

Off-Base Drinking Water Sample Results, Electronic Data Deliverable, Data Validation Report, and the Sample Location Figure, SDG 1803199

Naval Weapons Industrial Reserve Plant Calverton Riverhead, New York

August 2019

```
"CAL-DW11-20180928","EPA Method 537","Initial","1803199-01","Vista","375-73-
5","PFBS","4.79","ng/L","U","2.91","LOD","","TRG","","","9.58","LOQ","YES","-99","","0.261","0.001","4.79",""
"CAL-DW11-20180928","EPA Method 537","Initial","1803199-01","Vista","307-24-
4","PFHxA","9.88","ng/L","","2.91","LOD","","TRG","","","9.58","LOQ","YES","-99","","0.261","0.001","4.79",""
"CAL-DW11-20180928","EPA Method 537","Initial","1803199-01","Vista","375-85-9","PFHpA","4.79","ng/L","U","2.91","LOD","","TRG","","","9.58","LOQ","YES","-99","","0.261","0.001","4.79",""
"CAL-DW11-20180928","EPA Method 537","Initial","1803199-01","Vista","355-46-
4","PFHxS","4.79","ng/L","U","2.91","LOD","","TRG","","","9.58","LOQ","YES","-99","","0.261","0.001","4.79",""
"CAL-DW11-20180928","EPA Method 537","Initial","1803199-01","Vista","335-67-
1", "PFOA", "6.65", "ng/L", "J", "2.91", "LOD", "", "TRG", "", "", "9.58", "LOQ", "YES", "-99", "", "0.261", "0.001", "4.79", "", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1
"CAL-DW11-20180928","EPA Method 537","Initial","1803199-01","Vista","375-95-
1","PFNA","4.79","ng/L","U","2.91","LOD","","TRG","","","9.58","LOQ","YES","-99","","0.261","0.001","4.79","" "CAL-DW11-20180928","EPA Method 537","Initial","1803199-01","Vista","1763-23-
1","PFOS","4.79","ng/L","U","2.91","LOD","","TRG","","","9.58","LOQ","YES","-99","","0.261","0.001","4.79",""
"CAL-DW11-20180928","EPA Method 537","Initial","1803199-01","Vista","335-76-
2","PFDA","4.79","ng/L","U","2.91","LOD","","TRG","","","9.58","LOQ","YES","-99","","0.261","0.001","4.79",""
"CAL-DW11-20180928","EPA Method 537","Initial","1803199-01","Vista","2355-31-
9","MeFOSAA","4.79","ng/L","U","2.91","LOD","","TRG","","","9.58","LOQ","YES","-99","","0.261","0.001","4.79"
 1111
"CAL-DW11-20180928","EPA Method 537","Initial","1803199-01","Vista","2991-50-
6","EtFOSAA","4.79","ng/L","U","2.91","LOD","","TRG","","","9.58","LOQ","YES","-99","","0.261","0.001","4.79",
"CAL-DW11-20180928", "EPA Method 537", "Initial", "1803199-01", "Vista", "2058-94-
8", "PFUnA", "4.79", "ng/L", "U", "2.91", "LOD", "", "TRG", "", "", "9.58", "LOQ", "YES", "-99", "", "0.261", "0.001", "4.79", "", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "
"CAL-DW11-20180928","EPA Method 537","Initial","1803199-01","Vista","307-55-
1", "PFDoA", "4.79", "ng/L", "U", "2.91", "LOD", "", "TRG", "", "", "9.58", "LOQ", "YES", "-99", "", "0.261", "0.001", "4.79", "", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "
"CAL-DW11-20180928","EPA Method 537","Initial","1803199-01","Vista","72629-94-
8","PFTrDA","4.79","ng/L","U","2.91","LOD","","TRG","","","9.58","LOQ","YES","-99","","0.261","0.001","4.79",""
"CAL-DW11-20180928","EPA Method 537","Initial","1803199-01","Vista","376-06-
7","PFTeDA","4.79","ng/L","U","2.91","LOD","","TRG","","","9.58","LOQ","YES","-99","","0.261","0.001","4.79",""
"CAL-DW11-20180928", "EPA Method 537", "Initial", "1803199-01", "Vista", "13C2-PFHxA", "13C2-PFHxA",
PFHxA","120","%R","","-99","NA","","SURR","120","","-99","NA","YES","100","","0.261","0.001","-99",""
"CAL-DW11-20180928","EPA Method 537","Initial","1803199-01","Vista","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA
PFDA","114","%R","","-99","NA","","SURR","114","","-99","NA","YES","100","","0.261","0.001","-99",""
"CAL-DW11-20180928", "EPA Method 537", "Initial", "1803199-01", "Vista", "d5-EtFOSAA", "d5-
EtFOSAA","110","%R","","-99","NA","","SURR","110","","-99","NA","YES","100","","0.261","0.001","-99",""
"CAL-DW11-FRB-20180928","EPA Method 537","Initial","1803199-02","Vista","375-73-
5","PFBS","4.83","ng/L","U","2.93","LOD","","TRG","","","9.65","LOQ","YES","-99","","0.259","0.001","4.83",""
"CAL-DW11-FRB-20180928", "EPA Method 537", "Initial", "1803199-02", "Vista", "307-24-
4","PFHxA","4.83","ng/L","U","2.93","LOD","","TRG","","","9.65","LOQ","YES","-99","","0.259","0.001","4.83",""
"CAL-DW11-FRB-20180928","EPA Method 537","Initial","1803199-02","Vista","375-85-9","PFHpA","4.83","ng/L","U","2.93","LOD","","TRG","","","9.65","LOQ","YES","-99","","0.259","0.001","4.83",""
"CAL-DW11-FRB-20180928","EPA Method 537","Initial","1803199-02","Vista","355-46-
4","PFHxS","4.83","ng/L","U","2.93","LOD","","TRG","","","9.65","LOQ","YES","-99","","0.259","0.001","4.83",""
"CAL-DW11-FRB-20180928","EPA Method 537","Initial","1803199-02","Vista","335-67-
1","PFOA","4.83","ng/L","U","2.93","LOD","","TRG","","","9.65","LOQ","YES","-99","","0.259","0.001","4.83",""
"CAL-DW11-FRB-20180928","EPA Method 537","Initial","1803199-02","Vista","375-95-
1","PFNA","4.83","ng/L","U","2.93","LOD","","TRG","","","9.65","LOQ","YES","-99","","0.259","0.001","4.83",""
"CAL-DW11-FRB-20180928","EPA Method 537","Initial","1803199-02","Vista","1763-23-
1","PFOS","4.83","ng/L","U","2.93","LOD","","TRG","","","9.65","LOQ","YES","-99","","0.259","0.001","4.83",""
"CAL-DW11-FRB-20180928","EPA Method 537","Initial","1803199-02","Vista","335-76-
2","PFDA","4.83","ng/L","U","2.93","LOD","","TRG","","","9.65","LOQ","YES","-99","","0.259","0.001","4.83",""
"CAL-DW11-FRB-20180928","EPA Method 537","Initial","1803199-02","Vista","2355-31-
```

```
9","MeFOSAA","4.83","ng/L","U","2.93","LOD","","TRG","","","9.65","LOQ","YES","-99","","0.259","0.001","4.83"
 "CAL-DW11-FRB-20180928","EPA Method 537","Initial","1803199-02","Vista","2991-50-
6","EtFOSAA","4.83","ng/L","U","2.93","LOD","","TRG","","","9.65","LOQ","YES","-99","","0.259","0.001","4.83",
"CAL-DW11-FRB-20180928","EPA Method 537","Initial","1803199-02","Vista","2058-94-
8", "PFUnA", "4.83", "ng/L", "U", "2.93", "LOD", "", "TRG", "", "", "9.65", "LOQ", "YES", "-99", "", "0.259", "0.001", "4.83", "", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "1.83", "
"CAL-DW11-FRB-20180928","EPA Method 537","Initial","1803199-02","Vista","307-55-
1","PFDoA","4.83","ng/L","U","2.93","LOD","","TRG","","","9.65","LOQ","YES","-99","","0.259","0.001","4.83",""
 "CAL-DW11-FRB-20180928","EPA Method 537","Initial","1803199-02","Vista","72629-94-
8","PFTrDA","4.83","ng/L","U","2.93","LOD","","TRG","","","9.65","LOQ","YES","-99","","0.259","0.001","4.83",""
"CAL-DW11-FRB-20180928","EPA Method 537","Initial","1803199-02","Vista","376-06-
7","PFTeDA","4.83","ng/L","U","2.93","LOD","","TRG","","","9.65","LOQ","YES","-99","","0.259","0.001","4.83",""
"CAL-DW11-FRB-20180928","EPA Method 537","Initial","1803199-02","Vista","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA
PFHxA","116","%R","","-99","NA","","SURR","116","","-99","NA","YES","100","","0.259","0.001","-99",""
"CAL-DW11-FRB-20180928","EPA Method 537","Initial","1803199-02","Vista","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-
PFDA","114","%R","","-99","NA","","SURR","114","","-99","NA","YES","100","","0.259","0.001","-99",""
"CAL-DW11-FRB-20180928","EPA Method 537","Initial","1803199-02","Vista","d5-EtFOSAA","d5-
EtFOSAA","109","%R","","-99","NA","","SURR","109","","-99","NA","YES","100","","0.259","0.001","-99",""
"CAL-DW09-20180929","EPA Method 537","Initial","1803199-03","Vista","375-73-
5", "PFBS", "4.70", "ng/L", "U", "2.86", "LOD", "", "TRG", "", "", "9.41", "LOQ", "YES", "-99", "", "0.266", "0.001", "4.70", "", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1
"CAL-DW09-20180929","EPA Method 537","Initial","1803199-03","Vista","307-24-
4","PFHxA","5.99","ng/L","J","2.86","LOD","","TRG","","","9.41","LOQ","YES","-99","","0.266","0.001","4.70",""
"CAL-DW09-20180929","EPA Method 537","Initial","1803199-03","Vista","375-85-
9","PFHpA","3.28","ng/L","J","2.86","LOD","","TRG","","9.41","LOQ","YES","-99","","0.266","0.001","4.70","" "CAL-DW09-20180929","EPA Method 537","Initial","1803199-03","Vista","355-46-
4","PFHxS","4.70","ng/L","U","2.86","LOD","","TRG","","","9.41","LOQ","YES","-99","","0.266","0.001","4.70",""
"CAL-DW09-20180929", "EPA Method 537", "Initial", "1803199-03", "Vista", "335-67-
1","PFOA","11.2","ng/L","","2.86","LOD","","TRG","","","9.41","LOQ","YES","-99","","0.266","0.001","4.70",""
"CAL-DW09-20180929","EPA Method 537","Initial","1803199-03","Vista","375-95-
1","PFNA","4.70","ng/L","U","2.86","LOD","","TRG","","","9.41","LOQ","YES","-99","","0.266","0.001","4.70",""
"CAL-DW09-20180929", "EPA Method 537", "Initial", "1803199-03", "Vista", "1763-23-1", "PFOS", "5.63", "ng/L", "J", "2.86", "LOD", "", "TRG", "", "", "9.41", "LOQ", "YES", "-99", "", "0.266", "0.001", "4.70", ""
"CAL-DW09-20180929","EPA Method 537","Initial","1803199-03","Vista","335-76-
2","PFDA","4.70","ng/L","U","2.86","LOD","","TRG","","","9.41","LOQ","YES","-99","","0.266","0.001","4.70",""
"CAL-DW09-20180929","EPA Method 537","Initial","1803199-03","Vista","2355-31-
9","MeFOSAA","4.70","ng/L","U","2.86","LOD","","TRG","","","9.41","LOQ","YES","-99","","0.266","0.001","4.70"
 1111
"CAL-DW09-20180929","EPA Method 537","Initial","1803199-03","Vista","2991-50-
6","EtFOSAA","4.70","ng/L","U","2.86","LOD","","TRG","","","9.41","LOQ","YES","-99","","0.266","0.001","4.70",
 "CAL-DW09-20180929","EPA Method 537","Initial","1803199-03","Vista","2058-94-
8", "PFUnA", "4.70", "ng/L", "U", "2.86", "LOD", "", "TRG", "", "", "9.41", "LOQ", "YES", "-99", "", "0.266", "0.001", "4.70", "", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "1.70", "
"CAL-DW09-20180929", "EPA Method 537", "Initial", "1803199-03", "Vista", "307-55-
1","PFDoA","4.70","ng/L","U","2.86","LOD","","TRG","","","9.41","LOQ","YES","-99","","0.266","0.001","4.70",""
"CAL-DW09-20180929", "EPA Method 537", "Initial", "1803199-03", "Vista", "72629-94-
8","PFTrDA","4.70","ng/L","U","2.86","LOD","","TRG","","","9.41","LOQ","YES","-99","","0.266","0.001","4.70",""
"CAL-DW09-20180929","EPA Method 537","Initial","1803199-03","Vista","376-06-
7","PFTeDA","4.70","ng/L","U","2.86","LOD","","TRG","","","9.41","LOQ","YES","-99","","0.266","0.001","4.70",""
"CAL-DW09-20180929","EPA Method 537","Initial","1803199-03","Vista","13C2-PFHxA","13C2-PFHxA","13C2-PFHxA","113","%R","","-99","NA","","-99","NA","YES","100","","0.266","0.001","-99",""
"CAL-DW09-20180929","EPA Method 537","Initial","1803199-03","Vista","13C2-PFDA","13C2-PFDA","109","%R","","-99","NA","","99","NA","YES","100","","0.266","0.001","-99",""
"CAL-DW09-20180929","EPA Method 537","Initial","1803199-03","Vista","d5-EtFOSAA","d5-
```

```
EtFOSAA","107","%R","","-99","NA","","SURR","107","","-99","NA","YES","100","","0.266","0.001","-99",""
"CAL-DW09-FRB-20180929","EPA Method 537","Initial","1803199-04","Vista","375-73-
5","PFBS","4.77","ng/L","U","2.91","LOD","","TRG","","","9.56","LOQ","YES","-99","","0.262","0.001","4.77",""
"CAL-DW09-FRB-20180929","EPA Method 537","Initial","1803199-04","Vista","307-24-
4","PFHxA","4.77","ng/L","U","2.91","LOD","","TRG","","","9.56","LOQ","YES","-99","","0.262","0.001","4.77",""
"CAL-DW09-FRB-20180929", "EPA Method 537", "Initial", "1803199-04", "Vista", "375-85-
9","PFHpA","4.77","ng/L","U","2.91","LOD","","TRG","","","9.56","LOQ","YES","-99","","0.262","0.001","4.77","" "CAL-DW09-FRB-20180929","EPA Method 537","Initial","1803199-04","Vista","355-46-
4","PFHxS","4.77","ng/L","U","2.91","LOD","","TRG","","","9.56","LOQ","YES","-99","","0.262","0.001","4.77",""
"CAL-DW09-FRB-20180929", "EPA Method 537", "Initial", "1803199-04", "Vista", "335-67-
1", "PFOA", "4.77", "ng/L", "U", "2.91", "LOD", "", "TRG", "", "", "9.56", "LOQ", "YES", "-99", "", "0.262", "0.001", "4.77", "", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1
"CAL-DW09-FRB-20180929","EPA Method 537","Initial","1803199-04","Vista","375-95-
1","PFNA","4.77","ng/L","U","2.91","LOD","","TRG","","","9.56","LOQ","YES","-99","","0.262","0.001","4.77",""
"CAL-DW09-FRB-20180929", "EPA Method 537", "Initial", "1803199-04", "Vista", "1763-23-
1","PFOS","4.77","ng/L","U","2.91","LOD","","TRG","","","9.56","LOQ","YES","-99","","0.262","0.001","4.77",""
"CAL-DW09-FRB-20180929", "EPA Method 537", "Initial", "1803199-04", "Vista", "335-76-
2","PFDA","4.77","ng/L","U","2.91","LOD","","TRG","","","9.56","LOQ","YES","-99","","0.262","0.001","4.77",""
"CAL-DW09-FRB-20180929","EPA Method 537","Initial","1803199-04","Vista","2355-31-9","MeFOSAA","4.77","ng/L","U","2.91","LOD","","TRG","","","9.56","LOQ","YES","-99","","0.262","0.001","4.77"
"CAL-DW09-FRB-20180929","EPA Method 537","Initial","1803199-04","Vista","2991-50-
6","EtFOSAA","4.77","ng/L","U","2.91","LOD","","TRG","","","9.56","LOQ","YES","-99","","0.262","0.001","4.77",
"CAL-DW09-FRB-20180929","EPA Method 537","Initial","1803199-04","Vista","2058-94-
8","PFUnA","4.77","ng/L","U","2.91","LOD","","TRG","","","9.56","LOQ","YES","-99","","0.262","0.001","4.77","" "CAL-DW09-FRB-20180929","EPA Method 537","Initial","1803199-04","Vista","307-55-
1","PFDoA","4.77","ng/L","U","2.91","LOD","","TRG","","","9.56","LOQ","YES","-99","","0.262","0.001","4.77",""
"CAL-DW09-FRB-20180929", "EPA Method 537", "Initial", "1803199-04", "Vista", "72629-94-
8", "PFTrDA", "4.77", "ng/L", "U", "2.91", "LOD", "", "TRG", "", "", "9.56", "LOQ", "YES", "-99", "", "0.262", "0.001", "4.77", "", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", "1.77", 
"CAL-DW09-FRB-20180929", "EPA Method 537", "Initial", "1803199-04", "Vista", "376-06-
7","PFTeDA","4.77","ng/L","U","2.91","LOD","","TRG","","","9.56","LOQ","YES","-99","","0.262","0.001","4.77",""
"CAL-DW09-FRB-20180929", "EPA Method 537", "Initial", "1803199-04", "Vista", "13C2-PFHxA", "13C2-PFH
PFHxA","126","%R","","-99","NA","","SURR","126","","-99","NA","YES","100","","0.262","0.001","-99",""
"CAL-DW09-FRB-20180929", "EPA Method 537", "Initial", "1803199-04", "Vista", "13C2-PFDA", "13C2-
PFDA","118","%R","","-99","NA","","SURR","118","","-99","NA","YES","100","","0.262","0.001","-99",""
"CAL-DW09-FRB-20180929","EPA Method 537","Initial","1803199-04","Vista","d5-EtFOSAA","d5-
EtFOSAA","108","%R","","-99","NA","","SURR","108","","-99","NA","YES","100","","0.262","0.001","-99",""
"CAL-DW08-20181001","EPA Method 537","Initial","1803199-05","Vista","375-73-
5", "PFBS", "4.79", "ng/L", "U", "2.92", "LOD", "", "TRG", "", "", "9.59", "LOQ", "YES", "-99", "", "0.261", "0.001", "4.79", "", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1
"CAL-DW08-20181001","EPA Method 537","Initial","1803199-05","Vista","307-24-
4","PFHxA","4.79","ng/L","U","2.92","LOD","","TRG","","","9.59","LOQ","YES","-99","","0.261","0.001","4.79",""
"CAL-DW08-20181001","EPA Method 537","Initial","1803199-05","Vista","375-85-
9","PFHpA","4.79","ng/L","U","2.92","LOD","","TRG","","","9.59","LOQ","YES","-99","","0.261","0.001","4.79",""
"CAL-DW08-20181001","EPA Method 537","Initial","1803199-05","Vista","355-46-
4","PFHxS","4.79","ng/L","U","2.92","LOD","","TRG","","","9.59","LOQ","YES","-99","","0.261","0.001","4.79",""
"CAL-DW08-20181001","EPA Method 537","Initial","1803199-05","Vista","335-67-
1","PFOA","4.79","ng/L","U","2.92","LOD","","TRG","","","9.59","LOQ","YES","-99","","0.261","0.001","4.79",""
"CAL-DW08-20181001", "EPA Method 537", "Initial", "1803199-05", "Vista", "375-95-
1","PFNA","4.79","ng/L","U","2.92","LOD","","TRG","","","9.59","LOQ","YES","-99","","0.261","0.001","4.79",""
"CAL-DW08-20181001", "EPA Method 537", "Initial", "1803199-05", "Vista", "1763-23-
1","PFOS","4.79","ng/L","U","2.92","LOD","","TRG","","","9.59","LOQ","YES","-99","","0.261","0.001","4.79",""
"CAL-DW08-20181001","EPA Method 537","Initial","1803199-05","Vista","335-76-
2","PFDA","4.79","ng/L","U","2.92","LOD","","TRG","","","9.59","LOQ","YES","-99","","0.261","0.001","4.79",""
"CAL-DW08-20181001", "EPA Method 537", "Initial", "1803199-05", "Vista", "2355-31-
```

```
9","MeFOSAA","4.79","ng/L","U","2.92","LOD","","TRG","","","9.59","LOQ","YES","-99","","0.261","0.001","4.79"
"CAL-DW08-20181001","EPA Method 537","Initial","1803199-05","Vista","2991-50-
6","EtFOSAA","4.79","ng/L","U","2.92","LOD","","TRG","","","9.59","LOQ","YES","-99","","0.261","0.001","4.79",
"CAL-DW08-20181001","EPA Method 537","Initial","1803199-05","Vista","2058-94-
8","PFUnA","4.79","ng/L","U","2.92","LOD","","TRG","","","9.59","LOQ","YES","-99","","0.261","0.001","4.79",""
"CAL-DW08-20181001","EPA Method 537","Initial","1803199-05","Vista","307-55-
1", "PFDoA", "4.79", "ng/L", "U", "2.92", "LOD", "", "TRG", "", "", "9.59", "LOQ", "YES", "-99", "", "0.261", "0.001", "4.79", "", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "
"CAL-DW08-20181001","EPA Method 537","Initial","1803199-05","Vista","72629-94-
8", "PFTrDA", "4.79", "ng/L", "U", "2.92", "LOD", "", "TRG", "", "", "9.59", "LOQ", "YES", "-99", "", "0.261", "0.001", "4.79", "", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", "1.79", 
"CAL-DW08-20181001","EPA Method 537","Initial","1803199-05","Vista","376-06-
7","PFTeDA","4.79","ng/L","U","2.92","LOD","","TRG","","","9.59","LOQ","YES","-99","","0.261","0.001","4.79",""
"CAL-DW08-20181001", "EPA Method 537", "Initial", "1803199-05", "Vista", "13C2-PFHxA", "13C2-PFHxA",
PFHxA","103","%R","","-99","NA","","SURR","103","","-99","NA","YES","100","","0.261","0.001","-99",""
"CAL-DW08-20181001","EPA Method 537","Initial","1803199-05","Vista","13C2-PFDA","13C2-
PFDA","106","%R","","-99","NA","","SURR","106","","-99","NA","YES","100","","0.261","0.001","-99",""
"CAL-DW08-20181001","EPA Method 537","Initial","1803199-05","Vista","d5-EtFOSAA","d5-
EtFOSAA","123","%R","","-99","NA","","SURR","123","","-99","NA","YES","100","","0.261","0.001","-99",""
"CAL-DW08-FRB-20181001","EPA Method 537","Initial","1803199-06","Vista","375-73-
5", "PFBS", "4.88", "ng/L", "U", "2.97", "LOD", "", "TRG", "", "", "9.77", "LOQ", "YES", "-99", "", "0.256", "0.001", "4.88", "", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1
"CAL-DW08-FRB-20181001","EPA Method 537","Initial","1803199-06","Vista","307-24-
4","PFHxA","4.88","ng/L","U","2.97","LOD","","TRG","","","9.77","LOQ","YES","-99","","0.256","0.001","4.88",""
"CAL-DW08-FRB-20181001","EPA Method 537","Initial","1803199-06","Vista","375-85-
9","PFHpA","4.88","ng/L","U","2.97","LOD","","TRG","","","9.77","LOQ","YES","-99","","0.256","0.001","4.88",""
"CAL-DW08-FRB-20181001","EPA Method 537","Initial","1803199-06","Vista","355-46-
4","PFHxS","4.88","ng/L","U","2.97","LOD","","TRG","","","9.77","LOQ","YES","-99","","0.256","0.001","4.88",""
"CAL-DW08-FRB-20181001","EPA Method 537","Initial","1803199-06","Vista","335-67-
1","PFOA","4.88","ng/L","U","2.97","LOD","","TRG","","","9.77","LOQ","YES","-99","","0.256","0.001","4.88",""
 "CAL-DW08-FRB-20181001", "EPA Method 537", "Initial", "1803199-06", "Vista", "375-95-
1","PFNA","4.88","ng/L","U","2.97","LOD","","TRG","","","9.77","LOQ","YES","-99","","0.256","0.001","4.88",""
"CAL-DW08-FRB-20181001","EPA Method 537","Initial","1803199-06","Vista","1763-23-
1","PFOS","4.88","ng/L","U","2.97","LOD","","TRG","","","9.77","LOQ","YES","-99","","0.256","0.001","4.88",""
"CAL-DW08-FRB-20181001","EPA Method 537","Initial","1803199-06","Vista","335-76-
2","PFDA","4.88","ng/L","U","2.97","LOD","","TRG","","","9.77","LOQ","YES","-99","","0.256","0.001","4.88",""
"CAL-DW08-FRB-20181001","EPA Method 537","Initial","1803199-06","Vista","2355-31-
9","MeFOSAA","4.88","ng/L","U","2.97","LOD","","TRG","","","9.77","LOQ","YES","-99","","0.256","0.001","4.88"
 1111
 "CAL-DW08-FRB-20181001","EPA Method 537","Initial","1803199-06","Vista","2991-50-
6","EtFOSAA","4.88","ng/L","U","2.97","LOD","","TRG","","","9.77","LOQ","YES","-99","","0.256","0.001","4.88",
 "CAL-DW08-FRB-20181001","EPA Method 537","Initial","1803199-06","Vista","2058-94-
8", "PFUnA", "4.88", "ng/L", "U", "2.97", "LOD", "", "TRG", "", "", "9.77", "LOQ", "YES", "-99", "", "0.256", "0.001", "4.88", "", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "
"CAL-DW08-FRB-20181001","EPA Method 537","Initial","1803199-06","Vista","307-55-
1","PFDoA","4.88","ng/L","U","2.97","LOD","","TRG","","","9.77","LOQ","YES","-99","","0.256","0.001","4.88",""
 "CAL-DW08-FRB-20181001", "EPA Method 537", "Initial", "1803199-06", "Vista", "72629-94-
8", "PFTrDA", "4.88", "ng/L", "U", "2.97", "LOD", "", "TRG", "", "", "9.77", "LOQ", "YES", "-99", "", "0.256", "0.001", "4.88", "", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", "1.88", 
"CAL-DW08-FRB-20181001","EPA Method 537","Initial","1803199-06","Vista","376-06-
7","PFTeDA","4.88","ng/L","U","2.97","LOD","","TRG","","","9.77","LOQ","YES","-99","","0.256","0.001","4.88",""
"CAL-DW08-FRB-20181001", "EPA Method 537", "Initial", "1803199-06", "Vista", "13C2-PFHxA", "13C2-PFH
PFHxA","106","%R","","-99","NA","","SURR","106","","-99","NA","YES","100","","0.256","0.001","-99",""
"CAL-DW08-FRB-20181001","EPA Method 537","Initial","1803199-06","Vista","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-PFDA","13C2-
PFDA", "106", "\%R", "", "-99", "NA", "", "SURR", "106", "", "-99", "NA", "YES", "100", "", "0.256", "0.001", "-99", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "", "100", "100", "", "100", "100", "", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "100", "
"CAL-DW08-FRB-20181001","EPA Method 537","Initial","1803199-06","Vista","d5-EtFOSAA","d5-
```

```
EtFOSAA","81.4","%R","","-99","NA","","SURR","81.4","","-99","NA","YES","100","","0.256","0.001","-99",""
"B8J0030-BLK1", "EPA Method 537", "Initial", "B8J0030-BLK1", "Vista", "375-73-
5","PFBS","5.00","ng/L","U","3.04","LOD","","TRG","","10.0","LOQ","YES","-99","","0.250","0.001","5.00",""
"B8J0030-BLK1","EPA Method 537","Initial","B8J0030-BLK1","Vista","307-24-
4","PFHxA","5.00","ng/L","U","3.04","LOD","","TRG","","","10.0","LOQ","YES","-99","","0.250","0.001","5.00",""
"B8J0030-BLK1", "EPA Method 537", "Initial", "B8J0030-BLK1", "Vista", "375-85-
9","PFHpA","5.00","ng/L","U","3.04","LOD","","TRG","","10.0","LOQ","YES","-99","","0.250","0.001","5.00",""
"B8J0030-BLK1", "EPA Method 537", "Initial", "B8J0030-BLK1", "Vista", "355-46-
4","PFHxS","5.00","ng/L","U","3.04","LOD","","TRG","","","10.0","LOQ","YES","-99","","0.250","0.001","5.00",""
"B8J0030-BLK1", "EPA Method 537", "Initial", "B8J0030-BLK1", "Vista", "335-67-
1","PFOA","5.00","ng/L","U","3.04","LOD","","TRG","","10.0","LOQ","YES","-99","","0.250","0.001","5.00",""
"B8J0030-BLK1", "EPA Method 537", "Initial", "B8J0030-BLK1", "Vista", "375-95-
1","PFNA","5.00","ng/L","U","3.04","LOD","","TRG","","","10.0","LOQ","YES","-99","","0.250","0.001","5.00",""
"B8J0030-BLK1", "EPA Method 537", "Initial", "B8J0030-BLK1", "Vista", "1763-23-
1","PFOS","5.00","ng/L","U","3.04","LOD","","TRG","","","10.0","LOQ","YES","-99","","0.250","0.001","5.00",""
"B8J0030-BLK1", "EPA Method 537", "Initial", "B8J0030-BLK1", "Vista", "335-76-
2","PFDA","5.00","ng/L","U","3.04","LOD","","TRG","","","10.0","LOQ","YES","-99","","0.250","0.001","5.00",""
"B8J0030-BLK1", "EPA Method 537", "Initial", "B8J0030-BLK1", "Vista", "2355-31-
9","MeFOSAA","5.00","ng/L","U","3.04","LOD","","TRG","","10.0","LOQ","YES","-99","","0.250","0.001","5.00"
"B8J0030-BLK1", "EPA Method 537", "Initial", "B8J0030-BLK1", "Vista", "2991-50-
6","EtFOSAA","5.00","ng/L","U","3.04","LOD","","TRG","","10.0","LOQ","YES","-99","","0.250","0.001","5.00",
"B8J0030-BLK1", "EPA Method 537", "Initial", "B8J0030-BLK1", "Vista", "2058-94-
8","PFUnA","5.00","ng/L","U","3.04","LOD","","TRG","","10.0","LOQ","YES","-99","","0.250","0.001","5.00",""
"B8J0030-BLK1", "EPA Method 537", "Initial", "B8J0030-BLK1", "Vista", "307-55-
1","PFDoA","5.00","ng/L","U","3.04","LOD","","TRG","","","10.0","LOQ","YES","-99","","0.250","0.001","5.00",""
"B8J0030-BLK1", "EPA Method 537", "Initial", "B8J0030-BLK1", "Vista", "72629-94-
8", "PFTrDA", "5.00", "ng/L", "U", "3.04", "LOD", "", "TRG", "", "10.0", "LOQ", "YES", "-99", "", "0.250", "0.001", "5.00", "", "10.0", "LOQ", "YES", "-99", "", "0.250", "0.001", "5.00", "", "10.0", "LOQ", "YES", "-99", "", "0.250", "0.001", "5.00", "", "10.0", "LOQ", "YES", "-99", "", "0.250", "0.001", "5.00", "", "10.0", "LOQ", "YES", "-99", "", "0.250", "0.001", "5.00", "", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", 
"B8J0030-BLK1", "EPA Method 537", "Initial", "B8J0030-BLK1", "Vista", "376-06-
7","PFTeDA","5.00","ng/L","U","3.04","LOD","","TRG","","10.0","LOQ","YES","-99","","0.250","0.001","5.00",""
"B8J0030-BLK1", "EPA Method 537", "Initial", "B8J0030-BLK1", "Vista", "13C2-PFHxA", "13C2-
PFHxA","104","%R","","-99","NA","","SUR","104","","-99","NA","YES","100","","0.250","0.001","-99",""
"B8J0030-BLK1", "EPA Method 537", "Initial", "B8J0030-BLK1", "Vista", "13C2-PFDA", 
PFDA","111","%R","","-99","NA","","SUR","111","","-99","NA","YES","100","","0.250","0.001","-99",""
"B8J0030-BLK1","EPA Method 537","Initial","B8J0030-BLK1","Vista","d5-EtFOSAA","d5-
EtFOSAA","114","%R","","-99","NA","","SUR","114","","-99","NA","YES","100","","0.250","0.001","-99",""
"B8J0030-BS1", "EPA Method 537", "Initial", "B8J0030-BS1", "Vista", "375-73-
5","PFBS","41.4","ng/L","","3.04","LOD","","TRG","117","","10.0","LOQ","YES","35.4","","0.250","0.001","5.00",""
"B8J0030-BS1","EPA Method 537","Initial","B8J0030-BS1","Vista","307-24-
4","PFHxA","46.4","ng/L","","3.04","LOD","","TRG","116","","10.0","LOQ","YES","40.0","","0.250","0.001","5.00",
"B8J0030-BS1", "EPA Method 537", "Initial", "B8J0030-BS1", "Vista", "375-85-
9","PFHpA","46.4","ng/L","","3.04","LOD","","TRG","116","","10.0","LOQ","YES","40.0","","0.250","0.001","5.00",
"B8J0030-BS1", "EPA Method 537", "Initial", "B8J0030-BS1", "Vista", "355-46-
4","PFHxS","44.5","ng/L","","3.04","LOD","","TRG","122","","10.0","LOQ","YES","36.4","","0.250","0.001","5.00","
"B8J0030-BS1", "EPA Method 537", "Initial", "B8J0030-BS1", "Vista", "335-67-
1","PFOA","44.6","ng/L","","3.04","LOD","","TRG","112","","10.0","LOQ","YES","40.0","","0.250","0.001","5.00","
"B8J0030-BS1", "EPA Method 537", "Initial", "B8J0030-BS1", "Vista", "375-95-
1","PFNA","46.9","ng/L","","3.04","LOD","","TRG","117","","10.0","LOQ","YES","40.0","","0.250","0.001","5.00","
```

```
"B8J0030-BS1","EPA Method 537","Initial","B8J0030-BS1","Vista","1763-23-
1","PFOS","42.4","ng/L","","3.04","LOD","","TRG","115","","10.0","LOQ","YES","37.0","","0.250","0.001","5.00",""
"B8J0030-BS1", "EPA Method 537", "Initial", "B8J0030-BS1", "Vista", "335-76-
2","PFDA","46.1","ng/L","","3.04","LOD","","TRG","115","","10.0","LOQ","YES","40.0","","0.250","0.001","5.00","
 "B8J0030-BS1", "EPA Method 537", "Initial", "B8J0030-BS1", "Vista", "2355-31-
9","MeFOSAA","42.2","ng/L","","3.04","LOD","","TRG","106","","10.0","LOQ","YES","40.0","","0.250","0.001","5.
 00",""
 "B8J0030-BS1","EPA Method 537","Initial","B8J0030-BS1","Vista","2991-50-
6","EtFOSAA","44.9","ng/L","","3.04","LOD","","TRG","112","","10.0","LOQ","YES","40.0","","0.250","0.001","5.0
"B8J0030-BS1", "EPA Method 537", "Initial", "B8J0030-BS1", "Vista", "2058-94-
8", "PFUnA", "44.2", "ng/L", "", "3.04", "LOD", "", "TRG", "110", "", "10.0", "LOQ", "YES", "40.0", "", "0.250", "0.001", "5.00", "10.0", "LOQ", "YES", "40.0", "", "0.250", "0.001", "5.00", "10.0", "LOQ", "YES", "40.0", "", "0.250", "0.001", "5.00", "10.0", "10.0", "10.0", "LOQ", "YES", "40.0", "", "0.250", "0.001", "5.00", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0"
 "B8J0030-BS1", "EPA Method 537", "Initial", "B8J0030-BS1", "Vista", "307-55-
1","PFDoA","39.2","ng/L","","3.04","LOD","","TRG","98.0","","10.0","LOQ","YES","40.0","","0.250","0.001","5.00",
 "B8J0030-BS1","EPA Method 537","Initial","B8J0030-BS1","Vista","72629-94-
8", "PFTrDA", "43.8", "ng/L", "", "3.04", "LOD", "", "TRG", "109", "", "10.0", "LOQ", "YES", "40.0", "", "0.250", "0.001", "5.00", "10.0", "LOQ", "YES", "40.0", "", "0.250", "0.001", "5.00", "10.0", "LOQ", "YES", "40.0", "", "0.250", "0.001", "5.00", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "10.0", "
 "B8J0030-BS1", "EPA Method 537", "Initial", "B8J0030-BS1", "Vista", "376-06-
7","PFTeDA","42.2","ng/L","","3.04","LOD","","TRG","106","","10.0","LOQ","YES","40.0","","0.250","0.001","5.00
"B8J0030-BS1", "EPA Method 537", "Initial", "B8J0030-BS1", "Vista", "13C2-PFHxA", "13C
PFHxA","107","%R","","-99","NA","","SUR","107","","-99","NA","YES","100","","0.250","0.001","-99","" "B8J0030-BS1","EPA Method 537","Initial","B8J0030-BS1","Vista","13C2-PFDA","13C2-
PFDA","112","%R","","-99","NA","","SUR","112","","-99","NA","YES","100","","0.250","0.001","-99",""
"B8J0030-BS1", "EPA Method 537", "Initial", "B8J0030-BS1", "Vista", "d5-EtFOSAA", "d5-
EtFOSAA","100","%R","","-99","NA","","SUR","100","","-99","NA","YES","100","","0.250","0.001","-99",""
"B8J0030-MS1", "EPA Method 537", "Initial", "B8J0030-MS1", "Vista", "375-73-
5","PFBS","41.0","ng/L","","3.05","LOD","","TRG","113","","10.0","LOQ","YES","35.6","CAL-DW09-
20180929","0.249","0.001","5.02",""
 "B8J0030-MS1", "EPA Method 537", "Initial", "B8J0030-MS1", "Vista", "307-24-
4","PFHxA","51.0","ng/L","","3.05","LOD","","TRG","112","","10.0","LOQ","YES","40.2","CAL-DW09-
20180929","0.249","0.001","5.02",""
"B8J0030-MS1","EPA Method 537","Initial","B8J0030-MS1","Vista","375-85-
9","PFHpA","50.1","ng/L","","3.05","LOD","","TRG","116","","10.0","LOQ","YES","40.2","CAL-DW09-
20180929","0.249","0.001","5.02",""
"B8J0030-MS1", "EPA Method 537", "Initial", "B8J0030-MS1", "Vista", "355-46-
4","PFHxS","46.3","ng/L","","3.05","LOD","","TRG","120","","10.0","LOQ","YES","36.6","CAL-DW09-
20180929","0.249","0.001","5.02",""
 "B8J0030-MS1", "EPA Method 537", "Initial", "B8J0030-MS1", "Vista", "335-67-
1","PFOA","59.3","ng/L","","3.05","LOD","","TRG","120","","10.0","LOQ","YES","40.2","CAL-DW09-
20180929","0.249","0.001","5.02",""
"B8J0030-MS1","EPA Method 537","Initial","B8J0030-MS1","Vista","375-95-
1","PFNA","45.0","ng/L","","3.05","LOD","","TRG","110","","10.0","LOQ","YES","40.2","CAL-DW09-
20180929","0.249","0.001","5.02",""
"B8J0030-MS1", "EPA Method 537", "Initial", "B8J0030-MS1", "Vista", "1763-23-
1","PFOS","50.4","ng/L","","3.05","LOD","","TRG","120","","10.0","LOQ","YES","37.2","CAL-DW09-
20180929","0.249","0.001","5.02",""
"B8J0030-MS1","EPA Method 537","Initial","B8J0030-MS1","Vista","335-76-
2","PFDA","45.0","ng/L","","3.05","LOD","","TRG","111","","10.0","LOQ","YES","40.2","CAL-DW09-
20180929","0.249","0.001","5.02",""
"B8J0030-MS1","EPA Method 537","Initial","B8J0030-MS1","Vista","2355-31-
```

```
9","MeFOSAA","46.1","ng/L","","3.05","LOD","","TRG","115","","10.0","LOQ","YES","40.2","CAL-DW09-
 20180929","0.249","0.001","5.02",""
 "B8J0030-MS1", "EPA Method 537", "Initial", "B8J0030-MS1", "Vista", "2991-50-
6","EtFOSAA","40.5","ng/L","","3.05","LOD","","TRG","101","","10.0","LOQ","YES","40.2","CAL-DW09-
20180929","0.249","0.001","5.02",""
"B8J0030-MS1", "EPA Method 537", "Initial", "B8J0030-MS1", "Vista", "2058-94-
8", "PFUnA", "40.0", "ng/L", "", "3.05", "LOD", "", "TRG", "99.4", "", "10.0", "LOQ", "YES", "40.2", "CAL-DW09-100", "YES", "40.2", "YES", "YE
20180929","0.249","0.001","5.02",""
"B8J0030-MS1","EPA Method 537","Initial","B8J0030-MS1","Vista","307-55-
1","PFDoA","42.3","ng/L","","3.05","LOD","","TRG","105","","10.0","LOQ","YES","40.2","CAL-DW09-
20180929","0.249","0.001","5.02",""
 "B8J0030-MS1", "EPA Method 537", "Initial", "B8J0030-MS1", "Vista", "72629-94-
8", "PFTrDA", "47.1", "ng/L", "", "3.05", "LOD", "", "TRG", "117", "", "10.0", "LOQ", "YES", "40.2", "CAL-DW09-LOQ", "YES", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.2", "40.
20180929","0.249","0.001","5.02",""
"B8J0030-MS1", "EPA Method 537", "Initial", "B8J0030-MS1", "Vista", "376-06-
7","PFTeDA","38.1","ng/L","","3.05","LOD","","TRG","94.7","","10.0","LOQ","YES","40.2","CAL-DW09-
20180929","0.249","0.001","5.02",""
"B8J0030-MS1", "EPA Method 537", "Initial", "B8J0030-MS1", "Vista", "13C2-PFHxA", "13C
PFHxA","111","%R","","-99","NA","","SUR","111","","-99","NA","YES","100","CAL-DW09-
20180929","0.249","0.001","-99",""
"B8J0030-MS1", "EPA Method 537", "Initial", "B8J0030-MS1", "Vista", "13C2-PFDA", "13C2-
PFDA","106","%R","","-99","NA","","SUR","106","","-99","NA","YES","100","CAL-DW09-20180929","0.249","0.001","-99",""
"B8J0030-MS1", "EPA Method 537", "Initial", "B8J0030-MS1", "Vista", "d5-EtFOSAA", "d5-
EtFOSAA","103","%R","","-99","NA","","SUR","103","","-99","NA","YES","100","CAL-DW09-
20180929","0.249","0.001","-99",""
"B8J0030-MSD1", "EPA Method 537", "Initial", "B8J0030-MSD1", "Vista", "375-73-
5","PFBS","38.9","ng/L","","2.86","LOD","","TRG","115","1.75","9.39","LOQ","YES","33.3","CAL-DW09-
20180929","0.266","0.001","4.70",""
"B8J0030-MSD1", "EPA Method 537", "Initial", "B8J0030-MSD1", "Vista", "307-24-
4","PFHxA","48.3","ng/L","","2.86","LOD","","TRG","112","0","9.39","LOQ","YES","37.6","CAL-DW09-
20180929","0.266","0.001","4.70",""
"B8J0030-MSD1", "EPA Method 537", "Initial", "B8J0030-MSD1", "Vista", "375-85-
9","PFHpA","47.1","ng/L","","2.86","LOD","","TRG","117","0.858","9.39","LOQ","YES","37.6","CAL-DW09-
20180929","0.266","0.001","4.70",""
"B8J0030-MSD1", "EPA Method 537", "Initial", "B8J0030-MSD1", "Vista", "355-46-
4","PFHxS","42.9","ng/L","","2.86","LOD","","TRG","118","1.68","9.39","LOQ","YES","34.2","CAL-DW09-
20180929","0.266","0.001","4.70",""
 "B8J0030-MSD1", "EPA Method 537", "Initial", "B8J0030-MSD1", "Vista", "335-67-
1","PFOA","50.6","ng/L","","2.86","LOD","","TRG","105","13.3","9.39","LOQ","YES","37.6","CAL-DW09-
20180929","0.266","0.001","4.70",""
"B8J0030-MSD1", "EPA Method 537", "Initial", "B8J0030-MSD1", "Vista", "375-95-
1","PFNA","43.0","ng/L","","2.86","LOD","","TRG","112","1.80","9.39","LOQ","YES","37.6","CAL-DW09-
20180929","0.266","0.001","4.70",""
"B8J0030-MSD1", "EPA Method 537", "Initial", "B8J0030-MSD1", "Vista", "1763-23-
1","PFOS","44.4","ng/L","","2.86","LOD","","TRG","111","7.79","9.39","LOQ","YES","34.8","CAL-DW09-
20180929","0.266","0.001","4.70",""
"B8J0030-MSD1", "EPA Method 537", "Initial", "B8J0030-MSD1", "Vista", "335-76-
2","PFDA","43.8","ng/L","","2.86","LOD","","TRG","116","4.41","9.39","LOQ","YES","37.6","CAL-DW09-
20180929","0.266","0.001","4.70",""
"B8J0030-MSD1", "EPA Method 537", "Initial", "B8J0030-MSD1", "Vista", "2355-31-
9","MeFOSAA","37.5","ng/L","","2.86","LOD","","TRG","99.8","14.2","9.39","LOQ","YES","37.6","CAL-DW09-
20180929","0.266","0.001","4.70",""
 "B8J0030-MSD1", "EPA Method 537", "Initial", "B8J0030-MSD1", "Vista", "2991-50-
```

```
6","EtFOSAA","37.7","ng/L","","2.86","LOD","","TRG","100","0.995","9.39","LOQ","YES","37.6","CAL-DW09-
 20180929","0.266","0.001","4.70",""
"B8J0030-MSD1", "EPA Method 537", "Initial", "B8J0030-MSD1", "Vista", "2058-94-
8","PFUnA","36.9","ng/L","","2.86","LOD","","TRG","98.2","1.21","9.39","LOQ","YES","37.6","CAL-DW09-
20180929","0.266","0.001","4.70",""
 "B8J0030-MSD1", "EPA Method 537", "Initial", "B8J0030-MSD1", "Vista", "307-55-
1","PFDoA","39.4","ng/L","","2.86","LOD","","TRG","105","0","9.39","LOQ","YES","37.6","CAL-DW09-
20180929","0.266","0.001","4.70",""
 "B8J0030-MSD1", "EPA Method 537", "Initial", "B8J0030-MSD1", "Vista", "72629-94-
8","PFTrDA","41.1","ng/L","","2.86","LOD","","TRG","109","7.08","9.39","LOQ","YES","37.6","CAL-DW09-
20180929","0.266","0.001","4.70",""
"B8J0030-MSD1", "EPA Method 537", "Initial", "B8J0030-MSD1", "Vista", "376-06-
7","PFTeDA","37.6","ng/L","","2.86","LOD","","TRG","100","5.44","9.39","LOQ","YES","37.6","CAL-DW09-
20180929","0.266","0.001","4.70",""
 "B8J0030-MSD1", "EPA Method 537", "Initial", "B8J0030-MSD1", "Vista", "13C2-PFHxA", "13C2-
PFHxA","107","%R","","-99","NA","","SUR","107","","-99","NA","YES","100","CAL-DW09-20180929","0.266","0.001","-99",""
"B8J0030-MSD1", "EPA Method 537", "Initial", "B8J0030-MSD1", "Vista", "13C2-PFDA", 
PFDA","113","%R","","-99","NA","","SUR","113","","-99","NA","YES","100","CAL-DW09-
20180929","0.266","0.001","-99",""
"B8J0030-MSD1", "EPA Method 537", "Initial", "B8J0030-MSD1", "Vista", "d5-EtFOSAA", "d5-
EtFOSAA","111","%R","","-99","NA","","SUR","111","","-99","NA","YES","100","CAL-DW09-
20180929","0.266","0.001","-99",""
 "Calverton Off Base DW Sampling", "Calverton Off Base DW Sampling 112G08005-WE05", "CAL-DW11-
20180928","09/28/2018 18:05","AQ","1803199-01","NM","","1.10","EPA Method
537","METHOD","Initial","10/04/2018 09:15","10/08/2018
 18:34","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00", "100", "B8J0030", "B8J0030", "NA", "S8J0024", "1803199", "10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""1
"Calverton Off Base DW Sampling", "Calverton Off Base DW Sampling 112G08005-WE05", "CAL-DW11-FRB-
20180928","09/28/2018 18:05","AQ","1803199-02","NM","","1.10","EPA Method
537","METHOD","Initial","10/04/2018 09:15","10/08/2018
18:47", "Vista", "COA", "WET", "NA", "1", "NA", "NA", "01/01/1900
00:00", "100", "B8J0030", "B8J0030", "NA", "S8J0024", "1803199", "10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""1
"Calverton Off Base DW Sampling", "Calverton Off Base DW Sampling 112G08005-WE05", "CAL-DW09-
 20180929","09/29/2018 11:04","AQ","1803199-03","NM","","1.10","EPA Method
537","METHOD","Initial","10/04/2018 09:15","10/09/2018
 11:39","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00", "100", "B8J0030", "B8J0030", "NA", "S8J0024", "1803199", "10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 00:00", "01/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""1
"Calverton Off Base DW Sampling", "Calverton Off Base DW Sampling 112G08005-WE05", "CAL-DW09-FRB-
20180929","09/29/2018 11:04","AQ","1803199-04","NM","","1.10","EPA Method
 537","METHOD","Initial","10/04/2018 09:15","10/08/2018
19:13","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00", "100", "B8J0030", "B8J0030", "NA", "S8J0024", "1803199", "10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:00", "01/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", "10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01
 "Calverton Off Base DW Sampling", "Calverton Off Base DW Sampling 112G08005-WE05", "CAL-DW08-
20181001","10/01/2018 10:06","AQ","1803199-05","NM","","1.10","EPA Method
 537", "METHOD", "Initial", "10/04/2018 09:15", "10/08/2018
19:26","Vista","COA","WET","NA","1","NA","NA","01/01/1900
00:00","100","B8J0030","B8J0030","NA","S8J0024","1803199","10/02/2018 09:03","01/01/1900 00:00",""
"Calverton Off Base DW Sampling", "Calverton Off Base DW Sampling 112G08005-WE05", "CAL-DW08-FRB-
20181001","10/01/2018 10:06","AQ","1803199-06","NM","","1.10","EPA Method
537","METHOD","Initial","10/04/2018 09:15","10/08/2018
 19:39", "Vista", "COA", "WET", "NA", "1", "NA", "NA", "01/01/1900
00:00", "100", "B8J0030", "B8J0030", "NA", "S8J0024", "1803199", "10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:03", "01/01/1900 \ 00:00", ""10/02/2018 \ 09:00", "01/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", "10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01/1900 \ 00:00", ""10/01
 "Calverton Off Base DW Sampling", "Calverton Off Base DW Sampling 112G08005-WE05", "B8J0030-
```

BLK1","01/01/1900 00:00","AQ","B8J0030-BLK1","MB","","-99","EPA Method 537", "METHOD", "Initial", "10/04/2018 09:15", "10/08/2018 17:55", "Vista", "COA", "WET", "NA", "1", "NA", "NA", "01/01/1900 "Calverton Off Base DW Sampling", "Calverton Off Base DW Sampling 112G08005-WE05", "B8J0030-BS1","01/01/1900 00:00","AQ","B8J0030-BS1","LCS","","-99","EPA Method 537","METHOD","Initial","10/04/2018 09:15","10/08/2018 17:43","Vista","COA","WET","NA","1","NA","NA","01/01/1900 "Calverton Off Base DW Sampling", "Calverton Off Base DW Sampling 112G08005-WE05", "B8J0030-MS1","01/01/1900 00:00","AQ","B8J0030-MS1","MS","","-99","EPA Method 537","METHOD","Initial","10/04/2018 09:15","10/08/2018 18:08","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B8J0030","B8J0030","NA","S8J0024","1803199","01/01/1900 00:00","01/01/1900 00:00","" "Calverton Off Base DW Sampling", "Calverton Off Base DW Sampling 112G08005-WE05", "B8J0030-MSD1","01/01/1900 00:00","AQ","B8J0030-MSD1","MSD","","-99","EPA Method 537","METHOD","Initial","10/04/2018 09:15","10/08/2018 18:21","Vista","COA","WET","NA","1","NA","NA","01/01/1900 00:00","100","B8J0030","B8J0030","NA","S8J0024","1803199","01/01/1900 00:00","01/01/1900 00:00",""

INTERNAL CORRESPONDENCE

TO: K. FRANCISCO DATE: OCTOBER 19, 2018

FROM: MICHELLE L. WOEBER COPIES: DV FILE

SUBJECT: ORGANIC DATA VALIDATION - POLYFLUOROALKYL SUBSTANCES (PFAS)

NAVAL WEAPONS INDUSTRIAL RESERVE PLANT (NWIRP), CALVERTON

SAMPLE DELIVERY GROUP (SDG) 1803199

SAMPLES: 3/Drinking Water/PFAS

CAL-DW08-20181001 CAL-DW09-20180929 CAL-DW11-20180928

3/Field Reagent Blank (FRB)/PFAS

CAL-DW08-FRB-20181001 CAL-DW09-FRB-20180929 CAL-DW11-FRB-20180928

Overview

The sample set for NWIRP Calverton, SDG 1803199 consisted of three (3) drinking water samples and three (3) FRB samples. All samples were analyzed for polyfluoroalkyl substances (PFAS). No field duplicate sample pair was included in this SDG.

The samples were collected by Tetra Tech, Inc. on September 28, 29, and October 1, 2018 and analyzed by Vista Analytical Laboratory. All analyses were conducted in accordance with EPA Method 537 REV. 1.1 analytical and reporting protocols. The data contained in this SDG was validated via EPA Stage 4 with regard to the following parameters:

- Data completeness
- Hold times/Sample Preservation
- Mass Calibration
- LC/MS/MS System Tuning and Performance
- Mass Spectral Acquisition Rate
- Instrument Sensitivity Check
- Ion Transition Check
- * Asymmetry Factor Results
- Initial/Continuing Calibrations
- Laboratory Preparation/Method Blank Results
- Field Reagent Blank (FRB) Results
- Surrogate Spike Recoveries (Extraction Internal Standard Recoveries)
 - Injection Internal Standard Recoveries
- Laboratory Fortified Blank Results
- Matrix Spike/Matrix Spike Duplicate Results
- Compound Identification
- Compound Quantitation
 - Detection Limits

The symbol (*) indicates that all quality control criteria were met for this parameter. Qualified analytical results are presented in Appendix A, results as reported by the laboratory are presented in Appendix B, and

TO: K. FRANCISCO PAGE 2

SDG: 1803199

documentation supporting these findings is presented in Appendix C.

PFAS

The injection internal standard, 13C4-perfluorooctanesulfonic acid (13C4-PFOS), had Percent Recoveries (%Rs) below the 70% quality control limit in samples CAL-DW11-FRB-20180928 and CAL-DW09-FRB-20180929 based the Continuing Calibration Verification (CCV) response. In addition, the %R for the injection internal standard, 13C2-pentadecafluorooctanic acid (13C2-PFOA), was below 70% in sample CAL-DW09-FRB-20180929 as compared to the CCV. As stated in the case narrative, the sample extracts were reinjected with similar results. The samples were not re-extracted. The results from the initial analysis were reported by the laboratory. The non-detected results reported for the compounds associated with these internal standards were qualified as estimated, (UJ).

Detected results reported below the Limit of Quantitation (LOQ) but above the Method Detection Limit (MDL) were qualified as estimated, (J). Non-detected results were reported to the limit of detection (LOD).

Additional Comments

It was noted by the laboratory on the sample login checklist that the preservative Trizma was listed on the sample bottles but not on the Chain of Custody (COC). The data reviewer will advise the project team to include a reference on the COC that Trizma was added to each sample.

The FRBs were free of contamination.

Executive Summary

Laboratory Performance Issues: Injection internal standards had low %Rs in two samples.

Other Factors Affecting Data Quality: Detected results below the LOQ were estimated.

The data for these analyses were reviewed with reference to the "National Functional Guidelines for Organic Superfund Methods Data Review" (January 2017), the Environmental Protection Agency document EPA/600/R-08/092, Method 537, "Determination of Selected Perfluorinated Alkyl Acids in Drinking Water by Solid Phase Extraction and Liquid Chromatography/Tandem Mass Spectrometry (LC/MS/MS)", (September 2009) and the Department of Defense (DoD) document entitled "Quality Systems Manual (QSM) for Environmental Laboratories" (2017). The text of this report has been formulated to address only those areas affecting data quality.

イetra Tech, Inc. Michelle L. Woeber

Chemist/Data Validator

√Tetra Tech, Inc.

Joseph A. Samchuck

Data Validation Manager

Attachments:

Appendix A - Qualified Analytical Results

Appendix B – Results as Reported by the Laboratory

Appendix C – Support Documentation

for

Data Qualifier Definitions

The following definitions provide brief explanations of the validation qualifiers assigned to results in the data review process.

U	The analyte was analyzed for, but was not detected at a level greater than or equal to the level of the adjusted detection limit.
J	The result is an estimated quantity. The associated numerical value is the approximate concentration of the analyte in the sample (due either to the quality of the data generated because certain quality control criteria were not met, or the concentration of the analyte was below the reporting limit).
J+	The result is an estimated quantity, but the result may be biased high.
J-	The result is an estimated quantity, but the result may be biased low.
UJ	The analyte was analyzed for, but was not detected. The reported detection limit is approximate and may be inaccurate or imprecise.
NJ	The analyte has been "tentatively identified" or "presumptively" as present and the associated numerical value is the estimated concentration in the sample.
R	The sample result (detected) is unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
UR	The sample result (nondetected) is unusable due to the quality of the data generated because certain criteria were not met. The analyte may or may not be present in the sample.
х	The sample results (including non-detects) were affected by serious deficiencies in the ability to analyze the sample and meet published method and project quality control criteria. The presence or absence of the analyte cannot be substantiated by the data provided. Acceptance or rejection of the data should be decided by the project team, but exclusion of the data is recommended.

APPENDIX A QUALIFIED ANALYTICAL RESULTS

Qualifier Codes:

A = Lab Blank Contamination

B = Field Blank Contamination

C = Calibration Noncompliance (i.e., % RSDs, %Ds, ICVs, CCVs, RRFs, etc.)

C01 = GC/MS Tuning Noncompliance

D = MS/MSD Recovery Noncompliance

E = LCS/LCSD Recovery Noncompliance

F = Lab Duplicate Imprecision

G = Field Duplicate Imprecision

H = Holding Time Exceedance

I = ICP Serial Dilution Noncompliance

J = ICP PDS Recovery Noncompliance; MSA's r < 0.995

K = ICP Interference - includes ICS % R Noncompliance

L = Instrument Calibration Range Exceedance

M = Sample Preservation Noncompliance

N = Internal Standard Noncompliance

N01 = Internal Standard Recovery Noncompliance Dioxins

N02 = Recovery Standard Noncompliance Dioxins

N03 = Clean-up Standard Noncompliance Dioxins

O = Poor Instrument Performance (i.e., base-time drifting)

P = Uncertainty near detection limit (< 2 x IDL for inorganics and <CRQL for organics)

Q = Other problems (can encompass a number of issues; i.e.chromatography,interferences, etc.)

R = Surrogates Recovery Noncompliance

S = Pesticide/PCB Resolution

T = % Breakdown Noncompliance for DDT and Endrin

U = RPD between columns/detectors >40% for positive results determined via GC/HPLC

V = Non-linear calibrations; correlation coefficient r < 0.995

W = EMPC result

X = Signal to noise response drop

Y = Percent solids <30%

Z = Uncertainty at 2 standard deviations is greater than sample activity

Z1 = Tentatively Identified Compound considered presumptively present

Z2 = Tentatively Identified Compound column bleed

Z3 = Tentatively Identified Compound aldol condensate

Z4 = Sample activity is less than the at uncertainty at 3 standard deviations and greater than the MDC

Z5 = Sample activity is less than the at uncertainty at 3 standard deviations and less than the MDC

PROJ_NO: 08005-WE05	NSAMPLE	CAL-DW08-2	0181001		CAL-DW08-FI	RB-201	81001	CAL-DW09-2	0180929	9	CAL-DW09-	FRB-201	80929
SDG: 1803199	LAB_ID	1803199-05			1803199-06			1803199-03			1803199-04		
FRACTION: PFAS	SAMP_DATE	10/1/2018			10/1/2018			9/29/2018			9/29/2018		
MEDIA: WATER	QC_TYPE	NM			NM			NM			NM		
	UNITS	NG/L			NG/L	NG/L					NG/L		
	PCT_SOLIDS	0.0			0.0			0.0			0.0		
	DUP_OF												
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD	RESULT	VQL	QLCD
N-ETHYLPERFLUOROOCT SULFONAMIDOACETATE(4.79	U		4.88	U		4.7	U		4.7	7 U	
N-METHYLPERFLUOROO SULFONAMIDOACETATE(4.79	U		4.88	4.88 U		4.7 U		4.7	7 U		
PENTADECAFLUOROOCT (PFOA)	ANOIC ACID	4.79	U		4.88	4.88 U 11		11.2		4.77 UJ		N	
PERFLUOROBUTANESUL (PFBS)	FONIC ACID	4.79	U		4.88	U		4.7	U		4.7	7 UJ	N
PERFLUORODECANOIC A	CID (PFDA)	4.79	U		4.88	U		4.7	U		4.7	7 UJ	N
PERFLUORODODECANOI (PFDOA)	C ACID	4.79	U		4.88 U			4.7	U		4.7	7 UJ	N
PERFLUOROHEPTANOIC	ACID (PFHPA)	4.79	U		4.88	U		3.28	J	Р	4.7	7 UJ	N
PERFLUOROHEXANESUL (PFHXS)	FONIC ACID	4.79	U		4.88	U		4.7	U		4.7	7 UJ	N
PERFLUOROHEXANOIC A	CID (PFHXA)	4.79	U		4.88	U		5.99	J	Р	4.7	7 UJ	N
PERFLUORONONANOIC A	ACID (PFNA)	4.79	U		4.88	U		4.7	U		4.7	7 UJ	N
PERFLUOROOCTANESUL (PFOS)	FONIC ACID	4.79	U		4.88	U		5.63	J	Р	4.7	7 UJ	N
PERFLUOROTETRADECANOIC ACID PFTEA)		4.79	U		4.88	U		4.7	U		4.7	7 UJ	N
PERFLUOROTRIDECANO (PFTRIA)	IC ACID	4.79	U		4.88	U		4.7	U		4.7	7 UJ	N
PERFLUOROUNDECANOI (PFUNA)	C ACID	4.79	U		4.88	U		4.7	U		4.7	7 UJ	N

1 of 2 10/19/2018

PROJ_NO: 08005-WE05	NSAMPLE	CAL-DW11-20	180928		CAL-DW11-FF	RB-2018	30928
SDG: 1803199	LAB_ID	1803199-01			1803199-02		
FRACTION: PFAS	SAMP_DATE	9/28/2018			9/28/2018		
MEDIA: WATER	QC_TYPE	NM			NM		
	UNITS	NG/L			NG/L		
	PCT_SOLIDS	0.0			0.0		
	DUP_OF						
PARAMETER		RESULT	VQL	QLCD	RESULT	VQL	QLCD
N-ETHYLPERFLUOROOCT SULFONAMIDOACETATE(I		4.79	U		4.83	U	
N-METHYLPERFLUOROOG SULFONAMIDOACETATE(I		4.79	U		4.83	U	
PENTADECAFLUOROOCT (PFOA)	ANOIC ACID	6.65	J	Р	4.83	U	
PERFLUOROBUTANESULI (PFBS)	FONIC ACID	4.79	U		4.83	UJ	N
PERFLUORODECANOIC A	CID (PFDA)	4.79	U		4.83	U	
PERFLUORODODECANOI(PFDOA)	C ACID	4.79	U		4.83	U	
PERFLUOROHEPTANOIC .	ACID (PFHPA)	4.79	U		4.83	U	
PERFLUOROHEXANESULI (PFHXS)	FONIC ACID	4.79	U		4.83	UJ	N
PERFLUOROHEXANOIC A	CID (PFHXA)	9.88			4.83	U	
PERFLUORONONANOIC A	CID (PFNA)	4.79	U		4.83	U	
PERFLUOROOCTANESUL (PFOS)	FONIC ACID	4.79	U		4.83	UJ	N
PERFLUOROTETRADECA (PFTEA)	NOIC ACID	4.79	U		4.83	U	
PERFLUOROTRIDECANOI (PFTRIA)	C ACID	4.79	U		4.83	U	
PERFLUOROUNDECANOIO (PFUNA)	C ACID	4.79	U		4.83	U	

2 of 2 10/19/2018

APPENDIX B

RESULTS AS REPORTED BY THE LABORATORY

Sample ID: C	AL-DW11-20180	928									EPA Meth	od 537
Client Data						La	boratory Data					
Name:	Tetra Tech		Matrix:	Dr	inking Water	La	b Sample:	1803199-0	01	Column:	BEH C18	
Project: SDG:	Calverton Off Base # WE05	DW Sampling 112G08	8005-WE05 Date Colle	ected: 28	-Sep-18 18:05	Da	te Received:	02-Oct-18	09:03			
Analyte		CAS Number	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS		375-73-5	ND	2.91	4.79	9.58		B8J0030	04-Oct-18	0.261 L	08-Oct-18 18:34	1
PFHxA		307-24-4	9.88	2.91	4.79	9.58		B8J0030	04-Oct-18	0.261 L	08-Oct-18 18:34	1
PFHpA		375-85-9	ND	2.91	4.79	9.58		B8J0030	04-Oct-18	0.261 L	08-Oct-18 18:34	1
PFHxS		355-46-4	ND	2.91	4.79	9.58		B8J0030	04-Oct-18	0.261 L	08-Oct-18 18:34	1
PFOA		335-67-1	6.65	2.91	4.79	9.58	J	B8J0030	04-Oct-18	0.261 L	08-Oct-18 18:34	1
PFNA		375-95-1	ND	2.91	4.79	9.58		B8J0030	04-Oct-18	0.261 L	08-Oct-18 18:34	1
PFOS		1763-23-1	ND	2.91	4.79	9.58		B8J0030	04-Oct-18	0.261 L	08-Oct-18 18:34	1
PFDA		335-76-2	ND	2.91	4.79	9.58		B8J0030	04-Oct-18	0.261 L	08-Oct-18 18:34	1
MeFOSAA		2355-31-9	ND	2.91	4.79	9.58		B8J0030	04-Oct-18	0.261 L	08-Oct-18 18:34	1
EtFOSAA		2991-50-6	ND	2.91	4.79	9.58		B8J0030	04-Oct-18	0.261 L	08-Oct-18 18:34	1
PFUnA		2058-94-8	ND	2.91	4.79	9.58		B8J0030	04-Oct-18	0.261 L	08-Oct-18 18:34	1
PFDoA		307-55-1	ND	2.91	4.79	9.58		B8J0030	04-Oct-18	0.261 L	08-Oct-18 18:34	1
PFTrDA		72629-94-8	ND	2.91	4.79	9.58		B8J0030	04-Oct-18	0.261 L	08-Oct-18 18:34	1
PFTeDA		376-06-7	ND	2.91	4.79	9.58		B8J0030	04-Oct-18	0.261 L	08-Oct-18 18:34	1
Labeled Standar	ds	Type	% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA		SURR	120		70 - 130			B8J0030	04-Oct-18	0.261 L	08-Oct-18 18:34	1
13C2-PFDA		SURR	114		70 - 130			B8J0030	04-Oct-18	0.261 L	08-Oct-18 18:34	1
d5-EtFOSAA		SURR	110		70 - 130			B8J0030	04-Oct-18	0.261 L	08-Oct-18 18:34	1

LOD - Limit of Detection LOQ - Limit of quantitation Results reported to the DL.

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

Work Order 1803199 Page 9 of 188

Sample ID: CA	AL-DW11-FRB-2	20180928									EPA Meth	10d 537
Client Data Name: Project: SDG:	Tetra Tech Calverton Off Base # WE05	DW Sampling 112G08	Matrix: 005-WE05 Date Coll		Water Sep-18 18:05	Lab	oratory Data Sample: Received:	1803199-0 02-Oct-18		Column:	ВЕН С18	
Analyte		CAS Number	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS		375-73-5	ND	2.93	4.83	9.65		B8J0030	04-Oct-18	0.259 L	08-Oct-18 18:47	1
PFHxA		307-24-4	ND	2.93	4.83	9.65		B8J0030	04-Oct-18	0.259 L	08-Oct-18 18:47	1
PFHpA		375-85-9	ND	2.93	4.83	9.65		B8J0030	04-Oct-18	0.259 L	08-Oct-18 18:47	1
PFHxS		355-46-4	ND	2.93	4.83	9.65		B8J0030	04-Oct-18	0.259 L	08-Oct-18 18:47	1
PFOA		335-67-1	ND	2.93	4.83	9.65		B8J0030	04-Oct-18	0.259 L	08-Oct-18 18:47	1
PFNA		375-95-1	ND	2.93	4.83	9.65		B8J0030	04-Oct-18	0.259 L	08-Oct-18 18:47	1
PFOS		1763-23-1	ND	2.93	4.83	9.65		B8J0030	04-Oct-18	0.259 L	08-Oct-18 18:47	1
PFDA		335-76-2	ND	2.93	4.83	9.65		B8J0030	04-Oct-18	0.259 L	08-Oct-18 18:47	1
MeFOSAA		2355-31-9	ND	2.93	4.83	9.65		B8J0030	04-Oct-18	0.259 L	08-Oct-18 18:47	1
EtFOSAA		2991-50-6	ND	2.93	4.83	9.65		B8J0030	04-Oct-18	0.259 L	08-Oct-18 18:47	1
PFUnA		2058-94-8	ND	2.93	4.83	9.65		B8J0030	04-Oct-18	0.259 L	08-Oct-18 18:47	1
PFDoA		307-55-1	ND	2.93	4.83	9.65		B8J0030	04-Oct-18	0.259 L	08-Oct-18 18:47	1
PFTrDA		72629-94-8	ND	2.93	4.83	9.65		B8J0030	04-Oct-18	0.259 L	08-Oct-18 18:47	1
PFTeDA		376-06-7	ND	2.93	4.83	9.65		B8J0030	04-Oct-18	0.259 L	08-Oct-18 18:47	1
Labeled Standard	ds	Type	% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA		SURR	116		70 - 130			B8J0030	04-Oct-18	0.259 L	08-Oct-18 18:47	1
13C2-PFDA		SURR	114		70 - 130			B8J0030	04-Oct-18	0.259 L	08-Oct-18 18:47	1
d5-EtFOSAA		SURR	109		70 - 130			B8J0030	04-Oct-18	0.259 L	08-Oct-18 18:47	1

LOD - Limit of Detection LOQ - Limit of quantitation Results reported to the DL.

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

Work Order 1803199 Page 10 of 188

Sample ID: C	AL-DW09-2018092	29									EPA Meth	10d 537
Client Data Name: Project:	Tetra Tech Calverton Off Base D	W Sampling 112G08	Matrix: 8005-WE05 Date Colle		nking Water Sep-18 11:04	Lab	oratory Data Sample: e Received:	1803199-0 02-Oct-18		Column:	ВЕН С18	
SDG: Analyte	# WE05	CAS Number	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS		375-73-5	ND	2.86	4.70	9.41		B8J0030	04-Oct-18	0.266 L	09-Oct-18 11:39	1
PFHxA		307-24-4	5.99	2.86	4.70	9.41	J	B8J0030	04-Oct-18	0.266 L	09-Oct-18 11:39	1
PFHpA		375-85-9	3.28	2.86	4.70	9.41	J	B8J0030	04-Oct-18	0.266 L	09-Oct-18 11:39	1
PFHxS		355-46-4	ND	2.86	4.70	9.41		B8J0030	04-Oct-18	0.266 L	09-Oct-18 11:39	1
PFOA		335-67-1	11.2	2.86	4.70	9.41		B8J0030	04-Oct-18	0.266 L	09-Oct-18 11:39	
PFNA		375-95-1	ND	2.86	4.70	9.41		B8J0030	04-Oct-18	0.266 L	09-Oct-18 11:39	
PFOS		1763-23-1	5.63	2.86	4.70	9.41	J	B8J0030	04-Oct-18	0.266 L	09-Oct-18 11:39	1
PFDA		335-76-2	ND	2.86	4.70	9.41		B8J0030	04-Oct-18	0.266 L	09-Oct-18 11:39	
MeFOSAA		2355-31-9	ND	2.86	4.70	9.41		B8J0030	04-Oct-18	0.266 L	09-Oct-18 11:39	
EtFOSAA		2991-50-6	ND	2.86	4.70	9.41		B8J0030	04-Oct-18	0.266 L	09-Oct-18 11:39	1
PFUnA		2058-94-8	ND	2.86	4.70	9.41		B8J0030	04-Oct-18	0.266 L	09-Oct-18 11:39	1
PFDoA		307-55-1	ND	2.86	4.70	9.41		B8J0030	04-Oct-18	0.266 L	09-Oct-18 11:39	1
PFTrDA		72629-94-8	ND	2.86	4.70	9.41		B8J0030	04-Oct-18	0.266 L	09-Oct-18 11:39	1
PFTeDA		376-06-7	ND	2.86	4.70	9.41		B8J0030	04-Oct-18	0.266 L	09-Oct-18 11:39	1
Labeled Standar	ds	Type	% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size		Dilution
13C2-PFHxA		SURR	113		70 - 130			B8J0030	04-Oct-18	0.266 L	09-Oct-18 11:39	1
13C2-PFDA		SURR	109		70 - 130			B8J0030	04-Oct-18	0.266 L	09-Oct-18 11:39	
d5-EtFOSAA		SURR	107		70 - 130			B8J0030	04-Oct-18	0.266 L	09-Oct-18 11:39	1

LOD - Limit of Detection LOQ - Limit of quantitation Results reported to the DL.

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

Work Order 1803199 Page 11 of 188

Sample ID: C	AL-DW09-FRB-2	20180929									EPA Meth	10d 537
Client Data Name:	Tetra Tech		Matrix:	0(C Water		aboratory Data ab Sample:	1803199-0	M	Calaman	DEH C10	
Project: SDG:		DW Sampling 112G08			9-Sep-18 11:04		ate Received:	02-Oct-18		Column:	BEH C18	
Analyte		CAS Number	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS		375-73-5	ND	2.91	4.77	9.56		B8J0030	04-Oct-18	0.262 L	08-Oct-18 19:13	1
PFHxA		307-24-4	ND	2.91	4.77	9.56		B8J0030	04-Oct-18	0.262 L	08-Oct-18 19:13	1
PFHpA		375-85-9	ND	2.91	4.77	9.56		B8J0030	04-Oct-18	0.262 L	08-Oct-18 19:13	1
PFHxS		355-46-4	ND	2.91	4.77	9.56		B8J0030	04-Oct-18	0.262 L	08-Oct-18 19:13	1
PFOA		335-67-1	ND	2.91	4.77	9.56		B8J0030	04-Oct-18	0.262 L	08-Oct-18 19:13	1
PFNA		375-95-1	ND	2.91	4.77	9.56		B8J0030	04-Oct-18	0.262 L	08-Oct-18 19:13	1
PFOS		1763-23-1	ND	2.91	4.77	9.56		B8J0030	04-Oct-18	0.262 L	08-Oct-18 19:13	1
PFDA		335-76-2	ND	2.91	4.77	9.56		B8J0030	04-Oct-18	0.262 L	08-Oct-18 19:13	1
MeFOSAA		2355-31-9	ND	2.91	4.77	9.56		B8J0030	04-Oct-18	0.262 L	08-Oct-18 19:13	1
EtFOSAA		2991-50-6	ND	2.91	4.77	9.56		B8J0030	04-Oct-18	0.262 L	08-Oct-18 19:13	1
PFUnA		2058-94-8	ND	2.91	4.77	9.56		B8J0030	04-Oct-18	0.262 L	08-Oct-18 19:13	1
PFDoA		307-55-1	ND	2.91	4.77	9.56		B8J0030	04-Oct-18	0.262 L	08-Oct-18 19:13	1
PFTrDA		72629-94-8	ND	2.91	4.77	9.56		B8J0030	04-Oct-18	0.262 L	08-Oct-18 19:13	1
PFTeDA		376-06-7	ND	2.91	4.77	9.56		B8J0030	04-Oct-18	0.262 L	08-Oct-18 19:13	1
Labeled Standar	ds	Type	% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA		SURR	126		70 - 130			B8J0030	04-Oct-18	0.262 L	08-Oct-18 19:13	1
13C2-PFDA		SURR	118		70 - 130			B8J0030	04-Oct-18	0.262 L	08-Oct-18 19:13	1
d5-EtFOSAA		SURR	108		70 - 130			B8J0030	04-Oct-18	0.262 L	08-Oct-18 19:13	1

LOD - Limit of Detection LOQ - Limit of quantitation Results reported to the DL.

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

Work Order 1803199 Page 13 of 188

Sample ID: Ca	AL-DW08-201810	001									EPA Meth	10d 537
Client Data Name: Project:	Tetra Tech	DW Sampling 112G08	Matrix:		inking Water -Oct-18 10:06	La	boratory Data b Sample: ate Received:	1803199-0 02-Oct-18		Column:	BEH C18	
SDG:	# WE05	D W Sumpling 112000	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	01	361 10 10.00		no recorred.	02 001 10	07.03			
Analyte		CAS Number	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS		375-73-5	ND	2.92	4.79	9.59		B8J0030	04-Oct-18	0.261 L	08-Oct-18 19:26	1
PFHxA		307-24-4	ND	2.92	4.79	9.59		B8J0030	04-Oct-18	0.261 L	08-Oct-18 19:26	1
PFHpA		375-85-9	ND	2.92	4.79	9.59		B8J0030	04-Oct-18	0.261 L	08-Oct-18 19:26	1
PFHxS		355-46-4	ND	2.92	4.79	9.59		B8J0030	04-Oct-18	0.261 L	08-Oct-18 19:26	1
PFOA		335-67-1	ND	2.92	4.79	9.59		B8J0030	04-Oct-18	0.261 L	08-Oct-18 19:26	1
PFNA		375-95-1	ND	2.92	4.79	9.59		B8J0030	04-Oct-18	0.261 L	08-Oct-18 19:26	1
PFOS		1763-23-1	ND	2.92	4.79	9.59		B8J0030	04-Oct-18	0.261 L	08-Oct-18 19:26	1
PFDA		335-76-2	ND	2.92	4.79	9.59		B8J0030	04-Oct-18	0.261 L	08-Oct-18 19:26	1
MeFOSAA		2355-31-9	ND	2.92	4.79	9.59		B8J0030	04-Oct-18	0.261 L	08-Oct-18 19:26	1
EtFOSAA		2991-50-6	ND	2.92	4.79	9.59		B8J0030	04-Oct-18	0.261 L	08-Oct-18 19:26	1
PFUnA		2058-94-8	ND	2.92	4.79	9.59		B8J0030	04-Oct-18	0.261 L	08-Oct-18 19:26	1
PFDoA		307-55-1	ND	2.92	4.79	9.59		B8J0030	04-Oct-18	0.261 L	08-Oct-18 19:26	1
PFTrDA		72629-94-8	ND	2.92	4.79	9.59		B8J0030	04-Oct-18	0.261 L	08-Oct-18 19:26	1
PFTeDA		376-06-7	ND	2.92	4.79	9.59		B8J0030	04-Oct-18	0.261 L	08-Oct-18 19:26	1
Labeled Standar	ds	Type	% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA		SURR	103		70 - 130			B8J0030	04-Oct-18	0.261 L	08-Oct-18 19:26	1
13C2-PFDA		SURR	106		70 - 130			B8J0030	04-Oct-18	0.261 L	08-Oct-18 19:26	1
d5-EtFOSAA		SURR	123		70 - 130			B8J0030	04-Oct-18	0.261 L	08-Oct-18 19:26	1

LOD - Limit of Detection LOQ - Limit of quantitation Results reported to the DL.

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

Work Order 1803199 Page 14 of 188

Sample ID: CA	AL-DW08-FRB-2	0181001									EPA Meth	od 537
Client Data Name: Project: SDG:	Tetra Tech Calverton Off Base # WE05	DW Sampling 112G08	Matrix: 005-WE05 Date Colle	-	Water Oct-18 10:06	Lab S	oratory Data Sample: Received:	1803199-0 02-Oct-18		Column:	ВЕН С18	
Analyte		CAS Number	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS		375-73-5	ND	2.97	4.88	9.77		B8J0030	04-Oct-18	0.256 L	08-Oct-18 19:39	1
PFHxA		307-24-4	ND	2.97	4.88	9.77		B8J0030	04-Oct-18	0.256 L	08-Oct-18 19:39	1
PFHpA		375-85-9	ND	2.97	4.88	9.77		B8J0030	04-Oct-18	0.256 L	08-Oct-18 19:39	1
PFHxS		355-46-4	ND	2.97	4.88	9.77		B8J0030	04-Oct-18	0.256 L	08-Oct-18 19:39	1
PFOA		335-67-1	ND	2.97	4.88	9.77		B8J0030	04-Oct-18	0.256 L	08-Oct-18 19:39	1
PFNA		375-95-1	ND	2.97	4.88	9.77		B8J0030	04-Oct-18	0.256 L	08-Oct-18 19:39	1
PFOS		1763-23-1	ND	2.97	4.88	9.77		B8J0030	04-Oct-18	0.256 L	08-Oct-18 19:39	1
PFDA		335-76-2	ND	2.97	4.88	9.77		B8J0030	04-Oct-18	0.256 L	08-Oct-18 19:39	1
MeFOSAA		2355-31-9	ND	2.97	4.88	9.77		B8J0030	04-Oct-18	0.256 L	08-Oct-18 19:39	1
EtFOSAA		2991-50-6	ND	2.97	4.88	9.77		B8J0030	04-Oct-18	0.256 L	08-Oct-18 19:39	1
PFUnA		2058-94-8	ND	2.97	4.88	9.77		B8J0030	04-Oct-18	0.256 L	08-Oct-18 19:39	1
PFDoA		307-55-1	ND	2.97	4.88	9.77		B8J0030	04-Oct-18	0.256 L	08-Oct-18 19:39	1
PFTrDA		72629-94-8	ND	2.97	4.88	9.77		B8J0030	04-Oct-18	0.256 L	08-Oct-18 19:39	1
PFTeDA		376-06-7	ND	2.97	4.88	9.77		B8J0030	04-Oct-18	0.256 L	08-Oct-18 19:39	1
Labeled Standard	ls	Type	% Recovery		Limits		Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA		SURR	106		70 - 130			B8J0030	04-Oct-18	0.256 L	08-Oct-18 19:39	1
13C2-PFDA		SURR	106		70 - 130			B8J0030	04-Oct-18	0.256 L	08-Oct-18 19:39	1
d5-EtFOSAA		SURR	81.4		70 - 130			B8J0030	04-Oct-18	0.256 L	08-Oct-18 19:39	1

LOD - Limit of Detection LOQ - Limit of quantitation Results reported to the DL.

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

Work Order 1803199 Page 15 of 188

APPENDIX C SUPPORT DOCUMENTATION

NWIRP CALVERTON SDG 1803199

SAMPLE IDENTIFICATION CAL-DW09-20180929

SAMPLE CALCULATION

Compound PENTADECAFLUOROOCTANOIC ACID (PFOA)

SAMPLE VOLUME (L) 0.26566

INTERNAL STANDARD CONCENTRATION 10

Area*(IS concentration

Area*(IS concentration/IS area) 3.087557604

1.34E3*(10/4.34E3)
PFOA CURVE

Calibration curve (y)=1.03308*x

PFOA RESULT CONCENTRATION = x/SAMPLE VOLUME 11.25006424 ng/L

RESULT REPORTED 11.2 ng/L

LABELED STANDARD (SURROGATE) CALCULATION

CONCENTRATION USING CALIBRATION CURVE

SURROGATE 13C2-PFHxA

SAMPLE VOLUME (L) 0.26566

INTERNAL STANDARD CONCENTRATION 10

CONCENTRATION USING CALIBRATION CURVE

Area*(IS concentration/IS area)/RRF 11.31164954

5.41E3*(10/4.34E3)/1.102

13C2-PFHxA RESULT CONCENTRATION = x/SAMPLE VOLUME 42.57942308 ng/L

RESULT REPORTED 42.6 ng/L

TRUE VALUE 37.6 ng/L %R 113.2431465

REPORTED %R 113.2451405

MS/MSD %Rs

CAL-DW09-20180929 MS/MSD SAMPLE CONCENTRATION MS SPIKE AMOUNT MS RESULT MS %R REPORTED %R MSD SPIKE AMOUNT MSD RESULT MSD %R REPORTED %R RPD REPORTED RPD

PERFLUOROBUTANESULFONIC ACID (PFBS) ND 35.6 41 115 113 33.3 38.9 117 115 1.42 1.75

%R QC LIMITS - 70%-130%

RPD LIMIT - 30

MM 10/9/2018

X:\G1.PRO\Results\2018\181009G2\181009G2-4.qld Dataset:

Vista Analytical Laboratory

Last Altered: Tuesday, October 09, 2018 13:30:20 Pacific Daylight Time Printed: Tuesday, October 09, 2018 13:30:59 Pacific Daylight Time

Method: X:\G1.PRO\MethDB\PFAS_DW_L14_1009.mdb 09 Oct 2018 13:12:09

Calibration: X:\G1.PRO\CurveDB\C18 537 Q1 10-05-18 L14.cdb 09 Oct 2018 10:37:25

Name: 181009G2 4, Date: 09-Oct-2018, Time: 11:39:39, ID: 1803199-03 CAL-DW09-20180929 0.26566, Description: CAL-DW09-20180929

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	1 PFBS	298.8> 80.2	4.24e1	1.02e4	0.266		2.90	2.91	0.119	0.601	
2	2 PFHxA	312.8 > 269.0	7.13e2	4.34e3	0.266		3.28	3.28	1.64	5.99	
3	3 PFHpA	362.8 > 319.0	4.06e2	4.34e3	0.266		3.79	3.79	0.937	3.28	
4	4 PFHxS	398.7 > 80.2	1.71e2	1.02e4	0.266		3.90	3.92	0.479	2.52	.
5	5 PFOA	412.7 > 368.9	1.34e3	4.34e3	0.266		4.22	4.23	3.08	11.2	
6	6 PFNA	462.8 > 419.0	9.08e1	4.34e3	0.266		4.59	4.59	0.209	0.813	
7	7 PFOS	498.7 >80.2	2.01e2	1.02e4	0.266		4.63	4.64	0.562	5.63	
8	8 PFDA	512.8 > 468.9	4.76e1	4.34e3	0.266		4.83	4.85	0.110	0.320	
9	9 N-MeFOSAA	569.8 > 419.0	1.48e0	1.17e4	0.266		4.97	4.97	0.00508	0.0273	
10	10 N-EtFOSAA	583.8 >419.0		1.17e4	0.266		5.11				
11	11 PFUnA	562.7 > 518.9	1.35e0	4.34e3	0.266		5.11	5.11	0.00311	0.00822	
12	12 PFDoA	612.8 > 569.0		4.34e3	0.266		5.36				
13	13 PFTrDA	662.8 > 619.0		4.34e3	0.266		5.58				
14	14 PFTeDA	712.8>669.0		4.34e3	0.266		5.75				
15	15 13C2-PFHxA	314.9 > 270.0	5.41e3	4.34e3	0.266	1.102	3.29	3.28	12.5	42.6	113.1
16	16 13C2-PFDA	514.8 > 470.0	5.64e3	4.34e3	0.266	1.199	4.86	4.83	13.0	40.8	108.5
17	17 d5-N-EtFOSAA	588.8> 419.0	1.02e4	1.17e4	0.266	0.820	5.09	5.09	35.1	161	106.9
18	18 13C2-PFOA	414.8 > 370.0	4.34e3	4.34e3	0.266	1.000	4.22	4.22	10.0	37.6	100.0
19	19 13C4-PFOS	502.8>80.2	1.02e4	1.02e4	0.266	1.000	4.65	4.63	28.7	108	100.0
20	20 d3-N-MeFOSAA	572.7 > 419.0	1.17e4	1.17e4	0.266	1.000	4.96	4.97	40.0	151	100.0

Page 3 of 10

Vista Analytical Laboratory

Dataset: X:\G1.PRO\Results\2018\181005G3\181005G3-CRV.qld

Last Altered: Tuesday, October 09, 2018 10:37:25 Pacific Daylight Time Printed: Tuesday, October 09, 2018 10:42:07 Pacific Daylight Time

Compound name: PFOA

Coefficient of Determination: R^2 = 0.997085

Calibration curve: 1.03308 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

ALCOHOLOGY AND A	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1 10 5 10 200	1 181005G3_2	Standard	0.250	4.26	100.437	5750.953	0.175	0.2	-32.4	NO	0.997	NO	MM
2	2 181005G3_3	Standard	0.500	4.24	298.241	6289.390	0.474	0.5	-8.2	NO	0.997	NO	MM
3	3 181005G3_4	Standard	1.000	4.25	472.692	5792.523	0.816	8.0	-21.0	NO	0.997	NO	MM
4	4 181005G3_5	Standard	2.000	4.25	1130.231	5555.693	2.034	2.0	-1.5	NO	0.997	NO	MM
5	5 181005G3_6	Standard	5.000	4.25	3177.579	5865.877	5.417	5.2	4.9	NO	0.997	NO	bb
6	6 181005G3_7	Standard	10.000	4.25	5597.691	5593.660	10.007	9.7	-3.1	NO	0.997	NO	bd
7	7 181005G3_8	Standard	25.000	4.25	13515.015	5723.753	23.612	22.9	-8.6	NO	0.997	NO	bd
8	8 181005G3_9	Standard	50.000	4.25	29153.088	5320.454	54.794	53.0	6.1	NO	0.997	NO	bb
9	9 181005G3_10	Standard	75.000	4.24	43866.152	5696.708	77.003	74.5	-0.6	NO	0.997	NO	bd
10	10 181005G3_11	Standard	100.000	4.25	56620.234	5059.471	111.909	108.3	8.3	NO	0.997	NO	bdX

Compound name: PFNA

Coefficient of Determination: R^2 = 0.997889

Calibration curve: 0.969177 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	# Name	Type	Std. Conc	BT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1 20 20 000	1 181005G3_2	Standard	0.250	4.55	101.443	5750.953	0.176	0.2	-27.2	NO	0.998	NO	MM
2	2 181005G3_3	Standard	0.500	4.56	285.927	6289.390	0.455	0.5	-6.2	NO	0.998	NO	ММ
3	3 181005G3_4	Standard	1.000	4.56	442.730	5792.523	0.764	8.0	-21.1	NO	0.998	NO	MM
4	4 181005G3_5	Standard	2.000	4.56	1159.673	5555.693	2.087	2.2	7.7	NO	0.998	NO	bb
5	5 181005G3_6	Standard	5.000	4.56	2729.900	5865.877	4.654	4.8	-4.0	NO	0.998	NO	ММ
6	6 181005G3_7	Standard	10.000	4.56	5465.954	5593.660	9.772	10.1	8.0	NO	0.998	NO	ММ
7	7 181005G3_8	Standard	25.000	4.56	12902.569	5723.753	22.542	23.3	-7.0	NO	0.998	NO	bb
8	8 181005G3_9	Standard	50.000	4.56	27084.033	5320.454	50.905	52.5	5.0	NO	0.998	NO	bb
9	9 181005G3_10	Standard	75.000	4.56	41126.078	5696.708	72.193	74.5	-0.7	NO	0.998	NO	bd
10	10 181005G3_11	Standard	100.000	4.56	52465.574	5059.471	103.698	107.0	7.0	NO	0.998	NO	bbX

Work Order 1803199 Page 116 of 188

Vista Analytical Laboratory Calverton Off	Paga	Dist	CHAI	N OF	- C	US	то	DY					Work	Labor k Order age ID:	r#:	y Use Or	310	99	Temp:	ured: Y	es 🗹 No 🗆
Project ID: 112608005 -								Sample	r: la	ire	eni	Donston	/		TAT	k one):	Standard Rush (su	_	21 day		
Invoice to: Name		Compan											mes (_	K		14 d		7 days	Specif	
intologics. Name			Tech	570	0/	Addre		via	nt I	w		الم عدن	City	Inch	110		State	F	h#	F	ax#
Relinquished by (printed name and sign		1100	ICCII	Date		Time					rinted	name and sign		3()(1	CN		\ \ \		Date	Т	me
Lauren Donston L	awter	Colo	Motor	10/01	/18							FedEx									
Relinquished by (printed name and sign	nature)			Date	(4)	Time	Î	B. E	ceived Pr	by (pr	inted fc C	name and sty	ature)	16	In	lell	1	10	Paje 1/8	Т	D94
SHIP TO: Vista Analytical Laboratory 1104 Windfield Way El Dorado Hills, CA 95762 Ph: (916) 673-1520; Fax: ()	06	Method of Shi Fed EX Tracking No.:	pment:	-	Analysis Contai	s(es) R	equested	t im agai	7		Tool tool to the t		_		A CHON ON O	\$				
Sample ID	Date	Time	Location/Sample Des	scription	S. S		tue _W	12/0/19	15 0/21 WINGON	\$ 10 10 J	100 Mg 82 10 187	Other: Pease Lis	13	3 / S / S / S / S / S / S / S / S / S /	PAS, PASL	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\			Comme	onto	
CAL-DW11-20180928	9/28/18	1805			2	5	NW		TŤ	Ĭ	Ť	0.0			2				Comme	ints	
CAL-DWI1-FRB-20180928	9/23/18	1805			2	P	GA				\top		\top		2	FRI	3				
CAL=DW09-2018/1929	9/29/1	1104			6	P	DW						\Box		6	MS	/MS	D			
CAL-DW09-FRB-20180929		104			2	P	SA				\Box				2	FRI	3				
CAL-DW08-20191001	10/01/18	1006			2	P	DW								2						-
"AL-DWOS-FRB-20181001	10/01/18	006			2	P	AC	_			\perp				2	FRE	3				
		1		2_			6		\sqcup												
			_/				\triangle			_7	+										
			/			/	\perp			/	\perp										
					2																
Special Instructions/Comments:											CUME	ND NTATION ULTS TO:	Compa Addre (Pho	any: _ ess: <u>f</u> City: <u> </u> one:	Te-OS PiH	-sbur 1921-	Tech aza Vi an 7271	Star Fa	6 LAN te: PA ax:_ tratea	Zip:	000 Dr 15220
Container Types: P= HDPE, PJ= HDPE Ja O = Other:	r		Bottle Preserva TZ = Trizma:	tion Type	:T≖Th	iosulfat	е,					S = Aqueous, DW Soil, WW = Wa						p/Paper	, SD = Sedir	ment,	

Work Order 1803199 Page 20 of 188

Sample Log in Checklist

PAGE	# of _
WO#	1803199
SDG#_	
TAT	RUSH 7

	Sec	ction 1: Conta	iner Receint						
Delivered By: VI FedEx D U									
				eived					
Containers Arrival Date	Arrival tir	me							
1 10/2/18	10/2/18 0903								
			MSO		10270				
	Section 2: Samp				1 1 1 1 1 1				
Container Condition	nain of Custody								
		1,750	Thermometer ID: IR-4		Bate				
% 01: 1 1 1 1 1	Multiple .	1	☐ Probe used	□WF2	PAB.				
	COC's:		1.1.	□NA	1.1.				
			Temp (uncorrected):°C		10/2/18				
	*Relinquished	5-11-101 many 0 • 11-10-10-10-10-10-10-10-10-10-10-10-10-1	Temp (corrected): 1.0 °C		/ 1				
The state of the s	By" Section								
	complete			1					
	S	ection 3: Sam	ple Log In		· Auror				
Airhill/Tele# 6191	· · · · · · · · · · · · · · · · · · ·								
Shipping container ✓ Vista □ Client ✓ Retain □ Return □ Dispose By/date									
					12/18				
				The second secon					
				anomaly lom	required				
	ate or time				1 .				
Collector's name				140 10	12/10				
Preservation type				17 /	2/10				
All samples present and acc	counted for on COC			He 1	0/2/18				
Sample IDs are legible		500		18	10/2/18				
Samples conform to the des	cription on the CO	С		KE	10/2/18				
Samples are intact and suita	Samples are intact and suitable for testing								
Preservation documented as required: □NA □ Na₂S₂O₃ ☐ Trizma □Other (Ce /									
			□R1 Shelf:	illeo	12/18				
Section 2: Sample Receipt Condition and Initial Storage Container Condition Chain of Custody Preservation Type Temperature Cost Dispiping seals infact Shipping seals infact Custody Seals present Custody Seals present Custody Seals present Custody seals infact Section 3: Sample Log In Airbill/Trk # S 26 08 08 98 00 Shipping container Vista Client Retain Return Dispose Section 3: Sample Log In Airbill/Trk # S 26 08 08 98 00 Shipping container Vista Client Retain Return Dispose Section 3: Sample Log In Airbill/Trk # S 26 08 08 98 00 Shipping container Vista Client Retain Return Dispose Section 3: Sample Log In Airbill/Trk # S 26 08 08 98 00 Shipping container Vista Client Retain Return Dispose Section 3: Sample Log In Airbill/Trk # S 26 08 08 98 00 Shipping container Vista Client Retain Return Dispose Section 3: Sample Log In Airbill/Trk # S 26 08 08 98 00 Shipping container Vista Client Retain Return Dispose Section 3: Sample Log In Airbill/Trk # S 26 08 08 98 00 Shipping container Vista Client Retain Return Dispose Sample name Sample name Sample name Sample collection date or time Collector's name Preservation type All samples present and accounted for on COC Samples are infact and suitable for testing Preservation documented as required: DNA DNas203 Trizma DOther Samples stored WR2 Shelf: 13 80 WF2 Shelf: DR1 Shelf: WR1 Shelf:									
Delivered By: \(\) FedEx \(\) UPS \(\) On Trac \(\) GSO \(\) DHL \(\) Hand Delivered \(\) Other: Number of Containers \(\) Arrival Date \(\) Arrival time \(\) Cooler Received \(\) LR-SLC Initiated By/Date \(\) 10 2 18									
			1	10/10					
			KE	10/2/18					

ID.: LR - SLC

Rev No.: 2

Rev Date: 08/29/18

Page: 1 of 1

SDG Number # WE05 Vista Work Order No. 1803199 Case Narrative

Sample Condition on Receipt:

Three drinking water samples and three QC water samples were received in good condition and within the method temperature requirements. The samples were received and stored securely in accordance with Vista standard operating procedures and EPA methodology.

Analytical Notes:

EPA Method 537, Rev. 1.1

The samples were extracted and analyzed for a selected list of PFAS using EPA Method 537, Rev. 1.1.

Holding Times

The samples were extracted and analyzed within the method hold times.

Quality Control

The Initial Calibration and Continuing Calibration Verifications met the method acceptance criteria.

A Laboratory Fortified Blank (LFB) and Laboratory Reagent Blank (LRB) were extracted and analyzed with the preparation batch. No analytes were detected in the Laboratory Reagent Blank above 1/2 the LOQ. The LFB recoveries were within the method acceptance criteria.

The response area of 13C4-PFOS in samples "CAL-DW11-FRB-20180928" and "CAL-DW09-FRB-20180929" were less than 70 percent of the response area in the CCV, and within the required response limits as compared to the ICAL. In addition, the response area of 13C2-PFOA in sample "CAL-DW09-FRB-20180929" was less than 70 percent as compared to the CCV, and within the required response limits as compared to the ICAL. The extracts were re-injected and results were similar.

The surrogate recoveries for all QC and field samples were within the acceptance criteria.

A Laboratory Fortified Sample Matrix (LFSM) and Laboratory Fortified Sample Matrix Duplicate (LFSMD) were performed on sample "CAL-DW09-20180929". The analyte recoveries and RPDs were within the method acceptance criteria.

Work Order 1803199 Page 2 of 188

In addition, the laboratory QC officer must read and sign a copy of the Quality Assurance Review Form displayed on the next page of this Attachment. Electronic deliverables are not considered to be complete without the accompanying Quality Assurance Review Form. as the designated Quality Assurance Officer, hereby attest that all electronic deliverables have been thoroughly reviewed and are in agreement with the associated hardcopy data. The enclosed electronic files have been reviewed for accuracy (including significant figures), completeness and format. The laboratory will be responsible for any labor time necessary to correct enclosed electronic deliverables that have been found to be in error. I can be reached at (916) 673-1520 If there are any questions or problems with the enclosed electronic deliverables. Title: 0 A Manager Date: 10/09/18

Work Order 1803199 Page 3 of 188

Revision ISG 08/18/16

DATA QUALIFIERS & ABBREVIATIONS

B This compound was also detected in the method blank

Conc. Concentration

D Dilution

DL Detection limit

E The associated compound concentration exceeded the calibration range of

the instrument

H Recovery and/or RPD was outside laboratory acceptance limits

I Chemical Interference

J The amount detected is below the Reporting Limit/LOQ

LOD Limits of Detection

LOQ Limits of Quantitation

M Estimated Maximum Possible Concentration (CA Region 2 projects only)

NA Not applicable

ND Not Detected

Q Ion ratio outside of 70-130% of Standard Ratio. (DOD PFAS projects only)

TEQ Toxic Equivalency

U Not Detected (specific projects only)

* See Cover Letter

Unless otherwise noted, solid sample results are reported in dry weight. Tissue samples are reported in wet weight.

Work Order 1803199 Page 16 of 188

Sample Inventory Report

Vista Sample ID	Client Sample ID	Sampled	Received	Components/Containers
1803199-01	CAL-DW11-20180928	28-Sep-18 18:05	02-Oct-18 09:03	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1803199-02	CAL-DW11-FRB-20180928	28-Sep-18 18:05	02-Oct-18 09:03	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1803199-03	CAL-DW09-20180929	MS/MSD29-Sep-18 11:04	02-Oct-18 09:03	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1803199-04	CAL-DW09-FRB-20180929	29-Sep-18 11:04	02-Oct-18 09:03	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1803199-05	CAL-DW08-20181001	01-Oct-18 10:06	02-Oct-18 09:03	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL
1803199-06	CAL-DW08-FRB-20181001	01-Oct-18 10:06	02-Oct-18 09:03	HDPE Bottle, 250 mL
				HDPE Bottle, 250 mL

Vista Project: 1803199 Client Project: Calverton Off Base DW Sampling 112G08005-WE05

Work Order 1803199 Page 5 of 188

Sample ID: LR	В										EPA Meth	od 537
Client Data						Lab	oratory Data					
Name:	Tetra Tech		Matrix:	Aque	eous	Lab	Sample:	B8J0030-I	BLK1	Column:	BEH C18	
Project:	Calverton Off Base	DW Sampling 112G08	8005-WE05				•				BEIT CTO	
Analyte		CAS Number	Conc. (ng/L)	DL	LOD	LOQ	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS		375-73-5	ND	3.04	5.00	10.0		B8J0030	04-Oct-18	0.250 L	08-Oct-18 17:55	1
PFHxA		307-24-4	ND	3.04	5.00	10.0		B8J0030	04-Oct-18	0.250 L	08-Oct-18 17:55	1
PFHpA		375-85-9	ND	3.04	5.00	10.0		B8J0030	04-Oct-18	0.250 L	08-Oct-18 17:55	1
PFHxS		355-46-4	ND	3.04	5.00	10.0		B8J0030	04-Oct-18	0.250 L	08-Oct-18 17:55	1
PFOA		335-67-1	ND	3.04	5.00	10.0		B8J0030	04-Oct-18	0.250 L	08-Oct-18 17:55	1
PFNA		375-95-1	ND	3.04	5.00	10.0		B8J0030	04-Oct-18	0.250 L	08-Oct-18 17:55	1
PFOS		1763-23-1	ND	3.04	5.00	10.0		B8J0030	04-Oct-18	0.250 L	08-Oct-18 17:55	1
PFDA		335-76-2	ND	3.04	5.00	10.0		B8J0030	04-Oct-18	0.250 L	08-Oct-18 17:55	1
MeFOSAA		2355-31-9	ND	3.04	5.00	10.0		B8J0030	04-Oct-18	0.250 L	08-Oct-18 17:55	1
EtFOSAA		2991-50-6	ND	3.04	5.00	10.0		B8J0030	04-Oct-18	0.250 L	08-Oct-18 17:55	1
PFUnA		2058-94-8	ND	3.04	5.00	10.0		B8J0030	04-Oct-18	0.250 L	08-Oct-18 17:55	1
PFDoA		307-55-1	ND	3.04	5.00	10.0		B8J0030	04-Oct-18	0.250 L	08-Oct-18 17:55	1
PFTrDA		72629-94-8	ND	3.04	5.00	10.0		B8J0030	04-Oct-18	0.250 L	08-Oct-18 17:55	1
PFTeDA		376-06-7	ND	3.04	5.00	10.0		B8J0030	04-Oct-18	0.250 L	08-Oct-18 17:55	1
Labeled Standard	S	Type	% Recovery	•	Limits	•	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA		SURR	104		70 - 130			B8J0030	04-Oct-18	0.250 L	08-Oct-18 17:55	1
13C2-PFDA		SURR	111		70 - 130			B8J0030	04-Oct-18	0.250 L	08-Oct-18 17:55	1

70 - 130

DL - Detection Limit

d5-EtFOSAA

LOD - Limit of Detection LOQ - Limit of quantitation

SURR

Results reported to the DL.

114

When reported, PFHxS, PFOA, PFOS, MeFOSAA and EtFOSAA include both linear and branched isomers. Only the linear isomer is reported for all other analytes.

0.250 L

08-Oct-18 17:55

04-Oct-18

B8J0030

Work Order 1803199 Page 7 of 188

Sample ID: LFB

Client Data Laboratory Data

Name: Tetra Tech Matrix: Aqueous Lab Sample: B8J0030-BS1 Column: BEH C18

Project: Calverton Off Base DW Sampling 112G08005-WE

rioject.	on base bw sampling 1120000	703 WE									
Analyte	CAS Number	Amt Found (ng/L)	Spike Amt	% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
PFBS	375-73-5	41.4	35.4	117	70 - 130		B8J0030	04-Oct-18	0.250 L	08-Oct-18 17:43	1
PFHxA	307-24-4	46.4	40.0	116	70 - 130		B8J0030	04-Oct-18	0.250 L	08-Oct-18 17:43	1
PFHpA	375-85-9	46.4	40.0	116	70 - 130		B8J0030	04-Oct-18	0.250 L	08-Oct-18 17:43	1
PFHxS	355-46-4	44.5	36.4	122	70 - 130		B8J0030	04-Oct-18	0.250 L	08-Oct-18 17:43	1
PFOA	335-67-1	44.6	40.0	112	70 - 130		B8J0030	04-Oct-18	0.250 L	08-Oct-18 17:43	1
PFNA	375-95-1	46.9	40.0	117	70 - 130		B8J0030	04-Oct-18	0.250 L	08-Oct-18 17:43	1
PFOS	1763-23-1	42.4	37.0	115	70 - 130		B8J0030	04-Oct-18	0.250 L	08-Oct-18 17:43	1
PFDA	335-76-2	46.1	40.0	115	70 - 130		B8J0030	04-Oct-18	0.250 L	08-Oct-18 17:43	1
MeFOSAA	2355-31-9	42.2	40.0	106	70 - 130		B8J0030	04-Oct-18	0.250 L	08-Oct-18 17:43	1
EtFOSAA	2991-50-6	44.9	40.0	112	70 - 130		B8J0030	04-Oct-18	0.250 L	08-Oct-18 17:43	1
PFUnA	2058-94-8	44.2	40.0	110	70 - 130		B8J0030	04-Oct-18	0.250 L	08-Oct-18 17:43	1
PFDoA	307-55-1	39.2	40.0	98.0	70 - 130		B8J0030	04-Oct-18	0.250 L	08-Oct-18 17:43	1
PFTrDA	72629-94-8	43.8	40.0	109	70 - 130		B8J0030	04-Oct-18	0.250 L	08-Oct-18 17:43	1
PFTeDA	376-06-7	42.2	40.0	106	70 - 130		B8J0030	04-Oct-18	0.250 L	08-Oct-18 17:43	1
Labeled Standards		Type		% Rec	Limits	Qualifiers	Batch	Extracted	Samp Size	Analyzed	Dilution
13C2-PFHxA		SURR		107	70- 130		B8J0030	04-Oct-18	0.250 L	08-Oct-18 17:43	1
13C2-PFDA		SURR		112	70- 130		B8J0030	04-Oct-18	0.250 L	08-Oct-18 17:43	1
d5-EtFOSAA		SURR		100	70- 130		B8J0030	04-Oct-18	0.250 L	08-Oct-18 17:43	1

Work Order 1803199 Page 8 of 188

Sample ID: CAL-DW09-20180929 EPA Method 537

Name: Tetra Tech

Project: Calverton Off Base DW Sampling 112G08005-WE

Matrix: Aqueous

Lab Sample: B8J0030-MS1/B8J0030-MSD1

QC Batch: B8J0030 Samp Size: 0.249/0.266 L Source Lab Sample: Date Extracted: 1803199-03 04-Oct-18

Column: BEH C18

		Sample	LFSM	LFSM	LFSM	LFSM	LFSMD	LFSMD	LFSMD		LFSMD	%Rec	RPD	LFSM	LFSM	LFSMD	LFS
Analyte	CAS Number	(ng/L)	(ng/L)	Spike Amt	% Rec	Quals	(ng/L)	Spike Amt	% Rec	RPD	Quals	Limits	Limits	Analyzed	Dil	Analyzed	MD
PFBS	375-73-5	ND	41.0	35.6	113		38.9	33.3	115	1.75		70-130	30	08-Oct-18 18:08	1	08-Oct-18 18:21	1
PFHxA	307-24-4	5.99	51.0	40.2	112		48.3	37.6	112	0		70-130	30	08-Oct-18 18:08	1	08-Oct-18 18:21	1
PFHpA	375-85-9	3.28	50.1	40.2	116		47.1	37.6	117	0.858		70-130	30	08-Oct-18 18:08	1	08-Oct-18 18:21	1
PFHxS	355-46-4	ND	46.3	36.6	120		42.9	34.2	118	1.68		70-130	30	08-Oct-18 18:08	1	08-Oct-18 18:21	1
PFOA	335-67-1	11.2	59.3	40.2	120		50.6	37.6	105	13.3		70-130	30	08-Oct-18 18:08	1	08-Oct-18 18:21	1
PFNA	375-95-1	ND	45.0	40.2	110		43.0	37.6	112	1.80		70-130	30	08-Oct-18 18:08	1	08-Oct-18 18:21	1
PFOS	1763-23-1	5.63	50.4	37.2	120		44.4	34.8	111	7.79		70-130	30	08-Oct-18 18:08	1	08-Oct-18 18:21	1
PFDA	335-76-2	ND	45.0	40.2	111		43.8	37.6	116	4.41		70-130	30	08-Oct-18 18:08	1	08-Oct-18 18:21	1
MeFOSAA	2355-31-9	ND	46.1	40.2	115		37.5	37.6	99.8	14.2		70-130	30	08-Oct-18 18:08	1	08-Oct-18 18:21	1
EtFOSAA	2991-50-6	ND	40.5	40.2	101		37.7	37.6	100	0.995		70-130	30	08-Oct-18 18:08	1	08-Oct-18 18:21	1
PFUnA	2058-94-8	ND	40.0	40.2	99.4		36.9	37.6	98.2	1.21		70-130	30	08-Oct-18 18:08	1	08-Oct-18 18:21	1
PFDoA	307-55-1	ND	42.3	40.2	105		39.4	37.6	105	0		70-130	30	08-Oct-18 18:08	1	08-Oct-18 18:21	1
PFTrDA	72629-94-8	ND	47.1	40.2	117		41.1	37.6	109	7.08		70-130	30	08-Oct-18 18:08	1	08-Oct-18 18:21	1
PFTeDA	376-06-7	ND	38.1	40.2	94.7		37.6	37.6	100	5.44		70-130	30	08-Oct-18 18:08	1	08-Oct-18 18:21	1
					LFSM	LFSM			LFSMD		LFSMD			LFSM	LFSM	LFSMD	LFS
Labeled St	andards		Type		% Rec	Quals			% Rec		Quals	Limits		Analyzed	Dil	Analyzed	MD
13C2-PFHx	kΑ		SURR		111				107			70-130		08-Oct-18 18:08	1	08-Oct-18 18:21	1
13C2-PFDA	A		SURR		106				113			70-130		08-Oct-18 18:08	1	08-Oct-18 18:21	1
d5-EtFOSA	.A		SURR		103				111			70-130		08-Oct-18 18:08	1	08-Oct-18 18:21	1

Work Order 1803199 Page 12 of 188

Process Sheet

Workorder: 1803199

Prep Expiration: 2018-Oct-12

Client: Tetra Tech

Workorder Due:09-Oct-18 00:00

TAT: 7

Method: 537 PFAS DW DoD Unmodified

Matrix: Aqueous

Prep Batch: <u>128 50030</u>

Version: 14 Analyte DW (Full List)

DoD: DoD QSM 5.1

Prep Data Entered: 10/5/19
Date and Initials

Initial Sequence:

58J00Z4

		iriiliai Sequerice.		
Prep LabSampID A/B Rec	Spike Reç, ClientSampleID	Comments	Location	Container
1803199-01 "A" 🗹	☑ CAL-DW11-20180928		WR-2 A-3	HDPE Bottle, 250 mL
1803199-02	CAL-DW11-FRB-20180928	4 4	WR-2 A-3	HDPE Bottle, 250 mL
1803199-03 '\ለB ር" 🗹	CAL-DW09-20180929	MS/MSD	WR-2 A-3	HDPE Bottle, 250 mL
1803199-04 " \ " 🗹	CAL-DW09-FRB-20180929		WR-2 A-3	HDPE Bottle, 250 mL
1803199-05	☑ CAL-DW08-20181001		WR-2 A-3	HDPE Bottle, 250 mL
1803199-06 ₩ 🗹	CAL-DW08-FRB-20181001		WR-2 A-3	HDPE Bottle, 250 mL

WO Comments: Provide all analytical runs. 🍎 เด่3/เช MS/MSD per batch, if MS/MSD is not provided - LCS/LCSD.

Pre-Prep Check Out: <u>HB 10/3/18</u>

Pre-Prep Check In: <u>HB 10/3/18</u>

Prep Check Out:

Prep Check In: _

10/4/18

Prep Reconciled Initals/Date: HB 10/3/18

Spike Reconciled Initals/Date:

VialBoxID: Bullwakle

Internal Chain of Custody 1803199

Client: Tetra Tech

Project Number: Calverton Off Base DW

Received: 02-Oct-18 09:03

Received By: Bettina Benedict

					Sa	mple					Ext	ract	
Vista Sample ID	В	ottle	Initials D	 Initials Da		Initials D New Loca		Initials D	ate/Timeation	New Location New Loc		Initials D	Date/Time ation
1803199-01	"	A" T	HB 10/31 Preplat	 HB 1013/11		of 101	4/18 0900	1 10 R-7	14/16 0230		1/18 0815 (cb 2	-L 1	c s 18 1540 = 7
1803199-02			Ī	-		7	-	-		,			
1803199-03													
1803199-04													
1803199-05			-	:									_
1803199-06		4		1	7							V	

PREPARATION BENCH SHEET

Matrix: Aqueous

Method: 537 PFAS DW DoD Unmodified

B8J0030	

Chemist: Prep Date: 10/4/18

Prep Time: 09/5

Prepared using: LCMS - SPE Extraction-LCMS

		BalanceID: HRMS-8			• •		
Cen	VISTA Sample ID	Bottle + Sample (g)	Bottle Only (g)	Sample Amt. (L)	SS/NS CHEM/WIT DATE	SPE	IS CHEM/WIT DATE
	B8J0030-BLK1	NΑ	NA	(0.150)	-yc AD 10/4/18	-c 6/4/12	M aE 10/5/18
	B8J0030-BS1	1	+	(0.150)	7		T
	B8J0030-MS1 1803199-03	286.49	37.57	0.24892			,
	B8J0030-MSD1 1803199-03	303-72	37.58	0.26614			
	1803199-01	298.70	37.66	0.26104			
	1803199-02	296.43	37.41	0.25902			
	1803199-03	303-39	37.73	0.26566 /			
	1803199-04	299.03	32.51	0.26152			
	1803199-05	298.41	37.72	0.26069			
	1803199-06	293.13	37.23	0.25590	<u></u>		

SS/IS: 18H BO9, ZOLI (VS)	SPE Chem: Strata 1 33 m 500 mg Lot#: 512-0043-78	Notes: (A) 1.159 Milmil added to GCS. HB 10/3/18
VS: /MM 以/// (ひょに (Vy)	Ele SOLV: 120H	
S/RS: 1841310, 20, L(V)	Lot#: 58069209	
	Final Volume(s)	

Comments: Assume 1 g = 1 mL Cen = Centrifuged

: Batch: B8J0030

Matrix: Aqueous

LabNumber	WetWeight (Initial)	% Solids (Extraction Solids)	DryWeight	Final	Extracted	Ext By	Spike	SpikeAmount	ClientMatrix	Analysis
1803199-01	0.26104	AVA	NA	1000	04-Oct-18 09:15	MAC			Drinking Water	537 PFAS DW DoD Unmod
1803199-02	0.25902	T	7	1000	04-Oct-18 09:15	MAC			QC Water	537 PFAS DW DoD Unmoo
1803199-03	0.26566			1000	04-Oct-18 09:15	MAC			Drinking Water	537 PFAS DW DoD Unmod
1803199-04	0.26152 🗸			1000	04-Oct-18 09:15	MAC	_		QC Water	537 PFAS DW DoD Unmod
1803199-05	0.26069			1000	04-Oct-18 09:15	MAC	_		Drinking Water	537 PFAS DW DoD Unmod
1803199-06	0.2559			1000	04-Oct-18 09:15	MAC			QC Water	537 PFAS DW DoD Unmoo
B8J0030-BLK1	0.25			1000	04-Oct-18 09:15	MAC				QC
B8J0030-BS1	0.25 🗸			1000	04-Oct-18 09:15	MAC	18H1311 ,	10		QC
B8J0030-MS1	0.24892 🗸			1000	04-Oct-18 09:15	MAC	18H1311	/ 10 /		QC
B8J0030-MSD1	0.26614	<i>,</i> ₩	$\overline{}$	1000	04-Oct-18 09:15	MAC	18H1311	/ 10 /		QC

10/5/18

Printed: 10/5/2018 12:05:53PM

ICAL

Compound 18: 13C2-PFOA

ID	Name	Туре	Std. Conc RT		Area	ICAL Area	% Area
1 IPA	181008G1_1	Analyte	10			5732.11	0.00
2 ST181008G1-1 PFC CS-1 537 18J0404	181008G1_2	Analyte	10	4.22	5618.47	5732.11	98.02
3 B8J0030-BS1 LFB 0.25	181008G1_3	Analyte	10	4.22	4662.97	5732.11	81.35
4 B8J0030-BLK1 LRB 0.25	181008G1_4	Analyte	10	4.22	5318.61	5732.11	92.79
5 B8J0030-MS1 LFSM 0.24892	181008G1_5	Analyte	10	4.22	4664.15	5732.11	81.37
6 B8J0030-MSD1 LFSMD 0.26614	181008G1_6	Analyte	10	4.22	4928.01	5732.11	85.97
7 1803199-01 CAL-DW11-20180928 0.26104	181008G1_7	Analyte	10	4.22	4394.57	5732.11	76.67
8 1803199-02 CAL-DW11-FRB-20180928 0.25902	181008G1_8	Analyte	10	4.22	4324.48	5732.11	75.44
9 1803199-03 CAL-DW09-20180929 0.26566	181008G1_9	Analyte	10	4.22	3879.07	5732.11	67.67
10 1803199-04 CAL-DW09-FRB-20180929 0.26152	181008G1_10	Analyte	10	4.22	3833.82	5732.11	66.88
11 1803199-05 CAL-DW08-20181001 0.26069	181008G1_11	Analyte	10	4.22	4696.73	5732.11	81.94
12 1803199-06 CAL-DW08-FRB-20181001 0.2559	181008G1_12	Analyte	10	4.22	4782.96	5732.11	83.44
13 IPA	181008G1_13	Analyte	10			5732.11	0.00
14 ST181008G1-2 PFC CS1 537 18J0406	181008G1_14	Analyte	10	4.22	5976.84	5732.11	104.27
15 IPA	181008G1_15	Analyte	10			5732.11	0.00

Compound 19: 13C4-PFOS

ID	Name	Туре	Std. Conc RT		Area	ICAL Area	% Area
1 IPA	181008G1_1	Analyte	28.7			13457.00	0.00
2 ST181008G1-1 PFC CS-1 537 18J0404	181008G1_2	Analyte	28.7	4.64	14554.19	13457.00	108.15
3 B8J0030-BS1 LFB 0.25	181008G1_3	Analyte	28.7	4.63	11010.75	13457.00	81.82
4 B8J0030-BLK1 LRB 0.25	181008G1_4	Analyte	28.7	4.63	12860.54	13457.00	95.57
5 B8J0030-MS1 LFSM 0.24892	181008G1_5	Analyte	28.7	4.63	10754.31	13457.00	79.92
6 B8J0030-MSD1 LFSMD 0.26614	181008G1_6	Analyte	28.7	4.63	11430.03	13457.00	84.94
7 1803199-01 CAL-DW11-20180928 0.26104	181008G1_7	Analyte	28.7	4.63	11340.50	13457.00	84.27
8 1803199-02 CAL-DW11-FRB-20180928 0.25902	181008G1 8	Analyte	28.7	4.63	9846.20	13457.00	73.17

KBF 10/9/2018

Work Order 1803199 Page 79 of 188

9 1803199-03 CAL-DW09-20180929 0.26566	181008G1 9 Analyte	28.7	4.64	10064.31	13457.00	74.79
10 1803199-04 CAL-DW09-FRB-20180929 0.26152		28.7	4.64	9862.12	13457.00	73.29
11 1803199-05 CAL-DW08-20181001 0.26069	181008G1_11 Analyte	28.7	4.65	10601.65	13457.00	78.78
12 1803199-06 CAL-DW08-FRB-20181001 0.2559	181008G1_12 Analyte	28.7	4.64	11134.09	13457.00	82.74
13 IPA	181008G1_13 Analyte	28.7			13457.00	0.00
14 ST181008G1-2 PFC CS1 537 18J0406	181008G1_14 Analyte	28.7	4.64	14460.89	13457.00	107.46
15 IPA	181008G1_15 Analyte	28.7			13457.00	0.00

Compound 20: d3-N-MeFOSAA

ID	Name	Туре	Std. Conc RT		Area	ICAL Area	% Area
1 IPA	181008G1_1	Analyte	40			14928.39	0.00
2 ST181008G1-1 PFC CS-1 537 18J0404	181008G1_2	Analyte	40	4.95	13440.23	14928.39	90.03
3 B8J0030-BS1 LFB 0.25	181008G1_3	Analyte	40	4.95	11986.22	14928.39	80.29
4 B8J0030-BLK1 LRB 0.25	181008G1_4	Analyte	40	4.95	13361.06	14928.39	89.50
5 B8J0030-MS1 LFSM 0.24892	181008G1_5	Analyte	40	4.94	11674.84	14928.39	78.21
6 B8J0030-MSD1 LFSMD 0.26614	181008G1_6	Analyte	40	4.94	12246.88	14928.39	82.04
7 1803199-01 CAL-DW11-20180928 0.26104	181008G1_7	Analyte	40	4.95	11117.25	14928.39	74.47
8 1803199-02 CAL-DW11-FRB-20180928 0.25902	181008G1_8	Analyte	40	4.95	11194.07	14928.39	74.99
9 1803199-03 CAL-DW09-20180929 0.26566	181008G1_9	Analyte	40	4.94	10154.01	14928.39	68.02
10 1803199-04 CAL-DW09-FRB-20180929 0.26152	181008G1_10	Analyte	40	4.95	10505.31	14928.39	70.37
11 1803199-05 CAL-DW08-20181001 0.26069	181008G1_11	Analyte	40	4.95	11383.84	14928.39	76.26
12 1803199-06 CAL-DW08-FRB-20181001 0.2559	181008G1_12	Analyte	40	4.94	13128.14	14928.39	87.94
13 IPA	181008G1_13	Analyte	40			14928.39	0.00
14 ST181008G1-2 PFC CS1 537 18J0406	181008G1_14	Analyte	40	4.95	15606.94	14928.39	104.55
15 IPA	181008G1_15	Analyte	40			14928.39	0.00

CCAL

Compound 18: 13C2-PFOA

ID	Name	Type	Std. Conc RT	Area	CCAL Area % A	rea
1 IPA	181008G1 1	Analyte	10		5618.47	0.00

Work Order 1803199 Page 80 of 188

2	ST181008G1-1 PFC CS-1 537 18J0404	181008G1_2	Analyte	10	4.22	5618.47	5618.47	100.00	
3	B8J0030-BS1 LFB 0.25	181008G1_3	Analyte	10	4.22	4662.97	5618.47	82.99	
4	B8J0030-BLK1 LRB 0.25	181008G1_4	Analyte	10	4.22	5318.61	5618.47	94.66	
5	B8J0030-MS1 LFSM 0.24892	181008G1_5	Analyte	10	4.22	4664.15	5618.47	83.01	
6	B8J0030-MSD1 LFSMD 0.26614	181008G1_6	Analyte	10	4.22	4928.01	5618.47	87.71	
7	1803199-01 CAL-DW11-20180928 0.26104	181008G1_7	Analyte	10	4.22	4394.57	5618.47	78.22	
8	1803199-02 CAL-DW11-FRB-20180928 0.25902	181008G1_8	Analyte	10	4.22	4324.48	5618.47	76.97	
9	1803199-03 CAL-DW09-20180929 0.26566	181008G1_9	Analyte	10	4.22	3879.07	5618.47	69.04	
10	1803199-04 CAL-DW09-FRB-20180929 0.26152	181008G1_10	Analyte	10	4.22	3833.82	5618.47	68.24	reported run
11	1803199-05 CAL-DW08-20181001 0.26069	181008G1_11	Analyte	10	4.22	4696.73	5618.47	83.59	
12	1803199-06 CAL-DW08-FRB-20181001 0.2559	181008G1_12	Analyte	10	4.22	4782.96	5618.47	85.13	
13	IPA	181008G1_13	Analyte	10			5618.47	0.00	
14	ST181008G1-2 PFC CS1 537 18J0406	181008G1_14	Analyte	10	4.22	5976.84	5618.47	106.38	
15	IPA	181008G1_15	Analyte	10			5618.47	0.00	

Compound 19: 13C4-PFOS

ID	Name	Туре	Std. Conc RT		Area	CCAL Area	% Area	
1 IPA	181008G1_1	Analyte	28.7			14554.19	0.00	
2 ST181008G1-1 PFC CS-1 537 18J0404	181008G1_2	Analyte	28.7	4.64	14554.19	14554.19	100.00	
3 B8J0030-BS1 LFB 0.25	181008G1_3	Analyte	28.7	4.63	11010.75	14554.19	75.65	
4 B8J0030-BLK1 LRB 0.25	181008G1_4	Analyte	28.7	4.63	12860.54	14554.19	88.36	
5 B8J0030-MS1 LFSM 0.24892	181008G1_5	Analyte	28.7	4.63	10754.31	14554.19	73.89	
6 B8J0030-MSD1 LFSMD 0.26614	181008G1_6	Analyte	28.7	4.63	11430.03	14554.19	78.53	
7 1803199-01 CAL-DW11-20180928 0.26104	181008G1_7	Analyte	28.7	4.63	11340.50	14554.19	77.92	
8 1803199-02 CAL-DW11-FRB-20180928 0.25902	181008G1_8	Analyte	28.7	4.63	9846.20	14554.19	67.65	reported run
9 1803199-03 CAL-DW09-20180929 0.26566	181008G1_9	Analyte	28.7	4.64	10064.31	14554.19	69.15	
10 1803199-04 CAL-DW09-FRB-20180929 0.26152	181008G1_10	Analyte	28.7	4.64	9862.12	14554.19	67.76	reported run
11 1803199-05 CAL-DW08-20181001 0.26069	181008G1_11	Analyte	28.7	4.65	10601.65	14554.19	72.84	
12 1803199-06 CAL-DW08-FRB-20181001 0.2559	181008G1_12	Analyte	28.7	4.64	11134.09	14554.19	76.50	
13 IPA	181008G1_13	Analyte	28.7			14554.19	0.00	
14 ST181008G1-2 PFC CS1 537 18J0406	181008G1_14	Analyte	28.7	4.64	14460.89	14554.19	99.36	
15 IPA	181008G1_15	Analyte	28.7			14554.19	0.00	

Compound 20: d3-N-MeFOSAA

ID	Name	Type	Std. Conc RT		Area	CCAL Area	% Area
1 IPA	181008G1_1	Analyte	40			13440.23	0.00
2 ST181008G1-1 PFC CS-1 537 18J0404	181008G1_2	Analyte	40	4.95	13440.23	13440.23	100.00
3 B8J0030-BS1 LFB 0.25	181008G1_3	Analyte	40	4.95	11986.22	13440.23	89.18
4 B8J0030-BLK1 LRB 0.25	181008G1_4	Analyte	40	4.95	13361.06	13440.23	99.41
5 B8J0030-MS1 LFSM 0.24892	181008G1_5	Analyte	40	4.94	11674.84	13440.23	86.86
6 B8J0030-MSD1 LFSMD 0.26614	181008G1_6	Analyte	40	4.94	12246.88	13440.23	91.12
7 1803199-01 CAL-DW11-20180928 0.26104	181008G1_7	Analyte	40	4.95	11117.25	13440.23	82.72
8 1803199-02 CAL-DW11-FRB-20180928 0.25902	181008G1_8	Analyte	40	4.95	11194.07	13440.23	83.29
9 1803199-03 CAL-DW09-20180929 0.26566	181008G1_9	Analyte	40	4.94	10154.01	13440.23	75.55
10 1803199-04 CAL-DW09-FRB-20180929 0.26152	181008G1_10	Analyte	40	4.95	10505.31	13440.23	78.16
11 1803199-05 CAL-DW08-20181001 0.26069	181008G1_11	Analyte	40	4.95	11383.84	13440.23	84.70
12 1803199-06 CAL-DW08-FRB-20181001 0.2559	181008G1_12	Analyte	40	4.94	13128.14	13440.23	97.68
13 IPA	181008G1_13	Analyte	40			13440.23	0.00
14 ST181008G1-2 PFC CS1 537 18J0406	181008G1_14	Analyte	40	4.95	15606.94	13440.23	116.12
15 IPA	181008G1_15	Analyte	40			13440.23	0.00

Work Order 1803199 Page 82 of 188

			. Jeanaana	2 Veriem Cu	ICCNIISE	-LA	`	•	
111			ION Ratio	Concentration	C-Cals Name	Sign Date	Correct I-Cal	Manual Integrations	NA
Calibration ID:	ST18[0086]-1	(L)M H	NA	Ф	Ф	口	Ф		1
Calibration ID:	V -2	- rWH	<u>4</u>						₩
Calibration ID:		LMH -						. 🗆	
Calibration ID:		LMH							
Calibration iD:		LMH -							
Calibration ID:		LMH							
Calibration ID:		LMH				À			Ο,
Calibration ID:		LMH -							
Calibration ID:		LMH -							
Calibration ID:		LMH							
Run Log Present	•			Com	ments:	Fùll Ma	ss Cal. D	9/25/	18
# of Samples per instrument Blank	Sequence Checked:			J)W	114	,		
IIS Area Saved	. 1				æ'				
Reviewed By:	Initials/Date	0/9/18		_					

Work Order 1803199

ID: LR - LCSRC

Rev. No.: 1

Rev. Date: 02/06/2018

Page: 1 of 1 ge 83 of 188

Dataset:

X:\G1.PRO\Results\2018\181008G1\181008G1-2.qld

Last Altered: Printed:

Tuesday, October 09, 2018 11:20:51 Pacific Daylight Time Tuesday, October 09, 2018 11:22:06 Pacific Daylight Time

Method: X:\G1.PRO\MethDB\PFAS_DW_L14_1005.mdb 06 Oct 2018 09:05:09

Calibration: X:\G1.PRO\CurveDB\C18_537_Q1_10-05-j8_L14.cdb 09 Oct 2018 10:37:25

Name: 181008G1_2, Date: 08-Oct-2018, Time: 17:27:29, ID: ST181008G1-1 PFC CS-1 537 18J0404, Description: PFC CS-1 537 18J0404

MJ 7 18

						ν					
Sability Southlas servinishali	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT.	y Axis Resp.	Conc.	%Rec
1	1 PFBS	298.8> 80.2	5.95e2	1.46e4	1.00	, , , , , , , , , , , , , , , , , , ,	2.92	2.91	1.17	1.58	88.6
2	2 PFHxA	312.8 > 269.0	1.23e3	5.62e3	1.00		3.25	3.28	2.19	2.12	106.2
3	3 PFHpA	362.8 > 319.0	1.31e3	5.62e3	1.00		3.78	3.80	2.34	2.17	108.7
4	4 PFHxS	398.7 > 80.2	5.87e2	1.46e4	1.00		3.93	3.93	1.16	1.62	88.8
5	5 PFOA	412.7 > 368.9	1.20e3	5.62e3	1.00		4.22	4.22	2.14	2.07	103.6
6	6 PFNA	462.8 > 419.0	1.03e3	5.62e3	1.00		4.55	4.58	1.82	1.88	94.1
7	7 PFOS	498.7 >80.2	3.06e2	1.46e4	1.00		4.64	4.64	0.603	1.60	86.1
8	8 PFDA	512.8 > 468.9	1.46e3	5.62e3	1.00		4.83	4.83	2.59	2.01	100.5
9	9 N-MeFOSAA	569.8 > 419.0	4.44e2	1.34e4	1.00		4.96	4.96	1.32	1.88	94.2
10	10 N-EtFOSAA	583.8 >419.0	3.32e2	1.34e4	1.00		5.09	5.09	0.987	1.52	76.2
11	11 PFUnA	562.7 > 518.9	1.60e3	5.62e3	1.00		5.09	5.10	2.84	2.00	99.9
12	12 PFDoA	612.8 > 569.0	1.30e3	5.62e3	1.00		5.34	5.36	2.32	1.92	95.8
13	13 PFTrDA	662.8 > 619.0	1.36e3	5.62e3	1.00		5.56	5.58	2.42	1.96	98.1
14	14 PFTeDA	712.8>669.0	1.64e3	5.62e3	1.00		5.74	5.76	2.91	2.23	111.4
15	15 13C2-PFHxA	314.9 > 270.0	6.37e3	5.62e3	1.00	1.102	3.29	3.28	11.3	10.3	102.9
16	16 13C2-PFDA	514.8 > 470.0	6.46e3	5.62e3	1.00	1.199	4.86	4.83	11.5	9.59	95.9
17	17 d5-N-EtFOSAA	588.8> 419.0	1.10e4	1.34e4	1.00	0.820	5.08	5.09	32.6	39.8	99.4
18	18 13C2-PFOA	414.8 > 370.0	5.62e3	5.62e3	1.00	1.000	4.26	4.22	10.0	10.0	100.0
19	19 13C4-PFOS	502.8>80.2	1.46e4	1.46e4	1.00	1.000	4.65	4.64	28.7	28.7	100.0
20	20 d3-N-MeFOSAA	572.7 > 419.0	1.34e4	1.34e4	1.00	1.000	4.99	4.95	40.0	40.0	100.0

MAF 10/9/18

Dataset:

Untitled

Last Altered:

Tuesday, October 09, 2018 11:25:51 Pacific Daylight Time

Printed:

Tuesday, October 09, 2018 11:26:02 Pacific Daylight Time

Method: X:\G1.PRO\MethDB\PFAS_DW_L14_1005.mdb 06 Oct 2018 09:05:09

Calibration: X:\G1.PRO\CurveDB\C18_537_Q1_10-05-18_L14.cdb 09 Oct 2018 10:37:25

Compound name: PFBS

and the second section of	# Name	ID .	Acq.Date	Acq.Time
1	1 181008G1_1	IPA	,08-Oct-18	17:15:25
2	2 181008G1_2	ST181008G1-1 PFC CS-1 537 18J0404	08-Oct-18	17:27:29 🗸
3	3 181008G1_3	B8J0030-BS1 LFB 0.25	08-Oct-18	17:43:14
4	4 181008G1_4	B8J0030-BLK1 LRB 0.25	08-Oct-18	17:55:15
5	5 181008G1_5	B8J0030-MS1 LFSM 0.24892	08-Oct-18	18:08:17
6	6 181008G1_6	B8J0030-MSD1 LFSMD 0.26614	08-Oct-18	18:21:14
7	7 181008G1_7	1803199-01 CAL-DW11-20180928 0.26	08-Oct-18	18:34:11
8	8 181008G1_8	1803199-02 CAL-DW11-FRB-2018092	08-Oct-18	18:47:09
9 11 - 12 - 11 - 12	9 181008G1_9	1803199-03 CAL-DW09-20180929 0.26	. 08-Oct-18	19:00:06
10	10 181008G1_10	1803199-04 CAL-DW09-FRB-2018092	08-Oct-18	19:13:04
11	11 181008G1_11	1803199-05 CAL-DW08-20181001 0.26	. 08-Oct-18	19:26:10
12	12 181008G1_12	1803199-06 CAL-DW08-FRB-2018100	08-Oct-18	19:39:10
13	13 181008G1_13	IPA	08-Oct-18	19:52:08
14	14 181008G1_14	ST181008G1-2 PFC CS1 537 18J0406 V	08-Oct-18	20:05:08
15	15 181008G1_15	IPA	08-Oct-18	20:18:12

Work Order 1803199 Page 85 of 188

Vista Analytical Laboratory

Page 1 of 1

-

X:\G1.PRO\Results\2018\181008G1\181008G1-14.qld

Last Altered:

Dataset:

Printed:

Tuesday, October 09, 2018 11:23:42 Pacific Daylight Time Tuesday, October 09, 2018 11:24:06 Pacific Daylight Time

Method: X:\G1.PRO\MethDB\PFAS_DW_L14_1005.mdb 06 Oct 2018 09:05:09 Calibration: X:\G1.PRO\CurveDB\C18_537_Q1_10-05-18_L14.cdb 09 Oct 2018 10:37:25

Name: 181008G1_14, Date: 08-Oct-2018, Time: 20:05:08, ID: ST181008G1-2 PFC CS1 537 18J0406, Description: PFC CS1 537 18J0406

MTT 1/18

4.6980	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
	1 PFBS	298.8> 80.2	2.99e3	1.45e4	1.00		2.93	2.91	5.94	7.98	90.3
2	2 PFHxA	312.8 > 269.0	5.83e3	5.98e3	1.00		3.26	3.29	9.75	9.45	94.5
3	3 PFHpA	362.8 > 319.0	6.12e3	5.98e3	1.00		3.78	3.80	10.2	9.51	95.1
4	4 PFHxS	398.7 > 80.2	3.14e3	1.45e4	1.00		3.94	3.93	6.23	8.69	95.3
5	5 PFOA	412.7 > 368.9	5.75e3	5.98e3	1.00		4.22	4.23	9.62	9.31	93.1
6	6 PFNA	462.8 > 419.0	5.33e3	5.98e3	1.00		4.56	4.58	8.92	9.20	92.0
7	7 PFOS	498.7 >80.2	1.49e3	1.45e4	1.00		4.64	4.64	2.95	7.84	84.9
8	8 PFDA	512.8 > 468.9	7.42e3	5.98e3	1.00		4.84	4.83	12.4	9.62	96.2
9	9 N-MeFOSAA	569.8 > 419.0	2.55e3	1.56e4	1.00		4.95	4.95	6.55	9.34	93.4
10	10 N-EtFOSAA	583.8 >419.0	2.28e3	1.56e4	1.00		5.08	5.08	5.84	9.02	90.2
11	11 PFUnA	562.7 > 518.9	7.34e3	5.98e3	1.00		5.10	5.09	12.3	8.63	86.3
12	12 PFDoA	612.8 > 569.0	6.80e3	5.98e3	1.00		5.34	5.36	11.4	9.39	93.9
13	13 PFTrDA	662.8 > 619.0	7.64e3	5.98e3	1.00		5.57	5.58	12.8	10.4	103.7
14	14 PFTeDA	712.8>669.0	7.70e3	5.98e3	1.00		5.75	5.76	12.9	9.86	98.6
15	15 13C2-PFHxA	314.9 > 270.0	6.41e3	5.98e3	1.00	1.102	3.29	3.29	10.7	9.74	97.4
16	16 13C2-PFDA	514.8 > 470.0	7.61e3	5.98e3	1.00	1.199	4.86	4.84	12.7	10.6	106.2
17	17 d5-N-EtFOSAA	588.8> 419.0	1.35e4	1.56e4	1.00	0.820	5.08	5.08	34.5	42.1	105.2
18	18 13C2-PFOA	414.8 > 370.0	5.98e3	5.98e3	1.00	1.000	4.26	4.22	10.0	10.0	100.0
19	19 13C4-PFOS	502.8>80.2	1.45e4	1.45e4	1.00	1.000	4.65	4.64	28.7	28.7	100.0
20	20 d3-N-MeFOSAA	572.7 > 419.0	1.56e4	1.56e4	1.00	1.000	4.99	4.95	40.0	40.0	100.0
							_				

WAF 10/9/18

Vista Analytical Laboratory

Dataset:

Untitled

Last Altered:

Tuesday, October 09, 2018 11:25:51 Pacific Daylight Time

Printed: Tuesday, October 09, 2018 11:26:02 Pacific Daylight Time

Method: X:\G1.PRO\MethDB\PFAS_DW_L14_1005.mdb 06 Oct 2018 09:05:09

Calibration: X:\G1.PRO\CurveDB\C18_537_Q1_10-05-18_L14.cdb 09 Oct 2018 10:37:25

Compound name: PFBS

	# Name	ID .	Acq.Date	Acq.Time
1 4	1 181008G1_1	IPA	08-Oct-18	17:15:25
2	2 181008G1_2	ST181008G1-1 PFC CS-1 537 18J0404	08-Oct-18	17:27:29
3	3 181008G1_3	B8J0030-BS1 LFB 0.25	08-Oct-18	17:43:14
4	4 181008G1_4	B8J0030-BLK1 LRB 0.25	08-Oct-18	17:55:15
5	5 181008G1_5	B8J0030-MS1 LFSM 0.24892	08-Oct-18	18:08:17
6	6 181008G1_6	B8J0030-MSD1 LFSMD 0.26614	08-Oct-18	18:21:14
7 1	7 181008G1_7	1803199-01 CAL-DW11-20180928 0.26	08-Oct-18	18:34:11
8	8 181008G1_8	1803199-02 CAL-DW11-FRB-2018092	08-Oct-18	18:47:09
9 2000 124	9 181008G1_9	1803199-03 CAL-DW09-20180929 0.26	08-Oct-18	19:00:06
10	10 181008G1_10	1803199-04 CAL-DW09-FRB-2018092	08-Oct-18	19:13:04
11	11 181008G1_11	1803199-05 CAL-DW08-20181001 0.26	08-Oct-18	19:26:10
12	12 181008G1_12	1803199-06 CAL-DW08-FRB-2018100	08-Oct-18	19:39:10
13	13 181008G1_13	IPA	08-Oct-18	19:52:08
14	14 181008G1_14	ST181008G1-2 PFC CS1 537 18J0406	08-Oct-18	20:05:08
15	15 181008G1_15	IPA	08-Oct-18	20:18:12

Work Order 1803199 Page 91 of 188

ICAL

Compound 18: 13C2-PFOA

ID	Name	Type	Std. Conc	RT	Area	ICAL Area	Area %
1 IPA	181009G2_1	Analyte	10			5732.11	0.00
2 ST181009G2-1 PFC CS-1 537 18J0404	181009G2_2	Analyte	10	4.22	6089.11	5732.11	106.23
3 1803199-02 CAL-DW11-FRB-20180928 0.25902	181009G2_3	Analyte	10	4.22	4137.24	5732.11	72.18
4 1803199-03 CAL-DW09-20180929 0.26566	181009G2_4	Analyte	10	4.22	4337.23	5732.11	75.67
5 1803199-04 CAL-DW09-FRB-20180929 0.26152	181009G2_5	Analyte	10	4.22	4209.83	5732.11	73.44
6 IPA	181009G2_6	Analyte	10			5732.11	0.00
7 ST181009G2-2 PFC CS1 537 18J0406	181009G2_7	Analyte	10	4.23	5560.46	5732.11	97.01
8 1803199-02 CAL-DW11-FRB-20180928 0.25902	181009G2_8	Analyte	10	4.23	4070.21	5732.11	71.01
9 1803199-04 CAL-DW09-FRB-20180929 0.26152	181009G2_9	Analyte	10	4.23	4212.77	5732.11	73.49
10 IPA	181009G2_10	Analyte	10			5732.11	0.00
11 ST181009G2-3 PFC CS2 537 18J0407	181009G2_11	Analyte	10	4.23	5753.82	5732.11	100.38

Compound 19: 13C4-PFOS

ID	Name	Туре	Std. Conc	RT	Area	IS Area	Area %
1 IPA	181009G2_1	Analyte	28.7			13457.00	0.00
2 ST181009G2-1 PFC CS-1 537 18J0404	181009G2_2	Analyte	28.7	4.65	13772.44	13457.00	102.34
3 1803199-02 CAL-DW11-FRB-20180928 0.25902	181009G2_3	Analyte	28.7	4.65	10245.26	13457.00	76.13
4 1803199-03 CAL-DW09-20180929 0.26566	181009G2_4	Analyte	28.7	4.63	10232.77	13457.00	76.04
5 1803199-04 CAL-DW09-FRB-20180929 0.26152	181009G2_5	Analyte	28.7	4.64	10137.07	13457.00	75.33
6 IPA	181009G2_6	Analyte	28.7			13457.00	0.00
7 ST181009G2-2 PFC CS1 537 18J0406	181009G2_7	Analyte	28.7	4.63	14316.51	13457.00	106.39
8 1803199-02 CAL-DW11-FRB-20180928 0.25902	181009G2_8	Analyte	28.7	4.63	10899.05	13457.00	80.99
9 1803199-04 CAL-DW09-FRB-20180929 0.26152	181009G2_9	Analyte	28.7	4.63	9932.69	13457.00	73.81
10 IPA	181009G2_10	Analyte	28.7			13457.00	0.00
11 ST181009G2-3 PFC CS2 537 18J0407	181009G2_11	Standard	28.7	4.63	13987.27	13457.00	103.94

Work Order 1803199 Page 96 of 188

Compound 20: d3-N-MeFOSAA

	ID	Name	Type	Std. Conc	RT	Area	ICAL Area	Area %
	1 IPA	181009G2_1	Analyte	40			14928.39	0.00
	2 ST181009G2-1 PFC CS-1 537 18J0404	181009G2_2	Analyte	40	4.96	13491.66	14928.39	90.38
	3 1803199-02 CAL-DW11-FRB-20180928 0.25902	181009G2_3	Analyte	40	4.96	10275.78	14928.39	68.83
	4 1803199-03 CAL-DW09-20180929 0.26566	181009G2_4	Analyte	40	4.97	11689.33	14928.39	78.30
	5 1803199-04 CAL-DW09-FRB-20180929 0.26152	181009G2_5	Analyte	40	4.96	11920.15	14928.39	79.85
	6 IPA	181009G2_6	Analyte	40			14928.39	0.00
	7 ST181009G2-2 PFC CS1 537 18J0406	181009G2_7	Analyte	40	4.96	16141.82	14928.39	108.13
	8 1803199-02 CAL-DW11-FRB-20180928 0.25902	181009G2_8	Analyte	40	4.97	9913.38	14928.39	66.41
	9 1803199-04 CAL-DW09-FRB-20180929 0.26152	181009G2_9	Analyte	40	4.98	10269.62	14928.39	68.79
-	LO IPA	181009G2_10	Analyte	40			14928.39	0.00
-	11 ST181009G2-3 PFC CS2 537 18J0407	181009G2_11	Standard	40	4.97	15905.60	14928.39	106.55

CCAL

CONFIRMATION FOR CCVs OUT - PINK HIGHLIGHTED NOT REPORTED

Compound 18: 13C2-PFOA

ID	Name	Type	Std. Conc	RT	Area	CCAL Area	Area %	
1 IPA	181009G2_1	Analyte	10			6089.11	0.00	
2 ST181009G2-1 PFC CS-1 537 18J0404	181009G2_2	Analyte	10	4.22	6089.11	6089.11	100.00	
3 1803199-02 CAL-DW11-FRB-20180928 0.25902	181009G2_3	Analyte	10	4.22	4137.24	6089.11	67.94	
4 1803199-03 CAL-DW09-20180929 0.26566	181009G2_4	Analyte	10	4.22	4337.23	6089.11	71.23	reported run
5 1803199-04 CAL-DW09-FRB-20180929 0.26152	181009G2_5	Analyte	10	4.22	4209.83	6089.11	69.14	
6 IPA	181009G2_6	Analyte	10			6089.11	0.00	
7 ST181009G2-2 PFC CS1 537 18J0406	181009G2_7	Analyte	10	4.23	5560.46	6089.11	91.32	
7 ST181009G2-2 PFC CS1 537 18J0406	181009G2_7	Analyte	10	4.23	5560.46	5560.46	100.00	
8 1803199-02 CAL-DW11-FRB-20180928 0.25902	181009G2_8	Analyte	10	4.23	4070.21	5560.46	73.20	
9 1803199-04 CAL-DW09-FRB-20180929 0.26152	181009G2_9	Analyte	10	4.23	4212.77	5560.46	75.76	
10 IPA	181009G2_10	Analyte	10			5560.46	0.00	
11 ST181009G2-3 PFC CS2 537 18J0407	181009G2 11	Analyte	10	4.23	5753.82	5560.46	103.48	

KBF 10/9/2018

Work Order 1803199 Page 97 of 188

Compound 19: 13C4-PFOS

ID	Name	Type	Std. Conc	RT	Area	CCAL Area	Area %	
1 IPA	181009G2_1	Analyte	28.7			13772.44	0.00	
2 ST181009G2-1 PFC CS-1 537 18J0404	181009G2_2	Analyte	28.7	4.65	13772.44	13772.44	100.00	
3 1803199-02 CAL-DW11-FRB-20180928 0.25902	181009G2_3	Analyte	28.7	4.65	10245.26	13772.44	74.39	
4 1803199-03 CAL-DW09-20180929 0.26566	181009G2_4	Analyte	28.7	4.63	10232.77	13772.44	74.30	reported run
5 1803199-04 CAL-DW09-FRB-20180929 0.26152	181009G2_5	Analyte	28.7	4.64	10137.07	13772.44	73.60	
6 IPA	181009G2_6	Analyte	28.7			13772.44	0.00	
7 ST181009G2-2 PFC CS1 537 18J0406	181009G2_7	Analyte	28.7	4.63	14316.51	13772.44	103.95	
7 ST181009G2-2 PFC CS1 537 18J0406	181009G2_7	Analyte	28.7	4.63	14316.51	14316.51	100.00	
8 1803199-02 CAL-DW11-FRB-20180928 0.25902	181009G2_8	Analyte	28.7	4.63	10899.05	14316.51	76.13	
9 1803199-04 CAL-DW09-FRB-20180929 0.26152	181009G2_9	Analyte	28.7	4.63	9932.69	14316.51	69.38	
10 IPA	181009G2_10	Analyte	28.7			14316.51	0.00	
11 ST181009G2-3 PFC CS2 537 18J0407	181009G2_11	Standard	28.7	4.63	13987.27	14316.51	97.70	

Compound 20: d3-N-MeFOSAA

ID	Name	Туре	Std. Conc	RT	Area	ICAL Area	Area %	
1 IPA	181009G2_1	Analyte	40			13491.66	0.00	
2 ST181009G2-1 PFC CS-1 537 18J0404	181009G2_2	Analyte	40	4.96	13491.66	13491.66	100.00	
3 1803199-02 CAL-DW11-FRB-20180928 0.25902	181009G2_3	Analyte	40	4.96	10275.78	13491.66	76.16	
4 1803199-03 CAL-DW09-20180929 0.26566	181009G2_4	Analyte	40	4.97	11689.33	13491.66	86.64	reported run
5 1803199-04 CAL-DW09-FRB-20180929 0.26152	181009G2_5	Analyte	40	4.96	11920.15	13491.66	88.35	
6 IPA	181009G2_6	Analyte	40			13491.66	0.00	
7 ST181009G2-2 PFC CS1 537 18J0406	181009G2_7	Analyte	40	4.96	16141.82	13491.66	119.64	
7 ST181009G2-2 PFC CS1 537 18J0406	181009G2_7	Analyte	40	4.96	16141.82	16141.82	100.00	
8 1803199-02 CAL-DW11-FRB-20180928 0.25902	181009G2_8	Analyte	40	4.97	9913.38	16141.82	61.41	
9 1803199-04 CAL-DW09-FRB-20180929 0.26152	181009G2_9	Analyte	40	4.98	10269.62	16141.82	63.62	
10 IPA	181009G2_10	Analyte	40			16141.82	0.00	

Work Order 1803199 Page 98 of 188

40 4.97 15905.60 16141.82

98.54

KBF 10/9/2018

LC Calibration Standards Review Checklist C-Cals Correct Manual **ION Ratio** Concentration **Date** Name I-Cal Integrations **Calibration ID:** ST181009G2-1 Calibration ID: L/M)H Calibration ID: LMH Calibration iD: LMH **Calibration ID:** LMH Calibration ID: LMH **Calibration ID:** LMH Calibration ID: LMH **Calibration ID:** LMH Cailbration ID: LMH П Full Mass Cal. Date: **Run Log Present:** Comments: # of Samples per Sequence Checked: **Instrument Blank Saved IIS Area Saved** Reviewed By:

ID: LR - LCSRC

Work Order 1803199

Initials/Date

Rev. No.: 1

Rev. Date: 02/06/2018

Page 100 0 188 of 1

Dataset:

X:\G1.PRO\Results\2018\181009G2\181009G2-2.qld

Last Altered: Printed:

Tuesday, October 09, 2018 13:12:12 Pacific Daylight Time Tuesday, October 09, 2018 13:12:26 Pacific Daylight Time

Method: X:\G1.PRO\MethDB\PFAS_DW_L14_1009.mdb 09 Oct 2018 13:12:09 Calibration: X:\G1.PRO\CurveDB\C18_537_Q1_10-05-18_L14.cdb 09 Oct 2018 10:37:25

NJT 10/9/18

Name: 181009G2_2, Date: 09-Oct-2018, Time: 11:08:35, ID: ST181009G2-1 PFC CS-1 537 18J0404, Description: PFC CS-1 537 18J0404

-2557 55 WAT 250	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	1 PFBS	298.8> 80.2	6.21e2	1.38e4	1.00	money money desired and a control	2.91	2.91	1.29	1.74	97.6
2	2 PFHxA	312.8 > 269.0	1.18e3	6.09e3	1.00		3.28	3.28	1.94	1.88	94.0
3	3 PFHpA	362.8 > 319.0	1.29e3	6.09e3	1.00		3.79	3.79	2.13	1.97	98.7
4	4 PFHxS	398.7 > 80.2	6.27e2	1.38e4	1.00		3.91	3.91	1.31	1.82	100.1
5	5 PFOA	412.7 > 368.9	1.19e3	6.09e3	1.00		4.22	4.22	1.95	1.89	94.6
6	6 PFNA	462.8 > 419.0	1.17e3	6.09e3	1.00		4.59	4.59	1.92	1.99	99.3
7,	7 PFOS	498.7 >80.2	2.92e2	1.38e4	1.00		4.64	4.64	0.609	1.62	87.0
8	8 PFDA	512.8 > 468.9	1.45e3	6.09e3	1.00		4.83	4.83	2.38	1.84	92.2
9	9 N-MeFOSAA	569.8 > 419.0	4.65e2	1.35e4	1.00		4.97	4.97	1.38	1.97	98.4
10	10 N-EtFOSAA	583.8 >419.0	4.03e2	1.35e4	1.00		5.10	5.10	1.20	1.85	92.4
11	11 PFUnA	562.7 > 518.9	1.56e3	6.09e3	1.00		5.11	5.11	2.57	1.81	90.3
12	12 PFDoA	612.8 > 569.0	1.33e3	6.09e3	1.00		5.36	5.36	2.18	1.80	90.1
13	13 PFTrDA	662.8 > 619.0	1.37e3	6.09e3	1.00		5.58	5.58	2.25	1.83	91.3
14	14 PFTeDA	712.8>669.0	1.48e3	6.09e3	1.00		5.75	5.75	2.42	1.86	92.8
15	15 13C2-PFHxA	314.9 > 270.0	5.99e3	6.09e3	1.00	1.102	3.29	3.28	9.84	8.93	89.3
16	16 13C2-PFDA	514.8 > 470.0	6.97e3	6.09e3	1.00	1.199	4.86	4.83	11.4	9.55	95.5
17	17 d5-N-EtFOSAA	588.8> 419.0	1.30e4	1.35e4	1.00	0.820	5.08	5.10	38.4	46.9	117.2
18	18 13C2-PFOA	414.8 > 370.0	6.09e3	6.09e3	1.00	1.000	4.22	4.22	10.0	10.0	100.0
19	19 13C4-PFOS	502.8>80.2	1.38e4	1.38e4	1.00	1.000	4.65	4.65	28.7	28.7	100.0
20	20 d3-N-MeFOSAA	572.7 > 419.0	1.35e4	1.35e4	1.00	1.000	4.96	4.96	40.0	40.0	100.0

MBF 10/9/18

Dataset:

Untitled

Last Altered: Printed: Tuesday, October 09, 2018 13:55:05 Pacific Daylight Time Tuesday, October 09, 2018 13:55:15 Pacific Daylight Time

Method: X:\G1.PRO\MethDB\PFAS_DW_L14_1009.mdb 09 Oct 2018 13:12:09 Calibration: X:\G1.PRO\CurveDB\C18_537_Q1_10-05-18_L14.cdb 09 Oct 2018 10:37:25

Compound name: PFBS

Mary and animal of	# Name		Acq.Date	Acq.Time
1 contains on	1 181009G2_1	IPA	09-Oct-18	10:56:32
2	2 181009G2_2	ST181009G2-1 PFC CS-1 537 18J0404	09-Oct-18	11:08:35
3	3 181009G2_3	1803199-02 CAL-DW11-FRB-2018092	. 09-Oct-18	11:27:36
4	4 181009G2_4	1803199-03 CAL-DW09-20180929 0.26	09-Oct-18	11:39:39
5 Acres all al	5 181009G2_5	1803199-04 CAL-DW09-FRB-2018092	. 09-Oct-18	11:52:44
6	6 181009G2_6	IPA	09-Oct-18	12:05:50
7	7 181009G2_7	ST181009G2-2 PFC CS1 537 18J0406	✓ 09-Oct-18	12:18:46
8 (8 181009G2_8	1803199-02 CAL-DW11-FRB-2018092	. 09-Oct-18	12:40:59
9	9 181009G2_9	1803199-04 CAL-DW09-FRB-2018092	09-Oct-18	12:53:04
10	10 181009G2_10	IPA	09-Oct-18	13:06:12
11	11 181009G2_11	ST181009G2-3 PFC CS2 537 18J0407	✓ 09-Oct-18	13:19:12

Work Order 1803199 Page 102 of 188

Dataset:

X:\G1.PRO\Results\2018\181009G2\181009G2-7.qld

Last Altered: Printed:

Tuesday, October 09, 2018 13:14:05 Pacific Daylight Time Tuesday, October 09, 2018 13:14:27 Pacific Daylight Time

Method: X:\G1.PRO\MethDB\PFAS_DW_L14_1009.mdb 09 Oct 2018 13:12:09 Calibration: X:\G1.PRO\CurveDB\C18_537_Q1_10-05-18_L14.cdb 09 Oct 2018 10:37:25

Name: 181009G2_7, Date: 09-Oct-2018, Time: 12:18:46, ID: ST181009G2-2 PFC CS1 537 18J0406, Description: PFC CS1 537 18J0406

MJT 19/18

and carry at	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
	1 PFBS	298.8> 80.2	3.26e3	1.43e4	1.00		2.90	2.91	6.53	8.77	99.2
2	2 PFHxA	312.8 > 269.0	5.93e3	5.56e3	1.00		3.29	3.28	10.7	10.3	103.3
3	3 PFHpA	362.8 > 319.0	6.22e3	5.56e3	1.00		3.80	3.79	11.2	10.4	103.9
4	4 PFHxS	398.7 > 80.2	3.01e3	1.43e4	1.00		3.90	3.92	6.03	8.41	92.2
5	5 PFOA	412.7 > 368.9	5.34e3	5.56e3	1.00		4.22	4.23	9.60	9.29	92.9
6	6 PFNA	462.8 > 419.0	5.54e3	5.56e3	1.00		4.59	4.58	9.96	10.3	102.8
7.5	7 PFOS	498.7 >80.2	1.64e3	1.43e4	1.00		4.63	4.64	3.29	8.75	94.7
8	8 PFDA	512.8 > 468.9	7.31e3	5.56e3	1.00		4.83	4.83	13.2	10.2	101.9
9	9 N-MeFOSAA	569.8 > 419.0	2.63e3	1.61e4	1.00		4.97	4.97	6.52	9.29	92.9
10	10 N-EtFOSAA	583.8 >419.0	2.16e3	1.61e4	1.00		5.10	5.10	5.36	8.28	82.8
1100	11 PFUnA	562.7 > 518.9	7.30e3	5.56e3	1.00		5.11	5.11	13.1	9.24	92.4
12	12 PFDoA	612.8 > 569.0	6.62e3	5.56e3	1.00		5.36	5.37	11.9	9.83	98.3
13	13 PFTrDA	662.8 > 619.0	6.98e3	5.56e3	1.00		5.58	5.58	12.6	10.2	101.8
14	14 PFTeDA	712.8>669.0	7.63e3	5.56e3	1.00		5.75	5.75	13.7	10.5	105.0
15	15 13C2-PFHxA	314.9 > 270.0	6.82e3	5.56e3	1.00	1.102	3.29	3.28	12.3	11.1	111.3
16	16 13C2-PFDA	514.8 > 470.0	7.15e3	5.56e3	1.00	1.199	4.86	4.84	12.9	10.7	107.3
17. 1.1.1.1	17 d5-N-EtFOSAA	588.8> 419.0	1.18e4	1.61e4	1.00	0.820	5.09	5.10	29.3	35.7	89.3
18	18 13C2-PFOA	414.8 > 370.0	5.56e3	5.56e3	1.00	1.000	4.22	4.23	10.0	10.0	100.0
19	19 13C4-PFOS	502.8>80.2	1.43e4	1.43e4	1.00	1.000	4.65	4.63	28.7	28.7	100.0
20	20 d3-N-MeFOSAA	572.7 > 419.0	1.61e4	1.61e4	1.00	1.000	4.96	4.96	40.0	40.0	100.0

MAX 10/9/18

Dataset:

Untitled

Last Altered: Printed:

Tuesday, October 09, 2018 13:55:05 Pacific Daylight Time Tuesday, October 09, 2018 13:55:15 Pacific Daylight Time

Method: X:\G1.PRO\MethDB\PFAS_DW_L14_1009.mdb 09 Oct 2018 13:12:09 Calibration: X:\G1.PRO\CurveDB\C18_537_Q1_10-05-18_L14.cdb 09 Oct 2018 10:37:25

Compound name: PFBS

	# Name	ID	Acq.Date	Acq.Time
1	1 181009G2_1	IPA	09-Oct-18	10:56:32
2	2 181009G2_2	ST181009G2-1 PFC CS-1 537 18J0404	09-Oct-18	11:08:35
3	3 181009G2_3	1803199-02 CAL-DW11-FRB-2018092	09-Oct-18	11:27:36
4	4 181009G2_4	1803199-03 CAL-DW09-20180929 0.26	09-Oct-18	11:39:39
5	5 181009G2_5	1803199-04 CAL-DW09-FRB-2018092	09-Oct-18	11:52:44
6	6 181009G2_6	IPA	09-Oct-18	12:05:50
7 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	7 181009G2_7	ST181009G2-2 PFC CS1 537 18J0406	09-Oct-18	12:18:46
8	8 181009G2_8	1803199-02 CAL-DW11-FRB-2018092	09-Oct-18	12:40:59
9	9 181009G2_9	1803199-04 CAL-DW09-FRB-2018092	09-Oct-18	12:53:04
10	10 181009G2_10	IPA	09-Oct-18	13:06:12
11	11 181009G2_11	ST181009G2-3 PFC CS2 537 18J0407	09-Oct-18	13:19:12

Work Order 1803199 Page 108 of 188

Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN 945

Vista Analytical Laboratory

Dataset: X:\G1.PRO\Results\2018\181005G3\181005G3-CRV.qld

Last Altered: Tuesday, October 09, 2018 10:37:25 Pacific Daylight Time

Printed: Tuesday, October 09, 2018 10:42:07 Pacific Daylight Time | COUPT | Pros = 0.464 | Etfosign = 1.0

Page 1 of 10

high pt PFHXA = 75 PFHPA T MeFosaa = 25 EHFOSAA V

PFOA PENA

PF DA PFUNA

PFDOA

PETIDA PETEDA V

Method: X:\G1.PRO\MethDB\PFAS DW L14 1005.mdb 06 Oct 2018 09:05:09

Calibration: X:\G1.PRO\CurveDB\C18_537_Q1_10-05-18_L14.cdb 09 Oct 2018 10:37:25

Compound name: PFBS

Coefficient of Determination: R^2 = 0.999081

Calibration curve: 0.744632 * x

Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans; None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1 1 1 1 1 1	1 181005G3_2	Standard	0.222	2.93	62.733	14224.786	0.127	0.2	-23.4	NO	0.999	NO	bb
2		Standard	0.444	2.93	146.427	13024.970	0.323	0.4	-2.4	NO	0.999	NO	bb
3	3 181005G3 4	Standard	0.888	2.93	303.388	14070.765	0.619	8.0	-6.4	NO	0.999	NO	bb
4	4 181005G3_5	Standard	1.780	2.93	657.534	14081.617	1.340	1.8	1.1	NO	0.999	NO	bb
5	5 181005G3_6	Standard	4.440	2.93	1534.146	14864.415	2.962	4.0	-10.4	NO	0.999	NO	bb
6	6 181005G3_7	Standard	8.840	2.93	2817.001	13089.380	6.177	8.3	-6.2	NO	0.999	NO	bd
7. E. H. L. E.	7 181005G3_8	Standard	22.100	2.93	7487.047	13387.591	16.051	21.6	-2.5	NO	0.999	NO	bb
8	8 181005G3_9	Standard	44.200	2.93	15305.433	12750.208	34.452	46.3	4.7	NO	0.999	NO	bd
9	9 181005G3_10	Standard	66.400	2.92	21674.318	12622.959	49.279	66.2	-0.3	NO	0.999	NO	bb
10	10 181005G3_11	Standard	88.500	2.93	28531.990	12453.261	65.755	88.3	-0.2	NO	0.999	NO	bb

Compound name: PFHxA

Coefficient of Determination: R^2 = 0.998629

Calibration curve: 1.03224 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
H FIAIL	1 181005G3_2	Standard	0.250	3.29	186.167	5750.953	0.324	0.3	25.4	NO	0.999	NO	bb
2	2 181005G3_3	Standard	0.500	3.29	342.566	6289.390	0.545	0.5	5.5	NO	0.999	NO	bb
3	3 181005G3_4	Standard	1.000	3.28	631.665	5792.523	1.090	1,1	5.6	NO	0.999	NO	bb
4	4 181005G3_5	Standard	2.000	3.28	1220.053	5555.693	2.196	2.1	6.4	NO	0.999	NO	bb
5	5 181005G3_6	Standard	5.000	3.28	3019.632	5865.877	5.148	5.0	-0.3	NO	0.999	NO	bd
6	6 181005G3_7	Standard	10.000	3.28	5624.349	5593.660	10.055	9.7	-2.6	NO	0.999	NO	bd
7	7 181005G3_8	Standard	25.000	3.28	13917.297	5723.753	24.315	23.6	-5.8	NO	0.999	NO	bd
8	8 181005G3_9	Standard	50.000	3.28	28629.891	5320.454	53.811	52.1	4.3	NO	0.999	NO	bb
9	9 181005G3_10	Standard	75.000	3.28	43697.902	5696.708	76.707	74.3	-0.9	NO	0.999	NO	bd
10	10 181005G3_11	Standard	100.000	3.28	54433.914	5059.471	107.588	104.2	4.2	NO	0.999	NO	bbX

Work Order 1803199 Page 114 of 188 Vista Analytical Laboratory

Dataset: X:\G1.PRO\Results\2018\181005G3\181005G3-CRV.qld

Last Altered: Tuesday, October 09, 2018 10:37:25 Pacific Daylight Time Tuesday, October 09, 2018 10:42:07 Pacific Daylight Time

Compound name: PFHpA

Coefficient of Determination: R^2 = 0.998832

Calibration curve: 1.07676 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1 - 1 - 1 - 1 - 1	1 181005G3_2	Standard	0.250	3.81	130.943	5750.953	0.228	0.2	-15.4	NO	0.999	NO	bb
2	2 181005G3_3	Standard	0.500	3.81	322.857	6289.390	0.513	0.5	-4.7	NO	0.999	NO	bb
3	3 181005G3_4	Standard	1.000	3.80	580.985	5792.523	1.003	0.9	-6.9	NO	0.999	NO	bb
4	4 181005G3_5	Standard	2.000	3.80	1306.926	5555.693	2.352	2.2	9.2	NO	0.999	NO	bb
5	5 181005G3_6	Standard	5.000	3.81	3218.410	5865.877	5.487	5.1	1.9	NO	0.999	NO	bb
6	6 181005G3_7	Standard	10.000	3.81	6242.474	5593.660	11.160	10.4	3.6	NO	0.999	NO	bb
7	7 181005G3_8	Standard	25.000	3.80	14793.167	5723.753	25.845	24.0	-4.0	NO	0.999	NO	bd
8	8 181005G3_9	Standard	50.000	3.81	29748.197	5320.454	55.913	51.9	3.9	NO	0.999	NO	bb
9	9 181005G3_10	Standard	75.000	3.80	45118.750	5696.708	79.201	73.6	-1.9	NO	0.999	NO	bb
10	10 181005G3_11	Standard	100.000	3.81	57904.727	5059.471	114.448	106.3	6.3	NO	0.999	NO	bbX

Compound name: PFHxS

Coefficient of Determination: R^2 = 0.999312

Calibration curve: 0.716646 * x

Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 181005G3_2	Standard	0.228	3.93	62.383	14224.786	0.126	0.2	-23.0	NO	0.999	NO	MM
2 4 4 4 4 4 4	2 181005G3_3	Standard	0.456	3.93	140.388	13024.970	0.309	0.4	-5.3	NO	0.999	NO	MM
3	3 181005G3_4	Standard	0.912	3.93	281.891	14070.765	0.575	8.0	-12.0	NO	0.999	NO	MM
4	4 181005G3_5	Standard	1.820	3.94	618.664	14081.617	1.261	1.8	-3.3	NO	0.999	NO	MM
5	5 181005G3_6	Standard	4.560	3.94	1624.240	14864.415	3.136	4.4	-4.0	NO	0.999	NO	MM
6	6 181005G3_7	Standard	9.120	3.93	3064.151	13089.380	6.719	9.4	2.8	NO	0.999	NO	MM
7 = = =	7 181005G3_8	Standard	22.800	3.93	7268.626	13387.591	15.582	21.7	-4.6	NO	0.999	NO	MM
8	8 181005G3_9	Standard	45.500	3.93	14813.804	12750.208	33.345	46.5	2.3	NO	0.999	NO	MM
9	9 181005G3_10	Standard	68.200	3.93	21944.377	12622.959	49.894	69.6	2.1	NO	0.999	NO	MM
10	10 181005G3_11	Standard	91.000	3.93	27918.807	12453.261	64.342	89.8	-1.3	NO	0.999	NO	MM

Work Order 1803199 Page 115 of 188

Page 3 of 10

Vista Analytical Laboratory

Dataset: X:\G1.PRO\Results\2018\181005G3\181005G3-CRV.qld

Last Altered: Tuesday, October 09, 2018 10:37:25 Pacific Daylight Time Tuesday, October 09, 2018 10:42:07 Pacific Daylight Time

Compound name: PFOA

Coefficient of Determination: R² = 0.997085

Calibration curve: 1.03308 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

ALCOHOLOGY AND A	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1 10 5 10 200	1 181005G3_2	Standard	0.250	4.26	100.437	5750.953	0.175	0.2	-32.4	NO	0.997	NO	MM
2	2 181005G3_3	Standard	0.500	4.24	298.241	6289.390	0.474	0.5	-8.2	NO	0.997	NO	MM
3	3 181005G3_4	Standard	1.000	4.25	472.692	5792.523	0.816	8.0	-21.0	NO	0.997	NO	MM
4	4 181005G3_5	Standard	2.000	4.25	1130.231	5555.693	2.034	2.0	-1.5	NO	0.997	NO	MM
5	5 181005G3_6	Standard	5.000	4.25	3177.579	5865.877	5.417	5.2	4.9	NO	0.997	NO	bb
6	6 181005G3_7	Standard	10.000	4.25	5597.691	5593.660	10.007	9.7	-3.1	NO	0.997	NO	bd
7	7 181005G3_8	Standard	25.000	4.25	13515.015	5723.753	23.612	22.9	-8.6	NO	0.997	NO	bd
8	8 181005G3_9	Standard	50.000	4.25	29153.088	5320.454	54.794	53.0	6.1	NO	0.997	NO	bb
9	9 181005G3_10	Standard	75.000	4.24	43866.152	5696.708	77.003	74.5	-0.6	NO	0.997	NO	bd
10	10 181005G3_11	Standard	100.000	4.25	56620.234	5059.471	111.909	108.3	8.3	NO	0.997	NO	bdX

Compound name: PFNA

Coefficient of Determination: R^2 = 0.997889

Calibration curve: 0.969177 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 181005G3_2	Standard	0.250	4.55	101.443	5750.953	0.176	0.2	-27.2	NO	0.998	NO	MM
2	2 181005G3_3	Standard	0.500	4.56	285.927	6289.390	0.455	0.5	-6.2	NO	0.998	NO	ММ
3	3 181005G3_4	Standard	1.000	4.56	442.730	5792.523	0.764	8.0	-21.1	NO	0.998	NO	MM
417115	4 181005G3_5	Standard	2.000	4.56	1159.673	5555.693	2.087	2.2	7.7	NO	0.998	NO	bb
5	5 181005G3_6	Standard	5.000	4.56	2729.900	5865.877	4.654	4.8	-4.0	NO	0.998	NO	MM
6	6 181005G3_7	Standard	10.000	4.56	5465.954	5593.660	9.772	10.1	8.0	NO	0.998	NO	MM
7	7 181005G3_8	Standard	25.000	4.56	12902.569	5723.753	22.542	23.3	-7.0	NO	0.998	NO	bb
8	8 181005G3_9	Standard	50.000	4.56	27084.033	5320.454	50.905	52.5	5.0	NO	0.998	NO	bb
9	9 181005G3_10	Standard	75.000	4.56	41126.078	5696.708	72.193	74.5	-0.7	NO	0.998	NO	bd
10	10 181005G3_11	Standard	100.000	4.56	52465.574	5059.471	103.698	107.0	7.0	NO	0.998	NO	bbX

Work Order 1803199 Page 116 of 188

Page 4 of 10

Vista Analytical Laboratory

Dataset: X:\G1.PRO\Results\2018\181005G3\181005G3-CRV.qld

Last Altered: Tuesday, October 09, 2018 10:37:25 Pacific Daylight Time Tuesday, October 09, 2018 10:42:07 Pacific Daylight Time

Compound name: PFOS

Coefficient of Determination: R^2 = 0.996669

Calibration curve: 0.37602 * x

Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
7	1 181005G3_2	Standard	0.232	4.61	7.787	14224.786	0.016	0.0	-82.0	NO	0.997	NO	MMX
2	2 181005G3_3	Standard	0.464	4.62	60.454	13024.970	0.133	0.4	-23.7	NO	0.997	NO	MM
3	3 181005G3_4	Standard	0.928	4.61	125.885	14070.765	0.257	0.7	-26.4	NO	0.997	NO	MM
4	4 181005G3_5	Standard	1.860	4.61	270.434	14081.617	0.551	1.5	-21.2	NO	0.997	NO	MM
5	5 181005G3_6	Standard	4.640	4.61	777.120	14864.415	1.500	4.0	-14.0	NO	0.997	NO	MM
6	6 181005G3_7	Standard	9.240	4.61	1438.374	13089.380	3.154	8.4	-9.2	NO	0.997	NO	MM
7	7 181005G3_8	Standard	23.100	4.62	3630.333	13387.591	7.783	20.7	-10.4	NO	0.997	NO	MM
8	8 181005G3_9	Standard	46.200	4.61	7690.533	12750.208	17.311	46.0	-0.4	NO	0.997	NO	MM
9	9 181005G3_10	Standard	69.400	4.61	11607.759	12622.959	26.392	70.2	1.1	NO	0.997	NO	MM
10	10 181005G3_11	Standard	92.500	4.61	15749.727	12453.261	36.297	96.5	4.4	NO	0.997	NO	MM

Compound name: PFDA

Coefficient of Determination: R^2 = 0.993505

Calibration curve: 1.29047 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT .	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1 And the last of the last o	1 181005G3_2	Standard	0.250	4.85	188.673	5750.953	0.328	0.3	1.7	NO	0.994	NO	MM
2	2 181005G3_3	Standard	0.500	4.85	284.905	6289.390	0.453	0.4	-29.8	NO	0.994	NO	MM
3	3 181005G3_4	Standard	1.000	4.85	779.928	5792.523	1.346	1.0	4.3	NO	0.994	NO	bb
4	4 181005G3_5	Standard	2.000	4.86	1606.105	5555.693	2.891	2.2	12.0	NO	0.994	NO	bb
5	5 181005G3_6	Standard	5.000	4.86	4177.451	5865.877	7.122	5.5	10.4	NO	0.994	NO	ММ
6	6 181005G3_7	Standard	10.000	4.86	7281.195	5593.660	13.017	10.1	0.9	NO	0.994	NO	bd
7.4 1.	7 181005G3_8	Standard	25.000	4.85	17274.590	5723.753	30.181	23.4	-6.5	NO	0.994	NO	bd
8	8 181005G3_9	Standard	50.000	4.86	37924.234	5320.454	71.280	55.2	10.5	NO	0.994	NO	ММ
9	9 181005G3_10	Standard	75.000	4.84	51925.504	5696.708	91.150	70.6	-5.8	NO	0.994	NO	bd
10	10 181005G3_11	Standard	100.000	4.85	67462.273	5059.471	133.339	103.3	3.3	NO	0.994	NO	bbX

Work Order 1803199 Page 117 of 188

Page 5 of 10

Vista Analytical Laboratory

Dataset: X:\G1.PRO\Results\2018\181005G3\181005G3-CRV.qld

Last Altered: Tuesday, October 09, 2018 10:37:25 Pacific Daylight Time Tuesday, October 09, 2018 10:42:07 Pacific Daylight Time

Compound name: N-MeFOSAA

Coefficient of Determination: R^2 = 0.994919

Calibration curve: 0.701045 * x

Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 181005G3_2	Standard	0.250	4.99	46.380	14384.714	0.129	0.2	-26.4	NO	0.995	NO	MM
2	2 181005G3_3	Standard	0.500	4.99	120.021	15125.046	0.317	0.5	-9.4	NO	0.995	NO	MM
3	3 181005G3_4	Standard	1.000	4.99	211.569	16107.638	0.525	0.7	-25.1	NO	0.995	NO	MM
4	4 181005G3_5	Standard	2.000	4.98	497.402	16215.109	1.227	1.8	-12.5	NO	0.995	NO	MM
5	5 181005G3_6	Standard	5.000	4.98	1344.375	13816.685	3.892	5.6	11.0	NO	0.995	NO	MM
6	6 181005G3_7	Standard	10.000	4.99	2546.825	15078.015	6.756	9.6	-3.6	NO	0.995	NO	MM
7:	7 181005G3_8	Standard	25.000	4.99	6136.417	13771.519	17.824	25.4	1.7	NO	0.995	NO	MM
8	8 181005G3_9	Standard	50.000	4.98	15266.173	13206.061	46.240	66.0	31.9	NO	0.995	NO	MMX
9	9 181005G3_10	Standard	75.000	4.98	20135.230	13175.728	61.128	87.2	16.3	NO	0.995	NO	MMX
10	10 181005G3_11	Standard	100.000	4.98	26385.873	14530.470	72.636	103.6	3.6	NO	0.995	NO	MMX

Compound name: N-EtFOSAA

Coefficient of Determination: R^2 = 0.990622

Calibration curve: 0.647387 * x

Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

and the second second	# Name	Type	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 181005G3_2	Standard	0.250	5.12	37.074	14384.714	0.103	0.2	-36.3	NO	0.991	NO	MMX
2 1 1 1 1 1 1 1 1 1 1 1 1	2 181005G3_3	Standard	0.500	5.11	52.971	15125.046	0.140	0.2	-56.7	NO	0.991	NO	MMX
3	3 181005G3_4	Standard	1.000	5.12	202.425	16107.638	0.503	0.8	-22.4	NO	0.991	NO	MM
4	4 181005G3_5	Standard	2.000	5.12	444.695	16215.109	1.097	1.7	-15.3	NO	0.991	NO	MM
5 1.4	5 181005G3_6	Standard	5.000	5.12	1326.652	13816.685	3.841	5.9	18.7	NO	0.991	NO	MM
6	6 181005G3_7	Standard	10.000	5.12	2332.617	15078.015	6.188	9.6	-4.4	NO	0.991	NO	MM
7	7 181005G3_8	Standard	25.000	5.12	5580.601	13771.519	16.209	25.0	0.2	NO	0.991	NO	MM
8	8 181005G3_9	Standard	50.000	5.12	12258.305	13206.061	37.129	57.4	14.7	NO	0.991	NO	MMX
e Para de la	9 181005G3_10	Standard	75.000	5.11	19870.506	13175.728	60.325	93.2	24.2	NO	0.991	NO	MMX
10	10 181005G3_11	Standard	100.000	5.11	21989.418	14530.470	60.533	93.5	-6.5	NO	0.991	NO	MMX

Work Order 1803199 Page 118 of 188

Page 6 of 10

Vista Analytical Laboratory

Dataset: X:\G1.PRO\Results\2018\181005G3\181005G3-CRV.qld

Last Altered: Tuesday, October 09, 2018 10:37:25 Pacific Daylight Time Tuesday, October 09, 2018 10:42:07 Pacific Daylight Time

Compound name: PFUnA

Coefficient of Determination: R^2 = 0.997347

Calibration curve: 1.422 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
10.45	1 181005G3_2	Standard	0.250	5.14	186.869	5750.953	0.325	0.2	-8.6	NO	0.997	NO	MM
2	2 181005G3_3	Standard	0.500	5.13	356.018	6289.390	0.566	0.4	-20.4	NO	0.997	NO	bb
3	3 181005G3_4	Standard	1.000	5.13	744.950	5792.523	1.286	0.9	-9.6	NO	0.997	NO	bb
4	4 181005G3_5	Standard	2.000	5.13	1636.588	5555.693	2.946	2.1	3.6	NO	0.997	NO	bb
5	5 181005G3_6	Standard	5.000	5.13	4110.102	5865.877	7.007	4.9	-1.5	NO	0.997	NO	bb
6	6 181005G3_7	Standard	10.000	5.13	7913.447	5593.660	14.147	9.9	-0.5	NO	0.997	NO	bb
7	7 181005G3_8	Standard	25.000	5.13	18624.023	5723.753	32.538	22.9	-8.5	NO	0.997	NO	bb
8	8 181005G3_9	Standard	50.000	5.13	40225.367	5320.454	75.605	53.2	6.3	NO	0.997	NO	bb
9	9 181005G3_10	Standard	75.000	5.12	60124.441	5696.708	105.542	74.2	-1.0	NO	0.997	NO	bb
10	10 181005G3_11	Standard	100.000	5.12	73444.273	5059.471	145.162	102.1	2.1	NO	0.997	NO	bbX

Compound name: PFDoA

Coefficient of Determination: R^2 = 0.995011

Calibration curve: 1.21116 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 181005G3_2	Standard	0.250	5.37	140.094	5750.953	0.244	0.2	-19.5	NO	0.995	NO	bb
2	2 181005G3_3	Standard	0.500	5.37	392.005	6289.390	0.623	0.5	2.9	NO	0.995	NO	bb
3	3 181005G3_4	Standard	1.000	5.36	661.895	5792.523	1.143	0.9	-5.7	NO	0.995	NO	bb
4	4 181005G3_5	Standard	2.000	5.37	1462.169	5555.693	2.632	2.2	8.6	NO	0.995	NO	bd
5	5 181005G3_6	Standard	5.000	5.36	3614.083	5865.877	6.161	5.1	1.7	NO	0.995	NO	bd
6	6 181005G3_7	Standard	10.000	5.36	7434.696	5593.660	13.291	11.0	9.7	NO	0.995	NO	bd
7 7 7 7	7 181005G3_8	Standard	25.000	5.36	17457.275	5723.753	30.500	25.2	0.7	NO	0.995	NO	bd
8	8 181005G3_9	Standard	50.000	5.36	34733.887	5320.454	65.284	53.9	7.8	NO	0.995	NO	bd
9	9 181005G3_10	Standard	75.000	5.37	48140.523	5696.708	84.506	69.8	-7.0	NO	0.995	NO	bb
10	10 181005G3_11	Standard	100.000	5.36	63080.652	5059.471	124.678	102.9	2.9	NO	0.995	NO	bbX

Work Order 1803199 Page 119 of 188

Page 7 of 10

Vista Analytical Laboratory

Dataset: X:\G1.PRO\Results\2018\181005G3\181005G3-CRV.qld

Last Altered: Tuesday, October 09, 2018 10:37:25 Pacific Daylight Time Tuesday, October 09, 2018 10:42:07 Pacific Daylight Time

Compound name: PFTrDA

Coefficient of Determination: R^2 = 0.999100

Calibration curve: 1.23315 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1.3 (1.15)	1 181005G3_2	Standard	0.250	5.57	219.012	5750.953	0.381	0.3	23.5	NO	0.999	NO	bb
2	2 181005G3_3	Standard	0.500	5.58	385.214	6289.390	0.612	0.5	-0.7	NO	0.999	NO	bb
3	3 181005G3_4	Standard	1.000	5.57	620.404	5792.523	1.071	0.9	-13.1	NO	0.999	NO	MM
4	4 181005G3_5	Standard	2.000	5.57	1327.018	5555.693	2.389	1.9	-3.2	NO	0.999	NO	bb
5	5 181005G3_6	Standard	5.000	5.58	3456.570	5865.877	5.893	4.8	-4.4	NO	0.999	NO	bd
6	6 181005G3_7	Standard	10.000	5.57	6829.920	5593.660	12.210	9.9	-1.0	NO	0.999	NO	bb
74.6841	7 181005G3_8	Standard	25.000	5.57	17181.029	5723.753	30.017	24.3	-2.6	NO	0.999	NO	bb
8	8 181005G3_9	Standard	50.000	5.57	34058.375	5320.454	64.014	51.9	3.8	NO	0.999	NO	bb
9	9 181005G3_10	Standard	75.000	5.57	52128.582	5696.708	91.507	74.2	-1.1	NO	0.999	NO	bb
10	10 181005G3_11	Standard	100.000	5.57	66306.430	5059.471	131.054	106.3	6.3	NO	0.999	NO	bbX

Compound name: PFTeDA

Coefficient of Determination: R^2 = 0.997908

Calibration curve: 1.30639 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	1 181005G3_2	Standard	0.250	5.76	174.105	5750.953	0.303	0.2	-7.3	NO	0.998	NO	bb
2	2 181005G3_3	Standard	0.500	5.77	359.291	6289.390	0.571	0.4	-12.5	NO	0.998	NO	bb
3	3 181005G3_4	Standard	1.000	5.76	670.953	5792.523	1.158	0.9	-11.3	NO	0.998	NO	bd
4 1 665	4 181005G3_5	Standard	2.000	5.76	1504.940	5555.693	2.709	2.1	3.7	NO	0.998	NO	bb
5	5 181005G3_6	Standard	5.000	5.76	3883.065	5865.877	6.620	5.1	1.3	NO	0.998	NO	bd
6	6 181005G3_7	Standard	10.000	5.76	7365.802	5593.660	13.168	10.1	0.8	NO	0.998	NO	bd
7 24411	7 181005G3_8	Standard	25.000	5.76	18058.844	5723.753	31.551	24.2	-3.4	NO	0.998	NO	bd
8	8 181005G3_9	Standard	50.000	5.76	36970.469	5320.454	69.487	53.2	6.4	NO	0.998	NO	bb
9	9 181005G3_10	Standard	75.000	5.76	54054.086	5696.708	94.887	72.6	-3.2	NO	0.998	NO	bb
10	10 181005G3_11	Standard	100.000	5.77	66708.547	5059.471	131.849	100.9	0.9	NO	0.998	NO	bbX

Work Order 1803199 Page 120 of 188

Quantify Compound Summary Report MassLynx MassLynx V4.1 SCN 945

Page 8 of 10

Vista Analytical Laboratory

Dataset: X:\G1.PRO\Results\2018\181005G3\181005G3-CRV.qld

Last Altered: Tuesday, October 09, 2018 10:37:25 Pacific Daylight Time Printed: Tuesday, October 09, 2018 10:42:07 Pacific Daylight Time

Compound name: 13C2-PFHxA

Response Factor: 1.10164

RRF SD: 0.0539755, Relative SD: 4.89954

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 181005G3_2	Standard	10.000	3.28	6204.534	5750.953	10.789	9.8	-2.1	NO		NO	bd
2	2 181005G3_3	Standard	10.000	3.28	6379.967	6289.390	10.144	9.2	-7.9	NO		NO	bd
3	3 181005G3_4	Standard	10.000	3.28	6101.985	5792.523	10.534	9.6	-4.4	NO		NO	bd
4	4 181005G3_5	Standard	10.000	3.28	6344.475	5555.693	11.420	10.4	3.7	NO		NO	bb
5	5 181005G3_6	Standard	10.000	3.28	6547.506	5865.877	11.162	10.1	1.3	NO		NO	bd
6	6 181005G3_7	Standard	10.000	3.28	6500.032	5593.660	11.620	10.5	5.5	NO		NO	bb
7	7 181005G3_8	Standard	10.000	3.28	6459.735	5723.753	11.286	10.2	2.4	NO		NO	bb
8	8 181005G3_9	Standard	10.000	3.28	6207.448	5320.454	11.667	10.6	5.9	NO		NO	bb
9	9 181005G3_10	Standard	10.000	3.28	5996.309	5696.708	10.526	9.6	-4.5	NO		NO	bd
10	10 181005G3_11	Standard	10.000	3.28	5922.341	5059.471	11.705	10.6	6.3	NO		NO	bbX

Compound name: 13C2-PFDA

Response Factor: 1.19855

RRF SD: 0.0638028, Relative SD: 5.32332

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)

Curve type: RF

3-4-0-1 -1	# Name	Туре	Std. Conc	RT	Area =	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1.00	1 181005G3_2	Standard	10.000	4.86	6716.737	5750.953	11.679	9.7	-2.6	NO	2.1	NO	bb
2,	2 181005G3_3	Standard	10.000	4.86	7031.245	6289.390	11.180	9.3	-6.7	NO		NO	bb
3,	3 181005G3_4	Standard	10.000	4.85	6702.071	5792.523	11.570	9.7	-3.5	NO		NO	bb
4	4 181005G3_5	Standard	10.000	4.85	6320.592	5555.693	11.377	9.5	-5.1	NO		NO	bb
5	5 181005G3_6	Standard	10.000	4.85	7592.240	5865.877	12.943	10.8	8.0	NO		NO	bb
6	6 181005G3_7	Standard	10.000	4.86	6826.515	5593.660	12.204	10.2	1.8	NO		NO	bb
7	7 181005G3_8	Standard	10.000	4.85	7300.034	5723.753	12.754	10.6	6.4	NO		NO	bd
8	8 181005G3_9	Standard	10.000	4.85	6664.819	5320.454	12.527	10.5	4.5	NO		NO	bd
9	9 181005G3_10	Standard	10.000	4.84	6628.669	5696.708	11.636	9.7	-2.9	NO		NO	bd
10	10 181005G3_11	Standard	10.000	4.85	6568.925	5059.471	12.983	10.8	8.3	NO		NO	bdX

Work Order 1803199 Page 121 of 188

Page 9 of 10

Vista Analytical Laboratory

Dataset: X:\G1.PRO\Results\2018\181005G3\181005G3-CRV.qld

Last Altered: Tuesday, October 09, 2018 10:37:25 Pacific Daylight Time Tuesday, October 09, 2018 10:42:07 Pacific Daylight Time

Compound name: d5-N-EtFOSAA

Response Factor: 0.819843

RRF SD: 0.0602762, Relative SD: 7.35217

Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area)

Curve type: RF

eneralisine ares	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 181005G3_2	Standard	40.000	5.12	12147.907	14384.714	33.780	41.2	3.0	NO	and the second s	NO	bd
2	2 181005G3_3	Standard	40.000	5.12	11551.193	15125.046	30.549	37.3	-6.8	NO		NO	bd
3	3 181005G3_4	Standard	40.000	5.12	12529.479	16107.638	31.114	38.0	-5.1	NO		NO	bd
40,000 (000,000)	4 181005G3_5	Standard	40.000	5.11	12020.289	16215.109	29.652	36.2	-9.6	NO		NO	bd
5	5 181005G3_6	Standard	40.000	5.12	12454.481	13816.685	36.056	44.0	9.9	NO		NO	bd
6	6 181005G3_7	Standard	40.000	5.12	13225.704	15078.015	35.086	42.8	7.0	NO		NO	bb
7	7 181005G3_8	Standard	40.000	5.12	11471.155	13771.519	33.318	40.6	1.6	NO		NO	bb
8	8 181005G3_9	Standard	40.000	5.11	11087.588	13206.061	33.583	41.0	2.4	NO		NO	bbX
9	9 181005G3_10	Standard	40.000	5.11	10315.094	13175.728	31.315	38.2	-4.5	NO		NO	bdX
10	10 181005G3_11	Standard	40.000	5.11	10672.975	14530.470	29.381	35.8	-10.4	NO		NO	bbX

Compound name: 13C2-PFOA

Response Factor: 1

RRF SD: 0, Relative SD: 0

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
	1 181005G3_2	Standard	10.000	4.25	5750.953	5750.953	10.000	10.0	0.0	NO		NO	bb
2	2 181005G3_3	Standard	10.000	4.25	6289.390	6289.390	10.000	10.0	0.0	NO		NO	MM
3:40 43	3 181005G3_4	Standard	10.000	4.25	5792.523	5792.523	10.000	10.0	0.0	NO		NO	bd
4	4 181005G3_5	Standard	10.000	4.25	5555.693	5555.693	10.000	10.0	0.0	NO		NO	мм
5	5 181005G3_6	Standard	10.000	4.25	5865.877	5865.877	10.000	10.0	0.0	NO		NO	bb
6	6 181005G3_7	Standard	10.000	4.25	5593.660	5593.660	10.000	10.0	0.0	NO		NO	мм
7	7 181005G3_8	Standard	10.000	4.25	5723.753	5723.753	10.000	10.0	0.0	NO		NO	мм
8	8 181005G3_9	Standard	10.000	4.25	5320.454	5320.454	10.000	10.0	0.0	NO		NO	bd
9	9 181005G3_10	Standard	10.000	4.25	5696.708	5696.708	10.000	10.0	0.0	NO		NO	bd
10	10 181005G3_11	Standard	10.000	4.24	5059.471	5059.471	10.000	10.0	0.0	NO		NO	bdX

Work Order 1803199 Page 122 of 188

Vista Analytical Laboratory

Dataset: X:\G1.PRO\Results\2018\181005G3\181005G3-CRV.qld

Last Altered: Tuesday, October 09, 2018 10:37:25 Pacific Daylight Time Printed: Tuesday, October 09, 2018 10:42:07 Pacific Daylight Time

Compound name: 13C4-PFOS

Response Factor: 1

RRF SD: 0, Relative SD: 0

Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	ŔŦ	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
	1 181005G3_2	Standard	28.700	4.62	14224.786	14224.786	28.700	28.7	0.0	NO		NO	MM
2	2 181005G3_3	Standard	28.700	4.62	13024.970	13024.970	28.700	28.7	0.0	NO		NO	MM
3	3 181005G3_4	Standard	28.700	4.61	14070.765	14070.765	28.700	28.7	0.0	NO		NO	bd
4	4 181005G3_5	Standard	28.700	4.61	14081.617	14081.617	28.700	28.7	0.0	NO		NO	bd
5	5 181005G3_6	Standard	28.700	4.62	14864.415	14864.415	28.700	28.7	0.0	NO		NO	MM
6	6 181005G3_7	Standard	28.700	4.62	13089.380	13089.380	28.700	28.7	0.0	NO		NO	bd
7	7 181005G3_8	Standard	28.700	4.62	13387.591	13387.591	28.700	28.7	0.0	NO		NO	bd
8	8 181005G3_9	Standard	28.700	4.61	12750.208	12750.208	28.700	28.7	0.0	NO		NO	MM
9	9 181005G3_10	Standard	28.700	4.61	12622.959	12622.959	28.700	28.7	0.0	NO		NO	bd
10	10 181005G3_11	Standard	28.700	4.61	12453.261	12453.261	28.700	28.7	0.0	NO		NO	bd

Compound name: d3-N-MeFOSAA

Response Factor: 1

RRF SD: 0, Relative SD: 0

Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area)

Curve type: RF

	# Name	Туре	Std. Conc	RT	Area	IS Area	Response	Conc.	%Dev	Conc. Flag	CoD	CoD Flag	x=excluded
1	1 181005G3_2	Standard	40.000	4.98	14384.714	14384.714	40.000	40.0	0.0	NO		NO	bd
2	2 181005G3_3	Standard	40.000	4.98	15125.046	15125.046	40.000	40.0	0.0	NO		NO	bd
3 As	3 181005G3_4	Standard	40.000	4.98	16107.638	16107.638	40.000	40.0	0.0	NO		NO	bd
4	4 181005G3_5	Standard	40.000	4.98	16215.109	16215.109	40.000	40.0	0.0	NO		NO	bd
5	5 181005G3_6	Standard	40.000	4.98	13816.685	13816.685	40.000	40.0	0.0	NO		NO	bd
6	6 181005G3_7	Standard	40.000	4.98	15078.015	15078.015	40.000	40.0	0.0	NO		NO	bd
7.4	7 181005G3_8	Standard	40.000	4.98	13771.519	13771.519	40.000	40.0	0.0	NO		NO	MM
8	8 181005G3_9	Standard	40.000	4.98	13206.061	13206.061	40.000	40.0	0.0	NO		NO	bdX
9	9 181005G3_10	Standard	40.000	4.98	13175.728	13175.728	40.000	40.0	0.0	NO		NO	MMX
10	10 181005G3_11	Standard	40.000	4.97	14530.470	14530.470	40.000	40.0	0.0	NO		NO	bdX

Work Order 1803199 Page 123 of 188

MassLynx MassLynx V4.1 SCN 945

Page 1 of 1

Dataset:

X:\G1.PRO\Results\2018\181005G3\181005G3-CRV.qld

Last Altered:

Tuesday, October 09, 2018 10:37:25 Pacific Daylight Time

Printed:

Tuesday, October 09, 2018 10:43:04 Pacific Daylight Time

Method: X:\G1.PRO\MethDB\PFAS_DW_L14_1005.mdb 06 Oct 2018 09:05:09

Calibration: X:\G1.PRO\CurveDB\C18_537_Q1_10-05-18_L14.cdb 09 Oct 2018 10:37:25

Name: 181005G3_2, Date: 05-Oct-2018, Time: 17:37:20, ID: ST181005G3-1 PFC CS-4 537 18J0401, Description: PFC CS-4 537 18J0401

1.00	# Name	IS#	CoD	CoD Flag	%RSD
1	1 PFBS	19	0.9991	NO	
2	2 PFHxA	18	0.9986	NO	
3	3 PFHpA	18	0.9988	NO	
4	4 PFHxS	19	0.9993	NO	
5	5 PFOA	18	0.9971	NO	
6	6 PFNA	18	0.9979	NO	i
7	7 PFOS	19	0.9967	NO	
8	8 PFDA	18	0.9935	NO	
9	9 N-MeFOSAA	20	0.9949	NO	
10	10 N-EtFOSAA	20	0.9906	NO	
11	11 PFUnA	18	0.9973	NO	
12	12 PFDoA	18	0.9950	NO	
13	13 PFTrDA	18	0.9991	NO	
14	14 PFTeDA	18	0.9979	NO	
15	15 13C2-PFHxA	18		NO	4.900
16	16 13C2-PFDA	18		NO	5.323
17	17 d5-N-EtFOSAA	20		NO	7.352
18	18 13C2-PFOA	18		NO	0.000
19	19 13C4-PFOS	19		NO	0.000
20	20 d3-N-MeFOSAA	20_		NO	0.000

Work Order 1803199 Page 124 of 188

.ICAL	w 2 m 6							
Compound 18: 13C2-PFOA	high	6289.3	9 RPD					
	low	5320.4	5 16.69					
ID	Name	Туре	Std. Conc RT		Area	IS Area	Response	Primary Flags
1 ST181005G3-1 PFC CS-4 537 18J040	181005G3 <u>·</u> 2	Analyte	10	4.25	5750.95	5750.95	10	bb
2 ST181005G3-2 PFC CS-3 537 18J040	2 181005G3_3	Analyte	10	4.25	6289.39	6289.39	10	MM
3 ST181005G3-3 PFC CS-2 537 18J040	3 181005G3_4	Analyte	10	4.25	5792.52	5792.52	10	bd
4 ST181005G3-4 PFC CS-1 537 18J040	04 181005G3_5	Analyte	10	4.25	5555.69	5555.69	10	MM
5 ST181005G3-5 PFC CS0 537 18J040	5 181005G3_6	Analyte	10	4.25	5865.88	5865.88	10	bb
6 ST181005G3-6 PFC CS1 537 18J040	6 181005G3_7	Analyte	10	4.25	5593.66	5593.66	10	MM
7 ST181005G3-7 PFC CS2 537 18J040	7 181005G3_8	Analyte	10	4.25	5723.75	5723.75	10	MM
8 ST181005G3-8 PFC CS3 537 18J040	8 181005G3_9	Analyte	10	4.25	5320.45	5320.45	10	bd
9 ST181005G3-9 PFC CS4 537 18J040	_	•	10	4.25	5696.71	5696.71	10	bd
10 ST181005G3-10 PFC CS5 537 18J04			10	4.24	5059.47	5059.47	10	bdX
TO 31 TOTOCOOD-TO LLC C33 331 19104								THE STATE OF THE S
10 3110100303-10 FFC C33 337 18J04	_					Average:		
10 3110100303-10 FFC C33 337 18J04						Average: 5732.11		
10 3110100303-10 FFC C33 337 18J04						_		
	high	14864.4	2 RPD			_		
Compound 19: 13C4-PFOS		14864.4 12453.2	educing sult has all horses, constitutions			_		
	high		educing sult has all horses, constitutions		Area	_		Primary Flags
Compound 19: 13C4-PFOS	high Iow Name	12453.2	6 17.65			5732.11	Response	Primary Flags MM
Compound 19: 13C4-PFOS	high low Name 01 181005G3_2	12453.2 Type	6 17.65 Std. Conc RT	4.62	14224.79	5732.11	Response 28.7	
Compound 19: 13C4-PFOS ID 1 ST181005G3-1 PFC CS-4 537 18J040	high low Name 181005G3_2 181005G3_3	12453.2 Type Analyte	6 17.65 Std. Conc RT 28.7	4.62 4.62	14224.79 13024.97	5732.11 IS Area 14224.79	Response 28.7 28.7	MM MM
ID 1 ST181005G3-1 PFC CS-4 537 18J040 2 ST181005G3-2 PFC CS-3 537 18J040	high low Name 181005G3_2 181005G3_3 181005G3_4	12453.2 Type Analyte Analyte	6 17.65 Std. Conc RT 28.7 28.7	4.62 4.62 4.61	14224.79 13024.97 14070.77	5732.11 IS Area 14224.79 13024.97	Response 28.7 28.7 28.7	MM MM bd
ID 1 ST181005G3-1 PFC CS-4 537 18J040 2 ST181005G3-2 PFC CS-3 537 18J040 3 ST181005G3-3 PFC CS-2 537 18J040	high low Name 181005G3_2 181005G3_3 181005G3_4 181005G3_5	12453.2 Type Analyte Analyte Analyte	6 17.65 Std. Conc RT 28.7 28.7 28.7	4.62 4.62 4.61 4.61	14224.79 13024.97 14070.77 14081.62	5732.11 IS Area 14224.79 13024.97 14070.77	Response 28.7 28.7 28.7 28.7	MM MM bd
ID 1 ST181005G3-1 PFC CS-4 537 18J040 2 ST181005G3-2 PFC CS-3 537 18J040 3 ST181005G3-3 PFC CS-2 537 18J040 4 ST181005G3-4 PFC CS-1 537 18J040	high low Name 181005G3_2 181005G3_3 181005G3_4 181005G3_5 181005G3_6	Type Analyte Analyte Analyte Analyte	6 17.65 Std. Conc RT 28.7 28.7 28.7 28.7	4.62 4.61 4.61 4.62	14224.79 13024.97 14070.77 14081.62 14864.42	5732.11 IS Area 14224.79 13024.97 14070.77 14081.62	Response 28.7 28.7 28.7 28.7 28.7	MM MM bd bd MM
ID 1 ST181005G3-1 PFC CS-4 537 18J040 2 ST181005G3-2 PFC CS-3 537 18J040 3 ST181005G3-3 PFC CS-2 537 18J040 4 ST181005G3-4 PFC CS-1 537 18J040 5 ST181005G3-5 PFC CS0 537 18J040	high low Name 181005G3_2 181005G3_3 181005G3_4 181005G3_5 181005G3_6 181005G3_7	Type Analyte Analyte Analyte Analyte Analyte Analyte Analyte	Std. Conc RT 28.7 28.7 28.7 28.7 28.7 28.7 28.7	4.62 4.61 4.61 4.62 4.62	14224.79 13024.97 14070.77 14081.62 14864.42 13089.38	5732.11 IS Area 14224.79 13024.97 14070.77 14081.62 14864.42	Response 28.7 28.7 28.7 28.7 28.7 28.7	MM MM bd bd MM bd
ID 1 ST181005G3-1 PFC CS-4 537 18J040 2 ST181005G3-2 PFC CS-3 537 18J040 3 ST181005G3-3 PFC CS-2 537 18J040 4 ST181005G3-4 PFC CS-1 537 18J040 5 ST181005G3-5 PFC CS0 537 18J040 6 ST181005G3-6 PFC CS1 537 18J040	high low Name 181005G3_2 181005G3_3 181005G3_4 181005G3_5 181005G3_6 6 181005G3_7 7 181005G3_8	Type Analyte Analyte Analyte Analyte Analyte Analyte Analyte Analyte	Std. Conc RT 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7	4.62 4.61 4.61 4.62 4.62 4.62	14224.79 13024.97 14070.77 14081.62 14864.42 13089.38 13387.59	5732.11 IS Area 14224.79 13024.97 14070.77 14081.62 14864.42 13089.38	Response 28.7 28.7 28.7 28.7 28.7 28.7	MM MM bd bd MM bd
ID 1 ST181005G3-1 PFC CS-4 537 18J040 2 ST181005G3-2 PFC CS-3 537 18J040 3 ST181005G3-3 PFC CS-2 537 18J040 4 ST181005G3-4 PFC CS-1 537 18J040 5 ST181005G3-5 PFC CS0 537 18J040 6 ST181005G3-6 PFC CS1 537 18J040 7 ST181005G3-7 PFC CS2 537 18J040	high low Name 181005G3_2 181005G3_3 181005G3_4 181005G3_5 181005G3_6 6 181005G3_7 7 181005G3_8 8 181005G3_9	Type Analyte	Std. Conc RT 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7	4.62 4.61 4.61 4.62 4.62 4.62 4.61	14224.79 13024.97 14070.77 14081.62 14864.42 13089.38 13387.59 12750.21	5732.11 IS Area 14224.79 13024.97 14070.77 14081.62 14864.42 13089.38 13387.59	Response 28.7 28.7 28.7 28.7 28.7 28.7 28.7	MM bd bd MM bd bd MM bd bd
ID 1 ST181005G3-1 PFC CS-4 537 18J040 2 ST181005G3-2 PFC CS-3 537 18J040 3 ST181005G3-3 PFC CS-2 537 18J040 4 ST181005G3-4 PFC CS-1 537 18J040 5 ST181005G3-5 PFC CS0 537 18J040 6 ST181005G3-6 PFC CS1 537 18J040 7 ST181005G3-7 PFC CS2 537 18J040 8 ST181005G3-8 PFC CS3 537 18J040	high low Name 1 181005G3_2 181005G3_3 181005G3_4 14 181005G3_5 5 181005G3_6 6 181005G3_7 7 181005G3_8 8 181005G3_9 9 181005G3_10	Type Analyte	Std. Conc RT 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7	4.62 4.61 4.61 4.62 4.62 4.62 4.61	14224.79 13024.97 14070.77 14081.62 14864.42 13089.38 13387.59 12750.21 12622.96	5732.11 IS Area 14224.79 13024.97 14070.77 14081.62 14864.42 13089.38 13387.59 12750.21	Response 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7	MM bd bd MM bd bd MM bd bd bd
ID 1 ST181005G3-1 PFC CS-4 537 18J040 2 ST181005G3-2 PFC CS-2 537 18J040 3 ST181005G3-3 PFC CS-2 537 18J040 4 ST181005G3-4 PFC CS-1 537 18J040 5 ST181005G3-5 PFC CS0 537 18J040 6 ST181005G3-6 PFC CS1 537 18J040 7 ST181005G3-7 PFC CS2 537 18J040 8 ST181005G3-8 PFC CS3 537 18J040 9 ST181005G3-9 PFC CS4 537 18J040	high low Name 1 181005G3_2 181005G3_3 181005G3_4 181005G3_5 181005G3_6 6 181005G3_7 7 181005G3_8 8 181005G3_9 9 181005G3_10	Type Analyte	Std. Conc RT 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7	4.62 4.61 4.61 4.62 4.62 4.62 4.61	14224.79 13024.97 14070.77 14081.62 14864.42 13089.38 13387.59 12750.21 12622.96	5732.11 IS Area 14224.79 13024.97 14070.77 14081.62 14864.42 13089.38 13387.59 12750.21 12622.96	Response 28.7 28.7 28.7 28.7 28.7 28.7 28.7 28.7	MM bd bd MM bd bd MM bd bd bd

Work Order 1803199 Page 125 of 188

KBF 10/9/2018

Compound 20: d3-N-MeFOSAA	high	16215.11	RPD						
	low	13771.52	16.30						
ID	Name	Туре	Std. Conc	RT	,	Area	IS Area	Response	Primary Flags
1 ST181005G3-1 PFC CS-4 537 18J0401	181005G3_2	Analyte	40		4.98	14384.71	14384.71	40	bd
2 ST181005G3-2 PFC CS-3 537 18J0402	181005G3_3	Analyte	40		4.98	15125.05	15125.05	40	bd
3 ST181005G3-3 PFC CS-2 537 18J0403	181005G3_4	Analyte	40		4.98	16107.64	16107.64	40	bd
4 ST181005G3-4 PFC CS-1 537 18J0404	181005G3_5	Analyte	40		4.98	16215.11	16215.11	40	bd
5 ST181005G3-5 PFC CS0 537 18J0405	181005G3_6	Analyte	40		4.98	13816.69	13816.69	40	bd
6 ST181005G3-6 PFC CS1 537 18J0406	181005G3_7	Analyte	40		4.98	15078.02	15078.02	40	bd
7 ST181005G3-7 PFC CS2 537 18J0407	181005G3_8	Analyte	40		4.98	13771.52	13771.52	40	MM
8 ST181005G3-8 PFC CS3 537 18J0408	181005G3_9	Analyte	40		4.98	13206.06	13206.06	40	bdX
9 ST181005G3-9 PFC CS4 537 18J0409	181005G3_10	Analyte	40		4.98	13175.73	13175.73	40	MMX
10 ST181005G3-10 PFC CS5 537 18J0410	181005G3_11	Analyte	40		4.97	14530.47	14530.47	40	bdX
							Average:		
							14928.39		

KBF 10/9/2018

Work Order 1803199 Page 126 of 188

Page 1 of 1

Dataset:

Untitled

Last Altered: Printed: Tuesday, October 09, 2018 10:47:47 Pacific Daylight Time Tuesday, October 09, 2018 10:48:29 Pacific Daylight Time

Method: X:\G1.PRO\MethDB\PFAS_DW_L14_1005.mdb 06 Oct 2018 09:05:09 Calibration: X:\G1.PRO\CurveDB\C18_537_Q1_10-05-18_L14.cdb 09 Oct 2018 10:37:25

Compound name: PFBS

	# Name	ID	Acq.Date	Acq.Time
1	1 181005G3_1	IPA	05-Oct-18	17:24:24
2	2 181005G3_2	ST181005G3-1 PFC CS-4 537 18J0401	05-Oct-18	17:37:20
3	3 181005G3_3	ST181005G3-2 PFC CS-3 537 18J0402	05-Oct-18	17:50:14
4	4 181005G3_4	ST181005G3-3 PFC CS-2 537 18J0403	05-Oct-18	18:03:11
5	5 181005G3_5	ST181005G3-4 PFC CS-1 537 18J0404	05-Oct-18	18:16:09
6	6 181005G3_6	ST181005G3-5 PFC CS0 537 18J0405	05-Oct-18	18:29:06
7	7 181005G3_7	ST181005G3-6 PFC CS1 537 18J0406	05-Oct-18	18:42:04
8	8 181005G3_8	ST181005G3-7 PFC CS2 537 18J0407	05-Oct-18	18:55:02
9 4	9 181005G3_9	ST181005G3-8 PFC CS3 537 18J0408	05-Oct-18	19:07:59
10	10 181005G3_10	ST181005G3-9 PFC CS4 537 18J0409	05-Oct-18	19:20:57
11	11 181005G3_11	ST181005G3-10 PFC CS5 537 18J0410	05-Oct-18	19:33:50
12	12 181005G3_12	IPA	05-Oct-18	19:46:47
13	13 181005G3_13	ST181005G3-1 PFC ICV 537 18J0411	05-Oct-18	19:59:53
14	14 181005G3_14	IPA	05-Oct-18	20:12:50

Work Order 1803199 Page 127 of 188

Work Order 1803199 Page 128 of 188

Work Order 1803199 Page 129 of 188

X:\G1.PRO\Results\2018\181005G3\181005G3-CRV.qld

Last Altered: Printed:

Tuesday, October 09, 2018 10:37:25 Pacific Daylight Time Tuesday, October 09, 2018 10:43:34 Pacific Daylight Time

Method: X:\G1.PRO\MethDB\PFAS_DW_L14_1005.mdb 06 Oct 2018 09:05:09

Calibration: X:\G1.PRO\CurveDB\C18_537_Q1_10-05-18_L14.cdb 09 Oct 2018 10:37:25

Compound name: PFBS

Coefficient of Determination: R^2 = 0.999081

Calibration curve: 0.744632 * x

Response type: Internal Std (Ref 19), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

X:\G1.PRO\Results\2018\181005G3\181005G3-CRV.qld Dataset:

Tuesday, October 09, 2018 10:37:25 Pacific Daylight Time Last Altered: Printed: Tuesday, October 09, 2018 10:43:34 Pacific Daylight Time

Compound name: PFHxA Coefficient of Determination: R^2 = 0.998629

Calibration curve: 1.03224 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Work Order 1803199 Page 131 of 188 · ·

Dataset: X:\G1.PRO\Results\2018\181005G3\181005G3-CRV.qld

Last Altered: Tuesday, October 09, 2018 10:37:25 Pacific Daylight Time Tuesday, October 09, 2018 10:43:34 Pacific Daylight Time

Compound name: PFHpA

Coefficient of Determination: R^2 = 0.998832

Calibration curve: 1.07676 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Work Order 1803199 Page 132 of 188

Work Order 1803199 Page 133 of 188

45.0

50.0

55.0

60.0

65.0

70.0

75.0

80.0

85.0

90.0

10.0

15.0

-0.0

5.0

20.0

25.0

30.0

35.0

40.0

X:\G1.PRO\Results\2018\181005G3\181005G3-CRV.qld

Last Altered: Tuesday, October 09, 2018 10:37:25 Pacific Daylight Time Tuesday, October 09, 2018 10:43:34 Pacific Daylight Time

Compound name: PFOA

Coefficient of Determination: R^2 = 0.997085

Calibration curve: 1.03308 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Work Order 1803199 Page 134 of 188

Work Order 1803199 Page 135 of 188

Work Order 1803199 Page 136 of 188

45.0

50.0

55.0

60.0

65.0

70.0

75.0

80.0

85.0

90.0

5.0

-0.0

10.0

15.0

20.0

25.0

30.0

35.0

40.0

Dataset:

X:\G1.PRO\Results\2018\181005G3\181005G3-CRV.qld

Last Altered: Printed:

Tuesday, October 09, 2018 10:37:25 Pacific Daylight Time Tuesday, October 09, 2018 10:43:34 Pacific Daylight Time

Compound name: PFDA

Coefficient of Determination: R^2 = 0.993505

Calibration curve: 1.29047 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Work Order 1803199 Page 137 of 188

X:\G1.PRO\Results\2018\181005G3\181005G3-CRV.qld

Last Altered: Printed:

Tuesday, October 09, 2018 10:37:25 Pacific Daylight Time Tuesday, October 09, 2018 10:43:34 Pacific Daylight Time

Compound name: N-MeFOSAA

Coefficient of Determination: R^2 = 0.994919

Calibration curve: 0.701045 * x

Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Work Order 1803199 Page 138 of 188

X:\G1.PRO\Results\2018\181005G3\181005G3-CRV.qld

Last Altered: Printed:

Tuesday, October 09, 2018 10:37:25 Pacific Daylight Time Tuesday, October 09, 2018 10:43:34 Pacific Daylight Time

Compound name: N-EtFOSAA

Coefficient of Determination: R^2 = 0.990622

Calibration curve: 0.647387 * x

Response type: Internal Std (Ref 20), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Work Order 1803199 Page 139 of 188

Dataset: X:\G1.PRO\Results\2018\181005G3\181005G3-CRV.qld

Last Altered: Tuesday, October 09, 2018 10:37:25 Pacific Daylight Time Printed: Tuesday, October 09, 2018 10:43:34 Pacific Daylight Time

Compound name: PFUnA

Coefficient of Determination: R^2 = 0.997347

Calibration curve: 1.422 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Work Order 1803199 Page 140 of 188

X:\G1.PRO\Results\2018\181005G3\181005G3-CRV.qld

Last Altered: Printed:

Tuesday, October 09, 2018 10:37:25 Pacific Daylight Time Tuesday, October 09, 2018 10:43:34 Pacific Daylight Time

Compound name: PFDoA

Coefficient of Determination: R^2 = 0.995011

Calibration curve: 1.21116 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Work Order 1803199 Page 141 of 188

X:\G1.PRO\Results\2018\181005G3\181005G3-CRV.qld Dataset:

Last Altered: Printed:

Tuesday, October 09, 2018 10:37:25 Pacific Daylight Time Tuesday, October 09, 2018 10:43:34 Pacific Daylight Time

Compound name: PFTrDA Coefficient of Determination: R^2 = 0.999100

Calibration curve: 1.23315 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Work Order 1803199 Page 142 of 188 Calibration curve: 1.30639 * x

Response type: Internal Std (Ref 18), Area * (IS Conc. / IS Area) Curve type: Linear, Origin: Force, Weighting: 1/x, Axis trans: None

Work Order 1803199 Page 143 of 188

Page 1 of 1

Dataset:

X:\G1.PRO\Results\2018\181005G3\181005G3-ICV.qld

Last Altered:

Printed:

Tuesday, October 09, 2018 10:46:00 Pacific Daylight Time Tuesday, October 09, 2018 10:46:17 Pacific Daylight Time

Method: X:\G1.PRO\MethDB\PFAS_DW_L14_1005.mdb 06 Oct 2018 09:05:09

Calibration: X:\G1.PRO\CurveDB\C18_537_Q1_10-05-18 L14.cdb 09 Oct 2018 10:37:25

Name: 181005G3_13, Date: 05-Oct-2018, Time: 19:59:53, ID: ST181005G3-1 PFC ICV 537 18J0411, Description: PFC ICV 537 18J0411

	# Name	Trace	Area	IS Area	Wt./Vol.	RRF	Pred.RT	RT	y Axis Resp.	Conc.	%Rec
1	1 PFBS	298.8> 80.2	3.74e3	1.40e4	1.00	ок чиноская анше додджую	2.90	2.93	7.66	10.3	102.9
2	2 PFHxA	312.8 > 269.0	5.96e3	5.74e3	1.00		3.28	3.28	10.4	10.0	100.5
3	3 PFHpA	362.8 > 319.0	6.59e3	5.74e3	1.00		3.81	3.81	11.5	10.7	106.6
4	4 PFHxS	398.7 > 80.2	3.39e3	1.40e4	1.00		3.91	3.94	6.94	9.68	96.8
5	5 PFOA	412.7 > 368.9	5.65e3	5.74e3	1.00		4.24	4.24	9.84	9.52	95.2
6 " " " " " " " " " " " " " " " " " " "	6 PFNA	462.8 > 419.0	5.86e3	5.74e3	1.00		4.58	4.56	10.2	10.5	105.2
7	7 PFOS	498.7 >80.2	1.62e3	1.40e4	1.00		4.61	4.61	3.31	8.80	88.0
8	8 PFDA	512.8 > 468.9	8.12e3	5.74e3	1.00		4.86	4.85	14.1	11.0	109.6
9	9 N-MeFOSAA	569.8 > 419.0	2.50e3	1.62e4	1.00		4.98	4.98	6.18	8.82	88.2
10	10 N-EtFOSAA	583.8 >419.0	2.06e3	1.62e4	1.00		5.11	5.11	5.09	7.87	78.7
11	11 PFUnA	562.7 > 518.9	7.78e3	5.74e3	1.00		5.12	5.13	13.5	9.52	95.2
12	12 PFDoA	612.8 > 569.0	6.57e3	5.74e3	1.00		5.37	5.37	11.4	9.44	94.4
13	13 PFTrDA	662.8 > 619.0	6.86e3	5.74e3	1.00		5.59	5.57	11.9	9.68	96.8
14	14 PFTeDA	712.8>669.0	7.80e3	5.74e3	1.00		5.77	5.76	13.6	10.4	104.0
15	15 13C2-PFHxA	314.9 > 270.0	6.30e3	5.74e3	1.00	1.102	3.31	3.28	11.0	9.95	99.5
16	16 13C2-PFDA	514.8 > 470.0	7.02e3	5.74e3	1.00	1.199	4.89	4.85	12.2	10.2	102.0
17	17 d5-N-EtFOSAA	588.8> 419.0	1.27e4	1.62e4	1.00	0.820	5.11	5.11	31.3	38.1	95.3
18	18 13C2-PFOA	414.8 > 370.0	5.74e3	5.74e3	1.00	1.000	4.26	4.25	10.0	10.0	100.0
19	19 13C4-PFOS	502.8>80.2	1.40e4	1.40e4	1.00	1.000	4.65	4.61	28.7	28.7	100.0
20	20 d3-N-MeFOSAA	572.7 > 419.0	1.62e4	1.62e4	1.00	1.000	4.99	4.98	40.0	40.0	100.0

10/4/18 10/9/18

NOR: G:\GIS_files\Calverton\MapDocs\MXD\2018_PFAS\PFAS_furtheraction1.mxd

