E-09	mg/m ³	NA	NA	NA
				Indeno(1,2,3-cd)pyrene	1.1E-08	ma/m ³	NA	NA	NA	NA	NA	1.0E-08	mg/m ³	NA	NA	NA
				Lead	6.1E-08	mg/m ³	NA	NA	NA	NA	NA	5.8E-08	mg/m ³	NA	NA	NA
			For Deute Total	J			<u> </u>									45.00
		Exposure Point Total	Exp. Route Total	∦							NA NA					4E-03
	Exposure Medium Tota	al		\ <u></u>							NA					4E-03
Soil Total				/			1				NA					8E-02
							i				n					
Groundwater	Groundwater	Tap Water	Indestion	Benzo(a)anthracene	3.1E-02	ua/L	NA	NA	NA	NA	NA	9.3E-07	mg/kg/day	NA	NA	NA
				Lead	9.1E+00	μg/L	NA	NA	NA	NA	NA	2.7E-04	mg/kg/day	NA	NA	NA
			Exp. Route Total								NA					NA
Groundwater	Groundwater	Tap Water	Dermal	Benzo(a)anthracene	3.1E-02	µg/L	NA	NA	NA	NA	NA	1.4E-05	mg/kg/day	NA	NA	NA
				Lead	9.1E+00	µg/L	NA	NA	NA	NA	NA	1.6E-07	mg/kg/day	NA	NA	NA
				<u> </u>			ļ				l					
		Eveneeure Daint Tatal	Exp. Route fotal				Į				NA					NA
	Eveneure Medium tota	Exposure Point Total		Į							NA					NA
	Exposure Medium tota										NA					NA

TABLE 7.4.RME CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe:	Future
Receptor Population:	Resident
Receptor Age: Adult	

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	E	PC		Ca	ancer Risk Calculat	ions		Non-Cancer Hazard Calculations				
				Potential Concern	Value	Units	Intake/Exposur	Intake/Exposure Concentration CSF/Unit Risk C		Cancer Risk	Intake/Exposu	re Concentration	RfD	D/RfC	Hazard Quotient	
							Value	Units	Value	Units		Value	Units	Value	Units	
Groundwater	Air	Water Vapor at Showerhead	Inhalation	Benzo(a)anthracene	9.6E-08	mg/m ³	NA	NA	NA	NA	NA	2.7E-09	mg/m ³	NA	NA	NA
			Exp. Route Total								NA					NA
		Exposure Point Total									NA					NA
	Exposure Medium total								NA				NA			
Groundwater Total	undwater Total										NA					NA
Receptor Total										NA				8E-02		

Notes:

bgs = below ground surface CSF = Cancer slope factor

EPC = Exposure point concentration

NA = Not applicable/Not available

RfC = Reference concentration

RfD = Reference dose

TABLE 7.4.RME SUPPLEMENT A CALCULATION OF DAEVENT REASONABLE MAXIMUM EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Future Receptor Population: Resident Receptor Age: Adult

Chemical of Potential Concern	Groundwater Concentration (CW) (ug/L)	Permeability Coefficient (Kp) (cm/hr)	B (dimensionless)	Lag Time (τ _{event}) (hr)	t* (hr)	Fraction Absorbed Water (FA) (dimensionless)	Duration of Event (tevent) (hr)	DAevent (mg/cm ² -event)	Eq
Benzo(a)anthracene	3.10E-02	5.5E-01	3.2E+00	2.0E+00	8.5E+00	1.0E+00	0.71	5.6E-08	2
Lead	9.06E+00	1.0E-04	NA	NA	NA	1.0E+00	0.71	6.4E-10	1

Inorganics: DAevent (mg/cm ² -event):		
DA _{event} =	Kp x CW x tevent x CF1 x CF2	(Eq 1)
Organics: DAevent (mg/cm ² -event):		
DA _{event} =	t _{event} ≤ t*: DA _{event} (mg/cm ² -event) =	
	2 x FA x Kp x Cw x (sqrt((6 x τ x $t_{event})$ / (3.1415))) x CF1 x CF2	(Eq 2)
	t _{event} >t*: DA _{event} (mg/cm ² -event) =	
	FA x Kp x CW x ($t_{event}/(1+B) + 2 x \tau x ((1 + 3B + 3B^2)/(1+B)^2)) xCF1 x CF2$	(Eq 3)

Notes:

Values for permeability constants, B, tau, t*, and FA are from EPA 2004, *Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment - Final).* EPA/540/R/99/005.

B - Dimensionless ratio of the permeability coefficient of a compound through the stratum corneum relative to its permeability

coefficient across the viable epidermis (dimensionless).

cm/hr - centimeter per hour

hr - hour

mg/cm²-event - milligram per square centimeter per event

µg/L - microgram per liter

NA - Not applicable

t* - Time to reach steady-state

CF1 - Conversion Factor 1 (0.001 mg/µg), CF2 - Conversion Factor 2 (0.001 L/cm³)

TABLE 7.4.RME SUPPLEMENT B Inhalation Exposure Concentrations from Foster and Chrostowski Shower Model Adult Resident

Adult Resident

UXO 002, OU2 Remedial Investigation

NAS Patuxent River, Maryland

Chemical of Potential Concern	Exposure Point Concentration Cwo (µg/L)	Molecular weight (MW) (g/mole)	Henry's Law Constant (H) (atm-m³/mole)	Kg (VOC) (cm/hr)	KI (VOC) (cm/hr)	KL (cm/hr)	Kal (cm/hr)	Cwd (µg/L)	S (µg/m³ -min)	Ca (mg/m³)
Benzo(a)anthracene	3.1E-02	2.3E+02	1.2E-05	8.4E+02	8.8E+00	4.0E-01	5.4E-01	1.4E-04	1.2E-04	9.6E-08

	Variables	Units Exposu	re Assumptions
Kg(VOC) = gas-film mass	transfer coefficient	cm/hr	Solved by Eq 1
KI(VOC) = liquid-film mass	s transfer coefficient	cm/hr	Solved by Eq 2
KL = overall mass transfer	r coefficient	cm/hr	Solved by Eq 3
Kal = adjusted overall mas	ss transfer coeff.	cm/hr	Solved by Eq 4
TI = Calibration temp. of w	ater	K (20C +273)	293
Ts = Shower water tempe	rature	k (45C)	318
Us = water viscosity at Ts		centipoise	0.596
UI = water viscosity at TI		ср	1.002
Cwd = conc. leaving dropl	ets after time sdt	μg/l	Solved by Eq 5
sdt = shower droplet drop	time	sec	0.5
d = shower droplet diame	ter	mm	1
FR = shower water flow ra	ite	l/min	10
SV = shower room air volu	ume	m ³	12
S = indoor VOC generatio	n rate	µg/m ³ -min	Solved by Eq 6
Ds = duration of shower		min	42.6
Dt = total duration in show	er room	min	60
R = air exchange rate		min ⁻¹	0.01667
Ca = indoor air concentrat	ion of VOCs	μg/m ³	Solved by Eq 7
Equation 1:	Kg(VOC) =	3000 * (18 / MW) ^{0.5}	
Equation 2:	KI(VOC) =	20 * (44 / MW) ^{0.5}	
Equation 3:	KL =	((1 / KI(VOC)) + (0.024 / (Kg (VOC) * H))) ⁻¹	
Equation 4:	Kal =	(KL * (((TI * Us) / (Ts * UI)) ^{-0.5}))	
Equation 5:	Cwd =	(Cwo * (1-EXP((-1 * Kal * sdt)/(60 * d))))	
Equation 6:	S =	(Cwd * FR / SV)	
Equation 7:	Ca = (If t>Ds)	[(S / R) * (Ds + (EXP(-R * Dt) / R)-(EXP(R *(Ds - Dt)) / F * 1/1440 min/day * 1/1000 ug/mg	٤)]

Notes:

MW and Henry's Law Constant were obtained from U.S. Environmental Protection Agency (USEPA). Regional Screening Levels. Parameters table. May 2021.

[Online]. Available: https://www.epa.gov/risk/regional-screening-levels-rsls

TABLE 7.5.RME CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe:	Future
Receptor Population:	Resident
Receptor Age: Child	

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	E	PC		Ca	ancer Risk Calculati	ons			Non-C	Cancer Hazard Calc	ulations	
				Potential Concern	Value	Units	Intake/Exposu	re Concentration	CSF/L	Init Risk	Cancer Risk	Intake/Exposu	re Concentration	RfD	0/RfC	Hazard Quotient
							Value	Units	Value	Units		Value	Units	Value	Units	
Soil*	Soil*	Soil*	Indection	Ponzo(a)anthracono	1.65±01	malka	NA	NA	NA	NA	NA	2.0E.04	malkaldov	NA	NA	NA
(0 to 1 foot bos)	3011	301	ingestion	Benzo(a)antinacene	1.0E+01	mg/kg	NA	NA	NA	NA	NA	2.0E-04	mg/kg/day	3.0E-04	ma/ka/day	5 1E-01
(0 to 1 100t bgs)				Benzo(h)fluoranthene	2.2E+01	mg/kg	NA	NA	NA	NA	NA	2.9E.04	mg/kg/day	3.0E=04	NA	5.1E=01
				Benzo(k)fluoranthene	9.2E+00	mg/kg	NA	NA	NA	NA	NA	1.2E-04	mg/kg/day	NA	NA	NA
				Dibenz(a,h)anthracene	3.0E+00	ma/ka	NA	NA	NA	NA	NA	3.9E=05	mg/kg/day	NA	NA	NA
				Indeno(1.2.3-cd)pyrene	1.4E+01	ma/ka	NA	NA	NA	NA	NA	1.9E-04	mg/kg/day	NA	NA	NA
				Lead	8.3E+01	mg/kg	NA	NA	NA	NA	NA	1.1E-03	mg/kg/day	NA	NA	NA
													55,			
			Exp. Route Total								NA					5E-01
)					ľ				
Soil*	Soil*	Soil*	Dermal	Benzo(a)anthracene	1.6E+01	mg/kg	NA	NA	NA	NA	NA	6.2E-05	mg/kg/day	NA	NA	NA
(0 to 1 foot bgs)				Benzo(a)pyrene	1.2E+01	mg/kg	NA	NA	NA	NA	NA	4.7E-05	mg/kg/day	3.0E-04	mg/kg/day	1.6E-01
				Benzo(b)fluoranthene	2.2E+01	mg/kg	NA	NA	NA	NA	NA	8.7E-05	mg/kg/day	NA	NA	NA
				Benzo(k)fluoranthene	9.2E+00	mg/kg	NA	NA	NA	NA	NA	3.6E-05	mg/kg/day	NA	NA	NA
				Dibenz(a,h)anthracene	3.0E+00	mg/kg	NA	NA	NA	NA	NA	1.2E-05	mg/kg/day	NA	NA	NA
				Indeno(1,2,3-cd)pyrene	1.4E+01	mg/kg	NA	NA	NA	NA	NA	5.7E-05	mg/kg/day	NA	NA	NA
				Lead	8.3E+01	mg/kg	NA	NA	NA	NA	NA	2.5E-05	mg/kg/day	NA	NA	NA
			Exp. Route Total	<u>.</u>	1	1	∦ <u></u>		I		NA	l <u></u>				2E-01
		Exposure Point Total									NA					7E-01
	Exposure Medium Tota	al									NA					7E-01
																1
Soil*	Ambient Air	Emissions from	Inhalation	Benzo(a)anthracene	4.1E-06	mg/m ³	NA	NA	NA	NA	NA	3.9E-06	mg/m ³	NA	NA	NA
(0 to 1 foot bgs)		Soil*		Benzo(a)pyrene	8.8E-09	mg/m ³	NA	NA	NA	NA	NA	8.4E-09	mg/m ³	2.0E-06	mg/m ³	4E-03
				Benzo(b)fluoranthene	1.6E-08	mg/m ³	NA	NA	NA	NA	NA	1.5E-08	mg/m ³	NA	NA	NA
				Benzo(k)fluoranthene	6.8E-09	mg/m ³	NA	NA	NA	NA	NA	6.5E-09	mg/m ³	NA	NA	NA
				Dibenz(a,h)anthracene	2.2E-09	mg/m ³	NA	NA	NA	NA	NA	2.1E-09	mg/m ³	NA	NA	NA
				Indeno(1,2,3-cd)pyrene	1.1E-08	mg/m ³	NA	NA	NA	NA	NA	1.0E-08	mg/m ³	NA	NA	NA
				Lead	6.1E-08	mg/m ³	NA	NA	NA	NA	NA	5.8E-08	mg/m ³	NA	NA	NA
			Exp. Route Total	<u></u>			/		1		NA	Ű	1			4E-03
		Exposure Point Total									NA					4E-03
	Exposure Medium Tota	al									NA					4E-03
Soil Total											NA					7E-01
Groundwater	Groundwater	Tap Water	Ingestion	Benzo(a)anthracene	3.1E-02	µg/L	NA	NA	NA	NA	NA	1.5E-06	mg/kg/day	NA	NA	NA
				Lead	9.1E+00	µg/L	NA	NA	NA	NA	NA	4.5E-04	mg/kg/day	NA	NA	NA
			Exp. Route Total				<u> </u>				NA	<u> </u>				NA
			c.p. Noute Total	<u>n</u>			í <u></u>					/				<u></u>
Groundwater	Groundwater	Tap Water	Dermal	Benzo(a)anthracene	3.1E-02	µg/L	NA	NA	NA	NA	NA	2.0E-05	mg/kg/day	NA	NA	NA
				Lead	9.1E+00	µg/L	NA	NA	NA	NA	NA	2.0E-07	mg/kg/day	NA	NA	NA
			Exp. Route Total								NA					NA
		Exposure Point Total									NA					NA
	Exposure Medium tota	1									NA					NA

TABLE 7.5.RME CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe:	Future
Receptor Population:	Resident
Receptor Age: Child	

I	Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	E	PC Cancer Risk Calculations						Non-Cancer Hazard Calculations				
					Potential Concern	Value	Units	Intake/Exposure Concentration		CSF/Unit Risk		Cancer Risk	Intake/Exposure Concentration		entration RfD/RfC		Hazard Quotien
l								Value	Units	Value	Units		Value	Units	Value	Units	
Ī	Groundwater Total											NA					NA
Į	eceptor Total									NA					7E-01		

Notes:

bgs = below ground surface CSF = Cancer slope factor

EPC = Exposure point concentration NA = Not applicable/Not available

RfC = Reference concentration

RfD = Reference dose

TABLE 7.5.RME SUPPLEMENT A CALCULATION OF DAEVENT REASONABLE MAXIMUM EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Future Receptor Population: Resident Receptor Age: Child

Chemical of Potential Concern	Groundwater Concentration (CW) (ug/L)	Permeability Coefficient (Kp) (cm/hr)	B (dimensionless)	Lag Time (τ _{event}) (hr)	t* (hr)	Fraction Absorbed Water (FA) (dimensionless)	Duration of Event (tevent) (hr)	DAevent (mg/cm ² -event)	Eq
Benzo(a)anthracene	3.10E-02	5.5E-01	3.2E+00	2.0E+00	8.5E+00	1.0E+00	0.54	4.9E-08	2
Lead	9.06E+00	1.0E-04	NA	NA	NA	1.0E+00	0.54	4.9E-10	1

Inorganics: DAevent (mg/cm ² -event):			
D	A _{event} =	Kp x CW x tevent x CF1 x CF2	(Eq 1)
Organics: DAevent (mg/cm ² -event):			
D	A _{event} =	$t_{event} \le t^*$: DA _{event} (mg/cm ² -event) =	
		2 x FA x Kp x Cw x (sqrt((6 x τ x $t_{event})$ / (3.1415))) x CF1 x CF2	(Eq 2)
		t _{event} >t*: DA _{event} (mg/cm ² -event) =	
		FA x Kp x CW x (t _{event} /(1+B) + 2 x τ x ((1 + 3B + 3B ²)/(1+B) ²)) xCF1 x CF2	(Eq 3)

Notes:

Values for permeability constants, B, tau, t*, and FA are from EPA 2004, *Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment - Final).* EPA/540/R/99/005.

B - Dimensionless ratio of the permeability coefficient of a compound through the stratum corneum relative to its permeability

coefficient across the viable epidermis (dimensionless).

cm/hr - centimeter per hour

hr - hour

mg/cm²-event - milligram per square centimeter per event

µg/L - microgram per liter

NA - Not applicable

t* - Time to reach steady-state

CF1 - Conversion Factor 1 (0.001 mg/µg), CF2 - Conversion Factor 2 (0.001 L/cm³)

TABLE 7.6.RME CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Future Receptor Population: Resident Receptor Age: Child/Adult

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	E	PC		C	ancer Risk Calculat	ons			Non-C	ancer Hazard Calc	ulations	
				Potential Concern	Value	Units	Intake/Exposu	re Concentration	CSF/L	Init Risk	Cancer Risk	Intake/Exposu	re Concentration	RfD	0/RfC	Hazard Quotient
							Value	Units	Value	Units		Value	Units	Value	Units	
Soil*	Soil*	Soil*	Indestion	Benzo(a)anthracene	1.6E+01	ma/ka	2.3E-05	mg/kg/day	1.0E-01	1/(mg/kg/dav)	1E-05	NA	NA	NA	NA	NA
(0 to 1 foot bas)			ngoodon	Benzo(a)pyrene	1.2E+01	ma/ka	1.7E-05	mg/kg/day	1.0E+00	1/(mg/kg/day)	8E-05	NA	NA	NA	NA	NA
(*********************				Benzo(b)fluoranthene	2.2E+01	ma/ka	3.2E-05	mg/kg/day	1.0E-00	1/(mg/kg/day)	1E-05	NA	NA	NA	NA	NA
				Benzo(k)fluoranthene	9.2E+00	ma/ka	1.3E-05	mg/kg/day	1.0E-02	1/(mg/kg/day)	6E-07	NA	NA	NA	NA	NA
				Dibenz(a, h)anthracene	3.0E+00	ma/ka	4.4F-06	mg/kg/day	1.0E+00	1/(mg/kg/day)	2E-05	NA	NA	NA	NA	NA
				Indeno(1 2 3-cd)pyrene	1.4E+01	ma/ka	2 1E-05	mg/kg/day	1.0E-01	1/(mg/kg/day)	9E-06	NA	NA	NA	NA	NA
				Lead	8.3E+01	ma/ka	1.2E-04	mg/kg/day	NA	NA NA	NA	NA	NA	NA	NA	NA
				2000	0.02.01	mana	1.22 01	ing ing ady						101		
			Exp. Route Total								1E-04	l				NA
0-11	0-11	0		Denne (a) anthere are	1.05.04				4.05.04		05.00					
Soll"	501	501	Dermal	Benzo(a)anthracene	1.6E+01	mg/kg	8.3E-06	mg/kg/day	1.0E-01	1/(mg/kg/day)	3E-06	NA	NA	NA	NA	NA
(U to 1 100t bgs)				Benzo(a)pyrene	1.2E+01	mg/kg	6.3E-06	mg/kg/day	1.0E+00	1/(mg/kg/day)	3E-05	NA	NA	NA	NA	NA
				Benzo(b)nuorantnene	2.2E+01	mg/kg	1.2E-05	mg/kg/day	1.0E-01	1/(mg/kg/day)	5E-06	NA	NA	NA	NA	NA
				Benzo(k)fluoranthene	9.2E+00	mg/kg	4.8E-06	mg/kg/day	1.0E-02	1/(mg/kg/day)	2E-07	NA	NA	NA	NA	NA
				Dibenz(a,h)anthracene	3.0E+00	mg/kg	1.6E-06	mg/kg/day	1.0E+00	1/(mg/kg/day)	7E-06	NA	NA	NA	NA	NA
				Indeno(1,2,3-cd)pyrene	1.4E+01	mg/kg	7.6E-06	mg/kg/day	1.0E-01	1/(mg/kg/day)	3E-06	NA	NA	NA	NA	NA
				Lead	8.3E+01	mg/kg	3.3E-06	mg/kg/day	NA	NA	NA	NA	NA	NA	NA	NA
			Exp. Route Total	í			<u> </u>				4E-05					NA
		Exposure Point Total									2E-04					NA
1	Exposure Medium Tota	al									2E-04					NA
	i															
Soil*	Ambient Air	Emissions from	Inhalation	Benzo(a)anthracene	4.1E-06	mg/m ³	1.4E-06	mg/m ³	6.0E-05	1/(ug/m ³)	2E-07	NA	NA	NA	NA	NA
(0 to 1 foot bgs)		Soil*		Benzo(a)pyrene	8.8E-09	mg/m ³	3.1E-09	mg/m ³	6.0E-04	1/(ug/m ³)	5E-09	NA	NA	NA	NA	NA
				Benzo(b)fluoranthene	1.6E-08	mg/m ³	5.8E-09	mg/m ³	8.4E-02	1/(ug/m ³)	1E-06	NA	NA	NA	NA	NA
				Benzo(k)fluoranthene	6.8E-09	mg/m ³	2.4E-09	mg/m ³	6.0E-06	1/(ug/m ³)	4E-11	NA	NA	NA	NA	NA
				Dibenz(a,h)anthracene	2.2E-09	mg/m ³	8.0E-10	mg/m ³	6.0E-04	1/(ug/m ³)	1E-09	NA	NA	NA	NA	NA
				Indeno(1,2,3-cd)pyrene	1.1E-08	mg/m ³	3.8E-09	mg/m ³	6.0E-05	1/(ug/m ³)	6E-10	NA	NA	NA	NA	NA
				Lead	6.1E-08	mg/m ³	2.2E-08	mg/m ³	NA	NA	NA	NA	NA	NA	NA	NA
			Exp. Route Total	/			<u> </u>				2E-06	ľ		1		NA
		Exposure Point Total		<u> </u>							2E-06					NA
1	Exposure Medium Tota	al		1							2E-06					NA
Soil Total											2E-04					NA
Groundwater	Groundwater	Tap Water	Ingestion	Benzo(a)anthracene	3.1E-02	µg/L	4.0E-07	mg/kg/day	1.0E-01	1/(mg/kg/day)	7E-08	NA	NA	NA	NA	NA
				Lead	9.1E+00	µg/L	1.2E-04	mg/kg/day	NA	NA	NA	NA	NA	NA	NA	NA
				<u> </u>			<u> </u>				75.00	<u> </u>				
			Exp. Route Fotal	<u> </u>		1	I	1			/E-08	II				<u> </u>
Groundwater	Groundwater	Tan Water	Dermal	Benzo(a)anthracene	3 1E-02	ug/l	5.7E-06	malkalday	1.0E-01	1/(ma/ka/day)	2E-06	NA	NA	NA	NA	NA
Groundwater	Groundwater	rap water	Demai		0.1E+00	µg/L	6.3E-08	ma/ka/day	NA	NA	ZL=00	NA	NA	NA	NA	NA
					3.1E+00	P9/L	0.02=00	iiig/kg/uay	194	1974	1974	11/4	1975	147	19/4	1975
			Exp. Route Total	i			¦			•	2E-06	"				NA
		Exposure Point Total	1				û				2E-06	î				NA
	Exposure Medium tota										2E-06					NA

TABLE 7.6.RME CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe:	Future
Receptor Population:	Resident
Recentor Age: Child/	Adult

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	E	PC		Ci	ancer Risk Calculat	ions		Non-Cancer Hazard Calculations				
				Potential Concern	Value	Value Units		Intake/Exposure Concentration		ation CSF/Unit Risk		Intake/Exposure Concentration		RfD/RfC		Hazard Quotient
							Value	Units	Value	Units		Value	Units	Value	Units	
Groundwater	Air	Water Vapor at Showerhead	Inhalation	Benzo(a)anthracene	9.6E-08	mg/m ³	1.3E-08	mg/m ³	6.0E-05	1/(ug/m ³)	3E-09	NA	NA	NA	NA	NA
			Exp. Route Total								3E-09					NA
		Exposure Point Total									2E-06					NA
	Exposure Medium total									2E-06	2E-06				NA	
Groundwater Total)				2E-06								NA		
Receptor Total	eceptor Total		-j						2E-04				NA			

Notes:

bgs = below ground surface CSF = Cancer slope factor EPC = Exposure point concentration NA = Not applicable/Not available

RfC = Reference concentration

RfD = Reference dose

TABLE 7.7.RME CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe:	Future
Receptor Population:	Industrial Worker
Receptor Age: Adult	

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	E	PC		Ci	ancer Risk Calculati	ions			Non-C	ancer Hazard Calci	ulations	
				Potential Concern	Value	Units	Intake/Exposur	e Concentration	CSF/L	Jnit Risk	Cancer Risk	Intake/Exposure Concentration		RfD)/RfC	Hazard Quotient
							Value	Units	Value	Units		Value	Units	Value	Units	
Soil*	Soil*	Soil*	Ingestion	Benzo(a)anthracene	1.6E+01	mg/kg	4.8E-06	mg/kg/day	1.0E-01	1/(mg/kg/day)	5E-07	1.4E-05	mg/kg/day	NA	NA	NA
(0 to 1 foot bgs)				Benzo(a)pyrene	1.2E+01	mg/kg	3.7E-06	mg/kg/day	1.0E+00	1/(mg/kg/day)	4E-06	1.0E-05	mg/kg/day	3.0E-04	mg/kg/day	3.4E-02
				Benzo(b)fluoranthene	2.2E+01	mg/kg	6.7E-06	mg/kg/day	1.0E-01	1/(mg/kg/day)	7E-07	1.9E-05	mg/kg/day	NA	NA	NA
				Benzo(k)fluoranthene	9.2E+00	mg/kg	2.8E-06	mg/kg/day	1.0E-02	1/(mg/kg/day)	3E-08	7.9E-06	mg/kg/day	NA	NA	NA
				Dibenz(a,h)anthracene	3.0E+00	mg/kg	9.3E-07	mg/kg/day	1.0E+00	1/(mg/kg/day)	9E-07	2.6E-06	mg/kg/day	NA	NA	NA
				Indeno(1,2,3-cd)pyrene	1.4E+01	mg/kg	4.4E-06	mg/kg/day	1.0E-01	1/(mg/kg/day)	4E-07	1.2E-05	mg/kg/day	NA	NA	NA
				Lead	8.3E+01	mg/kg	2.5E-05	mg/kg/day	NA	NA	NA	7.1E-05	mg/kg/day	NA	NA	NA
			Exp. Route Total					-	-		6E-06			-	-	3E-02
0-111	0-11	0-11	Dermal	D	4.05.04		0.75.00		1 05 01	4//	05.07	7 55 00				
Soll"	5011	5011	Dermai	Benzo(a)anthracene	1.0E+01	mg/kg	2.7E-06	mg/kg/day	1.0E-01	1/(mg/kg/day)	3E-07	7.5E-06	mg/kg/day	NA 0.05.04	NA	NA 1.05.02
(0 to 1 loot bgs)				Benzo(a)pyrene	2.25+01	mg/kg	2.0E-06	mg/kg/day	1.0E+00	1/(mg/kg/day)	2E-00	5.6E-06	mg/kg/day	3.0E-04	mg/kg/day	1.9E=02
				Benzo(b)huoranthene	2.201	mg/kg	3.7E-06	mg/kg/day	1.0E-01	1/(mg/kg/day)	4E-07	1.0E-05	mg/kg/day	NA	NA	NA NA
				Benzo(k)riuorantnene	9.2E+00	mg/kg	1.5E-06	mg/kg/day	1.0E-02	1/(mg/kg/day)	2E-08	4.3E-06	mg/kg/day	NA	NA	NA
				bibenz(a,n)antinacene	3.0E+00	nig/kg	5.1E-07	mg/kg/day	1.0E+00	1/(mg/kg/day)	5E-07	1.4E-06	mg/kg/day	NA	NA	INA NA
				Indeno(1,2,3-cd)pyrene	1.4E+01	mg/kg	2.4E-06	mg/kg/day	1.0E-01	1/(mg/kg/day)	2E-07	6.8E-06	mg/kg/day	NA	NA	NA
				Leau	0.3E+01	mg/kg	1.1E-06	mg/kg/day	NA	NA	INA	3.0E-06	mg/kg/day	NA	NA	INA
			Exp. Route Total					•	•		3E-06		•	•	-	2E-02
		Exposure Point Total									1E-05					5E-02
	Exposure Medium Tota										1E-05					5E-02
0.111	Analysis of Ala	Ended and from		D	4.45.00	2										
Soll"	Ambient Air	Emissions from	Inhalation	Benzo(a)anthracene	4.1E-06	mg/m ³	3.3E-07	mg/m ³	6.0E-05	1/(ug/m ³)	2E-08	9.3E-07	mg/m ³	NA	NA	NA
(0 to 1 toot bgs)		5011		Benzo(a)pyrene	8.8E-09	mg/m³	7.2E-10	mg/m ³	6.0E-04	1/(ug/m ³)	4E-10	2.0E-09	mg/m ³	2.0E-06	mg/m³	1E-03
				Benzo(b)fluoranthene	1.6E-08	mg/m ³	1.3E-09	mg/m ³	8.4E-02	1/(ug/m ³)	1E-07	3.7E-09	mg/m ³	NA	NA	NA
					0.02-09	mg/m [°]	5.5E-10	mg/m ³	6.0E-06	1/(ug/m ³)	3E-12	1.5E-09	mg/m ³	NA	NA	NA
				Dibenz(a,n)anthracene	2.2E-09	mg/m [°]	1.8E-10	mg/m ³	6.0E-04	1/(ug/m ³)	1E-10	5.1E-10	mg/m ³	NA	NA	NA
				Indeno(1,2,3-cd)pyrene	1.1E-08	mg/m ³	8.7E-10	mg/m ³	6.0E-05	1/(ug/m³)	5E-11	2.4E-09	mg/m ³	NA	NA	NA
				Leau	0.1E-08	mg/m ³	5.0E-09	mg/m³	NA	NA	NA	1.4E-08	mg/m ³	NA	NA	NA
			Exp. Route Total								1E-07					1E-03
	Exposure Point Total									1E-07					1E-03	
	Exposure Medium Tota							1E-07								1E-03
Soil Total									1E-05							5E-02
Receptor Total							1E-05									5E-02

Notes:

bgs = below ground surface

CSF = Cancer slope factor

EPC = Exposure point concentration NA = Not applicable/Not available

RfC = Reference concentration

RfD = Reference dose

TABLE 7.8.RME CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Future Receptor Population: Trespasser/Visitor Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	E	PC		Ca	ancer Risk Calculati	ons			Non-C	Cancer Hazard Calo	ulations	<u> </u>
				Potential Concern	Value	Units	Intake/Exposu	re Concentration	CSF/L	Init Risk	Cancer Risk	Intake/Exposu	re Concentration	RfI	D/RfC	Hazard Quotient
							Value	Units	Value	Units		Value	Units	Value	Units	
Soil*	Soil*	Soil*	Indestion	Benzo(a)anthracene	1.6E+01	mg/kg	8.0E-07	ma/ka/dav	1.0E-01	1/(mg/kg/dav)	8E-08	2.8E-06	ma/ka/dav	NA	NA	NA
(0 to 1 foot bgs)			5	Benzo(a)pyrene	1.2E+01	mg/kg	6.1E-07	mg/kg/day	1.0E+00	1/(mg/kg/day)	6E-07	2.1E-06	mg/kg/day	3.0E-04	mg/kg/day	7.1E-03
				Benzo(b)fluoranthene	2.2E+01	mg/kg	1.1E-06	mg/kg/day	1.0E-01	1/(mg/kg/day)	1E-07	3.9E-06	mg/kg/day	NA	NA	NA
				Benzo(k)fluoranthene	9.2E+00	mg/kg	4.7E-07	mg/kg/day	1.0E-02	1/(mg/kg/day)	5E-09	1.6E-06	mg/kg/day	NA	NA	NA
				Dibenz(a,h)anthracene	3.0E+00	mg/kg	1.5E-07	mg/kg/day	1.0E+00	1/(mg/kg/day)	2E-07	5.4E-07	mg/kg/day	NA	NA	NA
				Indeno(1,2,3-cd)pyrene	1.4E+01	mg/kg	7.4E-07	mg/kg/day	1.0E-01	1/(mg/kg/day)	7E-08	2.6E-06	mg/kg/day	NA	NA	NA
				Lead	8.3E+01	mg/kg	4.2E-06	mg/kg/day	NA	NA	NA	1.5E-05	mg/kg/day	NA	NA	NA
			Exp. Route Total	/			<u> </u>				1E-06	<u> </u>				7E-03
				<u></u>			Ï				n	Î				ή
Soil*	Soil*	Soil*	Dermal	Benzo(a)anthracene	1.6E+01	mg/kg	4.4E-07	mg/kg/day	1.0E-01	1/(mg/kg/day)	4E-08	1.5E-06	mg/kg/day	NA	NA	NA
(0 to 1 foot bgs)				Benzo(a)pyrene	1.2E+01	mg/kg	3.3E-07	mg/kg/day	1.0E+00	1/(mg/kg/day)	3E-07	1.2E-06	mg/kg/day	3.0E-04	mg/kg/day	3.9E-03
				Benzo(b)fluoranthene	2.2E+01	mg/kg	6.1E-07	mg/kg/day	1.0E-01	1/(mg/kg/day)	6E-08	2.1E-06	mg/kg/day	NA	NA	NA
				Benzo(k)fluoranthene	9.2E+00	mg/kg	2.6E-07	mg/kg/day	1.0E-02	1/(mg/kg/day)	3E-09	9.0E-07	mg/kg/day	NA	NA	NA
				Dibenz(a,h)anthracene	3.0E+00	mg/kg	8.5E-08	mg/kg/day	1.0E+00	1/(mg/kg/day)	8E-08	3.0E-07	mg/kg/day	NA	NA	NA
				Indeno(1,2,3-cd)pyrene	1.4E+01	mg/kg	4.0E-07	mg/kg/day	1.0E-01	1/(mg/kg/day)	4E-08	1.4E-06	mg/kg/day	NA	NA	NA
				Lead	8.3E+01	mg/kg	1.8E-07	mg/kg/day	NA	NA	NA	6.2E-07	mg/kg/day	NA	NA	NA
			Exp. Route Total	í		1	<u> </u>				6E-07			1		4E-03
		Exposure Point Total									2E-06					1E-02
	Exposure Medium Tot	al									2E-06					1E-02
Soil*	Ambient Air	Emissions from	Inhalation	Benzo(a)anthracene	4.1F-06		0.05.00		0.05.05	411	05.00	0.75.00				
(0 to 1 foot bas)		Soil*	milaiditon	Benzo(a)pyrene	8.8E-09	mg/m	2.8E-08	mg/m	6.0E-05	1/(ug/m)	2E-09	9.7E-08	mg/m	NA 0.05.00	NA	NA 45.04
(************************				Benzo(b)fluoranthene	1.6E-08	mg/m	6.0E-11	mg/m	6.0E-04	1/(ug/m ⁻)	4E-11	2.1E-10	mg/m	2.0E-06	mg/m	1E-04
				Benzo(k)fluoranthene	6.8E-09	mg/m	1.1E-10	mg/m	8.4E-02	1/(ug/m ⁻)	9E-09	3.8E-10	mg/m	NA	NA	NA
				Dibenz(a,h)anthracene	2.2E-09	mg/m	4.6E-11	mg/m	6.0E-06	1/(ug/m ⁻)	3E-13	1.6E-10	mg/m	NA	NA	NA
				Indeno(1.2.3-cd)pyrene	1 1E-08	mg/m	1.5E-11	mg/m	6.0E-04	1/(ug/m ⁻)	9E-12	5.3E-11	mg/m	NA	NA	NA
				Lead	6.1E-08	mg/m ³	7.2E-11 4.1E-10	mg/m	6.0E-05	1/(ug/m)	4E-12	2.5E-10 1.4E-09	mg/m ³	NA	NA	NA
				<u> </u>		mg/m	4.12-10	ing/iii	N/A	NA NA	NA .	1.4E=09	ing/in	NA	NA	NA.
			Exp. Route Total	Į							1E-08					1E-04
		Exposure Point Total		Į							1E-08					1E-04
	Exposure Medium Tot	al		<u> </u>			1				1E-08					1E-04
Soil Total				<u> </u>							2E-06					1E-02
Receptor Total					<u> </u>				2E-06	JI	1E-02					

Notes:

bgs = below ground surface CSF = Cancer slope factor

EPC = Exposure point concentration

NA = Not applicable/Not available

RfC = Reference concentration

RfD = Reference dose

TABLE 7.9.RME CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE UXO 002, OUZ Remedial Investigation NAS Patuxent River, Maryland

1		
	Scenario Timeframe:	Future
	Receptor Population:	Trespasser/Visitor
	Receptor Age: Adoles	cent

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	E	PC		Ca	ancer Risk Calculati	ons			Non-C	ancer Hazard Calcu	ulations	
				Potential Concern	Value	Units	Intake/Exposur	e Concentration	CSF/U	nit Risk	Cancer Risk	Intake/Exposure Concentration		RfD)/RfC	Hazard Quotient
							Value	Units	Value	Units		Value	Units	Value	Units	
Soil*	Soil*	Soil*	Ingestion	Benzo(a)anthracene	1.6E+01	mg/kg	5.3E-07	mg/kg/day	3.0E-01	1/(mg/kg/day)	2E-07	4.1E-06	mg/kg/day	NA	NA	NA
(0 to 1 foot bgs)				Benzo(a)pyrene	1.2E+01	mg/kg	4.0E-07	mg/kg/day	3.0E+00	1/(mg/kg/day)	1E-06	3.1E-06	mg/kg/day	3.0E-04	mg/kg/day	1.0E-02
				Benzo(b)fluoranthene	2.2E+01	mg/kg	7.4E-07	mg/kg/day	3.0E-01	1/(mg/kg/day)	2E-07	5.7E-06	mg/kg/day	NA	NA	NA
				Dibenz(a h)anthracene	3.0E+00	mg/kg	1.0E-07	mg/kg/day	3.0E+00	1/(mg/kg/day)	3E-07	2.4E=00	mg/kg/day	NA	NA	NA
				Indeno(1,2,3-cd)pyrene	1.4E+01	ma/ka	4.9E-07	mg/kg/day	3.0E-01	1/(mg/kg/day)	1E-07	3.8E-06	mg/kg/day	NA	NA	NA
				Lead	8.3E+01	mg/kg	2.8E-06	mg/kg/dav	NA	NA	NA	2.2E-05	mg/kg/day	NA	NA	NA
								5 5 7					5.5.7			
			Exp. Route Total	<u> </u>	r	•					2E-06	ļ	1		r	1E-02
Soil*	Soil*	Soil*	Dermal	Benzo(a)anthracene	1.6E+01	ma/ka	7.5E-07	mg/kg/day	3.0E-01	1/(mg/kg/day)	2E-07	5.8E-06	mg/kg/day	NA	NA	NA
(0 to 1 foot bgs)				Benzo(a)pyrene	1.2E+01	mg/kg	5.6E-07	mg/kg/day	3.0E+00	1/(mg/kg/day)	2E-06	4.4E-06	mg/kg/day	3.0E-04	mg/kg/day	1.5E-02
				Benzo(b)fluoranthene	2.2E+01	mg/kg	1.0E-06	mg/kg/day	3.0E-01	1/(mg/kg/day)	3E-07	8.1E-06	mg/kg/day	NA	NA	NA
				Benzo(k)fluoranthene	9.2E+00	mg/kg	4.3E-07	mg/kg/day	3.0E-02	1/(mg/kg/day)	1E-08	3.4E-06	mg/kg/day	NA	NA	NA
				Dibenz(a,h)anthracene	3.0E+00	mg/kg	1.4E-07	mg/kg/day	3.0E+00	1/(mg/kg/day)	4E-07	1.1E-06	mg/kg/day	NA	NA	NA
				Indeno(1,2,3-cd)pyrene	1.4E+01	mg/kg	6.8E-07	mg/kg/day	3.0E-01	1/(mg/kg/day)	2E-07	5.3E-06	mg/kg/day	NA	NA	NA
				Lead	8.3E+01	mg/kg	3.0E-07	mg/kg/day	NA	NA	NA	2.3E-06	mg/kg/day	NA	NA	NA
				<u> </u>								<u> </u>				<u> </u>
			Exp. Route Total								3E-06					1E-02
	Exposure Medium Tota	Exposure Point Total									5E-06					3E-02
	Exposure medium rota					1					5E-00		1		1	52-02
Soil*	Ambient Air	Emissions from	Inhalation	Benzo(a)anthracene	4.1E-06	mg/m ³	1.2E-08	mg/m ³	1.8E-04	1/(ug/m ³)	2E-09	9.7E-08	mg/m ³	NA	NA	NA
(0 to 1 foot bgs)		Soil*		Benzo(a)pyrene	8.8E-09	mg/m ³	2.7E-11	mg/m ³	1.8E-03	1/(ug/m ³)	5E-11	2.1E-10	mg/m ³	2.0E-06	mg/m ³	1E-04
				Benzo(b)fluoranthene	1.6E-08	mg/m ³	4.9E-11	mg/m ³	2.5E-01	1/(ug/m ³)	1E-08	3.8E-10	mg/m ³	NA	NA	NA
				Benzo(k)fluoranthene	6.8E-09	mg/m ³	2.1E-11	mg/m ³	1.8E-05	1/(ug/m ³)	4E-13	1.6E-10	mg/m ³	NA	NA	NA
				Dibenz(a,h)anthracene	2.2E-09	mg/m ³	6.8E-12	mg/m ³	1.8E-03	1/(ug/m ³)	1E-11	5.3E-11	mg/m ³	NA	NA	NA
				Indeno(1,2,3-cd)pyrene	1.1E-08	mg/m ³	3.2E-11	mg/m ³	1.8E-04	1/(ug/m ³)	6E-12	2.5E-10	mg/m ³	NA	NA	NA
			<u> </u>	Leau	0.1E-00	mg/m³	1.9E-10	mg/m³	NA	NA	NA	1.4E-09	mg/m°	NA	NA	NA
			Exp. Route Total	ļ							1E-08					1E-04
		Exposure Point Total		ļ							1E-08					1E-04
0-11 T-4-1	Exposure Medium Tota	31		<u> </u>							1E-08					1E-04
Soli Total				<u> </u>							5E-06	I				3E-02
receptor i otai	eceptor Total										0U-3C	J	3E-02			

Notes:

bgs = below ground surface

CSF = Cancer slope factor

EPC = Exposure point concentration

NA = Not applicable/Not available RfC = Reference concentration

RfD = Reference dose

TABLE 7, 10 RME CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

NA

Scenario Timeframe:	Future
Receptor Population:	Construction Worke
Receptor Age: Adult	

ker Medium Exposure Medium Exposure Point Exposure Route Chemical of EPC Cancer Risk Calculations Non-Cancer Hazard Calculations Potential Concern Value Units Intake/Exposure Concentration CSF/Unit Risk Cancer Risk Intake/Exposure Concentration RfD/RfC Hazard Quotient Units Units Value Units Value Value Units Value Soil* Soil* Soil* Ingestion Benzo(a)anthracene 1.6E+01 mg/kg 3.2E-07 mg/kg/day 1.0E-01 1/(mg/kg/day) 3E-08 2.2E-05 mg/kg/day NA NA (0 to 1 foot bgs) Benzo(a)pyrene 1.2E+01 mg/kg 2.4E-07 mg/kg/day 1.0E+00 1/(mg/kg/day) 2E-07 1.7E-05 mg/kg/day 3.0E-04 mg/kg/day 5.6E-02 2.2E+01 Benzo(b)fluoranthene mg/kg 4.4E-07 1.0E-01 1/(mg/kg/day) 4E-08 3.1E-05 mg/kg/day mg/kg/day NA NA 9.2E+00 1.9E-07 1.0E-02 1/(mg/kg/day) 2E-09 1.3E-05 Benzo(k)fluoranthene mg/kg ma/ka/dav mg/kg/day NA NA Dibenz(a,h)anthracene 3.0E+00 6E-08 mg/kg 6.1E-08 mg/kg/day 1.0E+00 1/(mg/kg/day) 4.3E-06 mg/kg/day NA NA Indeno(1,2,3-cd)pyrene 1.4E+01 mg/kg 2.9E-07 mg/kg/day 1.0E-01 1/(mg/kg/day) 3E-08 2.0E-05 mg/kg/day NA NA 8.3E+01 Lead mg/kg 1.7E-06 mg/kg/day NA NA NA 1.2E-04 mg/kg/day NA NA Exp. Route Total 4E-07 6E-02 Soil* 1.6E+01 1E-08 Soil* Soil* Dermal Benzo(a)anthracene mg/kg 1.3E-07 ma/ka/dav 1.0E-01 1/(mg/kg/dav) 9.3E-06 mg/kg/day NA NA (0 to 1 foot bgs) 1.2E+01 1E-07 2.3E-02 Benzo(a)pyrene mg/kg 1.0E-07 mg/kg/day 1.0E+00 1/(mg/kg/day) 7.0E-06 mg/kg/day 3.0E-04 mg/kg/day 2.2E+01 1.8E-07 1.0E-01 Benzo(b)fluoranthene mg/kg mg/kg/day 1/(mg/kg/day) 2E-08 1.3E-05 mg/kg/day NA NA Benzo(k)fluoranthene 9.2E+00 mg/kg 7.7E-08 mg/kg/day 1.0E-02 1/(mg/kg/day) 8E-10 5.4E-06 mg/kg/day NA NA Dibenz(a,h)anthracene 3.0E+00 mg/kg 2.6E-08 mg/kg/day 1.0E+00 1/(mg/kg/day) 3E-08 1.8E-06 mg/kg/day NA NA Indeno(1,2,3-cd)pyrene 1.4E+01 mg/kg 1.2E-07 mg/kg/day 1.0E-01 1/(mg/kg/day) 1E-08 8.5E-06 mg/kg/day NA NA Lead 8.3E+01 mg/kg 5.4E-08 mg/kg/day NA NA NA 3.7E-06 mg/kg/day NA NA Exp. Route Total 2E-07 2E-02 Exposure Point Total 8E-02 6E-07 Exposure Medium Total 6E-07 8E-02 Soil* Ambient Air Emissions from Inhalation Benzo(a)anthracene 4.1E-06 mg/m³ 6.6E-09 mg/m³ 6.0E-05 1/(ug/m³) 4E-10 4.6E-07 mg/m³ NA NA (0 to 1 foot bgs) Soil* 8.8E-09 Benzo(a)pyrene mg/m³ 1.4E-11 mg/m³ 6.0E-04 1/(ug/m³) 9E-12 1.0E-09 mg/m³ 2.0E-06 mg/m³ 5E-04 1.6E-08 Benzo(b)fluoranthene mg/m³ 2.6E-11 mg/m³ 8.4E-02 1/(ug/m³) 2E-09 1.8E-09 mg/m³ NA NA 6.8E-09 Benzo(k)fluoranthene 6.0E-06 7.7E-10 NA mg/m³ 1.1E-11 ma/m³ 1/(ug/m³) 7E-14 mg/m³ NA Dibenz(a,h)anthracene 2.2E-09 2.6E-10 ma/m³ mg/m 3.6E-12 mg/m³ 6 0E-04 1/(ug/m³) 2E-12 NA NA ndeno(1,2,3-cd)pyrene 1.1E-08 mg/m³ 1 7E-11 mg/m³ 6 0E-05 1/(ug/m³) 1E-12 1 2E-09 ma/m³ NA NA 6.1E-08 ead mg/m³ mg/m³ 9.9E-11 mg/m³ NA NA NA 6.9E-09 NA NΔ Exp. Route Total 3E-09 5E-04 Exposure Point Total 3E-09 5E-04 Exposure Medium Total 3E-09 5E-04 oil Total 6E-07 8E-02 Groundwater Groundwater Water In Excavation Benzo(a)anthracene 3.1E-02 6.97E-08 ma/ka/dav 1.0E-01 1/(mg/kg/day) 7E-09 4.88E-06 mg/kg/day NA Dermal ua/L NA 9.1E+00 2.67E-09 1.87E-07 I ead NA NA mg/kg/day NA NA Trench µg/L mg/kg/day NA

7E-09

7E-09

7E-09

Exp. Route Total

Exposure Point Total

Exposure Medium total

TABLE 7.10.RME CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS REASONABLE MAXIMUM EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe:	Future
Receptor Population:	Construction Worker
Receptor Age: Adult	

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	E	PC		Ca	ancer Risk Calculati	ons		Non-Cancer Hazard Calculations						
				Potential Concern	Value	Units	Intake/Exposure Concentration		CSF/Unit Risk		Cancer Risk	Intake/Exposur	e Concentration	RfD/RfC		Hazard Quotient		
							Value	Units	Value	Units		Value	Units	Value	Units			
Groundwater	Air Volatiles in Air In Inhalation Excavation Trench		Inhalation	Benzo(a)anthracene	1.2E-06	mg/m ³	2.0E-09	mg/m ³	6.0E-05	1/(ug/m ³)	1E-10	1.4E-07	mg/m ³	NA	NA	NA		
			Exp. Route Total								1E-10					NA		
		Exposure Point Total									7E-09	7				NA		
	Exposure Medium total										7E-09					NA		
Groundwater Total	Total										7E-09					NA		
Receptor Total	Receptor Total										6E-07					8E-02		

Notes:

bgs = below ground surface

CSF = Cancer slope factor

EPC = Exposure point concentration

NA = Not applicable/Not available

RfC = Reference concentration

RfD = Reference dose

TABLE 7.10.RME SUPPLEMENT A CALCULATION OF DAEVENT REASONABLE MAXIMUM EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Future Receptor Population: Construction Worker Receptor Age: Adult

Chemical of Potential Concern	Groundwater Concentration (CW) (ug/L)	Permeability Coefficient (Kp) (cm/hr)	B (dimensionless)	Lag Time (τ _{event}) (hr)	t* (hr)	Fraction Absorbed Water (FA) (dimensionless)	Duration of Event (tevent) (hr)	DAevent (mg/cm ² -event)	Eq
Benzo(a)anthracene	3.10E-02	5.5E-01	3.2E+00	2.0E+00	8.5E+00	1.0E+00	8.00	1.9E-07	2
Lead	9.06E+00	1.0E-04	NA	NA	NA	1.0E+00	8.00	7.3E-09	1

Inorganics: DAevent (mg/cm²-event):

DA _{event} =	Kp x CW x tevent x CF1 x CF2	(Eq 1)
Organics: DAevent (mg/cm ² -event):		
DA _{event} =	t _{event} ≤ t*: DA _{event} (mg/cm ² -event) =	
	2 x FA x Kp x Cw x (sqrt((6 x τ x t _{event}) / (3.1415))) x CF1 x CF2	(Eq 2)
	(m, m)	
	$t_{event} > t^{-1}$ DA _{event} (mg/cm -event) =	(Eq. 3)
	FA X KP X GW X ($t_{event}/(1+B) + 2 X \tau X ((1 + 3B + 3B^{-})/(1+B)^{-}))$ XCF1 X CF2	(⊏q 3)

Notes:

Values for permeability constants, B, tau, t*, and FA are from EPA 2004, *Risk Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual (Part E, Supplemental Guidance for Dermal Risk Assessment - Final).* EPA/540/R/99/005.

B - Dimensionless ratio of the permeability coefficient of a compound through the stratum corneum relative to its permeability

coefficient across the viable epidermis (dimensionless).

cm/hr - centimeter per hour

hr - hour

mg/cm²-event - milligram per square centimeter per event

µg/L - microgram per liter

NA - Not applicable

t* - Time to reach steady-state

CF1 - Conversion Factor 1 (0.001 mg/µg), CF2 - Conversion Factor 2 (0.001 L/cm³)

TABLE 7.10.RME SUPPLEMENT B

Inhalation of Volatiles from Groundwater During Construction—Inhalation Exposure Concentrations Calculated Using a Two-Film Volatilization Model

UXO 002, OU2 Remedial Investigation

NAS Patuxent River, Maryland

Chomical	Cw MW _i		H _i (atm-	k _{iL}	k _{iG}	Kv	ER	ERa	Ca	Ca
Chemical	(µg/L)	(gram/mole)	m3/mole)	(cm/sec)	(cm/sec)	(cm/sec)	(mg/sec-cm ²)	(g/sec-m ²)	(µg/m ³)	(mg/m ³)
Benzo(a)anthracene	3.1E-02	2.3E+02	1.2E-05	7.5E-04	3.6E-01	1.4E-04	4.4E-12	4.4E-11	1.2E-03	1.2E-06

Equations		
Equation 1	$K_v = 1/(1/k_{iL} + RT/H_i k_{iG})$	
Equation 2	$ki_{G} = (MW_{H2O}/MW_{i})^{0.335}(T/298)^{1.005}(k_{G},H_{2}O)$	
Equation 3	$ki_{L} = (MW_{O2}/MW_{1})^{0.5}(T/298)(k_{L},O_{2})$	
Equation 4	ER = Kv * Cw * L/1000 cm ³ * mg/1000 μg	
Equation 5	ERa = ER * g/1000 mg *10000 cm²/m²	

Variables	Units	Exposure Assumptions
Cw = groundwater concentration	(μg/L)	chem-specific
MW = molecular weight	(mol/gram)	chem-specific
Hi - Henry's Law Constant	(unitless)	chem-specific
Kv = volatilization rate	(cm/hr)	Solved by Eq 1
ki _G = gas phase transfer coefficient	(cm/hr)	Solved by Eq 2
k _{iL} = liquid phase transfer coefficient	(cm/hr)	Solved by Eq 3
MW ₀₂ = molecular weight of oxygen	(gram/mole)	32
T = temperature	(⁰ K)	298
$k_{L,O2}$ = liquid phase mass transfer coefficient for oxygen at 25 $^{\circ}C$	(cm/sec)	0.002
MW _{H2O} = molecular weight of water	(gram/mole)	18
$k_{G,H2O}$ = gass phase mass transfer coefficient for oxygen at 25 ^{0}C	(cm/sec)	0.833
R = Ideal gas constant	(atm-m ³ /mole-K)	0.000082
ER = emission rate	(mg/sec-cm ²)	Solved by Eq 4
A = area of excavation (based on utility ditch)	(m ²)	2,700
ERa = area emission rate	(g/sec-m ²)	Solved by Eq 5
Ca = air concentration	(mg/m ³)	Solved using SCREEN3 model

MW and H from Oak Ridge National Laboratory (ORNL). May 2021, Regional Screening Level Table, Chemical Specific Parameters Table.

TABLE 7.1.CTE CALCULATION OF CHEMICAL CANCER RISKS AND NON-CANCER HAZARDS CENTRAL TENDENCY EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe:	Future
Receptor Population:	Resident
Receptor Age: Child/	Adult

Medium	Exposure Medium	Exposure Point	Exposure Route	Chemical of	E	PC		Ca	incer Risk Calculati	ons		Non-Cancer Hazard Calculations					
				Potential Concern	Value	Units	Intake/Exposur	re Concentration	CSF/U	nit Risk	Cancer Risk	Intake/Exposu	e Concentration	RfD	/RfC	Hazard Quotient	
							Value	Units	Value	Units		Value	Units	Value	Units		
Soil*	Soil*	Soil*	Indestion	Benzo(a)anthracene	1.6E+01	ma/ka	6.3E-06	mg/kg/day	1.0E-01	1/(mg/kg/day)	3E-06	NA	NA	NA	NA	NA	
(0 to 1 foot bgs)			5	Benzo(a)pyrene	1.2E+01	mg/kg	4.7E-06	mg/kg/day	1.0E+00	1/(mg/kg/day)	2E-05	NA	NA	NA	NA	NA	
				Benzo(b)fluoranthene	2.2E+01	mg/kg	8.7E-06	mg/kg/day	1.0E-01	1/(mg/kg/day)	4E-06	NA	NA	NA	NA	NA	
				Benzo(k)fluoranthene	9.2E+00	mg/kg	3.6E-06	mg/kg/day	1.0E-02	1/(mg/kg/day)	2E-07	NA	NA	NA	NA	NA	
				Dibenz(a,h)anthracene	3.0E+00	mg/kg	1.2E-06	mg/kg/day	1.0E+00	1/(mg/kg/day)	6E-06	NA	NA	NA	NA	NA	
				Indeno(1,2,3-cd)pyrene	1.4E+01	mg/kg	5.7E-06	mg/kg/day	1.0E-01	1/(mg/kg/day)	3E-06	NA	NA	NA	NA	NA	
				Lead	8.3E+01	mg/kg	3.3E-05	mg/kg/day	NA	NA	NA	NA	NA	NA	NA	NA	
				l			Į										
			Exp. Route Total		1	1	Į	1			4E-05	!					
Soil*	Soil*	Soil*	Dermal	Benzo(a)anthracene	1.6E+01	ma/ka	1.3E-06	ma/ka/dav	1.0E-01	1/(mg/kg/day)	6F-07	NA	NA	NA	NA	NA	
(0 to 1 foot bas)			Bonnar	Benzo(a)pyrene	1.2E+01	ma/ka	9.5E-07	mg/kg/day	1.0E+00	1/(mg/kg/day)	5E-06	NA	NA	NA	NA	NA	
				Benzo(b)fluoranthene	2.2E+01	mg/kg	1.8E-06	mg/kg/dav	1.0E-01	1/(mg/kg/dav)	9E-07	NA	NA	NA	NA	NA	
				Benzo(k)fluoranthene	9.2E+00	mg/kg	7.3E-07	mg/kg/day	1.0E-02	1/(mg/kg/day)	4E-08	NA	NA	NA	NA	NA	
				Dibenz(a,h)anthracene	3.0E+00	mg/kg	2.4E-07	mg/kg/day	1.0E+00	1/(mg/kg/day)	1E-06	NA	NA	NA	NA	NA	
				Indeno(1,2,3-cd)pyrene	1.4E+01	mg/kg	1.2E-06	mg/kg/day	1.0E-01	1/(mg/kg/day)	6E-07	NA	NA	NA	NA	NA	
				Lead	8.3E+01	mg/kg	5.1E-07	mg/kg/day	NA	NA	NA	NA	NA	NA	NA	NA	
							<u> </u>									<u> </u>	
			Exp. Route Total								8E-06					NA	
	For a sure Madium Tata	Exposure Point Total									5E-05					NA	
	Exposure Medium Tota	al	r		1	1		1		1	5E-05					NA	
Soil*	Ambient Air	Emissions from	Inhalation	Benzo(a)anthracene	4.1E-06	ma/m ³	8.4E-07	ma/m ³	6.0E-05	1/(µg/m ³)	2E-07	NA	NA	NA	NA	NA	
(0 to 1 foot bgs)		Soil*		Benzo(a)pyrene	8.8E-09	ma/m ³	1.8E-09	mg/m ³	6.0E-04	1/(ug/m ³)	4E-09	NA	NA	NA	NA	NA	
				Benzo(b)fluoranthene	1.6E-08	ma/m ³	3.3E-09	ma/m ³	8.4F-02	1/(ug/m ³)	1E-06	NA	NA	NA	NA	NA	
				Benzo(k)fluoranthene	6.8E-09	mg/m ³	1.4E-09	ma/m ³	6.0E-06	1/(ug/m ³)	3E-11	NA	NA	NA	NA	NA	
				Dibenz(a,h)anthracene	2.2E-09	mg/m ³	4.6E-10	mg/m ³	6.0E-04	1/(ug/m ³)	1E-09	NA	NA	NA	NA	NA	
				Indeno(1,2,3-cd)pyrene	1.1E-08	mg/m ³	2.2E-09	mg/m ³	6.0E-05	1/(ug/m ³)	5E-10	NA	NA	NA	NA	NA	
				Lead	6.1E-08	mg/m ³	1.2E-08	mg/m ³	NA	NA	NA	NA	NA	NA	NA	NA	
			Exp. Pouto Total				l				15.06					NA	
		Exposure Point Total	LAP. ROULE 10tal	l							1E-06					NA	
	Exposure Medium Tota	al									1E-06					NA	
Soil Total	<u>n</u>			<u> </u>							5E-05					NA	
Receptor Total				ii							5E-05					NA	

Notes:

bgs = below ground surface

CSF = Cancer slope factor EPC = Exposure point concentration

NA = Not applicable/Not available

RfC = Reference concentration

RfD = Reference dose

TABLE 7.1.CTE SUPPLEMENT A CALCULATION OF CHEMICAL CANCER RISKS FOR COPC WITH MUTAGENIC MODE OF ACTION CENTRAL TENDENCY EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe:	Future
Receptor Population:	Resident

Receptor Age: Adult/Child

				Chemical of	EF	PC .					Ci	ancer Risk Calcu	lations					
Medium	Exposure Medium	Exposure Point	Exposure Route	Potential Concern					Intake			CSF/Unit Risk						
					Value	Units		Value					Va	lue			Cancer Risk	
							0-2 yrs	2-6 yrs	6-16 years	16-26 yrs	Units	0-2 yrs (ADAF=10)	2-6 yrs (ADAF=3)	6-16 yrs (ADAF=3)	16-26 yrs (ADAF=1)	Units		
Soil* (0 to 1 foot bgs)	Soil*	Soil*	Ingestion	Benzo(a)anthracene Benzo(a)pyrene Benzo(b)/fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene	1.6E+01 1.2E+01 2.2E+01 9.2E+00 3.0E+00 1.4E+01	mg/kg mg/kg mg/kg mg/kg mg/kg	1.8E-06 1.4E-06 2.6E-06 1.1E-06 3.6E-07 1.7E-06	3.7E-06 2.8E-06 5.1E-06 2.1E-06 7.1E-07 3.4E-06	7.3E-07 5.5E-07 1.0E-06 4.2E-07 1.4E-07 6.7E-07	NA NA NA NA NA	mg/kg/day mg/kg/day mg/kg/day mg/kg/day mg/kg/day	1.0E+00 1.0E+01 1.0E+00 1.0E-01 1.0E+01 1.0E+00	3.0E-01 3.0E+00 3.0E-01 3.0E-02 3.0E+00 3.0E-01	3.0E-01 3.0E+00 3.0E-01 3.0E-02 3.0E+00 3.0E-01	1.0E-01 1.0E+00 1.0E-01 1.0E-02 1.0E+00 1.0E-01	1/(mg/kg-day) 1/(mg/kg-day) 1/(mg/kg-day) 1/(mg/kg-day) 1/(mg/kg-day) 1/(mg/kg-day)	3.2E-06 2.4E-05 4.4E-06 1.8E-07 6.1E-06 2.9E-06	
			Dermal	Benzo(a)anthracene Benzo(b)fluoranthene Benzo(b)fluoranthene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene	1.6E+01 1.2E+01 2.2E+01 9.2E+00 3.0E+00 1.4E+01	mg/kg mg/kg mg/kg mg/kg mg/kg	3.6E-07 2.7E-07 4.9E-07 2.1E-07 6.9E-08 3.3E-07	7.1E-07 5.4E-07 9.9E-07 4.1E-07 1.4E-07 6.5E-07	1.9E-07 1.4E-07 2.7E-07 1.1E-07 3.7E-08 1.7E-07	NA NA NA NA NA	mg/kg/day mg/kg/day mg/kg/day mg/kg/day mg/kg/day mg/kg/day	1.0E+00 1.0E+01 1.0E+00 1.0E-01 1.0E+01 1.0E+00	3.0E-01 3.0E+00 3.0E-01 3.0E-02 3.0E+00 3.0E-01	3.0E-01 3.0E+00 3.0E-01 3.0E-02 3.0E+00 3.0E-01	1.0E-01 1.0E+00 1.0E-01 1.0E-02 1.0E+00 1.0E-01	1/(mg/kg-day) 1/(mg/kg-day) 1/(mg/kg-day) 1/(mg/kg-day) 1/(mg/kg-day)	6.3E-07 4.7E-06 8.7E-07 3.6E-08 1.2E-06 5.7E-07	
			Inhalation	Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene	4.1E-06 8.8E-09 1.6E-08 6.8E-09 2.2E-09 1.1E-08	mg/m ³ mg/m ³ mg/m ³ mg/m ³ mg/m ³	1.1E-07 2.4E-10 4.4E-10 1.9E-10 6.1E-11 2.9E-10	2.2E-07 4.8E-10 8.8E-10 3.7E-10 1.2E-10 5.8E-10	5.0E-07 1.1E-09 2.0E-09 8.3E-10 2.8E-10 1.3E-09	NA NA NA NA NA	mg/m ³ mg/m ³ mg/m ³ mg/m ³ mg/m ³	6.0E-04 6.0E-03 8.4E-01 6.0E-05 6.0E-03 6.0E-04	1.8E-04 1.8E-03 2.5E-01 1.8E-05 1.8E-03 1.8E-04	1.8E-04 1.8E-03 2.5E-01 1.8E-05 1.8E-03 1.8E-04	6.0E-05 6.0E-04 8.4E-02 6.0E-06 6.0E-04 6.0E-05	1/(ug/m ³) 1/(ug/m ³) 1/(ug/m ³) 1/(ug/m ³) 1/(ug/m ³)	2.0E-07 4.3E-09 1.1E-06 3.3E-11 1.1E-09 5.2E-10	

Note

The 9-year exposure during adulthood is conservatively assumed to occur between 6 and 16 years of age.

TABLE 9.1.RME SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs REASONABLE MAXIMUM EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Current/Future Receptor Population: Industrial Worker Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcino	ogenic Risk		No	n-Carcinogenio	: Hazard Quotie	ent	
			Concern	Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
							Routes Total	Target Organ(s)				Routes Total
Surface Soil	Surface Soil	Surface Soil	Benzo(a)anthracene	1E-07	NA	6E-08	2E-07	NA	NA	NA	NA	NA
(0 to 0.5 feet bgs)			Benzo(a)pyrene	1E-06	NA	7E-07	2E-06	Developmental	1E-02	NA	7E-03	2E-02
			Benzo(b)fluoranthene	1E-07	NA	7E-08	2E-07	NA	NA	NA	NA	NA
			Benzo(k)fluoranthene	6E-09	NA	3E-09	1E-08	NA	NA	NA	NA	NA
			Dibenz(a,h)anthracene	2E-07	NA	9E-08	2E-07	NA	NA	NA	NA	NA
			Indeno(1,2,3-cd)pyrene	9E-08	NA	5E-08	1E-07	NA	NA	NA	NA	NA
			Lead	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Exposure Point Total		2E-06	NA	1E-06	3E-06		1E-02	NA	7E-03	2E-02
	Exposure Medium Tot	al		2E-06	NA	1E-06	3E-06		1E-02	NA	7E-03	2E-02
	Ambient Air	Emissions from	Benzo(a)anthracene	NA	4E-09	NA	4E-09	NA	NA	NA	NA	NA
		Surface Soil	Benzo(a)pyrene	NA	2E-10	NA	2E-10	Developmental	NA	4E-04	NA	4E-04
			Benzo(b)fluoranthene	NA	2E-08	NA	2E-08	NA	NA	NA	NA	NA
			Benzo(k)fluoranthene	NA	7E-13	NA	7E-13	NA	NA	NA	NA	NA
			Dibenz(a,h)anthracene	NA	2E-11	NA	2E-11	NA	NA	NA	NA	NA
			Indeno(1,2,3-cd)pyrene	NA	1E-11	NA	1E-11	NA	NA	NA	NA	NA
			Lead	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Exposure Point Total		NA	2E-08	NA	2E-08		NA	4E-04	NA	4E-04
	Exposure Medium Tot	al		NA	2E-08	NA	2E-08		NA	4E-04	NA	4E-04
Soil Total				2E-06	2E-08	1E-06	3E-06		1E-02	4E-04	7E-03	2E-02
Receptor Total	eptor Total				2E-08	1E-06	3E-06		1E-02	4E-04	7E-03	2E-02

Notes: NA = Not applicable or not available; HI = Hazard Index.

Total Developmental HI Across Media =

TABLE 9.2.RME SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs REASONABLE MAXIMUM EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Current/Future Receptor Population: Trespasser/Visitor Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcino	ogenic Risk		Non-Carcinogenic Hazard Quotient				
			Concern	Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
							Routes Total	Target Organ(s)				Routes Total
Surface Soil	Surface Soil	Surface Soil	Benzo(a)anthracene	8E-08	NA	4E-08	1E-07	NA	NA	NA	NA	NA
(0 to 0.5 feet bgs)			Benzo(a)pyrene	1E-06	NA	6E-07	2E-06	Developmental	1E-02	NA	7E-03	2E-02
			Benzo(b)fluoranthene	1E-07	NA	5E-08	1E-07	NA	NA	NA	NA	NA
			Benzo(k)fluoranthene	5E-09	NA	3E-09	8E-09	NA	NA	NA	NA	NA
			Dibenz(a,h)anthracene	1E-07	NA	7E-08	2E-07	NA	NA	NA	NA	NA
			Indeno(1,2,3-cd)pyrene	7E-08	NA	4E-08	1E-07	NA	NA	NA	NA	NA
			Lead	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Exposure Point Total		1E-06	NA	8E-07	2E-06		1E-02	NA	7E-03	2E-02
	Exposure Medium Tot	al		1E-06	NA	8E-07	2E-06		1E-02	NA	7E-03	2E-02
	Ambient Air	Emissions from	Benzo(a)anthracene	NA	2E-09	NA	2E-09	NA	NA	NA	NA	NA
		Surface Soil	Benzo(a)pyrene	NA	6E-11	NA	6E-11	Developmental	NA	2E-04	NA	2E-04
			Benzo(b)fluoranthene	NA	8E-09	NA	8E-09	NA	NA	NA	NA	NA
			Benzo(k)fluoranthene	NA	3E-13	NA	3E-13	NA	NA	NA	NA	NA
			Dibenz(a,h)anthracene	NA	7E-12	NA	7E-12	NA	NA	NA	NA	NA
			Indeno(1,2,3-cd)pyrene	NA	4E-12	NA	4E-12	NA	NA	NA	NA	NA
			Lead	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Exposure Point Total		NA	1E-08	NA	1E-08		NA	2E-04	NA	2E-04
	Exposure Medium Tot	al		NA	1E-08	NA	1E-08		NA	2E-04	NA	2E-04
Soil Total				1E-06	1E-08	8E-07	2E-06		1E-02	2E-04	7E-03	2E-02
Receptor Total	ptor Total			1E-06	1E-08	8E-07	2E-06		1E-02	2E-04	7E-03	2E-02

Notes: NA = Not applicable or not available; HI = Hazard Index.

Total Developmental HI Across Media =

TABLE 9.3.RME SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs REASONABLE MAXIMUM EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Current/Future Receptor Population: Trespasser/Visitor Receptor Age: Adolescent

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcino	ogenic Risk		Nc	n-Carcinogenic	Hazard Quotie	ent	
			Concern	Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
							Routes Total	Target Organ(s)				Routes Total
Surface Soil	Surface Soil	Surface Soil	Benzo(a)anthracene	2E-07	NA	2E-07	4E-07	NA	NA	NA	NA	NA
(0 to 0.5 feet bgs)			Benzo(a)pyrene	2E-06	NA	3E-06	5E-06	Developmental	2E-02	NA	2E-02	4E-02
			Benzo(b)fluoranthene	2E-07	NA	3E-07	5E-07	NA	NA	NA	NA	NA
			Benzo(k)fluoranthene	1E-08	NA	1E-08	2E-08	NA	NA	NA	NA	NA
			Dibenz(a,h)anthracene	2E-07	NA	4E-07	6E-07	NA	NA	NA	NA	NA
			Indeno(1,2,3-cd)pyrene	1E-07	NA	2E-07	3E-07	NA	NA	NA	NA	NA
			Lead	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Exposure Point Total		3E-06	NA	4E-06	7E-06		2E-02	NA	2E-02	4E-02
	Exposure Medium Tot	al		3E-06	NA	4E-06	7E-06		2E-02	NA	2E-02	4E-02
	Ambient Air	Emissions from	Benzo(a)anthracene	NA	2E-09	NA	2E-09	NA	NA	NA	NA	NA
		Surface Soil	Benzo(a)pyrene	NA	8E-11	NA	8E-11	Developmental	NA	2E-04	NA	2E-04
			Benzo(b)fluoranthene	NA	1E-08	NA	1E-08	NA	NA	NA	NA	NA
			Benzo(k)fluoranthene	NA	4E-13	NA	4E-13	NA	NA	NA	NA	NA
			Dibenz(a,h)anthracene	NA	1E-11	NA	1E-11	NA	NA	NA	NA	NA
			Indeno(1,2,3-cd)pyrene	NA	6E-12	NA	6E-12	NA	NA	NA	NA	NA
			Lead	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Exposure Point Total		NA	1E-08	NA	1E-08		NA	2E-04	NA	2E-04
	Exposure Medium Tot	al		NA	1E-08	NA	1E-08		NA	2E-04	NA	2E-04
Soil Total				3E-06	1E-08	4E-06	7E-06		2E-02	2E-04	2E-02	4E-02
Receptor Total	eceptor Total			3E-06	1E-08	4E-06	7E-06		2E-02	2E-04	2E-02	4E-02

Notes: NA = Not applicable or not available; HI = Hazard Index.

Total Developmental HI Across Media =

TABLE 9.4.RME SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs REASONABLE MAXIMUM EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Future Receptor Population: Resident Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential	Carcinogenic Risk				Non-Carcinogenic Hazard Quotient					
			Concern	Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total	
Soil* (0 to 1 foot bgs)	Soil*	Soil*	Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Lead	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA	NA Developmental NA NA NA NA NA	NA 5E-02 NA NA NA NA	NA NA NA NA NA	NA 3E-02 NA NA NA NA	NA 7E-02 NA NA NA NA	
, i i i i i i i i i i i i i i i i i i i		Exposure Point Total		NA	NA	NA	NA		5E-02	NA	3E-02	7E-02	
l	Exposure Medium Tot	al		NA	NA	NA	NA		5E-02	NA	3E-02	7E-02	
	Ambient Air	Emissions from Soil* Exposure Point Total	Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Lead	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA Developmental NA NA NA NA NA	NA NA NA NA NA NA	NA 4E-03 NA NA NA NA AE-03	NA NA NA NA NA NA	NA 4E-03 NA NA NA NA NA AE-03	
	Exposure Medium Tot	al		NA	NA	NA	NA		NA	4E-03	NA	4E-03	
Soil Total	Total				NA	NA	NA		5E-02	4E-03	3E-02	8E-02	

TABLE 9.4.RME SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs REASONABLE MAXIMUM EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Future Receptor Population: Resident Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcin	ogenic Risk		Non-Carcinogenic Hazard Quotient				
			Concern	Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
				<u> </u>			Routes Total	Target Organ(s)				Routes Total
Groundwater	Groundwater	Tap Water	Benzo(a)anthracene	NA	NA	NA	NA	NA	NA	NA	NA	NA
			Lead	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Exposure Point Total		NA	NA	NA	NA		NA	NA	NA	NA
	Exposure Medium Tota	al		NA	NA	NA	NA		NA	NA	NA	NA
	Air	Water Vapor at Showerhead	Benzo(a)anthracene	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Exposure Point Total		NA	NA	NA	NA		NA	NA	NA	NA
	Exposure Medium Tota	al		NA	NA	NA	NA		NA	NA	NA	NA
Groundwater Total	Groundwater Total			NA	NA	NA	NA		NA	NA	NA	NA
Receptor Total	eptor Total			NA	NA	NA	NA		5E-02	4E-03	3E-02	8E-02

Notes: NA = Not applicable or not available; HI = Hazard Index.

* Combined surface and subsurface soil.

Total Developmental HI Across Media =

TABLE 9.5.RME SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs REASONABLE MAXIMUM EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Future Receptor Population: Resident Receptor Age: Child

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcino	ogenic Risk		No	n-Carcinogenic	Hazard Quotie	nt	
			Concern	Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total
Soil*	Soil*	Soil*	Benzo(a)anthracene	NA	NA	NA	NA	NA	NA	NA	NA	NA
(0 to 1 foot bgs)			Benzo(a)pyrene	NA	NA	NA	NA	Developmental	5E-01	NA	2E-01	7E-01
			Benzo(b)fluoranthene	NA	NA	NA	NA	NA	NA	NA	NA	NA
			Benzo(k)fluoranthene	NA	NA	NA	NA	NA	NA	NA	NA	NA
			Dibenz(a,h)anthracene	NA	NA	NA	NA	NA	NA	NA	NA	NA
			Indeno(1,2,3-cd)pyrene	NA	NA	NA	NA	NA	NA	NA	NA	NA
			Lead	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Exposure Point Total	·	NA	NA	NA	NA		5E-01	NA	2E-01	7E-01
	Exposure Medium Tot	al		NA	NA	NA	NA		5E-01	NA	2E-01	7E-01
	Ambient Air	Emissions from	Benzo(a)anthracene	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Soil*	Benzo(a)pyrene	NA	NA	NA	NA	Developmental	NA	4E-03	NA	4E-03
			Benzo(b)fluoranthene	NA	NA	NA	NA	NA	NA	NA	NA	NA
			Benzo(k)fluoranthene	NA	NA	NA	NA	NA	NA	NA	NA	NA
			Dibenz(a,h)anthracene	NA	NA	NA	NA	NA	NA	NA	NA	NA
			Indeno(1,2,3-cd)pyrene	NA	NA	NA	NA	NA	NA	NA	NA	NA
			Lead	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Exposure Point Total		NA	NA	NA	NA		NA	4E-03	NA	4E-03
	Exposure Medium Tota	al		NA	NA	NA	NA		NA	4E-03	NA	4E-03
Soil Total				NA	NA	NA	NA		5E-01	4E-03	2E-01	7E-01
Groundwater	Groundwater	Tap Water	Benzo(a)anthracene	NA	NA	NA	NA	NA	NA	NA	NA	NA
			Lead	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Exposure Point Total		NA	NA	NA	NA		NA	NA	NA	NA
	Exposure Medium Tota	1		NA	NA	NA	NA		NA	NA	NA	NA
Groundwater Total			NA	NA	NA	NA		NA	NA	NA	NA	
Receptor Total	sceptor Total			NA	NA	NA	NA		5E-01	4E-03	2E-01	7E-01

Notes: NA = Not applicable or not available; HI = Hazard Index.

* Combined surface and subsurface soil.

Total Developmental HI Across Media =

TABLE 9.6.RME SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs REASONABLE MAXIMUM EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Future Receptor Population: Resident Receptor Age: Child/Adult

Medium Exposure Exposure Chemical Carcinogenic Risk Non-Carcinogenic Hazard Quotient Medium Point of Potential Concern Ingestion Inhalation Dermal Exposure Primary Ingestion Inhalation Dermal Exposure Target Organ(s) Routes Total Routes Total Soil* Soil* Soil* Benzo(a)anthracene 1E-05 NA 3E-06 1E-05 NA NA NA NA NA (0 to 1 foot bgs) Benzo(a)pyrene 8E-05 NA 3E-05 1E-04 Developmental NA NA NA NA Benzo(b)fluoranthene 1E-05 NA 5E-06 2E-05 NA NA NA NA NA Benzo(k)fluoranthene 6E-07 NA 2E-07 8E-07 NA NA NA NA NA Dibenz(a,h)anthracene 2E-05 NA 7E-06 3E-05 NA NA NA NA NA Indeno(1,2,3-cd)pyrene 9E-06 NA 3E-06 1E-05 NA NA NA NA NA Lead NA NA NA NA NA NA NA NA NA Exposure Point Total 1E-04 NA 4E-05 2E-04 NA NA NA NA Exposure Medium Total 1E-04 NA 4E-05 2E-04 NA NA NA NA Ambient Air Emissions from Benzo(a)anthracene NA 2E-07 NA 2E-07 NA NA NA NA NA Soil* NA 5E-09 NA 5E-09 Developmental NA NA NA NA Benzo(a)pyrene Benzo(b)fluoranthene NA 1E-06 NA 1E-06 NA NA NA NA NA Benzo(k)fluoranthene NA 4E-11 NA 4E-11 NA NA NA NA NA Dibenz(a,h)anthracene NA 1E-09 1E-09 NA NA NA NA NA NA Indeno(1,2,3-cd)pyrene NA 6E-10 NA 6E-10 NA NA NA NA NA Lead NA NA NA NA NA NA NA NA NA Exposure Point Total NA 2E-06 NA 2E-06 NA NA NA NA Exposure Medium Total NA 2E-06 NA 2E-06 NA NA NA NA 1E-04 Soil Total 2E-06 4E-05 2E-04 NA NA NA NA

TABLE 9.6.RME SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs REASONABLE MAXIMUM EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Future Receptor Population: Resident Receptor Age: Child/Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential	Carcinogenic Risk Non-Carcinogenic Hazard Quotient								
			Concern	Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
							Routes Total	Target Organ(s)				Routes Total
Groundwater	Groundwater	Tap Water	Benzo(a)anthracene	7E-08	NA	2E-06	2E-06	NA	NA	NA	NA	NA
			Lead	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Exposure Point Total		7E-08	NA	2E-06	2E-06		NA	NA	NA	NA
	Exposure Medium Tota	al		7E-08	NA	2E-06	2E-06		NA	NA	NA	NA
	Air	Water Vapor at Showerhead	Benzo(a)anthracene	NA	3E-09	NA	3E-09	NA	NA	NA	NA	NA
		Exposure Point Total		NA	3E-09	NA	3E-09		NA	NA	NA	NA
	Exposure Medium Tota	al		NA	3E-09	NA	3E-09		NA	NA	NA	NA
Groundwater Total	Groundwater Total			7E-08	3E-09	2E-06	2E-06		NA	NA	NA	NA
Receptor Total	eptor Total			1E-04	2E-06	5E-05	2E-04		NA	NA	NA	NA

Notes:

TABLE 9.7.RME SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs REASONABLE MAXIMUM EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Future Receptor Population: Industrial Worker Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcino	ogenic Risk		Nc	on-Carcinogenic	: Hazard Quotie	nt	
			Concern	Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
							Routes Total	Target Organ(s)				Routes Total
Soil*	Soil*	Soil*	Benzo(a)anthracene	5E-07	NA	3E-07	7E-07	NA	NA	NA	NA	NA
(0 to 1 foot bgs)			Benzo(a)pyrene	4E-06	NA	2E-06	6E-06	Developmental	3E-02	NA	2E-02	5E-02
			Benzo(b)fluoranthene	7E-07	NA	4E-07	1E-06	NA	NA	NA	NA	NA
			Benzo(k)fluoranthene	3E-08	NA	2E-08	4E-08	NA	NA	NA	NA	NA
			Dibenz(a,h)anthracene	9E-07	NA	5E-07	1E-06	NA	NA	NA	NA	NA
			Indeno(1,2,3-cd)pyrene	4E-07	NA	2E-07	7E-07	NA	NA	NA	NA	NA
			Lead	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Exposure Point Total	·	6E-06	NA	3E-06	1E-05		3E-02	NA	2E-02	5E-02
	Exposure Medium Tot	al		6E-06	NA	3E-06	1E-05		3E-02	NA	2E-02	5E-02
	Ambient Air	Emissions from	Benzo(a)anthracene	NA	2E-08	NA	2E-08	NA	NA	NA	NA	NA
		Soil*	Benzo(a)pyrene	NA	4E-10	NA	4E-10	Developmental	NA	1E-03	NA	1E-03
			Benzo(b)fluoranthene	NA	1E-07	NA	1E-07	NA	NA	NA	NA	NA
			Benzo(k)fluoranthene	NA	3E-12	NA	3E-12	NA	NA	NA	NA	NA
			Dibenz(a,h)anthracene	NA	1E-10	NA	1E-10	NA	NA	NA	NA	NA
			Indeno(1,2,3-cd)pyrene	NA	5E-11	NA	5E-11	NA	NA	NA	NA	NA
			Lead	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Exposure Point Total		NA	1E-07	NA	1E-07		NA	1E-03	NA	1E-03
	Exposure Medium Tot	al		NA	1E-07	NA	1E-07		NA	1E-03	NA	1E-03
Soil Total				6E-06	1E-07	3E-06	1E-05		3E-02	1E-03	2E-02	5E-02
Receptor Total			6E-06	1E-07	3E-06	1E-05		3E-02	1E-03	2E-02	5E-02	

Notes: NA = Not applicable or not available; HI = Hazard Index.

* Combined surface and subsurface soil.

Total Developmental HI Across Media =

TABLE 9.8.RME SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs REASONABLE MAXIMUM EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Future Receptor Population: Trespasser/Visitor Receptor Age: Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcino	ogenic Risk		Nc	n-Carcinogenic	: Hazard Quotie	ent	
			Concern	Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
							Routes Total	Target Organ(s)				Routes Total
Soil*	Soil*	Soil*	Benzo(a)anthracene	8E-08	NA	4E-08	1E-07	NA	NA	NA	NA	NA
(0 to 1 foot bgs)			Benzo(a)pyrene	6E-07	NA	3E-07	9E-07	Developmental	7E-03	NA	4E-03	1E-02
			Benzo(b)fluoranthene	1E-07	NA	6E-08	2E-07	NA	NA	NA	NA	NA
			Benzo(k)fluoranthene	5E-09	NA	3E-09	7E-09	NA	NA	NA	NA	NA
			Dibenz(a,h)anthracene	2E-07	NA	8E-08	2E-07	NA	NA	NA	NA	NA
			Indeno(1,2,3-cd)pyrene	7E-08	NA	4E-08	1E-07	NA	NA	NA	NA	NA
			Lead	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Exposure Point Total		1E-06	NA	6E-07	2E-06		7E-03	NA	4E-03	1E-02
	Exposure Medium Tot	al		1E-06	NA	6E-07	2E-06		7E-03	NA	4E-03	1E-02
	Ambient Air	Emissions from	Benzo(a)anthracene	NA	2E-09	NA	2E-09	NA	NA	NA	NA	NA
		Soil*	Benzo(a)pyrene	NA	4E-11	NA	4E-11	Developmental	NA	1E-04	NA	1E-04
			Benzo(b)fluoranthene	NA	9E-09	NA	9E-09	NA	NA	NA	NA	NA
			Benzo(k)fluoranthene	NA	3E-13	NA	3E-13	NA	NA	NA	NA	NA
			Dibenz(a,h)anthracene	NA	9E-12	NA	9E-12	NA	NA	NA	NA	NA
			Indeno(1,2,3-cd)pyrene	NA	4E-12	NA	4E-12	NA	NA	NA	NA	NA
			Lead	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Exposure Point Total	•	NA	1E-08	NA	1E-08		NA	1E-04	NA	1E-04
	Exposure Medium Tot	al		NA	1E-08	NA	1E-08		NA	1E-04	NA	1E-04
Soil Total				1E-06	1E-08	6E-07	2E-06		7E-03	1E-04	4E-03	1E-02
Receptor Total			1E-06	1E-08	6E-07	2E-06		7E-03	1E-04	4E-03	1E-02	

Notes: NA = Not applicable or not available; HI = Hazard Index.

* Combined surface and subsurface soil.

Total Developmental HI Across Media =

TABLE 9.9.RME SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs REASONABLE MAXIMUM EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Future Receptor Population: Trespasser/Visitor Receptor Age: Adolescent

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcino	ogenic Risk		No	on-Carcinogenic	Hazard Quotie	ent	
			Concern	Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
	1	1					Roules Total		1			Roules Total
Soil*	Soil*	Soil*	Benzo(a)anthracene	2E-07	NA	2E-07	4E-07	NA	NA	NA	NA	NA
(0 to 1 foot bgs)			Benzo(a)pyrene	1E-06	NA	2E-06	3E-06	Developmental	1E-02	NA	1E-02	3E-02
			Benzo(b)fluoranthene	2E-07	NA	3E-07	5E-07	NA	NA	NA	NA	NA
			Benzo(k)fluoranthene	9E-09	NA	1E-08	2E-08	NA	NA	NA	NA	NA
			Dibenz(a,h)anthracene	3E-07	NA	4E-07	7E-07	NA	NA	NA	NA	NA
			Indeno(1,2,3-cd)pyrene	1E-07	NA	2E-07	4E-07	NA	NA	NA	NA	NA
			Lead	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Exposure Point Total	•	2E-06	NA	3E-06	5E-06		1E-02	NA	1E-02	3E-02
	Exposure Medium Tot	al		2E-06	NA	3E-06	5E-06		1E-02	NA	1E-02	3E-02
	Ambient Air	Emissions from	Benzo(a)anthracene	NA	2E-09	NA	2E-09	NA	NA	NA	NA	NA
		Soil*	Benzo(a)pyrene	NA	5E-11	NA	5E-11	Developmental	NA	1E-04	NA	1E-04
			Benzo(b)fluoranthene	NA	1E-08	NA	1E-08	NA	NA	NA	NA	NA
			Benzo(k)fluoranthene	NA	4E-13	NA	4E-13	NA	NA	NA	NA	NA
			Dibenz(a,h)anthracene	NA	1E-11	NA	1E-11	NA	NA	NA	NA	NA
			Indeno(1,2,3-cd)pyrene	NA	6E-12	NA	6E-12	NA	NA	NA	NA	NA
			Lead	NA	NA	NA	NA	NA	NA	NA	NA	NA
		Exposure Point Total		NA	1E-08	NA	1E-08		NA	1E-04	NA	1E-04
	Exposure Medium Tot	al		NA	1E-08	NA	1E-08		NA	1E-04	NA	1E-04
Soil Total				2E-06	1E-08	3E-06	5E-06		1E-02	1E-04	1E-02	3E-02
Receptor Total	eptor Total 2E-06			2E-06	1E-08	3E-06	5E-06		1E-02	1E-04	1E-02	3E-02

Notes: NA = Not applicable or not available; HI = Hazard Index.

* Combined surface and subsurface soil.

Total Developmental HI Across Media =

TABLE 9.10.RME SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs REASONABLE MAXIMUM EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe:	Future
Receptor Population:	Construction Worker
Receptor Age: Adult	

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcin	ogenic Risk		Non-Carcinogenic Hazard Quotient				
			Concern	Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total
Soil* (0 to 1 foot bgs)	Soil*	Soil*	Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Lead	3E-08 2E-07 4E-08 2E-09 6E-08 3E-08 NA	NA NA NA NA NA	1E-08 1E-07 2E-08 8E-10 3E-08 1E-08 NA	5E-08 3E-07 6E-08 3E-09 9E-08 4E-08 NA	NA Developmental NA NA NA NA	NA 6E-02 NA NA NA NA	NA NA NA NA NA	NA 2E-02 NA NA NA NA	NA 8E-02 NA NA NA NA
		Exposure Point Total		4E-07	NA	2E-07	6E-07		6E-02	NA	2E-02	8E-02
	Exposure Medium Tot	al		4E-07	NA	2E-07	6E-07		6E-02	NA	2E-02	8E-02
	Ambient Air	Emissions from Soil*	Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Lead	NA NA NA NA NA	4E-10 9E-12 2E-09 7E-14 2E-12 1E-12 NA	NA NA NA NA NA NA	4E-10 9E-12 2E-09 7E-14 2E-12 1E-12 NA	NA Developmental NA NA NA NA NA	NA NA NA NA NA NA	NA 5E-04 NA NA NA NA	NA NA NA NA NA	NA 5E-04 NA NA NA NA
	Exposure Medium Tet	Exposure Point Total		NA	3E-09	NA	3E-09		NA	5E-04	NA	5E-04
Soil Total	Exposure Medium Total Total			4E-07	3E-09	2E-07	6E-07		6E-02	5E-04	2E-02	8E-02

TABLE 9.10.RME SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs REASONABLE MAXIMUM EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe:	Future
Receptor Population:	Construction Worker
Receptor Age: Adult	

Medium	Exposure Medium	Exposure Point	Chemical of Potential		Carcin	ogenic Risk		Non-Carcinogenic Hazard Quotient				
			Concern	Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total
Groundwater	Groundwater	Water In Excavation Trench	Benzo(a)anthracene Lead	NA NA	NA NA	7E-09 NA	7E-09 NA	NA NA	NA NA	NA NA	NA NA	NA NA
		Exposure Point Total	•	NA	NA	7E-09	7E-09		NA	NA	NA	NA
	Exposure Medium Tot	al		NA	NA	7E-09	7E-09		NA	NA	NA	NA
	Air	Volatiles in Air In Excavation Trench	Benzo(a)anthracene	NA	1E-10	NA	1E-10	NA	NA	NA	NA	NA
		Exposure Point Total		NA	1E-10	NA	1E-10		NA	NA	NA	NA
	Exposure Medium Tot	al		NA	1E-10	NA	1E-10		NA	NA	NA	NA
Groundwater Total	Groundwater Total			NA	1E-10	7E-09	7E-09		NA	NA	NA	NA
Receptor Total				4E-07	3E-09	2E-07	6E-07		6E-02	5E-04	2E-02	8E-02

Notes: NA = Not applicable or not available; HI = Hazard Index.

* Combined surface and subsurface soil.

Total Developmental HI Across Media =

TABLE 9.1.CTE SUMMARY OF RECEPTOR RISKS AND HAZARDS FOR COPCs CENTRAL TENDENCY EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Future Receptor Population: Resident Receptor Age: Child/Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential	Carcinogenic Risk			Non-Carcinogenic Hazard Quotient					
			Concern	Ingestion	Inhalation	Dermal	Exposure Routes Total	Primary Target Organ(s)	Ingestion	Inhalation	Dermal	Exposure Routes Total
Soil* (0 to 1 foot bgs)	Soil*	Soil*	Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Lead	3E-06 2E-05 4E-06 2E-07 6E-06 3E-06 NA	NA NA NA NA NA	6E-07 5E-06 9E-07 4E-08 1E-06 6E-07 NA	4E-06 3E-05 5E-06 2E-07 7E-06 3E-06 NA	NA Developmental NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA	NA NA NA NA NA NA
		Exposure Point Total		4E-05	NA	8E-06	5E-05		NA	NA	NA	NA
	Exposure Medium Tot	al		4E-05	NA	8E-06	5E-05		NA	NA	NA	NA
	Ambient Air	Emissions from Soil*	Benzo(a)anthracene Benzo(a)pyrene Benzo(b)fluoranthene Benzo(k)fluoranthene Dibenz(a,h)anthracene Indeno(1,2,3-cd)pyrene Lead	NA NA NA NA NA NA	2E-07 4E-09 1E-06 3E-11 1E-09 5E-10 NA 1E-06	NA NA NA NA NA NA	2E-07 4E-09 1E-06 3E-11 1E-09 5E-10 NA 1E-06	NA Developmental NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA	NA NA NA NA NA NA
	Exposure Medium Tot	al		NA	1E-06	NA	1E-06		NA	NA	NA	NA
Soil Total				4E-05	1E-06	8E-06	5E-05		NA	NA	NA	NA
Receptor Total				4E-05	1E-06	8E-06	5E-05		NA	NA	NA	NA

Notes:

TABLE 10.1.RME RISK SUMMARY REASONABLE MAXIMUM EXPOSURE UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Future Receptor Population: Resident Receptor Age: Child/Adult

Medium	Exposure Medium	Exposure Point	Chemical of Potential	Carcinogenic Risk				Non-Carcinogenic Hazard Quotient				
			Concern	Ingestion	Inhalation	Dermal	Exposure	Primary	Ingestion	Inhalation	Dermal	Exposure
							Routes Total	Target Organ(s)				Routes Total
Soil*	Soil*	Soil*	Benzo(a)anthracene	1E-05	NA	3E-06	1E-05	NA	NA	NA	NA	NA
(0 to 1 foot bgs)			Benzo(a)pyrene	8E-05	NA	3E-05	1E-04	Developmental	NA	NA	NA	NA
			Benzo(b)fluoranthene	1E-05	NA	5E-06	2E-05	NA	NA	NA	NA	NA
			Dibenz(a,h)anthracene	2E-05	NA	7E-06	3E-05	NA	NA	NA	NA	NA
			Indeno(1,2,3-cd)pyrene	9E-06	NA	3E-06	1E-05	NA	NA	NA	NA	NA
		Exposure Point Total		1E-04	NA	4E-05	2E-04		NA	NA	NA	NA
Exposure Medium Total		1E-04	NA	4E-05	2E-04		NA	NA	NA	NA		
Soil Total		1E-04	NA	4E-05	2E-04		NA	NA	NA	NA		
Receptor Total				1E-04	NA	4E-05	2E-04		NA	NA	NA	NA

Notes:

TABLE 11.1a RAGS D ADULT LEAD WORKSHEET Calculations of Blood Lead Concentrations –Industrial Worker UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

1. Lead Screening Questions

	Lead Concentration used in Model Run		Basis for Lead Concentration Used For	Lead Scr Concentr	eening ation	
Medium	Value	Units	Model Run	Value	Units	Basis for Lead Screening Level
Surface Soil	92.1	mg/kg	Average Detected Value	400	mg/kg	Recommended Soil Screening Level

2. Lead Model Questions

Question	Response
What lead model was used? Provide reference and version	USEPA Adult Lead Model, Version dated 6/14/2017
If the EPA Adult Lead Model (ALM) was not used provide rationale for model selected.	N/A
Where are the input values located in the risk assessment report?	Table 11.1b
What statistics were used to represent the exposure concentration terms and where are the data on concentrations in the risk assessment that support use of these statistics?	Mean surface soil concentration; See Appendix E-1 Table 3.1.
What was the point of exposure and location?	UXO-002 OU2
Where are the output values located in the risk assessment report?	Attached as Table 11.1b
What GSD value was used? If this is outside the recommended range of 1.8-2.1), provide rationale in Appendix.	Default values were used (1.7 through 2.1).
What baseline blood lead concentration (PbB ₀) value was used? If this is outside the default range of 1.7 to 2.2 provide rationale in Appendix.	Default values from ALM were used (0.6 through 1.5 ug/dL).
Was the default exposure frequency (EF; 219 days/year) used?	Yes
Was the default BKSF used (0.4 ug/dL per ug/day) used?	Yes
Was the default absorption fraction (AF; 0.12) used?	Yes
Was the default soil ingestion rate (IR; 50 mg/day) used?	Yes
If non-default values were used for any of the parameters listed above, where is the rationale for the values located in the risk assessment report?	Default values were used.

3. Final Result		
Medium	Result	Comment/RBRG ¹
Soil	92.1 mg/kg lead soil results in geometric mean blood lead levels ranging from 0.7 to 1.6 ug/dL for women of child-bearing age in homogeneous and heterogeneous populations. The 95th percentile fetal blood lead concentrations range from 1.7 to 5.0 ug/dL. The probabilities that the fetal blood lead levels exceed 10 ug/dL are all below 1%. The probabilities that the fetal blood lead levels exceed 5 ug/dL are all below 5%. These values are below the blood lead goal as described in the 1994 OSWER Directive of no more than 5% of children (fetuses of exposed women) exceeding 10 ug/dL blood lead and 5 ug/dL blood lead (the reference level used by the Centers for Disease Control and Prevention and MDE (2020).	PRG not calculated.

1. Attach the ALM spreadsheet output file upon which the Risk Based Remediation Goal (RBRG) was based and description of rationale for parameters used. For additional information, see www.epa.gov/superfund/programs/lead

TABLE 11.1b

Calculations of Blood Lead Concentrations (PbBs) and Risk in Nonresidential Areas U.S. EPA Technical Review Workgroup for Lead, Adult Lead Committee, Version date 6/14/2017 UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Current/Future Medium: Surface Soil (0-0.5 feet bgs) Exposure Medium: Surface Soil Receptor: Industrial Worker

			GSDI and PbBo from Analysis of			
			NHANES 2009-	NHANES 2007-	NHANES 2004-	NHANES III
Variable	Description of Variable	Units	2014	2010	2007	(Phases 1&2)
PbS	Soil lead concentration	µg/g or ppm	92.1	92.1	92.1	92.1
R _{fetal/maternal}	Fetal/maternal PbB ratio		0.9	0.9	0.9	0.9
BKSF	Biokinetic Slope Factor	µg/dL per uq/dav	0.4	0.4	0.4	0.4
GSD _i	Geometric standard deviation PbB		1.8	1.7	1.8	2.1
PbB ₀	Baseline PbB	µg/dL	0.6	0.7	1.0	1.5
IR _S	Soil ingestion rate (including soil-derived indoor dust)	g/day	0.050	0.050	0.050	0.050
IR _{S+D}	Total ingestion rate of outdoor soil and indoor dust	g/day				
Ws	Weighting factor; fraction of IR_{S+D} ingested as outdoor soil					
K _{SD}	Mass fraction of soil in dust					
AF _{S, D}	Absorption fraction (same for soil and dust)		0.12	0.12	0.12	0.12
EF _{S, D}	Exposure frequency (same for soil and dust)	days/yr	219	219	219	219
AT _{S, D}	Averaging time (same for soil and dust)	days/yr	365	365	365	365
PbB _{adult}	PbB of adult worker, geometric mean	µg/dL	0.7	0.8	1.1	1.6
PbB _{fetal} , 0.95	95th percentile PbB among fetuses of adult workers	µg/dL	1.7	1.8	2.7	5.0
PbBt	Target PbB level of concern (e.g., 2-8 ug/dL)	µg/dL	5	5	5	5
PbB _t	Target PbB level of concern (e.g., 2-8 ug/dL)	µg/dL	10	10	10	10
P(PbB _{fetal} > PbB _t)	Probability that fetal PbB exceeds target PbB of 5 µg/dL, assuming lognormal distribution	%	0.03%	0.02%	0.3%	4.9%
P(PbB _{fetal} > PbB _t)	Probability that fetal PbB exceeds target PbB of 10 µg/dL, assuming lognormal distribution	%	0.0002%	0.00005%	0.005%	0.5%
TABLE 11.2a RAGS D ADULT LEAD WORKSHEET Calculations of Blood Lead Concentrations –Adult Trespasser/Visitor UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

1. Lead Screening Questions

	Lead Concentration used in Model Run		Basis for Lead Concentration Used For	Lead Scr Concentr	eening ation	
Medium	Value	Units	Model Run	Value	Units	Basis for Lead Screening Level
Surface Soil	92.1	mg/kg	Average Detected Value	400	mg/kg	Recommended Soil Screening Level

2. Lead Model Questions

Question	Response
What lead model was used? Provide reference and version	USEPA Adult Lead Model, Version dated 6/14/2017
If the EPA Adult Lead Model (ALM) was not used provide rationale for model selected.	N/A
Where are the input values located in the risk assessment report?	Table 11.2b
What statistics were used to represent the exposure concentration terms and where are the data on concentrations in the risk assessment that support use of these statistics?	Mean surface soil concentration; See Appendix E-1 Table 3.1.
What was the point of exposure and location?	UXO-002 OU2
Where are the output values located in the risk assessment report?	Attached as Table 11.2b
What GSD value was used? If this is outside the recommended range of 1.8-2.1), provide rationale in Appendix.	Default values were used (1.7 through 2.1).
What baseline blood lead concentration (PbB ₀) value was used? If this is outside the default range of 1.7 to 2.2 provide rationale in Appendix.	Default values from ALM were used (0.6 through 1.5 ug/dL).
Was the default exposure frequency (EF; 219 days/year) used?	No. A value of 52 days/year was used for the trespasser/visitor scenario.
Was the default BKSF used (0.4 ug/dL per ug/day) used?	Yes
Was the default absorption fraction (AF; 0.12) used?	Yes
Was the default soil ingestion rate (IR; 50 mg/day) used?	Yes
If non-default values were used for any of the parameters listed above, where is the rationale for the values located in the risk assessment report?	Appendix E-1, Section E.5.3.

3. Final Result

Medium	Result	Comment/RBRG ¹
Soil	92.1 mg/kg lead in soil results in geometric mean blood lead levels ranging from 0.6 to 1.5 ug/dL for women of child-bearing age in homogeneous and heterogeneous populations. The 95th percentile fetal blood lead concentrations range from 1.5 to 4.7 ug/dL. The probabilities that the fetal blood lead levels exceed 10 ug/dL are all below 0.5%. The probabilities that the fetal blood lead levels exceed 5 ug/dL are all below 5%. These values are below the blood lead goal as described in the 1994 OSWER Directive of no more than 5% of children (fetuses of exposed women) exceeding 10 ug/dL blood lead and 5 ug/dL blood lead (the reference level used by the Centers for Disease Control and Prevention and MDE (2020).	PRG not calculated.

1. Attach the ALM spreadsheet output file upon which the Risk Based Remediation Goal (RBRG) was based and description of rationale for parameters used. For additional information, see www.epa.gov/superfund/programs/lead

Calculations of Blood Lead Concentrations (PbBs) and Risk in Nonresidential Areas U.S. EPA Technical Review Workgroup for Lead, Adult Lead Committee, Version date 6/14/2017 UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Current/Future Medium: Surface Soil (0-0.5 feet bgs) Exposure Medium: Surface Soil Receptor: Trespasser/Visitor

			GSDi and PbBo from Analysis of			
Variable	Description of Variable	Units	NHANES 2009- 2014	NHANES 2007- 2010	NHANES 2004- 2007	NHANES III (Phases 1&2)
PbS	Soil lead concentration	µg/g or ppm	92.1	92.1	92.1	92.1
R _{fetal/maternal}	Fetal/maternal PbB ratio		0.9	0.9	0.9	0.9
BKSF	Biokinetic Slope Factor	µg/dL per µg/dav	0.4	0.4	0.4	0.4
GSD _i	Geometric standard deviation PbB		1.8	1.7	1.8	2.1
PbB ₀	Baseline PbB	µg/dL	0.6	0.7	1.0	1.5
IR _S	Soil ingestion rate (including soil-derived indoor dust)	g/day	0.050	0.050	0.050	0.050
IR _{S+D}	Total ingestion rate of outdoor soil and indoor dust	g/day				
Ws	Weighting factor; fraction of IR_{S+D} ingested as outdoor soil					
K _{SD}	Mass fraction of soil in dust					
AF _{S, D}	Absorption fraction (same for soil and dust)		0.12	0.12	0.12	0.12
EF _{S, D}	Exposure frequency (same for soil and dust)	days/yr	52	52	52	52
AT _{S, D}	Averaging time (same for soil and dust)	days/yr	365	365	365	365
PbB _{adult}	PbB of adult worker, geometric mean	µg/dL	0.6	0.7	1.0	1.5
PbB _{fetal} , 0.95	95th percentile PbB among fetuses of adult workers	µg/dL	1.5	1.6	2.4	4.7
PbB _t	Target PbB level of concern (e.g., 2-8 ug/dL)	µg/dL	5	5	5	5
PbB _t	Target PbB level of concern (e.g., 2-8 ug/dL)	µg/dL	10	10	10	10
P(PbB _{fetal} > PbB _t)	Probability that fetal PbB exceeds target PbB of 5 µg/dL, assuming lognormal distribution	%	0.01%	0.007%	0.2%	4.1%
P(PbB _{fetal} > PbB _t)	Probability that fetal PbB exceeds target PbB of 10 μg/dL, assuming lognormal distribution	%	0.00005%	0.00001%	0.003%	0.4%

TABLE 11.3aRAGS D IEUBK LEAD WORKSHEETChild (Age 12 – 72 Months), Child ResidentUXO 002, OU2 Remedial Investigation

NAS Patuxent River, Maryland

1. Lead Screening Questions

	Lead Concentration Used in Model Run Basis for Lead Concentration Used For Concentration		eening ation			
Medium	Value	Units	Model Run	Value	Units	Basis for Lead Screening Level
Soil*	82.7	mg/kg	Average Detected Value in Soil	400	mg/kg	Recommended Soil Screening Level
Water	9.06	µg/L	IEUBK Model Default Value	15	µg/L	Recommended Drinking Water Action Level

* Combined surface and subsurface soil.

2. Lead Model Questions

Question	Response for Residential Lead Model
What lead model (version and date was used)?	Lead Model for Windows, Version 2.0 Build 1 (May, 2021)
Where are the input values located in the risk assessment report?	Located in IEUBKwin OUTPUT (Attached as Table 11.3b and Figure 11.1)
What range of media concentrations were used for the model?	5.35 – 621 mg/kg (soil)
What statistics were used to represent the exposure concentration terms and where are the data on concentrations in the risk assessment that support use of these statistics?	Mean surface and subsurface soil concentration; Data are located in Appendix E-1, Table 3.2.
Was soil sample taken from top 2 cm? If not, why?	No, concentrations in combined surface (0-0.5 feet) and subsurface (0-1 foot) soil was used to be consistent with the data set for the other COPCs.
Was soil sample sieved? What size screen was used? If not sieved, provide rationale.	No
What was the point of exposure/location?	UXO-002 OU2
Where are the output values located in the risk assessment report?	IEUBKwin OUTPUT (Attached as Table 11.3b and Figure 11.1)
Was the model run using default values only?	No – Assumed site-specific arithmetic mean concentration of lead in soil/groundwater.
Was the default soil bioavailability used?	Yes Default is 30%
Was the default soil ingestion rate used?	Yes Default values for 5 age groups are 94 (1-2 yrs old), 67 (2-3 yrs old), 63 (3-4 yrs old), 67 (4-5 yrs old), and 52 (5-6 yrs old) mg/day
If non-default values were used, where is the rationale for the values located in the risk assessment report?	Section E4.4 in Appendix E-1.

3. Final Result

Medium	Result	Comment/PRG ¹
Soil*	82.7 mg/kg lead in soil and 9.06 μ g/L in groundwater results in 0.088 % of children above a blood lead level of 10 μ g/dL and 4.897% of children above a blood lead level of 5 μ g/dL. Geometric mean blood lead = 2.297 μ g/dL. This is below the blood lead goal as described in the 1994 OSWER Directive of no more than 5% of children exceeding 10 μ g/dL blood lead (the reference level used by the Centers for Disease Control and Prevention and MDE (2020).	PRG not calculated.

1. Attach the ALM spreadsheet output file upon which the Risk Based Remediation Goal (RBRG) was based and description of rationale for parameters used. For additional information, see www.epa.gov/superfund/programs/lead

IEUBK- Surface and Subsurface Soil, Former Debris Removal Areas, Child Resident UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

LEAD MODEL FOR WINDOWS Version 2.0

These IEUBK Model results are valid as long as they were produced with an official, unmodified version of the IEUBK Model with a software certificate.

While IEUBK Model output is generally written with three digits to the right of the decimal point, the true precision of the output is strongly influenced by least precise input values.

odel Version: 2.0 Build1
ser Name:
ate:
te Name:
perable Unit:
un Mode: Research

****** Air ******

Indoor Air Pb Concentration: 30.000 percent of outdoor. Other Air Parameters:

Month	Time	Ventilation	Lung	Outdoor Air
	Outdoors	Rate	Absorption	Pb Conc
	(hours)	(m³/day)	(%)	(µg Pb/m³)
6-12	1.000	3.216	32.000	0.100
12-24	2.000	4.970	32.000	0.100
24-36	3.000	6.086	32.000	0.100
36-48	4.000	6.954	32.000	0.100
48-60	4.000	7.682	32.000	0.100
60-72	4.000	8.318	32.000	0.100
72-84	4.000	8.887	32.000	0.100

IEUBK- Surface and Subsurface Soil, Former Debris Removal Areas, Child Resident UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

****** Diet ******

Month Diet Intake(µg/day)

 6-12
 2.660

 12-24
 5.030

 24-36
 5.210

 36-48
 5.380

 48-60
 5.640

 60-72
 6.040

 72-84
 5.950

****** Drinking Water ******

Water Consumption:

 Month
 Water (L/day)

 6-12
 0.400

 12-24
 0.430

 24-36
 0.510

 36-48
 0.540

 48-60
 0.570

 60-72
 0.600

 72-84
 0.630

Drinking Water Concentration: 9.064 µg Pb/L

****** Soil & Dust ******

Multiple Source Analysis Used Average multiple source concentration: 67.890 µg/g

Mass fraction of outdoor soil to indoor dust conversion factor: 0.700 Outdoor airborne lead to indoor household dust lead concentration: 100.000 Use alternate indoor dust Pb sources? No

IEUBK- Surface and Subsurface Soil, Former Debris Removal Areas, Child Resident UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Month	Soil (µg Pb/g)	House Dust (µg Pb/g)
6-12	82.700	67.890
12-24	82.700	67.890
24-36	82.700	67.890
36-48	82.700	67.890
48-60	82.700	67.890
60-72	82.700	67.890
72-84	82.700	67.890

****** Alternate Intake ******

Month	Alternate (µg Pb/day)
	0.000
0-12	0.000
12-24	0.000
24-36	0.000
36-48	0.000
48-60	0.000
60-72	0.000
72-84	0.000

****** Maternal Contribution: Infant Model ******

Maternal Blood Concentration: 0.600 µg Pb/dL

CALCULATED BLOOD LEAD AND LEAD UPTAKES:

Month	Air (µg/day)	Diet (µg/day)	Alternate (µg/day)	Water (µg/day)
		1 250		
0-12	0.034	1.209	0.000	1.717
12-24	0.057	2.382	0.000	1.846
24-36	0.075	2.489	0.000	2.209
36-48	0.093	2.585	0.000	2.352
48-60	0.102	2.719	0.000	2.491
60-72	0.111	2.924	0.000	2.633
72-84	0.118	2.886	0.000	2.770

IEUBK- Surface and Subsurface Soil, Former Debris Removal Areas, Child Resident UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Month	Soil+Dust (µg/day)	Total (µg/day)	Blood (µg/dL)
6-12	1.821	4.831	2.6
12-24	1.991	6.276	2.6
24-36	1.432	6.205	2.3
36-48	1.354	6.383	2.2
48-60	1.445	6.758	2.2
60-72	1.126	6.793	2.1
72-84	1.193	6.967	2.0

TABLE 11.4a RAGS D ADULT LEAD WORKSHEET Calculations of Blood Lead Concentrations –Industrial Worker UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

1. Lead Screening Questions

	Lead Conce in Model Ru	entration used n	Basis for Lead Concentration Used For	Lead Screening Concentration		
Medium	Value	Units	Model Run	Value	Units	Basis for Lead Screening Level
Soil*	82.7	mg/kg	Average Detected Value	400	mg/kg	Recommended Soil Screening Level

* Combined surface and subsurface soil.

2. Lead Model Questions

Question	Response
What lead model was used? Provide reference and version	USEPA Adult Lead Model, Version dated 6/14/2017
If the EPA Adult Lead Model (ALM) was not used provide rationale for model selected.	N/A
Where are the input values located in the risk assessment report?	Table 11.4b
What statistics were used to represent the exposure concentration terms and where are the data on concentrations in the risk assessment that support use of these statistics?	Mean surface and subsurface soil concentration; See Appendix E-1 Table 3.2.
What was the point of exposure and location?	UXO-002 OU2
Where are the output values located in the risk assessment report?	Attached as Table 11.4b
What GSD value was used? If this is outside the recommended range of 1.8-2.1), provide rationale in Appendix.	Default values were used (1.7 through 2.1).
What baseline blood lead concentration (PbB ₀) value was used? If this is outside the default range of 1.7 to 2.2 provide rationale in Appendix.	Default values from ALM were used (0.6 through 1.5 ug/dL).
Was the default exposure frequency (EF; 219 days/year) used?	Yes
Was the default BKSF used (0.4 ug/dL per ug/day) used?	Yes
Was the default absorption fraction (AF; 0.12) used?	Yes
Was the default soil ingestion rate (IR; 50 mg/day) used?	Yes
If non-default values were used for any of the parameters listed above, where is the rationale for the values located in the risk assessment report?	Default values were used.

3. Final Result		
Medium	Result	Comment/RBRG ¹
Soil*	82.7 mg/kg lead soil results in geometric mean blood lead levels ranging from 0.7 to 1.6 ug/dL for women of child-bearing age in homogeneous and heterogeneous populations. The 95th percentile fetal blood lead concentrations range from 1.7 to 4.9 ug/dL. The probabilities that the fetal blood lead levels exceed 10 ug/dL are all below 1%. The probabilities that the fetal blood lead levels exceed 5 ug/dL are all below 5%. These values are below the blood lead goal as described in the 1994 OSWER Directive of no more than 5% of children (fetuses of exposed women) exceeding 10 ug/dL blood lead and 5 ug/dL blood lead (the reference level used by the Centers for Disease Control and Prevention and MDE (2020).	PRG not calculated.

1. Attach the ALM spreadsheet output file upon which the Risk Based Remediation Goal (RBRG) was based and description of rationale for parameters used. For additional information, see www.epa.gov/superfund/programs/lead

Calculations of Blood Lead Concentrations (PbBs) and Risk in Nonresidential Areas U.S. EPA Technical Review Workgroup for Lead, Adult Lead Committee, Version date 6/14/2017 UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Future Medium: Soil* (0-1 foot bgs) Exposure Medium: Soil* Receptor: Industrial Worker

			GSDi and PbBo from Analysis of NHANES 2009-	GSDi and PbBo from Analysis of NHANES 2007-	GSDi and PbBo from Analysis of NHANES 2004-	GSDi and PbBo from Analysis of NHANES III
Variable	Description of Variable	Units	2014	2010	2007	(Phases 1&2)
PbS	Soil lead concentration	µg/g or ppm	82.7	82.7	82.7	82.7
R _{fetal/maternal}	Fetal/maternal PbB ratio		0.9	0.9	0.9	0.9
BKSF	Biokinetic Slope Factor	µg/dL per uq/dav	0.4	0.4	0.4	0.4
GSD _i	Geometric standard deviation PbB		1.8	1.7	1.8	2.1
PbB ₀	Baseline PbB	µg/dL	0.6	0.7	1.0	1.5
IR _S	Soil ingestion rate (including soil-derived indoor dust)	g/day	0.050	0.050	0.050	0.050
IR _{S+D}	Total ingestion rate of outdoor soil and indoor dust	g/day				
W _S	Weighting factor; fraction of IR_{S+D} ingested as outdoor soil					
K _{SD}	Mass fraction of soil in dust					
AF _{S, D}	Absorption fraction (same for soil and dust)		0.12	0.12	0.12	0.12
EF _{S, D}	Exposure frequency (same for soil and dust)	days/yr	219	219	219	219
AT _{S, D}	Averaging time (same for soil and dust)	days/yr	365	365	365	365
PbB _{adult}	PbB of adult worker, geometric mean	µg/dL	0.7	0.8	1.1	1.6
PbB _{fetal} , 0.95	95th percentile PbB among fetuses of adult workers	µg/dL	1.7	1.8	2.6	4.9
PbB _t	Target PbB level of concern (e.g., 2-8 ug/dL)	µg/dL	5	5	5	5
PbB _t	Target PbB level of concern (e.g., 2-8 ug/dL)	µg/dL	10	10	10	10
P(PbB _{fetal} > PbB _t)	Probability that fetal PbB exceeds target PbB of 5 μg/dL, assuming lognormal distribution	%	0.03%	0.02%	0.3%	4.8%
P(PbB _{fetal} > PbB _t)	Probability that fetal PbB exceeds target PbB of 10 µg/dL, assuming lognormal distribution	%	0.0002%	0.00004%	0.005%	0.5%

* Combined surface and subsurface soil.

TABLE 11.5a RAGS D ADULT LEAD WORKSHEET Calculations of Blood Lead Concentrations –Adult Trespasser/Visitor UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

1. Lead Screening Questions

	Lead Conce in Model Ru	entration used n	Basis for Lead Concentration Used For	Lead Screening Concentration		
Medium	Value	Units	Model Run	Value	Units	Basis for Lead Screening Level
Soil*	82.7	mg/kg	Average Detected Value	400	mg/kg	Recommended Soil Screening Level

* Combined surface and subsurface soil.

2. Lead Model Questions

Question	Response
What lead model was used? Provide reference and version	USEPA Adult Lead Model, Version dated 6/14/2017
If the EPA Adult Lead Model (ALM) was not used provide rationale for model selected.	N/A
Where are the input values located in the risk assessment report?	Table 11.5b
What statistics were used to represent the exposure concentration terms and where are the data on concentrations in the risk assessment that support use of these statistics?	Mean surface and subsurface soil concentration; See Appendix E-1 Table 3.2.
What was the point of exposure and location?	UXO-002 OU2
Where are the output values located in the risk assessment report?	Attached as Table 11.5b
What GSD value was used? If this is outside the recommended range of 1.8-2.1), provide rationale in Appendix.	Default values were used (1.7 through 2.1).
What baseline blood lead concentration (PbB_0) value was used? If this is outside the default range of 1.7 to 2.2 provide rationale in Appendix.	Default values from ALM were used (0.6 through 1.5 ug/dL).
Was the default exposure frequency (EF; 219 days/year) used?	No. A value of 52 days/year was used for the trespasser/visitor scenario.
Was the default BKSF used (0.4 ug/dL per ug/day) used?	Yes
Was the default absorption fraction (AF; 0.12) used?	Yes
Was the default soil ingestion rate (IR; 50 mg/day) used?	Yes
If non-default values were used for any of the parameters listed above, where is the rationale for the values located in the risk assessment report?	Appendix E-1, Section E.5.3.

3. Final Result		
Medium	Result	Comment/RBRG ¹
Soil*	82.7 mg/kg lead in soil results in geometric mean blood lead levels ranging from 0.6 to 1.5 ug/dL for women of child-bearing age in homogeneous and heterogeneous populations. The 95th percentile fetal blood lead concentrations range from 1.5 to 4.7 ug/dL. The probabilities that the fetal blood lead levels exceed 10 ug/dL are all below 0.5%. The probabilities that the fetal blood lead levels exceed 5 ug/dL are all below 5%. These values are below the blood lead goal as described in the 1994 OSWER Directive of no more than 5% of children (fetuses of exposed women) exceeding 10 ug/dL blood lead and 5 ug/dL blood lead (the reference level used by the Centers for Disease Control and Prevention and MDE (2020).	PRG not calculated.

1. Attach the ALM spreadsheet output file upon which the Risk Based Remediation Goal (RBRG) was based and description of rationale for parameters used. For additional information, see www.epa.gov/superfund/programs/lead

Calculations of Blood Lead Concentrations (PbBs) and Risk in Nonresidential Areas U.S. EPA Technical Review Workgroup for Lead, Adult Lead Committee, Version date 6/14/2017 UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Future Medium: Soil* (0-1 foot bgs) Exposure Medium: Soil* Receptor: Trespasser/Visitor

			GSDI and PbBo from Analysis of NHANES 2009-	GSDI and PbBo from Analysis of NHANES 2007-	GSDI and PbBo from Analysis of NHANES 2004-	GSDi and PbBo from Analysis of NHANES III
Variable	Description of Variable	Units	2014	2010	2007	(Phases 1&2)
PbS	Soil lead concentration	µg/g or ppm	82.7	82.7	82.7	82.7
R _{fetal/maternal}	Fetal/maternal PbB ratio		0.9	0.9	0.9	0.9
BKSF	Biokinetic Slope Factor	µg/dL per uq/dav	0.4	0.4	0.4	0.4
GSD _i	Geometric standard deviation PbB		1.8	1.7	1.8	2.1
PbB ₀	Baseline PbB	µg/dL	0.6	0.7	1.0	1.5
IR _S	Soil ingestion rate (including soil-derived indoor dust)	g/day	0.050	0.050	0.050	0.050
IR _{S+D}	Total ingestion rate of outdoor soil and indoor dust	g/day				
Ws	Weighting factor; fraction of IR_{S+D} ingested as outdoor soil					
K _{SD}	Mass fraction of soil in dust					
AF _{S, D}	Absorption fraction (same for soil and dust)		0.12	0.12	0.12	0.12
EF _{S, D}	Exposure frequency (same for soil and dust)	days/yr	52	52	52	52
AT _{S, D}	Averaging time (same for soil and dust)	days/yr	365	365	365	365
PbB _{adult}	PbB of adult worker, geometric mean	µg/dL	0.6	0.7	1.0	1.5
PbB _{fetal} , 0.95	95th percentile PbB among fetuses of adult workers	µg/dL	1.5	1.6	2.4	4.7
PbBt	Target PbB level of concern (e.g., 2-8 ug/dL)	µg/dL	5	5	5	5
PbB _t	Target PbB level of concern (e.g., 2-8 ug/dL)	µg/dL	10	10	10	10
P(PbB _{fetal} > PbB _t)	Probability that fetal PbB exceeds target PbB of 5 µg/dL, assuming lognormal distribution	%	0.01%	0.006%	0.2%	4.1%
P(PbB _{fetal} > PbB _t)	Probability that fetal PbB exceeds target PbB of 10 µg/dL, assuming lognormal distribution	%	0.00005%	0.00001%	0.003%	0.4%

* Combined surface and subsurface soil.

TABLE 11.6a RAGS D ADULT LEAD WORKSHEET Calculations of Blood Lead Concentrations –Construction Worker UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

1. Lead Screening Questions

	Lead Conce in Model Ru	entration used In	Basis for Lead Concentration Used For	Lead Screening Concentration		
Medium	Value	Units	Model Run	Value	Units	Basis for Lead Screening Level
Soil*	82.7	mg/kg	Average Detected Value	400	mg/kg	Recommended Soil Screening Level

* Combined surface and subsurface soil.

2. Lead Model Questions

Question	Response
What lead model was used? Provide reference and version	USEPA Adult Lead Model, Version dated 6/14/2017
If the EPA Adult Lead Model (ALM) was not used provide rationale for model selected.	N/A
Where are the input values located in the risk assessment report?	Table 11.6b
What statistics were used to represent the exposure concentration terms and where are the data on concentrations in the risk assessment that support use of these statistics?	Mean surface and subsurface soil concentration; See Appendix E-1 Table 3.2.
What was the point of exposure and location?	UXO-002 OU2
Where are the output values located in the risk assessment report?	Attached as Table 11.6b
What GSD value was used? If this is outside the recommended range of 1.8-2.1), provide rationale in Appendix.	Default values were used (1.7 through 2.1).
What baseline blood lead concentration (PbB_0) value was used? If this is outside the default range of 1.7 to 2.2 provide rationale in Appendix.	Default values from ALM were used (0.6 through 1.5 ug/dL).
Was the default exposure frequency (EF; 219 days/year) used?	No. A value of 125 days/year was used for the construction worker scenario, assuming duration of construction project is ½-year (i.e., 182 days).
Was the default BKSF used (0.4 ug/dL per ug/day) used?	Yes
Was the default absorption fraction (AF; 0.12) used?	Yes
Was the default soil ingestion rate (IR; 50 mg/day) used?	No. An IR value of 100 mg/day was used, based on recommendation in the Adult Lead Model FAQs. http://www.epa.gov/superfund/lead/almfaq.htm#soil ingestion rate.
If non-default values were used for any of the parameters listed above, where is the rationale for the values located in the risk assessment report?	Appendix E-1, Section E.5.3.

3. Final Result

Medium	Result	Comment/RBRG ¹
Soil*	82.7 mg/kg lead in soil results in geometric mean blood lead levels ranging from 0.9 to 1.8 ug/dL for women of child-bearing age in homogeneous and heterogeneous	PRG not calculated.
	populations. The 95th percentile fetal blood lead concentrations range from 2.1 to 5.4 ug/dL. The probabilities that the fetal blood lead levels exceed 10 ug/dL are all below 1%. The probabilities that the fetal blood lead levels exceed 5 ug/dL are below 5% except when calculated using the GSDi and PbBo from the NHANES III (Phase 1&2), the oldest NHANES study. The values based on the NHANES III study are below the blood lead goal as described in the 1994 OSWER Directive of	
	no more than 5% of children (fetuses of exposed women) exceeding 10 ug/dL blood lead but above 5 ug/dL blood lead, the reference level used by the CDC and MDE (2020).Since results using more recent NHANES study data are within acceptable levels, it is assumed there are no unacceptable risks associated with exposure to lead in soil by future construction workers.	

1. Attach the ALM spreadsheet output file upon which the Risk Based Remediation Goal (RBRG) was based and description of rationale for parameters used. For additional information, see www.epa.gov/superfund/programs/lead

Calculations of Blood Lead Concentrations (PbBs) and Risk in Nonresidential Areas U.S. EPA Technical Review Workgroup for Lead, Adult Lead Committee, Version date 6/14/2017 UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Scenario Timeframe: Future Medium: Soil* (0-1 foot bgs) Exposure Medium: Soil* Receptor: Construction Worker

			GSDI and PbBo from Analysis of			
Variable	Description of Variable	Units	NHANES 2009- 2014	NHANES 2007- 2010	NHANES 2004- 2007	NHANES III (Phases 1&2)
PbS	Soil lead concentration	µg/g or ppm	82.7	82.7	82.7	82.7
R _{fetal/maternal}	Fetal/maternal PbB ratio		0.9	0.9	0.9	0.9
BKSF	Biokinetic Slope Factor	µg/dL per µg/dav	0.4	0.4	0.4	0.4
GSD _i	Geometric standard deviation PbB		1.8	1.7	1.8	2.1
PbB ₀	Baseline PbB	µg/dL	0.6	0.7	1.0	1.5
IR _S	Soil ingestion rate (including soil-derived indoor dust)	g/day	0.100	0.100	0.100	0.100
IR _{S+D}	Total ingestion rate of outdoor soil and indoor dust	g/day				
Ws	Weighting factor; fraction of IR_{S+D} ingested as outdoor soil					
K _{SD}	Mass fraction of soil in dust					
AF _{S, D}	Absorption fraction (same for soil and dust)		0.12	0.12	0.12	0.12
EF _{s, D}	Exposure frequency (same for soil and dust)	days/yr	125	125	125	125
AT _{S, D}	Averaging time (same for soil and dust)	days/yr	182	182	182	182
PbB _{adult}	PbB of adult worker, geometric mean	µg/dL	0.9	1.0	1.3	1.8
PbB _{fetal} , 0.95	95th percentile PbB among fetuses of adult workers	µg/dL	2.1	2.1	3.0	5.4
PbBt	Target PbB level of concern (e.g., 2-8 ug/dL)	µg/dL	5	5	5	5
PbB _t	Target PbB level of concern (e.g., 2-8 ug/dL)	µg/dL	10	10	10	10
P(PbB _{fetal} > PbB _t)	Probability that fetal PbB exceeds target PbB of 5 µg/dL, assuming lognormal distribution	%	0.08%	0.05%	0.6%	6.2%
P(PbB _{fetal} > PbB _t)	Probability that fetal PbB exceeds target PbB of 10 µg/dL, assuming lognormal distribution	%	0.0008%	0.0002%	0.0114%	0.7%

* Combined surface and subsurface soil.

These IEUBK Model results are valid as long as they were produced with an official, unmodified version of the IEUBK Model with a software certificate. While IEUBK Model output is generally written with three digits to the right of the decimal point, the true precision of the output is strongly influenced by least precise input values.

Figure 11.1b IEUBK - Surface and Subsurface Soil, Future Resident Child, with Target Pb of 10 µg/dL UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

These IEUBK Model results are valid as long as they were produced with an official, unmodified version of the IEUBK Model with a software certificate. While IEUBK Model output is generally written with three digits to the right of the decimal point, the true precision of the output is strongly influenced by least precise input values.

24

22

Attachment A-2 Tables and Figures

Table 1 Summary of Data Used in Baseline Human Health Risk Assessment Site UXO-002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Media	Sample Location	Sample ID	Sample ID	Sample Depth	Sample Date	Analytes
			(duplicate sample)	(ft)	-	
Surface Sail				0.0.5	10/15/0010	Lood
Surface Soli	PX-FSR-SU-01	PX-FSR-SS01-0001		0-0.5	12/15/2010	Lead
	PX-FSR-50-02	PX-FSR-5502-0001		0-0.5	12/15/2010	Lead
	PX-FSR-SU-US	PX-FSR-3303-0001		0-0.5	12/15/2010	Lead
	PX-131-30-04	PX-1 31-3304-0001		0.0.5	12/15/2010	Lead
	PX-FSR-SO-06	PX-ESR-SS06-0001		0-0.5	12/15/2010	Lead
	PX-13R-30-00	PX-1 31-3300-0001		0.0.5	12/15/2010	Lead
	PX-FSR-SO-08	PX-FSR-SS08-0001		0-0.5	12/15/2010	Lead
	PX-FSR-SO-00	PX-ESR-SS00-0001		0-0.5	12/15/2010	Lead
	PX-FSR-SO-10	PX-ESR-SS10-0001	PX_FSR_SS10P_0001	0-0.5	12/15/2010	Lead
	PX-FSR-SO-11	PX-ESR-SS11-0001		0-0.5	12/15/2010	Lead
	PX-FSR-SO-12	PX-FSR-SS12-0001		0-0.5	12/15/2010	Lead
	PX-FSR-SO-13	PX-ESR-SS13-0001		0-0.5	12/15/2010	Lead
	PX-FSR-SO-1/	PX-FSR-SS14-0001		0-0.5	12/15/2010	Lead
	PX-FSR-SO-15	PX-FSR-SS15-0001		0-0.5	12/15/2010	Lead
	PX-1 31(-30-15	PX-1 SIX-3313-0001		0.0.5	12/15/2010	
	PX-1 31(-30-10	PX-I SIX-SS10-0001		0.0.5	12/15/2010	Lead, PAHs
	PX-1 31(-30-17	PX-1 SIX-SS17-0001		0.0.5	12/15/2010	Lead, PAHs
		PX-FSR-SS18-000H	PX-ESR-SS18P-000H	0-0.5	11/15/2010	Lead PAHs
		PX-I SIX-SS10-00011	FX-1 SIX-SS10F-00011	0-0.5	12/15/2010	Lead, PAHs
	1 X-1 61(-66-19	DY ESP \$\$10,000H		0.0.5	11/15/2018	
	PX-ESR-SO-20	PX-ESR-SS20-0001	PX_FSR_SS20P_0001	0-0.5	12/15/2010	Lead, I Aris
	PX-FSR-SO-21	PX-FSR-SS21-0001	1 7-1 011-00201 -0001	0-0.5	12/15/2010	Lead, I Aris
	1 741 014-00-21	PX-ESR-SS21-000H		0-0.5	11/15/2018	Lead, PAHs
	PX-FSR-SO-22	PX-ESR-SS22-0001		0-0.5	12/15/2010	Lead PAHs
	1 1-1 011-00-22	PX-ESR-SS22-000H		0-0.5	11/15/2018	Lead, PAHs
	PX-FSR-SO-23	PX-FSR-SS23-0001		0-0.5	12/15/2010	Lead PAHs
	PX-FSR-SO-24	PX-ESR-SS24-0001		0-0.5	12/15/2010	Lead, PAHs
	1 741 014-00-24	PX-ESR-SS24-000H		0-0.5	11/16/2018	Lead PAHs
	PX-FSR-SO-25	PX-ESR-SS25-0001		0-0.5	12/15/2010	Lead PAHs
	PX-FSR-SO-26	PX-FSR-SS26-0001	PX-FSR-SS26P-0001	0-0.5	12/15/2010	Lead, PAHs
		PX-FSR-SS26-000H		0-0.5	11/16/2018	Lead, PAHs
	PX-FSR-SO-27	PX-FSR-SS27-000H	PX-FSR-SS27P-000H	0-0.5	11/13/2018	Lead. PAHs
	PX-FSR-SO-28	PX-FSR-SS28-000H		0-0.5	11/13/2018	Lead, PAHs
	PX-FSR-SO-29	PX-FSR-SS29-000H		0-0.5	11/13/2018	Lead, PAHs
	PX-FSR-SO-30	PX-FSR-SS30-000H	PX-FSR-SS30P-000H	0-0.5	11/13/2018	Lead, PAHs
	PX-FSR-SO-31	PX-FSR-SS31-000H		0-0.5	11/13/2018	Lead, PAHs
	PX-FSR-SO-32	PX-FSR-SS32-000H		0-0.5	11/13/2018	Lead, PAHs
	PX-FSR-SO-33	PX-FSR-SS33-000H		0-0.5	11/14/2018	Lead, PAHs
	PX-FSR-SO-34	PX-FSR-SS34-000H	PX-FSR-SS34P-000H	0-0.5	11/13/2018	PAHs
	PX-FSR-SO-35	PX-FSR-SS35-000H		0-0.5	11/13/2018	PAHs
	PX-FSR-SO-36	PX-FSR-SS36-000H		0-0.5	11/13/2018	PAHs
	PX-FSR-SO-37	PX-FSR-SS37-000H	PX-FSR-SS37P-000H	0-0.5	11/13/2018	PAHs
	PX-FSR-SO-38	PX-FSR-SS38-000H		0-0.5	11/14/2018	PAHs
	PX-FSR-SO-39	PX-FSR-SS39-000H		0-0.5	11/14/2018	PAHs
	PX-FSR-SO-40	PX-FSR-SS40-000H		0-0.5	11/14/2018	PAHs
	PX-FSR-SO-41	PX-FSR-SS41-000H	PX-FSR-SS41P-000H	0-0.5	11/14/2018	PAHs
	PX-FSR-SO-42	PX-FSR-SS42-000H		0-0.5	11/14/2018	PAHs
	PX-FSR-SO-43	PX-FSR-SS43-000H		0-0.5	11/14/2018	PAHs
	PX-FSR-SO-44	PX-FSR-SS44-000H		0-0.5	11/14/2018	PAHs
	PX-FSR-SO-45	PX-FSR-SS45-000H		0-0.5	11/14/2018	PAHs
	PX-FSR-SO-46	PX-FSR-SS46-000H		0-0.5	11/14/2018	PAHs
	PX-FSR-SO-47	PX-FSR-SS47-000H		0-0.5	11/14/2018	PAHs
	PX-FSR-SO-48	PX-FSR-SS48-000H		0-0.5	11/14/2018	PAHs
	PX-FSR-SO-49	PX-FSR-SS49-000H		0-0.5	11/14/2018	PAHs
	PX-FSR-SO-50	PX-FSR-SS50-000H		0-0.5	11/14/2018	PAHs
	PX-FSR-SO-51	PX-FSR-SS51-000H		0-0.5	11/14/2018	PAHs
	PX-FSR-SO-52	PX-FSR-SS52-000H		0-0.5	11/14/2018	PAHs

Table 1
Summary of Data Used in Baseline Human Health Risk Assessment
Site UXO-002, OU2 Remedial Investigation
NAS Patuxent River, Maryland

Media	Sample Location	Sample ID	Sample ID	Sample Depth	Sample Date	Analytes
			(duplicate sample)	(ft)	-	
				0.05	44/44/0040	DALL
	PX-FSR-SU-53	PX-FSR-SS53-000H		0-0.5	11/14/2018	PAHs
(cont a)	PX-FSR-SU-54	PX-FSR-SS54-000H		0-0.5	11/14/2018	PAHS
	PX-FSR-50-35	PX-F3R-3355-000H		0-0.5	11/14/2010	
	PX-FSR-50-30	PX-F3R-3300-000H		0-0.5	11/14/2010	
	PX-1 31-30-37	PX-1 31-3337-00011		0.0.5	11/16/2018	Lood DAHe
	PX-1 31-30-30	PX-1 31-3330-00011		0.0.5	11/16/2018	
Soil*	PX-FSR-SO-01	PX-FSR-SS01-0001		0-0.5	12/15/2010	Lead, FAIIS
001	PX-FSR-SO-02	PX-FSR-SS02-0001		0-0.5	12/15/2010	Lead
	PX-ESR-SO-02	PX-ESR-SS03-0001		0-0.5	12/15/2010	Lead
	PX-FSR-SO-04	PX-ESR-SS04-0001		0-0.5	12/15/2010	Lead
	PX-FSR-SO-05	PX-FSR-SS05-0001		0-0.5	12/15/2010	Lead
	PX-FSR-SO-06	PX-FSR-SS06-0001		0-0.5	12/15/2010	Lead
	PX-FSR-SO-07	PX-FSR-SS07-0001		0-0.5	12/15/2010	Lead
	PX-FSR-SO-08	PX-FSR-SS08-0001		0-0.5	12/15/2010	Lead
	PX-FSR-SO-09	PX-FSR-SS09-0001		0-0.5	12/15/2010	Lead
	PX-FSR-SO-10	PX-FSR-SS10-0001	PX-FSR-SS10P-0001	0-0.5	12/15/2010	Lead
	PX-FSR-SO-11	PX-FSR-SS11-0001		0-0.5	12/15/2010	Lead
	PX-FSR-SO-12	PX-FSR-SS12-0001		0-0.5	12/15/2010	Lead
	PX-FSR-SO-13	PX-FSR-SS13-0001		0-0.5	12/15/2010	Lead
	PX-FSR-SO-14	PX-FSR-SS14-0001		0-0.5	12/15/2010	Lead
	PX-FSR-SO-15	PX-FSR-SS15-0001		0-0.5	12/15/2010	Lead
	PX-FSR-SO-16	PX-FSR-SS16-0001		0-0.5	12/15/2010	Lead, PAHs
	PX-FSR-SO-17	PX-FSR-SS17-0001		0-0.5	12/15/2010	Lead, PAHs
		PX-FSR-SB17-0H01		0.5-1	11/15/2018	PAHs
	PX-FSR-SO-18	PX-FSR-SS18-0001		0-0.5	12/15/2010	Lead, PAHs
		PX-FSR-SB18-0H01		0.5-1	11/15/2018	PAHs
		PX-FSR-SS18-000H	PX-FSR-SS18P-000H	0-0.5	11/15/2018	Lead, PAHs
	PX-FSR-SO-19	PX-FSR-SS19-0001		0-0.5	12/15/2010	Lead, PAHs
		PX-FSR-SB19-0H01		0.5-1	11/15/2018	PAHs
		PX-FSR-SS19-000H		0-0.5	11/15/2018	Lead, PAHs
	PX-FSR-SO-20	PX-FSR-SS20-0001	PX-FSR-SS20P-0001	0-0.5	12/15/2010	Lead, PAHs
	PX-FSR-SO-21	PX-FSR-SS21-0001		0-0.5	12/15/2010	Lead, PAHs
		PX-FSR-SB21-0H01		0.5-1	11/15/2018	PAHs
		PX-FSR-SS21-000H	-	0-0.5	11/15/2018	Lead, PAHs
	PX-FSR-SO-22	PX-FSR-SS22-0001		0-0.5	12/15/2010	Lead, PAHs
		PX-FSR-SB22-0H01		0.5-1	11/15/2018	PAHs
	DV 50D 00 00	PX-FSR-SS22-000H		0-0.5	11/15/2018	Lead, PAHs
	PX-FSR-50-23	PX-FSR-SS23-0001		0-0.5	12/15/2010	Lead, PAHs
		DV ESD SS24 0001		0.5-1	12/15/2010	
	FX-F3R-30-24	PX-F3R-3324-0001		0-0.5	11/16/2018	
		PX-1 3R-3024-0101		0.0-1	11/16/2018	Lood DAHe
	PX-ESR-SO-25	PX-FSR-SS24-0001		0-0.5	12/15/2010	Lead, PAHs
	PX-FSR-SO-26	PX-FSR-SS26-0001	PX_FSR_SS26P_0001	0-0.5	12/15/2010	Lead, PAHs
	1 74 014 00-20	PX-ESR-SB26-0H01	1 X-1 01(-00201-0001	0.5-1	11/16/2018	PAHs
		PX-ESR-SS26-000H		0-0.5	11/16/2018	Lead PAHs
	PX-ESR-SO-27	PX-ESR-SB27-0H01		0.5-1	11/13/2018	Lead PAHs
		PX-FSR-SS27-000H	PX-FSR-SS27P-000H	0-0.5	11/13/2018	Lead, PAHs
	PX-FSR-SO-28	PX-FSR-SB28-0H01		0.5-1	11/13/2018	Lead, PAHs
		PX-FSR-SS28-000H		0-0.5	11/13/2018	Lead, PAHs
	PX-FSR-SO-29	PX-FSR-SB29-0H01		0.5-1	11/13/2018	Lead, PAHs
		PX-FSR-SS29-000H		0-0.5	11/13/2018	Lead, PAHs
	PX-FSR-SO-30	PX-FSR-SB30-0H01		0.5-1	11/13/2018	Lead, PAHs
		PX-FSR-SS30-000H	PX-FSR-SS30P-000H	0-0.5	11/13/2018	Lead, PAHs
	PX-FSR-SO-31	PX-FSR-SB31-0H01		0.5-1	11/13/2018	Lead, PAHs
		PX-FSR-SS31-000H		0-0.5	11/13/2018	Lead, PAHs

Table 1
Summary of Data Used in Baseline Human Health Risk Assessment
Site UXO-002, OU2 Remedial Investigation
NAS Patuxent River, Maryland

Media	Sample Location	Sample ID	Sample ID (duplicate sample)	Sample Depth (ft)	Sample Date	Analytes
Soil*	PX-FSR-SO-32	PX-FSR-SB32-0H01		0.5-1	11/13/2018	Lead, PAHs
(cont'd)		PX-FSR-SS32-000H		0-0.5	11/13/2018	Lead, PAHs
	PX-FSR-SO-33	PX-FSR-SB33-0H01		0.5-1	11/14/2018	Lead, PAHs
		PX-FSR-SS33-000H		0-0.5	11/14/2018	Lead, PAHs
	PX-FSR-SO-34	PX-FSR-SB34-0H01		0.5-1	11/13/2018	PAHs
		PX-FSR-SS34-000H	PX-FSR-SS34P-000H	0-0.5	11/13/2018	PAHs
	PX-FSR-SO-35	PX-FSR-SB35-0H01		0.5-1	11/13/2018	PAHs
		PX-FSR-SS35-000H		0-0.5	11/13/2018	PAHs
	PX-FSR-SO-36	PX-FSR-SB36-0H01		0.5-1	11/13/2018	PAHs
		PX-FSR-SS36-000H		0-0.5	11/13/2018	PAHs
	PX-FSR-SO-37	PX-FSR-SB37-0H01		0.5-1	11/13/2018	PAHs
		PX-FSR-SS37-000H	PX-FSR-SS37P-000H	0-0.5	11/13/2018	PAHs
	PX-FSR-SO-38	PX-FSR-SB38-0H01		0.5-1	11/14/2018	PAHs
		PX-FSR-SS38-000H		0-0.5	11/14/2018	PAHs
	PX-FSR-SO-39	PX-FSR-SB39-0H01		0.5-1	11/14/2018	PAHs
		PX-FSR-SS39-000H		0-0.5	11/14/2018	PAHs
	PX-FSR-SO-40	PX-FSR-SS40-000H		0-0.5	11/14/2018	PAHs
	PX-FSR-SO-41	PX-FSR-SS41-000H	PX-FSR-SS41P-000H	0-0.5	11/14/2018	PAHs
	PX-FSR-SO-42	PX-FSR-SS42-000H		0-0.5	11/14/2018	PAHs
	PX-FSR-SO-43	PX-FSR-SS43-000H		0-0.5	11/14/2018	PAHs
	PX-FSR-SO-44	PX-FSR-SS44-000H		0-0.5	11/14/2018	PAHs
	PX-FSR-SO-45	PX-FSR-SS45-000H		0-0.5	11/14/2018	PAHs
	PX-FSR-SO-46	PX-FSR-SS46-000H		0-0.5	11/14/2018	PAHs
	PX-FSR-SO-47	PX-FSR-SS47-000H		0-0.5	11/14/2018	PAHs
	PX-FSR-SO-48	PX-FSR-SS48-000H		0-0.5	11/14/2018	PAHs
	PX-FSR-SO-49	PX-FSR-SS49-000H		0-0.5	11/14/2018	PAHs
	PX-FSR-SO-50	PX-FSR-SS50-000H		0-0.5	11/14/2018	PAHs
	PX-FSR-SO-51	PX-FSR-SS51-000H		0-0.5	11/14/2018	PAHs
	PX-FSR-SO-52	PX-FSR-SS52-000H		0-0.5	11/14/2018	PAHs
	PX-FSR-SO-53	PX-FSR-SS53-000H		0-0.5	11/14/2018	PAHs
	PX-FSR-SO-54	PX-FSR-SS54-000H		0-0.5	11/14/2018	PAHs
	PX-FSR-SO-55	PX-FSR-SS55-000H		0-0.5	11/14/2018	PAHs
	PX-FSR-SO-56	PX-FSR-SS56-000H		0-0.5	11/14/2018	PAHs
	PX-FSR-SO-57	PX-FSR-SS57-000H		0-0.5	11/14/2018	PAHs
	PX-FSR-SO-58	PX-FSR-SS58-000H		0-0.5	11/16/2018	Lead, PAHs
	PX-FSR-SO-59	PX-FSR-SS59-000H		0-0.5	11/16/2018	Lead, PAHs

Notes:

Soil* - combined surface and subsurface soil

PAH - polycyclic aromatic hydrocarbon

Summary of Chemicals of Potential Concern for the Human Health Risk Assessment Site UXO-002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Surface Soil	Soil*
Benzo(a)anthracene	Benzo(a)anthracene
Benzo(a)pyrene	Benzo(a)pyrene
Benzo(b)fluoranthene	Benzo(b)fluoranthene
Benzo(k)fluoranthene	Benzo(k)fluoranthene
Dibenz(a,h)anthracene	Dibenz(a,h)anthracene
Indeno(1,2,3-cd)pyrene	Indeno(1,2,3-cd)pyrene
Lead	Lead

*Soil = combined surface and subsurface soil

Summary of RME Cancer Risks and Hazard Indices

UXO 002, OU2 Remedial Investigation

NAS Patuxent River, Maryland

Receptor	Media	Exposure Route	Cancer Risk	Chemicals with Cancer Risks >10 ⁻⁴	Chemicals with Cancer Risks >10 ⁻⁵ and ≤10 ⁻⁴	Chemicals with Cancer Risks >10 ⁻⁶ and ≤10 ⁻⁵	Hazard Index	Chemicals with HI>1	Cher Cont Or
Current/Future	Surface Soil	Ingestion	2E-06				0.01		
Industrial Worker		Dermal Contact	1E-06				0.007		
		Inhalation	2E-08				0.0004		
		Total	3E-06			Benzo(a)pyrene	0.02		
Current/Future	Surface Soil	Ingestion	1E-06				0.01		
Trespasser/Visitor		Dermal Contact	8E-07				0.007		
Adult		Inhalation	1E-08				0.0002		
		Total	2E-06			Benzo(a)pyrene	0.02		
Current/Future	Surface Soil	Ingestion	3E-06			Benzo(a)pyrene	0.02		
Trespasser/Visitor		Dermal Contact	4E-06			Benzo(a)pyrene	0.02		
Adolescent		Inhalation	1E-08				0.0002		
		Total	7E-06			Benzo(a)pyrene	0.04		
Future	Soil*	Ingestion	N/A				0.05		
Resident Adult		Dermal Contact	N/A				0.03		
		Inhalation	N/A				0.004		
		Total	N/A				0.08		
Future	Soil*	Ingestion	N/A				0.5		
Resident Child		Dermal Contact	N/A				0.2		
		Inhalation	N/A				0.004		
		Total	N/A				0.7		
Future Resident Child/Adult	Soil*	Ingestion	1E-04		Benzo(a)pyrene, Dibenz(a,h)anthracene	Benzo(a)anthracene, Benzo(b)fluoranthene, Indeno(1.2.3-cd)pyrene	N/A		
		Dermal Contact	4E-05		Benzo(a)pyrene	Benzo(a)anthracene, Benzo(b)fluoranthene, Dibenz(a,h)anthracene. Indeno(1,2,3-cd)pyrene	N/A		
		Inhalation	2E-06				N/A		
		Total	2E-04		Benzo(a)pyrene, Benzo(b)fluoranthene, Dibenz(a,h)anthracene	Benzo(a)anthracene, Indeno(1,2,3-cd)pyrene	N/A		
Future	Soil*	Indestion	6E-06			Benzo(a)nyrene	0.03		
Industrial Worker	001	Dermal Contact	3E 06			Benzo(a)pyrene	0.03		
		Inhalation	1E 07			Delizo(a)pyrene	0.02		
		Total	1E-07			Benzo(a)pyrene	0.05		
Future	Soil*	Indestion	1E 06				0.007		
Trooppoor/Visitor	301	Dormal Contact	1E-00				0.007		
		Inholation	0E-07				0.004		
nuuli		Total	1E-00 2E.06		+	+	0.0001		
Euturo	Soil*	Ingestion	200				0.01		
	501"		2E-00			Denze (e)	0.01		
respasser/visitor			3E-00			benzo(a)pyréne	0.01		
Addiescent			1E-08			Benzo(a)nyrene	0.0001		
		iotal	5E-06	1	1	Denzo(a)pyrene	0.03		1

nicals with HI>0.1	
ributing to Target	coc ¹
yan Totai HI > 1	
	Ponzo(a) onthe second
	Denzo(a)anunracene,
	Benzo(a)pyrene,
	Benzo(b)fluoranthene,
	Dibenz(a,h)anthracene.
	Indeno(1.2.3-cd)pyrene
	1

Summary of RME Cancer Risks and Hazard Indices

UXO 002, OU2 Remedial Investigation

NAS Patuxent River, Maryland

Receptor	Media	Exposure Route	Cancer Risk	Chemicals with Cancer Risks >10 ⁻⁴	Chemicals with Cancer Risks >10 ⁻⁵ and ≤10 ⁻⁴	Chemicals with Cancer Risks >10 ⁻⁶ and ≤10 ⁻⁵	Hazard Index	Chemicals with HI>1	Chemicals with HI>0.1 Contributing to Target Organ Total HI > 1	COC1
Future	Soil*	Ingestion	4E-07				0.06			
Construction Worker		Dermal Contact	2E-07				0.02			
		Inhalation	3E-09				0.0005			
		Total	6E-07				0.08			

¹ Includes analytes with an cancer risk greater than 1E-06 that contribute to a total risk greater than 1E-04 and/or analytes with an HI greater than 0.1 that contribute to a target organ HI greater than 1.

Soil* = Combined surface and subsurface soil

COC = Chemical of concern

HI = Hazard index

N/A = Not available/not applicable

Summary of CTE Cancer Risks and Hazard Indices

UXO 002, OU2 Remedial Investigation

NAS Patuxent River, Maryland

Receptor	Media	Exposure Route	Cancer Risk	Chemicals with Cancer Risks >10 ⁻⁴	Chemicals with Cancer Risks >10 ⁻⁵ and ≤10 ⁻⁴	Chemicals with Cancer Risks >10 ⁻⁶ and ≤10 ⁻⁵
Future Resident Child/Adult	Soil*	Ingestion	4E-05		Benzo(a)pyrene	Benzo(a)anthracene, Benzo(b)fluoranthene, Dibenz(a,h)anthracene, Indeno(1,2,3-cd)pyrene
		Dermal Contact	8E-06			Benzo(a)pyrene
		Inhalation	1E-06			
		Total	5E-05		Benzo(a)pyrene	Benzo(a)anthracene, Benzo(b)fluoranthene, Dibenz(a,h)anthracene, Indeno(1,2,3-cd)pyrene

Soil* = combined surface and subsurface soil

HI = Hazard index

N/A = Not available/not applicable

Legend

X Potentially complete exposure pathways.

* Combined surface and subsurface soil.

¹ Access to Naval Air Station (NAS) limited to base residents and workers.

2 Noncarcinogenic hazard evaluated separately for adult and child residential receptors, combined lifetime carcinogenic risk evaluated on an age-adjusted basis for residential scenario.

³ No Chemical of Potential Concern (COPC) was identified in sediment.

children are assumed not to shower, inhalation of Volatile Organic Compounds (VOCs) from groundwater while bathing considered minimal.

⁵ A screening assessment of groundwater data was performed to identify COPCs for potential vapor intrusion (VI) pathway. However, no COPC was identified for this exposure pathway.

Figure 1

Human Health Risk Assessment Conceptual Site Model UXO 002, OU2 Remedial Investigation NAS Patuxent River, Maryland

Appendix B Ecological Risk Assessment

Appendix B1 Ecological Risk Assessment – Terrestrial Habitat (Soil)

APPENDIX B1

Ecological Risk Assessment: Terrestrial Habitat (Soil)

This subappendix presents the ecological risk assessment (ERA) for the terrestrial habitat at Munitions Response Site (MRS) UXO-002 Former Small Arms Ranges, Operable Unit (OU)-2 Former Skeet Ranges, which consists of the screening-level ecological risk assessment (SERA), specifically Steps 1 and 2 of the ERA process, and the first step (Step 3A) of the baseline ecological risk assessment (BERA). This ERA was conducted in accordance with Department of the Navy (Navy) policy for ERAs (CNO, 1999) and Navy guidance for implementing this ERA policy (NAVFAC, 2003).

The ERA in this subappendix is for the terrestrial habitat of the Former Skeet Ranges and is based on the soil investigation performed in support of the Remedial Investigation (RI). A sediment investigation was also performed in the Patuxent River directly adjacent to the Former Skeet Ranges, also in support of the RI. The aquatic habitat ERA that was conducted with those sediment data is presented as Appendix B2 of the Engineering Estimate and Cost Analysis (EE/CA).

The primary objectives of the terrestrial ERA are as follows:

- Perform a direct exposure risk evaluation for lower trophic-level receptors and terrestrial plants (soil
 invertebrate and terrestrial plant communities) through screening chemical analytical surface soil
 sample results against ecological screening levels (ESLs) and using surface soil sample earthworm
 toxicity testing results (soil invertebrate community).
- Perform an indirect (food web) exposure evaluation for upper trophic-level receptors (birds and mammals) through standardized food web (ingestion) exposure modeling and screening.
- Perform an additional exposure evaluation for upland birds to lead shot as grit using surface soil pellet count and grit characterization data.

The layout and key site features of MRS UXO-002 Former Small Arms Ranges, OU-2 Former Skeet Ranges are presented in the main body of the RI Report.

B1.1 Investigation History

B1.1.1 Site Inspection (2010)

B1.1.1.1 Sampling

CH2M conducted a Site Inspection (SI) between December 14 and 16, 2010, the report for which was finalized in 2013 (CH2M, 2013). Surface soil samples were collected from 0 to 6 inches below ground surface (bgs) at 26 locations throughout the Former Skeet Ranges. Surface soil samples were collected using stainless steel trowels and bowls. Soil was carefully inspected and screened using a Number 10 sieve (2 mm sieve opening) to remove debris and lead fragments prior to filling the sample containers. Lead fragments and clay target debris were not observed during sieving of samples at the Former Skeet Ranges. Clay target debris was observed in other locations near the Former Skeet Ranges.

All samples collected at the Former Skeet Ranges were analyzed for total lead. In addition, surface soil samples collected from 11 locations were analyzed for polycyclic aromatic hydrocarbons (PAHs). Because PAHs would have potentially been derived from the skeet targets (material containing PAHs

may have been used to bind the clay targets), these samples were located in the area immediately west of the former shooting positions, where the clay targets and associated fragments would be expected to fall. A total of 17 different PAH compounds were analyzed. Surface soil samples collected at four locations were also analyzed for total organic carbon (TOC), pH, and grain size to provide a representative measurement of these parameters to evaluate the lead and PAH data. Three duplicate samples were also collected. Sample locations and detected concentrations are presented in the main body of the RI Report.

B1.1.1.2 Ecological Risk Screening

The ecological risk screening evaluation for the SI Report evaluated direct exposure risks from rangerelated constituents (lead and PAHs) for lower trophic-level receptors, such as soil invertebrates and terrestrial plant populations. The evaluation did not include food web exposure screening for upper trophic-level terrestrial receptors. For the lower trophic-level (direct exposure) ecological screening, all sample-specific concentrations as well as mean and 95 percent (%) upper confidence limit (UCL) concentrations were compared to U.S. Environmental Protection Agency (EPA) Ecological Soil Screening Levels (Eco-SSLs). Table B1-1 (Lead) and Table B1-2 (PAHs) contain the Eco-SSL comparisons presented in the SI ecological risk screening evaluation. If the 95% UCL exceeded the Eco-SSL, the constituent was identified as a constituent of potential concern (COPC) warranting further consideration. The SI results are summarized as follows:

- Lead was detected at all 26 surface soil sampling locations at concentrations ranging from 5.8 milligrams per kilogram (mg/kg) to 330 mg/kg. The maximum concentration of lead (330 mg/kg) was detected in the surface soil sample collected at PX-FSR-SO-22¹ (SS22), which was collected in the wooded area immediately west of the northernmost Former Skeet Range. Lead concentrations were compared to the Eco-SSL of 120 mg/kg, which is the terrestrial plant Eco-SSL, or the lower (most conservative) of the plant and soil invertebrate Eco-SSLs. The detected lead concentrations at 5 of 26 sample locations exceeded 120 mg/kg (samples SS04, 06, 17, 19, and 22). However, neither the mean (70.7 mg/kg) nor the 95% UCL (104 mg/kg) lead concentrations exceeded the Eco-SSL. While several concentrations (12 of the 26 sample locations), including the mean and UCL, exceeded the background threshold value (BTV) for lead of 44.4.mg/kg, the screening results for lead suggested this constituent should not be considered a lower trophic-level ecological COPC for the Former Skeet Ranges.
- All 17 PAH compounds were detected, with 12 compounds detected at all sampling locations. The maximum concentration for most PAH compounds was detected at SS22, located in the wooded area immediately west of the northernmost Former Skeet Range. The Eco-SSL guidance recommends that PAHs be screened on a cumulative (that is, total) concentration basis for two individual compound subgroupings according to molecular weight (EPA, 2007). This is due to the coincidental nature of these constituents when dispersed in the environment and because the ecotoxicological data in the scientific literature are reported in the same manner. Therefore, compound concentrations were segregated for each sample into low molecular weight (LMW) and high molecular weight (HMW) PAH subgroups:
 - LMW PAHs: 2-methylnaphthalene; acenaphthene; acenaphthylene; anthracene; fluorine; phenanthrene; and naphthalene
 - HMW PAHs: benzo(g,h,i)perylene; benzo(a)anthracene; benzo(a)pyrene; benzo(b)fluoranthene; benzo(k)fluoranthene; chrysene; dibenzo(a,h)anthracene; fluoranthene; indeno(1,2,3cd)pyrene; and pyrene

¹ This sample location was placed in the area that may have been directly under the crossing point and, therefore, the area where a large portion of the fragments from broken clay targets may have fallen (based on a typical skeet range setup).

The concentrations of the LMW and HMW PAHs detected in each sample were summed to calculate total LMW and HMW PAH concentrations for each sample. For undetected PAH compounds, one half the reporting limit was used as a surrogate concentration. These total LMW and HMW PAH concentrations were compared to the corresponding soil invertebrate Eco-SSLs (29,000 micrograms per kilogram [μ g/kg] and 18,000 μ g/kg, respectively) (EPA, 2007). There is currently no PAH Eco-SSL available for terrestrial plants.

For LMW PAHs, concentrations ranged from 41.8 μ g/kg (SS20) to 47,167 μ g/kg (SS22), with only one individual sample concentration exceeding the lower trophic-level Eco-SSL of 29,000 μ g/kg (SS22). While the mean concentration of LMW PAHs (5,087 μ g/kg) did not exceed the Eco-SSL of 29,000 μ g/kg, the 95% UCL (47,137 μ g/kg) did exceed this benchmark. For HMW PAHs, concentrations ranged from 231.9 μ g/kg (SS20) to 661,000 μ g/kg (SS22). The HMW PAH concentrations at three sample locations (SS19, SS21, and SS22), as well as both the mean and 95% UCL concentrations, exceeded the lower trophic-level HMW Eco-SSL of 18,000 μ g/kg. Therefore, PAHs were identified as an ecological COPC for surface soil at the Former Skeet Ranges. The surface soil sample exceedances for both LMW and HWM PAHs occurred in relatively close proximity to each other in the theoretical shotfall zone immediately west of the Former Skeet Range firing line.

B1.1.2 Remedial Investigation (2018)

Based on the results of the human health and ecological risk screenings for the SI, the RI was conducted to further characterize the nature and extent of PAHs and lead at the Former Skeet Ranges and determine if concentrations pose unacceptable risks to human and/or ecological receptors as well as to evaluate nearshore sediments of the Patuxent River within the Former Skeet Ranges shotfall zones. The RI activities included the following:

- 1. Soil sampling
- 2. Sediment sampling in the nearshore area, adjacent to the site and within the estimated shotfall zone
- 3. Background sediment sampling
- 4. Groundwater monitoring well installation and sampling

The sediment sampling and subsequent evaluation of the nearshore sediments of the Patuxent River within the Former Skeet Ranges shotfall zones are not discussed in this appendix; the focus here is on the soil sampling in the terrestrial habitat at the site. The sediment ERA is presented and discussed in Appendix B2 of the EE/CA, and the groundwater monitoring well installation and sampling efforts are presented in the main body of the RI Report.

Soil samples were collected to complete the delineation of the PAHs for more quantitative ecological and human health risk assessments for the RI Report. Additionally, surface soil was also collected at select locations for laboratory-based toxicity testing (earthworm) to determine if there are actual site-specific exposure risk from PAHs for the soil invertebrate community that was predicted by the SI ecological risk screening evaluation. The following summarizes the RI field investigation activities:

- Delineation samples for lead and/or PAHs Additional surface (0 to 6 inches bgs) and shallow subsurface (6 to 12 inches bgs) soil sampling was conducted at 39 discrete locations to better delineate the horizontal and vertical extent of lead and/or PAHs.
- Pellet count/grit analysis in soil Certain grit-ingesting birds (such as the mourning dove) may also directly ingest lead particles (pellets) that are in the same size range as the grit they normally consume. Thus, exposure to lead for such birds might be increased beyond what might be accumulated in their food. Therefore, surface soil samples were collected for pellet count/grit analysis. These samples were collected between the former firing point and shoreline, primarily along transects used to establish sediment sample locations in the river. A total of 11 soil grit

samples were collected. For 10 of the locations, a composite of three grabs from each transect line were combined. The eleventh sample was assembled from grabs at three discrete surface soil sample locations – at the center of the upland area, between the former firing point and shoreline, and where there were no transect lines established.

- Earthworm Toxicity Testing Toxicity testing was performed on six surface soil samples covering the range of PAHs concentrations observed during the 2010 SI. Testing a range of PAH concentrations allows for better dose/response analyses and interpretation of the toxicity test results. Two reference locations were identified in areas unaffected by the range activities but in a similar setting (for example, similar distance from the beach and a similar soil type as the site samples). The 28-day earthworm (*Eisenia fetida*) laboratory-based toxicity test method from American Society for Testing and Materials (ASTM) (2018) and EPA (1989) was used for conducting for these samples. Test endpoints included survival and growth. Splits of all toxicity test samples were sent to the chemical analytical laboratory for analysis of PAHs and lead.
- Supplemental Analytical Parameters for Surface Soil Samples To help evaluate contaminant fate, transport, and bioavailability with regard to ecological receptors, supplemental parameters were also analyzed for some surface soil samples. Surface soil samples from the six site locations identified for toxicity testing were also analyzed for pH, TOC, and grain size. Additionally, one half of all other surface soil samples were analyzed for pH, TOC, and grain size.

B1.2 Problem Formulation

Step 1 of the ERA process includes problem formulation establishes the goals, scope, and focus of the ERA. As part of the screening problem formulation, the environmental setting of the Former Skeet Range was characterized in terms of the habitats and biota known or likely to be present. The types and concentrations of constituents present in ecologically-relevant media were also described based on available analytical data. A conceptual site model (CSM) was developed that describes potential source areas, transport pathways and exposure media, exposure pathways and routes, and receptors for the SERA. Assessment and measurement endpoints were selected to evaluate those receptors for which critical exposure pathways exist. The fate, transport, and toxicological properties of the constituents present, particularly the potential for bioaccumulation, were also considered during this process.

B1.2.1 Ecological Setting

CH2M ecologists performed a site visit to observe the ecological setting on February 19, 2009. Based on field observations, open grassy upland comprises the primary habitat at the areas of the Former Skeet Ranges where shooting occurred. The gravel access road for the 2007/2008 Area E Excavation is also present in these areas, as shown in the main body of the RI Report. Because the grass and weeds of the range are still regularly maintained by mowing and the gravel access road underlies a portion of the area, there is limited refuge offered for upper trophic-level receptors (such as birds, mammals, reptiles, and amphibians). However, this area is expected to maintain significant populations of soil invertebrates and provides foraging space for numerous upper trophic-level receptors, especially because of its proximity to the Patuxent River and the adjacent strip of heavily vegetated habitat to the west of the former shooting positions and along the Patuxent River.

The strip of heavily vegetated habitat in the western side of the Former Skeet Ranges and along the Patuxent River consists of a mixture of woodland, scrub/shrubland and edge habitats. Including vegetated land within the shotfall zone but excluding the Area E Excavation at the Former Rifle Range, this area is approximately 7 acres in size. Minimal wildlife was observed on site during the site visit, but a wide variety of wildlife, such as birds, mammals, reptiles, amphibians, and invertebrates are expected to live in or use these habitats. This habitat supports a mixture of upland plant species that also frequently occur at similar Naval Air Station (NAS) Patuxent River sites (such as red cedar, multi-flora

rose, blackberries, arrowwood, goldenrod, golden bamboo, red maple, persimmon, white pine, black cherry, sweet gum, mulberry, American holly, northern bayberry, autumn olive, sea myrtle, trumpet vine, and poison ivy).

The Patuxent River is directly adjacent to the ranges and within the shotfall zone. This river is one of the most significant aquatic habitats at NAS Patuxent River. Due to the proximity to the Chesapeake Bay, the river is a slightly brackish, tidally influenced water body. Significant populations of aquatic biota occur within the river, including fish, benthic macroinvertebrates, and other invertebrates. Furthermore, wildlife (such as raccoon, heron, ducks) are expected to reside close to the river and utilize it for foraging, especially in the littoral zone (that is, the shallow area of the river where it meets land).

B1.2.2 Conceptual Site Model

The CSM relates potentially exposed ecological receptor populations with potential source areas based on physical site characteristics and complete exposure pathways. The CSM focuses on exposures to ecological receptors and is a component of the sitewide CSM presented in Section 2.2 of the EE/CA. Important components of the model are:

- Identification of potential source areas
- Transport pathways
- Exposure media
- Exposure pathways and routes
- Receptor groups

Actual or potential exposures of ecological receptors associated with any site are identified by identifying the most likely and most important pathways of contaminant release and transport. A complete exposure pathway has three components: (1) a source of constituents that results in a release to the environment; (2) a pathway of constituent transport through an environmental medium; and (3) an exposure or contact point for an ecological receptor. As illustrated in the main body of the RI Report, the main objective of the CSM in the ERA is to identify any complete and critical exposure pathways that could be present for ecological receptors. Key components of the model are discussed in the following sections.

B1.2.2.1 Potential Source Areas

The primary sources of potential contamination at the Former Skeet Ranges are lead shot and clay target fragments that were deposited from above ground during target shooting activities when the ranges were active. A potential secondary source of contamination is soil and sediment in the shotfall areas, which is potentially contaminated by constituents associated with lead shot (metals) and clay target fragments (PAHs associated with tar pitch typically used to bind clay targets used at skeet ranges). Although these constituents have a relatively high adsorption to solids, this potential secondary source of contamination is expected to be minimal. At range sites, lead is typically considered the primary constituent of concern based on its prevalence and risk-driving potential (ITRC, 2003). The results of the SI did not identify lead in the terrestrial portion as a COPC for human or ecological receptors, but PAHs in surface soil in the terrestrial portion were identified as an ecological COPC. The majority of the theoretical shotfall zones are located in the Patuxent River and are evaluated separately in Appendix B2 of the EE/CA.

B1.2.2.2 Transport Pathways and Exposure Media

A transport pathway describes the mechanisms whereby site-related constituents, once released, may be transported from a source area to exposure media (such as surface soil) and where receptor exposures may occur. The primary mechanisms for chemical release and transport from the source in the upland areas are as follows:

- Direct deposit of lead shot and clay target fragments into soils in the upland vegetated areas and direct deposit for lead shot into sediment in the nearshore areas of the Patuxent River
- Transport of contaminated soil particulates via overland surface runoff to downgradient terrestrial and aquatic areas
- Transport of contaminated soil particulates via wind- or soil-disturbing activities to surrounding terrestrial areas
- Leaching of chemicals from surface and subsurface soils into groundwater via infiltrating precipitation (and potential discharge of contaminated groundwater into downgradient surface water bodies), although based on the relatively high adsorption to solids of potential contaminants, this is expected to be negligible
- Leaching from sediment in the Patuxent River to the surface water, although based on the relatively high adsorption to solids of potential contaminants and flow velocity of the river, this is expected to be negligible
- Uptake by biota from soil and sediment (for example, vegetation, soil invertebrates, aquatic and semiaquatic species) and transfer to upper trophic-level receptors (for example, birds and mammals)

B1.2.2.3 Exposure Pathways and Routes

Based on the understanding of the source of contamination and the habitats and biota present in the investigation area, there are potentially complete exposure pathways for terrestrial receptors (plants, invertebrates, reptiles, birds, and mammals). That is, these receptors may potentially be exposed to contaminated surface soil of the open grassy area, woodland, scrub/shrubland, and edge habitats.

An exposure route describes the specific mechanism(s) by which a receptor is exposed to a chemical or metal present in an environmental medium. Terrestrial plants are exposed to chemicals and metals present in surface soil mainly via root surfaces during water and nutrient uptake. Direct contact to contaminated media is considered the primary exposure route for lower trophic-level receptors (soil invertebrates). Upper trophic-level receptors (birds and mammals) at this site are most likely exposed to constituents through:

- Uptake by biota from soil and trophic transfer to upper trophic-level receptors
- Inhalation of chemicals adhered to particulate matter (dust)
- Incidental ingestion of contaminated abiotic media (soil) during feeding activities
- Ingestion of contaminated drinking water
- Ingestion of contaminated plant and/or animal tissues for chemicals that have entered food webs
- Direct (dermal) contact with contaminated abiotic media

Based on the general fate properties (such as relatively high adsorption to solids) of the site-related constituents present (lead and PAHs) and the protection offered by hair or feathers, potential dermal exposures for upper trophic-level receptors are not considered significant relative to ingestion exposures. The upper trophic-level receptors considered in this ERA are unlikely to be exposed via inhalation to significant airborne sources of chemicals because metals and PAHs typically adsorb to soils and do not volatilize, suggesting that exposure via inhalation is limited. Incidental ingestion of soil during feeding, preening, or grooming activities is, however, considered in the risk estimates. Ingestion of contaminated drinking water is not considered relevant since there is no surface water at the Former Skeet Ranges (onsite) that receptors could drink, and any potential site-related contamination in the Patuxent River is expected to be bound up in sediment. Furthermore, the Patuxent River is not considered a source of drinking water since the salinity is too high for wildlife consumption.

B1.2.2.4 Assessment and Measurement Endpoints

Problem formulation includes the selection of ecological endpoints based on the CSM. Two types of endpoints, assessment endpoints and measurement endpoints, are defined as part of the ERA process (EPA, 1997). An assessment endpoint is an explicit expression of the environmental component or value that is to be protected. A measurement endpoint is a measurable ecological characteristic related to the component or value chosen as the assessment endpoint. The considerations for selecting assessment and measurement endpoints are summarized in EPA (1997) and discussed in detail in Suter (1989, 1990, 1993).

Endpoints define ecological attributes to be protected (assessment endpoints) and measurable characteristics of those attributes (measurement endpoints) used to gauge the degree of impact that has occurred or could occur. Assessment endpoints most often relate to attributes of biological populations or communities, and they are intended to focus the risk assessment on particular components of the ecosystem that could be adversely affected by chemicals attributable to a site (EPA, 1997). Assessment endpoints contain an entity (for example, raccoon population) and an attribute of that entity (for example, survival rate). Individual assessment endpoints usually encompass a group of species or populations (the receptor) with some common characteristic, such as specific exposure route or contaminant sensitivity, with the receptor then used to represent the assessment endpoint in the risk evaluation.

Assessment and measurement endpoints may involve ecological components from any level of biological organization, from individual organisms to the ecosystem itself. Effects on individual organisms are important for some receptors, such as rare and endangered species. However, population- and community-level effects are typically more relevant to ecosystems. Population- and community-level effects are usually difficult to evaluate directly without long-term and extensive study. Measurement endpoint evaluations at the individual level, such as an evaluation of the effects of chemical exposure on reproduction, can be used to predict effects on an assessment endpoint at the population or community level. Table B1-3 shows the assessment and measurement endpoints used for the ERA.

B1.2.2.5 Receptors

Ecological receptors for evaluation by this ERA were previously identified as part of the Uniform Federal Policy Sampling and Analysis Plan approach (CH2M, 2018). Because of the complexity of natural systems, it is generally not possible to directly assess the potential impacts to all ecological receptors present within an area. Therefore, specific receptor species (for example, American robin) or species groups (for example, soil invertebrates) were selected as surrogates to evaluate potential risks to larger components of the ecological community (guilds, such as omnivorous birds) that were used to represent assessment endpoints (for example, survival and reproduction of omnivorous mammals). Selection criteria included species that:

- Are known to occur, or are likely to occur, in the area.
- Have an ecological, economic, or aesthetic value.
- Are representative of taxonomic groups, life history traits, and/or trophic levels in the habitats present for which complete exposure pathways are likely to exist.
- Can be expected to represent potentially sensitive populations because of toxicological sensitivity or potential exposure magnitude.

The following upper trophic- level receptors were selected for exposure modeling based on the criteria listed above and consideration of site conditions:

• American robin (Turdus migratorius) – terrestrial avian invertivore/omnivore

- Mourning dove (Zenaida macroura) terrestrial avian herbivore
- Red-tailed hawk (*Buteo jamaicensis*) terrestrial avian carnivore
- Short-tailed shrew (Blarina brevicauda) terrestrial mammalian invertivore
- White-footed mouse (*Peromyscus leucopus*) terrestrial mammalian omnivore

Upper trophic-level receptor species that were quantitatively evaluated were limited to birds and mammals, the taxonomic groups with the most available information regarding exposure and toxicological effects.

Lower trophic-level receptor species were evaluated based on those taxonomic groupings for which medium-specific screening values have been developed. The potential for adverse effects to terrestrial plants and soil invertebrates (earthworms are the standard surrogate) were evaluated using surface soil screening values developed specifically for these groups.

Reptiles are also a potential receptor group. Individual species of reptiles were not, however, selected for evaluation because of the general lack of available toxicological information for these taxonomic groups for direct effects and effects from exposures via food webs. Potential risks to reptiles from food web exposures were evaluated using other fauna (birds and mammals) as surrogates.

B1.2.3 Available Analytical Data

B1.2.3.1 Selection Criteria for Analytical Data

Available analytical data were selected for the ERA based on the following:

- Data must have been validated by a qualified data validator using acceptable data validation methods. Rejected ("R" qualifier) values were not used. Unqualified data and data qualified as "J,"
 "L," or "K" were treated as detected. Data qualified as "U" or "B" were treated as not detected.
- For samples with duplicate analyses, the greater of the two concentrations was used when both results were detections or when both reported values were not detections. In cases where one result for the duplicates was a detection and the other result was not, the detected value was used in the assessment.
- For constituents that were not detected, the sample quantitation (reporting) limit (SQL) was used to represent the concentration. When calculating statistics (for example, arithmetic mean), one half of the SQL was used for constituents that were not detected. In cases where the SQL was not provided, the method detection limit was used.
- Soil samples collected from 0 to 6 inches bgs were used because the releases were above ground (shotfall). The surficial depth range represents the most relevant potential exposures for most of the ecological receptors evaluated and represents the worst-case exposure scenario based on the CSM.

B1.2.3.2 Lead and PAHs

Lead and PAHs results were available from samples collected during the 2010 SI and the 2018 RI. Table B1-4 lists the available samples for which data were used for the ERA, and these samples are summarized as follows:

- SI (2010) samples Surface soil samples collected at 26 locations throughout the Former Skeet Ranges (SO-01 to -26); all samples were analyzed for total lead and PAHs; four samples were analyzed for TOC, pH, and grain size. The lead and PAHs results for all of the 2010 samples were presented in Table B1-1 and Table B1-2, respectively.
- **RI (2018) samples** Surface soil samples at the following 39 locations (the detections for all samples are presented in Table B1-5):

- 6 locations for lead, PAHs, and earthworm toxicity testing where there were 2010 SI exceedances (SO-18, 19, 21, 22, 24, and 26)
- 7 locations for lead and PAH delineation to close data gaps in the area immediately west of the Former Skeet Ranges (SO-27, 28, 29, 30, 31, 32, and 33)
- 6 locations for PAHs around the 3 highest 2010 SI PAH exceedances (SO-34, 35, 36, 37, 38, and 39)
- 8 locations for PAHs to expand area delineation (SO-44, 45, 46, 47, 48, 49, 50 and 51)
- 8 locations for PAHs around 2010 SI surface soil PAH exceedances (SO-40, 41, 42, 43, 52, 53, 54 and 55)
- 2 locations at beach in area of upland PAH exceedances (SO-56 and 57)
- 2 earthworm toxicity test reference locations for PAHs and lead (SO-58 and 59)

B1.2.3.3 Other Analytical Parameters

Additional parameters were analyzed for surface soil samples collected during the 2010 SI and 2018 RI sampling events to physically characterize the terrestrial habitat and to potentially inform the distribution of contaminants. The frequency of analyzing these parameters and results are summarized as follows:

- SI (2010) samples Surface soil samples collected from 4 of the 26 locations (SO-03, 10, 19, and 26) were analyzed for TOC, pH, and grain size. The detections of these parameters in these 4 samples are presented in Table B1-6.
- RI (2018) samples Of the 39 surface soil sample locations listed in Section B1.2.3.2, % solids, pH, TOC, and grain size were analyzed for samples collected at 23 locations as follows (detections of these parameters in these 23 samples are presented in Table B1-7):
 - All 6 locations for lead, PAHs, and earthworm toxicity testing where there were 2010 SI exceedances (SO-18, 19, 21, 22, 24, and 26)
 - 4 of the 7 locations for lead and PAH delineation to close data gaps in the area immediately west of the Former Skeet Ranges (SO-27, 29, 31, and 33)
 - 3 of the 6 locations for PAHs around the 3 highest 2010 SI PAH exceedances (SO-34, 36, and 39)
 - 4 of the 8 locations for PAHs to expand area delineation (SO-44, 46, 48, and 50)
 - 4 of the 8 locations for PAHs around 2010 SI surface soil PAH exceedances (SO-40, 42, 52, and 54)
 - Both earthworm toxicity testing reference locations (2) for PAHs and lead (SO-58 and 59)

The results for these additional parameters in all surface soil samples are summarized graphically on Figure B1-1 (grain size), Figure B1-2 (% solids), Figure B1-3 (pH), and Figure B1-4 (TOC).

B1.2.3.4 Pellet Count/Grit Characterization

Pellet count and grit characterization results were available for 11 surface soil samples. For 10 of the samples (SS60, 61, 62, 63, 64, 66, 67, 68, 69, and 70), a composite of three grabs from each transect line were combined. The final sample was assembled from grabs at three discrete surface soil sample locations – at the center of the upland area (SS29), between the former firing point and shoreline (SS31), and where there are no transect lines proposed (SS32). These results are discussed in the final Risk Evaluation (Section B1.7).

B1.2.3.5 Earthworm Toxicity Testing

Toxicity testing results were available for six site samples (SS18, 19, 21, 22, 24 and 26) and two reference samples (SS58 and 59). Splits of these samples were sent to the chemical analytical laboratory for analysis of lead, PAHs, pH, TOC, and grain size. The toxicity testing consisted of laboratory-based 28-day earthworm (*Eisenia fetida*) exposures for two test endpoints (survival and growth) (ASTM, 2012). In November 2018, EnviroSystems, an affiliate of Enthalpy Analytical LLC, performed the toxicity testing using surface soil samples CH2M collected. Survival is the number of number of organisms at start of test that survived the 28-day exposure. The growth results were obtained on both a wet-weight basis (wet-weight for a replicate divided by the number of surviving organisms) and wet biomass basis (wet-weight obtained for a replicate and divided by the number of organisms exposed at start of test). In addition to the survival and growth results, results of the statistical analyses whereby site samples were compared to control and reference samples results (alpha level of 0.05), were also available. These results are discussed in the final Risk Evaluation (Section B1.7).

B1.2.3.6 Special Data Treatment

For PAHs, LMW and HMW total PAH concentrations were previously calculated for each 2010 SI sample for use in the SI/ecological risk screening evaluation (Table B1-2). Therefore, LMW and HMW total PAH concentrations were calculated for each 2018 RI sample using the same methods employed for the 2010 SI/ecological risk screening evaluation (summed detections, using one half the reporting limit for undetected compounds). The LMW and HMW total PAH concentration calculations for the 2018 RI samples are provided as Attachment B1-1.

For lead, individual PAH compounds, LMW PAHs, and HMW PAHs, 95% UCLs of the mean were calculated for a combined dataset (2010 SI samples plus 2018 RI samples). All 95% UCL concentrations were calculated with ProUCL version 5.1.002 (EPA, 2015) using parametric, nonparametric, and bootstrapping methods. The ProUCL version 5.1.002 output for the combined soil dataset 95% UCL calculations are provided in Attachment B1-2. It should be noted that an older version of ProUCL (version 4.00.05) was used to calculate 95% UCLs for the ecological risk screening evaluation conducted as part of the 2010 SI. This resulted in a slight discrepancy with 95% UCL concentrations presented in this appendix (see Section B1.6.2) compared to those presented in the 2010 SI Report, as shown in Table B1-1 and Table B1-2. The differences in these results are insignificant and are not expected to impact the ERA.

B1.3 Screening Effects Assessment

The screening effects assessment is the other part of Step 1 of the ERA process. The purpose of the screening effects assessment is to establish chemical-specific ESLs that represent thresholds for adverse ecological effects. Screening values are selected in alignment with the assessment endpoints.

B1.3.1 Direct Exposure Screening Values

Samples analyzed for lead were compared to the EPA Eco-SSL of 1,700 mg/kg (soil invertebrates) and 120 mg/kg (terrestrial plants) (EPA, 2005a). The total LMW and HMW PAH concentrations were compared to the corresponding soil invertebrate Eco-SSLs (29,000 µg/kg and 18,000 µg/kg, respectively) (EPA, 2007). There is currently no PAH Eco-SSL available for terrestrial plants.

B1.3.2 Ingestion Screening Values

The ecological risk screening conduced for the 2010 SI Report did not include food web exposure screening for upper trophic-level terrestrial receptors. Because both lead and 15 of the PAH compounds are considered important bioaccumulative constituents (EPA, 2000), there are potentially complete exposure pathways for upper trophic-level receptors via food web exposure. Therefore, these
constituents were screened using upper trophic-level receptor food web models. Ingestion screening values for these constituents and the receptor species evaluated (or suitable surrogate species) through food web modeling were obtained from the literature. Toxicological information for wildlife species most closely related to the receptor species was used, where available, but was supplemented by laboratory studies of non-wildlife species (for example, laboratory mice) where necessary. Toxicity studies involving long-term (chronic) exposure were used preferentially. Survival, growth, and reproduction were emphasized as toxicological endpoints because these are the most relevant to maintaining viable populations, and because these are generally the most-studied chronic toxicological endpoints for ecological receptors. If several chronic toxicological studies were available from the literature, the most appropriate study was selected for each receptor species based on study design, study methodology, study duration, study endpoint, and test species.

Ingestion-based screening values were derived for both chronic no observed adverse effect level (NOAEL) and chronic lowest observed effect level (LOAEL) endpoints. Ingestion screening values for mammals and birds are presented in Table B1-8 and Table B1-9, respectively.

B1.4 Screening Exposure Assessment

Step 2 of the ERA process begins with the screening exposure assessment. The principal activity associated with the exposure assessment is the estimation of constituent concentrations in applicable media to which receptors might be exposed. This concentration is termed an exposure point concentration (EPC). EPCs are estimated by following the selection of appropriate sets of the available analytical data using a set of criteria (for example, validation status, sampling date; see Section B1.2.3). Once the analytical data sets are selected, EPCs are calculated as a particular point on the distribution of concentrations. The following subsections summarize the EPC approach for each portion of the assessment.

B1.4.1 Direct Exposure

Because of the focus on only three COPCs (lead, LMW PAHs, and HMW PAHs), each sample-specific concentration was considered in the screening exposure assessment. That is, each sample concentration was screened individually against the ESLs.

B1.4.2 Food Web Exposure

EPCs for lead and the 15 individual bioaccumulative PAH compounds were used in food web models to estimate exposures to upper trophic-level receptors. These food web EPCs were calculated by estimating the concentrations of detected bioaccumulative constituents in each dietary component using the maximum surface soil concentration and the uptake and food web models described in the sections below. The maximum lead concentration was collected during the 2018 RI (621 mg/kg at SS30; Table B1-5). Table B1-10 summarizes the 2010 SI and 2018 RI sample analytical results for the 15 individual bioaccumulative PAH compounds. The maximum concentration was used for estimating the dose of each constituent in the diets of each receptor.

Dietary items for which tissue concentrations were modeled include terrestrial plants, soil invertebrates (earthworms), and small mammals. Incidental ingestion of soil was also included when calculating the total level of exposure. The models and parameter values for calculating food item concentrations are outlined in the following subsections. For the screening exposure estimates of detected bioaccumulative constituents, uptake from surface soil into these food items was based on a conservative (90th percentile) bioconcentration factor (BCF) or bioaccumulation factor (BAF) from the literature, where available. The use of 90th percentile values is generally recommended to provide a conservative screening assessment (Sample et al., 1998a, 1998b; Bechtel Jacobs, 1998a). Default BCFs or BAFs of 1.0 were used only when values were not available in the literature for a constituent.

B1.4.2.1 Plants

Tissue concentrations in the aboveground vegetative portion of plants were estimated by multiplying the maximum soil concentration for each chemical by chemical-specific soil-to-plant BAFs obtained from the literature. These BAFs are listed in Table B1-11.

The BAF values were based on root uptake from soil and the ratio between dry-weight soil and dryweight plant tissue. Literature values based on the ratio between dry-weight soil and wet-weight plant tissue were converted to a dry-weight basis by dividing the wet-weight BAF by an estimated solids content for terrestrial plants (15%; Sample et al., 1997).

B1.4.2.2 Soil Invertebrates (Earthworms)

Tissue concentrations in soil invertebrates (earthworms) were estimated by multiplying the maximum soil concentration for each metal by metal-specific soil-to-invertebrate BCF or BAF obtained from the literature. These BCF/BAF values are listed in Table B1-11.

BCFs are calculated by dividing the concentration of a chemical in organism tissue by the concentration of that same chemical in the surrounding environmental medium (in this case, soil) without accounting for uptake through the diet. BAFs consider both direct exposure to soil and exposure through the diet. Because earthworms consume soil, BAFs are more appropriate than BCFs and were used where available. BAFs based on depurated analyses (soil purged from the gut of the earthworm before analysis) were given preference over undepurated analyses when selecting BAF values because the direct ingestion of soil was accounted for separately in the food web model.

The BCF/BAF values selected were based on the ratio between dry-weight soil and dry-weight earthworm tissue. Literature values based on the ratio between dry-weight soil and wet-weight earthworm tissue were converted to a dry-weight basis by dividing the wet-weight BCF/BAF by the estimated solids content for earthworms (16%; EPA, 1993).

B1.4.2.3 Small Mammals

The only chosen receptor that would consume small mammals is the red-tailed hawk (avian terrestrial carnivore). The small mammal tissue concentration that the hawk might consume was obtained by multiplying the maximum surface soil concentration for each metal by a metal-specific soil-to-small mammal BAF obtained from the literature. It was assumed that exactly one-third (33%) of a hawk's diet at the site by small mammal insectivores, herbivores, and omnivores (dietary composition and exposure factors are discussed in Section B1.4.3). The BAF values used were based on the ratio between dry-weight soil and whole-body dry-weight tissue. Literature values based on the ratio between dry-weight soil and wet-weight tissue were converted to a dry-weight basis by dividing the wet-weight BAF by the estimated solids content for small mammals (32%; EPA, 1993). BAFs for shrews were those reported in Sample et al. (1998b) for insectivores (or for general small mammals if insectivore values were unavailable), for voles were those reported for herbivores, and for mice were those reported for omnivores. The soil-to-small mammal BAFs used are listed in Table B1-12.

B1.4.3 Dietary Intakes

For receptor species used in food web modeling, the dietary intake (dose) of each constituent (in milligrams of chemical per kilogram of body weight per day) was calculated by using species-specific life history information, where available, and the following formula (modified from EPA, 1993a):

$$DI_{x} = \frac{\left[\left[\sum_{i} (FIR) (FC_{xi})(PDF_{i})\right] + \left[(FIR)(SC_{x})(PDS)\right]\right]}{BW} (AUF)$$

where:	DIx	=	Dietary intake for chemical x (mg chemical/kg body weight/day)
	FIR	=	Food ingestion rate (kg/day, dry-weight)
	FC _{xi}	=	Concentration of chemical x in food item i (mg/kg, dry-weight)
	PDFi	=	Proportion of diet composed of food item i (dry-weight basis)
	SC _x	=	Concentration of chemical x in soil (mg/kg, dry-weight)
	PDS	=	Proportion of diet composed of soil (dry-weight basis)
	BW	=	Body weight (kg, wet-weight)
	AUF	=	Area use factor; % (decimal) of habitat used by receptor

Receptor-specific values used as inputs to this equation are provided in Table B1-13. It was assumed that constituents were 100% bioavailable to the receptor and that each receptor spent 100% of its time at the site (that is, an AUF of 1.0 was assumed). Minimum body weights and maximum ingestion rates were used to develop conservative exposure estimates. Surface water (drinking water) was not included when calculating the total level of exposure because surface water is not present on the site.

B1.5 Screening Risk Calculation

The screening risk calculation is the final step of the SERA (Step 2). In this step, the sample-specific concentrations (abiotic media) or estimated exposure doses (upper trophic-level receptor species) were compared with the corresponding screening values to derive screening risk estimates. The outcome of this step is a list of detected COPCs for each medium-pathway-receptor combination evaluated or a conclusion of acceptable risk.

For the direct exposure evaluation (lower trophic-level receptors), COPCs were identified if one or more sample-specific concentration exceeded the screening value. For the food web evaluation, COPCs were identified using the hazard quotient (HQ) method. HQs were calculated by dividing the exposure dose by the corresponding ingestion screening value. Constituents with NOAEL-based HQs greater than 1.0 were considered COPCs for the SERA (Step 2). Detected constituents for which toxicological data were not available were also retained as COPCs for the SERA.

Sample concentrations exceeding screening values or HQs exceeding 1.0 indicate the potential for risk because the constituent concentration or dose (exposure) exceeds the screening value (effect). However, screening values and exposure estimates were derived using intentionally conservative assumptions such that HQs greater than 1.0 do not necessarily indicate risks are present or impacts are occurring. Rather, it identifies constituent-pathway-receptor combinations requiring further evaluation. HQs less than 1.0 indicate risks are very unlikely (EPA, 1997), enabling a conclusion of no unacceptable risk to be reached with high confidence.

B1.5.1 Direct Exposure

Comparisons of all sample concentrations from the 2010 SI and 2018 RI are compared to direct exposure screening values in Table B1-14. The screening values (Eco-SSLs) for lead included terrestrial plants (120 mg/kg) and soil invertebrates (1,700 mg/kg), and only soil invertebrates for PAHs (29,000 μ g/kg for LMW PAHs and 18,000 μ g/kg for HMW PAHs). Following these comparisons, concentrations of lead (terrestrial plants ESL only), LMW PAHs and HMW PAHs exceeded screening values in one or more sample during each event. Therefore, lead, LMW PAHs and HMW PAHs carried through to Step 3A (Refined Risk Characterization).

B1.5.2 Food Web Exposure

A summary of the food web exposure-based HQs, reflecting a comparison of maximum concentrationbased estimated exposure doses for detected bioaccumulative metals to ingestion-based screening values, is presented in Table B1-15. Lead and seven PAH compounds (benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, chrysene, fluoranthene, indeno(1,2,3-cd)pyrene, and pyrene) yielded NOAEL-based HQs greater than 1.0. Therefore, these eight constituents were identified as COPCs and carried through to Step 3A (Refined Risk Characterization).

B1.6 Refined Risk Characterization

Following Step 2, several surface soil COPCs were identified for lower trophic-level receptor direct contact and through food web exposures for upper trophic-level receptors. Therefore, Step 3 of the ERA process was initiated to further evaluate these constituents.

B1.6.1 Refinement of Conservative Screening Assumptions

The objective of the refinement is to identify potential risk-driving COPCs, called "refined COPCs," requiring more-focused consideration in the Risk Evaluation. Therefore, Step 3A was initiated. According to Superfund guidance (EPA, 1997), Step 3 initiates the problem formulation phase of the BERA. Under Navy policy/guidance (CNO, 1999; NAVFAC, 2003), the BERA begins with a preliminary step (Step 3A) in which the conservative assumptions used in the SERA are refined and risk estimates are recalculated using the same CSM. In addition, the re-evaluation may include consideration of other factors such as background and upgradient data, detection frequency, and chemical-specific bioavailability (CNO, 1999; NAVFAC, 2003).

Only complete and critical pathways identified by the SERA were carried forward to Step 3A of the BERA. Similarly, only detected COPCs and receptors identified in the SERA as requiring further evaluation (Table B1-14 and Table B1-15) were addressed in Step 3A. COPCs that are not based on a constituent detection were not considered risk drivers and are discussed in the uncertainty section. The assumptions, parameter values, and methods that were modified for the Step 3A re-evaluation of the Step 2 COPCs included:

- <u>EPCs</u> Risk estimates based on maximum constituent concentrations were supplemented by risk estimates based on central tendency EPCs. For surface soil, 95% UCLs were used along with mean concentrations for direct exposure risk calculations. However, only the 95% UCL concentrations were used to estimate doses for food web modeling.
- BAFs/BCFs BAFs and BCFs were based on, or modeled from, central tendency estimates (for example, median or mean) from the literature as opposed to the maximum or high-end (for example, 90th percentile) estimates used in the SERA for many constituents. In the BERA, using central tendency estimates (rather than high-end or maximums) for exposure parameters such as BAFs provides a more-representative estimate of potential exposures and risks to receptor populations (the focus of the assessment endpoints) of upper trophic-level receptors. Because these species are highly mobile, receptor exposure would effectively be averaged over time as these organisms forage within the area defining their home range (which will extend to areas beyond the Former Skeet Ranges study area). Average prey concentrations at Step 3A are most appropriately estimated using central tendency estimates of media concentrations and accumulation factors. For example, the wildlife dietary exposure models contained in the Wildlife Exposure Factors Handbook (EPA, 1993a) specify the calculation of an average daily dose. Increasing the representativeness of the exposure estimates relative to population-level effects is consistent with the intent of the Step 3A evaluation. In cases where adequate spatial sampling coverage exists, mean concentrations are also appropriate for evaluating potential risks to populations of lower trophic-level receptors because the members of the population are expected to be found throughout a site (where suitable habitat is present), rather than concentrated in one area. Although effects on individual organisms might be important for some receptors, such as rare and endangered species, population- and community-level effects are typically more relevant to ecosystems. Refined BAF and BCF values used in Step 3A for the identified COPCs are provided in Table B1-16 and Table B1-17.

- <u>Receptor Exposure Parameters</u> Central tendency estimates (mean, median, or midpoint) for body weight and ingestion rate (Table B1-18) were used to develop exposure estimates for upper trophiclevel receptors, rather than the minimum body weights and maximum ingestion rates used in the SERA. Central tendency estimates for these exposure parameters are more relevant for a BERA because these better represent the characteristics of a greater proportion of the individuals in the population. Populations (rather than individual organisms) were emphasized during the development of the assessment endpoints for the ERA.
- <u>Basis for Food Web Exposure Risks</u> The SERA conservatively identified a chemical as a food web COPC if the estimated dose for at least one upper trophic-level receptor exceeded the NOAEL. The actual dose that is protective of an individual receptor, however, will fall between the NOAEL and the LOAEL. Both the NOAEL and LOAEL were used to identify the refined list of COPCs in Step 3A. A constituent would have to yield a LOAEL-based HQ greater than 1.0 to be identified as a refined COPC.

B1.6.2 Direct Exposure

Table B1-19 presents a comparison of the mean and 95% UCL surface soil COPC EPCs with screening values. This comparison includes concentrations derived from the 2010 SI sample dataset, the 2018 RI sample dataset and a combined/overall dataset (2010 SI plus 2018 RI samples). Based on these comparisons the Eco-SSL exceedances by COPC and dataset are as follows:

Lead EPCs

- Mean 2018 dataset
- 95% UCL 2018 and combined/overall datasets
- LMW PAHs EPCs
 - Mean none
 - 95% UCL 2010 dataset
- HMW PAHs EPCs
 - Mean 2010, 2018 and combined/overall datasets
 - 95% UCL 2010, 2018 and combined/overall datasets

Based on the refined screening results for the overall dataset, lead (9 of 39 samples exceed) and HMW PAHs (10 or 48 samples exceed) were retained as refined COPCs.

B1.6.3 Food Web Exposure

The HQs for upper trophic-level receptors are provided in Table B1-20. There were no NOAEL- <u>and</u> LOAEL-based HQs greater than 1.0 for any receptor and COPC. Therefore, no unacceptable food web exposure risk is expected from lead or PAHs.

B1.7 Risk Evaluation

This section discusses the risk evaluation for the refined COPCs identified in Section B1.6. The risk evaluation helped determine if these refined COPCs are likely to pose unacceptable risks to receptor populations. This evaluation was performed with consideration of the following lines of evidence:

• Earthworm toxicity testing results – The 28-day earthworm survival and growth (wet-weight and wet biomass) results can be used to establish site-specific effects or lack thereof for soil invertebrates directly exposed to site-specific surface soil contaminants in a subset of site samples. While not all samples were subjected to toxicity testing, the samples that were tested represent a

range of COPC concentration to which soil invertebrate surrogates (earthworm) were exposed. The range of concentrations in the six samples tested (SS18, 19, 21, 22, 24 and 26) were:

- Lead 5.4 mg/kg (SS26) to 504 mg/kg (SS22) with none exceeding the soil invertebrate ESL (1,700 mg/kg);
- LMW PAHs 73.9 μg/kg (SS21) to 14,486 μg/kg (SS22) with none exceeding the soil invertebrate ESL (29,000 μg/kg); and
- HMW PAHs 316 μg/kg (SS21) to 72,250 μg/kg (SS22) with 2 samples (SS19 and SS22) exceeding the soil invertebrate ESL (18,000 μg/kg).

The earthworm response results for site-specific samples were statistically compared to control and reference sample results to establish effects or lack thereof. The toxicity test results are presented in Table B1-21 (survival), Table B1-22 (growth, wet-weight), and Table B1-23 (growth, biomass). The toxicity test report from EnviroSystems is provided as Attachment B1-3.

There was no significantly reduced survival for any sample after 28 days as compared to control and reference samples. Additionally, there was no significantly reduced growth (wet-weight and wet biomass) for any sample after 28 days as compared to control and one of two reference samples (SS58). There was a slight, yet statistically significant, reduction in growth for SS19 and SS21 as compared to the other reference sample (SS59). Some characteristics might explain the difference in growth for these site samples. For example, both SS19 and SS21 had higher components of mediumto-coarse sand, compared to SS59, which had more of a fine sand fraction (Figure B1-1). Additionally, both SS19 and SS21 had above average pH for site samples and higher pH than SS59 (Figure B1-3). The pH for SS21 was the highest measured in any sample (7.97). Finally, SS21 had the lowest TOC content of the samples that were toxicity tested (Figure B1-4). Sample SS21 was relatively uncontaminated by lead or PAHs (Table B1-14), suggesting the different in response could be due to a natural impact. Concentrations of lead were well below the soil invertebrate ESL but did slightly exceed the HMW PAH ESL. However, given the survival results (no significant differences) and growth results compared to control and SS58 (no significant differences), this is not considered indicative of an impact. Therefore, it can be assumed that soil invertebrates (earthworm) can be exposed without impact to concentrations of the refined COPCs equal to, if not higher than, the maximum concentrations in the toxicity test samples. These results were used to identify a concentration threshold for the refined COPCs based on the Apparent Effects Threshold (AET) approach (EPA 1992). The AET approach, developed by Barrick et al. (1985), is a quantitative application used to determine the relationship between site-specific chemistry and site-specific biological information (for example, laboratory toxicity) for field collected samples (Malek, 1992). The AET approach is based on the probability of incidence of adverse biological alterations or effects. According to the approach, once biological alterations or effects are established for each sample through laboratory or field evaluations, the samples are identified as "impacted" or "unimpacted" according to predetermined criteria. The chemical results of all unimpacted samples are evaluated and the AET becomes the maximum chemical concentration in all unimpacted samples, representing the concentration above which biological effects would be expected.

The advantage of this approach is that it considers site-specific conditions, such as sediment chemistry, toxicity, physical properties, and bioavailability, that are ignored by other general approaches, such as using published toxicity values (such as Eco-SSLs). The following general assumptions, adapted from Malek (1992), are necessary when using the site-specific AET approach:

- For a chemical or chemical group, concentrations can be as high as the site-specific AET value and not be associated with statistically significant ecological effects.
- An AET concentration for a chemical can be higher in unimpacted samples than the concentration of the same chemical in impacted samples.

 If toxicity is observed at concentrations lower than the site-specific AET, the impacts may be related to another chemical, chemical interactive effects, or other environmental factors (for example, physical stressors).

The site-specific AET approach is consistent with the concept/relationship that increasing chemical concentrations result in increasing toxicity, or ecological effects. In the case of the toxicity tests performed for this site, all six samples (SS18, 19, 21, 22, 24, and 26) from the Former Skeet Ranges are identified as "unimpacted." Therefore, the AET for each refined COPC is the maximum COPC concentrations in those six samples (504 mg/kg lead and 72,250 µg/kg HMW PAHs both measured in SS22; Table B1-14).

- Background Threshold Values The background soil report (CH2M, 2008) provides a compilation of approved BTVs for use at NAS Patuxent River sites. These BTVs, which represent estimates of the upper range of background concentrations, are meant to be compared with concentrations measured at Environmental Restoration Program sites to learn whether or not COPC occurrences are likely due to ambient or site-influenced conditions. BTVs are available for the refined surface soil COPCs. The BTVs for PAHs are provided on an individual compound basis. Therefore, the BTVs for HWM PAH compounds were compiled and summed by subgroup to generate HWM PAHs BTVs. Table B1-24 summarizes the lead and HMW PAHs BTVs. All sample concentrations as well as the range of detected concentrations of refined surface soil COPCs (maximum, mean and 95% UCL) were compared with BTVs. The results of this comparison are discussed below in Section B1.7.1.
- Pellet Count and Grit Characterization Pellet count and grit characterization results were available for 11 surface soil samples (10 transect composite samples and one composite sample of SS29, 31 and 32). Per the grit analysis procedures, "grit-sized" particles were identified in soil sample as anything in the #7 or #35 sieves in Procedure 1 (Pellet Counts). All subsample results from Procedure 1, were supposed to move on to Procedure 2 (Grit Characterization) to determine what portion of that particle-sized subset is associated with lead. However, GCAL did not perform Procedure 2, assuming that the pellet count and the grain size results were sufficient. The Pellet Count and Grit Characterization results are presented in Table B1-25.
- <u>General Lines of Evidence</u>—In addition to the medium-specific considerations discussed above, the following general lines of evidence were used in a weight-of-evidence approach to help decide if refined COPCs should be considered risk drivers and be the subject of further consideration or investigation:
 - <u>Exceedance Frequency and HQ Magnitude</u> Because the magnitude of COPC-specific concentrations and the frequency in which they exceed screening values reveals information on the severity and probability of potential effects, both were considered in addition to other evaluation factors to better evaluate risks. For example, if detected concentrations of a COPC infrequently exceed the screening value, it was suggested that this COPC is not likely driving risk.
 - <u>Frequency of Detection</u> Infrequently detected COPCs were considered for exclusion if other lines of evidence suggested their presence was naturally occurring or concentrations were marginally high (for example, HQ magnitude). It is unlikely that infrequently detected constituents represent a risk to receptor populations, due to limited spatial exposure. However, a qualitative evaluation was conducted to ensure that "hot spot" areas were not eliminated from consideration based on this line of evidence.
 - <u>Spatial Distribution</u> The spatial pattern(s) of refined COPCs was considered relative to sitespecific factors. This included the coincidental occurrence of refined COPCs at known site source areas, at particular site features, and/or with other COPCs (contamination "hot spots").

The following subsections discuss the risk evaluation for refined COPCs with consideration of the abovementioned lines of evidence.

B1.7.1 Direct Exposure

A comparison of site-specific concentrations of the refined COPCs (lead and HMW PAHs) to BTVs is presented in Table B1-26 (sample-by-sample comparison) and Table B1-27 (range of concentration, mean and 95% UCL). The maximum and the mean/UCL concentrations for both lead and HMW PAHs exceeded their BTVs. These results suggest that lead and HMW PAHs concentrations are artificially elevated above natural conditions as a result of activities at the Former Skeet Ranges. However, when applying the AET for the refined COPCs derived from the earthworm toxicity test results (504 mg/kg lead and 72,250 µg/kg HMW PAHs), a smaller number of sample locations are identified as posing direct exposure risk for soil invertebrates (Table B1-28). These locations include the following:

- Lead 2018 RI Location SS30 (directly in front of the Northern Former Skeet Range location)
- **HWM PAHs** 2010 SI location SS22 and 2018 RI Locations SS28, 29, 30, and 32 (all samples are directly in front of the Northern Former Skeet Range location)

Based on this evaluation, the area represented by these locations, that exceed ESLs, BTVs, and the AET concentrations could pose unacceptable risks to the soil invertebrate community. There is potential for the lead concentration at some locations to also pose unacceptable risks to the terrestrial plant community since the ESL for plants (120 mg/kg) is lower than the ESL for soil invertebrates (1,700 mg/kg) and terrestrial plants were not evaluated via laboratory toxicity testing. However, the lead concentration for 9 of 39 samples (5 from 2010 and 4 from 2018) exceeded the plant ESL (Table B1-19). The mean lead concentration (96.09 mg/kg) did not exceed and the lead 95% UCL (135 mg/kg) only slightly exceeded the ESL (Table B1-19). Therefore, it is unlikely that terrestrial plant populations are impacted by lead. There is uncertainty associated with the impact of PAHs on plants, since there are no ESLs for this receptor group.

B1.7.2 Food Web Exposure

No refined COPCs were identified for upper trophic-level receptors (Table B1-20). An additional line of evidence was evaluated for birds using the pellet count and grit characterization results (Table B1-25). Certain grit-ingesting birds (such as the mourning dove and American robin) may also directly ingest lead particles (pellets or pellet fragments) that are in the same size range as the grit they normally consume. Thus, exposure to lead for such birds might be increased beyond what might be accumulated in their food. However, grit-sized particles were only identified for four of the 11 samples (SS62, 64, 65 and 66) with total % grit-sized particle content ranging from 0.01% (SS62) to 0.32% (SS65). Because the laboratory did not perform Procedure 2 (Grit Characterization) to determine what portion of that particle-sized subset is associated with lead, it is assumed that the % of grit that is lead based would be even lower. Therefore, even without the actual grit characterization data, it is expected that there would be insignificant additional exposure for birds through grit-based lead given the very low number of grit-sized particles found in the soil at this site.

B1.8 Uncertainties

Uncertainties are present in all ERAs because of the limitations of available data and the need to make certain assumptions and extrapolations based on incomplete information. In addition, the use of various models (for example, uptake and food web exposures) each carries with it some associated uncertainty as to how well the model reflects actual conditions. The uncertainties in this ERA are mainly attributable to the following factors:

• <u>Undetected Constituents</u> – Thallium was not detected in the surface soil samples. Because it was not detected, it is assumed that thallium is not present in the surface soil. There is some uncertainty associated with this assumption because the reporting limit was higher than the screening value. However, because standardized analytical methods were used, this uncertainty is considered low.

- <u>Rejected Data</u> Results were rejected for selenium results in some of the surface soil samples. Therefore, according to the analytical data selection criteria (Section B1.2.3.1), these data were excluded. However, given that selenium was detected in only 2 of the 83 samples where the sample results were not rejected, the potential impact of this uncertainty on the ERA is considered low.
- <u>Duplicate Analyses</u> When evaluating samples with field duplicates, the value used in the ERA was always the detected concentration when one result was a detection and the constituent was not detected in the duplicate, regardless of whether the nondetected value was higher. In these cases, the use of the detected concentration has less uncertainty because it represents an actual measured value (versus an upper limit bound) and the two samples will have similar if not identical reporting limits.
- <u>Receptor Species Selection</u> Reptiles were selected as receptors for the ERA but were not evaluated quantitatively even when exposure pathways were likely to be complete. For food web exposures, these taxonomic groups were evaluated using other fauna (birds and mammals) as surrogates because of the general lack of taxon-specific ingestion-based toxicological data. This represents an uncertainty in the ERA.

It was also assumed that reptiles were not exposed to significantly higher concentrations of metals and were not more sensitive to metals than other receptor species evaluated by the ERA. This assumption was a source of uncertainty in the ERA. In addition, there is some uncertainty associated with the use of specific receptor species to represent larger groups of organisms (for example, guilds).

- <u>Direct Exposure ESLs</u> There are no ESLs for terrestrial plants and both LMW and HMW PAHs and terrestrial plants were not included in laboratory toxicity testing. Therefore, there is an uncertainty with the impacts of measured PAH concentrations. At a minimum, plants should also be assumed to be at risk for the most elevated concentrations identified through comparison with the AET (2010 SI location SS22 and 2018 RI Locations SS28, 29, 30, and 32 all near the Northern Former Skeet Range location).
- <u>Food Web Exposure Modeling</u> Metals concentrations in terrestrial food items (plants, soil invertebrates, and small mammals) were estimated from surface soil concentrations and were not directly measured. The use of generic, literature-derived exposure models and bioaccumulation factors introduces some uncertainty into the resulting estimates. The values selected, and methodology employed were intended to provide a conservative SERA or more- reasonable (Step 3A) estimate of potential food web exposure concentrations.

AUFs were assumed to equal 1.0. This is also a conservative assumption because a significant percentage of time for each upper trophic-level receptor species could be spent foraging offsite in unaffected areas or in areas where chemical concentrations are expected to be significantly less.

<u>Mean/95% UCL of the Mean versus Maximum Media Concentrations</u> – As is typical for an ERA, a finite number of environmental media samples were used to develop the exposure estimates. The maximum measured concentration provides a conservative estimate for immobile biota or those species with a limited home range. The most realistic exposure estimates for mobile species with relatively large home ranges and for species populations (even those that are immobile or have limited home ranges) are based on the 95% UCL concentrations in surface soil to which these receptors are exposed. This is reflected in the wildlife dietary exposure models (EPA, 1993), which specify the use of average media concentrations. Given the mobility of upper trophic-level receptor species used in the ERA, the use of maximum metal concentrations (rather than mean concentrations) in the SERA to estimate the exposure through food webs is very conservative. This conservatism was reduced to more-realistic levels in the values selected for use in the Step 3A evaluation. Additionally, the use of the latest version of ProUCL (version 5.1.00) reduces the

uncertainty because it is the latest recommended for use and is an improved version from what was available and used for the SI ecological risk screening evaluation.

B1.9 Conclusions

Lead, LMW PAHs, HMW PAHs, and individual PAH compounds were identified as COPCs for upper and/or lower trophic-level receptor populations based on maximum concentrations (Step 2), suggesting risks are possible following exposure to these constituents in surface soil. However, based on Step 3A refined screening results and/or the risk evaluation, potential risks are unlikely for upper trophic-level receptors. Through Step 3A refined screening results and/or the risk evaluation, it was also determined that there is potentially unacceptable risk from lead and HMW PAHs to lower trophic-level receptors (soil invertebrates and potentially terrestrial plants also) in an isolated area near the Northern Former Skeet Range (2010 SI location SS22 and 2018 RI Locations SS28, 29, 30, and 32).

B1.10 References

American Society for Testing and Materials (ASTM). 2018. Volume 11.06. Standard Guide for Conducting Laboratory Soil Toxicity or Bioaccumulation Tests With the Lumbricid Earthworm *Eisenia fetida* and the Enchytraeid Potworm *Enchytraeus albidus*. E1676-04.

Barrick, R. C., D. S. Becker, D. P. Weston, and T. C. Ginn. 1985. *Commencement Bay Nearshore/Tideflats Remedial Investigation, Final Report.* Prepared for Washington Department of Ecology and U.S. Environmental Protection Agency. EPA-910/9-85-134b. Bellevue, WA: Tetra Tech, Inc. 2 volumes and appendixes.

Bechtel Jacobs. 1998a. *Biota sediment accumulation factors for invertebrates: review and recommendations for Oak Ridge Reservation*. Prepared for U.S. Department of Energy. BJC/OR-122. August.

Bechtel Jacobs. 1998b. Empirical models for the uptake of inorganic chemicals from soil by plants. Prepared for U.S. Department of Energy. BJC/OR-133. September.

Beyer, W.N., E.E. Connor, and S. Gerould. 1994. Estimates of soil ingestion by wildlife. Journal of Wildlife Management. 58:375-382.

Beyer, W.N. and C. Stafford. 1993. "Survey and evaluation of contaminants in earthworms and in soil derived from dredged material at confined disposal facilities in the Great Lakes Region." *Environmental Monitoring and Assessment*. 24:151-165.

CH2M HILL, Inc. (CH2M). 2008. Final, Facility-Wide Background Study, Naval Air Station Patuxent River, St. Mary's County, Maryland. October.

CH2M. 2013. Site Inspection Report for Site UXO-0002 Former Small Arms Ranges. Naval Air Station, Patuxent River, Maryland. Final. April.

CH2M. 2018. Sampling and Analysis Plan, Remedial Investigation, Former Skeet Ranges (UXO-002, OU-2), *Naval Air Station Patuxent River, St. Mary's County, Maryland*. Final. February.

Chief of Naval Operations (CNO). 1999. *Navy Policy for Conducting Ecological Risk Assessments*. Memorandum from Chief of Naval Operations to Commander, Naval Facilities Engineering Command. Ser N453E/9U595355. April.

International Technology and Regulatory Council (ITRC). 2003. Characterization and Remediation of Soils at Closed Small Arms Firing Ranges. January.

Levey, D.J. and W.H. Karasov. 1989. Digestive responses of temperate birds switched to fruit or insect diets. Auk. 106:675-686.

Malek, J. 1992. Apparent Effects Threshold Approach. *Sediment Classification Methods Compendium*. EPA, Office of Water, Washington D.C. EPA 823-R-92-006.

Martin, A.C., H.S. Zim, and A.L. Nelson. 1951. *American wildlife and plants: a guide to wildlife food habits*. Dover Publications, Inc. New York, NY. 500 pp.

Naval Facilities Engineering Command (NAVFAC). 2003. *Navy Guidance for Conducting Ecological Risk Assessments*. February.

Rigdon, R.H. and J. Neal. 1963. "Fluorescence of chickens and eggs following the feeding of benzpyrene crystals." *Texas Reports on Biology and Medicine* 21(4):558-566.

Sample, B.E. and G.W. Suter II. 1994. *Estimating exposure of terrestrial wildlife to contaminants*. Environmental Restoration Division, ORNL Environmental Restoration Program. ES/ER/TM-125.

Sample, B.E., D.M. Opresko, and G.W. Suter II. 1996. *Toxicological benchmarks for wildlife*: 1996 revision. Environmental Restoration Division, ORNL Environmental Restoration Program. ES/ER/TM-86/R3.

Sample, B.E., J.J. Beauchamp, R.A. Efroymson, and G.W. Suter II. February 1998a. *Development and Validation of Bioaccumulation Models for Small Mammals*. Environmental Restoration Division, Oak Ridge National Laboratory (ORNL) Environmental Restoration Program. ES/ER/TM-219.

Sample, B.E., J.J. Beauchamp, R.A. Efroymson, G.W. Suter II, and T.L. Ashwood. February 1998b. *Development and Validation of Bioaccumulation Models for Earthworms*. Environmental Restoration Division, ORNL Environmental Restoration Program. ES/ER/TM-220.

Sample, B.E., M.S. Aplin, R.A. Efroymson, G.W. Suter II, and C.J.E. Welsh. 1997. *Methods and tools for estimation of the exposure of terrestrial wildlife to contaminants*. Environmental Sciences Division, Oak Ridge National Laboratory. ORNL/TM-13391.

Silva, M. and J.A. Downing. 1995. *CRC handbook of mammalian body masses*. CRC Press, Boca Raton, FL. 359 pp.

Suter, G.W. II. 1989. Chapter 2 "Ecological Endpoints" in Warren-Hicks, W., B.R. Parkhurst, and S.S. Baker, Jr. (eds). *Ecological Assessment of Hazardous Waste sites: A Field and Laboratory Reference*. EPA/600/3-89/013.

Suter, G.W. II. 1990. "Endpoints for Regional Ecological Risk Assessment." *Environmental Management*: 14, pp. 9-23.

Suter, G.W. II. 1993. Ecological Risk Assessment. Lewis Publishers, Chelsea, MI. pp. 538.

Tomlinson, R.E., D.D. Dolton, R.R. George, and R.E. Mirarchi. 1994. *Mourning dove*. Pages 5-26 in Tacha, T.C. and C.E. Braun (eds). Migratory shore and upland game bird management in North America. Allen Press, Lawrence, KS. 223 pp.

U.S. Environmental Protection Agency (EPA). 1989. Protocol for Short Term Toxicity Screening of Hazardous Waste Sites. EPA/600/3-88/029.

EPA. 1992. Sediment Classification Methods Compendium. EPA, Office of Water, Washington DC. EPA 823-R-92-006.

EPA. 1993. *Wildlife Exposure Factors Handbook*. Volume I of II. EPA/600/R-93/187a. December.

EPA. 1997. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments. Interim Final. EPA/540/R-97/006.

EPA. 2000. *Bioaccumulation Testing and Interpretation for the Purpose of Sediment Quality Assessment - Status and Needs*. EPA/823/R-00/001. February.

EPA. 2005a. Ecological soil screening levels for lead. OSWER Directive 9285.7-70. March.

EPA. 2005b. Guidance for developing ecological soil screening levels. Attachment 4-1. OSWER Directive 9285.7-55. February.

EPA. 2007. *Ecological Soil Screening Levels for Polycyclic Aromatic Hydrocarbons (PAHs)*. OSWER Directive 9285.7-78. June.

EPA. 2015. ProUCL, Version 5.1.002. Prepared by Lockheed Martin Environmental Services. October.

Tables

Table B1-1. 2010 SI Ecological Risk Evaluation - Comparison of Surface Soil Lead to Ecological Screening Values

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Mary's County, Maryland

				Exceeds
Station ID	Sample ID	Sample Date	Lead (mg/kg)	BTV ³
PX-FSR-SO-01	PX-FSR-SS01-0001	12/15/10	5.8	
PX-FSR-SO-02	PX-FSR-SS02-0001	12/15/10	31.6	
PX-FSR-SO-03	PX-FSR-SS03-0001	12/15/10	80.3	х
PX-FSR-SO-04	PX-FSR-SS04-0001	12/15/10	133	х
PX-FSR-SO-05	PX-FSR-SS05-0001	12/15/10	82.6	х
PX-FSR-SO-06	PX-FSR-SS06-0001	12/15/10	258	х
PX-FSR-SO-07	PX-FSR-SS07-0001	12/15/10	12.4	
PX-FSR-SO-08	PX-FSR-SS08-0001	12/15/10	55.6	х
PX-FSR-SO-09	PX-FSR-SS09-0001	12/15/10	10.1	
	PX-FSR-SS10-0001	12/15/10	52.4	х
PX-F3R-30-10	PX-FSR-SS10P-0001	duplicate	56	х
PX-FSR-SO-11	PX-FSR-SS11-0001	12/15/10	80.3	х
PX-FSR-SO-12	PX-FSR-SS12-0001	12/15/10	12.6	
PX-FSR-SO-13	PX-FSR-SS13-0001	12/15/10	21.2	
PX-FSR-SO-14	PX-FSR-SS14-0001	12/15/10	14.2	
PX-FSR-SO-15	PX-FSR-SS15-0001	12/15/10	10.2	
PX-FSR-SO-16	PX-FSR-SS16-0001	12/15/10	57.4	х
PX-FSR-SO-17	PX-FSR-SS17-0001	12/15/10	231 J	х
PX-FSR-SO-18	PX-FSR-SS18-0001	12/15/10	28.4	
PX-FSR-SO-19	PX-FSR-SS19-0001	12/15/10	163 J	х
PX_ESB_SO_20	PX-FSR-SS20-0001	12/15/10	11.7	
T X-1 3N-30-20	PX-FSR-SS20P-0001	duplicate	9.8	
PX-FSR-SO-21	PX-FSR-SS21-0001	12/15/10	55.2	х
PX-FSR-SO-22	PX-FSR-SS22-0001	12/15/10	330	х
PX-FSR-SO-23	PX-FSR-SS23-0001	12/15/10	27.8	
PX-FSR-SO-24	PX-FSR-SS24-0001	12/15/10	30.8	
PX-FSR-SO-25	PX-FSR-SS25-0001	12/15/10	32	
PX-ESB-SO-26	PX-FSR-SS26-0001	12/15/10	7.6	
T A-T 5N-50-20	PX-FSR-SS26P-0001	duplicate	8	
	Mean		70.74	х
	95% UCL ²		104	х

Notes:

1 - Shaded concentrations exceed the ecological soil screening level (Eco-SSL) of 120 mg/kg (USEPA, 2005)

2 - 95% Upper Confidence Limits (UCLs) calculated with USEPA ProUCL version 4.00.05

3 - NAS Paxutent River Background Threshold Value (BTV) for surface soil (CH2M HILL, 2008); 44.4 mg/kg

J - Analyte present, value may or may not be accurate or precise

Table B1-2. 2010 SI Ecological Risk Evaluation - Comparison of Surface Soil PAHs to Ecological Screening Values

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat)

NAS Patuxent River, St. Mary's County, Maryland

			Low Molecular Weight PAHs (UG/KG) High Molecular Weight PAHs (UG/KG)																		
Station ID	Sample ID	Sample Date	2-Methylnaphthalene	Acenaphthene	Acenaphthylene	Anthracene	Fluorene	Naphthalene	Phenanthrene	TOTAL LMW ¹	Benzo (a) an thracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h) anthracene	Fluoranthene	Indeno(1,2,3-cd)pyrene	Pyrene	TOTAL HMW ¹
PX-FSR-SO-16	PX-FSR-SS16-0001	12/15/10	10 UJ	10 UJ	2.2 J	9.9 J	10 UJ	5 B	49 J	78.6	120 J	180 J	280 J	140 J	82 J	150 J	41 J	150 J	160 J	170 J	1,473
PX-FSR-SO-17	PX-FSR-SS17-0001	12/15/10	23 UL	21 L	23 UL	57 L	13 L	16 B	240 L	362	660	980	1,400	700	440	810	200 J	810 L	770	690	7,460
PX-FSR-SO-18	PX-FSR-SS18-0001	12/15/10	11 UL	17 L	11 UL	54 L	9.2 L	17 B	260 L	359.7	760	1,100	1,600	800	550	950	180	960 L	930	960	8,790
PX-FSR-SO-19	PX-FSR-SS19-0001	12/15/10	40 L	230 L	14 UL	760 L	120 L	96	3,200 L	4,453	7,900	8,200	11,000	4,400	4,400	8,700	1,400 J	10,000 L	5,400	9,900	71,300
	PX-FSR-SS20-0001	12/15/10	3 L	10 UL	10 UL	3.8 L	10 UL	10 U	15 L	41.8	19 J	27	42	19 J	12 J	22	4.9 J	32 L	23	31	231.9
FX-F3R-30-20	PX-FSR-SS20P-0001	duplicate	3.1 L	10 UL	2.9 L	18 L	7.5 L	10 U	69 L	110.5	46	49	70	29	22	40	10 J	94 L	42	87	489
PX-FSR-SO-21	PX-FSR-SS21-0001	12/15/10	13 L	75 L	10 UL	220 L	38 L	39	1,500 L	1,890	2,800	3,300	4,700	2,200	1,800	3,400	620 J	4,500 L	2,500	3,500	29,320
PX-FSR-SO-22	PX-FSR-SS22-0001	12/15/10	310 L	2,400 L	34 UL	9,400 L	840 J	1,200 J	33,000 L	47,167	62,000	81,000 J	110,000 J	51,000	43,000 J	76,000 J	15,000	86,000 L	59,000	78,000	661,000
PX-FSR-SO-23	PX-FSR-SS23-0001	12/15/10	5.6 J	20 J	11 UL	130 J	20 J	13 B	620 L	807.6	1,000	1,400	1,600	840	250 J	1,200	250	1,800 L	260 J	1,700	10,300
PX-FSR-SO-24	PX-FSR-SS24-0001	12/15/10	3.6 L	4 L	10 UL	28 L	10 UL	10 U	110 L	160.6	200	260	400	190	140	220	53	300 L	230	270	2,263
PX-FSR-SO-25	PX-FSR-SS25-0001	12/15/10	3.9 L	2.7 L	10 UL	10 L	3.6 L	3.6 B	46 L	73	54	64	89	41	32	57	12 J	94 L	50	81	574
	PX-FSR-SS26-0001	12/15/10	10 UL	26 L	10 UL	84 L	11 L	11 B	360 L	496.5	840	1,000	1,400	620	580	1,000	180	1,100 L	720	1,000	8,440
FA-F3R-3U-20	PX-FSR-SS26P-0001	duplicate	3.7 L	9.7 L	10 UL	52 L	6.8 L	4.1 B	240 L	319.3	490	620	920	390	250	590	100	700 L	480	600	5,140
	Mean									5,087.1											72,855
	95% UCL ²									47,137											661,342
Notes:			=																		

Detected values are shaded

Bolded concentrations exceed the ecological soil screening level (Eco-SSL) of 29,000 mg/kg for LMW PAHs and 18,000 µg/kg HMW PAHs (USEPA, 2007)

1 - Nondetect values (U,UL, UJ and B) were included in total at one-half the reporting lmiit.

2 - 95% Upper Confidence Limits (UCLs) calculated with USEPA ProUCL version 4.00.05

B - Analyte not detected above the level reported in blanks

J - Analyte present, value may or may not be accurate or precise

L - Analyte present, value may be biased low, actual value may be higher

U - The material was analyzed for, but not detected

UJ - Analyte not detected, quantitation limit may be inaccurate

UL - Analyte not detected, quantitation limit is probably higher

Table B1-3. Assessment Endpoints, Risk Hypotheses, and Measurement Endpoints

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat)

Assessment Endpoint	Risk Hypothesis	Measurement Endpoint	Receptor
Survival, growth, and reproduction of terrestrial soil invertebrate communities	Are site-related constituent concentrations in surface soils sufficient to adversely affect soil invertebrate communities?	Comparison of constituent concentrations in surface soils with soil screening values; 28-day earthworm (<i>Eisenia fetida</i>) laboratory-based toxicity test	Soil invertebrates (earthworms)
Survival, growth, and reproduction of terrestrial plant communities	Are site-related constituent concentrations in surface soils sufficient to adversely affect terrestrial plant communities?	Comparison of constituent concentrations in surface soils with soil screening values	Terrestrial plants
Survival, growth, and reproduction of terrestrial reptile	Are site-related constituent concentrations in surface soil sufficient to adversely affect terrestrial reptile populations?	Comparison of constituent concentrations in surface soils with soil screening values	Rentiles
populations	Are site-related constituent concentrations in surface soil sufficient to cause adverse effects (on growth, survival, or reproduction) to terrestrial reptile populations?	Evidence of potential risk to other upper trophic level terrestrial receptors evaluated in the ERA	. Reptiles
Survival, growth, and reproduction of avian terrestrial insectivore/omnivore populations	Are site-related constituent concentrations in surface soils sufficient to cause adverse effects (on growth, survival, or reproduction) to avian receptor populations that may consume terrestrial plants and soil invertebrates from the site?	Comparison of modeled dietary intakes using surface soil concentrations with literature- based ingestion screening values; ratios >1 based upon the NOAEL-LOAEL range indicate an effect; Grit characterization results for additional/potential lead exposure	American robin
Survival, growth, and reproduction of avian terrestrial herbivore populations	Are site-related constituent concentrations in surface soils sufficient to cause adverse effects (on growth, survival, or reproduction) to avian receptor populations that may consume terrestrial plants from the site?	Comparison of modeled dietary intakes using surface soil concentrations with literature- based ingestion screening values; ratios >1 based upon the NOAEL-LOAEL range indicate an effect; Grit characterization results for additional/potential lead exposure	Mourning dove
Survival, growth, and reproduction of avian terrestrial carnivore populations	Are site-related constituent concentrations in surface soils sufficient to cause adverse effects (on growth, survival, or reproduction) to avian receptor populations that may consume small mammals from the site?	Comparison of modeled dietary intakes using surface soil concentrations with literature- based ingestion screening values; ratios >1 based upon the NOAEL-LOAEL range indicate an effect	Red-tailed hawk
Survival, growth, and reproduction of mammalian terrestrial invertivore populations	Are site-related constituent concentrations in surface soils sufficient to cause adverse effects (on growth, survival, or reproduction) to mammalian receptor populations that may consume soil invertebrates from the site?	Comparison of modeled dietary intakes using surface soil concentrations with literature- based ingestion screening values; ratios >1 based upon the NOAEL-LOAEL range indicate an effect	Short-tailed shrew
Survival, growth, and reproduction of mammalian terrestrial omnivore populations	Are site-related constituent concentrations in surface soils sufficient to cause adverse effects (on growth, survival, or reproduction) to mammalian receptor populations that may consume terrestrial plants and soil invertebrates from the site?	Comparison of modeled dietary intakes using surface soil concentrations with literature- based ingestion screening values; ratios >1 based upon the NOAEL-LOAEL range indicate an effect	White-footed mouse

Table B1-4. Sample List - Surface Soil

					Α	nalytical P	aramete	rs Measu	red		
									Grain	Pellet	
Investigation	Station ID	Sample ID	Sample Date	PAHs	Lead	% Solids	рН	TOC	Size	Count	Notes
	PX-FSR-SO-01	PX-FSR-SS01-0001	12/15/10		х						Discrete Sample
	PX-FSR-SO-02	PX-FSR-SS02-0001	12/15/10		х						Discrete Sample
	PX-FSR-SO-03	PX-FSR-SS03-0001	12/15/10		х		х	х	х		Discrete Sample
	PX-FSR-SO-04	PX-FSR-SS04-0001	12/15/10		х						Discrete Sample
	PX-FSR-SO-05	PX-FSR-SS05-0001	12/15/10		х						Discrete Sample
	PX-FSR-SO-06	PX-FSR-SS06-0001	12/15/10		х						Discrete Sample
	PX-FSR-SO-07	PX-FSR-SS07-0001	12/15/10		х						Discrete Sample
	PX-FSR-SO-08	PX-FSR-SS08-0001	12/15/10		х						Discrete Sample
	PX-FSR-SO-09	PX-FSR-SS09-0001	12/15/10		х						Discrete Sample
		PX-FSR-SS10-0001	12/15/10		х		х	х	х		Discrete Sample
	PX-FSR-SU-10	PX-FSR-SS10P-0001	12/15/10		x						Discrete Sample; field duplicate
	PX-FSR-SO-11	PX-FSR-SS11-0001	12/15/10		х						Discrete Sample
	PX-FSR-SO-12	PX-FSR-SS12-0001	12/15/10		х						Discrete Sample
	PX-FSR-SO-13	PX-FSR-SS13-0001	12/15/10		х						Discrete Sample
Site Inspection (2010)	PX-FSR-SO-14	PX-FSR-SS14-0001	12/15/10		х						Discrete Sample
	PX-FSR-SO-15	PX-FSR-SS15-0001	12/15/10		х						Discrete Sample
	PX-FSR-SO-16	PX-FSR-SS16-0001	12/15/10	х	х						Discrete Sample
	PX-FSR-SO-17	PX-FSR-SS17-0001	12/15/10	х	х						Discrete Sample
	PX-FSR-SO-18	PX-FSR-SS18-0001	12/15/10	х	х						Discrete Sample
	PX-FSR-SO-19	PX-FSR-SS19-0001	12/15/10	х	х		х	х	х		Discrete Sample
		PX-FSR-SS20-0001	12/15/10	х	х						Discrete Sample
	PX-FSR-SU-20	PX-FSR-SS20P-0001	12/15/10	х	х						Discrete Sample; field duplicate
	PX-FSR-SO-21	PX-FSR-SS21-0001	12/15/10	х	х						Discrete Sample
	PX-FSR-SO-22	PX-FSR-SS22-0001	12/15/10	х	х						Discrete Sample
	PX-FSR-SO-23	PX-FSR-SS23-0001	12/15/10	х	х						Discrete Sample
	PX-FSR-SO-24	PX-FSR-SS24-0001	12/15/10	х	х						Discrete Sample
	PX-FSR-SO-25	PX-FSR-SS25-0001	12/15/10	х	х						Discrete Sample
		PX-FSR-SS26-0001	12/15/10	х	х		х	х	х		Discrete Sample
	PX-F3K-3U-20	PX-FSR-SS26P-0001	12/15/10	х	x						Discrete Sample; field duplicate

Table B1-4. Sample List - Surface Soil

Investigation Sample ID Sample Dire PMD Note Notes Peters PX-553-00-10 PX-573-553-00-001 11/15/18 x						А	nalytical F	aramete	rs Measu	red		
Investigation Saturo ID Sample Date PAMS. Lead K.Soll PT TOC. Size Court Netes PX FSS.010 PXF3RS.518 =00.01 117.57.18 x										Grain	Pellet	
PK-598-03-18 PK-598-538-000H 11/15/18 x <	Investigation	Station ID	Sample ID	Sample Date	PAHs	Lead	% Solids	рН	TOC	Size	Count	Notes
PAX-588 S00-01 11/15/18 x x		PX-FSR-SO-18	PX-FSR-SS18-000H	11/15/18	х	x	x	x	х	х		Discrete Sample
PP:F38.30-19 PP:F38.S321			PX-FSR-SS18P-000H	11/15/18	х	x						Discrete Sample; field duplicate
PR-F38-50-11 PR-F38-S321-000H 11/15/18 x		PX-FSR-SO-19	PX-FSR-SS19-000H	11/15/18	x	x	x	x	x	х		Discrete Sample
PM-458.0-22 PM-558.522.000H 11/15/18 x <		PX-FSR-SO-21	PX-FSR-SS21-000H	11/15/18	x	x	x	x	x	х		Discrete Sample
PK-FSR-50-24 PK-FSR-522600H 11/16/18 x <		PX-FSR-SO-22	PX-FSR-SS22-000H	11/15/18	х	х	х	х	х	х		Discrete Sample
PM-FSR-50-26 PM-FSR-S22-000H 111/3/18 x		PX-FSR-SO-24	PX-FSR-SS24-000H	11/16/18	х	х	х	х	х	х		Discrete Sample
Pk-F8-S0-27 Pk-F8-S27-000H 11/3/3/18 x <		PX-FSR-SO-26	PX-FSR-SS26-000H	11/16/18	х	х	х	x	х	х		Discrete Sample
Remedial Investigation PX+FSR-S32P-000H 11/13/18 x <td></td> <td>PX-FSR-SO-27</td> <td>PX-FSR-SS27-000H</td> <td>11/13/18</td> <td>х</td> <td>х</td> <td>х</td> <td>x</td> <td>х</td> <td>х</td> <td></td> <td>Discrete Sample</td>		PX-FSR-SO-27	PX-FSR-SS27-000H	11/13/18	х	х	х	x	х	х		Discrete Sample
PM-F5R-50-28 PM-F5R-529-000H 11/13/18 x			PX-FSR-SS27P-000H	11/13/18	х	х						Discrete Sample; field duplicate
PK-FSR 50-29 PK-FSR 532-000H 11/13/18 x		PX-FSR-SO-28	PX-FSR-SS28-000H	11/13/18	х	х						Discrete Sample
PK-FSR-S0-30 PK-FSR-S30-000H 11/13/18 x		PX-FSR-SO-29	PX-FSR-SS29-000H	11/13/18	х	х	x	х	х	х		Discrete Sample
Remedial investigation PX-FSR-SS30-000H 11/13/18 x <td></td> <td>PX-FSR-SO-30</td> <td>PX-FSR-SS30-000H</td> <td>11/13/18</td> <td>х</td> <td>x</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>Discrete Sample</td>		PX-FSR-SO-30	PX-FSR-SS30-000H	11/13/18	х	x						Discrete Sample
PM-FSR-S0-31 PM-FSR-S332-000H 11/13/18 x x x x			PX-FSR-SS30P-000H	11/13/18	х	x						Discrete Sample; field duplicate
PK-FSR-50-32 PK-FSR-533-000H 11/13/18 x		PX-FSR-SO-31	PX-FSR-SS31-000H	11/13/18	x	x	x	x	x	х		Discrete Sample
PK-FSR-S0-33 PK-FSR-S334-000H 11/14/18 x		PX-FSR-SO-32	PX-FSR-SS32-000H	11/13/18	x	x						Discrete Sample
Px-FsR-S0-34 Px-FsR-S34-000H 11/13/18 x x x x x x Discrete Sample Px-FsR-S0-35 Px-FsR-S35-00H 11/13/18 x Discrete Sample Px-FsR-S0-35 Px-FsR-S35-00H 11/13/18 x x x x X Discrete Sample Px-FsR-S0-36 Px-FsR-S35-000H 11/13/18 x x x x X Discrete Sample Px-FsR-S0-37 Px-FsR-S37P-000H 11/13/18 x x x x Discrete Sample Px-FsR-S0-39 Px-FsR-S33P-000H 11/14/18 x x x X Discrete Sample Px-FsR-S0-39 Px-FsR-S34P-000H 11/14/18 x x x x Discrete Sample Px-FsR-S0-41 Px-FsR-S54D-00H 11/14/18 x x x X Discrete Sample Px-FsR-S0-42 Px-FsR-S54D-00H 11/14/18 x x x		PX-FSR-SO-33	PX-FSR-SS33-000H	11/14/18	x	x	x	x	x	х		Discrete Sample
Remedial Investigation (2018) PX-FSR-S34P-000H 11/13/18 x Discrete Sample; field duplicate PX-FSR-S0-35 PX-FSR-S36-00H 11/13/18 x X X X X Discrete Sample; field duplicate PX-FSR-S0-36 PX-FSR-S36-00H 11/13/18 x X X X X X X X X Discrete Sample; field duplicate PX-FSR-S0-36 PX-FSR-S38-00H 11/13/18 x Z Discrete Sample; field duplicate PX-FSR-S0-38 PX-FSR-S38-00H 11/14/18 x Z Z Discrete Sample; field duplicate PX-FSR-S0-40 PX-FSR-S38-00H 11/14/18 x X X X Discrete Sample; field duplicate PX-FSR-S0-41 PX-FSR-S39-00H 11/14/18 x X X X Discrete Sample; field duplicate PX-FSR-S0-42 PX-FSR-S34-00H 11/14/18 X X X X Discrete Sample; field duplicate PX-FSR-S0-43 PX-FSR-S34-00H 11/14/			PX-FSR-SS34-000H	11/13/18	х		x	x	x	х		Discrete Sample
PX-FSR-SO-35 PX-FSR-SS3-000H 11/13/18 x		FX-15N-50-54	PX-FSR-SS34P-000H	11/13/18	х							Discrete Sample; field duplicate
PRemedial Investigation (2018)PX-FSR-S0-36PX-FSR-S0-3600H11/13/18xxxxxxxxDiscrete SamplePX-FSR-S0-37PX-FSR-S0-3700H11/13/18xx000		PX-FSR-SO-35	PX-FSR-SS35-000H	11/13/18	x							Discrete Sample
PR+FSR-SO-37 PX-FSR-SS37-000H 11/13/18 x k	Remedial Investigation	PX-FSR-SO-36	PX-FSR-SS36-000H	11/13/18	х		x	x	x	х		Discrete Sample
PX-FSR-50-39 PX-FSR-S33P-000H 11/13/18 x Image: Marcol Mar	(2018)		PX-FSR-SS37-000H	11/13/18	x							Discrete Sample
PX-FSR-SO-38PX-FSR-SS38-000H11/14/18xvvvvvDiscrete SamplePX-FSR-SO-39PX-FSR-SS40-000H11/14/18xxxxxxxDiscrete SamplePX-FSR-SO-40PX-FSR-SS40-000H11/14/18xxxxxxxDiscrete SamplePX-FSR-SO-41PX-FSR-SS41-000H11/14/18xxxxxxDiscrete SamplePX-FSR-SO-42PX-FSR-SS41-000H11/14/18xxxxxxXDiscrete SamplePX-FSR-SO-43PX-FSR-SS42-000H11/14/18xxxxxxXDiscrete SamplePX-FSR-SO-44PX-FSR-SS44-000H11/14/18xxxxxxXDiscrete SamplePX-FSR-SO-45PX-FSR-SS44-000H11/14/18xxxxxxXDiscrete SamplePX-FSR-SO-46PX-FSR-SS45-000H11/14/18xxxxxxDiscrete SamplePX-FSR-SO-47PX-FSR-SS45-000H11/14/18xxxxxxDiscrete SamplePX-FSR-SO-48PX-FSR-SS45-000H11/14/18xxxxxXDiscrete SamplePX-FSR-SO-50PX-FSR-SS50-00H11/14/18xxxxxXDiscrete SamplePX-FSR-SO-51PX-FSR-SS51-000H11/14/18xxxx		FX-F3R-30-37	PX-FSR-SS37P-000H	11/13/18	х							Discrete Sample; field duplicate
PX-FSR-SO-39PX-FSR-SS39-000H11/14/18xxxxxxxxDiscrete SamplePX-FSR-SO-40PX-FSR-SS40-000H11/14/18xxxxxxxxDiscrete SamplePX-FSR-SO-41PX-FSR-SS41-000H11/14/18xxxxxxXDiscrete SamplePX-FSR-SO-42PX-FSR-SS40-000H11/14/18xxxxxxDiscrete SamplePX-FSR-SO-43PX-FSR-SS43-000H11/14/18xxxxxXDiscrete SamplePX-FSR-SO-44PX-FSR-SS43-000H11/14/18xxxxxXDiscrete SamplePX-FSR-SO-45PX-FSR-SS40-00H11/14/18xxxxxXDiscrete SamplePX-FSR-SO-45PX-FSR-SS40-00H11/14/18xxxxxXDiscrete SamplePX-FSR-SO-45PX-FSR-SS40-00H11/14/18xxxxxXDiscrete SamplePX-FSR-SO-45PX-FSR-SS40-00H11/14/18xxxxxXDiscrete SamplePX-FSR-SO-46PX-FSR-SS40-00H11/14/18xxxxxXDiscrete SamplePX-FSR-SO-47PX-FSR-SS40-00H11/14/18xxxxxXDiscrete SamplePX-FSR-SO-48PX-FSR-SS40-00H11/14/18xxxxxDi		PX-FSR-SO-38	PX-FSR-SS38-000H	11/14/18	х							Discrete Sample
PX-FSR-S0-40PX-FSR-S540-000H11/14/18xxx<		PX-FSR-SO-39	PX-FSR-SS39-000H	11/14/18	х		х	x	x	х		Discrete Sample
PX-FSR-SO-41PX-FSR-SS41-000H11/14/18xxx<		PX-FSR-SO-40	PX-FSR-SS40-000H	11/14/18	х		х	x	х	х		Discrete Sample
PX+5N-30-41PX-FSR-SS41P-000H11/14/18xIIDiscrete Sample; field duplicatePX-FSR-SO-42PX-FSR-SS42-000H11/14/18xxxxxxDiscrete SamplePX-FSR-SO-43PX-FSR-SS43-000H11/14/18xIIIDiscrete SamplePX-FSR-SO-44PX-FSR-SS44-000H11/14/18xXXXXDiscrete SamplePX-FSR-SO-45PX-FSR-SS44-000H11/14/18xIIIDiscrete SamplePX-FSR-SO-46PX-FSR-SS45-000H11/14/18xXXXXDiscrete SamplePX-FSR-SO-47PX-FSR-SS46-000H11/14/18xXXXXDiscrete SamplePX-FSR-SO-48PX-FSR-SS47-000H11/14/18xXXXXDiscrete SamplePX-FSR-SO-49PX-FSR-SS48-000H11/14/18xXXXXDiscrete SamplePX-FSR-SO-49PX-FSR-SS49-000H11/14/18xXXXXDiscrete SamplePX-FSR-SO-50PX-FSR-SS50-000H11/14/18XXXXDiscrete SamplePX-FSR-SO-51PX-FSR-SS51-000H11/14/18XXXXDiscrete SamplePX-FSR-SO-52PX-FSR-SS52-000H11/14/18XXXXDiscrete SamplePX-FSR-SO-53PX-FSR-SS52-000H11/14/18XXXXXDiscrete SamplePX-FSR-SO-54PX-FSR-S			PX-FSR-SS41-000H	11/14/18	х							Discrete Sample
PX-FSR-SO-42PX-FSR-SS42-000H11/14/18xxxxxxxxxbiscrete SamplePX-FSR-SO-43PX-FSR-SS43-000H11/14/18xxxxxxxxDiscrete SamplePX-FSR-SO-44PX-FSR-SS44-000H11/14/18xxxxxxxxDiscrete SamplePX-FSR-SO-45PX-FSR-SS45-000H11/14/18xxxxxxxDiscrete SamplePX-FSR-SO-46PX-FSR-SS45-000H11/14/18xxxxxxXDiscrete SamplePX-FSR-SO-47PX-FSR-SS45-000H11/14/18xxxxxxXDiscrete SamplePX-FSR-SO-48PX-FSR-SS47-000H11/14/18xxxxxxXDiscrete SamplePX-FSR-SO-49PX-FSR-SS48-000H11/14/18xxxxxxDiscrete SamplePX-FSR-SO-50PX-FSR-SS49-000H11/14/18xxxxxXDiscrete SamplePX-FSR-SO-50PX-FSR-SS51-000H11/14/18xxxxxxDiscrete SamplePX-FSR-SO-51PX-FSR-SS52-000H11/14/18xxxxxXDiscrete SamplePX-FSR-SO-53PX-FSR-SS53-000H11/14/18xxxxxXDiscrete SamplePX-FSR-SO-54PX-FSR-SS54-000H11		FX-F3K-30-41	PX-FSR-SS41P-000H	11/14/18	х							Discrete Sample; field duplicate
PX-FSR-SO-43PX-FSR-SS43-000H11/14/18xImage: constraint of the symplePX-FSR-SO-44PX-FSR-SS44-000H11/14/18xxxxxxXDiscrete SamplePX-FSR-SO-45PX-FSR-SS45-000H11/14/18xImage: constraint of the sympleImage: constraint of the sympleImage: constraint of the symplePX-FSR-SO-46PX-FSR-SS46-000H11/14/18xImage: constraint of the sympleImage: constraint of the symplePX-FSR-SO-47PX-FSR-SS46-000H11/14/18xImage: constraint of the sympleImage: constraint of the symplePX-FSR-SO-47PX-FSR-SS47-000H11/14/18xImage: constraint of the sympleImage: constraint of the symplePX-FSR-SO-48PX-FSR-SS49-000H11/14/18xImage: constraint of the sympleImage: constraint of the symplePX-FSR-SO-50PX-FSR-SS50-000H11/14/18xImage: constraint of the sympleImage: constraint of the symplePX-FSR-SO-51PX-FSR-SS51-000H11/14/18xImage: constraint of the sympleImage: constraint of the symplePX-FSR-SO-52PX-FSR-SS2-000H11/14/18xImage: constraint of the sympleImage: constraint of the symplePX-FSR-SO-53PX-FSR-SS3-000H11/14/18xImage: constraint of the sympleImage: constraint of the symplePX-FSR-SO-54PX-FSR-SS4-000H11/14/18xImage: constraint of the sympleImage: constraint of the symplePX-FSR-SO-54PX-FSR-SS3-000H11/14/18xImage: constr		PX-FSR-SO-42	PX-FSR-SS42-000H	11/14/18	х		х	x	x	х		Discrete Sample
PX-FSR-SO-44PX-FSR-SS4-000H11/14/18xxx <t< td=""><td></td><td>PX-FSR-SO-43</td><td>PX-FSR-SS43-000H</td><td>11/14/18</td><td>х</td><td></td><td></td><td></td><td></td><td></td><td></td><td>Discrete Sample</td></t<>		PX-FSR-SO-43	PX-FSR-SS43-000H	11/14/18	х							Discrete Sample
PX-FSR-SO-45PX-FSR-SS45-000H11/14/18xImage: constraint of the symplePX-FSR-SO-46PX-FSR-SS46-000H11/14/18xxxxxxxPX-FSR-SO-47PX-FSR-SS47-000H11/14/18xImage: constraint of the sympleImage: constraint of the sympleImage: constraint of the symplePX-FSR-SO-48PX-FSR-SS47-000H11/14/18xImage: constraint of the sympleImage: constraint of the sympleImage: constraint of the symplePX-FSR-SO-48PX-FSR-SS49-000H11/14/18xImage: constraint of the sympleImage: constraint of the sympleImage: constraint of the symplePX-FSR-SO-50PX-FSR-SS49-000H11/14/18xImage: constraint of the sympleImage: constraint of the symplePX-FSR-SO-51PX-FSR-SS51-000H11/14/18xImage: constraint of the sympleImage: constraint of the symplePX-FSR-SO-52PX-FSR-SS52-000H11/14/18xImage: constraint of the sympleImage: constraint of the symplePX-FSR-SO-53PX-FSR-SS53-000H11/14/18xImage: constraint of the sympleImage: constraint of the symplePX-FSR-SO-54PX-FSR-SS54-000H11/14/18xImage: constraint of the sympleImage: constraint of the symplePX-FSR-SO-54PX-FSR-SS4-000H11/14/18xImage: constraint of the sympleImage: constraint of the symplePX-FSR-SO-54PX-FSR-SS4-000H11/14/18xImage: constraint of the sympleImage: constraint of the symplePX-FSR-SO-54PX-FSR-		PX-FSR-SO-44	PX-FSR-SS44-000H	11/14/18	х		х	x	x	х		Discrete Sample
PX-FSR-SO-46PX-FSR-SS46-000H11/14/18xxxxxxxxDiscrete SamplePX-FSR-SO-47PX-FSR-SS47-000H11/14/18xDiscrete SamplePX-FSR-SO-48PX-FSR-SS48-000H11/14/18xxxxxxxDiscrete SamplePX-FSR-SO-49PX-FSR-SS49-000H11/14/18xDiscrete SamplePX-FSR-SO-50PX-FSR-SS50-000H11/14/18xxxxxxDiscrete SamplePX-FSR-SO-51PX-FSR-SS51-000H11/14/18xDiscrete SamplePX-FSR-SO-52PX-FSR-SS51-000H11/14/18xxxxxxDiscrete SamplePX-FSR-SO-53PX-FSR-SS52-000H11/14/18xxxxxxDiscrete SamplePX-FSR-SO-54PX-FSR-SS53-000H11/14/18xxxxxxXDiscrete SamplePX-FSR-SO-54PX-FSR-SS53-000H11/14/18xxxxxxXXDiscrete SamplePX-FSR-SO-54PX-FSR-SS54-000H11/14/18xxxxxxXXDiscrete SamplePX-FSR-SO-54PX-FSR-SS54-000H11/14/18xxxxxxXXDiscrete Sample		PX-FSR-SO-45	PX-FSR-SS45-000H	11/14/18	х							Discrete Sample
PX-FSR-SO-47PX-FSR-SS47-000H11/14/18xImage: constraint of the symplePX-FSR-SO-48PX-FSR-SS48-000H11/14/18xxxxxxDiscrete SamplePX-FSR-SO-49PX-FSR-SS49-000H11/14/18xImage: constraint of the sympleImage: constraint of the sympleImage: constraint of the symplePX-FSR-SO-50PX-FSR-SS50-000H11/14/18xImage: constraint of the sympleImage: constraint of the symplePX-FSR-SO-51PX-FSR-SS51-000H11/14/18xImage: constraint of the sympleImage: constraint of the symplePX-FSR-SO-52PX-FSR-SS52-000H11/14/18xImage: constraint of the sympleImage: constraint of the symplePX-FSR-SO-53PX-FSR-SS53-000H11/14/18xImage: constraint of the sympleImage: constraint of the symplePX-FSR-SO-54PX-FSR-SS53-000H11/14/18xImage: constraint of the sympleImage: constraint of the symplePX-FSR-SO-54PX-FSR-SS54-000H11/14/18xImage: constraint of the sympleImage: constraint of the symplePX-FSR-SO-54PX-FSR-SS54-000H11/14/18xImage: constraint of the sympleImage: constraint of the symplePX-FSR-SO-54PX-FSR-SS4-000H11/14/18xImage: constraint of the sympleImage: constraint of the symplePX-FSR-SO-54PX-FSR-SS4-000H11/14/18xImage: constraint of the sympleImage: constraint of the symplePX-FSR-SO-54PX-FSR-SS4-000H11/14/18Image: constraint of the symple<		PX-FSR-SO-46	PX-FSR-SS46-000H	11/14/18	х		х	x	x	х		Discrete Sample
PX-FSR-SO-48PX-FSR-SS48-000H11/14/18xxxxxxxDiscrete SamplePX-FSR-SO-49PX-FSR-SS49-000H11/14/18xDiscrete SamplePX-FSR-SO-50PX-FSR-SS50-000H11/14/18xxxxxxXDiscrete SamplePX-FSR-SO-51PX-FSR-SS51-000H11/14/18xxxxxXDiscrete SamplePX-FSR-SO-52PX-FSR-SS52-000H11/14/18xxxxxXDiscrete SamplePX-FSR-SO-53PX-FSR-SS53-000H11/14/18xxxxxxDiscrete SamplePX-FSR-SO-54PX-FSR-SS54-000H11/14/18xxxxxxDiscrete SamplePX-FSR-SO-54PX-FSR-SS54-000H11/14/18xxxxxxXDiscrete Sample		PX-FSR-SO-47	PX-FSR-SS47-000H	11/14/18	х							Discrete Sample
PX-FSR-SO-49PX-FSR-SS49-000H11/14/18xImage: constraint of the systemDiscrete SamplePX-FSR-SO-50PX-FSR-SS50-000H11/14/18xxxxxxDiscrete SamplePX-FSR-SO-51PX-FSR-SS51-000H11/14/18xImage: constraint of the systemImage: constraint of the systemPX-FSR-SO-51PX-FSR-SS52-000H11/14/18xXXXXXImage: constraint of the systemPX-FSR-SO-52PX-FSR-SS52-000H11/14/18XImage: constraint of the systemImage: constraint of the systemImage: constraint of the systemImage: constraint of the systemPX-FSR-SO-53PX-FSR-SS53-000H11/14/18XImage: constraint of the systemImage: constraint of the systemImage: constraint of the systemPX-FSR-SO-54PX-FSR-SS54-000H11/14/18XImage: constraint of the systemImage: constraint of the systemImage: constraint of the systemPX-FSR-SO-54PX-FSR-SS54-000H11/14/18XImage: constraint of the systemImage: constraint of the systemImage: constraint of the systemPX-FSR-SO-54PX-FSR-SS54-000H11/14/18XImage: constraint of the systemImage: constraint of the systemImage: constraint of the systemPX-FSR-SO-54PX-FSR-SS4-000H11/14/18XImage: constraint of the system<		PX-FSR-SO-48	PX-FSR-SS48-000H	11/14/18	х		x	x	х	х		Discrete Sample
PX-FSR-SO-50PX-FSR-SS50-000H11/14/18xxxxxxxDiscrete SamplePX-FSR-SO-51PX-FSR-SS51-000H11/14/18xDiscrete SamplePX-FSR-SO-52PX-FSR-SS52-000H11/14/18xxxxxxDiscrete SamplePX-FSR-SO-53PX-FSR-SS53-000H11/14/18xDiscrete SamplePX-FSR-SO-54PX-FSR-SS54-000H11/14/18xxxxxxPX-FSR-SO-54PX-FSR-SS54-000H11/14/18xxxxxxDiscrete Sample		PX-FSR-SO-49	PX-FSR-SS49-000H	11/14/18	х							Discrete Sample
PX-FSR-SO-51 PX-FSR-SS51-000H 11/14/18 x Image: Constraint of the symple Discrete Sample PX-FSR-SO-52 PX-FSR-SS52-000H 11/14/18 x x x x X Discrete Sample PX-FSR-SO-53 PX-FSR-SS53-000H 11/14/18 x Image: Constraint of the symple Image: Constende: Constende: Constraint of the symple Image:		PX-FSR-SO-50	PX-FSR-SS50-000H	11/14/18	х		x	x	х	х		Discrete Sample
PX-FSR-SO-52 PX-FSR-SS52-000H 11/14/18 x x x x x x Discrete Sample PX-FSR-SO-53 PX-FSR-SS53-000H 11/14/18 x Discrete Sample PX-FSR-SO-54 PX-FSR-SS54-000H 11/14/18 x x x x X Discrete Sample		PX-FSR-SO-51	PX-FSR-SS51-000H	11/14/18	х							Discrete Sample
PX-FSR-SO-53 PX-FSR-SS53-000H 11/14/18 x Image: Constraint of the system Discrete Sample PX-FSR-SO-54 PX-FSR-SS54-000H 11/14/18 x x x x X Discrete Sample		PX-FSR-SO-52	PX-FSR-SS52-000H	11/14/18	х		x	x	x	x		Discrete Sample
PX-FSR-SO-54 PX-FSR-SS54-000H 11/14/18 x x x x x x Discrete Sample		PX-FSR-SO-53	PX-FSR-SS53-000H	11/14/18	x							Discrete Sample
		PX-FSR-SO-54	PX-FSR-SS54-000H	11/14/18	х		x	x	x	x		Discrete Sample

Table B1-4. Sample List - Surface Soil

					Α	nalytical P	arametei	s Measu	ed		
									Grain	Pellet	
Investigation	Station ID	Sample ID	Sample Date	PAHs	Lead	% Solids	рН	тос	Size	Count	Notes
	PX-FSR-SO-55	PX-FSR-SS55-000H	11/14/18	x							Discrete Sample
	PX-FSR-SO-56	PX-FSR-SS56-000H	11/14/18	x							Discrete Sample
	PX-FSR-SO-57	PX-FSR-SS57-000H	11/14/18	x							Discrete Sample
	PX-FSR-SO-58	PX-FSR-SS58-000H	11/16/18	х	x	x	x	х	х		Discrete Sample
	PX-FSR-SO-59	PX-FSR-SS59-000H	11/16/18	x	x	x	х	х	х		Discrete Sample
		PX-FSR-SS60-000H	4/24/19							х	Transect composite
		PX-FSR-SS61-000H	4/24/19							х	Transect composite
Remedial Investigation		PX-FSR-SS62-000H	4/18/19							х	Transect composite
(2018), cont.		PX-FSR-SS63-000H	4/24/19							х	Transect composite
	-	PX-FSR-SS64-000H	4/17/19							х	Transect composite
		PX-FSR-SS65-000H	11/15/19							х	Composite or SS29, 31 and 32
	-	PX-FSR-SS66-000H	4/17/19							х	Transect composite
		PX-FSR-SS67-000H	4/18/19							х	Transect composite
		PX-FSR-SS68-000H	4/17/19							х	Transect composite
		PX-FSR-SS69-000H	4/18/19							х	Transect composite
		PX-FSR-SS70-000H	4/17/19							x	Transect composite

Table B1-5. Soil Sample Results - Remedial Investigation (2018)

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat)

NAS Patuxent Kiver. St. Iviarv s Countv	Iviarviana	
---	------------	--

in to receive in the post in any o oceancy, many and													
Station ID	PX-FSI	R-SO-18	PX-FSR-SO-19	PX-FSR-SO-21	PX-FSR-SO-22	PX-FSR-SO-24	PX-FSR-SO-26	PX-FS	R-SO-27	PX-FSR-SO-28	PX-FSR-SO-29	PX-FS	R-SO-30
Sample ID	PX-FSR-SS18-000H	PX-FSR-SS18P-000H	PX-FSR-SS19-000H	PX-FSR-SS21-000H	PX-FSR-SS22-000H	PX-FSR-SS24-000H	PX-FSR-SS26-000H	PX-FSR-SS27-000H	PX-FSR-SS27P-000H	PX-FSR-SS28-000H	PX-FSR-SS29-000H	PX-FSR-SS30-000H	PX-FSR-SS30P-000H
Sample Date	11/15/18	11/15/18	11/15/18	11/15/18	11/15/18	11/16/18	11/16/18	11/13/18	11/13/18	11/13/18	11/13/18	11/13/18	11/13/18
Semivolatile Organic Compounds (UG/KG)													
1-Methylnaphthalene	98.6 U	95.7 U	985 U	18.2 U	2,050 U	8.65	1.4 J	1.55 J	1.62 J	240 J	131 J	365	301 J
2-Methylnaphthalene	98.6 U	95.7 U	985 U	18.2 U	2,050 U	11.9	1.61 J	1.64 J	1.85 J	257 J	135 J	410	341 J
Acenaphthene	98.6 U	95.7 U	157 J	18.2 U	411 J	1.89 U	1.85 U	1.94 U	9.4	1,580 J	788	2,520	2,130
Acenaphthylene	98.6 U	95.7 U	985 U	18.2 U	2,050 U	1.89 U	1.85 U	1.94 U	1.94 U	964 U	177 U	114 U	455 U
Anthracene	98.6 U	28.1 J	302 J	18.2 U	1,800 J	50.6	16.6	41.5 J	27 J	6,960	3,050	8,960	8,080
Benzo(a)anthracene	65.5 J	108 J	2,580	25.3 J	7,320	195 J	110 J	252	252	42,400	18,900	52,400	45,800
Benzo(a)pyrene	126 J	118 J	2,760	41.3	8,250	228 J	129 J	302	353	51,800	23,200	69,200	60,000
Benzo(b)fluoranthene	163 J	155 J	3,390	53.4	10,400	461 J	178 J	448	532	25,200	30,800	84,200	76,600
Benzo(g,h,i)perylene	105 J	75.8 J	1,390 J	34.9 J	4,920	88.5	77	122 J	138 J	24,000 J	10,900 J	40,500 J	28,500 J
Benzo(k)fluoranthene	51.3 J	58 J	1,270 J	19.1 J	3,750 J	171 J	67.8 J	167	190	25,700	11,500	27,400	28,900
Chrysene	87.5 J	118 J	2,700	32.7 J	7,970	270	140	315	329	53,300	23,100	61,700	56,700
Dibenz(a,h)anthracene	98.6 U	95.7 U	428 J	8.09 J	1,410 J	31.6	20.3	34.2 J	41.6 J	7,150 J	3,150 J	3,610 J	8,080 J
Fluoranthene	63.4 J	215	3,860	33.1 J	12,200	271	200	425	361	79,100	32,000	57,200	75,100
Fluorene	98.6 U	95.7 U	985 U	18.2 U	2,050 U	1.89 U	3.82	6.25	5.19	871 J	427	1,540	1,340
Indeno(1,2,3-cd)pyrene	107 J	89.1 J	1,800 J	37.9	5,930	123	87.6	150 J	169 J	27,500 J	13,400 J	48,200 J	33,000 J
Naphthalene	98.6 U	95.7 U	985 U	18.2 U	2,050 U	9.39	3.32 J	3.89	5.41	747 J	513	1,270	1,010
Phenanthrene	98.6 U	123 J	1,200 J	10.2 J	7,150	71.9	83.7	188	127	32,700	13,400	28,300	33,000
Pyrene	63.2 J	165 J	3,230	30.6 J	10,100	225 J	148 J	331	304	56,100	22,500	43,400	52,900
Total Metals (MG/KG)													
Lead	38.8	41.8	129	60.3	504	23.7	5.35	6.61	7.99	151	81	621	454
			-								-		

Notes: Shading indicates detections

NA - Not analyzed

J - Analyte present, value may or may not be accurate or precise

U - The material was analyzed for, but not detected

UJ - Analyte not detected, quantitation limit may be inaccurate

Table B1-5. Soil Sample Results - Remedial Investigation (2018)

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Mary's County, Maryland

Wish data che hiver, st. Mary's county, Mary and												
Station ID	PX-FSR-SO-31	PX-FSR-SO-32	PX-FSR-SO-33	PX-FS	R-SO-34	PX-FSR-SO-35	PX-FSR-SO-36	PX-FS	R-SO-37	PX-FSR-SO-38	PX-FSR-SO-39	PX-FSR-SO-40
Sample ID	PX-FSR-SS31-000H	PX-FSR-SS32-000H	PX-FSR-SS33-000H	PX-FSR-SS34-000H	PX-FSR-SS34P-000H	PX-FSR-SS35-000H	PX-FSR-SS36-000H	PX-FSR-SS37-000H	PX-FSR-SS37P-000H	PX-FSR-SS38-000H	PX-FSR-SS39-000H	PX-FSR-SS40-000H
Sample Date	11/13/18	11/13/18	11/14/18	11/13/18	11/13/18	11/13/18	11/13/18	11/13/18	11/13/18	11/14/18	11/14/18	11/14/18
Semivolatile Organic Compounds (UG/KG)												
1-Methylnaphthalene	1.41 J	67.8 J	47.5 U	1.92 J	1.27 J	0.904 J	37.7 U	35.8 U	7.39 J	21 U	23.6 U	19.3 U
2-Methylnaphthalene	1.6 J	77.6 J	47.5 U	2.42 J	1.37 J	0.946 J	37.7 U	35.8 U	35.9 U	21 U	23.6 U	19.3 U
Acenaphthene	8.06	500	203	2.04 U	2.03 U	1.85 U	22.8 J	42.7 J	37.3 J	42.7	22.9 J	17.5 J
Acenaphthylene	1.84 U	93.9 U	47.5 U	2.04 U	2.03 U	1.85 U	37.7 U	35.8 U	35.9 U	21 U	23.6 U	19.3 U
Anthracene	26.2	1,640	384	17.4 J	11.3	6.84	65.9 J	227	194	100	69	85.6
Benzo(a)anthracene	205	11,000	5,240	173 J	136	79.9	716	1,460	1,220	1,310	549	651
Benzo(a)pyrene	286	14,400	9,660	240 J	199 J	108 J	853 J	1,690 J	1,410 J	2,240	881	891
Benzo(b)fluoranthene	384	17,400	11,800	119 J	278 J	56 J	458 J	841 J	697 J	2,830	1,150	1,250
Benzo(g,h,i)perylene	160 J	7,880 J	8,010	157 J	120	56.8	482	798	756	1,730	670	691
Benzo(k)fluoranthene	142	6,800	4,400	122 J	284 J	57.4 J	468 J	860 J	715 J	1,030	436	441
Chrysene	269	13,600	6,590	245 J	190	105	945	1,750	1,520	1,540	655	784
Dibenz(a,h)anthracene	42.4 J	2,340 J	1,820	41.5 J	32.7	16.1	134	238	215	396	148	156
Fluoranthene	327	17,800	5,340	290 J	221	132	1,290	2,620	2,330	1,460	738	1,020
Fluorene	4.72	272	90.8 J	4.21	2.43 J	1.71 J	11.1 J	31.9 J	28.9 J	19.9 J	23.6 U	19.3 U
Indeno(1,2,3-cd)pyrene	188 J	9,050 J	8,710	177 J	131	67.1	570	922	838	1,730	718	733
Naphthalene	4.18	222	122	5.98	3.43 J	1.85 U	11.8 J	15 J	18.2 J	21 U	23.6 U	19.3 U
Phenanthrene	125	6,880	1,660	108 J	70.3 J	44.9	371	1,030	920	443	332	454
Pyrene	233	12,600	5,260	218 J	161 J	97.2 J	920 J	1,800 J	1,600 J	1,450	721	910
Total Metals (MG/KG)												
Lead	93.8	74.2	115	NA	NA	NA	NA	NA	NA	NA	NA	NA
	-	-	-			-				-	-	-

Notes: Shading indicates detections

NA - Not analyzed

J - Analyte present, value may or may not be accurate or precise

U - The material was analyzed for, but not detected

UJ - Analyte not detected, quantitation limit may be inaccurate

Table B1-5. Soil Sample Results - Remedial Investigation (2018)

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat)

NAS Patuxent River.	St. Mar	v's Countv.	Marvland
---------------------	---------	-------------	----------

n b r dtaxent niver, ber mary b boaney, mary and													
Station ID	PX-FS	R-SO-41	PX-FSR-SO-42	PX-FSR-SO-43	PX-FSR-SO-44	PX-FSR-SO-45	PX-FSR-SO-46	PX-FSR-SO-47	PX-FSR-SO-48	PX-FSR-SO-49	PX-FSR-SO-50	PX-FSR-SO-51	PX-FSR-SO-52
Sample ID	PX-FSR-SS41-000H	PX-FSR-SS41P-000H	PX-FSR-SS42-000H	PX-FSR-SS43-000H	PX-FSR-SS44-000H	PX-FSR-SS45-000H	PX-FSR-SS46-000H	PX-FSR-SS47-000H	PX-FSR-SS48-000H	PX-FSR-SS49-000H	PX-FSR-SS50-000H	PX-FSR-SS51-000H	PX-FSR-SS52-000H
Sample Date	11/14/18	11/14/18	11/14/18	11/14/18	11/14/18	11/14/18	11/14/18	11/14/18	11/14/18	11/14/18	11/14/18	11/14/18	11/14/18
Semivolatile Organic Compounds (UG/KG)													
1-Methylnaphthalene	11.2 U	10.7 U	4.96 U	33.1 U	1.34 J	1.77 U	1.75 U	1.74 U	1.73 U	9.03 U	14.2 U	1.91 U	9.01 U
2-Methylnaphthalene	11.2 U	10.7 U	4.96 U	33.1 U	1.57 J	1.77 U	1.75 U	1.74 U	1.73 U	9.03 U	14.2 U	1.91 U	9.01 U
Acenaphthene	11.2 U	15.5 J	4.96 U	33.1 U	1.83 U	1.77 U	1.75 U	1.74 U	1.73 U	9.03 U	14.2 U	1.91 U	9.01 U
Acenaphthylene	11.2 U	10.7 U	4.96 U	33.1 U	1.83 U	1.77 U	1.75 U	1.74 U	1.73 U	9.03 U	14.2 U	1.91 U	9.01 U
Anthracene	26.7	74.4	27.3	144	3.74	0.988 J	0.403 J	1.03 J	1.75 J	3.03 J	4.19 J	2.19 J	1.95 J
Benzo(a)anthracene	259 J	428 J	313	1,410	26.6	5.45	2.29 J	6.03	7.79	13.4 J	18.4 J	14	25.3
Benzo(a)pyrene	367 J	548 J	527	2,310	36.4	4.83	2.5 J	6.51	8.57	9.03 J	12.9 J	14.1	20.6
Benzo(b)fluoranthene	507 J	798 J	798	3,110	72.2	15.1	6.29	20.3	24.9	44.7	51.9	34.8	49.9
Benzo(g,h,i)perylene	304	430	328	2,210	20.5	4.17	1.58 J	5.6	8.93	9.03 U	29.6	9.42	13.3 J
Benzo(k)fluoranthene	190	267	239	1,100	23.2	4.55	2.32 J	7.6	7.59	13.8 J	13.4 J	9.31	16.3 J
Chrysene	320 J	508 J	397	1,730	37.8	9.26	3.43 J	11.2	13	23.5	37.6	20.9	34
Dibenz(a,h)anthracene	68.9	92.5	79.5	461	4.38	1.77 U	1.75 U	1.21 J	1.94 J	9.03 U	14.2 U	1.97 J	4.4 J
Fluoranthene	361 J	758 J	364	1,660	42	9.04	4.59	12.4	13.3	25.7	45.8	36.7	54.2
Fluorene	11.2 U	13.1 J	7.92 J	33.1 U	2.23 J	1.77 U	1.75 U	1.74 U	1.73 U	9.03 U	14.2 U	1.91 U	9.01 U
Indeno(1,2,3-cd)pyrene	314	441	367	2,110	22.5	4.61	1.9 J	7.07	10.2	10.4 J	22 J	13	20.2
Naphthalene	11.2 U	10.7 U	7.8 J	37.9 J	1.83 U	1.77 U	1.75 U	1.74 U	1.73 U	9.03 U	14.2 U	2.49 J	9.01 U
Phenanthrene	135 J	380 J	111	632	13.7	3.25 J	2.18 J	4.35	3.73	5.62 J	12.3 J	15	17.7 J
Pyrene	361 J	680 J	379	1,640	47.4	9.24	3.92	10.6	13.2	20.7	37.1	26.9	38.4
Total Metals (MG/KG)													
Lead	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA

Notes: Shading indicates detections

NA - Not analyzed

J - Analyte present, value may or may not be accurate or precise

U - The material was analyzed for, but not detected

UJ - Analyte not detected, quantitation limit may be inaccurate

Table B1-5. Soil Sample Results - Remedial Investigation (2018) Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Mary's County, Maryland

Station ID	PX-FSR-SO-53	PX-FSR-SO-54	PX-FSR-SO-55	PX-FSR-SO-56	PX-FSR-SO-57	PX-FSR-SO-58	PX-FSR-SO-59
Sample ID	PX-FSR-SS53-000H	PX-FSR-SS54-000H	PX-FSR-SS55-000H	PX-FSR-SS56-000H	PX-FSR-SS57-000H	PX-FSR-SS58-000H	PX-FSR-SS59-000H
Sample Date	11/14/18	11/14/18	11/14/18	11/14/18	11/14/18	11/16/18	11/16/18
Semivolatile Organic Compounds (UG/KG)							
1-Methylnaphthalene	11.7 U	1.88 U	8.99 U	1.72 U	1.75 U	9.9	9.78
2-Methylnaphthalene	11.7 U	1.88 U	8.99 U	1.72 U	1.75 U	11.6	11.8
Acenaphthene	11.7 U	2.26 J	17.3 J	1.72 U	1.75 U	2.17 U	1.94 U
Acenaphthylene	11.7 U	5.47	8.99 U	1.72 U	1.75 U	2.17 U	1.94 U
Anthracene	3.39 J	10.9	33.2	9.25	0.503 J	2.17 U	1.32 J
Benzo(a)anthracene	35	78.9	334	34.8	3.03 J	8.28 J	4.8 J
Benzo(a)pyrene	28.2	81.3	429	25.1	1.87 J	9.23 J	5.45 J
Benzo(b)fluoranthene	63.5	164	694	39.9	3.28 J	2.17 UJ	1.94 UJ
Benzo(g,h,i)perylene	24.1	54.3	194	21.4	1.57 J	2.17 U	2.41 J
Benzo(k)fluoranthene	20.9 J	56.3	200	15.6	1.13 J	6.4 J	1.94 UJ
Chrysene	48.4	97.9	423	39.3	2.94 J	14.7	8.02
Dibenz(a,h)anthracene	5.65 J	14	52.3	4.96	1.75 U	2.17 U	1.94 U
Fluoranthene	68.1	180	639	69.7	6.52	23.9	13.6
Fluorene	11.7 U	3.29 J	7.99 J	1.72 U	1.75 U	2.17 U	1.94 U
Indeno(1,2,3-cd)pyrene	30	75	279	22.6	1.98 J	2.17 U	2.83 J
Naphthalene	11.7 U	2.23 J	13.2 J	42.7	1.75 U	4.09 J	2.9 J
Phenanthrene	26.1	77.7	209	49.1	3.26 J	10.6	7.02
Pyrene	46.8	124	533	67.8	4.37	18.3 J	10.9 J
Total Metals (MG/KG)							
Lead	NA	NA	NA	NA	NA	20.7	9.92

Notes: Shading indicates detections

NA - Not analyzed

J - Analyte present, value may or may not be accurate or precise

U - The material was analyzed for, but not detected

UJ - Analyte not detected, quantitation limit may be inaccurate

Table B1-6. Soil Sample Results for Other Analytical Parameters - Site Inspection (2010)

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat)

NAS Patuxent River, St. Mary's County, Maryland

				Other Parameters					
				Fine Sand	Medium				
Station ID	Sample ID	Sample Date	Fines (%)	(%)	Sand (%)	Coarse Sand (%)	Gravel (%)	рΗ	TOC (mg/kg)
PX-FSR-SO-03	PX-FSR-SS03-0001	12/15/10	6.7	37.8	35.3	6.8	13.4	5.0	10,000
PX-FSR-SO-10	PX-FSR-SS10-0001	12/15/10	45.0	32.5	14.0	1.9	6.6	5.7	22,000
PX-FSR-SO-19	PX-FSR-SS19-0001	12/15/10	11.0	42.9	31.3	9.3	5.5	6.4	61,000
PX-FSR-SO-26	PX-FSR-SS26-0001	12/15/10	4.9	67.3	22.0	1.3	4.5	4.6	10,000
	Mean		16.9	45.1	25.7	4.8	7.5	5.4	25,750

Notes:

Shading indicates detections

TOC - Total organic carbon

MG/KG - Milligrams per kilogram

Table B1-7. Soil Sample Results for Other Analytical Parameters - Remedial Investigation (2018)

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat)

NAS Patuxent River, St. Mary's County, Maryland

						Grain Size			Ot	her Parame	ters
						Medium	Coarse Sand				
Sample Location	Station ID	Sample ID	Sample Date	Fines (%)	Fine Sand (%)	Sand (%)	(%)	Gravel (%)	% Solids	рН	TOC (mg/kg)
-	PX-FSR-SO-18	PX-FSR-SS18-000H	11/15/18	29.7	37.5	23.6	7.3	1.9	86.7	5.05	13,600
_	PX-FSR-SO-19	PX-FSR-SS19-000H	11/15/18	9.7	43.6	24.9	19.5	2.3	71.0	6.67	24,000
_	PX-FSR-SO-21	PX-FSR-SS21-000H	11/15/18	2.3	41.2	22.1	33.5	0.8	93.5	7.97	2,520
_	PX-FSR-SO-22	PX-FSR-SS22-000H	11/15/18	33.6	26.1	26.9	11.4	2.0	81.2	5.91	28,100
_	PX-FSR-SO-24	PX-FSR-SS24-000H	11/16/18	2.0	50.4	46.5	0.3	0.8	86.5	6.20	8,930
	PX-FSR-SO-26	PX-FSR-SS26-000H	11/16/18	6.8	52.6	34.8	4.9	0.9	89.5	4.97	2,580
_	PX-FSR-SO-27	PX-FSR-SS27-000H	11/13/18	7.7	63.9	27.2	0.0	1.2	81.6	5.91	2,770
_	PX-FSR-SO-29	PX-FSR-SS29-000H	11/13/18	3.9	60.6	34.8	0.0	0.6	93.1	5.36	5,070
	PX-FSR-SO-31	PX-FSR-SS31-000H	11/13/18	28.7	39.3	31.5	0.0	0.5	89.6	6.13	6,030
	PX-FSR-SO-33	PX-FSR-SS33-000H	11/14/18	5.4	62.1	30.3	0.0	2.2	61.1	6.43	9,510
Former Skeet Range	PX-FSR-SO-34	PX-FSR-SS34-000H	11/13/18	64.7	26.0	8.3	0.3	0.7	82.0	6.42	8,160
Samples	PX-FSR-SO-36	PX-FSR-SS36-000H	11/13/18	5.1	45.1	49.3	0.3	0.2	86.8	6.80	4,910
	PX-FSR-SO-39	PX-FSR-SS39-000H	11/14/18	3.3	61.6	35.7	0.0	0.0	67.4	6.06	7,710
	PX-FSR-SO-40	PX-FSR-SS40-000H	11/14/18	38.0	41.7	16.1	1.7	2.5	86.0	6.76	7,030
_	PX-FSR-SO-42	PX-FSR-SS42-000H	11/14/18	20.1	53.2	21.3	0.6	4.8	28.6	5.32	50,000
	PX-FSR-SO-44	PX-FSR-SS44-000H	11/14/18	4.2	35.5	59.2	0.1	1.1	89.3	5.64	3,650
	PX-FSR-SO-46	PX-FSR-SS46-000H	11/14/18	0.4	9.8	88.9	0.0	0.8	95.4	6.68	726
	PX-FSR-SO-48	PX-FSR-SS48-000H	11/14/18	0.6	21.2	77.1	0.0	1.0	96.2	6.31	1,570
_	PX-FSR-SO-50	PX-FSR-SS50-000H	11/14/18	0.8	20.6	77.1	0.0	1.6	92.5	6.60	3,400
	PX-FSR-SO-52	PX-FSR-SS52-000H	11/14/18	1.1	27.8	70.5	0.0	0.7	92.6	6.84	1,480
	PX-FSR-SO-54	PX-FSR-SS54-000H	11/14/18	5.7	61.1	32.8	0.0	0.5	88.8	6.60	11,300
-		Mean		13.0	41.9	40.0	3.8	1.3	82.8	6.22	9,669
Taulaha Taula Dafa -	PX-FSR-SO-58	PX-FSR-SS58-000H	11/16/18	22.6	42.0	24.9	9.1	1.5	72.3	7.09	15,200
I OXICITY Testing Reference	PX-FSR-SO-59	PX-FSR-SS59-000H	11/16/18	8.6	61.0	18.6	8.5	3.4	89.0	5.37	6,590
Samples		Mean		15.6	51.5	21.7	8.8	2.4	80.7	6.23	10,895
Notes:											

Notes:

Shading indicates detections

TOC - Total organic carbon

MG/KG - Milligrams per kilogram

Table B1-8. Ingestion Screening Values - Mammals

									Selection b	y Receptor
									Short-	White-
		Body Weight				LOAEL	NOAEL		tailed	footed
Chemical	Test Organism	(kg)	Duration	Exposure Route	Effect/Endpoint	(mg/kg/d)	(mg/kg/d)	Reference	Shrew	mouse
Inorganics										
Lead	rat	0.35	3 generations	oral in diet	reproduction	80.0	8.00	Sample et al. 1996	х	x
Semivolatile Organics										
Acenaphthene	mouse	0.03	13 weeks	oral (gavage)	reproduction	700	350	ATSDR 1995	х	x
Acenaphthylene	mouse	0.03	13 weeks	oral (gavage)	reproduction	700	350	ATSDR 1995	х	x
Anthracene	mouse	0.03	13 weeks	oral (gavage)	reproduction	5,000	1,000	ATSDR 1995	х	x
Benzo(a)anthracene	mouse	0.03	GD 7-16	oral (gavage)	reproduction	10.0	2.00	Sample et al. 1996	х	x
Benzo(a)pyrene	mouse	0.03	GD 7-16	oral (gavage)	reproduction	10.0	2.00	Sample et al. 1996	х	x
Benzo(b)fluoranthene	mouse	0.03	GD 7-16	oral (gavage)	reproduction	10.0	2.00	Sample et al. 1996	х	х
Benzo(g,h,i)perylene	mouse	0.03	GD 7-16	oral (gavage)	reproduction	10.0	2.00	Sample et al. 1996	х	x
Benzo(k)fluoranthene	mouse	0.03	GD 7-16	oral (gavage)	reproduction	10.0	2.00	Sample et al. 1996	х	х
Chrysene	mouse	0.03	GD 7-16	oral (gavage)	reproduction	10.0	2.00	Sample et al. 1996	х	х
Dibenz(a,h)anthracene	mouse	0.03	GD 7-16	oral (gavage)	reproduction	10.0	2.00	Sample et al. 1996	х	х
Fluoranthene	mouse	0.03	13 weeks	oral (gavage)	reproduction	2,500	500	ATSDR 1995	х	х
Fluorene	mouse	0.03	13 weeks	oral (gavage)	reproduction	2,500	500	ATSDR 1995	х	x
Indeno(1,2,3-cd)pyrene	mouse	0.03	GD 7-16	oral (gavage)	reproduction	10.0	2.00	Sample et al. 1996	х	х
Phenanthrene	mouse	0.03	13 weeks	oral (gavage)	reproduction	2,500	500	ATSDR 1995	х	х
Pyrene	mouse	0.03	GD 7-16	oral (gavage)	reproduction	10.0	2.00	Sample et al. 1996	x	x

Table B1-9. Ingestion Screening Values - Birds

									Sele	ction by Rec	eptor
		Body Weight				LOAEL	NOAEL		American	Mourning	Red-tailed
Chemical	Test Organism	(kg)	Duration	Exposure Route	Effect/Endpoint	(mg/kg/d)	(mg/kg/d)	Reference	robin	dove	Hawk
Inorganics											
Lead	Japanese quail	0.15	12 weeks	oral in diet	reproduction	11.3	1.13	Sample et al. 1996		х	
Lead	American kestrel	0.13	7 months	oral in diet	reproduction	19.3	3.85	Sample et al. 1996	х		х
Semivolatile Organics											
Acenaphthene	chicken	1.50	35 days	oral in diet	reproduction	35.5	7.10	Rigdon and Neal 1963	х	х	х
Acenaphthylene	chicken	1.50	35 days	oral in diet	reproduction	35.5	7.10	Rigdon and Neal 1963	х	х	х
Anthracene	chicken	1.50	35 days	oral in diet	reproduction	35.5	7.10	Rigdon and Neal 1963	х	х	х
Benzo(a)anthracene	chicken	1.50	35 days	oral in diet	reproduction	35.5	7.10	Rigdon and Neal 1963	х	х	х
Benzo(a)pyrene	chicken	1.50	35 days	oral in diet	reproduction	35.5	7.10	Rigdon and Neal 1963	х	х	х
Benzo(b)fluoranthene	chicken	1.50	35 days	oral in diet	reproduction	35.5	7.10	Rigdon and Neal 1963	х	х	х
Benzo(g,h,i)perylene	chicken	1.50	35 days	oral in diet	reproduction	35.5	7.10	Rigdon and Neal 1963	х	х	х
Benzo(k)fluoranthene	chicken	1.50	35 days	oral in diet	reproduction	35.5	7.10	Rigdon and Neal 1963	х	х	х
Chrysene	chicken	1.50	35 days	oral in diet	reproduction	35.5	7.10	Rigdon and Neal 1963	х	х	х
Dibenz(a,h)anthracene	chicken	1.50	35 days	oral in diet	reproduction	35.5	7.10	Rigdon and Neal 1963	х	х	х
Fluoranthene	chicken	1.50	35 days	oral in diet	reproduction	35.5	7.10	Rigdon and Neal 1963	х	х	х
Fluorene	chicken	1.50	35 days	oral in diet	reproduction	35.5	7.10	Rigdon and Neal 1963	х	х	х
Indeno(1,2,3-cd)pyrene	chicken	1.50	35 days	oral in diet	reproduction	35.5	7.10	Rigdon and Neal 1963	х	х	х
Phenanthrene	chicken	1.50	35 days	oral in diet	reproduction	35.5	7.10	Rigdon and Neal 1963	х	х	х
Pyrene	chicken	1.50	35 days	oral in diet	reproduction	35.5	7.10	Rigdon and Neal 1963	х	х	х

Table B1-10. Summary of Bioaccumulative PAH Compound Results Used for Food Web Modeling - Combined Dataset (2010 SI + 2018 RI)

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat)

Station ID	Sample ID	Sample Date	Acenaphthene	Acenaphthylene	Anthracene	Benzo(a) anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Phenanthrene	Pyrene
PX-FSR-SO-18	PX-FSR-SS18-000H	11/15/18	98.6 U	98.6 U	98.6 U	65.5 J	126 J	163 J	105 J	51.3 J	87.5 J	98.6 U	63.4 J	98.6 U	107 J	98.6 U	63.2 J
	PX-FSR-SS18P-000H	Field Duplicate	95.7 U	95.7 U	28.1 J	108 J	118 J	155 J	75.8 J	58 J	118 J	95.7 U	215	95.7 U	89.1 J	123 J	165 J
PX-FSR-SO-19	PX-FSR-SS19-000H	11/15/18	157 J	985 U	302 J	2,580	2,760	3,390	1,390 J	1,270 J	2,700	428 J	3,860	985 U	1,800 J	1,200 J	3,230
PX-FSR-SO-21	PX-FSR-SS21-000H	11/15/18	18.2 U	18.2 U	18.2 U	25.3 J	41.3	53.4	34.9 J	19.1 J	32.7 J	8.09 J	33.1 J	18.2 U	37.9	10.2 J	30.6 J
PX-FSR-SO-22	PX-FSR-SS22-000H	11/15/18	411 J	2,050 U	1,800 J	7,320	8,250	10,400	4,920	3,750 J	7,970	1,410 J	12,200	2,050 U	5,930	7,150	10,100
PX-FSR-SO-24	PX-FSR-SS24-000H	11/16/18	1.89 U	1.89 U	50.6	195 J	228 J	461 J	88.5	171 J	270	31.6	271	1.89 U	123	71.9	225 J
PX-FSR-SO-26	PX-FSR-SS26-000H	11/16/18	1.85 U	1.85 U	16.6	110 J	129 J	178 J	77	67.8 J	140	20.3	200	3.82	87.6	83.7	148 J
PX-FSR-SO-27	PX-FSR-SS27-000H	11/13/18	1.94 U	1.94 U	41.5 J	252	302	448	122 J	167	315	34.2 J	425	6.25	150 J	188	331
	PX-FSR-SS27P-000H	Field Duplicate	9.4	1.94 U	27 J	252	353	532	138 J	190	329	41.6 J	361	5.19	169 J	127	304
PX-FSR-SO-28	PX-FSR-SS28-000H	11/13/18	1,580 J	964 U	6,960	42,400	51,800	25,200	24,000 J	25,700	53,300	7,150 J	79,100	871 J	27,500 J	32,700	56,100
PX-FSR-SO-29	PX-FSR-SS29-000H	11/13/18	788	177 U	3,050	18,900	23,200	30,800	10,900 J	11,500	23,100	3,150 J	32,000	427	13,400 J	13,400	22,500
PX-FSR-SO-30	PX-FSR-SS30-000H	11/13/18	2,520	114 U	8,960	52,400	69,200	84,200	40,500 J	27,400	61,700	3,610 J	57,200	1,540	48,200 J	28,300	43,400
	PX-FSR-SS30P-000H		2,130	455 U	8,080	45,800	60,000	76,600	28,500 J	28,900	56,700	8,080 J	75,100	1,340	33,000 J	33,000	52,900
	PX-FSR-5531-000H	11/13/18	8.00	1.84 U	20.2	205	280	384	7 000 J	6 800	12 600	42.4 J	327	4.72	100E0 J	6 990	233
		11/15/10	202	95.9 U	294	5 240	9,660	11,400	7,880 J	0,800	6 500	2,340 J	5 240	272	9,030 J	0,880	5 260
FX-F3R-30-33	PX-FSR-SS34-000H	11/14/18	203	47.3 U		172	3,000	11,800	157 1	4,400	245	1,820	290 1	30.8 J	177 I	108	218
PX-FSR-SO-34	PX-FSR-SS3/P-000H	Field Duplicate	2.04 0	2.04 0	17.4 J	175 J	199 J	278 I	120	28/ 1	190	41.5 J	230 3	2/3	177 J	70.3 J	161 J
PX-FSR-SO-35	PX-FSR-SS35-000H	11/13/18	2.05 U	1.85 11	6.84	79.9	105 J	56 J	56.8	57.4 1	105	16.1	132	2.45 J	67.1	70.3 J	97.2
PX-FSR-SO-36	PX-FSR-SS36-000H	11/13/18	22.8 1	37.7 U	65.9 1	716	853 1	458 1	482	468 1	945	134	1 290	11 1	570	371	920 1
	PX-FSR-SS37-000H	11/13/18	42 7 1	35.8 U	227	1 460	1 690	841 1	798	860 1	1 750	238	2 620	31.9 1	922	1 030	1 800
PX-FSR-SO-37	PX-FSR-SS37P-000H	Field Duplicate	37.3 J	35.9 U	194	1.220	1.410 J	697 J	756	715 J	1.520	215	2.330	28.9 J	838	920	1.600 J
PX-FSR-SO-38	PX-FSR-SS38-000H	11/14/18	42.7	21 U	100	1.310	2.240	2.830	1.730	1.030	1.540	396	1.460	19.9 J	1.730	443	1.450
PX-FSR-SO-39	PX-FSR-SS39-000H	11/14/18	22.9 J	23.6 U	69	549	881	1,150	670	436	655	148	738	23.6 U	718	332	721
PX-FSR-SO-40	PX-FSR-SS40-000H	11/14/18	17.5 J	19.3 U	85.6	651	891	1,250	691	441	784	156	1,020	19.3 U	733	454	910
	PX-FSR-SS41-000H	11/14/18	11.2 U	11.2 U	26.7	259 J	367 J	507 J	304	190	320 J	68.9	361 J	11.2 U	314	135 J	361 J
PX-FSR-SU-41	PX-FSR-SS41P-000H	Field Duplicate	15.5 J	10.7 U	74.4	428 J	548 J	798 J	430	267	508 J	92.5	758 J	13.1 J	441	380 J	680 J
PX-FSR-SO-42	PX-FSR-SS42-000H	11/14/18	4.96 U	4.96 U	27.3	313	527	798	328	239	397	79.5	364	7.92 J	367	111	379
PX-FSR-SO-43	PX-FSR-SS43-000H	11/14/18	33.1 U	33.1 U	144	1,410	2,310	3,110	2,210	1,100	1,730	461	1,660	33.1 U	2,110	632	1,640
PX-FSR-SO-44	PX-FSR-SS44-000H	11/14/18	1.83 U	1.83 U	3.74	26.6	36.4	72.2	20.5	23.2	37.8	4.38	42	2.23 J	22.5	13.7	47.4
PX-FSR-SO-45	PX-FSR-SS45-000H	11/14/18	1.77 U	1.77 U	0.988 J	5.45	4.83	15.1	4.17	4.55	9.26	1.77 U	9.04	1.77 U	4.61	3.25 J	9.24
PX-FSR-SO-46	PX-FSR-SS46-000H	11/14/18	1.75 U	1.75 U	0.403 J	2.29 J	2.5 J	6.29	1.58 J	2.32 J	3.43 J	1.75 U	4.59	1.75 U	1.9 J	2.18 J	3.92
PX-FSR-SO-47	PX-FSR-SS47-000H	11/14/18	1.74 U	1.74 U	1.03 J	6.03	6.51	20.3	5.6	7.6	11.2	1.21 J	12.4	1.74 U	7.07	4.35	10.6
PX-FSR-SO-48	PX-FSR-SS48-000H	11/14/18	1.73 U	1.73 U	1.75 J	7.79	8.57	24.9	8.93	7.59	13	1.94 J	13.3	1.73 U	10.2	3.73	13.2
PX-FSR-SO-49	PX-FSR-SS49-000H	11/14/18	9.03 U	9.03 U	3.03 J	13.4 J	9.03 J	44.7	9.03 U	13.8 J	23.5	9.03 U	25.7	9.03 U	10.4 J	5.62 J	20.7
PX-FSR-SO-50	PX-FSR-SS50-000H	11/14/18	14.2 U	14.2 U	4.19 J	18.4 J	12.9 J	51.9	29.6	13.4 J	37.6	14.2 U	45.8	14.2 U	22 J	12.3 J	37.1
PX-FSR-SO-51	PX-FSR-SS51-000H	11/14/18	1.91 U	1.91 U	2.19 J	14	14.1	34.8	9.42	9.31	20.9	1.97 J	36.7	1.91 U	13	15	26.9
PX-FSR-SO-52	PX-FSR-SS52-000H	11/14/18	9.01 U	9.01 U	1.95 J	25.3	20.6	49.9	13.3 J	16.3 J	34	4.4 J	54.2	9.01 U	20.2	17.7 J	38.4
PX-FSR-SO-53	PX-FSR-SS53-000H	11/14/18	11.7 U	11.7 U	3.39 J	35	28.2	63.5	24.1	20.9 J	48.4	5.65 J	68.1	11.7 U	30	26.1	46.8
PX-FSR-SO-54	PX-FSR-SS54-000H	11/14/18	2.26 J	5.47	10.9	78.9	81.3	164	54.3	56.3	97.9	14	180	3.29 J	75	77.7	124
PX-FSR-SO-55	PX-FSR-SS55-000H	11/14/18	17.3 J	8.99 U	33.2	334	429	694	194	200	423	52.3	639	7.99 J	279	209	533
PX-FSR-SO-56	PX-FSR-SS56-000H	11/14/18	1.72 U	1.72 U	9.25	34.8	25.1	39.9	21.4	15.6	39.3	4.96	69.7	1.72 U	22.6	49.1	67.8

Table B1-10. Summary of Bioaccumulative PAH Compound Results Used for Food Web Modeling - Combined Dataset (2010 SI + 2018 RI)

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat)

NAS Patuxent River, St. Mary's County, Maryland

Station ID	Sample ID	Sample Date	Acenaphthene	Acenaphthylene		Anthracene	Benzo(a) anthracene	Benzo(a)pyrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene	Benzo(k)fluoranthene	Chrysene	Dibenz(a,h)anthracene	Fluoranthene	Fluorene	Indeno(1,2,3-cd)pyrene	Phenanthrene	Pyrene
PX-FSR-SO-57	PX-FSR-SS57-000H	11/14/18	1.75 U	1.75	U	0.503 J	3.03 J	1.87 J	3.28 J	1.57 J	1.13 J	2.94 J	1.75 U	6.52	1.75 U	1.98 J	3.26 J	4.37
PX-FSR-SO-16	PX-FSR-SS16-0001	12/15/10	10 U.	J 2.2	J	9.9 J	120 J	180 J	280 J	140 J	82 J	150 J	41 J	150 J	10 UJ	160 J	49 J	170 J
PX-FSR-SO-17	PX-FSR-SS17-0001	12/15/10	21 L	23	UL	57 L	660	980	1,400	700	440	810	200 J	810 L	13 L	770	240 L	690
PX-FSR-SO-18	PX-FSR-SS18-0001	12/15/10	17 L	11	UL	54 L	760	1,100	1,600	800	550	950	180	960 L	9.2 L	930	260 L	960
PX-FSR-SO-19	PX-FSR-SS19-0001	12/15/10	230 L	14	UL	760 L	7,900	8,200	11,000	4,400	4,400	8,700	1,400 J	10,000 L	120 L	5,400	3,200 L	9,900
	PX-FSR-SS20-0001	12/15/10	10 U	L 10	UL	3.8 L	19 J	27	42	19 J	12 J	22	4.9 J	32 L	10 UL	23	15 L	31
PA-F3R-30-20	PX-FSR-SS20P-0001	12/15/10	10 U	2.9	L	18 L	46	49	70	29	22	40	10 J	94 L	7.5 L	42	69 L	87
PX-FSR-SO-21	PX-FSR-SS21-0001	12/15/10	75 L	10	UL	220 L	2,800	3,300	4,700	2,200	1,800	3,400	620 J	4,500 L	38 L	2,500	1,500 L	3,500
PX-FSR-SO-22	PX-FSR-SS22-0001	12/15/10	2,400 L	34	UL	9,400 L	62,000	81,000 J	110,000 J	51,000	43,000 J	76,000 J	15,000	86,000 L	840 J	59,000	33,000 L	78,000
PX-FSR-SO-23	PX-FSR-SS23-0001	12/15/10	20 J	11	UL	130 J	1,000	1,400	1,600	840	250 J	1,200	250	1,800 L	20 J	260 J	620 L	1,700
PX-FSR-SO-24	PX-FSR-SS24-0001	12/15/10	4 L	10	UL	28 L	200	260	400	190	140	220	53	300 L	10 UL	230	110 L	270
PX-FSR-SO-25	PX-FSR-SS25-0001	12/15/10	2.7 L	10	UL	10 L	54	64	89	41	32	57	12 J	94 L	3.6 L	50	46 L	81
	PX-FSR-SS26-0001	12/15/10	26 L	10	UL	84 L	840	1,000	1,400	620	580	1,000	180	1,100 L	11 L	720	360 L	1,000
PA-F3R-30-20	PX-FSR-SS26P-0001	12/15/10	9.7 L	10	UL	52 L	490	620	920	390	250	590	100	700 L	6.8 L	480	240 L	600
	Maximum		2,520	5.5		9,400	62,000	81,000	110,000	51,000	43,000	76,000	15,000	86,000	1,540	59,000	33,000	78,000
	Mean		193.3	55.3		727.8	4,684	6,019	6,882	3,481	2,913	5,669	924.7	7,171	125.7	4,036	2,925	5,625
	95% UCL ¹		688.6	2.456		2,624	16,430	21,187	25,119	12,346	10,326	19,961	3,296	25,055	279.3	14,390	10,286	19,690

Notes:

Shading indicates detections

All concentrations are in micrograms per kilogram (ug/kg)

1 - 95% Upper Confidence Limits (UCLs) calculated with USEPA ProUCL version 5.1.002

B - Analyte not detected above the level reported in blanks

J - Analyte present, value may or may not be accurate or precise

L - Analyte present, value may be biased low, actual value may be higher

U - The material was analyzed for, but not detected

UJ - Analyte not detected, quantitation limit may be inaccurate

UL - Analyte not detected, quantitation limit is probably higher

Table B1-11. Soil Bioconcentration Factors For Plants and Soil Invertebrates - Step 2

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat)

	Soil	-Plant BCF (dry weight)	Soil-Invertebrate BAF (dry weight)			
Chemical	Value	Reference	Value	Reference		
Inorganics						
Lead	0.468	Bechtel Jacobs 1998b	1.522	Sample et al. 1998b		
Semivolatile Organics						
Acenaphthene	1.3367	USEPA 2005b	0.30	Beyer and Stafford 1993		
Acenaphthylene	1.2156	USEPA 2005b	0.22	Beyer and Stafford 1993		
Anthracene	0.9588	USEPA 2005b	0.32	Beyer and Stafford 1993		
Benzo(a)anthracene	0.5229	USEPA 2005b	0.27	Beyer and Stafford 1993		
Benzo(a)pyrene	0.4212	USEPA 2005b	0.34	Beyer and Stafford 1993		
Benzo(b)fluoranthene	0.4017	USEPA 2005b	0.21	Beyer and Stafford 1993		
Benzo(g,h,i)perylene	0.3086	USEPA 2005b	0.15	Beyer and Stafford 1993		
Benzo(k)fluoranthene	0.4017	USEPA 2005b	0.21	Beyer and Stafford 1993		
Chrysene	0.5229	USEPA 2005b	0.44	Beyer and Stafford 1993		
Dibenz(a,h)anthracene	0.3102	USEPA 2005b	0.49	Beyer and Stafford 1993		
Fluoranthene	0.7099	USEPA 2005b	0.37	Beyer and Stafford 1993		
Fluorene	1.1471	USEPA 2005b	0.20	Beyer and Stafford 1993		
Indeno(1,2,3-cd)pyrene	0.3168	USEPA 2005b	0.41	Beyer and Stafford 1993		
Phenanthrene	0.9588	USEPA 2005b	0.28	Beyer and Stafford 1993		
Pyrene	0.7137	USEPA 2005b	0.39	Beyer and Stafford 1993		

Table B1-12. Soil Bioaccumulation Factors For Small Mammals - Step 2

	Soil-Mouse BAF (dry weight)		Soil-V	ole BAF (dry weight)	Soil-Shrew BAF (dry weight		
Chemical	Value	Reference	Value	Reference	Value	Reference	
Inorganics							
Lead	0.286	Sample et al. 1998b	0.187	Sample et al. 1998b	0.339	Sample et al. 1998b	
Semivolatile Organics							
Acenaphthene		see text		see text		see text	
Acenaphthylene		see text		see text		see text	
Anthracene		see text		see text		see text	
Benzo(a)anthracene		see text		see text		see text	
Benzo(a)pyrene		see text		see text		see text	
Benzo(b)fluoranthene		see text		see text		see text	
Benzo(g,h,i)perylene		see text		see text		see text	
Benzo(k)fluoranthene		see text		see text		see text	
Chrysene		see text		see text		see text	
Dibenz(a,h)anthracene		see text		see text		see text	
Fluoranthene		see text		see text		see text	
Fluorene		see text		see text		see text	
Indeno(1,2,3-cd)pyrene		see text		see text		see text	
Phenanthrene		see text		see text		see text	
Pyrene		see text		see text		see text	

Table B1-13. Exposure Parameters for Upper Trophic Level Ecological Receptors - Step 2

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat)

	В	ody Weight (kg)	Food Ingestion Rate (kg/day - dry)		ry) Dietary Composition (percent)				Soil Ingestion (percent)		
_					Terr.	Soil	Small				
Receptor	Value	Reference	Value	Reference	Plants	Invert.	Mammals	Reference	Value	Reference	
Birds											
				Levey and Karasov						Sample and Suter	
American robin	0.064	USEPA 1993	0.0074	1989	51.9	43.5	0	Martin et al. 1951	4.6	1994	
										Assumed based on	
Mourning dove	0.105	Tomlinson et al. 1994	0.0209	allometric equation	95.0	0	0	Tomlinson et al. 1994	5.0	diet	
								USEPA 1993; Sample and		Sample and Suter	
Red-tailed hawk	0.957	USEPA 1993	0.0395	Sample and Suter 1994	0	0	100	Suter 1994	0	1994	
Mammals											
								USEPA 1993; Sample and		Sample and Suter	
Short-tailed shrew	0.013	USEPA 1993	0.0019	USEPA 1993	4.7	82.3	0	Suter 1994	13.0	1994	
		Silva and Downing						Martin et al. 1951; Sample			
White-footed mouse	0.014	1995	0.0007	Sample and Suter 1994	51.0	47.0	0	and Suter 1994	2.0	Beyer et al. 1994	

Table B1-14. Surface Soil Results and Screening Summary - Step 2

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat)

				Lead ¹	LMW PAHs ¹	HMW PAHs ¹
Investigation	Station ID	Sample ID	Sample Date	(mg/kg)	(ug/kg)	(ug/kg)
	PX-FSR-SO-01	PX-FSR-SS01-0001	12/15/10	5.8	NA	NA
-	PX-FSR-SO-02	PX-FSR-SS02-0001	12/15/10	31.6	NA	NA
-	PX-FSR-SO-03	PX-FSR-SS03-0001	12/15/10	80.3	NA	NA
-	PX-FSR-SO-04	PX-FSR-SS04-0001	12/15/10	133	NA	NA
-	PX-FSR-SO-05	PX-FSR-SS05-0001	12/15/10	82.6	NA	NA
-	PX-FSR-SO-06	PX-FSR-SS06-0001	12/15/10	258	NA	NA
-	PX-FSR-SO-07	PX-FSR-SS07-0001	12/15/10	12.4	NA	NA
-	PX-FSR-SO-08	PX-FSR-SS08-0001	12/15/10	55.6	NA	NA
-	PX-FSR-SO-09	PX-FSR-SS09-0001	12/15/10	10.1	NA	NA
-		PX-FSR-SS10-0001	12/15/10	52.4	NA	NA
	PX-F3K-30-10	PX-FSR-SS10P-0001	duplicate	56	NA	NA
-	PX-FSR-SO-11	PX-FSR-SS11-0001	12/15/10	80.3	NA	NA
	PX-FSR-SO-12	PX-FSR-SS12-0001	12/15/10	12.6	NA	NA
	PX-FSR-SO-13	PX-FSR-SS13-0001	12/15/10	21.2	NA	NA
Site Inspection (2010)	PX-FSR-SO-14	PX-FSR-SS14-0001	12/15/10	14.2	NA	NA
	PX-FSR-SO-15	PX-FSR-SS15-0001	12/15/10	10.2	NA	NA
	PX-FSR-SO-16	PX-FSR-SS16-0001	12/15/10	57.4	78.6	1,473
	PX-FSR-SO-17	PX-FSR-SS17-0001	12/15/10	231	362.0	7,460
	PX-FSR-SO-18	PX-FSR-SS18-0001	12/15/10	28.4	359.7	8,790
	PX-FSR-SO-19	PX-FSR-SS19-0001	12/15/10	163	4,453	71,300
		PX-FSR-SS20-0001	12/15/10	11.7	41.8	231.9
_	FX-131(-30-20	PX-FSR-SS20P-0001	Field duplicate	9.8	110.5	489.0
	PX-FSR-SO-21	PX-FSR-SS21-0001	12/15/10	55.2	1,890	29,320
	PX-FSR-SO-22	PX-FSR-SS22-0001	12/15/10	330	47,167	661,000
-	PX-FSR-SO-23	PX-FSR-SS23-0001	12/15/10	27.8	807.6	10,300
_	PX-FSR-SO-24	PX-FSR-SS24-0001	12/15/10	30.8	160.6	2,263
_	PX-FSR-SO-25	PX-FSR-SS25-0001	12/15/10	32	73.0	574.0
—		PX-FSR-SS26-0001	12/15/10	7.6	496.5	8,440
	F A-F3N-30-20	PX-FSR-SS26P-0001	Field duplicate	8	319.3	5,140

Table B1-14. Surface Soil Results and Screening Summary - Step 2

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat)

				Lead ¹	LMW PAHs ¹	HMW PAHs ¹
Investigation	Station ID	Sample ID	Sample Date	(mg/kg)	(ug/kg)	(ug/kg)
	PX-FSR-SO-18	PX-FSR-SS18-000H	11/15/18	38.8	394.4	881
-	1 X-1 51(-50-10	PX-FSR-SS18P-000H	Field Duplicate	41.8	438.2	1,150
_	PX-FSR-SO-19	PX-FSR-SS19-000H	11/15/18	129	4,121.5	23,408
_	PX-FSR-SO-21	PX-FSR-SS21-000H	11/15/18	60.3	73.9	316
_	PX-FSR-SO-22	PX-FSR-SS22-000H	11/15/18	504	14,486.0	72,250
_	PX-FSR-SO-24	PX-FSR-SS24-000H	11/16/18	23.7	155.3	2,064
	PX-FSR-SO-26	PX-FSR-SS26-000H	11/16/18	5.35	112.3	1,158
-		PX-FSR-SS27-000H	11/13/18	6.61	244.8	2,546
	PA-F3R-3U-27	PX-FSR-SS27P-000H	Field Duplicate	7.99	178.4	2,670
-	PX-FSR-SO-28	PX-FSR-SS28-000H	11/13/18	151	43,837.0	392,250
-	PX-FSR-SO-29	PX-FSR-SS29-000H	11/13/18	81	18,532.5	189,450
-		PX-FSR-SS30-000H	11/13/18	621	43,422.0	487,810
	PA-F3R-30-30	PX-FSR-SS30P-000H	Field Duplicate	454	46,429.5	465,580
Remedial Investigation	PX-FSR-SO-31	PX-FSR-SS31-000H	11/13/18	93.8	172.1	2,236
(2018)	PX-FSR-SO-32	PX-FSR-SS32-000H	11/13/18	74.2	9,706.4	112,870
	PX-FSR-SO-33	PX-FSR-SS33-000H	11/14/18	115	2,531.1	66,830
-		PX-FSR-SS34-000H	11/13/18	NA	142.0	1,783
	PA-F3R-30-34	PX-FSR-SS34P-000H	Field Duplicate	NA	92.1	1,753
-	PX-FSR-SO-35	PX-FSR-SS35-000H	11/13/18	NA	58.1	776
-	PX-FSR-SO-36	PX-FSR-SS36-000H	11/13/18	NA	539.2	6,836
-		PX-FSR-SS37-000H	11/13/18	NA	1,400.3	12,979
	PX-F3K-3U-37	PX-FSR-SS37P-000H	Field Duplicate	NA	1,241.7	11,301
-	PX-FSR-SO-38	PX-FSR-SS38-000H	11/14/18	NA	647.6	15,716
-	PX-FSR-SO-39	PX-FSR-SS39-000H	11/14/18	NA	482.9	6,666
-	PX-FSR-SO-40	PX-FSR-SS40-000H	11/14/18	NA	605.4	7,527
-		PX-FSR-SS41-000H	11/14/18	NA	195.3	3,052
	PX-FSK-SU-41	PX-FSR-SS41P-000H	Field Duplicate	NA	504.4	4,951
-	PX-FSR-SO-42	PX-FSR-SS42-000H	11/14/18	NA	163.9	3,792

Table B1-14. Surface Soil Results and Screening Summary - Step 2

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat)

NAS Patuxent River, St. Mary's County, Maryland

				Lead ¹	LMW PAHs ¹	HMW PAHs ¹			
Investigation	Station ID	Sample ID	Sample Date	(mg/kg)	(ug/kg)	(ug/kg)			
	PX-FSR-SO-43	PX-FSR-SS43-000H	11/14/18	NA	896.7	17,741			
	PX-FSR-SO-44	PX-FSR-SS44-000H	11/14/18	NA	25.3	333			
	PX-FSR-SO-45	PX-FSR-SS45-000H	11/14/18	NA	9.5	67			
	PX-FSR-SO-46	PX-FSR-SS46-000H	11/14/18	NA	7.8	30			
	PX-FSR-SO-47	PX-FSR-SS47-000H	11/14/18	NA	10.6	89			
-	PX-FSR-SO-48	PX-FSR-SS48-000H	11/14/18	NA	10.7	109			
	PX-FSR-SO-49	PX-FSR-SS49-000H	11/14/18	NA	35.7	170			
	PX-FSR-SO-50	PX-FSR-SS50-000H	11/14/18	NA	59	276			
Remedial Investigation	PX-FSR-SO-51	PX-FSR-SS51-000H	11/14/18	NA	24.5	181.1			
(2018), cont.	PX-FSR-SO-52	PX-FSR-SS52-000H	11/14/18	NA	46.7	276.6			
	PX-FSR-SO-53	PX-FSR-SS53-000H	11/14/18	NA	65	371			
	PX-FSR-SO-54	PX-FSR-SS54-000H	11/14/18	NA	104	926			
	PX-FSR-SO-55	PX-FSR-SS55-000H	11/14/18	NA	294.2	3,777			
	PX-FSR-SO-56	PX-FSR-SS56-000H	11/14/18	NA	105.4	341			
_	PX-FSR-SO-57	PX-FSR-SS57-000H	11/14/18	NA	9.0	27.6			
	Toxicity Test Reference Samples								
_	PX-FSR-SO-58	PX-FSR-SS58-000H	11/16/18	20.7	40.5	85.2			
-	PX-FSR-SO-59	PX-FSR-SS59-000H	11/16/18	9.92	35.7	50.9			

Notes:

NA = not analyzed

1 - Shaded concentrations exceed the ecological soil screening level (Eco-SSL) of:

Lead = 120 mg/kg (USEPA, 2005)

LMW PAHs = 29,000 μ g/kg (USEPA, 2007)

HMW PAHs = 18,000 µg/kg (USEPA, 2007)

Table B1-15. Food Web Model Results - Step 2

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat)

NAS Patuxent River, St. Mary's County, Maryland

	Short-tailed shrew		White-footed mouse		American robin		Mourning dove		Red-tailed hawk	
Chemical	NOAEL	LOAEL	NOAEL	LOAEL	NOAEL	LOAEL	NOAEL	LOAEL	NOAEL	LOAEL
Inorganics										
Lead	0.78	0.08	0.10	0.01	0.68	0.14	1.94	0.19	0.12	0.02
Semivolatile Organics										
Acenaphthene	<0.01	<0.01	<0.01	<0.01	0.04	<0.01	0.09	0.02	<0.01	<0.01
Acenaphthylene	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene	<0.01	<0.01	<0.01	<0.01	0.10	0.02	0.25	0.05	0.01	<0.01
Benzo(a)anthracene	1.66	0.33	0.67	0.13	0.44	0.09	0.95	0.19	0.05	<0.01
Benzo(a)pyrene	2.47	0.49	0.83	0.17	0.55	0.11	1.02	0.20	0.06	0.01
Benzo(b)fluoranthene	2.51	0.50	0.92	0.18	0.62	0.12	1.33	0.27	0.07	0.01
Benzo(g,h,i)perylene	0.97	0.19	0.33	0.07	0.23	0.05	0.49	0.10	0.03	<0.01
Benzo(k)fluoranthene	0.98	0.20	0.36	0.07	0.24	0.05	0.52	0.10	0.03	<0.01
Chrysene	2.78	0.56	0.97	0.19	0.63	0.13	1.16	0.23	0.07	0.01
Dibenz(a,h)anthracene	0.58	0.12	0.16	0.03	0.10	0.02	0.14	0.03	0.01	<0.01
Fluoranthene	0.01	<0.01	<0.01	<0.01	0.81	0.16	1.75	0.35	0.09	0.02
Fluorene	<0.01	<0.01	<0.01	<0.01	0.02	<0.01	0.05	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	2.02	0.40	0.57	0.11	0.37	0.07	0.58	0.12	0.04	<0.01
Phenanthrene	< 0.01	< 0.01	<0.01	<0.01	0.36	0.07	0.89	0.18	0.04	<0.01
Pyrene	2.68	0.54	1.15	0.23	0.75	0.15	1.59	0.32	0.08	0.02

Notes:

Shaded values are greater than 1.
Table B1-16. Soil Bioconcentration Factors For Plants and Soil Invertebrates - Step 3

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat)

NAS Patuxent River, St. Mary's County, Maryland

	Soil	-Plant BCF (dry weight)	Soil-Iı	nvertebrate BAF (dry weight)
Chemical	Value	Reference	Value	Reference
Inorganics				
Lead	0.038	Bechtel Jacobs 1998a	0.307	Sample et al. 1998a
Semivolatile Organics				
Benzo(a)anthracene	0.5229	USEPA 2005b	0.27	Beyer and Stafford 1993
Benzo(a)pyrene	0.4212	USEPA 2005b	0.34	Beyer and Stafford 1993
Benzo(b)fluoranthene	0.4017	USEPA 2005b	0.21	Beyer and Stafford 1993
Chrysene	0.5229	USEPA 2005b	0.44	Beyer and Stafford 1993
Fluoranthene	0.7099	USEPA 2005b	0.37	Beyer and Stafford 1993
Indeno(1,2,3-cd)pyrene	0.3168	USEPA 2005b	0.41	Beyer and Stafford 1993
Pyrene	0.7137	USEPA 2005b	0.39	Beyer and Stafford 1993

Table B1-17. Soil Bioaccumulation Factors For Small Mammals - Step 3

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Mary's County, Maryland

	Soil-M	Soil-Mouse BAF (dry weight)		/ole BAF (dry weight)	Soil-Shrew BAF (dry weight)		
Chemical	Value	Reference	Value	Reference	Value	Reference	
Inorganics							
Lead	0.055	Sample et al. 1998b	0.041	Sample et al. 1998b	0.148	Sample et al. 1998b	
Semivolatile Organics							
Benzo(a)anthracene		see text		see text		see text	
Benzo(a)pyrene		see text		see text		see text	
Benzo(b)fluoranthene		see text		see text		see text	
Chrysene		see text		see text		see text	
Fluoranthene		see text		see text		see text	
Indeno(1,2,3-cd)pyrene		see text		see text		see text	
Pyrene		see text		see text		see text	

Table B1-18. Exposure Parameters for Upper Trophic Level Ecological Receptors - Step 3 Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat)

NAS Patuxent River, St. Mary's County, Maryland

	Body Weight (kg)		Food Ingestion Rate (kg/dav - drv)		Dietary Composition (percent)				Soil Ingestion (percent)	
		, , , , , , , , , , , , , , , , , , , ,			Terr.	Soil	Small			
Receptor	Value	Reference	Value	Reference	Plants	Invert.	Mammals	Reference	Value	Reference
Birds			•							
American robin	0.077	USEPA 1993	0.0055	Levey and Karasov 1989	51.9	43.5	0	Martin et al. 1951	4.6	Sample and Suter 1994
Mourning dove	0.127	Tomlinson et al. 1994	0.0176	allometric equation	95.0	0	0	Tomlinson et al. 1994	5.0	Assumed based on diet
								USEPA 1993; Sample and		
Red-tailed hawk	1.13	Sample and Suter 1994	0.0360	Sample and Suter 1994	0	0	100	Suter 1994	0	Sample and Suter 1994
Mammals										
								USEPA 1993; Sample and		
Short-tailed shrew	0.017	USEPA 1993	0.0015	USEPA 1993a	4.7	82.3	0	Suter 1994	13.0	Sample and Suter 1994
								Martin et al. 1951; Sample		
White-footed mouse	0.021	Silva and Downing 1995	0.0005	Sample and Suter 1994	51.0	47.0	0	and Suter 1994	2.0	Beyer et al. 1994

Table B1-19. Surface Soil Results and Screening Summary - Step 3

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat)

NAS Patuxent River, St. Mary's County, Maryland

COPC		Minimum	Im Maximum		Fequency of	Mean ¹	95% LICI ¹			
		mean	55/6 0 02							
Lead	5.8	PX-FSR-SS01-0001	330	PX-FSR-SS22-0001	5 / 26	70.74	106.8			
LMW PAHs	41.8	PX-FSR-SS20-0001	47,167	PX-FSR-SS22-0001	1 / 11	5,087	47,137			
HMW PAHs	231.9	PX-FSR-SS20-0001	661,000	PX-FSR-SS22-0001	3 / 11	72,855	661,342			
	2018 RI									
Lead	5.35	PX-FSR-SS26-000H	621	PX-FSR-SS30-000H	4 / 13	146.8	314.8			
LMW PAHs	7.8	PX-FSR-SS46-000H	46,430	PX-FSR-SS30-000H	2 / 37	3,975	15,023			
HMW PAHs	27.6	PX-FSR-SS57-000H	487,810	PX-FSR-SS30-000H	7 / 37	38,921	146,545			
			Ov	erall						
Lead	5.35	PX-FSR-SS26-000H	621	PX-FSR-SS30-000H	9 / 39	96.09	135			
LMW PAHs	7.8	PX-FSR-SS46-000H	47,167	PX-FSR-SS22-0001	3 / 48	4,230	14,536			
HMW PAHs	27.6	PX-FSR-SS57-000H	661,000	PX-FSR-SS22-0001	10 / 48	46,700	163,573			

Notes:

NA = not analyzed

Shaded concentrations exceed the ecological soil screening level (Eco-SSL) of:

120 mg/kg (USEPA, 2005)

29,000 mg/kg (USEPA, 2007)

18,000 μg/kg (USEPA, 2007)

1 - 95% Upper Confidence Limits (UCLs) calculated with USEPA ProUCL version 5.1.002

Table B1-20. Food Web Model Results - Step 3

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat)

NAS Patuxent River, St. Mary's County, Maryland

Short-tailed shrew		White-footed mouse		American robin		Mourning dove		Red-tailed hawk	
NOAEL	LOAEL	NOAEL	LOAEL	NOAEL	LOAEL	NOAEL	LOAEL	NOAEL	LOAEL
0.57	0.06	0.07	< 0.01	0.50	0.10	1.42	0.14	0.09	0.02
0.27	0.05	0.08	0.02	0.07	0.01	0.18	0.04	<0.01	<0.01
0.40	0.08	0.10	0.02	0.09	0.02	0.19	0.04	<0.01	< 0.01
0.36	0.07	0.10	0.02	0.09	0.02	0.21	0.04	<0.01	<0.01
0.46	0.09	0.12	0.02	0.10	0.02	0.21	0.04	<0.01	<0.01
<0.01	<0.01	<0.01	<0.01	0.15	0.03	0.36	0.07	0.01	< 0.01
0.31	0.06	0.06	0.01	0.06	0.01	0.10	0.02	<0.01	<0.01
0.42	0.08	0.13	0.03	0.12	0.02	0.28	0.06	<0.01	< 0.01
	Short-tail NOAEL 0.57 0.27 0.40 0.36 0.46 <0.01	Short-tailed shrew NOAEL LOAEL 0.57 0.06 0.27 0.05 0.40 0.08 0.36 0.07 0.46 0.09 <0.01	Short-tailed shrew White-foo NOAEL LOAEL NOAEL 0.57 0.06 0.07 0.27 0.05 0.08 0.40 0.08 0.10 0.36 0.07 0.10 0.46 0.09 0.12 <0.01	Short-tailed shrew White-footed mouse NOAEL LOAEL NOAEL LOAEL 0.57 0.06 0.07 <0.01	Short-tailed shrew White-footed mouse America NOAEL LOAEL NOAEL LOAEL NOAEL 0.57 0.06 0.07 <0.01	Short-tailed shrew White-footed mouse American robin NOAEL LOAEL NOAEL LOAEL NOAEL LOAEL NOAEL LOAEL 0.57 0.06 0.07 <0.01	Short-tailed shrew White-footed mouse American robin Mourni NOAEL LOAEL NOAEL LOAEL NOAEL LOAEL NOAEL NOAEL	Short-tailed shrew White-footed mouse American robin Mourning dove NOAEL LOAEL NOAEL Quitaring dove 0.57 0.06 0.07 <0.01	Short-tailed shrew White-footed mouse American robin Mourning dove Red-tail NOAEL LOAEL NOAEL LOAEL NOAEL LOAEL NOAEL LOAEL NOAEL NOA

Notes:

Shaded values are greater than 1.

Table B1-21. Earthworm Toxcity Test Summary - Survival

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Mary's County, Maryland

Sample ID	Designation	Pons		Day 28	Survival		Statistically Sign	ificant Differenc	e Compared to:
Sample IB	Designation	Reps	Mean	Minimum	Maximum	CV	Lab Control	SS58	SS59
Laboratory (Control	5	94%	80%	100%	10%		No	No
PX-FSR-SS18-000H	Site	4	100%	100%	100%	0%	No	No	No
PX-FSR-SS19-000H	Site	5	100%	100%	100%	0%	No ^a	No/No	No
PX-FSR-SS21-000H	Site	5	98%	90%	100%	5%	No	No/No	No
PX-FSR-SS22-000H	Site	5	100%	100%	100%	0%	No ^a	No	No
PX-FSR-SS24-000H	Site	5	100%	100%	100%	0%	No ^a	No	No
PX-FSR-SS26-000H	Site	4	100%	100%	100%	0%	No	No	No
PX-FSR-SS58-000H	Reference	4	100%	100%	100%	0	No		
PX-FSR-SS59-000H	Reference	5	96%	90%	100%	6%	No		

Notes:

CV - coefficient of variation

No/No indicates that there was no difference in outcome when an outlier was excluded from the statistical analysis

a - Could not calculate a finding of significance with an outlier removed following the standard USEPA decision tree because there was not enough variance, or there was insufficient replication or there were too many groups selected to run the Wilcoxon Rank Sum Two-Sample Test (nonparametric). The Mann-Whitney U Two-Sample Test and the Kolmogorov-Smirnov

Two-Sample Test (both non-parametric tests) were also used for statistical comparisons. All statistical analyses resulted in a finding of no significance.

"--" Indicates that statistical analysis was not conducted.

Table B1-22. Earthworm Toxcity Test Summary - Growth (Wet Weight)

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Mary's County, Maryland

Sample ID	Designation	Rons		Growth - Day	28 Wet Weight		Statistically Signi	Statistically Significant Difference Compared to			
Janipie ib	Designation	Керз	Mean (mg)	Minimum (mg)	Maximum (mg)	CV	Lab Control	SS58	SS59		
Laboratory C	Control	5	0.24	0.20	0.29	15%		No	No		
PX-FSR-SS18-000H	Site	4	0.33	0.33	0.34	1%	No	No	No		
PX-FSR-SS19-000H	Site	5	0.24	0.22	0.25	5%	No	No	Yes		
PX-FSR-SS21-000H	Site	5	0.21	0.17	0.25	19%	No	No	Yes		
PX-FSR-SS22-000H	Site	5	0.25	0.20	0.30	19%	No	No	No		
PX-FSR-SS24-000H	Site	5	0.30	0.21	0.36	19%	No	No	No/No		
PX-FSR-SS26-000H	Site	4	0.26	0.24	0.27	0.06	No	No	No		
PX-FSR-SS58-000H	Reference	4	0.24	0.19	0.30	20%	No				
PX-FSR-SS59-000H	Reference	5	0.27	0.26	0.29	5%	No				

Note:

CV - coefficient of variation

No/No indicates that there was no difference in outcome when an outlier was excluded from the statistical analysis

"--" indicates that statistical analysis was not conducted.

Table B1-23. Earthworm Toxcity Test Summary - Growth (Wet Biomass)

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Mary's County, Maryland

Sample ID	Designation	Rons		Growth - Day 2	28 Wet Biomass		Statistically Signi	ficant Differen	ce Compared to:
Sumple 15	Designation	Керз	Mean (mg)	Minimum (mg)	Maximum (mg)	CV	Lab Control	SS58	SS59
Laboratory C	Control	5	0.23	0.16	0.29	22%		No	No
PX-FSR-SS18-000H	Site	4	0.33	0.33	0.34	1%	No	No	No
PX-FSR-SS19-000H	Site	5	0.24	0.22	0.25	5%	No	No	Yes
PX-FSR-SS21-000H	Site	5	0.20	0.17	0.25	17%	No	No	Yes
PX-FSR-SS22-000H	Site	5	0.25	0.20	0.30	19%	No	No	No
PX-FSR-SS24-000H	Site	5	0.30	0.21	0.36	19%	No	No	No/No
PX-FSR-SS26-000H	Site	4	0.26	0.24	0.27	0.06	No	No	No
PX-FSR-SS58-000H	Reference	4	0.24	0.19	0.30	20%	No		
PX-FSR-SS59-000H	Reference	5	0.26	0.24	0.28	5%	No		

Note:

CV - coefficient of variation

No/No indicates that there was no difference in outcome when an outlier was excluded from the statistical analysis

"--" indicates that statistical analysis was not conducted.

Table B1-24. Summary of NAS Paxutent River Background Threshold Value (BTV) for Surface Soil

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Mary's County, Maryland

Refined COPCs	BTVs				
Lead	44.4	mg/kg			
High Melecular Weight PAHs					
Benzo(a)anthracene	130	ug/kg			
Benzo(a)pyrene	170	ug/kg			
Benzo(b)fluoranthene	290	ug/kg			
Benzo(g,h,i)perylene	270	ug/kg			
Benzo(k)fluoranthene	190	ug/kg			
Chrysene	220	ug/kg			
Dibenz(a,h)anthracene	1,200	ug/kg			
Fluoranthene	250	ug/kg			
Indeno(1,2,3-cd)pyrene	190	ug/kg			
Pyrene	260	ug/kg			
Sum (Total HMW PAHs)	3,170	ug/kg			

Notes:

Source of BTVs is CH2M HILL (2008)

Table B1-25. Pellet Count and Grit Characterization - 2018 Surface Soil Samples

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat)

NAS Patuxent River, St. Mary's County, Maryland

	Field Sample ID	PX-FSR-SS60-000H	PX-FSR-SS61-000H	PX-FSR-SS62-000H	PX-FSR-SS63-000H	PX-FSR-SS64-000H	PX-FSR-SS65-000H	PX-FSR-SS66-000H	PX-FSR-SS67-000H	PX-FSR-SS68-000H	PX-FSR-SS69-000H	PX-FSR-SS70-000H
	Lab Sample ID	21904131610	21904131609	21904131608	21904131607	21904131606	21811164717	21904131605	21904131604	21904131603	21904131602	21904131601
	Sample Date	4/24/19	4/24/19	4/18/19	4/24/19	4/17/19	11/15/19	4/17/19	4/18/19	4/17/19	4/18/19	4/17/19
Post Dryi	ng Intial Weight	1,037.9	1,039.8	1,121.5	1,060.5	1,060.6	1,118.4	1,078.1	1,157.0	1,117.5	1,086.5	1,079.0
Weight of Debris/Rem	oved Clay fragments Set Aside	12.4	44.1	45.0	8.2	21.0	913.1	87.3	7.0	19.8	26.1	38.6
Post Debris Weight (sample + pan)		1,025.5	995.7	1,076.5	1,052.3	1,039.6	205.3	990.8	1,150.0	1,097.7	1,060.4	1,040.4
	Sub Sample Soil with Sieve	401.9	444.3	442.7	395.4	462.7	450.0	479.8	391.9	396.7	399.4	390.6
	Weight of Sieve	378.8	378.8	378.8	378.8	380.0	378.7	379.0	378.8	378.4	378.8	379.9
Sieve #5	Sub Sample Soil Weight	23.1	65.5	63.9	16.6	82.7	71.4	100.8	13.1	18.3	20.6	10.7
51676 #5	Sub Pellet/ Fragment Weight	0.0	1.2	1.2	0.0	2.6	19.3	1.0	0.0	0.0	0.0	0.0
	# Clay Fragments	0.0	1.0	2.0	0.0	5.0	na	2.0	0.0	0.0	0.0	0.0
	<pre># of Pellet/ Fragments</pre>	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
	Sub Sample Soil with Sieve	386.4	389.0	406.8	383.1	441.5	401.9	437.9	407.0	380.9	388.2	381.6
	Weight of Sieve	371.8	371.6	371.6	371.5	372.0	371.2	374.9	373.3	371.1	371.8	372.7
Sieve #7	Sub Sample Soil Weight	14.6	17.4	35.2	11.6	69.5	30.7	63.0	33.7	9.8	16.4	8.9
Sieve #7	Sub Pellet/ Fragment Weight	0.0	0.0	0.1	0.0	0.2	2.4	0.3	0.0	0.0	0.0	0.0
	# Clay Fragments	0	0	1	0	2	?	3	0	0	0	0
	# of Pellet/ Fragments	0	0	0	0	0	0	0	0	0	0	0
	Sub Sample Soil with Sieve	697.1	632.1	898.7	912.4	899.2	467.1	744.0	952.2	771.0	378.4	665.0
	Weight of Sieve	259.9	259.9	259.9	259.8	259.8	260.0	260.5	260.0	260.0	260.1	255.3
Siove #25	Sub Sample Soil Weight	437.2	372.2	638.8	652.6	639.4	207.1	483.5	692.2	511.0	118.3	409.7
51676 #35	Sub Pellet/ Fragment Weight	0.0	0.0	0.0	0.0	0.0	0.5	0.0	0.0	0.0	0.0	0.0
	# Clay Fragments	0	0	0	0	0	na	0	0	0	0	0
	<pre># of Pellet/ Fragments</pre>	0	0	0	0	0	0	0	0	0	0	0
	Sub Sample Soil with Sieve	799.1	794.5	592.5	371.5	493.4	915.5	583.1	666.9	1,064.2	768.8	867.6
	Weight of Sieve	255.3	255.3	255.3	255.3	255.3	369.5	255.4	255.3	255.1	255.3	260.0
Collection Pan	Sub Sample Soil Weight	543.8	539.2	337.2	116.2	238.1	546.0	327.7	411.6	809.1	513.5	607.6
Collection Pan	Sub Pellet/ Fragment Weight	0.0	0.0	0.0	0.0	0.0	na	0.0	0.0	0.0	0.0	0.0
	# Clay Fragments	0	0	0	0	0	na	0	0	0	0	0
	# of Pellet/ Fragments	0	0	0	0	0	na	0	0	0	0	0
Cumulative I	Final Sample Weight	1,018.7	995.5	1,076.4	797.0	1,032.5	877.4	976.3	1,150.6	1,348.2	668.8	1,036.9
	From Sieve #7	0.00%	0.00%	0.01%	0.00%	0.02%	0.27%	0.03%	0.00%	0.00%	0.00%	0.00%
Grit Characterization	From Sieve #35	0.00%	0.00%	0.00%	0.00%	0.00%	0.05%	0.00%	0.00%	0.00%	0.00%	0.00%
	Total	0.00%	0.00%	0.01%	0.00%	0.02%	0.32%	0.03%	0.00%	0.00%	0.00%	0.00%

Notes:

All weights in grams (g)

"?" indicates no data reported by lab

Table B1-26. Sample-by-Sample Concentrations of Refined COPCs Compared to BTVs

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat)

NAS Patuxent River, St. Mary's County, Maryland

				Lead ^{1,2}	HMW PAHs ^{1,2}
Investigation	Station ID	Sample ID	Sample Date	(mg/kg)	(ug/kg)
	PX-FSR-SO-01	PX-FSR-SS01-0001	12/15/10	5.8	NA
	PX-FSR-SO-02	PX-FSR-SS02-0001	12/15/10	31.6	NA
	PX-FSR-SO-03	PX-FSR-SS03-0001	12/15/10	80.3	NA
	PX-FSR-SO-04	PX-FSR-SS04-0001	12/15/10	133	NA
	PX-FSR-SO-05	PX-FSR-SS05-0001	12/15/10	82.6	NA
	PX-FSR-SO-06	PX-FSR-SS06-0001	12/15/10	258	NA
	PX-FSR-SU-07	PX-FSR-5507-0001	12/15/10	12.4	NA
•	PX-FSR-SO-08	PX-FSR-SS08-0001	12/15/10	55.6	NA
•	PX-FSK-SU-09	PX-FSR-SS09-0001	12/15/10	10.1 E2.4	NA
	PX-FSR-SO-10	DY_ESP_SS100001	duplicate	56	NA
•	PX-FSR-SO-11	PX-FSR-SS11-0001	12/15/10	80.3	NA
•	PX-FSR-SO-12	PX-FSR-SS12-0001	12/15/10	12.6	NA
•	PX-FSR-SO-13	PX-FSR-SS13-0001	12/15/10	21.0	NA
Site Inspection (2010)	PX-FSR-SO-14	PX-FSR-SS14-0001	12/15/10	14.2	NA
····· ······ ···· ···· ···· ··· ··· ··	PX-FSR-SO-15	PX-FSR-SS15-0001	12/15/10	10.2	NA
-	PX-FSR-SO-16	PX-FSR-SS16-0001	12/15/10	57.4	1,473
•	PX-FSR-SO-17	PX-FSR-SS17-0001	12/15/10	231	7,460
•	PX-FSR-SO-18	PX-FSR-SS18-0001	12/15/10	28.4	8,790
	PX-FSR-SO-19	PX-FSR-SS19-0001	12/15/10	163	71,300
	DY-ECD CO 20	PX-FSR-SS20-0001	12/15/10	11.7	231.9
	FA-F3R-3U-2U	PX-FSR-SS20P-0001	Field duplicate	9.8	489.0
-	PX-FSR-SO-21	PX-FSR-SS21-0001	12/15/10	55.2	29,320
	PX-FSR-SO-22	PX-FSR-SS22-0001	12/15/10	330	661,000
	PX-FSR-SO-23	PX-FSR-SS23-0001	12/15/10	27.8	10,300
	PX-FSR-SO-24	PX-FSR-SS24-0001	12/15/10	30.8	2,263
	PX-FSR-SO-25	PX-FSR-SS25-0001	12/15/10	32	574.0
	PX-FSR-SO-26	PX-FSR-SS26-0001	12/15/10	7.6	8,440
		PX-FSR-SS26P-0001	Field duplicate	8	5,140
	PX-FSR-SO-18	PX-FSR-SS18-000H	11/15/18	38.8	881
		PX-FSR-SS18P-000H	Field Duplicate	41.8	1,150
	PX-FSR-SO-19	PX-FSR-SS19-000H	11/15/18	129	23,408
	PX-FSR-SO-21	PX-FSR-SS21-000H	11/15/18	60.3	316
	PX-FSR-SO-22	PX-FSR-SS22-000H	11/15/18	504	72,250
	PX-FSR-SO-24	PX-FSR-SS24-000H	11/16/18	23.7	2,064
	PX-FSR-SO-26	PX-FSR-SS26-000H	11/16/18	5.35	1,158
		PX-FSR-SS27-000H	11/13/18	6.61	2,546
Remedial Investigation	rx-fsk-50-2/	PX-FSR-SS27P-000H	Field Duplicate	7.99	2,670
(2018)	PX-FSR-SO-28	PX-FSR-SS28-000H	11/13/18	151	392.250
•	PX-FSR-SO-29	PX-FSR-SS29-000H	11/13/18	81	189,450
		РХ-FSR-SS30-000H	11/12/12	621	487 810
	PX-FSR-SO-30		Field Duplicato	15A	407,010
				454	405,580
•	PX-FSK-SU-31	PX-FSK-5531-000H	11/13/18	93.8	2,236
	PX-FSR-SO-32	PX-FSR-SS32-000H	11/13/18	74.2	112,870
	PX-FSR-SO-33	PX-FSR-SS33-000H	11/14/18	115	66,830
	PX-FSR-SO-34	PX-FSR-SS34-000H	11/13/18	NA	1,783
		PX-FSR-SS34P-000H	Field Duplicate	NA	1,753
	PX-FSR-SO-35	PX-FSR-SS35-000H	11/13/18	NA	776
-	PX-FSR-SO-36	PX-FSR-SS36-000H	11/13/18	NA	6,836
		PX-FSR-SS37-000H	11/13/18	NA	12,979
	FV-L9K-20-21	PX-FSR-SS37P-000H	Field Duplicate	NA	11,301
•	PX-FSR-SO-38	PX-FSR-SS38-000H		NA	15,716
•	PX-FSR-SO-39	PX-FSR-SS39-000H	11/14/18	NA	6.666
•	PX-FSR-SO-40	PX-FSR-SS40-000H	11/14/18	NA	7.527
•			11/1/12	ΝΔ	3 052
	PX-FSR-SO-41		Field Duplicata	N/A N/A	J,UJZ
				/V/4	4,301
	PX-FSR-SO-42	PX-FSR-SS42-000H	11/14/18	NA	3,/92
	PX-FSR-SO-43	PX-FSR-SS43-000H	11/14/18	NA	17,741
	PX-FSR-SO-44	PX-FSR-SS44-000H	11/14/18	NA	333
	PX-FSR-SO-45	PX-FSR-SS45-000H	11/14/18	NA	67
Remedial Investigation		PX-FSR-SS46-000H	11/14/18	NA	30
Remedial Investigation	FX-F3K-30-40				
	PX-FSR-SO-40	PX-FSR-SS47-000H	11/14/18	NA	89
(2010), cont.	PX-FSR-SO-40 PX-FSR-SO-47 PX-FSR-SO-48	PX-FSR-SS47-000H PX-FSR-SS48-000H	11/14/18 11/14/18	NA NA	89 109
(2010), cont.	PX-FSR-SO-40 PX-FSR-SO-47 PX-FSR-SO-48 PX-FSR-SO-49	PX-FSR-SS47-000H PX-FSR-SS48-000H PX-FSR-SS49-000H	11/14/18 11/14/18 11/14/18	NA NA NA	89 109 170

PX-FSR-SO-51	PX-FSR-SS51-000H	11/14/18	NA	181.1
PX-FSR-SO-52	PX-FSR-SS52-000H	11/14/18	NA	276.6
PX-FSR-SO-53	PX-FSR-SS53-000H	11/14/18	NA	371
PX-FSR-SO-54	PX-FSR-SS54-000H	11/14/18	NA	926
PX-FSR-SO-55	PX-FSR-SS55-000H	11/14/18	NA	3,777
PX-FSR-SO-56	PX-FSR-SS56-000H	11/14/18	NA	341
PX-FSR-SO-57	PX-FSR-SS57-000H	11/14/18	NA	27.6
	Toxicit	y Test Reference Sam	ples	
PX-FSR-SO-58	PX-FSR-SS58-000H	11/16/18	20.7	85.2
PX-FSR-SO-59	PX-FSR-SS59-000H	11/16/18	9.92	50.9

Notes:

NA = not analyzed

1 - Shaded concentrations exceed the ecological soil screening level (Eco-SSL) of:

Lead = 120 mg/kg (USEPA, 2005)

HMW PAHs = 18,000 µg/kg (USEPA, 2007)

2 - Bolded concentrations exceed NAS Paxutent River Background Threshold Value (BTV) for surface soil (CH2M HILL, 2008) are:

Lead = 44.4 mg/kg

HMW PAHs = 3,170 ug/kg (estimated from the sume of individual BTVs for HMW PAHs)

Table B1-27. Range of Concentrations for Refined COPCs Compared to BTVs - Combined/Overall Datset (2010 + 2018)

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat)

NAS Patuxent River, St. Mary's County, Maryland

					Fequency of		
Refined COPC		Minimum	P	Maximum	Exceeding BTV	Mean ²	95% UCL ²
Lead	5.35	PX-FSR-SS26-000H	621	PX-FSR-SS30-000H	21 / 39	96.09	135
HMW PAHs	27.6	PX-FSR-SS57-000H	661,000	PX-FSR-SS22-0001	26 / 48	46,700	163,573

Notes:

NA = not analyzed

Shaded concentrations NAS Paxutent River Background Threshold Value (BTV) for surface soil (CH2M HILL, 2008);

Lead = 44.4 mg/kg

HMW PAHs = 3,170 ug/kg (estimated from the sume of individual BTVs for HMW PAHs)

2 - 95% Upper Confidence Limits (UCLs) calculated with USEPA ProUCL version 5.1.002

Table B1-28. Sample-by-Sample Concentrations of Refined COPCs Compared to the AET

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat)

NAS Patuxent River, St. Mary's County, Maryland

			-	Lead ¹	HMW PAHs ¹
Investigation	Station ID	Sample ID	Sample Date	(mg/kg)	(ug/kg)
-	PX-FSK-SU-U1 PX-FSR-SO-02	PX-FSR-SS01-0001 PX-FSR-SS02-0001	12/15/10	5.8 31 6	NA NA
-	PX-FSR-SO-03	PX-FSR-SS03-0001	12/15/10	80.3	NA
-	PX-FSR-SO-04	PX-FSR-SS04-0001	12/15/10	133	NA
-	PX-FSR-SO-05	PX-FSR-SS05-0001	12/15/10	82.6	NA
-	PX-FSR-SO-06	PX-FSR-SS06-0001	12/15/10	258	NA
-	PX-FSR-SO-07	PX-FSR-SS07-0001	12/15/10	12.4	NA
-	PX-FSR-SU-08	PX-FSR-SS08-0001 PX-FSR-SS09-0001	12/15/10	10.1	NA
-		PX-FSR-SS10-0001	12/15/10	52.4	NA
	PX-FSR-SO-10	PX-FSR-SS10P-0001	duplicate	56	NA
-	PX-FSR-SO-11	PX-FSR-SS11-0001	12/15/10	80.3	NA
-	PX-FSR-SO-12	PX-FSR-SS12-0001	12/15/10	12.6	NA
(2010) -	PX-FSR-SO-13	PX-FSR-SS13-0001	12/15/10	21.2	NA
Site inspection (2010)	PX-FSR-SO-14	PX-FSR-SS14-0001	12/15/10	14.2	NA
-	PX-FSR-SO-16	PX-FSR-SS16-0001	12/15/10	57.4	1.473
-	PX-FSR-SO-17	PX-FSR-SS17-0001	12/15/10	231	7,460
-	PX-FSR-SO-18	PX-FSR-SS18-0001	12/15/10	28.4	8,790
-	PX-FSR-SO-19	PX-FSR-SS19-0001	12/15/10	163	71,300
	PX-FSR-SO-20	PX-FSR-SS20-0001	12/15/10	11.7	231.9
-		PX-FSR-SS20P-0001	Field duplicate	9.8	489.0
-	PX-FSR-SU-21	PX-FSR-SS21-0001	12/15/10	330	29,320
-	PX-FSR-SO-23	PX-FSR-SS23-0001	12/15/10	27.8	10.300
-	PX-FSR-SO-24	PX-FSR-SS24-0001	12/15/10	30.8	2,263
-	PX-FSR-SO-25	PX-FSR-SS25-0001	12/15/10	32	574.0
-	PX-FSR-SO-26	PX-FSR-SS26-0001	12/15/10	7.6	8,440
		PX-FSR-SS26P-0001	Field duplicate	8	5,140
	PX-FSR-SO-18	PX-FSR-SS18-000H	11/15/18	38.8	881
-		PX-FSR-SS18P-000H	Field Duplicate	41.8	1,150
-	PX-FSR-SO-19	PX-FSR-SS19-000H	11/15/18	129	23,408
-	PX-FSR-SO-21	PX-FSR-SS21-000H	11/15/18	60.3	316
-	PX-FSR-SU-22	PX-FSR-SS22-000H	11/15/18	504	72,250
Remedial Investigation			11/16/18	Z3.7	2,064
	PA-F3R-30-20		11/12/18	6.61	2,130
	PX-FSR-SO-27	PX-FSR-SS27P-000H	Field Dunlicate	7 99	2,540
	PX-FSR-SO-28	PX-FSR-SS28-000H	11/13/18	151	392 250
(2020)	PX-FSR-SO-29	PX-FSR-SS28-000H	11/13/18	81	189 450
-	17/15/130 25	PX-FSR-SS30-000H	11/13/18	621	487,810
	PX-FSR-SO-30	PX-FSR-SS30P-000H	Field Duplicate	454	465.580
-	PX-FSR-SO-31	PX-FSR-SS31-000H	11/13/18	93.8	2,236
-	PX-FSR-SO-32	PX-FSR-SS32-000H	11/13/18	74.2	112,870
-	PX-FSR-SO-33	PX-FSR-SS33-000H	11/14/18	115	66,830
-		PX-FSR-SS34-000H	11/13/18	NA	1,783
	PX-FSR-SO-34	PX-FSR-SS34P-000H	Field Duplicate	NA	1,753
	PX-FSR-SO-35	PX-FSR-SS35-000H	11/13/18	NA	776
-	PX-FSR-SO-36	PX-FSR-SS36-000H	11/13/18	NA	6,836
-		PX-FSR-SS37-000H	11/13/18	NA	12,979
	FV-LOK-20-21	PX-FSR-SS37P-000H	Field Duplicate	NA	11,301
-	PX-FSR-SO-38	PX-FSR-SS38-000H	11/14/18	NA	15,716
-	PX-FSR-SO-39	PX-FSR-SS39-000H	11/14/18	NA	6,666
-	PX-FSR-SO-40	PX-FSR-SS40-000H	11/14/18	NA	7,527
-	PX-FSR-SO-41	PX-FSR-SS41-000H	11/14/18	NA	3,052
-	17.130-30-41	PX-FSR-SS41P-000H	Field Duplicate	NA	4,951
-	PX-FSR-SO-42	PX-FSR-SS42-000H	11/14/18	NA	3,792
-	PX-FSR-SO-43	PX-FSR-SS43-000H	11/14/18	NA	17,741
_	PX-FSR-SO-44	PX-FSR-SS44-000H	11/14/18	NA	333
-	PX-FSR-SO-45	PX-FSR-SS45-000H	11/14/18	NA	67
Remedial Investigation	PX-FSR-SO-46	PX-FSR-SS46-000H	11/14/18	NA	30
(2018), cont.	PX-FSR-SO-47	PX-FSR-SS47-000H	11/14/18	NA	89
-	PX-FSR-SO-48	PX-FSR-SS48-000H	11/14/18	NA	109
-	PX-FSR-SO-49	PX-FSR-SS49-000H	11/14/18	NA	170
-	PX-FSR-SO-50	PX-FSR-SS50-000H	11/14/18	NA	276
-	PX-FSR-SO-51	PX-FSR-SS51-000H	11/14/18	NA	181.1
-	PX-FSR-SO-52	PX-FSR-SS52-000H	11/14/18	NA	276.6
-	PX-FSR-SO-53	PX-FSR-SS53-000H	11/14/18	NA	371
-	PX-FSR-SO-54	PX-FSR-SS54-000H	11/14/18	NA	926
-	PX-FSR-SO-55	PX-FSR-SS55-000H	11/14/18	NA	3,777
-	PX-FSR-SO-56	PX-FSR-SS56-000H	11/14/18	NA	341
-	PX-FSR-SO-57	PX-FSR-SS57-000H	11/14/18	NA	27.6
-		Toxicit	ty Test Reference Sam	ples	
-	PX-FSR-SO-58	PX-FSR-SS58-000H	11/16/18	20.7	85.2
	PX-FSR-SO-59	PX-FSR-SS59-000H	11/16/18	9.92	50.9

Notes:

NA = not analyzed

1 - Shaded concentrations exceed the Apparent Effects Thresholds (AETs), or the highest concentration

in "unimpacted" samples from the 28-day earthworm toxicity tested samples; The AETs for refined COPCs are:

Lead = 504 mg/kg

HMW PAHs = 72,250 μ g/kg

Figures

Figure B1-2. % Solids - 2010 SI and 2018 RI Surface Soil Samples

Figure B1-3. pH - 2010 SI and 2018 RI Surface Soil Samples

Attachments

Attachment B1-1

Total LMW and HMW PAHs Calculations

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

Station ID		PY-FS	R-SO-18	PY-FSR-SO-19	PX-ESR-SO-21	PY-FSR-SO-22	PY-ESR-SO-24	PX-ESR-SO-26	PY-ES	R-SO-27	PY-FSR-SO-28	PY-FSR-SO-29	PY-FS	R-SO-30	PX-FSR-SO-31	PX-FSR-SO-32	PY-FSR-SO-33
Station ID			DV FOD 0040D 00011	PX-FOR 0040 000U	PX-FSD-0004-00011	PX-131(-30-22	PX-FOD 0004 00011	PX-FOD-0000-20	DV FOD 0007 000U	DV FOD 0007D 00011	PX FOD 0000 00011	PX FOR 0000 00011		BY 500 00000 00011	PX-1 SIX-50-51	PX FOD 0000 00011	PX FOR 0000 0000
Sample D		A4/45/40	FX-F3R-3310F-000H	PA-F3R-3319-000H	PA-P3R-3321-000H	FX-F3R-3322-000H	PA-F3R-3324-000H	FX-F3R-3320-000H	FX-F3R-3327-000H	FX-F3R-3327F-000H	FA-F3R-3320-000H	FA-F3R-3329-000H	FA-F3R-3330-000H	FA-FSR-SS30F-000H	FX-F3R-3331-000H	FA-F3R-3332-000H	PA-F3R-3333-000H
		11/15/18	Field Duplicate	01/01/1	11/15/18	11/15/18	11/10/18	11/10/18	11/13/18	Field Duplicate	11/13/18	11/13/18	11/13/18	Field Duplicate	11/13/18	11/13/18	11/14/18
1 Methylaphthelene		08.6 11	05.7.1.1	0.05	10.0 []	2.050.11	0.65	14.1	1.55 1	162	240 1	121 1	265	201	1.41.1	67.0 1	47.5 11
2 Methylnaphthalene		90.0 0	95.7 0	903 0	10.2 0	2,050 0	0.00	1.4 J 1.61 J	1.00 J	1.02 J	240 J 257 J	131 J	303	301 3	1.41 J	07.0 J 77.6 J	47.5 U
		98.6 11	95.7 0	303 U	18.2 0	411	1 89 11	1.85 11	1.04 3	0.4	1 580 1	788	2 520	2 130	8.06	500	203
Acenaphthylene		98.6 []]	95.7 U	985 11	18.2 U	2 050 11	1.00 0	1.85 U	1.04 U	194 []	964 1	177 11	114	455 11	1.84 11	93.911	47.5 U
Anthracene		98.6 U	28.1 J	302 J	18.2 U	1.800 J	50.6	16.6	41.5 J	27 J	6,960	3.050	8.960	8.080	26.2	1.640	384
Fluorene		98.6 U	95.7 U	985 U	18.2 U	2.050 U	1.89 U	3.82	6.25	5.19	871 J	427	1.540	1.340	4.72	272	90.8 J
Naphthalene		98.6 U	95.7 U	985 U	18.2 U	2.050 U	9.39	3.32 J	3.89	5.41	747 J	513	1.270	1.010	4.18	222	122
Phenanthrene		98.6 U	123 J	1.200 J	10.2 J	7,150	71.9	83.7	188	127	32,700	13,400	28,300	33.000	125	6.880	1.660
Total HMW PAHs (UG/KG)																	
Benzo(a)anthracene		65.5 J	108 J	2.580	25.3 J	7.320	195 J	110 J	252	252	42.400	18,900	52.400	45,800	205	11.000	5.240
Benzo(a)pyrene		126 J	118 J	2,760	41.3	8,250	228 J	129 J	302	353	51.800	23,200	69,200	60,000	286	14.400	9.660
Benzo(b)fluoranthene		163 J	155 J	3,390	53.4	10,400	461 J	178 J	448	532	25,200	30,800	84,200	76,600	384	17,400	11,800
Benzo(g,h,i)perylene		105 J	75.8 J	1,390 J	34.9 J	4,920	88.5	77	122 J	138 J	24,000 J	10,900 J	40,500 J	28,500 J	160 J	7,880 J	8,010
Benzo(k)fluoranthene		51.3 J	58 J	1,270 J	19.1 J	3,750 J	171 J	67.8 J	167	190	25,700	11,500	27,400	28,900	142	6,800	4,400
Chrysene		87.5 J	118 J	2,700	32.7 J	7,970	270	140	315	329	53,300	23,100	61,700	56,700	269	13,600	6,590
Dibenz(a,h)anthracene		98.6 U	95.7 U	428 J	8.09 J	1,410 J	31.6	20.3	34.2 J	41.6 J	7,150 J	3,150 J	3,610 J	8,080 J	42.4 J	2,340 J	1,820
Fluoranthene		63.4 J	215	3,860	33.1 J	12,200	271	200	425	361	79,100	32,000	57,200	75,100	327	17,800	5,340
Indeno(1,2,3-cd)pyrene		107 J	89.1 J	1,800 J	37.9	5,930	123	87.6	150 J	169 J	27,500 J	13,400 J	48,200 J	33,000 J	188 J	9,050 J	8,710
Pyrene		63.2 J	165 J	3,230	30.6 J	10,100	225 J	148 J	331	304	56,100	22,500	43,400	52,900	233	12,600	5,260
Total LMW PAHs																	
Sum Detects			151	1 659	10	9 361	152	110	243		43 355	18 444		46 202	171	9 659	2 460
Sum Ner Detects	L	Lowest of Parent &	207.6	1,035	10	5,301	2.025	100	1.02	Lowest of Parent &	400	10,444	Lowest of Parent &	20202	1/1	5,005	2,+00
Sum won-Detects (1/2 DL)	1	Duplicate excluded	287.1	2462.5	b3./	5125	2.835	1.85	1.94	Duplicate excluded	482	88.5	Duplicate excluded	227.5	0.92	46.95	/1.25
Sum Total			438	4,122	74	14,486	155	112	245	· · · · ·	43,837	18,533	ļ	46,430	172	9,706	2,531
Detects Only																	
Minimum 2.6																	
Maximum 46 202	0																
Maximum 40,202	.0																
Mean 3,720.	0																
Standard Deviation 10,588	.4																
Samples 37.0																	
Detects 37.0																	
Exceedances 2.0																	
Totals																	
Adiation and a second s					-						+ +	l	-				
Minimum 7.8	-																
Maximum 46,429	.5																
Mean 3,975.	3																
95% UCL 15,023	.0																
Standard deviation 10.760	.5																
Samples 37.0	-																
Detector 37.0																	
Detects 37.0																	
Exceedances 2.0																	
Total HMW PAHs																	
Sum Datarts			1 102	23 409	216	72 250	2.064	1 159	2 546		302 250	180 //50	/87 810		2 226	112 870	66 830
Sum Nex Detects (4/2 DL)	L	Lowest of Parent &	1,102	20,400	510	02,21	2,004	001,1	0+0,2	Lowest of Parent &	352,230	105,430	407,010	Lowest of Parent &	2,230	112,070	00,030
Sum Non-Detects (1/2 DL)	[Duplicate excluded	47.85	0	0	0	0	0	0	Duplicate excluded	0	0	0	Duplicate excluded	0	0	0
Sum Iotal			1,150	23,408	316	/2,250	2,064	1,158	2,546		392,250	189,450	487,810		2,236	112,870	66,830
Detects Only																	
Minimum 26.7																	
Maximum 487.810	0.0																
Moon 30 010	2											<u> </u>	+ +				
38,919	.4												<u> </u>				
standard Deviation 104,827	1.2																
Samples 37.0																	
Detects 37.0																	
Exceedances 7.0																	
T-4-1-											++	++					
Totals											<u> </u>	<u>↓</u>	<u>↓</u>				
Minimum 27.6																	
Maximum 487,810	0.0																
Mean 38,921	.0																
95% UCL 146 543	3.0																
Standard deviation 104 924	55											+					
104,020					+						+ +	+ +	+				
Samples 37.0												-	<u>├</u>				
Detects 37.0																	
Exceedances 7.0																	

Attachment B1-1

Total LMW and HMW PAHs Calculations

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

PX-ESR-SO-35 PX-FSR-SO-36 PY-ESR-SO-38 PY-ESR-SO-30 PX-FSR-SO-40 PY-ESR-SO Station ID PX-FSR-SO-34 PX-ESR-SO-37 PX-ESR-SO-41 Sample ID Sample Date Total LMW PAHs (UG/K PX-FSR-SS34-000H PX-FSR-SS34P-000H PX-FSR-SS35-000H PX-FSR-SS36-000H PX-FSR-SS37-000H PX-FSR-SS37P-000H PX-FSR-SS38-000H PX-FSR-SS39-000H PX-FSR-SS40-000H PX-FSR-SS41-000H PX-FSR-SS41P-000H PX-FSR-SS42-0 11/13/18 Field Duplicate 11/13/18 11/13/18 11/13/18 Field Duplicate 11/14/18 11/14/18 11/14/18 11/14/18 Field Duplicate 11/14/18 19.3 U 19.3 U 17.5 J thylnaphthalene thylnaphthalene 1.92 J 2.42 J 0.904 37.7 L 35.8 L 7.39 J 23.6 1.27 J 1.37 J 35.9 U 37.3 J 22.8 J 42.7 J 23.6 U 22.9 J 2.04 U 2.04 U 17.4 J 4.21 5.98 108 J 42.7 15.5 23.6 U 69 23.6 U 23.6 U 23.6 U 1.85 37.7 U 65.9 J 11.1 J 11.8 J 371 aphthylene 193 2.03 U 11.3 2.43 J 3.43 J 70.3 J 227 31.9 J 194 28.9 J 85.6 74.4 13.1 J racene ene 6.84 1.71 J 26.7 100 19.9 J 19.3 1.85 U 44.9 15 J 1,030 19.3 halene 18.2 J 21 U 443 332 380 J nthrene 920 454 135 J al HMW PAHs (UG/KG) o(a)anthracene o(a)pyrene o(b)fluoranthene 79.9 108 J 1,460 173 J 136 716 1.220 1.310 549 881 651 259 J 367 J 428 . 240 J 199 J 278 J 853 J 458 J 1,690 J 841 J 1,410 J 2,240 2,830 891 1,250 548 J 798 J 56 J 56.8 57.4 J 119 J 697 J 1,150 507 J o(g,h,i)perylene o(k)fluoranthene 157 J 482 798 1.730 670 691 304 430 120 468 J 945 134 107 J 122 J 245 J 41.5 J 284 J 860 J 1,750 190 320 J 68.9 715 J 1,520 1,030 1,540 436 441 784 sene 190 32.7 105 16.1 655 148 508 J 396 1,460 1,730 1,450 nz(a,h)anthracene 238 2,620 156 92.5 1,290 570 920 J 2,330 838 1,600 J 290 J 177 J 218 J 738 718 721 361 J 314 361 J 758 J 441 680 J 221 131 161 J eno(1,2,3-cd)pyrene 1.020 922 1,800 J 97.2 J 910 otal LMW PAHs 140 2.04 55 2.775 424 59 557 48.25 Sum Detects 483 1,347 606 483 Lowest of Parent & Lowest of Parent & Lowest of Parent & Sum Non-Detects (1/2 DL) 56.55 53.7 42 21.4 Duplicate excluded Duplicate excluded Duplicate excluded 483 Sum Total 142 58 539 1,400 648 605 504 etects Only Minimum 2.6 46,202.0 Maximum 3,720.6 Mean Standard Deviation 10,588.4 Samples 37.0 Detects 37.0 2.0 Exceedances otals 7.8 46,429.5 Minimum Maximum 3,975.3 Mean 15,023.0 5% UCL Standard deviation 10,760.5 Samples 37.0 37.0 Detects Exceedances 2.0 otal HMW PAHs 7,527 Lowest of Parent & Duplicate excluded Sum Detects 1,783 776 6,836 12,979 15,716 6,666 4,951 Lowest of Parent & Lowest of Parent & Sum Non-Detects (1/2 DL) Sum Total 0 0 6,666 0 6,836 0 12,979 0 15,716 0 4,951 0 776 Duplicate excluded Duplicate excluded etects Only Minimum 26.7 487,810.0 Maximum 38,919.2 Mean Standard Deviation 104,827.2 37.0 37.0 Samples Detects 7.0 xceedances otals Minimum 27.6 Maximum 487,810.0 Mean 38,921.0 146,543.0 95% UCL 104,826.5 Standard deviation Samples 37.0 Detects 37.0 ++7.0 Exceedances

							· · · · · · · · · · · · · · · · · · ·	
1	DV ESD SO 43	-	DV FOD SO 11	1	DV FOD SO 45	-	DV ESP SO 46	-
+2	FA-F3R-30-43	_	PA-F3R-30-44	-	FX-F3R-30-43		FX-F3R-30-40	
000H	PX-FSR-SS43-000F		PX-FSR-SS44-000H	_	PX-FSR-SS45-000H		PX-FSR-SS46-000H	_
	11/14/18		11/14/18		11/14/18		11/14/18	
.96 U	33.1	U	1.34	J	1.77	U	1.75	U
1.96 U	33.1	U	1.57	J	1.77	U	1.75	U
1.96 U	33.1	U	1.83	U	1.77	U	1.75	U
1.96 U	33.1	U	1.83	U	1.77	U	1.75	U
27.3	144		3.74	_	0.988	J	0.403	J
7.92 J	33.1	U	2.23	J	1.77	U	1.75	U
7.8 J	37.9	J	1.83	U	1.77	U	1.75	U
111	632		13.7		3.25	J	2.18	J
				_				
				_				_
313	1,410		26.6	_	5.45	_	2.29	J
527	2,310		36.4	_	4.83	_	2.5	J
798	3,110		72.2	_	15.1	_	6.29	
328	2,210		20.5	_	4.17	_	1.58	J
239	1,100		23.2	_	4.55	_	2.32	J
397	1,730		37.8	_	9.26		3.43	J
9.5	461		4.38	_	1.77	U	1.75	U
364	1,660		42		9.04		4.59	
367	2,110		22.5	_	4.61	_	1.9	J
379	1,640		47.4		9.24		3.92	
154	814		23		4		3	
02	02.75		2 745	-	E 21		E 2E	
.32	82.75	-	2.745	-	5.31	\vdash	5.25	
164	897		25	_	10		8	-
				-				
				-				-
				-				
				_				-
				_				-
				-				
				_				
				-				_
		-		-		\vdash		
792	17,741		333		66		29	n I
0			0		0.885		0.875	
702	17 741	-	277	-	6.085	\vdash	0.075	
32	17,741	-	333		67		30	
				T				
_		-		-		\vdash		\neg
		_						
		L						LI
		-				\vdash		۲
		-		_		\vdash		
				T				
		-		-		\vdash		
_		-		-		\vdash		
		_						
		L						
				Τ				

Attachment B1-1

Total LMW and HMW PAHs Calculations

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

													Reference Sample
Station ID		PX-FSR-SO-47	PX-FSR-SO-48	PX-FSR-SO-49	PX-FSR-SO-50	PX-FSR-SO-51	PX-FSR-SO-52	PX-FSR-SO-53	PX-FSR-SO-54	PX-FSR-SO-55	PX-FSR-SO-56	PX-FSR-SO-57	PX-FSR-SO-58
Sample ID		PX-FSR-SS47-000H	PX-FSR-SS48-000H	PX-FSR-SS49-000H	PX-FSR-SS50-000H	PX-FSR-SS51-000H	PX-FSR-SS52-000H	PX-FSR-SS53-000H	PX-FSR-SS54-000H	PX-FSR-SS55-000H	PX-FSR-SS56-000H	PX-FSR-SS57-000H	PX-FSR-SS58-000
Sample Date		11/14/18	11/14/18	11/14/18	11/14/18	11/14/18	11/14/18	11/14/18	11/14/18	11/14/18	11/14/18	11/14/18	11/16/18
Total LMW PAHs (UG/KG)		4.74 11	4.70 11	0.00 11			0.01		4.00 11	0.00 11	4.70 11	1.75	
1-Methylnaphthalene		1./4 U 1 74 U	1.73 U	9.03 U	14.2 U	1.91 U 1 01 U	9.01 0	11./ U	1.88 U	8.99 U	1.72 U	1./5 U	9.9
Acenaphthene		1.74 U	1.73 U	9.03 U	14.2 U	1.91 U	9.01 U	11.7 U	2.26 J	17.3 J	1.72 U	1.75 U	2.17
Acenaphthylene		1.74 U	1.73 U	9.03 U	14.2 U	1.91 U	9.01 U	11.7 U	5.47	8.99 U	1.72 U	1.75 U	2.17
Anthracene		1.03 J	1.75 J	3.03 J	4.19 J	2.19 J	1.95 J	3.39 J	10.9	33.2	9.25	0.503 J	2.17
Fluorene		1.74 U	1.73 U	9.03 U	14.2 U	1.91 U	9.01 U	11.7 U	3.29 J	7.99 J	1.72 U	1.75 U	2.17
Naphthalene Phenanthrene		4.35	3.73	9.03 0	14.2 0	2.49 J 15	9.010	26.1	2.23 J 77 7	13.2 J 209	42.7	3.26.1	4.05
- Hondarianono		1.00	0.70	0.02 0	12.0 0			20.1		200	10.1	0.20 0	10.0
Total HMW PAHs (UG/KG)													
Benzo(a)anthracene		6.03	7.79	13.4 J	18.4 J	14	25.3	35	78.9	334	34.8	3.03 J	8.28
Benzo(a)pyrene		6.51	8.57	9.03 J	12.9 J	14.1	20.6	28.2	81.3	429	25.1	1.8/ J	9.23
Benzo(a, h.i)pervlene		5.6	8.93	9.03 U	29.6	9.42	43.3 J	24.1	54.3	194	21.4	1.57 J	2.17
Benzo(k)fluoranthene		7.6	7.59	13.8 J	13.4 J	9.31	16.3 J	20.9 J	56.3	200	15.6	1.13 J	6.4
Chrysene		11.2	13	23.5	37.6	20.9	34	48.4	97.9	423	39.3	2.94 J	14.7
Dibenz(a,h)anthracene		1.21 J	1.94 J	9.03 U	14.2 U	1.97 J	4.4 J	5.65 J	14	52.3	4.96	1.75 U	2.17
Fluoranthene		12.4	13.3	25.7	45.8	36.7	54.2	68.1	180	639	69.7	6.52	23.9
Pyrene		10.6	10.2	10.4 J 20 7	22 J 37 1	26.9	20.2	30	124	2/9	67.8	1.98 J 4 37	2.17
i yrene		10.0	10.2	20.1	07.1	20.0	00.4	40.0	124	000	01.0	4.01	10.0
Total LMW PAHs													
Sum Detects		5	5	9	16	20	20	29	102	281	101	4	36
Sum Non-Detects (1/2 DL)		5.22	5.19	27.09	42.6	4,775	27.03	35.1	1.88	13.485	4.3	5.25	4.34
Sum Total		11	11	36	59	24	47	65	104	294	105	9	41
												-	
Detects Only													
Minimum	2.6												
Maximum	46 202 0												
Mean	3 720 6												
Standard Deviation	10.588.4												
Samples	37.0												
Detects	37.0												
Exceedances	2.0												
Execcedences	2.0												
Totals													
Minimum	7.8												
Maximum	46,429.5												
Mean	3,975.3												
95% UCL	15,023.0												
Standard deviation	10,760.5												
Samples	37.0												
Detects	37.0												
Exceedances	2.0												
Total HMW PAHs													
Sum Detects		89	109	161	269	181	277	371	926	3,777	341	27	81
Sum Non-Detects (1/2 DL)		0	0	9.03	7.1	0	0	0	0	0	0	0.875	4.34
Sum Total		89	109	170	276	181	277	371	926	3,777	341	28	85
Detects Only													
Minimum	26.7												
Maximum	487,810.0												
Mean	38,919.2												
Standard Deviation	104,827.2												
Samples	37.0												
Detects	37.0												
Exceedances	7.0												
Totals													
Minimum	27.6												
Maximum	487,810.0												
Mean	38,921.0												
95% UCL	146,543.0												
Standard deviation	104,826.5												
Samples	37.0												
Detects	37.0												
Exceedances	7.0												

	Reference Sample	
	PX-FSR-SO-59	
H	PX-FSR-SS59-000H	H
·	11/16/19	·
	11/10/10	
	0.70	
_	9.78	
	11.8	
U	1.94	U
0	1.94	0
U	1.32	J
U	1.94	U
J	2.9	J
	7.02	
J	4.8	J
J	5.45	J
UJ	1.94	UJ
U	2.41	J
J	1.94	UJ
	8.02	
U	1.94	U
	13.6	
U	2.83	J
J	10.9	J
		-
	33	
	2.91	
	20	-
	30	-
	48	
	2 91	
	E1	-
	51	-
		L
		-
		-
		_
		-
]		
		-
		-
		L
-		

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

UCL Statistics for Data Sets with Non-Detects

User Selected Options	;
Date/Time of Computation	ProUCL 5.11/6/2020 3:15:33 PM
From File	Pb input.xls
Full Precision	OFF
Confidence Coefficient	95%
Number of Bootstrap Operations	2000

Lead-2010

General Statistics

Total Number of Observations	26	Number of Distinct Observations	25
		Number of Missing Observations	0
Minimum	5.8	Mean	70.74
Maximum	330	Median	31.8
SD	85.14	Std. Error of Mean	16.7
Coefficient of Variation	1.204	Skewness	1.89

Normal GOF Test

Shapiro Wilk Test Statistic	0.732	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.92	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.255	Lilliefors GOF Test
5% Lilliefors Critical Value	0.17	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)					
95% Student's-t UCL	99.26	95% Adjusted-CLT UCL (Chen-1995)	104.8				
		95% Modified-t UCL (Johnson-1978)	100.3				

Gamma GOF Test

A-D Test Statistic	0.74	Anderson-Darling Gamma GOF Test			
5% A-D Critical Value	0.776	Detected data appear Gamma Distributed at 5% Significance Level			
K-S Test Statistic	0.164	Kolmogorov-Smirnov Gamma GOF Test			
5% K-S Critical Value	0.177	Detected data appear Gamma Distributed at 5% Significance Level			
Detected data appear Gamma Distributed at 5% Significance Level					

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

	Gamma Statistics		
k hat (MLE)	0.947	k star (bias corrected MLE)	0.863
Theta hat (MLE)	74.72	Theta star (bias corrected MLE)	81.96
nu hat (MLE)	49.23	nu star (bias corrected)	44.88
MLE Mean (bias corrected)	70.74	MLE Sd (bias corrected)	76.14
		Approximate Chi Square Value (0.05)	30.51
Adjusted Level of Significance	0.0398	Adjusted Chi Square Value	29.73

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 104

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.959	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.92	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.115	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.17	Data appear Lognormal at 5% Significance Level
Data appear l	ognormal	at 5% Significance Level

95% Adjusted Gamma UCL (use when n<50) 106.8

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	1.758	Mean of logged Data	3.645
Maximum of Logged Data	5.799	SD of logged Data	1.141

Assuming Lognormal Distribution

95% H-UCL	135.7	90% Chebyshev (MVUE) UCL	126
95% Chebyshev (MVUE) UCL	151.1	97.5% Chebyshev (MVUE) UCL	185.9
99% Chebyshev (MVUE) UCL	254.3		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

99.26	95% Jackknife UCL	98.2	95% CLT UCL
113	95% Bootstrap-t UCL	97.71	95% Standard Bootstrap UCL
100.2	95% Percentile Bootstrap UCL	105.2	95% Hall's Bootstrap UCL
		108.3	95% BCA Bootstrap UCL
143.5	95% Chebyshev(Mean, Sd) UCL	120.8	90% Chebyshev(Mean, Sd) UCL
236.9	99% Chebyshev(Mean, Sd) UCL	175	97.5% Chebyshev(Mean, Sd) UCL

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

Suggested UCL to Use

95% Adjusted Gamma UCL 106.8

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

General Statistics

Lead-2018

Total Number of Observations	13	Number of Distinct Observations	13
		Number of Missing Observations	0
Minimum	5.35	Mean	146.8
Maximum	621	Median	81
SD	191.3	Std. Error of Mean	53.06
Coefficient of Variation	1.303	Skewness	2
	Normal GOF Test		
Shapiro Wilk Test Statistic	0.683	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.866	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.337	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.234	Data Not Normal at 5% Significance Level	

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	241.3	95% Adjusted-CLT UCL (Chen-1995)	265.5
		95% Modified-t UCL (Johnson-1978)	246.2

Gamma GOF Test

A-D Test Statistic	0.435	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.768	Detected data appear Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.19	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.245	Detected data appear Gamma Distributed at 5% Significance Level
Detected data appear (Commo Di	stributed at 5% Significance Level

Detected data appear Gamma Distributed at 5% Significance Level

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

	S	Gamma St	
0.67	k star (bias corrected MLE)	0.804	k hat (MLE)
219.1	Theta star (bias corrected MLE)	182.5	Theta hat (MLE)
17.42	nu star (bias corrected)	20.91	nu hat (MLE)
179.3	MLE Sd (bias corrected)	146.8	MLE Mean (bias corrected)
8.974	Approximate Chi Square Value (0.05)		
8.123	Adjusted Chi Square Value	0.0301	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 284.9

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.949	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.866	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.148	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.234	Data appear Lognormal at 5% Significance Level
Data appear Lognormal at 5% Significance Level		

95% Adjusted Gamma UCL (use when n<50) 314.8

Lognormal Statistics

Minimum of Logged Data	1.677	Mean of logged Data	4.252
Maximum of Logged Data	6.431	SD of logged Data	1.377

Assuming Lognormal Distribution

95% H-UCL	741.6	90% Chebyshev (MVUE) UCL	364.5
95% Chebyshev (MVUE) UCL	456.8	97.5% Chebyshev (MVUE) UCL	584.9
99% Chebyshev (MVUE) UCL	836.6		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

241.3	95% Jackknife UCL	95% CLT UCL	
474.2	95% Bootstrap-t UCL	Standard Bootstrap UCL	
240.5	95% Percentile Bootstrap UCL	5% Hall's Bootstrap UCL	
		5% BCA Bootstrap UCL	
378.1	95% Chebyshev(Mean, Sd) UCL	ebyshev(Mean, Sd) UCL	90
674.7	99% Chebyshev(Mean, Sd) UCL	ebyshev(Mean, Sd) UCL	97.5

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

Suggested UCL to Use

95% Adjusted Gamma UCL 314.8

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

General Statistics

Lead-ALL

Total Number of Observations	39	Number of Distinct Observations	38
		Number of Missing Observations	0
Minimum	5.35	Mean	96.09
Maximum	621	Median	55.6
SD	132.8	Std. Error of Mean	21.27
Coefficient of Variation	1.382	Skewness	2.644
	Normal GOF Test		
Shapiro Wilk Test Statistic	0.663	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.939	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.258	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.14	Data Not Normal at 5% Significance Level	

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)		
95% Student's-t UCL	131.9	95% Adjusted-CLT UCL (Chen-1995)	140.7	
		95% Modified-t UCL (Johnson-1978)	133.4	

Gamma GOF Test

A-D Test Statistic	0.749	Anderson-Darling Gamma GOF Test		
5% A-D Critical Value	0.786	Detected data appear Gamma Distributed at 5% Significance Level		
K-S Test Statistic	0.122	Kolmogorov-Smirnov Gamma GOF Test		
5% K-S Critical Value	0.146	Detected data appear Gamma Distributed at 5% Significance Level		
Detected data appear Gamma Distributed at 5% Significance Loval				

Detected data appear Gamma Distributed at 5% Significance Level

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

		Gamma Statistics	
0.777	k star (bias corrected MLE)	0.824	k hat (MLE)
123.6	Theta star (bias corrected MLE)	116.7	Theta hat (MLE)
60.63	nu star (bias corrected)	64.24	nu hat (MLE)
109	MLE Sd (bias corrected)	96.09	MLE Mean (bias corrected)
43.73	Approximate Chi Square Value (0.05)		
43.16	Adjusted Chi Square Value	0.0437	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50) 133.2

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.969	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.939	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0909	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.14	Data appear Lognormal at 5% Significance Level
Data annear l	ognormal	at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	1.677	Mean of logged Data	3.847
Maximum of Logged Data	6.431	SD of logged Data	1.24

95% Adjusted Gamma UCL (use when n<50) 135

Assuming Lognormal Distribution

95% H-UCL	174	90% Chebyshev (MVUE) UCL	169.6
95% Chebyshev (MVUE) UCL	202.1	97.5% Chebyshev (MVUE) UCL	247.1
99% Chebyshev (MVUE) UCL	335.7		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

131.9	95% Jackknife UCL	CLT UCL	95% CL
151.5	95% Bootstrap-t UCL	strap UCL	95% Standard Bootstra
132.8	95% Percentile Bootstrap UCL	strap UCL	95% Hall's Bootstra
		strap UCL	95% BCA Bootstra
188.8	95% Chebyshev(Mean, Sd) UCL	, Sd) UCL	90% Chebyshev(Mean, So
307.7	99% Chebyshev(Mean, Sd) UCL	, Sd) UCL	97.5% Chebyshev(Mean, Se

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

Suggested UCL to Use

95% Adjusted Gamma UCL 135

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

UCL Statistics for Data Sets with Non-Detects

User Selected Options	;
Date/Time of Computation	ProUCL 5.112/20/2019 12:23:27 PM
From File	PAH compounds.xls
Full Precision	OFF
Confidence Coefficient	95%
Number of Bootstrap Operations	2000

Acenaphthene

General Statistics

Total Number of Observations	48	Number of Distinct Observations	44
		Number of Missing Observations	7
Number of Detects	26	Number of Non-Detects	22
Number of Distinct Detects	25	Number of Distinct Non-Detects	19
Minimum Detect	2.26	Minimum Non-Detect	1.72
Maximum Detect	2520	Maximum Non-Detect	98.6
Variance Detects	502175	Percent Non-Detects	45.83%
Mean Detects	352.1	SD Detects	708.6
Median Detects	24.45	CV Detects	2.012
Skewness Detects	2.445	Kurtosis Detects	5.114
Mean of Logged Detects	3.995	SD of Logged Detects	2.038

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.548	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.92	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.338	Lilliefors GOF Test
5% Lilliefors Critical Value	0.17	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM Mean	192	KM Standard Error of Mean	79.52
KM SD	540.2	95% KM (BCA) UCL	350.8
95% KM (t) UCL	325.5	95% KM (Percentile Bootstrap) UCL	330.7
95% KM (z) UCL	322.8	95% KM Bootstrap t UCL	470.1
90% KM Chebyshev UCL	430.6	95% KM Chebyshev UCL	538.6
97.5% KM Chebyshev UCL	688.6	99% KM Chebyshev UCL	983.3

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

Gamma GOF Tests on Detected Observations Only				
A-D Test Statistic	1.782	Anderson-Darling GOF Test		
5% A-D Critical Value	0.839	Detected Data Not Gamma Distributed at 5% Significance Level		
K-S Test Statistic	0.255	Kolmogorov-Smirnov GOF		
5% K-S Critical Value	0.184	Detected Data Not Gamma Distributed at 5% Significance Level		
Detected Data Not Gamma Distributed at 5% Significance Level				

Gamma Statistics on Detected Data Only

0.343	k star (bias corrected MLE)	0.358	k hat (MLE)
1027	Theta star (bias corrected MLE)	982.4	Theta hat (MLE)
17.82	nu star (bias corrected)	18.64	nu hat (MLE)
		352.1	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

0.01	Mean	190.8
2520	Median	3.35
546.4	CV	2.864
0.148	k star (bias corrected MLE)	0.153
1288	Theta star (bias corrected MLE)	1249
14.22	nu star (bias corrected)	14.67
0.045		
7.03	Adjusted Chi Square Value (14.67, β)	6.866
398	95% Gamma Adjusted UCL (use when n<50)	407.5
	0.01 2520 546.4 1288 14.22 0.045 7.03 398	0.01 Mean 2520 Median 546.4 CV 0.148 k star (bias corrected MLE) 1288 Theta star (bias corrected MLE) 14.22 nu star (bias corrected MLE) 0.045 7.03 398 95% Gamma Adjusted UCL (use when n<50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	192	SD (KM)	540.2
Variance (KM)	291863	SE of Mean (KM)	79.52
k hat (KM)	0.126	k star (KM)	0.132
nu hat (KM)	12.13	nu star (KM)	12.7
theta hat (KM)	1520	theta star (KM)	1451
80% gamma percentile (KM)	186.7	90% gamma percentile (KM)	557.1
95% gamma percentile (KM)	1081	99% gamma percentile (KM)	2641

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (12.70, α)	5.694	Adjusted Chi Square Value (12.70, β)	5.548
95% Gamma Approximate KM-UCL (use when n>=50)	428.4	95% Gamma Adjusted KM-UCL (use when n<50)	439.7

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

Lognormal GOF Test on Detected Observations Only						
Shapiro Wilk Test Statistic	0.933	Shapiro Wilk GOF Test				
5% Shapiro Wilk Critical Value	0.92	Detected Data appear Lognormal at 5% Significance Le	vel			
Lilliefors Test Statistic	0.18	Lilliefors GOF Test				
5% Lilliefors Critical Value	0.17	Detected Data Not Lognormal at 5% Significance Leve	el			
Detected Data appear A	pproximat	e Lognormal at 5% Significance Level				
Lognormal RO	S Statistics	Lising Imputed Non-Detects				
Mean in Original Scale	101 1		1 889			
SD in Original Scale	546.3	SD in Log Scale	2 798			
95% t LICL (assumes normality of BOS data)	323.4	95% Percentile Bootstran LICI	333.5			
95% BCA Bootstran UCI	361.4	95% Bootstrap t UCI	464 1			
95% H-UCL (Log ROS)	2303		101.1			
Statistics using KM estimates	on Logged	Data and Assuming Lognormal Distribution				
KM Mean (logged)	2.496	KM Geo Mean	12.13			
KM SD (logged)	2.227	95% Critical H Value (KM-Log)	3.921			
KM Standard Error of Mean (logged)	0.332	95% H-UCL (KM -Log)	517.5			
KM SD (logged)	2.227	95% Critical H Value (KM-Log)	3.921			
KM Standard Error of Mean (logged)	0.332					
	DL/2	Statistics				
DL/2 Normal		DL/2 Log-Transformed				
Mean in Original Scale	193.3	Mean in Log Scale	2.552			
SD in Original Scale	545.6	SD in Log Scale	2.315			
95% t UCL (Assumes normality)	325.4	95% H-Stat UCL	733.6			
DL/2 is not a recommended me	ethod, prov	vided for comparisons and historical reasons				
Nonparame	tric Distrib	ution Free UCL Statistics				

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

97.5% KM (Chebyshev) UCL 688.6

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL.

Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

Acenaphthylene

General Statistics

Total Number of Observations	48	Number of Distinct Observations	42
		Number of Missing Observations	7
Number of Detects	3	Number of Non-Detects	45
Number of Distinct Detects	3	Number of Distinct Non-Detects	39
Minimum Detect	2.2	Minimum Non-Detect	1.72
Maximum Detect	5.47	Maximum Non-Detect	2050
Variance Detects	2.965	Percent Non-Detects	93.75%
Mean Detects	3.523	SD Detects	1.722
Median Detects	2.9	CV Detects	0.489
Skewness Detects	1.416	Kurtosis Detects	N/A
Mean of Logged Detects	1.184	SD of Logged Detects	0.467

Warning: Data set has only 3 Detected Values.

This is not enough to compute meaningful or reliable statistics and estimates.

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.902	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.767	Detected Data appear Normal at 5% Significance Level
Lilliefors Test Statistic	0.308	Lilliefors GOF Test
5% Lilliefors Critical Value	0.425	Detected Data appear Normal at 5% Significance Level
Detected Data appear Normal at 5% Significance Level		

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

2.026	KM Standard Error of Mean	0.256
0.885	95% KM (BCA) UCL	N/A
2.456	95% KM (Percentile Bootstrap) UCL	N/A
2.448	95% KM Bootstrap t UCL	N/A
2.795	95% KM Chebyshev UCL	3.144
3.627	99% KM Chebyshev UCL	4.577
	2.026 0.885 2.456 2.448 2.795 3.627	2.026KM Standard Error of Mean0.88595% KM (BCA) UCL2.45695% KM (Percentile Bootstrap) UCL2.44895% KM Bootstrap t UCL2.79595% KM Chebyshev UCL3.62799% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

Not Enough Data to Perform GOF Test

Gamma Statistics on Detected Data Only

N/A	k star (bias corrected MLE)	6.806	k hat (MLE)
N/A	Theta star (bias corrected MLE)	0.518	Theta hat (MLE)
N/A	nu star (bias corrected)	40.84	nu hat (MLE)
		3.523	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	0.254
Maximum	5.47	Median	0.01
SD	0.94	CV	3.694
k hat (MLE)	0.255	k star (bias corrected MLE)	0.253
Theta hat (MLE)	0.997	Theta star (bias corrected MLE)	1.005
nu hat (MLE)	24.49	nu star (bias corrected)	24.3
Adjusted Level of Significance (β)	0.045		
Approximate Chi Square Value (24.30, α)	14.07	Adjusted Chi Square Value (24.30, β)	13.83
95% Gamma Approximate UCL (use when n>=50)	0.439	95% Gamma Adjusted UCL (use when n<50)	N/A

Estimates of Gamma Parameters using KM Estimates

0.885	SD (KM)	2.026	Mean (KM)
0.256	SE of Mean (KM)	0.783	Variance (KM)
4.929	k star (KM)	5.242	k hat (KM)
473.2	nu star (KM)	503.3	nu hat (KM)
0.411	theta star (KM)	0.387	theta hat (KM)
3.248	90% gamma percentile (KM)	2.728	80% gamma percentile (KM)
4.726	99% gamma percentile (KM)	3.723	95% gamma percentile (KM)

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (473.16, α)	423.7	Adjusted Chi Square Value (473.16, β)	422.3
95% Gamma Approximate KM-UCL (use when n>=50)	2.263	95% Gamma Adjusted KM-UCL (use when n<50)	2.27

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.951	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.767	Detected Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.268	Lilliefors GOF Test
5% Lilliefors Critical Value	0.425	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

-0.393	Mean in Log Scale	0.814	Mean in Original Scale
0.505	SD in Log Scale	0.816	SD in Original Scale
1.022	95% Percentile Bootstrap UCL	1.012	95% t UCL (assumes normality of ROS data)
1.313	95% Bootstrap t UCL	1.109	95% BCA Bootstrap UCL
		0.882	95% H-UCL (Log ROS)

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

KM Mean (logged)	0.652	KM Geo Mean	1.919
KM SD (logged)	0.286	95% Critical H Value (KM-Log)	1.794
KM Standard Error of Mean (logged)	0.0832	95% H-UCL (KM -Log)	2.155
KM SD (logged)	0.286	95% Critical H Value (KM-Log)	1.794
KM Standard Error of Mean (logged)	0.0832		

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transfo	rmed	
Mean in Original Scale	55.3	Mean in Log Scale	1.839
SD in Original Scale	175.4	SD in Log Scale	1.814
95% t UCL (Assumes normality)	97.78	95% H-Stat UCL	78.97
DL/2 is not a recommended method, provided for comparisons and historical reasons			

Nonparametric Distribution Free UCL Statistics

Detected Data appear Normal Distributed at 5% Significance Level

Suggested UCL to Use

95% KM (t) UCL 2.456

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Anthracene

General Statistics

48	Number of Distinct Observations	48	Total Number of Observations
7	Number of Missing Observations		
1	Number of Non-Detects	47	Number of Detects
1	Number of Distinct Non-Detects	47	Number of Distinct Detects
18.2	Minimum Non-Detect	0.403	Minimum Detect
18.2	Maximum Non-Detect	9400	Maximum Detect
2.083%	Percent Non-Detects	4508121	Variance Detects
2123	SD Detects	743.1	Mean Detects
2.857	CV Detects	33.2	Median Detects
11.06	Kurtosis Detects	3.427	Skewness Detects
2.53	SD of Logged Detects	3.677	Mean of Logged Detects

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

Normal GOF Test on Detects Only				
Shapiro Wilk Test Statistic	0.397	Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value	0.946	Detected Data Not Normal at 5% Significance Level		
Lilliefors Test Statistic	0.418	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.128	Detected Data Not Normal at 5% Significance Level		
Detected Data	a Not Norn	nal at 5% Significance Level		
Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs				
KM Mean	727.7	KM Standard Error of Mean	303.6	
KM SD	2081	95% KM (BCA) UCL	1286	
95% KM (t) UCL	1237	95% KM (Percentile Bootstrap) UCL	1243	
95% KM (z) UCL	1227	95% KM Bootstrap t UCL	1740	
90% KM Chebyshev UCL	1639	95% KM Chebyshev UCL	2051	
97.5% KM Chebyshev UCL	2624	99% KM Chebyshev UCL	3749	
Gamma GOF Tests on Detected Observations Only				

Anderson-Darling GOF Test	3.843	A-D Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.89	5% A-D Critical Value
Kolmogorov-Smirnov GOF	0.247	K-S Test Statistic
Detected Data Not Gamma Distributed at 5% Significance Level	0.142	5% K-S Critical Value

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

0.242	k star (bias corrected MLE)	0.243	k hat (MLE)
3073	Theta star (bias corrected MLE)	3056	Theta hat (MLE)
22.73	nu star (bias corrected)	22.86	nu hat (MLE)
		743.1	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	727.6
Maximum	9400	Median	30.65
SD	2103	CV	2.891
k hat (MLE)	0.233	k star (bias corrected MLE)	0.232
Theta hat (MLE)	3125	Theta star (bias corrected MLE)	3134
nu hat (MLE)	22.35	nu star (bias corrected)	22.29
Adjusted Level of Significance (β)	0.045		
Approximate Chi Square Value (22.29, α)	12.56	Adjusted Chi Square Value (22.29, β)	12.33
95% Gamma Approximate UCL (use when n>=50)	1292	95% Gamma Adjusted UCL (use when n<50)	1315

Estimates of Gamma Parameters using KM Estimates

Mean (KM) 727.7
Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

Variance (KM)	4331353	SE of Mean (KM)	303.6
k hat (KM)	0.122	k star (KM)	0.129
nu hat (KM)	11.74	nu star (KM)	12.34
theta hat (KM)	5952	theta star (KM)	5663
80% gamma percentile (KM)	687.1	90% gamma percentile (KM)	2098
95% gamma percentile (KM)	4114	99% gamma percentile (KM)	10165
Gamm	a Kaplan-Me	eier (KM) Statistics	
Approximate Chi Square Value (12.34, α)	5.45	Adjusted Chi Square Value (12.34, β)	5.308
95% Gamma Approximate KM-UCL (use when n>=50)	1647	95% Gamma Adjusted KM-UCL (use when n<50)	1691
Lognormal GO	F Test on D	etected Observations Only	
Shapiro Wilk Test Statistic	0.963	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.946	Detected Data appear Lognormal at 5% Significance Le	evel
Lilliefors Test Statistic	0.0821	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.128	Detected Data appear Lognormal at 5% Significance Le	vel
Detected Data ap	pear Lognor	mal at 5% Significance Level	
Lognormal RO	S Statistics l	Jsing Imputed Non-Detects	
Mean in Original Scale	727.7	Mean in Log Scale	3.631
SD in Original Scale	2103	SD in Log Scale	2.523
95% t UCL (assumes normality of ROS data)	1237	95% Percentile Bootstrap UCL	1256
95% BCA Bootstrap UCL	1365	95% Bootstrap t UCL	1646
95% H-UCL (Log ROS)	4511		
Statistics using KM estimates	on Logged D	Data and Assuming Lognormal Distribution	
KM Mean (logged)	3.628	KM Geo Mean	37.63
KM SD (logged)	2.505	95% Critical H Value (KM-Log)	4.322
KM Standard Error of Mean (logged)	0.366	95% H-UCL (KM -Log)	4209
KM SD (logged)	2.505	95% Critical H Value (KM-Log)	4.322
KM Standard Error of Mean (logged)	0.366		
	DL/2 St	atistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	727.8	Mean in Log Scale	3.646
SD in Original Scale	2103	SD in Log Scale	2.512
95% t UCL (Assumes normality)	1237	95% H-Stat UCL	4399
DL/2 is not a recommended mo	ethod, provid	led for comparisons and historical reasons	

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

97.5% KM (Chebyshev) UCL 2624

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(a)anthracene

	General Statistics		
Total Number of Observations	48	Number of Distinct Observations	47
		Number of Missing Observations	7
Minimum	2.29	Mean	4684
Maximum	62000	Median	228.5
SD	13031	Std. Error of Mean	1881
Coefficient of Variation	2.782	Skewness	3.517

Normal GOF Test

Shapiro Wilk Test Statistic	0.411	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.947	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.391	Lilliefors GOF Test
5% Lilliefors Critical Value	0.127	Data Not Normal at 5% Significance Level
- · · · · · · · · · · · · · · · · · · ·		

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	7840	95% Adjusted-CLT UCL (Chen-1995)	8798
		95% Modified-t UCL (Johnson-1978)	7999
	Gamma GOF Test		
A-D Test Statistic	3.002	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.887	Data Not Gamma Distributed at 5% Significance Leve	əl
K-S Test Statistic	0.217	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.14	Data Not Gamma Distributed at 5% Significance Leve	કો

Data Not Gamma Distributed at 5% Significance Level

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

	Gamma Statistics		
k hat (MLE)	0.25	k star (bias corrected MLE)	0.248
Theta hat (MLE)	18749	Theta star (bias corrected MLE)	18879
nu hat (MLE)	23.98	nu star (bias corrected)	23.82
MLE Mean (bias corrected)	4684	MLE Sd (bias corrected)	9403
		Approximate Chi Square Value (0.05)	13.71
Adjusted Level of Significance	0.045	Adjusted Chi Square Value	13.47

95% Adjusted Gamma UCL (use when n<50) 8281

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 8137

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.971	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.947	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0557	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.127	Data appear Lognormal at 5% Significance Level
Data anno 1		

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.829	Mean of logged Data	5.608
Maximum of Logged Data	11.03	SD of logged Data	2.603

Assuming Lognormal Distribution

95% H-UCL	43914	90% Chebyshev (MVUE) UCL	17005
95% Chebyshev (MVUE) UCL	21901	97.5% Chebyshev (MVUE) UCL	28696
99% Chebyshev (MVUE) UCL	42044		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

7840	95% Jackknife UCL	777	95% CLT UCL	
11546	95% Bootstrap-t UCL	784	95% Standard Bootstrap UCL	ę
7787	95% Percentile Bootstrap UCL	791	95% Hall's Bootstrap UCL	
		887	95% BCA Bootstrap UCL	
12882	95% Chebyshev(Mean, Sd) UCL	1032	90% Chebyshev(Mean, Sd) UCL	90%
23398	99% Chebyshev(Mean, Sd) UCL	1643	7.5% Chebyshev(Mean, Sd) UCL	97.5%

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

Suggested UCL to Use

97.5% Chebyshev (Mean, Sd) UCL 16430

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(a)pyrene

	General Statistics		
Total Number of Observations	48	Number of Distinct Observations	48
		Number of Missing Observations	7
Minimum	1.87	Mean	6019
Maximum	81000	Median	319.5
SD	16827	Std. Error of Mean	2429
Coefficient of Variation	2.795	Skewness	3.581
	Normal GOF Test		
Shapiro Wilk Test Statistic	0.409	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.947	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.398	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.127	Data Not Normal at 5% Significance Level	
Data Not	Normal at 5% Signific	ance Level	

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	10095	95% Adjusted-CLT UCL (Chen-1995)	11356
		95% Modified-t UCL (Johnson-1978)	10304
	Gamma GOF Test		
A-D Test Statistic	2.612	Anderson-Darling Gamma GOF Test	

5% A-D Critical Value	0.89	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.197	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.141	Data Not Gamma Distributed at 5% Significance Level
Data National	- Distance	

Data Not Gamma Distributed at 5% Significance Level

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

	Gamma Statistics		
k hat (MLE)	0.244	k star (bias corrected MLE)	0.243
Theta hat (MLE)	24662	Theta star (bias corrected MLE)	24801
nu hat (MLE)	23.43	nu star (bias corrected)	23.3
MLE Mean (bias corrected)	6019	MLE Sd (bias corrected)	12218
		Approximate Chi Square Value (0.05)	13.32
Adjusted Level of Significance	0.045	Adjusted Chi Square Value	13.08

95% Adjusted Gamma UCL (use when n<50) 10720

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 10531

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.973	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.947	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0551	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.127	Data appear Lognormal at 5% Significance Level
Data annear		et E% Cignificance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.626	Mean of logged Data	5.781
Maximum of Logged Data	11.3	SD of logged Data	2.73

Assuming Lognormal Distribution

95% H-UCL	85857	90% Chebyshev (MVUE) UCL	28130
95% Chebyshev (MVUE) UCL	36389	97.5% Chebyshev (MVUE) UCL	47851
99% Chebyshev (MVUE) UCL	70366		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

10095	95% Jackknife UCL	10014	95% CLT UCL	
14567	95% Bootstrap-t UCL	9984	95% Standard Bootstrap UCL	g
10325	95% Percentile Bootstrap UCL	10646	95% Hall's Bootstrap UCL	
		11742	95% BCA Bootstrap UCL	
16606	95% Chebyshev(Mean, Sd) UCL	13306	90% Chebyshev(Mean, Sd) UCL	90%
30186	99% Chebyshev(Mean, Sd) UCL	21187	.5% Chebyshev(Mean, Sd) UCL	97.5%

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

Suggested UCL to Use

97.5% Chebyshev (Mean, Sd) UCL 21187

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(b)fluoranthene

	General Statistics		
Total Number of Observations	48	Number of Distinct Observations	45
		Number of Missing Observations	7
Minimum	3.28	Mean	6882
Maximum	110000	Median	459.5
SD	20232	Std. Error of Mean	2920
Coefficient of Variation	2.94	Skewness	4.209
	Normal GOF Test		
Shapiro Wilk Test Statistic	0.388	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.947	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.381	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.127	Data Not Normal at 5% Significance Level	
Data Not	t Normal at 5% Significan	ce Level	

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)
95% Student's-t UCL 11782	95% Adjusted-CLT UCL (Chen-1995) 13581
	95% Modified-t UCL (Johnson-1978) 12078
Gamma GOF T	est

A-D Test Statistic	2.965	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.879	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.228	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.14	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

	a Statistics	Gamm	
0.263	k star (bias corrected MLE)	0.265	k hat (MLE)
26204	Theta star (bias corrected MLE)	25938	Theta hat (MLE)
25.21	nu star (bias corrected)	25.47	nu hat (MLE)
13429	MLE Sd (bias corrected)	6882	MLE Mean (bias corrected)
14.78	Approximate Chi Square Value (0.05)		
14.53	Adjusted Chi Square Value	0.045	Adjusted Level of Significance

95% Adjusted Gamma UCL (use when n<50) 11945

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 11745

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.974	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.947	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0927	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.127	Data appear Lognormal at 5% Significance Level
Data annear l	agnormal	et E% Cignificance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	1.188	Mean of logged Data	6.185
Maximum of Logged Data	11.61	SD of logged Data	2.467

Assuming Lognormal Distribution

95% H-UCL	47220	90% Chebyshev (MVUE) UCL	21509
95% Chebyshev (MVUE) UCL	27558	97.5% Chebyshev (MVUE) UCL	35953
99% Chebyshev (MVUE) UCL	52443		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

11782	95% Jackknife UCL	11686	95% CLT UCL	
20721	95% Bootstrap-t UCL	11682	95% Standard Bootstrap UCL	9
12158	95% Percentile Bootstrap UCL	30972	95% Hall's Bootstrap UCL	
		13682	95% BCA Bootstrap UCL	
19611	95% Chebyshev(Mean, Sd) UCL	15643	90% Chebyshev(Mean, Sd) UCL	90%
35938	99% Chebyshev(Mean, Sd) UCL	25119	7.5% Chebyshev(Mean, Sd) UCL	97.5%

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

Suggested UCL to Use

97.5% Chebyshev (Mean, Sd) UCL 25119

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(g,h,i)perylene

	General Statistics		
Total Number of Observations	48	Number of Distinct Observations	48
		Number of Missing Observations	7
Number of Detects	47	Number of Non-Detects	1
Number of Distinct Detects	47	Number of Distinct Non-Detects	1
Minimum Detect	1.57	Minimum Non-Detect	9.03
Maximum Detect	51000	Maximum Non-Detect	9.03
Variance Detects	98498066	Percent Non-Detects	2.083%
Mean Detects	3555	SD Detects	9925
Median Detects	190	CV Detects	2.791
Skewness Detects	3.832	Kurtosis Detects	14.95
Mean of Logged Detects	5.454	SD of Loaged Detects	2.601

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.411	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.946	Detected Data Not Normal at 5% Significance Leve	el
Lilliefors Test Statistic	0.384	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.128	Detected Data Not Normal at 5% Significance Leve	el

Detected Data Not Normal at 5% Significance Level

Kaplan-Meier (KM) Statistics using Normal Critical Values and other Nonparametric UCLs

KM SD 9729 95% KM (BCA) UCL 60 95% KM (t) UCL 5863 95% KM (Percentile Bootstrap) UCL 59 95% KM (z) UCL 5816 95% KM Bootstrap t UCL 85 90% KM Chebyshev UCL 7740 95% KM Chebyshev UCL 96	KM Mean	3481	KM Standard Error of Mean	1419
95% KM (t) UCL 5863 95% KM (Percentile Bootstrap) UCL 59 95% KM (z) UCL 5816 95% KM Bootstrap t UCL 85 90% KM Chebyshev UCL 7740 95% KM Chebyshev UCL 96	KM SD	9729	95% KM (BCA) UCL	6025
95% KM (z) UCL 5816 95% KM Bootstrap t UCL 85 90% KM Chebyshev UCL 7740 95% KM Chebyshev UCL 96	95% KM (t) UCL	5863	95% KM (Percentile Bootstrap) UCL	5966
90% KM Chebyshev UCL 7740 95% KM Chebyshev UCL 96	95% KM (z) UCL	5816	95% KM Bootstrap t UCL	8558
	90% KM Chebyshev UCL	7740	95% KM Chebyshev UCL	9669
97.5% KM Chebyshev UCL 12346 99% KM Chebyshev UCL 176	97.5% KM Chebyshev UCL	12346	99% KM Chebyshev UCL	17605

Gamma GOF Tests on Detected Observations Only

nce Level
nce Level
r

Detected Data Not Gamma Distributed at 5% Significance Level

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

Gamma Statistics on Detected Data Only

0.257	k star (bias corrected MLE)	0.259	k hat (MLE)
13835	Theta star (bias corrected MLE)	13708	Theta hat (MLE)
24.16	nu star (bias corrected)	24.38	nu hat (MLE)
		3555	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

3481	Mean	0.01	Minimum
175	Median	51000	Maximum
2.824	CV	9832	SD
0.243	k star (bias corrected MLE)	0.245	k hat (MLE)
14302	Theta star (bias corrected MLE)	14219	Theta hat (MLE)
23.37	nu star (bias corrected)	23.5	nu hat (MLE)
		0.045	Adjusted Level of Significance (β)
13.13	Adjusted Chi Square Value (23.37, β)	13.37	Approximate Chi Square Value (23.37, α)
6194	95% Gamma Adjusted UCL (use when n<50)	6085	95% Gamma Approximate UCL (use when n>=50)

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	3481	SD (KM)	9729
Variance (KM)	94651214	SE of Mean (KM)	1419
k hat (KM)	0.128	k star (KM)	0.134
nu hat (KM)	12.29	nu star (KM)	12.86
theta hat (KM)	27187	theta star (KM)	25993
80% gamma percentile (KM)	3426	90% gamma percentile (KM)	10126
95% gamma percentile (KM)	19553	99% gamma percentile (KM)	47584

Gamma Kaplan-Meier (KM) Statistics

Approximate Chi Square Value (12.86, α)	5.797	Adjusted Chi Square Value (12.86, β)	5.65
95% Gamma Approximate KM-UCL (use when n>=50)	7721	95% Gamma Adjusted KM-UCL (use when n<50)	7923

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.976	Shapiro Wilk GOF Test		
5% Shapiro Wilk Critical Value	0.946	Detected Data appear Lognormal at 5% Significance Level		
Lilliefors Test Statistic	0.0604	Lilliefors GOF Test		
5% Lilliefors Critical Value	0.128	Detected Data appear Lognormal at 5% Significance Level		
Detected Data appear Lognormal at 5% Significance Level				

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

Lognormal ROS Statistics Using Imputed Non-Detects

3481	Mean in Log Scale	5.363
9832	SD in Log Scale	2.648
5863	95% Percentile Bootstrap UCL	6124
7041	95% Bootstrap t UCL	8884
0987		
3 9 5 7	481 832 863 041 0987	481Mean in Log Scale832SD in Log Scale86395% Percentile Bootstrap UCL04195% Bootstrap t UCL0987

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

5.366	KM Geo Mean	214.1
2.618	95% Critical H Value (KM-Log)	4.487
0.382	95% H-UCL (KM -Log)	36546
2.618	95% Critical H Value (KM-Log)	4.487
0.382		
	5.366 2.618 0.382 2.618 0.382	5.366 KM Geo Mean 2.618 95% Critical H Value (KM-Log) 0.382 95% H-UCL (KM -Log) 2.618 95% Critical H Value (KM-Log) 0.382 95% Critical H Value (KM-Log)

DL/2 Statistics

DL/2 Normal	DL/2 Log-Transformed				
Mean in Original Scale	3481	Mean in Log Scale	5.372		
SD in Original Scale	9832	SD in Log Scale	2.635		
95% t UCL (Assumes normality)	5863	95% H-Stat UCL	39297		

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

97.5% KM (Chebyshev) UCL 12346

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Benzo(k)fluoranthene

General Statistics

Total Number of Observations	48	Number of Distinct Observations	47
		Number of Missing Observations	7
Minimum	1.13	Mean	2913
Maximum	43000	Median	195
SD	8223	Std. Error of Mean	1187
Coefficient of Variation	2.823	Skewness	3.742

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

	Normal GO	F Test
Shapiro Wilk Test Statistic	0.41	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.947	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.392	Lilliefors GOF Test
5% Lilliefors Critical Value	0.127	Data Not Normal at 5% Significance Level
Data Not	Normal at 5%	Significance Level
AS	suming Norma	Distribution
95% Student's t UC	4905	95% Adjusted CLT LICL (Chen-1995) 5551
33 % Student S-COCE	4900	95% Modified + LICL (Johnson 1933) 5012
		33 % Modified-1 OCE (301115011-1978) 3012
	Gamma GO	F Test
A-D Test Statistic	3.03	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.884	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.219	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.14	Data Not Gamma Distributed at 5% Significance Level
Data Not Gam	na Distributed	at 5% Significance Level
	Gamma Sta	atistics
k hat (MLE)	0.256	k star (bias corrected MLE) 0.254
Theta hat (MLE)	11361	Theta star (bias corrected MLE) 11456
nu hat (MLE)	24.62	nu star (bias corrected) 24.41
MLE Mean (bias corrected)	2913	MLE Sd (bias corrected) 5777
		Approximate Chi Square Value (0.05) 14.16
Adjusted Level of Significance	0.045	Adjusted Chi Square Value 13.92
Ase	suming Gamma	a Distribution
95% Approximate Gamma UCL (use when n>=50))	5022	95% Adjusted Gamma UCL (use when n<50) 5109
	Lognormal G	OF Test
Shapiro Wilk Test Statistic	0.973	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.947	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0844	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.127	Data appear Lognormal at 5% Significance Level
Data appear	Lognormal at	5% Significance Level
	Lognormal S	tatistics

Minimum of Logged Data Maximum of Logged Data 0.122

10.67

5.219

2.543

Mean of logged Data

SD of logged Data

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

Assuming Lognormal Distribution

95% H-UCL 23717 95% Chebyshev (MVUE) UCL 12706 99% Chebyshev (MVUE) UCL 24301 90% Chebyshev (MVUE) UCL 9887 97.5% Chebyshev (MVUE) UCL 16617

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

4905	95% Jackknife UCL	4866	95% CLT UCL
6912	95% Bootstrap-t UCL	4841	95% Standard Bootstrap UCL
4995	95% Percentile Bootstrap UCL	5185	95% Hall's Bootstrap UCL
		5466	95% BCA Bootstrap UCL
8087	95% Chebyshev(Mean, Sd) UCL	6474	90% Chebyshev(Mean, Sd) UCL
14723	99% Chebyshev(Mean, Sd) UCL	10326	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

97.5% Chebyshev (Mean, Sd) UCL 10326

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Chrysene

	General Statistics		
Total Number of Observations	48	Number of Distinct Observations	48
		Number of Missing Observations	7
Minimum	2.94	Mean	5669
Maximum	76000	Median	299.5
SD	15856	Std. Error of Mean	2289
Coefficient of Variation	2.797	Skewness	3.519
	Normal GOF Test		

0.409	Shapiro Wilk GOF Test
0.947	Data Not Normal at 5% Significance Level
0.39	Lilliefors GOF Test
0.127	Data Not Normal at 5% Significance Level
	0.409 0.947 0.39 0.127

Data Not Normal at 5% Significance Level

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

As	suming Norn	nal Distribution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	9509	95% Adjusted-CLT UCL (Chen-1995)	10676
		95% Modified-t UCL (Johnson-1978)	9703
	Gamma (GOF Test	
A-D Test Statistic	3.188	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.885	Data Not Gamma Distributed at 5% Significance Leve	el
K-S Test Statistic	0.222	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.14	Data Not Gamma Distributed at 5% Significance Leve	el
Data Not Gam	ma Distribute	d at 5% Significance Level	
	Gamma S	Statistics	
k hat (MLE)	0.254	k star (bias corrected MLE)	0.252
Theta hat (MLE)	22344	Theta star (bias corrected MLE)	22519
nu hat (MLE)	24.36	nu star (bias corrected)	24.17
MLE Mean (bias corrected)	5669	MLE Sd (bias corrected)	11299
		Approximate Chi Square Value (0.05)	13.98
Adjusted Level of Significance	0.045	Adjusted Chi Square Value	13.73
As	sumina Gam	ma Distribution	
95% Approximate Gamma UCL (use when n>=50))	9803	95% Adjusted Gamma UCL (use when n<50)	9975
	lognormal	COE Toet	
Shaniro Wilk Test Statistic		Shaniro Wilk ognormal GOF Test	
5% Shapiro Wilk Critical Value	0.303	Data annear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.0741	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.127	Data appear Lognormal at 5% Significance Level	
Data appea	Lognormal a	at 5% Significance Level	
	Lognormol	Statistics	
Minimum of Loggod Data		Stausucs	5 95
Maximum of Logged Data	11.076	SD of logged Data	2.54
Maxinum of Logged Data	11.24		2.54
Ass	uming Logno	rmal Distribution	
95% H-UCL	44132	90% Chebyshev (MVUE) UCL	18459
95% Chebyshev (MVUE) UCL	23718	97.5% Chebyshev (MVUE) UCL	31017
99% Chebyshev (MVUE) UCL	45354		
Nonparamo	etric Distribut	ion Free UCL Statistics	

Data appear to follow a Discernible Distribution at 5% Significance Level

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

Nonparametric Distribution Free UCLs

 95% CLT UCL
 9433

 95% Standard Bootstrap UCL
 9387

 95% Hall's Bootstrap UCL
 9519

 95% BCA Bootstrap UCL
 11209

 90% Chebyshev(Mean, Sd) UCL
 12535

 97.5% Chebyshev(Mean, Sd) UCL
 19961

95% Jackknife UCL 9509 95% Bootstrap-t UCL 12807 95% Percentile Bootstrap UCL 9773 95% Chebyshev(Mean, Sd) UCL 15645 99% Chebyshev(Mean, Sd) UCL 28441

Suggested UCL to Use

97.5% Chebyshev (Mean, Sd) UCL 19961

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Openanal Obstiction

Dibenz(a,h)anthracene

	General Statistics		
Total Number of Observations	48	Number of Distinct Observations	46
		Number of Missing Observations	7
Number of Detects	42	Number of Non-Detects	6
Number of Distinct Detects	41	Number of Distinct Non-Detects	5
Minimum Detect	1.21	Minimum Non-Detect	1.75
Maximum Detect	15000	Maximum Non-Detect	98.6
Variance Detects	7769539	Percent Non-Detects	12.5%
Mean Detects	1055	SD Detects	2787
Median Detects	86	CV Detects	2.641
Skewness Detects	3.863	Kurtosis Detects	16.26
Mean of Logged Detects	4.52	SD of Logged Detects	2.409

Normal GOF Test on Detects Only

Shapiro Wilk Test Statistic	0.434	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.942	Detected Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.372	Lilliefors GOF Test
5% Lilliefors Critical Value	0.135	Detected Data Not Normal at 5% Significance Level

Detected Data Not Normal at 5% Significance Level

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

Kai	olan-Meier ('KM)	Statistics using	o Normal	Critical	Values	and other	Non	parametric	UCLs
			etadou o aom	,	U IIIUUU				paramoaro	

KM Mean	924.1	KM Standard Error of Mean	379.7
KM SD	2599	95% KM (BCA) UCL	1633
95% KM (t) UCL	1561	95% KM (Percentile Bootstrap) UCL	1628
95% KM (z) UCL	1549	95% KM Bootstrap t UCL	2346
90% KM Chebyshev UCL	2063	95% KM Chebyshev UCL	2579
7.5% KM Chebyshev UCL	3296	99% KM Chebyshev UCL	4702

Gamma GOF Tests on Detected Observations Only

Anderson-Darling GOF Test	2.23	A-D Test Statistic		
Detected Data Not Gamma Distributed at 5% Significance Leve	0.867	5% A-D Critical Value		
Kolmogorov-Smirnov GOF	0.206	K-S Test Statistic		
Detected Data Not Gamma Distributed at 5% Significance Leve	0.149	5% K-S Critical Value		
Detected Data Not Gamma Distributed at 5% Significance Level				

Gamma Statistics on Detected Data Only

0.28	k star (bias corrected MLE)	0.285	k hat (MLE)
3764	Theta star (bias corrected MLE)	3704	Theta hat (MLE)
23.55	nu star (bias corrected)	23.93	nu hat (MLE)
		1055	Mean (detects)

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

Minimum	0.01	Mean	923.4
Maximum	15000	Median	47.35
SD	2627	CV	2.845
k hat (MLE)	0.212	k star (bias corrected MLE)	0.212
Theta hat (MLE)	4365	Theta star (bias corrected MLE)	4351
nu hat (MLE)	20.31	nu star (bias corrected)	20.37
Adjusted Level of Significance (β)	0.045		
Approximate Chi Square Value (20.37, α)	11.13	Adjusted Chi Square Value (20.37, β)	10.91
95% Gamma Approximate UCL (use when n>=50)	1691	95% Gamma Adjusted UCL (use when n<50)	1724

Estimates of Gamma Parameters using KM Estimates

Mean (KM)	924.1	SD (KM)	2599
Variance (KM)	6757000	SE of Mean (KM)	379.7
k hat (KM)	0.126	k star (KM)	0.132
nu hat (KM)	12.13	nu star (KM)	12.71
theta hat (KM)	7312	theta star (KM)	6981
80% gamma percentile (KM)	898.8	90% gamma percentile (KM)	2681
95% gamma percentile (KM)	5200	99% gamma percentile (KM)	12709

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

Gamma	Kaplan-Meier	(KM)) Statistics
-------	--------------	------	--------------

Adjusted Chi Square Value (12.71, β)		
95% Gamma Adjusted KM-UCL (use when n<50)	2115	

 $\label{eq:approximate Chi Square Value (12.71, \alpha) \qquad 5.696 \\ 95\% \mbox{ Gamma Approximate KM-UCL (use when n>=50) } 2061 \\$

Lognormal GOF Test on Detected Observations Only

Shapiro Wilk Test Statistic	0.927	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.942	Detected Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0665	Lilliefors GOF Test
5% Lilliefors Critical Value	0.135	Detected Data appear Lognormal at 5% Significance Level

Detected Data appear Approximate Lognormal at 5% Significance Level

Lognormal ROS Statistics Using Imputed Non-Detects

Mean in Original Scale	923.8	Mean in Log Scale	4.01
SD in Original Scale	2627	SD in Log Scale	2.668
95% t UCL (assumes normality of ROS data)	1560	95% Percentile Bootstrap UCL	1626
95% BCA Bootstrap UCL	1875	95% Bootstrap t UCL	2296
95% H-UCL (Log ROS)	11438		

Statistics using KM estimates on Logged Data and Assuming Lognormal Distribution

58	KM Geo Mean	4.06	KM Mean (logged)
4.409	95% Critical H Value (KM-Log)	2.564	KM SD (logged)
8086	95% H-UCL (KM -Log)	0.377	KM Standard Error of Mean (logged)
4.409	95% Critical H Value (KM-Log)	2.564	KM SD (logged)
		0.377	KM Standard Error of Mean (logged)

DL/2 Statistics

DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scal	924.7	Mean in Log Scale	4.101
SD in Original Scal	2627	SD in Log Scale	2.569
95% t UCL (Assumes normality) 1561	95% H-Stat UCL	8575

DL/2 is not a recommended method, provided for comparisons and historical reasons

Nonparametric Distribution Free UCL Statistics

Detected Data appear Approximate Lognormal Distributed at 5% Significance Level

Suggested UCL to Use

97.5% KM (Chebyshev) UCL 3296

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

Fluoranthene

General Statistics

Total Number of Observations	48	Number of Distinct Observations	47
		Number of Missing Observations	7
Minimum	4.59	Mean	7171
Maximum	86000	Median	345.5
SD	19840	Std. Error of Mean	2864
Coefficient of Variation	2.767	Skewness	3.356

Normal GOF Test

Shapiro Wilk Test Statistic	0.405	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.947	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.391	Lilliefors GOF Test
5% Lilliefors Critical Value	0.127	Data Not Normal at 5% Significance Level
Barra Mara		te strategie and the state

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL

95% Student's-t UCL 11976

95% UCLs (Adjusted for Skewness) 95% Adjusted-CLT UCL (Chen-1995) 13364

95% Modified-t UCL (Johnson-1978) 12207

95% Adjusted Gamma UCL (use when n<50) 12596

Gamma GOF Test

A-D Test Statistic	3.376	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.884	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.23	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.14	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

0.253	k star (bias corrected MLE)	0.255	k hat (MLE)
28335	Theta star (bias corrected MLE)	28106	Theta hat (MLE)
24.3	nu star (bias corrected)	24.49	nu hat (MLE)
14255	MLE Sd (bias corrected)	7171	MLE Mean (bias corrected)
14.07	Approximate Chi Square Value (0.05)		
13.83	Adjusted Chi Square Value	0.045	Adjusted Level of Significance

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 12380

Lognormal GOF Test

0.967	Shapiro Wilk Lognormal GOF Test
0.947	Data appear Lognormal at 5% Significance Level
0.0599	Lilliefors Lognormal GOF Test
0.127	Data appear Lognormal at 5% Significance Level
	0.967 0.947 0.0599 0.127

Data appear Lognormal at 5% Significance Level

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

Lognormal Statistics

Minimum of Logged Data	1.524	Mean of logged Data	6.103
Maximum of Logged Data	11.36	SD of logged Data	2.504

Assuming Lognormal Distribution

95% H-UCL	49761	90% Chebyshev (MVUE) UCL	21721
95% Chebyshev (MVUE) UCL	27870	97.5% Chebyshev (MVUE) UCL	36405
99% Chebyshev (MVUE) UCL	53169		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	11882	95% Jackknife UCL	11976
95% Standard Bootstrap UCL	11953	95% Bootstrap-t UCL	14969
95% Hall's Bootstrap UCL	11420	95% Percentile Bootstrap UCL	12368
95% BCA Bootstrap UCL	13217		
90% Chebyshev(Mean, Sd) UCL	15762	95% Chebyshev(Mean, Sd) UCL	19654
97.5% Chebyshev(Mean, Sd) UCL	25055	99% Chebyshev(Mean, Sd) UCL	35664

Suggested UCL to Use

97.5% Chebyshev (Mean, Sd) UCL 25055

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Fluorene

General Statistics

46	Number of Distinct Observations	48	Total Number of Observations	
7	Number of Missing Observations			
21	Number of Non-Detects	27	Number of Detects	
19	Number of Distinct Non-Detects	27	Number of Distinct Detects	
1.72	Minimum Non-Detect	1.71	Minimum Detect	
2050	Maximum Non-Detect	1540	Maximum Detect	
43.75%	Percent Non-Detects	131081	Variance Detects	
362.1	SD Detects	162.3	Mean Detects	
2.231	CV Detects	11.1	Median Detects	
8.133	Kurtosis Detects	2.829	Skewness Detects	
1.953	SD of Logged Detects	3.081	Mean of Logged Detects	

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

Normal GOF Test on Detects Only			
Shapiro Wilk Test Statistic	0.514	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.923	Detected Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.375	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.167	Detected Data Not Normal at 5% Significance Level	
Detected Data	Not Normal	at 5% Significance Level	
Kapian-Meler (KM) Statistics using) Normal Cr	itical values and other Nonparametric UCLS	
KM Mean	96.07	KM Standard Error of Mean	42.05

12.00		00.07	
174.1	95% KM (BCA) UCL	281.5	KM SD
170.5	95% KM (Percentile Bootstrap) UCL	166.6	95% KM (t) UCL
232.2	95% KM Bootstrap t UCL	165.2	95% KM (z) UCL
279.3	95% KM Chebyshev UCL	222.2	90% KM Chebyshev UCL
514.4	99% KM Chebyshev UCL	358.7	97.5% KM Chebyshev UCL

Gamma GOF Tests on Detected Observations Only

A-D Test Statistic	2.748	Anderson-Darling GOF Test
5% A-D Critical Value	0.845	Detected Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.287	Kolmogorov-Smirnov GOF
5% K-S Critical Value	0.182	Detected Data Not Gamma Distributed at 5% Significance Level

Detected Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics on Detected Data Only

k hat (MLE)	0.337	k star (bias corrected MLE)	0.324
Theta hat (MLE)	481.6	Theta star (bias corrected MLE)	500.6
nu hat (MLE)	18.19	nu star (bias corrected)	17.5
Mean (detects)	162.3		

Gamma ROS Statistics using Imputed Non-Detects

GROS may not be used when data set has > 50% NDs with many tied observations at multiple DLs

GROS may not be used when kstar of detects is small such as <1.0, especially when the sample size is small (e.g., <15-20)

For such situations, GROS method may yield incorrect values of UCLs and BTVs

This is especially true when the sample size is small.

For gamma distributed detected data, BTVs and UCLs may be computed using gamma distribution on KM estimates

91.28	Mean	0.01	Minimum
3.445	Median	1540	Maximum
3.082	CV	281.3	SD
0.163	k star (bias corrected MLE)	0.159	k hat (MLE)
560.4	Theta star (bias corrected MLE)	574.4	Theta hat (MLE)
15.64	nu star (bias corrected)	15.26	nu hat (MLE)
		0.045	Adjusted Level of Significance (β)
7.533	Adjusted Chi Square Value (15.64, β)	7.706	Approximate Chi Square Value (15.64, α)
189.5	95% Gamma Adjusted UCL (use when n<50)	185.2	95% Gamma Approximate UCL (use when n>=50)

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

Estimates of Gamma Parameters using KM Estimates			
Mean (KM)	96.07	SD (KM)	281.5
Variance (KM)	79252	SE of Mean (KM)	42.05
k hat (KM)	0.116	k star (KM)	0.123
nu hat (KM)	11.18	nu star (KM)	11.81
theta hat (KM)	824.9	theta star (KM)	780.6
80% gamma percentile (KM)	86.65	90% gamma percentile (KM)	274
95% gamma percentile (KM)	546.4	99% gamma percentile (KM)	1373
Gamm	a Kaplan-N	leier (KM) Statistics	
Approximate Chi Square Value (11.81, α)	5.105	Adjusted Chi Square Value (11.81, β)	4.968
95% Gamma Approximate KM-UCL (use when n>=50)	222.3	95% Gamma Adjusted KM-UCL (use when n<50)	228.5
Lognormal GO	F Test on I	Detected Observations Only	
Shapiro Wilk Test Statistic	0.888	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.923	Detected Data Not Lognormal at 5% Significance Leve	ગ
Lilliefors Test Statistic	0.195	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.167	Detected Data Not Lognormal at 5% Significance Leve	əl
Detected Data I	Not Lognor	mal at 5% Significance Level	
		Line imputed Nep Detecto	
Mean in Original Scale	92.22	Mean in Log Scale	1 89
SD in Original Scale	281	SD in Log Scale	2.098
95% t UCL (assumes normality of ROS data)	160.3	95% Percentile Bootstrap UCL	168
95% BCA Bootstrap UCL	187.9	95% Bootstrap t UCL	225.5
95% H-UCL (Log ROS)	187.9		
, , , , , , , , , , , , , , , , , , ,			
Statistics using KM estimates	on Logged	Data and Assuming Lognormal Distribution	
KM Mean (logged)	2.205	KM Geo Mean	9.073
KM SD (logged)	1.851	95% Critical H Value (KM-Log)	3.394
KM Standard Error of Mean (logged)	0.285	95% H-UCL (KM -Log)	125.7
KM SD (logged)	1.851	95% Critical H Value (KM-Log)	3.394
KM Standard Error of Mean (logged)	0.285		
	DL/2 S	Statistics	
DL/2 Normal		DL/2 Log-Transformed	
Mean in Original Scale	125.7	Mean in Log Scale	2.479
SD in Original Scale	314.8	SD in Log Scale	2.078
95% t UCL (Assumes normality)	201.9	95% H-Stat UCL	318.3
DL/2 is not a recommended me	ethod, prov	ided for comparisons and historical reasons	
N#		tion Erec UCL Statistics	
Nonparame	USTID	JUON FIEL OUL STATISTICS	

Data do not follow a Discernible Distribution at 5% Significance Level

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

Suggested UCL to Use

95% KM (Chebyshev) UCL 279.3

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Indeno(1,2,3-cd)pyrene

	General	I Statistics	
Total Number of Observations	48	Number of Distinct Observations	48
		Number of Missing Observations	7
Minimum	1.9	Mean	4036
Maximum	59000	Median	209
SD	11487	Std. Error of Mean	1658
Coefficient of Variation	2.846	Skewness	3.868
	Normal	GOF Test	
Shapiro Wilk Test Statistic	0.404	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.947	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.387	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.127	Data Not Normal at 5% Significance Level	
Data Not	Data Not Normal at 5% Significance Level		
As	Assuming Normal Distribution		
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	6818	95% Adjusted-CLT UCL (Chen-1995)	7752
		95% Modified-t UCL (Johnson-1978)	6972
	Gamma	GOF Test	
A-D Test Statistic	2.811	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.885	Data Not Gamma Distributed at 5% Significance Leve	el
K-S Test Statistic	0.219	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.14	Data Not Gamma Distributed at 5% Significance Leve	el
Data Not Gam	ma Distribu	ted at 5% Significance Level	
	Gamma	Statistics	

k hat (MLE)	0.254	k star (bias corrected MLE)	0.252
Theta hat (MLE)	15898	Theta star (bias corrected MLE)	16023
nu hat (MLE)	24.37	nu star (bias corrected)	24.18
MLE Mean (bias corrected)	4036	MLE Sd (bias corrected)	8041
		Approximate Chi Square Value (0.05)	13.99
Adjusted Level of Significance	0.045	Adjusted Chi Square Value	13.74

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 6978

95% Adjusted Gamma UCL (use when n<50) 7100

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.974	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.947	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0549	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.127	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	0.642	Mean of logged Data	5.512
Maximum of Logged Data	10.99	SD of logged Data	2.592

Assuming Lognormal Distribution

95% H-UCL	38339	90% Chebyshev (MVUE) UCL	15040
95% Chebyshev (MVUE) UCL	19363	97.5% Chebyshev (MVUE) UCL	25363
99% Chebyshev (MVUE) UCL	37149		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	6763	95% Jackknife UCL	6818
95% Standard Bootstrap UCL	6724	95% Bootstrap-t UCL	10946
95% Hall's Bootstrap UCL	8915	95% Percentile Bootstrap UCL	6893
95% BCA Bootstrap UCL	8136		
90% Chebyshev(Mean, Sd) UCL	9010	95% Chebyshev(Mean, Sd) UCL	11263
97.5% Chebyshev(Mean, Sd) UCL	14390	99% Chebyshev(Mean, Sd) UCL	20533

Suggested UCL to Use

97.5% Chebyshev (Mean, Sd) UCL 14390

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

Phenanthrene

General Statistics

Total Number of Observations	48	Number of Distinct Observations	47
		Number of Missing Observations	7
Minimum	2.18	Mean	2925
Maximum	33000	Median	124
SD	8166	Std. Error of Mean	1179
Coefficient of Variation	2.792	Skewness	3.313

Normal GOF Test

Shapiro Wilk Test Statistic	0.395	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.947	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.416	Lilliefors GOF Test
5% Lilliefors Critical Value	0.127	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	4903	95% Adjusted-CLT UCL (Chen-1995)	5466
		95% Modified-t UCL (Johnson-1978)	4997

Gamma GOF Test

A-D Test Statistic	3.7	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.888	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.243	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.141	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

0.247	k star (bias corrected MLE)	0.249	k hat (MLE)
11839	Theta star (bias corrected MLE)	11760	Theta hat (MLE)
23.72	nu star (bias corrected)	23.88	nu hat (MLE)
5885	MLE Sd (bias corrected)	2925	MLE Mean (bias corrected)
13.63	Approximate Chi Square Value (0.05)		
13.4	Adjusted Chi Square Value	0.045	Adjusted Level of Significance

95% Adjusted Gamma UCL (use when n<50) 5178

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 5088

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.958	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.947	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0757	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.127	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

Lognormal Statistics

Minimum of Logged Data	0.779	Mean of logged Data	5.123
Maximum of Logged Data	10.4	SD of logged Data	2.522

Assuming Lognormal Distribution

95% H-UCL	20000	90% Chebyshev (MVUE) UCL	8540
95% Chebyshev (MVUE) UCL	10966	97.5% Chebyshev (MVUE) UCL	14333
99% Chebyshev (MVUE) UCL	20946		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

4903	95% Jackknife UCL	95% CLT UCL
5992	95% Bootstrap-t UCL	95% Standard Bootstrap UCL
5023	95% Percentile Bootstrap UCL	95% Hall's Bootstrap UCL
		95% BCA Bootstrap UCL
8063	95% Chebyshev(Mean, Sd) UCL	90% Chebyshev(Mean, Sd) UCL
14653	99% Chebyshev(Mean, Sd) UCL	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

97.5% Chebyshev (Mean, Sd) UCL 10286

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Pyrene

General Statistics

48

	Total Numbe	r of Observation	ons
--	-------------	------------------	-----

Minimum 3.92 Maximum 78000 SD 15604 Coefficient of Variation 2.774

Normal GOF Test

Shapiro Wilk Test Statistic	0.414	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.947	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.388	Lilliefors GOF Test
5% Lilliefors Critical Value	0.127	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

48

7

300.5

3.583

Mean 5625

Median

Std. Error of Mean 2252

Skewness

Number of Distinct Observations

Number of Missing Observations

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

As	suming Normal Distrit	pution	
95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	9404	95% Adjusted-CLT UCL (Chen-1995)	10574
		95% Modified-t UCL (Johnson-1978)	9598
	Gamma GOF Test		
A-D Test Statistic	3.119	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.882	Data Not Gamma Distributed at 5% Significance Lev	el
K-S Test Statistic	0.223	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.14	Data Not Gamma Distributed at 5% Significance Lev	el
Data Not Gam	ma Distributed at 5% \$	Significance Level	
	Gamma Statistics		
k hat (MLE)	0.261	k star (bias corrected MLE)	0.259
Theta hat (MLE)	21553	Theta star (bias corrected MLE)	21755
nu hat (MLE)	25.05	nu star (bias corrected)	24.82
MLE Mean (bias corrected)	5625	MLE Sd (bias corrected)	11062
		Approximate Chi Square Value (0.05)	14.47
Adjusted Level of Significance	0.045	Adjusted Chi Square Value	14.23
As	suming Gamma Distril	bution	
95% Approximate Gamma UCL (use when n>=50))	9645	95% Adjusted Gamma UCL (use when n<50)	9812
	Lognormal GOF Tes	st	
Shapiro Wilk Test Statistic	0.971	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.947	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.0567	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.127	Data appear Lognormal at 5% Significance Level	
Data appear	r Lognormal at 5% Sig	nificance Level	
	Lognormal Statistics	5	
Minimum of Logged Data	1.366	Mean of logged Data	5.932
Maximum of Logged Data	11.26	SD of logged Data	2.49
Ass	uming Lognormal Dist	ribution	
95% H-UCL	39854	90% Chebyshev (MVUE) UCL	17679
95% Chebyshev (MVUE) UCL	22672	97.5% Chebyshev (MVUE) UCL	29601
99% Chebyshev (MVUE) UCL	43213		
Nonparame	etric Distribution Free	UCL Statistics	

Data appear to follow a Discernible Distribution at 5% Significance Level

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

Nonparametric Distribution Free UCLs

 95% CLT UCL
 9329

 95% Standard Bootstrap UCL
 9301

 95% Hall's Bootstrap UCL
 9420

 95% BCA Bootstrap UCL
 11001

 90% Chebyshev(Mean, Sd) UCL
 12381

 97.5% Chebyshev(Mean, Sd) UCL
 19690

95% Jackknife UCL 9404 95% Bootstrap-t UCL 12035 95% Percentile Bootstrap UCL 9611 95% Chebyshev(Mean, Sd) UCL 15442 99% Chebyshev(Mean, Sd) UCL 28034

Suggested UCL to Use

97.5% Chebyshev (Mean, Sd) UCL 19690

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

UCL Statistics for Data Sets with Non-Detects

User Selected Options Date/Time of Computation ProUCL 5.112/19/2019 1:46:26 PM From File TPAHs.xls Full Precision OFF Confidence Coefficient 95% Number of Bootstrap Operations 2000

LMW-PAHs-2010

General Statistics

11	Number of Distinct Observations	11
	Number of Missing Observations	0
73	Mean	5087
47167	Median	362
14017	Std. Error of Mean	4226
2.755	Skewness	3.266
	11 73 47167 14017 2.755	11Number of Distinct Observations Number of Missing Observations73Mean47167Median14017Std. Error of Mean2.755Skewness

Normal GOF Test

Shapiro Wilk Test Statistic	0.409	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.85	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.427	Lilliefors GOF Test
5% Lilliefors Critical Value	0.251	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL

95% Student's-t UCL 12747

95% UCLs (Adjusted for Skewness)

95% Adjusted-CLT UCL (Chen-1995) 16486 95% Modified-t UCL (Johnson-1978) 13441

Gamma GOF Test

A-D Test Statistic	1.365	Anderson-Darling Gamma GOF Test	
5% A-D Critical Value	0.818	Data Not Gamma Distributed at 5% Significance Level	
K-S Test Statistic	0.296	Kolmogorov-Smirnov Gamma GOF Test	
5% K-S Critical Value	0.275	Data Not Gamma Distributed at 5% Significance Level	
Date Nat Commo Distributed at 50/ Significance Loval			

Data Not Gamma Distributed at 5% Significance Level

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

	Gamma Statistics		
k hat (MLE)	0.313	k star (bias corrected MLE)	0.288
Theta hat (MLE)	16246	Theta star (bias corrected MLE)	17643
nu hat (MLE)	6.889	nu star (bias corrected)	6.343
MLE Mean (bias corrected)	5087	MLE Sd (bias corrected)	9474
		Approximate Chi Square Value (0.05)	1.818
Adjusted Level of Significance	0.0278	Adjusted Chi Square Value	1.451

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 17752

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.899	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.85	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.165	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.251	Data appear Lognormal at 5% Significance Level	
Data appear Lognormal at 5% Significance Level			

95% Adjusted Gamma UCL (use when n<50) 22232

Lognormal Statistics

Minimum of Logged Data	4.29	Mean of logged Data	6.348
Maximum of Logged Data	10.76	SD of logged Data	1.954

Assuming Lognormal Distribution

95% H-UCL	87068	90% Chebyshev (MVUE) UCL	7678
95% Chebyshev (MVUE) UCL	9945	97.5% Chebyshev (MVUE) UCL	13092
99% Chebyshev (MVUE) UCL	19273		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% Jackknife UCL 127	95% CLT UCL
95% Bootstrap-t UCL 127	95% Standard Bootstrap UCL
95% Percentile Bootstrap UCL 133	95% Hall's Bootstrap UCL
	95% BCA Bootstrap UCL
95% Chebyshev(Mean, Sd) UCL 235	90% Chebyshev(Mean, Sd) UCL
99% Chebyshev(Mean, Sd) UCL 471	97.5% Chebyshev(Mean, Sd) UCL

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

Suggested UCL to Use

99% Chebyshev (Mean, Sd) UCL 47137

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

LMW-PAHs-2018

	General Statistics		
Total Number of Observations	37	Number of Distinct Observations	37
		Number of Missing Observations	0
Minimum	7.833	Mean	3975
Maximum	46430	Median	163.9
SD	10761	Std. Error of Mean	1769
Coefficient of Variation	2.707	Skewness	3.363
	Normal GOF Test		
Shapiro Wilk Test Statistic	0.421	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.936	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.405	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.144	Data Not Normal at 5% Significance Level	
Data Not	Normal at 5% Significa	nce Level	

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	6962	95% Adjusted-CLT UCL (Chen-1995)	7930
		95% Modified-t UCL (Johnson-1978)	7125
	Gamma GOF Test		
A-D Test Statistic	3 272	Anderson-Darling Gamma GOF Test	

A-D Test Statistic	3.272	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.879	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.272	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.159	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

	Gamma Sta	atistics	
k hat (MLE)	0.257	k star (bias corrected MLE)	0.255
Theta hat (MLE)	15444	Theta star (bias corrected MLE)	15617
nu hat (MLE)	19.05	nu star (bias corrected)	18.84
MLE Mean (bias corrected)	3975	MLE Sd (bias corrected)	7879
		Approximate Chi Square Value (0.05)	9.999
Adjusted Level of Significance	0.0431	Adjusted Chi Square Value	9.719
As	sumina Gamma	a Distribution	
95% Approximate Gamma UCL (use when n>=50))	7489	95% Adjusted Gamma UCL (use when n<50)	7705
	Lognormal G	OF Test	
Shapiro Wilk Test Statistic	0.939	Shapiro Wilk Lognormal GOF Test	
5% Shapiro Wilk Critical Value	0.936	Data appear Lognormal at 5% Significance Level	
Lilliefors Test Statistic	0.106	Lilliefors Lognormal GOF Test	
5% Lilliefors Critical Value	0.144	Data appear Lognormal at 5% Significance Level	

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	2.058	Mean of logged Data	5.542
Maximum of Logged Data	10.75	SD of logged Data	2.387

Assuming Lognormal Distribution

95% H-UCL	24485	90% Chebyshev (MVUE) UCL	9269
95% Chebyshev (MVUE) UCL	11912	97.5% Chebyshev (MVUE) UCL	15579
99% Chebyshev (MVUE) UCL	22784		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	6885	95% Jackknife UCL	6962
95% Standard Bootstrap UCL	6869	95% Bootstrap-t UCL	11330
95% Hall's Bootstrap UCL	10986	95% Percentile Bootstrap UCL	7034
95% BCA Bootstrap UCL	8149		
90% Chebyshev(Mean, Sd) UCL	9282	95% Chebyshev(Mean, Sd) UCL	11686
97.5% Chebyshev(Mean, Sd) UCL	15023	99% Chebyshev(Mean, Sd) UCL	21577

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

Suggested UCL to Use

97.5% Chebyshev (Mean, Sd) UCL 15023

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

LMW-PAHs-ALL

	General Statistics		
Total Number of Observations	48	Number of Distinct Observations	48
		Number of Missing Observations	0
Minimum	7.833	Mean	4230
Maximum	47167	Median	208.4
SD	11433	Std. Error of Mean	1650
Coefficient of Variation	2.703	Skewness	3.241
	Normal GOF Test		
Shapiro Wilk Test Statistic	0.413	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.947	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.394	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.127	Data Not Normal at 5% Significance Level	
Data Not	Normal at 5% Significa	nce Level	

Assuming Normal Distribution

95% Normal UCL		95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL	6999	95% Adjusted-CLT UCL (Chen-1995)	7769
		95% Modified-t UCL (Johnson-1978)	7128
	Gamma GOF Test		

4.269 Anderson-Darling Gamma GOF Test	
0.878 Data Not Gamma Distributed at 5% Significance Le	evel
0.263 Kolmogorov-Smirnov Gamma GOF Test	
0.14 Data Not Gamma Distributed at 5% Significance Le	evel

Data Not Gamma Distributed at 5% Significance Level

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

	Gamma Statistics		
k hat (MLE)	0.268	k star (bias corrected MLE)	0.265
Theta hat (MLE)	15800	Theta star (bias corrected MLE)	15970
nu hat (MLE)	25.7	nu star (bias corrected)	25.43
MLE Mean (bias corrected)	4230	MLE Sd (bias corrected)	8219
		Approximate Chi Square Value (0.05)	14.94
Adjusted Level of Significance	0.045	Adjusted Chi Square Value	14.69

95% Adjusted Gamma UCL (use when n<50) 7322

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 7200

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.941	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.947	Data Not Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.102	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.127	Data appear Lognormal at 5% Significance Level
Data appear Approximate Lognormal at 5% Significance Level		

Lognormal Statistics

Minimum of Logged Data	2.058	Mean of logged Data	5.726
Maximum of Logged Data	10.76	SD of logged Data	2.301

Assuming Lognormal Distribution

95% H-UCL	16734	90% Chebyshev (MVUE) UCL	9089
95% Chebyshev (MVUE) UCL	11562	97.5% Chebyshev (MVUE) UCL	14994
99% Chebyshev (MVUE) UCL	21736		

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL	6944	95% Jackknife UCL	6999
95% Standard Bootstrap UCL	6882	95% Bootstrap-t UCL	8465
95% Hall's Bootstrap UCL	6642	95% Percentile Bootstrap UCL	6945
95% BCA Bootstrap UCL	7974		
90% Chebyshev(Mean, Sd) UCL	9181	95% Chebyshev(Mean, Sd) UCL	11423
97.5% Chebyshev(Mean, Sd) UCL	14536	99% Chebyshev(Mean, Sd) UCL	20650

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

95% Normal UCL

Suggested UCL to Use

97.5% Chebyshev (Mean, Sd) UCL 14536

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

HMW-PAHs-2010

	General Statistics		
Total Number of Observations	11	Number of Distinct Observations	11
		Number of Missing Observations	0
Minimum	489	Mean	72855
Maximum	661000	Median	8440
SD	196162	Std. Error of Mean	59145
Coefficient of Variation	2.692	Skewness	3.252
	Normal GOF Test		
Shapiro Wilk Test Statistic	0.418	Shapiro Wilk GOF Test	

Shapiro Wilk Test Statistic	0.418	Shapiro wilk GOF Test
5% Shapiro Wilk Critical Value	0.85	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.412	Lilliefors GOF Test
5% Lilliefors Critical Value	0.251	Data Not Normal at 5% Significance Level

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

al UCL	95% UCLs (Adjusted for Skewness)
95% Student's-t UCL 180054	95% Adjusted-CLT UCL (Chen-1995) 232106
	95% Modified-t UCL (Johnson-1978) 189719

Gamma GOF Test

A-D Test Statistic	1.086	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.818	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.307	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.276	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

	Gamma	
k star (bias corrected MLE)	0.309	k hat (MLE)
Theta star (bias corrected MLE)	235969	Theta hat (MLE)
nu star (bias corrected)	6.792	nu hat (MLE)

Theta star (bias corrected MLE) 255497 nu star (bias corrected) 6.273 MLE Sd (bias corrected) 136434 Approximate Chi Square Value (0.05) 1.781

95% Adjusted Gamma UCL (use when n<50) 321946

Adjusted Chi Square Value

0.285

1.42

Adjusted Level of Significance 0.0278

MLE Mean (bias corrected) 72855

Assuming Gamma Distribution

Gamma Statistics

95% Approximate Gamma UCL (use when n>=50)) 256609

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.945	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.85	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.177	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.251	Data appear Lognormal at 5% Significance Level
Date appear L appermed at E% Significance Level		

ata appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	6.192	Mean of logged Data	8.973
Maximum of Logged Data	13.4	SD of logged Data	2.127

Assuming Lognormal Distribution

95% H-UCL 2953321	90% Chebyshev (MVUE) UCL 143440
95% Chebyshev (MVUE) UCL 186846	97.5% Chebyshev (MVUE) UCL 247091
99% Chebyshev (MVUE) UCL 365431	

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 170140	95% Jackknife UCL 180054
95% Standard Bootstrap UCL 162421	95% Bootstrap-t UCL 1641031
95% Hall's Bootstrap UCL 1158775	95% Percentile Bootstrap UCL 188079
95% BCA Bootstrap UCL 244435	
90% Chebyshev(Mean, Sd) UCL 250291	95% Chebyshev(Mean, Sd) UCL 330663
97.5% Chebyshev(Mean, Sd) UCL 442216	99% Chebyshev(Mean, Sd) UCL 661342

Suggested UCL to Use

99% Chebyshev (Mean, Sd) UCL 661342

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

Recommended UCL exceeds the maximum observation

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness. These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

HMW-PAHs-2018

	General Statistics		
Total Number of Observations	37	Number of Distinct Observations	37
		Number of Missing Observations	0
Minimum	27.57	Mean	38924
Maximum	487810	Median	2064
SD	104825	Std. Error of Mean	17233
Coefficient of Variation	2.693	Skewness	3.492
	Normal GOF Test		
Shapiro Wilk Test Statistic	0.429	Shapiro Wilk GOF Test	
5% Shapiro Wilk Critical Value	0.936	Data Not Normal at 5% Significance Level	
Lilliefors Test Statistic	0.397	Lilliefors GOF Test	
5% Lilliefors Critical Value	0.144	Data Not Normal at 5% Significance Level	

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL	95% UCLs (Adjusted for Skewness)	
95% Student's-t UCL 68019	95% Adjusted-CLT UCL (Chen-1995)	77843
	95% Modified-t UCL (Johnson-1978)	69668

A-D Test Statistic	2.375	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.883	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.217	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.159	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

0.248	k star (bias corrected MLE)	0.25	k hat (MLE)
157196	Theta star (bias corrected MLE)	155786	Theta hat (MLE)
18.32	nu star (bias corrected)	18.49	nu hat (MLE)
78222	MLE Sd (bias corrected)	38924	MLE Mean (bias corrected)
9.625	Approximate Chi Square Value (0.05)		
9.351	Adjusted Chi Square Value	0.0431	Adjusted Level of Significance

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

Assuming Gamma Distribution

95% Approximate Gamma UCL (use when n>=50)) 74101

95% Adjusted Gamma UCL (use when n<50) 76274

Lognormal GOF Test

Shapiro Wilk Test Statistic	0.965	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.936	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.108	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.144	Data appear Lognormal at 5% Significance Level

Data appear Lognormal at 5% Significance Level

Lognormal Statistics

Minimum of Logged Data	3.317	Mean of logged Data	7.726
Maximum of Logged Data	13.1	SD of logged Data	2.608

Assuming Lognormal Distribution

95% H-UCL 511984	90% Chebyshev (MVUE) UCL 140176
95% Chebyshev (MVUE) UCL 181560	97.5% Chebyshev (MVUE) UCL 238999
99% Chebyshev (MVUE) UCL 351827	

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% CLT UCL 672	/270	95% Jackknife UCL	68019
95% Standard Bootstrap UCL 670	7044	95% Bootstrap-t UCL	116625
95% Hall's Bootstrap UCL 156	6683	95% Percentile Bootstrap UCL	69776
95% BCA Bootstrap UCL 811	118		
90% Chebyshev(Mean, Sd) UCL 906	9624 9	35% Chebyshev(Mean, Sd) UCL	114042
97.5% Chebyshev(Mean, Sd) UCL 146	6545 g	99% Chebyshev(Mean, Sd) UCL	210392

Suggested UCL to Use

97.5% Chebyshev (Mean, Sd) UCL 146545

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006).

However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.
Attachment B1-2c. ProUCL Output for LMW and HMW PAHs

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

HMW-PAHs-ALL

General Statistics

Total Number of Observations	48	Number of Distinct Observations	48
		Number of Missing Observations	0
Minimum	27.57	Mean	46700
Maximum	661000	Median	2466
SD	129659	Std. Error of Mean	18715
Coefficient of Variation	2.776	Skewness	3.656

Normal GOF Test

Shapiro Wilk Test Statistic	0.416	Shapiro Wilk GOF Test
5% Shapiro Wilk Critical Value	0.947	Data Not Normal at 5% Significance Level
Lilliefors Test Statistic	0.387	Lilliefors GOF Test
5% Lilliefors Critical Value	0.127	Data Not Normal at 5% Significance Level
- · · · · · · · · · · · · · · · · · · ·		

Data Not Normal at 5% Significance Level

Assuming Normal Distribution

95% Normal UCL

95% Student's-t UCL 78102

95% UCLs (Adjusted for Skewness)

95% Adjusted-CLT UCL (Chen-1995) 88036 95% Modified-t UCL (Johnson-1978) 79748

Gamma GOF Test

A-D Test Statistic	2.954	Anderson-Darling Gamma GOF Test
5% A-D Critical Value	0.883	Data Not Gamma Distributed at 5% Significance Level
K-S Test Statistic	0.208	Kolmogorov-Smirnov Gamma GOF Test
5% K-S Critical Value	0.14	Data Not Gamma Distributed at 5% Significance Level

Data Not Gamma Distributed at 5% Significance Level

Gamma Statistics

0.256	k star (bias corrected MLE)	0.258	k hat (MLE)
182608	Theta star (bias corrected MLE)	181027	Theta hat (MLE)
24.55	nu star (bias corrected)	24.77	nu hat (MLE)
92346	MLE Sd (bias corrected)	46700	MLE Mean (bias corrected)
14.27	Approximate Chi Square Value (0.05)		
14.02	Adjusted Chi Square Value	0.045	Adjusted Level of Significance

Assuming Gamma Distribution

95% Adjusted Gamma UCL (use when n<50) 81751

95% Approximate Gamma UCL (use when n>=50)) 80355

Attachment B1-2c. ProUCL Output for LMW and HMW PAHs

Former Skeet Range, Ecological Risk Assessment (Terrestrial Habitat) NAS Patuxent River, St. Marys County, Maryland

	Lognormal GOF Test	
Shapiro Wilk Test Statistic	0.971	Shapiro Wilk Lognormal GOF Test
5% Shapiro Wilk Critical Value	0.947	Data appear Lognormal at 5% Significance Level
Lilliefors Test Statistic	0.0663	Lilliefors Lognormal GOF Test
5% Lilliefors Critical Value	0.127	Data appear Lognormal at 5% Significance Level
Data appear Lognormal at 5% Significance Level		

Lognormal Statistics

Minimum of Logged Data	3.317	Mean of logged Data	8.012
Maximum of Logged Data	13.4	SD of logged Data	2.54

Assuming Lognormal Distribution

95% H-UCL 383892	90% Chebyshev (MVUE) UCL 160525
95% Chebyshev (MVUE) UCL 206259	97.5% Chebyshev (MVUE) UCL 269737
99% Chebyshev (MVUE) UCL 394426	

Nonparametric Distribution Free UCL Statistics

Data appear to follow a Discernible Distribution at 5% Significance Level

Nonparametric Distribution Free UCLs

95% Jackknife UCL 7810	95% CLT UCL
95% Bootstrap-t UCL 11055	95% Standard Bootstrap UCL
95% Percentile Bootstrap UCL 7978	95% Hall's Bootstrap UCL
	95% BCA Bootstrap UCL
95% Chebyshev(Mean, Sd) UCL 12827	90% Chebyshev(Mean, Sd) UCL
99% Chebyshev(Mean, Sd) UCL 23290	97.5% Chebyshev(Mean, Sd) UCL

Suggested UCL to Use

97.5% Chebyshev (Mean, Sd) UCL 163573

Note: Suggestions regarding the selection of a 95% UCL are provided to help the user to select the most appropriate 95% UCL. Recommendations are based upon data size, data distribution, and skewness.

These recommendations are based upon the results of the simulation studies summarized in Singh, Maichle, and Lee (2006). However, simulations results will not cover all Real World data sets; for additional insight the user may want to consult a statistician.

Appendix B2 Ecological Risk Assessment – Aquatic Habitat (Sediment) **APPENDIX B2**

Ecological Risk Assessment: Aquatic Habitat (Sediment)

This subappendix presents the ecological risk assessment (ERA) for the aquatic habitat at Munitions Response Site (MRS) UXO-002 Former Small Arms Ranges, Operable Unit (OU)-2 Former Skeet Ranges, which consists of the screening-level ecological risk assessment (SERA), specifically Steps 1 and 2 of the ERA process, and the first step (Step 3A) of the baseline ecological risk assessment (BERA). This ERA was conducted in accordance with Navy policy for ERAs (CNO, 1999) and Navy guidance for implementing this ERA policy (NAVFAC, 2003).

The ERA in this subappendix is for the aquatic habitat of the Patuxent River adjacent to the Former Skeet Ranges and is based on the sediment investigation performed in 2019 in support of the Remedial Investigation (RI). A soil investigation was also performed onsite at the Former Skeet Ranges, also in support of the RI. The terrestrial habitat ERA that was conducted with those soil data is presented as Appendix B1 of the Engineering Estimate and Cost Analysis (EE/CA).

The primary objectives of the aquatic ERA are to:

- Perform a direct exposure risk evaluation for lower trophic level-receptors (benthic macroinvertebrate community) through screening chemical analytical sediment sample results against ecological screening levels (ESLs).
- Perform an indirect (food web) exposure evaluation for upper trophic-level receptors (birds and mammals) through standardized food web (ingestion) exposure modeling and screening.

The layout and key site features of MRS UXO-002 Former Small Arms Ranges, OU-2 Former Skeet Ranges are presented in the main body of the RI Report.

B2.1 Investigation History

B2.1.1 Site Inspection (2010)

CH2M conducted a Site Inspection (SI) between December 14 and 16, 2010, the report for which was finalized in 2013 (CH2M, 2013). The SI focused on the onsite terrestrial habitat. During the SI, surface soil samples were collected from 0 to 6 inches below ground surface (bgs) at 26 locations throughout the Former Skeet Ranges. An ecological risk screening evaluation was performed for the SI Report using these soil data to evaluate direct exposure risks from the range-related constituents of lead and polycyclic aromatic hydrocarbons (PAHs) for lower trophic-level receptors, such as soil invertebrates and terrestrial plant populations. The evaluation did not include food web exposure screening for upper trophic-level terrestrial receptors.

The SI and ecological risk screening are summarized in more detail in the terrestrial habitat ERA included as Appendix B1 of the EE/CA. In general, PAHs, which were evaluated on a low molecular weight (LMW) and high molecular weight (HMW) total PAH concentration basis, were identified as a constituent of potential concern (COPC) during the SI. However, lead was not identified as a COPC during the SI. The surface soil sample exceedances for both LMW and HMW total PAHs occurred near each other in the theoretical shotfall zone immediately west of the Former Skeet Range firing line.

B2.1.2 Remedial Investigation (2018–2019)

Based on the results of the human health and ecological risk screenings for the SI, the RI was conducted to further characterize the nature and extent of PAHs and lead at the Former Skeet Ranges and determine if concentrations pose unacceptable risks to human or ecological receptors as well as to evaluate nearshore sediments of the Patuxent River within the Skeet Range shotfall zone. The RI activities included:

- 1. Soil sampling
- 2. Sediment sampling in the nearshore area of the Patuxent River, adjacent to the site and within the estimated shotfall zone
- 3. Background sediment sampling in the Patuxent River and outside the estimated shotfall zone
- 4. Groundwater monitoring well installation and sampling

The soil sampling and subsequent evaluation of the terrestrial habitat are not discussed in this appendix; the focus here is on the nearshore sediment sampling adjacent to the Former Skeet Ranges in the Patuxent River. The soil ERA is presented and discussed in Appendix B1 of the EE/CA, and the groundwater monitoring well installation and sampling efforts are presented in the main body of the RI Report.

Sediment samples were collected in two phases to complete the delineation of lead and PAHs and additional quantitative ecological and human health risk assessments for the RI Report. Additionally, background samples were collected from offsite reference locations outside of the theoretical shotfall zone of the Former Skeet Ranges. Athena Technologies, Inc. assisted CH2M with collecting all sediment samples. All sample analyses except grain size were performed by Gulf Coast Analytical Laboratories in Baton Rouge, Louisiana. All samples for grain size were analyzed by ALS in Baton Rouge, Louisiana.

The following summarizes the RI field investigation sampling activities:

- **Phase 1 (June 2019)**: From June 11 through 16, 2019, surface sediment samples (0 to 6 inches bgs) were collected using a boat-based ponar dredge at the following locations:
 - <u>Background Area</u>: Surface samples were collected from 19 locations along 5 transects radiating from the shoreline into the Patuxent River outside of the Former Skeet Range shotfall zone. The transects were lettered A through E. Four samples were collected per transect with sample IDs consisting of PX-BG-SD02-000H through PX-BG-SD20-000H. One sample (SD01) that was proposed for Transect A could not be collected due to refusal of the substrate with the ponar sampler. These samples were analyzed for lead and PAHs. One-half of these samples were also analyzed for pH, total organic carbon (TOC), acid volatile sulfide (AVS)/simultaneously extracted metals (SEM), and grain size.
 - <u>Shotfall Zone</u>: Surface samples were collected at 59 locations radiating from the shoreline into 10 transects in the Patuxent River and within the theoretical shotfall zone of the Former Skeet Ranges. These shotfall zone transects were numbered Transect 1 through 10 and included 3 to 8 sample locations depending on the transect. As proposed, the sample IDs consisted of PX-FSR-SD01-000H through PX-FSR-SD62-000H. However, one sample from each of Transect 5 (SD31), Transect 7 (SD45), and Transect 8 (SD53) could not be collected due to refusal of the substrate with the ponar sampler. All locations were analyzed for lead and pellet counts. The 10 closest locations were also analyzed for PAHs. Finally, one-half of all shotfall samples were also analyzed for pH, TOC, AVS/SEM, and grain size.
- Phase 2 (August 2019): The Naval Air Station (NAS) Patuxent River Partnering Team (Team) met on August 6, 2019, to evaluate and discuss the Phase 1 sampling results to refine the sample strategy for Phase 2. Based on that discussion, the Team decided no additional background area samples

were necessary during Phase 2. Based on the elevated lead concentration detected at SD36 during Phase 1, the Team agreed that only focused sampling was necessary in the shotfall zone during Phase 2 to better delineate that location. Subsequently, the following Phase 2 sampling activities took place August 21 through 22, 2019:

- Surface sediment (0 to 6 inches bgs): Another surface sediment sample was collected at SD36 along Transect 2 during Phase 2 to verify the previously elevated detection of lead during Phase 1. This sample was identified as PX-FSR-SD36A-000H and analyzed for lead and pellet count. Additionally, two rings of four step-out surface sediment samples each were also collected at 10-foot intervals from SD36A for lead and pellet count analyses. The closest ring (10 feet out) included samples SD63 through SD66, which were analyzed for lead and pellet count. The second ring (20 feet out) included samples SD67 through SD70. However, samples SD67 through SD70 were held without analyses at the lab while the Team considered the results for SD36A and closet ring of step-out samples (SD63 through SD66). The Team met on October 8, 2019, to consider those initial Phase 2 results and it was decided there was no need to analyze the second ring of step-out surface sediment samples due to low levels of detections for SD36A and SD63 through SD66.
- <u>Subsurface sediment (6 to 24 inches bgs)</u>: A collocated subsurface sampled was collected with the surface sample at SD36A and analyzed for lead and pellet count. Subsurface samples were also collected at all four surface sediment samples collected at the first step-out ring (SD63 through SD66) and were held at the lab for the Team to consider the results of the analyzed Phase 2 samples. Subsequently, the Team also decided not to analyze these subsurface samples for SD63 through SD66 based on the other Phase 2 results.

B2.2 Problem Formulation

Step 1 of the ERA process includes problem formulation establishes the goals, scope, and focus of the ERA. As part of the screening problem formulation, the environmental setting of the Former Skeet Range was characterized in terms of the habitats and biota known or likely to be present. The types and concentrations of constituents present in ecologically relevant media were also described based on available analytical data. A conceptual site model (CSM) was developed that describes potential source areas, transport pathways and exposure media, exposure pathways and routes, and receptors for the SERA. Assessment and measurement endpoints were selected to evaluate those receptors for which critical exposure pathways exist. The fate, transport, and toxicological properties of the constituents present, particularly the potential for bioaccumulation, were also considered during this process.

B2.2.1 Ecological Setting

The Patuxent River, which forms the northern coastline of NAS Patuxent River, flows 110 miles to its confluence with the Chesapeake Bay at Solomon's Island. The Patuxent River is directly adjacent to the Former Skeet Ranges and within the theoretical shotfall zone. This river is one of the most significant aquatic habitats associated with NAS Patuxent River. While not officially listed on the National Wild and Scenic Rivers System, the Patuxent River is listed in the Nationwide Rivers Inventory as having the significant resource values required for potential inclusion (Navy, 2017). Due to the proximity to the Chesapeake Bay, the Patuxent River is a slightly brackish, tidally influenced water body. Significant populations of aquatic biota occur within the river, including fish and benthic macroinvertebrates (worms, bivalves, crustaceans). The fishery of the Patuxent River is diverse with a prevalence of multiple forage fish species (for example, silverside spot, croaker, menhaden) as well as commercially and recreationally important species (for example, flounder, seatrout, striped bass, and rockfish). Furthermore, an abundance of wildlife (birds and mammals) are expected to reside close to the river

and utilize it for foraging, especially in the littoral zone of the nearshore (that is, the shallow area of the river where it meets land).

B2.2.2 Conceptual Site Model

The CSM relates potentially exposed ecological receptor populations with potential source areas based on physical site characteristics and complete exposure pathways. The CSM focuses on exposures to ecological receptors and is a component of the sitewide CSM presented in Section 2.2 of the EE/CA. Important components of the model are:

- Potential source areas
- Transport pathways
- Exposure media
- Exposure pathways and routes
- Receptor groups

The most likely and most important pathways of contaminant release and transport are identified to determine actual or potential complete exposure pathways for ecological receptors at the site. A complete exposure pathway has three components: (1) a source of constituents that results in a release to the environment; (2) a pathway of constituent transport through an environmental medium; and (3) an exposure or contact point for an ecological receptor. As illustrated in the main body of the RI Report, the main objective of the CSM in the ERA is to identify any complete and critical exposure pathways that could be present for ecological receptors. Key components of the model are discussed in the following sections.

B2.2.2.1 Potential Source Areas

The primary sources of potential contamination are lead shot (metal) and clay target fragments (PAHs associated with tar pitch typically used to bind clay targets used at skeet ranges) that were deposited from above ground or surface water during target shooting activities at the Former Skeet Ranges when they were active. The majority of the theoretical shotfall zone is in the Patuxent River. At range sites, lead is typically considered the primary constituent of concern based on its prevalence and risk-driving potential (ITRC, 2003).

B2.2.2.2 Transport Pathways and Exposure Media

A transport pathway describes the mechanisms whereby site-related constituents, once released, may be transported from a source area to an exposure medium (such as sediment) and where receptor exposures may occur. The primary mechanisms for chemical release and transport from the upland source area(s) to the Patuxent River are:

- Direct deposit of lead shot and clay target fragments into soils in the upland vegetated areas and direct deposit of lead shot into sediment in the nearshore areas of the Patuxent River
- Transport of contaminated soil particulates via overland surface runoff to downgradient terrestrial and aquatic areas
- Leaching of chemicals from surface and subsurface soils into groundwater via infiltrating precipitation (and potential discharge of contaminated groundwater into downgradient surface water bodies) although based on the relatively high adsorption to solids of potential contaminants, this is expected to be negligible
- Leaching from sediment in the Patuxent River to the surface water, although based on the relatively high adsorption to solids of potential contaminants and the flow velocity of the river, this is expected to be negligible

• Uptake by biota from sediment (e.g., aquatic vegetation, benthic invertebrates, aquatic and semiaquatic species) and transfer to upper trophic-level receptors (e.g., birds and mammals)

B2.2.2.3 Exposure Pathways and Routes

Based on the understanding of the source of contamination and the habitats and biota present in the investigation area, there are potentially complete exposure pathways for aquatic receptors (aquatic plants, benthic macroinvertebrates, fish, birds, and mammals). That is, these receptors may potentially be exposed to contaminated sediment in the Patuxent River in the area of the theoretical shotfall zone. While surface water might play a role in the movement of contamination, surface water was not included as an environmental medium in this investigation. Surface water was excluded because of the Patuxent River is a large flowing water body and site-related contamination would not be expected to remain in surface water in the investigation. Additionally, the primary constituents of concern (lead and PAHs) are expected to remain in the sediment.

An exposure route describes the specific mechanism(s) by which a receptor is exposed to a chemical or metal present in an environmental medium. Aquatic plants are exposed to chemicals and metals present in sediment via root surfaces during nutrient uptake. Direct contact to contaminated media is considered the primary exposure route for lower trophic-level receptors (benthic macroinvertebrates). Upper trophic-level receptors (birds and mammals) at this site are most likely exposed to constituents through:

- Uptake by biota from surface water or sediment and trophic transfer to upper trophic-level receptors
- Incidental ingestion of contaminated abiotic media (sediment) during feeding activities
- Ingestion of contaminated drinking water
- Ingestion of contaminated plant or animal tissues for chemicals that have entered food webs
- Direct (dermal) contact with contaminated abiotic media

Based on the general fate properties (such as relatively high adsorption to solids) of the site-related constituents present (lead and PAHs) and the protection offered by hair or feathers, potential dermal exposures for upper trophic-level receptors are not considered significant relative to ingestion exposures. Incidental ingestion of sediment during feeding, preening, or grooming activities is, however, considered in the risk estimates. Ingestion of contaminated drinking water is not considered as an exposure route because the salinity of the Patuxent River is too high for wildlife consumption, and there is no onsite surface water at the Former Skeet Ranges that receptors could drink. Additionally, the potential site-related contamination in the Patuxent River is expected to be bound up in sediment.

B2.2.2.4 Assessment and Measurement Endpoints

Problem formulation includes the selection of ecological endpoints based on the CSM. Two types of endpoints, assessment endpoints and measurement endpoints, are defined as part of the ERA process (EPA, 1997). An assessment endpoint is an explicit expression of the environmental component or value that is to be protected. A measurement endpoint is a measurable ecological characteristic related to the component or value chosen as the assessment endpoint. The considerations for selecting assessment and measurement endpoints are summarized in EPA (1997) and discussed in detail in Suter (1989, 1990, 1993).

Endpoints define ecological attributes to be protected (assessment endpoints) and measurable characteristics of those attributes (measurement endpoints) used to gauge the degree of impact that has occurred or could occur. Assessment endpoints most often relate to attributes of biological populations or communities, and they are intended to focus the risk assessment on components of the ecosystem that could be adversely affected by chemicals attributable to a site (EPA, 1997). Assessment

endpoints contain an entity (for example, raccoon population) and an attribute of that entity (for example, survival rate). Individual assessment endpoints usually encompass a group of species or populations (the receptor) with some common characteristic, such as specific exposure route or contaminant sensitivity, with the receptor then used to represent the assessment endpoint in the risk evaluation.

Assessment and measurement endpoints may involve ecological components from any level of biological organization, from individual organisms to the ecosystem itself. Effects on individual organisms are important for some receptors, such as rare and endangered species. However, population- and community-level effects are typically more relevant to ecosystems. Population- and community-level effects are usually difficult to evaluate directly without long-term and extensive study. Measurement endpoint evaluations at the individual level, such as an evaluation of the effects of chemical exposure on reproduction, can be used to predict effects on an assessment endpoint at the population or community-level. Table B2-1 shows the assessment and measurement endpoints used for this assessment.

B2.2.2.5 Receptors

The ecological receptors evaluated were previously identified via the Uniform Federal Policy Sampling and Analysis Plan approach (CH2M, 2018). Because of the complexity of natural systems, it is generally not possible to directly assess the potential impacts to all ecological receptors present within an area. Therefore, specific receptor species (for example, osprey) or species groups (for example, benthic macroinvertebrates) were selected as surrogates to evaluate potential risks to larger components of the ecological community (guilds, such as omnivorous birds) that were used to represent assessment endpoints (for example, survival and reproduction of omnivorous mammals). Selection criteria included species that:

- Are known to occur, or are likely to occur, in the area
- Have an ecological, economic, or aesthetic value
- Are representative of taxonomic groups, life history traits, or trophic levels in the habitats present for which complete exposure pathways are likely to exist
- Can be expected to represent potentially sensitive populations because of toxicological sensitivity or potential exposure magnitude

The following upper trophic-level receptors were selected for exposure modeling based on the criteria listed above and consideration of site conditions:

- Great blue heron (Ardea herodias): aquatic avian piscivore
- Osprey (Pandion haliaetus): aquatic avian piscivore
- Marsh wren (Cistothorus palustris): semi-aquatic avian insectivore
- Spotted sandpiper¹ (Actitis macularius): semi-aquatic avian insectivore
- Muskrat (Ondatra zibethicus): aquatic mammalian herbivore
- Raccoon (Procyon lotor): semi-aquatic mammalian omnivore

Upper trophic-level receptor species that were quantitatively evaluated were limited to birds and mammals, the taxonomic groups with the most available information regarding exposure and toxicological effects.

Lower trophic-level receptor species were evaluated based on those taxonomic groupings for which medium-specific screening values have been developed. The potential for adverse effects to aquatic

¹ Sandpiper was not originally proposed as a receptor species via the UFP-SAP (CH2M, 2018). However, it was added given the habitat characteristics at the shoreline (sandy beach), feeding habits, and sensitivity.

plants and benthic macroinvertebrates were evaluated using sediment screening values developed specifically for these groups.

Reptiles are also a potential receptor group. Individual species of reptiles were not, however, selected for evaluation because of the general lack of available toxicological information for these taxonomic groups for direct effects and effects from exposures via food webs. Potential risks to reptiles from food web exposures were evaluated using other fauna (birds and mammals) as surrogates.

B2.2.3 Available Analytical Data

This section focuses on the data that were available from the Phase 1 event conducted June 11 through 16, 2019. The following subsections summarize what samples were collected and the subsequent data that were generated for use in this assessment.

B2.2.3.1 Selection Criteria for Analytical Data

Available analytical data were selected for the ERA based on the following:

- Data must have been validated by a qualified data validator using acceptable data validation methods. Rejected ('R' qualifier) values were not used. Unqualified data and data qualified as 'J,' 'L,' or 'K' were treated as detected. Data qualified as 'U' or 'B' were treated as not detected.
- For samples with duplicate analyses, the greater of the two concentrations was used when both results were detections or when both reported values were not detections. In cases where one result for the duplicates was a detection and the other result was not, the detected value was used in the assessment.
- For constituents that were not detected, the sample quantitation (reporting) limit (SQL) was used to represent the concentration. When calculating statistics (for example, arithmetic mean), one-half of the SQL was used for constituents that were not detected. In cases where the SQL was not provided, the method detection limit was used.
- Sediment samples collected from 0 to 6 inches bgs were used because the releases were above ground (shotfall). The surficial depth range represents the most relevant potential exposures for most the ecological receptors evaluated and represents the worst-case exposure scenario based on the CSM.

B2.2.3.2 Habitat Characteristics

During the Phase 1 investigation, the field team recorded basic habitat characteristics related to the substrate that was sampled at each of the shotfall zone locations and well as the background area location. These observations included qualitative descriptions of the substrate materials (for example, general particle size, color and consistency) and incidences of any observed biota in the sample (for example, worms or bivalves). Those observations are summarized in Table B2-2.

B2.2.3.3 Physical and Chemical Analyses

A summary of the laboratory-based physical and chemical analyses performed on the Phase 1 samples is summarized in Table B2-3.

For the site-related shotfall zone samples, this included analyses of lead and pellet counts on all 59 sample locations and PAH analysis for 10 nearshore locations. Additionally, AVS/SEM, % solids, pH, TOC, and grain size were analyzed for samples collected from roughly one-half of all locations (30 of the 59 shotfall zone sample locations).

In the background area, lead, PAHs, and pellet counts were analyzed for samples collected at all 19 locations. Additionally, AVS/SEM, % solids, and grain size were analyzed for samples collected from nine background locations, and pH and TOC were analyzed for samples collected from 13 background

locations. The % solids and grain size results are presented in Table B2-4. The results for all other parameters are presented in association with the screening risk calculation (Section B2.5).

B2.2.3.4 Special Data Treatment

In preparation for the screening effects assessment (Section B2.3) and screening exposure assessment (Section B2.4), some special data treatment was necessary for the Phase 1 AVS/SEM and PAHs data. The following describes the special treatment of those data.

AVS/SEM

It has been shown AVS can be associated with the bioavailability of some divalent cationic metals (SEM), such as cadmium, copper, lead, nickel, and zinc (DiToro et al., 1990; EPA, 2005). The AVS and SEM results were used to evaluate potential risks related to metals within the investigation area. Analytical results for both AVS and SEM are reported in micromoles/gram (μ mol/g). The SEM results for cadmium, copper, lead, nickel, and zinc are used to calculate a total SEM concentration. To calculate total SEM, the detected concentrations and one-half the reporting limits for undetected SEM are summed (Σ) to get a total SEM concentration (Σ SEM). The Σ SEM are then compared to the AVS concentration by calculating a Σ SEM:AVS ratio.

Total PAHs

Analytical results for PAHs are presented for both individual compounds and the total concentration of PAHs as a group for the screening effects and exposure assessment. Potential food web exposure risks for upper trophic-level receptors were evaluated using individual compound concentrations, while the total PAH concentrations are used to evaluate potential direct exposure risks from direct exposure for lower trophic-level receptors. The semivolatile organic compound analyses for sediment samples included 18 individual PAH compounds. Total PAH concentrations were calculated on a sample-by-sample basis by summing the detected concentrations and one-half the reporting limit for undetected concentrations for all 18 compounds.

B2.3 Screening Effects Assessment

The screening effects assessment is the other part of Step 1 of the ERA process. The purpose of the screening effects assessment is to establish chemical-specific ESLs that represent thresholds for adverse ecological effects. Screening values are selected in alignment with the assessment endpoints.

B2.3.1 Direct Exposure Screening Values

The ESLs selected for lead and total PAHs are those recommended by the EPA Region 3 Biological Technical Assistance Group. Each ESL represents a consensus-based sediment quality guideline that exists as a Threshold Effect Concentration (TEC) from MacDonald et al. (2000). The TECs for lead and total PAHs are 35.8 mg/kg and 1,610 μ g/kg, respectively.

For AVS/SEM, effects are determined through calculation of the \sum SEM:AVS ratio. If this ratio is below 1.0 (AVS concentration surpasses the \sum SEM concentration), then the sediment is likely not to be toxic. If the ratio is greater than 1.0 (\sum SEM exceeds AVS), then a sediment sample may or may not be toxic. Previous investigations suggest that the incidence of metals toxicity is predicted as most likely when the \sum SEM:AVS ratio is greater than 8.0 (Burton et al., 2005). The \sum SEM and \sum SEM:AVS ratio calculations are presented in Section B2.5.

B2.3.2 Ingestion Screening Values

Because both lead and 15 of the PAH compounds analyzed in sediment are considered important bioaccumulative constituents (EPA, 2000), there are potentially complete exposure pathways for upper trophic-level receptors via food web exposure. Therefore, these constituents were screened using upper

trophic-level receptor food web models. Ingestion screening values for these constituents and the receptor species evaluated (or suitable surrogate species) through food web modeling were obtained from the literature. Toxicological information for wildlife species most closely related to the receptor species was used, where available, but was supplemented by laboratory studies of non-wildlife species (for example, laboratory chicken) where necessary. Toxicity studies involving long-term (chronic) exposure were used preferentially. Survival, growth, and reproduction were emphasized as toxicological endpoints because these are the most relevant to maintaining viable populations, and because these are generally the most-studied chronic toxicological endpoints for ecological receptors. If several chronic toxicological studies were available from the literature, the most appropriate study was selected for each receptor species based on study design, study methodology, study duration, study endpoint, and test species.

Ingestion-based screening values were derived for both chronic no observed adverse effect level (NOAEL) and chronic lowest observed effect level (LOAEL) endpoints. Ingestion screening values for mammals and birds are presented in Table B2-5 and Table B2-6, respectively.

B2.4 Screening Exposure Assessment

Step 2 of the ERA process begins with the screening exposure assessment. The principal activity associated with the exposure assessment is the estimation of constituent concentrations in applicable media to which receptors might be exposed. This concentration is termed an exposure point concentration (EPC). EPCs are estimated by following the selection of appropriate sets of the available analytical data using a set of criteria (for example, validation status, sampling date; see Section B2.2.3). Once the analytical data sets are selected, EPCs are calculated as a point on the distribution of concentrations. The following subsections summarize the EPC approach for each portion of the assessment.

B2.4.1 Direct Exposure

Because of the focus on only two COPCs (lead, total PAHs), each sample-specific concentration was considered in the screening exposure assessment. That is, each sample concentration was screened individually against the ESLs.

B2.4.2 Food Web Exposure

EPCs for lead and the 15 individual bioaccumulative PAH compounds were used in food web models to estimate exposures to upper trophic-level receptors. These food web EPCs were calculated by estimating the concentrations of detected bioaccumulative constituents in each dietary component using the maximum surface soil concentration and the uptake and food web models described in the sections below. Except for lead, the maximum concentration was used for estimating the dose of each constituent in the diets of each receptor. For lead, the maximum concentration during Phase 1 was detected in PX-FSR-SD36-000H along Transect 6 at 85,600 mg/kg (results are presented in Section B2.5). This concentration was considered anomalous with what was most likely interferences from a lead-containing item. While its possible this was related to lead pellet, or pellet fragment, it is not considered representative of a realistic level of contamination even from a skeet range (discussed below in Section B2.5.1). Therefore, the second highest concentration of lead from the Phase 1 sampling was used as the EPC for screening (27.9 mg/kg at PX-FSR-SD34-000H along Transect 6).

Dietary items for which tissue concentrations were modeled include aquatic plants, benthic invertebrates and fish. Incidental ingestion of sediment was also included when calculating the total level of exposure. The models and parameter values for calculating food item concentrations are outlined in the following subsections. For the screening exposure estimates of detected bioaccumulative constituents, uptake from sediment into these food items was based on a conservative (90th percentile)

bioconcentration factor (BCF) or bioaccumulation factor (BAF) from the literature, where available. The use of 90th percentile values is generally recommended to provide a conservative screening assessment (Sample et al., 1998a, 1998b; Bechtel Jacobs, 1998). Default BCFs or BAFs of 1.0 were used only when values were not available in the literature for a constituent.

B2.4.2.1 Aquatic Plants

Tissue concentrations in the aboveground vegetative portion of plants were estimated by multiplying the maximum sediment concentration (or second highest for lead) for each chemical by chemical-specific soil-to-plant BAFs (extrapolated to sediments) obtained from the literature. These BAFs are listed in Table B2-7.

The BAF values were based on root uptake from soil (extrapolated to sediment) and the ratio between dry-weight sediment and dry-weight plant tissue. Literature values based on the ratio between dry-weight sediment and wet-weight plant tissue were converted to a dry-weight basis by dividing the wetweight BAF by an estimated solids content for plants (15 percent; Sample et al., 1997).

B2.4.2.2 Benthic Macroinvertebrates

Tissue concentrations in benthic invertebrates were estimated by multiplying the maximum sediment concentration (or second highest for lead) for each chemical/metal by chemical/metal-specific sediment-to-invertebrate BAF values obtained from the literature. These values are also listed in Table B2-7.

The BAF values used were based on the ratio between dry-weight sediment and dry-weight invertebrate tissue. BAFs based on depurated analyses (sediment purged from the gut of the organism before analysis) were given preference over undepurated analyses when selecting BAF values because direct ingestion of sediment was accounted for separately in the food web model. Literature values based on the ratio between dry-weight sediment and wet-weight invertebrate tissue were converted to a dry-weight basis by dividing the wet-weight BAF by the estimated solids content for benthic invertebrates (21 percent) (EPA, 1993).

B2.4.2.3 Fish

Tissue concentrations in fish were estimated by multiplying the maximum sediment concentration (or second highest for lead) for each chemical by chemical-specific sediment-to-fish BAFs obtained from the literature. These values are listed in Table B2-7.

The BAF values were based on the ratio between dry-weight sediment and dry-weight tissue. Literature values based on the ratio between dry-weight sediment and wet-weight tissue were converted to a dry-weight basis by dividing the wet-weight BAF by the estimated solids content for fish (15 percent) (EPA, 1993).

B2.4.3 Dietary Intakes

For receptor species used in food web modeling, the dietary intake (dose) of each constituent (in milligrams of chemical per kilogram of body weight per day) was calculated by using species-specific life history information, where available, and the following formula (modified from EPA, 1993):

$$DI_{x} = \frac{\left[\left[\sum_{i} (FIR) (FC_{xi})(PDF_{i})\right] + \left[(FIR)(SC_{x})(PDS)\right]\right]}{BW} (AUF)$$

where:	DIx	=	Dietary intake for chemical x (mg chemical/kg body weight/day)
	FIR	=	Food ingestion rate (kg/day, dry-weight)
	FC _{xi}	=	Concentration of chemical x in food item i (mg/kg, dry-weight)

PDFi	=	Proportion of diet composed of food item i (dry-weight basis)
SC _x	=	Concentration of chemical x in sediment (mg/kg, dry-weight)
PDS	=	Proportion of diet composed of sediment (dry-weight basis)
BW	=	Body weight (kg, wet-weight)
AUF	=	Area use factor; % (decimal) of habitat used by receptor

Receptor-specific values used as inputs to this equation are provided in Table B2-8. It was assumed that constituents were 100% bioavailable to the receptor and that each receptor spent 100% of its time at the site (i.e., an AUF of 1.0 was assumed). Minimum body weights and maximum ingestion rates were used to develop conservative exposure estimates. Surface water (drinking water) was not included when calculating the total level of exposure because surface water is not present on the site.

B2.5 Screening Risk Calculation

The screening risk calculation is the final step of the SERA (Step 2). In this step, the sample-specific sediment concentrations or estimated exposure doses (upper trophic-level receptor species) were compared with the corresponding screening values to derive screening risk estimates. The outcome of this step is a list of detected COPCs for each medium-pathway-receptor combination evaluated or a conclusion of acceptable risk.

For the direct exposure evaluation (lower trophic-level receptors), COPCs were identified if one or more sample-specific concentration exceeded the screening value. For the food web evaluation, COPCs were identified using the hazard quotient (HQ) method. HQs were calculated by dividing the exposure dose by the corresponding ingestion screening value. Constituents with NOAEL-based HQs greater than 1.0 were considered COPCs for the SERA (Step 2). Detected constituents for which toxicological data were not available were also retained as COPCs for the SERA.

Sample concentrations exceeding screening values or resulting in HQs exceeding 1.0 indicate the potential for risk because the constituent concentration or dose (exposure) exceeds the screening value (effect). However, screening values and exposure estimates were derived using intentionally conservative assumptions such that HQs greater than 1.0 do not necessarily indicate risks are present or impacts are occurring. Rather, it identifies constituent-pathway-receptor combinations requiring further evaluation. HQs less than 1.0 indicate risks are very unlikely (EPA, 1997), enabling a conclusion of no unacceptable risk to be reached with high confidence.

B2.5.1 Direct Exposure

Comparisons of each sample-specific concentration of lead to the ESL (35.8 mg/kg) are provided in Table B2-9. Table B2-9 also summarizes the pellet counts. Pellets were found in 4 samples across 3 transects (Transect 4, SD21 [2 pellets]; Transect 5, SD28 [10 pellets] and SD30 [1 pellet]; Transect 6, SD37 [2 pellets]). Lead was detected in all shotfall zone samples, but the detected concentration at only one location along Transect 6 (SD36) exceeded the ESL. There were no pellets found in sample SD36. The concentration in SD36 was 85,600 mg/kg, with all other shotfall zone sample detections ranging from 1.02 to 27.9 mg/kg. The range of lead concentrations in background samples was 0.38 to 12.9 mg/kg. The concentration at SD36 was considered biased high due to an analytical interference that does not reflect the actual level of bioavailability of lead or a realistic level of contamination in sediment even from a skeet range. One possible interference could have been a pellet, or pellet fragments that were missed in that sample prior to analysis. While no pellets were found in SD36, some pellets were found nearby along Transect 6 (two pellets in SD37). To test the validity of the detection of 85,600 mg/kg, the chemical analytical laboratory was asked to reanalyze archived digestate from the original analytical run for SD36, as well as return to the stock SD36 sediment to also re-digest and re-analyze another portion of the original sample. The re-analysis of the original digestate yielded a concentration of 85,100 mg/kg, and the re-digested/re-analyzed sample yielded a concentration of 11.9 mg/kg. These

results suggest there was likely a lead pellet, pellet fragment or some other source of lead in the original portion of the sample that was analyzed, driving the concentration to a level that does not represent an actual direct exposure concentration.

The ∑SEM:AVS ratios are summarized in Table B2-10. The ∑SEM:AVS ratios at SD36 or other samples closest to this sample/transect do not indicate significant bioavailability that would suggest an impact is likely from metals. The ∑SEM:AVS ratios at only two shotfall zone sample locations were greater than 8.0 (Transect 2, SD09 [14.2] and Transect 3, SD14 [28.7]). However, total lead concentrations were not greater than the ESL for either location (Table B2-9). Therefore, even though conditions at these two locations suggest metals could be bioavailable, contributing to exposure impacts to the benthic community from metals, site-related lead would not be the cause of such impacts. Regardless, as a conservative approach, lead was identified as a Phase 1 COPC and carried through to Step 3A (Refined Risk Characterization) under Phase 2 of the investigation because of the high concentration at SD36 and uncertainty associated this detection.

Finally, comparisons of each sample-specific concentration of total PAHs to the ESL (1,610 ug/kg) is provided in Table B2-11. None of the total PAH concentrations estimated in shotfall zone samples exceed the ESL. The highest concentration of total PAHs in the shotfall zone was 132.0 ug/kg. Therefore, total PAHs are not expected to pose direct exposure risk for the benthic community and were eliminated for further consideration.

B2.5.2 Food Web Exposure

A summary of the food web exposure-based HQs, reflecting a comparison of maximum concentrationbased estimated exposure doses for lead and detected bioaccumulative PAH compounds to ingestionbased screening values, is presented in Table B2-12. Only lead exposure for spotted sandpiper yielded a NOAEL-based HQ greater than 1.0. Therefore, lead was identified as COPCs and carried through to Step 3A (Refined Risk Characterization) under Phase 2 of the investigation.

B2.6 Refined Risk Characterization

Following Step 2, sediment-associated lead was identified as a COPC for direct contact (benthic community) and through food web exposure for spotted sandpiper. Therefore, Step 3 of the ERA process was initiated to further evaluate these constituents.

B2.6.1 Refinement of Conservative Screening Assumptions

The objective of the refinement is to identify potential risk-driving COPCs, called "refined COPCs," requiring more-focused consideration in the Risk Evaluation. Therefore, Step 3A was initiated. According to Superfund guidance (EPA, 1997), Step 3 initiates the problem formulation phase of the BERA. Under Navy policy/guidance (CNO, 1999; NAVFAC, 2003), the BERA begins with a preliminary step (Step 3A) in which the conservative assumptions used in the SERA are refined and risk estimates are recalculated using the same CSM. In addition, the re-evaluation may include consideration of other factors such as background and upgradient data, detection frequency, and chemical-specific bioavailability (CNO, 1999; NAVFAC, 2003).

Only complete and critical pathways identified by the SERA were carried forward to Step 3A of the BERA. Similarly, only detected COPCs and receptors identified in the SERA as requiring further evaluation (lead, benthic community, and spotted sandpiper) were addressed in Step 3A. The assumptions, parameter values, and methods that were modified for the Step 3A re-evaluation of the Step 2 COPC (lead) included:

• <u>Phase 2 Sampling Results</u>: As discussed in Section B2.1.2, the Team agreed that a very focused follow-up Phase 2 investigation was necessary in the shotfall zone to better delineate the elevated

lead concentration at SD36 during Phase 1. Therefore, another surface sediment sample (PX-FSR-SD36A-000H) and a subsurface sample (6 to 24 inches bgs; PX-FSR-SD36A-0624) were collected on August 21, 2019, at SD36 along Transect 6 to verify the previously elevated detection of lead during Phase 1. Two rings of four step-out surface sediment samples each were also collected at 10-foot intervals from SD36A (SD63 through SD66 were 10 feet out and SD67 through SD70 were 20 feet out). All Phase 2 samples were analyzed for lead and pellet count. At the Team's agreement, analyses were not performed for SD67 through SD70 given low levels of detections for SD36A and SD63 through SD66. All Phase 2 sample results were considered for the Step 3A Refined Risk Characterization.

- <u>Spotted Sandpiper Food Web Modeling Refinements</u>: The same food model that was used for the SERA (Step 2) was used for Step 3A of the BERA with the following refinements:
 - Soil-Invertebrate BAF: The soil-invertebrate BAF used to estimate dietary tissue concentrations was based on central tendency estimates (for example, median or mean) from the literature as opposed to the maximum or high-end (for example, 90th percentile) estimates used in the SERA for many constituents. In the BERA, using a central tendency estimate (rather than high-end or maximums) for exposure parameters such as BAFs provides a more-representative estimate of potential exposures and risks to receptor populations (the focus of the assessment endpoints) of upper trophic-level receptors. Because these species are highly mobile, receptor exposure would effectively be averaged over time as these organisms forage within the area defining their home range (which will extend to areas beyond the Former Skeet Ranges study area). Average prey concentrations at Step 3A are most appropriately estimated using central tendency estimates of media concentrations and accumulation factors. For example, the wildlife dietary exposure models contained in the Wildlife Exposure Factors Handbook (EPA, 1993) specify the calculation of an average daily dose. Increasing the representativeness of the exposure estimates relative to population-level effects is consistent with the intent of the Step 3A evaluation. The refined soil-invertebrate BAF value used in Step 3A for lead was 0.307 (Sample et al. 1998b).
 - Exposure Parameters: Central tendency estimates (mean, median, or midpoint) for body weight and food ingestion rate were used for spotted sandpiper to develop exposure estimates, rather than the minimum body weights and maximum ingestion rates used in the SERA. Central tendency estimates for these exposure parameters are more relevant for a BERA because these better represent the characteristics of a greater proportion of the individuals in the population. Populations (rather than individual organisms) were emphasized during the development of the assessment endpoints for the ERA. The body weight and food ingestion rate used for spotted sandpiper for Step 3A food web modeling were 0.04 kg (Dunning, 1993) and 0.0080 kg/day-dry (based on allometric equation from Nagy [2001]).
 - EPC: Even though it is typical to use a central tendency concentration from the available dataset as the EPC for Step 3A of the BERA (for example, mean of 95 percent upper tolerance level), the maximum concentration for lead was used to be conservative. This was done since results for this assessment are generally being assessed on a sample-by-sample basis, this approach also enables incorporation of the Phase 2 results. Excluding the Phase 1 SD36 results, the maximum concentration across both investigation phases was detected during Phase 2 at SD36A (29.1 mg/kg), which was the re-sampling of SD36. Therefore, 29.1 mg/kg was used as the EPC to estimate the exposure dose for spotted sandpiper.
 - Basis for Exposure Risks: The SERA (Step 2) conservatively identified a chemical as a food web COPC if the estimated dose for at least one upper trophic-level receptor exceeded the NOAEL. The actual dose that is protective of an individual receptor, however, will fall between the NOAEL and the LOAEL. Both the NOAEL and LOAEL were used to determine whether lead was a

refined COPC in Step 3A of the BERA. Lead would have to yield a LOAEL-based HQ greater than 1.0 to be identified as a refined COPC.

B2.6.2 Direct Exposure

All Phase 2 results are summarized in Table B2-13. While a larger number of pellet counts were found in Phase 2 samples relative to Phase 1, none of the Phase 2 samples yielded lead concentrations in excess of the ESL. Therefore, lead is not considered a risk-driving or refined COPC and is not expected to pose unacceptable risk for the benthic macroinvertebrate community. No further action is warranted.

B2.6.3 Food Web Exposure

Using the same food web model with the above-stated parameter refinements, the NOAEL- and LOAELbased Step 3A HQs were 0.37 and 0.07 for spotted sandpiper, respectively. Therefore, lead is not considered a risk-driving or refined COPC and is not expected to pose unacceptable risk for upper trophic-level receptors. No further action is warranted.

B2.7 Uncertainties

Uncertainties are present in all ERAs because of the limitations of available data and the need to make certain assumptions and extrapolations based on incomplete information. In addition, the use of various models (for example, uptake and food web exposures) each carries with it some associated uncertainty as to how well the model reflects actual conditions. The uncertainties in this ERA are mainly attributable to the following factors:

- <u>Undetected Constituents</u>: Some PAHs were not detected in the sediment samples. Because these compounds were not detected, it is assumed that these PAHs are not present in sediment. There is some uncertainty associated with this assumption because reporting limits represent a concentration under which these compounds could theoretically be present. However, to lessen the uncertainty of the assumption, one-half the reporting limits were used as surrogate detected concentrations when total PAHs concentrations were calculated. Therefore, this uncertainty is considered low especially since there was a uniform low level of PAH detections in the shotfall zone.
- <u>Duplicate Analyses</u>: When evaluating samples with field duplicates, the value used in the ERA was always the detected concentration when one result was a detection and the constituent was not detected in the duplicate, regardless of whether the non-detected value was higher. In these cases, the use of the detected concentration has less uncertainty because it represents an actual measured value (versus an upper limit bound) and the two samples will have similar if not identical reporting limits. Additionally, when there was a detection in both the parent and field duplicate sample, the higher of the two results was always used so as to bias the result higher. Therefore, this uncertainty is considered low.
- <u>Food Web Exposure Modeling</u>: Lead and PAH compound concentrations in aquatic food items (plants, invertebrates, and fish) were estimated from sediment concentrations and were not directly measured. The use of generic, literature-derived exposure models and bioaccumulation factors introduces some uncertainty into the resulting estimates. The values selected, and methodology employed were intended to provide a conservative SERA or more reasonable (Step 3A) estimate of potential food web exposure concentrations.

AUFs were assumed to equal 1.0. This is also a conservative assumption because a significant percentage of time for each upper trophic-level receptor species could be spent foraging offsite in unaffected areas or in areas where chemical concentrations are expected to be significantly less.

B2.8 Conclusions

No further action is warranted for the aquatic habitat associated with the theoretical shotfall zone of the Former Skeet Ranges.

B2.9 References

ATSDR. 1995. Toxicological profile for polycyclic aromatic hydrocarbons (PAHs). August.

Bechtel Jacobs. 1998a. Empirical models for the uptake of inorganic chemicals from soil by plants. Prepared for U.S. Department of Energy. BJC/OR-133. September 1998.

Bechtel Jacobs. 1998b. *Biota sediment accumulation factors for invertebrates: review and recommendations for Oak Ridge Reservation*. Prepared for U.S. Department of Energy. BJC/OR-122. August 1998.

Beyer, W.N., E.E. Connor, and S. Gerould. 1994. Estimates of soil ingestion by wildlife. Journal of Wildlife Management. 58:375-382.

Beyer, W.N. and C. Stafford. 1993. "Survey and evaluation of contaminants in earthworms and in soil derived from dredged material at confined disposal facilities in the Great Lakes Region." *Environmental Monitoring and Assessment*. 24:151-165.

Burton, G.A. Jr., L.T.H. Nguyen, C. Janssen, R. Baudo, R. McWilliam, B. Bossuyt, M. Beltrami, A. Green. 2005. Field validation of sediment zinc toxicity. Environ Toxicol Chem 24:541–553.

Butler, R.W. 1992. Great blue heron (*Ardea herodias*). Birds of North America. No. 25. The Academy of Natural Sciences, Philadelphia, PA and the American Ornithologists' Union, Washington, D.C.

CH2M HILL, Inc. (CH2M). 2013. Final Site Inspection Report for Site UXO-0002 Former Small Arms Ranges. Naval Air Station, Patuxent River, Maryland. April.

CH2M. 2018. Final, Sampling and Analysis Plan, Remedial Investigation, Former Skeet Ranges (UXO-002, OU-2), *Naval Air Station Patuxent River, St. Mary's County, Maryland*. February.

Chief of Naval Operations (CNO). 1999. *Navy Policy for Conducting Ecological Risk Assessments*. Memorandum from Chief of Naval Operations to Commander, Naval Facilities Engineering Command. Ser N453E/9U595355. April.

Conover, M.R. 1989. "Potential compounds for establishing conditioned food aversions in raccoons." *Wildlife Society Bulletin*. 17:430-435.

Department of the Navy (Navy). 2017. Integrated Natural Resources Management Plan for Naval Air Station Patuxent River Complex's Naval Air Station Patuxent River, Webster Field Annex and minor properties, Maryland.

Di Toro DM, Mahony JD, Hansen DJ, Scott KJ, Hicks MB, Mayr SM, Edmond MS. 1990. Toxicity of cadmium in sediments: The role of acid volatile sulfide. Environ Toxicol Chem 9:1487–1502.

Dunning, J. B. 1993. CRC handbook of avian body masses. CRC Press, Boca Raton, FL. 371 pp.

International Technology and Regulatory Council (ITRC). 2003. Characterization and Remediation of Soils at Closed Small Arms Firing Ranges. January.

Krantzberg, G. and D. Boyd. 1992. "The biological significance of contaminants in sediment from Hamilton Harbour, Lake Ontario." *Environmental Toxicology and Chemistry*. 11:1527-1540.

MacDonald, D.D., C. G. Ingersoll, and T. A. Berger. 2000. "Development and Evaluation of Consensus-Based Sediment Quality Guidelines for Freshwater Ecosystems." *Arch. Environ. Contam. Toxicol.* 39, 20– 31 (2000).

Nagy, K.A. 2001. Food requirements of wild animals: predictive equations for free-living mammals, reptiles, and birds. Nutrition Abstracts and Reviews. Series B. 71:21R-31R.

Naval Facilities Engineering Command (NAVFAC). 2003. *Navy Guidance for Conducting Ecological Risk Assessments*. February.

Quinney, T.E. and P.C. Smith. 1980. "Comparative foraging behavior and efficiency of adult and juvenile great blue herons." *Canadian Journal of Zoology*. 58:1168-1173.

Rigdon, R.H. and J. Neal. 1963. "Fluorescence of chickens and eggs following the feeding of benzpyrene crystals." *Texas Reports on Biology and Medicine* 21(4):558-566.

Sample, B.E. and G.W. Suter II. 1994. *Estimating exposure of terrestrial wildlife to contaminants*. Environmental Restoration Division, ORNL Environmental Restoration Program. ES/ER/TM-125.

Sample, B.E., D.M. Opresko, and G.W. Suter II. 1996. *Toxicological benchmarks for wildlife*: 1996 revision. Environmental Restoration Division, ORNL Environmental Restoration Program. ES/ER/TM-86/R3.

Sample, B.E., J.J. Beauchamp, R.A. Efroymson, and G.W. Suter II. February 1998a. *Development and Validation of Bioaccumulation Models for Small Mammals*. Environmental Restoration Division, Oak Ridge National Laboratory (ORNL) Environmental Restoration Program. ES/ER/TM-219.

Sample, B.E., J.J. Beauchamp, R.A. Efroymson, G.W. Suter II, and T.L. Ashwood. February 1998b. *Development and Validation of Bioaccumulation Models for Earthworms*. Environmental Restoration Division, ORNL Environmental Restoration Program. ES/ER/TM-220.

Sample, B.E., M.S. Aplin, R.A. Efroymson, G.W. Suter II, and C.J.E. Welsh. 1997. *Methods and tools for estimation of the exposure of terrestrial wildlife to contaminants*. Environmental Sciences Division, Oak Ridge National Laboratory. ORNL/TM-13391.

Silva, M. and J.A. Downing. 1995. CRC handbook of mammalian body masses. CRC Press, Boca Raton, FL. 359 pp.

Suter, G.W. II. 1989. Chapter 2 "Ecological Endpoints" in Warren-Hicks, W., B.R. Parkhurst, and S.S. Baker, Jr. (eds). *Ecological Assessment of Hazardous Waste sites: A Field and Laboratory Reference*. EPA/600/3-89/013.

Suter, G.W. II. 1990. "Endpoints for Regional Ecological Risk Assessment." *Environmental Management*: 14, pp. 9-23.

Suter, G.W. II. 1993. Ecological Risk Assessment. Lewis Publishers, Chelsea, MI. pp. 538.

U.S. Environmental Protection Agency (EPA). 1993. *Wildlife Exposure Factors Handbook*. Volume I of II. EPA/600/R-93/187a. December.

EPA. 1997. Ecological Risk Assessment Guidance for Superfund: Process for Designing and Conducting Ecological Risk Assessments. Interim Final. EPA/540/R-97/006.

EPA. 2000. *Bioaccumulation Testing and Interpretation for the Purpose of Sediment Quality Assessment - Status and Needs*. EPA/823/R-00/001. February.

EPA. 2005. Procedures for the derivation of equilibrium partitioning sediment benchmarks (ESBs) for the protection of benthic organisms: Metal mixtures (cadmium, copper, lead, nickel, silver, and zinc). EPA/600/R-02/011. Office of Research and Development, Washington, DC.

EPA. 2005b. Guidance for developing ecological soil screening levels. Attachment 4-1. OSWER Directive 9285.7-55. February.

Tables

Table B2-1. Assessment Endpoints, Risk Hypotheses, and Measurement EndpointsFormer Skeet Range, Ecological Risk Assessment (Aquatic Habitat)NAS Patuxent River, St. Mary's County, Maryland

	Assessment Endpoint	Risk Hypothesis	Measurement Endpoint
	Survival, growth, and reproduction of benthic macroinvertebrate communities	Are site-related constituent concentrations in sediment sufficient to adversely affect benthic macroinvertebrate communities?	Comparison of constituent concentrations in with sediment screening values
	Survival, growth, and reproduction of benthic macroinvertebrate communities	Are site-related constituent concentrations in sediment sufficient to adversely affect benthic macroinvertebrate communities?	Comparison of constituent concentrations in with sediment screening values
	Survival, growth, and reproduction of submerged aquatic plant communities	Are site-related constituent concentrations in sediment sufficient to adversely affect aquatic plant communities?	Comparison of constituent concentrations in with sediment screening values
	Survival, growth, and reproduction of reptile	Are site-related constituent concentrations in sediment sufficient to adversely affect reptile populations?	Comparison of constituent concentrations in with sediment screening values
	populations	Are site-related constituent concentrations in sediment sufficient to cause adverse effects (on growth, survival, or reproduction) to reptile populations?	Evidence of potential risk to other upper trop terrestrial receptors evaluated in the ERA
_	Survival, growth, and reproduction of avian aquatic piscivore populations	Are site-related constituent concentrations in sediment sufficient to cause adverse effects (on growth, survival, or reproduction) to avian receptor populations that may consume fish from the shotfall zone of the Patuxcent River?	
	Survival, growth, and reproduction of avian semi- aquatic invertivore populations	Are site-related constituent concentrations in sediment sufficient to cause adverse effects (on growth, survival, or reproduction) to avian receptor populations that may consume benthic macroinvertebrates from the shotfall zone of the Patuxcent River?	Comparison of modeled dietary intakes us
	Survival, growth, and reproduction of avian semi- aqiatic omnivore populations	Are site-related constituent concentrations in sediment sufficient to cause adverse effects (on growth, survival, or reproduction) to avian receptor populations that may consume aquatic plants and benthic macroinvertebrates from the shotfall zone of the Patuxcent River?	values; ratios >1 based upon the NOAEL-LO/ indicate an effect.
-	Survival, growth, and reproduction of mammalian semi- aquatic herbivore populations	Are site-related constituent concentrations in sediment sufficient to cause adverse effects (on growth, survival, or reproduction) to mammalian receptor populations that may consume aquatic plants from the shotfall zone of the Patuxcent River?	

	Receptor
in surface soils	Benthic macroinvertebrates (worms, bivalves, crustaceans)
in surface soils	Fish (various forage fish, Flounder, Striped bass, rockfish)
in sediment	Aquatic plants (Bay grasses)
in sediment	
rophic level	Reptiles (turtles, snakes)
	Great blue heron, Osprey
ng surface soil	Marsh wren, Spotted sandpiper
LOAEL range	Raccoon
-	Muskrat

Table B2-2.Surface Sediment Chemical Analytical Results (Phase 1) - Habitat Descriptions

Former Skeet Ranges, Ecological Risk Assessment (Aquatic Habitat) NAS Patuxent River, St. Mary's County, Maryland

Sample Area Transect Sample ID Sample Date Sample Time (feat)					Habitat	Live Organisms	
	manocet	odinpic ib			(feet)		
		PX-FSR-SD01-000H	6/13/19	1355	0.2	Sand with gravel and cobbles, brown, loose, no signs of organisms.	None
	1	PX-FSR-SD02-000H	6/15/19	1225	0.4	Sand with gravel and cobbles, brown, loose, no signs of organisms.	None
		PX-FSR-SD03-000H	6/13/19	1345	0.6	Sand with gravel and cobbles, brown, loose, no signs of organisms.	None
		PX-FSR-SD04-000H	6/15/19	1215	0.2	Sand with gravel and cobbles, light gray brown, loose, no signs of organisms.	None
		PX-FSR-SD05-000H	6/13/19	1335	0.4	Sand with gravel and cobbles, light brown, loose, no signs of organisms.	None
	2	PX-FSR-SD06-000H	6/15/19	1200	0.7	Sand and cobbles, gray brown, loose, no signs of organisms.	None
	-	PX-FSR-SD07-000H	6/13/19	1315	1.4	Sand with some gravel, gray brown, loose, broken shells.	None
		PX-FSR-SD08-000H	6/15/19	1130	1.5	Soft silt with sand, dark gray brown, trace broken shells, sticks, few small bivalves	Bivalves
		PX-FSR-SD09-000H	6/13/19	1305	1.6	Soft silt with sand, dark gray brown, no signs of organisms.	None
		PX-FSR-SD10-000H	6/13/19	1245	0.2	Sand with gravel and cobbles, light brown, loose, few small crustaceans.	Crustaceans
		PX-FSR-SD11-000H	6/15/19	1120	0.4	Sand with gravel and cobbles, light gray brown, loose, no signs of organisms.	None
		PX-FSR-SD12-000H	6/13/19	1235	1.4	Sand with gravel, light gray brown, loose, broken shells, few small bivalves, trace seaweed/grass.	Bivalves
	3	PX-FSR-SD13-000H	6/15/19	1110	1.7	Soft silt with sand, dark gray brown, sticks, no signs of organisms.	None
		PX-FSR-SD14-000H	6/13/19	1225	1.8	Soft silt with sand, dark gray brown, many small broken bivalve shells.	None
		PX-FSR-SD15-000H	6/15/19	1105	1.8	Soft silt with sand, dark gray brown, trace shells.	None
		PX-FSR-SD16-000H	6/13/19	1210	2.0	Soft silt with sand, very dark brown, broken shells.	None
		PX-FSR-SD17-000H	6/15/19	1055	0.2	Sand with gravel and cobbles, light gray brown, loose, no signs of organisms.	None
		PX-FSR-SD18-000H	6/13/19	1155	0.5	Sand with gravel and cobbles, light gray brown, loose, no signs of organisms.	None
		PX-FSR-SD19-000H	6/15/19	1045	1.5	Sand with silt, brown and gray, loose, broken shells throughout, few small bivalves.	Bivalves
	Λ	PX-FSR-SD20-000H	6/13/19	1150	1.8	Soft silt with some sand, dark gray brown, worm.	Worm
	4	PX-FSR-SD21-000H	6/15/19	1035	1.7	Soft silt with sand, brown and gray, oyster shells, broken shells.	None
		PX-FSR-SD22-000H	6/15/19	1025	1.8	Soft silt with sand, dark gray brown, some oyster shells, trace broken shells, sticks.	None
Shotfall Zone Samples		PX-FSR-SD23-000H	6/13/19	1135	2.1	Soft silt some sand, dark gray brown, shell fragments, oyster shells.	None
		PX-FSR-SD24-000H	6/15/19	0920	2.1	Soft silt with sand, dark gray brown, large oyster shells, broken shells.	None
		PX-FSR-SD25-000H	6/13/19	1120	0.3	Sand with gravel and cobbles, light gray brown, loose, no signs of organisms.	None
		PX-FSR-SD26-000H	6/15/19	0910	0.4	Sand with gravel and cobbles, light gray brown, loose, no signs of organisms.	None
		PX-FSR-SD27-000H	6/13/19	1105	1.7	Soft silt with sand, dark brown, loose, broken shells throughout.	None
	-	PX-FSR-SD28-000H	6/15/19	0900	1.6	Soft silt with sand, dark gray brown, trace broken shells.	None
	5	PX-FSR-SD29-000H	6/13/19	1050	1.9	Soft silt with some sand, dark brown, loose, broken shells, large oyster shells, small bivalves.	Bivalves
		PX-FSR-SD30-000H	6/15/19	0850	1.8	Soft silt and sand, dark gray brown, trace broken shells.	None
		PX-FSR-SD31-000H				Refusal at multiple attempts, therefore not sampled	
		PX-FSR-SD32-000H	6/12/19	1435	2.2	Silt and sand, dark brown and black, loose, large oyster shells.	None
		PX-FSR-SD33-000H	6/15/19	0835	0.1	Sand and cobbles, light gray brown, loose, no signs of organisms.	None
		PX-FSR-SD34-000H	6/12/19	1425	0.5	Sand, brown, loose, no signs of organisms.	None
		PX-FSR-SD35-000H	6/15/19	0825	1.4	Sand, brown, loose, broken shells, small bivalves.	Bivalves
	6	PX-FSR-SD36-000H	6/12/19	1415	1.8	Silt and sand and cobbles, dark gray to brown, some shells.	None
		PX-FSR-SD37-000H	6/15/19	0820	1.8	Soft silt and sand, dark gray brown, broken shells, oyster shells.	None
		PX-FSR-SD38-000H	6/12/19	1045	2.1	Silt and sand, dark brown, abundant oyster shells.	None
		PX-FSR-SD39-000H	6/15/19	0810	2.0	Soft silt and sand, dark gray brown, abundant oyster shells.	None
		PX-FSR-SD40-000H	6/12/19	1025	0.3	Sand and gravel and cobbles, light brown, loose, no signs of organisms.	None
		PX-FSR-SD41-000H	6/15/19	0800	0.3	Sand, light brown gray, loose, trace broken shells.	None
		PX-FSR-SD42-000H	6/12/19	1010	1.6	Sand some silt, dark brown gray, loose, broken shells. small bivalves.	Bivalves
	7	PX-FSR-SD43-000H	6/15/19	0755	1.6	Soft silt with sand, dark gray brown, sticks and broken shells.	None
	•	PX-FSR-SD44-000H	6/12/19	1000	1.9	Silt and sand, dark brown, broken shells, oyster shells.	None
		PX-ESR-SD45-000H	-,,			Refusal at multiple attempts, therefore not sampled	
		PX-FSR-SD46-000H	6/12/19	0950	21	Silt and sand, dark brown, loose, broken shells.	None
			0, 12, 10	0000			

Table B2-2.Surface Sediment Chemical Analytical Results (Phase 1) - Habitat Descriptions

Former Skeet Ranges, Ecological Risk Assessment (Aquatic Habitat)

Sample Area	Transect	Sample ID	Sample Date Sample Time		Water Depth	Habitat	Live Organisms
			6/15/10	1220	(feet)	Copples and sand light gray brown loose no signs of organisms	Nono
			6/12/19	1320	0.1	Sand light gray brown loose, no signs of organisms.	None
			6/15/19	0735	0.4	Sand, light grav brown, loose, no signs of organisms.	None
	Q		6/12/19	0735	1 7	Silt and sand, dark brown, loose, nace broken shens.	None
	0		6/15/19	0730	1.7	Soft silt with sand, dark brown, sticks and broken shells, ovster shells	None
		PX-F3R-5D51-000H	6/12/19	0730	1.7	Silt and sand, dark brown, loose, small bivalves and shells	Bivalves
		PX-FSR-SD53-000H	0/12/15	0510	1.5	Refusal at multiple attempts, therefore not sampled	Bivalves
Shotfall Zone		PX-FSR-SD54-000H	6/15/19	1320	0.1	Cobbles with sand light gray brown loose no signs of organisms	None
Samples		PX-FSR-SD55-000H	6/12/19	0855	0.1	Sand and gravel and cobbles light brown, loose, no signs of organisms	None
Sumples		PX-FSR-SD56-000H	6/15/19	0700	0.3	Sand with gravel and cobbles, light grav brown, loose, no signs of organisms.	None
	9	PX-FSR-SD57-000H	6/12/19	0840	1 4	Sand brown loose no signs of organisms	None
		PX-FSR-SD58-000H	6/15/19	0655	1.6	Soft silt with sand, dark grav brown, trace broken shells.	None
		PX-FSR-SD59-000H	6/12/19	0830	1.8	Soft silt and sand, brown, shell fragments.	None
		PX-ESR-SD60-000H	6/15/19	1245	0.2	Sand with gravel and cobbles, light grav brown, loose, no signs of organisms.	None
	10	PX-FSR-SD61-000H	6/15/19	0645	0.2	Sand with gravel and cobbles, light gray brown, loose, trace broken shells.	None
	-	PX-FSR-SD62-000H	6/12/19	0810	0.4	Sand with gravel and cobbles, brown, loose, no signs of organisms.	None
		PAX-BG-SD01-000H				Refusal at multiple attempts, therefore not sampled	
		PAX-BG-SD02-000H	6/15/19	1515	1.3	Soft silt with sand, brown, no signs of organisms.	None
	A	PAX-BG-SD03-000H	6/13/19	1500	1.1	Sand, brown, loose, small crustaceans, many live bivalves.	Crustaceans, Bivalves
		PAX-BG-SD04-000H	6/15/19	1505	1.1	Sand, brown, loose, no signs of organisms.	None
		PAX-BG-SD05-000H	6/15/19	1450	1.5	Soft silt with sand, dark gray, trace broken shells.	None
	Р	PAX-BG-SD06-000H	6/13/19	1450	1.6	Soft silt with sand, dark gray and brown, trace broken shells.	None
	В	PAX-BG-SD07-000H	6/15/19	1440	1.6	Dense silt with sand and clay, gray/blue, some shells.	None
		PAX-BG-SD08-000H	6/13/19	1435	1.6	Sand and silt, brown, loose, broken shells throughout.	None
		PAX-BG-SD09-000H	6/15/19	1420	0.5	Sand with cobbles and gravel, brown, loose, no signs of organisms.	None
Background	C	PAX-BG-SD10-000H	6/15/19	1405	1.1	Sand, brown, loose, trace shell fragments.	None
Samples	C	PAX-BG-SD11-000H	6/13/19	1410	1.2	Sand with gravel, brown, loose, small bivalves, broken shells.	Bivalves
		PAX-BG-SD12-000H	6/14/19	0835	1.3	Sand with silt, brown, loose, broken shells throughout.	None
		PAX-BG-SD13-000H	6/12/19	1355	0.4	Sand and gravel and cobbles, light gray brown, loose, no signs of organisms.	None
	Р	PAX-BG-SD14-000H	6/12/19	1345	0.6	Sand and gravel and cobbles, light brown, loose, oyster and bivalve shell fragments, bivalve.	Bivalves
	D	PAX-BG-SD15-000H	6/12/19	1335	0.6	Sand, brown, loose, small shells, none live organisms.	None
		PAX-BG-SD16-000H	6/12/19	1325	0.6	Sand, light brown, loose, shell fragments, bivalves.	Bivalves
		PAX-BG-SD17-000H	6/12/19	1315	0.4	Sand and gravel and cobbles, light gray brown, loose, shell fragments, small crustacean.	Crustacean
	F	PAX-BG-SD18-000H	6/12/19	1305	0.5	Sand, brown, loose, broken shells, crustacean.	Crustacean
	L	PAX-BG-SD19-000H	6/12/19	1255	0.6	Sand, brown, loose, abundant small bivalves.	Bivalves
		PAX-BG-SD20-000H	6/12/19	1240	0.6	Sand with silt, brown, loose, abundant small bivalves, crustacean.	Crustacean, Bivalves

Table B2-3. Summary of Available Surface Sediment Chemical Analytical Data (Phase 1)

Former Skeet Ranges, Ecological Risk Assessment (Aquatic Habitat)

Sample Area Hanset Sample Date Lead PAris Peliet Count (Strin) A Solids print (Tot) 1 PX-FSR-SD01-000H 6/13/19 x	Grain Siza
Shotfall Zone 3 x <	Grain Size
Shotfall Zone Samples 3 1	
Shotfall Zone Samples 3 PX-FSR-SD10-000H 6/13/19 x <td>~</td>	~
Shotfall Zone Samples 3 x	X
Shotfall Zone 3 A <	v
Shotfall Zone 3 x <	^
Shotfall Zone 3 PX-FSR-SD08-000H 6/15/19 x	
Shotfall Zone Samples 3 N X	^
Shotfall Zone Samples 3 PX-FSR-SD10-000H 6/13/19 x <td></td>	
Shotfall Zone Samples 3 PX-FSR-SD10-000H 6/13/19 x <td>Y</td>	Y
Shotfall Zone Samples 3 PX-FSR-SD11-000H 6/15/19 x	×
Shotfall Zone Samples 3 PX-FSR-SD12-000H 6/13/19 x <td></td>	
Shotfall Zone Samples 3 PX-FSR-SD12-000H 6/15/19 x x PX-FSR-SD13-000H 6/15/19 x x x x x PX-FSR-SD14-000H 6/13/19 x x x x x PX-FSR-SD15-000H 6/15/19 x x x x x PX-FSR-SD15-000H 6/15/19 x x x x x PX-FSR-SD16-000H 6/13/19 x x x x x PX-FSR-SD16-000H field duplicate x x x x x PX-FSR-SD17-000H 6/15/19 x x x x x PX-FSR-SD16-000H 6/15/19 x x x x x PX-FSR-SD16-000H 6/15/19 x x x x x PX-FSR-SD16-000H 6/15/19 x x x x x PX-FSR-SD18-000H 6/15/19 x x x x x PX-FSR-SD19-000H 6/15/19 x x x x x	×
Samples 3 Interror of (13/10) x <td>^</td>	^
PX-FSR-SD15-000H 6/15/19 x x x x x PX-FSR-SD16-000H 6/13/19 x x x x x PX-FSR-SD16-000H field duplicate x x x x x PX-FSR-SD16P-000H field duplicate x x x x x PX-FSR-SD17-000H 6/15/19 x x x x x PX-FSR-SD19-000H 6/15/19 x x x x x PX-FSR-SD19-000H 6/13/19 x x x x x	×
PX-FSR-SD16-000H 6/13/19 x x x x x x PX-FSR-SD16P-000H field duplicate x x x x x PX-FSR-SD17-000H 6/15/19 x x x x x PX-FSR-SD17-000H 6/15/19 x x x x x PX-FSR-SD18-000H 6/13/19 x x x x x PX-FSR-SD19-000H 6/13/19 x x x x x	~
PX-FSR-SD16P-000H field duplicate x <t< td=""><td>Y</td></t<>	Y
PX-FSR-SD1-000H 6/15/19 x	^
PX-FSR-SD18-000H 6/13/19 x	
PX-FSR-SD19-000H 6/15/19 x x	×
PX-FSR-SD20-000H 6/13/19 x x x x x x x	x
4 PX-FSR-SD21-000H 6/15/19 x x	
PX-FSR-SD21P-000H field duplicate x x	
PX-FSR-SD22-000H 6/15/19 x x	
PX-FSR-SD23-000H 6/13/19 x x x x x x x x	x
PX-FSR-SD24-000H 6/15/19 x x	

Table B2-3. Summary of Available Surface Sediment Chemical Analytical Data (Phase 1)

Former Skeet Ranges, Ecological Risk Assessment (Aquatic Habitat)

Sample Area	Transect	Sample ID	Sample Date	Lead	PAHs	Pellet Count	Acid Volatile Sulfide (AVS)/ Simultaneou sly Extracted Metals (SEM)	% Solids	рH	Total Organic Carbon (TOC)	Grain Size
		PX-FSR-SD25-000H	6/13/19	x	X	X	x	x	X	x	X
		PX-FSR-SD26-000H	6/15/19	x	x	х					
		PX-FSR-SD27-000H	6/13/19	x		X	x	x	х	x	x
		PX-FSR-SD28-000H	6/15/19	x		х					
	5	PX-FSR-SD28P-000H	field duplicate	x		х					
		PX-FSR-SD29-000H	6/13/19	x		х	x	x	х	x	х
		PX-FSR-SD30-000H	6/15/19	x		х					
		PX-FSR-SD31-000H	not collected	NA		NA					
		PX-FSR-SD32-000H	6/12/19	х		х	х	х	х	х	х
		PX-FSR-SD33-000H	6/15/19	х	х	х					
		PX-FSR-SD34-000H	6/12/19	х	х	х	х	х	х	х	х
		PX-FSR-SD35-000H	6/15/19	х		х					
	6	PX-FSR-SD36-000H	6/12/19	х		х	х	х	х	х	х
		PX-FSR-SD37-000H	6/15/19	х		х					
Chatfall Zana		PX-FSR-SD38-000H	6/12/19	х		х	х	х	х	х	х
Shotiali Zone		PX-FSR-SD39-000H	6/15/19	х		х					
Samples		PX-FSR-SD40-000H	6/12/19	х	х	х	х	х	х	х	х
		PX-FSR-SD41-000H	6/15/19	х	х	х					
		PX-FSR-SD41P-000H	field duplicate	х	х	х					
	7	PX-FSR-SD42-000H	6/12/19	х		х	х	х	х	х	х
	/	PX-FSR-SD43-000H	6/15/19	х		х					
		PX-FSR-SD44-000H	6/12/19	х		х	х	х	х	х	х
		PX-FSR-SD45-000H	not collected	NA	NA	NA					
		PX-FSR-SD46-000H	6/12/19	х		х	х	x	х	х	х
		PX-FSR-SD47-000H	6/15/19	х	х	х					
		PX-FSR-SD48-000H	6/12/19	х		х	x	х	х	х	x
		PX-FSR-SD49-000H	6/15/19	x		х					
	8	PX-FSR-SD50-000H	6/12/19	х		х	x	х	х	х	x
		PX-FSR-SD51-000H	6/15/19	х		x					
		PX-FSR-SD52-000H	6/12/19	x		x	x	х	х	x	x
		PX-FSR-SD53-000H	not collected	NA	NA	NA					

Table B2-3. Summary of Available Surface Sediment Chemical Analytical Data (Phase 1)

Former Skeet Ranges, Ecological Risk Assessment (Aquatic Habitat)

NAS Patuxent River, St. Mary's County, Maryland

Sample Area	Transect	Sample ID	Sample Date	Lead	PAHs	Pellet Count	Acid Volatile Sulfide (AVS)/ Simultaneou sly Extracted Metals (SEM)	% Solids	рH	Total Organic Carbon (TOC)	Grain Size
		PX-FSR-SD54-000H	6/15/19	x		x	(02)	/******	P	(,	
		PX-FSR-SD55-000H	6/12/19	x		x	x	x	x	x	x
		PX-FSR-SD56-000H	6/15/19	x		×	X	~	~	~	X
	9	PX-FSR-SD56P-000H	field duplicate	x		×					
Shotfall Zone	5	PX-FSR-SD57-000H	6/12/19	x		×	x	x	x	x	x
Samples		PX-FSR-SD58-000H	6/15/19	x		x					
		PX-FSR-SD59-000H	6/12/19	x		×	x	x	x	x	x
	-	PX-FSR-SD60-000H	6/15/19	x		x					
	10	PX-FSR-SD61-000H	6/15/19	x		x					
		PX-FSR-SD62-000H	6/12/19	х		х	х	х	х	x	x
		PX-BG-SD01-000H	not collected	NA	NA						
		PX-BG-SD02-000H	6/15/19	х	х						
	A	PX-BG-SD03-000H	6/13/19	х	х		х	х	х	х	x
		PX-BG-SD04-000H	6/15/19	х	х						
	B	PX-BG-SD05-000H	6/15/19	х	х						
		PX-BG-SD06-000H	6/13/19	х	х		х	х	х	х	x
		PX-BG-SD07-000H	6/15/19	х	х						
		PX-BG-SD08-000H	6/13/19	х	х		х	х	х	х	x
		PX-BG-SD09-000H	6/15/19	х	х		х	х	х	х	x
		PX-BG-SD10-000H	6/15/19	х	х						
Background	С	PX-BG-SD11-000H	6/13/19	х	х		х	х	х	х	x
Samples		PX-BG-SD11P-000H	field duplicate	х	х				х	х	
		PX-BG-SD12-000H	6/14/19	х	х						
		PX-BG-SD13-000H	6/12/19	х	х				х	х	
	D	PX-BG-SD14-000H	6/12/19	х	х		х	х	х	х	x
	D	PX-BG-SD15-000H	6/12/19	х	х				х	х	
		PX-BG-SD16-000H	6/12/19	х	х		х	х	х	х	x
		PX-BG-SD17-000H	6/12/19	х	х		х	х	х	х	x
		PX-BG-SD18-000H	6/12/19	х	х				х	х	
	Е	PX-BG-SD18P-000H	field duplicate	х	х				х	х	
		PX-BG-SD19-000H	6/12/19	x	х		x	х	х	х	x
		PX-BG-SD20-000H	6/12/19	x	x				х	x	

Notes:

An "x" indicates if that sample was analyzed for that parameter

NA indicates samples that were not analyzed due to the proposed sample not being collected

Blank cells indicate parameter was not proposed for that sample

Table B2-4. Surface Sediment Chemical Analytical Results (Phase 1) - Other Parameters

Former Skeet Ranges, Ecological Risk Assessment (Aquatic Habitat)

						_	Grain Size				
						тос		Fine Sand	Medium	Coarse Sand	
Sample Area	Transect	Sample ID	Sample Date	% Solids	рН	(MG/KG)	Fines (%)	(%)	Sand (%)	(%)	Gravel (%)
	1	PX-FSR-SD01-000H	6/13/19	85.6	7.41	386	0.11	7.94	67.55	23.08	1.32
	T	PX-FSR-SD03-000H	6/13/19	84.6	7.48	2190	0.37	3.7	70.69	23.84	1.4
		PX-FSR-SD05-000H	6/13/19	84.3	7.46	2140	0.39	16.28	49.46	33.88	0.0
	2	PX-FSR-SD07-000H	6/13/19	78.1	8.01	4450	0.72	71.04	26.31	0.84	1.09
		PX-FSR-SD09-000H	6/13/19	68.3	7.62	6320	16.82	79.2	2.02	0.19	1.77
		PX-FSR-SD10-000H	6/13/19	89.9	7.53	526	0.08	21.29	30.31	46.63	1.69
	2	PX-FSR-SD12-000H	6/13/19	80.7	7.64	635	0.5	34.04	58.64	4.1	2.72
	3	PX-FSR-SD14-000H	6/13/19	61.7	7.7	9650	27.33	68.28	2.9	0.04	1.45
		PX-FSR-SD16-000H	6/13/19	55.8	7.87	9760	28.01	63.65	4.53	1.59	2.22
		PX-FSR-SD18-000H	6/13/19	89.3	7.51	904	0.36	13.99	28.49	56.47	0.69
Shotfall Zone Samples	4	PX-FSR-SD20-000H	6/13/19	64.8	7.69	7710	22.23	72.65	3.44	0.32	1.36
		PX-FSR-SD23-000H	6/13/19	61.6	7.97	10400	28.51	62.7	4.25	0.83	3.71
		PX-FSR-SD25-000H	6/13/19	88.6	7.54	382	0.12	16.31	35.27	47.7	0.6
	F	PX-FSR-SD27-000H	6/13/19	70.1	7.77	4360	9.52	83.27	3.16	1.2	2.85
	5	PX-FSR-SD29-000H	6/13/19	64	8.01	6630	24.75	67.69	4.52	0.84	2.2
		PX-FSR-SD32-000H	6/12/19	67.9	7.9	5870	13.52	75.49	5.5	2.74	2.75
		PX-FSR-SD34-000H	6/12/19	80.6	7	716	0.6	65.5	31.54	0.58	1.78
	6	PX-FSR-SD36-000H	6/12/19	66.4	7.9	7620	20.42	70.06	4.83	2.01	2.68
		PX-FSR-SD38-000H	6/12/19	68.5	7.96	5790	11.31	57.69	9.18	12.04	9.78
		PX-FSR-SD40-000H	6/12/19	86.6	7.04	457	0.12	13.33	50.28	37.62	0.0
	7	PX-FSR-SD42-000H	6/12/19	80.6	7.84	705	0.88	78.74	17.88	0.08	2.42
	/	PX-FSR-SD44-000H	6/12/19	70.1	7.84	5880	19.14	73.77	3.43	0.24	3.42
		PX-FSR-SD46-000H	6/12/19	70.9	8.03	4570	10.01	81.66	4.65	1.29	2.39
		PX-FSR-SD48-000H	6/12/19	82.5	7.24	556	0.46	57.54	39.01	2.75	0.24
	8	PX-FSR-SD50-000H	6/12/19	71.9	7.83	4250	9.39	83.8	3.76	0.5	2.55
		PX-FSR-SD52-000H	6/12/19	73	8.05	3450	8.44	82.55	5.45	1.81	1.75
		PX-FSR-SD55-000H	6/12/19	87.4	7.13	722	0.37	42.11	25.06	29.16	3.3
	9	PX-FSR-SD57-000H	6/12/19	80.7	7.39	741	0.89	77.16	19.28	0.62	2.05
		PX-FSR-SD59-000H	6/12/19	67.1	7.79	5490	20.03	73.72	3.28	0.21	2.76
	10	PX-FSR-SD62-000H	6/12/19	91	7.71	832	0.42	24.08	32.26	40.1	3.14

Table B2-4. Surface Sediment Chemical Analytical Results (Phase 1) - Other Parameters

Former Skeet Ranges, Ecological Risk Assessment (Aquatic Habitat)

						_			Grain Size		
						тос		Fine Sand	Medium	Coarse Sand	
Sample Area	Transect	Sample ID	Sample Date	% Solids	рН	(MG/KG)	Fines (%)	(%)	Sand (%)	(%)	Gravel (%)
	А	PX-BG-SD03-000H	6/13/19	82.6	7.43	898	1.15	41.56	54.81	0.41	2.07
	D	PX-BG-SD06-000H	6/13/19	70.6	7.78	5890	10.42	72.08	11.99	2.72	2.79
	В	PX-BG-SD08-000H	6/13/19	79.7	7.95	2750	5.48	74.97	16.56	1.72	1.27
Packground		PX-BG-SD09-000H	6/15/19	86.9	7.3	1200	0.2	28.72	26.72	46.01	0.0
	С	PX-BG-SD11-000H	6/13/19	80.4	7.63	753	0.89	68.58	26.03	1.83	2.67
		PX-BG-SD11P-000H	field duplicate		7.92	878					
	- D -	PX-BG-SD13-000H	6/12/19		7.43	1000					
Samplac		PX-BG-SD14-000H	6/12/19	89	7.63	1680	0.39	18.95	31.26	47.54	1.86
Samples		PX-BG-SD15-000H	6/12/19		7.77	1060					
		PX-BG-SD16-000H	6/12/19	80.2	7.63	1100	0.46	74.92	22.81	0.44	1.37
		PX-BG-SD17-000H	6/12/19	83	7.37	687	0.41	17.18	52.19	30.17	0.05
		PX-BG-SD18-000H	6/12/19		7.5	1570					
	E	PX-BG-SD18P-000H	field duplicate		7.45	1590					
		PX-BG-SD19-000H	6/12/19	78.7	7.8	1820	1.14	33.9	57.04	5.67	2.25
		PX-BG-SD20-000H	6/12/19		7.85	1500					

Table B2-5. Ingestion Screening Values - Birds

Former Skeet Ranges, Ecological Risk Assessment (Aquatic Habitat) NAS Patuxent River, St. Mary's County, Maryland

		Body Weight				LOAEL	NOAEL	
Chemical	Test Organism	(kg)	Duration	Exposure Route	Effect/Endpoint	(mg/kg/d)	(mg/kg/d)	Reference
Inorganics								
Lead ¹	Japanese quail	0.15	12 weeks	oral in diet	reproduction	11.3	1.13	Sample et al. 1996
Lead ²	American kestrel	0.13	7 months	oral in diet	reproduction	19.3	3.85	Sample et al. 1996
Polycyclic Aromatic Hydrocarbons								
Acenaphthene	chicken	1.50	35 days	oral in diet	reproduction	35.5	7.10	Rigdon and Neal 1963
Acenaphthylene	chicken	1.50	35 days	oral in diet	reproduction	35.5	7.10	Rigdon and Neal 1963
Anthracene	chicken	1.50	35 days	oral in diet	reproduction	35.5	7.10	Rigdon and Neal 1963
Benzo(a)anthracene	chicken	1.50	35 days	oral in diet	reproduction	35.5	7.10	Rigdon and Neal 1963
Benzo(a)pyrene	chicken	1.50	35 days	oral in diet	reproduction	35.5	7.10	Rigdon and Neal 1963
Benzo(b)fluoranthene	chicken	1.50	35 days	oral in diet	reproduction	35.5	7.10	Rigdon and Neal 1963
Benzo(g,h,i)perylene	chicken	1.50	35 days	oral in diet	reproduction	35.5	7.10	Rigdon and Neal 1963
Benzo(k)fluoranthene	chicken	1.50	35 days	oral in diet	reproduction	35.5	7.10	Rigdon and Neal 1963
Chrysene	chicken	1.50	35 days	oral in diet	reproduction	35.5	7.10	Rigdon and Neal 1963
Dibenz(a,h)anthracene	chicken	1.50	35 days	oral in diet	reproduction	35.5	7.10	Rigdon and Neal 1963
Fluoranthene	chicken	1.50	35 days	oral in diet	reproduction	35.5	7.10	Rigdon and Neal 1963
Fluorene	chicken	1.50	35 days	oral in diet	reproduction	35.5	7.10	Rigdon and Neal 1963
Indeno(1,2,3-cd)pyrene	chicken	1.50	35 days	oral in diet	reproduction	35.5	7.10	Rigdon and Neal 1963
Phenanthrene	chicken	1.50	35 days	oral in diet	reproduction	35.5	7.10	Rigdon and Neal 1963
Pyrene	chicken	1.50	35 days	oral in diet	reproduction	35.5	7.10	Rigdon and Neal 1963

Notes:

1 - TRV used for spotted sandpiper

2 - TRV used for great blue heron, marsh wren, osprey

Table B2-6. Ingestion Screening Values - Mammals

Former Skeet Ranges, Ecological Risk Assessment (Aquatic Habitat) NAS Patuxent River, St. Mary's County, Maryland

	E	Body Weight	t			LOAEL	NOAEL	
Chemical	Test Organism	(kg)	Duration	Exposure Route	Effect/Endpoint	(mg/kg/d)	(mg/kg/d)	Reference
Inorganics								
Lead	rat	0.35	3 generations	oral in diet	reproduction	80.0	8.00	Sample et al. 1996
Polycyclic Aromatic Hydrocarbons								
Acenaphthene	mouse	0.03	13 weeks	oral (gavage)	reproduction	700	350	ATSDR 1995
Acenaphthylene	mouse	0.03	13 weeks	oral (gavage)	reproduction	700	350	ATSDR 1995
Anthracene	mouse	0.03	13 weeks	oral (gavage)	reproduction	5,000	1,000	ATSDR 1995
Benzo(a)anthracene	mouse	0.03	GD 7-16	oral (gavage)	reproduction	10.0	2.00	Sample et al. 1996
Benzo(a)pyrene	mouse	0.03	GD 7-16	oral (gavage)	reproduction	10.0	2.00	Sample et al. 1996
Benzo(b)fluoranthene	mouse	0.03	GD 7-16	oral (gavage)	reproduction	10.0	2.00	Sample et al. 1996
Benzo(g,h,i)perylene	mouse	0.03	GD 7-16	oral (gavage)	reproduction	10.0	2.00	Sample et al. 1996
Benzo(k)fluoranthene	mouse	0.03	GD 7-16	oral (gavage)	reproduction	10.0	2.00	Sample et al. 1996
Chrysene	mouse	0.03	GD 7-16	oral (gavage)	reproduction	10.0	2.00	Sample et al. 1996
Dibenz(a,h)anthracene	mouse	0.03	GD 7-16	oral (gavage)	reproduction	10.0	2.00	Sample et al. 1996
Fluoranthene	mouse	0.03	13 weeks	oral (gavage)	reproduction	2,500	500	ATSDR 1995
Fluorene	mouse	0.03	13 weeks	oral (gavage)	reproduction	2,500	500	ATSDR 1995
Indeno(1,2,3-cd)pyrene	mouse	0.03	GD 7-16	oral (gavage)	reproduction	10.0	2.00	Sample et al. 1996
Phenanthrene	mouse	0.03	13 weeks	oral (gavage)	reproduction	2,500	500	ATSDR 1995
Pyrene	mouse	0.03	GD 7-16	oral (gavage)	reproduction	10.0	2.00	Sample et al. 1996

Table B2-7. Soil Bioconcentration Factors For Plants and Soil Invertebrates - Step 2

Former Skeet Ranges, Ecological Risk Assessment (Aquatic Habitat)

NAS Patuxent River, St. Mary's County, Maryland

	Sediment	-Plant BCF (dry weight)	Sediment-In	vertebrate BAF (dry weight)	Sedin	nent-Fish BAF (dry weight)
Chemical	Value	Reference	Value	Reference	Value	Reference
Inorganics						
Lead	0.468	Bechtel Jacobs 1998b	1.522	Sample et al. 1998b	0.070	Krantzberg and Boyd 1992
Polycyclic Aromatic Hydrocarbons						
Acenaphthene	1.3367	USEPA 2005b	0.30	Beyer and Stafford 1993	1.00	
Acenaphthylene	1.2156	USEPA 2005b	0.22	Beyer and Stafford 1993	1.00	
Anthracene	0.9588	USEPA 2005b	0.32	Beyer and Stafford 1993	1.00	
Benzo(a)anthracene	0.5229	USEPA 2005b	0.27	Beyer and Stafford 1993	1.00	
Benzo(a)pyrene	0.4212	USEPA 2005b	0.34	Beyer and Stafford 1993	1.00	
Benzo(b)fluoranthene	0.4017	USEPA 2005b	0.21	Beyer and Stafford 1993	1.00	
Benzo(g,h,i)perylene	0.3086	USEPA 2005b	0.15	Beyer and Stafford 1993	1.00	
Benzo(k)fluoranthene	0.4017	USEPA 2005b	0.21	Beyer and Stafford 1993	1.00	
Chrysene	0.5229	USEPA 2005b	0.44	Beyer and Stafford 1993	1.00	
Dibenz(a,h)anthracene	0.3102	USEPA 2005b	0.49	Beyer and Stafford 1993	1.00	
Fluoranthene	0.7099	USEPA 2005b	0.37	Beyer and Stafford 1993	1.00	
Fluorene	1.1471	USEPA 2005b	0.20	Beyer and Stafford 1993	1.00	
Indeno(1,2,3-cd)pyrene	0.3168	USEPA 2005b	0.41	Beyer and Stafford 1993	1.00	
Phenanthrene	0.9588 USEPA 2005b 0.28 Beyer and		Beyer and Stafford 1993	1.00		
Pyrene	0.7137 USEPA 2005b 0.39 Beyer a		Beyer and Stafford 1993	1.00		

Notes:

Soil-plant CBFs were used to extrapolate to sediment

Table B2-8. Exposure Parameters for Upper Trophic Level Ecological Receptors - Step 2

Former Skeet Ranges, Ecological Risk Assessment (Aquatic Habitat)

		Body Weight (kg)	Food Ing	estion Rate (kg/day - dry)		Dietary Composition (percent)		on (percent)	Sediment Ingestion (perce	
						Aquatic	Benthic			
Receptor	Value	Reference	Value	Reference	Fish	Plants	Invert.	Reference	Value	Reference
Birds										
								USEPA 1993;		
								Quinney and Smith		
Great blue heron	2.10	Butler 1992	0.1356	allometric equation	100	0	0	1980	0	Sample and Suter 1994
Marsh wren	0.010	Dunning 1993	0.0030	USEPA 1993	0	0	95.0	USEPA 1993	5.0	Assumed based on diet
Osprey	1.24	Dunning 1993	0.0919	USEPA 1993	100	0	0	USEPA 1993	0	Assumed based on diet
Spotted sandpiper	0.029	Dunning 1993	0.0105	allometric equation	0	0	82.0	USEPA 1993	18.0	Beyer et al. 1994
Mammals										
Muskrat	0.750	USEPA 1993	0.0765	USEPA 1993	0	90.6	0	USEPA 1993	9.4	Beyer et al. 1994 (raccoon)
Raccoon	4.23	Silva and Downing 1995	0.1307	Conover 1989	7.0	40.0	43.6	USEPA 1993	9.4	Beyer et al. 1994

Table B2-9. Surface Sediment Chemical Analytical Results (Step 2/Phase 1) - Lead

Former Skeet Ranges, Ecological Risk Assessment (Aquatic Habitat) NAS Patuxent River, St. Mary's County, Maryland

Sample Area	Transect	Sample ID	Sample Date	Lead (MG/KG) Pellet Count ¹
		PX-FSR-SD01-000H	6/13/19	1.75	0
	1	PX-FSR-SD02-000H	6/15/19	1.39	J
		PX-FSR-SD03-000H	6/13/19	3.08	0
		PX-FSR-SD04-000H	6/15/19	3.06	J
		PX-FSR-SD05-000H	6/13/19	2.00	0
		PX-FSR-SD06-000H	6/15/19	2.13	J
	2	PX-FSR-SD07-000H	6/13/19	1.86	0
		PX-FSR-SD08-000H	6/15/19	5.28	J
		PX-FSR-SD08P-000H	field duplicate	5.79	J
		PX-FSR-SD09-000H	6/13/19	5.61	0
		PX-FSR-SD10-000H	6/13/19	2.95	0
		PX-FSR-SD11-000H	6/15/19	2.14	J
		PX-FSR-SD12-000H	6/13/19	1.02	0
	2	PX-FSR-SD13-000H	6/15/19	7.93	J
	3	PX-FSR-SD14-000H	6/13/19	7.68	0
		PX-FSR-SD15-000H	6/15/19	7.20	J
		PX-FSR-SD16-000H	6/13/19	7.23	0
		PX-FSR-SD16P-000H	field duplicate	8.37	not analyzed
		PX-FSR-SD17-000H	6/15/19	2.83	J
		PX-FSR-SD18-000H	6/13/19	1.16	0
Ch. + f = 7 = =		PX-FSR-SD19-000H	6/15/19	2.82	J
Snotfall Zone		PX-FSR-SD20-000H	6/13/19	11.5	0
Samples	4	PX-FSR-SD21-000H	6/15/19	7.84	J 2
		PX-FSR-SD21P-000H	field duplicate	7.41	J not analyzed
		PX-FSR-SD22-000H	6/15/19	7.14	J
		PX-FSR-SD23-000H	6/13/19	7.45	0
		PX-FSR-SD24-000H	6/15/19	7.13	J
		PX-FSR-SD25-000H	6/13/19	2.01	0
		PX-FSR-SD26-000H	6/15/19	1.54	J
		PX-FSR-SD27-000H	6/13/19	5.67	0
		PX-FSR-SD28-000H	6/15/19	9.28	J 10
	5	PX-FSR-SD28P-000H	field duplicate	9.45	J not analyzed
		PX-FSR-SD29-000H	6/13/19	9.76	0
		PX-FSR-SD30-000H	6/15/19	8.98	J 1
		PX-FSR-SD31-000H	not collected		not analyzed
		PX-FSR-SD32-000H	6/12/19	12.5	0
		PX-FSR-SD33-000H	6/15/19	2.55	J
		PX-FSR-SD34-000H	6/12/19	27.9	0
		PX-FSR-SD35-000H	6/15/19	2.38	J
	6	PX-FSR-SD36-000H ²	6/12/19	85,600	0
		PX-FSR-SD37-000H	6/15/19	6.46	J 2
	-	PX-FSR-SD38-000H	6/12/19	4.18	J O
	-				

Table B2-9. Surface Sediment Chemical Analytical Results (Step 2/Phase 1) - Lead

Former Skeet Ranges, Ecological Risk Assessment (Aquatic Habitat) NAS Patuxent River, St. Mary's County, Maryland

Sample Area	Transect	Sample ID	Sample Date	Sample Date Lead (MG/KG)		Pellet Count ¹	
		PX-FSR-SD40-000H	6/12/19	2.25	J	0	
		PX-FSR-SD41-000H	6/15/19	1.55	J		
		PX-FSR-SD41P-000H	field duplicate	1.92	J	not analyzed	
	7	PX-FSR-SD42-000H	6/12/19	12.4	J	0	
	/	PX-FSR-SD43-000H	6/15/19	7.50	J		
		PX-FSR-SD44-000H	6/12/19	4.91	J	0	
		PX-FSR-SD45-000H	not collected			not analyzed	
		PX-FSR-SD46-000H	6/12/19	4.14	J	0	
		PX-FSR-SD47-000H	6/15/19	3.33	J		
		PX-FSR-SD48-000H	6/12/19	2.48	J	0	
		PX-FSR-SD49-000H	6/15/19	3.04	J		
	8	PX-FSR-SD50-000H	6/12/19	8.13	J	0	
Shotfall Zone		PX-FSR-SD51-000H	PX-FSR-SD51-000H 6/15/19		J		
Samples		PX-FSR-SD52-000H	FSR-SD52-000H 6/12/19 4.27		J	0	
		PX-FSR-SD53-000H	not collected		-	not analyzed	
		PX-FSR-SD54-000H	6/15/19	3.19	J		
		PX-FSR-SD55-000H	6/12/19	3.73	J	0	
		PX-FSR-SD56-000H	6/15/19	2.25	J		
	9	PX-FSR-SD56P-000H	field duplicate	2.68	J	not analvzed	
	5	PX-FSR-SD57-000H	6/12/19	1.65	J	0	
		PX-FSR-SD58-000H	6/15/19	5.77	J		
		PX-ESR-SD59-000H	6/12/19	6.23	J	0	
	10	PX-FSR-SD60-000H	6/15/19	2.67	1		
		PX-ESR-SD61-000H	6/15/19	1.34	J		
		PX-FSR-SD62-000H	6/12/19	1.96	J	0	
		PX-BG-SD01-000H	not collected			not analyzed	
	А	PX-BG-SD02-000H	6/15/19	2.38	J	not analyzed	
		PX-BG-SD03-000H	6/13/19	12.9	-	not analyzed	
		PX-BG-SD04-000H	6/15/19	0.56	T	not analyzed	
		PX-BG-SD05-000H	6/15/19	2.68	1	not analyzed	
		PX-BG-SD06-000H	6/13/19	11.5		not analyzed	
	В	PX-BG-SD07-000H	6/15/19	3.94	J	not analyzed	
		PX-BG-SD08-000H	6/13/19	4.21	-	not analyzed	
		PX-BG-SD09-000H	6/15/19	1.07	J	not analyzed	
	C	PX-BG-SD10-000H	6/15/19	0.76	J	not analyzed	
Background		PX-BG-SD11-000H	6/13/19	1.02	-	not analyzed	
Samples	-	PX-BG-SD11P-000H	field duplicate	1.05		not analyzed	
Samples		PX-BG-SD12-000H	6/14/19	1.02	J	not analyzed	
	D	PX-BG-SD13-000H	6/12/19	8.81	-	not analyzed	
		PX-BG-SD14-000H	6/12/19	0.88		not analyzed	
		PX-BG-SD15-000H	6/12/19	0.80		not analyzed	
		PX-BG-SD16-000H	6/12/19	0.71	J	not analyzed	
		PX-BG-SD17-000H	6/12/19	0.38	J	not analyzed	
		PX-BG-SD18-000H	6/12/19	0,47	J	not analyzed	
	F	PX-BG-SD18P-000H	field duplicate	0.45	1	not analyzed	
	-	PX-BG-SD19-000H	6/12/19	0.63	J	not analyzed	
		PX-BG-SD20-000H	6/12/19	0,85	J	not analyzed	
			<i>u,, _u</i>	5.05			

Notes:

Shaded concentrations exceed the lead ecological screening level (ESL) of 35.8 mg/kg (Threshold Effect Concentration [TEC]; MacDonald et al. 2000)

1 - Pellets were retained in a #35 sieve (0.5 millimeters)

2 - To test validity of 85,600 mg/kg, archived digestate was re-analyzed (result 85,100 mg/kg) and additional stock sediment (orginal sample) was re-digested/re-analyzed (result 11.9 mg/kg)

Table B2-10. Surface Sediment Chemical Analytical Results (Step 2/Phase 1) - SEM/AVS

Former Skeet Ranges, Ecological Risk Assessment (Aquatic Habitat)

NAS Patuxent River, St. Mary's County, Maryland

				Acid Volat	ile _	e Simultaneously Extractable Metals (UMOL/G)											
Sample Area	Transect	Sample ID	Sample Date	Sulfides	Sulfides		Cadmium Copper		Lead Nickel		Zinc			Total SEM ¹	SFM/AVS ²		
Sumple Area	manseet	PX-FSR-SD01-000H	6/13/19	0.01	-, U	0.00034	U	0.002	J	0.0091		0.0012	U	0.0056	U	0.01467	2.9
- Shotfall Zone Samples -	1	PX-ESR-SD03-000H	6/13/19	0.086		0.00043	Ū	0.0035		0.0062		0.0013	1	0.012	-	0.023215	0.3
		PX-FSR-SD05-000H	6/13/19	0.123		0.00029	J	0.0079		0.0176		0.0025	J	0.0267		0.05499	0.4
	2	PX-FSR-SD07-000H	6/13/19	0.036	J	0.00045	J	0.0093		0.006		0.0025	J	0.054		0.07225	2.0
		PX-FSR-SD09-000H	6/13/19	0.021	J	0.00155		0.07		0.0137		0.0159		0.196		0.29715	14.2
		PX-FSR-SD10-000H	6/13/19	0.014	U	0.00048	U	0.0049		0.0129		0.0013	J	0.0169		0.03624	5.2
	-	PX-FSR-SD12-000H	6/13/19	0.287		0.00079		0.005		0.0055		0.0012	J	0.0187		0.03119	0.1
	3	PX-FSR-SD14-000H	6/13/19	0.019	U	0.00166		0.0319		0.0131		0.0146		0.211		0.27309	28.7
		PX-FSR-SD16-000H	6/13/19	0.207		0.00195		0.0371		0.0143		0.0178		0.275		0.34615	1.7
		PX-FSR-SD18-000H	6/13/19	0.011	U	0.00037	U	0.0039		0.0054		0.0017	J	0.0165		0.027685	5.0
	4	PX-FSR-SD20-000H	6/13/19	0.458		0.00205		0.0321		0.0437		0.0143		0.262		0.35415	0.8
		PX-FSR-SD23-000H	6/13/19	2.81		0.00199		0.0321		0.015		0.0163		0.284		0.34939	0.1
		PX-FSR-SD25-000H	6/13/19	0.022	J	0.00013	J	0.0014	J	0.0052		0.0012	U	0.0043	U	0.00948	0.4
	-	PX-FSR-SD27-000H	6/13/19	4.54		0.00191		0.0364		0.0258		0.0139		0.254		0.33201	0.1
	5	PX-FSR-SD29-000H	6/13/19	3.15		0.00199		0.0292		0.0191		0.0141		0.277		0.34139	0.1
		PX-FSR-SD32-000H	6/12/19	4.6		0.00138		0.0211		0.0095		0.0122		0.238		0.28218	0.1
	-	PX-FSR-SD34-000H	6/12/19	0.012	U	0.0004	U	0.0043		0.0059		0.0018	J	0.0162		0.0284	4.7
	6	PX-FSR-SD36-000H	6/12/19	0.123		0.00138		0.0274		0.0191		0.0137		0.18		0.24158	2.0
		PX-FSR-SD38-000H	6/12/19	2.51		0.00212		0.0358		0.0143		0.0169		0.23		0.29912	0.1
	7	PX-FSR-SD40-000H	6/12/19	0.013	U	0.00042	U	0.0039		0.0064		0.0015	U	0.007		0.02176	3.3
		PX-FSR-SD42-000H	6/12/19	0.012	J	0.00025	J	0.0104		0.0061		0.002	J	0.0277		0.04645	3.9
		PX-FSR-SD44-000H	6/12/19	0.24		0.00173		0.0287		0.0126		0.014		0.223		0.28003	1.2
		PX-FSR-SD46-000H	6/12/19	1.77		0.00157		0.0226		0.0103		0.0109		0.185		0.23037	0.1
		PX-FSR-SD48-000H	6/12/19	0.012	U	0.0004	U	0.0046		0.0089		0.0017	J	0.015		0.0304	5.1
	8	PX-FSR-SD50-000H	6/12/19	2.7		0.00116		0.0143		0.0126		0.008		0.159		0.19506	0.1
		PX-FSR-SD52-000H	6/12/19	0.279		0.00142		0.0232		0.0094		0.0102		0.15		0.19422	0.7
		PX-FSR-SD55-000H	6/12/19	0.011	U	0.00035	U	0.0041		0.0122		0.0014	J	0.0149		0.032775	6.0
	9	PX-FSR-SD57-000H	6/12/19	0.147		0.00043	U	0.0091		0.0058		0.0016	J	0.0227		0.039415	0.3
		PX-FSR-SD59-000H	6/12/19	0.167		0.0015		0.024		0.0119		0.0127		0.209		0.2591	1.6
	10	PX-FSR-SD62-000H	6/12/19	0.016	U	0.00027	J	0.0052		0.0059		0.0021	J	0.02		0.03347	4.2
Background Samples	A	PX-BG-SD03-000H	6/13/19	0.011	U	0.00025	J	0.0062		0.0022		0.0027		0.0259		0.03725	6.8
	в	PX-BG-SD06-000H	6/13/19	1.17		0.0012		0.024		0.0082		0.0103		0.144		0.1877	0.2
	D	PX-BG-SD08-000H	6/13/19	0.345		0.00126		0.017		0.0059		0.0088		0.11		0.14296	0.4
	C -	PX-BG-SD09-000H	6/15/19	0.066		0.00045	U	0.0035		0.0023	U	0.0022	J	0.0142		0.021275	0.3
		PX-BG-SD11-000H	6/13/19	0.031	J	0.00038	J	0.0077		0.0032		0.0047		0.0614		0.07738	2.5
	D	PX-BG-SD14-000H	6/12/19	0.013	U	0.00044	U	0.0065		0.0017	J	0.005		0.0195		0.03292	5.1
		PX-BG-SD16-000H	6/12/19	0.014	U	0.00046	U	0.0081		0.0016	J	0.0032		0.0479		0.06103	8.7
	F	PX-BG-SD17-000H	6/12/19	0.032		0.00036	U	0.0044		0.0018	U	0.0014	J	0.0181		0.02718	0.8
	L .	PX-BG-SD19-000H	6/12/19	0.069		0.00048	U	0.0082		0.0024	U	0.0048		0.0231		0.04164	0.6

Notes:

1 - Sum or detected SEM with 1/2 reporting values for non-detects

2 - Toxicity is predicted as most likely for ∑SEM:AVS ratios greater than 8.0 (Burton et al. 2005); ∑SEM:AVS ratios greater than 8.0 are shaded
Table B2-11. Surface Sediment Chemical Analytical Results (Step 2/Phase 1) - PAHs

Former Skeet Ranges, Ecological Risk Assessment (Aquatic Habitat)

NAS Patuxent River, St. Mary's County, Maryland

Sample Area	Sample ID	Sample Date	1-Methylnaphthalene	onded+daeabrd+cM c	z-wernyınapnmalene	Acenaphthene		Acenaphthylene		Anthracene		Benzo(a) anthracene		peuzo(a)byrene	Benzo(b)fluoranthene	Benzo(g,h,i)perylene		Benzo(k)fluoranthene	Chrysene	ourservite characterin	ulben2(a,n)antnracene	Fluoranthene	Fluorene		Indeno(1,2,3-cd)pyrene	Naphthalene	-	Pnenantnrene	Pyrene	Total PAHs
	PX-FSR-SD10-000H	6/13/19	1.98	U 1.98	3 U	1.98	U	1.98	U 1	L.98	U 5	.94	8.14	1	8.05	13.3	8.3	1	7.34	13.7	7	3.67	J 1.98	U :	13.9	1.98	U 1.9	8 U	3.11 J	93.4
	PX-FSR-SD17-000H	6/15/19	2.05	U 2.05	5 U	2.05	U	2.05	U 2	2.05	U 2	.05	U 2.05	5 U	2.05 U	2.05	U 2.0	5 U	J 2.05	U 2.05	5 U	2.05	U 2.05	U	2.05	U 2.05	U 2.0	5 U	2.05 U	18.5
	PX-FSR-SD18-000H	6/13/19	1.97	U 1.97	7 U	1.97	U	1.97	U 1	L.97	U 2	.91	J 2.61	LJ	4.14	1.95	J 1.4	7 J	J 2.58	J 1.97	7 U	4.2	1.97	U 2	2.06	J 1.97	U 2.04	4 J	3.93	35.8
	PX-FSR-SD25-000H	6/13/19	1.99	U 1.99	θU	1.99	U	1.99	U 1	L.99	U 5	.29	6.81	L	6.68	8.72	7.7	1	6.59	9.77	7	1.99	U 1.99	U	9.08	1.99	U 1.9	9 U	1.99 U	70.6
	PX-FSR-SD26-000H	6/15/19	2.04	U 2.04	4 U	2.04	U	2.04	U 1	L.36	J 2	.38	J 2.04	1 J	2.62 J	2.12	J 1.5	5 J	J 2.29	J 2.04	1 U	3.95	J 2.04	U :	1.97	J 2.04	U 2.69	9 J	3.38 J	33.5
Shotfall Zone	PX-FSR-SD33-000H	6/15/19	2	U 2	U	2	U	2	U 4	1.49	9	.39	7.97	7	9.01	5.14	5.2	6	9.45	2	U	20.5	2	U 4	4.55	2	U 12.2	2	15.3	110.3
Samples	PX-FSR-SD34-000H	6/12/19	2.19	U 2.19	θU	2.19	U	2.19	U 2	2.19	U 2	.19	U 2.19) U	2.19 U	2.19	U 2.1	9 U	J 2.19	U 2.19) U	2.32	J 2.19	U	2.19	U 2.19	U 2.19	9 U	1.93 J	21.8
	PX-FSR-SD40-000H	6/12/19	1.94	U 1.94	4 U	1.94	U	1.94	U 1	L.94	U 1	.94	U 1.94	1 U	1.94 U	1.94	U 1.9	4 U	J 1.94	U 1.94	1 U	1.94	U 1.94	U :	1.94	U 1.94	U 1.94	4 U	1.94 U	17.5
	PX-FSR-SD41-000H	6/15/19	2.15	U 2.15	5 U	2.15	U	2.15	U 2	2.14	J	8.9	J 3.03	3 J	4.38	2.71	J 1.9	2 J	J 4.03	J 2.15	5 U	8.39	2.15	U 2	2.56	J 2.15	U 6.62	2	6.31	53.5
	PX-FSR-SD41P-000H	Field duplicate	2.17	U 2.17	7 U	2.17	U	2.17	U 1	l.12	J 5	.03	5.03	}	8.04	4.2	J 3.2	6 J	J 5.7	2.17	7 U	5.98	2.17	U 4	4.29	2.17	U 3.14	4 J	5.35	58.7
	PX-FSR-SD47-000H	6/15/19	2.02	U 2.02	2 U	2.02	U	2.02	U 3	3.95	J 1	0.8	11.7	7	11.3	9.75	8.6	8	11.7	6.8		16.7	1.79	J	9.41	2.02	U 11.0	6	12.8	132.0
		Maximum	2.19	2.19	9	2.19		2.19	4	1.49	1	0.8	11.7	7	11.3	13.3	8.6	8	11.7	13.7	7	20.5	1.79	1	13.9	2.19	12.2	2	15.3	132.0
	PX-BG-SD02-000H	6/15/19	2.25	U 2.25	5 U	2.25	U	2.25	U 2	2.24	J 7	.09	9.02	2	8.82	8.75	8.1	3	9.44	7.78	3	11.5	2.25	U	7.74	2.25	U 4	J	8.59	99.9
	PX-BG-SD03-000H	6/13/19	2.06	U 2.06	5 U	2.06	U	2.06	U 2	2.06	U 2	.06	U 2.06	5 U	2.06 U	2.06	U 2.0	6 U	J 2.06	U 2.06	5 U	2.06	U 2.06	U 2	2.06	U 7.08	2.0	6 U	2.06 U	24.6
	PX-BG-SD04-000H	6/15/19	2.15	U 2.15	5 U	2.15	U	2.15	U 2	2.15	U 2	.58	J 3.35	5 J	2.54 J	4.63	4.2	5	3.74	J 6.37	7	2.15	U 2.15	U 4	4.07	J 2.15	U 2.1	5 U	2.15 U	42.3
	PX-BG-SD05-000H	6/15/19	2.21	U 2.21	1 U	2.21	U	2.21	U 2	2.21	U 4	.56	5.95	5	6.12	7.66	6.7	7	5.8	8.53	3	3.41	J 2.21	U	7.34	2.21	U 2.2	1 U	2.48 J	67.5
	PX-BG-SD06-000H	6/13/19	8.34	9.61	1	6.51		4.95	2	24.8	1	32	116	;	189	72.4	60.	2	148	17.3	3	404	7.73	8	31.4	12.2	65.3	1	325	1,684.5
	PX-BG-SD07-000H	6/15/19	3.59	J 4.5		7.18		4.68	1	15.5	2	5.6	23.9)	51.2	16.8	18.	7	47.5	4.64	1	205	10.7		18	5.34	57		144	663.8
	PX-BG-SD08-000H	6/13/19	2.46	J 3.05	5 J	2.14	U	2.14	U 2	2.44	J 5	.09	2.98	3 J	5.02	3.13	J 1.9	8 J	J 4.2	J 2.14	4 U	10.8	1.7	Jŝ	3.43	J 5.16	5.28	8	7.8	67.7
	PX-BG-SD09-000H	6/15/19	2.06	U 2.06	5 U	2.06	U	2.06	U 2	2.06	U 2	.06	U 2.06	5 U	2.06 U	2.06	U 2.0	6 U	J 2.06	U 2.06	5 U	1.81	J 2.06	U 2	2.06	U 2.06	U 2.0	6 U	2.06 J	20.4
	PX-BG-SD10-000H	6/15/19	2.25	U 2.25	5 U	2.25	U	2.25	U 2	2.25	U 2	.25	U 2.25	5 U	2.25 U	2.25	U 2.2	5 U	J 2.25	U 2.25	5 U	2.25	U 2.25	U 2	2.25	U 2.25	U 2.2	5 U	2.25 U	20.3
	PX-BG-SD11-000H	6/13/19	2.16	U 2.16	5 U	2.16	U	2.16	U 2	2.16	U 2	.16	U 2.16	5 U	2.16 U	2.16	U 2.1	6 U	J 2.16	U 2.16	5 U	2.28	J 2.16	U 2	2.16	U 2.16	U 2.1	6 U	1.76 J	21.3
Background	PX-BG-SD11P-000H	Field duplicate	2.06	U 2.06	5 U	2.06	U	2.06	U 2	2.06	U 2	.06	U 2.06	5 U	2.06 U	2.06	U 2.0	6 U	J 2.06	U 2.06	5 U	2.55	J 2.06	U 2	2.06	U 2.06	U 2.0	6 U	2.59 J	21.6
Samples	PX-BG-SD12-000H	6/14/19	2.12	J 3.38	8 J	2.05	U	5.19	4	1.52	1	6.9	20.3	3	21.8	16.4	9.0	9	19.3	2.51	L J	50.4	1.8	J	15.4	4.31	24.9	9	54.3	273.6
	PX-BG-SD13-000H	6/12/19	1.97	U 1.97	7 U	1.97	U	1.97	U 1	L.97	U 1	.97	U 1.97	7 U	1.97 U	1.97	U 1.9	7 U	J 1.97	U 1.97	7 U	1.97	U 1.97	U :	1.97	U 1.97	U 1.9	7 U	1.97 U	17.7
	PX-BG-SD14-000H	6/12/19	2.07	U 2.07	7 U	2.07	U	2.07	U 2	2.07	U 2	.07	U 2.07	7 U	2.07 U	2.07	U 2.0	7 U	J 2.07	U 2.07	7 U	2.07	U 2.07	U 2	2.07	U 2.07	U 2.0	7 U	2.07 U	18.6
	PX-BG-SD15-000H	6/12/19	2.08	U 2.08	8 U	2.08	U	2.08	U 2	2.08	U 2	.08	U 2.08	3 U	2.08 U	2.08	U 2.0	8 U	J 2.08	U 2.08	3 U	2.08	U 2.08	U 2	2.08	U 2.08	U 2.0	8 U	2.08 U	18.7
	PX-BG-SD16-000H	6/12/19	2.15	U 2.15	5 U	2.15	U	2.15	U 2	2.15	U 2	.15	U 2.15	5 U	2.15 U	2.15	U 2.1	5 U	J 2.15	U 2.15	5 U	2.15	U 2.15	U 2	2.15	U 2.15	U 2.1	5 U	2.15 U	19.4
	PX-BG-SD17-000H	6/12/19	2.04	U 2.04	4 U	2.04	U	2.04	U 2	2.04	U 2	.04	U 2.04	1 U	2.04 U	2.04	U 2.0	4 U	J 2.04	U 2.04	1 U	2.04	U 2.04	U 2	2.04	U 2.04	U 2.04	4 U	2.04 U	18.4
	PX-BG-SD18-000H	6/12/19	2.17	U 2.17	7 U	2.17	U	2.17	U 2	2.17	U 2	.17	U 2.17	7 U	2.17 U	2.17	U 2.1	7 U	J 2.17	U 2.17	7 U	2.17	U 2.17	U 2	2.17	U 2.17	U 2.1	7 U	2.17 U	19.5
	PX-BG-SD18P-000H	Field duplicate	2.22	U 2.22	2 U	2.22	U	2.22	U 2	2.22	U 2	.22	U 2.22	2 U	2.22 U	2.22	U 2.2	2 U	J 2.22	U 2.22	2 U	2.22	U 2.22	U 2	2.22	U 2.22	U 2.22	2 U	2.22 U	20.0
	PX-BG-SD19-000H	6/12/19	2.18	U 2.18	8 U	2.18	U	2.18	U 2	2.18	U 2	.18	U 2.18	3 U	2.18 U	2.18	U 2.1	8 U	J 2.18	U 2.18	3 U	2.18	U 2.18	U 2	2.18	U 2.18	U 2.18	8 U	2.18 U	19.6
	PX-BG-SD20-000H	6/12/19	2.11	U 2.11	1 U	2.11	U	2.11	U 2	2.11	U 2	.11	U 2.11	L U	2.11 U	2.11	U 2.1	1 U	J 2.11	U 2.11	L U	2.11	U 2.11	U 2	2.11	U 2.11	U 2.1	1 U	2.11 U	19.0
		Maximum	8.34	9.61	1	7.18		5.19	2	24.8	1	32	116		189	72.4	60	2	148	17.3	3	404	10.7	٤	31.4	12.2	65.1	1	325	1,684.5

Notes:

All concentrations are in ug/kg

Grey shaded concentrations indicate detections

Pink shaded concentrations exceed the total PAH ecological screening level (ESL) of 1,610 ug/kg (Threshold Effect Concentration [TEC]; MacDonald et al. 2000)

Table B2-12. Food Web Model Results (Step 2/Phase 1)

Former Skeet Ranges, Ecological Risk Assessment (Aquatic Habitat)

NAS Patuxent River, St. Mary's County, Maryland

	Raccoon Muskrat Marsh wren Spotted sa		sandpiper	Great bl	Great blue heron		rey					
Chemical	NOAEL	LOAEL	NOAEL	LOAEL	NOAEL	LOAEL	NOAEL	LOAEL	NOAEL	LOAEL	NOAEL	LOAEL
Inorganics												
Lead	0.05	<0.01	0.18	0.02	0.80	0.16	3.95	0.40	0.03	<0.01	0.04	<0.01
Polycyclic Aromatic Hydrocarbons												
Acenaphthene	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Acenaphthylene	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Anthracene	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(a)anthracene	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(a)pyrene	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(b)fluoranthene	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(g,h,i)perylene	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Benzo(k)fluoranthene	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Chrysene	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Dibenz(a,h)anthracene	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluoranthene	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Fluorene	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Indeno(1,2,3-cd)pyrene	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
Phenanthrene	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	< 0.01	<0.01	< 0.01	<0.01	< 0.01	< 0.01
Pyrene	< 0.01	< 0.01	<0.01	<0.01	<0.01	< 0.01	<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

Notes:

Shaded values represent a NOAEL-based HQ greater than 1.0

Table B2-13. Surface and Subsurface Sediment Chemical Analytical Results (Phase 2)

Former Skeet Ranges, Ecological Risk Assessment (Aquatic Habitat)

NAS Patuxent River, St. Mary's County, Maryland

Shotfall Zone Transect	Sample ID		Sample Date	Lead (MG/KG)	Pellet Count	Water Depth (feet)	Habitat	Live Organisms
			6/12/19	85,600		0		Silt and cand and coholes, dark grav to	
	PX-FSR-SD36-000H	Phase 1 sample	Re-analysis (same digestate)	85,100			1.8	brown some shells	None
			Re-digested/Re-analyzed	11.9				brown, some snens.	
	PX-FSR-SD36A-000H	Re-sample (surface)	8/21/19	29.1	J	21		Soft silty sand dark gray loose little broken	
	PX-FSR-SD36AP-000H	Re-sample (surface)	Field duplicate	10.6	J		1.7	oveter chelle	None
	PX-FSR-SD36A-0624	Re-sample (subsurface)	8/21/19	2.59		0		oyster shells.	
6	PX-FSR-SD63-000H		8/22/19	10.5		11	1.6	Soft silty sand, dark brown to dark grey, no signs of organisms.	None
	PX-FSR-SD64-000H	Ring of step out	8/21/19	23.8		7	1.7	Soft silty sand, dark brown, few broken oyster shells and small bivalve shells.	None
	PX-FSR-SD65-000H	SD36A	8/21/19	12.3		21	1.7	Soft silty sand, dark gray, loose, few broken oyster shells.	None
	PX-FSR-SD66-000H		8/22/19	13.6		8	17	Soft silty sand, dark brown, no signs of	Nono
	PX-FSR-SD66P-000H		Field duplicate	12.6			1.7	organisms.	None

Notes:

Shaded concentrations exceed ecological screening level (ESL) of 35.8 mg/kg

Also collected during Phase 2, but held and never analyzed:

Hold	SD63	8/22/19	Core
Hold	SD64	8/21/19	Core
Hold	SD65	8/21/19	Core
Hold	SD66	8/22/19	Core
Hold	SD67	8/21/19	Grab
Hold	SD68	8/21/19	Grab
Hold	SD69	8/21/19	Grab
Hold	SD70	8/21/19	Grab

Appendix C Applicable or Relevant and Appropriate Requirements

Appendix C-1 Federal Chemical-Specific ARARs UXO 002, OU-2 Engineering Evaluation/Cost Analysis Naval Air Station Patuxent River, St. Mary's County, Maryland

					ARAR/TBC			
Media	Requirement	Prerequisite	Citation	Alternative	Determination	Comment		
	No Federal Chemical-Specific ARARs apply.							

Appendix C-2 Maryland Chemical-Specific ARARs UXO 002, OU-2 Engineering Evaluation/Cost Analysis

					ARAR			
Media	Requirement	Prerequisite	Citation	Alternative	Determination	Comment		
	No Maryland Chemical-Specific ARARs apply.							

Appendix C-3 Federal Location-Specific ARARs

UXO 002, OU-2 Engineering Evaluation/Cost Analysis

					ARAR	
Location	Requirement	Prerequisite	Citation	Alternative	Determination	Comment
Coastal zone	•					•
Coastal zone or area that will affect the coastal zone	Federal activities must be consistent with, to the maximum extent practicable, State coastal zone management programs. Federal agencies must comply with the consistency requirements of 15 CFR § 930.	Actions that may affect identified coastal zone resources or uses.	15 CFR 930.33(a)(1), (c); .36(a); .39(b), (c)	2 and 3	Applicable	Activities at UXO 002 that will affect Maryland's coastal zone will be consistent to the maximum extent practicable with Maryland's enforceable policies. Activities performed on-site and in compliance with CERCLA are not subject to adminsitrative review; however, the substantive requirements of making a consistency determination will be met.
Migratory Flyway						•
Migratory bird area	Protects almost all species of native birds in the United States from unregulated taking.	Presence of migratory birds.	16 USC 703	2 and 3	Applicable	The site is located in the Atlantic Migratory Flyway. If migratory birds, or their nests or eggs, are identified at the site, operations will not destroy the birds, nests, or eggs.
Fish and Wildlife Co	ordination Act					•
Floodplain	Action to avoid adverse effects, minimize potential harm, restore and preserve natural and beneficial values.	Action that will occur in a floodplain, i.e., lowlands, and relatively flat areas adjoining inland and coastal waters and other flood prone areas.	Fish and Wildlife Coordination Act, 16 USC 661 et. seq.; Executive Order 11988; 40 CFR 6, Appendix A; 40 CFR 6.302	2 and 3	Applicable	As UXO-02 is located in a relatively flat area adjoining surface waters, construction activities may require compliance with this order. Erosion control measures will be implemented.

Appendix C-4 Maryland Location-Specific ARARs UXO 002, OU-2 Engineering Evaluation/Cost Analysis Naval Air Station Patuxent River, St. Mary's County, Maryland

					ARAR		
Location	Requirement	Prerequisite	Citation	Alternative	Determination	Comment	
No Maryland Location-Specific ARARs apply.							

Appendix C-5

Federal Action-Specific ARARs

UXO 002, OU-2 Engineering Evaluation/Cost Analysis

						ARAR	
	Action	Requirement	Prerequisite	Citation	Alternative	Determination	Comment
	Spill Prevention, Con	ntainment, and Control		•		•	
	Storage of fuels and oils (petroleum and	If storage capacity limits are exceeded a Spill, Prevention, Control, and Countermeasures Plan	Total onsite storage capacity exceeding 1,320 gallons in	40 CFR 112.3(a)(1); 112.5 through 7; and	2 and 3	Applicable	It is anticipated that fuels will be stored onsite. This ARAR is applicable if 1,320 gallons of storage
	non-petroleum) onsite	must be prepared and implemented with procedures, methods, equipment, and other requirements to prevent the discharge of oil into or upon the navigable waters of the United States.	containers that are 55 gallons or larger in size. The capacity of the containers (regardless of empty or full) triggers this requirement.	112.8(b),(c)(1), (c)(2), (c)(3), (c)(6), (c)(8)(iii), (c) (10), (d)(3), (d)(4), and (d)(5)			capacity for all oils in containers of 55-gallons or greater is present onsite at any time. If this occurs a Spill Prevention, Control, and Countermeasure (SPCC) Plan, or equivalent, will be prepared and implemented.
ſ	Onsite treatment in	a Corrective Action Management Unit (CAMU)					
	Onsite treatment	CAMU allows consolidation of waste on-site without triggering RCRA LDRs or minimum technology requirements	Minimum requirements for designating, designing, and operating a CAMU	40 CFR Part 264 Subpart S, Sections 264.550 through 264.555	2	Relevant and appropriate	These requirements would be relevant and appropriate if excavated material is disposed in an onsite cell.

Appendix C-6 Maryland Action-Specific ARARs

UXO 002, OU-2 Engineering Evaluation/Cost Analysis

					ARAR	
Action	Requirement	Prerequisite	Citation	Alternative	Determination	Comment
Waste Management			-			
Onsite management of non-hazardous waste	Solid waste may not be managed in a manner that will likely create a nuisance; be conducive to pest infestation; pollute the air or water; impair the qualityof the environment; or create other hazards to public health, safety or comfort.	Management of solid wastes	COMAR 26.04.07.03(A)	2 and 3	Applicable	Remdiation wastes meeting the definition of solid waste will be managed onsite in accordance with these requiremetns.
Onsite treatment of waste	Provides requriements that must be met	Treatment of hazardous waste in a	COMAR 26.13.05.16-	3	Applicable	Military munitions that are disposed of rather
military munitions	regarding the design and operation of a Miscellaneous Unit for the treatment of hazardous waste	miscellaneous unit	1(B)			than fired or expended are not exempt from the definition of solid waste and exhibit the hazardous waste characteristic of reactivity. If these items are treated onsite to deactivate the explosive hazard the substantive requirements of permitting will be met through the development and implementation of the Explosive Safety Submission for this project. Onsite CERCLA actions are exempt from adminsitrative requirements including permitting and administrative reviews; therefore, no permit will be obtained for this activity.
Onsite storage of waste military munitions	The DDESB storage standards applicable to waste military munitions in are DOD 6055.9-STD, "DOD Ammunition and Explosives Safety Standards" as adopted by the DDESB effective October 5, 2004 must be met or waste munitions must be stored as a reactive hazardous waste.	Accumulation of hazardous wastes in containers	COMAR 26.13.10.30(E)(1)	3	Applicable	Waste military munitions are not exempt from the definition of solid waste and exihibt the hazardous waste characteristic of reactivity. Munitonns that are being stored subject to the jurisdiction of the Department of Defense Explosives Safety Board (DDESB) or its successor agency are not subject to the management standards for hazardous waste. Compliance with the Explosives Safety Submission for this project will meet the substantive requirements of this ARAR.

Appendix C-6 Maryland Action-Specific ARARs

UXO 002, OU-2 Engineering Evaluation/Cost Analysis

					ARAR	
Action	Requirement	Prerequisite	Citation	Alternative	Determination	Comment
Erosion and Sediment Cont	rol					
Land clearing, grading, and	Regulations require the preparation and	Land clearing, grading, and earth	COMAR	2 and 3	Applicable	It is expected that remedial activities will cover
earth disturbances	implementation of a plan to control	disturbances are exempt from	26.17.01.07B(6)(a)-			more than 5,000 square feet and remove more
	erosion and sediment for activities	preparing a plan if they disturb less	(g and COMAR			than 100 cubic yards of earth. The substantive
	involving land clearing, and grading and	than 5,000 square feet of land and	26.17.02.09 (E)(5)(a)-			requirements of these regulations will be met
	earth disturbances. Erosion and sediment	less than 100 cubic yards of soil or	(e), (6)(a)-(p)			and erosion control measures will be
	control criteria are also established.	over 100 cubic yards of earth				implemented to prevent the migration of
						contaminated soil during earth disturbing
						work.
Noise Control			r i i i i i i i i i i i i i i i i i i i		T	
Construction activities	The maximum permitted levels for	Conducting any construction	COMAR	2 and 3	Applicable	During removal action activities, the maximum
generating noise and	construction activities may not exceed 90	activities that generate noise or	26.02.03.02B(2)			allowable noise levels will not be exceeded.
vibrations	dBA during the day and 75 dBA during the	vibrations				Vibrations will not be detectable beyond the
	night. Vibration beyond the property line					property line.
	will not be permitted to occur.					
Fugitive Dust Control						
Construction activities	Reasonable precautions must be taken to	Conducting any construction	COMAR	2 and 3	Applicable	Dust control measures will be implemented as
generating dust	prevent particulate matter from becoming	activity which could cause	26.11.06.03(D)(1),			needed during remedial activities.
	airborne during construction activities.	particulate matter to become	(2), (4), (6)			_
	These include the application of water or	airborne.				
	appropriate chemicals to roads, materials,					
	and stockpiles; covering open-bodied					
	vehicles that are transporting materials or					
	soil likely to create dust, maintenance of					
	roadways including the removal of soil					
	that has been tracked out by equipment.					

Appendix C-7 Acronyms, Abbreviations, and References UXO 002, OU-2 Engineering Evaluation/Cost Analysis Naval Air Station Patuxent River, St. Mary's County, Maryland

Acronyms and Abbreviations

ARAR	Applicable or relevant and appropriate requirement	POTW	Publicly Owned Treatment Works
BTAG	Biological Technical Assistance Group	ppm	Parts per Million
CERCLA	Comprehensive Environmental Response, Compensation and Liability Act	RBC	Risk-Based Concentrations
CFC	Chlorofluorocarbon	RCRA	Resource Conservation and Recovery Act
CFR	Code of Federal Regulations	SDWA	Safe Drinking Water Act
COMAR	Code of Maryland Regulations	SMCL	Secondary Maximum Contaminant Level
DOT	Department of Transportation	SPCC	Spill, Prevention, Control, and Countermeasures
DNH	Division of Natural Heritage	SWMU	Solid Waste Management Unit
MCL	Maximum Contaminant Level	TBC	To Be considered
MCLG	Maximum Contaminant Level Goal	TCLP	Toxicity Characteristic Leaching Procedure
μg/L	micrograms per liter	TSCA	Toxic Substance Control Act
NAAQS	National Ambient Air Quality Standards	USACE	US Army Corps of Engineers
NESHAPs	National Emission Standards for Hazardous Air Pollutants	USC	United States Code
NPDES	National Pollutant Discharge Elimination System	USEPA	United States Environmental Protection Agency
NSDWRs	National Secondary Drinking Water Regulations		

- NSPS New Source Performance Standards
- PCB Polychlorinated biphenyls
- PMCL Primary Maximum Contaminant Level

References

USEPA, 1998. CERCLA Compliance with Other Laws Manual: Interim Final. Office of Emergency and Remedial Response. EPA/540/G-89/006. USEPA, 1998. CERCLA Compliance with Other Laws Manual: Part II. Clean Air Act and Other Environmental Statutes. Office of Emergency and Remedial Response. USEPA, 1998. RCRA, Superfund & EPCRA Hotline Training Manual. Introduction to Applicable or Relevant and Appropriate Requirements. EPA540-R-98-020.

Cost Type	Alternative 1	Alternative 2	Alternative 3
	No Action	Stabilization and Engineering Cover with LUCs	Removal, Stabilization, and Off-site Disposal
Total Estimated Present Worth Costs			
Capital Cost	\$0	\$1,177,000	\$1,168,000
O&M Cost	\$0	\$854,658	\$3,777
Periodic Cost	\$0	\$90,000	\$5,000
Total Estimated Costs	\$0	\$2,121,658	\$1,176,777
Net Present Value	\$0	\$1,184,127	\$1,331,000
Estimated Range of Costs	From	From	From
-30%	\$0	\$1,485,161	\$823,744
	То	То	То
+50%	\$0	\$3,182,487	\$1,765,166

Area: Former Store Hange Details Former Store Hange 2024 Image: Contry, Mary Indition 2024 Image: Contry, Mary Inditin 2024 <thimage: contry,="" indition<br="" mary="">2</thimage:>	Site:	Naval Air Station Pa	tuxent River		Description:	Alternative 2 – Capping in Place
Location:Image: Set Year:Image: Set	Area:	Former Skeet Rang	e			
Base Year: N N N N N Alternative: V V N N N Second N Quantity Unit Price Balance Total Cast Notes Contraction Work Plan and Data (N S 1 5 7,0000 5 7,0000 1 Social (N N	Location:	St. Mary's County, N	laryland			
Atternative: 2 Image: construct of the second	Base Year:	2024				
Antimited DescriptionCValue QuantityValue PriceAdvanced TotalCase NotesBench Taoland DescriptionUnitsQuantityUnits PriceAdvanced TotalCase NotesMice Taoland DescriptionS157,000057,00001New Strand DescriptionS157,000057,00001New Strand DescriptionS157,000057,0000New Strand DescriptionS151,000057,0000New Strand DescriptionS151,000057,0000New Strand DescriptionS151,000057,0000New Strand DescriptionS151,000051,0000Strand DescriptionS151,000051,0000Strand StrandS151,000051,0000DescriptionS153,000051,0000Strand StrandS153,0000051,0000Strand StrandS153,0000051,00000Strand StrandS153,00000051,000000Strand StrandS153,000000000000000000000000000000000000	Alternative:	2				
ControlUnitsQuantityUnit PriceNationed TotalCost NoissWork Fining Document5157,0005Transmission Straig5157,0005Mail Straig5151,00051,000Construction Conjection Report152,000,0051,200Construction Conjection Report152,000,0051,200Construction Conjection Report152,000,0051,200Construction Conjection Report152,000,0051,200Meditation and Strate52,000,0051,2001,200Meditation and Strate5151,2001,200Meditation and Strate151,200,701,2001,200Meditation and Strate155,200,7755,741Strate155,200,7755,741Strate155,200,7755,741Strate155,200,7755,741Strate155,200,7755,741Tree Clearing0,47552,174,811,313,757Tree Clearing0,47552,174,815Meditation on Strate Strate52,000,8155Strate0,47552,174,815Strate0,47552,000,815M	Atternative:	z				
RecentryUnder NoteRelationst TravelRelationst TravelRelationst TravelCost MostsWord Finance Documents51575.0000515.0000Finance Mark Science Decision1575.0000515.0000Finance Mark Science Decision1575.0000575.0000Finance Mark Science Decision1575.0000575.0000Finance Mark Mark Science Decision1575.0000575.0000Word Finance Documents Total1510.2030575.0000Construction Completion Report1510.20305575.0000Completion Report151555.0000575.0000Completion Report15158.00005575.0000Completion Report15158.00005575.0000Completion Report15158.00005575.0000Completion Report15158.0000575.0000Completion Report15158.0000575.0000Statistica Report15155.00000575.0000Completion Report15155.00000575.0000Statistica Report15155.00000575.0000Statistica Report15155.00000575.00000						
With Private Documents Vision 2000 S 15 (2000) S 7,0000 S 7,0000 Communities Notice and Decipion 1 15 15 5,0000 5 12,000 Communities Notice and Decipion 1 15 15 5,0000 5 12,000 Communities Notice Report 1 15 15 20,000 5 20,000 Communities Notice Report 1 15 20,000 5 20,000 5 20,000 Communities Notice Report 1 15 20,000 5 20,000 5 20,000 Monitation and Decip Notice Report 1 15 20,205 5 20,205<	Description	Units	Quantity	Unit Price	Balanced Total	Cost Notes
Name S 1	Work Discourse Descusses					
Constrained with Y and multiply Constrained of the Y and multiply Constrained of the Y and Y and multiply Constrained of the Y and Y and Multiply Data Side Side Y and Y and multiply S I S I S I S I S I S I S I S I S I S I S I S I S I S I S S I S I S I S I S I S I S	Work Planning Documents		1	ć 75.000.00	ć 75.000	
International Construction Section Is Is< Is< Is< Is< Is< Is< Is< </td <td>Construction Work Plan and Design</td> <td>LS</td> <td>1</td> <td>\$ 75,000.00</td> <td>\$ 75,000</td> <td></td>	Construction Work Plan and Design	LS	1	\$ 75,000.00	\$ 75,000	
Construction Competition Report LS LS 2000 Web/Raining Documents Total 5 22,000 Modification Comments Total 5 12,000 Modification Comments Total 15 10,200 Modification LS 1,5 5,02,000 Comment Renal Outing two LS 1,5 5,02,000 Demodification LS 1,5 5,02,000 Site Serup LS 1,5 5,02,000 5 Site Serup LS 1,5 5,02,000 5 5,02,000 Modification LS 1,5 5,02,000 5 5,02,000 7,000 and Dubit New Instance 4,000 and Dubit New I	EM 285 H&S Dian	L3	1	\$ 13,000.00	\$ 13,000	
Start Decoments Transmilling Decoments Transmilling Decoments Transmilling Transmilling Decoments Transmilling Transmilling Decoments Decoment Decoments Decoment Decoment Decoments Decoments Decoments Decoments Decoments De	Construction Completion Report	15	1	\$ 20,000,00	\$ 20,000	
Description Description Description Bit Stripping IS 1 5 0.25 Benoblication IS 1 5 0.25 Benoblication IS 1 5 0.25 Benoblication IS 1 5 0.27 S.24 Benoblication IS 1 5 0.27 S.24 Site Setup IS 1 5 0.20 IC are and Uncover dire dar from previous cleanup project. 2) Repair dar needed. 3) Extend Mebilization and Site Setup IS 1 5 0.20 IC are and Uncover dire dar from previous cleanup project. 2) Repair dar needed. 3) Extend Mebilization and Site Setup IS 1 5 0.20 IC are and Uncover dire dar from previous cleanup project. 2) Repair dar needed. 3) Extend Mebilization and Site Setup IS 1 5 0.20 IC are and Uncover dire dar from previous cleanup project. 2) Repair dar needed. 3) Extend Mebilization and Site Setup DAY S 2,0774.31 ID are and Uncover dire dar dar needed. 3) Extend IC are and Uncover dire dar aneeded and uncover dire	Work Planning Documents Total	13	1	\$ 20,000.00	\$ 122,000	
Modification Is I (23) I (23) 10.235 Guydnent And Loung Mob IS I (23) 1 (25) 1 (25) 1 (25) Guydnent And Loung Mob IS S.500 (25) S.500 III (Car and Uncover old road from previous cleanup project, 2) (Rpair old road as meeded, 3) Extend Site Setup IS S.30,205.19 S.30,205.19 S.200 Food and build new Uncover old road from previous cleanup project, 2) (Rpair old road as meeded, 3) Extend Mobilization, Demobilization and Site Set-up Total S.30,205.19 S.30,205.19 S.30,205.19 S.30,205.19 S.30,205.10	Mobilization, Demobilization and Site Set-up				<i>y</i> 122,000	
Enginement Rental During Mole Is 1 5 8,550 5 5,555 Demodalization IS 1 5 8,560 5 5,541 11 10 1,5 5,241 11 10 1,5 5,241 11 10 1,5 1,5 2,0,20 10 10 1,5 1,5 2,0,20 10 10 1,5 1,5 2,0,20 10 and dual for new transcore and and turaround. Assume 0° of 1 in misus store (57 store) at 50% usage = 405 1,5 2,0,20 10 and adual for new transcore and and turaround. Assume 0° of 1 in misus store (57 store) at 50% usage = 405 1,5 2,4,26 Total of 2,1,000 12° oraid and turaround. Assume 0° of 1 in misus store (57 store) at 50% usage = 405 1,5 2,0,74,51 5 2,0,74,51 5 2,0,74,51 5 2,0,74,51 5 10,8,85 Total of 2,1,000 12° oraid and turaround. Assume 0° parte 1,0% point at 1,400 registres 1,400 registr	Mobilization	LS	1	\$ 10.235.02	\$ 10.235	
Immediation Is 1 5 5,40.72 5 5,241 Site Setup Is 1 5 30,205.10 5 30,205.10 5 30,205.10 5 30,205.10 5 30,205.10 5 30,205.10 5 30,205.10 5 30,205.10 5 30,205.10 5 30,205.10 5 30,205.10 5 4,206 Care and Uncover oil or and non-previous cleanup provious cleanup area at 0.12-2 Tool of a 21,200 for 2-a and uncover oil or and hours meeded 5 5,2426 Weblitzation and Site Setup Total 5 20,774.91 5 103,875 Equipment crew, rentab and labor expenses during cleanup area, 6) Provide 1 - 40 y volio fif or unsube durins with outpart for rental models between and previous cleanup of area, 6) Provide 1 - 40 y volio fif or unsube durins with outpart for unsube durins with outpart for unsube durins with outpart for an and technics, leaves and the signer particles also which outpart for an and technics, leaves and technical stress of the signer particles also which outpart for an signer of the disponal	Equipment Rental During Mob	LS	1	\$ 8,565.05	\$ 8,565	
Site Setup 10 Clear and Uncover old rad from previous clasupe project, 2) Repair old rada as needed, 3) Exection Mobilization, Demobilization and Site Set up Total 5 30,205.19 5 30,205.19 5 30,205.19 5 30,205 Mobilization, Demobilization and Site Set up Total 5 54,246 5 54,246 Site Clearing DAY 5 \$ 20,774.51 \$ 103,875 Tree Clearing DAY 5 \$ 20,774.51 \$ 103,875 Ground Cover Removal DAY 5 \$ 20,774.51 \$ 103,875 Ground Cover Removal DAY 5 \$ 20,774.51 \$ 103,875 Ground Cover Removal DAY 3 \$ 17,186,88 \$ 53,644 Stump Removal and Loadout: DAY 2 \$ 8,684.47 \$ 16,169 Site Clearing Total DAY 2 \$ 8,602.42 \$ 16,169 Site Clearing Total DAY 2 \$ 8,602.47 \$ 10,960 Ground Cover Removal DAY 2 \$ 8,602.47 \$ 10,960 Site Grearing Total DAY 2 \$ 8,602.47 \$ 10,96	Demobilization	LS	1	\$ 5,240.72	\$ 5,241	
Mobilization, Demobilization, Demobilizatinteration, Demobilization, Demobilization, Demobiliza	Site Setup	LS	1	\$ 30,205.19	\$ 30,205	 Clear and Uncover old road from previous cleanup project, 2) Repair old road as needed, 3) Extend road and build new turaround and loading area at OU-2 Total of 21,900 ft2 road and turaround. Assume 6" of 3 in minus stone (57 stone) at 50% usage = 405 cy = 608 tons = 304 tons needed
Site Clearing DAY S 20,774.91 S 103,875 Equipment rew, rentals and labor expenses during clearing. 1) Fellings trees and de-branch, 2) Cut Ground Cover Removal DAY S S 20,774.91 S 103,875 Equipment rew, rentals and labor expenses during clearing. 3) Assume logger takes trees for free, 4) Chip branches and small trees, 5) General Cleanup of area, 6) Provide 1 - 40 cy roll-off for unsuable debris Ground Cover Removal DAY 3 S 17,186.88 S Set A1 2 Notes for Takeoff info. To ensure that the first life or common backfill will compact to 95%, proctor all groundrover should be erreword than the Caping Area. Allering opine needings allow the recover of the tecpoing romes will likely collect lead shot and dup ipeon particles allow thin counter the spond concert shipped to the disposal site. Collected clay and lead shot should be screed out before the ground concert shipped to the disposal site. Collected clay and lead shot should be properly dosposed offsite. Site Clearing Total Total 1 S 2,938.07 S 2,939 Site Frace and Staty Frace Installation Total 1 S 2,939.07 S 2,939 Tab Origin Cover & Debris - Cap Area O/ 300 S 143,40 S 42,020 See At 2 Note for Takeoff information Tab Origin Cover & Debris - Cap Area O/	Mobilization, Demobilization and Site Set-up Total				\$ 54,246	
Tree Clearing DAV S \$ 20,774.91 \$ 103,875 Equipment crew, rentals and labor expenses during clearing. 1) Fell large trees and 6e-branch, 2) Cut trees for shipment by logger for reclaim, 3) Assume logger takes trees for free, 4) Cub pranches and mail trees. 5] General Clearing of ano. 8, 100461-1.04 Cy roll-0461-1.04 Cy roll-	Site Clearing					
Ground Cover RemovalDAY3517.186.885555.1561See Alt 2 Notes for Takeoff info. To ensure that the first lift of common backfill will compact to 95% proctor all groundcover should be removed from the Capping Area. Raking of pine medies, leave ad cap allog on particles also which could be required before cap installation. This process what and pipeon particles also which could be required before cap installation. This process what and pipeon particles also which could be required before cap installation. This process what and show the property dosposed offsite.Site Recent Stafety Fence InstallationDAY258.084.47516.169Install Site Fence and Grange Safety FenceIS152.938Approximately 1200 if od Super Site Fence and Grange Safety FenceInstall Site Fence and Safety FenceIS152.938Approximately 1200 if od Super Site Fence and Grange Safety FenceSite Fence and Safety Fence Installation TotalI2.938.6752.938Approximately 1200 if od Super Site Fence and Grange Safety FenceSite Fence and Safety Fence Installation TotalI51.43.4054.30.20See Alt 2 Note for Takeoff InformationTab Ground Cover & Oberlis - Cap AreaCY300514.3.4057.294See Alt 2 Note for Takeoff InformationTab Detris - Cap AreaCY3000514.3.4057.294See Alt 2 Note for Takeoff InformationTab Detris - Cap AreaIS112.3200I1.320Cap Material Sampling Labor and SuppliesTON3.64050.711	Tree Clearing	DAY	5	\$ 20,774.91	\$ 103,875	Equipment crew, rentals and labor expenses during clearing. 1) Fell large trees and de-branch, 2) Cut trees for shipment by logger for reclaim, 3) Assume logger takes trees for free, 4) Chip branches and small trees, 5) General Cleanup of area, 6) Provide 1 - 40 cy roll-off for unsuable debris
Stump Removal and Loadout DAY 2 \$ 8,084.47 \$ 16,169 Site Clearing Total \$ 17,604 \$ 17,604 Site Tence and Safety Fence Remove Sitt and Safety Fencing I.S 1 \$ 8,007.82 \$ 8,008 Approximately 1200 If od Super Sitt Fence ans Orange Safety Fence Remove Sitt and Safety Fencing I.S 1 \$ 2,938.67 \$ 2,939 Site Fence and Safety Fencing I.S 1 \$ 2,938.67 \$ 2,939 Tansport and Disposal Total \$ 2,938.67 \$ 2,939 \$ T&D Ground Cover & Debris - Cap Area CY 300 \$ 143.40 \$ 43.002 See Ait 2 Note for Takeoff information T&D Cap Material Sampling Labor and Supplies Drum 10 \$ 1,232.00 \$ 12,320 See Ait 2 Note for Takeoff information Surveying I.S 1 \$ 1,232.00 \$ 12,320 See Ait 2 Note for Takeoff information Cap Material Confirmation Sample Analysis TON	Ground Cover Removal	DAY	3	\$ 17,186.88	\$ 51,561	See Alt 2 Notes for Takeoff info. To ensure that the first lift of common backfill will compact to 95% proctor all groundcover should be removed from the Capping Area. Raking of pine needles, leaves and other cover could be required before cap installation. This process will likely collect lead shot and clay pigeon particles also which could be screend out before the ground cover is shipped to the disposal site. Collected clay and lead shot should be properly dosposed offsite.
Site Clearing Total St 71,604 Site Fance and Safety Fance Installation Site Fance and Orange Safety Fence LS 1 \$ 8,007.82 \$ 8,007.82 \$ 9,008 Approximately 1200 If od Super Sitt Fence ans Orange Safety Fence Remove Sitt and Safety Fencing LS 1 \$ 0,007.82 \$ 0,008 Approximately 1200 If od Super Sitt Fence ans Orange Safety Fence Site Fance and Safety Fencing LS 1 \$ 0,008 \$ 2,939 Image Safety Fencing Image Safety Fencing Safety Fencing Image Safety Fencing	Stump Removal and Loadout	DAY	2	\$ 8,084.47	\$ 16,169	
Silt Fence and Safety Fence Installation Install Silt Fence and Orange Safety Fence Istall Silt Fence and Safety Fence Installation Total Istee CY	Site Clearing Total				\$ 171,604	
Install Silt Fence and Orange Safety Fence LS 1 \$ 8,008 Approximately 1200 if od Super Silt Fence ans Orange Safety Fence Remove Silt and Safety Fence Installation Total LS 1 \$ 2,939	Silt Fence and Safety Fence Installation					
Remove Silt and Safety Fenceing LS 1 \$ 2,938.67 \$ 2,939 Silt Fence and Safety Fence Installation Total 5 10,946 Transport and Disposal CY 300 \$ 143.40 \$ 43,020 See Alt 2 Note for Takeoff information T&D Ground Cover & Debris - Cap Area CY 300 \$ 143.40 \$ 43,020 See Alt 2 Note for Takeoff information T&D Stumps TON 40 \$ 182.34 \$ 7,294 See Alt 2 Note for Takeoff information Tas Dot add Shot, Clay & Debris Drum 10 \$ 1,232.00 \$ 12,320 See Alt 2 Note for Takeoff information Tarsport and Disposal Total \$ 12,320.0 \$ 12,320 See Alt 2 Note for Takeoff information Tansport and Disposal Total \$ 12,320.0 \$ 12,320 See Alt 2 Note for Takeoff information Cap Material Sampling Labor and Supplies TON 3,640 \$ 0.58 \$ 2,111 Lab analysis of samples of cap material Place, compact, test and grade import cap material (common backfill). Cost also includes 3rd pary Nuclear Density testing in the field <td>Install Silt Fence and Orange Safety Fence</td> <td>LS</td> <td>1</td> <td>\$ 8,007.82</td> <td>\$ 8,008</td> <td>Approximately 1200 If od Super Silt Fence ans Orange Saferty Fence</td>	Install Silt Fence and Orange Safety Fence	LS	1	\$ 8,007.82	\$ 8,008	Approximately 1200 If od Super Silt Fence ans Orange Saferty Fence
Silt Fence and Safety Fence installation Total \$ 10,946 Transport and Disposal CY 300 \$ 143.40 \$ 43,020 See Alt 2 Note for Takeoff information T&D Stumps TON 400 \$ 182.34 \$ 7,294 See Alt 2 Note for Takeoff information T&D Lead Shot, Clay & Debris Drum 10 \$ 1,232.00 \$ 12,320 See Alt 2 Note for Takeoff information Transport and Disposal Total * * 62,634 Surveying LS 1 \$ 12,320.0 \$ 12,320 See Alt 2 Note for Takeoff information Cap Installation * 12,320.0 \$ 12,320.0 \$ 12,320 See Alt 2 Note for Takeoff information Place and Compact Cap Soils (incl Testing) TON 3,640 \$ 0.71 \$ 2,584 Field personnel to obtain samples and for Atterberg Tests for cap material Place and Compact Cap Soils (incl Testing) TON 3,640 \$ 0.58 \$ 2,111 Lab analysis of samples of cap material (common backfill). Cost also includes 3rd pary Nuclear Density testing in the field Import Cap Soils (Common Backfill) TON 3,640 \$ 60.02 \$ 218,473 Field personnel to 095% Standard Proctor. Backfill Of Excavation Total T	Remove Silt and Safety Fencing	LS	1	\$ 2,938.67	\$ 2,939	
Transport and Disposal C A A T&D Ground Cover & Debris - Cap Area CY 300 \$ 143.40 \$ 43,020 See Alt 2 Note for Takeoff information T&D Ground Cover & Debris TON 40 \$ 182.34 \$ 7,294 See Alt 2 Note for Takeoff information T&D Lead Shot, Clay & Debris Drum 10 \$ 1,232.00 \$ 12,320 See Alt 2 Note for Takeoff information Transport and Disposal Total	Silt Fence and Safety Fence Installation Total		1		\$ 10,946	
Table Ground Cover & Debris Cap Area Cr 300 \$ 143.40 \$ 43,00 See Alt 2 Note for Takeoff information Tab D stumps TON 40 \$ 182.34 \$ 7,294 See Alt 2 Note for Takeoff information Tab Lead Shot, Clay & Debris Drum 10 \$ 1,232.00 \$ 12,320.0 See Alt 2 Note for Takeoff information Transport and Disposal Total \$ 62,634 Surveying LS 1 \$ 12,320.0 \$ 12,320 Cap Installation TON 3,640 \$ 0.71 \$ 2,584 Field personnel to obtain samples and for Atterberg Tests for cap material Cap Material Sampling Labor and Supplies TON 3,640 \$ 0.71 \$ 2,584 Field personnel to obtain samples and for Atterberg Tests for cap material Place and Compact Cap Soils (incl Testing) TON 3,640 \$ 31.09 \$ 113,168 Field personnel to early testing in the field Import Cap Soils (Common Backfill) TON 3,640 \$ 60.02 \$ 218,473 Find and procure, Load and Transport clean cap soil to the Naval base from a borrow are located Backfill Of Excavation Total S 336.43 S 218,473 Standard Proctor.	Transport and Disposal		200	÷	<u> </u>	
Table Statilities Totic 40 5 122.34 5 7,254 See Alt 2 Note for TakeOff information Tab Lead Shot, Clay & Debris Drum 10 \$ 1,232.0 \$ 12,320 See Alt 2 Note for Takeoff information Transport and Disposal Total	T&D Ground Cover & Debris - Cap Area		300	\$ 143.40 \$ 183.24	\$ 43,020	See Alt 2 Note for Takeoff Information
Transport and Disposal Total Image: Second seco	T&D Load Shot, Clay & Dobris	Drum	40	\$ 102.34 \$ 102.00	\$ 7,294 \$ 12,220	See Alt 2 Note for Takeoff information
Surveying LS 1 \$ 12,320.0 \$ 12,320.0 Cap Installation Cap Material Sampling Labor and Supplies TON 3,640 \$ 0.71 \$ 2,584 Field personnel to obtain samples and for Atterberg Tests for cap material Cap Material Confirmation Sample Analysis TON 3,640 \$ 0.71 \$ 2,584 Field personnel to obtain samples and for Atterberg Tests for cap material Place and Compact Cap Soils (incl Testing) TON 3,640 \$ 31.09 \$ 113,168 Place, compact, test and grade import cap material (common backfill). Cost also includes 3rd pary Nuclear Density testing in the field Import Cap Soils (Common Backfill) TON 3,640 \$ 60.02 \$ 218,473 Find and procure, Load and Transport clean cap soil to the Naval base from a borrow are located to tons/cy after compaction to 95% Standard Proctor. Backfill Of Excavation Total \$ 36.336	Transport and Disposal Total	bium	10	\$ 1,252.00	\$ 12,520 \$ 62,634	
Cap Installation Cap Material Sampling Labor and Supplies TON 3,640 \$ 0.71 \$ 2,584 Field personnel to obtain samples and for Atterberg Tests for cap material Cap Material Sampling Labor and Supplies TON 3,640 \$ 0.71 \$ 2,584 Field personnel to obtain samples and for Atterberg Tests for cap material Cap Material Confirmation Sample Analysis TON 3,640 \$ 0.58 \$ 2,111 Lab analysis of samples of cap material Place and Compact Cap Soils (incl Testing) TON 3,640 \$ 31.09 \$ 113,168 Place,compact, test and grade import cap material (common backfill). Cost also includes 3rd pary Nuclear Density testing in the field Import Cap Soils (Common Backfill) TON 3,640 \$ 60.02 \$ 218,473 Find and procure, Load and Transport clean cap soil to the Naval base from a borrow are located within a 50 mile radius of the Base. In place compacted density of material is assumed to be 1.5 Backfill Of Excavation Total S 36.336 36.336 36.336		IS	1	\$ 12 320 0	\$ 02,034 \$ 12,320	
Cap Material Sampling Labor and Supplies TON 3,640 \$ 0.71 \$ 2,584 Field personnel to obtain samples and for Atterberg Tests for cap material Cap Material Confirmation Sample Analysis TON 3,640 \$ 0.58 \$ 2,111 Lab analysis of samples of cap material Place and Compact Cap Soils (incl Testing) TON 3,640 \$ 31.09 \$ 113,168 Place,compact, test and grade import cap material (common backfill). Cost also includes 3rd pary Nuclear Density testing in the field Import Cap Soils (Common Backfill) TON 3,640 \$ 60.02 \$ 218,473 Find and procure, Load and Transport clean cap soil to the Naval base from a borrow are located within a 50 mile radius of the Base. In place compacted density of material is assumed to be 1.5 Backfill Of Excavation Total \$ 36.336 \$ 336.336	Can Installation	LJ	1	\$ 12,320.0	<i>y</i> 12,520	
Cap Material Confirmation Sample Analysis TON 3,640 \$ 0.58 \$ 2,104 Text performance of the performance of the control of the performance of the	Can Material Sampling Labor and Supplies	TON	3 640	\$ 0.71	\$ 2 584	Field personnel to obtain samples and for Atterberg Tests for can material
Place and Compact Cap Soils (incl Testing) TON 3,640 \$ 31.09 \$ 113,168 Place,compact, test and grade import cap material (common backfill). Cost also includes 3rd pary Nuclear Density testing in the field Import Cap Soils (Common Backfill) TON 3,640 \$ 60.02 \$ 218,473 Find and procure, Load and Transport clean cap soil to the Naval base from a borrow are located within a 50 mile radius of the Base. In place compacted density of material is assumed to be 1.5 tons/cy after compaction to 95% Standard Proctor. Backfill Of Excavation Total \$ 336.36	Cap Material Confirmation Sample Analysis	TON	3,640	\$ 0.58	\$ 2.111	Lab analysis of samples of cap material
Import Cap Soils (Common Backfill) TON 3,640 \$ 60.02 \$ 218,473 Find and procure, Load and Transport clean cap soil to the Naval base from a borrow are located within a 50 mile radius of the Base. In place compacted density of material is assumed to be 1.5 tons/cy after compaction to 95% Standard Proctor. Backfill Of Excavation Total \$ 336.336	Place and Compact Cap Soils (incl Testing)	TON	3,640	\$ 31.09	\$ 113,168	Place,compact, test and grade import cap material (common backfill) . Cost also includes 3rd pary Nuclear Density testing in the field
Backfill Of Excavation Total \$ 336.336	Import Cap Soils (Common Backfill)	TON	3,640	\$ 60.02	\$ 218,473	Find and procure, Load and Transport clean cap soil to the Naval base from a borrow are located within a 50 mile radius of the Base. In place compacted density of material is assumed to be 1.5 toos (as a free segmention to 00%) Standard Process
	Backfill Of Excavation Total				\$ 336.336	tons/cy arter compaction to 55% standard Proctor.

Site:		Naval Air Station Pa	tuxent River		Description	: Alternative 2 – Capping in Place
Area:		Former Skeet Bang				
Location:		St Mary's County N	1 Aarvland			
Dece Verw		oco 4	larytanu			
Base Year:	,	2024				
Alternative:		2				
Description		Units	Quantity	Unit Price	Balanced Total	Cost Notes
Site Restoration						
Revegetation		AC	1.5	5 \$ 6,776.00	\$ 10,164	Hydroseed Subcontractor
Watering and Establishment Period		MO	e	\$ \$ 4,078.17	\$ 24,469	Apply water to are as necessary to establish vegetation
Site Restoration Total	-				\$ 34,633	3
Land Use Controls						
Deed Restriction		LS	1	\$ 10.000.00	\$ 10.000	
Warning Signage		15	1	\$ 5,000,00	\$ 5,000))
Land Use Control Implementation Plan		15	1	\$ 15,000,00	\$ 15.000)
Land Use Controls		I	۰ · · · ·		\$ 30.000	<u> </u>
Subtotal					\$ 834 710	
Contingency (25%)				25.0%	\$ 208.680	
Project Management				6.0%	\$ 50.083	3 FPA 2000 n 5-13 \$500K - \$2M
Construction Management				8.0%	\$ 66.77	3 EPA 2000, p. 5-13, \$500K - \$2M
Subtotal					\$ 1.160.260	
Performance Bond (2%)				2.0%	\$ 16,694	4 Industry Average
TOTAL CAPITAL COST					\$ 1,177,000)
	-				· · · ·	
Operation and Maintenance						
LTM and LUCs						
Operation and Maintenance						
Description	ı <u> </u>	Unit	Quantity	Unit Price	Total	Assumptions
Land Use Controls						
Cap Maintenance		Each	1	\$ 10,000	\$ 10,000	D Repair erosion, replant vegegation, repair borrows
Warning Sign Maintenance		Each	1	\$ 500	\$ 500	Maintenance of warning signs
LUC Administrative Reviews/Report		Each	1	\$ 3,000	\$ 3,000) Review Administrative LUCs
Public Awareness Education		Each	1	\$ 2,000	\$ 2,000	Amount site in an estimate the Dispersion
Annual LOC Site inspections/Report		Hour	0	¢ 100	200	Annual site inspection with LUC Report
Rental Vehicle		Dav	0	\$ 100	¢ 000	
Annual LLIC Report		Each	1	\$ 5,000	\$ 5.000	
Subtotal		Eddi	-	φ 0,000	\$ 21 420) Annual total
					Ŷ	
Contingency (25%)			25.0%	\$ 21.420	\$ 5.355	5
Project Management			8.0%	\$ 21,420	\$ 1,714	4
Subtotal					\$ 28,489	9 Annual total
Number of Events	. <u> </u>	Each	30	\$ 28,489	\$ 854,658	3
TOTAL 0&M COST - LTM AND LUC	, 				\$ 854,658	8
Periodic Costs	VEAD	071	115.07		TOTAL	Acour
E Veer Deview	TEAK	UIY 1			IUIAL 45.000	Assumptions
5 Year Review	5	1	EA EA	\$15,000	a 15,000 a 15,000	5 year reviews not applicable for this alternative after year 5
5 Vear Deview	10	1	EA	\$15,000 \$15,000	ψ 15,000 ¢ 15.000	
5 Vear Review	20	1	ΕA	\$15,000 \$15,000	φ 15,000 \$ 15.000	
5 Year Review	25	1	FA	\$15,000	\$ 15,000	<u>,</u>
5 Year Review	30	1	FA	\$15,000	\$ 15,000	
TOTAL PERIODIC COSTS		· · · · · ·		÷_0,000	\$ 90,000	

Site:		Naval Air Station Pa	tuxent River			Description:	Alternative 2 – Capping in Place
Area:	1	Former Skeet Range					
Location:	[St. Mary's County, M	larvland				
Base Vear:		2024	larytaria				
	J	2024					
Alternative:	<u> </u>	2					
Description		Units	Quantity	Unit Price		Balanced Total	Cost Notes
Present Value Analysis							
Discout Date	2.00	Source: White House OMB,					
Discount Rate =	2.0%	2022. This rate represents a					
	Ĩ						
	l		TOTAL COST PER	DISCOUNT			
COST TYPE	YEAR	TOTAL COST	YEAR	FACTOR		PRESENT VALUE	
CAPITAL COST	0	\$ 1,177,000		1.00	\$	1,177,000	
ANNUAL O&M COST	1 to 30			0.25	\$	-	
PERIODIC COST	1	\$ 28,489		0.20	\$	5,698	
PERIODIC COST	2	\$ 28,489		0.04	\$	1,140	
PERIODIC COST	3	\$ 28,489		0.01	\$	228	
PERIODIC COST	4	\$ 28,489		0.00	\$	46	
PERIODIC COST + 5 YR REVIEW	5	\$ 43,489		0.00	\$	14	
PERIODIC COST	6	\$ 28,489		0.00	\$	2	
PERIODIC COST	7	\$ 28,489		0.00	\$	0	
PERIODIC COST	8	\$ 28,489		0.00	\$	0	
PERIODIC COST	9	\$ 28,489		0.00	\$	0	
PERIODIC COST + 5 YR REVIEW	10	\$ 43,489		0.00	\$	0	
PERIODIC COST	11	\$ 28,489		0.00	\$	0	
PERIODIC COST	12	\$ 28,489		0.00	\$	0	
PERIODIC COST	13	\$ 28,489		0.00	\$	0	
PERIODIC COST	14	\$ 28,489		0.00	\$	0	
PERIODIC COST + 5 YR REVIEW	15	\$ 43,489		0.00	\$	0	
PERIODIC COST	16	\$ 28,489		0.00	\$	0	
PERIODIC COST	17	\$ 28,489		0.00	\$	0	
PERIODIC COST	18	\$ 28,489		0.00	\$	0	
PERIODIC COST	19	\$ 28,489		0.00	\$	0	
PERIODIC COST + 5 YR REVIEW	20	\$ 43,489		0.00	\$	0	
PERIODIC COST	21	\$ 28,489		0.00	\$	0	
PERIODIC COST	22	\$ 28,489		0.00	\$	0	
PERIODIC COST	23	\$ 28,489		0.00	\$	0	
	24	\$ 28,489		0.00	\$	0	
PERIODIC COST + 5 TR REVIEW	25	\$ 43,469 ¢ 20,400		0.00	\$	0	
PERIODIC COST	20	\$ 20,409 ¢ 20,409		0.00	\$	0	
PERIODIC COST	27	\$ 28,489		0.00	¢	0	
PERIODIC COST	20	\$ 20,409		0.00	¢ ¢	0	
PERIODIC COST + 5 YR REVIEW	20	\$ 20,403		0.00	¢	0	
Subtotal	30	\$ 43,465		0.00	¢	1 19/ 127	
Subiotat	1	1			Ť	1,104,127	
Total Present Value	1				\$	1,184,127	
		1	1 1		Ŧ	_,,	

Assumptions and Exclusions

1. This AACE Class 4 Engineer's Estimate is only an estimate of possible construction costs for budgeting purposes. It is not an offer to perform the work. This estimate is limited to the conditions existing at the time of its issuance and is not a guarantee of actual price or cost. Uncertain market conditions such as, but not limited to: local labor or contractor availability, wages, other work, material market fluctuations, price escalations, force majeure events, and developing bidding conditions etc may affect the accuracy of this estimate. Jacobs is not responsible for any variance from this estimate or actual prices and conditions obtained. This is an order-of-magnitude cost estimate that is expected to be within +50 to -30 percent of the anticipated costs in the EE/CA.

Site:		Naval Air Station Pa	tuxent River				Description:	Alternative 3 – F
Area:		Former Skeet Rang	e				-	
Location:		St. Marv's County. N	Aarvland					
Base Year:		2024						
Alternative:		2024		-				
		5						
Description		Units	Quantity		Unit Price		Balanced Total	
Work Planning Documents								
Construction Work Plan and Design		15	1	Ś	75 000 00	Ś	75 000	
Treatability Study		15	1	Ś	15 000 00	Ś	15,000	
FM 385 H&S Plan		15	1	Ś	12,000.00	Ś	12,000	
Construction Completion Report		LS	1	\$	20,000.00	\$	20,000	
Work Planning Documents Total		-		,	-,	\$	122,000	I
Mobilization, Demobilization and Site Set-up							·	
Mobilization		LS	1	\$	10,235.02	\$	10,235	
Equipment Rental During Mob		LS	1	\$	8,565.05	\$	8,565	
Demobilization		LS	1	\$	5,240.72	\$	5,241	
								1) Clear and Uncove
Site Setun		IS	1	Ś	30 205 19	Ś	30 205	road and build new
Site Setup			-		30,203.13	ļ Š	50,205	Total of 21,900 ft2 i
								cy = 608 tons = 304
Mobilization, Demobilization and Site Set-up Total						Ş	54,246	
								Equipment crew, re
Site Clearing		DAY	5	\$	20,774.91	\$	103,875	trees for shipment I
								small trees, 5) Gene
Silt Fence and Safety Fence Installation								pille fleedies and gi
Install Silt Fence and Orange Safety Fence		LS	1	Ś	8.007.82	Ś	8.008	Approximately 120
Remove Silt and Safety Fencing		LS	1	\$	2.938.67	\$	2,939	
Silt Fence and Safety Fence Installation Total					,	\$	10,946	
Excavation, Mixing and Loading								
Excavate and Move Soil to Loading Area		ВСҮ	1,008	\$	22.24	\$	22,418	Excavate to interme tons/day
				\vdash				
Purchase, Deliver, Mix Portland (Stabilize Soils)		TON	152	\$	875.12	\$	133,018	Utilize 2nd 336 Exca
								Materials are move
Load Trucks for Offsite Disposal		TON	1,664	\$	9.52	\$	15,841	Laborers for lining t
Excavation, Mixing and Loading Total						\$	171,277	
								Based on 25,500 ft2
Excavation Confirmation Sampling								ft. Small areas area
								current
Excavation Contirmation Sampling Labor and Sup	ply	TON	1,664	Ş	19.54	\$ ¢	32,515	
Excavation Confirmation Sampling		IUN	1,664	Ş	11.79	\$ ¢	19,619	
Excavation Confirmation Sampling Total			1	1		Ş	52,133	
								Soil - 1705 Tons incl
Transport and Disposal		TON	1,664	\$	72.97	\$	121,422	complete
								Transpot 112 mitt
			1	1		1		Transport 112 mito

Removal, Stabilization, and Off-site Disposal
Cont Nation
Cost Notes
er old road from previous cleanup project, 2) Repair old road as needed, 3) Extend turaround and loading area at OU-2
road and turaround. Assume 6" of 3 in minus stone (57 stone) at 50% usage = 405 tons needed
entals and labor expenses during clearing. 1) Fell large trees and de-branch, 2) Cut by logger for reclaim, 3) Assume logger takes trees for free, 4) Chip branches and eral Cleanup of area, 6) Provide 1 - 40 cy roll-off for unsuable debris, 6) Dispose of round cover with ecvavated soils.
0 If od Super Silt Fence ans Orange Saferty Fence
ediate nile so that 2nd excavator can nick up and mix with Portland Cement 225
culate pile so that zhu excavator can pick up and mix with Fortiand Cement. 255
avator to turn and mix soils with 155 Supersacks of Type IL Portland Cement as the d to the loadout area. Soils Should be turned 2 or 3 times as they are moved.
rucks and cleaning roads. Includes Truck Liner Cost
2 total area in main area and 30' x 30' grid on the floor + 1 sidewall sample every 40 assumed to require 1 floor sample and 4 sidewall samples per area. Prices are

cluding Portland Cement - 10 Loads/Day, 22 Tons/Load - 220 tons/day - 8 Days to

30 Tons for 30 to 40 Stumps - 1 Day King and Queen LF

Site:	Naval Air Station Pat	tuxent River				Description:	Alternative 3 – R
Area:	Former Skeet Bang	ge				•	
Location:	St Mary's County M	r Iarvland					
Poso Voor							
	2024						
Alternative:	3						
			_		-		
Description	Units	Quantity		Unit Price		Balanced Total	
Surveyiing	LS	1	\$	12,320.0	\$	12,320	
Backfill Of Excavation							
Confirmation Sampling Labor and Supplies	TON	1,512	\$	2.53	\$	3,825	Field personnel to ob
							Based on 25,500 ft2
Confirmation Sample Analysis - Backfill Soils	TON	1,512	\$	1.39	\$	2,102	ft. Small areas area a
							based on 2021 analy
Place and Compact Backfill Soils (incl Testing)	TON	1 512	Ś	32.08	Ś	48 505	Place,compact, test a
The and compact backin sons (mer resting)		1,512	Ý	52.00	Ŷ	40,505	includes cost for 3rd
							Find and procure, Ap
Import Common Backfill	TON	1,512	\$	60.21	\$	91,038	located within a 50 r
							1.5 tons/cy after con
Backfill Of Excavation Total					\$	145,470	
Site Restoration							
Revegetation	AC	1.5	\$	6,776.00	\$	10,164	Hydroseed Subcontr
Watering and Establishment Period	MO	6	\$	4,078.17	\$	24,469	Apply water to are a
Site Restoration Total					\$	34,633	
Land Use Controls							
Deed Restriction	LS	0	\$	-	\$	-	LTM and LUCs Not A
Warning Signage	LS	0	\$	-	\$	-	
Land Use Control Implementation Plan	LS	0	\$	-	\$	-	
Land Use Controls					\$	-	
Subtotal					\$	828,322	
Contingency (25%)				25.0%	\$	207,081	
Project Management				6.0%	\$	49,699	EPA 2000, p. 5-13, \$50
Construction Management				8.0%	\$	66,266	EPA 2000, p. 5-13, \$50
Subtotal				0.00/	\$	1,151,368	
Performance Bond (2%)				2.0%	\$. e	16,566	Industry Average
	i	:	:		: Þ	1,100,000	:
Operation and Maintenance							
LTM and LUCs							
Operation and Maintenance							1
Description	Unit	Quantity		Unit Price		Total	
Land Use Controls			_		_		
Cap Maintenance	Each	1	\$	-	\$	-	Repair erosion, replant
Warning Sign Maintenance	Each	1	\$	500	\$	500	Maintenance of warning
LUC Administrative Reviews/Report	Each	1	\$	-	\$	-	Review Administrative L
Appual LLC Site Inspections/Benort	Each	1	\$	-	\$	-	Annual site inspection
Labor	Hour	8	\$	100	\$	800	Annual site inspection
Rental Vehicle	Dav	1	\$	120	\$	120	
Annual LUC Report	Each	1	\$	-	\$	-	
Subtotal					\$	1,420	Annual total
Contingency (25%)		25.0%	\$	1,420	\$	355	
Project Management		8.0%	\$	1,420	\$	114	
Normalism of Provide			┣	¢ 1000	*		
Number of Events	Each	2	┣──	ə 1,889	\$	3,///	
TOTAL 0&M COST - LTM AND LUC					\$	3 777	
		l	1		۱Ψ	5,777	l

emoval Stabilization and Off-site Disposal
Cost Notes
btain samples for Atterberg Tests for backfill material
total area in main area and 30' x 30' grid on the floor + 1 sidewall sample every 40
assumed to require 1 floor sample and 4 sidewall samples per area. Prices are
rtical prices escalated 30%.
and grade import backfill. Time includes cost to spread chipped wood. Cost also
pary Nuclear Density testing in the field
pprove, load and Transport clean soil fill to the Naval base from a borrow are
nile radius of the Rase. In place compacted density of material is assumed to be
nuclearity of the base. In place compacted density of fildtendits assumed to be
npachon 10 95% Stanuaru Proclor.
actor
s necessary to establish vegetation
nnlicable for this Alternative
0K - \$2M
UK - \$2M
• · · ·
Assumptions
regegation, repair borrows
R 218112
LUCS
with LLIC Beport

· · · · · · · · · · · · · · · · · · ·						
Site:		Naval Air Station Pat	uxent River		Description:	Alternative 3 – F
Area:		Former Skeet Range			· · ·	
Location:		St Manu's County M	andand			
			arytariu			
Base Year:	ļ	2024				
Alternative:		3				
	•	•				•
Description		Units	Quantity	Unit Price	Balanced Total	
Periodic Costs						
Description	YEAR	QTY	UNIT	UNIT COST	TOTAL	
5 Year Review	5	1	EA	\$5,000	\$ 5,000	
5 Year Review	10	1	EA	\$0	\$ - *	o year reviews not app
5 Year Peview	15	1	EA	ው ትሀ	- с	
5 Year Beview	20	1	FA	\$0 \$0	\$	
5 Year Review	30	1	EA	\$0	\$	
TOTAL PERIODIC COSTS		-		¢0	\$ 5,000	
	·				· · · ·	•
Present Value Analysis						
Discount Data -	2.09/	Source: White House OMB,				
	2.0%	2022. This rate represents a				
			TOTAL COST PER	DISCOUNT		
COST TYPE	YEAR	TOTAL COST	YEAR	FACTOR	PRESENT VALUE	
CAPITAL COST	0	\$ 1,168,000		1.00	\$ 1,168,000	
ANNUAL O&M COST	1 to 30			0.25	\$	
PERIODIC COST	1	\$ 755		0.20	\$ 151	
	2	\$ 755		0.04	\$ 30	
	3	ф -		0.01	- -	
	4 5	φ - \$ 5.000		0.00	ະ \$	
PERIODIC COST	6	ψ 0,000		0.00	φ 2 \$-	
PERIODIC COST	7			0.00	\$ -	
PERIODIC COST	8			0.00	\$	
PERIODIC COST	9			0.00	\$-	
PERIODIC COST	10			0.00	\$	
PERIODIC COST	11			0.00	\$ -	
PERIODIC COST	12			0.00	\$	
PERIODIC COST	13			0.00	\$ -	
PERIODIC COST	14			0.00	\$	
PERIODIC COST	15			0.00	\$	
	16			0.00	5 - ¢	
	1/			0.00	¢ -	
PERIODIC COST	10			0.00	φ - \$	
PERIODIC COST	20			0.00	φ	
PERIODIC COST	20			0.00	\$ -	
PERIODIC COST	22			0.00	\$ -	
PERIODIC COST	23			0.00	\$ -	
PERIODIC COST	24			0.00	\$ -	
PERIODIC COST	25			0.00	\$ -	
PERIODIC COST	26			0.00	\$	
PERIODIC COST	27			0.00	\$ -	
PERIODIC COST	28			0.00	\$	
PERIODIC COST	29			0.00	\$ -	
PERIODIC COST	30			0.00		
Subtota	l	1			\$ 1,168,183	
					•	

Assumptions and Exclusions

1. This AACE Class 4 Engineer's Estimate is only an estimate of possible construction costs for budgeting purposes. It is not an offer to perform the work. This estimate is limited to the conditions existing at the time of its issuance and is not a guarantee of actual price or cost. Uncertain market conditions such as, but not limited to: local labor or contractor availability, wages, other work, material market fluctuations, price escalations, force majeure events, and developing bidding conditions etc may affect the accuracy of this estimate. Jacobs is not responsible for any variance from this estimate or actual prices and conditions obtained. This is an order-of-magnitude cost estimate that is expected to be within +50 to -30 percent of the anticipated costs in the EE/CA.

emoval, Stabilization, and Off-site Disposal	
, <u>,</u> , , , , , , , , , , , , , , , , ,	
	-+
Cost Notes	
	-
	—–
Assumptions	
cable for this alternative after year 5	
	_
	-+
	-
	-
	_

Appendix E Sustainability Analysis APPENDIX E

Sustainability Analysis for Munitions Response Site UXO-002, OU-2 Former Skeet Ranges

E.1 Introduction

This appendix presents the approach taken and results obtained from a sustainability analysis performed for Operable Unit (OU) 2 (Former Skeet Ranges) of the Munitions Response Site Unexploded Ordnance (UXO) 002 (Former Small Arms Ranges) located at Naval Air Station Patuxent River, St. Mary's County, Maryland. A site description and history of UXO-002, OU-2 is provided within the Engineering Evaluation/Cost Analysis (EE/CA). The following alternatives were developed to address potential risks to human health and the environment from exposure to impacted surface soil and subsurface debris. A detailed summary of the alternatives is provided in the EE/CA.

- Alternative 1: No Action
- Alternative 2: Stabilization and Engineered Cover with Land Use Controls (LUCs) and Long-Term Monitoring (LTM)
- Alternative 3: Removal, Stabilization, and Offsite Disposal

The purpose of this analysis is to provide a quantitative assessment of the potential environmental and social impact of each alternative. The sustainability analysis was performed using SiteWise Version 3.2 (Battelle, 2018) for Alternatives 2 and 3. Although the No Action alternative (Alternative 1) has no actions that would impact sustainability, it is not considered a viable alternative and will not be further discussed in this analysis.

E.2 Method and Assumptions

The SiteWise tool consists of a series of Excel-based spreadsheets used to conduct a baseline assessment of sustainability metrics. The assessment is carried out using a spreadsheet-based building block approach, where every removal alternative can be broken down into components for discrete phases of work (such as construction, operation, LTM), or different systems for more complex removal actions.

SiteWise uses various emission factors from governmental or non-governmental research sources to determine the environmental impact of each activity. The quantitative metrics calculated by the tool include:

- 1) Greenhouse gases (GHGs) reported as metric tons of carbon dioxide equivalents (CO₂e), consisting of carbon dioxide (CO₂), methane (CH₄), and nitrous oxide (N₂O)
- 2) Energy usage (expressed as millions of British Thermal Units [MMBTU])
- 3) Water usage (gallons of water)
- 4) Air emissions of criteria pollutants consisting of metric tons of nitrogen (NO_x), sulfur oxides (SO_x), and particulate matter (PM₁₀)
- 5) Accident risk (risk of injury and risk of fatality)

For the purpose of this discussion, the term "footprint" will be used to describe the quantified emissions or quantities for each metric. To estimate the sustainability footprint for each alternative, only those elements possessing important sustainability impacts were included in the assessment. A lower footprint indicates lower deleterious impacts to environmental and social metrics, which collectively make up the SiteWise sustainability metrics. Conversely, a higher footprint indicates higher deleterious impacts associated with the SiteWise metrics.

The major conclusions of this sustainability analysis are incorporated into the effectiveness criteria evaluation of the EE/CA.

The following is a description of the major activities for each alternative:

- Alternative 2: Stabilization and Engineered Cover with LUCs and LTM
 - Production of fill for backfilling (industry averages for heavy equipment operation to dig soil from the ground or borrow area), gravel for road access, and cement for stabilization
 - Transportation of personnel and equipment for stabilization and cover installation activities
 - Equipment use for stabilization and cover installation activities
 - Onsite labor hours
 - Transportation and disposal of residuals to a non-hazardous landfill
 - Operations and maintenance (O&M) includes annual inspections and 5-year review inspections for 30 years
- Alternative 3: Removal Action with Stabilization and Offsite Disposal
 - Production of fill for backfilling (industry averages for heavy equipment operation to dig soil from the ground or borrow area), gravel for road access, and cement for stabilization
 - Transportation of personnel, equipment, and materials for removal, stabilization, and disposal activities
 - Equipment use to excavate and stabilize soils
 - Onsite labor hours
 - Transportation and disposal of residuals to a non-hazardous landfill
 - Operations and maintenance (O&M)—includes annual inspections for 1 year

General Assumptions

The specific assumptions made for the individual remedies are presented in **Tables E-1** and **E-2**. The following general assumptions are used for the SiteWise tool evaluation:

- The complete environmental footprint for production of equipment used, or production of the vehicles used for transportation, is not considered in this analysis.
- Daily local transportation is assumed to consist of 50 miles of driving a light duty truck per day.
- The nonhazardous landfill is located 115 miles away from the site, and all waste is assumed to be nonhazardous.
- Environmental footprints from non-hazardous waste landfill operations are based on inert waste disposed of in a sanitary landfill.
- The following weights and distance for delivery are used for equipment:
 - Bulldozer, loader: 20 tons each, 50 miles round trip
 - Chipper:20 tons, 50 miles round trip
 - Sifter: 20 tons, 100 miles round trip
 - Excavator: 30 tons, 50 miles round trip

E.3 Results and Conclusions

A comparative analysis for Alternatives 2 and 3 is summarized in Figure E-1. Table E-3 presents a comparison of the quantitative environmental footprint metrics evaluated for each of the alternatives. Alternative 3 (Removal,

Stabilization, and Offsite Disposal) had higher footprints in each of the sustainability metrics compared with Alternative 2 (Stabilization and Engineered Cover with LUCs and LTM) primarily due to the transportation and disposal of residual waste associated with Alternative 3.

A relative impact summary is also provided in Table E-3. It should be noted that while this analysis compares the environmental footprints of each of the alternatives, the alternatives may differ with respect to other evaluation criteria. Therefore, a comparison of the results of the alternatives needs to be made in the context of the benefits (e.g., ARAR compliance, contaminant reduction, site reuse, cost effectiveness, etc.) of each of the alternatives. In this case, Alternative 3 results in removal of the waste from the site, whereas Alternative 2 involves waste being managed onsite.

The following is a summary of the individual alternatives:

- Alternative 2: Stabilization and Engineered Cover with LUCs and LTM
 - <u>GHG and Energy Use</u>: The majority of the GHG and energy use footprints were associated with material production (clean soil for engineered cap and gravel for the access road). Material production, listed under consumables, during the remedial implementation phase contributed approximately 54 and 56 percent of the GHG and energy use footprints, respectively, while material production during the site preparation phase contributed 22 and 26, percent, respectively. During remedial implementation, equipment and material transportation contributed approximately 12 and 9 percent of the total potential GHG and energy use footprints, respectively. All other categories contributed 5 percent or less in each category.
 - <u>Water Use:</u> Water use from this alternative was attributed to hydraseeding for site restoration.
 - <u>Criteria Air Pollutants (NO_X, SO_X, PM₁₀):</u> Similar to GHG and energy use, the majority of the criteria air pollutant (NO_X, SO_X, PM₁₀) footprints was from material production during the remedial implementation phase (69, 75, and 83 percent, respectively), and during the site preparation phase (16, 24, and 14 percent, respectively). Equipment and material transportation during the site preparation phase contributed 11, 1, and 3 percent of the total NO_X, SO_X, and PM₁₀ emissions, respectively.
 - <u>Accident Risks</u>: The majority of each accident risk footprint (risk of fatality and risk of injury) are associated with the onsite labor hours (listed under equipment use and miscellaneous) during the site preparation phase (17 and 30 percent, respectively), during the remedial implementation phase (10 and 17 percent, respectively) and during the operations and maintenance phase (10 and 18 percent, respectively). Transportation of equipment during the remedial implementation phase (34 and 19 percent, respectively) and during the site preparation phase (6 and 3 percent, respectively) contributed the second highest accident risk footprints. Transportation of personnel and residual handling also contributed 10 percent or less in each category.

Results are provided in Table E-4 and Figure E-2.

- Alternative 3: Removal Action with Stabilization and Offsite Disposal
 - <u>GHG and Energy Use:</u> The majority of the GHG and energy use footprints were associated with material production (clean soil for backfill and gravel for the access road). Material production, listed under consumables, during the remedial implementation phase contributed approximately 59 and 40 percent of the GHG and energy use footprints, respectively, while material production during the site preparation phase contributed 9 and 21, percent, respectively. Residual handling during the remedial implementation phase contributed approximately 20 and 26 percent of the total GHG and energy use footprints, respectively. Transportation of equipment and personnel contributed 4 percent or less in each category.
 - <u>Water Use</u>: Water use from this alternative was attributed to hydraseeding for site restoration.
 - <u>Criteria Air Pollutants (NO_x, SO_x, PM₁₀)</u>: Similar to GHG and energy use, the majority of the criteria air pollutant (NO_x, SO_x, PM₁₀) footprints was from material production during the remedial implementation phase (58, 77, and 32 percent, respectively), and during the site preparation phase (9, 11, and 4 percent,

respectively). Equipment and material transportation during the remedial implementation phase contributed 9, 5, and 1 percent of the total NO_x , SO_x , and PM_{10} emissions, respectively.

<u>Accident Risks</u>; The majority of each accident risk footprint (risk of fatality and risk of injury) are associated with residual handling and transportation during the remedial implementation phase (46 and 29 percent, respectively). Onsite labor hours (listed under equipment use and miscellaneous) during the remedial implementation phase (18 and 37 percent, respectively) and during the site preparation phase (7 and 14 percent, respectively) had the second highest accident risk footprints. Transportation of personnel and transportation of equipment also contributed 10 percent or less in each category.

Results are provided in Table E-5 and Figure E-3.

E.4 Uncertainty

The SiteWise tool calculates environmental and risk footprints based on industry averages, published emissions factors, and generalized data sources. The footprint results are not representative of actual emissions and should be used for comparative purposes only.

E.5 Recommendations

The inventory from the SiteWise tool were used to estimate the environmental footprint of the alternatives. Once the alternative is selected Navy Green and Sustainable Remediation Best Management Practices (NAVFAC EXWC, 2016) will be considered in the remedial action.

Specific best management practices for these alternatives are as follows:

- Minimize fill brought onsite through grading of the excavation, or by using soil from a "clean" area of the site rather than import soil from an offsite source .
- If some more of the debris can be recycled, additional environmental benefits may be realized.
- Include using equipment with emissions control devices or managing work such that engine idle time is minimized.
- Recycle downed trees for onsite landscaping boundaries and wildlife restoration habitats.
- Choose stabilization materials that are manufactured through processes involving a low environmental impact.

E.6 References

Battelle. 2018. SiteWise Version 3.2. NAVFAC Engineering Service Center. October.

Naval Facilities Engineering Command, Engineering and Expeditionary Warfare Center (NAVFAC EXWC). 2016. *Green and Sustainable Remediation Best Management Practices*. September.

Tables

Table E-1. Alternative 2 – Stabilization and Engineered Cover with LUCs and LTM

Engineering Evaluation and Cost Analysis for Munitions Response Site UXO-002, OU-2 Former Skeet Ranges Naval Air Station Patuxent River

St. Mary's County, Maryland

	SILT CURTAIN MATERIALS	Site Setup													
Site Preparation	Input length or perimeter of silt curtain (ft)	1,200													
	Input depth of silt curtain (ft)	3	Olta Ostar												
	BULK MATERIAL QUANTITIES	Road Restoration	Site Setup Road Restoration	Cover Stabilization											
	Choose material from drop down menu	Gravel	HDPE Liner	Typical Cement											
	Choose units of material quantity from drop down menu	pounds	cubic feet	pounds											
	Input material quantity	608,000	189	22,000											
	PERSONNEL TRANSPORTATION - ROAD	Site Setup	Site Clearing												
	Will DIESEL-run vehicles be retrotitted with a particulate reduction technology?	No	No Light truck												
	Choose fuel used from drop down menu	Gasoline	Gasoline												
	Input distance traveled per trip (miles)	50	50												
	Input number of trips taken	5	10												
	Input number of travelers	3	3												
	EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD	Dozer	Loader/Backhoe	Chipper	Sifter	Gravel	Portland Cement								
	Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?	No	No	No	No	No	No								
	Choose fuel used from drop down menu	Diesel	Diesel	Diesel	Diesel	Diesel	Diesel								
	Account for an empty return trip?	Yes	Yes	Yes	Yes	Yes	Yes								
	Input one-way distance traveled (miles) with a given load. If applicable,	50	50	50	100	1,302	127								
				22.22			44.00								
	Input weight of equipment transported per truck load (tons)	20.00 Dozer	20.00	20.00	20.00	23.00	11.00								
	EARTHWORK	Road Restoration	Loader/Backhoe	Clearing											
	Choose earthwork equipment type from drop down menu	Dozer	Loader/Backhoe	Dozer											
	Choose fuel type from drop down menu	Diesel													
	Will DIESEL-run equipment be retrofitted with a particulate reduction technology?	203 No	No	No											
	MIXING EQUIPMENT	Pugmill Mixer	. 10												
	Choose fuel type from drop down menu	Diesel													
	Choose horsepower range from drop down menu	3 to 6													
	Input volume (yd3)	303													
	Input production rate (yd3/hr)	10 Chippor	Sifter	1											
	Choose fuel type from drop down menu	Diesel	Diesel												
	Input fuel consumption rate (gal/hr or scf/hr)	10	10												
	Input operating hours (hr)	25	25												
	OPERATOR LABOR	Site Setup	Site Clearing												
	Choose occupation from drop-down menu	Construction laborers	Construction laborers												
	Input total time worked onsite (hours)	120	240												
	RESIDUE DISPOSAL/RECYCLING	Debris and Stumps	Return Trip	Lead Shot - 10 Drums											
	Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Input weight of the waste transported to	No	No	No											
	landfill or recycling per trip (tons)	20	0	3											
	Choose fuel used from drop down menu	Diesel 7	Diesel	Diesel											
	Input number of miles per trip	50	115	115											
	LANDFILL OPERATIONS	Lead Shot - 10 Drums													
	LANDFILL OPERATIONS Choose landfill type for waste disposal	Lead Shot - 10 Drums Non-Hazardous													
	LANDFILL OPERATIONS Choose landfill type for waste disposal Input amount of waste disposed in landfill (tons) BULK MATERIAL OLIVALITIES	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material													
Remedial	LANDFILL OPERATIONS Choose landfill type for waste disposal Input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil													
Remedial Implementation	LANDFILL OPERATIONS Choose landfill type for waste disposal Input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose units of material quantity from drop down menu	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet													
Remedial Implementation	LANDFILL OPERATIONS Choose landfill type for waste disposal Input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose units of material quantity from drop down menu Input material quantity	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet 65,520													
Remedial Implementation	LANDFILL OPERATIONS Choose landfill type for waste disposal Input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose units of material quantity from drop down menu Input material quantity PERSONNEL TRANSPORTATION - ROAD	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet 65,520 Surveying	Nuclear Density and Atterberg Testing	Cap Placement											
Remedial Implementation	LANDFILL OPERATIONS Choose landfill type for waste disposal Input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose units of material quantity from drop down menu Input material quantity PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet 65,520 Surveying No	Nuclear Density and Atterberg Testing No	Cap Placement No											
Remedial Implementation	LANDFILL OPERATIONS Choose landfill type for waste disposal Input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose units of material quantity from drop down menu Input material quantity PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu*	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet 65,520 Surveying No Light truck	Nuclear Density and Atterberg Testing No Light truck	Cap Placement No Light truck											
Remedial Implementation	LANDFILL OPERATIONS Choose landfill type for waste disposal Input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose units of material quantity from drop down menu Input material quantity PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trin (miles)	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet 65,520 Surveying No Light truck Gasoline	Nuclear Density and Atterberg Testing No Light truck Gasoline	Cap Placement No Light truck Gasoline 50											
Remedial Implementation	LANDFILL OPERATIONS Choose landfill type for waste disposal Input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose units of material quantity from drop down menu Input material quantity PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu Input distance traveled per trip (miles) Input number of trips taken	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet 65,520 Surveying No Light truck Gasoline 50 3	Nuclear Density and Atterberg Testing No Light truck Gasoline 50 5	Cap Placement No Light truck Gasoline 50 5											
Remedial Implementation	LANDFILL OPERATIONS Choose landfill type for waste disposal Input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose units of material quantity from drop down menu Input material quantity PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet 65,520 Surveying No Light truck Gasoline 50 3	Nuclear Density and Atterberg Testing No Light truck Gasoline 50 5 1	Cap Placement No Light truck Gasoline 50 5 5 3											
Remedial Implementation	LANDFILL OPERATIONS Choose landfill type for waste disposal Input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose units of material quantity from drop down menu Input material quantity PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet 65,520 Surveying No Light truck Gasoline 50 3 2 Cap Material	Nuclear Density and Atterberg Testing No Light truck Gasoline 50 5 5 1	Cap Placement No Light truck Gasoline 50 5 5 3											
Remedial Implementation	LANDFILL OPERATIONS Choose landfill type for waste disposal Input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose units of material quantity from drop down menu Input material quantity PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu* Choose vehicle type from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet 65,520 Surveying No Light truck Gasoline 50 3 2 Cap Material No	Nuclear Density and Atterberg Testing No Light truck Gasoline 50 5 1	Cap Placement No Light truck Gasoline 50 5 3											
Remedial Implementation	LANDFILL OPERATIONS Choose landfill type for waste disposal Input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose units of material quantity from drop down menu Input material quantity PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet 65,520 Surveying No Light truck Gasoline 50 3 2 Cap Material No Diesel	Nuclear Density and Atterberg Testing No Light truck Gasoline 50 5 1	Cap Placement No Light truck Gasoline 50 5 3											
Remedial Implementation	LANDFILL OPERATIONS Choose landfill type for waste disposal Input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose units of material quantity from drop down menu Input material quantity PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input distance traveled from drop down menu	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet 65,520 Surveying No Light truck Gasoline 50 3 2 Cap Material No Diesel Yes	Nuclear Density and Atterberg Testing No Light truck Gasoline 50 5 1	Cap Placement No Light truck Gasoline 50 5 3											
Remedial Implementation	LANDFILL OPERATIONS Choose landfill type for waste disposal Input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose units of material quantity from drop down menu Input material quantity PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed).	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet 65,520 Surveying No Light truck Gasoline 50 3 2 Cap Material No Diesel Yes 9,100	Nuclear Density and Atterberg Testing No Light truck Gasoline 50 5 1	Cap Placement No Light truck Gasoline 50 5 3											
Remedial Implementation	LANDFILL OPERATIONS Choose landfill type for waste disposal Input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose units of material quantity from drop down menu Input material quantity PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons)	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet 65,520 Surveying No Light truck Gasoline 50 3 2 Cap Material No Diesel Yes 9,100 20.00	Nuclear Density and Atterberg Testing No Light truck Gasoline 50 5 1	Cap Placement No Light truck Gasoline 50 5 3											
Remedial Implementation	LANDFILL OPERATIONS Choose landfill type for waste disposal Input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose units of material quantity from drop down menu Input material quantity PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of trips taken Vill DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of trips taken Vill DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet 65,520 Surveying No Light truck Gasoline 50 3 2 Cap Material No Diesel Yes 9,100 20.00 Cap Placement	Nuclear Density and Atterberg Testing No Light truck Gasoline 50 5 1	Cap Placement No Light truck Gasoline 50 5 3											
Remedial Implementation	LANDFILL OPERATIONS Choose landfill type for waste disposal Input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose units of material quantity from drop down menu Input material quantity PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input number of trips taken Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose earthwork equipment type from drop down menu	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet 65,520 Surveying No Light truck Gasoline 50 3 2 Cap Material No Diesel Yes 9,100 20.00 Cap Placement Dozer	Nuclear Density and Atterberg Testing No Light truck Gasoline 50 5 1	Cap Placement No Light truck Gasoline 50 5 3											
Remedial Implementation	LANDFILL OPERATIONS Choose landfill type for waste disposal Input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose units of material quantity from drop down menu Input material quantity PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose earthwork equipment t	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet 65,520 Surveying No Light truck Gasoline 50 3 2 Cap Material No Diesel Yes 9,100 20.00 Cap Placement Dozer Diesel 20.407	Nuclear Density and Atterberg Testing No Light truck Gasoline 50 5 1	Cap Placement No Light truck Gasoline 50 5 3											
Remedial Implementation	LANDFILL OPERATIONS Choose landfill type for waste disposal Input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose units of material quantity from drop down menu Input material quantity PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose earthwork equipment type from drop down menu Choose fuel type from drop down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? <	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet 65,520 Surveying Light truck Gasoline 50 3 2 Cap Material No Light truck Gasoline 50 3 2 Cap Material No Diesel Yes 9,100 20.00 Cap Placement Dozer Diesel 2,427 No	Nuclear Density and Atterberg Testing No Light truck Gasoline 50 5 1	Cap Placement No Light truck Gasoline 50 5 3											
Remedial Implementation	LANDFILL OPERATIONS Choose landfill type for waste disposal Input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose units of material quantity from drop down menu Input material quantity PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu* Choose vehicle type from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose fuel type from drop down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology?	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet 65,520 Surveying No Light truck Gasoline 50 3 2 Cap Material No Dissel Yes 9,100 20.00 Cap Placement Dozer Diesel 2,427 No	Nuclear Density and Atterberg Testing No Light truck Gasoline 50 5 1	Cap Placement No Light truck Gasoline 50 5 3 3											
Remedial Implementation	LANDFILL OPERATIONS Choose landfill type for waste disposal Input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose units of material quantity from drop down menu Input material quantity PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose earthwork equipment type from drop down menu Choose fuel type from drop down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology?	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet 65,520 Surveying No Light truck Gasoline 50 3 2 Cap Material No Dissel Yes 9,100 20.00 Cap Placement Dozer Diesel 2,427 No Surveying Construction laborers	Nuclear Density and Atterberg Testing No Light truck Gasoline 50 5 1 1	Cap Placement No Light truck Gasoline 50 5 3 3 Cap Placement Construction laborers											
Remedial Implementation	LANDFILL OPERATIONS Choose landfill type for waste disposal Input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose units of material quantity from drop down menu Input material quantity PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose acthwork equipment type from drop down menu Input volume of material to be removed (yd3)	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet 65,520 Surveying Light truck Gasoline 50 3 Cap Material No Light truck Gasoline 50 3 2 Cap Material No Diesel 9,100 Cap Placement Dozer Diesel 2,427 No Surveying Construction laborers 48.0	Nuclear Density and Atterberg Testing No Light truck Gasoline 50 5 1 1 Nuclear Density and Atterberg Testing Construction laborers 40.0	Cap Placement No Light truck Gasoline 50 5 3 3 Cap Placement Construction laborers 120.0											
Remedial Implementation	LANDFILL OPERATIONS Choose landfill type for waste disposal Input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose units of material quantity from drop down menu Input material quantity PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose earthwork equipment type from drop down menu Input volume of m	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet 65,520 Surveying No Light truck Gasoline 50 3 2 Cap Material No Diesel 9,100 Cap Placement Dozer Diesel 2,427 No Surveying Construction laborers 48.0 Analysis 1	Nuclear Density and Atterberg Testing No Light truck Gasoline 50 5 1 1 Nuclear Density and Atterberg Testing Construction laborers 40.0	Cap Placement No Light truck Gasoline 50 5 3 3 Cap Placement Construction laborers 120.0											
Remedial Implementation	LANDFILL OPERATIONS Choose landfill type for waste disposal Input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose units of material quantity from drop down menu Input material quantity PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose earthwork equipment type from drop down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choose earthwork equipment type from drop down menu Input volum	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet 65,520 Surveying No Light truck Gasoline 50 3 2 Cap Material No Light truck Gasoline 50 3 2 Cap Material No Diesel Yes 9,100 20.00 Cap Placement Dozer Diesel 2,427 No Surveying Construction laborers 48.0 Analysis 1 \$2,111.00	Nuclear Density and Atterberg Testing No Light truck Gasoline 50 5 1 1 Nuclear Density and Atterberg Testing Construction laborers 40.0	Cap Placement No Light truck Gasoline 50 5 3 3 Cap Placement Construction laborers 120.0											
Remedial Implementation	LANDFILL OPERATIONS Choose landfill type for waste disposed Input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose units of material quantity from drop down menu Input material quantity PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose fuel type from drop down menu Choose fuel type from drop do	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet 65,520 Surveying No Light truck Gasoline 50 3 2 Cap Material No Light truck Gasoline 50 3 2 Cap Material No Diesel Yes 9,100 20.00 Cap Placement Dozer Diesel 2,427 No Surveying Construction laborers 48.0 Analysis 1 \$2,111.00 Site Restoration	Nuclear Density and Atterberg Testing No Light truck Gasoline 50 5 1 1 Nuclear Density and Atterberg Testing Construction laborers 40.0	Cap Placement No Light truck Gasoline 50 5 3 3 Cap Placement Construction laborers 120.0											
Remedial Implementation	LANDFILL OPERATIONS Choose landfill type for waste disposal Input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose units of material quantity from drop down menu Input material quantity PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose earthwork equipment type from drop down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choo	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet 65,520 Surveying No Light truck Gasoline 50 3 2 Cap Material No Diesel Yes 9,100 Cap Placement Dozer Diesel 2,427 No Surveying Construction laborers 48.0 Analysis 1 \$2,111.00 Site Restoration 40,000	Nuclear Density and Atterberg Testing No Light truck Gasoline 50 5 1 1 Nuclear Density and Atterberg Testing Construction laborers 40.0	Cap Placement No Light truck Gasoline 50 5 3 3 Cap Placement Construction laborers 120.0											
Remedial Implementation	LANDFILL OPERATIONS Choose landfill type for waste disposal Input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose units of material quantity from drop down menu Input material quantity PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose earthwork equipment type from drop down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choose earthwork equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choose fuel type from drop down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours) LABORATORY ANALYSIS Input dollars spent on laboratory analysis (\$) OTHER KNOWN ONSITE ACTIVITIES Water consumption (gallon) PERSONNEL TRANSPORTATION - ROAD	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet 65,520 Surveying No Light truck Gasoline 50 3 2 Cap Material No Digst truck Gasoline 50 3 2 Cap Material No Diesel Yes 9,100 20.00 Cap Placement Dozer Diesel 2,427 No Surveying Construction laborers 48.0 Analysis 1 \$2,111.00 Site Restoration 40,000	Nuclear Density and Atterberg Testing No Light truck Gasoline 50 5 1 1 Nuclear Density and Atterberg Testing Construction laborers 40.0	Cap Placement No Light truck Gasoline 50 5 3 3 Cap Placement Construction laborers 120.0											
Remedial Implementation	LANDFILL OPERATIONS Choose landfill type for waste disposal Input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose units of material quantity from drop down menu Input material quantity PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose earthwork equipment by perform drop down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours) LABORATORY ANALYSIS Input dolars spent on laboratory analysis (\$) OTHER KNOWN ONSITE ACTIVITIES Water consumption (gallon) PERSONNEL TRANSPORTATION - ROAD	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet 65,520 Surveying No Light truck Gasoline 50 3 2 Cap Material No Dissel Yes 9,100 20.00 Cap Placement Dozer Diesel 2,427 No Surveying Construction laborers 48.0 Analysis 1 \$2,111.00 Site Restoration 40,000 Annual Site Inspections No	Nuclear Density and Atterberg Testing No Light truck Gasoline 50 5 1 1 Nuclear Density and Atterberg Testing Construction laborers 40.0	Cap Placement No Light truck Gasoline 50 5 3 3 Cap Placement Construction laborers 120.0											
Remedial Implementation	LANDFILL OPERATIONS Choose landfill type for waste disposal Input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose material from drop down menu Input material quantity PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose fuel type from drop down menu Choose fuel type from drop down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choose accupation from drop-down menu Input total time worked onsite (hours) LABORATORY ANALYSIS Input dollars spent on laboratory analysis (\$) OTHER KNOWN ONSITE ACTIVITIES Water consumption (gallon) PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu Input total time worked onsite (hours) LABORATORY ANALYSIS Input dollars spent on laboratory analysis (\$) OTHER KNOWN ONSITE ACTIVITIES Water consumption (gallon) PERSONNEL TRANSPORTATION - ROAD	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet 65,520 Surveying No Light truck Gasoline 50 2 Cap Material No Light truck Gasoline 50 3 2 Cap Material No Diesel Yes 9,100 20.00 Cap Placement Dozer Diesel 2,427 No Surveying Construction laborers 48.0 Analysis 1 \$2,111.00 Site Restoration 40,000 Annual Site Inspections No Light truck Gasoline	Nuclear Density and Atterberg Testing No Light truck Gasoline 50 5 1 1 Nuclear Density and Atterberg Testing Construction laborers 40.0	Cap Placement No Light truck Gasoline 50 5 3 Cap Placement Construction laborers 120.0											
Remedial Implementation	LANDFILL OPERATIONS Choose landfill type for waste disposal Input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose units of material quantity from drop down menu Input material quantity PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of trips taken Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, Impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose fuel type from drop down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choose secupation from drop-down menu Input total time worked onsite (hours) LABORATORY ANALYSIS Input dollars spent on laboratory analysis (\$) OTHER KNOWN ONSITE ACTIVITIES Water consumption (gallon) PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop-down menu Input total time worked onsite (hours) LABORATORY ANALYSIS Input dollars spent on laboratory analysis (\$) OTHER KNOWN ONSITE ACTIVITIES Water consumption (gallon) PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu Input total time worked onsite (hours) LABORATORY ANALYSIS Input dollars spent on laboratory analysis (\$) OTHER KNOWN ONSITE ACTIVITIES Water consumption (gallon) PERSONNEL TRANSPORTATION - ROAD	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet 65,520 Surveying O Light truck Gasoline 50 3 2 Cap Material No Light truck Gasoline 50 3 2 Cap Material No Surveying Q,100 Cap Placement Dozer Diesel Q,427 No Surveying Construction laborers 48.0 Analysis 1 \$2,111.00 Site Restoration 40,000 Annual Site Inspections No Light truck Gasoline 50	Nuclear Density and Atterberg Testing No Light truck Gasoline 50 5 1 1 Nuclear Density and Atterberg Testing Construction laborers 40.0	Cap Placement No Light truck Gasoline 50 5 3 Cap Placement Construction laborers 120.0											
Remedial Implementation	LANDFILL OPERATIONS Choose landfill type for waste disposal Input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose units of material quantity from drop down menu Input material quantity PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu Input distance traveled per trip (miles) Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip? Input of equipment transported per truck load (tons) EARTHWORK Choose earthwork equipment type from drop down menu Choose fuel use from drop down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choose earthwork edonsite (hours) LABORATORY ANALYSIS Input dollars spent on laboratory analysis (\$) OTHER KNOWN ONSITE ACTIVITIES Water consumption (galon) PERSONNEL TRANSPORTATION - ROAD	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet 65,520 Surveying No Light truck Gasoline 50 3 2 Cap Material No Dissel 9,100 20.00 Cap Placement Dozer Diesel 2,427 No Surveying Construction laborers 48.0 Analysis 1 \$2,111.00 Site Restoration 40,000 Annual Site Inspections No Light truck Gasoline 50 30	Nuclear Density and Atterberg Testing No Light truck Gasoline 50 5 1 1 Nuclear Density and Atterberg Testing Construction laborers 40.0	Cap Placement No Light truck Gasoline 50 5 3 Cap Placement Construction laborers 120.0											
Remedial Implementation	LANDFILL OPERATIONS Choose landfill type for waste disposal Input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose units of material quantity from drop down menu Input material quantity PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu Input distance traveled per trip (miles) Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose earthwork equipment type from drop down menu Choose fuel used from drop down menu Input total time worked onsite (hours) LABORATORY ANALYSIS Input dollars spent on laboratory analysis (\$) OTHER KNOWN ONSITE ACTIVITIES Water consumption (gallon) PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu Input total time worked onsite (hours) LABORATORY ANALYSIS Input dollars spent on laboratory analysis (\$) OTHER KNOWN ONSITE ACTIVITIES Water consumption (gallon) PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu Input distance traveled per trip (miles) Input muber of travelers Choose vehicle type from drop down menu	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet 65,520 Surveying No Light truck Gasoline 50 3 2 Cap Material No 1 Surveying 0 3 2 Cap Material No Diesel Yes 9,100 20.00 Cap Placement Dozer Diesel 2,427 No Surveying Construction laborers 48.0 Analysis 1 \$2,111.00 Site Restoration 40,000 Annual Site Inspections No Light truck Gasoline 50 30 1	Nuclear Density and Atterberg Testing No Light truck Gasoline 50 5 1 1 Nuclear Density and Atterberg Testing Construction laborers 40.0	Cap Placement No Light truck Gasoline 50 5 3											
Remedial Implementation	LANDFILL OPERATIONS Choose landfill type for waste disposal input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose units of material quantity from drop down menu input material quantity PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu input distance traveled per trip (miles) Input number of trips taken Input number of trips taken Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose fuel upe from drop-down menu Choose fuel upe form drop-down menu Choose fuel upes form drop down menu Choose fuel used from drop down menu Choose fuel type from drop down menu Choose fuel type form drop down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu Input total time worked onsite (hours) LABORATORY ANALYSIS Input dollars spent on laboratory analysis (\$) OTHER KNOWN ONSITE ACTIVITIES Water consumption (galton) PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu Input distance traveled per trip (miles) Input number of travelers OPERATOR LABOR	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet 65,520 Surveying No Light truck Gasoline 50 3 2 Cap Material No 1 Surveying Cap Material No Diesel Yes 9,100 20.00 Cap Placement Dozer Diesel 2,427 No Surveying Construction laborers 48.0 Analysis 1 \$2,111.00 Site Restoration 40,000 Annual Site Inspections No Light truck Gasoline 50 30 1 Annual Site <tr td=""> Inspections<th>Nuclear Density and Atterberg Testing No Light truck Gasoline 50 5 1 1 Nuclear Density and Atterberg Testing Construction laborers 40.0</th><th>Cap Placement No Light truck Gasoline 50 5 3</th><th></th><th></th><th></th></tr> <tr><th>Remedial Implementation</th><th>LANDFILL OPERATIONS Choose landfill type for waste disposal input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose units of material quantity from drop down menu input material quantity PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu* Choose fuel used from drop down menu input distance traveled per trip (miles) input number of trips taken input number of trips taken Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose fuel upe from drop-down menu Choose fuel upe from drop-down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choose fuel upe from drop-down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours) LABORATORY ANALYSIS Input dollars spent on laboratory analysis (\$) OTHER KNOWN ONSITE ACTIVITIES Water consumption (gallon) PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu Input distance traveled per trip (miles) Input distance traveled pe</th><th>Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet 65,520 Surveying No Light truck Gasoline 50 3 2 Cap Material No Dissel 9,100 20.00 Cap Placement Dozer Diesel 2,427 No Surveying Construction laborers 48.0 Analysis 1 \$2,111.00 Site Restoration 40,000 Annual Site Inspections No Light truck Gasoline 50 30 1 Annual Site Inspections Site Restoration No</th><th>Nuclear Density and Atterberg Testing No Light truck Gasoline 50 5 1 1 1 Nuclear Density and Atterberg Testing Construction laborers 40.0</th><th>Cap Placement No Light truck Gasoline 50 5 3</th><th></th><th></th><th></th></tr>	Nuclear Density and Atterberg Testing No Light truck Gasoline 50 5 1 1 Nuclear Density and Atterberg Testing Construction laborers 40.0	Cap Placement No Light truck Gasoline 50 5 3				Remedial Implementation	LANDFILL OPERATIONS Choose landfill type for waste disposal input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose units of material quantity from drop down menu input material quantity PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu* Choose fuel used from drop down menu input distance traveled per trip (miles) input number of trips taken input number of trips taken Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose fuel upe from drop-down menu Choose fuel upe from drop-down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choose fuel upe from drop-down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours) LABORATORY ANALYSIS Input dollars spent on laboratory analysis (\$) OTHER KNOWN ONSITE ACTIVITIES Water consumption (gallon) PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu Input distance traveled per trip (miles) Input distance traveled pe	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet 65,520 Surveying No Light truck Gasoline 50 3 2 Cap Material No Dissel 9,100 20.00 Cap Placement Dozer Diesel 2,427 No Surveying Construction laborers 48.0 Analysis 1 \$2,111.00 Site Restoration 40,000 Annual Site Inspections No Light truck Gasoline 50 30 1 Annual Site Inspections Site Restoration No	Nuclear Density and Atterberg Testing No Light truck Gasoline 50 5 1 1 1 Nuclear Density and Atterberg Testing Construction laborers 40.0	Cap Placement No Light truck Gasoline 50 5 3			
Nuclear Density and Atterberg Testing No Light truck Gasoline 50 5 1 1 Nuclear Density and Atterberg Testing Construction laborers 40.0	Cap Placement No Light truck Gasoline 50 5 3														
Remedial Implementation	LANDFILL OPERATIONS Choose landfill type for waste disposal input amount of waste disposed in landfill (tons) BULK MATERIAL QUANTITIES Choose material from drop down menu Choose units of material quantity from drop down menu input material quantity PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu* Choose fuel used from drop down menu input distance traveled per trip (miles) input number of trips taken input number of trips taken Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose fuel upe from drop-down menu Choose fuel upe from drop-down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choose fuel upe from drop-down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours) LABORATORY ANALYSIS Input dollars spent on laboratory analysis (\$) OTHER KNOWN ONSITE ACTIVITIES Water consumption (gallon) PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu Input distance traveled per trip (miles) Input distance traveled pe	Lead Shot - 10 Drums Non-Hazardous 3 Cap Material Soil cubic feet 65,520 Surveying No Light truck Gasoline 50 3 2 Cap Material No Dissel 9,100 20.00 Cap Placement Dozer Diesel 2,427 No Surveying Construction laborers 48.0 Analysis 1 \$2,111.00 Site Restoration 40,000 Annual Site Inspections No Light truck Gasoline 50 30 1 Annual Site Inspections Site Restoration No	Nuclear Density and Atterberg Testing No Light truck Gasoline 50 5 1 1 1 Nuclear Density and Atterberg Testing Construction laborers 40.0	Cap Placement No Light truck Gasoline 50 5 3											

Table E-2. Alternative 3 - Removal Action with Stabilization and Offsite Disposal

Engineering Evaluation and Cost Analysis for Munitions Response Site UXO-002, OU-2 Former Skeet Ranges Naval Air Station Patuxent River

St. Mary's County, Maryland

	SILT CURTAIN MATERIALS	Site Setup			
Site Preparation	Input length or perimeter of silt curtain (ft)	1,200			
	Input depth of silt curtain (ft)	3			
	BULK MATERIAL QUANTITIES	Site Setup Road Restoration	Site Setup Road Restoration		
	Choose material from drop down menu	Gravel	HDPE Liner		
	Choose units of material quantity from drop down menu	pounds	cubic feet		
	Input material quantity	608,000	189		
	VIII DIESEL run vohicles he ratrofitted with a particulate reduction technology?	Site Setup	Site Clearing		
	Choose vehicle type from drop down menu*	Light truck	Light truck		
	Choose fuel used from drop down menu	Gasoline	Gasoline		
	Input distance traveled per trip (miles)	50	50		
	Input number of trips taken	5	5		
		-	3		
	EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD	Dozer	Loader/Backhoe	Chipper	Gravel
	Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?	No	No	No	No
	Account for an empty return trip?	Yes	Yes	Yes	Yes
	Input one-way distance traveled (miles) with a given load. If applicable				
	impact for an empty return trip will be accounted for (no additional input is needed).	50	50	50	1,302
	Input weight of equipment transported per truck load (tons)	20	20	20	23
	EARTHWORK	Dozer Bood Postoration	Loader/Backhoe	Dozer	
	Choose earthwork equipment type from drop down menu	Dozer	Loader/Backhoe	Dozer	
	Choose fuel type from drop down menu	Diesel	Diesel	Diesel	
	Input volume of material to be removed (yd3)	203	303	303	
	Will DIESEL-run equipment be retrofitted with a particulate reduction technology?	No	No	No	
	Choose fuel type from drop down menu	Diesel			
	Input fuel consumption rate (gal/hr or scf/hr)	10			
	Input operating hours (hr)	25			
	OPERATOR LABOR	Site Setup	Site Clearing		
	Choose occupation from drop-down menu	Construction laborers	Construction laborers		
			120		
		Debris and Stumps	Return Trip		
	Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?	No	No		
	landfill or recycling per trip (tons)	20	0		
	Choose fuel used from drop down menu	Diesel 7	Diesel		
	Input number of miles per trip	50	50		
Remedial	BULK MATERIAL QUANTITIES	Backfill	Portland Cement		
Implementation	Choose material from drop down menu	Soil	Typical Cement		
	Input material quantity	27 216	304 000		
		Surveying	Excavation and Mixing	Sampling Team	Nuclear Density and
	Will DIESEL run vehicles be retrofitted with a particulate reduction technology?	No	Crew	No	Atterberg Testing
	will DIESEL-run vehicles be renonned with a particulate reduction technology?	INU	INU	INU	INU
	Choose vehicle type from drop down menu*	Light truck	Light truck	Light truck	Light truck
	Choose vehicle type from drop down menu* Choose fuel used from drop down menu	Light truck Gasoline	Light truck Gasoline	Light truck Gasoline	Light truck Gasoline
	Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles)	Light truck Gasoline 50	Light truck Gasoline 50	Light truck Gasoline 50	Light truck Gasoline 50
	Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trips taken	Light truck Gasoline 50 3	Light truck Gasoline 50 13	Light truck Gasoline 50 13	Light truck Gasoline 50 8
	Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD	Light truck Gasoline 50 3 2 Excavator 1	Light truck Gasoline 50 13 4 Excavator 2	Light truck Gasoline 50 13 1 Backfill	Light truck Gasoline 50 8 1 Portland Cement
	Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?	Light truck Gasoline 50 3 2 Excavator 1 No	Light truck Gasoline 50 13 4 Excavator 2 No	Light truck Gasoline 50 13 1 Backfill No	Light truck Gasoline 50 8 1 Portland Cement No
	Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu	Light truck Gasoline 50 3 2 Excavator 1 No Diesel	Light truck Gasoline 50 13 4 Excavator 2 No Diesel	Light truck Gasoline 50 13 1 Backfill No Diesel	Light truck Gasoline 50 8 1 Portland Cement No Diesel
	Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip?	Light truck Gasoline 50 3 2 Excavator 1 No Diesel No	Light truck Gasoline 50 13 4 Excavator 2 No Diesel No	Light truck Gasoline 50 13 1 Backfill No Diesel Yes	Light truck Gasoline 50 8 1 Portland Cement No Diesel Yes
	Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed).	Light truck Gasoline 50 3 2 Excavator 1 No Diesel No 50	Light truck Gasoline 50 13 4 Excavator 2 No Diesel No 50	Light truck Gasoline 50 13 1 Backfill No Diesel Yes 3,800	Light truck Gasoline 50 8 1 Portland Cement No Diesel Yes 400
	Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons)	Light truck Gasoline 50 3 2 Excavator 1 No Diesel No 50 30.00	Light truck Gasoline 50 13 4 Excavator 2 No Diesel No 50 30.00	Light truck Gasoline 50 13 1 Backfill No Diesel Yes 3,800 20.00	Light truck Gasoline 50 8 1 Portland Cement No Diesel Yes 400 20.00
	Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK	Light truck Gasoline 50 3 2 Excavator 1 No Diesel No 50 30.00 Excavate	Light truck Gasoline 50 13 4 Excavator 2 No Diesel No 50 30.00 Mixing and	Light truck Gasoline 50 13 1 Backfill No Diesel Yes 3,800 20.00 Backfilling	Light truck Gasoline 50 8 1 Portland Cement No Diesel Yes 400 20.00
	Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose earthwork equipment type from drop down menu	Light truck Gasoline 50 3 2 Excavator 1 No Diesel No 50 30.00 Excavate Excavator	Light truck Gasoline 50 13 4 Excavator 2 No Diesel No 50 30.00 Mixing and Stabilization	Light truck Gasoline 50 13 1 Backfill No Diesel Yes 3,800 20.00 Backfilling	Light truck Gasoline 50 8 1 Portland Cement No Diesel Yes 400 20.00
	Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose earthwork equipment type from drop down menu Choose fuel type from drop down menu	Light truck Gasoline 50 3 2 Excavator 1 No Diesel No 50 30.00 Excavate Excavator Diesel	Light truck Gasoline 50 13 4 Excavator 2 No Diesel No 50 30.00 Mixing and Stabilization Excavator Diesel	Light truck Gasoline 50 13 1 Backfill No Diesel Yes 3,800 20.00 Backfilling Dozer Diesel	Light truck Gasoline 50 8 1 Portland Cement No Diesel Yes 400 20.00
	Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose earthwork equipment type from drop down menu Choose fuel type from drop down menu Input volume of material to be removed (yd3)	Light truck Gasoline 50 3 2 Excavator 1 No Diesel No 50 30.00 Excavate Excavator Diesel 1,008	Light truck Gasoline 50 13 4 Excavator 2 No Diesel No 50 30.00 Mixing and Stabilization Excavator Diesel 1,109	Light truck Gasoline 50 13 1 Backfill No Diesel Yes 3,800 20.00 Backfilling Dozer Diesel 1,512	Light truck Gasoline 50 8 1 Portland Cement No Diesel Yes 400 20.00
	Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose fuel type from drop down menu Choose fuel type from drop down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology?	Light truck Gasoline 50 3 2 Excavator 1 No Diesel No 50 30.00 Excavate Excavator Diesel 1,008 No	Light truck Gasoline 50 13 4 Excavator 2 No Diesel No 50 30.00 Mixing and Stabilization Excavator Diesel 1,109 No	Light truck Gasoline 50 13 1 Backfill No Diesel Yes 3,800 20.00 Backfilling Dozer Diesel 1,512 No	Light truck Gasoline 50 8 1 Portland Cement No Diesel Yes 400 20.00
	Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose fuel type from drop down menu Choose fuel type from drop down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR	Light truck Gasoline 50 3 2 Excavator 1 No Diesel No 50 30.00 Excavate Excavator Diesel 1,008 No	Light truck Gasoline 50 13 4 Excavator 2 No Diesel No 50 30.00 Mixing and Stabilization Excavator Diesel 1,109 No Excavation and Mixing Crew	Light truck Gasoline 50 13 1 Backfill No Diesel Yes 3,800 20.00 Backfilling Dozer Diesel 1,512 No Sampling Team	Light truck Gasoline 50 8 1 Portland Cement No Diesel Yes 400 20.00
	Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose earthwork equipment type from drop down menu Choose fuel type from drop down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choose occupation from drop-down menu Input total time worked ensite (hourn)	Light truck Gasoline 50 3 2 Excavator 1 No Diesel No 50 30.00 Excavate Excavator Diesel 1,008 No Surveying Construction laborers	Light truck Gasoline 50 13 4 Excavator 2 No Diesel No 50 30.00 Mixing and Stabilization Excavator Diesel 1,109 No Excavation and Mixing Crew Construction laborers	Light truck Gasoline 50 13 1 Backfill No Diesel Yes 3,800 20.00 Backfilling Dozer Diesel 1,512 No Sampling Team	Light truck Gasoline 50 8 1 Portland Cement No Diesel Yes 400 20.00 Nuclear Density and Atterberg Testing Construction laborers
	Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose fuel type from drop down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours)	Light truck Gasoline 50 3 2 Excavator 1 No Diesel No 50 30.00 Excavator Excavate Excavator Diesel 1,008 No Surveying Construction laborers 48 Analysis 1	Light truck Gasoline 50 13 4 Excavator 2 No Diesel No 50 30.00 Mixing and Stabilization Excavator Diesel 1,109 No Excavator Diesel 1,109 Ko Excavator Diesel 416	Light truck Gasoline 50 13 1 Backfill No Diesel Yes 3,800 20.00 Backfilling Dozer Diesel 1,512 No Sampling Team Construction laborers 104	Light truck Gasoline 50 8 1 Portland Cement No Diesel Yes 400 20.00 20.00
	Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose earthwork equipment type from drop down menu Choose fuel type from drop down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours) LABORATORY ANALYSIS Input dollars spent on laboratory analysis (\$)	Light truck Gasoline 50 3 2 Excavator 1 No Diesel No 50 30.00 Excavator Diesel 1,000 Excavator Diesel 1,008 No Surveying Construction laborers 48 Analysis 1 \$21,721.00	Light truck Gasoline 50 13 4 Excavator 2 No Diesel No 50 30.00 Mixing and Stabilization Excavator Diesel 1,109 No Excavation and Mixing Crew Construction laborers 416	Light truck Gasoline 50 13 1 Backfill No Diesel Yes 3,800 20.00 Backfilling Dozer Diesel 1,512 No Sampling Team Construction laborers 104	Light truck Gasoline 50 8 1 Portland Cement No Diesel Yes 400 20.00 Nuclear Density and Atterberg Testing Construction laborers 64
	Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose earthwork equipment type from drop down menu Choose fuel type from drop down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours) LABORATORY ANALYSIS Input dollars spent on laboratory analysis (\$) OTHER KNOWN ONSITE ACTIVITIES	Light truck Gasoline 50 3 2 Excavator 1 No Diesel No 50 30.00 Excavator Excavate Excavator Diesel 1,008 No Surveying Construction laborers 48 Analysis 1 \$21,721.00 Site Restoration	Light truck Gasoline 50 13 4 Excavator 2 No Diesel No 50 30.00 Mixing and Stabilization Excavator Diesel 1,109 No Excavator and Mixing Crew Construction laborers 416	Light truck Gasoline 50 13 1 Backfill No Diesel Yes 3,800 20.00 Backfilling Dozer Diesel 1,512 No Sampling Team Construction laborers 104	Light truck Gasoline 50 8 1 Portland Cement No Diesel Yes 400 20.00 Nuclear Density and Atterberg Testing Construction laborers 64
	Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose fuel type from drop down menu Choose fuel type from drop down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours) LABORATORY ANALYSIS Input dollars spent on laboratory analysis (\$) OTHER KNOWN ONSITE ACTIVITIES Water consumption (gallon)	Light truck Gasoline 50 3 2 Excavator 1 No Diesel No 50 30.00 Excavate Excavator Diesel 1,008 No Surveying Construction laborers 48 Analysis 1 \$21,721.00 Site Restoration 40,000	Light truck Gasoline 50 13 4 Excavator 2 No Diesel No 50 30.00 Mixing and Stabilization Excavator Diesel 1,109 No Excavator Diesel 1,109 Ko Excavator Diesel 1,109 No Excavation and Mixing Crew	Light truck Gasoline 50 13 1 Backfill No Diesel Yes 3,800 20.00 Backfilling Dozer Diesel 1,512 No Sampling Team Construction laborers 104	Light truck Gasoline 50 8 1 Portland Cement No Diesel Yes 400 20.00 Nuclear Density and Atterberg Testing Construction laborers 64
	Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose fuel type from drop down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours) LABORATORY ANALYSIS Input dollars spent on laboratory analysis (\$) OTHER KNOWN ONSITE ACTIVITIES Water consumption (gallon) RESIDUE DISPOSAL/RECYCLING Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?	Light truck Gasoline 50 3 2 Excavator 1 No Diesel No 50 30.00 Excavator 000 Excavate Excavator Diesel 1,008 No Surveying Construction laborers 48 Analysis 1 \$21,721.00 Site Restoration 40,000 Soil	Light truck Gasoline 50 13 4 Excavator 2 No Diesel No 50 30.00 Mixing and Stabilization Excavator Diesel 1,109 No Excavator Diesel 1,109 Ko Excavator Diesel 1,109 No Excavation and Mixing Crew Construction laborers 416	Light truck Gasoline 50 13 1 Backfill No Diesel Yes 3,800 20.00 Backfilling Dozer Diesel 1,512 No Sampling Team Construction laborers 104	Light truck Gasoline 50 8 1 Portland Cement No Diesel Yes 400 20.00 Nuclear Density and Atterberg Testing Construction laborers 64
	Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose earthwork equipment type from drop down menu Choose fuel type from drop down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours) LABORATORY ANALYSIS Input dollars spent on laboratory analysis (\$) OTHER KNOWN ONSITE ACTIVITIES Water consumption (gallon) RESIDUE DISPOSAL/RECYCLING Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Input weight of the waste transported to	Light truck Gasoline 50 3 2 Excavator 1 No Diesel No 50 30.00 Excavator Diesel 1,000 Excavator Diesel 1,008 No Surveying Construction laborers 48 Analysis 1 \$21,721.00 Site Restoration 40,000 Soil No	Light truck Gasoline 50 13 4 Excavator 2 No Diesel No 50 30.00 Mixing and Stabilization Excavator Diesel 1,109 No Excavator Diesel 1,109 No Excavation and Mixing Crew Construction laborers 416 Return Trip No 0	Light truck Gasoline 50 13 1 Backfill No Diesel Yes 3,800 20.00 Backfilling Dozer Diesel 1,512 No Sampling Team Construction laborers 104	Light truck Gasoline 50 8 1 Portland Cement No Diesel Yes 400 20.00 Nuclear Density and Atterberg Testing Construction laborers 64
	Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose fuel type from drop down menu Choose fuel type from drop down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours) LABORATORY ANALYSIS Input dollars spent on laboratory analysis (\$) OTHER KNOWN ONSITE ACTIVITIES Water consumption (gallon) RESIDUE DISPOSAL/RECYCLING Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Input weight of the waste transported to landfill or recycling per trip (tons) Choose fuel type from drop down menu Input weight of the waste transported to landfill or recycling per trip (tons) Choose fuel type from drop down menu	Light truck Gasoline 50 3 2 Excavator 1 No Diesel No 50 30.00 Excavator Excavate Excavator Diesel 1,008 No Surveying Construction laborers 48 Analysis 1 \$21,721.00 Site Restoration 40,000 Soil No 20	Light truck Gasoline 50 13 4 Excavator 2 No Diesel No 50 30.00 Mixing and Stabilization Excavator Diesel 1,109 No Excavator Diesel 1,409 No Excavation and Mixing Crew Construction laborers 416 No No O Diesel	Light truck Gasoline 50 13 1 Backfill No Diesel Yes 3,800 20.00 Backfilling Dozer Diesel 1,512 No Sampling Team Construction laborers 104	Light truck Gasoline 50 8 1 Portland Cement No Diesel Yes 400 20.00 Nuclear Density and Atterberg Testing Construction laborers 64
	Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose fuel type from drop down menu Choose fuel type from drop down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours) LABORATORY ANALYSIS Input dollars spent on laboratory analysis (\$) OTHER KNOWN ONSITE ACTIVITIES Water consumption (gallon) RESIDUE DISPOSAL/RECYCLING Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Input weight of the waste transported to Iandfill or recycling per trip (tons) Choose fuel used from drop down menu Input total number of trips	Light truck Gasoline 50 3 2 Excavator 1 No Diesel No 50 30.00 Excavator Diesel 1,008 No Surveying Construction laborers 48 Analysis 1 \$21,721.00 Site Restoration 40,000 Soil No 20 Diesel 84	Light truck Gasoline 50 13 4 Excavator 2 No Diesel No 50 30.00 Mixing and Stabilization Excavator Diesel 1,109 No Excavator Diesel 1,109 Ko Excavator Diesel 416 Excavation and Mixing Crew Construction laborers 416 Excavation and Mixing Crew Construction laborers 416 Excavation and Mixing Crew Construction laborers 416	Light truck Gasoline 50 13 1 Backfill No Diesel Yes 3,800 20.00 Backfilling Dozer Diesel 1,512 No Sampling Team Construction laborers 104	Light truck Gasoline 50 8 1 Portland Cement No Diesel Yes 400 20.00 Nuclear Density and Atterberg Testing Construction laborers 64
	Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trayelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose earthwork equipment type from drop down menu Choose fuel type from drop down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours) LABORATORY ANALYSIS Input dollars spent on laboratory analysis (\$) OTHER KNOWN ONSITE ACTIVITIES Water consumption (gallon) RESIDUE DISPOSAL/RECYCLING Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Input weight of the waste transported to landfill or recycling per trip (tons) Choose fuel used from drop down menu Input total number of trips Input number of trips Input number of miles per trip	Light truck Gasoline 50 3 2 Excavator 1 No Diesel No 50 30.00 Excavator Excavate Excavator Diesel 1,008 No Surveying Construction laborers 48 Analysis 1 \$21,721.00 Site Restoration 40,000 Soil No 20 Diesel 84 Analysis 1	Light truck Gasoline 50 13 4 Excavator 2 No Diesel No 30.00 Mixing and Stabilization Excavator Diesel 1,109 No Excavator Diesel 1,109 No Excavation and Mixing Crew Construction laborers 416 Return Trip No 0 Diesel 83 115	Light truck Gasoline 50 13 1 Backfill No Diesel Yes 3,800 20.00 Backfilling Dozer Diesel 1,512 No Sampling Team Construction laborers 104	Light truck Gasoline 50 8 1 Portland Cement No Diesel Yes 400 20.00 20.00
	Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose fuel type from drop down menu Choose fuel type from drop down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours) LABORATORY ANALYSIS Input dollars spent on laboratory analysis (\$) OTHER KNOWN ONSITE ACTIVITIES Water consumption (gallon) RESIDUE DISPOSAL/RECYCLING Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Input weight of the waste transported to Iandfill or recycling per trip (tons) Choose fuel used from drop down menu Input total number of trips Input number of miles per trip LANDFILL OPERATIONS Choose leadfill buse for unort disenced	Light truck Gasoline 50 3 2 Excavator 1 No Diesel No 50 30.00 Excavator Excavate Excavator Diesel 1,008 No Surveying Construction laborers 48 Analysis 1 \$21,721.00 Site Restoration 40,000 Soil No	Light truck Gasoline 50 13 4 Excavator 2 No Diesel No 50 30.00 Mixing and Stabilization Excavator Diesel 1,109 No Excavator Diesel 1,109 No Excavator Diesel 1,09 No Excavation and Mixing Crew Construction laborers 416 No 0 Diesel 83 115	Light truck Gasoline 50 13 1 Backfill No Diesel Yes 3,800 20.00 Backfilling Dozer Diesel 1,512 No Sampling Team Construction laborers 104	Light truck Gasoline 50 8 1 Portland Cement No Diesel Yes 400 20.00 Nuclear Density and Atterberg Testing Construction laborers 64
	Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose fuel type from drop down menu Choose fuel type from drop down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours) LABORATORY ANALYSIS Input dollars spent on laboratory analysis (\$) OTHER KNOWN ONSITE ACTIVITIES Water consumption (gallon) RESIDUE DISPOSAL/RECYCLING Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Input weight of the waste transported to landfill or recycling per trip (tons) Choose fuel used from drop down menu Input total number of trips Input total number of trips LANDFILL OPERATIONS Choose landfill type for waste disposal Input amount of waste disposal in landfill (tons)	Light truck Gasoline 50 3 2 Excavator 1 No Diesel No 50 30.00 Excavator Diesel 1,008 No Surveying Construction laborers 48 Analysis 1 \$21,721.00 Site Restoration 40,000 Soil No 20 Diesel 84 115 Soil Non-Hazardous 1,664	Light truck Gasoline 50 13 4 Excavator 2 No Diesel No 50 30.00 Mixing and Stabilization Excavator Diesel 1,109 No Excavator Diesel 1,109 No Excavation and Mixing Crew Construction laborers 416 No 0 Diesel 83 115	Light truck Gasoline 50 13 1 Backfill No Diesel Yes 3,800 20.00 Backfilling Dozer Diesel 1,512 No Sampling Team Construction laborers 104	Light truck Gasoline 50 8 1 Portland Cement No Diesel Yes 400 20.00 Nuclear Density and Atterberg Testing Construction laborers 64
	Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose earthwork equipment type from drop down menu Choose fuel type from drop down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours) LABORATORY ANALYSIS Input dollars spent on laboratory analysis (\$) OTHER KNOWN ONSITE ACTIVITIES Water consumption (gallon) RESIDUE DISPOSAL/RECYCLING Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Input tweight of the waste transported to landfill or recycling per trip (tons) Choose fuel used from drop down menu Input total number of trips Input number of miles per trip LANDFILL OPERATIONS Choose landfill type from drop down menu Input total number of trips Input number of miles per trip LANDFILL OPERATIONS Choose landfill type from waste disposal Input amount of waste disposal Input amount of waste disposed in landfill (tons) PERSONNEL TRANSPORTATION - ROAD	Light truck Gasoline 50 3 2 Excavator 1 No Diesel No 50 30.00 Excavator Excavate Excavator Diesel 1,008 No Surveying Construction laborers 48 Analysis 1 \$21,721.00 Site Restoration 40,000 Soil No 20 Diesel 84 115 Soil Non-Hazardous 1,664 Annual Site Inspections	Light truck Gasoline 50 13 4 Excavator 2 No Diesel No 50 30.00 Mixing and Stabilization Excavator Diesel 1,109 No Excavator Oiesel 1,109 No Excavation and Mixing Crew Construction laborers 416 No 0 Diesel 83 115	Light truck Gasoline 50 13 1 Backfill No Diesel Yes 3,800 20.00 Backfilling Dozer Diesel 1,512 No Sampling Team Construction laborers 104	Light truck Gasoline 50 8 1 Portland Cement No Diesel Yes 400 20.00 Nuclear Density and Atterberg Testing Construction laborers 64
Operations and Maintenance	Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose earthwork equipment type from drop down menu Choose fuel type from drop down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours) LABORATORY ANALYSIS Input dollars spent on laboratory analysis (\$) OTHER KNOWN ONSITE ACTIVITIES Water consumption (gallon) RESIDUE DISPOSAL/RECYCLING Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Input tweight of the waste transported to landfill or recycling per trip Input total tume of miles per trip LANDFILL OPERATIONS Choose landfill type for waste disposal Input number of trips Input number of trips Input number of trips VANDER TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Input weight of trips Input number of trips Input amount of waste disposal Input amount of waste disposal Input amount of waste disposed in landfill (tons) PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology?	Light truck Gasoline 50 3 2 Excavator 1 No Diesel No 50 30.00 Excavator Diesel 30.00 Excavator Diesel 1,008 No Surveying Construction laborers 48 Analysis 1 \$21,721.00 Site Restoration 40,000 Soil No 20 Diesel 84 115 Soil Non-Hazardous 1,664 Annual Site Inspections	Light truck Gasoline 50 13 4 Excavator 2 No Diesel No 50 30.00 Mixing and Stabilization Excavator Diesel 1,109 No Excavator Diesel 1,109 No Excavation and Mixing Crew Construction laborers 416 No 0 Diesel 83 115	Light truck Gasoline 50 13 1 Backfill No Diesel Yes 3,800 20.00 Backfilling Dozer Diesel 1,512 No Sampling Team Construction laborers 104	Light truck Gasoline 50 8 1 Portland Cement No Diesel Yes 400 20.00 Nuclear Density and Atterberg Testing Construction laborers 64
Operations and Maintenance	Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose fuel type from drop down menu Choose fuel type from drop down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours) LABORATORY ANALYSIS Input dollars spent on laboratory analysis (\$) OTHER KNOWN ONSITE ACTIVITIES Water consumption (gallon) RESIDUE DISPOSAL/RECYCLING Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Input weight of the waste transported to Iandfill or recycling per trip (tons) Choose fuel used from drop down menu Input total number of trips Input number of miles per trip LANDFILL OPERATIONS Choose landfill type for waste disposal Input amount of waste disposal in landfill (tons) PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu*	Light truck Gasoline 50 3 2 Excavator 1 No Diesel No 50 30.00 Excavator Diesel 30.00 Excavate Excavator Diesel 1,008 No Surveying Construction laborers 48 Analysis 1 \$21,721.00 Site Restoration 40,000 Soil No 20 Diesel 84 115 Soil Non-Hazardous 1,664 Annual Site Inspections No Light truck	Light truck Gasoline 50 13 4 Excavator 2 No Diesel No 50 30.00 Mixing and Stabilization Excavator Diesel 1,109 No Excavator Diesel 1,109 No Excavation and Mixing Crew Construction laborers 416 No 0 Diesel 83 115	Light truck Gasoline 50 13 1 Backfill No Diesel Yes 3,800 20.00 Backfilling Dozer Diesel 1,512 No Sampling Team Construction laborers 104	Light truck Gasoline 50 8 1 Portland Cement No Diesel Yes 400 20.00 Nuclear Density and Atterberg Testing Construction laborers 64
Operations and Maintenance	Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose fuel type from drop down menu Choose fuel type from drop down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours) LABORATORY ANALYSIS Input dollars spent on laboratory analysis (\$) OTHER KNOWN ONSITE ACTIVITIES Water consumption (gallon) RESIDUE DISPOSAL/RECYCLING Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Input weight of the waste transported to Iandfill or recycling per trip (tons) Choose fuel used from drop down menu Input total number of trips Input number of trips Input number of trips Input number of trips Input number of trips Input number of trips Input number of trips Input amount of waste disposed in landfill (tons) PERSONNEL TRANSPORTATI	Light truck Gasoline 50 3 2 Excavator 1 No Diesel No 50 30.00 Excavator Excavator Diesel 1,008 Excavator Diesel 1,008 No Surveying Construction laborers 48 Analysis 1 \$21,721.00 Site Restoration 40,000 Site Restoration 40,000 Diesel 84 Analysis 1 \$21,721.00 Diesel 84 Analysis 1 \$21,721.00 Site Restoration 40,000 Soil No 20 Diesel 84 115 Soil Non-Hazardous 1,664 Annual Site Inspections	Light truck Gasoline 50 13 4 Excavator 2 No Diesel No 50 30.00 Mixing and Stabilization Excavator Diesel 1,109 No Excavator Oiesel 1,109 No Excavation and Mixing Crew Construction laborers 416 No 0 Diesel 83 115	Light truck Gasoline 50 13 1 Backfill No Diesel Yes 3,800 20.00 Backfilling Dozer Diesel 1,512 No Sampling Team Construction laborers 104	Light truck Gasoline 50 8 1 Portland Cement No Diesel Yes 400 20.00
Operations and Maintenance	Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose fuel type from drop down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours) LABORATORY ANALYSIS Input dollars spent on laboratory analysis (\$) OTHER KNOWN ONSITE ACTIVITIES Water consumption (galon) RESIDUE DISPOSAL/RECYCLING Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Input weight of the waste disposal Input total number of trips Input number of trips her trip LANDFILL OPERATIONS Choose Inaldfill type for waste disposal Input number of trips her trip LANDFILL OPERATION + ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose Inel used from drop down menu Input total number of trips Input number of trips hertip LANDFILL OPERATION + ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu Input distance traveled per trip (miles) Input number of this taken	Light truck Gasoline 50 3 2 Excavator 1 No Diesel No 50 30.00 Excavator Diesel 30.00 Excavator Diesel 1,008 No Surveying Construction laborers 48 Analysis 1 \$21,721.00 Site Restoration 40,000 Soil No 20 Diesel 84 115 Soil Non-Hazardous 1,664 Annual Site Inspections No Light truck Gasoline 50	Light truck Gasoline 50 13 4 Excavator 2 No Diesel No 50 30.00 Mixing and Stabilization Excavator Diesel 1,109 No Excavation and Mixing Crew Construction laborers 416 No O Diesel 33.00	Light truck Gasoline 50 13 1 Backfill No Diesel Yes 3,800 20.00 Backfilling Dozer Diesel 1,512 No Sampling Team Construction laborers 104	Light truck Gasoline 50 8 1 Portland Cement No Diesel Yes 400 20.00 Nuclear Density and Atterberg Testing Construction laborers 64
Operations and Maintenance	Choose vehicle type from drop down menu* Choose fuel used from drop down menu Input distance traveled per trip (miles) Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, impact for an empty return trip will be accounted for (no additional input is needed). Input weight of equipment transported per truck load (tons) EARTHWORK Choose earthwork equipment type from drop down menu Choose fuel type from drop down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choose occupation from drop-down menu Input tolal time worked onsite (hours) LABORATORY ANALYSIS Input dollars spent on laboratory analysis (\$) OTHER KNOWN ONSITE ACTIVITIES Water consumption (galon) RESIDUE DISPOSAL/RECYCLING Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Input weight of the waste transported to landfill or recycling per trip (tons) Choose landfill type for waste disposal Input total number of trips Input total number of trips Input total number of trips Input total number of trips Input number of miles per trip (Choose landfill type for waste disposal Input number of miles per trip (Choose landfill type for waste disposal Input number of trips taken Input number of trips taken Input distance traveled per trip (miles) PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose landfill type form drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of trips taken Input number of travelers.	Light truck Gasoline 50 3 2 Excavator 1 No Diesel No 50 30.00 Excavator Diesel 1,008 No Surveying Construction laborers 48 Analysis 1 \$21,721.00 Site Restoration 40,000 Soil No 20 Diesel 84 115 Soil No 20 Diesel 84 115 Soil Non-Hazardous 1,664 Annual Site Inspections No Light truck Gasoline 50 2 1	Light truck Gasoline 50 13 4 Excavator 2 No Diesel No 30.00 Mixing and Stabilization Excavator Diesel 1,109 No Excavator Diesel 1,109 No Excavation and Mixing Crew Construction laborers 416 No 0 Diesel 83 115	Light truck Gasoline 50 13 1 Backfill No Diesel Yes 3,800 20.00 Backfilling Dozer Diesel 1,512 No Sampling Team Construction laborers 104	Light truck Gasoline 50 8 1 Portland Cement No Diesel Yes 400 20.00 20.00
Operations and Maintenance	Choose vehicle type from drop down menu Input distance traveled per trip (miles) Input number of trips taken Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, Impact for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, Impact for an empty return trip? Choose fuel used from drop down menu Choose earthwork equipment type from drop down menu Choose earthwork equipment type from drop down menu Choose fuel used from drop down menu Input velyme for drop down menu Choose fuel type from drop down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours) LABORATORY ANALYSIS Water consumption (galon) RESIDUE DISPOSAL/RECYCLING Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Input weight of the waste transported to Iandfill or recycling per trip LANDFILL OPERATIONS Choose landfill type forw and po down menu Input total number of trips Input number of miles per trip LANDFILL OPERATIONS Choose vehicle type from drop down menu Input total number of trips Input amount of waste disposal Input amount of waste disposal Input amount of waste disposal Input and or down menu Input total number of trips Input and or drop down menu Input total number of trips Input number of trips taken Input amount of waste disposal Input amount of waste disposal Input amount of waste disposal Input number of trips Input amount of waste disposal Input amount of waste disposal Input amount of twaste disposal Input amount of travelers OPERATOR LABOR	Light truck Gasoline 50 3 2 Excavator 1 No Diesel No 50 30.00 Excavator Diesel 1,008 No Surveying Construction laborers 48 Analysis 1 \$21,721.00 Site Restoration 40,000 Soil No 20 Diesel 84 115 Soil No 20 Diesel 84 115 Soil Non-Hazardous 1,664 Annual Site Inspections No Light truck Gasoline 50 2 1 Annual Site Inspections	Light truck Gasoline 50 13 4 Excavator 2 No Diesel 30.00 Mixing and Stabilization Excavator Diesel 1,109 No Excavator Diesel 1,109 No Excavation and Mixing Crew Construction laborers 416 No 0 Diesel 83 115	Light truck Gasoline 50 13 1 No Diesel Yes 3,800 20.00 Backfilling Dozer Diesel 1,512 No Sampling Team Construction laborers 104	Light truck Gasoline 50 8 1 Portland Cement No Diesel Yes 400 20.00 Nuclear Density and Atterberg Testing Construction laborers 64
Operations and Maintenance	Choose vehicle type from drop down menu Input distance traveled per trip (miles) Input number of travelers EQUIPMENT TRANSPORTATION - DEDICATED LOAD ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose fuel used from drop down menu Account for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, Impact for an empty return trip? Input one-way distance traveled (miles) with a given load. If applicable, Impact for an empty return trip? Choose fuel used from drop down menu Choose auditional input sector traveled (miles) with a given load. If applicable, Impact for an empty return trip? Choose fuel used from drop down menu Choose earthwork equipment type from drop down menu Choose fuel type from drop down menu Input volume of material to be removed (yd3) Will DIESEL-run equipment be retrofitted with a particulate reduction technology? OPERATOR LABOR Choose occupation from drop-down menu Input total time worked onsite (hours) LABORATORY ANALYSIS Water consumption (galon) RESIDUE DISPOSAL/RECYCLING Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Input weight of the waste transported to Iandfill or recycling per trip LANDFILL OPERATIONS Choose landfill type forw area disposal Input total number of trips Input total number of trips Input total number of trips Input and or down menu Input total number of trips Input and or dispesed in Iandfill (tons) PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose used from drop down menu Input total number of trips Input and or dispesed in Iandfill (tons) PERSONNEL TRANSPORTATION - ROAD Will DIESEL-run vehicles be retrofitted with a particulate reduction technology? Choose vehicle type from drop down menu Input distance traveled per trip LANDFILL OPERATIONS Choose vehicle type from drop down menu Input distance trav	Light truck Gasoline 50 3 2 Excavator 1 No Diesel No 50 30.00 Excavator Diesel 30.00 Excavate Excavate Excavator Diesel 1,008 No Surveying Construction laborers 48 Analysis 1 \$21,721.00 Site Restoration 40,000 Soil No 20 Diesel 84 115 Soil Non-Hazardous 1,664 Annual Site Inspections No Light truck Gasoline 50 2 1 Annual Site Inspections S0 2	Light truck Gasoline 50 13 4 Excavator 2 No Diesel No 50 30.00 Mixing and Stabilization Excavator Diesel 1,109 No Excavation and Mixing Crew Construction laborers 416 No O Diesel 83 115	Light truck Gasoline 50 13 1 No Diesel Yes 3,800 20.00 Backfilling Dozer Diesel 1,512 No Sampling Team Construction laborers 104	Light truck Gasoline 50 8 1 Portland Cement No Diesel Yes 400 20.00 20.00

Table E-3. Relative Impact of Alternatives

Engineering Evaluation and Cost Analysis for Munitions Response Site UXO-002, OU-2 Former Skeet Ranges

Naval Air Station Patuxent River

St. Mary's County, Maryland

Remedial Alternatives	GHG Emissions	Total energy Used	Water Used	NO _x emissions	SO _x Emissions	PM10 Emissions	Accident Risk Fatality	Accident Risk Injury	
	metric ton	MMBTU	gallons	metric ton	metric ton	metric ton	· - · · · · · · · · · · · · · · · · · ·		
Alternative 2 – Stabilization and Engineered Cover with LUCs and LTM	146	2,601	40,000	4.60E-01	5.28E-01	1.91E-01	2.11E-04	3.06E-02	
Alternative 3 - Removal Action with Stabilization and Offsite Disposal	250	3,034	40,000	6.21E-01	8.10E-01	4.88E-01	3.28E-04	4.10E-02	

Relative Impact

Remedial Alternatives	GHG Emissions	Total energy Used	Water Used	NO _x emissions	SO _x Emissions	PM10 Emissions	Accident Risk Fatality	Accident Risk Injury
Alternative 2 – Stabilization and Engineered Cover with LUCs and LTM	Medium	High	High	High	Medium	Medium	Medium	High
Alternative 3 - Removal Action with Stabilization and Offsite Disposal	High	High	High	High	High	High	High	High

The relative impact is a qualitative assessment of the relative footprint of each alternative, a rating of High for an alternative is assigned if it is at least 70 percent of the maximum footprint, a rating of Medium is assigned if it is between 30 and 70 percent of the maximum footprint, and a rating of Low is assigned if it is less than 30 percent of the maximum footprint.

Notes:

MMBTU - million British Thermal Unit

NOx - Nitrogen Oxides

SOx - Sulfur Oxides

LUCs - land use controls

PM10 - Particulate Matter

GHG - Greenhouse Gases

NA - Not applicable

Table E-4. Alternative 2 - Stabilization and Engineered Cover with LUCs and LTM

Engineering Evaluation and Cost Analysis for Munitions Response Site UXO-002, OU-2 Former Skeet Ranges

Naval Air Station Patuxent River

St. Mary's County, Maryland

Dhasa		GHG Er	nissions	Total Ene	ergy Used	Wate	r Used	NO _x En	nissions	SO _x Em	nissions	PM ₁₀ Er	nissions	Accident R	lisk Fatality	Accident	Risk Injury
Phase	Activities	metric ton	Percent of total	MMBTU	Percent of total	gallons	Percent of total	metric ton	Percent of total	metric ton	Percent of total	metric ton	Percent of total		Percent of total		Percent of total
u	Consumables	31	22%	681	26%	NA	NA	7.5E-02	16%	1.2E-01	24%	2.6E-02	14%	NA	NA	NA	NA
atic	Transportation-Personnel	0	0%	5	0%	NA	NA	1.7E-04	0%	5.4E-06	0%	2.5E-05	0%	1.8E-05	8%	1.4E-03	5%
oara	Transportation-Equipment	6	4%	72	3%	NA	NA	1.7E-03	0%	3.1E-05	0%	1.5E-04	0%	1.3E-05	6%	1.1E-03	3%
rel	Equipment Use and Misc	7	5%	76	3%	0	0%	5.0E-02	11%	2.9E-03	1%	4.9E-03	3%	3.6E-05	17%	9.3E-03	30%
teF	Residual Handling	2	1%	25	1%	NA	NA	7.3E-04	0%	1.0E-04	0%	5.0E-04	0%	9.0E-06	4%	7.3E-04	2%
Si	Sub-Total	46	31%	860	33%	0	0%	1.3E-01	28%	1.3E-01	24%	3.2E-02	17%	7.6E-05	36%	1.2E-02	41%
u	Consumables	79	54%	1,464	56%	NA	NA	3.2E-01	69%	3.9E-01	75%	1.6E-01	83%	NA	NA	NA	NA
al atic	Transportation-Personnel	0	0%	5	0%	NA	NA	1.5E-04	0%	4.7E-06	0%	2.1E-05	0%	1.0E-05	5%	8.2E-04	3%
edia	Transportation-Equipment	18	12%	231	9%	NA	NA	5.6E-03	1%	9.8E-05	0%	4.9E-04	0%	7.1E-05	34%	5.7E-03	19%
e me	Equipment Use and Misc	2	1%	31	1%	40,000	100%	1.1E-02	2%	5.3E-03	1%	1.0E-03	1%	2.1E-05	10%	5.2E-03	17%
, R B	Residual Handling	0	0%	0	0%	NA	NA	0.0E+00	0%	0.0E+00	0%	0.0E+00	0%	0.0E+00	0%	0.0E+00	0%
<u>1</u>	Sub-Total	99	68%	1,731	67%	40,000	100%	3.3E-01	72%	4.0E-01	76%	1.6E-01	83%	1.0E-04	48%	1.2E-02	38%
σ	Consumables	0	0%	0	0%	NA	NA	0.0E+00	0%	0.0E+00	0%	0.0E+00	0%	NA	NA	NA	NA
an nce	Transportation-Personnel	0.8	1%	10	0%	NA	NA	3.4E-04	0%	1.1E-05	0%	4.9E-05	0%	1.2E-05	6%	9.4E-04	3%
ons	Transportation-Equipment	0	0%	0	0%	NA	NA	0.0E+00	0%	0.0E+00	0%	0.0E+00	0%	0.0E+00	0%	0.0E+00	0%
peratic Mainte	Equipment Use and Misc	0	0%	0	0%	0	0%	0.0E+00	0%	0.0E+00	0%	0.0E+00	0%	2.2E-05	10%	5.5E-03	18%
	Residual Handling	0	0%	0	0%	NA	NA	0.0E+00	0%	0.0E+00	0%	0.0E+00	0%	0.0E+00	0%	0.0E+00	0%
0 -	Sub-Total	0.8	1%	10	0%	0	0%	3.4E-04	0%	1.1E-05	0%	4.9E-05	0%	3.4E-05	16%	6.5E-03	21%
	Total	146		2,601		40,000		4.60E-01		5.28E-01		1.91E-01		2.11E-04		3.06E-02	

Notes:

MMBTU - million British Thermal Unit

NOx - Nitrogen Oxides

SOx - Sulfur Oxides

PM10 - Particulate Matter

NA - Not Applicable

GHG - Greenhouse Gases

NA - not applicable

Table E-5. Alternative 3 - Removal, Stabilization, and Off-site Disposal

Engineering Evaluation and Cost Analysis for Munitions Response Site UXO-002, OU-2 Former Skeet Ranges

Naval Air Station Patuxent River

St. Mary's County, Maryland

Phase		GHG Emissions		GHG Emissions Total Energy Used		Wate	Water Used NO _x		NO _x Emissions		SO _x Emissions		PM ₁₀ Emissions		Accident Risk Fatality		Accident Risk Injury	
	Activities	metric ton	Percent of total	MMBTU	Percent of total	gallons	Percent of total	metric ton	Percent of total	metric ton	Percent of total	metric ton	Percent of total		Percent of total		Percent of total	
L L	Consumables	23	9%	638	21%	NA	NA	5.8E-02	9%	9.1E-02	11%	2.0E-02	4%	NA	NA	NA	NA	
atic	Transportation-Personnel	0	0%	3	0%	NA	NA	1.1E-04	0%	3.6E-06	0%	1.6E-05	0%	1.2E-05	4%	9.4E-04	2%	
Dar	Transportation-Equipment	3	1%	39	1%	NA	NA	9.4E-04	0%	1.7E-05	0%	8.3E-05	0%	1.1E-05	3%	9.1E-04	2%	
rep	Equipment Use and Misc	3	1%	42	1%	0	0%	2.6E-02	4%	1.7E-03	0%	2.6E-03	1%	2.3E-05	7%	5.8E-03	14%	
te F	Residual Handling	1	0%	14	0%	NA	NA	3.5E-04	0%	6.1E-06	0%	3.1E-05	0%	5.1E-06	2%	4.1E-04	1%	
Si	Sub-Total	31	12%	736	24%	0	0%	8.5E-02	14%	9.3E-02	12%	2.2E-02	5%	5.1E-05	16%	8.1E-03	20%	
Ę	Consumables	147	59%	1,209	40%	NA	NA	3.6E-01	58%	6.2E-01	77%	1.6E-01	32%	NA	NA	NA	NA	
al	Transportation-Personnel	1	0%	13	0%	NA	NA	4.2E-04	0%	1.3E-05	0%	6.0E-05	0%	3.1E-05	9%	2.5E-03	6%	
edia	Transportation-Equipment	8	3%	110	4%	NA	NA	2.6E-03	0%	4.7E-05	0%	2.3E-04	0%	3.4E-05	10%	2.7E-03	7%	
u u u	Equipment Use and Misc	11	5%	165	5%	40,000	100%	5.7E-02	9%	3.8E-02	5%	5.2E-03	1%	6.1E-05	18%	1.5E-02	37%	
a dr	Residual Handling	51	20%	799	26%	NA	NA	1.2E-01	19%	5.7E-02	7%	3.0E-01	62%	1.5E-04	46%	1.2E-02	29%	
<u> </u>	Sub-Total	219	88%	2,297	76%	40,000	100%	5.4E-01	86%	7.2E-01	88%	4.7E-01	95%	2.7E-04	84%	3.3E-02	79%	
σ	Consumables	0	0%	0	0%	NA	NA	0.0E+00	0%	0.0E+00	0%	0.0E+00	0%	NA	NA	NA	NA	
an nce	Transportation-Personnel	0.1	0%	0.7	0%	NA	NA	2.3E-05	0%	7.2E-07	0%	3.3E-06	0%	7.8E-07	0%	6.3E-05	0%	
ons	Transportation-Equipment	0	0%	0	0%	NA	NA	0.0E+00	0%	0.0E+00	0%	0.0E+00	0%	0.0E+00	0%	0.0E+00	0%	
atio	Equipment Use and Misc	0	0%	0	0%	0	0%	0.0E+00	0%	0.0E+00	0%	0.0E+00	0%	1.5E-06	0%	3.7E-04	1%	
per Mai	Residual Handling	0	0%	0	0%	NA	NA	0.0E+00	0%	0.0E+00	0%	0.0E+00	0%	0.0E+00	0%	0.0E+00	0%	
0 -	Sub-Total	0.1	0%	0.7	0%	0	0%	2.3E-05	0%	7.2E-07	0%	3.3E-06	0%	2.2E-06	1%	4.3E-04	1%	
	Total	250		3,034		40,000		6.21E-01		8.10E-01		4.88E-01		3.28E-04		4.10E-02		

Notes:

MMBTU - million British Thermal Unit

NOx - Nitrogen Oxides

SOx - Sulfur Oxides

PM10 - Particulate Matter

NA - Not Applicable

GHG - Greenhouse Gases

NA - not applicable

Figures

Engineering Evaluation and Cost Analysis for Munitions Response Site UXO-002, OU-2 Former Skeet Ranges Naval Air Station Patuxent River

St. Mary's County, Maryland

Alternative 2 – Stabilization and Engineered Cover with LUCs and LTM Alternative 3 – Removal Action with Stabilization and Offsite Disposal

FIGURE E-FIGURE E-Alternative 2 - Sustainability Analysis Summary Engineering Evaluation and Cost Analysis for Munitions Response Site UX-002, OU-2 Former Skeet Ranges Navai Air Station Patuern River St. Mary's County, Maryland

FIGURE E.3 Alternative 3 - Sustainability Analysis Summary Engineering Evaluation and Cost Analysis for Munitions Response Site UXO-002, OU-2 Former Skeet Ranges Navai Air Station Patuern River St. Mary's County, Maryland

Appendix F Regulatory Correspondence

Date: July 8, 2024

Mr. David Steckler, PG NAVFAC Environmental Department Code EV2, Building 212 1314 Harwood Street, SE Washington Navy Yard, DC 20374-5018

Ms. Krystal Ayotte NAVFAC Environmental Department Naval Air Station, Code 8.7.1.4 22445 Perry Road, Bldg. 504 Patuxent River, MD 20670

Re: Draft Engineering Evaluation/ Cost Analysis UXO-2 OU-2 Former Skeet Ranges, Naval Air Station Patuxent River, St. Mary's County, Maryland

Dear Mr. Steckler and Ms. Ayotte:

The U.S. Environmental Protection Agency (EPA) has reviewed the referenced document and is pleased to provide you the following comment.

Toxicologist Review

Linda Watson, EPA toxicologist, has reviewed the *Draft Engineering Evaluation/ Cost Analysis UXO-2 OU-2 Former Skeet Ranges, Naval Air Station Patuxent River, St. Mary's County, Maryland.* If you have any questions regarding this comment, please contact Linda at 215-814-3116. Linda has the following comment:

1. Section 3.3-Remediation Goals. Please acknowledge EPA's updated guidance on lead. Perhaps the following language could be included. "On January 17, 2024, EPA announced updated guidance for lead in residential soil at CERCLA sites. The new guidance recommends screening lead at 200 mg/kg."

Sincerely,

Jenna O'Brien, U.S. EPA Remedial Project Manager

CC: Ms. Jenny E. Herman, MDE LMD/FF

CH2M HILL 2551 Dulles View Drive Suite 700 Herndon, VA 20171 Tel (703) 376-5000 Fax (703) 376-5010

July 18, 2024

9000NVP4 A.PN.EV.PF.RI

Ms. Jenna O'Brien US Environmental Protection Agency Four Penn Center 1600 John F. Kennedy Boulevard (3SD11) Philadelphia, PA 19103-2029

Subject: Response to USEPA comments on the *Draft Engineering Evaluation/Cost Analysis UXO-2 OU-2 Former Skeet Ranges, Naval Air Station Patuxent River, Maryland (May 2024)* Navy CLEAN Contract N6247016D9000, CTO N4008020F5208

Dear Ms. O'Brien:

On behalf of Naval Facilities Engineering Command - Washington (NAVFAC Washington), this letter presents the Navy's response to comments provided by USEPA in correspondence dated July 8, 2024 on the above referenced document. USEPA comments are repeated below followed by NAVFAC Washington's response. The responses to the comments will be incorporated into the *Final Sixth Five-Year Review*, *Naval Air Station Patuxent River, St. Mary's County, Maryland*.

EPA Toxicologist Comments

Jenna O'Brien, EPA RPM, has reviewed the *Draft Engineering Evaluation/Cost Analysis UXO-2 OU-2 Former Skeet Ranges, Naval Air Station Patuxent River, St. Mary's County, Maryland* and provided comments. The Navy has prepared responses to Ms. Watson's comment as follows:

Comment 1, Section 3.3-Remediation Goals: Please acknowledge EPA's updated guidance on lead. Perhaps the following language could be included. "On January 17, 2024, EPA announced updated guidance for lead in residential soil at CERCLA sites. The new guidance recommends screening lead at 200 mg/kg.".

Response: The language in Section 3.3 will be updated to acknowledge EPA's updated guidance on lead. Thank you for your review.

If there are any questions or additional information is needed, please contact David Steckler with NAVFAC Washington (202-685-3275) or me at 540-454-9039 at your convenience.

Sincerely,

CH2M

the Ledbetter

John Ledbetter Activity Manager

MS. JENNA O'BRIEN PAGE 2 JULY 18, 2024

cc: David Steckler/ NAVFAC Washington Jenny Herman/Maryland Department of the Environment Krystal Ayotte/NAVFAC - NAS Patuxent River Ian Zmudzin/CH2M

Serena McIlwain, Secretary Suzanne E. Dorsey, Deputy Secretary

July 24, 2024

Electronic Delivery

Mr. David Steckler NAVFAC WASHINGTON 1314 Harwood St, SE Washington Navy Yard, 20374

Re: Draft Engineering Evaluation and Cost Analysis Report, Munitions Response Site, Former Skeet Ranges (UXO-002, OU-2), Naval Air Station Patuxent River, May 2024.

Dear Mr. Steckler:

The Federal Facilities Installation Restoration Program of the Maryland Department of the Environment has completed its review of the above-referenced document and has no comments. Please submit a final copy of this document for inclusion in the project file.

If you have any questions, please contact me at (410) 537-3319 or *jenny.herman@maryland.gov*.

Sincerely,

Jenny E. Kerman

Jenny E. Herman Geologist Program Consultant Federal Facilities Installation Restoration Program

cc: Ms. Jenna O'Brien, Remedial Project Manager, Environmental Protection Agency Mr. Curtis DeTore, Chief, Federal Assessment and Remediation Division